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Preface

We are pleased to introduce the proceedings of the 21th International Symposium on
Intelligent Data Analysis (IDA 2023), taking place April 12–14, 2023, in Louvain-la-
Neuve.

IDA is an international symposium presenting advances in the intelligent analysis
of data. Distinguishing characteristics of IDA are its focus on novel, inspiring ideas,
its focus on research, and its relatively small scale: all papers are presented in a single
track, allowing for discussions that involve all participants. Next to the presentations
based on the papers published in these proceedings, the conference features invited
talks, a Frontier Prize, and a PhD forum.

The 2023 symposium received 91 submissions, of which 38 (42%) are nowpublished
in these proceedings. These publicationswere selected after a roundof blind reviewing, in
which each paper was allocated to 3 program committee members and 1 senior program
committeemember. Paperswere evaluated on the basis of common scientific criteria such
as technical quality and scholarship; however, the most focus was put on the level of
novelty: we preferred small evaluations of novel ideas over thorough evaluations of more
incremental ideas. This keeps in mind IDA’s mission to promote potential breakthroughs
and game-changing ideas over elaborating to the last detail.

One of the pleasures of chairing a conference is the opportunity to invite colleagues
whose work we esteem highly. We are grateful to Francesco Bonchi (CENTAI Insti-
tute, Italy), Sarah Cohen-Boulakia (Université Paris-Saclay, France), Barbara Hammer
(Bielefeld University, Germany) and Gaël Varoquaux (INRIA, France) for accepting our
invitation to present recent work at the conference.

The symposium would not have been possible without the help of many people. We
would like to acknowledge Ioanna Miliou for managing the PhD forum. We are grateful
to Hendrik Blockeel for serving as Frontier Prize chair, and toMatthijs Van Leeuwen and
Élisa Fromont for their help provided as Advisory Chairs. We thank Benoît Frenay for
his help in obtaining sponsorship. The local organization would have been impossible
without the extensive help provided by Vanessa Maons. We also thank Harold Kiossou
for his help in preparing the proceedings, as well as the FNRS, NormaSTIC, and the
ICTEAM institute of UCLouvain for providing financial support.

The quality of IDA 2023 was only possible due to the tremendous efforts of the
Program Committee – our sincere thanks for all the great work and patience to make
these proceedings possible. Our final thanks go to our authors, who submitted their
inspiring work to the symposium. These proceedings will ensure that their work will be
preserved.

February 2023 Siegfried Nijssen
Bruno Crémilleux

Sibylle Hess
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Contextual Word Embeddings Clustering
Through Multiway Analysis:

A Comparative Study

Mira Ait-Saada1,2(B) and Mohamed Nadif1

1 Centre Borelli UMR 9010, Université Paris Cité, 75006 Paris, France
{mira.ait-saada,mohamed.nadif}@u-paris.fr
2 Groupe Caisse des Dépôts, 75013 Paris, France

Abstract. Transformer-based contextual word embedding models are
widely used to improve several NLP tasks such as text classification
and question answering. Knowledge about these multi-layered models
is growing in the literature, with several studies trying to understand
what is learned by each of the layers. However, little is known about how
to combine the information provided by these different layers in order
to make the most of the deep Transformer models. On the other hand,
even less is known about how to best use these modes for unsupervised
text mining tasks such as clustering. We address both questions in this
paper, and propose to study several multiway-based methods for simul-
taneously leveraging the word representations provided by all the layers.
We show that some of them are capable to perform word clustering in an
effective and interpretable way. We evaluate their performances across a
wide variety of Transformer models, datasets, multiblock techniques and
tensor-decomposition methods commonly used to tackle three-way data.

Keywords: Word Embeddings · Word Clustering · Multiway Analysis

1 Introduction

Transformer-based contextual word embedding models have revolutionized the
NLP state of the art. When fed with a word sequence, a Transformer model
produces several different embeddings (one at each layer of the network) for
each token in the sequence. Thus, in a word clustering context, for a dataset
with n words and a model with b layers and latent dimension d, we can form
a 3-way array of shape n × b × d (Fig. 1) where each word is represented by b
vectors.

The information captured at the different layers greatly varies: typically, the
early layers may encode local syntactic phenomena while more complex semantic
aspects are captured at the higher layers [1]. As a consequence it is no surprise
that using as input the embeddings produced at different layers may result in
very different performance levels on a given downstream task.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-30047-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30047-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-30047-9_1
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Fig. 1. Description of the proposed approach that leverages the whole Transformer
model by performing multiway clustering using all of the layers’ representations.

This problem can be overcome in a supervised context, where it is always
possible to determine the layer that maximises a certain metric. In contrast, in
the unsupervised setting it is difficult to determine the best layer in advance
with no a priori information about the data. In the absence of ground truth,
since there is no easy way of knowing which layer has given the best result, the
solution is to design a technique guaranteeing a performance level better than
that provided by the best layer, or at worst better than the mean of all layers’s
scores. More specifically, as a word described by several embedding vectors can
be regarded as an input data observation described by several sets (blocks) of
variables (dimensions), we propose to evaluate multiblock techniques [2], com-
monly used in chemiometrics and bioinformatics, in order to make the best use
of information provided by the different layers in a word clustering context. Also,
since the different layers can be seen as the slices of a 3D-tensor, we can see how
do the tensor-decomposition (TD) techniques [3] behave.

We measure the results of these mutiblock- and tensor-based approaches
on a word clustering task, and compare them with the performance obtained
either with other ways of aggregating the information contained in all the layers
such as unfolding (or matricization) or with layer-wise, non-multiway clustering
methods where each layer is handled separately.

To the best of our knowledge, this is the first study that focuses on multiway
analyses to make the best use of Transformer-based word representations. The
main contributions of the paper are as follows:

– While the performance delivered by Transformer embeddings is mostly
assessed in the context of supervised tasks, we study the behavior of these
embeddings in the unsupervised setting, and provide a thorough investigation
into how to make the best use of them for word clustering purposes, across a
variety of Transformer models.

– We show that certain multiway methods, simultaneously considering the fea-
tures provided by all the embedding layers, are capable of delivering a good
performance.

Difference with Previous Contributions. In previous studies, we combined
clustering and Transformer representations to find meaningful groups in text
datasets. In [4], we first propose a study in order to gain insight about the black-
box Transformer models using unsupervised techniques including clustering. To
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Fig. 2. Construction of the data matrix X� from the contextual word embeddings
provided by the �th layer. The context of the word “retina” is used to compute its
embedding, which constitutes the ith sample vector representation in the X� data
matrix w.r.t. to the layer �.

this end, we compare layers with each other and show several differences and
similarities between layers of the same model. In the present study, we go fur-
ther and show the complementarity of the different layers by combining them
to perform the clustering task. In [5], we propose a framework to harness the
whole set of b representations provided by a Transformer model using a cluster-
ing ensemble approach combined to a linear dimension reduction based on PCA
and a whitening step. The ensemble approach consists in combining the b par-
titions obtained using each of the document-level representations. In contrast,
in the present study, we carry out word-level clustering and more importantly,
we combine the representations before computing the partitions, via multi-way
techniques. Finally, in [6], we also perform document clustering and propose
a graph-based three-way approach that simultaneously leverages several docu-
ment representations such as document-term, static word representations and
Transformer representations. In the current study, we rather leverage the repre-
sentations provided by one given model and we use the representations in their
raw form instead of representing then using an adjacency matrix [6].

2 Word Clustering Using Transformer Embeddings

For a given dataset of n words, and a model with b embedding layers, we obtain
b different raw representations of size d, one from each layer. The dataset can
then be represented by b matrices X1, . . . ,Xb of size n × d as shown in Fig. 2.

One can then choose to use each of these matrices individually, the problem
being that in an unsupervised context it is not possible to determine in advance
which matrix is likely to help achieve the best performance. One alternative is
to try to benefit from the information provided by all the layers, simultaneously.

Using each layer’s output separately result in b different clustering partitions.
As already said, considering the unsupervised setting of our task and the absence
of true labels, it is impossible to determine in advance the best performing layer.
In addition, it is worth noting, that it is impossible to determine a unique layer for
all datasets, since the best layer highly depends on the dataset used, and there is
no satisfying universal choice. Therefore, we propose an alternative that benefits
from all the network’s layers, which we show to be very efficient while freeing us
from the impossible task of choosing a unique layer to perform clustering.
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Layer-Wise Clustering. In layer-wise clustering, we use the K-means algo-
rithm with as input a matrix X� of n rows provided by the �th layer of the model.
We also perform clustering on the PCA-reduced representations, that are formed
by the p first principal components of X�. Layer-wise clustering is referred to as
LW.

Unfolding Layers’ Representations. To try to unleash the potential of all
the layers, a simple approach consists in concatenating the matrices X�, � =
1, . . . , b into a unique data matrix X of size n × (b × d). For example, given a
base model with 12 layers and 768 dimensions which provides 12 matrices Xb of
size n × 768, we obtain after the unfolding a matrix of size n × 9 216. We call UN
the use of X directly by a clustering algorithm.

Multiblock Analysis. With a view to taking advantage of each layer of a given
Transformer language model, we propose to harness multiblock methods: Con-
sensus PCA (CPCA) [7], Generalized Canonical Correlation Analysis (GCCA) [8],
Multiple Co-Inertia Analysis (MCIA) [9], Multiple Factor Analysis (MFA) [2,10],
STATIS [11], Common Components and Specific Weights Analysis (CCSWA) [12].
These methods are designed to deal with simultaneous dimensionality reduction
in b blocks (with different features describing the same observations) and are par-
ticularly popular in biological multiple omics data analysis. Thereby we argue
that they can be very useful to tackle word clustering from three-way data.

In our case, we consider each layer � as a block and each corresponding data
matrix is represented by X� of size n×d and S� = X�XT

� , where n is the number
of samples in the dataset and d the number of features of the word representations
(d is the same for all of the layers). The objective is to represent the b blocks by
a unique matrix W of size n × p formed by p component vectors q1,q2, . . . ,qp

each one of size n × 1 that optimally resumes the overall information present
in the blocks. The MFA method can be seen as an extension of PCA adapted
to multiblock data. It consists in applying a standard PCA on a data matrix X
whose features are composed of all the variables (dimensions) weighted according
to the block (layer) they belong to in order to balance the influence of each block
of variables. The balance is achieved by normalizing each data block X� using
the first eigenvalue λ�

1. X is then obtained by concatenating the b resulting
matrices. Another formulation of the problem is finding the vector q1 that is the
most linked to all the weighted variables. More formally, MFA maximizes:

b∑

�=1

L�(X�,q1) =
b∑

�=1

1
λ�
1

d∑

j=1

cov2(x�.j
,q1) (1)

where xl.j corresponds to the jth variable of the data block X� and q1 to the
first component of MFA. The next component maximizes the same criterion while
being orthogonal to q1.

The STATIS method is similar to MFA, and differs in the weighting step. With
STATIS, instead of weighting the data blocks according to their corresponding
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eigenvalues, each data block is weighted using the first eigenvector v1 of the
inner product matrix C of size b × b where each element c�,�′ is computed as
follows:

c�,�′ = trace(S� × S�′) =
n∑

i=1

n∑

k=1

si,k,�si,k,�′ . (2)

The weighting vector α is computed by α = v1 × (vT
1 �)−1 so that the elements

of α sum to one (� being the unit vector). In [13], the authors discuss the
difference between CPCA, MCIA and GCCA and show their similarity, which lies in
the optimized criterion that aims to reveal covariant patterns in and between
the different blocks by finding scores vectors q�

1 for each block � which are as
much linked as possible to a global score vector q1:

∑b
�=1 cov2(q�

1,q1) where q�
1

and q1 are n × 1 vectors. This criterion is maximized by the three multiblock
methods, with different constraints. The same function is maximized to find the
higher order components, using a deflated version of the current data blocks at
each iteration. The deflating function used with CPCA is as follows:

X(t+1)
� = X(t)

� − qtq′
t

q′
tqt

X�. (3)

The CCSWA [12] method also computes the components iteratively. The first com-
ponent q1 and their weights γ1

1 , ..., γb
1 are computed as to minimize the expres-

sion:
∑b

�=1

∥∥S� − γ�
1q1qT

1

∥∥2 where γ�
1 represents the salience value of the �th

block for the first component (common axis) represented by the vector q1. The
CCSWA algorithm aims to find the parameters γ1

t , ..., γb
t and qt for t = 1, 2, . . . , p

that maximizes an overall loss function at each iteration t:

b∑

�=1

||S� −
t∑

k=1

γ�
1qkqT

k ||2. (4)

This proportion belongs to [0, 1] and the closer to 1 it is, the better is X�′ as a
substitute for X� (and vice-versa) to characterize the n samples of the dataset.

Whatever the method used, the p first common components q1, . . . ,qp are
used as input to a clustering algorithm as shown in Algorithm 1, thus leveraging
all of the word representations provided by the multi-layered Transformer mod-
els. The common components can be obtained using the R package FactoMineR
[14] for MFA and mogsa [15] for CPCA, GCCA, MCIA, and STATIS. For CCSWA, we
used our Python implementation.

Tensor Decomposition. In this family of methods, data matrices X�, � =
1, . . . , b can be viewed as a three-way or three-modal tensor X of size n × d × b
where each matrix X� (obtained with the �th layer of the model) is considered
as a slice of the tensor. Two of the most popular TD techniques are CANDE-

CAMP/PARAFAC (CP) [16] and Tucker decomposition [17]. For the sake of sim-
plicity, we describe these two techniques for three-mode tensors, but they can be
generalized for m-mode tensors (m > 3). A CP decomposition of rank p aims to
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Algorithm 1: Multiway Clustering Procedure

Input: a dataset D of n words; a Transformer model M of b layers; a clustering
algorithm C; a multiway decomposition function F , number of components p

Output: a clustering partition p
Step 1. Build data matrices, for each � = 1 . . . b:
X� ← M(D, �) as in Figure 2;

Step 2. Perform multiblock factorial decomposition:
q1, . . . ,qp ← F([X1, . . . ,Xb], p);
W ← horizontal stacking of the p components q1, . . . ,qp;

Step 3. Perform clustering:
p ← C(W);

return p

find three factor matrices A, B and C of size n× p, d× p and b× p respectively,
and λ that minimizes the approximation error of X by finding:

min
X∗

‖X − X∗‖ where X∗ =
p∑

j=1

λjaj ◦ bj ◦ cj (5)

where aj , bj and cj being the jth column of A, B and C respectively. The
“◦” stands for the outer product between two vectors. The outer product of
the three vectors aj , bj and cj results in a three-way tensor with the sames
dimensions as X. One of the most popular procedures to optimize this criterion
is the Alternating Least Squares (ALS) [16,18]. The Tucker decomposition also
computes three factor matrices A, B and C, this time of size n × p, d × q and
b × t respectively. Unlike in CP, the ranks of the three modes (p, q and t) are
not necessarily equal. In addition to the factor matrices, a core tensor G of size
p × q × t is computed so as to optimize:

min
X∗

‖X − X∗‖ where X∗ =
p∑

i=1

q∑

j=1

t∑

k=1

gijk ai ◦ bj ◦ ck (6)

gijk being the intersection if the ith row (mode 1), the jth column (mode 2)
and the kth tube (mode 3) of the tensor G. To solve this optimization problem,
a popular approach named Higher-Order Orthogonal Iteration (HOOI) [19] and
similar to ALS consists in fixing two factor matrices to compute the third one by
using two-way singular vector decomposition (cf. [19] for further details).

In our experiments, we use for both CP and Tucker the matrix A as input
to the clustering algorithm. The p columns of A can be seen as the principal
components in the first mode of X. We use two Python implementations of ALS
and HOOI to perform CP and Tucker decomposition respectively. The first imple-
mentation is provided by the TensorD [20] package, based on the TensorFlow
framework, allowing GPU acceleration. The second is available in the TensorLy
[21] package which flexibly leverages several CPU and GPU backends. The suf-
fixes TensD and TensL in Table 2 stand for the packages TensorLy and TensorD
respectively.
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3 Experimental Study

Datasets and Models Used. The datasets used are described in Table 1 and
contain words, their contexts and the corresponding topic. The first dataset,
denoted as UFSAC3 is extracted from the UFSAC dataset [22] which consoli-
dates multiple popular WSD datasets (such as SemEval and SensEval) into a uni-
form format. The examples are manually divided into three topics: Body, Botany
and Geography. The second dataset, denoted as UFSAC4, is a slightly more dif-
ficult dataset; it includes a fourth class (words related to information technol-
ogy) and is augmented with some polysemous examples (such as “lobes” which
appears in Body and Botany with different contexts). The two last datasets
yahoo4 and yahoo6, are extracted from the Yahoo! Answers dataset [23] by
manually selecting sets of words for each category and some corresponding con-
texts.

Table 1. Datasets description: k denotes the number of clusters.

Datasets n k Clusters’ sizes

UFSAC3 583 3 body: 266, geo: 227, botany: 90

UFSAC4 691 4 body: 275, geo: 227, botany: 99, IT:90

yahoo4 528 4 finance: 150, music: 82, science-maths.: 152, computers-internet: 144

yahoo6 852 6 health: 201, finance: 150, computers-internet: 144, music: 82,
science-maths.: 152, sports: 123

From each set of documents, we compute multiple contextual representations
from 4 pre-trained models which are the base (12 layers) and large (24 layers)
versions of BERT [24] and RoBERTa [25] with a vocabulary size of 28,996 for
BERT and 50,265 for RoBERTa.

Clustering Evaluation. In all the experiments, we use K-means [26] with a
known number of clusters (any other clustering algorithm can be used), which
are run with 10 different initializations on different matrix representations of
words occurrences. To validate the results produced by the clustering algorithm
we relied on standard external measures devoted to assessing cluster quality,
namely Normalized Mutual Information (NMI) [27], the Adjusted Rand Index
(ARI) [28] and the clustering accuracy. When performing dimension reduction, a
number of components p has to be fixed. Since we cannot tune the p parameter
in our unsupervised setting, we set it to the same value (p = 15) for all exper-
iments. This corresponds either to the number of principal components of PCA,
the number of common components present in the W matrix computed by the
multiblock techniques or the rank of the matrix A computed by the TD methods
(cf. Section 2). Table 2 contains the NMI scores obtained by each method over
the four Transformer models and the four datasets. For comparison purposes, we
also include the results obtained when using fastText word embeddings or the
representations obtained by the Transformers’ layers individually (as described
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in the next section). FastText [29] was used as a representative of the static
word embeddings family since it provides for the Out-of-Vocabulary issue which
otherwise would distort comparisons.

Layer-Wise Clustering Experiments. We perform clustering on the PCA-
reduced representations and present the results (NMI) in Fig. 3 only for two
datasets, due to the lack of space. In Table 2, we call LW and LW-PCA the average
of the scores obtained by all of the b clustering experiments run on each matrix
X� separately before and after applying PCA respectively.

Multiway Clustering Experiments. Since the obtained results may greatly
vary with each layer, as clearly visible in Fig. 3, and since determining which one
is the best is impossible in the absence of labels when dealing with real datasets,
a sensible solution to overcome this incertitude is to use multiway techniques
as described in Sect. 2 using the X� data matrices � = 1, . . . , b of each model
(results provided in Table 2).

4 Results and Discussion

In this section, we discuss the benefit of applying multiway methods in the
unsupervised setting due to a diversity of the information provided by each
layer. Thereby, from the representations of each layer used separately we first
evaluate the performance in terms of word clustering. We aim at showing that
the results might greatly vary according to the dataset.

To tackle this issue, for each dataset we propose to use all layers. We perform
a dimensionality reduction in different ways and from a simplified representation,
a clustering algorithm is applied and quality of word clustering is measured.
Further, using user-friendly visualization tools, we show how the classes are
arranged in a low-dimensional space, how to detect the most influential words
and to measure the role of each layer.

Layer-Wise Clustering Results. Figure 3 shows that BERT presents better
performance than RoBERTa, even if the latter is more recent and outperforms
BERT in the supervised tasks. We can see in the same figures that BERT models
achieve their best performance on the intermediate layers (which is in line with
the findings issued in [30]) especially BERT-large which reaches a perfect NMI

score on UFSAC3 from the 9th to the 14th layer, with a sudden drop of perfor-
mance on the 5 last layers. Overall, we can see this decrease for all the models.
Figure 3 also shows that reducing the number of dimensions to only 15 (which
constitutes less than 2% of features for the base models and 1.5% for the large
ones) leads to very competitive performance scores, achieving even better results
than raw representations, which indicates a high redundancy in the pre-trained
embeddings. Interestingly, in the case of RoBERTa the PCA reduction generally
improves the performance of the last layers, which as said previously perform
very poorly in their raw form.
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Table 2. Compared performance (NMI scores) of multiway clustering on Transform-
ers’ over the four models and fastText. Values between parentheses correspond to the
standard deviation.

Datasets Method BERT-base BERT-large RoBERTa-base RoBERTa-large fastText

UFSAC3 LW 0.89 (0.07) 0.81 (0.3) 0.71 (0.14) 0.64 (0.16) 0.92

LW-PCA 0.91 (0.07) 0.8 (0.31) 0.78 (0.16) 0.66 (0.16) 0.92

UN 0.96 1.0 0.94 0.66 –

UN-PCA 0.98 1.0 0.97 0.65 –

MFA 0.98 1.0 0.97 0.77 –

STATIS 0.96 0.98 0.97 0.77 –

CPCA 0.76 0.71 0.68 0.53 –

GCCA 0.8 0.76 0.74 0.65 –

MCIA 0.7 0.76 0.72 0.69 –

CCSWA 0.58 0.58 0.77 0.68 –

CP-TensD 0.66 0.28 0.01 0.64 –

CP-TensL 0.92 0.66 0.57 0.56 –

Tuck-TensD 0.68 0.75 0.78 0.83 –

Tuck-TensL 0.73 0.81 0.89 0.69 –

UFSAC4 LW 0.86 (0.08) 0.72 (0.28) 0.67 (0.11) 0.6 (0.13) 0.77

LW-PCA 0.88 (0.06) 0.75 (0.25) 0.74 (0.1) 0.63 (0.11) 0.84

UN 0.96 0.97 0.67 0.65 –

UN-PCA 0.97 0.99 0.76 0.65 –

MFA 0.97 0.99 0.73 0.67 –

STATIS 0.96 0.95 0.90 0.68 –

CPCA 0.75 0.84 0.75 0.59 –

GCCA 0.76 0.75 0.82 0.7 –

MCIA 0.81 0.76 0.79 0.67 –

CCSWA 0.73 0.82 0.76 0.76 –

CP-TensD 0.43 0.59 0.06 0.46 –

CP-TensL 0.61 0.55 0.48 0.61 –

Tuck-TensD 0.75 0.85 0.84 0.62 –

Tuck-TensL 0.81 0.86 0.79 0.65 –

yahoo4 LW 0.81 (0.07) 0.59 (0.24) 0.54 (0.17) 0.59 (0.14) 0.42

LW-PCA 0.83 (0.07) 0.58 (0.25) 0.84 (0.04) 0.66 (0.15) 0.51

UN 0.9 0.82 0.63 0.71 –

UN-PCA 0.93 0.91 0.91 0.82 –

MFA 0.92 0.91 0.91 0.83 –

STATIS 0.91 0.89 0.9 0.82 –

CPCA 0.93 0.74 0.87 0.82 –

GCCA 0.88 0.71 0.85 0.79 –

MCIA 0.85 0.76 0.86 0.8 –

CCSWA 0.7 0.73 0.81 0.8 –

CP-TensD 0.04 0.08 0.17 0.07 –

CP-TensL 0.44 0.55 0.41 0.63 –

Tuck-TensD 0.81 0.66 0.81 0.79 –

Tuck-TensL 0.83 0.73 0.85 0.8 –

yahoo6 LW 0.73 (0.08) 0.58 (0.21) 0.61 (0.15) 0.62 (0.16) 0.42

LW-PCA 0.73 (0.06) 0.57 (0.22) 0.79 (0.08) 0.69 (0.14) 0.42

UN 0.92 0.8 0.72 0.79 –

UN-PCA 0.94 0.81 0.81 0.81 –

MFA 0.93 0.83 0.81 0.81 –

STATIS 0.74 0.75 0.8 0.81 –

CPCA 0.94 0.9 0.88 0.84 –

GCCA 0.96 0.85 0.88 0.83 –

MCIA 0.93 0.86 0.9 0.83 –

CCSWA 0.82 0.7 0.65 0.76 –

CP-TensD 0.53 0.18 0.09 0.11 –

CP-TensL 0.6 0.74 0.57 0.46 –

Tuck-TensD 0.87 0.71 0.78 0.81 –

Tuck-TensL 0.85 0.66 0.79 0.81 –
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Fig. 3. Compared clustering performance (NMI) across layers of the original represen-
tations of base models (using all of the 768 dimensions of the X� matrices) vs. reduced
representations (using 15 principal components of X�), with � = 1, . . . , b (b ∈ {12, 24}).

Multiway Clustering Results. One first observation from Table 2 concerning
the multiway clustering results is that multiblock methods seem more effective
compared to TD techniques. Tucker seems more suitable for our data than CP.
Besides, Table 2 shows that in the case of BERT (base and large), the multiblock
techniques are very competitive. Moreover, MFA and UN-PCA on BERT-large have
no difficulty in achieving the perfect score on UFSAC3. For RoBERTa-large,
multiblock techniques are still better than the mean of all layers’s scores. In
general, the performance of MFA is much higher than the average performance of
the layers used separately. This indicates that it is very effective for capturing
the valuable information present in the d × b features of each model (9 216 for
the base models and 24 576 for the large ones) in only 15 dimensions.

In Table 2 we observe that the raw unfolding (UN) is less powerful than when
reduced with PCA (UN-PCA). This brings out the interest of factor decomposition
and dimension reduction in improving performance in the clustering task while
combining all layers. This difference in performance is in line with the observa-
tions made on Fig. 3 where the use of PCA noticeably improved the layer-wise
clustering, which explains the enhancement observed with UN-PCA.

Visual Interpretation of Factorial Analysis Results. One additional
advantage of Multiblock methods and specifically MFA is that they offer several
visual interpretation possibilities that are presented in Figs. 4, 5 and 6.

Fig. 4. 2D projections of UFSAC3 and yahoo4 words on the two first common compo-
nents of MFA, colored according to the known topics.



Contextual Word Embeddings Clustering Through Multiway Analysis 11

Figure 4 illustrates the words’ projections on the two first common factors
of MFA from two datasets. We observe a good separation of the three clusters of
UFSAC3, especially with BERT-large, which is in line with the scores provided
in Table 2.

Figure 5 shows the contribution of the first 20 words to the first three com-
ponents of MFA for BERT-base and RoBERTa-base. We see that for BERT-base,
among the 20 most contributory words, the classes are perfectly distributed over
the 3 first dimensions (Geography, Botany and Body contribute the most to
dimensions 1, 2 and 3 respectively). For RoBERTa-base, the distribution is less
homogeneous, the three classes contributing equally to the last dimension.

Fig. 5. The 20 most contributory words (of UFSAC3) to the first three dimensions of
MFA applied to all the layers of BERT-base and RoBERTa-base.

Indices to Help with Interpretation. Figure 6 shows the contribution and
NMI score of each layer with the 4 models. The contribution of a layer to a
component is the sum of the contributions of its variables. More formally, the
contribution of the �th layer to the jth component is computed as

∑
k∈G�

α� ×
uk,j where uk,j is the loading of the kth variable for the jth component, α� = 1

λ�
1

is the weight of the �th layer and G� is the set of variables of the �th layer. The
contribution of each variable takes values between 0 and 1 and sums to 1 for a
given component. The values of contribution displayed in Fig. 6 are percentages.
We observe from Fig. 6 that MFA seems to sum up the relevant information present
in the layers of the models, without taking into account the most outlying (and
less performing) layers, especially for BERT-base and BERT-large. For the other
models, the drop of performance occurring at the end of some models coincides
with a significant decrease of contribution. We can also see that for RoBERTa-
base, the best performing layer (layer 5) is also the most contributory to the first
component of MFA.
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Fig. 6. The contribution of each block (layer) to the first common component of MFA
(UFSAC3). The NMI (in red) of a layer � is obtained with clustering separately the
X� matrix made of the original word representations. (Color figure online)

5 Conclusion

The present study has shown that a multiway-based approach to word clustering
has a twofold benefit. It first removes the need to choose, among the different
layers of a Transformer, the one supposed to be the most useful input, something
impossible to determine in an unsupervised setting. Second, across a variety of
Transformer models as well as datasets for which labels were available for evalu-
ation, we have shown that multiway techniques can deliver a good performance
without requiring the choice among layers, a topic widely discussed in the NLP
community. Among these techniques, we retain MFA which turns out to be the
most consensual, outscoring standard tensor-decomposition methods. This can
be attributed to the fact that MFA aims at giving a balanced role to the layers.
It is based on a factor analysis in which the variables are weighted and these
weights are identical for the dimensions of the same layer (and vary from one
layer to another) while offering a visualisation with many indices to help with
interpretation. Thereby, we have shown for the first time the interest of using
such a method in NLP.
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Abstract. Clustering in high dimension spaces is a difficult task; the
usual distance metrics may no longer be appropriate under the curse of
dimensionality. Indeed, the choice of the metric is crucial, and it is highly
dependent on the dataset characteristics. However a single metric could
be used to correctly perform clustering on multiple datasets of different
domains. We propose to do so, providing a framework for learning a
transferable metric. We show that we can learn a metric on a labelled
dataset, then apply it to cluster a different dataset, using an embedding
space that characterises a desired clustering in the generic sense. We
learn and test such metrics on several datasets of variable complexity
(synthetic, MNIST, SVHN, omniglot) and achieve results competitive
with the state-of-the-art while using only a small number of labelled
training datasets and shallow networks.

Keywords: Clustering · Transfer Learning · Metric Learning

1 Introduction

Clustering is the unsupervised task of assigning a categorical value yi ∈
{1, . . . , k} to each data point xi ∈ X, where no such example categories are given
in the training data; i.e., we should map X = {x1, . . . , xn} �→ Y = {y1, . . . , yn}
with X the input matrix of n data points, each of dimension d; where yi = κ
implies that data point xi is assigned to the κ-th cluster.

Clustering methods complete this task by measuring similarity (the distance)
between training pairs, using a similarity function s(xi, xj) ∈ R+. This similarity
function should typically reflect subjective criteria fixed by the user. Basically,
this means that the user decides what makes a good clustering. As mentioned
in [6], “since classes are a high-level abstraction, discovering them automatically
is challenging, and perhaps impossible since there are many criteria that could
be used to cluster data (e.g., we may equally well cluster objects by colour,
size, or shape). Knowledge about some classes is not only a realistic assumption,
but also indispensable to narrow down the meaning of clustering”. Taking the
example of MNIST [11], one usually groups the same numbers together because
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 15–28, 2023.
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these numbers share the highest amount of features (e.g., mutual information
based models do that). However one may want to group numbers given their
roundness. In this case, we may obtain two clusters, namely straight shaped
numbers (i.e., 1, 4,7) and round shaped numbers (i.e., all the others). Both
clustering solutions are relevant, since each clustering addresses a different yet
possible user subjective criteria (i.e., clustering semantics).

Finding an automated way to derive and incorporate user criteria in a clus-
tering task based on intended semantics can be very hard. Nowadays, the wide
availability of shared annotated datasets is a valuable asset and provides exam-
ples of possible user criteria. Hence, we argue that, given “similar” annotated
data, classification logic can be used to derive a user criteria that one can apply
to clustering similar non-annotated data. For example, we consider the situation
where a human is placed in front of two datasets, each one consisting of letters
of a certain alphabet she does not understand. The first dataset is annotated,
grouping the same letters together. Only by seeing the first dataset, the per-
son can understand the grouping logic used (grouping same geometrical shapes
together) and replicate that logic to the second non annotated dataset and clus-
ter correctly its letters.

In this paper, we are interested in tackling the problem of clustering data
when the logic (i.e., user clustering criteria) is encoded into some available
labelled datasets. This raises two main challenges, namely (1) find a solution
that works well on the classification task but (2) ensure transferability in its
decision mechanism so it is applicable to clustering data from a different domain.

We believe that addressing these challenges calls for the design of a scoring
function that should be as general as possible to ensure transferability but is
specific enough not to miss the user criteria. More specifically, the scoring func-
tion should be a comparing the logic used to produce a certain clustering to the
one used to produce clusterings of the already seen training datasets. Using the
concept of logic is useful as a logic is general enough to be used on any dataset
and specific enough as is it is the main common property shared by all training
dataset. Our goal is then to find a suitable metric that retrieves and encapsulate
the seen concept for scoring a clustering outcome.

Moreover, modern applications require solutions that are effective when data
is of high dimension (i.e., large d). While distance-based approaches are broadly
used for clustering (e.g., Euclidean distance), we argue that they are not suitable
for our problem since they would yield in data specific models in addition to their
poor performance in high dimensional spaces due to the curse of dimensionality.
To lower dimensionality, a solution is to perform instance-wise embeddings xi �→
zi, e.g., with an autoencoder. However this mechanism is still domain specific.

To achieve training on more general patterns, we think it is necessary to take
the dataset in its entirety. Therefore, instead of learning a metric that compares
pairs of data points in a dataset instance (like a similarity measure), a learned
metric is applied to sets of data points so comparison is done between sets. The
metric can be intuitively understood as a distance between the logic underlying
a given clustering and the general logic that was used to produce clusterings in
training datasets.



Transferable Deep Metric Learning for Clustering 17

For this, we propose a solution where we use a graph autoencoder [9] to
embed a set of data points into a vector of chosen dimension. Then, we use the
critic part of a Wasserstein GAN (WGAN) [1] to produce a continuous score
of the embedded clustering outcome. This critic represents the metric we seek.
Thus, our main contributions are:

– We provide a framework for joint metric learning and clustering tasks.
– We show that our proposed solution yields a learned metric that is transfer-

able to datasets of different sizes and dimensions, and across different domains
(either vision or tabular) and tasks.

– We obtain results competitive to the state-of-the-art with only a small number
of training datasets, relatively simple networks, and no prior knowledge (only
an upper bound of the cluster number that can be set to a high value).

– Our method is scalable to large datasets both in terms of number of points
or dimensions (e.g the SVHN dataset used in Sect. 4) as it does not have to
compute pairwise distances and therefore does not heavily suffer when the
number of points or dimensions increase.

– We test the metric on datasets of varying complexity and perform on par
with the state-of-the-art while maintaining all the advantages cited above.

2 Related Work

Using auto-encoders before applying classic clustering algorithms resulted in a
significant increase of clustering performance, while still being limited by these
algorithms capacity. Deep Embedding Clustering (DEC) [19] gets rid of this
limitation at the cost of more complex objective functions. It uses an auto-
encoder along with a cluster assignment loss as a regularisation. The obtained
clusters are refined by minimising the KL-divergence between the distribution of
soft labels and an auxiliary target distribution. DEC became a baseline for deep
clustering algorithms. Most deep clustering algorithms are based on classical
center-based, divergence-based or hierarchical clustering formulations and hence
bear limitations like the need for an a priori number of clusters.

MPCKMeans [2] is more related to metric learning as they use constraints
for both metric learning and the clustering objective. However, their learned
metrics remain dataset specific and are not transferable.

Constrained Clustering Network (CCN) [8], learns a metric that is transfer-
able across domains and tasks. Categorical information is reduced to pairwise
constraints using a similarity network. Along with the learned similarity func-
tion, the authors designed a loss function to regularise the clustering classifica-
tion. But, using similarity networks only captures local properties instance-wise
rather than global geometric properties of dataset clustering. Hence, the learned
metric remains non fully transferable, and requires to adapt the loss to the
domain to which the metric is transferred to.

In Deep Transfer Clustering (DTC) [6] and Autonovel [7], the authors tackle
the problem of discovering novel classes in an image collection given labelled
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examples of other classes. They extended DEC to a transfer learning setting
while estimating the number of classes in the unlabelled data. Autonovel uses
self-supervised learning to train the representation from scratch on the union of
labelled and unlabelled datasets then trains the data representation by optimiz-
ing a joint objective function on the labelled and unlabelled subsets of data. We
consider these two approaches as our state of the art baselines.

3 Our Framework

To restate our objective, we seek an evaluation metric

r : Rn×d × N
n → R

(X,y) �→ r(X,y)
(1)

where X ∈ R
n×d is a dataset of n points in d dimensions and y ∈ N

n a partition
of X (i.e. a clustering of X). Metric r should provide a score for any labelled
dataset of any dimensionality; and in particular this score should be such that
r(X,y) is high when the hamming distance between the ground truth labels
y∗ and y is small (taking cluster label permutations into account). This would
mean that we could perform clustering on any given dataset, simply by solving
an optimisation problem even if such a dataset had not been seen before.

Formally stated, our goal is: (1) to produce a metric r that grades the quality
of a clustering such that y∗ = arg maxy r(X,y); (2) Implement an optimisation
algorithm that finds y∗; (3) use (1) and (2) to perform a clustering on a new
unrelated and unlabelled dataset. We use a collection D = {Xl,y∗

l }�
l=1 of labelled

datasets as examples of correctly ‘clustered’ datasets, and learn r such that
E[r(X,y)] is high. In order to make r transferable between datasets, we embed
each dataset with its corresponding clustering (Xl,yl) into a vector zl ∈ R

e.
More formally, the embedding function is of the form:

g : Rn×d × Y → R
e

(X,y) �→ z
(2)

Therefore, the metric r is actually the composition of two functions g and
cθ (the scoring function from R

e to R). Our training procedure is structured
around 3 blocs A, B and C detailed in next sections and depicted in Fig. 1 and
is summarised in the following main steps:

Bloc A. step 1 Select a labelled dataset (X,y∗) ∼ D
Bloc A. step 2 Given a metric function r (output from bloc B step 2, or ini-

tialised randomly), we perform a clustering of dataset X: ŷ =
arg maxy r(X,y)

Bloc B. step 1 y∗ and ŷ are represented as graphs where each clique represents
a cluster.

Bloc B. step 2 Graph convolutional autoencoders perform feature extraction
from ŷ and y∗ and output embeddings ẑ and z∗
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Bloc C. step 1 The metric r is modelled by a WGAN critic that outputs evalu-
ations of the clusterings: r(X,y∗) = cθ(z∗) and r(X, ŷ) = cθ(ẑ)

Bloc C. step 2 Train the model using the error between r(X,y∗) and r(X, ŷ).

Fig. 1. Our framework’s 3 components: the clustering mechanism (A), the GAE (B)
and the WGAN (C). (A) takes an unlabelled dataset X as input and outputs a clus-
tering ŷ that maximises a metric r. ŷ is then turned into a graph G(X, ŷ) then into an
embedding vector ẑ using (B). Same goes for the correctly labelled dataset, which is
embedded as ẑ∗. Then, (C), which is the metric itself, evaluates ẑ and z∗ using cθ and
is trained to produce a new metric r which is then used for (A) in the next iteration.

3.1 Clustering Mechanism

We seek the most suitable optimisation algorithm for clustering given r. Consid-
ering a neural network that performs the clustering, we need to find its weights
w such that the metric is maximised (see Eq. (3)). The type of algorithm to use
depends on the nature of the metric r to optimise on.

CEMr(X) finds−−−→ w∗ = arg max
w

r(X,yw) (3)

where yw is a clustering obtained with the weights w. The metric is assumed to
hold certain properties, discussed in Sect. 3.3:

– Unique Maximum: A unique optimal clustering. r has a unique maximum.
– Continuity1: Any two clusterings y and y′ should be similar if r(y) and

r(y′) are close in R space. Hence, r has to satisfy a continuity constraint.

1 As a reminder, Let T and U be two topological spaces. A function f : T �→ U
is continuous in the open set definition if for every t ∈ T and every open set u
containing f(t), there exists a neighbourhood v of t such that f(v) ⊂ u.
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Algorithm 1. CEM Algorithm
Input: Dataset X ∈ R

n×d; score function r; μ ∈ R
d and σ ∈ R

d; elite percentage
to retain p; n samples of wi ∼ N (μ, diag(σ)); T number of iterations
for iteration = 1 to T do

Produce n samples of neural network weights wi ∼ N (μ, diag(σ))
Produce clusterings yi of X using each wi

Evaluate ri = r(X, yi)
Constitute the elite set of p% best wi

Fit a Gaussian distribution with diagonal covariance to the elite set and get a new
μt and σt

end for
return: μ, w∗

There is no guarantee that the best metric for the clustering task is differen-
tiable. Given the above assumptions, conditions are favourable for evolutionary
strategies (ES) to iteratively converge towards the optimal solution. Indeed, if
r is continuous and the series ((X,y1), . . . , (X,yp)) converges towards (X,y∗)
then (r(X,y1), . . . , r(X,yp)) converges towards r(X,y∗). We choose the Cross-
Entropy Method (CEM) [3], a popular ES algorithm for its simplicity, to optimise
the clustering neural network weights by solving Eq.(3) (Algorithm 1).

3.2 Graph Based Dataset Embedding

To capture global properties and be transferable across different datasets, we
argue that it is necessary to input all the points of a dataset at once. Hence,
instead of pairwise similarities between random pairs of points, we propose to
get a representation of the relation between a bunch of neighbouring points.
Thus, we represent each dataset by a graph structure G(X,y) where each node
corresponds to a point in X and where cliques represent clusters as shown in
Fig. 1. This representation takes the form of a feature matrix X and an adjacency
matrix A. Using X, and A, we embed the whole dataset into a vector z ∈ R

e.
To do so, we use graph autoencoders (GAE). Our implementation is based on
[9].

We obtain z ∈ Mn,m which is dependent of the shape of the dataset (where
m is a user specified hyper-parameter). In order to make it independent from
the number of points in X , we turn the matrix z into a square symmetrical one
z ←− zT z ∈ Mm,m. The final embedding corresponds to a flattened version of the
principal triangular bloc of zT z, which shape is e = (m+1

2 , 1). However, the scale
of the output still depends on the number of points in the dataset. This could
cause an issue when transferring to datasets with a vastly different number of
data points. It should therefore require some regularisation; in order to simplify,
we decided to use datasets with approximately the same number of points.
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3.3 A Critic as a Metric

With embedded vectors of the same shape, we compare the clusterings proposed
ẑ and the ground truth ones z using the metric r. r is a function mapping an
embedding vector z ∈ R

e to R, we therefore parameterise it as:

rα(X,y) = rα(z) = α1φ1(z) + α2φ2(z) + ... + αhφh(z) (4)

where φj(z) ∈ R. As per [13], learning a viable metric is possible provided both
the following constraints: (1) maximising the difference between the quality of
the optimal decision and the quality of the second best; (2) minimising the
amplitude of the metric function as using small values encourages the metric
function to be simpler, similar to regularisation in supervised learning.

When maximising the metric difference between the two clusterings that have
the highest scores, we get a similarity score as in traditional metric learning
problems. The problem is formulated by Eq. (5) where S is a set of solutions
(i.e., clustering proposals) found using rα and y∗ is the true clustering, ymax is
the best solution found in S: ymax = arg maxy∈S rα(X,y).

min
α

rα(X,y∗) − max
α

min
y′∈S\ymax

rα(X,ymax) − rα(X,y′)

s.t y∗ = arg max
y∈Y

r(y)
(5)

To solve Eq. (5), we use a GAN approach where the clustering mechanism
(i.e., CEM) plays the role of the generator while a critic (i.e., metric learn-
ing model) plays the role of the discriminator. In a classic GAN, the discrim-
inator only has to discriminate between real and false samples, making it use
a cross entropy loss. With this kind of loss, and in our case, the discrimina-
tor quickly becomes too strong. Indeed, the score output by the discriminator
becomes quickly polarised around 0 and 1.

For this reason, we represent r as the critic of a WGAN [1]. This critic
scores the realness or fakeness of a given sample while respecting a smooth-
ing constraint. The critic measures the distance between data distribution of
the training dataset and the distribution observed in the generated samples.
Since WGAN assumes that the optimal clustering provided is unique, the met-
ric solution found by the critic satisfies Eq. (5) constraints. r reaching a unique
maximum while being continuous, the assumptions made in Sect. 3.1 are cor-
rectly addressed. To train the WGAN, we use the loss L in Eq. (6) where ẑ is
the embedding vector of a proposed clustering and z is the embedding vector of
the desired clustering. Our framework is detailed in Algorithm 2.

L(z∗, ẑ) = max
θ

Ez∗∼p[fθ(z∗)] − Eẑ∼p(ẑ)[fθ(ẑ)] (6)
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Algorithm 2. Critic2Metric (C2M)
Input: b: batch size, epoch: number of epochs; p: percentage of elite weights to keep;

iteration: number of CEM iterations; population: number of weights to gener-
ate; μ ∈ R

d: CEM mean; σ ∈ R
d: CEM standard deviation, θ: critic’s weights

for n = 1 to epoch do
for k = 1 to b do

Sample (Xk,y∗
k) ∼ D a correctly labelled dataset

Generate ground truth embeddings z(Xk,y∗
k
) = GAE(G(Xk,y∗

k))

Initialise clustering neural network weights {wj}population
j=1

for i = 1 to iteration do
for j = 1 to population do

Generate clusterings ŷ
wj

k

Convert ŷ
wj

k into a graph
z
(Xk,ŷ

wj
k

)
= GAE(G(Xk, ŷ

wj

k ))

Evaluate: r(Xk, ŷ
wj

k ) = cθ(z(Xk,ŷ
wj
k

)
)

end
Keep proportion p of best weights wp

w∗ ←− CEM(wp, μ, σ)
end

Generate clustering yw∗
k

z(Xk,ŷw∗
k

) = GAE(G(Xk, ŷw∗
k ))

Train critic as in [1] using z(Xk,ŷw∗
k

) and z(Xk,y∗
k
)

end

end

4 Experiments

Table 1. Datasets description

For empirical evaluation, we parameterise our framework as follows: The critic
(block C in Fig. 1) is a 5 layer network of sizes 256, 256, 512, 512, and 1 (output)
neurons. All activation functions are LeakyRelu (α = 0.2) except last layer (no
activation). RMSprop optimizer with 0.01 initial learning rate and a decay rate
of 0.95. The CEM-trained neural network (bloc A in Fig. 1) has 1 hidden layer
of size 16 with Relu activation, and a final layer of size k = 50 (the maximum
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number of clusters). The GAE (bloc B in Fig. 1) has 2 hidden layers; sized 32
and 16 for synthetic datasets, and 100 and 50 for real datasets.

We choose datasets based on 3 main criteria: having a similar compatible for-
mat; datasets should be large enough to allow diversity in subsampling configura-
tions to guarantee against overfitting; datasets should be similar to the ones used
in our identified baseline literature. All used datasets are found in Table 1.

For training, we construct n sample datasets and their ground truth clus-
tering, each containing 200 points drawn randomly from a set of 1500 points
belonging to the training dataset. Each one of these datasets, along with their
clustering is an input to our model. To test the learned metric, we construct 50
new sample datasets from datasets that are different from the training one (e.g.,
if we train the model on MNIST numbers, we will use datasets from MNIST let-
ters or fashion to test the metric). The test sample datasets contain 200 points
each for synthetic datasets and 1000 points each otherwise. The accuracies are
then averaged accross the 50 test sample datasets. To test the ability of the
model to learn using only a few samples, we train it using 5 (few shots) and 20
datasets (standard), each containing a random number of clusters. For few shots
trainings, we train the critic for 1 epoch and 10 epochs for standard trainings.

To evaluate the clustering, we use Normalised-Mutual Information (NMI) [16]
and clustering accuracy (ACC) [20]. NMI provides a normalised measure that
is invariant to label permutations while ACC measures the one-to-one matching
of labels. For clustering, we only need that the samples belonging to the same
cluster are attributed the same label, independently from the label itself. How-
ever, since we want to analyse the behaviour of the metric learned through our
framework, we are interested in seeing whether it is permutation invariant or
not. Hence, we need the two measures.

4.1 Results on 2D Synthetic Datasets

Analysis on synthetic datasets (see Table 1) proves that our model behaves as
expected. We do not compare our results to any baseline since existing unsuper-
vised methods are well studied on them. We train our model using exclusively
samples from blobs datasets. We then test the learned metric on the 4 different
types of synthetic datasets (blobs, anisotropic, moons and circles). Results are
displayed in Table 2. We observe that the model obtains the best score on blobs
since it is trained using this dataset. We can also notice that our model achieves
high scores for the other types of datasets not included in training.

Table 2. Average ACC and NMI on synthetic test datasets.

Types of datasets Standard training Few shots training

ACC NMI ACC NMI

Blobs 98.4% 0.980 97.3% 0.965

Anisotropic 97.9% 0.967 97.2% 0.945

Circles 91.7% 0.902 92.7% 0.900

Moons 92.1% 0.929 92.8% 0.938
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Our model succeeds in clustering datasets presenting non linear boundaries
like circles while blobs datasets used in training are all linearly separable. Hence,
the model learns intrinsic properties of training dataset that are not portrayed in
the initial dataset structure, and thus that the metric appears to be transferable.

Critic’s Ablation Study. To test if the critic behaves as expected, i.e., grades
the clustering proposals proportionally to their quality, we test it on wrongly
labelled datasets to see if the score decreases with the number of mislabelled
points. We consider 50 datasets from each type of synthetic datasets, create
50 different copies and mislabel a random number of points in each copy. A
typical result is displayed in Fig. 2 and shows that the critic effectively outputs
an ordering metric as the score increases when the number of mislabelled points
decreases, reaching its maximum when there is no mislabelled point. This shows
that the metric satisfies the constraints stated in Eq. 5.

Fig. 2. Metric values (i.e., scores given by the critic) for several clusterings of a dataset.
Plots are from an anisotropic dataset (left) and a moons dataset (right). In a 2 cluster
case (right), the formula used to compute mislabelled points has been made sensitive
to label permutation to verify if permuted labels can fool the critic. The critic assigns
a high score either when all the labels match the given ground truth or when all the
labels are permuted (which again does not affect the correctness of the clustering)

An interesting behaviour is shown in Fig. 2. Recall that since we are in the
context of a clustering problem, we only need for the samples belonging to the
same cluster to get the same label, independently from the cluster label itself.
Thus, the formula used to compute mislabelled points has been made sensitive
to label permutation to verify if permuted labels can fool the critic. For instance,
in a 2 clusters case, one can switch the labels of all points in each cluster and
still get the maximum score. Switching all labels makes all the points wrongly
labelled compared to the given ground truth but nonetheless the clustering itself
remains true. This explains the rounded shape in Fig. 2 where the used datasets
in the right panel only consisted of 2 clusters. The critic assigns a high score
either when all the labels match the given ground truth or when all the labels
are permuted (which does not affect the correctness of the clustering).

4.2 Results on MNIST Datasets

MNIST datasets give similar results both in terms of ACC and NMI on all test
datasets regardless of the used training dataset (see Table 3). Hence, the model
effectively capture implicit features that are dataset independent. While stan-
dard training shows better results, the few shots training has close performance.
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Table 3. Mean clustering performance on MNIST dataset.

Training Dataset Testing Dataset

Numbers Letters Fashion

ACC NMI ACC NMI ACC NMI

Numbers (standard) 72.3% 0.733 81.3% 0.861 65.2% 0.792

Numbers (few shots) 68.5% 0.801 79.0% 0.821 61.8% 0.672

Letters (standard) 75.9% 0.772 83.7% 0.854 67.5% 0.800

Letters (few shots) 69.8% 0.812 78.7% 0.806 60.9% 0.641

Fashion (standard) 70.6% 0.706 83.4% 0.858 72.5% 0.762

Fashion (few shots) 70.1% 0.690 82.1% 0.834 70.7% 0.697

Table 4. Critic based performance assessment: Best corresponds to the percentage of
times the critic gives the best score to the desired solution. Top 3 is when this solution
is among the 3 highest scores.

Training Dataset Testing Dataset

Numbers Letters Fashion

Best Top 3 Best Top 3 Best Top 3

Numbers (standard) 78.3% 92.5% 86.0% 97.5% 69.2% 87.2%

Numbers (few shots) 75.8% 82.1% 83.3% 92.0% 65.1% 83.9%

Letters (standard) 77.4% 89.2% 88.8% 96.4% 70.2% 86.7%

Letters (few shots) 73.1% 80.6% 85.1% 91.5% 61.0% 76.3%

Fashion (standard 70.1% 83.1% 85.0% 98.6% 76.9% 94.7%

Fashion (few shots) 67.9% 77.4% 83.5% 95.3% 70.2% 88.0%

Table 4 shows the percentage of times the critic attributes the best score to
the desired solution. It shows that ES algorithm choice has a significant impact
on the overall performance. Even with a metric that attributes the best score to
the desired clustering, the CEM may be stuck in a local optimum and fails to
reconstruct back the desired clustering. Hence, a better optimisation can enhance
the performance shown in Table 3 closer to the one presented in Table 4.

4.3 Comparative Study

We compare our approach with baseline methods from the literature (Table 5).
For some methods, we followed the procedure in [8] and used their backbone
neural network as a pairwise similarity metric. Table 5a reports results when
training on SVHN and testing on MNIST numbers. We obtain close ACC values
to CCN and ATDA [14]. These methods uses Omniglot as an auxiliary dataset
to learn a pairwise similarity function, which is not required for our model. Our
model only uses a small fraction of SVHN, has shallow networks and does not
require any adaptation to its loss function to achieve comparable results. Finally,
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other cited methods require the number of clusters as an a priori indication. We
achieve comparable results without needing this information. When the loss
adaptation through Omniglot is discarded (denoted source-only in Table 5a),
or if the number of clusters is not given, their accuracy falls and our model
surpasses them by a margin.

Table 5. Comparative clustering performance

Method ACC

Loss Adaptation Source Only

DANN [5] 73.9% 54.9%

LTR [15] 78.8% 54.9%

ATDA [14] 86.2% 70.1%

CCN [8] 89.1% 52%

Ours (standard) − 84.3%

Ours (few shots) − 81.4%

(a) Unsupervised cross-task transfer from

SVHN to MNIST digits.

Method ACC NMI

k-means 18.9% 0.464

CSP [17] 65.4% 0.812

MPCK-means [2] 53.9% 0.816

CCN [8] 78.18% 0.874

DTC [6] 87.0% 0.945

Autonovel [7] 85.4% −
Ours (standard) 83.4% 0.891

(b) Unsupervised cross-task transfer from

Omniglottrain to Omniglottest (k = 100 for

all).

Table 5b reports results when training on Omniglottrain and testing on
Omniglottest. Values are averaged across 20 alphabets which have 20 to 47 letters.
We set the maximum number of clusters k = 100. When the number of clusters
is unknown, we get an ACC score relatively close to DTC and Autonovel. Com-
pared to these two approaches, our method bears several significant advantages:

– Deep Networks: DTC and Autonovel used Resnets as a backbone which are
very deep networks while we only used shallow networks (2 layers maximum)

– Pairwise similarity: in Autonovel the authors used a pairwise similarity
statistic between datasets instances which we aimed to avoid due to its sig-
nificant computational bottleneck. Moreover, this metric is recalculated after
each training epoch, which adds more complexity.

– Vision tasks: While DTC can only handle vision tasks, we present a more
general framework which includes vision but also tabular datasets.

– Number of classes: DTC and Autonovel used the labelled dataset as a
probe dataset, and estimates the number of classes iteratively, and when the
labelled clusters are correctly recovered, they used the ACC metric to keep
the best clustering. This approach is effective, but requires access to the
labelled dataset at inference time to estimate the number of classes. This is a
shortcoming (memory or privacy limitations). Our approach does not require
the labelled dataset once the metric is learned. Our metric automatically
estimates the number of clusters required to any new unlabelled dataset.

5 Conclusion

We presented a framework for cross domain/task clustering by learning a trans-
ferable metric. This framework consisted of ES methods, and GAE alongside a
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critic. Our model extracts dataset-independent features from labelled datasets
that characterise a given clustering, performs the clustering and grades its qual-
ity. We showed successful results using only small datasets and relatively shallow
architectures. Moreover, there is more room for improvement. Indeed, since our
framework is composed of 3 different blocs (CEM, GAE, critic), overall efficiency
can be enhanced by independently improving each bloc (i.e. replacing CEM).

In future work, we will study the criteria that determine why some auxiliary
datasets are more resourceful than others given a target dataset. In our case, this
means to study for instance why using the MNIST letters dataset as training
allowed a better performance on Fashion MNIST than when using MNIST num-
bers. This would allow to deliver a minimum performance guarantee at inference
time by creating a transferability measure between datasets.
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Abstract. We investigate the task of missing value estimation in graphs
as given by water distribution systems (WDS) based on sparse signals
as a representative machine learning challenge in the domain of criti-
cal infrastructure. The underlying graphs have a comparably low node
degree and high diameter, while information in the graph is globally
relevant, hence graph neural networks face the challenge of long term
dependencies. We propose a specific architecture based on message pass-
ing which displays excellent results for a number of benchmark tasks in
the WDS domain. Further, we investigate a multi-hop variation, which
requires considerably less resources and opens an avenue towards big
WDS graphs.

Keywords: Graphs · Graph Convolutional Neural Networks · Node
Features Estimation · Water Distribution Systems · Pressure
Estimation

1 Introduction

Transportation systems, energy grids, and water distribution systems (WDS)
constitute parts of our critical infrastructure that are vital to our society and
subject to special protective measures and regulations. As they are under increas-
ing strain in the face of limited resources and as they are vulnerable to attacks,
their efficient management and continuous monitoring is of great importance. As
an example, the average amount of non-revenue water amounts to 25% in the
EU [6], making the detection of leaks in WDS an important task. Advances in
sensor technology and increasing digitalisation hold the potential for intelligent
monitoring and adaptive control using AI technologies [5,13,25]. In addition to
more classical AI approaches, deep learning technologies are increasingly being
used to solve learning tasks in the context of critical infrastructures [4].

A common feature of WDS, energy networks and transport networks is that
the data has a temporal and spatial character: Data is generated in real time
according to an underlying graph, given by the power grid, the pipe network and
the transport routes, respectively. Measurements are available for some nodes
that correspond to local sensors, e.g. pressure sensors or smart meters. Based on
this partial information, the task is to derive corresponding quantities at every
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 29–41, 2023.
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node of the graph, to identify the system state or to derive optimal planning and
control strategies. In this paper, we target the learning challenges of the first
feature, inferring relevant quantities at each location of the graph based on few
measurements. While classical deep learning models such as convolutional net-
works or recurrent models can reliably handle Euclidean data, graphs constitute
non-Euclidean data that require techniques from geometric deep learning. Based
on initial approaches dating back more than a decade [11,28], a variety of graph
neural networks (GNNs) have recently been proposed that are able to directly
process information such as present in critical infrastructure [2,3,7,14,29]. First
applications demonstrate the suitability of GNNs for the latter [3,5,23].

Graphs from the domain of WDS or smart grids display specific characteris-
tics (s. Fig. 3): as they are located in the plane, the node degree is small and the
network diameter is large. These characteristics display a challenge for GNNs,
as the problem of long-term dependencies and over-smoothing occurs [27,32]. In
this contribution, we design a GNN architecture capable of dealing with these
specific graph structures: We show that our spatial GNN is able to effectively
integrate long-range node dependencies and we demonstrate the impact of a
suitable transfer function and residual connections. As the required resources
quickly become infeasible for big graphs, we also investigate the comparability
of a sparse multi-hop alternative. All methods are evaluated for pressure predic-
tion in WDS for a variety of benchmark networks, displaying promising results.
The code has been made publicly available.1

2 Related Work

The task of pressure estimation at all nodes in a WDS from pressure values
available at a few nodes has recently been dealt with [8]. The authors employed
spectral graph convolutional neural networks (GCNs) and performed extensive
experiments to demonstrate their approach. However, their methodology does
not fully benefit from the available structural information of the graph; we pro-
vide further details on this in Sect. 4. We propose a spatial GCN based method-
ology that effectively utilizes the graph structure by using both node and edge
features and thus produces significantly better results (s. Sect. 5).

A related task of state (pressure, flow) estimation in WDS based on demand
patterns and sparse pressure information has been addressed [31]. The authors
used hydraulics in the optimization objective since the task was to model the
complex hydraulics used by the popular EPANET simulator [26] using GNNs.
They present promising results only on relatively small WDS, the ability to scale
to larger WDS is yet to be investigated. While their model solves the task of
state estimation in WDS, their approach requires demand patterns from every
consumer also during inference. In contrast, our proposed model relies on pres-
sure values computed by the EPANET solver (based on demand patterns) only
during the training process. During evaluation, our model estimates pressures
solely based on sparse pressure values obtained from a few sensors. Further, it
successfully estimates pressures even in case of noisy demands (s. Sect. 5).
1 https://github.com/HammerLabML/GCNs for WDS.

https://github.com/HammerLabML/GCNs_for_WDS
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GNNs were first introduced in the work [28] as an extension of recursive neural
networks for tree structures [10]. Since then, a number of GCN algorithms have
been developed, which can be classified in to spectral-based and spatial-based. The
approach [2] introduced spectral GCNs based on spectral graph theory, which was
followed by further work [3,12,14,18,20]. The counterpart are spatial GCNs which
apply a local approximation of the spectral graph kernel [7,9,22,24,29,32]. These
are also referred to as message passing neural networks.

Unlike convolutional neural networks (CNNs), spatial GCNs suffer from
issues like vanishing gradient, over-smoothing and over-fitting, when used to
build deeper models. Generalized aggregation functions, residual connections
and normalization layers can address these issues and improve performance on
diverse GCN tasks and large scale graph datasets [19].

To enable high-level embeddings in feed-forward neural networks, self normal-
izing neural networks (SNNs) were introduced [15] based on a special activation
function called scaled exponential unit (SeLU). We combine residual connections
[19] with SNNs since residual connections help solve the over-smoothing problem
when we use multiple GCN layers, whereas self-normalizing property of SeLU
enables the required information propagation in case of sparse features.

3 Methodology

The main contribution of our work is a spatial GCN capable of efficiently dealing
with the specific graph characteristics as present in WDS. We address the estima-
tion of missing node features based on sparse measurements. As we detail below,
we employ multiple spatial GCN layers without suffering from typical problems
of vanishing gradient, over-smoothing and over-fitting. For this purpose, we com-
bine residual connections [19] with SeLU activation function [15]. To decrease
model size, we leverage GCN layers with multiple hops realizing message passing
between more distant neighbors comparable to [21]. Our model employs spatial
GCNs using both node and edge features. Although WDS are characterized by
spatio-temporal data, we did not find adding a temporal component to be bene-
ficial and therefore keep our model purely spatial. The complete architecture is
depicted in Fig. 1. Formally, a graph is represented as G(V,X,E, F ), where:

– V = {v1, v2, . . . , vN} is the set of nodes
– Vs ⊂ V is the set of sensor nodes
– E = {evu | ∀ v ∈ V ;u ∈ N (v)} is the set of edges
– Y ∈ RN×D is the set of node features (ground truth), where N = |V | and D

is the number of node features

– X ∈ RN×D is the set of sparse node features, where xv =

{
yv, if v ∈ Vs

0, otherwise
– F ∈ RM×K is the set of edge features, where M = |E| and K is the number

of edge features

Node features X are highly sparse as only nodes corresponding to sensors contain
values while everything else is set to zero. Node and edge features are embedded
by fully connected linear layers α and β:



32 I. Ashraf et al.

Fig. 1. Model architecture employing multiple GCN layers. Each GCN layer consists
of message generation, sum aggregation and a final MLP.

g1
v = α(xv)

h1
evu

= β(fevu
)

v ∈ V, xv ∈ X, gv ∈ G

evu ∈ E, fevu
∈ F, hevu

∈ H

(1)

We denote intermediate model activations as G ∈ RN×Z for nodes and H ∈
RM×Z for edges, where Z is the latent dimension. Multiple GCN layers convolve
the information from the neighboring nodes for estimation of node features.
Each GCN layer employs the three-step process of message generation, message
aggregation and node feature update. In the lth layer, the edge features are
updated by

ĥ(l)
evu

= h(l)
evu

+ |h(l)
u − h(l)

v |. (2)

Adding the absolute difference between the current and neighbor nodes fea-
tures empirically improves the learning. Then, messages are generated as follows:

m(l)
evu

= SeLU
(
h(l)
u ‖ ĥ(l)

evu

)
u ∈ N (v), (3)

where · ‖ · denotes vector concatenation. After concatenation, we employ the
SeLU activation function [15] to all messages, which is given by:

SeLU(x) = λ

{
x if x > 0

αex − α if x ≤ 0 (4)

where λ and α are hyperparameters as in [15]. SeLU’s self-normalizing nature
greatly improves learning in the light of highly sparse values at the beginning of
the training process. All messages from the neighbor nodes are sum-aggregated:

m(l)
v =

∑
u∈N (v)

m(l)
evu

(5)

Similar to [19], we add residual connections to the aggregated messages and pass
these through a Multi-Layer Perceptron (MLP):

h(l+1)
v = MLP

(
h(l)
v + m(l)

v

)
(6)
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Fig. 2. Model architecture employing multiple multi-hop GCN layers.

The overall message construction, aggregation and update is [19]:

h(l+1)
v = MLP

⎛
⎝h(l)

v +
∑

u∈N (v)

SeLU
(
h(l)
u ‖ ĥ(l)

evu

)⎞
⎠ (7)

After employing multiple GCN layers, the resultant node embeddings are fed to
a final fully-connected linear layer to estimate all node features.

ŷv = γ(hL
v ) v ∈ V, ŷv ∈ Ŷ (8)

where Ŷ is the estimated node features, L is the last GCN layer and γ is modeled
by the linear layer. We use the L1 loss as objective function:

L(y, ŷ) =
1

S · N

S·N∑
i=1

|yi − ŷi| (9)

with N as the number of nodes and S as the number of samples in a mini-batch.

Multi-hop Variation. Given the sparsity and size of a graph, our methodology
requires a comparably large number of GCN layers proportional to the size of
graph. This reduces scalability to larger graphs. To reduce the number of param-
eters, we propose GCN layers with multiple hops as shown in Fig. 2. Specifically,
message generation and aggregation are repeated in each GCN layer before pass-
ing it to the MLP:

h(l)(p+1)
v = h(l)(p)

v +
∑

u∈N (v)

SeLU
(
h(l)(p)
u ‖ ĥ(l)(p)

evu

)
, p ∈ P (10)

with P as number of hops. The embedding for the next layer is:

h(l+1)
v = MLP

⎛
⎝h(l)(P )

v +
∑

u∈N (v)

SeLU
(
h(l)(P )
u ‖ ĥ(l)(P )

evu

)⎞
⎠ (11)

This enables the model to gather information from neighbors that are multiple
hops away, requiring fewer GCN layers.
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Fig. 3. L-Town Water Distribution System [30] – nodes in red have sensors. (Color
figure online)

4 Experiments

The methodology can be applied to missing node feature estimation on any
graph. Here, we investigate WDS, which are modelled as graphs by represent-
ing junctions as nodes and pipes between junctions as edges. WDS are espe-
cially challenging because pressure sensors are installed at only few nodes due to
constraints (size of the system, cost, availability, practicality) [17], resulting in
graphs with sparse feature information. Additionally, the node degree in WDS is
usually low (s. Table 1). These properties can be observed in the popular L-Town
WDS [30] shown in Fig. 3. Such characteristics require GNNs to model long-range
dependencies between nodes to properly integrate the available information.

To the best of our knowledge, the task of node feature estimation in WDS
using GNNs based on sparse features has only been dealt with by [8]. These
researchers compared their model to a couple of non-GNN based baselines: The
first baseline refers to the mean of known node features as value for unknown

Table 1. Major attributes of WDS.

WDS Anytown C-Town L-Town Richmond

Number of junctions 22 388 785 865

Number of pipes 41 429 909 79

Diameter 5 66 79 234

Degree (min, mean, max) (1, 3.60, 7) (1, 2.24, 4) (1, 2.32, 5) (1, 2.19, 4)
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Table 2. Model Hyperparameters and Parameters.

Model Anytown C-Town Richmond L-Town

ChebNet No. of layers 4 4 4 4

Degrees (Ki) [39, 43, 45, 1] [200, 200, 20, 1] [240, 120, 20, 1] [240, 120, 20, 1]

No. of filters (Fi) [14, 20, 27, 1] [60, 60, 30, 1] [120, 60, 30, 1] [120, 60, 30, 1]

Parameters (million) 0.038 0.780 0.958 0.929

m-GCN No. of GCN layers 5 33 60 45 10

No. of hops 1 2 3 1 5

No. of MLP layers 2 2 2 2 2

Latent dimension 32 32 48 96 96

Parameters (million) 0.031 0.203 0.830 2.488 0.553

node features, the second baseline uses interpolated regularization [1]. The work
[8] demonstrates that the GNN model significantly outperforms both baselines.
Therefore, in our experiments, we compare our approach only to the GNN model,
ChebNet, of [8]. We run two experiments on simulated data. First, we compare
our approach to [8] on three WDS datasets Anytown, C-Town, and Richmond.
Second, we conduct an in-depth evaluation on L-Town with extensive hyperpa-
rameter tuning.

4.1 Datasets

We use a total of four WDS datasets for our experiments: Anytown, C-Town, L-
Town and Richmond2,3 [30]. Major attributes of the WDS are listed in Table 1.
We use the dataset generation methodology of [8] for three of the WDS (Any-
town, C-Town, Richmond) and record 1000 consecutive time steps for each of
the three networks. For each network, we use three different sparsity levels i.e.
sensor ratios of 0.05, 0.1 and 0.2. We do not evaluate on sparsity levels of 0.4
and 0.8 as done in [8], which are more easy. We sample 5 different random sensor
configurations for each sparsity level and each WDS instead of 20.

For the popular L-Town network, we use only a single configuration of sensors
as designed by [30], which gives a sensor ratio of 0.0422. We use two different
sets of simulation settings; one with smooth toy demands and the other close to
actual noisy demand patterns. The simulations are carried out using EPANET
[26] provided by Python package wntr [16]. The samples are generated every 15
min, resulting in 96 samples every day. We use one month of data for training
(2880 samples) and evaluate on data of the next two months (5760 samples).
The training data is divided in train-validation-test splits with 60-20-20 ratio.

4.2 Training Setup

The model parameters are summarized in Table 2. All models are implemented in
Pytorch using Adam optimizer. For the ChebNet baseline [8], we set the learning
rate of 3e-4 and weight decay of 6e-6. For our m-GCN models, we use learning

2 https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/#a8.
3 https://www.batadal.net/data.html.

https://engineering.exeter.ac.uk/research/cws/resources/benchmarks/#a8
https://www.batadal.net/data.html
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Table 3. Mean relative absolute errors across nodes and samples across 5 different
sensor configurations for 3 different ratios of sensors.

WDS Anytown C-Town Richmond

Ratio MRAE ×10−3 ChebNet m-GCN Diff ChebNet m-GCN Diff ChebNet m-GCN Diff

0.05 All 54.19 53.15 −1.04 12.88 9.77 −3.11 4.34 2.17 −2.17

Sensor 7.06 3.77 −3.28 7.50 4.61 −2.89 3.47 1.81 −1.66

Non-sensor 56.44 55.50 −0.94 13.16 10.04 −3.12 4.38 2.19 −2.19

0.1 All 35.43 34.85 −0.57 8.16 5.47 −2.69 3.86 1.93 −1.93

Sensor 6.66 7.19 0.53 7.10 4.83 −2.27 3.45 2.02 −1.43

Non-sensor 38.3 37.62 −0.68 8.28 5.55 −2.73 3.90 1.92 −1.98

0.2 All 14.98 13.51 −1.47 7.05 5.58 −1.47 3.24 1.59 −1.65

Sensor 5.40 3.06 −2.34 6.46 5.46 −1.00 3.03 1.62 −1.40

Non-sensor 17.11 15.83 −1.28 7.20 5.61 −1.59 3.29 1.59 −1.71

rate of 1e-5 and no weight decay. We now describe the training setup of the
ChebNet baseline and our m-GCN model for the two experiments, respectively.

For the first experiment the models are trained for 2000 epochs. We set an
early stopping criteria such that it stops after 250 epochs if the change in loss is
no larger than 1e-6. We configure ChebNet similar to [8]. Input is masked (i.e.
set to zero) as per the sensor ratio and the binary mask is concatenated with the
pressure values. Hence there are two node features. ChebNet can only use scalar
edge fetaures, i.e. edge weights. Out of the three types of edge weights used
by [8] (binary, weighted, logarithmically weighted), we use the binary weights
since other types did not increase performance. For our model (m-GCN), we did
not perform an extensive hyperparameter search since we achieved considerably
better results than ChebNet model of [8] with a set of intuitive hyperparameter
values. We use single hop configuration for Anytown and multi-hop architectures
for C-Town and Richmond WDS. We only use masked pressure values as input
i.e. one node feature. Further, we use two edge features namely pipe length and
diameter.

For the second in-depth evaluation on L-Town, we dropped the second node
feature for ChebNet since this significantly improved the results. We use the
ChebNet model configuration used for Richmond WDS by the authors. We train
our m-GCN model with two configurations; one with the default single hop and
the second with multiple hops as listed in Table 2. For both m-GCN models, we
add a third edge feature namely pressure reducing valves (PRVs) mask. PRVs
are used at certain connections in a WDS to reduce pressure, hence these edges
should be modeled differently. We use a binary mask to pass this information to
the model that helps in improving the pressure estimation at neighboring nodes.
We train all three models for 5000 epochs without early stopping.

5 Results

Comparison with Spectral GCN-Based Approach. First, we compare our model
with the work of [8] using their datasets and training settings. The results of the
experiments on Anytown, C-Town and Richmond WDS are shown in Table 3.
Here, we evaluate on the basis of mean relative absolute error given by:
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Fig. 4. Mean relative absolute error per node measured on the evaluation set of noisy
data for L-Town WDS.

MRAE(y, ŷ) =
1

S · N

S·N∑
i=1

|yi − ŷi|
yi

(12)

Since Anytown is a much smaller WDS, sensor ratios translate to very few sen-
sors (0.05: 1 sensor, 0.1: 2 sensors, 0.2: 4 sensors). Hence, both models do not
accurately estimate the pressures in these cases. The number of available sen-
sors is comparatively bigger for both C-Town and Richmond WDS, even for the
smallest ratio, thus naturally increasing performance. As can be seen, m-GCN
outperforms ChebNet [8] by a considerable margin.

Fig. 5. Estimation results of m-GCN and ChebNet compared to ground truth on L-
Town.
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Fig. 6. Estimation results of m-GCN and ChebNet compared to ground truth on nodes
from an area in L-Town with essentially stagnant pressure values.

Detailed analysis on L-Town We present more in-depth analysis for the eval-
uation results on L-Town. Mean relative absolute errors per node for ChebNet
and single-hop m-GCN models are plotted in Fig. 4. Both models are trained on
smooth data and evaluated on noisy realistic data. As can be seen, error val-
ues for m-GCN are much lower across all nodes compared to ChebNet. We plot
time series of 4 days for a couple of nodes in Fig. 5. The first node (top plot)
has an installed sensor, hence the model gets the ground truth value as input
and it has to only reconstruct it. The second node (bottom plot) does not have
an installed sensor and the model gets zero-input. As depicted, m-GCN is able
to successfully reconstruct and estimate both nodes. The results from ChebNet
suffer considerable errors. There are areas in the L-Town WDS, where water
levels are essentially stagnant with some noise. As shown in Fig. 6 our m-GCN
is able to model those nodes correctly. In contrast, spectral convolutions do not
take into account the graph structure and thus end up imposing the seasonality
of nodes from other areas of the graph to the nodes in this area.

Similar to our first experiment, we present mean relative absolute error values
for all, sensor and non-sensor nodes for L-Town in Table 4. Our model produces
significantly better results compared to the ChebNet. Since our model is based
on neighborhood aggregation, the number of GCN layers required will continue
to increase with the increasing size of the graphs. In order to reduce the number
of layers and model parameters, we trained our model with only 10 GCN layers
with 5 hops each. As evident, we are able to reduce the parameters by almost
five times at the expense of some performance. Nevertheless, it is still signifi-
cantly better than the baseline ChebNet model. Our main motivation for this
is that the multi-hop approach makes the model more scalable to larger graphs.



Spatial Graph Convolution Neural Networks for Water Distribution Systems 39

Table 4. Mean relative absolute errors across nodes and samples on L-Town.

Model MRAE (×10−3)

All Sensor Non-sensor

Smooth Data ChebNet 2.55 ± 2.87 2.38 ± 3.55 2.55 ± 2.83

m-GCN (45× 1) 0.39 ± 0.37 0.43 ± 0.52 0.39 ± 0.36

m-GCN (10× 5) 0.83 ± 0.68 0.74 ± 0.59 0.83 ± 0.69

Noisy Data ChebNet 2.92 ± 3.35 2.78 ± 4.02 2.93 ± 3.32

m-GCN (45× 1) 0.54 ± 0.75 0.64 ± 1.06 0.53 ± 0.73

m-GCN (10× 5) 0.90 ± 0.82 0.81 ± 0.74 0.90 ± 0.83

Further, it is a step towards developing a generalized version of the model that
can work for different sensor configurations and/or different graph sizes without
hyperparameter tuning and re-training.

6 Conclusion

We have proposed a spatial GCN which is particularly suited for graph tasks on
graphs with small node degree and sparse node features, since it is able to model
long-term dependencies. We have demonstrated its suitability for node pressure
inference based on sparse measurement values as an important and represen-
tative task from the domain of WDS, displaying its behavior for a number of
benchmarks. Notably, the model generalizes not only across time windows, but
also from noise-less toy demand signals to realistic ones. In addition to a very
good performance overall, we also proposed first steps to target the challenge of
scalability to larger graphs by introducing multi-hop architectures with consider-
ably fewer parameters as compared to fully connected deep ones. In future work,
we will investigate the behavior for larger networks based on these first results.
Moreover, unlike simulation tools in the domain, the GNN has the potential to
generalize over different graphs structures including partially faulty ones. We
will evaluate this capability in future work.
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Abstract. The performance versus interpretability trade-off has been
well-established in the literature for many years in the context of machine
learning models. This paper demonstrates its twin, namely the data-
centric performance versus interpretability trade-off. In a case study of
bearing fault diagnosis, we found that substituting the original acceler-
ation signal with a demodulated version offers a higher level of inter-
pretability, but it comes at the cost of significantly lower classification
performance. We demonstrate these results on two different datasets and
across four different machine learning algorithms. Our results suggest
that “there is no free lunch,” i.e., the contradictory relationship between
interpretability and performance should be considered earlier in the anal-
ysis process than it is typically done in the literature today; in other
words, already in the preprocessing and feature extraction step.

Keywords: Explainable AI · SHAP · Intelligent Fault Diagnosis ·
Bearings · Hilbert Transform · Envelope Spectrum

1 Introduction

Rotary machines are one of the most crucial pieces of equipment in industrial
production [9]; they consist of a huge number of components, including bear-
ings. Even non-severe bearing faults disrupt the normal operation of rotating
machines. Bearing fault is also among the frequent failure modes of rotary
machines; 40% to 50% of all failures in rotating machinery are estimated to
be due to bearing faults [20]. Therefore, bearing condition monitoring is of great
importance.

The promising performance of pattern recognition techniques in machine
condition monitoring use cases resulted in the creation of Intelligent Fault Diag-
nosis (IFD) – the application of artificial intelligence methods for machine fault
diagnosis [13]. Although IFD-based solutions often achieve super-human perfor-
mance in scientific settings, their application in the industrial sector is relatively
limited due to a lack of transparency. Therefore, the employment of eXplainable
Artificial Intelligence (XAI) methods to provide insight into their reasoning is of
high priority.
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Over the last decades, the interpretability versus performance trade-off from
the model perspective – i.e., the fact that higher performance is often associ-
ated with higher complexity, and thus usually achieved by sacrificing the inter-
pretability – has been well established [5]. While improved interpretability is not
necessarily followed by reduced model performance, maintaining the latter while
improving the former typically requires conscious effort, and often advanced
techniques [21]. In this study, we pose a complementary question “does the
application of preprocessing methods to make IFD pipelines more interpretable
necessarily degrade their performance?”

The contribution of this work is to bring attention to an inherent decrease in
classification performance caused by replacing the original data with an inter-
pretable representation. A bearing fault diagnosis case study with and without
counter-modulation transformation is an example of such a situation. To com-
pare the original data versus an interpretable version of it, we evaluate two dif-
ferent preprocessing branches. One includes the Hilbert Transform as a demod-
ulation technique, while the other excludes it. As pointed out by [2], bearing
faults are easier to recognize – for a human expert – in the frequency spec-
trum of a demodulated signal. The classification accuracy achieved by the two
branches, however, shows the opposite effect. Comparing the performance of the
two representations clearly demonstrates that, for an artificial neural network,
such human-interpretable features are subpar compared to raw data.

The rest of the paper is organized as follows: we first investigate relevant
earlier work in Sect. 2. Afterward, in Sect. 3, a brief scientific background of
the employed methods is provided. Next, in Sect. 4, the experimental setup
is explained in detail, while the corresponding results are discussed in Sect. 5.
Finally, in Sect. 6, we provide a discussion of the findings and conclude the paper.

2 Related Works

Explainability is on its way to becoming a must in IFD implementations. For
example, in [3], authors introduced an unsupervised classification approach based
on the attribution of explainability from an anomaly detection model. The effec-
tiveness of this method is evaluated not only by the application of different
models but also by an examination of different datasets. The authors took advan-
tage of Shapely Additive Explanations (SHAP) to derive the feature importance
scores. Similarly, in [19], authors evaluated the effectiveness of different XAI
methods, including Gradient Class Activation Map (Grad-CAM), Layer-wise
Relevance Propagation (LRP), and Local Interpretable Model-agnostic Expla-
nations (LIME), to explain a shaft imbalance detection model. Another approach
is to incorporate physics-inspired features, cf [6]. Authors applied a Frequency-
RPM transformation to transform time domain signals to time-frequency rep-
resentation; these representations are usually regarded as images, and therefore
Convolutional Neural Networks (CNNs) are widely applied to manipulate these
representations. Lastly, in [4], Grad-CAM is applied to derive explanations from
a CNN model used to diagnose bearing faults. Short-Time Fourier Transform
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(STFT) is used to extract the time-frequency representation of time-domain
bearing acceleration signals. As the authors ignored the modulation phenom-
ena in bearings, their derived explanations are not in good accordance with
patterns expected physically; however, the authors then showed that patterns
corresponding to different health states are repeatable and comparative.

Hilbert transform is frequently used to demodulate time domain signals. For
example, in [11], authors used Hilbert transform for envelope extraction pur-
poses, alongside cyclo-stationary analysis (to cope with non-stationary signals)
to reveal fault frequency components in an air conditioning production assembly
line. Moreover, Hilbert Transform is frequently used as the demodulation tech-
nique in bearing vibration analysis pipelines. As an example, in [16], authors
used it alongside wavelet packet decomposition to extract the fault character-
istics from the bearing acceleration signal. Similarly, authors of [22] showcased
the effectiveness of the application of envelope analysis to reveal fault frequency
components expected to observe in the Case Western Reverse University bearing
dataset.

3 Background

3.1 Zoom FFT

Zoom FFT is a technique to improve frequency resolution within a specific fre-
quency range [12]. Application of Zoom FFT not only reduces the length of
the original signal to achieve the desired frequency resolution but also decreases
the computational cost significantly [12]. Implementation of Zoom FFT consists
of two main stages; the first one is the application of a group of operations
to preprocess the original signal, while the second stage is the application of
conventional FFT.

As illustrated in Fig. 1, the preprocessing stage starts with a multiplica-
tion of the original signal (x[k] with a length of N) by the complex signal of
[cos(2πfct) + i sin(2πfct)], where fc is the lower limit of the desired frequency
range ([fc, fc + Bp]). It continues with low-pass filtering of the multiplication
signal (xmu), using the bandwidth of Bp. Afterward, the filtered signal is under-
sampled by M (known as decimation), resulting in a signal with the length of
N/M . Next, zero padding is employed to fill in for the N − (N/M) instances
removed during the decimation process. Finally, the FFT is employed to derive
a frequency domain signal, within the desired frequency range, out of the zero-
padded signal.

3.2 Hilbert Transform to Extract Envelopes

Hilbert Transform (HT) of a signal is defined [7] as:

H[x(t)] = x̃(t) =
1
π

∫ ∞

−∞

x(t)
t − τ

dτ (1)
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Therefore, we can define an analytic signal as a complex function in which
the real part is the original signal, and its imaginary part is the HT [7]:

X(t) = x(t) + ix̃(t), (2)

where X(t) is the analytic signal, x(t) is the original signal, and the x̃(t) is the
HT of the original signal. Similar to any other time variant complex function,
the instantaneous amplitude of the analytic signal can be computed as:

A(t) = |X(t)| =
√

x2(t) + x̃2(t) (3)

The instantaneous amplitude of the analytic signal varies slower than the
original signal [7]. Therefore, the instantaneous amplitude function – also known
as envelope – is a version of the original signal excluding high-frequency oscilla-
tions. Accordingly, the envelope extraction based on HT is considered a demod-
ulation approach widely used in rotating machinery vibration analysis [8].

4 Experiments

4.1 Introduction to Datasets

Most of our experiments are done on the Case Western Reverse University
(CWRU) bearing dataset; it includes four different bearing health states: nor-
mal, inner-race fault, outer-race fault, and ball problems. We focus our study
on Drive-End (DE) bearings, as DE bearings are subjected to more mechanical
stresses in real-world scenarios. Signals with 48000 12000 Hz sampling frequen-
cies are available; however, we 12000 Hz sufficient. In this dataset, four levels
of rotational speeds (1730 RPM, 1750 RPM, 1772 RPM, and 1797 RPM) are
included, and we used them all to consider the challenge of variation in mechani-
cal loading. The rotational speed is vitally important for bearing fault detection,
as the occurrence of faults in the bearings is likely to exhibit dominant peaks at
particular frequency components (fault characteristic components). These com-
ponents are the multiplication of geometrically defined ratios by the rotational
speed of the bearing. In Table 1, ratios of different faults1 alongside the fault
frequency component by the rotational speed are summarized.

Fig. 1. Visual illustration of Zoom FFT

1 Ratios from https://engineering.case.edu/bearingdatacenter/bearing-information.

https://engineering.case.edu/bearingdatacenter/bearing-information
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Unfortunately, due to the modulation phenomena, the expected bearing fault
components are not usually observable in frequency spectra; therefore, a demod-
ulation step is essential to reveal the true fault frequency components.

To generalize our findings beyond a single dataset, we confirm our observa-
tions also using the Paderborn University (PU) bearing dataset [14]. We again
focus on bearing fault classification, including normal and synthetically gen-
erated faults of the inner race and outer race. Moreover, we also considered
mechanical loading variation by including both 900 and 1500 RPM shaft rota-
tional speeds.

4.2 Data Preparation and Preprocessing

To study the effect of the application of HT on classification accuracy, we con-
sider two preprocessing branches. Both preprocessing branches start with the
initial step of splitting the original time domain signals to 2048 and 12800 points-
long signals for CWRU and PU datasets, respectively. Following that, on the
first branch, raw, we use a generally accepted pipeline for rotating machinery
vibration analysis [15,18,23]. It starts with the application of a Hann window to
avoid leakage error, and a Butterworth bandpass frequency filter (with a degree
of 25 and cut-off frequencies of 2.5 Hz and 5500 Hz Hz for CWRU, and 2.5
and 31000 for PU) is employed to both remove the DC components and pre-
vent aliasing. Afterward, we applied Fast Fourier Transform (FFT) algorithm to
derive the frequency spectrum. The resulting frequency domain signals are 1024
points-long signals, covering 0 to 6000 Hz Hz and 0 32000 Hz for CWRU and PU
datasets, respectively.

On the second branch, envelope, we take advantage of HT to extract the
envelope from the raw time domain signal. Therefore, to derive a well-suited fre-
quency resolution within the desired frequency range (0 to 1000 Hz Hz), Zoom
FFT is employed. The choice of the frequency range is made to cover not only
the frequency components corresponding to the faults but also their initial har-
monics. Moreover, since 1024 points are used to apply the Zoom FFT technique,
the resulting frequency domain signals are also 1024 points long. Similar to the
raw branch, we also used the Butterworth bandpass frequency filter prior to the
application of Zoom FFT; however, the second cut-off frequency 800 Hz.

In Fig. 2a, an example of the original time domain signal and its envelope is
visualized. A comparison of the two indicates that the application of HT is indeed

Table 1. Frequency Fault Components by Rotational Speed for CWRU Dataset

Fault Ratio Fault Frequency Component by Rotational Speed

1730 RPM 1750 RPM 1772 RPM 1797 RPM

Inner-Race 5.4152 156.14 HZ 157.94 Hz 159.93 Hz 162.19 Hz

Outer-Race 3.5848 103.36 HZ 104.56 Hz 105.87 Hz 107.36 Hz

Ball 4.7135 135.91 HZ 137.48 Hz 139.21 Hz 141.17 Hz
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capable of reducing the disturbance level in the time domain signal. Moreover,
plots in Figs. 2b, 2c and 2d show that the envelope preprocessing branch is more
powerful in revealing characteristic frequency components for bearing faults. It
is worth noting that the red dashed lines in these plots highlight the expected
fault frequency component, according to the values presented in Table 1. It is
also to be noted that all the plots visualized in Fig. 2 come from the CWRU
dataset; however, the insights from the PU dataset are analogous.

For the experiments, data is split so that 40% is the hold-out testing dataset,
and 25% of the remaining data is used for validation purposes. Additionally, we
employ min/max scaling to transform values of all the frequency components
within the frequency spectra to the range from zero to one.

4.3 Training Classifiers

Our experiments start with the application of Multi-Layered Perceptrons (MLP)
to classify signals from the CWRU dataset. Networks to classify signals from
both preprocessing branches utilize the structure of 1024-512-256-128-64-4 as
neurons per layer. For the training of the network on the data from the first
preprocessing branch (the one with the application of FFT on raw time domain
signals), a combination of 10−4 and 50 as the learning rate and the number of
epochs, respectively, provides monotonic and smooth minimization of the cat-
egorical cross-entropy loss. Notably, the proposed architecture achieves repeat-
able 100% classification accuracy on the held-out test dataset. On the other
hand, we experienced strong overfitting when training the same network on the
second preprocessing branch (using envelope extraction and Zoom FFT). Our
experiments showed that the highest classification accuracy is achieved using a
learning rate of 10−5 and 150 epochs at the verge of overfitting. Nevertheless,
perfect performance is not attainable anymore.

Additionally, to strengthen the claim of the ubiquity of the tradeoff and
demonstrate that the difference in the performance of the two preprocessing
branches is independent of the classification method and not specific to deep
neural networks, we also trained a group of classic machine learning models –
including Decision Tree (DT), Random Forest (RF) and Support Vector Machine
(SVM) – utilizing data belonging to both preprocessing branches, on data from
CWRU dataset. It is worth mentioning that all the hyper-parameters of these
models were set to the default values of scikit-learn2 library.

Finally, to generalize our findings beyond a single dataset, we decided to
evaluate the classification performance of both preprocessing branches on the
PU dataset. For the conventional preprocessing, we employed an MLP with the
structure of 6400-2000-250-3 with the 10−5 and 200 as the learning rate and
epochs, respectively. Similarly, for signals from the interpretable branch, the
structure is 1024-256-64-3, and a learning rate of 10−5 with 250 epochs were
utilized.

2 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Fig. 2. Visual demonstration of the signals from each preprocessing branch
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5 Results

Table 2 summarizes the classification performance of different methods for both
datasets and preprocessing branches. We repeat each experiment 5 times to min-
imize the randomness effect of training. To be able to examine the misclassified
observations one by one, we keep the train and test sets fixed across all the
trials. Based on the results in this Table, the performance decrease caused by
the substitution of Raw FFT data with the Zoom FFT is consistently seen for
essentially all cases. The one exception is the DT’s results on the PU dataset;
however, since the performance of this method is overall very poor (barely any
learning is done, and the result is essentially random), we do not consider this
to be contradicting our claim.

To better understand the performance versus interpretability tradeoff show-
cased here, we analyze the observations consistently misclassified across all 5
trials. As presented in the rightmost columns of Table 2, for the MLP row on
the CWRU dataset, 35 observations were misclassified every time. Compared to
the minimum and the maximum number of misclassified observations over these
trials (37 and 42, respectively), the number of consistently misclassified obser-
vations is quite significant. This brings up a hypothesis that the application of
interpretability-enhancing preprocessing makes a portion of the data impossible
to classify correctly. This phenomenon seems to originate in the fact that the
envelope branch, specifically the HT, is making the signals more interpretable to
humans by removing some (ostensibly) irrelevant features. Nevertheless, while
the removed features are irrelevant to human practitioners, they can likely be
helpful to machine learning models; by their removal, a noticeable decrease in
the classification performance of the models is registered.

Next, we check whether this phenomenon is independent of the first cut-off
frequency of the bandpass filter since this is the most important hyperparame-
ter of the interpretable preprocessing branch. Frequency components before the
first cut-off frequency are likely to get their magnitude reduced significantly;
therefore, we find this value crucial for maintaining information. We study the
effect of its variation on the classification accuracy and the number of misclas-
sified observations. In Table 3, minimum and maximum classification accuracies
of MLP and the number of misclassified observations over 5 trials of the exper-
iments for different cut-off frequencies are provided. Across these results, no
difference in overall performance is seen. Although we are likely to have around
35 observations constantly misclassified for any given value of the first cut-off fre-
quency, it is to be noted that only 25 observations were never correctly classified
across all the different frequency values.

Finally, in Table 4, the number of each combination of ground-truth and
misclassified labels – of the 25 constantly misclassified observations, no matter
what is the first cut-off frequency – is summarized. According to this Table, the
ball problem is always either the ground truth or misclassified label, in all of
these observations. This finding is a confirmation of the previously presumed
hypothesis that the application of the interpretable preprocessing branch makes
a portion of the data – in this case study, a relatively limited number of ball fault
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Table 2. Classification performance of different methods on both datasets and two pre-
processing branches, over 5 trials (the “C” column denotes the number of consistently
misclassified observations).

Dataset Method Preprocessing Classification Accuracy # Misclassified

Min Avg Max Min C Max

CWRU DT Raw FFT 0.9491 0.9525 0.9565 76 0 89

ZoomFFT on Env 0.9376 0.9482 0.9605 69 5 109

RF Raw FFT 0.9977 0.9982 0.9989 2 2 4

ZoomFFT on Env 0.9851 0.9859 0.9874 22 9 26

SVM Raw FFT 0.9994 0.9999 1.0000 0 0 1

ZoomFFT on Env 0.9468 0.9469 0.9473 92 84 93

MLP Raw FFT 1.0000 1.0000 1.0000 0 0 0

ZoomFFT on Env 0.9760 0.9769 0.9788 37 35 42

PU DT Raw FFT 0.7395 0.7629 0.7816 378 4 451

ZoomFFT on Env 0.7556 0.7839 0.8018 343 26 423

RF Raw FFT 0.8914 0.8951 0.8983 176 54 188

ZoomFFT on Env 0.8862 0.8889 0.8925 186 91 200

SVM Raw FFT 0.9041 0.9074 0.9110 154 135 166

ZoomFFT on Env 0.8723 0.8776 0.8833 202 142 221

MLP Raw FFT 0.9365 0.9374 0.9393 105 70 110

ZoomFFT on Env 0.8082 0.8109 0.8140 322 288 332

Table 3. Average classification accuracy, and number of repeatably misclassified obser-
vations, on CWRU using MLP, over 5 trials (“A”, “M” and “C” stand for accuracy,
number of misclassified and constantly misclassified, respectively)

Metric First Cut-off Frequency (Hz)

2.5 10 20 30 40

A Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

97.60 97.69 97.88 97.37 97.40 97.42 97.31 97.40 97.48 96.97 97.17 97.31 96.97 97.22 97.42

M Min Max C Min Max C Min Max C Min Max C Min Max C

37 42 35 45 46 36 44 47 37 47 53 38 45 53 36

observations – impossible to classify correctly. By comparing Figs. 2b and 2c with
Fig. 2d, we can see that – unlike inner race and outer race faults – the envelope
preprocessing branch is not successful in revealing expected bearing fault charac-
teristic frequency components. We believe that, alongside the missing dominant
peak at the fault characteristic frequency components, the low-frequency peaks
at the right subplot of Fig. 2b are the reasons why ball fault signals are often
misclassified.

5.1 Application of SHAP to Explain Classifiers

SHAP is an explanation method originated from game theory literature [10],
concerned with the calculation of an additive feature importance score [1]. The
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Table 4. Types of misclassifications that occur in the envelope branch consistently,
i.e., regardless of the cut-off frequency.

Ground-truth Label Misclassified as Count

Outer-Race Fault Ball Problem 12

Ball Problem Outer-Race Fault 12

Ball Problem Normal 1

importance score of each feature is assessed by the comparison of the model per-
formance when including and excluding the desired feature in different coalitions,
computed as the weighted average of all possible differences [17].

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i}) − fS(xS)], (4)

where F is the set of all features, fS∪{i} is the model trained with an arbitrary
feature, and fS is the model trained without that feature.

We employ SHAP (as implemented by [17]) to estimate the importance of
every frequency component towards each prediction. In Fig. 3, three instances
of frequency domain signals – each exemplifying a fault class – from both pre-
processing branches (the conventional branch on the left and the interpretable
one on the right) are visualized. The input data is shown in blue, and the corre-
sponding SHAP explanations are in orange. The red dashed lines are the first,
second, and third harmonics of the fault characteristic frequency components,
according to Table 1.

The perfect alignment of peaks from both original signals and SHAP values
at physically expected frequencies on the right-hand subplots of Figs. 3a and
3b shows that explanations from the envelope preprocessing branch match the
expected physical patterns very well; the lack of the same on the left-hand sub-
plots indicates that the opposite is true for the conventional, or raw, branch.
Besides, the comparison of Fig. 3c with Figs. 3a and 3b shows that the agree-
ment between explanations and the physically expected patterns varies with the
type of fault. In other words, the interpretable processing branch is not capable
of dealing with all the classes. While the explanations for inner and outer race
faults are as expected, the ball faults are not. This can be seen in the right-hand
subplot in Fig. 2d, where in contrast with inner race and outer race faults, no
dominant peak can be observed for the ball fault. Moreover, low-frequency peaks
are likely to make this bearing fault detection harder.

Moreover, while the model utilizing the conventional preprocessing branch is
likely to perform perfectly, its explanations (left-hand plots visualized in Fig. 3)
show no meaningful alignment with the physically expected patterns. This lack
of agreement with the physics knowledge is the disadvantage of this model in
comparison with its interpretable counterpart and will likely make it less trust-
worthy.
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Fig. 3. Examples of each fault from both branches, with SHAP values

6 Conclusions

In this study, we evaluated how the classification accuracy of bearing fault detec-
tion changes depending on including or excluding a counter-modulation tech-
nique. We ran experiments over two datasets and used four classification algo-
rithms. Results show that while the demodulated pipeline offers higher inter-
pretability, aligning better with the underlying physical phenomena, its clas-
sification performance is decreased noticeably. Therefore, we believe an inher-
ent interpretability versus performance trade-off exists from the data-centric
(alternatively to be called representation, feature extraction, or preprocessing)
perspective. With complex enough problems, making the data representation
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interpretable involves simplifications that remove information – information that
would otherwise be possible for machine learning algorithms to exploit. The effect
is consistent for variations in the first cut-off frequency of the interpretable pre-
processing branch, different datasets, and classification algorithms.

Our supplementary analysis shows that applying the envelope preprocessing
branch affects a relatively minor portion of the data. We believe this is due to
removing the features irrelevant to human analysts and simultaneously useful for
AI models. The next step in pursuing this study is to understand the adversarial
mechanism responsible for this decrease, hopefully leading to the discovery of
transformations with a better balance between the two aspects.

Furthermore, since some of the misclassified samples differed between exper-
iments with different first cut-off frequencies, this hyperparameter can be con-
sidered a factor in generating diverse datasets. It may be, therefore, possible to
improve fault classification accuracy by using an ensemble of different datasets
produced by varying the first cut-off frequencies.

Current results demonstrate the idea in a single domain. It is interesting to
extend this research and explore this data-centric interpretability versus perfor-
mance trade-off in other fields where well-understood interpretable transforma-
tions exist, such as computer vision or speech recognition.
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Abstract. We propose data flow diagrams to model data science design
patterns and demonstrate, using a number of explanatory patterns, how
they can be used to explain and document data science best practices, aid
data science education, and enable validation of data science processes.
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1 Introduction

Design Patterns have long been around. They first helped architects build well-
balanced houses by providing guidance on proper designs [2] and later became
more popular in software development, enabling programmers to build upon
well-established solutions patterns [6]. Design Patterns provide best practices
for commonly appearing problems. Providing a library of design patterns to
creators of complex systems allows to focus on the parts where new creative
solutions are needed and rely on proven solutions for the known parts.

For Data Science, various approaches to introduce variants of design patterns
have been published in recent years. Many have focused on the machine learning
aspect of data science and often tended to be code centric, similar to classic
software design patterns, or informal descriptions (see for example [8] and many
online articles using the term to show a handful of examples). Data Science is
more than just machine learning (or code), however. Data wrangling in itself is
an art and all of the challenges when it comes to deployment are another area
full of lesser-known recipes. Best practices exist for many of these problems but
are not available in one concise and consistent format.

In the following, we introduce a framework to represent design patterns for
the entire data science process using data flow diagrams. We believe that such
patterns can be useful in a variety of ways: in addition to establishing and
documenting best practices, just like in software engineering, we see three addi-
tional areas: teaching principles of data science, building data science process
recommendation and automation systems, and auditing real-world data science
processes for compliance and rule-violations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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1.1 Teaching Data Science

Assuming that the representation of data science design patterns is visually intu-
itive enough and covers data science best practices broadly, they can be used to
teach principles of data science as well – independent of an actual implementa-
tion or tool, focusing on the data flow and not the underlying implementations
or interfaces.

This is particularly beneficial, as using data science techniques requires both
a profound understanding of what and how the used methods work as well as
real-world experience with those methods. Often that clear understanding is
confused with knowing every little detail of the actual implementation. But in
order to apply those methods, understanding the what is much more important
than the how. There is already plenty of knowledge and experience required to
understand data aggregating techniques, modeling methods, and visualization
concepts in order to apply them properly without requiring data scientists to
understand implementational aspects as well.

1.2 Data Science Process Validation

Design Patterns for Data Science can also be used to automatically audit data
science processes for violations of patterns, potentially pointing out flaws such
as testing data bleeding into the training path or credentials shared outside
the intended scope. Using an appropriate and visual representation makes the
auditing process more intuitive as well.

1.3 Data Science Coaching and Auto-Creation

Design patterns can also be used to suggest continuations of data science pro-
cesses under construction. This requires a sufficiently formal representation (e.g.
using graph grammars) and, given that, one could imagine auto-generating
hypotheses of complete data science process given a couple of side constraints.

2 Data Science Design Patterns

Data Science is fundamentally about creating a data flow—possibly with var-
ious parallel branches and maybe even with the occasional control flow aspect
(consider a parameter optimization loop or iterative feature selection process).
This is a fundamental difference from classic software development environments
where the focus lies on the control flow. It is no surprise that even code-based
development environments often offer a way to represent the code’s underlying
structure as a (data flow) diagram (e.g. Doxygen for UML diagrams or libraries
that translate Python code into control or data flow diagrams).

We propose to formalize data science design patterns as data flow diagrams.
This allows encapsulating and abstraction as well as focusing on relevant details.
We will demonstrate this by showing a couple of examples illustrating their
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broad applicability. The idea to use data flow diagrams is obviously also not
new—neither for programs nor for other types of logic (see e.g. [7]). However,
to the best of our knowledge using data flow diagrams to describe data science
design patterns is new.

2.1 General Data Science Flow

The most abstract data science design pattern is not particularly interesting, it
just summarizes the five main steps, which can be broken down differently later
on (Fig. 1).

Blend &
Transform

Model Evaluate Deploy Manage

Fig. 1. The high level data science flow.

It is worth pointing out the difference to other types of Data Mining or
Machine Learning process representations. The Cross-industry standard process
for data mining (CRISP-DM, see [4] and Fig. 2) and others (such as SEMMA
originally from SAS or the more pragmatic version in [3]) include also softer
notions such as data and business understanding and constant need for refine-
ment.

Other models of the data science life cycle, such as the one shown in Fig. 3
come closer but also here the focus includes meta steps around the actual data
flow, for instance, model monitoring and retraining.

Those types of meta aspects of the process are not part of design patterns as
introduced here. They are not concerned with the modeling of the actual data
flow which, at the most abstract level, consists of data access, data blending and

Fig. 2. The classic CRISP-DM data mining model (image from [4]).
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Fig. 3. The Data Science Life Cycle, including deployment and management.

transformation, analysis and/or model building, and deployment. How those are
designed will be guided by business and data understanding, obviously, but the
result is a data flow. The goal of data science design patterns is to help model
and understand the resulting flow and not the process of arriving at it.

2.2 Model Training and Applying

Diving one step deeper into the data science flow, the most prominent design
pattern represents the typical training a model and applying it to other data
steps (see Fig. 4). Also here no surprising insights arise but it can already be
used to validate and explain the need for separate training and testing data sets.

Training
Data

ModelModel Learner

PredictionsModel
ApplierTest Data

Data Reader

Data Reader

Fig. 4. The basic flow of training and applying a model.

As we will see later, in more complex training setups such as parameter
optimization loops or ensemble learning, we will see this design pattern inside,
potentially abstracting it as the base learning pattern. We can then easily model
other requirements such as the need for three separate data sets for training,
testing, and final validation of the resulting parameter-optimized or ensemble
model.

2.3 Data Normalization

This one seems trivial at first glance but highlights a classic problem of early
career data scientists. Figure 5 shows the standard pattern for normalization
(ignore for a moment the little footnote of the normalizer node).
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Data Reader
Data

Test Data

Data Splitter

Training
Data Model

Model Learner

PredictionsModel
Applier

Normalized
Data

Normalizer*

(*) Normalizer data indepedent.

Fig. 5. Normalizing all data – training and testing.

This pattern can be modified so that the normalization routine moves into
each of the two training and testing branches as shown in Fig. 6. Now the foot-
note becomes important. First-time users often run into the “little” mistake
of applying normalizations in both branches but ignore that data properties
are used for the normalization (e.g. min/max for numerical attributes) and the
independent normalization steps, therefore, end up applying (often just slightly)
different normalizations. In this visual representation, it becomes immediately
obvious that making use of data properties in independent branches will cause
problems.

Data Reader
Data

Test Data

Data Splitter

Training
Data Model

Model Learner

PredictionsModel
Applier

Normalized
Training Data

Normalizer*

Normalized
Test Data

Normalizer*

(*) Normalizers data indepedent.

Fig. 6. Indepedent normalization of training and testing.

This naturally leads to the third pattern, shown in Fig. 7 which properly
models how normalization properties need to be extracted in the training branch
and then applied but not re-learned in the testing path. From this example, it
also becomes clear why Fig. 5 has that little footnote. Although this flow would
guarantee proper normalization also in the data-dependent case, it has some of
the training (that is, the extraction of the normalization parameters) executed
on the combined training and testing data set, effectively bleeding testing data
properties into the training path.

Data Reader
Data

Test Data

Data Splitter

Training
Data Model

Model
Learner

PredictionsModel
Applier

Normalized
Training Data

Normalizer

Normalized
Test Data

Normalization
Applier

Fig. 7. Data dependent normalization of training and testing data.
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Data Reader
Data Data Splitter

Training
Data

Model
Learner

Model
Applier

Model

Predictions

Transformed
Training Data

Data Dependent
Transformation
Model Learner

Transformed
Test Data

Model
ApplierTest Data

Model
Applier

Fig. 8. Data dependent normalization of data using the model-apply pattern.

In analogy to the model training/applying pattern shown in the previous
section, we really should model data-dependent normalizations as shown in
Fig. 8. There is a “learning” component also in data-dependent normalization
routines. It may be as simple as the extraction of the minimum and maximum
value but it requires data interpretation similar to training a decision tree. If
the underlying design pattern is modeled as shown here, all other validation and
auditing techniques apply to data transformation steps just like they work for
model learning and applying.

What we have shown here for normalization also applies to other transfor-
mation techniques, of course. And it also makes obvious an often ignored issue
when we talk about “model ops”—this ought to consider the transformation
techniques before and after model training and applying as well, not just the
model itself.

2.4 Cross-Validation

Figure 9 shows the design patterns for classic cross-validation. It intuitively dis-
plays the key idea behind cross-validation: independent subsets of the entire data
are used for testing, that is each row in the original data is used for testing exactly
once. We use an additional element to indicate a flexible but pre-determined
number of (in this case: parallel) branches.

This design pattern does not help determine the ideal split ratio, data sci-
entists abstracting their flows to this level are still required to understand the
implications of using different ratios. As discussed above, design patterns do
not aim at simplifying the actual data science work but abstract away from the
implementational details.

2.5 Ensembles

In addition to many other patterns that represent intuitively how other tech-
niques, we jump straight to a more complex setup to illustrate that data science
design patterns can also be used to model and explain key differences between
complex methods.
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Data Splitter

Data Splitter

Data Splitter

Model Evaluation1

Model Evaluationk

Aggregated 
Evaluation

Dataset

Model Evaluation2

Training

Training

Testing

Testing

Testing

Training

Fig. 9. Classic k-fold cross-validation.

Ensembles come in two key flavors: many (potentially even different) mod-
els trained in parallel or a sequence of models trained sequentially where each
model focuses more on errors of the previous chain of models. Since boosting
and bagging are generic wrapper methods it is worth modeling them explicitly
as (reusable) design patterns.

Figure 10 shows the first variant. This design pattern clearly shows how dif-
ferent column and row sampling setups along each branch add diversity to the
individual models that are trained on these subsets. Also here we model a flexible
number of branches, similar to the cross-validation pattern above.

More interesting is boosting, as shown in Fig. 11. We directly see the cascad-
ing nature of the algorithm, where subsequent models focus on errors of their
predecessors. Also note the reuse of the model-apply pattern shown earlier. Inside
that “Learn Model Weight Data” box, we model an entire model-learning and
data weighting step, which we then reuse in the diagram as one building block.
Also here, a variable number of branches is used. Note how the model-apply pat-
tern also shows up on the outside level: the boosting steps produce an (ensemble)
model that is then applied just like any other model before. Abstracting from
this pattern, makes this just fall back onto the base learner-apply pattern.

2.6 Factoring Out Transformations

A different example is shown in Fig. 12. It shows a rule that models how (data-
independent) transformations can be factored out (or in) of a fusing step (which
also needs to fulfill specific criteria, of course). Although this is at first glance
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Data

Learn Model

Merge Models
into Ensemble

Filter
Columns
& Rows

Filter
Columns
& Rows

Filter
Columns
& Rows

Filter
Columns
& Rows

Learn Model

Learn Model

Learn Model

Fig. 10. Bagging of models.

Learn Model and Weight Data

Training
Data

Weighted Model 1

Learn
Model

Apply
Model

Calculate
Weight

Weight
Data

Test
Data

Weighted Model 2
Learn Model
Weight Data

Learn Model
Weight Data

Combine
Model
into

Weighted
Ensemble

Apply
Model

Learn Model
Weight Data

Fig. 11. Boosting of models.

rather obvious, modeling this formally allows for automatic systems to modify
data flows while guaranteeing equivalent operation. This can be useful when
the fusing step sits at the border of two technologies underneath the hood and
a “workflow optimizer” automatically determines which technology to run the
transformation step on. Such rules also allow comparing two data flows that are
not structurally equivalent.
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Data 1 Transformation

Fusing

Data 2 Transformation

Data 1

Fusing

Data 2

Transformation

Fig. 12. Factoring out of transformation steps.

2.7 Key Elements

Any formulation requires a base alphabet. For the architectural examples cited
early on the authors talk about a pattern language [1]. We are far from proposing
a reasonably complete base alphabet, however for the examples shown here, the
four consistent base elements are shown in Fig. 13.

Source Operator Connector
Repeater

Fig. 13. Four base elements of a data science design pattern language.

We are using an element to represent a data source. Note that this can
be any type of source (file, database, data lake) as well as type (tabular or
unstructured data but also a model). Arrows model the data flow and boxes the
actors/operations applied along that flow. For repeat operations, such as in the
cross-validation or ensemble examples, the repeater element is used. Obviously,
this is all but a starting point.

3 Outlook

The type of design pattern introduced here does not eliminate the need to under-
stand the methods that are wrapped inside a node. If the data scientist does not
understand what a decision tree does, design patterns will not make it easier for
her to use that method. Design patterns help with modeling and understanding
the data flow but do not make the actual application of the techniques any easier.
However, they do help to focus on how those techniques are chained together.

Clearly, a complete list of patterns is outside the scope of this paper (and
likely a moving target anyway) and what we presented here is a work in progress.
Open questions remain. A well-defined base alphabet of symbols is needed so
that formal procedures (e.g. graph transformation systems) can be applied for
verification and automation purposes (similar to [5]). The ability to formalize
anti-rules is also an open issue: how can we model, for example, two data sets
that are overlap-free?
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4 Summary

We propose the use of data flow diagrams to model data science design patterns
and illustrate their usefulness for different aspects of the data science process
with a few representative examples. We strongly believe that the abstraction
layer of visual data flow diagrams enables data scientists to focus on the key
aspect of their work: the flow of data without being dragged into implementation
details as well as tool and API interfaces. The more transparent the entire process
is and the more the data scientists can focus on the core of their work, the more
intelligently they can make sense of and analyze their data.

Acknowledgments. Many other people were involved in earlier discussions around
design patterns. We are particularly thankful to Dirk Streeb, Clara Biedermann, and
Ahmad Varasteh who were part of the first brainstorming session in May 2022.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford University
Press, Oxford (1977)

2. Alexander, C.: The pattern of streets. J. AIP 32(3), 273–278 (1977)
3. Berthold, M.R., Borgelt, C., Hoeppner, F., Klawonn, F., Silipo, R.: Guide to Intel-

ligent Data Science, 2nd edn. Springer, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-45574-3

4. CRISP-DM on Wikipedia. https://en.wikipedia.org/wiki/Cross-industry standard
process for data mining. Accessed 23 Oct 2022

5. Fischer, I., Koch, M., Berthold, M.R.: Proving properties of neural networks with
graph transformations. In: IEEE International Joint Conference on Neural Net-
works, vol. 1, pp. 441–446 (1998)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

7. Hild, D.D.: Visual Languages and Computing Survey: Data Flow Visual Program-
ming Languages. J. Vis. Lang. Comput. 3, 69–101 (1992)

8. Lakshmanan, V., Robinson, S., Munn, M.: Machine Learning Design Patterns.
O’Reilly Media, Inc. (2020)

https://doi.org/10.1007/978-3-030-45574-3
https://doi.org/10.1007/978-3-030-45574-3
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining


Diverse Paraphrasing with Insertion
Models for Few-Shot Intent Detection

Raphaël Chevasson1(B), Charlotte Laclau2, and Christophe Gravier1
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Abstract. In contrast to classic autoregressive generation, insertion-
based models can predict in a order-free way multiple tokens at a time,
which make their generation uniquely controllable: it can be constrained
to strictly include an ordered list of tokens. We propose to exploit this
feature in a new diverse paraphrasing framework: first, we extract impor-
tant tokens or keywords in the source sentence; second, we augment
them; third, we generate new samples around them by using insertion
models. We show that the generated paraphrases are competitive with
state of the art autoregressive paraphrasers, not only in diversity but also
in quality. We further investigate their potential to create new pseudo-
labelled samples for data augmentation, using a meta-learning classifica-
tion framework, and find equally competitive result. In addition to prov-
ing non-autoregressive (NAR) viability for paraphrasing, we contribute
our open-source framework as a starting point for further research into
controllable NAR generation.

Keywords: Deep Learning · Natural language processing ·
Controllable text generation · Transformers · Non-autoregressive ·
Insertion models

1 Introduction

A good paraphraser should, for each source sentence, generate a batch of para-
phrases which 1. are fluent, 2. have a similar meaning with the original source
and 3. are sufficiently diverse between themselves and also between the source
sentence. Since a classic language model only optimize for fluency, the two
last requirements are harder to satisfy and require a special loss, architecture,
or decoding scheme. For automatic text generation, predicting the next token
autoregressively (left-to-right, one at a time) using transformers neural networks
is the most popular approach. Other emerging methods, such as insertion-based
models, can predict in a order-free way multiple tokens at a time, attracting a
lot of attention recently due to the potential gain to inference time. However,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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an understudied benefit of these models is their ability to constrain the genera-
tion to strictly include an ordered list of tokens, since they can build a sentence
around them.

In this work, we investigate ways to leverage the generation constraints
allowed by insertion-based text generation for diverse and slot-retaining gen-
eration for paraphrasing. We investigate the following scientific questions:

RQ1: Can insertion models be used as an efficient trade-off between fluency,
semantic similarity and diversity in neural paraphrasing?
RQ2: What is the potential of such paraphraser as a data augmentation tech-
nique with respect to AR paraphrasers? Can this comparison inform us on the
relative importance of fluency, similarity, and diversity for data augmentation
using neural paraphrasing?

2 Related Work

As a text-to-text task, paraphrasing shares much similarity with translation
and summarization. The most common approach is to use pretrained text-to-
text models like BART [13] or T5 [21], fine-tuned on paraphrase corpus like
MSRP [31], PAWS [28,30] or Quora [22]1. A variation is to use off the shelf
translation models to translate into many different languages (for diversity), then
back-translating into the source language2 [8,14,26], also known as round-trip
translation (RTT). While RTT generates highly fluent sentences, it lacks diversity
and does not guarantee that the meaning of the original sentence is preserved [4].

Other works opt to guaranty diversity, such as DivGAN [2] which forces the
diverse sampling of a GAN latent via a diversity loss term. [20] also uses a GAN
framework, but with several generators, and a compound loss with two discrim-
inators ensuring paraphrases are distinguishable between themselves yet valid
with respect to the source. ProtAugment [4] uses a variant of beam search with
a diversity term [24] and randomly forbids unigrams from the source, forcing
diversity at the expense of fluency. Rather than only using the paraphrases and
their source labels as a fine-tuning corpus, it achieves semi-supervised learning
with a compound loss that uses the paraphrases of labelled samples as posi-
tive examples, and paraphrases of unlabeled samples as negative examples to a
prototypical learning objective. Blocking some particular unigrams to enhance
diversity was also explored in [18] and coined as dynamic blocking.

Few works however focus on preserving meaning, which directly clashes with
diversity. Diversity vs. fluency is the most important trade-off for textual data
augmentation, and current generative models frequently loses key intent cues
(such as important keywords or named entities), even when equipped with a
copy mechanism. This is stressed in the Parrot framework [3], in which they add
slots annotations to the training set. In [9], they extract those words at inference
time, and they then average the logits from a reconstruction model trained on

1 The Huggingface library [27] mostly uses this approach.
2 The Fairseq library [19] also uses this approach.

https://huggingface.co/models?pipeline_tag=text2text-generation&search=paraphrase
https://github.com/pytorch/fairseq/blob/main/examples/paraphraser/README.md
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sets of words with the logits from a RTT model. Our work explores a different
path: from extracted slots keywords, we leverage the possibility of insertion-
based models to enforce hard constraints in the generated texts. Noting that we
can also opt to expand the hard constraints using synonyms of the slots keywords
(under a stochastic process), we ultimately propose an insertion-based diverse
paraphrasing framework (Sect. 3) which leads to more fluent yet more diverse
paraphrases, and ultimately with impact on the meta-learning intent detection
task (Sect. 4.3).

For an in-depth review of existing paraphrasers, we refer the interested reader
to the survey of [32]. Used for data augmentation, such paraphraser have proven
very efficient to improve classification where few labelled examples, even with
very low fluency are available [12,25].

3 Diverse Paraphrases Generation

Insertion models generate a sentence by expanding an ordered list of words.
Contrary to standard left-to-right autoregressive models, the input words are
hard constraints – they are guaranteed to be included, ordered, and they are
attended by all generated tokens (attention is bidirectional even at inference
time). Relying on these properties, we propose a paraphrase generation scheme
that promote diversity using an insertion model (see Fig. 1). We described each
of the followed steps below.

3.1 Notations

Let X be a set of n source sentences, such that X = {x(1), · · · , x(n)}. Let us
consider x(i) ∈ X one source sentence. For ease of reading, we use the simplified
notation x(i) = x in the following. Let x = (x1, · · · , x�) be the sequence of tokens
representing a source sentence, omitting the starting [CLS] and ending [SEP]
tokens.

Our goal is to produce Y = {y1, · · · , ym}, the set of m generated paraphrases
for a given source sentence x. Note that each paraphrase yj is potentially differing
in length. We will note Y the complete paraphrase dataset, in contrast to Y ,
the batch of paraphrases from a particular source sentence x. Hence we have
Y (i) ⊆ Y,∀x(i) ∈ X .

3.2 Keywords Extraction

We first identify the k most important words from the source sentence in order
to drive the downstream generation process. We call them keywords and note
them w = (w1, · · · , wk). The notion of most important is defined as the greatest
contribution to the sentence semantic. This is measured using the entropy of the
word wi in the sentence x, which can be approximated using a language model
or a faster method like tf-idf and excluding stopwords – to name a few. Note
that in our work, words are a list of tokens that should not be broken apart,
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Fig. 1. Our method is two-fold. We first extract keywords and augment them via
random shuffling and synonym replacement. Then, we generate paraphrases using them
as an input. Those paraphrases are finally used as a data augmentation in a meta-
learning framework.

like the tokens that form a word (“everyday”) or an expression (“living room”).
To stay close to the pre-training procedure of our non-autoregressive model, we
follow [29] method, which consists in: (1) Splitting the sentence into words using
an English, Regex-based word tokenizer3. (2) Applying the keyword extractor
from [11], called YAKE, which was pre-trained to extract keywords, in an unsu-
pervised way by leveraging text statistical features4. (3) Removing stopwords
and duplicates, and keep k keywords, randomly chosen. We take care of treat-
ing them atomically throughout all our subsequent procedures. In addition, we
empirically found that keeping the final punctuation sign, that would otherwise
be removed as a stopword and preventing generation to its right5, contributed
to preserve the source sentence semantic. When our keywords extraction process
fails to extract a sufficient number k of keywords, e.g. for very short sentences,
we retain the k longest words. We found this strategy to be a surprisingly strong
baseline, despite being very simple.

3 segtok: github.
4 YAKE: github.
5 More precisely, keeping “![end]”, “?[end]”, and “.[end]” as keywords.

https://github.com/fnl/segtok/
https://github.com/LIAAD/yake
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3.3 Keywords Augmentations

We augment the keyword list with two operations, namely shuffling and synonym
replacement. For each keyword list w, we generate m augmentations, noted W =
(wi,j)

1≤i≤m
1≤j≤k .

First, we generate a permutation for each line of W by swapping each keyword
with another random word in the keyword sequence with a probability pshuf .
This step is meant to encourage the model to generate different alignments for
better diversity. While this comes with the cost of a lower semantic alignment
with the source sentence, it has been proven efficient for data augmentation [6].

Second, we replace each word with a random, but contextually relevant,
synonym with a probability psyn. We benchmarked several publicly available6

synonymers using human evaluation and found EWISER [1], a transformer-based
method that leverage the context around a word to ranks synonyms from its
lemmatized WordNet synset, to be the most efficient one for our problem. A well-
known downside of WordNet-based methods is the loss of semantic information
resulting from the lemmatization; in practice, we found it to be acceptable for
nouns or adverbs, but too significant for verbs, where the conjugation carry rich
information. We reconjugate the verb synonyms to the most likely conjugation
of the source verb, which qualitatively helps preserving the source semantic.

3.4 Constrained Paraphrases Generation

While we could have used a seq2seq NAR model like the Levenshtein Trans-
formers [7], Insertion Transformers [23], or “Encode, Tag, Realize” [15], we test
a different approach in this work, that is to drive our generation from a set of key-
words to build around, rather than with cross-attention to the source sentence.
This means we needed a language model rather than a seq2seq model. We use
POINTER [29], which is to our knowledge, the only publicly available, large pre-
trained NAR language model. POINTER is an insertion-based transformer model
that build a sentence around an ordered list of given words. It is trained to
predict the token to insert after each source token, doubling the sentence length
in one iteration, and predicting [NoInsertion] everywhere when the sentence is
fully built. The model heavily relies on a BERT backbone, and was fine-tuned
for this progressive generation task from a pre-trained BERT checkpoint. We use
this model for the generation of our diverse paraphrases Y , based on augmented
keywords sequences W as an input.

We fine-tune the pre-trained POINTER model from [29] for each of the datasets
used in our experiments (an unsupervised process). Unlike fine-tuning BERT on
domain corpora, which not always provides improvements for the downstream
tasks [17], this is a crucial step in our case. The paraphrase style depends on the
domain at hand: for instance, the tone and turn of sentences in a dataset based
on Wikipedia is different than the ones from a dataset made of user-generated

6 We tested the lesker from nltk (→wordnet synset), bablify (→bablenet synset), getal
p/disambiguate, and ewiser (→wordnet synset) wich vastly outperformed others.

https://github.com/nltk/nltk/blob/b0e85694107992e00a2f9fb48e6410c50fe1f1f6/nltk/wsd.py
http://babelfy.org/
https://github.com/getalp/disambiguate
https://github.com/getalp/disambiguate
https://github.com/SapienzaNLP/ewiser
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queries to a chatbot. Otherwise, the model cannot use a long context to adapt
the style as we do not provide the source sentence but only give it a few keywords
as input.

4 Experiments

4.1 Datasets, Baselines and Metrics

There is no standard benchmark for NLP data augmentation, and comparing
to different methods requires reproducing their results on a common dataset.
Bearing this in mind, we choose to match our most strong and complex baseline
settings. ProtAugment [4] was evaluated on the intent detection datasets of
the DialoGLUE benchmark [16]. Summary statistics can be found in Table 1.

Table 1. Summary statistics of each dataset.

Dataset Classes Samples #tokens

Banking77 77 13,083 11.77.6

HWU64 64 11,036 6.62.9

Clinic150 150 22,500 8.53.3

Liu 54 25,478 7.53.4

Other baselines are as follows.
EDA [25] is a paraphrasing method
that use random synonyms, addi-
tions, deletions and shuffles. We
selected it for its widespread
usage in NLP data augmentation
and simplicity. AEDA [12] is a sim-
pler variant of EDA that random
inserts semicolons as its only aug-
mentation. It surprisingly often achieves higher results. RTT is a Round-Trip
Translation scheme, which consists in translating from English to another lan-
guage, then back to English. We construct 5 paraphrases using French, Spanish,
Italian, German and Deutch intermediate languages, using public translation
models from the Helsinki-NLP team for each language pair. Bart-uni [4] is
finally our most challenging baseline. It is based on BART-base, a denoising
transformer [13], and fine-tuned for paraphrasing on question-answering datasets
in ProtAugment [4], which is the state-of-the-art intent detection framework,
and which heavily relies on textual augmentation. We use their strongest con-
figuration with unigram masking: At decoding times, we forbid source unigrams
with a probability, which forces the beam search to diverge and create diverse
generations.

We propose to automatically evaluate the quality of the generated para-
phrases along two dimensions: the fluency and the diversity. We approximate
the standalone fluency of the generated paraphrases with GPT2 language model
perplexity (ppl). We use public checkpoints distylgpt2 from Hugging Face,
and compute average and standard deviation in logarithmic space (meaning we
use geometric mean and standard deviation). We estimate the diversity of a set
of paraphrases that share the same source using the metric proposed by [10],
coined as dist-2, which represents the number of distinct bigrams divided by
the number of distinct tokens among all those paraphrases. As a more general
and softer metric than encompass both fluency and semantic conservation, we
log BLEURT and BERTScore between the paraphrase and it source reference.
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4.2 Experimental Settings

Our code and paraphrases are publicly available7.

Reproduction and Hyperparameters. We use publicly available para-
phrases for RTT and Bart-uni baselines8,9 (5 per source), and run EDA and
AEDA from their public repository10,11 using the default parameters. There was
no default for AEDA number of augmentations, so we picked 9 to align with EDA.
For our paraphrase generation, we chose to extract k = 3 keywords per sentence.
In order to reduce the already long generation length, we picked the minimal
number which still kept reasonable information. We generate m = 5 augmenta-
tions per sentence to match our best baseline. For psyn and pshuf we search the
{0, 0.25, 0.5, 0.75, 1}2 domain. To alleviate the computational requirements, we
ran the complete search only on truncated datasets with the 1, 000 first sentences
(which led to 5, 000 generated paraphrases), and reran the 4 more promising
on the full dataset. The grid search maximizes the validation-set classification
accuracy of the ProtAugment framework with our generated paraphrases over 5
cross-validation runs. We find psyn = 0.75, and pshuf = 0.00 (on BANKING77 and
HWU64) or pshuf = 0.25 (on Liu and Clinic150).

Insertion-Based Generation. Following Bart-uni, we fine-tuned our model
with a single run on each of the 4 unlabeled training set. Our base model
is POINTER wiki pretrained model12, which is itself based on HuggingFace
bert-large-uncased pretrained model for masked language modeling. We save
and evaluate a checkpoint every 2n and 100, 000 8-batch training iteration, and
find that training only on 500k samples (9 h on an Nvidia Titan RTX) is suf-
ficient, our criterion being shorter sentence length, and no fluency/diversity
degradation.

Application to Meta-learning Intent Detection. To evaluate the data aug-
mentation potential of the paraphrases, we ran the ProtAugment meta-learning
framework, using the paraphrases from each method as pseudo-labelled samples.
We match [4,5] most challenging setup, with only 10 labelled samples per class
and disjoint classes between the training, test and validations sets.

4.3 Analysis

[RQ1] Paraphrase Quality. Starting with a global and quantitative anal-
ysis (Fig. 2), our method reach a comparable fluency (ppl) while achieving a
consistently higher inter-Y diversity (dist-2), which place us in the favorable

7 https://github.com/RaphaelChevasson/DPIM.
8 RTT: paraphrases.
9 Bart-uni: paraphrases.

10 EDA: official code.
11 AEDA: official code.
12 https://github.com/dreasysnail/POINTER.

https://github.com/RaphaelChevasson/DPIM
https://github.com/tdopierre/ProtAugment/blob/main/data/BANKING77/back-translations.jsonl
https://github.com/tdopierre/ProtAugment/tree/main/data/BANKING77/paraphrases/DBS-unigram-flat-1.0
https://github.com/jasonwei20/eda_nlp/blob/master/code/augment.py
https://github.com/akkarimi/aeda_nlp/blob/1da841f683599886961890e32ba3cbed1013c79d/code/aeda.py#L14-L27
https://github.com/dreasysnail/POINTER
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Fig. 2. Evaluation of the paraphrase quality. Lower-right corner is best as lower per-
plexity denotes better fluency and higher dist-2 value denotes more diversity.

Fig. 3. Comparison of the distribution
of the ppl vs. dist2 metric between
Bart-uni and our approach for all para-
phrases generated on Banking77.

Table 2. Average number of characters of
the paraphrases meanstd.

Banking77 HWU64 Liu Clinic150

EDA 5840 3515 4116 356

AEDA 6342 3616 4417 3817

RTT 5537 3426 4029 3423

Bart-uni 8931 4712 5314 5316

Ours 15467 13346 12844 11741

Table 3. Additional metrics, written with the meanstd compact notation.

Banking77 HWU64 Liu Clinic150

BLEURT BERTScore BLEURT BERTScore BLEURT BERTScore BLEURT BERTScore

RTT 76.013.1 97.22.4 72.215.2 95.53.5 75.215.7 96.13.4 72.213.5 95.92.9

Bart-uni 36.79.0 85.31.9 33.410.9 84.52.4 32.310.6 84.22.2 34.710.0 85.22.2

Ours 43.36.9 86.71.8 41.17.4 85.22.3 38.28.7 85.22.4 42.87.4 85.82.4

bottom-right corner of the tradeoff over every dataset. By focusing on the dis-
tribution over one dataset (Fig. 3), we see that for both methods, fluency and
diversity are strikingly uncorrelated. Our method have a tighter range of perplex-
ity, which we attribute to the model being able to bidirectional attend keywords
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Table 4. A batch of diverse paraphrases from Banking77 where all 3 methods perform
well.

Source I’m interested in what your exchange rates are based on

RTT 1. I’m interested in what your exchange rates are

2. I’m interested in what exchange rates are based

3. I’m interested in what exchange rates are based on

4. I’m interested in your exchange rates

5. I’m interested in what your exchange rates are based on

Bart-uni 1. Interesting note: How much rate should we expect when comparing with
other currency markets?

2. How much should we expect when considering Exchange rate variations
between different currency zones?

3. How much should we expect when considering Exchange rate variations
between different currency countries?

4. How much should we expect when considering Exchange rate options?

5. How much should we expect when considering Exchange rate variations
between different currency regions/yearly ranges?

Ours 1. hi, i am extremely interested in getting an open interchange of exchange
rates, but there have not been any established exchanges with exchange y

2. hi, i am extremely interested in purchasing, holding, exchanging and
interchange. I noticed your website offer exchange rates, which are usually
based on fair play

3. please, i am extremely interested in both in your exchange and exchange
rates. I can make an interchange. Is no common ground for free play

4. hi, i am extremely interested in finding a way to interchange funds with your
services. The charges on my account are usually a few per month from the
foreign accounts unit, and i have not found what seems fair

5. hi, i am aware and extremely interested in some in changing my currency
exchange policy. I have not established a balance but there are some strange
charges. I am being charged a fee per sq pound at the correct unit exchange rate

from the beginning of the generation rather than being forced out of its com-
fort zone mid-generation at decode time like Bart-uni. We also have a wider
range of diversity and distinguish about 5 emerging groups, which we attribute
to the number of realizations of psyn + pshuf . BLEURT and BERTScore measure-
ments shows that this advantage over Bart-uni extends to semantic conservation
(Table 3), although still far from low-diversity methods like RTT.

We can further characterize this diversity by taking a qualitative look at a
(x, Y ) sample (Table 4). We note a strong bias in generation length w.r.t. the
source sentence, which we quantify in Table 2. Our methods avoid a pattern
often exhibited by Bart-uni: when the unigram blocking acts at the end of the
beam search, it often leaves big chunks of Bart-uni sentences identical. From
RTT to Bart-uni to Ours, the generation takes more liberty in interpreting and
sometime adding information, sacrifice more semantic similarity, while opening
more diversity. Without stronger constraints, our method is thus not suited for
tasks where semantic conservation is key, but has a lot of potential for open-
ended tasks like assisting creative writing or data augmentation.
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Table 5. Classification accuracy meanstd.
Best result(s) are in bold.

Banking77 HWU64 Liu Clinic150

EDA 84.01.3 77.82.3 80.91.9 93.30.7

AEDA 82.41.2 78.01.6 80.32.2 93.10.4

RTT 83.41.5 78.1.2 80.52.0 93.10.7

Bart-uni 87.40.6 83.21.4 84.91.8 95.80.3

Ours 86.30.8 83.61.6 84.41.2 95.40.5

Fig. 4. Metrics ppl, dist-2 and accuracy as
a function of pshuffle for Banking77.

[RQ2] Potential for Data Augmentation. For the latter, it seems hard to
surmise if the fluency-diversity-conservation tradeoffs exhibited by our method
will contribute sufficient but not excessive noise to the classifier and translate
to a definitive improvement. By testing this empirically (Table 5), we observe a
staggering improvement over most baseline, but not enough to surpass Bart-uni.
Either our tradeoff advantage over this method does not carry to the classifier
training signal, or the length bias negatively outweighs it.

By taking a closer look at the accuracy and tradeoff variations over our
hyperparameters (Fig. 4), it seems that diversity really helps while fluency have
a mixed impact; we cannot however make a definitive conclusion given the low
variation compared to the variance over our 5 cross-validation runs.

Considering the statistical significance of accuracies in Table 5, we never-
theless attain state-of-the-art results in 3 out of the 4 datasets, which validate
the potential of NAR data augmentation, and we largely exceed every other
baseline. Considering our work is the first to tackle NAR data augmentation
whereas the AR methods were explored and optimized in much more details by
the community, this is very encouraging.

5 Limitations

Moving Parts. While our pipeline is simple to understand, the number of
moving parts (python environments, implementation-wise) make it more difficult
to setup than an end-to-end method.

Length of the Paraphrases. Our current generation model systematically
provide sentences longer than the sources (see Table 2), only marginally reduced
by our fine-tuning on unlabeled data. While it is possible to favors [no insertion]
tokens to reduce sentence length, it just displaces the problem from being out-of-
domain of the classifier training to being out-of-domain of the expander training.
To solve the root problem without full cross-attention, we think providing the
(augmented) source length as an input and using a model trained with oracle
length, but still allowed to deviate from it, is the most promising direction.
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6 Conclusion

In this work, we proposed an approach to replace AutoRegressive models by more
flexible and controllable Non-AutoRegressive ones in the paraphrase generation
task, with a deep dive in state-of-the-art (meta-learning) data augmentation
for low-resource fine classification. Capitalizing on the open-endedness of these
tasks, we proposed an extensible pipeline that achieve satisfactory results, while
not even requiring cross-attention. We compared its behaviour against a number
of diverse baselines, including two strong autoregressive ones, and found that
the non-autoregressive model have a definite advantage for handling constrained
diversity. We discussed the strengths and weaknesses of our method and open-
source it to foster future research, as we ultimately think there is still untapped
potential in the control offered by NAR generation methods.
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Abstract. Local surrogate learning is a popular and successful method
for machine learning explanation. It uses synthetic transfer data to
approximate a complex reference model. The sampling technique used for
this transfer data has a significant impact on the provided explanation,
but remains relatively unexplored in literature. In this work, we explore
alternative sampling techniques in pursuit of more faithful and robust
explanations, and present LEMON: a sampling technique that samples
directly from the desired distribution instead of reweighting samples as
done in other explanation techniques (e.g., LIME). Next, we evaluate our
technique in a synthetic and UCI dataset-based experiment, and show
that our sampling technique yields more faithful explanations compared
to current state-of-the-art explainers.

Keywords: Machine learning · Explainable AI · XAI

1 Introduction

Explaining artificial intelligence (XAI) is important in high-impact domains such
as credit scoring, employment and housing [5,9,12]. In these fields, incorrect
model behavior may lead to additional direct costs, opportunity costs, as well
as unfavorable bias and discrimination. XAI techniques can help identify and
alleviate such problems [1]. Let us consider a real-world example: recent work
has shown that, for commercial face classification services, accuracy of gender
classification on dark-skinned females is significantly worse than on any other
group [8]. This discrepancy was conjectured to be largely due to unrepresentative
training datasets and imbalanced test benchmarks. However, using explanation
techniques, it was shown that the classifiers made use of makeup as a proxy for
gender in a way that did not generalize to the rest of the population [20].

A common approach to explain machine learning models is to create an
explanatory, or surrogate model that mimics the reference model. As the sur-
rogate is typically simpler, it can be used to understand the complex reference
model. This enables us to understand any model (i.e., model-agnostic approach)
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without having to alter that model (which could hurt performance). The extent
to which this surrogate accurately approximates the reference model is called
faithfulness (or fidelity).

There are two ways to obtain a surrogate model. The first is to globally mimic
the reference model with an inherently simple surrogate model. However, due
to this simplicity, the resulting surrogate can often not faithfully represent the
reference model, which leads to inaccurate or incorrect explanations. Another
approach is to consider only a small part of the complex reference model, and
locally mimic that portion. Such surrogate models remain locally faithful to the
reference model, while also being simple enough to understand. The current
state-of-the-art techniques to explain individual predictions (e.g., LIME [21])
apply this approach by targeting only the part of the model that is relevant for
that particular prediction. This process is illustrated in Fig. 1.

To generate such a surrogate, a simple model is trained on transfer data: a
set of data points labeled by the reference model. This technique is well-known,
but until recently was only applied to approximate models globally. For local
explanations, samples from a constrained region are used to obtain a surrogate
that is locally faithful, and simple enough to be considered interpretable [4,21].

In this paper, we investigate transfer data sampling techniques for local sur-
rogate models, and identify that the faithfulness of existing techniques may be
impaired in high dimensionality. We explore alternative sampling techniques
and introduce Local Explainable MOdel explanations using N-ball sampling
(LEMON): an improved sampling technique that is more faithful and robust
than the current state-of-the-art techniques by sampling directly from the desired
distribution instead of reweighting samples (see Fig. 1).

Fig. 1. The process of local surrogate learning: 1) choose a data point to be explained,
2) sample in the neighborhood of that point to obtain transfer data, 3) label the
transfer data with the reference classifier, and 4) train a linear surrogate model on the
data. Annotated are two examples of 20 samples generated with alternative sampling
techniques (2): the one used in LIME [21], which reweights samples, and our proposed
LEMON technique sampling directly from the desired distribution within a radius.
Since more local samples are available with LEMON, the explanatory surrogate model
is able to more faithfully represent the reference model.
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2 Related Work

The idea of using transfer data to approximate a model globally was introduced
by Craven et al. [10] and Domingos [11] and it has been used for model compres-
sion [3,7,18,19,22,24], comprehensibility [4,6,21,23] and generalization [18].

The types of surrogate models used vary widely. While for local explanation,
linear regression is sufficient [21], global explanation requires more expressive
surrogate models, e.g., shallow neural networks [22,24], decision trees [6,10],
and rule sets [11,23]. Furthermore, we identified two main categories of sampling
techniques for surrogate learning used in previous work:

Synthetic sampling draws new samples from a distribution (e.g., uniform or
normal), independently of the original data. For local techniques, this distribu-
tion is restricted to a predefined region of the feature space (i.e., the region of
interest). The advantage of this approach is that we can sample as many transfer
data points as desired. Most local explanation techniques use this approach.

Observation-based sampling uses the training data of the model as transfer
data. When features in a dataset are correlated, certain values in feature space
are less likely (or impossible) to occur compared to the correlated (or ‘sensible’)
region of feature space. Observation-based sampling yields more samples in that
sensible part of the feature space. However, the number of samples for transfer
data is limited. Oversampling techniques like Naive Bayes Estimation (NBE) or
MUNGE [7] can partially address this problem.

Which of these sampling techniques to use for surrogate learning is generally
not considered thoroughly. For example, some authors make empirical claims
such as “We have found that using the original training set works well” [18].
However, it is unclear what kind of benefit observation-based sampling yields
compared to synthetic sampling, or how the chosen synthetic sample distribution
affects the quality of explanations.

The vast majority of the reviewed papers focused on global approximations,
in which the faithfulness (i.e., accuracy with respect to the reference model) of
the surrogate model is compromised in order to simplify the surrogate and hence
the resulting explanation, or reduce its memory footprint for model compression.
The focus of this paper is on sampling for local surrogates instead. By only
considering a small part of the reference model, and only locally mimicking that
portion of the complex model, the surrogate remains faithful and simple. This
approach is more recent and gained a lot of popularity with the introduction of
the LIME explainability framework [21].

3 Issues with Sampling for Local Surrogates

To understand sampling for local surrogates, we consider LIME [21], as it is
a widely popular local explanation technique, and for its clear and accessible
usage of surrogate models. The transfer data in LIME are samples that are
drawn from a fixed multivariate Gaussian distribution centered on the global
mean of the training data. Here, fixed means that the distribution does not
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depend on the data point to be explained. Next, these samples are weighted
based on their proximity to the data point to be explained. The locality of the
technique is a result of this weighing. Then, a linear regression surrogate model
is trained on these weighted samples, and the coefficients are presented as a
“feature contribution” explanation that shows how important a feature is to a
prediction: a small change in a feature with a high coefficient will lead to a large
change in prediction, and hence can be considered important to the model.

The quality of a local surrogate is typically measured in faithfulness: the
extent to which the local surrogate locally represents the reference model.

As a consequence of fixing the transfer data independently of the point to be
explained, a notable drawback of systems such as LIME is that as the dimen-
sionality of the data increases, the chances of obtaining samples close to the
instance to be explained gets ever smaller. Hence, the robustness and faithful-
ness are significantly impaired for high-dimensional data. This is very similar to
the known “curse-of-dimensionality” limitation of rejection sampling, in which
most proposed points are not accepted as valid samples in high dimensions. In
addition to faithfulness, Alvarez-Melis and Jaakkola [2] have demonstrated that
using only few relevant samples (100 in their study) degrades the robustness of
the explanation from LIME (i.e., very different explanations for similar inputs).

To experimentally verify this effect, we set up an experiment in which we
can arbitrarily increase the dimensionality of the model without affecting other
semantics of the machine learning setup. Consider the n-dimensional feature
space X ⊂ R

n, and two classification models representing a hyperbox (b(x)) and
hypersphere (s(x)) respectively:

b(x) = ‖x‖∞ ≤ 1, and s(x) = ‖x‖2 ≤ 1 (1)

classifying x ∈ X as either true or false. These models are simple enough to
quickly change the dimensionality of the model, while being complex enough
to resemble a realistic complex classification model that cannot perfectly be
represented by the local surrogate model.

We chose the input data point x = [1, 0, 0, ...], a point on the surface of
the decision boundary of the model. Next, a surrogate model is generated using
LIME and four different kernel width parameters. We chose values from 0.1 to
0.4 to approximate the right side of the model only (x0 > 0). By measuring the
faithfulness of the surrogate models generated for different dimensional models,
we assert whether the faithfulness is impaired in high-dimensional space.

For data point x and varying levels of dimensionality, we measure the faith-
fulness of the linear surrogate model, using the cosine similarity between the
coefficient vector of the surrogate, and that of the best possible linear model in
this setup: f(x) = x0, coefficients shown in Fig. 2c. Contrary to more traditional
faithfulness metrics (e.g., RMSE or R2), this approach measures the agreement
between the models without the need for additional sampling.

Figure 2 shows that for models with only a modest number of dimensions
(i.e., 10–20 depending on the kernel width), the faithfulness of LIME is already
significantly impaired, which can result in untrustworthy and misleading expla-
nations. In addition, the explanations are not robust as indicated by the heavy
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Fig. 2. (a,b) LIME (5000 samples) is not faithful when explaining high dimensional
models. Different lines represent different kernel widths σ. (c) the coefficients of the
generated linear surrogate model (green) do not match the expected coefficients (blue).
(Color figure online)

fluctuations. This happens because in high-dimensions, very few relevant sam-
ples are generated in the neighborhood of the point to be explained, and hence,
the linear model is unable to approximate the behavior of the reference model.
For a 15-dimensional box model, Fig. 2c shows the expected coefficients (blue)
and coefficients of the linear surrogate from LIME (green). Even though only
feature 0 has a substantial role for prediction, LIME incorrectly reports that
many other features are relevant.

Note that LIME employs LASSO feature selection to reduce dimensionality
ahead of explanation. However, this step is subject to the same limitations as
outlined in this section. For simplicity, we disregard the feature selection option.

4 LEMON: Robust N-Ball Sampling

We introduce LEMON: Local Explainable MOdel explanations using N-ball
sampling, which addresses the issues identified in Sect. 3. This technique sam-
ples directly from the desired distribution (defined by a distance-kernel func-
tion), instead of reweighting samples. This naturally yields data points where
we need them: in the neighborhood (or region of interest) of the instance x to
be explained.

4.1 Sampling from a Hypersphere

We first use sampling within a unit hypersphere followed by scaling the samples
by radius r (region of interest), and translating the samples to be centered at x.

Fishman [14] and Harman and Lacko [17] describe an efficient way to obtain
points within an n dimensional hypersphere (i.e., n-sphere). If Y ∼ N(0, 1), then
Sn = Y

‖Y ‖ is uniformly distributed on a unit n-sphere. Next, when we apply

Sn · U
1
n (2)

where U has the uniform distribution on (0, 1), we obtain the uniform distribu-
tion of a unit n-ball; the region enclosed by an n-sphere. Uniform samples from
this distribution correspond to points uniformly distributed within the n-sphere.
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This method will ensure that all samples reside strictly within the region
of interest within radius r around x. With more relevant samples, the surro-
gate model can represent the reference model faithfully, and output more robust
results with less variance between subsequent runs of the algorithm.

4.2 Accommodating Arbitrary Distance Kernels

Sampling uniformly from a hypersphere is restrictive, and makes it challenging
to compare fairly against LIME, in which the samples are normally distributed.
In addition, different domains may require different distance metrics and kernels
(e.g., cosine distance for text and L2 distance for images [21]). Hence, we expand
our sampling technique to accommodate arbitrary distance kernels.

Let K(r) denote a distance kernel on the domain [0, rmax], where the maximal
distance rmax > 0 may depend on the kernel. To sample points weighted by this
kernel, note that the total weight of points at radius r is given by cnK(r)rn−1

for some dimension-dependent constant cn. Thus, the cumulative distribution
function (cdf) for the radius of a sample is

F (r) :=P
(‖X‖ ≤ r

)
=

∫ r

0
K(s)sn−1ds

∫ rmax

0
K(s)sn−1ds

, for r ≤ rmax. (3)

To sample using Eq. (3), we use inverse transform sampling [16]. However, an
exact analytical integral of this density function may not always exist e.g., the
Gaussian distance kernel used by LIME does not have a closed solution. Hence,
we numerically approximate the inverse to sample from arbitrary distance ker-
nels. Next, we show two examples of specific types of distance kernels that can
be used with this technique.

Uniform Distance Kernel. The most basic distance kernel is the uniform kernel
Kuniform(r) := 1. We first show that substituting this distance kernel function
into Eq. (3) yields the same cdf as the uniform sampling approach in Eq. (2).

We get for r ≤ rmax, F (r) =
∫ r
0 sn−1ds∫ rmax

0 sn−1ds
= rn/n

rn
max/n = (r/rmax)

n
. Ignoring the

factor Sn that determines the angle from (2), we get for r ≤ rmax,

P

(
U1/n < r

rmax

)
= P

(
U <

(
r

rmax

)n)
=

(
r

rmax

)n

= F (r).

In the equation above, the second equality follows from the fact that U has the
uniform distribution on (0, 1). Ergo, using this uniform distance kernel leads to
uniformly distributed samples within a hypersphere of radius rmax. An example
of sampling using this distance kernel is shown in Fig. 3a.

Gaussian Distance Kernel. For a fair comparison with other methods, our sam-
pling technique should also support the Gaussian distance kernel as used in
LIME, defined as

Kgaussian(r) := exp
( − r2/(2σ2)

)
. (4)
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Fig. 3. Samples of three distance kernels in 2D. Radius rmax is indicated in red. (Color
figure online)

However, this distance kernel poses a problem: the Gaussian distribution is
unbounded, while for our numeric approximations we require a kernel whose
domain is bounded by some radius rmax < ∞. For comparison to the Gaussian
kernel used in LIME, we use a truncated distance kernel: we sample points from
a Gaussian distribution with the same kernel standard deviation conditioned to
be at most rmax. Here, we choose rmax such that a fraction p of the sampled
points resides within this radius. In Appendix A we show that

rmax =
√

2σ2Γ−1
(n

2
, (1 − p)Γ

(n

2

))
, (5)

Alternatively, we can start with a predefined radius rmax that defines the region
that we would like to explain using a Gaussian distance kernel. This yields a
σ2 such that a fraction p ∈ (0, 1) of the sampled points resides within, i.e.,
σ2 = r2

max

2Γ−1
(

n
2 ,(1−p)Γ

(
n
2

)) .

Using a truncated Gaussian distance kernel with these parameters enables
us to generate samples that are distributed very closely to how samples in LIME
are weighted, which enables us to fairly compare both techniques. An example
of sampling using this distance kernel is shown in Fig. 3b.

5 Evaluation

In this section, we first revisit the first synthetic evaluation example introduced
in Sect. 3. Next, to use a more realistic scenario, we compare LEMON and LIME
on standardized UCI datasets and a variety of models. Source code for our exper-
iments can be found here: https://github.com/iamDecode/lemon-evaluation.

5.1 Synthetic Scenario

In Sect. 3 we showed that the faithfulness of LIME is impaired for models trained
on higher dimensional data (Fig. 2). We repeat this experiment with our LEMON
sampling technique. We chose a truncated Gaussian kernel with the same σ as
LIME, and an rmax computed using Eq. (5) with p = 0.999. This ensures we

https://github.com/iamDecode/lemon-evaluation
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Fig. 4. The same evaluation as performed on LIME shown in Fig. 2. (a,b) LEMON
(5000 samples) remains faithful when explaining high dimensional models. Different
lines represent different kernel widths σ. (c) the coefficients of the generated linear
surrogate model (yellow) closely resemble the expected coefficients (blue). (Color figure
online)

generate samples that are distributed very closely to how samples in LIME are
weighted, such that we can fairly compare both techniques.

The results are shown in Fig. 4. In contrast to the results for LIME (Fig. 2),
LEMON remains faithful to the reference model regardless of the dimensional-
ity of the model. This is because more relevant samples are generated in the
neighborhood of the point to be explained even in high dimensions. With more
samples, the linear model is able to approximate the behavior of the reference
model better than LIME. For a 15-dimensional box model, Fig. 4c shows the
expected coefficients (blue) and coefficients of the linear surrogate from LEMON
(green) are very close, as opposed to the coefficients of LIME shown in Fig. 2c.
In addition, the results show smaller vertical fluctuations compared to LIME,
indicating that the robustness of explanations from LEMON is affected less by
variation in the transfer data.

5.2 Real-World Datasets

We used the Wine and Breast Cancer Wisconsin dataset from the UCI repository,
and Diabetes dataset [13] which are ubiquitous in machine learning research. The
datasets have a dimensionality of 13, 32, and 9 respectively, and contain only
continuous features. For the reference models to be explained, we chose a Naive
Bayes classifier, a Neural network with three layers of 100 neurons each, and
a Random forest with 200 trees. As the kernel width may have a considerable
impact on the explanation, we chose a wide range of kernel width parameter
values σ = 0.1, 0.3, 0.5, 1.0, 4.0 and 3

4

√
n. The latter is the default kernel width

used in LIME, but is so large (> 1) that it can hardly be considered local. Next,
we computed rmax for LEMON using Eq. (5) with p = 0.999.

To evaluate, it is not possible to directly compare the resulting surrogate
model against a perfect surrogate model like we did for our synthetic scenario
evaluation, because a perfect surrogate model for these classifiers is not known.
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Instead, we chose to compute the Root Mean Square Error (RMSE ) based on
newly sampled evaluation data in the neighborhood of the point to be explained.
For each data point, we generated m = 50, 000 new samples in the area within
radius rmax using Eq. (3) and an equivalent distance kernel to the ones used in
LIME and LEMON. Next, we recorded the RMSE between the predicted score
of the reference ŷr and surrogate model ŷs for all m samples:

RMSE (ŷr, ŷs) =

√√
√
√ 1

m

m∑

i=1

(ŷr
i − ŷs

i )2. (6)

Note that due to the simple nature of the linear surrogate and complexity of the
reference classifier, a perfect RMSE = 0 is implausible [15]. However, the metric
does enable us to compare the relative faithfulness between LIME and LEMON.
In Table 1 we show the mean RMSE scores over all data points in the dataset.

Table 1. Average faithfulness scores (RMSE on 50,000 samples, lower is better) of
explanations generated for all instances in each of the 3 datasets, classified by 3 different
ML models (Naive Bayes, Neural network and Random forest), using 6 different kernel
width values. LEMON consistently achieves higher faithfulness compared to LIME.

Kernel Naive Bayes Neural network Random forest

width (σ) LIME LEMON LIME LEMON LIME LEMON

Wine dataset 0.1 0.009 0.003 0.036 0.007 0.041 0.018

(n = 13) 0.3 0.044 0.026 0.147 0.079 0.118 0.051

0.5 0.103 0.071 0.283 0.143 0.186 0.082

1.0 0.258 0.224 0.273 0.247 0.156 0.120
3
4

√
n 0.652 0.303 0.543 0.271 0.376 0.124

4.0 0.848 0.282 0.827 0.307 0.545 0.120

Diabetes dataset 0.1 0.018 0.016 0.017 0.015 0.072 0.036

(n = 9) 0.3 0.057 0.031 0.051 0.026 0.141 0.053

0.5 0.079 0.045 0.073 0.032 0.112 0.064

1.0 0.120 0.110 0.068 0.063 0.104 0.088
3
4

√
n 0.387 0.257 0.239 0.146 0.247 0.100

4.0 0.686 0.349 0.452 0.192 0.419 0.096

Breast cancer dataset 0.1 0.011 0.006 0.222 0.102 0.038 0.015

(n = 32) 0.3 0.052 0.030 0.401 0.208 0.103 0.038

0.5 0.151 0.104 0.458 0.229 0.171 0.057

1.0 0.490 0.263 0.585 0.312 0.265 0.072
3
4

√
n 0.512 0.001 0.781 0.331 0.367 0.065

4.0 0.504 0.002 1.162 0.305 0.358 0.065
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These results show LEMON manages to consistently improve the faithfulness
of the local surrogate model compared to LIME. This holds for each dataset,
model and kernel width combination we have tested. On average, LEMON
achieves 50.8% less RMSE compared to LIME. Next, we see that explana-
tions generated with smaller kernel width tend to have a smaller RMSE. This is
expected, because smaller regions naturally contain less intricate decision bound-
aries from the reference model, and smaller output gradients (e.g., the further
we zoom in on a model, the better a linear model will fit its gradient).

There are a few exceptions, most notably the Naive Bayes classifier trained
on the Breast cancer dataset. Here, the LEMON explanations get lower RMSE
scores for very large kernel width values (> 1). While a smaller kernel width
yields a faithful local surrogate, for larger kernel widths a linear surrogate may
not be able to capture the complex behavior of the reference classifier. But if
we increase the kernel width beyond the bounds of the original feature space
(approximately σ > 1) the evaluation data points become out-of-distribution. In
our example, the mean Euclidean distance of all Breast cancer training data to
a point to be explained is 491.76, the mean Euclidean distance of all evaluation
data with σ = 1 is 586.91 and σ = 3

4

√
n is 2409.37. The latter is almost five times

larger than the training data. Hence, most predictions for evaluation data points
are out-of-distribution model predictions, which yields unexpected results.

These (unrealistically) large kernel widths cause LIME to produce RSME
scores exceeding 1 for certain dataset and model combinations (e.g., Neural
network for the Breast cancer dataset). Smaller kernel width values should be
chosen to ensure that LIME explanations remain faithful to the reference model.

The RMSE scores vary per dataset and per model, because both affect how
much difference in predicted score (i.e., gradient) can be expected within the
sampling region. For instance, in Naive Bayes models the predicted score changes
smoothly for changes in the feature value. Hence, this model can be closely
approximated with a linear model (especially for small kernel width values).
The other two models are more complex, and hence cannot always be accurately
approximated with a linear model (especially for larger kernel width values).

6 Discussion and Future Work

The LIME explanation framework includes an optional preceding feature selec-
tion step (using LASSO). One could argue that feature selection ahead of the
explanation technique decreases the dimensionality, enabling LIME to be more
suitable in higher dimensional space than we have shown in Sect. 3. However,
the feature selection algorithm still needs to consider the full feature space in
order to select features, which it cannot properly do without sufficient neigh-
boring samples: it is subject to the same limitations. Hence, in our study we
have disregarded the feature selection step in LIME as it makes evaluation and
comparison more difficult. However, we expect similar results when including
feature selection as part of both compared algorithms.



LEMON: Alternative Sampling for More Faithful Explanations 87

Supporting Observation-Based Sampling. Sampling with either a uniform or
Gaussian distance kernel remains a synthetic approach: new samples are drawn
regardless of the distribution of the original data. Thus, the surrogate model
may be fitted using out-of-distribution data. To address this limitation, we
cannot simply use a custom distance kernel in Eq. (3). The distance kernel
is a kernel function applied to the distance r between a sample xi and the
instance to be explained x, and r does not tell us enough about the loca-
tion of that sample. Instead, we propose to find all original dataset samples{
s ∈ X | √

(x − s)2 < rmax

}
within radius rmax. Next, we approximate the

density of these local samples with kernel density estimation (KDE) and sam-
ple points from the resulting estimated density function. This can be done by
choosing a random point, and offsetting it by randomly drawn value from the
KDE kernel function. This yields an alternative probability distribution on the
ball of radius rmax around x to Eq. (3), but does not change the key idea behind
LEMON.

Kernel Shape. Previous work and this paper assume that a spherical region
around an instance is the best representation of a local neighborhood. However,
some recent rule based techniques effectively use hyperboxes instead [23]. In
addition, sampling towards the closest decision boundary may yield samples
with a more salient gradient. It would be interesting to investigate what the
relevance and effect is of the shape of the sampling region. Next, it would be
interesting to see if we can extend our work to explain multiple instances at once
by sampling from multiple distributions efficiently.

Measuring Faithfulness. We currently evaluated the explanations using faithful-
ness: the more closely the local surrogate model resembles the reference model,
the better. However, there is no consensus on the best way to measure this.
LIME itself calculates faithfulness based on the transfer data points the surro-
gate itself was trained on. This is problematic because, as we have shown in
Sect. 3, LIME produces only few relevant samples in the neighborhood of the
point to be explained. Hence, the surrogate model would be evaluated using
few relevant samples, leading to misleading faithfulness scores. In our synthetic
examples, we could circumvent this as the most optimal set of coefficients was
known, and hence we use the cosine similarity between the most optimal coef-
ficients and those from the local surrogate. However, in a realistic scenario, the
most optimal coefficients are simply not known. For evaluating with real datasets
(Sect. 5.2), we thus decided to use the RMSE between the reference and surro-
gate model, computed on many (50,000) newly generated samples instead of the
original transfer data.

As an alternative, we have considered the coefficient of determination (R2)
as a metric for faithfulness. This metric is used internally in LIME, and shows
the proportion of the variance in the response variable of a regressor that can be
explained by the predictor variables. However, we noted that for some (outlier)
data points in our evaluation, almost all sampled data points get roughly the
same predicted outcome from the reference classifier. In such case, the variance
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of the predicted outcomes is (very close to) 0. Computing the R2 score with this
data yields R2 values of (close to) minus infinity, severely skewing the results.

Finally, faithfulness in itself does not guarantee the best possible explana-
tion. There are many (often subjective) desiderata to consider when evaluating
explanations, which are almost impossible to formalize due to their subjective
nature. Hence, we do not claim to find an optimal explanation, just one closer
to the behavior of the original model.

7 Conclusion

In this work, we explore alternative sampling techniques in pursuit of more
faithful and robust explanations. To this end, we present LEMON: a sampling
technique that outperforms current state-of-the-art techniques by sampling sur-
rogate transfer data directly from the desired distribution instead of reweighting
globally sampled transfer data. With both a synthetic evaluation, and evaluation
with real-world datasets, we show that our sampling technique outperforms the
state-of-the-art approaches in terms of faithfulness, measured in cosine similarity
to the most optimal surrogate model, and RMSE error between reference and
surrogate model predictions respectively.

Acknowledgments. This work is part of the TEPAIV research project with project
number 612.001.752, the NWO research project with project number 613.009.122, and
the research programme Commit2Data, specifically the RATE Analytics project with
project number 628.003.001, which are all financed by the Dutch Research Council
(NWO).

A Bounds on Gaussian Distance Kernel

Consider a point x and, for some σ > 0, equip every point at distance r from x
with a weight given by the kernel

K(r) := exp
( − r2/(2σ2)

)
. (7)

We would like to find the radius of interest rp such that the total weight of the
points within distance rp is at least a fraction p of the total weight. Since the
surface of an n-dimensional ball is given by cnrd−1 for some dimension-dependent
constant cn > 0, we have to find the smallest rp that satisfies the inequality

∫ rp

0
cnrn−1K(r)dr

∫ ∞
0

cnrn−1K(r)dr
≥ p ⇔

∫ rp

0

rn−1K(r)dr ≥ p

∫ ∞

0

rn−1K(r)dr. (8)

Rewriting the integrals,

(1 − p)
∫ ∞

0

rn−1K(r)dr& ≥
∫ ∞

rp

rn−1K(r)dr. (9)
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Let Γ (z, s) :=
∫ ∞

s
tz−1 exp(−t)dt denote the incomplete gamma function and

define the gamma function as Γ (z) :=Γ (z, 0). Recall (7), so that the change of
variables t = r2/(2σ2) to both integrals in Eq. (9) yields

(1 − p)
�����1
2
(2σ2)

n
2 Γ

(n

2

)
& ≥

�����1
2
(2σ2)

n
2 Γ

(n

2
,

r2p
2σ2

)
(10)

Writing u �→ Γ−1(n
2 , u), we have to find the smallest rp such that

Γ (−1)
(n

2
, (1 − p)Γ

(n

2

))
≤ r2p

2σ2
, (11)

which is given by choosing

rp =
√

2σ2Γ (−1)
(n

2
, (1 − p)Γ

(n

2

))
⇔ σ2 =

r2p

2Γ (−1)
(

n
2 , (1 − p)Γ

(
n
2

)) .
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Abstract. Concerns with the interpretability of ML models are growing
as the technology is used in increasingly sensitive domains (e.g., health
and public administration). Synthetic data can be used to understand
models better, for instance, if the examples are generated close to the
frontier between classes. However, data augmentation techniques, such as
Generative Adversarial Networks (GAN), have been mostly used to gen-
erate training data that leads to better models. We propose a variation of
GANs that, given a model, generates realistic data that is classified with
low confidence by a given classifier. The generated examples can be used
in order to gain insights on the frontier between classes. We empirically
evaluate our approach on two well-known image classification benchmark
datasets, MNIST and Fashion MNIST. Results show that the approach
is able to generate images that are closer to the frontier when compared
to the original ones, but still realistic. Manual inspection confirms that
some of those images are confusing even for humans.

Keywords: Global interpretability · Synthetic data · Generative
adversarial networks · Responsible artificial intelligence

1 Introduction

As machine learning (ML) and artificial intelligence (AI) becomes widespread,
techniques that enable their responsible usage are paramount, leading to a pro-
liferation of the field known as responsible AI [2]. An example of these techniques
are model cards [13]—a report documenting an ML model with information rel-
evant to the user, such as the intended use case and evaluation metrics across
different conditions.

As such, we believe information about the characteristics of data where the
model is uncertain about its predictions should feature in model cards. For that
purpose, we propose the generation of synthetic data that, while realistic, is
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classified with low confidence by a given classifier. We address it with an approach
based on generative adversarial networks (GANs) [7]. In GANs, a generator
learns to sample realistic data by learning to fool a discriminator that is trained
to distinguish real from fake samples. We employ the target classifier in the
training process, using a measure of how far the generated data is to the frontier
between the classes as an additional term for the generator’s loss function. By
identifying and analyzing examples that are in the frontier between classes, we
hope to get a better understanding of the classifier. The proposed task has
resemblances to generating adversarial attacks [9,18], i.e., generating samples
that are misclassified by a target classifier. However, our differs in two ways:
firstly, we are looking for data that is classified with low confidence, instead of
data that is misclassified; secondly, our aim is to generate data that can be useful
to understand the model’s behavior.

Since the most prominent success cases of GANs are in computer vision
(CV), we empirically study the proposed approach on image classification using
two popular benchmark datasets: MNIST [11] and Fashion MNIST [22]. Modern
image classifiers are based on deep learning (DL), consisting of neural networks
with convolutions as the fundamental building block. We apply our methodology
to convolution neural network (CNN) based classifiers trained to have different
predictive performances.

The contributions of this work are as follows:

1. A new approach for model interpretability that consists of generating data
at the frontier between classes (i.e., realistic data that is classified with low
confidence by the model).

2. A variant of GANs that implements that approach, dubbed GASTeN.
3. An empirical validation of GASTeN.

2 Background and Related Work

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) [7] are a class of deep generative models
that have been applied successfully to image generation tasks. The GAN frame-
work is a two-player game between two neural networks, a generator (G) and a
discriminator (D). The generator is a transformation that maps samples from
a noise distribution z ∼ pz to images that match the original data distribution
pd. The discriminator’s role is to distinguish between real (x ∼ pd) and fake
(x̂ = G(z)) samples, while the generator tries to fool it into classifying fake sam-
ples as real. Both networks are trained simultaneously. D is trained to maximize
the probability of correctly distinguishing samples, and G to minimize that same
probability. The original GAN formulation [7] is a minimax game described by
the following equation:

min
G

max
D

[Ex∼pd
[log(D(xreal))] + Ez∼pz

[log(1 − D(G(z)))]]
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Training GANs effectively presents some obstacles. An example of a chal-
lenge is that, as two neural networks are being updated simultaneously, it is
not guaranteed that an equilibrium is reached and training does not converge.
Another common scenario of GAN training failing is mode collapse [8], which
occurs when G is not able to generate diverse images and maps different z values
to the same output image.

Variants. To overcome challenges posed by GAN training, several variants have
been proposed. The Deep Convolutional GAN (DCGAN) [15] introduces tech-
niques and architectural guidelines that improve GAN training, such as using
transposed convolutions in the generator and convolutions in the discriminator.
Other variants, such as the Wasserstein GAN (WGAN) [1], introduce modifica-
tions to the loss functions used to train the networks. Variants that enable the
conditional generation of samples have also been proposed [12,14].

Quantitative Evaluation. Another challenge of GANs is quantitatively eval-
uating the quality of the generated samples. The two most commonly used met-
rics in the literature are the Inception Score (IS) [16] and the Frechét Inception
Distance (FID) [10]. Both metrics leverage an Inception image classifier pre-
trained on the ImageNet dataset [5]. The IS attributes the score based on two
desired properties. Firstly, the quality of an image is reflected by how confidently
the Inception network can classify it. Additionally, the set of generated images
should be equally distributed across classes. The FID uses the Inception net-
work to obtain embedded representations of the images. The Frechét Distance
between the distribution of the representations of images in the original dataset
and in the generated images is computed to obtain a measure of how realistic
the generated images are. Compared to IS, FID is more sensitive to noise and
able to detect scenarios where the same image is always generated for the same
class [10]. However, it still has some drawbacks. For instance, as it relies on an
Inception network pre-trained on the ImageNet dataset, it may fail to capture
relevant features of images from datasets with different characteristics.

2.2 Adversarial Attacks

ML models have been found to be susceptible to adversarial attacks [9,18], i.e.,
examples constructed to deceive the models. While our goal is to find examples
that are classified with low confidence rather than misclassified, there are resem-
blances in both objectives, particularly in that both target a specific classifier.

The first approaches for generating adversarial attacks are perturbation-
based, i.e., consist of applying small perturbations to an image to produce
an adversarial example that is misclassified by a target classifier [4,9,18]. The
assumption that the adversarial example is a sample of the original class stems
from the applied perturbation being small enough. Another class of attacks—
unrestricted adversarial attacks [3]—lets go of the small perturbation constraint,
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and instead generates images from scratch. Approaches for generating unre-
stricted adversarial attacks using GANs have been proposed [6,17,19,20]. GANs
have also been used to generate perturbation-based adversarial attacks [21,23].

3 GANs for Stress Testing

Our goal is to generate realistic data that is useful to understand classifiers and
gain insights into their behavior. For that, we are interested in generating data
that is close to the frontier between classes. To achieve that, we propose a GAN
variation which we dub Generative Adversarial Stress Test Network (GASTeN).
We use the GAN framework as the foundation to generate realistic images, and
extend it with the target classifier (C). The classifier’s output on the generated
images is used as part of a new optimization objective for the generator. Our
approach is similar to the technique for producing adversarial attacks proposed
by Dunn et al. [6]. Both use the classifier’s output to compute a new term of
the function that the generator optimizes. However, the new term is combined
with the generator loss of the original GAN differently. Figure 1 depicts the
architecture of GASTeN.

real/
fake

Generator loss

Fig. 1. Schematic overview of GASTeN.

The modifications introduced by GASTeN, not present in the classical GAN
formulation, are the following:

Classifier (C): the classifier we wish to evaluate is introduced in the training
loop. Its weights are not optimized and it is used only to classify the synthe-
sized images G(z). The outputs C(G(z)) are then used in the generator’s loss
function to guide its training. The usage of C(G(z)) to optimize G imposes
the constraint that the classifier must be fully differentiable so that backprop-
agation can be applied. Thus, GASTeN is suitable for neural network-based
classifiers, but not for some ML approaches that are non-differentiable.
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Generator loss function: in addition to training G to deceive D, we introduce
a new objective to the loss function of the generator. This term measures how
far the generated images are from being classified as desired, and is a function
of C(G(z)), which we dub confusion distance (cd). We factor the new term
by a hyperparameter α and add it to the original generator loss function,
resulting in Eq. 1. The hyperparameter α is a real-valued positive number.

LGASTeN
G = LGAN

G + α · cd(C(G(z))) (1)

Since G’s loss function is merely extended, GASTeN can, in theory, be used
with any GAN variant as the base. As the role of D remains to distinguish
between real and fake samples, no modification is introduced to its loss func-
tion.

Confusion distance: the confusion distance (cd) is a function of C’s output.
We focus on a binary classification setting in order to enable a better analysis
of our algorithm’s behavior. Thus, the output of C is a scalar between 0 and
1. A suitable confusion distance measures the distance from the classifier’s
prediction to the decision threshold. For a threshold of 0.5, the confusion dis-
tance results in |C(G(z)) − 0.5|. Despite focusing on non-conditional image
generation and binary classification in this work, the algorithm is not tightly
coupled to the proposed cd function. Different functions can be used to tackle
other scenarios and objectives. For instance, the confusion distance could be
inverted to look for images where the classifier has total confidence. Ulti-
mately, GASTeN can be seen as a broad framework to generate images with
properties that can be specified as a differentiable function.

In order to assess if it is more effective to adapt a generator that is already
capable of generating realistic images than to train a generator from scratch
using the modified loss function, we introduce a pre-train phase for GASTeN.
The training process employed is now a two-step process. The first step consists
of pre-training the chosen GAN architecture to learn a generator (Goriginal)
that creates realistic images. In the second step, the classifier C is added to
the process, and the generator Goriginal and discriminator Doriginal are further
trained using the GASTeN loss function.

Since GASTeN uses a GAN architecture as its basis for image generation,
using GASTeN requires the same careful selection of hyperparameters that is
required when training GANs. Subtleties related to GAN training, such as dif-
ficulty to converge, also affect GASTeN. Additionally, GASTeN introduces two
more hyperparameters, the weight α and the number of pre-train epochs.

4 Experimental Setup

4.1 Model Architectures

The used GAN follows the DCGAN [15] architecture, with the non-saturating
GAN loss proposed by Goodfellow et al. [7]. Optimizer and training hyperpa-
rameters are set according to the original DCGAN work [15].
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For classification, we use a CNN-based architecture. The architecture consists
of two convolutional blocks but, despite its simplicity, can achieve low errors in
the used datasets. Importantly, the classifiers are constructed using operations
that are typical in DL-based image classifiers, such as convolutions and pooling.
Each block contains a convolution and a max pooling operation. The first block
uses nf number of filters in the convolutions, and the second uses 2 · nf blocks.
We vary nf in order to achieve classifiers with varying error rates, and thus study
the behavior of our approach depending on the classifier quality. Classifiers with
smaller nf values have less capacity.

4.2 Evaluation Metrics

To facilitate the analysis of the results obtained in the experiments, we use quan-
titative metrics for the two objectives that we aim to optimize, image quality
and classifier confusion. To measure the quality of the generated samples, we
resort to the FID. To evaluate the generator’s ability to generate images that
are classified with lower confidence by C, we measure the average value of the
confusion distance. Henceforth, we refer to this metric as average confusion dis-
tance (ACD).

Additionally, we manually inspect generated samples by means of a visual-
ization that includes information regarding the performance of C in the gener-
ated images. The used figure displays several examples in a manner that resem-
bles a histogram. The visualization consists of ten groups of three columns,
where the group in position i group contains images x such that C(x) ∈
[(i − 1) ∗ 0.1, i ∗ 0.1[. The last group, in position 10, contains images such that
C(x) ∈ [0.9, 1].

4.3 Experiments

In order to test our approach, we perform experiments with two commonly
used datasets in the CV literature: the MNIST [11] and the Fashion MNIST [22]
datasets. As we are interested in binary classification problems, we derive binary
subsets of the original datasets by selecting all images that belong to two classes.

Besides studying the behavior of our proposal against classifiers with different
performances, we are interested in exploring the algorithm with different values
for the hyperparameters. For α, we use values between 0 and 30 with an interval
of 5. Using the value 0 allows direct comparison to the scenario where a regular
GAN without a modified loss is trained. For the number of pre-train epochs we
use values 0, 2, 5, and 1. All combinations of the mentioned hyperparameters
are tested for each classifier. The source code for the experiments is available on
GitHub1.

1 https://github.com/luispcunha/gasten.

https://github.com/luispcunha/gasten
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5 Results and Discussion

5.1 Overview

We perform three runs of a fixed number of epochs for each combination of
hyperparameters and classifier with different seed initializations. We analyze the
algorithm by considering its performance after every epoch of the runs. Table 1
shows, for each classifier, the best FID such that, for the same G, ACD is less
or equal to a given threshold. The thresholds used range from 0.5 to 0.1. Note
that setting the threshold to 0.5 effectively removes the constraint since that is
the maximum ACD value. So, the FID value in the column that refers to that
threshold is the best FID achieved for the given dataset.

Table 1. Best FID obtained by a generator that has an ACD less or equal to a
given threshold (values between 0.5 and 0.1 in the table header) for all datasets and
classifiers. Results averaged over three runs. Bold entries highlight cases where the
FID stays within a 100% increase for an ACD threshold smaller than the one obtained
without modifications to the original GAN architecture.

Dataset C.nf 0.5 0.4 0.3 0.2 0.1

M
N
IS

T

7 v. 1

1 8.53± 0.12 11.9 ± 0.79 78.5± 17. 78.5± 17. 106.± 20.

2 8.68± 0.11 40.0± 4.2 101.± 14. 103.± 16. 127.± 27.

4 8.40± 0.084 88.6± 0.69 88.6± 0.69 111.± 15. 123.± 3.4

8 v. 0

1 7.37± 0.47 7.37± 0.47 7.37± 0.47 8.89± 0.35 74.6± 28.

2 7.50± 0.53 9.63± 0.66 53.1± 3.7 53.1± 3.7 136.± 17.

4 7.44± 0.48 16.6± 3.0 41.2± 3.0 41.2± 3.0 97.2± 51.

5 v. 3

1 6.68± 0.098 6.68± 0.098 6.68± 0.098 8.10± 0.36 26.1± 8.7

2 6.63± 0.15 6.63± 0.15 9.24± 0.19 20.8± 0.90 136.± 7.2

4 6.69± 0.14 6.70± 0.13 18.0± 2.1 25.8± 1.4 136.± 5.7

9 v. 4

1 7.49± 0.036 7.49± 0.036 7.49± 0.036 7.78± 0.31 20.0± 0.65

2 7.37± 0.38 7.37± 0.38 8.12± 0.36 26.7± 3.4 123.± 14.

4 7.38± 0.12 7.80± 0.56 22.9± 1.1 30.9± 0.84 163.± 10.

F
M

N
IS

T

Dress
v.

T-shirt/top

4 15.2± 0.23 15.9± 0.38 49.0± 7.3 60.8± 4.1 128.± 4.7

8 15.3± 0.085 16.0± 0.57 46.3± 4.7 66.8± 5.2 117.± 7.5

16 15.4± 0.075 17.0± 0.40 52.2± 1.7 64.5± 12. 133.± 2.3

Sneaker
v.

Sandal

4 16.2± 0.28 17.4± 0.95 56.9± 5.5 70.6± 5.6 155.± 13.

8 16.2± 0.28 19.6± 1.3 65.4± 7.9 113.± 9.2 153.± 13.

16 16.3± 0.22 21.9± 0.35 59.6± 2.3 129.± 7.3 159.± 19.

From Table 1, we note that confusing higher capacity classifiers requires
images that are more distant from the original data distribution, thus, with
higher FID values. There are, however, cases where we obtain higher FIDs when
targetting worse classifiers. Examples of such exceptions are MNIST-8v0 with a
threshold equal to or less than 0.3 and MNIST-7v1 with a threshold of 0.3 and
0.1.
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The results also show that reducing ACD will inevitably lead to high FID
values. Setting the threshold to 0.1, FID stays at values lower than 30 only for the
MNIST-9v4 and MNIST-7v3 cases. That, however, happens only for the worst
considered classifiers. Thus, it seems unlikely that it is always possible to obtain
a G that almost always confuses the target classifier by generating images that,
according to the FID measure, are realistic. Despite not achieving arbitrarily low
ACD values while maintaining a satisfactory FID, there are cases where there
is some decrease in ACD compared to the images generated without a modified
G loss function. When compared to the same GAN architecture trained without
the GASTeN modifications, there are cases where FID values stay within a 100%
increase for an ACD threshold smaller than the ACD obtained without GASTeN
modifications. Those cases are highlighted in bold in Table 1.

5.2 Visual Inspection

In addition to quantitatively evaluating our approach, we manually inspect gen-
erated images. Figure 2 shows samples obtained for digits 5 and 3. Some digits
do not appear realistic, such as those highlighted by a red square with a dashed
border. The examples highlighted in green (with a solid line square) are exam-
ples of digits that look plausible. The lower half of the digit looks like it could
belong to either a 5 or a 3. However, the upper dash is not connected to the bot-
tom part, making the image ambiguous (the digit could be either a three or five
depending if the connecting stroke was drawn on the right or left, respectively).
We argue that such examples could prove helpful in analyzing the classifier.

0 0.5 1

Fig. 2. Example of samples generated for the dataset consisting of digits 5 and 3.

Figure 3 depicts samples for digits 9 and 4. In this case, the goal of generating
images that are closer to the border is achieved. Out of the 200 samples, none
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is classified between 0 and 0.1, and only one is classified between 0.9 and 1.
Most generated images are classified between 0.5 and 0.6. Of the images that
are confusing to the classifier, some are unrealistic and have noise-like marks
disconnected from the actual digit (as the examples highlighted in a dashed red
square). Others have characteristics that make them confusing, even for humans.
The examples highlighted in green look like unfinished 9 s, i.e., 9 s with the upper
part disconnected, similar to hand-drawn 4 s.

0 0.5 1

Fig. 3. Example of samples generated for the dataset consisting of digits 9 and 4.

5.3 Training Challenges

Despite being capable of achieving our goal, GASTeN exhibits erratic behavior
during training against a classifier for digits 7 and 1. Figure 4 presents the evolu-
tion of the FID and ACD metrics during training. Unsurprisingly, the choice of α
influences the algorithm’s behavior. However, it does not allow for a fine-grained
specification of the trade-off between image quality and classifier confusion. The
influence for α values lower than 25 is subtle and is more noticeable for α = 30.
With α = 30, the generator can confuse C by sacrificing the image’s realness (the
FID increases vastly), which is not aligned with our objectives. The algorithm
behaves similarly among lower values of α: G ends up not being able to fool C,
and the FID keeps improving, which means that the loss term responsible for
image realness ends up dominating the other. For higher α values, such as 30,
training frequently oscillates and does not converge. While during this oscilla-
tion interesting trade-offs can be achieved, as those reported previously, training
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does not converge to those trade-offs. This observation is in accordance with
Dunn et al. [6], which point that the gradients for the realistic data objective
and adversarial data objective may be conflicting. Similarly, the confusing data
objective may conflict with the realistic data objective.

Fig. 4. Metric evolution during GASTeN runs for different α weight parameters with
10 epochs of pre-train. Plotted values are the median over three runs, and the shadowed
area ranges from the minimum and maximum values obtained.

5.4 Threats to Validity

We identify some limitations that may hinder the conclusions drawn from the
empirical study of GASTeN. Due to time constraints, the number of hyperpa-
rameter combinations tested may not fully represent the behavior of GASTeN.
Regarding the evaluation methodology, as mentioned in Sect. 2.1, the used FID
metric has some limitations which can affect drawing conclusions from the quan-
titative evaluation. We tackle this limitation by inspecting the generated images.
Despite that, visual inspection of images performed by us could be biased, and
our evaluation could benefit from a human study to evaluate if the images gen-
erated by our approach are realistic and confusing.

6 Conclusions and Future Work

We propose the task of generating data that is realistic and lies in the frontier
between classes for a given classifier, and a GAN-based approach for generat-
ing said data. Via an empirical study on the binary classification scenario using
popular benchmark CV datasets, MNIST and Fashion MNIST, we demonstrate
scenarios where GASTeN achieves our goal. Additionally, by visually inspect-
ing generated samples, we show that GASTeN can synthesize images that look



GASTeN: Generative Adversarial Stress Test Networks 101

both plausible and ambiguous, even for humans. We also discuss the limitations
and challenges of our approach. GASTeN is not always able to generate confus-
ing data with satisfactory FIDs. Also, training frequently fails to converge or
converges with the loss term related to data realism dominating the other.

For future work, we intend tackling the limitations of our proposal, for
instance, by incorporating techniques from the approaches present in the adver-
sarial attack literature. We also intend to scale the experiments to different
GAN architectures, more complex datasets, different classifiers, the multi-class
classification scenario, and different data types. Additionally, studying how to
use the generated data for understanding the classifiers and contribute to model
cards creation is required. Several directions can be pursued, such as using inter-
pretability techniques.
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Abstract. Concept learning deals with learning description logic con-
cepts from a background knowledge and input examples. The goal is
to learn a concept that covers all positive examples, while not covering
any negative examples. This non-trivial task is often formulated as a
search problem within an infinite quasi-ordered concept space. Although
state-of-the-art models have been successfully applied to tackle this prob-
lem, their large-scale applications have been severely hindered due to
their excessive exploration incurring impractical runtimes. Here, we pro-
pose a remedy for this limitation. We reformulate the learning problem
as a multi-label classification problem and propose a neural embedding
model (NERO) that learns permutation-invariant embeddings for sets of
examples tailored towards predicting F1 scores of pre-selected description
logic concepts. By ranking such concepts in descending order of predicted
scores, a possible goal concept can be detected within few retrieval opera-
tions, i.e., no excessive exploration. Importantly, top-ranked concepts can
be used to start the search procedure of state-of-the-art symbolic models
in multiple advantageous regions of a concept space, rather than start-
ing it in the most general concept �. Our experiments on 5 benchmark
datasets with 770 learning problems firmly suggest that NERO signifi-
cantly (p-value < 1%) outperforms the state-of-the-art models in terms
of F1 score, the number of explored concepts, and the total runtime. We
provide an open-source implementation of our approach (https://github.
com/dice-group/Nero).

Keywords: Description Logics · Concept Learning · Permutation
Invariance

1 Introduction

Deep learning based models have been effectively applied to tackle various graph-
related problems, including question answering, link prediction [19,30]. Yet, their
predictions are not human-interpretable and confined within a fixed set vocabu-
lary terms [9,11]. In contrast, Description Logics (DLs) provide means to derive
human-interpretable inference in an infinite setting [1,16,27]. Deriving explana-
tions for DLs concepts has been long understood [5]. For instance, explanations
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 103–115, 2023.
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can be derived by using the subsumption hierarchy as a sequence of binary clas-
sifiers in a fashion akin to following a path in decision tree [4,35]. Utilizing DLs is
considered as a possible backbone for explainable Artificial Intelligence (AI) [33].
Although DLs have become standard techniques to formalize Knowledge Base
(KB) [19,20,29], the highly incomplete nature of KBs and impractical runtimes
of symbolic models have been a challenge for fulfilling its potential. State-of-the-
art Concept Learning (CL) models have been successfully applied to learn DL
concepts from a KB and input examples [24,27]. Yet, their practical applica-
tions have been severely hindered by their impractical runtimes. This limitation
stems from the reliance of myopic heuristic function that often incurs excessive
exploration of concepts [16,22,35]. A DL concept is explored by retrieving its
individuals and calculating its quality w.r.t. input KB and examples (see Sect. 2).
As the size of an input KB grows, excessive exploration has been a computa-
tional bottleneck in practical applications. Here, we propose a remedy for this
limitation. We reformulate the learning problem as a multi-label classification
problem and propose NeRo–a neural permutation-invariant embedding model.
Given a set of positive examples E+ and a set of negative examples E−, NeRo
predicts F1 scores of pre-selected DL concepts as shown in Fig. 1.

Fig. 1. Visualization of NeRo. Boxes and values denote the pre-selected unique DL
concepts and their predicted F1 scores, respectively.
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By ranking pre-selected DL concepts in descending order of predicted scores,
a goal concept can be found by only exploring few top-ranked concepts. Impor-
tantly, top-ranked concepts can be used to initialize the standard search pro-
cedure of state-of-the-art models, if a goal concept is not found. By this, a
state-of-the-art CL model is endowed with the capability of starting the search
in more advantageous states, instead of starting it in the most general concept �.
Our experiments on 5 benchmark datasets with 770 learning problems indicate
that NeRo significantly (p-value < 1%) outperforms the state-of-the-art mod-
els in standard metrics such as F1 score, the number of explored concepts, and
the total runtime. Importantly, equipping NeRo with a state-of-the-art model
(CELOE) further improves F1 scores on benchmark datasets with a low run-
time cost. The results of Wilcoxon signed rank tests confirm that the superior
performance of NeRo is significant. We provide an open-source implementa-
tion of NeRo, including pre-trained models, evaluation scripts as well as a web
service.1

2 Background

Knowledge Base: A Knowledge Base (KB) is a pair K = (Tbox,Abox), where
Tbox is a set of terminological axioms describing relations between named con-
cepts NC [33]. A terminological axiom is in the form of A � B or A ≡ B s.t.
A,B ∈ NC . Abox is a set of assertions describing relationships among individuals
a, b ∈ NI via roles r ∈ NR as well as concept membership relationships between
NI and NC . Every assertion in Abox must in the form of A(x) and r(x, y), where
A ∈ NC , r ∈ NR, and x, y ∈ NI . An example is visualized in Fig. 2.

Fig. 2. A visualization of Family KB with Tbox and a subset of Abox. Colors denote
concept assertions, while (·) and branching from (·) denote role assertions, respectively.
(Color figure online)

1 https://github.com/dice-group/Nero.

https://github.com/dice-group/Nero
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Description Logics: Description Logics (DLs) are fragments of first-order
predicate logic using only unary and binary predicates. The unary predicates,
the binary predicates and constants are called concepts, roles and individuals,
respectively [1]. DL have become standard techniques to formalize background
knowledge for many application domains including Semantic Web [20,29]. Lever-
aging KBs defined over DLs has a potential of being a backbone for explainable
AI [33]. Here, we consider KBs in the DL ALC (Attributive Language with Com-
plements) [1] as in many other works (see Sect. 3). The model-theoretic semantics
of ALC are given in Table 1.
Table 1. ALC syntax and semantics. I stands for an interpretation, ΔI for its domain.

Construct Syntax Semantics

Atomic concept A AI ⊆ ΔI

Role r rI ⊆ ΔI × ΔI

Top concept � ΔI

Bottom concept ⊥ ∅
Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Negation ¬C ΔI \ CI

Existential restriction ∃ r.C {x | ∃ y.(x, y) ∈ rI and y ∈ CI}
Universal restriction ∀ r.C {x | ∀ y.(x, y) ∈ rI implies y ∈ CI}

Concept Learning: Let K over ALC, the set E+ ⊂ NI of positive examples,
and the set E− ⊂ NI of negative examples be given. The DL concept learning
problem is defined as follows

∀p ∈ E+,∀n ∈ E−(
K |= H(p)) ∧ (K 	|= H(n)

)
, (1)

where H ∈ C denotes an ALC concept and C denotes all valid ALC concepts under
the construction rules: C:: = A | ¬C | C 
 C | C � C | ∃r.C | ∀r.C |, where A ∈ NC

and r ∈ NR. K |= H(p) implies that an inference of the class membership H(p)
is a logical consequence of K. Checking whether a H fulfills Eq. (1) is performed
by a retrieval function R : C → 2NI defined under Open World Assumption
(OWA) or Close World Assumption (CWA). This non-trivial learning problem
is often transformed into a search problem within a quasi-ordered ALC concept
space (S,�) [7,13,27,34]. Traversing in S is commonly conducted via a top-down
refinement operator defined as ρ : S → 2S with

∀A ∈ S : ρ(A) ⊆ {B ∈ S | B � A}. (2)

State-of-the-art CL models begin their search towards a H, after a search tree is
initialized with the most general DL concept (�) as a root node. This search tree
is iteratively built by selecting a node containing a quasi-ordered DL concept
with the highest heuristic value and adding its qualifying refinements as its
children into a search tree [27].
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Heuristics: A heuristic function is the key to an efficient search in S towards
a H [26]. The number of explored concepts and runtimes are used as proxy for
the efficiency. Various heuristic functions have been investigated [26,35]. Most
heuristic functions of state-of-the-art models can be considered as myopic func-
tions favoring syntactically short and accurate concepts. Hence, they are prone
to stuck in a local optimum [35]. For instance, the heuristic function of CELOE
is defined as

φCELOE(A, B) = Q(B) + λ ·
[
Q(B) − Q(A)

]
− β · |B|, (3)

where A ∈ S, B ∈ ρ(A). β > λ ≥ 0 and Q(·) denotes a quality function (e.g. F1

score or accuracy). Through Q(·) and | · |, the search is steered based on solely A
and B towards more accurate and syntactically shorter concepts. F1(·) is defined
as

F1(A) =
| E+ ∩ R(A) |

| E+ ∩ R(A) | +0.5(| E− ∩ R(A) | + | E+ \ R(A) |) . (4)

As the size of KB grows, runtimes of performing retrieval operations R(·)
increase [3,4,25]. Consequently, traversing in S becomes a computational bot-
tleneck. Therefore, reducing the number of explored concepts plays an impor-
tant role to tackle to tackle CL on KBs. Although state-of-the-art models (e.g.
CELOE) apply redundancy elimination and expression simplification rules to
reduce the number of explored concepts, impractical long runtimes of state-of-
the-art models still prohibit large-scale applications [17]. Moreover, the selected
assumption underlying R() also plays a role to tackle CL on large KBs. Due
to the incomplete nature of KBs, OWA seems to be a more suitable assump-
tion [31]. Yet, Using OWA often makes membership queries computationally
more challenging [12,26]. Consequently, CWA is often adopted in many recent
works [16,22,34].

3 Related Work

A plethora of works have investigated learning DLs concepts from a KB and
input examples. We refer to [1,18,23] for an introduction. Most symbolic systems
differ in the usage of heuristic functions and the design of the refinement opera-
tors [2,7,12,14,21,26,27,34]. DL-Learner [24] is regarded as the most mature and
recent system for CL [32]. DL-Learner consists of several state-of-the-art models,
including ELTL, OCEL, and CELOE. ELTL is based on a refinement operator for
the DL EL and uses a heuristic function that favors syntactically short concepts.
CELOE builds on OCEL and ELTL and it applies a more sophisticated heuristic
function. CELOE is currently the best CL model available within DL-Learner
and often outperforms many state-of-the-art models including OCEL and ELTL
in terms of the quality of learned expression, number explored concepts, and
runtimes [28,35]. The aforementioned approaches apply redundancy elimination
and expression simplification rules to reduce the number of explored concepts.
Although applying redundancy elimination and expression simplification rules
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often reduce the number of explored concepts, these operations introduces more
computation and long runtimes still prohibit large-scale applications [17]. Most
recent works have focused on treating the impractical runtimes in CL. CLIP [22]
is a neural approach that serves as an addition to refinement-based approaches
and supports pruning the search space by predicting the length of a possible
goal state. EvoLearner [16] represents a concept as an abstract syntax tree cor-
responding an individual of an evolutionary algorithm. The initial population
of individuals is obtained via biased random walks originating from E+. West-
phal et al. [35] design a Simulated Annealing based meta-heuristic to balance
the exploration-exploitation trade-off during the search process. In this work, we
mainly evaluate NeRo against CELOE provided in DL-Learner for two reasons:
(1) DL-Learner is regarded as the most mature and recent system for CL [32]
and (2) most recently developed models are often evaluated w.r.t. the quality of
concepts as well as runtimes. Yet, not reporting the number of explored concepts
does not permit us to quantify whether a possible improvement through NeRo
may stem from our novel idea or our efficient implementation. Consequently, in
our experiments, we mainly compare NeRo against CELOE in terms of number
of explored concepts, quality of learned concepts as well as runtimes.

4 Methodology

Motivation: The goal in the CL problem is to find a DL concept H ∈ C
maximizing Eq. (4). Here, we are interested in achieving this goal by learning
permutation-invariant embeddings tailored towards predicting F1 scores of pre-
selected concepts. Through exploring top-ranked concepts at first, we aim to find
a goal concept can only with few retrieval operations. If a goal state is not found
within top-ranked concepts, the search tree of a state-of-the-art CL model can
be initialized with top-ranked concepts and � concept along with corresponding
heuristic values. By this, the standard search procedure can be started in more
advantageous states, than the most general concept �.

Approach: Equation (4) indicates that F1(·) is invariant to the order of indi-
viduals in E+, E−, and R(·). Previously, Zaheer et al. [36] have proven that all
functions being invariant to the order in inputs can be decomposed into

f(x) = φ
( ∑

x∈x

ψ(x)
)
, (5)

where x = {x1, . . . , xm} ∈ 2X and φ(·) and ψ(·) denote a set of input and
two parameterized continuous functions, respectively. A permutation-invariant
neural network defined via Eq. (5) still abides by the universal approximation
theorem [36]. We conjecture that such neural network can learn permutation-
invariant embeddings for sets of individuals (e.g. E+ and E−) tailored towards
predicting F1 scores of pre-selected concepts. Through accurately predicting F1
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scores of pre-selected DL concepts, possible goal concepts from pre-selected con-
cepts can be detected without using F1(·) and R(·). With these considerations,
we define NeRo as follows

NeRo(E+, E−) =σ

(
φ
( ∑

x∈E+

ψ(x)
)

− φ
( ∑

x∈E−
ψ(x)

))
, (6)

where ψ(·) : NI → R
m and φ : R

m → [0, 1]|T | denote an embedding look-
up operation and an affine transformation, respectively. T represents the pre-
selected DL concepts. The result of the translation operation denoted with
z ∈ R

m is normalized via the logistic sigmoid function σ(z) = 1
1+exp(−z) . Hence,

NeRo : 2NI ×2NI �→ [0, 1]|T | can be seen as a mapping from two sets of individ-
uals to |T | unit intervals. NeRo can be seen as a multi-task learning approach
that leverages the similarity between multi-tasks, where a task in our case cor-
responds to accurately predicting the F1 score of a pre-selected DL concept [8].

The importance of learning representations tailored towards related tasks
has been well investigated [8,15]. Motivated by this, we elucidate the process
of selecting DL concepts in Algorithm 1. We select such concepts that their
canonical interpretations do not fully overlap (see the 4th line). As shown therein,
NeRo can be trained on knowledge base defined over any DLs provided that
R(·) and ρ(·) are given.

Algorithm 1. Constructing target DL concepts
Input: R(·), ρ(·), d, maxlength Output: T
1: T := {C | C ∈ ρ(�) ∧ |C| ≤ maxlength ∧ 0 < |R(C)|}
2: for each A ∈ T do
3: for each B ∈ T do
4: if R(A) �= R(B) then
5: for each X ∈ {A � B, A � B} do
6: if |R(X)| > 0 ∧ R(X) �∈ {R(E) | E ∈ T } then
7: Add X to T .
8: end if
9: if |T | = d then

10: return T
11: end if
12: end for
13: end if
14: end for
15: end for
16: if |T | < d then
17: Go to the step (2).
18: end if
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Training Process: Let D = {(E+
i , E−

i ,yi)}Ni=1 represent a training dataset,
where a data point (E+, E−,y) is obtained in four consecutive steps: (i) Sample
C from T uniformly at random, (ii) Sample k individuals E+ ⊂ R(C) uniformly at
random, (iii) Sample k individuals E− ⊂ NI \E+ uniformly at random, and (iv)
Compute F1 scores y via Eq. (4) w.r.t. E+, E−, for T . For a given (E+, E−,y)
and predictions ŷ := NeRo(E+, E−), an incurred binary cross entropy loss.
Important to note that after training process, permutation-invariant embeddings
of any ALCDL concepts can be readily obtained omitting the translation opera-
tion in NeRo, e.g. embeddings of a DL concept (e.g. Male
∃hasSibling.Female)
can be obtained via φ

(∑
x∈R(Male�∃hasSibling.Female) ψ(x)

)
. In our project page,

we provided a 2D visualization of learned embeddings for the Family KB.

5 Experiments

We based our experimental setup on [6,7,26] and used learning problems pro-
vided therein. An overview of the datasets is provided in Table 2. To perform
extensive comparisons between models, additional learning problems are gener-
ated by randomly sampling E+ and E−. We ensured that none of the learning
problems used in our evaluation has been used in the unsupervised training
phase. In our experiments, we evaluated all models in ALC for Class Expression
Learning (CEL) on the same hardware.

Table 2. An overview of class expression learning benchmark datasets.

Dataset |NI | |NC | |NR|
Family 202 18 4

Carcinogenesis 22372 142 21

Mutagenesis 14145 86 11

Biopax 323 28 49

Lymphography 148 49 1

We evaluated models via the F1 score, the runtime and number of explored
concepts. The F1 score is used to measure the quality of the concepts found w.r.t.
positive and negative examples, while the runtime and the number of explored
concepts are to measure the efficiency. We measured the full computation time
including the time spent prepossessing time of the input data and tackling the
learning problem. Moreover, we used two standard stopping criteria for state-of-
the-art models. (i) We set the maximum runtime to 10 s although models often
reach good solutions within 1.5 s [27]. (ii) The models are configured to terminate
as soon as they found a goal concept. In our experiments, we evaluate all models
in ALC for CL on the same hardware. During training, we set |T | = 1000,
N = 50 and used Adam optimizer for NeRo. We only considered top-100 ranked
concepts to evaluate NeRo.
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6 Results

Results with Benchmark Learning Problems: Table 3 reports the concept
learning results with benchmark learning problems. Table 3 suggests that equip-
ping NeRo with the standard search procedure improves the state-of-the-art
performance in terms of F1 scores even further with a small cost of runtimes.
CELOE and ELTL require at least 14.7× more time than NeRo to find accurate
concepts on Family. This stems from the fact that NeRo explores on average
only 21 concepts, whereas CELOE explored 1429. On Mutagenesis and Car-
cinogenesis, NeRo finds more accurate concepts, while exploring less, hence,
achieving better runtime performance. Runtime gains stem from the fact that
NeRo explores at least 2.3× fewer concepts.

Table 3. Results on benchmark learning problems. F1, T, and Exp. denote F1 score,
total runtime in seconds, and the number of explored concepts, respectively. NeRo†

denotes equipping NeRo with CELOE. ELTL does not report the Exp.

Dataset NeRo† NeRo CELOE ELTL

F1 T Exp. F1 T Exp. F1 T Exp. F1 T

Family .987 .83 26 .984 .68 21 .980 4.65 1429 .964 4.12

Mutagenesis .714 17.30 200 .704 13.18 100 .704 23.05 516 .704 21.04

Carcinogenesis .725 32.23 200 .720 26.26 100 .714 37.18 230 .719 36.29

Important to note we did not use parallelism in NeRo and we reload param-
eters of NeRo for each single learning problem. To conduct more extensive
evaluation, we generated total 750 random learning problems on five benchmark
datasets. Since Lymphography and Biopax datasets do not contain any learning
problems, they are not included in Table 3.

Results with Random Learning Problems: Table 4 reports the concept
learning results with random learning problems. Table 4 suggests that CELOE
explores at least 3.19× more concepts than NeRo. Importantly, NeRo finds
on-par or more accurate concepts, while exploring less. Here, we load the param-
eters of NeRo only once per dataset and are used to tackle learning problems
sequentially. This resulted in reducing the total computation time of NeRo
by 3 − 6× on Family, Mutagenesis and Carcinogenesis benchmark datasets.
Although NeRo can tackle learning problems in parallel (e.g. through multipro-
cessing), we did not use any parallelism, since CELOE and ELTL do not abide
by parallelism [7]. Loading the learning problems in a standard mini-batch fash-
ion and using multi-GPUs may further improve the runtimes of NeRo. These
results suggest that NeRo can be more suitable than CELOE and ELTL on
applications requiring low latency.
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Table 4. Random learning problems with different sizes per benchmark dataset. Each
row reports the mean and standard deviations attained in 50 learning problems. |E|
denotes |E+| + |E−|.

Dataset |E| NeRo CELOE ELTL

F1 T Exp. F1 T Exp. F1 T

Family 10 .913 ± .06 .16 ± .51 74 ± 43 .903 ± .06 11.61 ± 3.58 5581 ± 2375 .718 ± .01 4.45 ± 2.84

20 .807 ± .04 .16 ± .49 100 ± 00 .795 ± .05 13.28 ± 1.47 7586 ± 645 .678 ± .02 3.59 ± 1.27

30 .775 ± .03 .15 ± .41 100 ± 00 .760 ± .03 13.24 ± 1.42 7671 ± 575 .672 ± .01 3.46 ± 1.59

Lymphography 10 .968 ± .07 .12 ± .43 75 ± 41 .968 ± .07 6.63 ± 4.29 5546 ± 5169 .733 ± .09 3.07 ± .30

20 .828 ± .04 .13 ± .40 100 ± 00 .826 ± .05 13.01 ± 1.23 11910 ± 1813 .678 ± .02 3.08 ± .50

30 .780 ± .04 .13 ± .01 100 ± 00 .780 ± .04 13.02 ± 1.69 13138 ± 2601 .672 ± .01 3.09 ± .72

Biopax 10 .859 ± .08 .19 ± .71 86 ± 34 .806 ± .07 13.26 ± 1.94 4752 ± 2153 .685 ± .06 3.71 ± .10

20 .793 ± .05 .19 ± .52 100 ± 00 .746 ± .04 13.63 ± .10 4151 ± 748 .668 ± .06 3.72 ± .10

30 .749 ± .03 .18 ± .52 100 ± 00 .718 ± .02 13.91 ± .44 3843 ± 963 .668 ± .06 3.90 ± .22

Mutagenesis 10 777 ± .05 3.47 ± 1.61 100 ± 00 .753 ± .06 20.27 ± 1.39 546 ± 613 .670 ± .02 10.29 ± .40

20 .746 ± .05 3.09 ± 1.75 100 ± 00 .712 ± .02 20.38 ± 1.30 430 ± 28 .667 ± .00 10.73 ± 1.10

30 .721 ± .03 2.89 ± 1.60 100 ± 00 .700 ± .02 20.39 ± 1.06 429 ± 38 .667 ± .00 11.74 ± .97

Carcinogenesis 10 .768 ± .06 5.39 ± 2.98 98 ± 14 .764 ± .06 29.90 ± 1.02 401 ± 125 .673 ± .05 19.99 ± .67

20 .722 ± .03 5.40 ± 1.87 100 ± 00 .713 ± .02 30.30 ± .19 318 ± 152 .667 ± .00 20.00 ± 1.11

30 .704 ± .05 4.70 ± 2.78 100 ± 00 .697 ± .02 29.99 ± .58 319 ± 43 .667 ± .00 20.38 ± .85

Table 5. Performance comparison with different number of explored concepts. Each
row reports the mean and standard deviations attained in 50 learning problems.

Dataset |E| NeRo-1 NeRo-10 NeRo-1000

F1 T F1 T F1 T

Family 10 .906 ± .07 .08 ± .06 .910 ± .05 .09 ± .06 .916 ± .06 .81 ± .50

20 .793 ± .05 .08 ± .05 .806 ± .04 .09 ± .05 .807 ± .04 1.17 ± .50

30 .742 ± .05 .08 ± .05 .773 ± .03 .09 ± .05 .775 ± .03 1.15 ± .50

Lymphography 10 .882 ± .07 .08 ± .06 .905 ± .05 .08 ± .06 .916 ± .06 .77 ± .50

20 .793 ± .05 .07 ± .05 .827 ± .04 .08 ± .05 .828 ± .04 1.03 ± .50

30 .738 ± .05 .07 ± .06 .777 ± .04 .08 ± .05 .780 ± .03 1.00 ± .60

Biopax 10 .853 ± .08 .09 ± .06 .856 ± .05 .97 ± .59 .868 ± .08 1.31 ± .80

20 .779 ± .05 .09 ± .06 .791 ± .04 .10 ± .62 .793 ± .04 1.35 ± .60

30 .708 ± .07 .09 ± .06 .742 ± .04 .10 ± .63 .749 ± .03 1.39 ± .60

Mutagenesis 10 .733 ± .07 .32 ± 2.03 .785 ± .06 .57 ± 1.81 .803 ± .06 36.98 ± 5.81

20 .689 ± .08 .31 ± 1.99 .734 ± .05 .52 ± 1.82 .751 ± .04 34.29 ± 5.91

30 .673 ± .08 .31 ± 2.03 .712 ± .04 .49 ± 1.77 .728 ± .03 32.88 ± 6.13

Carcinogenesis 10 .717 ± .09 .41 ± 2.53 .740 ± .09 .89 ± 2.89 .783 ± .02 56.941 ± 9.55

20 .680 ± .06 .40 ± 2.49 .707 ± .05 .82 ± 2.45 .731 ± .02 57.205 ± 5.08

30 .610 ± .11 .41 ± 2.83 .671 ± .06 .77 ± 2.66 .716 ± .02 52.872 ± 7.58

Results with Limited Exploration: Table 5 reports concept learning results
with limited exploration on five benchmark datasets. Table 5 suggests that
NeRo-10 often outperforms CELOE and ELTL (see Table 4) in all metrics even
when exploring solely 10 top-ranked concepts.
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Significance Testing: To validate the significance of our results, we performed
Wilcoxon signed-rank tests (one and two-sided) on F1 scores, runtimes and the
number of explored concepts. Our null hypothesis was that the performances of
NeRo and CELOE come from the same distribution. We were able to reject the
null hypothesis with a p-value < 1% across all the datasets, hence, the superior
performance of NeRo is statistically significant.

6.1 Discussion

Our results uphold our hypothesis: F1 scores of DL concepts can be accurately
predicted by means of learning permutation-invariant embeddings for sets of
individuals. Through considering top-ranked DL concepts at first, the need of
excessive number of retrieval operations to find a goal concept can be mitigated.
Throughout our experiments, NeRo consistently outperforms state-of-the-art
models w.r.t. the F1 score, the number of explored concepts and the total com-
putational time. Importantly, starting the standard search procedure on these
top-ranked concepts further improves the results. Hence, NeRo can be applied
within state-of-the-art models to decrease their runtimes. However, it is impor-
tant to note that Lehmann et al. [26] have previously proved the completeness
of CELOE in the CL problem, i.e., for a given learning problem, CELOE finds
a goal expression if it exists provided that there are no upper-bounds on the
time and memory requirements. Although these requirements are simply not
practical, equipping NeRo with the search procedure of CELOE is necessary to
achieve the completeness in CL.

7 Conclusion

We introduced a permutation-invariant neural embedding model (NeRo) to effi-
ciently tackle the description logic concept learning problem. For given learning
problem, NeRo accurately predicts F1 scores of pre-selected description logic
concepts in a multi-label classification fashion. Through ranking concepts in
descending order of predicted F1 scores, a goal concept can be learned within
few retrieval operations. Our experiments showed that NeRo outperforms state-
of the art models in 770 concept learning problems on 5 benchmark datasets
w.r.t. the quality of predictions, number of explored concepts and the total com-
putational time. Equipping NeRo with the standard search procedure further
improves the F1 scores across learning problems and benchmark datasets.

We believe that incorporating neural models in concept learning problems
is worth pursuing further. In future, we will work on using NeRo on more
expressive description logics and integrating embeddings for concepts in non-
myopic heuristics [10].
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Abstract. The integration of multimodal data presents a challenge in
cases where the study of a given phenomena by different instruments
or conditions generates distinct but related domains. Many existing data
integration methods assume a known one-to-one correspondence between
domains of the entire dataset, which may be unrealistic. Furthermore,
existing manifold alignment methods are not suited for cases where the
data contains domain-specific regions, i.e., there is not a counterpart for
a certain portion of the data in the other domain. We propose Diffu-
sion Transport Alignment (DTA), a semi-supervised manifold alignment
method that exploits prior knowledge of between only a few points to
align the domains. After building a diffusion process, DTA finds a trans-
portation plan between data measured from two heterogeneous domains
with different feature spaces, which by assumption, share a similar geo-
metrical structure coming from the same underlying data generating
process. DTA can also compute a partial alignment in a data-driven
fashion, resulting in accurate alignments when some data are measured
in only one domain. We empirically demonstrate that DTA outperforms
other methods in aligning multiview data in this semi-supervised set-
ting. We also show that the alignment obtained by DTA can improve
the performance of machine learning tasks, such as domain adaptation,
inter-domain feature mapping, and exploratory data analysis, while out-
performing competing methods.

Keywords: Manifold alignment · Semi-supervised learning · Manifold
learning

1 Introduction

In many data science applications, data may be collected from different mea-
surement instruments, conditions, or protocols of the same underlying system.
Examples include single cell RNA sequence and ATAC sequence measurements
of the same group of cells [30], text documents translated into different languages
[24], brain images from multiple neuroimaging techniques [33], and images of a
scene captured from different views [17]. In such settings, researchers are often
interested in integrating data from the different domains to enhance our under-
standing of the system as well as the relationships between the different domains.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 116–129, 2023.
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Integrating the data may also lead to improved downstream analysis, such as
classification, if there is domain-specific information about the task.

Multi-view data integration is usually performed assuming knowledge of one-
to-one correspondences, i.e., the data comes in a paired fashion between domains.
One of the simplest methods for this setting is Canonical Correlation Analysis
(CCA), a linear approach that finds a projection that maximizes the correlation
between the two domains [31]. Kernel CCA extends this to nonlinear projections
via the kernel trick [5,13]. Alternating diffusion [18] and integrated diffusion [19]
are nonlinear alignment methods based on the robust manifold learning algo-
rithm Diffusion Maps [8]. For an overview of other approaches see [14,21].

A popular way to integrate distinct domains is manifold alignment. First
introduced in the seminal works [15] and [16], this family of methods seeks to
find projections of the multiple domains into a common latent space where inter-
domain relationships can be captured. Manifold alignment can be performed in
various scenarios, depending on how much information is provided about the
correspondence between different domains. The edge case, usually referred to
as unsupervised manifold alignment, arises in the absence of any relationship
known a priori between the domains as in [3,4,11,12,29,35]. Some of the data
integration approaches described previously, such as CCA, may be viewed as
belonging to the opposite edge case of supervised manifold alignment.

In contrast, other problems can be categorized as semi-supervised manifold
alignment, where some degree of correspondence between domains is assumed to
be known. In some cases, a one-to-one correspondence is known for only a few of
the data points. This is the case in [16], which uses the Laplacian eigenmaps loss
function in both domains while penalizing mismatches of known correspondences
in the embedding. In [34], the authors first learn a latent representation for each
domain using a variation of Laplacian eigenmaps [2]. Then, they use Procrustes
analysis in the common embedding space to find a transformation that aligns
the matching observations, which subsequently is applied to the rest of the data.
Similarly, the approach proposed in [20] finds a low dimensional embedding
generated by diffusion maps [8] and then performs an affine transformation to
align the known correspondences. More recently, a generative adversarial network
called manifold alignment GAN (MAGAN) was introduced in [1]. MAGAN is
based on a similar architecture as cycleGAN [38], which learns functions that
map from one domain to another. However, the authors of MAGAN showed
that cycleGAN and similar approaches tend to superimpose rather than align
the data manifolds, resulting in incorrect alignments between distinct groups.
To mitigate this issue, MAGAN incorporates a correspondence loss between the
known correspondences enforcing a consistent alignment.

Alternatively, the correspondence information may be available at the feature
level. MAGAN can be applied to this case with a correspondence loss imposed
on the shared features. Other approaches use class labels in both domains as the
correspondence knowledge, as in [36] where the labels act as anchors points for
the alignment. This was further expanded to a kernelized version in [32].
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In this work we focus on the semi-supervised problem where we assume a
known one-to-one correspondence between domains is available for a few of the
data points. Our method, called Diffusion Transport Alignment (DTA), starts by
building a diffusion process [8] that connects measurements in different domains
via the known correspondences. In this fashion, DTA transforms both domains
to a shared feature space, allowing us to extract inter-domain distances. Finally,
DTA solves a partial optimal transport problem to determine a coupling between
data samples from one domain and their counterparts in the other domain. The
obtained coupling can be further used to improve the performance of downstream
analysis. For instance, one may be interested in learning a mapping between both
domains, but the known correspondences are insufficient to successfully train a
regression model. Another use-case is to perform unsupervised multi-domain anal-
ysis with methods as in [22] or [18], which require one-to-one correspondences
between all points in all domains. DTA is also useful for domain adaptation, where
a model is trained on a source domain and then applied to a target domain.

In summary, our contributions are as follows: 1) We develop a manifold
alignment method, DTA, that outperforms current methods in recovering inter-
domain relationships. 2) DTA can perform a data-driven partial alignment when
a subset of the data is domain-specific, preventing spurious couplings between
domains. 3) We demonstrate how DTA can leverage limited correspondence
knowledge to improve the performance in other tasks, such as regression and
domain adaptation.

2 Diffusion Transport Alignment

Consider a multi-domain data collection of a data generating process where two
different views in potentially different feature spaces Φ1 ∈ Rn×q and Φ2 ∈ Rm×p

are measured, containing observations {xi}n
i=1, and {yi}m

i=1, respectively. We
wish to learn a correspondence between both domains in a semi-supervised set-
ting, where one-to-one correspondence is known for a set of observations denoted
by C. That is, for each c ∈ C we have access to its features in both domains.

As a motivating example, consider a classification problem where both
domains contain labeled data points for some shared classes. The two domains
may contain distinct information that is relevant for classification. An example of
this is in single cell data with both RNA-sequencing and ATAC-sequencing mea-
surements. In this case, training on the aligned data will lead to improved perfor-
mance compared with training on the domains separately. As another example,
researchers may be interested in the relationships between variables measured in
separate domains. Aligning the domains enables a larger dataset to obtain more
accurate estimates of relationship measures such as the correlation coefficient or
mutual information.

The fundamental idea of DTA consists of learning a diffusion process in
each particular domain, and then leverage the known correspondences as anchor
points to find a common feature representation. Ultimately, this allows us to
extract an inter-domain distance measure, providing a dissimilarity among the
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Fig. 1. Motivating examples for DTA. In all of these examples we have data mea-
sured in two distinct domains Φ1 and Φ2, and we possess a small subset of matching
observations C. This corresponds to the scenario where obtaining corresponding mea-
surements may be costly, e.g. via expert annotation. The goal of DTA is to leverage
the small subset of known correspondences to align the remaining observations. A)
Distorted MNIST digits. Here Φ1 consists of the original MNIST digits, while Φ2

consists of distorted images after applying multiple transformations: rotation, down-
scaling, and Gaussian blurring. To learn a parametric function that maps from one
domain to the other, the small set of correspondences is not enough. Thus, we need to
find a greater set of matching data. B) Splatter simulation with batch effects [37].
A common problem when dealing with biological data is the distortion produced by the
measurement protocols, introducing what is known as batch effects. Accurate alignment
would overcome theses batch effects. C) Swiss roll and S curve. This case presents
the ideal scenario where the two domains are a smooth mapping from a common latent
space. Black points indicate correspondences with three of them (red arrows) high-
lighted. D) Two helixes. Here we use a dataset from [32] and display the effect of
DTA after leveraging the known correspondences to align both manifolds.

observations in both domains. The diffusion operators over each domain, denoted
as PΦ1 and PΦ2 , are built by a standard approach. First, we compute an affinity
matrix with an α-decay kernel [27]:

Kk,α(xi, xj) =
1
2

exp
(

−||xi − xj ||α
σα

k (xi)

)
+

1
2

exp
(

−||xi − xj ||α
σα

k (xj)

)
, (1)

where σk(xi) is the k-nearest neighbor distance of xi and α > 0. This kernel has
two hyper-parameters α and k, which provide a trade-off between connectivity
in the graph and local geometry preservation. Methods that employ this kernel
are typically robust to the choice of these hyper-parameters [27]. The diffusion
operator P is then computed by row-normalizing the kernel matrix. In this way
P can be viewed as a probability transition matrix, representing a Markov chain
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between observations. The probabilities of transitioning from one point to any
other within a t−step random walk are obtained by powering the diffusion oper-
ator P t. This particular kernel choice is not required for our method, and the
construction of the diffusion operator can be adapted to the particular problem.

DTA computes the transition probabilities between observations in Φ1 and
Φ2 and elements in C in their respective domain by diffusing the process several
steps, obtaining P t

Φ1
and P t

Φ2
. The entries (i, c) of P t

Φk
with c ∈ C contain the

transition probabilities from each observation i ∈ Φk to the observations in C.
Thus, we can extract the columns and rows of P t

Φ1
and P t

Φ2
associated with the

elements in C, obtaining the submatrices: ΓΦ1 ∈ Rn×|C|, ΓΦ2 ∈ Rm×|C|.
This construction provides a common feature representation, and thus, a

natural way to compute inter-domain distances:

Dij =
(

1 − 〈ΓΦ1(i, :), ΓΦ2(j, :)〉
||ΓΦ1(i, :)||||ΓΦ2(j, :)||

)
. (2)

We resort to cosine over euclidean distances since it resulted in superior perfor-
mance.

The matrix D contains inter-domain distances, but does not provide a direct
alignment of the domains. The final step in DTA is to solve a partial optimal
transport problem with D as the cost matrix:

min
T

n∑
i=1

m∑
j=1

DijTij

s.t.
n∑

i=1

Tij ≤ qj , ∀j ∈ {1, . . . , m};
m∑

j=1

Tij ≤ vi, ∀i ∈ {1, . . . , n}

n∑
i=1

m∑
j=1

Tij = M ; Tij ≥ 0, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}.

(3)

Optimal transport has been extensively used in data science [28], and is a
common tool for transfer learning and domain adaptation [6,9,10,25]. It provides
a principled framework to compute a distance between probability distributions,
also known as the Wasserstein distance, by finding the minimal effort required
to “transport” the mass of one distribution to another. Our formulation deviates
from the original optimal transport problem by constraining the total mass M
to be transported. As we show in Sect. 3.1, M can be selected in a data-driven
fashion, permitting alignments that respect domain-specific regions that are not
present in the other domain.

The user-defined parameters qj and vi indicate the mass assigned to each
observation. For instance, to find a hard assignment from each observation in
Φ1 to Φ2, and if n ≤ m, we can set vi = 1/n, qj = 1/n and M = 1, which is the
case for the experiments in Sect. 3. Soft assignments can be obtained by different
choices of masses. Alternatively an entropy regularization ε

∑
i,j Tij log(Tij) can

be added to the objective function. In this work we focus on hard assignments
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since we want to learn one-to-one correspondences. Nevertheless, we state the
general formulation, which is useful when there is less confidence in the existence
of one-to-one correspondences.

The coupling T contains the information required to combine both manifolds.
After a min-max normalization denoted by T̃ , we can find a projection of a given
sample xi ∈ Φ1 on Φ2 by its barycentric projection xi �→ ∑

j T̃ijyj . Alternatively,
we can build a cross-modality similarity matrix WΦ1Φ2 = (WΦ1 T̃ +T̃WΦ2), where
WΦk

are the similarities in each domain (computed using Eq. (1) in this paper).
Using a similar construction as in [16] we can build a joint manifold learning
loss:

L = μ
∑
ij

||fi − fj ||W ij
Φ1

+ μ
∑
ij

||gi − gj ||W ij
Φ2

+ (1 − μ)
∑
ij

||fi − gj ||W ij
Φ1Φ2

.

(4)

The parameter μ controls the preservation of the intra-domain geometry. The
solution of (4) provides a shared embedding where f and g represent the embed-
ding coordinates for both domains. They are the generalized eigenvectors of the
graph Laplacian matrix associated with the joint similarity matrix:

W =
[

μWΦ1 (1 − μ)WΦ1Φ2

(1 − μ)W
′
Φ1Φ2

μWΦ2

]
. (5)

DTA differs from [16] in several ways. First, their method starts by solving
(4), with a T matrix instead of WΦ1Φ2 , which encodes only the a priori known
correspondences, containing a 1 in entry (i, j) if xi ∈ Φ1 corresponds to yj ∈
Φ2 and 0 otherwise. Inter-domain correspondences for the rest of the data are
obtained in the latent space produced by the solution. In contrast, DTA first
finds a matrix T that couples all the data, and then builds the inter-domain
similarities based on these correspondences. Second, using only T in (4) assigns
a 0 similarity between xi and the neighbors of yj . We argue that a more natural
way to construct the off-diagonal matrices of W is to include the neighbors of yj

as being similar to xi as well, motivating our particular construction of WΦ1Φ2 .

3 Experimental Results

To demonstrate DTA’s effectiveness in finding a coupling between domains, we
compare DTA with semi-supervised manifold alignment (SSMA) [16], manifold
alignment with Procrustes analysis (MA-PA) [34], and MAGAN [1]. For consis-
tency, we use the same α-decay Kernel in Eq. (1) for the graph-based methods
DTA, SSMA, and MA-PA, with α = 10 and k = 10. For MAGAN we use
the same architecture provided by the author’s code1. MAGAN’s architecture is
composed of two generators, one mapping from Φ1 to Φ2 and the other in the
opposite direction, and two discriminators, one for each domain. The model is

1 https://github.com/KrishnaswamyLab/MAGAN/tree/master/MAGAN.

https://github.com/KrishnaswamyLab/MAGAN/tree/master/MAGAN
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trained via a min-max game between the generators and discriminators, with a
cycle consistency loss [38], and a correspondence loss that tries to preserve the
known correspondences. We found that MAGAN usually needs an extra penal-
ization parameter ρ in the correspondence loss to improve its performance, which
was not included in the original paper.

Given the nature of the problem, it is difficult to tune the hyper-parameters
present in each method. Thus, we set the same values for each method across all
the experiments. This leave us with one hyperparameter t for DTA, which we
set equal to 10 for all the experiments. SSMA and MA-PA require a predefined
number of dimensions for the latent space. We selected all eigenvectors associated
with non-zero eigenvalues. We set ρ = 1000 for MAGAN.

We used four simulated datasets shown in Fig. 1. MNIST-Double: one
domain contains the original MNIST digits, while the other is constructed by
downscaling the images to 14×14 pixels, applying a rotation, and adding Gaus-
sian blurring. SWISSR-SCURVE: starting from a common 2D latent space
we apply two different transformations resulting in the well known swiss roll
and s-curve manifolds embedded in a 3D space. STL10: a popular dataset for
computer vision [7]. The first domain contains the original images, and we gen-
erated the second by applying brightness, gray scaling, and Gaussian blurring.
We performed feature extraction using the 512 outputs after the last convolution
layer in ResNet-18. SPLATTER-BE: we simulated single-cell RNA-sequencing
data using Splatter [37]. The difference between Φ1 and Φ2 is due to batch
effects, which often arise in biological experiments. For real data, we used the
single-cell dataset from the Multimodal Single-Cell Data Integration challenge,
NeurIPS competition track 2021. The data contains two sets with jointly mea-
sured observations for both domains, providing us ground truth information
about the coupling between domains. The first set measures gene expression
(RNA) and protein abundance (ADT), while the second measures RNA and
chromatin accessibility (ATAC). The samples are taken from different donors
and batches. We selected batches “s1d1” in both sets for our experiments. Both
RNA and ATAC domains are preprocessed, reducing their dimensionality to
1000 features via truncated SVD.

Inter-domain Feature Mapping. Our first comparison metric is the regres-
sion performance when mapping between the two domains. When the prior
known correspondences are insufficient to successfully train a model, we can
improve the training data by expanding the correspondences using each of the
considered manifold alignment methods. For DTA, we use hard assignments
where for each observation in Φ1 we assign an unique counterpart in Φ2. The
correspondences in SSMA and MA-PA are computed as suggested in [16], where
the assigned counterpart for each observation in Φ1 corresponds to its nearest
sample from Φ2 in the shared latent space. For MAGAN, once the model is
trained, we map the data from the first domain into the second using one of the
generators. The assigned correspondence is the closest sample. The newly found
correspondences serve as the training data for the regression task.

https://openproblems.bio/neurips_2021/
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To reduce the dependency on a given regression model, we trained both a
fully-connected neural network and a Kernel Ridge Regression (KRR) model.
Since the true one-to-one correspondences are accessible to us, the regression
models are also trained with the complete data, as well as the a priori known
correspondences. This provides a baseline to show the improvement due to the
new information acquired after each of the manifold alignment models, and how
well they perform compared to the full correspondence case.

The results are summarized in Table 1 with the test MSE values for each
model as well as for the regression trained using all of the correct correspon-
dences. DTA is the most consistent method as it almost always outperforms
the other methods across different datasets and different levels of prior known
correspondences.

Domain Adaptation. Now we compare the methods on a domain adaptation
problem. Table 2 contains the test error for two k-nearest neighbor classifiers,
with k = 1 and k = 10. The classification models are trained on Φ2 and then
tested on the barycentric projections of Φ1 onto Φ2. The matrix T̃ is computed for
SSMA, MA-PA, and MAGAN from the assigned correspondences as described
above. An alternative approach for SSMA and MA-PA is to train and test the
classification on the shared latent representation. For MAGAN the testing can be
computed in the generator mapping from Φ1 to Φ2. Overall, DTA outperforms
the other methods as it typically has the best performance and is in second
otherwise. In contrast, while other methods occasionally outperform DTA on
some datasets (e.g. MAGAN on MNIST-Double), these methods perform worse
on other datasets.

Fraction of Samples Closer than the True Match (FOSCTTM). Lastly,
a common metric to measure the goodness of alignment was proposed in [23] and
further employed by [4,12] among others. The idea is to measure the proportion
of observations that are closer to the true match after alignment, and average
over the entire dataset. Thus, the lower this number, the better are the samples
aligned with their counterparts in the opposite domain. Since this metric can
be measured in different spaces after alignment, we include three different cases
in Table 3. After alignment, we can compute the distances after computing the
barycentric projection in the ambient space. Alternatively, it is possible to find
a low dimensional representation after computing the spectral embedding using
the matrix W , and find the neighbors and distances in this new representation. In
particular, we computed the FOSCTTM metric in both, the 2 and 10 dimensional
embeddings.
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Table 1. Regression MSE average over 10 runs. When both models (Neural network
and KRR) are trained with all the ground truth correspondences a lower MSE is
obtained, and if only the a priori known correspondences are used the worst results
are obtained for the majority of scenarios.

Dataset Model Test MSE (Neural Network) Test MSE (KRR)

1% 2% 5% 10% 1% 2% 5% 10%

MNIST-Double AllData 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PriorInfo 0.012 0.008 0.003 0.001 0.011 0.006 0.002 0.000

DTA 0.006 (2) 0.004 (2) 0.002 (1) 0.002 (1) 0.005 (2) 0.003 (2) 0.002 (1) 0.001 (1)

MA-PA 0.012 (3) 0.009 (3) 0.006 (3) 0.004 (3) 0.012 (3) 0.009 (3) 0.005 (3) 0.003 (3)

MAGAN 0.002 (1) 0.002 (1) 0.003 (2) 0.002 (2) 0.001 (1) 0.002 (1) 0.002 (2) 0.001 (2)

SSMA 0.013 (4) 0.010 (4) 0.007 (4) 0.005 (4) 0.012 (4) 0.009 (4) 0.006 (4) 0.004 (4)

RNA-ADT AllData 0.109 0.108 0.109 0.109 0.104 0.104 0.104 0.105

PriorInfo 0.718 0.519 0.330 0.243 0.304 0.204 0.177 0.173

DTA 0.130 (1) 0.131 (1) 0.125 (1) 0.124 (1) 0.115 (1) 0.116 (1) 0.112 (1) 0.112 (1)

MA-PA 0.230 (4) 0.190 (4) 0.147 (4) 0.137 (4) 0.235 (4) 0.180 (4) 0.125 (4) 0.117 (3)

MAGAN 0.175 (3) 0.143 (2) 0.133 (2) 0.133 (3) 0.162 (3) 0.129 (2) 0.121 (3) 0.122 (4)

SSMA 0.170 (2) 0.163 (3) 0.136 (3) 0.130 (2) 0.148 (2) 0.140 (3) 0.118 (2) 0.115 (2)

RNA-ATAC AllData 0.369 0.369 0.369 0.370 0.346 0.346 0.346 0.346

PriorInfo 0.522 0.472 0.431 0.399 0.406 0.376 0.361 0.355

DTA 0.422 (1) 0.404 (2) 0.404 (3) 0.397 (3) 0.419 (1) 0.401 (1) 0.397 (3) 0.388 (3)

MA-PA 0.430 (2) 0.403 (1) 0.386 (1) 0.387 (1) 0.460 (3) 0.402 (2) 0.373 (1) 0.368 (1)

MAGAN 0.661 (4) 0.664 (4) 0.648 (4) 0.544 (4) 0.661 (4) 0.662 (4) 0.643 (4) 0.537 (4)

SSMA 0.443 (3) 0.410 (3) 0.399 (2) 0.396 (2) 0.456 (2) 0.403 (3) 0.383 (2) 0.374 (2)

SPLATTER-BE AllData 0.372 0.396 0.391 0.401 0.376 0.376 0.376 0.377

PriorInfo 0.440 0.424 0.413 0.405 0.457 0.470 0.414 0.398

DTA 0.388 (1) 0.377 (1) 0.397 (1) 0.406 (1) 0.377 (1) 0.376 (1) 0.377 (1) 0.377 (1)

MA-PA 0.410 (3) 0.409 (3) 0.408 (2) 0.409 (3) 0.401 (3) 0.403 (3) 0.393 (3) 0.390 (3)

MAGAN 0.466 (4) 0.518 (4) 0.466 (4) 0.481 (4) 0.483 (4) 0.527 (4) 0.475 (4) 0.498 (4)

SSMA 0.407 (2) 0.408 (2) 0.408 (3) 0.409 (2) 0.387 (2) 0.386 (2) 0.386 (2) 0.386 (2)

STL10 AllData 0.373 0.374 0.374 0.378 0.321 0.322 0.323 0.325

PriorInfo 0.564 0.530 0.497 0.467 0.557 0.534 0.476 0.433

DTA 0.470 (1) 0.461 (1) 0.458 (1) 0.454 (1) 0.460 (1) 0.444 (1) 0.438 (1) 0.433 (1)

MA-PA 0.532 (3) 0.503 (3) 0.479 (3) 0.468 (2) 0.554 (3) 0.507 (3) 0.471 (3) 0.452 (3)

MAGAN 0.552 (4) 0.537 (4) 0.562 (4) 0.498 (4) 0.564 (4) 0.532 (4) 0.546 (4) 0.469 (4)

SSMA 0.503 (2) 0.484 (2) 0.476 (2) 0.469 (3) 0.489 (2) 0.474 (2) 0.464 (2) 0.451 (2)

SWISSR-SCURVE AllData 0.002 0.003 0.001 0.001 0.000 0.000 0.000 0.000

PriorInfo 0.682 0.648 0.263 0.151 0.610 0.311 0.036 0.004

DTA 0.043 (2) 0.015 (1) 0.003 (1) 0.001 (1) 0.036 (2) 0.008 (1) 0.001 (1) 0.000 (1)

MA-PA 0.018 (1) 0.064 (3) 0.044 (3) 0.021 (4) 0.014 (1) 0.061 (3) 0.043 (3) 0.017 (4)

MAGAN 0.620 (4) 0.546 (4) 0.088 (4) 0.004 (2) 0.682 (4) 0.513 (4) 0.088 (4) 0.002 (2)

SSMA 0.267 (3) 0.039 (2) 0.012 (2) 0.006 (3) 0.204 (3) 0.027 (2) 0.010 (2) 0.003 (3)
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Table 2. Domain adaptation classification accuracy results under different correspon-
dence percentages. Overall DTA achieves the best results as it is consistently in the
top two.

Dataset Model KNN-1 KNN-10

1% 2% 5% 10% 1% 2% 5% 10%

MNIST-Double DTA 0.79 (2) 0.87 (2) 0.92 (2) 0.94 (2) 0.79 (2) 0.85 (2) 0.88 (2) 0.89 (2)

MA-PA 0.65 (3) 0.75 (3) 0.80 (3) 0.84 (3) 0.64 (3) 0.75 (3) 0.78 (3) 0.81 (3)

MAGAN 0.96 (1) 0.95 (1) 0.95 (1) 0.97 (1) 0.89 (1) 0.88 (1) 0.88 (1) 0.89 (1)

SSMA 0.42 (4) 0.55 (4) 0.65 (4) 0.75 (4) 0.42 (4) 0.56 (4) 0.65 (4) 0.73 (4)

RNA-ADT DTA 0.67 (1) 0.68 (1) 0.73 (1) 0.73 (1) 0.67 (1) 0.67 (1) 0.72 (1) 0.72 (1)

MA-PA 0.61 (3) 0.64 (3) 0.70 (2) 0.71 (2) 0.52 (4) 0.58 (4) 0.61 (4) 0.63 (4)

MAGAN 0.61 (4) 0.62 (4) 0.69 (4) 0.65 (4) 0.60 (2) 0.61 (2) 0.66 (2) 0.66 (2)

SSMA 0.64 (2) 0.66 (2) 0.69 (3) 0.70 (3) 0.58 (3) 0.60 (3) 0.63 (3) 0.65 (3)

RNA-ATAC DTA 0.66 (1) 0.72 (1) 0.77 (1) 0.78 (1) 0.61 (1) 0.67 (1) 0.70 (1) 0.71 (1)

MA-PA 0.61 (2) 0.70 (2) 0.76 (2) 0.76 (2) 0.54 (3) 0.62 (2) 0.66 (2) 0.66 (2)

MAGAN 0.30 (4) 0.32 (4) 0.42 (4) 0.53 (4) 0.31 (4) 0.33 (4) 0.44 (4) 0.54 (4)

SSMA 0.59 (3) 0.65 (3) 0.70 (3) 0.72 (3) 0.56 (2) 0.61 (3) 0.63 (3) 0.65 (3)

SPLATTER-BE DTA 0.83 (1) 0.84 (1) 0.84 (1) 0.83 (1) 0.79 (1) 0.80 (1) 0.80 (1) 0.80 (1)

MA-PA 0.65 (2) 0.57 (2) 0.61 (2) 0.61 (3) 0.65 (2) 0.57 (2) 0.62 (2) 0.61 (2)

MAGAN 0.30 (4) 0.30 (4) 0.42 (4) 0.46 (4) 0.31 (4) 0.30 (4) 0.43 (4) 0.47 (4)

SSMA 0.51 (3) 0.54 (3) 0.58 (3) 0.61 (2) 0.51 (3) 0.54 (3) 0.57 (3) 0.61 (3)

STL10 DTA 0.75 (1) 0.80 (1) 0.81 (1) 0.82 (1) 0.71 (2) 0.75 (1) 0.76 (1) 0.76 (1)

MA-PA 0.73 (2) 0.73 (2) 0.74 (2) 0.72 (2) 0.74 (1) 0.73 (2) 0.74 (2) 0.73 (2)

MAGAN 0.51 (4) 0.61 (3) 0.56 (4) 0.71 (3) 0.52 (4) 0.63 (3) 0.59 (4) 0.72 (3)

SSMA 0.53 (3) 0.61 (4) 0.65 (3) 0.69 (4) 0.53 (3) 0.61 (4) 0.65 (3) 0.69 (4)

Table 3. FOSCTTM average over 10 runs. DTA consistently achieves the best or
second best performance.

Dataset Model 10-dim Emb. 2-dim Emb. Barycentric proj.

1% 10% 1% 10% 1% 10%

MNIST-Double DTA 0.01 (2) 0.00 (1) 0.03 (2) 0.01 (1) 0.05 (2) 0.01 (2)

MA-PA 0.14 (3) 0.01 (3) 0.08 (3) 0.03 (3) 0.14 (3) 0.04 (3)

MAGAN 0.01 (1) 0.00 (2) 0.02 (1) 0.01 (2) 0.01 (1) 0.01 (1)

SSMA 0.26 (4) 0.18 (4) 0.28 (4) 0.22 (4) 0.22 (4) 0.06 (4)

RNA-ADT DTA 0.20 (1) 0.14 (1) 0.11 (1) 0.10 (1) 0.10 (1) 0.09 (1)

MA-PA 0.40 (3) 0.22 (3) 0.19 (3) 0.26 (3) 0.16 (4) 0.12 (4)

MAGAN 0.25 (2) 0.22 (2) 0.14 (2) 0.12 (2) 0.12 (2) 0.10 (2)

SSMA 0.40 (4) 0.36 (4) 0.43 (4) 0.41 (4) 0.13 (3) 0.10 (3)

RNA-ATAC DTA 0.29 (1) 0.20 (2) 0.17 (1) 0.13 (1) 0.37 (1) 0.33 (1)

MA-PA 0.36 (2) 0.19 (1) 0.25 (2) 0.27 (2) 0.38 (2) 0.33 (2)

MAGAN 0.49 (4) 0.41 (4) 0.44 (3) 0.32 (3) 0.46 (4) 0.41 (4)

SSMA 0.44 (3) 0.34 (3) 0.45 (4) 0.42 (4) 0.38 (3) 0.35 (3)

SPLATTER-BE DTA 0.14 (1) 0.13 (1) 0.14 (1) 0.14 (1) 0.27 (1) 0.26 (1)

MA-PA 0.30 (2) 0.22 (2) 0.22 (2) 0.20 (2) 0.32 (2) 0.34 (3)

MAGAN 0.42 (4) 0.31 (3) 0.44 (4) 0.33 (3) 0.40 (4) 0.32 (2)

SSMA 0.42 (3) 0.39 (4) 0.42 (3) 0.44 (4) 0.37 (3) 0.34 (4)

STL10 DTA 0.07 (1) 0.05 (2) 0.10 (1) 0.07 (1) 0.17 (1) 0.13 (2)

MA-PA 0.24 (2) 0.10 (3) 0.18 (2) 0.14 (3) 0.21 (2) 0.16 (3)

MAGAN 0.27 (3) 0.05 (1) 0.24 (3) 0.08 (2) 0.23 (3) 0.11 (1)

SSMA 0.36 (4) 0.32 (4) 0.40 (4) 0.36 (4) 0.26 (4) 0.17 (4)

SWISSR-SCURVE DTA 0.01 (1) 0.00 (1) 0.02 (2) 0.00 (1) 0.03 (2) 0.00 (1)

MA-PA 0.05 (2) 0.00 (3) 0.02 (1) 0.01 (3) 0.01 (1) 0.02 (4)

MAGAN 0.15 (4) 0.00 (2) 0.19 (4) 0.01 (2) 0.17 (4) 0.00 (2)

SSMA 0.14 (3) 0.08 (4) 0.15 (3) 0.09 (4) 0.13 (3) 0.01 (3)
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Overall, DTA achieves the best results in this metric for the various types
of comparisons. MAGAN performs considerably well for MNIST-Double, but it
tends to have the worst performance in the more complex single-cell datasets.

3.1 Partial Alignment

Here we show the ability of DTA to perform partial alignment. Figure 2 demon-
strates this scenario where the data in one or both domains is not completely
represented in the other. If, for instance, we use MAGAN to perform the align-
ment, the nature of its min-max game will map samples from one domain into
high density regions of the other. This causes false positive correspondences,
and an incorrect alignment for some portions of the data. In contrast, DTA can
handle this scenario in a data-driven way. The idea is to select a value of M in
(3), that corresponds to the mass from Φ1 that has an actual counterpart in Φ2.
We select M using the normalized transportation cost: NTC =

∑
ij DijTij

M .
After selecting a grid of values for M ranging from 0 to 1, we solve (3) for

each particular value and compute its corresponding NTC. The transportation
cost for observations far away from the known correspondences (i.e. points that
are present in only one of the domains) starts to increase rapidly after a certain
threshold that likely corresponds to the case where all of the shared points
have been aligned. Thus the selected mass M to be transported is computed by
identifying a knee point in the NTC vs M plot (Fig. 2B).

Fig. 2. Partial alignment. We subset both domains of the MNIST-Double dataset
such that both domains contain specific regions with no counterpart in the other
domain. A) Domain specific 2D UMAP [26] embeddings and dashed lines connecting
the a priori known correspondences. B) Knee plot used to indentify the optimal mass
M to be transported. C) Joint embedding of both domains after alignment, colored by
labels and domain membership. DTA is able to retain domain-specific regions separate,
while combining successfully the true counterparts. In contrast, MAGAN maps regions
of Φ1 to non-corresponding counterparts in Φ2.

A quantitative evaluation of DTA and MAGAN in this scenario is presented
in Table 4. After finding the min-max normalized coupling matrix T , we com-
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pute W via (5) and transform it to a distance matrix used in a kNN classifier.
The test accuracy values are reported and, as expected, the results show how
MAGAN maps observations close to incompatible regions on Φ2, deteriorating
the performance of the classifier.

Table 4. Test accuracy for the partial alignment experiments. DTA outperforms
MAGAN.

Dataset Model KNN-1 KNN-10

1% 2% 5% 10% 1% 2% 5% 10%

MNIST-Double (P) DTA 0.821 0.861 0.882 0.887 0.900 0.917 0.924 0.926

MAGAN 0.583 0.663 0.720 0.743 0.753 0.801 0.827 0.836

RNA-ADT (P) DTA 0.820 0.831 0.844 0.849 0.910 0.910 0.912 0.919

MAGAN 0.627 0.655 0.675 0.679 0.692 0.719 0.726 0.726

4 Conclusion

We introduced Diffusion Transport Alignment (DTA), a manifold alignment
method that exploits prior known correspondences between two related domains.
We showed that DTA is superior to previous state-of-the-art manifold alignment
methods by various metrics of comparison. DTA is able to recover meaningful
connections that can be leveraged for downstream analysis tasks that may be
otherwise difficult to perform. We also showed that partial manifold alignment
can be handled by DTA, reducing the likelihood of falsely connecting points
between domains, whereas previous methods are not naturally equipped to tackle
this case.
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PKDD 2014. LNCS (LNAI), vol. 8724, pp. 274–289. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44848-9 18

11. Cui, Z., Chang, H., Shan, S., Chen, X.: Generalized unsupervised manifold align-
ment. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

12. Demetci, P., Santorella, R., Sandstede, B., Noble, W.S., Singh, R.: SCOT: single-
cell multi-omics alignment with optimal transport. J. Comput. Biol. 29(1), 3–18
(2022)

13. Gao, G., Ma, H.: Multi-modality movie scene detection using kernel canonical cor-
relation analysis. In: Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pp. 3074–3077. IEEE (2012)

14. Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body
sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80
(2017)

15. Ham, J.H., Lee, D.D., Saul, L.K.: Learning high dimensional correspondences from
low dimensional manifolds (2003)

16. Ham, J., Lee, D., Saul, L.: Semisupervised alignment of manifolds. In: International
Workshop on Artificial Intelligence and Statistics, pp. 120–127. PMLR (2005)

17. Hu, J., Hong, D., Zhu, X.X.: MIMA: mapper-induced manifold alignment for semi-
supervised fusion of optical image and polarimetric SAR data. IEEE Trans. Geosci.
Remote Sens. 57(11), 9025–9040 (2019)

18. Katz, O., Talmon, R., Lo, Y.L., Wu, H.T.: Alternating diffusion maps for multi-
modal data fusion. Inf. Fusion 45, 346–360 (2019)

19. Kuchroo, M., Godavarthi, A., Tong, A., Wolf, G., Krishnaswamy, S.: Multimodal
data visualization and denoising with integrated diffusion. In: 2021 IEEE 31st
International Workshop on Machine Learning for Signal Processing (MLSP), pp.
1–6. IEEE (2021)

20. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by
diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1784–1797 (2006)

21. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods,
challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

22. Lindenbaum, O., Yeredor, A., Salhov, M., Averbuch, A.: Multi-view diffusion maps.
Inf. Fusion 55, 127–149 (2020)

23. Liu, J., Huang, Y., Singh, R., Vert, J.P., Noble, W.S.: Jointly embedding multiple
single-cell omics measurements. In: Algorithms in bioinformatics:... International
Workshop, WABI..., Proceedings. WABI (Workshop), vol. 143. NIH Public Access
(2019)

24. Liu, Z., Wang, W., Jin, Q.: Manifold alignment using discrete surface RICCI flow.
CAAI Trans. Intell. Technol. 1(3), 285–292 (2016)

http://arxiv.org/abs/2002.08276
https://doi.org/10.1007/978-3-662-44848-9_18


Diffusion Transport Alignment 129

25. Lu, Y., Chen, L., Saidi, A.: Optimal transport for deep joint transfer learning.
arXiv preprint arXiv:1709.02995 (2017)

26. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

27. Moon, K.R., et al.: Visualizing structure and transitions in high-dimensional bio-
logical data. Nat. Biotechnol. 37(12), 1482–1492 (2019)
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Abstract. Modern machine learning models are often constructed tak-
ing into account multiple objectives, e.g., minimizing inference time while
also maximizing accuracy. Multi-objective hyperparameter optimization
(MHPO) algorithms return such candidate models, and the approxima-
tion of the Pareto front is used to assess their performance. In practice,
we also want to measure generalization when moving from the valida-
tion to the test set. However, some of the models might no longer be
Pareto-optimal which makes it unclear how to quantify the performance
of the MHPO method when evaluated on the test set. To resolve this,
we provide a novel evaluation protocol that allows measuring the gen-
eralization performance of MHPO methods and studying its capabilities
for comparing two optimization experiments.

1 Introduction

Multi-objective hyperparameter optimization (MHPO; Feurer and Hutter, 2019;
Karl et al., 2022; Morales-Hernández et al., 2021) and multi-objective neural
architecture search (MNAS; Benmeziane et al., 2021; Elsken et al., 2019b)
are becoming increasingly important and enable moving beyond the purely
performance-driven selection of machine learning (ML) models. Important addi-
tional objectives are, for example, model size, inference time and the number of
operations (Elsken et al., 2019a), interpretability (Molnar et al., 2020), feature
sparseness (Binder et al., 2020), or fairness (Chakraborty et al., 2019; Cruz et al.,
2021; Schmucker et al., 2021). To evaluate and compare multi-objective methods,
papers often report the hypervolume indicator of the Pareto front approximation
as a measure of optimization performance.

However, as we show in this paper, an ML model that is located on the
approximated Pareto front on the validation set can become a dominated model
on the test set and vice versa. This phenomenon makes it impossible to compute
the hypervolume indicator using the canonical train-validation-test evaluation
protocol (Raschka, 2018). To remedy this, we propose a novel evaluation pro-
tocol that takes such models into account in order to lay a solid foundation for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 130–142, 2023.
https://doi.org/10.1007/978-3-031-30047-9_11
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multi-objective hyperparameter optimization. In addition, we also conduct an
initial study in which we use this evaluation protocol to compare the hyperpa-
rameter optimization of two machine learning algorithms.

This paper is structured as follows. First, in Sect. 2, we give background on
multi-objective optimization. In Sect. 3, we then discuss the problem of evaluat-
ing generalization performance on a test set and the problems of a naive solution.
We go on and describe our new protocol in Sect. 4 and exemplify it in Sect. 5.
Then, we describe how multi-objective generalization was (not) measured in
related work in Sect. 6 before concluding the paper in Sect. 7.

We provide Python code to reproduce our experiments at
https://github.com/automl/IDA23-MindTheGap.

2 Background

In the remainder of this paper, we follow the notation from Karl et al., (2022)
and aim to minimize the multi-objective function c : Λ → R

M defined as
minλ∈Λ c(λ) = minλ∈Λ (c1(λ), . . . , cM (λ)), where each ci : Λ → R denotes
the cost of hyperparameter configuration (HPC) λ ∈ Λ according to one cost
metric i ∈ (1, . . . ,M). Since, typically, there is no total order on the space of
objectives R

M , and hence there usually is no single best objective value, we
now consider Pareto-dominance and Pareto-optimality instead. Given a func-
tion c : Λ → R

M , we define a binary relation ‘≺’ on R
M × R

M . Given two cost
vectors ζ(1), ζ(2) ∈ R

M , defined as ζ(1) = c(λ(1)) and ζ(2) = c(λ(2)), we say ζ(1)

dominates ζ(2), written as ζ(1) ≺ ζ(2), if and only if

∀k ∈ {1, ...,M} : ζ
(1)
k ≤ ζ

(2)
k ∧ ∃l ∈ {1, ...,M} : ζ

(1)
l < ζ

(2)
l .

We similarly define a dominance relationship for configurations λ: A configu-
ration λ(1) dominates another configuration λ(2), so λ(1) ≺ λ(2). if and only
if c(λ(1)) ≺ c(λ(2)). The non-dominated set of solutions, the Pareto front P,
is then given by P = {ζ ∈ c(Λ) | � ζ′ ∈ c(Λ) s.t. ζ′ ≺ ζ} and conversely, the
Pareto set as the pre-image of P: PΛ = c−1(P) = {λ ∈ Λ | � λ′ ∈ Λ s.t. λ′ ≺ λ}.

An MHPO algorithm then aims to return the best approximation of the Pareto
front, trading off all given objectives. To obtain candidate HPCs λ(i), an MHPO
algorithm iteratively generates and evaluates HPCs {λ(1),λ(2), . . . ,λ(T )}. In the
next step, the MHPO algorithm1 compares the performance of all evaluated solu-
tions to obtain the subset of HPCs P̃Λ ⊆ {λ(1),λ(2), . . . ,λ(T )} approximating the
Pareto set and thereby also the Pareto front.2

The literature provides several quality metrics for Pareto-optimal sets focus-
ing on different aspects (Emmerich and Deutz, 2018; Zitzler et al., 2000, 2003):

1 In principle, this is agnostic to the capability of the HPO algorithm to consider mul-
tiple objectives. Any HPO algorithm (including random search) would suffice since
one can compute the Pareto-optimal set post-hoc.

2 The true Pareto front is only approximated because there is usually no guarantee that
an MHPO algorithm finds the optimal solution. Furthermore, there is no guarantee
that an algorithm can find all solutions on the true Pareto front.

https://github.com/automl/IDA23-MindTheGap
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(1) Approximation quality of the Pareto front, (2) a good (often uniform) distri-
bution of solutions, and (3) diversity w.r.t. to the values for each metric. Here,
we consider the commonly used hypervolume indicator (Karl et al., 2022), i.e.,
the volume of the objective space covered by the dominating solutions w.r.t. a
reference point. The hypervolume indicator mostly considers (1), and it can be
used to capture the performance of an MHPO experiment in a single value.

While we discuss our work in the context of MHPO, the background, problem,
and proposed solution also apply to other multi-objective optimization problems
which involve separate validation and test sets, such as neural architecture search
(NAS; Elsken et al., 2019b), Automated Machine Learning (AutoML; Hutter et
al., 2019), or ensemble learning.

3 Evaluating Generalization

Having discussed how to evaluate an MHPO method in general, we now turn
to the problem that in ML, the predictive performance is usually measured
on unseen test data. To highlight the challenges, we summarize the standard
evaluation protocol, describe a previously unknown failure mode, hypothesize a
naive solution and point out two potential issues of such a naive solution.

In MHPO, we typically tune the hyperparameters of an ML model on a super-
vised ML task, e.g., classification, with dataset D = [(x, y)(1), . . . , (x, y)(d)]. We
consider minimizing data-based costs ci that estimate an empirical risk w.r.t. to
the entire data distribution, e.g., the empirical risk, fairness metrics, or explain-
ability scores (in contrast to model-based costs, such as inference time or model
size). Because we only have access to a finite sample from the entire data dis-
tribution, we estimate this risk using the canonical train-validation-test proto-
col (Raschka, 2018), which trains models on the train portion of the data, and
validation & test costs are estimated on the respective data splits (one could also
use other protocols, such as cross-validation with a test set). Empirically esti-
mating validation and test costs induces separate estimation errors. Validation
set quantities are used for MHPO and to approximate the Pareto front. This
approximation is then evaluated on the test set to obtain an unbiased estimate
of the generalization error and also to measure the performance of MHPO.

Problems in the Multi-objective Setting. Due to these separate estimation
errors, an HPC deemed Pareto-optimal on the validation set is not necessarily
Pareto-optimal on the test set.3 We visualize this in Fig. 1. On the left-hand side,
the Pareto front approximation generalizes well to the test set. In the middle, all
HPCs are still Pareto-optimal but switch order, which could lead to unexpected
performance degradation when selecting an HPC to deploy in practice. However,
on the right-hand side, two HPCs are no longer Pareto-optimal, i.e., the Pareto
front approximation does not generalize to the test set and contains dominated

3 This is due to a shift in distributions when going from the validation set to the
test set due to random sampling. The HPC might then no longer be optimal due to
overfitting.
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Fig. 1. We visualize validation (orange) and test performance (green) of the Pareto set,
as found on the validation data set. Considering test performance, (a) all configurations
are non-dominated, (b) the configurations are still Pareto-optimal, but switch order,
and (c) the configurations are no longer Pareto-optimal. (Color figure online)

solutions. We would like to highlight that the two problems depicted in the two
right-most plots were so far not discussed in the literature, yet, their existence
thwarts the evaluation of MHPO algorithms.

A Naive Solution. Discarding dominated solutions based on the test set –
which would not be possible in practice because we can only access test labels
once in the end to compute final performance – would enable us to compute the
hypervolume indicator. For this, we can either consider all evaluated HPCs (as
common in assessing the performance of multi-objective methods) or expect the
MHPO method to return a reasonable subset (which it believes to be Pareto-
optimal). Then, we evaluate these HPCs on the test set, compute the Pareto front
approximation based on the test scores, and finally calculate the hypervolume
indicator. Unfortunately, this raises the following two issues.

Issue 1: Overestimation. We discard dominated points and thus overestimate
the true hypervolume of the returned solutions, i.e., ignore solutions that are no
longer part of the Pareto set, as displayed in the left-hand-side plot in Fig. 2. In
practice, a user could pick one of the discarded solutions (based on its validation
performance) and observe a worse performance than what we computed as the
generalization performance of the optimization method.

Issue 2: Test data leakage. An adversarial MHPO method could exploit this
procedure by returning as many models as possible and thus implicitly selecting
its Pareto-optimal set based on the test set, as visualized in the middle of Fig. 1.
While such a system would seemingly obtain a good score, its benefit in practice
is limited.

These two issues emphasize the need for a new evaluation protocol that can
detect these issues so that we can develop MHPO methods that return reliable
Pareto front approximations.
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Fig. 2. We visualize validation (orange) and test performance (green/pink) of the
Pareto set, as found on the validation data set. Left: We show that ignoring dominated
points on the test set leads to an overestimation of the hypervolume indicator. Middle:
We show how adversarial MHPO can return points that lead to an increased hyper-
volume on the test data. Right: We show our proposed optimistic Pareto-set (green),
pessimistic Pareto-set (pink), and the approximation gap between the optimistic and
pessimistic Pareto-set (pink area). (Color figure online)

4 A New Protocol to Measure Generalization

We propose a new evaluation protocol to assess the performance and robustness
of an MHPO method reliably. We introduce the concept of optimistic and pes-
simistic approximations of the Pareto front. We visualize this on the right-hand
side of Fig. 2. Given an approximation of a Pareto front P̃ that was computed
using the validation split of a data set, we formally define the optimistic Pareto
front as

Poptimistic = {ζ ∈ c(P̃) | � ζ′ ∈ c(P̃) s.t. ζ′ ≺test ζ}, (1)

where ≺test denotes a dominance relationship between costs ζ and ζ′ evaluated
on the test set instead of the validation set. Similarly, we define the pessimistic
Pareto front as

Ppessimistic = {ζ ∈ c(P̃) | � ζ′ ∈ c(P̃) s.t. ζ ≺test ζ′}. (2)

Then, we can compute the hypervolume for both approximations. The difference
between both volumes indicates how robust the Pareto front approximation is
when going to test data, and we refer to it as the approximation gap. If it is zero,
the Pareto set remains identical when moving from validation to test data. If it
is greater than zero, then returned HPCs are dominated on the test data.

We can now compare two MHPO methods, A and B, based on their hyper-
volume using the following three criteria: (1) hypervolume difference: by check-
ing if the optimistic estimate of the hypervolume of an MHPO method A is
smaller than the pessimistic estimate of the hypervolume of an MHPO method
B, (2) dominance: by using the notion of the optimistic and pessimistic Pareto



Measuring Generalization Performance Across Multiple Objectives 135

set to check if pessimistic Pareto front approximation of A dominates the opti-
mistic Pareto front approximation of B, following the popular idea of Pareto
front dominance (Emmerich and Deutz, 2018), and (3) approximation gap: by
comparing the gap between the optimistic and pessimistic hypervolume across
MHPO methods whereas a smaller gap indicates a more robust approximation
of the Pareto front.

5 Experimental Evaluation

In this section, we first show that the approximation gap appears in practice and
second, experimentally check whether we can now compare algorithms again.

5.1 Demonstration of Approximation Gap

We first demonstrate the existence of the approximation gap by tuning the hyper-
parameters of a machine learning algorithm. Concretely, we tune the hyperpa-
rameters of a random forest model (Breiman, 2001) with 40 iterations of ran-
dom search (Bergstra and Bengio, 2012) on the German credit dataset (Dua
and Graff, 2017). We provide the configuration space and dataset description in
Appendix A. We use precision and recall as objectives, motivated by the fact
that both are often ad-hoc combined into the F1 score (Manning et al., 2008)
despite this being an inherently multi-objective problem. Following Horn and
Bischl, (2016), we tune class weights to account for the unbalanced targets. We
split the dataset into 60% train, 20% valid, and 20% test data. For every HPC,
we train a single model, record the precision and recall metrics on both the
validation and test set and visualize the results in Fig. 3.

The plots are similarly structured as Figs. 1 and 2, and we depict validation
performance (in orange) and test performance (in green) w.r.t. both objectives
for all evaluated HPCs. The left-hand-side plot highlights the validation losses
and the approximation of the Pareto front using the validation set. The middle
plot shows how the performance changes when evaluating these HPCs on the
test set. Furthermore, we show the hypothetical true Pareto-set P̃test on the
test data (which we cannot compute in practice; in grey). The right-hand-side
plot shows the optimistic (in green) and pessimistic Pareto-set (in pink), which
we described above. We observe P̃test ≺ Poptimistic ≺ Ppessimistic, while perfect
generalization to the test set would give us P̃test = Poptimistic = Ppessimistic.

5.2 Can We Compare Two Algorithms Again?

Having seen the approximation gap, we now experimentally check whether the
three criteria introduced in Sect. 4 enable comparisons between two different
algorithms again. For this, we optimize the hyperparameters of a random forest
and a linear classifier with random search for 50, 100, 200, and 500 iterations. We
use the same experimental setup and configuration space for the random forest
as above and display the configuration space for the linear model in Appendix A.
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Fig. 3. Precision vs Recall. The left plot focuses on the validation error, the middle
plot depicts the test error of points from the Pareto set on the validation set, and the
right-hand-side plot depicts the approximation of the optimistic and the pessimistic
Pareto sets. (Color figure online)

Table 1. Hypervolume indicators and approximation gap obtained by random search
optimizing the hyperparameters of a random forest (top) and a linear model (bottom).

50 100 200 500

Random Forest Validation HV 0.5660 0.6357 0.6426 0.6563

Pessimistic HV 0.5651 0.5972 0.6060 0.5721

Optimistic HV 0.5833 0.6128 0.6272 0.6382

Approximation Gap 0.0181 0.0156 0.0212 0.0661

Linear Model Validation HV 0.5804 0.5943 0.6330 0.6340

Pessimistic HV 0.5970 0.5628 0.5860 0.5641

Optimistic HV 0.5989 0.5798 0.5994 0.5918

Approximation Gap 0.0009 0.0170 0.0134 0.0277

First, we show the hypervolume indicator on the validation set, the pes-
simistic and optimistic hypervolume indicator, and the approximation gap in
Table 1. As expected, we see that the validation hypervolume increases mono-
tonically with more function evaluations, and after 100 function evaluations, the
random forest has a larger validation hypervolume than the linear model, even
with 500 function evaluations. Next, we look at the pessimistic and optimistic
hypervolume. We can observe that there is no guarantee that they increase
together with the validation hypervolume, which means that solutions obtained
on the validation set do not generalize to the test set. This can be seen, for exam-
ple, for the random forest, where the pessimistic hypervolume decreases when
going from 200 to 500 function evaluations, while the optimistic hypervolume
increases. For the linear model, we can even observe that both the optimistic
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Fig. 4. Optimistic and pessimistic Pareto fronts for the random forest (left), the lin-
ear model (middle), and both (right) after 200 iterations of random search. For both
models, we plot the pessimistic Pareto front in a darker color and using circle markers
and the optimistic Pareto front in a lighter color and using star markers; and we use
the same colors in the plot on the right-hand side. Furthermore, in the left and mid-
dle plots, we also give the validation Pareto front in light orange (similar to Fig. 3).
(Color figure online)

and pessimistic hypervolume decrease, which can be seen when going from 50
to 100 and from 200 to 500 function evaluations. We can now also compare
the two algorithms by comparing the hypervolume indicators (method (1) from
Sect. 4), checking whether the pessimistic hypervolume indicator of one algo-
rithm is larger than the optimistic hypervolume indicator of the other. Using
this comparison method, we can conclude (1) that the linear model performs
better than the random forest after 50 MHPO function evaluations, (2) that we
cannot make a statement about 100 function evaluations, (3) that the random
forest is better after 200 function evaluations, and (4) that we cannot make a
statement at 500 function evaluations.

Second, we display the Pareto fronts of the two optimized algorithms in
Fig. 4 to check whether one Pareto front dominates the other (method (2) from
Sect. 4). We display results after 200 function evaluations, i.e., when the pes-
simistic hypervolume of the random forest is higher than the optimistic hyper-
volume of the linear model. This hypervolume dominance is a necessary but not
a sufficient condition for Pareto front dominance. In this case, there are indeed
solutions for the linear model (denoted as SGD) that are not dominated by the
Pareto front of the random forest, making it impossible to state that one model
is generally better than the other.

Finally, we examine the approximation gap of the two MHPO algorithms
(method (3) from Sect. 4). The approximation gap is not a monotonic function.
It can decrease when the number of function evaluations of the search algo-
rithm increases (random forest from 50 to 100 function evaluations and linear
model from 100 to 200 function evaluations). However, the approximation gap
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can become quite large as we can observe for the random forest with 500 func-
tion evaluations, where its size is 10% of the optimistic hypervolume. Also, the
approximation gap can be larger than any hypervolume measurement over time,
and we argue that this makes it impossible to conclude whether the tuned algo-
rithm actually has improved. On a positive note, we also observe that the two
different algorithms appear to have different approximation gaps, which suggests
that there are machine learning models that provide more stable solutions.

We conclude this section by answering the question in the section name: yes,
the new evaluation protocol allows us to measure the generalization performance
of an MHPO algorithm and thereby also to compare two MHPO algorithms or
two machine learning models optimized by one MHPO algorithm again.

6 Prior Evaluation Protocols for Multi-objective
Optimization

This section reviews how prior works address the problem of measuring gener-
alization performance in a multi-objective setting. We would first like to note
that our setup differs from standard optimization problems under noise since
we cannot recover the true function value by repeatedly evaluating the function
of interest.4 However, in our case, the performance of a model selected on the
validation set suffers from a distribution shift on the test set. We are unaware of
a method for describing such distribution shifts that happen when moving from
the validation to the test set.5

To the best of our knowledge, no one has yet explicitly studied how to measure
the generalization error of HPCs for machine learning models in a multi-objective
setting. We found two works that evaluate multi-objective generalization: Horn
et al., (2017) use the naive protocol we outline above, and Binder et al., (2020)
solely compute, what we call, the optimistic Pareto front. Nonetheless, we would
like to emphasize that these works employ these measures in an ad-hoc fashion
without any discussion or justification. In contrast, we thoroughly introduce the
approximation gap and the concepts behind it. In the field of MHPO, we found
that researchers so far use scalarization to choose a final model to evaluate (Cruz
et al., 2021), pick a model based on a single metric (Gardner et al., 2019), or
use handcrafted heuristics to select a final model (Feffer et al., 2022).

A similar problem exists for constrained optimization: a solution that satis-
fies the constraints on the validation set can violate the constraint on the test
set. Hernández-Lobato et al., (2016) found that “When the constraints are noisy,

4 If the true function values of evaluated configurations cannot be recovered due to
budget restrictions, our proposed evaluation protocol can be applied as well to deal
with solutions that are no longer part of the Pareto front on the test set.

5 Distributionally Robust Bayesian Optimization (Kirschner et al., 2020) is an algo-
rithm that could be used in such a setting and the paper introducing it explicitly
states AutoML as an application, but does neither demonstrate its applicability
to AutoML nor elaborates on how to describe the distribution shift in a way the
algorithm could handle it.
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reporting the best observation is an overly optimistic metric because the best fea-
sible observation might be infeasible in practice” and evaluate a “ground-truth
score” by evaluating the final recommendation multiple times, treating a con-
strained violation as 100% classification error. They tuned a neural network on
MNIST under inference time constraints and tuned Hamiltonian Monte Carlo
under the constraint that the generated samples pass convergence diagnostic
tests. In the field of noisy constrained Bayesian optimization, researchers have
suggested an identification step to select the best point after optimization (Gel-
bart et al., 2014), and Letham et al., (2018) study the proportion of replicates
in which the proposed method manages to find suitable solutions, but without
scalarizing the final objective as done by Hernández-Lobato et al., (2016).

Moreover, for the problem of multi-objective ranking and selection (identifi-
cation of the Pareto set from a finite set of choices), the F1 metric was proposed
for judging the final result (Gonzalez et al., 2022). However, this does not quan-
tify the solution quality in performance space. Last, the terminology of optimistic
and pessimistic Pareto set has also been used in the context of approximating a
Pareto front from the predictions of a probabilistic model (Iqbal et al., 2020).

7 Conclusions and Future Work

We have demonstrated that the standard evaluation protocol for single-objective
HPO is inapplicable in the multi-objective setting and, as a remedy, introduced
optimistic and pessimistic Pareto sets. Based on these, we can compare multi-
objective algorithms using the hypervolume difference, dominance, or the new
approximation gap. Furthermore, we can detect if the MHPO algorithm leads to
an unstable solution, i.e., a large approximation gap, the analogue to over-fitting
in single-objective optimization. In an experimental study, we have verified the
existence of the approximation gap and demonstrated that we can now compare
two machine learning models optimized for multiple metrics again.

In the future, we plan to (1) measure the effect of this problem over a large
number of datasets and varying numbers of function evaluations, (2) extend our
analysis to take measurement noise into account and (3) extend our protocol to
multiple repetitions and cross-validation. Furthermore, we want to (4) evaluate
additional multi-objective problems, e.g., trading off true-positive rates and false-
positive rates (Horn and Bischl, 2016; Karl et al., 2022; Levesque et al., 2011) or
fairness and predictive performance (Chakraborty et al., 2019; Cruz et al., 2021;
Schmucker et al., 2021) and (5) study the related problem of distribution shifts
in data streams.
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A Experimental Details

Random Forest Linear Model

Hyperparameter name Search space Hyperparameter name Search Space

criterion [gini, entropy] penalty [l2, l1, elasticnet]

bootstrap [True, False] alpha [1e− 6, 1e− 2], log

max features [0.0, 1.0] l1 ratio [0.0, 1.0]

min samples split [2, 20] fit intercept [True, False]

min samples leaf [1, 20] eta0 [1e− 7, 1e− 1]

pos class weight exponent [−7, 7] pos class weight exp [−7, 7]

We provide the random forest and linear model search spaces in TableA.
We fit the linear model with stochastic gradient descent and use an adaptive
learning rate and minimize the log loss (please see the scikit-learn (Pedregosa
et al., 2011) documentation for a description of these). Because we are dealing
with unbalanced data, we consider the class weights as a hyperparameter and
tune the weight of the minority (positive) class in the range of [2−7, 27] on a
log-scale (Horn and Bischl, 2011; Konen et al., 2016). To deal with categorical
features, we use one hot encoding. We transform the features for the linear
models using a quantile transformer with a normal output distribution.

We use the German credit dataset (Dua and Graff, 2017) because it is rela-
tively small, leading to high variance in the algorithm performance, and unbal-
anced. We downloaded the dataset from OpenML (Vanschoren et al., 2014) using
the OpenML-Python API (Feurer et al., 2021) as task ID 31, but conducted our
own 60/20/20 split. It is a binary classification problem with 30% positive sam-
ples. The dataset has 1000 samples and 20 features. Out of the 20 features, 13
are categorical. The dataset contains no missing values.
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Abstract. Knowledge graphs (KGs) are key tools in many AI-related
tasks such as reasoning or question answering. This has, in turn, pro-
pelled research in link prediction in KGs, the task of predicting miss-
ing relationships from the available knowledge. Solutions based on
KG embeddings have shown promising results in this matter. On the
downside, these approaches are usually unable to explain their pre-
dictions. While some works have proposed to compute post-hoc rule
explanations for embedding-based link predictors, these efforts have
mostly resorted to rules with unbounded atoms, e.g., bornIn(x, y) ⇒
residence(x, y), learned on a global scope, i.e., the entire KG. None of
these works has considered the impact of rules with bounded atoms such
as nationality(x,England) ⇒ speaks(x,English), or the impact of learning
from regions of the KG, i.e., local scopes. We therefore study the effects
of these factors on the quality of rule-based explanations for embedding-
based link predictors. Our results suggest that more specific rules and
local scopes can improve the accuracy of the explanations. Moreover,
these rules can provide further insights about the inner-workings of KG
embeddings for link prediction.

Keywords: knowledge graph embeddings · explainable AI

1 Introduction

The continuous advances in information extraction on the Web have given rise to
large repositories of machine-friendly statements modeled as knowledge graphs
(KGs). These are collections of facts of the form p(s, o) that describe real-world
entities, e.g., capital(Italy,Rome). In this formalism, the predicate p in a state-
ment p(s, o) can be seen as a directed labeled edge that connects the subject s
to the object o. KGs allow computers to “understand” the real world, and find
applications in multiple AI-related tasks such as entity-centric IR, reasoning,
question answering, smart assistants, etc. Since KGs usually suffer from incom-
pleteness, a central task in KGs is link prediction, where the goal is to infer new
facts from the available knowledge. Link prediction constitutes a fundamental
step towards proper knowledge graph completion.
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Approaches for link prediction in KGs abound and fall mainly into two
paradigms. On the one hand, symbolic methods [12,16,19] mine explicit patterns
on the graph, e.g., the rule capital(x, y) ⇒ inCountry(y, x), and use those pat-
terns to infer new relationships between entities. On the other hand, approaches
based on latent factors [4,21,22,29,31,34] embed predicates p and entities s, o
in a latent space driven by a score function that ranks true facts better than
false ones. For example, TransE [4] learns d-dimensional embeddings (in bold)
for predicates and entities such that s+p ≈ o, if p(s, o) holds in reality. TransE’s
score function for facts is then −‖s + p − o‖l (l = {1, 2}).

Embedding-based methods have exhibited promising performance for link
prediction, however their main downside is that they operate as black boxes: one
cannot obtain an explanation of the logic behind a predicted fact p(s, o) from the
latent representations of s, p, and o. This has therefore motivated some works on
mining rule-based explanations for KG embeddings [7,9,26,27]. Those explana-
tions can help us, for instance, verify if the embeddings meet expected reasoning
guarantees such as transitivity, i.e., p(x, z) ∧ p(z, y) ⇒ p(x, y), or detect biases
in the data. It is known that redundancy in the form of inverse predicates, e.g.,
hyponym(feline, cat), hypernym(cat, feline) in benchmark datasets, led to over-
estimated accuracies for state-of-the-art embedding-based link predictors [3,18].
Had a mechanism to understand that the embeddings mainly captured patterns
such as hyponym(x, y) ⇒ hypernym(y, x), this issue could have been detected in
advance.

A limitation of existing explanations for KG embeddings is that they only
capture global inference patterns. This is tantamount to mining explanations in
the language of unbounded atoms, i.e., rules with no constants in the arguments
such as bornIn(x, z) ∧ officialLang(z, y) ⇒ speaks(x, y), that hold globally, that
is, on the entire KG. However, such rules cannot express specific entity asso-
ciations such as nationality(x,USA) ⇒ speaks(x,English), presumably captured
by link predictors. On those grounds, Sect. 4 addresses the following research
question (RQ1): what is the impact of specific rules in the quality of
the explanations for embedding-based predictors?. Moreover, and in line
with existing works in interpretable AI [23,24], we also study a second research
question (RQ2): how does learning explanation rules on specific regions
of the KG, i.e., local explanations, impact the quality of the resulting
rules?. Before answering these questions, we discuss basic concepts and related
work in Sect. 2, and explain how to compute rule-based explanations for link
predictors in Sect. 3.

2 Preliminaries

2.1 Background Concepts

Knowledge Graphs. A knowledge graph K = (V, E , lv, le) is a directed labeled
graph with sets of vertices V and edges E , where the injective functions lv :
V → I, le : E → P assign labels to the vertices and edges. The sets I and P
contain entity and predicate labels. An edge labeled capital departing from a
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vertex labeled France to a vertex labeled Paris denotes the statement or fact
capital(France,Paris), i.e., France has capital Paris. Hence, a KG K ⊂ I ×P ×I
is also a set of facts p(s, o) with subject s, predicate p, and object o. Usually,
standard KGs store only facts believed to be true.

We define the potential set Ω(K) of a KG as the universe of facts that could
be constructed from the entities and predicates in K. More formally, Ω(K) =
Dv(K) × De(K) × Dv(K) where

Dv(K) = {lv(v) : v ∈ V}, De(K) = {le(e) : e ∈ E}

are the entity and predicate domains of K. Furthermore, we define the potential
set of a predicate p as Ω(K) ⊇ Ωp(K) = {p(s, o) : (s, o) ∈ Dp(K) × D̄p(K)} with

Dp(K) = {s : ∃o : p(s, o) ∈ K}, D̄p(K) = {o : ∃s : p(s, o) ∈ K}.
Ωp(K) therefore defines the set of all possible facts that could be constructed
with the known subjects and objects of predicate p.

Horn Rules. An atom A is a statement with constant predicate such that its
subject and object arguments can be variables v ∈ V with V ∩ I = ∅. If A
has only variable arguments, we say A is unbounded, otherwise it is bounded.
A Horn rule R is a statement of the form B ⇒ H where the body B is
a conjunction of atoms

∧
1≤i≤n Ai, and H is the head atom. For instance,

the rule parent(x, z) ∧ nationality(z, y) ⇒ nationality(x, y) states that parents
and children have the same nationality. These rules usually come with scores
that quantify their precision. It is common to require atoms in rules to have
at least one variable, be transitively connected, and form safe rules, that is,
ensure that the head variables occur also in the body. This condition guaran-
tees that the head variables are universally quantified, allowing for concrete
predictions via substitutions. A substitution σ : V → I is a partial mapping
from variables to constants, such that its application to atoms or rules replaces
each variable with its corresponding constant in the mapping. For example,
applying the substitution σ = {x → Marie Curie, y → France} to the atom
A : nationality(x, y), gives a new atom σ(A) : nationality(Marie Curie,France).
We say a rule R : B ⇒ H predicts a fact A′ in a KG K, denoted by R ∧ K  A′,
iff ∃ σ : (∀B ∈ B : σ(B) ∈ K) ∧ σ(H) = A′. Put differently a rule predicts a fact
A′ if there exist a substitution σ that (i) maps each atom in the rule’s body to a
known KG fact, and (ii) maps the head atom to A′. If R predicts a statement A′

and A′ ∈ K, we say that R predicts A′ correctly, i.e., the prediction is a known
fact, and we use the notation R ∧ K � A′.

Link Predictors. A link predictor f : Ω(K) → R is a function that scores
the facts in the potential set of a KG, usually assigning higher values to true
facts. Link predictors are mostly used to answer queries of the forms p(s, ?) or
p(?, o), in other words, queries that ask for the most likely subject or object of
a statement given the other two components. Embedding-based link predictors
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operate on latent representations for entities, predicates, and facts in Ω(K).
Hence, they actually have the form f = f̂ ◦ h, where f̂ : Ck → R

1 is a function
defined on a k-dimensional representation for facts, and h : Ω(K) → C

k maps
facts to k-dimensional vectors. If the semantics of the vector components are not
understandable to humans, we say that f is a black box. That is the case for
pure embedding-based link predictors such as TransE [4] or ComplEx [31].

Explanations. An explanation E = 〈R, g〉 for a black-box link predictor f :
Ω(K) → R consists of a set R of Horn rules and a function g : R → R that
attributes higher scores to rules that “agree” with f . A rule R : B ⇒ H agrees
with f , if R predicts a fact A ∈ Ω(K) also predicted by f . This definition assumes
the existence of a threshold θ such that f(A) ≥ θ is interpreted as the black box
also “thinking” that A is true. Explanations can be of different scope, namely
global when they are learned on the potential set Ωp(K) of a predicate p, or local
when they are learned on smaller regions of Ωp(K) as explained in Sect. 3.

2.2 Related Work

Link Prediction. This problem has received a lot of attention in the last 10
years with approaches lying on a spectrum from symbolic methods to embedding-
based techniques. We refer the reader to [14] for a comprehensive survey. Sym-
bolic techniques learn explicit patterns, e.g., arbitrary subgraphs, paths, associa-
tion rules, Horn rules, etc., from KGs and use those patterns as features to predict
missing links between entities [12,16,19]. In contrast, the common principle of
embedding-based methods is to model entities and predicates as elements in a
latent space, where predicates characterize interactions between entity embed-
dings. Those interactions are modeled as geometrical operations, e.g., translation
in TransE [4] where s + p ≈ o for true facts p(s, o) (s,p,o ∈ R

d), or rotation
in RotatE [30]. More recent methods resort to neural architectures [20,28] that
exploit the vicinity of entities in the graph to learn proper latent representations
for both entities and predicates.

In all cases, a scoring function – implemented by minimizing a loss function –
guides the training of the embeddings, which are learned to yield high scores for
true facts and low scores for false facts. The latter are obtained by corrupting
the true facts in the KG – a task of utter importance for the quality of the
embeddings [13,36].

Other methods combine the strengths of symbolic patterns and embed-
dings [6]. In [17], the authors improve the accuracy of different state-of-the-
art embedding-based link predictors by removing those predictions that are
not backed up by any of the Horn rules learned on the data. This strategy
is complemented with a combined ranking that takes into account the individ-
ual rankings given by the rules and the embeddings. Some approaches [1,13,35]
propose iterative algorithms that use rules and embeddings to produce better

1 Most methods embed the entities in real spaces, i.e., in R
k, but a few, e.g.,[31] resort

to vectors of complex numbers.
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examples for subsequent training. In contrast, other methods [11,25] instruct
the embeddings to comply to explicit reasoning patterns, e.g., transitivity,
p(x, z) ∧ p(z, y) ⇒ p(x, y).

Explaining the Black Box. Unlike symbolic approaches, link predictors based
on embeddings are black boxes. Hence, there have been some efforts to explain
their logic by mining explicit patterns [7,26,27] with attribution scores. Among
these patterns, Horn rules are the most popular. The rules are extracted using
state-of-the-art rule or path mining algorithms [2,8,15,16], whereas the attri-
bution scores are learned via machine learning, e.g., linear or logistic regres-
sion in the spirit of standard explanation techniques such as LIME [24]. Nev-
ertheless, none of these approaches exploits the power of Horn rules at its
best. For instance, [7,27] mine rule explanations of up to two atoms, e.g.,
bornIn(x, y) ⇒ livesIn(x, y), whereas DistMult [34] can only learn pure paths
such as bornIn(x, z) ∧ inCountry(z, y) ⇒ nationality(x, y). Hence, none of these
methods can induce explanations in the language of bounded atoms such as
nationality(x,UK) ⇒ speaks(x,English). Furthermore, all these endeavors mine
global explanations. Embedding-based models can, though, be very complex and
therefore hard to approximate in the general sense. Thus we explore the effects
of bounded atoms and locality in the quality of the explanations.

3 Explaining KG Embeddings for Link Prediction

Algorithm 1 describes a generic procedure to compute rule-based explanations
for a black-box link predictor f trained on a KG K, containing both true (K+)
and corrupted facts (K−), in line with existing approaches [7,26,27]. The rules
are learned on a context C consisting of facts of a given predicate p. We elaborate
on the stages of the algorithm and the different ways to define the learning
context.

Algorithm 1: Build Explanation
Input: link predictor f : Ω(K) → R trained on K = K+ ∪ K−, context

C ⊂ Ωp(K)
Output: an explanation E = 〈R, g〉 with set of rules R, g : R → R

1 K̂ := ∅
2 foreach A := p(s, o) ∈ C do
3 if f(A) ≥ θ then

4 K̂ := K̂ ∪ {pf (s, o)}
5 else

6 K̂ := K̂ ∪ {¬pf (s, o)}
7 R := rule mining on K ∪ K̂ for predicates pf , ¬pf

8 return build-rule-based-surrogate(R, K, K̂, f )
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Binarizing the Black Box. To learn Horn rules that mimic a black-box link
predictor f , we need to convert f ’s scores for facts into true or false verdicts. To
this end, lines 2–6 label each fact in the context C by computing f ’s score and
then applying a threshold to decide whether the fact is deemed true or not by
f . This set K̂ of annotated facts is represented by the surrogate predicates pf ,
¬pf . For instance the fact speaksf (A. Einstein,English) means that f “thinks”
that Einstein speaks English.

Rule Mining. Line 7 in Algorithm 1 learns a set R of Horn rules of the forms
B ⇒ pf (s, o) and B ⇒ ¬pf (s, o) with confidence scores from the original KG K
and the black-box annotated context K̂.

Learning the Explanation. Finally, line 8 uses the rules in R as features to
learn a surrogate model fs : R|R| → R that mimics the binarized f and provides
importance scores for the mined rules. Given a statement A = p̄f (s, o) ∈ K̂ with
p̄f ∈ {pf ,¬pf}, we encode A as a vector xA ∈ R

|R| such that its i-th entry is
set as follows:

xA[i] =

⎧
⎪⎨

⎪⎩

sgn(A) × conf (Ri) Ri ∧ (K ∪ K̂) � A

−sgn(A) × conf (Ri) Ri ∧ (K ∪ K̂)  A′ with A′ �= A

0 otherwise

Here sgn(A) = 1 if A = p̄f (s, o), otherwise sgn(A) = −1. If a rule Ri ∈ R
predicts correctly a statement A ∈ K̂, the i-th component of xA holds a value
equals the confidence of Ri (reported by the rule mining phase) with the same
polarity of f ’s prediction. In that case, the rule Ri agrees with f and is a potential
explanation for f ’s answer on A. If Ri is a potential explanation for some other
fact A′, we change the sign of confidence value. In any other case, we assign a
score of 0 to the entry. We use the xA vectors and the binarized labels – given by
sgn(A) – to train a surrogate logistic regression classifier fs, whose coefficients
define an attribution mapping g : R → R for rules – our explanation. The
surrogate fs can provide both binary labels and probability scores for facts, and
its coefficients can be used to rank the rules predicting true and false verdicts
pf (s, o),¬pf (s, o).

Explanation Context. Existing explanation approaches for KG embed-
dings [26,27] mine global explanations, where the context C given as input to
Algorithm 1 contains a large sample of true and false statements. The latter are
obtained by corrupting the true facts, so that for each fact p(s, o) we also add
{p(s′, o), p(s, o′)} (s �= s′, o �= o′). The resulting surrogate fs approximates f ’s
general logic when predicting p-labeled links.

A drawback of explanations based on global surrogates is that they assume
that rules have always the same importance for all p-labeled predictions. Such a
simplistic assumption can make explanation mining uninformative, if for exam-
ple, the black box has a fine-grained behavior, i.e., it implements different logics
for different regions of the KG. On those grounds, we propose to mine expla-
nations within a local scope obtained by calling Algorithm 1 on different sub-
contexts C ′ ⊆ C with triples that are close to each other in the latent space.
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These sub-contexts are obtained by applying agglomerative hierarchical clus-
tering on s ⊕ o, i.e., on the latent representation of pairs s, o for true facts
p(s, o) ∈ C2. We can also define per-instance contexts around a target fact
A = p(s, o) by calling Algorithm 1 on a sub-context C ′ = {A′ = p(s′, o) : A′ ∈
C} ∪ {A′ = p(s, o′) : A′ ∈ C} ∪ {A}, that is, on statements that share at least
one argument with A.

4 Evaluation

To answer our research questions, we study the impact of bounded atoms (RQ1)
and locality (RQ2) on the fidelity of rule explanations for embedding-based link
predictors through a quantitative and an anecdotal evaluation.

4.1 Experimental Setup

Datasets and Link Predictors. We use the benchmark datasets fb15k-237,
wn18rr, and yago3-10, on which we trained the bilinear methods ComplEx [31]
and HolE [21], and the translational approach TransE [4]. We used the imple-
mentations and data offered by the Torch-KGE library [5].

Rule Mining. We mine Horn rules with AMIE [15], a state-of-the-art rule
miner for large KGs. By default, AMIE mines closed Horn rules3 of up to 3
unbounded atoms, but it can be instructed to mine longer rules, as well as to
allow bounded atoms. Longer rules in combination with bounded atoms increase
significantly the search space for rules, therefore we did not experiment with
more than 3 atoms to avoid prohibitive runtimes [10]. AMIE does not support
explicit counter-examples to estimate the precision of rules, as required by Algo-
rithm 1, hence we extended the system to support explicit false facts in the
precision computation. These counter-examples were generated through a vari-
ant of Bernoulli sampling that accounts for predicate domains [33]. We use all
rules making at least 2 correct predictions with a precision of at least 10% to
learn the surrogate model (see Sect. 3).

Explanations. We compute rule-based explanations for the studied link pre-
dictors using the test instances of the experimental datasets to construct con-
texts C of different scopes, i.e., global, local, and per-instance as explained in
Sect. 3. For each call to Algorithm 1, we split C into train and test sets Ctrain

and Ctest (30%), so that we learn the explanations on Ctrain and evaluate them
on Ctest . Local clusters are computed using agglomerative hierarchical clustering
instructed to return k clusters. We chose the most performing value of k between
2 and 6.

2 ⊕ denotes concatenation; sub-contexts are corrupted to obtain counter-examples.
3 These are safe rules where each variable occurs in at least 2 atoms.



150 L. Galárraga

Table 1. Fidelity on fb15k-237. Best performances are in bold; best locality results
are underlined. The baseline B are global explanations with unbounded atoms. G, PI,
and L stand for global, per-instance, and local explanations.

ROC-AUC S-MRR O-MRR

Unbounded Bounded Unbounded Bounded Unbounded Bounded

B L PI G L PI B L PI G L PI B L PI G L PI

complex 0.71 0.68 0.64 0.93 0.93 0.95 0.13 0.16 0.19 0.31 0.35 0.44 0.97 1.00 0.97 0.97 0.98 0.93

transe 0.72 0.70 0.64 0.95 0.92 0.95 0.12 0.20 0.19 0.22 0.47 0.45 0.97 0.99 0.98 0.98 0.93 0.91

hole 0.66 0.63 0.60 0.98 0.99 0.99 0.08 0.16 0.22 0.27 0.36 0.50 0.98 0.98 0.97 0.98 1.00 0.97

Table 2. Fidelity of rule-based explanations with bounded atoms.

ROC-AUC S-MRR O-MRR

G L PI G L PI G L PI

complex 0.55 0.64 0.68 0.93 0.60 0.38 0.92 0.93 1.00

transe 0.51 0.55 0.69 0.71 0.87 0.32 0.93 0.92 1.00

hole – 0.65 0.73 – 0.42 0.38 – 1.00 1.00

(a) wn18RR

ROC-AUC S-MRR O-MRR

G L PI G L PI G L PI

0.55 0.75 0.00 0.94 0.39 0.17 0.87 1.00 1.00

0.66 0.63 0.63 0.73 0.50 0.50 0.94 0.97 1.00

0.71 0.81 0.65 0.90 0.38 0.26 0.93 1.00 0.99

(b) yago3-10

Link predictors are mainly used for two tasks: fact classification (true vs. false)
and subject/object prediction for queries p(?, o) and p(s, ?) where potential can-
didates are ranked by their score. We quantify the fidelity of our surrogate models
(their ability to approximate the link predictors) for these two tasks via standard
metrics, namely the ROC-AUC score and the mean reciprocal rank (MRR). The
threshold θ to binarize f ’s scores (line 6 in Algorithm 1) is chosen via logistic
regression as follows: we learned a logistic regression classifier fc : C → [0, 1]
using f ’s scores on C as input features and the real truth value of the facts
as label – corrupted facts are assumed false. In that spirit, fc estimates the
probability that a given statement is true. θ is then chosen so that fc(θ) = 0.5.

4.2 Results

Quantitative Evaluation. Tables 1 and 2 report the average ROC-AUC and
MRR for the different explanation setups, namely unbounded vs. bounded rules
learned on global (G), local (L), and per-instance (PI) scopes. The scores are
computed by averaging the fidelity obtained for each call to Algorithm 1 weighted
by the size of the corresponding test set, i.e., |Ctest |. We disaggregate the MRR
into S-MRR and O-MRR – when the task is to predict the subject or object
given the other two components.

Our baseline setting (denoted by B) are global unbounded rules as mined by
existing approaches [7,26,27]. We highlight that we could not mine explanations
with such a setting for wn18RR and yago3-10 on any of the studied link predic-
tors – not even for local or per-instance scopes. This happens because unbounded
rules can only be extracted when the training KG contains very prevalent and
general regularities in the interactions between the predicates. The datasets
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wn18RR and yago3-10, however, have much fewer predicates than fb15k-237: 11
and 37 for the former versus 237 for the latter. Bounded atoms also increase the
coverage explanation for fb15k-237. While the baseline provides explanations
for 18 different predicates for ComplEx on fb15k-237, allowing bounded rules
increases the coverage to 58 predicates (HolE and TransE exhibit comparable
increases). Moreover the results in Table 1 suggest that bounded atoms in rules
generally increase fidelity.

It is important to remark that allowing constants in the rule atoms comes
at the expense of longer runtimes and many more, potentially noisy, rules. On
fb15k-237 with global scopes, for example, the number of unique rules mined
from TransE increases from 1k to 193k. That said, only 134k of those rules
get non-zero coefficients during the attribution phase – implemented via logis-
tic regression. This phase is indeed designed to identify the rules with actual
explanation power w.r.t the veredicts of the link predictor.

We also observe that rule-based surrogates tend to be better at mimick-
ing the link predictors for object prediction. This is explained by the nature
of KG predicates, which are usually defined in a subject-oriented manner, e.g.,
nationality(J. Biden,USA) and not hasCitizen(USA, J. Biden). This makes sub-
ject prediction generally harder to mimic, because, e.g., it is easier to predict
the nationalities of J. Biden than to predict all USA citizens. Besides, this phe-
nomenon is corroborated by the actual performances of the link predictors. For
instance, ComplEx exhibits an average S-MRR of 0.29 on wn18RR, whereas the
average O-MRR reaches 0.46. That said, Table 2a suggests that S-MRR fidelity
can still be high even in the presence of subject-oriented predicates.

When we look at the effects of locality on fidelity, we notice mixed effects.
On fb15k-237, locality hurts ROC-AUC performance for unbounded rules and
brings moderate performance gains for the MRR. This is probably because good
general unbounded rules require more “diverse” data. The situation is different
for bounded rules, for which locality boosts fidelity in most cases. These results
suggest that locality and bounded rules are complementary. A similar behavior
can also be observed for coverage. For example, local scopes combined with
bounded rules allow mining 507k unique rules (with non-zero attribution) for 130
different predicates for ComplEx on fb15k-237 vs. 112k rules/58 predicates and
1505 rules/62 predicates when only one of the features is enabled (the baseline
mines 730 predicates covering 18 predicates). For per-instance scopes we can
compute rule explanations for up to 2782 individual facts (out of 20k) covering
83 predicates (HolE on fb15k-237).

Anecdotal Evaluation. Table 3 shows a few examples of rule-based expla-
nations for our experimental link predictors. These correspond to some of the
best ranked rules according to the coefficients of the surrogate classifiers. The
rules illustrate regularities preserved by the link predictors, since the body of
the rules defines conditions satisfied by the facts of the KG, in contrast to the
head that matches statements predicted by our black boxes (see Algorithm 1).
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Table 3. Some rule explanations. ◦, † denote local and per-instance explanations.

fb15k-237

(1) place of birth(x, Chicago) ⇒ nationality(x, USA) [TransE]

(2) has lived in(x, Brooklyn) ⇒ nationality(x, USA) [ComplEx]

(3) profession(x, Author) ⇒ gender(x, M) [ComplEx]

(4) impersonates(z, x) ∧ gender(z, y) ⇒ gender(x, y) [ComplEx, HolE]

(5) country(z, y) ∧ birth place(x, z) ⇒ nationality(x, y)

(6) company(z, x) ∧ athlete:sport(z, y) ⇒ sport(x, y)◦ [HolE]

(7) fwc:club(z, x) ∧ sport(z, y) ⇒ sport(x, y)◦ [HolE]

yago3-10

(8) affiliation(x, Ume̊a IK) ⇒ gender(x, F )† [TransE, ComplEx]

(9) wonPrize(x, O.Orange − Nassau) ⇒ wonPrize(x, D.S.Medal) [ComplEx]

wn18rr

(10) meronym mb(Insecta, x) ⇒ hypernym(x,Animal)† [ComplEx, HolE]

Rules with bounded atoms offer legible insights about the information that the
link predictors may be capturing to make predictions.

A key observation is that the different link predictors do not seem to rely on
the same information – as suggested by rules (1) and (2) for ComplEx and TransE
on fb15k-237. This is supported by the fact that among the 47 predicates for
which ComplEx finds global explanations with bounded atoms, only 3 have com-
mon rules with TransE. We bring our attention to rule (3), which suggests that
embeddings do reproduce the biases in the source data4. Recall that fb15k-237
was mainly extracted from Wikipedia, known to have gender biases [32]. Those
biases are easier to spot with rules with bounded atoms, which are a complement
to more general explanations such as (4) and (5). We also highlight that local
contexts can illustrate the semantics captured by the embeddings. This is exem-
plified by rules (6) and (7) that were learned on the same predicate but on two
fact clusters. As we can see, our mining routine learned semantically equivalent
rules, defined on different thematic domains, namely athletes and fwc; the latter
refers to the 2010 FIFA World Cup.

5 Conclusion

We have studied the effects of specific rules with bounded atoms and local scopes
on the quality of explanations for embedding-based link predictors on knowledge
graphs. Our results suggest a rather positive impact on the explanation fidelity
and the coverage of the explanations. Moreover, specific rules and local scopes
exhibit a symbiotic relationship.

4 Rule (8), on the other hand, refers to a women’s football team.
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Even though rule-based explanations reflect regularities preserved by black-
box link predictors, they do not shed light on causality. In this line of though, we
envision to compute causal explanations that help us understand the role of the
different entities, predicates, and latent components of KG embeddings in the
resulting predictions. We have also planned to elaborate more on the relationship
between link prediction performance and explanation fidelity, in particular at the
level of the individual predicates. The source code and experimental data of our
work is available at https://gitlab.inria.fr/glatour/geebis.
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Abstract. We propose a novel definition of Shapley values with uncer-
tain value functions based on first principles using probability theory.
Such uncertain value functions can arise in the context of explainable
machine learning as a result of non-deterministic algorithms. We show
that random effects can in fact be absorbed into a Shapley value with a
noiseless but shifted value function. Hence, Shapley values with uncer-
tain value functions can be used in analogy to regular Shapley values.
However, their reliable evaluation typically requires more computational
effort.
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1 Introduction

The ability to interpret the predictions of machine learning (ML) models is an
important requirement for many data-driven decision support applications, e. g.,
in computational biology [1], medicine [2], materials science [3], and finance [4],
just to name a few. There are a variety of model-agnostic methods that enable
explainability of otherwise black-box models [5]. The theory of Shapley values
(SVs) [6], a concept from coalitional game theory, builds the foundation for
a collection of such methods [7–12]. They all have in common that a SV—in
the sense of an importance score—is attributed to each feature of an arbitrary
predictive model. Based on these scores, explanations can be made about which
features are responsible for which prediction. For a recent review of SVs in
explainable ML (XAI), see, e. g., [13,14] and references therein.

SVs for XAI are based on the premise of a value function (VF) that quantifies
the impact of each feature to a model’s prediction by a real number. There
are various approaches to define suitable VFs for such a task [12], but their
evaluation typically involves a statistical or randomized (i. e., non-deterministic)
ingredient. For example, a straightforward approach for a classifier is to retrain
the model for all possible feature combinations and use its prediction of class
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probabilities to specify the VF [15]. However, the training procedure os often
a randomized algorithm, e. g., due to random initializations, data splitting, or
randomized search heuristics—leading to different outcomes if repeated with
different random seeds. As a result, the corresponding VF becomes a random
variable that yields different outcomes if evaluated multiple times.

The effect of uncertain VFs for SVs in the context of XAI has not been exten-
sively studied in the literature before. To our knowledge, [16], which is based on
the DeepSHAP approximation [10,17], is the only work in this direction. Therein,
a purely empirical perspective on sampling uncertainty is studied without any
explicit sources of randomness. More generally, in [18,19], the authors define the
uncertainty of coalition games as the standard deviation when considering the
marginal contributions of each player entering a random coalition, which can
also be understood as a measure of the strategic risk. An important insight is
that whenever two players have the same SVs, they do not necessarily share the
same risk. However, no randomness from the VF is considered in these works. In
[20,21], the authors study uncertain coalition games [22] based on uncertainty
theory [23] and introduce risk averse SVs. A brief review of related work can
also be found in [21]. Since the calculus of uncertainty theory is based on special
assumptions, the results are not straightforwardly applicable to the uncertainties
that arise for SVs in the context of XAI. In conclusion, there is no self-consistent
work on SVs with uncertain VFs based on probability theory.

We think, however, that the informative value of explainability via SVs can
only be fairly judged if it incorporates a sound discussion of such uncertainties.
As stated in [24], “it should be emphasized that the value of a game is an a
priori measure—before the game is actually played.” And indeed, SVs can only
provide an expectation value of the feature importance. Especially in this light,
it seems almost natural to ask the question what influence uncertainty has on
the underlying probability density of this expected value and what happens to
the higher moments. In this manuscript, we try to get a little closer to answering
such questions.

Specifically, we present two major contributions:

1. In a novel approach, we define SVs with uncertain VFs based on first princi-
ples using probability theory.

2. We show that SVs with uncertain VFs correspond to regular SVs with shifted
(deterministic) VFs, where the shift is determined by the mean bias of the
marginal contributions. Our proposed definition consequently fulfills all prop-
erties of regular SVs. Furthermore, SVs with uncertain VFs can be used in
analogy to regular SVs but with a higher computational effort that depends
on the desired confidence.

The remaining part of this manuscript is structured as follows. In Sect. 2, we
review regular SVs (without uncertainty) from a mostly general perspective.
Subsequently, we introduce our definition of SVs with uncertain VFs in Sect.
3 and explain their properties. In Sect. 4, we briefly discuss the implications
for XAI and show a numerical experiment. Finally, we conclude with a brief
summary and outlook in Sect. 5. Throughout this paper, uncertain quantities
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are denoted in boldface. Moreover, lowercase letters denote a probability density
that corresponds to its respective probability measure (e. g., p and P).

2 Shapley Values

SVs, which originated in game theory [6,25], are based on the following premise:
A coalition (or group) of players cooperates in what is called a coalition game
and achieves a certain profit from this cooperation. The question that SVs try
to answer is to evaluate the individual contribution of each player to the overall
outcome. In other words, SVs represent an approach to attribute the total gains
of a coalition game to each individual of a group of participating players. In this
section, we start with a formal definition of SVs and then discuss some of their
properties.

2.1 Definition

A coalition game is in this context defined by the VF (also called characteristic
function), which specifies the payoff of the game as a real number under the
presumption that only a subset of players participate:

Definition 1 (cf. [6]). Let S ⊆ S := {1, . . . , N} be a coalition of N players. A
function

v : S → R (1)

that assigns coalitions to profit is called a value function (VF).

In total, there are 2N possible coalitions including the empty set.
The individual contribution of each player to the game is represented by the

associated SV:

Definition 2 (cf. [6]). Given a player i ∈ {1, . . . , N} and a VF v, the corre-
sponding Shapley value (SV)

Φi(v) ≡ Φi :=
∑

S⊆S\{i}
w(S)Δiv(S) (2)

is a weighted sum over its marginal contributions

Δiv(S) := v(S ∪ {i}) − v(S) (3)

when added to all coalitions of other players. The corresponding weights

w(S) ≡ w(|S|) :=
1
N

(
N − 1

|S|
)−1

=
|S|! (N − |S| − 1)!

N !
(4)

depend on the cardinality of each coalition.

By default, the VF is typically normalized such that v(∅) := 0, where ∅ denotes
the empty set. This normalization can be achieved by a linear shift v(S) �→
v(S) − v(∅) in (1). However, since the VF enters twice in (2) in form of a
subtraction, such a shift has no effect on Φi. Hence, we do not presume this kind
of normalization in the following.
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2.2 Properties

SVs exhibit many desirable properties, for example:

Efficiency
∑N

i=1 Φi = v(S) − v(∅).
Symmetry If ∀S ⊆ S\{i, j}, v(S ∪ {i}) = v(S ∪ {j}), then Φi = Φj .
Linearity For two VFs v and v′, Φi(v) + Φi(v′) = Φi(v + v′)∀ i ∈ S. For

α ∈ R, αΦi(v) = Φi(αv)∀ i ∈ S.
Null Player If ∀S ⊆ S\{i}, v(S ∪ {i}) = v(S), then Φi = 0.

In fact, it can be shown that SVs represent the unique attribution method that
satisfies these four properties simultaneously [26].

2.3 Probabilistic View

The sum of the weights from (4) over all possible coalitions is normalized accord-
ing to

∑
S⊆S\{i} w(S) = 1, which allows us to view the coalitions in (2) as

a random variable S ∼ P over the set S\{i} with probability mass function
P(S) := P(S = S) = w(S). This approach, in turn, also makes the marginal
contributions from (3) a random variable, that is, Vi := Δiv(S) ∼ Pi with
probability mass function

Pi(u) := Pi(Vi = u) =
∑

S⊆S\{i}
P(S) · I{Δiv(S) = u}, (5)

where the indicator function I{Δiv(S) = u} ∈ {0, 1} is 1 if Δiv(S) = u and 0
otherwise. By construction, Vi has only finite support on the discrete set ΔiV :=
{Δiv(S) | S ⊆ S\{i}}. These random variables allow a different perspective on
(2) in form of expectation values. Specifically,

Φi = E [Vi] = E [Δiv(S)] . (6)

Hence, the determination of Φi can also be understood as estimating one of the
corresponding expectation values.

2.4 Higher Moments

Since we have full knowledge about the probability mass function Pi, we can
also evaluate higher moments. Specifically, the nth moment reads

E [V n
i ] =

∑

S⊆S\{i}
w(S) [Δiv(S)]n = E [Δiv(S)n] (7)

for n ∈ N. The first and second moments can be used to calculate the variance
[18,19]

σ2
i := E

[
V 2

i

] − E [Vi]
2 = E

[
Δiv(S)2

] − Φ2
i . (8)

The variance (or the corresponding standard deviation σi) is a measure for the
dispersion of the marginal contributions.
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Therefore, we consider (8) as a measure of the intrinsic uncertainty of Φi.
With “intrinsic” we refer to the fact that the VF v(S) is (so far) presumed to be
deterministic such that an uncertainty of Φi can only arise from the distribution
of marginal contributions Vi that is determined by the choice of v(S). In the
next section, we discuss uncertain VFs and their implication for SVs.

3 Uncertain Shapley Values

The evaluation of a VF that is determined by a randomized procedure introduces
uncertainty. In typical ML pipelines, randomization may occur as part of the
learning algorithm (e. g., dropout [27]), and by the random choice of the training
data. A plethora of methods for quantifying and mitigating uncertainty has been
studied extensively in ML under the umbrella of Bayesian methods. Surprisingly,
such methods are not well-studied in the context of SVs, as described in the
introduction.

In this section, we present our definition of SVs with uncertain VFs, or uncer-
tain SVs for short. First, we introduce uncertain VFs as random variables that
lead to a probability distribution with an expectation value corresponding to the
uncertain SVs. Next, we discuss various properties that arise from this definition.

3.1 Uncertain Value Functions

We presume that the VF v(S) in (2) is replaced by an uncertain VF in form of
a random variable:

Definition 3. Let S ⊆ S := {1, . . . , N} be a coalition of N players. The random
variable

v(S) ≡ v := v(S) + ν(S) (9)

that consists of the sum of a VF v(S) as defined in (2) and a random variable
ν(S) ≡ ν ∼ Q(· | S) that represents uncertainty or noise in the determination of
v(S) is called an uncertain VF. The associated (conditional) probability measure
Q(· | S) has real support but is not constrained by additional assumptions.

Our definition is very generic and covers both aleatoric uncertainty (from
stochastic errors) and epistemic uncertainty (from systematic errors). Based on
this new kind of VF, the marginal contributions Δiv(S), (2), can be replaced
according to Δiv(S) → Δiv(S) by the marginal contribution under uncertainty
Δiv(S) := Δiv(S) + εi(S), where εi(S) ≡ εi := ν(S ∪ {i}) − ν(S) ∼ Hi(· | S)
denotes a random variable with density

hi(ε | S) :=
∫

R

q(ν | S ∪ {i}) q(ν − ε | S) dν, (10)

which corresponds to a convolution.



Uncertain Shapley Values 161

3.2 Probabilistic View

With these presumptions, we arrive at the random variable Ṽi := Vi + εi =
Δvi(S) + ν(S ∪ {i}) − ν(S) with Si ∼ P and ν(S) ≡ ν ∼ Q(· | S), respectively.
In particular, the discrete measure Pi, (5), becomes continuous such that Ṽi ∼ P̃i

with
p̃i(u) =

∑

S⊆S\{i}
P(S) hi(u − Δiv(S) | S). (11)

This expression can also be rewritten as p̃i(u) =
∑

S⊆S\{i} w(S)
∫
R

hi(ε | S)
δ(Δiv(S) + ε − u) dε to highlight the similarity between p̃i and its noiseless
analogon Pi from (5). Specifically, the indicator function in (5) translates to the
Dirac delta function δ under an integral over the probability density hi.

These preliminary considerations allow us to define uncertain SVs in analogy
to (6):

Definition 4. Given a player i ∈ {1, . . . , N} and an uncertain VF v(S) as
defined in (9), the corresponding uncertain SV

Φ̃i(v) ≡ Φ̃i := E

[
Ṽi

]
(12a)

is the expectation value of a random variable Ṽi as given by (11).

The expression (12a) can be rewritten as

Φ̃i =
∑

S⊆S\{i}
w(S)Δε

iv(S) with Δε
iv(S) := Δiv(S) + E [εi | S] (12b)

by exploiting the linearity of the expectation value. These two forms of Φ̃i high-
light different perspectives, similar to (2) and (6). In (12a), two random variables
Vi (from the sum over coalitions) and εi (from uncertain VFs) contribute to the
expectation value. On the other hand, in (12b) only one random variable εi is
considered. This form can also be found in [20]. A third representation

Φ̃i = Φi+Γi with Γi(v) ≡ Γi(ν) ≡ Γi :=
∑

S⊆S\{i}
P(S)E [εi | S] = E [εi(S)] (12c)

can be obtained from (12b) if we recall Φi from (2). This representation partic-
ularly highlights that the difference between uncertain SVs and regular (i. e.,
noiseless) SVs is given by Γi as an expectation value of εi(S) ∼ Gi with
gi(ε) =

∑
S⊆S\{i} P(S) hi(ε | S).

By definition, the mean of the marginal contribution noise E [εi | S] =
E [ν(S ∪ {i}) | S]−E [ν(S) | S] covers the noise-induced expectation value shift
when adding a player i to the coalition S. Hence, Γi can be considered as the
mean bias of the marginal contributions of player i. If the expectation value of
the noise is independent of S (e. g., because hi is independent of S), Γi vanishes.

Summarized, we have found three representations with uncertain SVs, (12a)
to (12c). All of them are identical, but correspond to different interpretations as



162 R. Heese et al.

we have explained. In the borderline case of vanishing uncertainty (i. e., ν(S) ≡
0), the VF becomes deterministic again since q(ν | S) = δ(ν), which leads to
hi(ε | S) = δ(ε) and therefore Γi = 0. Accordingly, the uncertain SV reduces to
the regular SV, as expected.

3.3 Properties

Our previous considerations allow us to establish a direct connection between
uncertain SVs and regular SVs:

Theorem 1. Let v(S) = v(S) + ν(S) be an uncertain VF in the sense of (9)
with a deterministic part v(S) and a random part ν(S). We denote the cor-
responding uncertain SV, (12), by Φ̃i(v). Then, Φ̃i(v) = Φi(v′) for all i ∈ S,
where Φi(v′) denotes the regular SV, (2), with respect to a deterministic VF
v′(S) := v(S) + γ(S), where γ(S) :=

∑
j∈S Γj is based on Γj from (12c).

Proof. First, take note that for all Γi ∈ R and i ∈ S, we can define the noiseless
VF v′′(S) := γ(S) =

∑
j∈S Γj for all S ⊆ S with the effect that Φi(v′′) = Γi

for all i ∈ S. Second, as a consequence of (12c) and the Linearity property of
regular SVs, Φ̃i(v) = Φi(v) + Γi = Φi(v) + Φi(v′′) = Φi(v + v′′) for all i ∈ S.
Finally, define v′(S) := v(S) + v′′(S) for all S ⊆ S. �
Hence, uncertain SVs can in fact be considered as regular SVs with a suit-
ably shifted VF. The shift γ(S) corresponds to the cumulated mean bias of the
marginal contributions for all players in S.

As a consequence, the properties of regular SVs (Efficiency, Symmetry, Lin-
earity, Null Player) are also uniquely fulfilled with uncertain SVs. Moreover,
using (12c), we can straightforwardly rewrite these properties in a form that
highlights the uncertainty representation:

Uncertain Efficiency
∑N

i=1 Φ̃i = v(S) − v(∅) + γ(S).
Uncertain Symmetry If ∀S ⊆ S\{i, j}, v(S ∪ {i}) = v(S ∪ {j}), then

Φ̃i = Φ̃j + Γi − Γj .
Uncertain Linearity For two noisy VFs v and v′, Φ̃i(v)+Φ̃i(v′) = Φ̃i(v+

v′)∀ i ∈ S. For α ∈ R, αΦ̃i(v) = Φ̃i(αv)∀ i ∈ S.
Uncertain Null Player If ∀S ⊆ S\{i}, v(S ∪ {i}) = v(S), then Φ̃i = Γi.

Due to the linearity of the expectation value, Γi(v + v′) = Γi(v) + Γi(v′) and
Γi(αv) = αΓi(v), respectively. We have also made use of γ(S) =

∑N
i=1 Γi.

In addition to the properties of regular SVs, the properties of uncertain SVs
from [20] apply straightforwardly based on (9) and (12b). We refer to [20] for a
derivation.

3.4 Higher Moments

Higher moments of the random variable Ṽi can be determined similar to the
noiseless case, (7). Specifically, the nth moment reads

E

[
Ṽ n

i

]
=

n∑

k=0

(
n

k

) ∑

S⊆S\{i}
w(S) [Δiv(S)]k E

[
εn−k

i | S
]

(13)
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for n ∈ N, where E [εn
i | S] =

∑n
k=0

(
n
k

)
(−1)n−k

E
[
νk | S ∪ {i}] E

[
νn−k | S

]

follows from (10). Both equalities are direct implications of the binomial theorem.
Consequently, any moment of Ṽi can be explicitly calculated via (13) based on
the corresponding moments of the random variable ν—knowledge about the
underlying probability measures is not required.

For example, the variance reads

σ̃2
i := E

[
Ṽ 2

i

]
− E

[
Ṽi

]2
= σ2

i + σ2
Γi

+ ξi (14)

with σ2
i from (8), the variance of the noise of the marginal contributions σ2

Γi
:=

E
[
ε2i

] − Γ 2
i , and the correlation ξi := 2

∑
S⊆S\{i} w(S)Δiv(S)E [εi | S] − 2ΦiΓi.

Hence, we find that the noise from the VF introduces a noise uncertainty σ2
Γi

≥ 0
and a correlation term ξi ∈ R in addition to the intrinsic uncertainty σ2

i ≥ 0.

4 Explainable Machine Learning

When the concept of SVs is used for XAI, features (or feature indices, to be more
precise) take the role of players and the VF is determined by the model output.
Suitable VFs can be realized in many different variants leading to different kinds
of SVs [12]. For example, explanations can be performed for a single data point
or an entire data set and might or might not require a retraining of the model.
Uncertain SVs can be used in analogy to regular SVs to achieve explainability.
Depending on the choice of the VF, different kinds of random effects will occur.
A detailed discussion of such effects, however, is beyond the scope of this paper.

In the present section, we first briefly outline the practical challenge in the
evaluation of uncertain SVs and highlight the fundamental difference to the eval-
uation of regular SVs. Subsequently, we present a simple numerical experiment
to demonstrate the effects of randomness of a VF in the context of XAI.

4.1 Evaluation of Uncertain Shapley Values

The task of calculating regular SVs is NP-hard [28] and requires the evaluation
of 2N VFs according to (2). On the other hand, uncertain SVs can by design
not be evaluated exactly if no a priori knowledge about the underlying proba-
bility distribution is available, i. e., (10) is unknown. Instead, they can only be
estimated, which requires to evaluate VFs multiple times.

To compare the evaluation effort of regular SVs and uncertain SVs, we pre-
sume in the following that we explicitly sum over all coalitions in (2) and (12b),
respectively. For regular SVs, this involves 2N VF evaluations. For uncertain
SVs, we can repeat each evaluation n ∈ N times, which in total requires n2N

VF evaluations. An unbiased estimator for Φ̃i is then given by the sample mean
Φi :=

∑
S⊆S\{i} w(S) [v(S ∪ {i}) − v(S)] with v(S) := 1

n

∑n
k=1 vk(S) based on

the i.i.d. VF samples v1(S), . . . , vn(S) for all S ⊆ S and i ∈ S. As is well-known,
a confidence interval of Φi for sufficiently many samples reads Φi± ∝ si/

√
n with

the corresponding sample variance s2i .
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The increased computational complexity in the evaluation of an uncertain
SV in comparison with a regular SV (n2N instead of 2N ) is the price that has to
be paid for an unknown randomness in the VF and its margin depends on the
desired confidence of Φi. A straightforward approximation method for regular
SVs is to treat the coalition as a random variable in the sense of (6) and estimate
the expectation value. A similar approach can also be employed with uncertain
SVs via (12a). For an overview over more advanced approximation methods of
regular SVs, we refer to [29–31] and references therein.

4.2 Numerical Experiment

In this section, we study our theoretical results in the context of XAI. Specifi-
cally, we discuss the effects of two different kinds of noises, Bernoulli noise and
Gaussian noise, on an exemplary VF (that can in principle be calculated noise-
lessly) and analyze the resulting uncertain SVs. To this end, we consider a syn-
thetic data set created from the method make regression of the Python library
scikit-learn [32]. This method generates a random linear combination of nor-
mal distributions. We sampled K = 10 000 data points D = {(x(i), yi)}i=1,...,K ,
each point of index i consisting of twelve features x(i) ∈ R

12 and one target
value yi ∈ R. All features are informative. Additionally, we specified an additive
Gaussian noise level of 0.1. The random seed we used is 97 531, which allows for
reproducing the data.

Our goal is to study the influence of each feature with respect to the R2

score R2(f,D) := 1 − ∑K
i=1(yi − f(x(i)))2/

∑K
i=1(yi − y)2 with y := 1

K

∑
i yi,

which can be used to quantify the quality of a regression model f , where f(x(i))
describes the prediction of the model for the data point x(i). The R2 score
describes the proportional amount of variation in y that can be predicted from
x and takes values in (−∞, 1], with 1 indicating a perfect match between model
and data. Based on this score, we can define the VF v(S) = v(S; f,D) :=
R2(f, {(x(1)

S|0, y1), . . . , (x
(K)
S|0 , yK)}), where feature values that are not in the coali-

tion S are set to 0, denoted by xS|0 [7]. As our model of choice, we fit a linear
regression with intercept term to the data, i. e., fθ,b(x) := θ�x + b.

To obtain two use cases, we define two noisy versions of our VF v(S; f,D) by
adding random variables that are independent of S. First, ν follows a Bernoulli
distribution with p = 0.33 multiplied with the constant c = 0.05, which has the
effect of randomly adding a constant offset to some values. Second, ν′ follows a
normal distribution with mean 0 and standard deviation 0.01. We arrive at three
VFs: v (noiseless), v := v+ν (Bernoulli noise), and v′ := v+ν′ (Gaussian noise).

We plot in Fig. 1 the probability mass function Pi and densities p̃i according
to (5) and (11), respectively, for all i ∈ S = {1, . . . , 12}. For the Bernoulli noise,
the support is discrete and we therefore denote the corresponding probability
mass function by P̃i. The probability mass function Pi shown in Fig. 1a is the
noiseless distribution of Δiv(S) over all coalitions S, weighted with their respec-
tive w(S) for each feature i as defined in (5). Its expectation value corresponds
to Φi according to (6), which is listed in Table 1 for all i ∈ S.
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Fig. 1. Probability mass functions Pi and P̃i and probability density p̃i according to
(5) and (11), respectively, for all features i ∈ {1, . . . , 12}. Darker colors indicate a
higher probability. We investigate the effect of additive Bernoulli and Gaussian noise,
respectively, on a noiseless VF.

Table 1. Regular SVs (without uncertainty) and their intrinsic variances w.r.t. w(S),
where i denotes the feature index.

i Φi σ2
i i Φi σ2

i

1 −0.000050 3.081014 × 10−9 7 0.095895 8.100267 × 10−6

2 −0.000009 1.126325 × 10−9 8 0.000009 2.346858 × 10−10

3 0.108173 1.008858 × 10−5 9 0.235202 1.988726 × 10−5

4 0.003419 3.832217 × 10−7 10 0.135854 9.707781 × 10−6

5 0.012733 3.634072 × 10−6 11 0.010408 1.179264 × 10−6

6 0.214356 3.949685 × 10−5 12 0.184340 4.631823 × 10−5

From (14), we can derive the variance of all uncertain SVs: The correlation
terms ξi are all equal to zero, as hi is independent of S. The intrinsic variances
σ2

i that result from the distribution of the marginal contributions Δiv according
to (8) are listed in Table 1. The Bernoulli distribution of ν leads to a symmetrical
noise function hi with mean 0 and support on {−c, 0,+c}, where both non-zero
values occur with probability p(1−p). The distribution of ν′, on the other hand,
leads to a Gaussian hi with twice the original variance. Thus, the variance of the
noise of the marginal contributions is given by σ2

Γi
= c2 ·2p(1−p) = 1.1055×10−3

for the Bernoulli noise and 2·0.012 = 2×10−4 for the Gaussian noise, respectively.
According to (14), these values are added to the corresponding σ2

i from Table 1
to obtain the final variance. Notice that the variance incurred from the Gaussian
or Bernoulli noise term is up to 6 orders of magnitude larger than the variances
reported in the table. Hence, the final variance, and consequently the number
of samples one has to draw to obtain a specific confidence region is dominated
by the noise. Such insights cannot be derived with existing frameworks with
uncertain SVs.
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5 Conclusions

In this paper, we have proposed uncertain SVs as a generalization of regular
SVs with VFs that are represented by random variables instead of deterministic
functions. With this approach, we can consider uncertainties in the evaluation
of VFs, e. g., due to a non-deterministic behavior of ML algorithms. Based on
our definition in form of expectation values, we have found that uncertain SVs
correspond to regular SVs with shifted VFs, where the shift is determined by the
mean bias of the marginal contributions. If no such uncertainty is present (e. g.,
because the noise of the VF is independent of the corresponding coalition), both
kinds of SVs coincide.

The practical evaluation of uncertain SVs can (without a priori knowledge
about the uncertainty) only be realized by a sample mean that requires repeated
VF evaluations. Thus, a key difference between uncertain SVs and regular SVs is
the higher computational effort required to achieve a desired level of confidence
due to the VF uncertainty.

We consider our work as a solid mathematical framework based on first prin-
ciples that is highly general and can be used as a potential starting point for
further research. For example, with respect to different kinds of noises, e. g.,
multiplicative noise or noise that is correlated for different coalitions. Another
possible research direction is the investigation of uncertainty that arises from
typical VFs in an XAI context. Furthermore, we think that a study of the effects
of uncertain VFs on specialized SV approximations such as KernelSHAP [10],
TreeSHAP [33] or DeepSHAP is potentially insightful. It also remains an open
question how our uncertainty treatment can be translated to related concepts
like Owen values [34] or Banzhaf-Owen values [35]. Finally, quantum machine
learning [36] is a particularly promising field of application beyond XAI because
randomness is an inherent property of quantum systems.
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Abstract. Conditional t-SNE (ct-SNE) is a recent extension to t-SNE
that allows removal of known cluster information from the embedding, to
obtain a visualization revealing structure beyond label information. This
is useful, for example, when one wants to factor out unwanted differences
between a set of classes. We show that ct-SNE fails in many realistic set-
tings, namely if the data is well clustered over the labels in the original
high-dimensional space. We introduce a revised method by conditioning
the high-dimensional similarities instead of the low-dimensional similari-
ties and storing within- and across-label nearest neighbors separately. This
also enables the use of recently proposed speedups for t-SNE, improving
the scalability. From experiments on synthetic data, we find that our pro-
posed method resolves the considered problems and improves the embed-
ding quality. On real data containing batch effects, the expected improve-
ment is not always there. We argue revised ct-SNE is preferable overall,
given its improved scalability. The results also highlight new open ques-
tions, such as how to handle distance variations between clusters.

1 Introduction

Motivation. t-distributed Stochastic Neighbor Embedding (t-SNE) is widely
used to compute low-dimensional visualizations for high-dimensional data. Con-
ditional t-SNE (ct-SNE) [3] is an extension of t-SNE that allows to factor out
prior knowledge from the embedding. Providing discrete labels for all data points
to ct-SNE allows same-labeled points to be embedded further apart than their
distances would require—ideally revealing complementary structure present in
the data.

We illustrate the idea of conditional t-SNE using a synthetic dataset
(n = 1500, d = 10) in Fig. 1a. The data is generated such that each point belongs
to one of two clusters in dim 1–4 (blue, orange) and one of three clusters in
dim 5–6 ( ,�,�). The remaining four dimensions are Gaussian noise. The t-SNE
embedding in Fig. 1a shows a separate cluster for each class label combination.
If we already know about the clustering in dim 1–4, we could provide the labels
blue/orange to ct-SNE. Ideally, this would reveal the remaining structure in
the data: Three clusters in dimension 5–6 ( ,�,�). Figure 1b shows that ct-SNE
wrongly merges the clusters, i.e., are merged with �, while revised ct-SNE does
show the correct clusters (Fig. 1c).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 169–181, 2023.
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Fig. 1. Illustration of label information used by ct-SNE and revised ct-SNE. (a) t-SNE
shows the labeled data consists of several clusters. Provided with the class labels blue
and orange, ct-SNE (b) merges points from both colors–but the wrong shapes, while
revised ct-SNE (c) shows the three expected clusters. (Color figure online)

Use Cases of ct-SNE. (Revised) ct-SNE retains the unsupervised nature of
t-SNE while adding supervision through labels to explicate what is not the
target. This stands in contrast to supervised dimensionality reduction methods
that incorporate label information to improve downstream prediction tasks, for
example by increasing class separation in low-dimensional embeddings (see, e.g.,
[2,10]). As such, revised ct-SNE is useful in a situation where t-SNE is useful and
when additionally there is known unwanted structure in the data. This may be
in an iterative EDA setting, when clusters are identified, explored, and labeled,
after which the user wants to explore further. Another setting is when label
information about prominent structure in the data is available a priori, and this
information acts as a confounder [3].

The presence of undesired and known class separation occurs for example
with biological data containing single-cell RNA samples from various sources.
The unwanted class separation is called the batch effect and can be seen as
variation in the data that does not have a biological explanation. It often occurs
when combining samples from different organisms, tissues, or when cells have
been sequenced with different technologies. For this setting also other t-SNE
variants have been proposed. Poličar et al. [8] suggest to embed one dataset
(batch) using t-SNE and use this as a reference embedding. The other datasets
are then embedded sample by sample on top of the initial embedding. This is
different from our (revised) ct-SNE, in that it prevents any interaction of same-
labeled samples by design. In addition, (revised) ct-SNE allows the user to tune
the degree of class separation.

Contributions. In this paper we provide a thorough analysis of the root cause
of ct-SNE’s failures. We identify that the approximation of high-dimensional
similarities discards essential structural information. In addition, the asymme-
try of the KL-divergence hinders ct-SNE in achieving its goal. To overcome
these limitations, we propose two modifications. First, we compute distances
for same-labeled and differently-labeled neighbors separately. Second, we con-
dition the high-dimensional instead of the low-dimensional similarities. Finally,
we implemented revised ct-SNE into FIt-SNE [6] which leads to a considerable
speed-up.
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2 Background: Conditional t-SNE

In this section we review ct-SNE and point out details that might negatively
affect the embedding quality. The objective of ct-SNE is to embed a dataset
X ∈ R

n×d to a lower dimension Y ∈ R
n×d′

with d′ � d by minimizing the
Kullback-Leibler (KL) divergence between pairwise similarities in the high (HD)
and low-dimensional (LD) space. The HD similarities

pj|i =
exp(−‖xi − xj‖2/2σ2

i )
∑

k �=i exp(−‖xi − xk‖2/2σ2
i )

, pij =
pi|j + pj|i

2n

are defined with a point-specific kernel bandwidth σi that depends on the density
of the neighborhood around each point. It is computed by binary search such
that each similarity distribution pi has the same user-defined perplexity u. The
LD similarities are based on a t-distribution

qij =

(
1 + ‖yi − yj‖2

)−1

∑
k �=l (1 + ‖yk − yl‖2)−1 .

In ct-SNE, the LD similarities are conditioned on the label matrix Δ ∈
{0, 1}n×n, based on the idea that qij|Δ should be higher for pairs of points with
the same label (δij = 1) than for points with a different label (δij = 0). The
conditional LD similarities are defined as

rij = qij|Δ =

{
αqij/U if δij = 1
βqij/U if δij = 0

and normalized with U = α
∑

k �=l:δkl=1 qkl+β
∑

k �=l:δkl=0 qkl. We refer to the orig-
inal publication for the detailed derivation and the exact relationship between
the parameters α > 1 > β > 0. Minimizing KL(p ‖ r) with α > β requires
differently-labeled points to be embedded closer to each other to still match
their pairwise HD similarity.

We illustrate the effect of ct-SNE on its gradient

with Z =
∑

k �=l(1+‖yk−yl‖2)−1. The attractive part will pull neighboring points
i and j closer together while the repulsive part pushes all points apart. First, we
note that ct-SNE increases (decreases) the repulsive force between same-labeled
(differently-labeled) points, while the attractive forces are the same as in t-SNE.
To speed up the computation of the attractive forces van der Maaten [7] proposed
to exploit the fast decay of the Gaussian kernel and retain only the similarities
p·|i for the set of |Ni| = 3u nearest neighbors, where u is the perplexity.

The Problem. The goal of ct-SNE is to bring secondary structure to the front
by discounting certain points, i.e., increasing repulsive forces for points with
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Fig. 2. High-dimensional distances to a random point aggregated per label. Only
samples to the left of the dashed vertical line (all from cluster or ) will exert an
attractive force. (Color figure online)

the same label. With a fixed number of 3u nearest neighbors—that directly
affect the placement of each point—ct-SNE can still only show new structure
that reaches into this neighborhood. For the synthetic data, the cluster sizes
are larger than 3u, hence points with different labels are by definition outside
the 3u neighborhood. In Fig. 2 we show the points that are part of N . Since
the neighbors all have the same blue label, ct-SNE has no information on the
similarity to orange labeled points. The overlap between the and points in
Fig. 1b occurs solely due to the decreased repulsive forces between differently-
labeled samples. It is coincidental and wrong, in the sense points from are closer
to , but this information is omitted and a wrong solution emerges (Fig. 1b).

Alternative Solutions. Increasing the neighborhood size does not lead to the
desired results. We explain two ways that seem promising to circumvent the
problem but do not work in practice. First, one could keep all pairwise HD
similarities instead of approximating them. This results in non-zero attractive
forces for differently-labeled points, but increases the complexity to compute
these forces in every gradient update to O(n2). In addition, the KL-divergence
is asymmetric and weighs high pij to be more important to match with the LD
similarity than small similarities. We implemented this method and see in Fig. 3a
that the embedding on the synthetic data has barely changed. We presume the
HD similarities are too small to have an effect on the embedding.

The second idea is to increase the perplexity. A higher perplexity will increase
the neighborhood size by definition and differently-labeled neighbors might get
assigned a higher similarity than with the first solution (and smaller perplexity).
For large datasets with few class labels to be factored out, this might still be
impractical, because it could be necessary to use a perplexity of n/2 to have
sufficiently high attractive forces1. What is even more unfavorable is the loss of
locality that goes hand in hand with a higher perplexity and stands in opposition
with the original idea of t-SNE to preserve local neighborhoods. Figure 3b shows
that on the synthetic data a high perplexity indeed leads to better preservation of
the similarities between differently-labeled points, but locality is lost and instead
two clusters emerge, instead of the expected three clusters.

1 Assuming the distances between differently-labeled samples are larger than between
same-labeled samples. A perplexity of n

2
would only assign same-labeled points a

high similarity.
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Fig. 3. Visualizations of ct-SNE embeddings (β = 1e−12) with color label as prior
knowledge. Not approximating the similarities in (a), the clusters still overlap arbi-
trarily as the attractive forces are too small. A higher perplexity (b) leads to correctly
merged clusters that are not well separated. Changing β does not affect the results.

3 Revised Conditional t-SNE

In this section we argue how an adjusted approximation and a different formu-
lation of ct-SNE might help retain important neighborhood information when
factoring out prior knowledge. We propose two changes to ct-SNE to provide
enough structural information about differently-labeled nearest neighbors and
still discount the similarity to same-labeled points.

Expanding the Set of Nearest Neighbors. First, we search for nearest
neighbors separately for same and differently-labeled points. We use Ni,δij=1 as
the set of 1.5u nearest neighbors with the same class label as i and Ni,δij=0

denotes the set with 1.5u differently-labeled nearest neighbors. This does not
add runtime to the gradient updates (when still using 3u neighbors in total) but
requires to build and search in separate nearest-neighbor data structures (e.g.,
vantage-point trees [11], ANNOY [1]) for each label. As we saw in Fig. 3a, this
change alone will not be sufficient.

Condition the High-Dimensional Similarities. The second change is to
condition the HD instead of the LD similarities. This will affect the attractive
forces, in contrast to the repulsive forces in ct-SNE. We define

rj|i = Ppi
(j|Δ) =

Ppi
(Δ|j) · pj|i
Ppi

(Δ)
,

where Ppi
(Δ|j) =

∏
l nl!

n! βδij α1−δij is defined as in ct-SNE but we flipped the
parameters2. The notation Ppi

denotes that we compute the similarity distribu-
tion for a fixed sample i and the corresponding values of p<·>|i. The marginal
probability is also defined for each i separately as
2 We use α and β instead of α′ and β′ as in the original paper [3], and thus need to

normalize with the number of distinct label assignments.
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Ppi
(Δ) =

∑

k �=i

Ppi
(Δ|k) · pk|i = β

∑

k �=i:δik=1

pk|i + α
∑

k �=i:δik=0

pk|i.

The HD similarities for all samples in the neighborhood are

rj|i =

⎧
⎨

⎩

βpj|i
β

∑
k �=i:δik=1 pk|i+α

∑
k �=i:δik=0 pk|i

if j ∈ Ni,δij=1

αpj|i
β

∑
k �=i:δik=1 pk|i+α

∑
k �=i:δik=0 pk|i

if j ∈ Ni,δij=0,

where the relation between α and β is the same as in ct-SNE, and we will
use β < α to decrease the similarity of same-labeled data points. Finally,
the similarities are symmetrized as before rij = (rj|i + ri|j)/2n and the loss
KL(r ‖ q) measures the KL-divergence between the conditioned HD similari-
ties and the LD similarities. Since the input similarities do not depend on
the embeddings yi, the gradient is the same as in t-SNE with rij instead of
pij . This allows us to integrate our changes into FIt-SNE [6] offering a fast
interpolation-based acceleration of the gradient computation. Our code is avail-
able at github.com/aida-ugent/revised-conditional-t-SNE.

Estimating the Point-Wise Variance. This new formulation of adjusting
the HD similarities raises the question whether the point-wise variance of the
Gaussian kernel should be computed using ri or pi. On ri, the binary search
for the variance satisfying the user-defined perplexity is not well-defined as the
perplexity is not monotonously increasing with the variance. Thus, two or more
possible solutions exist that can have opposite characteristics as shown in Fig. 4.
The other option is to first estimate the variance on pij and then change the
similarities with α or β. However, the effective perplexity of rij might differ from
the specified perplexity defined by the user.

Fig. 4. Two similarity distributions ri with β = 1e−4 where a different variance leads
to the same perplexity of 50. The distances are computed for cell i = 12823 (indrop,
beta) of the pancreas dataset and the colors correspond to the technology label. (Color
figure online)

https://github.com/aida-ugent/revised-conditional-t-SNE.git
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4 Evaluation

To compare revised ct-SNE with ct-SNE we provide experimental results on
a synthetic and two biological datasets. We first describe the evaluation setup
including the chosen quality measures and then describe the results. Embed-
dings of revised ct-SNE with variance estimation on pi and experimental
results on the second biological dataset can be found in the supplement at
arxiv.org/abs/2302.03493.

4.1 Setup

We first provide the characteristics of the datasets and then define the evaluation
measures. All experiments were run on a laptop with Intel R© CoreTM i7-10850H
CPU @ 2.70GHz with 16GB RAM.

Datasets

Synthetic data Each point in this n = 1500, d = 10 dataset belongs to one of
two clusters in dimensions 1–4 and one of three clusters in dimensions 5–6.
The cluster centers are sampled from N (0, 25) and N (0, 1) respectively. For
each point, we add noise from N (0, 0.01) to the cluster centers and append
four dimensions of noise from N (0, 1). The clusters in dim 5–6 are of equal
size, while 600 points belong to blue and 900 to the orange cluster. We provide
the cluster labels of dim 1–4 as prior knowledge to ct-SNE and expect the
embedding to show the structure implanted in dimensions 5–6.

Pancreas data [9] is a widely-used single cell RNAseq dataset (n = 14890, d =
34363) to benchmark data integration methods. It contains gene counts of
human pancreatic islets cells from 8 sources sequenced with 5 different tech-
nologies—SMARTSeq2 (2394), Fluidigm C1 (638), CelSeq (1004), CelSeq2
(2285), and inDrops (8569). We provide the technology labels as prior knowl-
edge to merge cells from different technologies together and expect a grouping
according to the 13 celltypes. We followed the standard preprocessing steps
for single-cell RNA datasets including the selection of 2000 highly-variable
genes, normalization, standardization, and PCA to retain 50 principal com-
ponents.

Evaluation Measures. To compare the embeddings quantitatively, we compute
a normalized HD and LD neighborhood overlap score [4,5] and the degree of label
mixing with the Laplacian score that was also used to evaluate ct-SNE. For both
measures we use a fixed neighborhood size equal to the perplexity which is 30
for the synthetic and 50 for the pancreas dataset. For the pancreas data, we
compute both measures on a random subset of 5% of the data.

RNX neighborhood preservation measures the normalized agreement of HD
and LD neighborhoods as proposed by Lee and Verleysen [5]. Denoting the

https://arxiv.org/abs/2302.03493
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k-sized HD and LD neighborhoods of data point i as vk
i and nk

i , the average
neighborhood overlap rate is defined as

QNX(k) =
1
kn

n∑

i=1

|vk
i ∩ nk

i |.

Since a random embedding would yield a score of E[QNX(k)] = k
n−1 , these

values are scaled to RNX(k) = (n−1)QNX(k)−k
n−1−k ∈ [0, 1], measuring the

improvement over a random embedding. We adjust this measure to reflect
the idea of factoring out class label information. Given a set of LD neighbors
nk

i , we ensure that vk
i contains equally many points with the same (and differ-

ent) label, i.e., |{j | j ∈ vk
i , δij = 1}| = |{j | j ∈ nk

i , δij = 1}|. The distribution
of same and differently labeled neighbors is determined by the embedding
and differs per point.

Laplacian scores proposed by Kang et al. [3] measure the fraction of LD nearest
neighbors with a different label. It can be compared to a baseline with random
label assignment, where the expected Laplacian score is

∑
l∈L

nl(n−nl)
n(n−1) where

label l ∈ L has nl samples. When factoring out structure encoded by a labeling
of the data (e.g. dim 1–4 labels for the synthetic data or the technology feature
for pancreas), we expect an increase of the Laplacian score evaluated on the
same label. An increase of the Laplacian evaluated on a different class label
is not necessarily desirable.

4.2 Results

We compare embeddings of t-SNE with embeddings by ct-SNE and revised ct-
SNE for different values of β, and using variance estimation with either ri or pi.

Synthetic Data. To embed the synthetic dataset, we use a perplexity of u = 30,
θ = 0.2, and 750 epochs. This took about 10s for all methods. The RNX and
Laplacian scores are shown in Fig. 5 and in Fig. 1 we show embeddings of ct-SNE
with β = 1e−4 and revised ct-SNE with β = 1e−20 as they score highest on
the Laplacian (dim 1–4). The t-SNE embedding has a Laplacian score of 0 since
the 30 nearest neighbors have the same labels (same color and shape) as we
can visually confirm in Fig. 1a. Revised ct-SNE converges to a Laplacian score
(dim 1–4) equivalent to a random embedding. We conclude that the structure
captured by the labels in dimensions 1–4 has successfully been factored out in
the embedding. The embedding by ct-SNE scores lower on the Laplacian (dim
1–4 labels) but higher when using the labels in dimensions 5–6 ( ,�,�). This
indicates that not only the imposed structure in dimensions 1–4 but also from
dimensions 5–6 has been erroneously removed. The HD neighborhoods for a fixed
level of the Laplacian (dim 1–4) are more accurately preserved by revised ct-SNE
as shown in Fig. 5b.

Pancreas Data. To embed the pancreas data we use a perplexity of 50, θ =
0.5, and 1000 iterations and show the t-SNE and conditional embeddings with
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Fig. 5. Evaluation results for the synthetic dataset. In (a) we show the neighborhood
agreement and Laplacian for varying β, while (b) and (c) allow to compare two of the
measures for a subset of all β values.

β = 1e−30 in Fig. 6. The runtime of ct-SNE for the pancreas dataset is 168 s
compared to 28 s for revised ct-SNE. The evaluation results depicted in Fig. 6a
show that the neighborhood agreement RNX(50) drops significantly from 0.44 for
t-SNE to 0.30 (ct-SNE) and 0.24 (revised ct-SNE) with β = 1e−30. Conditional
t-SNE and revised ct-SNE both converge to a Laplacian (technology) score that
is lower than the score for a random mixing of labels (0.61). The Laplacian for the
celltype labels however is high for ct-SNE, indicating a mix of different celltypes
in the local neighborhoods. Indeed, visualization of the trade-offs (Figs. 7a and
7b) learns us that ct-SNE manages to retain RNX better, while mixing the
cells from different technologies, whereas revised ct-SNE leads to better trade-
offs between the Laplacian scores (less mixing between celltypes, while mixing
samples from different batches).
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Fig. 6. Visualizations and Laplacian scores of pancreas data embeddings where the
technology labels are provided as prior information to ct-SNE and revised ct-SNE with
β = 1e−30. Cell coloring by technology (b)–(d) and cell type (e)–(g). (Color figure
online)
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Fig. 7. Evaluation scores for embeddings of the pancreas data. Trade-offs between RNX

and Laplacian in (a) and Laplacian technology versus celltype in (b).

We also notice that β > 1e−4 is sufficient for ct-SNE while the Laplacian
(technology) for revised ct-SNE only plateaus for smaller values of β. We spec-
ulate that revised ct-SNE requires smaller values as we change Gaussian HD
similarities instead of values from a fat-tailed t-distribution. The trade-offs visu-
alized in Figs. 7a and 7b suggest that β = 0.1 for ct-SNE and β = 1e−4 for
revised ct-SNE might be suitable starting points that can be adjusted in both
directions. Finally, the differences in evaluation scores between point-wise vari-
ance estimation using ri and pi are small and inconclusive.

5 Discussion

The experiments showed that revised ct-SNE outperformed ct-SNE on the syn-
thetic dataset. On the pancreas dataset, ct-SNE achieved a better trade-off
between neighborhood preservation and mixing cells from different technologies,
but at the same time in a higher fraction of neighbors with a different celltype.
Revised ct-SNE benefits from the FIt-SNE implementation, leading to a faster
runtime.

First, we explain the different results of ct-SNE on the two datasets. The orig-
inal implementation of ct-SNE can suppress a grouping of data points according
to given labels, but its ability to reveal larger structures is limited. We showed
that the revised formulation avoids random placement of points in both the syn-
thetic and the pancreas dataset. The original ct-SNE performs better on the
pancreas data than on the synthetic data, because most local neighborhoods
also contain cells with a different technology label—which is not the case in the
synthetic data. For cells sequenced with celseq, there are on average 68 out of
150 nearest neighbors with a different technology label (median 63). However,
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fluidigmc1 cells only have on average 10 out of 150 (median 0) such neigh-
bors. This explains their almost random embedding in Fig. 6c and 6f where the
fluidigmc1, beta cells are mixed with alpha cells and fluidigmc1, alpha cells are
mixed with beta cells.

Secondly, we reflect on the two variants of revised ct-SNE where the desired
bandwidth of the Gaussian is either estimated on pi or the final ri. While the
former seems justified for having a unique solution, the effective perplexity of ri

can differ from the user-defined perplexity. In the visualizations of the pancreas
data (Figures S4 and S5 in the supplement) we noticed circular patterns due to a
too small perplexity. We found out that this dataset contains several outlier cells
that dominate the ri similarity distribution of neighboring cells with a different
technology label. We did not observe these patterns when embedding the second
biological dataset (Figures S1 and S2).

A final aspect is that revised ct-SNE redefines the similarities with the same
β for all labels. If the local HD neighborhood is already mixed with respect
to the provided class labels, a larger β might be sufficient. For cells where the
distance gap between same and differently-labeled neighbors is large, a smaller
β is necessary to reweigh the similarities. In Fig. 6 we show the embeddings
with β = 1e−30 which might overshoot the goal for some cells. That means,
a too small β can remove the neighborhood information of same-labeled points
completely. In summary, neither computing the variance on pi nor on ri ensures
a stable balance between same and differently-labeled neighbors.

Future Work. Based on the result that revised ct-SNE addresses some short-
comings of ct-SNE but brings a different set of drawbacks, we see various avenues
for future work. Firstly we assume that the RNX scores for revised ct-SNE
embeddings would increase when the same-labeled similarities do not vanish for
small β. Additionally, one could allow for separate merging strengths for every
label, based on the assumption that all labels should be mixed in the resulting
embedding. To ensure a certain trade-off between effective same and differently-
labeled neighbors one could compute two separate similarity distributions with
two different perplexities. This is a similar idea as implemented in Class-aware t-
SNE [2] where the perplexity is adjusted to reach a certain ratio of same-labeled
points in the neighborhood. Finally, the embeddings by ct-SNE and revised ct-
SNE could be compared to the reference embeddings by Poličar et al. [8] or a
combination of data integration methods for biological datasets and t-SNE.

6 Conclusion

We presented revised ct-SNE to find low-dimensional embeddings that show
structure beyond a previously known clustering. Conditional t-SNE can fail to
reveal this structure when focusing only on the local neighborhoods using small
perplexities. To resolve this limitation, we reformulate the original idea to con-
dition the high-dimensional similarities and explicitly include nearest neighbors
with different labels. Our experiments on synthetic data confirmed that the

https://arxiv.org/abs/2302.03493
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revised ct-SNE improved on the criticized aspects of the original method, but
ct-SNE performed better in terms of label mixing and neighborhood preservation
on real-world single-cell data. Finally, we investigated limitations of revised ct-
SNE and proposed to control the number of effective same and differently-labeled
neighbors more explicitly.
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Abstract. Concept drift, i.e., the change of the data generating dis-
tribution, can render machine learning models inaccurate. Many tech-
nologies for learning with drift rely on the interleaved test-train error
(ITTE) as a quantity to evaluate model performance and trigger drift
detection and model updates. Online learning theory mainly focuses on
providing generalization bounds for future loss. Usually, these bounds
are too loose to be of practical use. Improving them further is not easily
possible as they are tight in many cases. In this work, a new theoretical
framework focusing on more practical questions is presented: change of
training result, optimal models, and ITTE in the presence (and type)
of drift. We support our theoretical findings with empirical evidence for
several learning algorithms, models, and datasets.

Keywords: Concept Drift · Stream Learning · Learning Theory ·
Error Based Drift Detection

1 Introduction

The world that surrounds us is subject to constant change, which also affects the
increasing amount of data collected over time, in social media, sensor networks,
IoT devices, etc. Those changes, referred to as concept drift, can be caused
by seasonal changes, changing demands of individual customers, aging or failing
sensors, and many more. As drift constitutes a major issue in many applications,
considerable research is focusing on this setting [5]. Depending on the domain of
data and application, different drift scenarios might occur: For example, covariate
shift refers to the situation that training and test sets have different marginal
distributions [9].

In recent years, a large variety of methods for learning in presence of drift
has been proposed [5] where a majority of the approaches targets supervised
learning scenarios. Here, one distinguishes between virtual and real drift, i.e.,
non-stationarity of the marginal distribution only or also the posterior. Learn-
ing technologies often rely on windowing techniques and adapt the model based
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on the characteristics of the data in an observed time window. Here, many
approaches use non-parametric methods or ensemble technologies [7]. Active
methods explicitly detect drift, usually referring to drift of the classification
error, and trigger model adaptation this way, while passive methods continuously
adjust the model [5]. Hybrid approaches combine both methods by continuously
adjusting the model unless drift is detected and a new model is trained.

In most techniques, evaluation takes place by means of the so-called inter-
leaved test-train error (ITTE), which evaluates the current model on a new
data point before using it for training. This error is used to evaluate the overall
performance of the algorithm, as well as to detect drifts in case of significant
changes in the error or to control important parameters such as the window
size [18]. Thereby, these techniques often rely on strong assumptions regarding
the underlying process, e.g., they detect a drift when the classification accuracy
drops below a predefined threshold during a predefined time. Such methods face
problems if the underlying drift characteristics do not align with these assump-
tions.

Here, we want to shed some light on the suitability of such choices and inves-
tigate the mathematical properties of the ITTE when used as an evaluation
scheme. As the phenomenon of concept drift is widespread, a theoretical under-
standing of the relation between drift and the adaption behavior of learning
models becomes crucial. Currently, the majority of theoretical work for drift
learning focuses on learning guarantees which are similar in nature to the work
of Vapnik in the batch case [11,12,19]. Although those results provide interesting
insights into the validity of learning models in the streaming setup, they focus
on worst-case scenarios and hence provide very loose bounds on average only.
In contrast, in this work, we focus on theoretical aspects of the learning algo-
rithm itself in non-stationary environments, targeting general learning models
including unsupervised ones. In contrast to the existing literature, we focus on
alterations of models. This perspective is closely connected to the actual change
of decision boundaries and average cases. In particular, we provide a mathemat-
ical substantiation of the suitability of the ITTE to evaluate model drift.

This paper is organized as follows: First (Sect. 2) we recall the basic notions
of statistical learning theory and concept drift followed by reviewing the existing
literature, positioning this work with respect to it, and concretizing the research
questions (Sect. 2.3). We proceed with a theoretical analysis focusing on (1)
changes of the decision boundary in presence of drift (Sect. 3.1), (2) changes in
the training result (Sect. 3.2), and (3) the connection of ITTE, drift, and the
change of the optimal model (Sect. 3.3). Afterward, we empirically quantify the
theoretical findings (Sect. 4) and conclude with a summary (Sect. 5).

2 Problem Setup, Notation, and Related Work

We make use of the formal framework for concept drift as introduced in [14,15]
as well as classical statistical learning theory, e.g., as presented in [24]. In this
section, we recall the basic notions of both subjects followed by a summary of
the related work on learning theory in the context of concept drift.
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2.1 Basic Notions of Statistical Learning Theory

In classical learning theory, one considers a hypothesis class H, e.g., a set of
functions from R

d to R, together with a non-negative loss function � : H × (X ×
Y) → R≥0 that is used to evaluate how well a model h matches an observation
(x, y) ∈ X × Y by assigning an error �(h, (x, y)). We will refer to X as the
data space and Y as the label space. For a given distribution D on X × Y we
consider X - and Y-valued random variables X and Y , (X,Y ) ∼ D, and assign
the loss LD(h) = E[�(h, (X,Y ))] to a model h ∈ H. Using a data sample S ∈
∪N∈N(X ×Y)N consisting of i.i.d. random variables S = ((X1, Y1), . . . , (Xn, Yn))
distributed according to D, we can approximate LD(h) using the empirical loss
LS(h) = 1

n

∑n
i=1 �(h, (Xi, Yi)), which converges to LD(h) almost surely. Popular

loss functions are the mean squared error �(h, (x, y)) = (h(x)−y)2, cross-entropy
�(h, (x, y)) =

∑n
i=1 1[y = i] log h(x)i, or the 0–1-loss �(h, (x, y)) = 1[h(x) �= y].

Notice that this setup also covers some unsupervised learning problems.
In machine learning, training a model often refers to minimizing the loss

LD(h) using the empirical loss LS(h) as a proxy. A learning algorithm A,
such as gradient descent schemes, selects a model h given a sample S, i.e.,
A : ∪N (X × Y)N → H. Classical learning theory investigates under which cir-
cumstances A is consistent, that is, it selects a good model with high probability:
LD(A(S)) → infh∗∈H LD(h∗) as |S| → ∞ in probability. Since the model A(S) is
biased towards the loss LS due to training, classical approaches aim for uniform
bounds suph∈H |LS(h) − LD(h)| → 0 as |S| → ∞ in probability.

2.2 A Statistical Framework for Concept Drift

The classical setup of learning theory assumes a time-invariant distribution D
for all (Xi, Yi). This assumption is violated in many real-world applications,
in particular, when learning on data streams. Therefore, we incorporate time
into our considerations by means of an index set T , representing time, and a
collection of (possibly different) distributions Dt on X × Y, indexed over T [7].
In particular, the model h and its loss also become time-dependent. It is possible
to extend this setup to a general statistical interdependence of data and time
via a distribution D on T × (X × Y) which decomposes into a distribution PT

on T and the conditional distributions Dt on X × Y [14,15]. Notice that this
setup [15] is very general and can therefore be applied in different scenarios (see
Sect. 5), albeit our main example is binary classification on a time interval, i.e.,
X = R

d, Y = {0, 1}, and T = [0, 1].
Drift refers to the fact that Dt varies for different time points, i.e., {(t0, t1) ∈

T 2 : Dt0 �= Dt1} has measure larger zero w.r.t P2
T [14]. One further distinguishes

a change of the posterior Dt(Y |X), referred to as real drift, and of the marginal
Dt(X), referred to as virtual drift. One of the key findings of [14] is a unique
characterization of the presence of drift by the property of statistical depen-
dency of time T and data (X,Y ) if a time-enriched representation of the data
(T,X, Y ) ∼ D is considered. Determining whether or not there is drift during a
time period is referred to as drift detection.
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Since the distribution Dt can shift too rapidly to enable a faithful estimation
of quantities thereof, we propose to address time windows W ⊂ T and to consider
all data points, that are observed during W , analogous to an observation in
classical learning theory. This leads to the following formalization [17]:

Definition 1. Let X ,Y, T be measurable spaces. Let (Dt,PT ) be a drift pro-
cess [14,15] on X × Y and T , i.e., a distribution PT on T and Markov kernels
Dt from T to X ×Y. A time window W ⊂ T is a PT non-null set. A sample (of
size n) observed during W is a tuple S = ((X1, Y1), . . . , (Xn, Yn)) drawn i.i.d.
from the mean distribution on W , that is DW := D(X,Y | T ∈ W ).

This resembles the practical procedure, where one obtains sample S1 during
W1 from another sample S2 during W2, with W1 ⊂ W2, by selecting those entries
of S2 that are observed during W1. In particular, if W1 = {1, . . . , t}, W2 =
{1, . . . , t, t + 1} this corresponds to an incremental update. Other windowing
strategies like sliding windows, removal of old samples, passive updates, etc. are
also possible. Indeed, using this idea many questions in the context of drift can
be implemented by choosing the right windowing scheme. For our research ques-
tion we considers the general setup, and thus not focus on a specific windowing
scheme.

Notice that by applying windowing different possible drift dynamics present
in the drift process Dt, e.g., abrupt, incremental, periodic, are simplified to a
single abrupt drift. In particular, the continuous analysis of drift behavior is
reduced to a binary problem, e.g., we can speak of a distribution before (DW1)
and after (DW2) the drift.

In this work, we will consider data drawn from a single drift process, thus
we will make use of the following short-hand notation Lt(h) := LDt

(h) for a
time point t ∈ T and LW (h) = LDW

(h) for a time window W ⊂ T , where
DW = E[DT | T ∈ W ] denotes the mean of Dt during W and L(h) := LT (h)
is the loss on the entire stream. Notice that this is well defined, i.e., LW (h) =
E[�(h, (X,Y )) | T ∈ W ] = E[LT (h) | T ∈ W ] assuming L(h) < ∞. In stream
learning, some algorithms put more weight on newer observations, e.g., by con-
tinuously updating the model. Such considerations can be easily integrated into
our framework, but we omit them for simplicity.

2.3 Related Work, Existing Methods, and Research Questions

Stream learning algorithms can be split into two categories [5]: passive methods,
which adapt the model slightly in every iteration (Line 6 in Algorithm 1), and
active methods, which train a new model once drift is detected (Line 8 in Algo-
rithm 1). There also exist hybrid methods that integrate both characteristics as
outlined in Algorithm 1.

Most existing theoretical work on stream learning in the context of drift
derives learning guarantees as inequalities of the following form: the risk at
a future time point W2 = {t + 1} is bounded using the risk on the current
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Algorithm 1. Schematic Description of Typical Stream Learning Algorithm
1: Input: S data stream, A training algorithm, h0 initial model, � loss function, D

drift detector
2: Initialize model h ← h0, L ← ∅
3: while Not at end of stream S do
4: Receive new sample (x, y) from stream S
5: Compute ITTE L ← Update(L, �(h, (x, y)))
6: Update model h ← A(h, (x, y)) � Passive Adaption
7: if Detect drift D(L) then
8: Reset model h ← h0 OR Retrain on next samples � Active Adaption
9: end if

10: end while

time window W1 = {1, . . . , t} and a distributional difference in between those
windows [12,19,22]:

LW2(h)
︸ ︷︷ ︸

application time risk

≤ LW1(h)
︸ ︷︷ ︸

train time risk

+ sup
h′∈H

|LW2(h
′) − LW1(h

′)|
︸ ︷︷ ︸

distributional discrepancy

. (1)

Other similar ways to quantify the distributional discrepancy exist [3,10,26].
Most approaches aim for a good upper bound of the train time risk [11,19,22].
Eq. (1) then gives rise to convergence guarantees usually applied by splitting
the so far observed stream into several chunks and training a model on each of
them [11,12,26]. Notice that due to the windowing, the problem is closely linked
to domain adaption which is analyzed using a very similar theory [3,23].

A crucial aspect of the inequality is the distributional discrepancy. Notice
that it is closely related to other statistical quantities like the total variation
norm [12,14,19] or the Wasserstein distance. It provides a bound that refers
to the worst possible outcome regarding the drift. Although this scenario can
theoretically occur (see examples given in [11, Theorem 2]), it is not likely in
practice. For example, for binary classification with 0–1-loss, i.e., Y = {−1, 1}
and �(h, (x, y)) = (1 − y · h(x))/2, we can turn the difference into a label swap:

sup
h∈H

|LW1(h) − LW2(h)| = 2 sup
h∈H

L(DW1+DW2 )/2
(h),

where DW2 denotes the distribution during W2 with swapped label. Thus, we
obtain large discrepancies even if the decision boundary is not affected by drift.
Comparable statistics are used for unsupervised drift detection [17]. These points
imply that error bounds are not necessarily a suitable tool to study the effect of
concept drift on learning algorithms, models, and losses.

To overcome this problem, in practice, drift learning algorithms rely on a
comparison of the current and historical loss estimated using the ITTE scheme
instead. However, this procedure has its own deficiencies. As can be seen in
Fig. 1, the loss of a fixed model can change without a change of the optimal
model and vice versa. Based on these insights, in this contribution we aim to
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Fig. 1. Effect of drift on model loss of a fixed and optimal model. Graphic shows fixed
model h (black line), optimal model h∗ (red dotted line), and model losses. (Color
figure online)

provide a better understanding of the usage of stream learning algorithms in the
context of drift and novel techniques derived thereof, answering the following
questions:

1. How are model changes related to different types (real/virtual) of drift?
2. What is the relation between optimal models and the output of learning

algorithms on different time windows? When to retrain the model?
3. How are changes in the optimal model mirrored in changes in the ITTE?

3 Theoretical Analysis

To answer these research questions we propose three formal definitions, each
reflecting a different aspect and perspective of drift – each designed to answer
one of our research questions. We then compare those definitions, show formal
implications, and provide counterexamples in case of differences, in order to
provide the desired answers. We summarize our findings in Fig. 2, displaying
different types of drift definitions and their implications.

We will refer to the types of drift that affect models as model drift. It is a
generalization of the notion of model drift in the work [14], which is based on the
comparison of the distribution for two different time windows, i.e., DW1 �= DW2 .
We extend this idea to incorporate model and loss-specific properties.

3.1 Model Drift as Inconsistency of Optimal Models

The concept of model drift can be considered from two points of view: different
training results (see Sect. 3.2) and inconsistency of optimal models. We deal with
the latter notion first. Using loss as a proxy for performance, we consider that a
model performs well if it has a loss comparable to the minimal achievable loss.
We refer to this as hypothetical- or H-model drift, which is defined as follows:

Definition 2. Let H be a hypothesis class, � a loss function on H, and Dt be
a drift process. We say that Dt has strong H-model drift iff there exist time
windows without a common well-performing model, i.e., there exist measurable
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Fig. 2. Definitions and implications. Numbers indicate needed assumptions: (1) A is
consistent, (2) loss uniquely determines model, (3) optimal loss is unchanged, (4) uni-
versal hypothesis class of probabilistic models with non-regularized loss.

PT non-null sets W1,W2 ⊂ T and C > 0 such that for every h ∈ H we have
LW1(h) > infh∗∈H LW1(h

∗) + C or LW2(h) > infh∗∈H LW2(h
∗) + C.We say that

Dt has weak H-model drift iff some model stops being optimal, i.e., for some time
windows W1,W2 there exists a C > 0 such that for all ε < C there is some h ∈ H
such that LW1(h) ≤ infh∗∈H LW1(h

∗) + ε and LW2(h) > infh∗∈H LW2(h
∗) + C.

H-model drift refers to the fact that models that perform well during one
time window perform poorly during the other. Thus, it is used to study the
change in optimal models. The difference between strong and weak H-model
drift is only relevant if there are multiple optimal models: Weak H-model drift
refers to the case that there exists at least one model which is only optimal
for one time window. Strong H-model drift requires this to hold for all optimal
models. Thus, strong H-model drift implies that model adaptation is strictly
necessary for optimum results, whereas the necessity of model adaptation for
weak H-model drift might depend on the specific choice of the model. Strong
H-model drift implies weak H-model drift. This raises the question under which
circumstances the converse is also true. It turns out that loss functions inducing
unique optima are sufficient:

Lemma 1. If Dt has strong H-model drift for windows W1,W2, then it has weak
H-model drift on the same windows. If the optimal model is uniquely determined
by the loss, i.e., for all hi, h

′
i ⊂ H with LW1(hi),LW1(h

′
i)

i→∞−−−→ infh∗∈H LW1(h
∗)

we have lim supi→∞ |�(hi, (x, y)) − �(h′
i, (x, y))| = 0 for all (x, y) ∈ X × Y and �

bounded, then the converse is also true. The additional assumption is necessary.

Proof. Due to space restrictions, all proofs can be found in the ArXiv version [16].

Notice that the uniqueness criterion becomes particular intuitive for functions
h : X → Y and losses induced by a metric, i.e., �(h, (x, y)) = d(h(x), y), in which
case we can bound |�(h, (x, y))−�(h′, (x, y))| ≤ d(h(x), h′(x)). Thus, the criterion
requires models with little variance to ensure that the notions of strong and weak
H-model drift coincide. This can be achieved by a regularization term such as
limiting the weight norm. As an immediate consequence we have:
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Corollary 1. For k-nearest neighbor, RBF-networks, and decision tree virtual
drift cannot cause strong H-model drift, i.e., we can keep the training window.
For SVMs and linear regression based on the mean squared error virtual drift
can cause strong H-model drift, i.e., we may have to reset the training window.

Obviously, (weak) H-model drift implies drift because if there is no change
of the loss, i.e., Lt(h) = Ls(h) for all h ∈ H, s, t ∈ T , there cannot be (weak)
H-model drift. The converse is not so clear. We address this question in the
following, targeting real drift.

Theorem 1. Let Y = {0, 1}, T = [0, 1], and X = R
d. Let Dt be a drift

process, H be a hypothesis class of probabilistic, binary classifiers, i.e., maps
h : X → [0, 1], with MSE-loss, i.e., �(h, (x, y)) = (h(x) − y)2, and assume that
H is universal, i.e., dense span in the compactly supported continuous functions
Cc(X ). Then, Dt has real drift if and only if Dt has strong H-model drift.

This theorem includes crucial ingredients which are necessary to guarantee
the result. As an example, the model class has to be very flexible, i.e., universal,
to adapt to arbitrary drift, and the loss function must enable such adaptation.

Together with Corollary 1 this completes our study of Question 1, whether or
not concept drift affects the optimal model depends on the drift and the model
class. Real drift usually affects all model classes while virtual drift poses only a
problem if the model class is not flexible enough to adapt to the change.

So far we considered the change of decision boundaries through the lens of
models, disregarding how they are achieved. We will take on a more practical
point of view by considering models as an output of training algorithms applied
to windows in the next section.

3.2 Model Drift as Time Dependent Training Result

Another way to consider the problem of model drift is to consider the output of
a training algorithm. This idea leads to the second point of view: drift manifests
itself as the fact that the model obtained by training on data from one time point
differs significantly from the model trained on data of another time point. We
will refer to this notion as algorithmic- or A-model drift. It answers the question
of whether replacing a model trained on past data (drawn during W1) with a
model trained on new data (drawn during W2) improves performance. Using loss
as a proxy we obtain the following definition:

Definition 3. Let H be a hypothesis class, � a loss function on H, and Dt be
a drift process. For a training algorithm A we say that Dt has A-model drift
iff model adaptation yields a significant increase in performance with a high
probability, i.e., there exist time windows W1,W2 such that for all δ > 0 there
exists a C > 0 and numbers N1 and N2 such that with probability at least 1 − δ
over all samples S1 and S2 drawn from DW1 and DW2 of size at least N1 and
N2, respectively, it holds LW2(A(S1)) > LW2(A(S2)) + C.
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Note that we do not specify how the algorithm processes the data, thus
we also capture updating procedures. Removal of old data points, e.g., W1 =
{1, . . . , t1, . . . , t2},W2 = {t1, . . . , t2}, is also a relevant instantiation of this setup.
Unlike H-model drift which is concerned with consistency, it focuses on changes
of the training result. The following theorem connects both notions:

Theorem 2. Let Dt be a drift process, H a hypothesis class with loss �, and
learning algorithm A. Consider the following statement with respect to the same
time windows W1 and W2: (i) Dt has strong H-model drift for windows W1,W2.
(ii) Dt has A-model drift for windows W1,W2. (iii) Dt has weak H-model drift
for windows W1,W2. If A is a consistent training algorithm, i.e., for suffi-
ciently large sample sizes we obtain arbitrarily good approximations of the opti-
mal model [24, Definition 7.8], then (i) ⇒ (ii) ⇒ (iii) holds. In particular, if we
additionally assume that the optimal model is uniquely determined by the loss
(see Lemma 1) then all three statements are equivalent. If A is not consistent,
then none of the implications hold.

The relevance of this result follows from the fact that it connects theoretically
optimal models to those obtained from training data when learning with drift.
The result implies that model adaption does not increase performance if there is
no drift. Further, if the model is uniquely determined any consistent algorithm
will suffer from drift in the same situations. Formally, the following holds:

Corollary 2. Let Dt be a drift process, H a hypothesis class with consistent
learning algorithms A and B. Assume that the optimal model is uniquely deter-
mined by the loss, then for windows W1 and W2, A-model drift is present if and
only if B-model drift is present.

This concludes our consideration of Question 2: For reasonable, i.e., con-
sistent, learning algorithms the question whether or not the resulting model is
affected by the drift mainly depends on the number of possible, well-performing
models. If this number is small, then any kind of drift is likely to have an effect
on the training result. In this case, the choice of learning algorithm is negligible.

Although the results regarding A-model drift give us relevant insight, they
do not yet include one important aspect of practical settings: A-model drift
compares already trained models, yet training a new model for every possible
time window is usually unfeasible. Due to this fact, many algorithms investigate
incremental updates and refer to the ITTE as an indicator of model accuracy
and concept drift [7]. Next, we will investigate the validity of this approach.

3.3 Interleaved Test-Train Error as Indicator for Model Drift

A common technique to detect concept drift is to relate it to the performance
of a fixed model. In this setup a decrease in performance indicates drift. Using
loss as a proxy for performance we obtain the notion of loss- or �-model drift :

Definition 4. Let H be a hypothesis class, � a loss function on H, and Dt be a
drift process. We say that Dt has �-model drift iff the loss of an optimal model
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changes, i.e., for time windows W1,W2 there exists a C > 0 such that for all
ε < C there is some h ∈ H such that LW1(h) ≤ infh∗∈H LW1(h

∗) + ε and
LW2(h) > LW1(h) + C. We say that the optimal loss is non-decreasing/non-
increasing/constant iff infh∗∈H LW1(h

∗) ≤ / ≥ / = infh∗∈H LW2(h
∗) holds.

The common instantiation of ITTE is obtained by considering W1 =
{1, . . . , t}, W2 = {1, . . . , t, t + 1}. It is easy to see that �-model drift implies
drift, the connection to the other notions of model drift is not so obvious as a
change in the difficulty of the learning problem does not imply a change of the
optimal model or vice versa: an example is the setup of binary classification and
drift induced change of noise level (Fig. 1). Assumptions regarding the minimal
loss lead to the following result:

Lemma 2. Assume the situation of Definition 4. For time windows W1,W2 it
holds: (i) For non-decreasing optimal loss, weak H-model drift implies �-model
drift. (ii) For non-increasing optimal loss, �-model drift implies weak H-model
drift. The additional assumption is necessary.

As a direct consequence of this lemma and Theorem 2, we obtain a criterion
that characterizes in which cases active methods based on the ITTE are optimal.
Here, we do not require that the loss uniquely determines the model:

Theorem 3. Let Dt be a drift process and H be a hypothesis class with loss �.
Assume the optimal loss is constant. Then for time windows W1,W2 and any
consistent learning algorithm A it holds: Dt has A-model drift if and only if
it has �-model drift with respect to h = A(S1), i.e., ∀δ > 0∃N > 0∀n > N :
PS1∼Dn

W1
[LW2(A(S1)) > LW1(A(S1)) + C] > 1 − δ.

Notice that this result provides a theoretical justification for the common
practice in active methods, to use drift detectors on the ITTE to determine
whether or not to retrain the model. The statement only holds if the optimal
loss is constant – otherwise, the ITTE is misleading and can result in both false
positive and false negative implications (see Fig. 1). This answers Question 3.

4 Empirical Evaluation

In the following, we demonstrate our theoretical insights in experiments and
quantify their effects. All results which are reported in the following are statisti-
cally significant (based on a t-test, p < 0.001). All experiments are performed on
the following standard synthetic benchmark datasets AGRAWAL [1], LED [2],
MIXED [8], RandomRBF [20], RandomTree [20], SEA [25], Sine [8], STAG-
GER [8] and the following real-world benchmark datasets “Electricity market
prices” (Elec) [13], “Forest Covertype” (Forest) [4], and “Nebraska Weather”
(Weather) [6]. To remove effects due to unknown drift in the real-world datasets,
we apply a permutation scheme [17], and we induce real drift by swapping labels
of two randomly chosen classes. As a result, all datasets have controlled real
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Fig. 3. Comparison of types of drift for different datasets (marker) and models (color)
by means of accuracy. x-axis shows accuracy on original distribution (test-set), y-axis
shows accuracy on drifted distribution, black lines mark y = ±x, 50%. For the sake of
clarity, error bars show 1/2 of standard deviation.

drift and no virtual drift. We induce virtual drift by segmenting the data space
(leaves of decision trees on random linear transformations fitted to uniform ran-
dom noise) and randomly associate every segment with one time window, i.e.,
the samples in a segment are either used or dropped completely. For comparabil-
ity, all problems are turned into binary classification tasks with class imbalance
below 25%. This way we obtained 2 × 2 distributions with controlled drifting
behavior, i.e., Dij(X,Y ) = Di(X)Dj(Y |X), i, j ∈ {0, 1}. Notice that this corre-
sponds to windowing and thus does not reduce the generality as already discussed
in Sect. 2.2, i.e., phenomena like incremental or periodic drift are also captured.

To show the effect of real and virtual drift on classification accuracy, we
draw train and test samples from those distributions which correspond to the
time windows in Sect. 3 and compute the train-test error of the following models:
Decision Tree (DT), Random Forest (RF), k-Nearest Neighbour (k-NN), Bag-
ging (Bag; with DT), AdaBoost (Ada; with DT), Gaussian Näıve Bayes (NB),
Perceptron (Prc), and linear SVM (SVM) [21]. We repeated the experiment
1,000 times. The results are shown in Fig. 3. We found that real and virtual drift
causes a significant decrease in accuracy compared to the non-drifting baseline
for all models and datasets (except for Prc and SVM on AGRAWAL on virtual
drift where the results are inconclusive). A combination of real and virtual drift
decreased the accuracy even further if compared to the non-drifting baseline and
virtual drift only. These findings are in strong agreement with Theorem 3 and
show that virtual drift can cause a significant decrease in accuracy although it
is usually considered less relevant for the performance of a model.

To evaluate the necessity to reset the training window after drift we combined
two windows that differ in one drift type, i.e., virtual or real drift, and proceed
as before. An overview of the results is presented in Fig. 4a and 4b. As expected,
the models trained on the composed windows outperform the ones trained on
the non-composed samples (except for SVM on AGRAWAL with virtual drift
where the results are inconclusive). In comparison to the non-drifting baseline,
the composed real drift models are outperformed, and the composed virtual drift
model are mainly inconclusive. An analysis of the usage of additional information
in the latter scenario is presented in Fig. 4c: For c composed virtual, v virtual,
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Fig. 4. Evaluation of composed windows. Plots (a) and (b) use the same color/marker
scheme as Fig. 3. (Color figure online)

and n no drift accuracy, we normalize the increase of accuracy beyond general-
ization (c − v) by the decrease of accuracy due to limited flexibility (n − c), i.e.,
|(c − v)/(n − c)|. As can be seen, NB, Prc, and SVM do not profit, DT and k-NN
profit most, RF, Bag, and Ada profit moderately. These findings are in strong
agreement with Corollary 1 and Lemma 1 as they quantitatively show that more
flexible models are better at handling virtual drift in the training window.

5 Discussion and Conclusion

In this work, we considered the problem of online and stream learning with
drift from a theoretical point of view. Our main results aim at the application
of active methods that adapt to drift in data streams by mainly considering
the ITTE. In contrast to many other works in this area, we focused on consis-
tency and/or change of the decision boundary as indicated by models and loss
functions. Furthermore, out approach applies to semi- and unsupervised setups
assuming a suitable loss function characterizes the model, e.g., k-means, PCA,
density estimation, etc. More general notions of time, e.g., computational nodes
as in federated learning or domains as in domain adaption, are also covered.
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1 Introduction

Healthcare-Associated Infections (HAIs) are among the most prevalent contam-
ination events in healthcare settings, posing significant challenges to patient
care. Multimodal interventions have been advocated, implemented, and stud-
ied to control and prevent HAIs, and cross-transmission of multidrug-resistant
organisms worldwide [14]. Despite numerous efforts, the compliance of interven-
tions among healthcare professionals remains below the WHO recommendations,
hampering patient safety [8,10]. Consequently, healthcare professionals, firms,
and policymakers seek innovative ideas to increase interventions compliances
and improve patient care. They now ask questions such as “what can healthcare
professionals do in the real world to reduce HAIs?” and “how to prevent HAIs
in different settings effectively?” Moreover, new knowledge is needed to promote
behavior changes and education, monitor performance feedback, and create a
safe climate.

Notably, the literature in idea identification has primarily investigated tra-
ditional methods involving interviews, ethnographic market research, repertory
grid technique, and lead user workshops to identify novel ideas in healthcare set-
tings [21]. Although prior research has highlighted important aspects to identify
ideas and established some principles for best practices, it needs more details
regarding how to scale the identification methods across different continents,
reduce the operationalization costs, and ultimately seek local ideas discussed
in real-time [22]. For example, Kesselheim et al. [11] conducted interviews to
investigate the idea generation processes and clinical doctors’ involvement in
coronary artery stents but has been restricted to local settings. Likewise, Smith
et al. [20] used text-matching algorithms on patents to investigate premarket
approval applications in four medical device firms (Medtronic, Johnson & John-
son, Boston Scientific, and Guidant). Nevertheless, the study is restricted to sec-
ondary data, which undermines the possibility of identifying unpublished and
potentially disruptive ideas.

A new and efficient way of identifying ideas is to use classification algorithms
that can screen large amount of text and identify those bits of information that
are more likely to contain ideas [4]. One way to access such a large pool of
information is to use social media platforms such as Twitter and analyze the
human-generated text using Natural Language Processing (NLP) [7]. The liter-
ature on NLP emphasizes using Transfer Learning to extract semantic represen-
tation in social media [15]. The BERTweet language model has been primarily
investigated and provided valuable insights for various downstream tasks [17].
However, the potential of transfer learning and domain adaptation is not limited
to text processing. We have explored this perspective in our previous studies in
other domains and received outstanding results [12,18].

Patients, healthcare professionals, scholars, and industry representatives are
constantly using social media to communicate their needs and promote new
healthcare practices [16]. This study conducts a retrospective observational anal-
ysis of Twitter user’s posting related to HAIs. Ideas are identified using super-
vised machine learning, demonstrating how technologies such as artificial intel-
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ligence can advance HAI interventions. The idea is to analyze a set of tweets
and rank them based on their probability of conveying an idea or a problem
(aka informative tweets). The informative tweets form the minority class, which
is also referred to as positive samples. On the other hand, the majority class
is non-informative tweets and corresponds to the negative class. The proposed
framework (AID4HAI) analyzes the collected HAIs ideas and validates the the-
oretical and practical implications of the approach with the help of a Swedish
hygiene and health company. We employ Active Learning (AL) at the core of
our framework to incrementally improve a discriminative model for finding as
many potential ideas as possible.

In the Active Learning setup, we usually have a small labeled and a large
unlabeled data pool. The goal is to pick samples from the pool of unlabeled
data that produce the most significant improvement in the model’s performance
and then present the selected samples to the annotators for labeling, eventually
adding them to the set of labeled data. This can be done in different ways. A pop-
ular approach is the least confidence [13] query strategy which chooses samples
to query by considering the uncertainty of the classifier prediction. According
to Chen et al. [2], uncertainty sampling methods are not a perfect solution for
imbalanced scenarios since the majority class size is much larger than the minor-
ity one, and they will presumably query too many samples from the majority
class. A more recent query strategy for handling imbalanced classification aims to
find samples that are under-represented in the labeled data distribution. To this
end, they either train an auxiliary binary classifier [6] to distinguish between
labeled and unlabeled data or train an outlier detection algorithm [1] on the
labeled data to score samples of the unlabeled pool.

However, these approaches do not promote (enforce) the selection of samples
from the minority class in a manner that would be sufficient for our case. Despite
improving the decision boundary, the ratio of the majority to the minority class is
still preserved, and there is no mechanism to make the proportion more balanced.
This drawback can potentially lead to the shortage of samples from the minority
class in highly imbalanced datasets and ultimately degrades the performance of
discriminative models. The proposed framework prioritizes the minority class
by selecting samples that are predicted as more informative according to the
feedback from the trained model. This helps to make the training dataset more
and more balanced over the iterations.

The rest of this paper is structured as follows: Sect. 2 discusses how the
dataset is collected, pre-processed, and labeled in detail. Section 3 brings up the
proposed iterative method. Experiments and results are demonstrated in Sect. 4.
Finally, the study’s conclusion and future works are mentioned in Sect. 5.

2 Data Collection and Labeling

2.1 Data Collection

The Twitter platform has been chosen as a data source in this study. For extract-
ing data, we selected a list of 78 HAI-related keywords and accounts with the
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help of experts in business and specialists in the healthcare domain. This list
contains 21 personal accounts from famous Infection Prevention (IP) specialists
with a high number of followers on the Twitter platform, 6 HAI-related jour-
nals, 15 public health organizations, 11 health and hygiene companies, and 25
HAI-related keywords. The following keywords and accounts were used:

Infection preventionists: Tom Frieden, Jason Gallagher, Debbie Goff, Marc
Mendelson, Jon Otter, Eli Perencevich, Kevin Pho, Laura Piddock, Didier
Pittet, Daniel Uslan, Marion Koopmans, Debbie Xuereb, Carole Hallam,
Heather Loveday, Pat Cattini, Ermira Tartari, Karen Wares, Hannah, Evonne
T Curran, Martin Kiernan, and Helen Dunn.

Journals: Infection Control & Hospital Epidemiology, Lancet Infectious
Diseases, Journal American Medical Association, New England Journal
Medicine, Journal of Infection and Prevention, and Journal of Hospital Infec-
tion

Organizations: CDCFlu, CDCGov, CDC, WHO NIAIDNews, ECDC EU,
SHEA Epi, IDSAInfo, APIC, HIS infection, IPS Infection, IPSRnD, NHIn-
fectPrevent, ips epdc, IFH HomeHygiene, and ESCMID

Companies: Purell, Clean hands safe hands, DEB, GWA, Hygiene, EcoLab,
Georgia-Pacific, Ophardt, SaniNudge, Essity, and Tork.

Keywords: Cross Infection, Health acquired infection, Hospitalacquired infec-
tion, #hospitalacquiredinfection, Healthcare acquired infection, #Health
acquired infection, Cross contamination, Nosocomial Infection, Healthcare-
Associated Infection, Healthcare Associated Infection, Hand hygiene, Hospital
Infection, Hand disinfection, Hand washing, Hand sanitizer, Infection control,
Disinfection, Infection prevention, Decontaminate hands, Surgical site infec-
tion, Central line-associated bloodstream infections, Catheter associated uri-
nary tract infections, Ventilator associated pneumonia, #HAI, and #HCAI

We searched Twitter by each of these queries and collected about 4.5 million
tweets using the Twitter API v2. It resulted in a dataset containing selected
HAI-related tweets posted from 2019 till the beginning of 2022. The dataset
encompasses the tweet id, text, user id, time, and key metadata (i.e., number of
likes, replies, and retweets) for each tweet. The collected tweets are in English,
and each tweet has up to 280 characters.

2.2 Data Pre-processing

All the tweets were collected based on HAI-related keywords and also from the
personal accounts belonging to infection prevention specialists whose goal is to
teach and inform people about infection prevention. Although these accounts are
all related to our goal, there is still no guarantee that all the tweets are on topic
for our study. Therefore, we filtered out the collected tweets and kept only those
that have at least one of the following terms: infection, health, contamination,
nosocomial, healthcare, hand, hygiene, disinfection, prevention, decontaminate,
surgical, bloodstream, catheter, urinary, ventilator, pneumonia, sanitizer, rub,
hospital, disease, wash, control
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Furthermore, inspired by Christensen et al. [3], we filtered the collected tweets
once more with some ideation and problem terms to increase the chance of
finding more ideas and problems in HAI. The terms are: need, problem, been,
still, difficult, puzzle, can’t, would, headache, would be, they would, i think, idea,
and could be. This filtering process narrowed down the dataset to 692616 tweets
(the unlabeled data pool).

2.3 Data Labeling

The collected data is unlabeled, and determining whether each tweet belongs
to the“informative” or “non-informative” classes requires data annotation. For
this purpose, three annotators with healthcare background were recruited and
instructed to label the data independently. They were given instructions through
some educational sessions by experts from a hygiene company and physi-
cians from a hospital in Sweden. Also, some examples of informative and non-
informative tweets are shown to annotators to familiarize them with the concept
of controlling HAI. Then they were asked to read each tweet and label it based
on this question: “Does the text below contain any information that can improve
or create products or services related to HAI? (Mark 1 for Yes (informative) and
0 for No (non-informative))”

The annotation has been done in four iterations. In each iteration, a new
batch of data is labeled by three annotators individually. This corpus of the
labeled dataset is then published on a public GitHub repository and can be used
for further studies.

After the annotation, we used our annotator’s labels to identify each tweet’s
importance and label them. We assigned label 1 to those tweets that a majority
of the annotators (2 out of 3, or unanimously) perceived as belonging to the
“informative” class (referred to as 2- and 3-stars). Samples with no vote of
informativeness (0-star) belonged to the “non-informative” class. Samples with
only one vote (1-star) are ambiguous; in a sense, their label is unclear, making
it difficult to judge to which group they belong. On the one hand, they are not
“informative” since they failed to receive the majority; on the other hand, they
should not be considered “non-informative” since one of the annotators voted
them as informative. These ambiguous samples are removed from the data and
neither used for training nor evaluating the models.

3 Methodology

3.1 Model

In this project, we used Transfer Learning and built a two-step deep neural
network model that identifies the HAI-related informative tweets from non-
informative ones. Transfer Learning is an ML technique for transferring the
knowledge learned from one domain to another domain. More specifically, we
took advantage of the transformer layers of the BERTweet language model [17],



200 Z. Kharazian et al.

which has been previously trained on 850 million general English tweets, as
a first step to extract the semantic representation of our HAI-related English
tweets. Then, we use these representations as input for the next layer of the
model, which is a multi-layer perceptron (MLP) chosen for classifying tweets.
The portion of data used for training, validation, and testing is 60%, 20%, and
20%, respectively. The training process stops when the validation loss does not
improve after ten epochs using the early stopping method. The structure of the
model can be seen in Fig. 1.

BERTweet has the same architecture as the BERT (Bidirectional Encoder
Representations from Transformers) [5] and consists of transformer layers and
self-attention heads. On the other hand, the MLP we use as the classification
head is structured from max-pooling, batch normalization, a dense layer with
a ReLU activation function, a dropout layer, and another dense layer with a
softmax activation function. Overall, this large model contains approximately
135 million parameters.

3.2 Active Learning in Data Labeling

One of the challenges of this project is how to train an ML model with unla-
belled and highly imbalanced data. In this case, since we are working with a
highly skewed dataset, most ML models will fail to distinguish samples from the
minority class, and their decision will be biased toward the majority class.

Moreover, manually labeling a large-scale set of tweets (by humans) is labo-
rious, time-consuming, and costly. This challenge, together with dealing with
highly imbalanced data, motivated us to employ an iterative method based on
Active Learning and feedback loops to boost the chance of finding more positive
samples among the pool of unlabeled and imbalanced datasets. According to
a survey on active learning [19], the main advantage of this learning approach
is that it enables the model to achieve good performance even by training on
relatively small number of labeled samples.

Active learning is a method that can be used for optimizing the labeling pro-
cess by prioritizing samples to query an expert/oracle for labeling or correcting
the labels. In this research, based on our need to find more informative samples
within the pool of imbalanced and unlabeled data, we favor a query strategy
that allows the active learner to select those samples with a higher probability
of having ideas in the minority class. We called it the “Richest Minority” query
strategy. These probabilities are the predictions produced by the trained model
in each iteration.

Our work uses a two-step deep neural network model including BERTweet
language model and a multi-layer perception (MLP) to classify and evaluate the
tweets. The output of this model is a vector of probabilities produced by the
softmax activation function that indicates how much each tweet is assumed to
belong to the informative class. By sorting these probability scores from high to
low and following the Richest Minority query strategy, we can select the most
informative set of tweets to query the oracle. We employed this query strategy
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in our iterative algorithm and managed to detect a number of informative ideas
and problems for controlling and preventing healthcare-associated infections.

Fig. 1. Proposed algorithm based on Active Learning and Transfer Learning

Figure 1 and Algortihm 1 demonstrate the proposed iterative method. The
algorithm follows the below steps:

1. A small subset of data is selected based on each tweet’s metadata score,
including the number of likes, replies, retweets, and quotes. To do so, we nor-
malized each of these features using the MinMax scaler method, summed up
these four normalized values, and considered it a new feature called “rate.”
Afterward, we sorted the rate values for each set of tweets grouped by their
keywords/accounts and selected the first three tweets plus a random tweet
among the rest. This procedure yielded a diversified “small pool,” which con-
tains 586 tweets. The rest of the unlabeled data is stored in the “large pool.”

2. The small pool is labeled by human annotators.
3. Labeled samples (if any) from the previous iteration(s) are added to the small

labeled pool.
4. The two-step model is used to extract the semantic representation of each

tweet and train a classifier on them.
5. The trained model is used to predict the probability class score of the remain-

ing unlabeled data.
6. To find more positive samples, using the richest minority query strategy, the

700 most informative samples (i.e., ones with the highest probability scores),
as well as 300 random samples (using the roulette wheel selection method) are
selected as the next small batch of data to query for annotation. The reason
for adding random samples selected using the roulette wheel method is to
avoid the Echo Chamber phenomenon [9], where the same or similar ideas
are repeatedly discovered in the dataset.

7. Go back to step 2
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Algorithm 1. Proposed algorithm
large pool ←All filtered Tweets � size:692616
small pool ←[]
for i ← 1 to 4 do

if i = 1 then
selected tweets ← Initial Seeds. Tweets with high rates � size:586

else
selected tweets ← richest minority query(large pool,y ) � size:1000
large pool −= selected tweets � remove the selected tweets from large pool

end if
Annotate(selected tweets)
small pool += selected tweets � add selected tweets to small pool
model.fit(small pool)
y ←model.predict(large pool)

end for

Following the proposed iterative algorithm, Table 1 demonstrates the num-
ber of informative and non-informative samples in different iterations. The “3-
star”, “2-star”, “1-star”, and “0-star” columns show the score of tweets. The
“Informative” column shows the summation of 3 and 2-star tweets, while the
“non-informative” column shows the number of 0-star tweets in each iteration.
“Aggregated informative” is the number of accumulated informative samples
from the current and previous iterations. This growing data is used to retrain
the model in further iterations.

4 Experiments and Results

We have designed an experiment to evaluate the performance of the proposed
framework based on two data split configurations. Figure 2a shows the portions
of data used to train models in each iteration. For instance, the first model is
trained, validated, and tested on 60, 20, and 20% of the first batch of data.
This proportion is kept for all other iterations but with the difference that the
data for the rest of the iterations are being aggregated (from that iteration and
the previous ones). The second configuration uses a similar setting (Fig. 2b).
The only difference is that the test set here is the collection of test sets from

Table 1. Statistics of the labeled data in all iterations

iteration 3-star 2-star 1-star 0-star total informative non-info agg informative agg non-info

1st 15 42 122 407 586 57 407 57 407

2nd 19 85 152 731 987 104 731 161 1138

3rd 26 90 197 664 974 116 664 277 1802

4th 17 81 196 676 970 98 676 375 2478

total 77 298 667 2478 3517 375 2478
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Fig. 2. The data split used for the experiment. Note that the second configuration uses
the same test set for all iterations

all iterations. The purpose is to evaluate the model’s performance without the
influence of various test sets.

In each iteration, the performance of the trained model is evaluated and
reported using the f1-score measure for each class and the macro average of
both classes. It is known that the f1-score evaluation metric is less sensitive to
class imbalance. Furthermore, another evaluation metric, the Area under the
Precision-Recall Curve (PR-AUC), is calculated to assess the performance of
the models.

One common practice for training models with imbalanced datasets is to
add weight to the samples from the minority class. To evaluate the effect of
adding sample weights, we trained the same model twice, once in the presence
and once in the absence of sample weights. We assign weights equal to one to
the samples from the majority class, while the samples from the minority class
receive weights of 2 or 3 according to their respective number of votes. In other
words, positive samples with two votes get weight 2, and positive samples with
three votes get weight 3. The samples with only one vote are being ignored, as
mentioned earlier. Tables 2 and 3, respectively, represent the results for the first
and second data splits.

Comparing the values from “f1-score macro avg” of “non-weighted” and
“weighted samples” in Table 2, one can conclude that assigning weight to the
samples, improves the performance of the model, as expected. On average, the
“f1-score macro avg“ has increased by 7% over four iterations. The amount of
improvement decreases gradually from the first to the last iteration. In the first
iteration, sample weighting helped the model by 20.79%. This value decreased to
0.05% in the last iteration. Our hypothesis to explain this phenomenon is that
as we go through the iterations, the training set’s size increases, reducing the
need for adding sample weights. Also, by comparing the “PR-AUC” of “non-
weighted” versus “weighted samples” in each iteration, we can see this number



204 Z. Kharazian et al.

Table 2. Comparison of the performance of the trained model on normal and weighted
samples in each iteration

iteration non-weighted samples weighted samples

f1-score
informative

f1-score
non-info

f1-score
macro avg

PR-AUC f1-score
informative

f1-score
non-info

f1-score
macro avg

PR-AUC

1st 0.00 0.9333 0.4667 0.5625 0.4000 0.9492 0.6746 0.6718

2nd 0.9459 0.9909 0.9684 0.9565 1.00 1.00 1.00 0.9782

3rd 0.8872 0.9785 0.9329 0.8644 0.9552 0.9914 0.9733 0.9055

4th 0.7627 0.9729 0.8678 0.7960 0.7692 0.9673 0.8683 0.7791

Table 3. Comparison of the performance of the trained model over iteration both for
normal and weighted samples

iteration non-weighted samples weighted samples

f1-score
informative

f1-score
non-info

f1-score
macro avg

PR-AUC f1-score
informative

f1-score
non-info

f1-score
macro avg

PR-AUC

1st 0.00 0.9392 0.4696 0.5572 0.2655 0.9201 0.5928 0.3174

2nd 0.3974 0.9091 0.6532 0.4349 0.3638 0.8108 0.5872 0.5004

3rd 0.4444 0.9529 0.6987 0.6081 0.6032 0.9513 0.7772 0.6288

4th 0.6435 0.9605 0.8020 0.6830 0.6719 0.9596 0.8154 0.6924

has increased chiefly when the model has trained on weighted samples. A simi-
lar pattern for the effect of sample weight can be concluded from the results of
Table 3.

By comparing the macro average f1-score of the trained models in consecutive
iterations (see Table 3), we can see that the ability of the model to distinguish
between informative and non-informative tweets gradually increases both for
weighted and non-weighted scenarios. The performance starts from 0.46 and
increases all the way to 0.80 for the non-weighted samples. The corresponding
numbers for the weighted samples show an increase from 0.59 to 0.81.

Moreover, by subtracting the value of the f1-score of the informative class
from the f1-score of the non-informative class in consecutive iterations, we can
see this value is relatively high in the first iteration (0.93 for non-weighted and
0.65 for weighted). This number gradually decreased to the last iteration (0.31
for non-weighted and 0.28 for weighted). Also, by comparing the “PR-AUC” of
the trained model on “non-weighted” versus “weighted samples” in consecutive
iterations in Table 3, we can see this value has increased from 0.55 to 0.68 for
“non-weighted” and has increased from 0.31 to 0.69 for “weighted samples.”
These patterns show the performance improvement of the model on classifying
the imbalance dataset over iterations.

5 Conclusions and Future Works

The main contribution of this paper is to introduce a full framework capable
of discovering ideas and problems to control and prevent Healthcare-Associated
Infections (HAI). This framework contains a corpus of 4.5 million HAI-related
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tweets posted from 2019 till the beginning of 2022 using the Twitter API v2
from the Twitter platform. Moreover, our work introduces an iterative machine
learning method based on active learning and feedback from the model’s deci-
sion. It selects the informative tweets based on the novel richest minority query
strategy. The collected and labeled dataset, as well as the algorithm’s code, are
published in a GitHub repository called AID4HAI.

In our experiments, the proposed framework managed to discover 375 infor-
mative HAI-related ideas and problems, within the four iterations. The ideas
and problems concern a number of various topics and directions. Figure 3 plots
a handful of automatically extracted ideas/problems from Twitter. Our innova-
tion team helped us visualize the core idea of each tweet across a two-dimensional
chart. The x-axis represents the spectrum of ideas suggesting products to ser-
vices. The y-axis spreads ideas based on behavior or technological-driven.

Fig. 3. Examples of extracted ideas plotted on a chart with an x-axis (service/product
spectrum) and a y-axis (behavior/technology-driven).

The deep neural network model used in this study categorizes a tweet based
on its informativeness. As a future work, it would be interesting to evaluate the
tweets across additional dimensions of interest. Moreover, one could visualize
the vectors from the model’s attention layers and validate if they are focusing
on the sensible tokens of the text.
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Abstract. In sensitive applications, such as drug development, offering
experts an explanation for why data mining operations arrive at certain
results adds a very valuable facet. In this work we benefit from modelling
the task as a Constraint Satisfaction Problem (CSP) twice: by adding
multiple constraints to the mining process and by deriving pattern failure
explanations. We illustrate experimentally how to apply our method on
data originally retrieved from the ChEMBL database [14]. We also report
some interesting dependencies discovered by our method which are not
easy to observe when analysing data manually.

Keywords: Itemset mining · Constraint programming · Explainable
AI

1 Introduction

With the recent surge in applications of machine learning, mainly deep learning,
techniques to a variety of fields, the need for explanations for those techniques
has also increased. Most of the techniques explaining machine learning models
exploit the supervised nature of the problem setting, solving problems such as:

– Can we learn a symbolic model giving the same predictions?
– What are the minimal changes that need to be done to a data instance to

change its predicted label?
– Can we identify features or image regions that contribute strongly to the

prediction result?

In unsupervised data mining, however, especially in constraint-based pattern
mining, labeled examples are typically not available, increasing the challenge. As
a result, there are arguably more workshops for (interesting) work-in-progress
papers on explainable data mining than there are publications that were accepted
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for conference proceedings or journals on the subject. The ones that do exist
ignore explanations of itemset mining, a classical data mining task.

In addition, the questions change: since mined patterns are often starting
points for further development, for instance in drug development, or “food for
thought” that help formulate research hypothesis, their plausability and persua-
siveness need to be supported.

Finally, this is clearly an application dependent subject. There are a num-
ber of applications in sensitive areas such as pharmaceutical or medical domains
for which explanations are obligatory. As a common example, a chemical com-
pound selected by a black-box classifier from a database of molecules cannot
be approved by a pharmacist as a drug candidate, because of the high risks
associated with the following production process costs [6].

Indeed, due to such considerations, our partner researchers at CERMN1 are
in need of explanations for their itemset mining and motivated this study. Their
task requires finding molecular sub-structures which are able to discriminate
between active and inactive molecules. In addition, they are obliged to use mul-
tiple constraints regarding the structure and properties of the resulting patterns,
and they would like to have explanations on top of that.

More precisely, the answers to the following questions are desired:

– Why is this pattern not frequent/closed/emerging?
– Why could this constraint not be satisfied?
– How did the mining algorithm arrive at this particular solution satisfying the

constraint(s)?

Straight-forward answers to these questions, e.g. “the pattern doesn’t have
enough overall support” or “the pattern has too much support in the class that
was not targeted” are tautological and not very satisfying. Instead, a practitioner
would be interested in knowing what element of the pattern or which other
constraint forced the support below a given threshold or lead to the inclusion of
transactions that reduce the growth rate.

These are questions that have already been asked in similar form in the con-
straint programming (CP) community [12,18]. We formulate our problem setting
as one of constraint-based itemset mining, for which CSP solutions have been
proposed [7,15]. In addition, past work has added explanations to CSP solvers
[3,13]. We therefore base our work in part on proposals made to answer explana-
tory questions in CP. In this work, we develop an approach for pattern failure
explanations, which is our main contribution. We demonstrate the application
of it on data derived from the ChEMBL database.

The rest of the paper is organised as follows. Section 2 highlights impor-
tant works related to the topic. Section 3 outlines the problem setting and used
formalisms, including how to derive explanations for itemset mining based on
constraint failure. Section 4 shows and discusses the results of our case study
on the ChEMBL data. Finally, we review and discuss future improvements in
Conclusion.
1 Centre d’Etude et de Recherche du Médicament de Normandie: https://cermn.

unicaen.fr.

https://cermn.unicaen.fr
https://cermn.unicaen.fr
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2 Related Work

Following [9], we define data mining as the search for valid, novel, potentially
useful, and ultimately understandable patterns in the data. One of the seminal
tasks in data mining is itemset mining, for which a number of more specialized
problems, such as frequent itemset mining, frequent closed itemset mining, dis-
criminative or emerging itemset mining and others have been defined [11]. In
this paper, we mainly focus on those first three tasks.

Traditional approaches for itemset mining take the form of specialized
breadth-first [1,2,31] and depth-first algorithms [16,32]. An alternative app-
roach involves using CP [7,15], a general declarative methodology for solving
constraint satisfaction problems. Constraint programs specify the problem and
a general solver tries to find a solution. A clear advantage lies in the universality
of this approach. The new task could be modelled by adding new constraints
while in traditional approaches the algorithm must be redesigned from scratch
each time. Another advantage of CP systems is a possibility of result explanation
[3,13]. In this work we benefit from the latter by modelling the itemset mining
task with CP.

Most of the works on explainable AI are focused on explanations for machine
learning [25,27]. While work on directly explainable data mining are rare, inter-
active data mining has been proposed as a first approximation of interpretable
data mining involving both the miner and the domain expert, as well as the data
itself [17,22]. The ultimate goal of such a process is to make pattern mining more
practically useful by making the end user understand during the mining process
how mining results come to pass. Discrimination-aware data mining exists for
more than a decade now [19,26]. It mainly focuses on developing methods for
protecting from unfair classification models, especially when they might affect
somebody’s life. Work on visual data mining [4,10,30] attempt to make the
data mining process understandable through visualization. Some of them offer
explanations for clustering or binary classification tasks [5,29]. Finally, there are
few works which use explanations for improving the data mining results. For
instance, [21] tries to mix data mining with domain expert knowledge in order
to improve the quality of discovered patterns in the medical domain. Likewise,
[20] developed an approach for mining surprising patterns and generating expla-
nations. Based on association rule mining, the approach that they proposed uses
expert knowledge to improve the search and provide explanations.

In this paper, we take a step towards explaining itemset mining, one of the
core tasks of data mining. This is the first work in this direction to the best of
our knowledge.

3 Preliminaries

As described above, the result of a constraint-based pattern mining operation
is a set of patterns. A user might want to know now why certain patterns were
included and others were not. The straight-forward answer is simple: the pat-
terns satisfied the specified constraints (or not). This might not be sufficient
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information, however: specifying constraints and deciding on threshold values is
not an easy task, and a small change may lead to a large change in results. In
addition, especially when a number of complex constraints are combined, their
interplay can lead to the inclusion or exclusion of patterns in unexpected man-
ners, which are not easy to understand without additional explanation. Gaining
such understanding will help in formulating future constraints. Our proposal for
fournishing such explanations is to exploit pattern failure explanations in CSPs.
In this section, we lay out the itemset mining problem, the CSP framework, and
how to model itemset mining, as well as how to derive explanations.

3.1 Itemset Mining

The pattern mining task we address in this paper is the classical itemset mining
one: given a set of items I = {i1, . . . , im}, a transaction set T = {t1, . . . , tn |
ti ⊆ I}, and a (combination of) constraint(s) C : I × T �→ {true,false}, find
Th(I, T , C) = {p ⊆ I | C(p, T ) = true}.

The support of an itemset is the cardinality of the set of transactions in
which it is contained: supp(p, T ) = |{t ∈ T | p ⊆ t}|. Given a threshold θf

the minimum support (frequency) constraint is defined as freq(p, T ) = true ⇔
supp(p, T ) ≥ θf . An itemset is closed if none of its strict specializations has the
same support: closed(p, T ) = true ⇔ ∀p′ ⊃ p : supp(p′, T ) < supp(p, T ).

Finally, given a labeling l : I �→ {+,−}, T + = {t ∈ T | l(t) = +}, T − =
T \ T +, a quality measure σ : I × T + × T − �→ R, a threshold θd, an itemset is
emerging/discriminative: disc(p, T ) = true ⇔ σ(p, T +, T −) ≥ θd.

3.2 Constraint Programming

General CSP Context. A classical CSP is defined by a triplet (V,D,C) in
which V = {X1,X2, ...,Xn} is a set of variables, D = {D1,D2, ...,Dn} the set of
domains of variables, with Di a finite set containing the possible values for the
variable Xi, and C = {c1, c2, ..., ck} a set of constraints. A solution of the CSP
is a complete instantiation S such that all the constraints C are satisfied by S.

Consider an example with V = {X1,X2,X3}, D1 = {1, 3, 5}, D2 = {2, 3, 4},
D3 = {2, 3, 7} and c1 : X1 < X2, c2 : X2 = X3 (Fig. 1). There are two possible
solutions for this problem: X1 = 1, X2 = 2, X3 = 2 or X1 = 1, X2 = 3, X3 = 3.

Explanations for CSPs. The CSP framework is not only a powerful tool
for modelling different type of constraints, but also for providing explanations
(Sect. 2). In this work, we deal with explanations for value removal as the simplest
to implement and interpret.

An explanation for value removal is a subset of the set of constraints C such
that the conjunction of these constraints leads to the removal of the value a from
the domain of the variable Xi. In case of multiple explanations, this expression
becomes a disjunction of conjunctions:

Expl(Xi 
= a) =
∨ ( ∧

i∈[1..k]

ci =⇒ Xi 
= a
)
.
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Fig. 1. An example of a CSP (top) and the result of its filtering (bottom)

An example of such explanations for the CSP in Fig. 1: Expl(X1 
= 5) = c1
(there is no value > 5 in the domain of X2), Expl(X2 
= 4) = c2 (there is no
value = 4 in the domain of X3), Expl(X1 
= 3) = c1 ∧ Expl(X2 
= 4) = c1 ∧ c2
(c2 removes the value 4 from X2, and c1 in turn removes 3 from X1).

Modeling Itemset Mining as a CSP. To model the itemset mining prob-
lem with CP, we follow [15]: the CSP must be defined by a triplet (V,D,C),
in which V = I ∪ T a set of variables s.t.: I = {I1, I2, ..., Im} a set of items,
T = {T1, T2, ..., Tn} a set of transactions, D = {DI1 , ...,DIm ,DT1 , ...,DTn

} a set
of domains of variables with Di = {0, 1}, C = {c1, c2, ..., ck} a set of constraints.
As for the latter refined constraints proposed by [15] can be used according to
the task.

Consider a toy example. Given a set of transactions T = {ACD,ABD,CD}
and minimum frequency θs = 2, we would like to find all frequent
closed patterns. To model the problem as a CSP, we define DB =
{{1, 0, 1, 1}, {1, 1, 0, 1}, {0, 0, 1, 1}}, V = {I1, I2, I3, I4, T1, T2, T3}, D =
{DI1 ,DI2 ,DI3 ,DI4 ,DT1 ,DT2 ,DT3} with DXi

= {0, 1}, C = {c1, c2, ..., c11} with
the constraints defined as in Fig. 2.

There are three solutions to this problem: AD, CD, D. Figure 2 also demon-
strates the search process. Branching of the search tree usually stops when a
solution is found, then the search backtracks to another branch until all the
solutions are retrieved. In our setting, however, we continue the search until all
the failures are found (Failure 1–7 in Fig. 2). We use them later to explain a
pattern failure which we define as follows. A pattern failure is a state of the CSP
in which one of the itemset domains is empty:

I1 = [ ] ∨ I2 = [ ] ∨ ... ∨ Im = [ ] =⇒ CSP → Fail.

3.3 Explanations for Itemset Mining

As explained above, CSPs allow to derive explanations. The default approach
does not allow to explain a success (a solution, specific pattern or presence of an
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Fig. 2. Constraints and search tree for a toy example of itemset mining by CSP

item in the solution) in an effective way: it can only say that we have this as a
solution because it satisfied all the constraints. However, it is possible to explain
a failure (no solution at all, a particular pattern does not belong to the solution
etc.) more effectively by interpreting constraints which led to that failure. In
addition, there could be an exponential number of explanations. We therefore
choose to keep only one: the shortest one. Here, we present an approach for that.

Our approach for finding explanations for pattern failure is a 4-step process:

S1 Initialize domains with the elements of a pattern whose failure (i.e. absence
from the solution) needs to be explained. The pattern needs to be precisely
specified by the user/chemical expert

S2 Obtain different explanations for pattern failure in the form of conjunctions
and/or disjunctions of constraints which led to emptying one of the itemset
domains

S3 Select the shortest explanation w.r.t. the number of constraints
S4 Interpret the constraints in that explanation using logical inference and/or

analysing them manually

Following our example in Fig. 2, we can explain, for instance, why pattern AB
is not in the solution. The shortest explanation will be:

Expl(AB → Fail) = c5 ∧ c11.

We can interpret c5 (the frequency constraint) as “if B is in the itemset
(I2 = 1), the itemset must be frequent (T ≥ 2)”. Since T ≥ 2 is False, B must
be removed from the pattern, which can be rephrased as “the pattern cannot
be frequent if B is present”. Closed itemset mining aims at avoiding redundant
itemsets and the closure constraint checks if all transactions contain the same
element as without it the itemset cannot be closed. We can thus interpret c11
(the closure constraint) as “there must be D in the itemset (I4 = 1), otherwise it
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Fig. 3. An example of a molecule (left) and its pharmacophoric features (right):
hydrogen-bond acceptors (A) and donors (D), negatively (N) and positively (P),
charged ionizable groups, hydrophobic regions (H) and aromatic rings (R)

cannot be a closed pattern” (I4 = 1 if and only if True, where True corresponds
to 0 = 0).

4 Case Study

We illustrate our approach on a set of molecular data, from which we aim to
mine combinations of chemically meaningful subgraph patterns.

4.1 Data and Representation

Our data originally is a set of BCR-ABL inhibitors (target ID 1862) that have
been extracted from the ChEMBL2 database, a widely used database in com-
putational drug discovery [14]. In this study, we would like to understand the
mechanism of action on the BCR-ABL target.

After several steps of preprocessing, our set is composed of 739 molecules,
387 of which are labeled as active and 352 as inactive. A molecule is called active
if it causes the target to react. If a molecule does not generate a sufficient reac-
tion at the level of the target, it is considered to be inactive. Each molecule is
represented as the 2D/3D arrangement of molecular features that are necessary
for a drug candidate to interact with a biological target in a specific binding
site [8]. In total there are 6 features in our data (Fig. 3). Graphs in this repre-
sentation are also referred to as pharmacophores, with its order On equal to its
number of vertices (Fig. 4). For example, the molecule in Fig. 3 includes the fol-
lowing pharmacophores: |P|D||5|, |P|A||5|, |P|A||7|, |P|R||6|, |P|A||12|, |R|R||3|,
|R|A||0|, |R|H||1|, |R|H||6|, |A|A||6| etc. (28 in total).

From our data, we mined 258 distinct 2D pharmacophores of O2 having
minimum support 10, using Norns [24]. The objective of the study is to explain
why a molecule is active by identifying the pharmacophores which cause activity.

2 A manually curated database of bioactive molecules with drug-like properties.
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Fig. 4. Example of an O2 pharmacophore |P|D||5| with a positively charged ionizable
group (P) and a hydrogen-bond donor features (D) with the distance 5 between them

4.2 Mining Task

We want to identify combinations of at most 8 such pharmacophores that are
shared by a significant number of molecules (at least 12%–15% of the data) and
appears more often in one of the two classes than in the other, and that are not
subsets of each other.

4.3 Experimental Setting

Using mined pharmacophores, we can represent each molecule as a transaction
encoding whether pharmacophores are present or not, giving us the classical
itemset mining setting. We implemented refined constraints from [15] and a
CSP solver in Python3. We adopted the AC3 algorithm [23] for the latter and
implemented the MAC algorithm [28] for backtracking the search.

Following preliminary experiments, we use χ2 as the discriminatory measure.
We implemented χ2 as in [15]. Constraint thresholds were set to θsize = 8 for
size, θsupp = 100 for minimum support, and minimum thresholds for χ2 (θχ2 ∈
{48, 64, 96, 128}). In addition, we experimented with adding a purity constraint,
i.e. patterns present in one class only, which we defined as follows:

Ii = 1 → min
( ∑

t+

DBti · Tt,
∑

t−
DBti · Tt

)
= 0 (1)

Finally, we try to answer why changing one item in a pattern and adding
another one changes the class of solution from pure (i.e. covering only active or
inactive molecules) to not pure (covering both active and inactive molecules).

4.4 Experimental Results

As can be seen from Table 1, the pure solution constraint reduces the number
of results dramatically – on average by three order of magnitude. Moreover, the
results corresponding to the pure solution and θ at 48, 64 and 96 remain the

3 https://github.com/koptelovmax/dmbycsp.

https://github.com/koptelovmax/dmbycsp
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Table 1. Emerging pattern mining with χ2 as a discriminative measure, pattern size
not exceeding 8 and minimum frequency limited to 100

θχ2 Pure Found solutions Pattern size Coverage Frequency
Total Active Inactive min max median min max mean

48 ✕ 85037 84530 507 1 8 7 100,00% 100 682 157,7
✓ 47 47 0 6 8 8 30,85% 101 175 126,7

64 ✕ 69060 68995 65 1 8 7 100,00% 100 656 164,6
✓ 47 47 0 6 8 8 30,85% 101 175 126,7

96 ✕ 44013 44013 0 1 8 7 99,32% 100 624 179,5
✓ 47 47 0 6 8 8 30,85% 101 175 126,7

128 ✕ 24645 24645 0 1 8 7 97,56% 119 547 198,3
✓ 27 27 0 6 8 8 30,04% 119 175 136,9

same. In addition, there are no inactive solutions in case of pure patterns or
with θ at 96 and 128, which is not a problem per se since our aim is to explain
active solutions. On one hand, a smaller number of patterns is easier to evaluate
manually. The main drawback of this modeling that the pure solutions found
cover only 30% of molecules. This is not really desirable for a chemical expert,
and solutions combining to cover most of the molecules are required. We thus
go to the next step of our study where we will try to understand the interior
mechanics behind our mining process.

Towards Explaining Pattern Failure. After discussing with the chemical
experts we collaborate with, they asked for an explanations for why changing
one item (pharmacophore in our case) leads to changing the class of solution
from pure to not pure:

ABC (pure) ↔ AEC (not pure).

While studying this phenomena in more detail, we realised that the actual change
of the class happens when one element is removed from the pattern (Fig. 5). In
other words:

ABC (pure) → AC (not pure) → AEC (not pure).

We would like to explain the first part: why removing an item makes the pattern
not pure. Consider, for instance, the first two lines in the example in Fig. 5,
where solution 17863 is pure, and 17902 is not. Our methodology for answering
that is the following:

1. Model the problem using the purity constraint (Eq. 1)
2. Explain using our method from Sect. 3.3 why the combination of molecule

features |D|R||1| |D|R||3| |A|H||11| |R|R||1| |R|H||5| is a failure
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Fig. 5. Pattern failure example. Columns are: id of solution, pattern, frequency and
χ2 value. Red colour represents removal of an item and blue is adding an item (Color
figure online)

3. Verify why adding |A|R||0| to the pattern gives a solution. For that:
(a) Find its purity constraint
(b) Explain why it became true

After an initialization step we move directly to S2 of our approach from
Sect. 3.3, which will generate the following explanations:

Expl(|D|R||1| |D|R||3| |A|H||11| |R|R||1| |R|H||5| → Fail) =

= Expl(|D|R||1| 
= 1) ∨ Expl(|D|R||3| 
= 1) ∨ Expl(|A|H||11| 
= 1) ∨
∨ Expl(|R|R||1| 
= 1) ∨ Expl(|R|H||5| 
= 1) = c2361∨c2372∨c2440∨c2461∨c2488.

According to S3, the shortest explanation is one of those constraints, for instance:

c2361 – purity constraint:
before filtering: |D|R||1| = 1 → min(384, 298) = 0 False
after filtering: |D|R||1| = 1 → min(171, 1) = 0 False

Finally, we try to interpret this following S4. After filtering, the CSP this con-
straint remains false, but its coverage changes – each of the items in the pattern
covers 171 active molecules and 1 inactive one:

c2361: |D|R||1| = 1 → min(T1 + T2 + ... + T356 + T379, T429) = 0 False

We also know that the inactive molecule is represented by the variable T429 (or
by ChEMBL ID 1984038).

Next, we would like to explain why adding |A|R||0| to the solution makes
the pattern pure. For that, one needs to instantiate the CSP with a new pattern
including |A|R||0| and check its purity constraint after filtering:

c2417 : |A|R||0| = 1 → min(171, 0) = 0 True

As can be seen from c2417, our pattern is included only in active molecules.
To explain for a user who is not a data mining expert why removing |A|R||0|
from the pattern affects its purity, one can draw the Euler diagram (Fig. 6). In
that diagram, the pattern containing all pharmacophores including |A|R||0| will
be present only in active molecules. This is the type of information which is
laborious to observe manually, but can be easily derived using a CSP.

Finally, we would like to explain why the purity constraint associated with
|A|R||0| becomes true, especially given that before filtering it was false:
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Fig. 6. Active, inactive molecules and their intersection

c2417 : |A|R||0| = 1 → min(T1+T2+...+T787, T388+T389+...+T739) = 0 False

To do that we need to explain why T388 
= 1, ..., T739 
= 1:

Expl(T388 
= 1) = c388, where c388 – coverage constraint:
T388 = 1 ↔ |D|R||3| + |A|H||11| + |R|R||1| = 0 False

...
Expl(T739 
= 1) = c739, where c739 – coverage constraint:

T739 = 1 ↔ |D|R||1| + |A|H||11| + |R|H||5| = 0 False

These constraints can be interpreted as follows: the combination of molecu-
lar features |D|R||3| |A|H||11| |R|R||1| must cover molecule T388 (ChEMBL ID
1836675), ..., and |D|R||1| |A|H||11| |R|H||5| must cover T739 (ChEMBL ID
281470), otherwise the coverage condition fails.

This is the type of information which can be easily retrieved with our method,
and which can be useful for chemical experts.

Towards Explaining Constant Constraints Outcomes. We noticed that
certain constraints are always true or false. For instance, in our example in Fig. 2,
there are two constraints which always remain constant: c5 (always false) and
c11 (always true). In that toy example they can be interpreted as follows: if there
is B in the pattern it is always not frequent (c5); there must be D in the solution
to be closed (c11). Both of these conditions hold for our simple CSP since each
solution contains item D and non of them has B.

Now if we verify which constraints remain constant for our ChEMBL set
with the constraint thresholds θχ2 = 128, θsize = 8, θsupp = 100, allowing pure
solutions only, we find that 363 constraints (out of 2510 used to model the CSP)
remain constant:
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– 159 frequency constraints – always false
– 194 discriminative constraints – always false
– 2 size constraints – always true
– 9 purity constraints – always true

If we interpret them, we get the following information:

– frequency constraints – if there is |P|P||3|, |P|D||10|, |P|D||11|, ..., |H|H||9|
(159 in total) in the pattern, it is always not frequent

– discriminative constraints – if there is |P|P||3|, |P|D||10|, |P|D||11|, ..., |H|H||9|
(194 in total) in the pattern, it is always not discriminating

– size constraints – if the pattern is included in molecule T671 (ChEMBL ID
1241863) or T696 (ChEMBL ID 1241772) its size is always less than 8

– purity constraints – |P|D||17|, |N|D||8|, |N|D||9|, ..., |R|H||19| (9 in total) are
covered only by pure molecules:

– |P|D||17|, ..., |R|H||19| (7 in total) are included in active molecules only
– |N|D||8|, |N|D||9| – in inactive molecules only

This information can be read off without rerunning the mining operation.
This can be useful for chemical experts to get quick-shot statistics on the data,
explain why particular patterns in the solution do not include particular ele-
ments, modify the data set, or adjust constraint settings before repeating min-
ing.

5 Conclusion

In this paper, we have explained how one can use constraint failure explanations
in CSPs to explain why certain patterns do not appear in a solution set. These
explanations can then be used to identify problematic data instances, or to
modify constraint parameters. In a chemoinformatics use case, we have shown
how such explanations and the identification of particular phenomena can look
in practice.

A drawback of our method is that patterns to be explained need to be spec-
ified manually, and explanations need to be interpreted to arrive at statements
about the data. In future work, we will therefore look at how generate patterns
automatically, e.g. by looking at syntactically similar patterns, and how to post-
process explanations to highlight interesting data. We would also think about
how we could improve the explanations which we already generated. For the last
we first need to get a detailed feedback from the experts.
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Abstract. Machine Translation Systems are today used to break down
linguistic barriers. People from different countries and languages can
now interact with each other thanks to state-of-the-art translators from
prominent software companies like Google and Microsoft. However, these
tools are also used to expand the audience for phishing attacks, scam
emails or to generate fake reviews to promote a product on different
e-commerce platforms. In all these cases, detecting whether a text has
been translated can be crucial information. In this work, we tackle the
problem of the detection of translated texts from different angles. On
top of addressing the classic task of machine translation detection, we
investigate and find common patterns across different machine transla-
tion systems unrelated to the original text’s source language. Then, we
show that it is possible to identify the machine translation system used
to generate a translated text with high performances (F1-score 88.5%)
and that it is also possible to identify the source language of the original
text. We perform our tasks over two datasets that we use to evaluate our
models: Books, a new dataset we built from scratch based on excerpts
of novels, and the well-known Europarl dataset, based on proceedings of
the European Parliament.

Keywords: Machine Translation Systems · Machine Learning ·
Natural Language Processing

1 Introduction

Today, hundreds of thousands of people use commercial machine translation sys-
tems (MTSs) worldwide for personal or working purposes. They help bridge the
gap in language barriers, especially on the Web, by facilitating communication
between people. However, bad actors use these systems to target potential vic-
tims of email-phishing [32] massively or generate fake reviews of products to
trick recommendation systems [16] and people into buying or choosing a specific
product. For all these reasons, machine translation detectors are actively used
to infer spam emails or to detect poor quality web pages [13].

In this work, we put automatically translated texts under the lens. We study
the impact of the MTSs and the source language of the translated text on the
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Machine Translation Detection (MTD) task leveraging Books, a novel dataset
built from excerpts of novels. We find that MTSs have common patterns that
can be learned by training on a single MTS; thus, we are able to identify trans-
lated text regardless of the MTS used for the translation, suggesting that the
automatic translation process introduces recognizable patterns in the transla-
tion. Similarly, we discover that we can learn these patterns regardless of the
source language of the translated text. We can train on a single MTS using text
from a single source language and still detect the translated text on multiple
MTSs and source languages with comparable performances.

We then investigate the possibility of identifying the MTS used to produce
the translation and the source language of the original text. To explore these
questions, we introduce, to the best of our knowledge, two new tasks: Machine
Translation Identification (MTI) and Source Language Identification (SLI). In
the former (MTI), we want to identify which MTS has been used to generate a
translation, while in the latter (SLI), we want to identify the source language of a
translated text. For the first task, MTI, we built a classifier that shows promising
results, with an average F1-score of 88.5%. In the second task, SLI, we propose
a stacked classifier able to identify the source language of a machine-translated
text with an average F1-score of 78% among 4 languages. We believe that these
tasks could be helpful in forensic analysis, where malicious actors attempt to
obfuscate their writing style using MTSs [17,25]. In particular, in this paper, we
try to answer the following research questions:

Q1. Is it possible to identify a translated text regardless of the MTS used or the
source language of the text?

Q2. Is it possible to identify which translator has been used to translate the
text?

Q3. Is it possible to recognize the source language of the translated text?

2 Datasets

Since we need specific information to explore our questions, we build new
datasets. Indeed for Q1 and Q2, we need the translation of an original sam-
ple both by a human and an MTS, while for Q3, we need to know the source
language. In particular, to assess our experiments over different settings and
topic domains, we perform our study using two datasets: one extracted from
novels and the other based on speech transcriptions. The first dataset we use
is Books, a novel dataset we introduce. To build Books, we collect 100 books
originally written in 4 different languages by 100 different established writers
of the XX/XXI century [37]. In particular, we select 25 books for each of the
following source languages: Italian, French, Spanish, and German. The selected
books belong to several different domains and authors. Thus, they have very
different writing styles. From each book, we select an excerpt of approximately
10,000 characters (on average 1642.67 words per novel) and their corresponding
translation from the English edition. Finally, we produce 3 more English trans-
lations for each original excerpt using the APIs of 3 state-of-the-art commercial
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Machine Translation Systems: Google Translate [12] (GT ), Microsoft Transla-
tion [26] (MT ), and DeepL [7] (DL). At the end of the process, the Books dataset
is made of 400 different samples.

The second dataset we use for our experiments is Europarl [18]. It is a parallel
corpus extracted from the proceedings of the European Parliament containing
speech transcripts of European parliamentarians and the corresponding profes-
sional translations into each of the 20 European languages. The texts on this
dataset include many speech-distinctive elements such as hesitations, broken sen-
tences, and repetition [5]. Consistently with Books, we obtain 100 seed samples
by extracting from Europarl 25 samples for each of the 4 languages we consider.
Every sample is made using transcripts of speakers of the same source language
and contains about 10,000 characters (on average 1512.81 words per sample). We
pre-process the dataset using Moses [19], a statistical machine translation system
that includes different tools and utilities to parse and parallelize the Europarl
dataset. Then, we collect the parallel English translation of each seed sample.
Finally, we translate each seed sample using the selected MTSs. Figure 1 sum-
marizes the process of building the Books and Europarl dataset. Both datasets
at the end contain 400 samples in English, which are produced starting from 100
seeds (25 for each language), of which 100 were made by translating the orig-
inal seed by professional human translators and 300 using machine-translation
systems (100 for each MTS).

Fig. 1. Step by step representation of the process used to build Books dataset. The
same pipeline was applied to build the Europarl dataset.
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3 Experimental Settings

In this section, we describe the experimental settings of the tasks in terms of
train/test splits, the pre-processing we apply, and the features we use. For all
the experiments, we use 60% of the dataset as train and 40% as test. We use
Python Scikit-learn [33] to implement all the models and the feature selection
techniques. Whenever the model parameters are not specified, we use the default
values.

3.1 Pre-processing and Feature Description

We apply three pre-processing techniques to extract our features. Firstly, we
tokenize the texts. Tokenization is the process of separating a piece of text into
smaller units called tokens (e.g., words, char). We then apply the following pro-
cesses:

– Stemming. It is the process of reducing inflected words to their root (words
stem). (e.g., writing → write; eating → eat)

– Part-of-Speech (POS) tagging. It is the process of identifying a word’s
appropriate part of speech in a text based on its definition and context.

– Distortion Text. It is a process where ASCII characters are replaced with
a special character [36]. Table 1 shows an example of this pre-processing step.

Table 1. Example of text distortion.

Original Text Distorted Text

I don’t know. Just making conversation
with you, Morty. What do you think,
I-I-I... know everything about
everything?

* ***’* ****. **** ******
************ **** ***, *****.
**** ** *** *****, *-*-*... ****
********** ***** **********?

Most of the features are based on n-grams, that are a sequence of N con-
tiguous elements, in our case, character (char-gram) or words (word-gram). We
use the notation Char-gram (i-k) (resp. Word-gram (i-k)) to denote all the char
n-grams (resp. word n-grams) with n ∈ {i, . . . , k}. Table 2 shows the features we
use for our tasks and the feature number for the different tasks and datasets.
Below a description of each feature:

– Char-gram is a sequence of N contiguous characters.
– Sentence Length is the average length of the sentences for each text based

on the number of characters.
– Words avg is the average number of words for each sentence of the text.
– Adjectives avg is the average number of adjectives for each text.
– Dist Char-gram (i-k) are char-grams computed over the distortion text.
– POS Word-gram(i-k) are word-grams computed over Part of Speech (POS)

tagged text.
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– Type Token Ratio (TTR) is the ratio between the number of unique words
and the total number of words for a given text. The idea behind this feature
is to measure the vocabulary variety (in terms of words) of a text.

We use the Bag of Words to weigh the char-grams and word-grams, while we
use Tf-idf (term frequency-inverse document frequency) to weigh the distortion
text. The Bags of Words is a representation that creates vectors with the number
of occurrences of a specified element in the text (e.g., words), while the Tf-idf is
an weighting schema that gives a larger value (weight) to elements that are less
frequent in the document corpus.

Table 2. Features types and numbers of features for the MTI and SLI tasks on both
datasets.

Feature Type MTI SLI

Books Euro Books Euro

Char-gram (1–6) 318, 250 220, 593 261, 895 175, 247

Sentence Length 1 1 1 1

Words avg 1 1 1 1

Adjectives avg 1 1 1 1

Dist. Char-gram (5–8) 15, 134 12, 080 – –

Dist. Char-gram (2–8) – – 13, 897 9, 522

POS Word-gram (1–6) – – 187, 481 145, 473

TTR 1 1 – –

All 333, 388 232, 677 463, 276 330, 245

4 Machine Translation Detection

The goal of the Machine Translation Detection (MTD) task is to automatically
detect whether a text has been translated by a machine translation system or is
human-generated. This task was broadly studied in the literature with different
approaches such as using fixed features [1,23], n-gram [2,34], coherence score [27]
and similarity with round-trip translation [28]. In this section, we first want to
replicate similar results to the state-of-the-art on our datasets Books, to verify
that it is suitable for our purposes. Then, we design two experiments to explore
further the underlying patterns of machine-translated texts.

For all the experiments in this section, we use the following model. We train
a Multilayer Perceptron [15] with a single hidden layer made of 10 neurons
and a BFGS optimizer [3] for weights optimization. Regarding the features, we
compute all the char n-grams with n ∈ {1, . . . , 6} and then select the 2,500 more
relevant n-grams according to the chi-square metric [9]. We finally normalize the
features with the SkLearn StandardScaler. Figure 2 shows the results on Books
and Europarl datasets.
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We obtain a high F1-score on both corpora (0.9 on Books and 0.97 on
Europarl), showing that our model can achieve excellent results in distinguishing
machine-translated and human-translated texts.

Fig. 2. F1-score for the Machine Translation Detection (MTD), Machine Translation
Identification (MTI), and Source Language Identification (SLI) tasks on the Books and
Europarl datasets.

4.1 Learning from a Single MTS

The next interesting point to explore is if there are any common patterns among
the different MTSs that could be learned to identify a translated text, even if
it is generated by an MTS that was not included in the training set. To verify
this idea, we train our model using only samples translated by a single MTS
and human-translated samples. We repeat the experiment 3 times, training the
model at each iteration with samples produced by a different MTS and testing
it only on the samples of the remaining MTSs.

Table 3(a) shows the results of this experiment for the different combinations.
As we can see, the model is able to achieve good results (on average 88% of F1-
score) when tested on samples generated by machine translators that are not
represented in the training set. Interestingly, the model trained on MT achieves
similar (average delta 0.015) results to those obtained by training the model
using the whole dataset (i.e., training on all the MTSs).

These results suggest that there are some common patterns among the MTSs
that the model can learn from a single MTS.

4.2 Learning from a Single Language

Since we have 4 different source languages in our dataset, we want to under-
stand the impact they might have on the MTD task. In this experiment, we
train our model using only the translation from one source language and test it
against the sample produced by the translation from other source languages and
the human-translated samples. Table 3(b) shows the F1-score using the different
source languages.
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Table 3. 3(a): F1-score for Task 1 training on a single MTS’ samples and testing on
the others. 3(b): F1-score for Task 1 training on a single language and testing on the
others.

3(a) Task 1 - single MTS

Train Books Europarl

GT 0.85 0.82

MT 0.89 0.95

DL 0.84 0.94

3(b) Task 1 - single language

Train Books Europarl

IT 0.91 0.93

FR 0.85 0.74

ES 0.88 0.78

DE 0.73 0.81

Results show that the model can learn machine translation patterns even
when training only on one language, suggesting that these patterns are unrelated
to the source language but rather unique to the machine translation process.

5 Machine Translator Identification

Results from the previous section suggest common patterns exist among the
different MTSs that allow us to differentiate machine-translated texts from
human-translated ones. In this section, we investigate if MTSs translations dif-
fer enough from each other to be able to identify which one has been used to
translate a sample (Question Q2). Thus, given a machine-translated text T ′,
our goal is to identify the MTS M that generated the text T ′. We call this
task Machine Translator Identification (MTI ). In particular, we focus on
identifying the 3 MTSs used to build the Books and Europarl datasets: Google
Translate, Microsoft Translation, and DeepL. Given the task’s goal, we use a
sub-set of Europarl and Books datasets for the following experiments, removing
the 100 samples representing the class of human translations from each dataset.

For this task, we build an ensemble classifier. The first level comprises three
different classifiers: a Support Vector Machine, a Logistic Regression, and a
Random Tree. Then, the outputs of the classifiers are used as input to feed
a hard voting layer (SkLearn VotingClassifier) for the final prediction. Table 2
shows the type and the number of features we use to train the three classifiers
at the first level of our architecture. For all the n-gram type features, we select
only the 85% most significant ones using SelectPercentile of SkLearn, and we
standardize them with the SkLearn StandardScaler. Figure 2 reports the F1-score
for the two datasets. As we can notice, our classifier performs similarly on both
datasets, with an F1-score of 0.89 and 0.88 for Books and Europarl, respectively.
To better understand the results, we analyze the confusion matrices of the two
classifications. The confusion matrix of Books (Table 4) shows that GT is the
hardest MTS to identify, and its misclassified samples are mostly assigned to the
MT class.

We found a possible explanation for these errors by analyzing the BLUE
score [31]. The BLEU Score is an algorithm for evaluating the quality of a trans-
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Table 4. Confusion Matrix on Books for the MTI task.

Predicted
GT MT DL

L
ab
el GT 30 6 4

MT 1 39 0
DL 0 2 38

lation. It measures the similarity of the translation to a reference one. For each
pair of the MTSs, we measure the BLEU score, obtaining a value of 69 for the
pair GT-MT, 63 for GT-DL, and 62.4 for DL-MT (Table 5).

Table 5. BLEU score for the MTS pairs.

MT DL GT

GT 69 63 –

DL 62.4 – –

The high BLEU score between GT and MT shows that they have similar
translations, which could be the reason for the incorrect classification of the GT
samples. Conversely, the low similarity between the MT and DL classes could
lead to the high accuracy we observe in our experiment. Finally, we obtain similar
results by analyzing the confusion matrix and the BLUE score for the Europarl
dataset.

6 Source Language Identification

As a final task, we propose the Source Language Identification (SLI). The
goal of the task is to identify the source language of a given machine-translated
text. Thus, given a machine-translated text T ′ in a language L2 (in our case
English), the goal of the task is to identify the language L1 of the text T .
This task could be considered a variation of other tasks already studied in the
literature, such as Native Language Identification (NLI), where the goal is to
identify the native language (L1) of a person who writes in another language
(L2) or determining the source language of a human-translated text (see Sect. 7),
where the goal is to identify the source language of a text that has been human-
translated. However, unlike the previous studies, our task focuses on identifying
the source language of a text that is translated by a Machine Translation System
and not by a human. For our experiments, we consider English as L2, and the
possible L1 languages are: Italian, French, Spanish or German. Since we only
care about translations of MTS (i.e., text not translated by human), we modify
our dataset in the same way as we did for the MTI task (Sect.5).
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For this task, we use the stacking ensemble technique. In particular, we
stacked an AdaBoost [10] model with 50 LinearSVC [6] and a Logistic Regres-
sion [39] model as base estimators. Table 2 shows the type and the number of
features we use to train the stacking classifier. For all the n-gram features, we
select the top 70% according to their F-value, computed with the variance anal-
ysis (ANOVA) [35]. Then, we standardize them with a StandardScaler. Figure 2
shows the F1-score of the model trained and tested on both our datasets. The
results suggest that identifying the source language is easier in Europarl than in
Books. As noted in [14], a possible reason could be that the Europarl dataset
may contain some distinctive patterns for the source language of the speaker
since it is a transcription of a talk. Instead, the Books dataset covers a wide area
of topics and contains fewer clues about the author’s source language. Table 6
shows the confusion matrices on the Books and Europarl dataset.

Table 6. Confusion Matrices on Books and Europarl for the SLI task.

Predicted
DE ES FR IT

L
ab
el

DE 25 0 5 0
ES 2 23 4 1
FR 0 2 27 1
IT 1 5 9 15

Books

Predicted
DE ES FR IT

L
ab
el

DE 27 3 0 0
ES 0 24 3 3
FR 0 3 24 3
IT 0 9 1 20

Europarl

The most challenging source language to detect on both datasets is Italian,
frequently misclassified as Spanish or French. German is generally better iden-
tified than the other languages except for French on the Books dataset, with
five classification errors. Indeed, German has the highest F1-score among all the
classes, with a value of 0.86 in Books and 0.94 in Europarl. This is intuitive
and expected, since German is a West Germanic language while the other 3 are
Romance languages and have more features in common [30].

7 Related Work

Machine Translation Detection: The detection of automatic translations has
been investigated in the past using multiple techniques. Both Aharoni et al. [1]
and Li et al. [23] use fixed features taken from the English language that may
be used regardless of the language in which the content was originally written
(i.e., source language). They respectively achieve an accuracy of 90% and 83%.
Arase et al. [2] and Popescu et al. [34] use an n-gram based approach to perform
the task, reaching a high accuracy of 96% and 99%. Other works used words
distribution [22,29], that lead to a max accuracy of 98%, or coherence score [27],
with an accuracy of 73%. More recently, Nguyen et al. [28] propose a method
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to detect translated texts using text similarity with round-trip translation that
appears to be resistant for different translators and languages. In this case, they
were able to achieve an accuracy of 94%.

Machine Translator Identification: Bhardwaj et al. [4] test 18 classifiers to
detect translated text using commercial as well as in-house MTS. Looking at the
identification of the MTS, previous works [1] show that testing machine transla-
tion detection over different MTSs produces different results. This suggests that
these MTSs have different qualities of translation and that there are differences
between them. In the same way, Bizzoni et al. [5] found similar results study-
ing translationese ([11]) over different architectures. These studies show that
there could be enough differences in MTS systems to be able to identify which
translator has been used for a given translation.

Source Language Identification: We can have three slightly different settings
for the source language identification task. The first setting is the well-known
NLI task [38] where the goal is to identify the native language L1 of a person
who writes a text in a second language L2 [21]. The second setting is when the
translation has been performed by a person that is different from the one that
wrote the original text. In [14], the author shows that it is possible to identify
the source language of the translation of speeches in the Europarl corpus with
an accuracy of more than 87%, without testing if these results hold for trans-
lated text (i.e. it is possible to detect the source language of an automatically
translated text). Using human translation, also Lynch et al. [24] and Koppel
et al. [20] perform the same task showing that it is possible to determine the
original language of a human translation.

8 Conclusion and Future Work

In this work, we put translated text under the lens. We start by evaluating the
impact of MTSs and source languages on the Machine Translation Detection
task. We find that MTSs generate common patterns in the translated text that
can be learned by a machine learning model trained using a single MTS. Further-
more, we show that the performance of the task is not significantly influenced
by the MTS employed or the source language of the text. These results open
the possibility to employ machine learning models trained solely on a subset of
known MTSs or languages and identify text translated from any other MTSs
or languages. Then, to the best of our knowledge, we introduce two new tasks:
Machine Translator Identification and Source Language Identification. The goal
of the Machine Translator Identification task (MTI) is to identify the MTS that
has been used to translate a target text, while the Source Language Identifi-
cation (SLI) task aims to identify the source language of a machine-translated
text.

The models we propose for both tasks achieve an average F1-score of 88.5%
and 78%, respectively, for the MTI and the SLI task. These last two tasks can
help to characterize translated texts further and could be used as features for



232 M. La Morgia et al.

a classification task or give additional insights when studying potential threats.
Our results, although they represent a first attempt to tackle the newly presented
tasks, show that much more work can be done in this area.

While we achieve good performances, we believe there could be further
improvement by using deep learning models that are particularly effective in
NLP tasks, such as BERT, a pre-trained language representation model based
on transformers [8]. However, the number of samples in the datasets should be
increased to use deep learning techniques effectively. Furthermore, in our study,
we perform all the experiments at the document level, using a mean of 1642.67
words. In the future, it would be interesting to propose the same tasks in a more
challenging setting, using sentences rather than documents. This is particularly
important since it makes it possible to evaluate very short texts. We consider
only European languages (although with different origins) for the datasets: Ger-
man, French, Italian, and Spanish. However, there are other languages, such as
Arabic, Mandarin, or Hindi, that are widely used worldwide, and it could be
interesting to expand the datasets and test the classifiers performances with the
new data. Finally, with the recent popularity of Large Language Models (LLMs)
such as ChatGPT, it could be interesting to verify if our model can still identify
a text translated by ChatGPT and its original language, and also to introduce
a new task for the detection of text generated by LLMs.
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“Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of
Sapienza University.
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Abstract. The large and diverse availability of mobility data enables
the development of predictive models capable of recognizing various
types of movements. Through a variety of GPS devices, any moving
entity, animal, person, or vehicle can generate spatio-temporal trajec-
tories. This data is used to infer migration patterns, manage traffic in
large cities, and monitor the spread and impact of diseases, all critical
situations that necessitate a thorough understanding of the underlying
problem. Researchers, businesses, and governments use mobility data to
make decisions that affect people’s lives in many ways, employing accu-
rate but opaque deep learning models that are difficult to interpret from
a human standpoint. To address these limitations, we propose Geolet,
a human-interpretable machine-learning model for trajectory classifica-
tion. We use discriminative sub-trajectories extracted from mobility data
to turn trajectories into a simplified representation that can be used as
input by any machine learning classifier. We test our approach against
state-of-the-art competitors on real-world datasets. Geolet outperforms
black-box models in terms of accuracy while being orders of magnitude
faster than its interpretable competitors.

Keywords: Trajectory Classification · Interpretable Machine
Learning · Mobility Data Analysis · Explainable AI

1 Introduction

The increasing diffusion of GPS-capable electronic devices, such as mobile phones,
vehicles, and trackers, contributes to generating massive amounts of mobility
data [9]. In general, any moving entity can generate spatio-temporal trajectories,
which companies, governments, and researchers use to address many crucial appli-
cations [1]. Thus, mobility data affect the livelihoods of millions of people.

One of the most common tasks in this field is trajectory classification, i.e.,
predicting the class label of an object based on its movement [5,9,14]. Trajectory
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classifiers, for example, can differentiate between cars, taxis, buses, pedestrians,
and bikes, recognize the movement of various animals, and infer people’s jobs
based on their routines. In [14] it is presented a survey comparing state-of-the-
art trajectory classification approaches. The authors emphasize the main chal-
lenges in this field, namely the need for robust experimental evaluations across
multiple datasets and the lack of advances in the state-of-the-art. Moreover,
the majority of surveyed works are based on complex, black-box models such
as Support Vector Machines (SVM), Multilayer Perceptrons (MLP), and deep
Convolutional Neural Networks (CNN), which are inherently not interpretable
from a human standpoint [7]. This can be a significant problem in high-stakes
applications where the explanation aspect of machine learning models is critical
for establishing trust in automated decision systems [11].

EXplainable Artificial Intelligence (XAI) for trajectories is an extremely
under-explored topic in the literature. For this reason, we take inspiration from
studies on XAI from time series [18], and specifically shapelets [22] to present
the GEOgraphic ShapeLET classifier Geolet, an interpretable classification
approach for trajectory data. First, Geolet uses geographic partitioning to
segment the input data into subtrajectories. These subtrajectories are normal-
ized and filtered in order to take only the most discriminative ones. They are
then exploited to convert the input trajectories into a simplified, interpretable
representation that can be used as input by any machine learning classifier. We
evaluate Geolet on five datasets and against state-of-the-art alternatives, con-
sidering multiple quantitative metrics. Furthermore, we qualitatively show that
the proposed approach produces interpretable and easy-to-read explanations.

2 Related Works

The problem of trajectory classification consists in building a predictive model
from labeled historical trajectories to classify new ones [6,9]. Trajectory classifiers
can be divided into different families. Classical approaches usually extract global,
or local features from the data, whereas modern approaches tend to directly pro-
cess the raw trajectories with complex, deep learning-based models.

Global features-based approaches extract features like velocity change, dura-
tion, speed, etc. from the whole trajectory [14]; they can be highly effective for
simple datasets, where similar properties are maintained throughout the entire
path. However, these methods are insufficient for more articulated trajectories
in which the target class is linked to an event occurring in a trajectory portion.

Local features-based approaches try to mitigate these problems by segmenting
the trajectory into subtrajectories and extracting features from them. In [21],
the authors extract statistical features from the segments of the trajectory, first
globally and then locally. Finally, they compare Random Forest, Gradient Boost-
ing Decision Tree and XGBoost as classification models. In [20], it is proposed
a semi-supervised clustering approach coupled with a majority voting ensem-
ble classifier to learn a metric that brings similar data closer and distances
elements with different labels. The first two methods can be viewed as pseudo-
interpretable procedures, depending on the classification model used after the



238 C. Landi et al.

dataset transformation. A Random Forest, for example, can be used to deter-
mine the average importance of each variable. However, the main issue is that
interpretability varies depending on the complexity of the extracted features and
the number of weak learners in the ensemble. To the best of our knowledge, the
only fully interpretable trajectory classifier is Movelets [5]. Indeed, the idea
behind Movelets is to extract discriminative segments from the trajectory and,
similarly to the shapelet transform for time series [22], convert the dataset into
a new representation that stores the shortest distances between each trajectory
and subtrajectory. In line with shapelets, subtrajectories can be used to under-
stand the logic of the classifier [18]. While promising, the proposed method is
computationally complex as it generates all possible subtrajectories and is not
suitable for large datasets. Furthermore, only the space dimension is used to
compute the distance between trajectories and subtrajectories. Thus, the tra-
jectories must be resampled to constant time intervals, and only equal-length
subtrajectories can be compared.

Recently, neural networks have been used in trajectory classification
approaches to achieve superior performance in a faster manner. Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN), often used with
time series data, can be easily extended to trajectories. In [8], the authors pro-
pose TraClets, a CNN-based method that represents a trajectory as an image and
uses a CNN to solve the trajectory classification task. MARC [13] deals with tra-
jectories augmented with semantic textual dimensions, exploiting the GPS data
and information in the textual dimensions. Finally, Rocket [4], the state-of-the-
art classifier for multivariate time series, can be easily applied to trajectories to
achieve fast and extremely accurate performance. Unfortunately, Rocket, RNN,
and CNN models lead to a non-interpretable prediction. For this reason, several
XAI approaches have been proposed to address the issue. Still, they can only
output explanations as saliency maps [3,15], highlighting the importance of each
observation towards the classification.

Given the limitations of the literature, we propose a method for classifying
trajectories based on local feature extraction. Geolet attempts to overcome
the interpretability limitations of black-box models, and optimize accuracy and
runtime, which is often the main problem of feature extraction-based methods.

3 Background and Problem Setting

In this section, we define all the concepts necessary to understand our proposal.
We define a trajectory as follows:

Definition 1 (Trajectory). A trajectory X is a sequence of spatio-temporal
points X = {(�x1, t1), . . . , (�xm, tm)} ∈ Rm×3 where the spatial vectors �xj =
(latj , longj) are sorted by increasing time tj , i.e., ∀1 ≤ j < m we have tj < tj+1.

In a sense, trajectories can be viewed as multivariate time series containing
two signals, i.e., the latitude and longitude, recorded at non-constant sampling
rates [5,8,19]. A trajectory classification dataset is a set of trajectories with a
vector of labels attached. Formally:
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Definition 2 (Trajectory Classification Dataset). A trajectory classification
dataset D = (X ,y) ∈ Rn×m×3 is a set of n trajectories, X = {Xi . . . , Xn},
with a vector of assigned labels (or classes), y = {y1, y2, . . . , yn} ∈ Nn.

For simplicity of notation, we use a single symbol m to denote the lengths of the
trajectories, even if a trajectory dataset can contain instances having a differ-
ent number of observations. We define the trajectory classification problem as
follows:

Definition 3 (Trajectory Classification). Given a trajectory classification
dataset D, trajectory classification is the task of training a function f from
the space of possible inputs to a probability distribution over the class values in
y.

The resulting trajectory classification function f takes as input a trajectory
X and returns y according to what f learned, i.e., y = f(X). In general, y can
either be a discrete label or the probability of X belonging to a specific class.

Thus, given a trajectory classification dataset D, our objective is to solve a
trajectory classification problem by realizing an interpretable trajectory classifi-
cation function f that allows to understand the reasons for a decision y = f(X).

A fundamental aspect to introduce our proposal is the notion of subtrajectory :

Definition 4 (Subtrajectory). Given a trajectory X of length m, a subtrajec-
tory S = {(�sj , tj), . . . , (�sj+l, tj+l)}, of length l ≤ m, is an ordered sequence of
consecutive values such that 1 ≤ j ≤ m − l + 1.

Subtrajectories can be used for classification purposes, similarly to shapelets, by
selecting the most discriminative ones w.r.t. the target label, depending on some
statistical measure. Mutual Information [17] is commonly used for classification
purposes, measuring the dependency between continuous and discrete variables.
Once the most discriminative subtrajectories are found, the dataset can be trans-
formed in a simpler representation, via the subtrajectory transform. Formally:

Definition 5 (Subtrajectory Transform). Given a trajectory dataset X and a
set S containing h subtrajectories, the Subtrajectory Transform converts X ∈
Rn×m×3 into a real-valued matrix T ∈ Rn×h, obtained by taking the Best Fitting
of each trajectory X ∈ X , and each subtrajectory S ∈ S.

Usually, the best fitting of S in each X is computed by taking the minimum
distance via a sliding window of length l. The most used distance functions to
compare sequential data are the Euclidean distance and Dynamic Time Warp-
ing [2]. However, both have drawbacks when applied to trajectories. First, the
Euclidean distance requires trajectories to have the same number of points, which
is uncommon in real data. Secondly, both DTW and Euclidean distance implic-
itly need a constant sampling rate, which is not always guaranteed. For this rea-
son, in our proposal, we adopt a distance specifically designed for trajectories,
i.e., the Interpolated Route Distance (IRD) [19], which allows the comparison of
trajectories having different lengths and sampling rates. IRD uses the temporal
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Fig. 1. Examples of partitioning. From left to right: original trajectory, Geohash, SAX.

dimension to align two trajectories and, if two observations do not occur at the
same time-step, values are projected by interpolating the information. In other
words, given two trajectories, IRD calculates the distance between them for each
timestamp. If a timestamp is not present in the other time series, IRD uses the
neighboring timestamps to interpolate the values and estimate a position.

4 Geolet

This section presents the GEOgraphic ShapeLET classifier (Geolet), an inter-
pretable classification approach for trajectory data. Geolet is our answer to
the problem of designing an interpretable trajectory classification function f for
a trajectory classification task. Geolet first partitions trajectories into multiple
segments, yielding candidate subtrajectories. Secondly, it normalizes and filters
them to produce a set of prototypical subtrajectories. Then, Geolet transforms
the dataset using the Subtrajectory Transform. Finally, any interpretable clas-
sification model can be used to classify the transformed data.

Partitioning. Several approaches can be used to partition a trajectory: binning
approaches like Symbolic Aggregate Approximation (SAX) [10], or geographical
ones like Geohash [16] (Fig. 1). SAX [10] is a discretization technique to convert
time series into a sequence of symbols. It is usually applied by sliding window [12],
creating a collection of SAX words that can be interpreted as time series subse-
quences. We extend SAX to trajectories by applying the approach independently
to latitude and longitude signals, converting both into symbol sequences. In lay-
man’s terms, multiple coordinates in a trajectory are binned into a single symbol
that represents an area. The converted signals are then used to generate a new
symbol for each pair of observed symbols. The specific hyperparameters’ config-
urations are detailed in Sect. 5. Another partitioning approach is Geohash [16],
an indexing system encoding a rectangular geographic area into strings of letters
and digits. Geohash divides the Earth into 32 regions via a bit array, associat-
ing each area with one of the symbols in [0-1a-z]. Then the process is repeated
recursively until the algorithm reaches the desired accuracy.

Normalization. Following the partitioning phase, the segments must be nor-
malized so that the domains of the various partitions overlap. This can be
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accomplished with a Geohash normalization or a FirstPoint normalization. In
the Geohash normalization, the bottom-left vertex latitude and longitude of the
Geohash cell are subtracted from the coordinates of each point of the subtrajec-
tories. Intuitively, this is equivalent to overlapping each rectangle of the Geohash
partitioning. On the other hand, in the FirstPoint normalization, the latitude
and longitude of the first point of the subtrajectory are subtracted from the
coordinates of each point of the subtrajectory. Intuitively, this is equivalent to
overlapping the first point of each subtrajectory.

Filtering. After the partitioning and normalization phases, depending on the
dimensionality of the data, we might end up with an enormous amount of sub-
trajectories. As a result, a filtering phase is carried out to reduce computational
complexity and produce a smaller set of relevant subtrajectories. In this phase,
subtrajectories are filtered by selecting a subset following some specific criterion.
In the shapelet literature, these criteria can be unsupervised, such as random
sampling and clustering, or supervised using statistical approaches, such as the
Mutual Information or the Chi-squared test [12], that are used to find the subse-
quences that better discriminate between different classes. We experiment with
both unsupervised and supervised approaches in Sect. 5.

Transform. Once a set of representative subtrajectories is found, the subtrajec-
tory transform can be applied, transforming trajectories in a simpler represen-
tation, containing the Best Fitting (BF) between each trajectory in the original
dataset and each extracted subtrajectory. For time series, the distance of choice is
usually the Normalized Euclidean Distance (ED), however, as detailed in Sect. 3,
this is not always the best choice for trajectories. Therefore, given a trajectory
X of length m and a subtrajectory S of length l, the BF can be computed in
different ways. For the Normalized Euclidean distance, a sliding window of size
l is used to compare S with each subtrajectory of X. Formally,

BFED(X,S) =
m−l+1
min
j=1

(ED(Xj:j+l, S))

where Xj:j+l denotes a subtrajectory of X from j to j + l. On the other hand,
defining the notion of best-fitting with DTW is not trivial. Indeed, using the
same approach adopted for ED would limit the purpose for which DTW exists.
Hence, we propose a similar approach, but where we use an expanded sliding
window of length l′ > l:

BFDTW(X,S) =
m−l′+1
min
j=0

(DTW(Xj:j+l′ , S)).

Finally, since IRD exploits the time dimension to interpolate points when two
time series do not have the same sampling rate, we calculate the sliding window
size not w.r.t. the number of observations, but w.r.t. the time interval between
the first observation of the subtrajectory S and its last timestamp tl. Formally,

BFIRD(X,S) =
m−l+1
min
j=1

(IRD(Xj:j+tl , S)).
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Table 1. Datasets description.

animals vehicles seabirds geoLife taxi

# trajectories 102 381 108 5,977 121,312

avg length (std) 173 (56) 601 (230) 2,904 (1162) 8,100 (15178) 55 (22)

avg Δtime (std) 3.75 (6) 83 (596) 100 (0) 3.88 (12) 15 (0)

Δ time min-75%-max 0-4-258 0-30-53,857 100-100-100 0-2-665 15-15-15

Target class (#classes) species (3) category (2) species (3) transport (2) call type (3)

This formula describes the calculation of the best fitting with IRD, using a
sliding window where the length is defined not as the number of features but as
the time interval. The sliding window length must correspond to the minimum
number of points necessary so that the trajectory time interval from j to j + tl
is as close as possible to the subtrajectory’s length.

Independently of the distance function adopted, the original dataset X is
transformed in a simplified matrix representation T . We experiment both with
continuous and discretized subtrajectories in Sect. 5. The transformed dataset T
can be paired with any classification algorithm, having the advantage of a more
interpretable data representation.

5 Experiments

We experiment with Geolet quantitatively on five datasets and we report visual
examples to show the benefits of an interpretable-by-design trajectory classifier.

Datasets. The trajectory classification datasets are described in Table 1. For
animals the task consists in recognizing different species. For vehicles we want
to distinguish between buses and trucks. For seabirds the task is recognizing fly-
ing trajectories of three species of seabirds. For geolife, due to the high number
of classes and to the unbalancing, we simplify the problem to recognizing tra-
jectories of public vs private means of transport. Finally, for taxi, the objective
is to distinguish among different types of taxi calls within one month of obser-
vations. We highlight that, state-of-the-art interpretable classification methods
are experimented only on very small datasets like animal and vehicles. Each
dataset is divided in train/test with a ratio 70/30%.

Competitors. We compare Geolet against two state-of-the-art methods, i.e.,
Movelets [5] and Rocket [4]. Movelets, similarly to Geolet, is an inter-
pretable trajectory classifier that extracts discriminative subtrajectories and uses
them to transform the dataset. The Movelets algorithm requires setting the
minimum and maximum length of the generated subtrajectories. We use the
default implementation values for animals and vehicles. Furthermore, we limit
the maximum length to the logarithm of the number of maximum observations
per trajectory for seabirds, geolife, and taxi. Rocket is a not interpretable
time series classifier that transforms the dataset by applying random convo-
lutional kernels to generate multiple feature maps that capture different data
trends. The only hyperparameter to choose for Rocket is the number of con-
volutional kernels, which is set to 10, 000 as recommended by the authors [4].

https://shorturl.gg/rHWqbP
https://shorturl.gg/rHWqbP
https://shorturl.gg/6UvNY8f
https://shorturl.at/hRW09
https://shorturl.gg/nwjOx
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Geolet Parameters Setting.1 For Geolet, we use Geohash as a partition-
ing algorithm, FirstPoint normalization, Mutual Information (as implemented
by scikit-learn) for filtering subtrajectories, and IRD as a distance measure.
With this configuration, Geolet requires two hyperparameters: the Geohash pre-
cision (prec), and the number of subtrajectories to extract (ns). We set the
optimal parameters via grid-search on the training set2.

Geolet Alternative Implementations. For a fair benchmarking of Geolet,
we devise some alternative versions that are still interpretable but extract expla-
nations using different processes.

First, we compare the geographic-based segmentation of Geolet against a
purely SAX-based approach. For this purpose, we apply the SAX approximation,
as detailed in Sect. 4. We name this baseline MrSQM-T because, as part of the
filtering phase, we adopt MrSQM [12], a time series approach that extracts the
top symbolic subsequences using the Chi-squared test. MrSQM-T randomly
generates k configurations of the triples l, w, α where l is the size of the sliding
window, w is the SAX word length, and α is the alphabet size. MrSQM-T
generates these sets using the same seed to guarantee that the previous config-
urations remain the same as k increases. The optimal value of k is set to 25 for
animals and 11 for vehicles. In the experiments, we observe that MrSQM-T
achieves good accuracy but requires a great computational effort, resulting in
high runtimes, even for these relatively simple datasets.

Secondly, we aim at comparing the supervised subtrajectory selection of
Geolet and MrSQM-T against an unsupervised one. For this purpose, we use a
clustering approach to filter the extracted subtrajectories. Specifically, after Geo-
hash segmentation and partitioning, prototypical subtrajectories are extracted
through K-Medoid, using the Normalized Euclidean distance. Once the cluster
centroids are extracted, they are compared using a sliding window to the orig-
inal subsequences. Each trajectory is encoded with the identifier of the cluster
centroids it contains. We name this baseline TrAC, Trajectory Approximation-
based Classifier. TrAC requires four hyperparameters, i.e., the Geohash preci-
sion prec, the number of cluster k to use with K-Medoids (it also identifies the
number of symbols in the alphabet), the sliding window length w, and the num-
ber of symbols subsequences topss to select based on the Mutual Information
score. For each parameter, we performed a grid-search3.

We highlight that, besides Geolet, MrSQM-T and TrAC are original con-
tributions and do not exist in the literature as interpretable trajectory classifiers.

1 Code available at: github.com/cri98li/Geolet.
2 animals: prec = 2 ns = 21; vehicles: prec = 6 ns = 20; seabirds: prec = 5 ns = 50;
geolife: prec = 6 ns = 50; taxi: prec = 5 ns = 50.

3 prec ∈ [4, 5, 6, 7]; k ∈ [2, 5, 20, 100]; w ∈ [2, 3, 5]; topss ∈ [1, 2, 10, 50] on the training
set. Hyperparameter choice does not significantly affect the method’s performance.
We found constant accuracy values for most of the hyperparameters tested. There
were, however, peaks in the accuracy score for some values. Thus, for animals we
set prec = 4, w = 3 and topss = 2. For the vehicles prec = 6, w = 3 and topss = 10.

https://github.com/cri98li/Geolet
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Table 2. Performance scores, best values in bold, second best in italic.

animals vehicles seabirds geolife taxi

accuracy Geolet 0.935 0.965 0.967 0.861 0.578

Rocket 0.871 0.928 0.667 0.733 0.566

Movelets 0.563 0.921 0.718 – –

MrSQM-T 0.677 0.887 – – –

TrAC 0.742 0.791 – – –

runtime Geolet 27.6 s 50.1 s 48 m 2.42 h 44 m

Rocket 2.4 s 31.5 s 15.7 s 29.1 m 13.3 m

Movelets 25.7 s 141 m 126.9 s – –

MrSQM-T 22.5 m 1.16 h – – –

TrAC 25.4 s 1.18 h – – –

5.1 Classification Performance

Since Geolet, Movelets, Rocket, MrSQM-T and TrAC perform a trans-
formation of the original data, any classification model can be applied to the
transformed dataset. To compare the transformations fairly, we adopted the
same effective model for all five approaches, i.e., a Random Forest classifier as
implemented by the scikit-learn library. The best hyperparameters are found via
grid-search with 10-fold cross-validation4 on the training set.

Results in terms of accuracy and runtime are reported in Table 25. We mea-
sure the execution time of each algorithm from the data preparation phase to
the end of the dataset transformation. Hence, we exclude the time for training
the final model. From a first glance, we can see that Rocket is the method
that takes the least time to execute. As for Movelets, we performed several
attempts with the geolife and taxi, but all the tests ended with an “insufficient
memory error”. In addition, we recorded anomalous results with the animals,
which we suspect was due to a bug in the original code. As for Geolet, we can
see that it manages to get the best results between these two methods, but it
takes a longer execution time. The weakness of Geolet compared to Rocket
and Movelets lies in the number of hyperparameters and configurations from
which one can choose, which is discussed in Sect. 5.3. TrAC and MrSQM-T
perform competitively w.r.t. Movelets in small datasets, but are both outper-
formed by Geolet and Rocket. Moreover, due to their high computational
cost, they are hardly usable when dealing with real-world datasets.

5.2 Geolet Interpretability

This section provides an example of the kind of interpretable classification that
Geolet can provide. We apply Geolet on vehicles with prec = 4 and Geo-
hash as partitioning method, FirstPoint normalization, Normalized Euclidean
4 n estimators = range(300, 1500, 300), criterion = [gini, entropy], max depth =

range(2, 20, 3).
5 Tests are performed on a machine with CPU: AMD Ryzen 9 3900X; RAM: 32 GB;

OS: EndeavourOS Linux. Due to resource limitations, we used 20% of geolife and
70% of taxi.

https://scikit-learn.org/stable/
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Fig. 2. Geolet’s Decision Tree for vehicles (left) and subtrajectories used (right).

Fig. 3. Examples of the Geolet explanation on two instances from vehicles. Left:
instance of the class Bus. Right: instance of the class Truck.

distance and Mutual Information for the transform. Finally, we use a Decision
Tree as a classification model as implemented by scikit-learn, which allows
us to visualize the resulting model graphically and extract rules summarizing
its decision boundaries. In particular, for vehicles, we identified the following
rules:

r1 = {dist(X,S4) is low ∧ dist(X,S0) is low} → Bus
r2 = {dist(X,S4) is low ∧ dist(X,S0) is high} → Truck
r3 = {dist(X,S4) is high ∧ dist(X,S6) is low} → Bus
r4 = {dist(X,S4) is high ∧ dist(X,S6) is high} → Truck

We highlight that, to ease the understanding, we report “is high”/“is low”
instead of the real distance because it is sufficient to understand the meaning
of the rule without accounting for the specific threshold numbers. Specifically,
“low” indicates that the distance measurement is below the split threshold value,
and “high” indicates that the value exceeds it For instance, dist(X,S4) ≤ 0.3 is
translated into dist(X,S4) is low. The decision tree and the subtrajectories are
illustrated in Fig. 2. These rules show that the most representative subtrajecto-
ries are those with indices 0, 4, and 6. We can now understand the decisions of
the classifier by visualizing where the subtrajectories fit within the trajectory.
Figure 3 presents the classification of Geolet for two instances. In particular,
the instance belonging to the class Bus has segments very similar to subtrajec-
tories 0 and 4, and are instead quite different from subtrajectory 6. On the other
hand, the Truck instance contains almost perfectly the subtrajectory 0, but it is
quite different from 4 and 6.
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Fig. 4. Top: accuracy of Geolet varying the number of subtrajectories. Bottom: com-
parison of the distance measures in terms of accuracy (left) and runtime (right). The
first two columns are the results obtained using Geohash-RND, and the last two
columns are the results obtained using Geohash-MIG.

5.3 Geolet Parameters Sensitivity

In general, it is extremely difficult to define a global heuristic for this app-
roach. For this reason, we describe here our implementation choices and analyze
how hyperparameters selection affects the Geolet’s results on animals and
vehicles, providing some practical insights and guidelines.

Partitioning. In Fig. 4 we study how Geohash precision and number of subtra-
jectories affect accuracy. Also, we determine the importance of selecting tra-
jectory using a well-founded criterion such as the Mutual Information Gain
(Geohash-MIG), instead of simply selecting them randomly (Geohash-RND).
IRD is used as distance, and FirstPoint is used as the normalization strategy.
From the results, we can observe that, although random selection (Geohash-
RND) leads to a worse result, it could be a great way to quickly determine the
best precision for Geohash partitioning. The average runtime of Geohash-RND
compared to Geohash-MIG turns out to be 13 times faster for animals and
two times faster for vehicles. On the other hand, by selecting subtrajectories
using Mutual Information (Geohash-MIG), we can achieve better results faster
and with fewer subtrajectories. Regarding animals, we note that increasing the
length of the subtrajectories improves the results.

Normalization. We study here the impact of using different normalization tech-
niques, i.e., Geohash (Geolet-GH) and FirstPoint (Geolet-FP). Our experi-
ments show that the accuracy of Geolet-GH is 0.677 for animals and 0.791 for
vehicles, while for Geolet-FP is 0.935 for animals and 0.965 for vehicles.
Therefore, we select FirstPoint as normalization for Geolet.

Distance. Finally, we analyze the impact of different distance metrics on per-
formance. Figure 4 (bottom) shows that the best distance for animals is DTW,
while the best distance for vehicles is ED. However, when the computation
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time for the dataset transformation is considered, it is clear that larger datasets
cannot use DTW. Thus, excluding DTW, IRD has the best accuracy score for
animals, while it performs negligibly worse than ED for vehicles. As a result,
our intuition is that: (i) for small datasets, the DTW is the best distance, (ii)
for large datasets with consistent sample rates, ED is the best choice, while (iii)
for large datasets with variegated sample rates, IRD is the best compromise
between accuracy and runtime.

In summary, the most sensible hyperparameter of Geolet is the precision.

6 Conclusion

We have presented Geolet, an interpretable classifier for trajectory data. Geo-
let is able to transform trajectory data into a simplified representation that any
classifier can use as an interpretable input source. We have shown that Geolet
outperforms state-of-the-art competitors in terms of accuracy while remaining
competitive in terms of runtime. Besides, Geolet is interpretable, returning
subtrajectory-based explanations that are easily interpretable from a human
standpoint. As future research directions, we intend to improve Geolet’s per-
formance in terms of accuracy, runtime, and explainability. In this sense, many
extensions are possible. Subtrajectories, can be improved by embedding proper-
ties such as scale and rotation invariance, resulting in a smaller set of prototypi-
cal and interpretable subsequences. Also, Geolet can be extended to work with
data that includes additional features like height and semantic textual dimen-
sions, as well as data that uses different coordinate systems. To accomplish this,
the modularity of the implementation can be used to introduce new distance
measures, filtering approaches, normalization techniques, and partitioning meth-
ods. Finally, we want to investigate the regression and forecasting tasks, which
are fundamental in this field but remain unexplored from an XAI standpoint.
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Abstract. In recent years, large Transformer-based Pre-trained Lan-
guage Models (PLM) have changed the Natural Language Processing
(NLP) landscape, by pushing the performance boundaries of the state-
of-the-art on a wide variety of tasks. However, this performance gain
goes along with an increase in complexity, and as a result, the size of
such models (up to billions of parameters) represents a constraint for
their deployment on embedded devices or short-inference time tasks.
To cope with this situation, compressed models emerged (e.g. Distil-
BERT), democratizing their usage in a growing number of applications
that impact our daily lives. A crucial issue is the fairness of the predic-
tions made by both PLMs and their distilled counterparts. In this paper,
we propose an empirical exploration of this problem by formalizing two
questions: (1) Can we identify the neural mechanism(s) responsible for
gender bias in BERT (and by extension DistilBERT)? (2) Does distil-
lation tend to accentuate or mitigate gender bias (e.g. is DistilBERT
more prone to gender bias than its uncompressed version, BERT)? Our
findings are the following: (I) one cannot identify a specific layer that
produces bias; (II) every attention head uniformly encodes bias; except
in the context of underrepresented classes with a high imbalance of the
sensitive attribute; (III) this subset of heads is different as we re-fine tune
the network; (IV) bias is more homogeneously produced by the heads in
the distilled model.

Keywords: Language Models · Fairness · Imbalance · Compression

1 Introduction

The introduction of large Pre-trained Language Models (PLM) has marked an
important paradigm shift in Natural Language Processing (NLP). It leads to
unprecedented progress in tasks such as machine translation, document classifi-
cation [10], and multitasks text generation [29]. The strength of these approaches
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lies in their ability to produce contextual representations. They have been ini-
tially based on Recurrent Neural Networks (RNN) [5] and they have gradually
integrated the Transformers model [34] as is the case for GPT3 [29] or BERT [10],
for example. Compared to RNNs, Transformers can be parallelized, which opens
the way, on one hand, to the use of ever-increasing training corpus (for exam-
ple, GPT3 is trained on 45TB of data - almost the entire public web), and on
the other hand, to the design of increasingly complex architectures (e.g., BERT
large comprises 345 million parameters, BERT base 110 million). In a nutshell,
Transformers [34] are founded on three key innovations: positional encoding,
scaled dot product attention, and multi-head attention (we will come back to
these elements in more detail in Sect. 2). As a result of a combination of all
these elements, Transformers can learn an internal understanding of language
automatically from the data. Despite their good performance on many different
tasks, the use of these models in so-called sensitive applications or areas raised
concerns over the past couple of years. Indeed, when decisions have an impact on
individuals, for example in the medical and legal domains [9] or human resources
[20], it becomes crucial to study the fairness of these models.

The core definition of fairness is still a hotly debated topic in the scientific
community. In our work, we adopt the following commonly accepted definition
[26]: fairness refers to the absence of any prejudice or favoritism towards an
individual or a group based on their intrinsic or acquired traits. In machine
learning, we assume that unfairness is the result of biased predictions (prejudice
or favoritism), which are defined as elements that conduct a model to treat
groups of individuals conditionally on some particular protected attributes, such
as gender, race, or sexual orientation.

As an example, in human resources, the NLP-based recruitment task con-
sists in analyzing and then selecting the relevant candidates. A lack of diversity
inherent to the data, for instance, a corpus containing a large majority of male
profiles (i.e. sample bias), will cause the model to maintain and accentuate a
gender bias [33]. When handling simple linear models trained on reasonable size
corpora, creating safeguards to avoid this type of bias is conceivable. With PLM,
the characteristics that allow them to perform so well are numerous: the size of
their training corpus, the number of parameters, and their ability to infer a fine-
grained semantic from the data. However, they are also what make it difficult
to prevent them from encoding societal biases [2].

Related Works. Several recent studies highlight fairness issues raised by mod-
els based on the Transformer architecture. These issues are observed in dif-
ferent levels of the NLP pipeline: text encoding [1,23], during the fine-tuning
process [8], or simply as the potential harm caused on downstream tasks [23],
with dedicated studies on language generation [32], document classification [3],
toxicity detection, and sentiment analysis [19]. Besides measuring the fairness
issue, locating the neural mechanism responsible for these issues is largely under-
studied and unsolved – locating such mechanisms would unlock the possibility
for counter-measures in neural architectures. At the same time, a segment of
research focused on compressing these large pre-trained models to attain simi-
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lar performances with fewer parameters, so that running these models is more
sustainable and more cost-effective. Several model compression techniques have
been proposed, as discussed in [12] and namely the following compression fami-
lies: pruning, quantization and distillation. The primer [24] increases the speed
and generalization capacities by removing the less important model’s weights
with regard to the task, while quantization approximates the model’s weights
to reduce its complexity (e.g. reducing the numerical precision of the weights
[22]). Finally, distillation [16] consists in training a smaller model (called student
model) to mimic the predictions of the large PLM to distill (teacher model). In
the present work, we focus on this latter, approach. One of the earliest model,
DistilBERT [31] is able to reduce the number of parameters of BERT by 40%
while maintaining 96% of accuracy in document classification. Looking at the
impact of model distillation through fairness lenses has started to be investi-
gated, mainly in the context of computer vision [17,18,25]. To summarize, their
findings: i) compressed models impact underrepresented visual features directly
related to bias, and ii) distilled models tend to accentuate discrimination already
made by the teacher model. In NLP, fewer works have been conducted, and the
conclusions are sometimes contradictory. While some works have shown that dis-
tilled versions of PLMs can exacerbate bias [7,28], other articles seem to reach
an opposite conclusion [35]; in this latter, authors state that model distillation
acts as a regularization technique allowing bias reduction.

Contribution. Based on existing results, we start from the postulate that PLMs,
and more specifically BERT, encode undesirable bias. With a focus on the task
of document classification on the Bias in Bio dataset, our objective is to identify
the inner structure of the neural network architecture that produce bias, both for
BERT and its distilled version DistilBERT. To this end, we design and conduct
a series of experiments to verify the relation between models’ fairness and their
intermediate representation or the attention they carry to the embedding in
different data balance setting.

Organisation. Section 2 provides background knowledge about BERT and Dis-
tilBERT. Section 3 presents the empirical protocols that we design. Section 4
details the technical setting and shows the obtained results of our experiments.
Finally, we conclude in Sect. 5 and provide several perspectives unlocked by our
experiments.

2 Preliminaries and Background

We study two PLM, BERT [10] and its distilled version, DistilBERT [31]. BERT
is a general-purpose language model trained on masked language modeling task
1. A small fraction of the words of each training document is masked, and the
model is trained to reconstruct those masked words on a large amount of textual
1 The model is also trained on a next sentence prediction task, but that is irrelevant

in our work and therefore not presented here.
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Fig. 1. Scheme of head’s noising experiments

data. More precisely, the encoder part of a Transformer architecture takes a
sentence, or short document, as input, and maps each token (word or subwords)
to an initial representation space in R

768.
The encoder then contextualizes these representations using a multi-head

attention mechanism. The attention mechanism builds attention weights between
each pair of words, based on their similarity in a latent space. These are then used
to build new word representations by a simple weighted average operation. More
precisely, this attention operation is computed for slices of dimensions in parallel
before concatenation, this is why it is called multi-head. This is followed by a
pass through a feed-forward neural network with residual connections. See Fig. 1
for an illustration of this operation. The output of the Transformer encoder is a
matrix of size L × 768, where L is the maximum document length of the model
(512 for BERT) and 768 the number of dimensions. After pre-training on this
task, the model can be fine-tuned on a downstream task, such as classification,
by adding a linear layer on top of this model, that either inputs the final hidden
state’s “CLS” token (a special token corresponding to a representation of the
sequence) or by pooling the representations of the words.

BERT, in its base version, has 110 M of parameters, 12 layers, and 12 atten-
tion heads. DistilBERT is a shallow version of BERT, trained with half the num-
ber of layers using distillation [16]. The principle of this compression method is
to train a student model to replicate the behavior of the teacher. To do so, one
feeds a dataset to the teacher to retrieve its predictions for each sample (the out-
puts of the teacher are soft targets, i.e. the probabilities over each class instead
of the predicted label). On the other hand, the student receives the same input
as training data and the predicted soft targets as training labels. The objec-
tive of the student is then to match the (soft) predictions of the teacher. The
data used to train the student can either be unlabeled or labeled; in the second
case, the true labels can also be fed to the student and a regularization term
is added to the objective function to improve the student’s performance. Using
this approach, DistilBERT obtains up to 95% of the performance of BERT.



Investigation Gender Bias in BERT and DistilBERT 253

In our experiments, we use the pre-trained models from Hugging Face2, more
specifically, the Transformer models for sequence classification with a linear layer
as classification head on top of the pooled output.

3 A Gender-Bias Neural Exploration Protocol
for Language Models

3.1 Fine-Tuning Scenarios for Fairness Evaluation

In many real-life datasets, we observe gender ratio imbalance, making ML models
outcomes prone to unfairness. For example, in the Bias in Bios dataset [6], more
than 90% of nurses are women, while they are less than 2% to be a surgeon.
In [11], authors show that training with imbalanced data allows the model to
learn a correlation between the target label and sensitive attributes, therefore
inducing bias. These observations are unsurprising: this kind of bias is considered
to be extrinsic, and is caused by the data used during the fine-tuning. However,
with pre-trained models, another type of bias emerges: intrinsic bias. They are
encoded during the pre-training and are out of the control of the practitioner.
The understanding of the neural behavior that leads to them remains unclear. In
our work, we are primarily interested in understanding and exploring the inner
operations of the Transformer architecture that are at stake in these findings.

To study in detail the effect of those biases, we fine-tune both BERT and
DistilBERT on two sub-samples of the initial dataset: a balanced and an imbal-
anced one with regard to the sensitive groups (class imbalance remains identical
for both datasets). These models will be referred to as Mi and Mb when fine-tuned
with the imbalanced or the balanced dataset respectively. We believe that start-
ing from the same models, but with different fine-tuning strategies will make it
possible to make comparisons of the fairness of these models.

3.2 Attention and Hidden States Comparison (E1)

We first investigate the inner differences, induced by the fine-tuning process,
between Mi and Mb models. (cf. Section 3.1). More precisely, we focus on
the attention weights and the hidden states (the intermediate representations)
between both models for similar input. For this first set of experiments, we
propose to investigate fairness through the lens of the learning dynamic of the
PLMs. Recent works [30] show that the first layers of deep architectures capture
low-level information about the input data, and that the learned representations
tend to become more abstract and finer when moving through the body of the
network towards its heads. In [13], the authors specifically studied the dynamic
of BERT fine-tuning and conclude that mainly the last layers are significantly
changing, both their attention mode and the hidden representation that they
produce. Our objective is then to verify the two following hypotheses.
2 BERT: https://huggingface.co/docs/Transformers/model doc/bert,

DistilBERT: https://huggingface.co/docs/Transformers/model doc/distilbert.

https://huggingface.co/docs/Transformers/model_doc/bert
https://huggingface.co/docs/Transformers/model_doc/distilbert
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Hypothesis 1. As layers specialize on the different granularity of the textual
content, from grammatical to semantic aspects, we assume that monitoring the
attention scores and hidden states of the successive layers of the models allows
determining which one(s) is encoding bias.

Hypothesis 2. The distillation process implies that the student model will
reproduce the behavior of the teacher, including biases in predictions. We assume
that by reducing the depth, and hence the expressive power of the model, com-
pression encourages amplified bias in the hidden representations.

To proceed, we adapt the protocol of [13] to verify both Hypothesis 1 and
2. We first take a look at the modification of the similarity between tokens,
where the attention is computed as a function of the similarity. In a second step,
we look at how much hidden word representations are impacted by the model
independently of the pairwise similarities.

Attention Values Comparison. The Jensen-Shannon divergence is a sym-
metrized version of the Kullback-Leibler divergence. It allows comparing two
probability distributions P and Q. We propose to compare the attention of the
two models layer-wise. Formally, we evaluate the divergence for each sample and
for each head between the layers of two models (e.g., Mi and Mb). Let N be
the number of examples in the evaluation set, H the number of attentions head,
and W the number of tokens in a sequence. Ah

i (tokent) and Ah
b (tokent) are the

attention scores for tokent on head h respectively for models Mi and Mb. In this
context, the JS divergence is defined as follows:

DJS(Mi||Mb) =
1
N

1
H

N∑

n=1

H∑

h=1

1
W

W∑

t=1

DJS(Ah
i (tokent)||Ah

b (tokent)) (1)

DJS(.||.) ∈ [0, 1], where 0 indicates that the distributions are identical.

Hidden States Comparison. We compute the Singular Vector Canonical
Correlation Analysis distance (SVCCA) [30] to observe the evolution of hidden
states. SVCCA allows analyzing and comparing representations in deep learning
models; in our case, the hidden representations produced by each Transformer
layer. When computing SVCCA, we first perform a Singular Value Decomposi-
tion (SVD) of the representations produced by the two models for each input
observation. Then, we compute the Canonical Correlation Analysis (CCA) [14]
between the two subspaces created by the SVD to evaluate the correlation
between the two representations and finally, condense the correlations obtained
for each dimension into a distance.

Let c be the hidden size of the model and ρ ∈ [0, 1] the CCA. The SVCCA
distance is defined as follows:

DSV CCA(Mi||Mb) = 1 − 1
c

c∑

j=1

ρ(j) (2)

DSV CCA(.||.) ∈ [0, 1] with 0 meaning identical representations.
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3.3 Head’s Ablation (E2)

With multi-head attention, Transformers build for each head a different repre-
sentation of the input embedding. We make the hypothesis that some repre-
sentations might induce more biases than others. Thus, complementary to the
previous experiments and in continuity with the goal of finding where are biases
encoded in PLM, we successively ablate heads of the model to infer if some of
them are responsible for biases in the model. The ablation is done by setting all
its attention weights to 0 through all the layers, as shown in Fig. 1.

Hypothesis 3. By ablating attention heads, we aim at removing the bias due
to a given head and identify the ones contributing to unfairness. In other words,
we expect that when ablating a head responsible for bias, the model will obtain a
better fairness score and reciprocally.

In practice, we first fine-tune the model so that it learns the weights as in
real-world applications. Then, we successively ablate heads and evaluate the
performance and fairness of the model on new data to evaluate the bias encoded
by the aforementioned heads. We are interested in the results of our models
following two criteria: their predicting performance and their fairness.

Performance. The model performance is evaluated using a weighted version
of the F-Score (since our target variable is multivalued).

More precisely, we compute the F-Score for each class, then compute the
average weighted by the number of samples per class.

Gender Fairness. We are interested in group fairness, and several metrics
have been proposed in the literature [4]. We choose the commonly used Equalized
Odds (EO) [15], defined as follows P(y = 1|y, S = 0) = P(y = 1|y, S = 1).
To ease the interpretation, we compute the difference version of EO given by

EO = |P(y = 1|y, S = 0) − P(y = 1|y, S = 1)|, (3)

where y are the predictions, y ∈ 0, 1 are the true labels and S corresponds to
the sensitive attributes (0 and 1 indicating the belonging to a sensitive group).
EO ∈ [0, 1] where a score closer to 0 indicates fairer predictions.

4 Experiments

4.1 Task and Dataset

In our experiments, we focus on a classification task and use a subset of the
Bias in Bios dataset [6] called the Curriculum Vitae dataset3. It contains a set
of short biographies associated with an occupation and a gender. The dataset is
composed of 217,197 entries, and 28 professional occupations. The distribution
of classes (occupations) and groups (genders) within each occupation is highly
3 Dataset: https://www.kaggle.com/competitions/defi-ia-insa-toulouse/data.

https://www.kaggle.com/competitions/defi-ia-insa-toulouse/data
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Fig. 2. JS divergence comparison for BERT (left) and DistilBERT (center-left) and
SVCCA distance for BERT (center-right) and DistilBERT (right).

imbalanced. For example, class 19 corresponding to ‘professor’ represents 32.23%
of the dataset and within the class, women represent 44.88% of the entries; class
23 corresponding to ‘paralegal’ represents 0.44% of the dataset, and women
84.17% of the class entries.

We create two versions of this dataset, a balanced version, and an imbalanced
version, depending on the gender attribute. The former one is a subset, where
for each class the largest sensitive group is truncated to equalize the proportion
of individuals of each gender. The latter is a subset, where we reproduce the
imbalance between gender observed in the initial dataset, but both groups are
truncated to ensure that the number of samples in both subsets are equal.

Based on these two versions, we exploit the relationship between fairness
and gender imbalance (cf. Section 3.1) to build two models Mi and Mb to further
explore the mechanisms of bias. We evaluate the EO of BERT and DistilBERT
fine-tuned on 70% of the samples, for both versions of the original dataset. In the
sequel, we refer to these models as BERT Mb and DistilBERT Mb for the balanced
versions, and BERT Mi and DistilBERT Mi for the imbalanced ones. To confirm
our premise, we perform classification and observe an average EO over all classes
three times higher for the imbalanced versions (0.13 vs. 0.42). Following this first
experience, one might think that balancing the fine-tuning data is a sufficient
and satisfactory solution to ensure fairness. However, before proceeding further,
two remarks are in order. First, balancing the data is a first step in reducing bias,
but it does not guarantee a fair model (EO above 0). Second, in many real-world
scenarios, where multiple protected attributes can be observed simultaneously
(e.g. women of color), this solution appears to be shortsighted as one cannot
slice the data into more sub-population infinitely to rebalance classes.

4.2 Attention and Hidden States Comparison (E1)

We present the results of this experiment averaged over five random seeds in
Fig. 2.

If we observe higher divergence between models Mi and Mb than between Mi
and Mi or Mb and Mb on a given layer, we can assume this layer to be responsible
for encoding bias. For the JS divergence, first we can note a similar pattern for
both BERT and DistilBERT: the divergence increases as we move forward in the
architecture, with a peak on the penultimate layer. For the SVCCA distance,
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Fig. 3. (a) F-Score and (b) Equalized Odds for model Mi per class, without ablation
and ordered by ascending ratio W/M.

the trend is similar, and we reach the highest value on the last layers. These
findings are perfectly in line with the results of [13,27] claiming that fine-tuning
mainly affects top layers. These first observations allow us to state that Distil-
BERT follows the same learning dynamic than BERT during fine-tuning. Now,
comparing [Mi-Mi, Mb-Mb] vs. Mi-Mb, we observe that the values for both metrics
are slightly above on Mi-Mb, but not significantly. In addition, this difference is
consistent over all layers. Finally, we observe the exact same behavior for Distil-
BERT. These particular results are counterintuitive with our Hypotheses 1 and
2, and we cannot conclude that extrinsic bias makes some layers different with
regard to internal representations and attention scores for both architectures.

4.3 Head’s Ablation (E2)

Let us now look at the relationship between the heads and bias. Once the model
is fine-tuned, we neutralize the heads in turn at inference time to estimate the
bias they encode. Since the distribution of the classes is highly imbalanced, we
evaluate the fairness of the model for each class individually.

Figure 3 shows the EO and F-Score for each class on the original model (Mi)
(classes are sorted by ascending ratio women/men). Three observations can be
drawn: firstly, for the highly imbalanced class (left-learning) EO is significantly
higher than average; secondly, comparing BERT and DistilBERT, we see that
for the majority of classes, we obtain an equivalent level of fairness, except for
a few classes, where either one or the other is more biased. However, for the
most imbalanced classes, DistilBERT is reaching a better level of fairness in
comparison with BERT (lower or equal EO scores); thirdly, both architectures
obtain comparable F-Score.

Now, we reproduce this evaluation twelve times (one time for each ablation),
and observe different levels of variations for the EO depending on both the class
and the head that is ablated. This implies that the representations produced
by the attention head are different enough to impact the fairness of the models
as assumed in Hypothesis 3. However, when the network is re-fine tuned we do
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Fig. 4. EO amplitude for BERT’s Mi (a), DistilBERT’s Mi (b), BERT’s and Distil-
BERT’s Mb (c).

not observe the same variations for a given head. For each class, we compute the
difference of EO obtained when neutralizing a head gives the fairest score vs. the
most unfair score and call it the amplitude. Let EOclass = {EO1

class, ..., EO12
class}

with EOhead
class the EO computed for a given class after noising a head. We defined

the amplitude for a class as:

amplitudeclass = max
head

(EOclass) − min
head

(EOclass) (4)

Figure 4 shows the amplitude depending on the class imbalance and the
ratio of women/men within the classes. The minority group is not the
same for every class, thus, we compute the ratio as follows ratio W/M =
min(%women

%men , %men
%women ) ∈ [0, 1]. For better readability, we rescale the class pro-

portion and amplitude vectors by taking log(vector+1n), n being the dimension
of the vectors. We note, in Figs. 4a and 4b that the more a class suffers from dou-
ble imbalance (underrepresented class and highly sensitive group imbalance) the
more the heads will produce different representations, some being more biased
than others. Also, when comparing the values of EO amplitude for BERT and
DistilBERT, we observe that BERT is more sensitive to those scenarios than
DistilBERT. According to Fig. 4c, where sensitive groups are balanced within
the classes, the less a class is represented the higher the amplitude is, meaning
that BERT is generally more sensitive to class imbalance than Distil-
BERT with regard to the homogeneity of head representations. On the
other hand, we evaluate the correlation between F-Score and EO, when ablating
each head, and have not been able to establish a relation caused by the process.

5 Conclusion

This paper investigated the implication of inner elements of BERT-based models’
architecture in bias encoding through empirical experiments on the Transform-
ers’ layers and attention heads. We also studied the attention carried by the
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“CLS” token to the words of the sequence, specifically the pronouns ‘he’ and
‘she’, but also to the ones receiving the most attention from the aforesaid token,
in an attempt to understand what the model was focusing on; this study did not
lead us to any convincing results. Similarly, investigating the JS divergence and
SVCCA distance between different layers (e.g. the 1 and 2) was not conclusive,
we suspect it might since layers specialize on different aspects of the input text
[21]. To summarize, we show that gender bias is not encoded in a specific layer
or head. We also demonstrate that the distilled version of BERT, DistilBERT, is
more robust to double imbalance of classes and sensitive groups than the original
model. Even more specifically, we observe that the representations generated by
the attention heads in such a context are more homogeneous for DistilBERT
than for BERT in which some attention heads will be fair while others are very
unfair. Thus, we advise giving special care to such patterns in the data but do
not recommend ablating the heads producing more unfair representations since it
could seriously harm the performance of the model. Finally, we recommend Dis-
tilBERT to the practitioner using datasets containing underrepresented classes
with a high imbalance between sensitive groups, while cautiously evaluating class
independently, using the protocol that we propose in this paper.

Acknowledgment. This work is funded by the french National Agency for Research
(ANR) in the context of the Diké project (ANR-21-CE23-0026).
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20. Jatobá, M., Santos, J., Gutierriz, I., Moscon, D., Fernandes, P.O., Teixeira, J.P.:
Evolution of artificial intelligence research in human resources. Procedia Comput.
Sci. 164, 137–142 (2019)

21. Jawahar, G., Sagot, B., Seddah, D.: What does bert learn about the structure of
language? In: ACL (2019)

22. Kim, S., Gholami, A., Yao, Z., Mahoney, M.W., Keutzer, K.: I-bert: Integer-only
bert quantization (2021)

23. Kurita, K., Vyas, N., Pareek, A., Black, A.W., Tsvetkov, Y.: Measuring bias in
contextualized word representations. In: The 1st Workshop on Gender Bias in
Natural Language Processing, pp. 166–172 (2019)

24. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, vol. 2 (1989)

25. Lukasik, M., Bhojanapalli, S., Menon, A.K., Kumar, S.: Teacher’s pet: understand-
ing and mitigating biases in distillation. arXiv preprint arXiv:2106.10494 (2021)

26. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

27. Merchant, A., Rahimtoroghi, E., Pavlick, E., Tenney, I.: What happens to BERT
embeddings during fine-tuning? In: Proceedings of the 3rd BlackboxNLP Work-
shop, pp. 33–44. ACL (2020)

28. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training. OpenAI blog (2018)

29. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

30. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: Svcca: singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In:
NeurIPS, vol. 30 (2017)

31. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arxiv pre-print (2020)

http://arxiv.org/abs/2010.03058
http://arxiv.org/abs/2106.10494


Investigation Gender Bias in BERT and DistilBERT 261

32. Sheng, E., Chang, K., Natarajan, P., Peng, N.: The woman worked as a babysitter:
on biases in language generation. In: EMNLP/IJCNLP, pp. 3405–3410 (2019)

33. Swinger, N., De-Arteaga, M., Heffernan IV, N.T., Leiserson, M.D., Kalai, A.T.:
What are the biases in my word embedding? In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pp. 305–311 (2019)

34. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
35. Xu, G., Hu, Q.: Can model compression improve NLP fairness. arXiv preprint

arXiv:2201.08542 (2022)

http://arxiv.org/abs/2201.08542


Discovering Diverse Top-K Characteristic
Lists

Antonio Lopez-Martinez-Carrasco1(B), Hugo M. Proença2, Jose M. Juarez1,
Matthijs van Leeuwen2, and Manuel Campos1,3

1 AIKE Research Group (INTICO), University of Murcia, Murcia, Spain
antoniolopezmc@um.es

2 Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands

3 Murcian Bio-Health Institute (IMIB-Arrixaca), Murcia, Spain

Abstract. In this work, we define the new problem of finding diverse
top-k characteristic lists to provide different statistically robust explana-
tions of the same dataset. This type of problem is often encountered in
complex domains, such as medicine, in which a single model cannot con-
sistently explain the already established ground truth, needing a diversity
of models. We propose a solution for this new problem based on Sub-
group Discovery (SD). Moreover, the diversity is described in terms of
coverage and descriptions. The characteristic lists are obtained using an
extension of SD, in which a subgroup identifies a set of relations between
attributes (description) with respect to an attribute of interest (target).
In particular, the generation of these characteristic lists is driven by the
Minimum Description Length (MDL) principle, which is based on the
idea that the best explanation of the data is the one that achieves the
greatest compression. Finally, we also propose an algorithm called GMSL
which is simple and easy to interpret and obtains a collection of diverse
top-k characteristic lists.

Keywords: Subgroup Discovery · Subgroup List · the Minimum
Description Length principle · Algorithm · Interpretable Machine
Learning

1 Introduction

More and more often, Artificial Intelligence is required to generate readable,
understandable and transparent models. In contrast to black-box machine learn-
ing (e.g., neural network models), interpretable machine learning is an increasing
trend whose objective is to develop new methods and tools which allow humans
to understand machine learning models and to interpret their results in many
critical areas, such as medicine or economy. In this context, different research
has been carried out [12,13].

The discovery of a collection of descriptions is helpful to better understand
datasets. In this context, one type of collection is the characteristic list, whose
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Example of a description from a characteristic list.

purpose is to generalise an individual belonging to a specific category. These
descriptions explain all typical features that characterize the individuals belong-
ing to a specific category for a descriptive purpose [1]. An example of a descrip-
tion from a characteristic list is shown in Fig. 1.

The utilization of multiple characteristic lists is relevant because a single
explanation of a target value is not always enough. A clear example of both needs
is the clinical domain, in which a patient could have some diagnosis. A relevant
task is to find all the risk factors that differentiate a diagnosis from others, not
only from a predictive point of view, but from the descriptive point of view.
However, a single characteristic list provides a limited explanation, having little
value due to the possible lack of meaning from the clinical point of view. For
example, a characteristic list automatically generated by some machine learning
algorithm could not make sense for the clinicians and, therefore, be discarded.

Subgroup Discovery (SD) can be used as building block of characteristic
lists. A subgroup identifies a relation between attributes (description) and an
attribute of interest (target). Besides, subgroups can be used as local descriptive
models that characterize subpopulations, in contrast to the whole population, in
relation to the target attribute given a quality measure. However, only sets with
few subgroups can be easily interpreted by an expert. To solve this problem, we
can build a subgroup list model. We illustrate the advantages in Fig. 2, show-
ing subgroups and subgroup lists extracted from the zoo dataset. On the one
hand, a subgroup contains a set of selectors (i.e., a pattern or description) and
it is generated when a quality measure given, e.g. Weighted Relative Accuracy
(WRAcc), with respect to a target value is above a threshold. In the figure, the
subgroup s1 “milk = yes” contains a single selector to define the class type =
‘mammal’. On the other hand, a subgroup list is an ordered collection of sub-
groups that explain the target value. In the figure, an example of four subgroup
lists is depicted. Note that either a subgroup or a subgroup list provides an expla-
nation of how to define a single class (type = ‘mammal’ in this example), but
not the others. Moreover, it is readable, understandable and has the potential
to be interpretable.

A subgroup list can be interpreted as a decision list, since it is an ordered
collection of subgroups of the form “else-if” (i.e., a subgroup description is only
reached if all the above ones are not being true). Another model that can be used
for the proposed problem is the decision set, which is formed by an unordered
collection of subgroups of the form “if” (i.e., all subgroup descriptions apply
independently). Although our objective is to describe data, both models can be
used either for description or prediction tasks [7].
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A great difficulty when creating a subgroup list is the large number of sub-
groups that are extracted. In the example shown in Fig. 2, there are 8,537,383
subgroups mined with an exhaustive SD algorithm that could be used to cre-
ate subgroup lists. This can be solved using the Minimum Description Length
(MDL) principle [6], a method of inductive inference whose fundamental idea is
that the best explanation of the data is the one that achieves the greatest com-
pression. In the context of SD and subgroup lists, it was shown that using the
MDL principle is equivalent to performing a Bayesian statistical test and multi-
ple hypothesis testing correction for every subgroup [10,11]. Thus, this leads to
the discovery of statistically robust subgroups and subgroup lists.

Fig. 2. An example of four subgroup lists generated from the zoo dataset (i.e., four
different explanations of this dataset), being the target type = ‘mammal’. Notation:
s1: subgroup1; dr: default rule; pos: positives; neg: negatives.

The main contributions of this research are: (1) the definition of the new
problem of finding diverse top-k characteristic lists, and (2) a new algorithm
called GMSL that solves this problem by using SD, the subgroup list model, and
the MDL principle. Moreover, its results are simple, readable, understandable
and statistically robust at the same time. This contribution improves the state of
the art, since existing algorithms generate only one subgroup list and, therefore,
different explanations for the same data are not possible. Note that, to the best
of our knowledge, no algorithm in the literature combines SD and the MDL
principle to generate diverse top-k subgroup lists.

The remainder of this paper is structured as follows: Sect. 2 defines the prob-
lem tackled in this research, while Sect. 3 shows and explains our proposal: the
new algorithm called GMSL that generates diverse top-k subgroup lists. More-
over, Sect. 4 describes the configuration of the experiments carried out in this
work and provides a discussion of the results obtained. Finally, Sect. 5 presents
the conclusions reached after carrying out the research.
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2 Problem Statement and Background

This section formalizes the problem tackled in this research, i.e., the generation of
diverse top-k characteristic lists by using Subgroup Discovery (SD), the subgroup
list model, and the Minimum Description Length (MDL) principle.

2.1 The Problem of Discovering Diverse Top-K Characteristic Lists

The fundamental concepts of this new problem are defined in this section.
First, an attribute a is a relation between an object property and its value. For

example, a = hair : no. Moreover, the set of all unique values that an attribute
can take is defined as the domain of the attribute and is denoted as dom(a).
Note that, depending on its domain, an attribute can be nominal or numeric.
Second, an instance i is a tuple i = (a1, . . . , am) of attributes, for example,
i = (milk : yes, hair : yes). Finally, a dataset d is a tuple d = (i1, . . . , in) of
instances. For example, d = ((milk : yes, hair : yes), (milk : yes, hair : no)).
Note that we use the notation vx,y to indicate the value of the x-th instance ix
and of the y-th attribute ay from a dataset d.

According to these basic definitions, the following ones can be given:

Definition 1 (Selector e). Given an attribute ay from a dataset d, a binary
operator ∈ {=, �=, <,>,≤,≥} and a value w, being w in the domain of ay, then
a selector e is defined as a 3-tuple of the form (ay, operator, w).

Informally, this means that a selector is a binary relation between an attribute
from a dataset and one of its possible values, representing a property of a subset
of instances from this dataset. Some examples of selectors are e1 = (age,>, 50)
and e2 = (venomous,=, yes).

Definition 2 (Selector coverage). Given an instance ix, an attribute ay and
a selector e = (ay, operator, w ∈ dom(ay)), then ix is covered by e if the binary
expression “vx,y operator w” holds true. Otherwise, we say that it is not covered
by e.

Definition 3 (Pattern p). A pattern p is a list of selectors <e1, . . . , ex> (i.e.,
a conjunction) in which all attributes of the selectors are different.

Informally, this means that a pattern represents a list of properties of a subset
of instances from a dataset.

Definition 4 (Pattern coverage). Given an instance i and a pattern p, then
i is covered by p if i is covered by ex, ∀ex ∈ p. Otherwise, we say that it is not
covered by p.

Definition 5 (Characteristic list l). Given a dataset d and a selector e
(denominated as category), then a characteristic list l is a collection of pat-
terns <p1, . . . , py> (each of them is denominated as “description”) that allow to
describe the instances from d belonging to e. Note that a characteristic list is
used for a descriptive purpose.
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An example of description from a characteristic list is depicted in Fig. 1. This
description is formed by a set of selectors that allow to describe the individuals
belonging to the category animal = ‘turtle’.

It is necessary to explain why “top-k” and “diversity” properties are essential
in the new problem defined. Firstly, it is focused only on the generation of the
top-k characteristic lists due to this generation is limited by the available com-
putational capacity. This means that it is not feasible to carry out an exhaustive
generation of all possible characteristic lists. Secondly, diversity is essential in
this case, since multiple characteristic lists from l1 to lk will be generated and,
therefore, it is necessary to ensure that they will be different and non-redundant.
Diversity can be achieved both in terms of coverage and descriptions. The diver-
sity in terms of coverage is considered when building a single characteristic list
lx to minimize the number of instances already covered by previous patterns.
This means that, given two patterns pa ∈ lx and pb ∈ lx, the instances covered
by both patterns at the same time should be as few as possible. The diversity in
terms of descriptions implies using different selectors and patterns in the differ-
ent characteristic lists to ensure that the models provide multiple explanations
of the same category or target value. This means that, given two characteristic
lists lx and ly, then ∀pa, if pa ∈ lx, then pa /∈ ly.

Therefore, the new problem of discovering diverse top-k characteristic lists is
defined as follows:

Definition 6 (Discovering diverse top-k characteristic lists problem).
Given a dataset d, a category e (in form of a selector) and the k maximum
number of characteristic lists to generate, then the problem of discovering diverse
top-k characteristic lists consists of generating a collection of characteristic lists
<l1, . . . , lk> such that they are diverse and represent different explanations or
perspectives of d in relation to e.

Finally, the proposal carried out in this work (i.e., GMSL algorithm, which
is explained in Sect. 3) solves this problem by using SD, the subgroup list model,
and the MDL principle.

2.2 Subgroup Discovery

SD [2] is a supervised machine learning technique whose purpose is the iden-
tification of a set of relations between attributes (denominated as description)
with respect to an attribute of interest (denominated as target). This technique
is widely used for exploratory and descriptive data analysis and is also useful for
obtaining general relations in a dataset and automatically generating hypothe-
ses. In particular, SD helps to obtain groups of individuals that might overlap.
However, as with many pattern mining techniques, SD experiences some prob-
lems such as pattern explosion or lack of statistical guarantees specially when
using datasets with many attributes [9]. Therefore, configuring a list of the best
subgroups that faithfully describes a dataset is not trivial.

Additionally, the fundamental concepts of SD are described as follows:
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Given a pattern p and a selector e, a subgroup s is a pair (p, e) in which
the pattern is denominated as ‘description’ and the selector is denominated as
‘target’. Subgroups can be used for either a predictive purpose or a descriptive
purpose (i.e., characteristic subgroups) [1]. Therefore, since our objective in this
research is to describe and characterize individuals from a dataset, subgroups
will be used as a fundamental part of characteristic lists (subgroup lists, in this
case) with the objective of identifying all properties related to a specific category
or target attribute. An example of subgroup is s = (<(shell, =, yes),(feathers,
=, no),(backbone, =, yes)>, (turtle, =, yes)). Finally, given a subgroup s and
a dataset d, a quality measure q is a function that computes one numeric value
according to s and to certain characteristics from d [4]. Some examples of qual-
ity measures are Sensitivity, Piatetsky Shapiro or Weighted Relative Accuracy
(WRAcc).

Following these definitions, given a dataset d, a quality measure q and a
numeric value threshold, the subgroup discovery problem consists of exploring
the search space of d in order to generate subgroups that have a value of q above
threshold. Formally: R = {(s, quality_value)|quality_value ≥ threshold}.

Some examples of algorithms that generate individual subgroups are SD-Map
[3], CN2-SD [8] or ID-Rsd [5], among others.

2.3 The Subgroup List Model

The subgroup list model was initially presented in [11] and, afterwards, expanded
and detailed in [10]. A subgroup list is a collection of ordered subgroups followed
by a default rule, whose objective is to partition the input data and to provide
a description (i.e., an individual subgroup) of each of these partitions, except
the last one (that corresponds to the default rule). While the default rule repre-
sents the dataset average and covers the instances that are well described by the
dataset distribution, the subgroups cover the instances that are statistically dif-
ferent and interesting, compared to dataset distribution. Therefore, each instance
of the input dataset can only be covered either by one individual subgroup or
by the default rule. For example, if a subgroup list contains 10 subgroups, this
means that the input dataset was partitioned into 11 subsets: the first 10 of them
correspond to the 10 individual subgroups and the last one corresponds to the
default rule. An example of subgroup list is shown in Fig. 3.

Fig. 3. Example of subgroup list with w subgroups.
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2.4 The MDL Principle for Discovering a Single Subgroup List

According to the MDL principle, the best individual subgroup list is the one
that compresses the data and the model the most, i.e., the simplest subgroup
list that best fits the data. The authors of [10] defined the MDL encoding of the
optimal subgroup list for a certain dataset.

However, as the problem of finding an optimal subgroup list is NP-hard,
the authors of [10] also proposed a greedy approach that iteratively added one
subgroup at the time to the subgroup list (after the last subgroup and before
the default rule). According to this, given a dataset d, a subgroup list model M ,
and a subgroup candidate s, the best subgroup to add to a single subgroup list
is the one that maximize the compression gain, which is defined as follows:

ΔβL(d,M ⊕ s) =
L(d,M) − L(d,M ⊕ s)

(ns)β
+

L(M) − L(M ⊕ s)
(ns)β

(1)

Note that the ⊕ operator represents adding s at the end of M (before the
default rule), and ns is the number of instances covered by the description of s.

More details about ΔβL and the β parameter can be found in [10], although
the intuition is as follows: (1) a subgroup candidate that maximizes ΔβL is max-
imizing a Bayesian proportions tests between the subgroup distribution and the
dataset distribution while penalizing for larger descriptions; (2) ΔβL > 0 means
there is more statistical evidence in favour of adding the subgroup candidate to
the list than not adding it; and (3) β values closer to 0 prioritize subgroup can-
didates that cover more instances, while β values closer to 1 prioritize subgroup
candidates that cover less instances.

Currently, state of the art only focuses on algorithms to discover a single sub-
group list (e.g., SDD++ algorithm [10]). Therefore, they cannot return diverse
top-k subgroup lists automatically.

3 GMSL Algorithm

In this work, we propose the Generation of Multiple Subgroup Lists algorithm
(GMSL), whose purpose is to generate diverse top-k Subgroup Lists by combin-
ing SD and the MDL principle.

Our proposal is detailed in Algorithm 1, and it requires the following inputs:
a dataset d, a collection of subgroup candidates C, the maximum number of
subgroup lists to generate, and the normalization parameter β used by the com-
pression gain ΔβL (see Eq. 1). Besides, it is also necessary to state that the
subgroup candidates from C could be generated with any algorithm and could
be also filtered before executing GMSL algorithm.

The algorithm starts with the creation of the list L, which has size max_sl
and is initialized with empty subgroup lists (line 1). Next, we iterate through L
(loop of the line 2), and for each subgroup list, continuous iterations through C
are carried out in order to find the best subgroup candidate to add (lines 6–12).
The compression gain for each current subgroup candidate is calculated with
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Algorithm 1. GMSL algorithm.
Input: d { dataset } ; C { subgroup candidates } ; max_sl { maximum number of

subgroup lists to generate (N) } ; β { normalization parameter ∈ [0, 1] }
Output: L : collection of subgroup lists.
1: L := create a collection with max_sl empty subgroup lists.
2: for each sl ∈ L do
3: repeat
4: best_candidate := NULL
5: bc_comp_gain := 0
6: for each current_candidate ∈ C do
7: cc_comp_gain := ΔβL(d, sl ⊕ current_candidate)
8: if cc_comp_gain > bc_comp_gain then
9: best_candidate := current_candidate

10: bc_comp_gain := cc_comp_gain
11: end if
12: end for
13: if best_candidate �= NULL then
14: sl := sl ⊕ best_candidate
15: C.delete(best_candidate)
16: C.deleteRefinements(best_candidate)
17: end if
18: until best_candidate = NULL
19: end for
20: return L

the compression gain ΔβL (line 7). The candidate with the highest compression
gain will be selected (lines 8–11) and added to the current subgroup list (lines
13–17) until there are no subgroup candidates with positive compression gain.
Finally, the algorithm returns the collection L containing max_sl subgroup lists.
Note that computing the compression gain for each subgroup candidate using
the MDL principle guarantees that all subgroups added to a subgroups list are
statistically robust. Moreover, it is also relevant to remark that GMSL algo-
rithm also encourages the generation of diverse subgroup lists to allow different
explanations of the dataset.

Finally, we have to highlight how the algorithm generates diverse subgroup
lists. In the first place, diversity in terms of coverage is guaranteed due to the
utilization of the subgroup list model, since each instance of the input dataset
can only be covered either by one individual subgroup or by the default rule. In
the second place, diversity in terms of descriptions is achieved because each time
that a subgroup candidate from C is added to a subgroup list, that subgroup and
its refinements are deleted (lines 15 and 16). Therefore, each subgroup candidate
appears at most once and the appearance of the same selectors in the different
patterns is also minimized.
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4 Experiments and Discussion

GMSL algorithm was implemented in subgroups python library1. The goal of the
experiments carried out in this work was to validate our proposal in relation to
the new defined problem (i.e., to verify whether GMSL algorithm can generate
diverse top-k characteristic lists in form of subgroup lists). We used for this
purpose the well-known car-evaluation dataset from UCI repository with class
= ‘acc’ as target, meaning that the car is acceptable to be bought. The One Hot
Encoding technique was applied to the dataset with the objective that attributes
were binary. Therefore, this dataset had 1,728 instances and 18 attributes. After
that, an exhaustive SD algorithm was executed using WRAcc quality measure
and a threshold value of 0 (i.e., only subgroups whose WRAcc quality measure
value is greater or equal than 0 were generated) and a maximum depth of 2.
Note that any exhaustive SD algorithm could be applied in this point, since
subgroups obtained by any exhaustive SD algorithm are always the same as long
as the same quality measure and parameters are used. Finally, 302 subgroups
were obtained. These subgroup candidates (C) were the main input of GMSL
algorithm to generate diverse top-k subgroup lists.

After carrying out the experiments described, diverse top-3 subgroup lists
were generated, and they are represented in Fig. 4. For each one, the following
elements are shown: (1) their individual subgroups and the default rule (denoted
as dr), (2) the number of positive (i.e., such that the class is equal to ‘acc’) and
negative (i.e., such that the class is not equal to ‘acc’) instances of the dataset,
and (3) the cumulative sum of positive and negative instances covered by the
subgroup list.

These three diverse subgroup lists shown in Fig. 4 represent different explana-
tions of the same dataset. Different subgroups (i.e., different subgroup descrip-
tions, which use different patterns) were used in the different subgroup lists.
Therefore, different and diverse explanations were generated from the same data.

The figure also shows, for example, that the first and second subgroup lists
include the original attribute buying (buying_vhigh and buying_low after apply-
ing One Hot Encoding), which is not used by the third subgroup list. Moreover,
different attributes generate from the original doors attribute are used by all sub-
group lists. Additionally, the first and second subgroup lists have 2 subgroups
whose description has a single selector, while the third subgroup list has 3 sub-
groups whose description has a single selector. Besides, note that subgroups in a
subgroup list need to be interpreted sequentially, since a subgroup list is ordered
by definition.

According to the “cusum” value of the last subgroup (i.e., before the default
rule), it can be observed that the first and third subgroup lists cover more positive
examples than the second subgroup list. In the same way, the first subgroup list
has fewer subgroups, being more general, while the second subgroup list has
more subgroups, being more specific. It is relevant to note that, while subgroups
are local model, subgroup lists are global model, since they cover the whole

1 Source code available on: https://github.com/antoniolopezmc/subgroups.

https://github.com/antoniolopezmc/subgroups
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Fig. 4. Diverse top-3 subgroup lists generated from car-evaluation dataset (i.e., three
different explanations of this dataset) with class = ‘acc’ as target, meaning that the
car is acceptable to be bought. Notation: s1: subgroup1; dr: default rule; pos: positive
instances; neg: negative instances; cusum: cumulative sum of pos/neg instances.

dataset. Moreover, subgroup list model is focused on a value of a target attribute.
Additionally, each subgroup list has a different number of subgroups: the first
subgroup list has three, the second subgroup list has six, and the third subgroup
list has five.

It is necessary to remember that the collection of subgroup candidates is
generated a-priori and, then, taken as an input by GMSL algorithm. Although
this could penalize the algorithm in terms of memory consumption, it is also
an advantage in term of flexibility, since it allows to prefilter this collection and
to introduce domain knowledge. For example, some negative subgroups such as
doors_2 = ‘no’ or doors_more = ‘no’ were generated from the car-evaluation
dataset. However, they may not make sense for the user from the logical point of
view, and consequently, they could be deleted before executing GMSL algorithm.

Note that subgroups from a subgroup list do not overlap by definition [10].
However, if we analyse each of these subgroups individually (i.e., without con-
sidering the subgroup list model), they could cover the same instances of the
database.

In summary, we show for a particular case study that our proposal is suitable
for solving the new problem defined initially, since it can discover diverse top-k
characteristic lists in form of subgroup lists using SD and the MDL principle.

5 Conclusions

In this research, we defined the novel problem of discovering diverse top-k char-
acteristic lists, which consists of providing users with the k best and diverse
explanations of a dataset with a binary-target attribute.
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To solve this problem, we proposed GMSL, an algorithm that takes a set of
pre-computed subgroup candidates as input and returns a collection of diverse
top-k subgroup lists. The goodness of fit is measured using the MDL principle
and, moreover, diversity is defined in terms of coverage and descriptions. This
way, we can provide different perspectives of the same data through the diverse
top-k subgroup lists.

As shown in the examples, the results are simple and can be easily interpreted.
To the best of our knowledge, this is the first proposal that uses SD and the MDL
principle to solve the new defined problem.

Finally, future research could extend and improve the proposed algorithm in
different ways, for example, by generating subgroup lists without a collection of
subgroup candidates loaded a-priori. Moreover, the overlap between subgroups
from a subgroup list could be also study in order to improve the model inter-
pretability. Additionally, it would be interesting to extend the problem to a
multiclass setting.
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Abstract. As the digital world grows, data is being collected at high
speed on a continuous and real-time scale. Hence, the imposed imbal-
anced and evolving scenario that introduces learning from streaming
data remains a challenge. As the research field is still open to consis-
tent strategies that assess continuous and evolving data properties, this
paper proposes an unsupervised, online, and incremental anomaly detec-
tion ensemble of influence trees that implement adaptive mechanisms to
deal with inactive or saturated leaves. This proposal features the fourth
standardized moment, also known as kurtosis, as the splitting criteria
and the isolation score, Shannon’s information content, and the influ-
ence function of an instance as the anomaly score. In addition to improv-
ing interpretability, this proposal is also evaluated on publicly available
datasets, providing a detailed discussion of the results.

Keywords: Streaming data · Online · Incremental · Unsupervised ·
Anomaly detection · Ensemble · Kurtosis · Influence function

1 Introduction

The data revolution has branded the XXI century as the amount of data and
heterogeneous platforms, responsible for mining information, constantly increase.
Although this prospect provides meaningful patterns relevant in various fields
such as healthcare and fraud detection, it also imposes privacy and security con-
cerns, as well as efficient standardization to handle high speed and voluminous
data, constantly expanding and evolving [1].

In anomaly detection, learning from data streams remains a challenge as it
must consider an infinite and constantly changing nature that involves learn-
ing from imbalanced domains and forcing the evaluation process to encompass
metrics that do not neglect the minority class [2]. Furthermore, the data flow
depicted in most everyday scenarios matches the characteristics of a continu-
ously evolving paradigm that introduces resource limitations and requirements
for incremental and adaptive processing that delivers responses in a real-time
fashion. As a result, concept drift, where the properties of the stream may change
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over time, is a major point of discussion. An effective mechanism for alleviating
concept drift and improving the representation of under-represented values is
combining different base models in an ensemble approach. Ensemble methods
for data stream mining have gained considerable popularity due to their high
predictive capabilities, ability to confer robustness, and generalization [3].

Considering that anomalies are few and different compared to the rest of
the data, the proposed method isolates anomalies, rather than profiling regular
points, and attempts to determine the influence of each instance in the observed
statistics in their groups. Unlike other methods that randomly select a splitting
attribute, our approach favors the dimension that shows an increase in the fourth
standardized moment (kurtosis), a measure of the heaviness of the tail of the
distribution, as it is more likely to contain an outlier. This approach helps to
tackle irrelevant dimensions that may lead to missing crucial anomalies [4].

In anomaly domains, it is relevant to identify abnormal or potentially defec-
tive events and localize the features that caused a distribution shift, which can
be a critical step in the diagnosis. In this sense, our purpose is to design an
online ensemble method that attempts to characterize the underlying distribu-
tions, isolating dynamics as they do not align with the expected behavior. Thus,
the anomaly score is dictated by the complexity of the isolation process and
the level of surprise given by the event’s unpredictableness. Furthermore, as the
influence of a sample that differs from the rest of the dataset tends to be larger
than for normal points [5], the influence function of the proposed splitting heuris-
tic will be used to score the deviation of an instance, measuring how deviating
an example appears to be in a given distribution.

Therefore, the most significant contribution of this work is the design of
a fully incremental and unsupervised anomaly detection strategy that focuses
on identifying and curbing anomalous events by proposing online predictions
where the algorithm responses are available sequentially over time. Moreover,
to ensure a reliable representation of the evolving data characteristics that may
lead to an obsolete model, this proposal also studies control mechanisms to
examine the activity in the leaves and the consistency of the structure, that is,
the ability to closely represent the observed behavior. Moreover, this procedure
returns an anomaly score composed of three different metrics that could increase
interpretability. Lastly, as it is imperative to attest to the effectiveness of the
proposed methods in realistic scenarios, it also discusses and analyzes the results
from testing this approach on publicly available real-time benchmark datasets
with a distinctive number of points, dimensions, and anomalies.

Concisely, the paper is organized as follows: Sect. 2 provides a review of the
current and most effective solutions that serve as motivation and inspiration to
this work; Sect. 3 describes the implemented method from its principles to the
basic unit of the ensemble and the anomaly score, completing with the pseudo-
code of an influence tree; Sect. 4 gathers the experimental trials and discussion of
the results; finally, Sect. 5 closes this paper by stating final remarks and advanc-
ing future research directions and possible improvements.
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2 Related Work

With the volume and speed of real-time data increasing, obtaining large amount
of labeled data, specially in an imbalanced scenario, is a topic of interest. In
recent years, the attention to methods such as autoencoders [6] or random for-
est [7] have changed toward unsupervised approaches such as isolation forests [8],
an ensemble method, Local Outlier Factor (LOF) [9] as a density-based clustering
solution, or One-class SVM [10], a kernel-based unsupervised learning technique.

Since the increasing search for real-time and adaptive streaming solutions,
the community dedicated their scope to improving and adapting batch solu-
tions to a continuous processing setting. As an example, Pokrajak et al. [11]
proposed an incremental version of LOF, where the outlier factor is computed
for each incoming data point, updating its statistics only with a few data points.
Despite being an incremental method that can handle different densities and
detect changes in data distributions, this solution demands high computational
resources [12].

In real-time applications, predictions should be made online, where the algo-
rithm identifies anomalies before incurring the actual event. Opposite to isolation
trees, where both the split attribute and value are randomly selected to isolate
abnormal instances at higher levels [8], Putina et al. [13] presents the Random
Histogram Forest, an unsupervised and probabilistic approach, that builds a ran-
dom forest based on the fourth central moment, also known as kurtosis, to guide
the search for anomalous instances. In each leaf, the anomaly score, defined as
the Shannon’s information content, captures the likelihood of an example being
an outlier [14]. Although it retains linear running time in the input size, this
method does not implement an online streaming solution.

Although Isolation Forest [8] is an efficient method for anomaly detection
with relatively low complexity, CPU, and time consumption, it requires all the
data to build the forest, as well as pass over the dataset to assign an anomaly
score. Thus, Ding et al. [15] adapted the isolation concept to streaming events
using sliding windows. An important feature of this work is the ability to deal
with concept drift by maintaining one input desired anomaly rate that deter-
mines if the detector is obsolete and if the latest data window should be used to
build a new classifier.

Furthermore, Tan et al. [16] introduced a fast one-class anomaly detector
for evolving data streams featuring an ensemble of random HS-Trees that does
not require any data to build its structure. Unlikely Hoeffding Tree that induce
decision trees and alter its structure dynamically by measuring the confidence
of a splitting attribute heuristic as a new instance arrives [17], HS-Trees have a
constant amortized time and memory complexity that records the mass profile
of data operating with two consecutive windows where the learned profile is used
to infer the anomaly scores of new data arriving in the latest window.

More recently, Guha et al. [4] proposed a non-parametric and unsupervised
anomaly detection solution on streams based on the influence of an unseen
point. This idea measures the externality imposed by that point by averag-
ing the change in complexity. This ensemble of independent random-cut trees,
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named Robust Random-Cut Forest (RRCF), provides a dynamically maintained
strategy that allows incremental updates with as few changes as possible. Com-
paratively to other proposals, where node split is uniformly chosen at random,
RRCF determines the dimension to cut proportionally to the attributes’ range,
which makes this solution more resilient to irrelevant dimensions.

3 Online and Incremental Influence Forest

Similarly to the isolation-based method introduced by Liu et al. [8], this work
recursively splits the data through a tree. In the original proposal, anomalies are
expected to be quickly isolated, lying closer to the root, whereas normal instances
are located deeper. This proposal attempts to identify the feature that influences
the distribution’s shape by measuring the concentration of values around the
mean and the tails. The statistical measure that accounts for both peakedness,
the concentration of probability mass around the mean, and heavy-tailedness,
extreme values occurring with nonnegligible probability, is given by the stan-
dard fourth moment coefficient of kurtosis. The kurtosis of a random variable
X (K[X]) is defined in Eq. 1, where μ and σ stand for the mean and standard
deviation, respectively, and μ4 represents the fourth central moment [18].

As it is perceived in Eq. 1, the standardized data is raised to the fourth power,
which implies that instances within the region of the peak have a negligible
contribution to the kurtosis score, while extreme observations outside the region
of the peak (e.g., outliers) contribute the most. Moreover, since kurtosis is a
standardized measure that describes the shape of the distribution, it is invariant
to scale or location.

K[X] = E

[(
X − μ

σ

)4
]
=

E[(X − μ)4]
E[(X − μ)2]2

=
μ4

σ4
(1)

Furthermore, influence functions are a classic technique from robust statistics
that assesses how the model parameters change as a training point significance
is increased by an infinitesimal amount [19]. Hence, this technique promotes the
knowledge of the impact of data contamination when a point mass or perturba-
tion is added to a statistic value to deviate it from the expected distribution.

The kurtosis influence function, IF (x;K(.)), described in Eq. 2, which gives
the name to this approach, provides a quantitative understanding of kurtosis
(K(.)) when the contamination has occurred at point x. The expression, detailed
by Fiori et al. [20], reveals that the contamination in both the tails and the center
of the distribution increases this coefficient. Thus, as the influence function is
unbounded, the kurtosis coefficient is sensitive to outlying values. Therefore,
this formula estimates the contamination degree when an observation is added,
helping to assess the impact of including a particular point and its degree of
outlierness.

IF (x;K(.)) =

((
x − μ√

μ2

)2

− K(.)

)2

− K(.)(K(.) − 1) − 4
μ3

μ
3/2
2

x − μ√
μ2

(2)
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3.1 Influence Tree

Given a sample of data X = x1, ..., xn of n instances from a d-variate distribution,
to build a binary influence tree, the data space is recursively divided by selecting
an attribute based on the heuristic measure, in this case, kurtosis, K. As this
measure is expected to be affected by abnormal points, the highest value in this
importance will indicate the presence of an outlier. However, it must be ensured
that there is enough statistical evidence that the distribution has changed or
that the number of instances processed is sufficient.

Similarly to the Hoeffding Trees [17], this approach wields Chebyshev’s
inequality, widely used in probability theory, to bound the tail probabilities
of a random variable with finite variance. In particular, unlike other methods,
this inequality can be applied to any distribution as long as it includes a defined
variance and mean [21]. In other words, this will help to attest if, with a certain
confidence, the heuristic measure has suffered an unexpected change.

Considering that Xa holds the highest observed K and, as depicted in Eq. 3,
if the last observation added forced the K(A) to differ from its mean in more
than t units, the probability is, at most, the quotient of the variance and the
squared value of its distance to the mean. In other words, if the difference from
its mean is significantly higher than some value t, the attribute with the highest
importance shows enough evidence that an extreme value has been added. Thus,
it can also be used as a splitting attribute of the node.

Pr[|X − E[X]| ≥ t] ≤ V [X]
t2

(3)

Concerning the splitting criteria, this approach is more similar to the Hoeffd-
ing trees proposal for mining high-speed data streams, which essays to guarantee,
with high probability, that the attribute with the highest heuristic is the best
choice [17]. In addition, this proposal is also inspired by the Random Histogram
Forest that uses kurtosis as its splitting heuristic [13]. Furthermore, when it
comes to the splitting value, similarly to most of the state-of-the-art approaches,
this study randomly chooses a value in the range of values determined so far.

Finally, the leaves update the sufficient statistics for each attribute when an
instance is added to the sample. These statistics include the variables to assess
kurtosis, influence function, range, and the sample size of observed data points,
filtering the incoming instances according to the observed dynamic, and only
expanding when there is enough evidence that the distribution has shifted. In
particular, these numbers are constant, which means the complexity does not
depend on the number of instances, only on the number of attributes.

3.2 Dynamic Ensemble

One of the most common ensemble techniques is Bagging, which trains multiple
base models with different points drawn by resampling the original dataset. In
an online version, the forest trains several independent online influence trees to
simulate the bootstrap process by sending a weight to each observation following



Online Influence Forest for Streaming Anomaly Detection 279

a Poisson random variable [22]. This procedure adds another constant to define
the number of trees in the forest that run in parallel, given their independent
nature.

The online influence forest proposed in this work is structured incrementally
for streaming data that is supposed to be continuous and infinite. As a single
instance is not sufficient to make inferences about a population distribution,
the nodes define a minimum number of instances. However, as the stream of
events progresses, each tree structure cannot grow indefinitely, constraining the
tree depth to a maximum depth bound, user-configurable, to limit the height of
each tree. Consequently, as predictions are made online, the algorithm response
becomes available as the event is being processed, leading to lower scores and
not flagging anomalies until enough points have been examined.

Moreover, attesting if the tree structures are consistent with the dynamics
present in the available sample, that is, whether they are considered obsolete, is
also decisive to ensure that the ensemble is capturing the new data properties
and maintaining its integrity. With the limited size of each tree, an indication
that the structure is becoming saturated and unable to adapt to new instances
is the number of leaves that reaches the maximum height and shows evidence
that a split must occur. Therefore, the number of saturated leaves is supervised
to determine when each structure must be redefined.

This proposal implements additional reframe strategies to control the forest’s
accordance with the data, as illustrated in Fig. 1. These strategies supervise the
ability of the algorithm to reflect the current state of dynamics presented in
the available data. Hence, the first strategy checks if, when a sample arrives at
a leaf, the node is still active by checking the time between updates (Inactive
Fig. 1). A leaf is considered inactive when, on average, it has been enough time to
record twice the minimum number of instances in a node. In this case, it might
suggest that the parent node has picked the wrong split, and the splitting value
is reframed. Lastly, another approach has been studied to tackle the change
in dynamic or when the tree is considered saturated (Saturation Fig. 1). This
method maintains and reframes the tree structure from its root to the leaves
by merging sibling nodes and replacing the parent node on higher levels. Thus,
after the reevaluation, the number of leaves and levels reduce, and the original
tree root, which holds the oldest distribution, is replaced.

Fig. 1. Strategies to guarantee consonance between the tree structure and the observed
data.
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3.3 Anomaly Score

The anomaly score vital in unsupervised methods is another crucial component
that attempts to quantify the degree of discrepancy from the expected behavior
according to a set of principles. It is also the only way to comprehend how a
particular decision has been made. In most cases, measuring each observation
and assessing why it has been given a degree of unexpectedness can provide
more insights about the problem at hand than the predictive performance. The
demand for higher explainability levels arises as the incompleteness of the prob-
lem formalization increases [23]. In particular, cybersecurity and fault tolerance
are some domains that often require high levels of interpretability.

As this system was inspired by isolation forest [8] and random histogram for-
est [13], integrating the influence function, each observation will be described
with an isolation score, the Shannon information content, and the expected
value of the difference between the influence function and its average, for each
attribute.

In this regard, the output of our framework consists of a tuple specifying three
metrics. Firstly, as defined in Eq. 4, the isolation score measures the average of
the depth of each point from a collection of trees, E[h(x)] and the average path
length of an unsuccessful search in a binary search tree (BST). According to the
expectation that anomalies will be filtered at higher levels, this formula returns
a higher score for deviance values.

By defining a split based on the kurtosis statistic, when there is enough evi-
dence that the distribution has changed, the leaves will become nodes, and the
instances will not progress in the structure as the tree grows. The following scores
will account for the density and the average poisoning when an observation is
added to a leaf to survey the in-node distribution. Next, Eq. 5 calculates the
Shannon information content, level of surprise, by measuring the probability of
the cardinality of the leaf over the number of seen examples. Hence, anomalies
will record higher levels of Shannon’s information. Finally, the influence function
is added to the equation. As this estimator deems the effect of adding one point to
the distribution, this function returns the degree of contamination that a specific
instance implies to the leaf. Thus, this statistic is related to the anomalousness
degree of observation in a particular distribution. As this work is designed for
multivariate analysis, the influence score, shown in Eq. 6, is given by the vari-
ability, over all attributes, of the kurtosis influence function when an example
reaches a leaf (IF (x;K(.))).

c(n) = 2H(n − 1) − (2(n − 1)/n) isolation(x;n) = 2−E[h(x)])
c(n) (4)

PLeaf [x] =
|Leaf(x)|

N
surprise(x) = log

(
1

PLeaf [x]

)
(5)

influence(x) = E[(IF (x;K(.)) − E[IF (x;K(.))])2] (6)

Finally, the pseudo-code that illustrates the designed tree is represented in
Algorithm 1.
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Algorithm 1. kInfluence: Online and Incremental Influence Tree
Input : node: node of an influence tree;

Ex: Example of a Stream;
K(.): Splitting evaluation heuristic;
δ: significance of choosing the correct splitting attribute;
Nmin: minimum sample size to test splitting significance;
maxDepth: maximum depth a tree is allowed to grow.

Output: anomaly score metrics indexed by the row in stream
begin

if node is a leaf then
Update sufficient statistics (Subsection 3.1);
Let n ← sample size in leaf;
if n > Nmin and Ex is not empty then

if node is inactive then
Reframe parent node (Figure 1);

else
Let Xa be the attribute with the highest K(.);
p ← 1 − |K(A)−E[K(A)]|2

V ar[K(A)]
; (Equation 3)

if p < δ then
Let h ← depth of the tree and saturation ← #saturated_leaves

#leaves
;

if h ≥ maxDepth ∧ saturation > 0.5 then
Check for consistency and reframe tree (Figure 1);

else
Split Attribute ← Xa;
Split Value ← v ∼ U(minXa, maxXa));
Let node.left ← left child and node.right ← right child;

Let score ← {index : [isolation, shannon, influence]} (Subsection 3.3)
else

score ← kInfluence(node.left, Ex[node.X ≤ node.v]);
score ← kInfluence(node.right, Ex[node.X > node.v]);

return score;
end

4 Experimental Evaluation

Given the imbalanced nature of anomaly detection, the evaluation metric must
be independent of the majority class. The precision, recall, and F1-score will be
used in these experiments. While the recall is about completeness, concentrating
on the percentage of correctly identified anomalies, precision calculates the rate
of true positives over the detected anomalies, measuring the probability of correct
detection of positive values and penalizing false alarms. Therefore, Fβ is used
to monitor several measures simultaneously. In this case, β = 1 assumes that
precision and recall are equally important [2].



282 I. Martins et al.

Table 1. Experimental trial metrics

Dataset kInfluence
Name #points #dim. %outliers Precision Recall F1

Ecolia 336 7 2.6% 0.5 0.67 0.57
WBCa 278 30 5.6% 0.57 0.62 0.59
Ionospherea 351 33 2.6% 0.30 0.55 0.39
Key Holdb 1883 1 0.006% 0.63 0.83 0.71
Key Updownb 5316 1 0.0008% 0.45 0.63 0.53
NYCb 10320 1 0.0005% 0.75 0.6 0.67
a http://odds.cs.stonybrook.edu/[NAME]-dataset/
b https://github.com/numenta/NAB/tree/master/data/realKnownCause/

Hence, an experimental evaluation was conducted on open-source datasets
from different domains to attest to the performance of the proposed method.
These examples, also considered in similar works, are available at Outlier Detec-
tion DataSets (ODDS) [24] and Numenta Anomaly Benchmark [25], a novel
benchmark for evaluating online streaming anomaly detection applications.
Table 1 summarizes the evaluation results where each row refers to a single
dataset. The first four columns describe the data according to the number of
instances, dimensionality, and the proportion of anomalies present. Besides the
size difference in the first three datasets, these serve as multivariate analyses, and
the last three as timeseries analyses. For these trials, as the algorithm parame-
ters were kept constant, the procedures were conducted ten times to stabilize the
outcomes, featuring a forest of 100 trees, 30 instances, and 95% confidence as
the minimum number of points in the node and the probability to choose a split,
respectively, and a maximum depth of 6. These values should be analyzed as a
future direction, and each iteration will be plotted to understand this proposal’s
complexity and stabilizing times.

Although this proposal envisions an unsupervised learning method, an exper-
imental evaluation, which should provide insights into how this approach behaves
with distinct dimensions, sizes, or anomaly frequencies, compares the actual
position of the outliers and the score information returned by our solution in a
supervised manner. Given the online and incremental properties designed here,
the algorithm requires a stabilizing time to accurately score points, as the first
instances arriving will not be sufficient to make inferences. In this sense, to frame
a realist scenario and not to compromise the performance, the outliers were ran-
domly reorganized such that anomalies do not appear simultaneously or do not
unfold in the first moments. As a result, only the timeseries datasets did not suf-
fer any changes from the original form. Furthermore, as the similar approaches
that inspired this work are designed with different characteristics or testing sce-
narios, their results will not be compared in this work. For the timeseries, despite
working online and incrementally, our method missed one more anomaly than

http://odds.cs.stonybrook.edu/[NAME]-dataset/
https://github.com/numenta/NAB/tree/master/data/realKnownCause/
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RRCF [4] and added one more point as critical, rendering a higher false alarm
rate or lower recall.

In a more detailed evaluation, as the last three datasets qualify as timeseries
and facilitate the interpretation, they will be discussed closely, and the results
and decision criteria will be analyzed.

The Key Hold dataset represents the timing of the key holds for several
computer users, where the anomalies represent a change in the user. As critical
anomalies are the ones that stand out amongst other points, it is possible to
see different transitions reflecting an unexpected value for the key holds on that
day. Figure 2a, from left to right, highlights the anomalies in red; the plot in the
middle depicts the isolation, surprise, and influence score returned by our algo-
rithm; and, finally, the last graph on the right investigates which observations
classify with higher influence score as well as with higher surprise score. This
figure shows that anomalies significantly differ from the rest of the values. Based
on the definition of an anomaly, such points are more likely to appear on the
upper side of the current trend. Furthermore, on the last graph, it is possible
to see that the observations that score the highest ratings on the influence met-
ric are usually points on the transition between values on similar timestamps,
particularly after the first fortnight.

The Key Updown dataset describes keystrokes for several computer users,
where the anomalies embody a change in the user. As assumed, abnormalities
represent a significant transaction in their value. Figure 2b displays the anomalies
in red; the metrics returned by our algorithm where, opposite from what is
identified in the last trial, the influence score distinguishes points in the critical
area. In particular, the last plot places outliers with influence, isolation, and
surprise scores significantly more prominent than the surrounding observations.
Moreover, as expected by the kurtosis and influence function, it is evident that
orders that fall on the distribution’s tails have their score increased, which is
evident on the last graph where the tails of each timestamp are stressed as
critical.

The NYC dataset corresponds to the number of NYC taxi passengers with
five anomalies occurring during the NYC marathon, Thanksgiving, Christmas,
New Year’s day, and a snowstorm. The data file aggregates the total number of
taxi passengers into 30-minute buckets. Therefore, to simplify, an anomaly often
does not refer to a single observation but a time frame. Figure 2c illustrates the
first timestamp with anomalous behavior issues. For instance, the first anomaly
observed, the NYC marathon, has a lower value than the following numbers of
passengers. From the metrics returned, depicted in the middle graph, there are
not many anomalous points correctly predicted as critical. Since this dataset
has many observations to be inspected with the naked eye, it is essential to
examine the last plot to check which instances are flagged as dangerous. Thus, it
is possible to see that the points with the most significant influence, isolation, and
surprise scores have the highest number during the NYC marathon. Furthermore,
despite their lower influence score, the isolation score spots the snowstorm as an
outlier. The last anomaly correctly spotted was New Year’s day, with a density
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and isolation score different from the peripheral. Another observation at the
beginning of September registers similar scores as the New Year’s day, which are
identical by analyzing the recorded value. However, our approach was not able
to detect Thanksgiving and Christmas days.

Fig. 2. Exprimental plots
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5 Conclusion and Future Directions

This paper proposes an online, incremental, and unsupervised forest for stream-
ing anomaly detection that focuses on selecting the best attribute according to
the kurtosis score. Praising the interpretability of the output, the model defi-
nition of an anomaly captures both the complexity of isolating an outlier, the
surprise level when an instance reaches a node, and the contamination effect
imposed by a discrepant observation.

Given this proposal’s online and incremental nature, this approach is essential
in studying anomaly detection in streaming data. Despite implementing methods
to avoid inadequate splits or obsolete structures, the next step will be to study
the ability to adapt to dynamic changes, as well as further evaluate the effects of
the required parameters, from tuning the number of necessary instances in the
node to the number of trees or maximum height of the structure. Furthermore, a
future step will be to study the repeatability and comparison with the approaches
that inspired this work on a similar testing evaluation scenario.

Therefore, the next future direction should include parameter tuning and the
benefit of maintaining a window with the latest points to control the consistency
of the forest while evaluating the impact on the false alarm rate and recall to
maximize the performance, bearing in mind an extensive comparison with the
identical studies in the literature.
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Abstract. In this paper, we introduce a novel way to model and analyze
social media interactions by leveraging the proxemics theory. Proxemics
is the science that studies the effect of space and distance on interac-
tions and behaviors. It is generally applied to the physical space but we
hypothesize that adapting it to social media could provide a generic way
to model and analyze the various kinds of interactions taking place in this
virtual space. We designed a proxemic-based framework aiming to guide
the analysis of data from a social media corpus that can be contextualized
to a given application domain. We start by formally redefining proxemics
in the context of social media and we leverage this redefinition to design
a generic and extensible proxemic-based trajectory model dedicated to
social media. We also propose novel proxemic distances applicable to
this model. Finally, we experiment this proxemic framework on the field
of tourism. The application to this use case demonstrates our frame-
work’s flexibility and effectiveness to model and analyze social media
interactions.

Keywords: Social Media · Modeling · Proxemics · Social Web
Analysis · Natural Language Processing

1 Introduction

In the last decade, we have witnessed significant growth and diversification of
user-generated data sources. User-generated content (UGC) is a type of data
that comes from regular people who voluntarily contribute to the community
[10]. It can take many forms (e.g., text, pictures, videos) and originate from
a wide variety of sources. Those are often found on the Web and range from
traditional social media (generalists like Twitter or Facebook, or more special-
ized like FourSquare) to review sites (TripAdvisor, Google Reviews) as well as
discussion forums or blogs. User-generated content is a significant opportunity
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for researchers and companies, given that most of it, is free of charge and rel-
atively easy to obtain [10]. Therefore, there is no longer a systematic need to
buy commercial data or to conduct lengthy and costly data collection cam-
paigns. Moreover, user-generated data sources are very diverse and cover a large
number of application fields (such as tourism, politics, housing, etc.). Another
benefit (which can also lead to multiple challenges) is the fact that those sources
often contain massive amounts of data. This is the case when dealing with social
media, one of the most prominent UGC source. In 2019, Facebook had more than
2 billion users and about 89% of young people in OECD countries were engaged
in social networking online [19]. Social media have therefore become an essential
resource for analyzing people’s behavior around a wide variety of topics.

Due to the significant increase in online communications and the rise of user-
generated content driven by social media, many research works are leveraging
these new data sources to answer given requirements [20] using various meth-
ods and approaches. However, those are usually ad hoc, either intended for a
given range of application domains or fit only for specific analysis requirements
(e.g., designed to analyze particular behaviors, for example, visitor flows or hate
speech only). Recently, we have seen more general processing methods being
experimented [2] but they are usually low-level and complex to handle for non-
specialist users (e.g., raw Natural Language Processing modules).

In this article, we propose a high-level framework aiming to guide the analysis
of data from social media corpus for any application domain. It is driven by the
theory of proxemics. Proxemics is the science that studies the organization of
space and the effect of distances on interpersonal relationships [8]. It is based
on the concepts of proxemic zones and dimensions and is generally applied to
physical interactions [17]. We hypothesize that adapting proxemics to model
and analyze social media interactions could be an effective way to provide a
framework that is: (1) generic (e.g., applicable to any social media), (2) flexible
(e.g., adaptable to as much business requirements as possible), (3) domain-
independent (e.g., compatible with any application domain) and (4) easy to
manipulate (e.g., based on well known, tangible dimensions).

The article is organized as follows. Firstly, we introduce our motivations and
the reasons that led to the choice of proxemics as a basis for our framework.
Secondly, we review the various applications of the proxemics theory and justify
the choice of proxemics as the basis of our framework. Thirdly, our contributions
are presented: (1) a formal redefinition of proxemics in the context of social
media, (2) a generic model leveraging this redefinition and (3) 3 types of novel
proxemic distances to characterize and evaluate interactions within social media.
We finally experiment and evaluate our framework on social media Twitter with
use cases coming from local tourism offices.

2 Background and Motivations

This work is carried out in the framework of a cross-border, regional project: the
APs project (APs standing for “Augmented Proxemics services”). This project
aims to collect, process, analyze and then value social media data related to the
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practice of tourism, visitor flows and the use of cultural heritage in the Basque
Country area, a highly touristic territory spanning between France and Spain.

Currently, local tourism stakeholders (such as tourism offices or destination
marketing organization - DMO) mostly use commercial datasets to study the
practice of tourism in the region (such as the ones from telephone companies
or hotels) but they are looking to diversify their data sources, in particular, by
analyzing what is posted on social media. Several elements make social media
attractive to study local tourism, they are: (1) massive (large amounts of data are
available), (2) easy to access, (3) diverse (most aspects of tourism are covered,
such as activities, hotels, travel, etc.), (4) inexpensive and (5) mostly up-to-date
(perpetual feed of new data). To better illustrate the requirements of tourism
stakeholders, here is an example of a scenario in which they want to make use
of social media to help with decision making processes.

A beach-centered coastal city wants to diversify its touristic offer and is looking
to invest in new types of activities. It has a limited budget and therefore wants
to invest first in areas where the current tourists (who are coming primarily
to enjoy the beaches) might be particularly interested in. To determine these,
the tourism office uses social media to study tourists’ behaviors.

Although, as mentioned above, the main target of our project is tourism,
we aim to move away from ad hoc processes and propose a framework that is
generic and adaptable to any application domain. The APs framework life cycle
(shown in Fig. 1) is divided in 4 major steps and leverage the proxemics theory
to model and analyze social media data in order to answer various requirements,
such as those described in the scenario above. A common model (APs trajectory
model) is shared along all 4 steps, it is based on proxemics and will be described
in Sect. 4.2. This model is central to our framework.

Collection (1) covers the entire process of finding and retrieving data,
namely, it produces a corpus of social media posts from a specific dataset defini-
tion. In order to address this, we designed a generic and iterative methodology.
It has been the subject of a separate paper, see [13] for more details. Users and
posts collected in this step instantiate the raw layer of the model.

Transformation (2) refers to the various modifications and enrichments
applied on previously collected data in order to increase their added value and
prepare them for the next steps. Structured information extracted in this step
enriches the model and helps to better characterize the posts.

Proxemic Analysis (3) leverages the previously instantiated and enriched
model to compute proxemic metrics (called distances), those are raw indicators
which are calculated depending on the requirements. This article will be mainly
dedicated to this step, which is one of the originality of the APs framework.

Lastly, Valuation (4) allows the results of previous analysis (raw indicators
expressed as proxemic metrics) to be viewed for end-users (such as tourism stake-
holders). For tourism professionals, multidimensional maps could visualize trends
and associations of themes and places in social media. We also envisage using
the indicators produced as inputs for a tourism recommender system (activities,
places and itineraries) or a system to connect tourists sharing interests.
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Fig. 1. Life cycle of the APs framework.

3 Related Work

A vast array of informative studies in the field of social media analysis exists,
but these studies tend to be limited in two key areas. Firstly, numerous ones
are tailored to a particular domain or specific requirements [1,5], making the
methodology used challenging to apply to other use cases. Secondly, many of
the studies carried out on social media analysis focus on specific stages of the
analysis process and, therefore, do not propose a comprehensive approach. For
example, NLP modules calibrated for short and informal messages [9]. Although
some are generic, they do not provide a solution that covers the entire process,
from data collection to usage by end-users. Thus, there is a need for a more
holistic approach that encompasses the whole process of data analysis in social
media. To build such approach, we leverage the proxemics theory.

Proxemics has its roots in the seminal work of the American anthropolo-
gist Edward T. Hall (The hidden dimension, 1966 [8]). He defines proxemics as
“the science that studies the organization of space and the effect of distance on
interpersonal relations” [8]. Hall is particularly interested in the notion of dis-
tance and the way it affects and regulates relations between individuals. He then
goes further by proposing the notion of proxemic zones [8]. There are 4 core
proxemic zones: (1) the intimate zone (0 to 0.45m) which is mainly used for
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physical contact, (2) the personal zone (0.45 to 1.2m) for interactions with
very close people such as family or friends, (3) the social zone(1.2 to 3.6m) for
discussions with strangers, and finally (4) the public zone (more than 3.6m)
which is used when talking to a group. The perimeter of the zones given here is
indicative, it can vary depending on many cultural, social and physical factors.

In 2006, Greenberg et al. extended Hall’s definition of proxemics to introduce
the notion of proxemic dimensions [6] (also called DILMO dimensions). They
have identified 5 dimensions that can be used to express proxemics:

1. Distance: the measure of separation between several entities (individuals,
furnitures). The distance allows determining the proxemic zones. It can be
either continuous (e.g., a distance in meters between two persons) or discrete
(e.g., whether two persons are in the same room or not) [6].

2. Identity: the set of features describing the individuality and the role of an
entity in the space. For example the name of a person, her age, gender, etc.

3. Location: it describes qualitative aspects of the space [17]. The position of
static entities (like the layout of a room) and dynamic ones (individuals in
the room) in the space. It is usually expressed as x, y, z coordinates.

4. Movement: the change of location and orientation over time. It allows the
proxemic space to become dynamic and evolves.

5. Orientation: the direction in which an entity is facing. Similarly to the
distance, it can be continuous (e.g., pitch, yaw and roll) or discrete (e.g.,
facing toward something, looking away from something, etc.).

Proxemics can be studied at several levels: (1) the individual level (how
and why does an individual express specific traits and cognitive or affective states
through her proxemic behavior and (2) the group level (how does the behavior
of individuals has an effect on the group) [14]).

Table 1. Overview of research works using proxemics for practical applications

Ref. Space Metrics Level Use of proxemics

[3] (2013) Physical Physical Both Study teachers’ behaviors.

[23] (2012) Physical Physical Individual Picture annotation.

[18] (2014) Physical Physical Individual Socially-aware robot navigation.

[11] (2010) Cyber Physical Individual Detect people reaction in a VR world.

[21] (2021) Cyber Physical Group Group behavior in a virtual workshop.

[16] (2020) Physical Physical Both Social distancing on human behavior.

[15] (2021) Physical Physical Individual Safety when using a VR headset.

[7] (2021) Cyber Other Individual Cybercrimes analysis.

[12] (2019) Cyber Other Individual Middleware configuration.
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Table 1 shows a handful of representative research works in which proxemics
has been used. Most of these works use proxemics to analyze interactions in
the physical space with physical metrics. For example, to help with the
navigation of robots or drones [18] which is a case of individual-level proxemics.
Proxemics has also been used in the field of education, to study the behavior
of teachers and students in a classroom [3] both on an individual and collective
level. Other use cases include picture annotation [23] or the evaluation of the
impact of social distancing on people during the Covid-19 pandemic [16].

Other works have tried to apply proxemics to cyberspaces but still use
physical metrics, for example in video games or in virtual reality worlds [11].
Recently, we also observed the use of proxemics to analyze non-physical inter-
actions in cyberspace, this is called digital proxemics [7]. It is a novel research
subject with few practical applications, it has been notably used for the anal-
ysis of cyber crimes and the enforcement of cyber law [7], as well as, to do
reconfiguration in middleware [12]. We chose to use proxemics as the core of our
framework due to several reasons:

– Flexible: proxemics is versatile and adaptable to various requirements. Its
core concepts are broad and can be fitted to many use cases.

– Fit for social media: many aspects of proxemics can naturally be linked
with social media components. The concept of space can be seen in many
different ways (e.g., physical space, VR space, social media space).

– Domain-independent: it has no strong correlation to a specific domain, it
is a very domain-unaware theory (thematic genericity).

– Easy to manipulate: Proxemic dimensions (such as space, zones, move-
ment, etc.) are designed around the physical world. They are practical and
tangible, therefore easier to understand, even by non-specialist users.

We will now explain how we redefined proxemics to provide a generic and
flexible way to model and analyze interactions on social media.

4 A New Proxemic-Based Framework for Social Media

4.1 Formal Redefinition of Proxemics in the Context of Social
Media

We start by formally redefining the theory of proxemics through its dimensions
(DILMO), see Fig. 2. This is crucial because proxemics is primarily intended
to be applied to physical interactions, whether in the real space (e.g., a sensor
detecting people moving in a room, etc.) or in cyberspaces (e.g., the proximity
of characters in a video game or a virtual reality world, etc.). Whereas, in the
space of social media, interactions and zones are no longer physical. We define
a social media movement m of size n as a tuple m = (i, {p0, p1, . . . , pn})

i is the identity associated with the movement, defined as:

i = (sm, u ∨ (g, {c0, c1, . . . , ce}))
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An identity can characterize (1) a single entity (with u the associated entity),
for example, a particular social media user identified by their username. But also
(2) a group of entities (with g the associated entity group defined by a number
e of criteria c), such as users featuring common characteristics (e.g., users con-
sidered as influencers because they have reached a certain number of followers).
Group identities have to be defined according to the studied requirements for the
application domain (e.g., what group of users are interesting to analyze for this
domain) and the limitations of the social media used (e.g., which information
can be extracted). sm is the associated social media (e.g., Twitter, etc..).

Fig. 2. Proxemics applied to social media posts

{p0, p1, . . . , pn} is a list of n posts (belonging to the associated identity i) with:

pi = (t, {s0, s1, . . . , sj} , {th0, th1, . . . , thk} , o)
t is the temporal location (timestamp of when the post was issued)
{s0, s1, . . . , sj} is a set of j spatial locations s with: si = (name, lat, lon)

Spatial locations are instantiated from social media posts’ geotags or by extract-
ing named entities (toponyms) from their content. We define spatial locations
by their name along with their GPS coordinates (latitude and longitude).

{th0, th1, . . . , thj} is a set of k thematic locations th with:

thi = (id, name, {syn0, syn1, . . . , synn})

Thematic locations are domain-specific concepts extracted from the post content
according to a hierarchy of concepts (e.g., dictionary, thesaurus or ontology)
defining the domain of interest. Each thematic location th has a unique identifier
id, a name along with a list of synonyms {syn0, syn1, . . . , synn}.

Finally, o is the orientation defined by o = (p, s) with p the polarity of the
sentiment (negative, positive, neutral) expressed in the associated post and s the
strength with s ∈ [0, 100] (0 being weak, 100 strong).

Each movement m can be broken down into sub-movements called trajecto-
ries. The spatial trajectory (ts) is the sequence of spatial locations s identified
in a movement m. It provides a comprehensive overview of the places mentioned
(e.g., the places a person has visited). It is a sequence of tuples because each
post can be associated with any amount of spatial locations s.

ts = (i, {(s0, s1, . . . , sn), (s0, s1, . . . , sn), . . . , (s0, s1, . . . , sn)})



294 M. Masson et al.

The temporal trajectory (tt) is the sequence of temporal locations identified
in a movement m. It is a sequence of temporal locations temp (we assume that
a post can only be associated with a single timestamp):

tt = (i, {temp0, temp1, . . . , tempn})

The thematic trajectory (tth) is the sequence of thematic locations th iden-
tified in a movement m. This movement highlights the domain-specific concepts
associated with the identity (e.g., the activities practiced by a certain category
of tourists). It is a sequence of tuples (each post can have one or more thematic
locations th):

tth = (i, {(th0, th1, . . . , thn), (th0, th1, . . . , thn), . . . , (th0, th1, . . . , thn)})

This redefinition allows us to design the APs trajectory model, which leverage
this formal redefinition of proxemics to model movements and interactions on
social media in a generic and domain-independent manner.

4.2 The APs Trajectory Model

The APs trajectory model (used in steps 2 and 3 of Fig. 1) is designed in 5 parts,
following the core dimensions of proxemics (DILMO). The UML class diagram
of the model is shown in Fig. 3. This model is (1) multidimensional (designed
around the 5 dimensions of proxemic), (2) modular (use of all 5 dimensions is
not mandatory, one can combine any number of them) and (3) extensible.

The identity dimension allows modelling the studied population. Either a
specific user (IndividualIdentity) or a group of users (GroupIdentity) featuring
common characteristics or traits. The end-user has to define himself what groups
of individuals he wants to study and define group identities accordingly.

The movement dimension provides the ordered sequence of posts belonging
to a given identity. It gives a comprehensive view of an identity’s activities on
the chosen social media and allows linking posts together. It can, as mentioned
earlier, be broken down into several sub-movements (spatial, thematic, etc.).

The location dimension models the posts along with their associated Loca-
tions. A given post can be in several locations at the same time, our model is
therefore ubiquitous. Locations can be spatial, temporal or thematic. Thematic
locations are defined by the end-user according to the studied domain and can
be linked to external resources (such as a domain-specific ontology, thesaurus
or dictionary). These resources provide additional information (e.g., synonyms,
definition, etc.). Thematic locations can have relationships between them (e.g.,
in the domain “tourism”, “museum” is linked to “exhibition”). When it comes
to spatial locations, those are associated with a unique identifier linked to a geo-
graphic database. This allows for spatial locations to also feature relationships
(e.g., a city is within a region, itself within a country). Locations are extensible,
the end-user can define new types of locations if needed (e.g., a political location
could be defined to model the political edge of various identities).
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Fig. 3. The modular APs trajectory model using proxemics to model social media

The orientation dimension is also extensible. We have defined the Sentimental
Orientation which models the overall sentiment of the associated post, but we
could also use the Popularity Orientation which models the popularity of a given
post on social media (based on the number of replies and likes).

The model comes with a set of constraints defined using OCL (Object Con-
straint Language) but we will not detail them here. Instead, we will now focus
on the last proxemic dimension, the distance. This dimension differs from others
because in the APs model, distances serve as indicators, computed metrics to
extract knowledge and insights from the model.

4.3 Proxemic Distances for Social Media

We propose 3 proxemic distances applicable to our model (Fig. 3, Distance).
These distances are intended to be raw indicators that allow the end-user
to extract knowledge from the model to address specific analysis (step 3 of
Fig. effig:wheel). The methods f used to calculate these distances are virtual and
extensible, their implementations are context-dependent and differ depending
on the use cases defined by the end-user.

The inter-identity distance (Fig. 3, IdentityDistance) is applied between
2 identities ia and ib and is defined as di = fi(ia, ib). In the context of tourism,
this distance will measure the similarity between several tourists or groups
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of tourists (i) based on profiles (e.g., type of traveler, home city, etc.) or their
virtual touristic trajectories (e.g., places visited, activities performed, etc.).

The identity-location distance (Fig. 3, IdentityLocationDistance) is
applied between an identity i and a location l, it is defined as dil = fil(i, l).
In the context of tourism, this distance measures the affinity of tourists or
groups of tourists (i) to a given location (l). This location can be spatial (affin-
ity with cities, points of interest), thematic (affinity with tourist activities) or
temporal (affinity with a particular season, period of the week, etc.).

The inter-location distance (Fig. 3, LocationDistance) is applied between
2 locations (spatial, temporal or thematic ones) la and lb and is defined as
dl = fl(la, lb). In the context of tourism, this distance measures the level of
connection between two locations l. Various types of location can be combined
to obtain interesting analysis such as the level of connection between a city (spa-
tial location) and a range of touristic activities (thematic locations) or between a
tourist activity (thematic location) and a period of the year (temporal location).

These distances are interpreted according to proxemic zones. The zones
model the interpretations the user make of the distance values (e.g., the metric
used). In physical proxemics, there are only 4 zones but in our redefinition of
proxemics adapted to social media, there can be as many zones as necessary. For
example, if we want to measure the degree of similarity between several tourists
(using an inter-identity distance), we could have “very similar”, “relatively sim-
ilar” or “not similar” zones associated with a numeric range for distance values.

5 Experimentation

To experiment our APs framework, we chose the social media Twitter. We col-
lected a corpus of posts originating from the French Basque Coast, which is
broadly considered to be among the most touristic places in the region of interest
of our project. The dataset we use contains 3,154 multilingual (French, English
and Spanish) touristic tweets (for details on the collection, see [13]).

To instantiate our model, we rely on the Thesaurus on Tourism & Leisure of
the World Tourism Organization [22] to define thematic locations. This resource
covers roughly 1,300 touristic concepts, matched with tweets through entity link-
ing. We use named entity recognition paired with OpenStreetMap, as well as
geotags to capture spatial locations and the XLM-RoBERTa language model [4]
to instantiate the orientation with the sentiment. Table 2 shows analysis require-
ments coming from a local tourism office and the versatility of proxemics to
model them. By manipulating and crossing proxemic dimensions, we can easily
express various domain requirements in a unified manner.

We will now try to model a more complex scenario (the one from Sect. 2)
and evaluate it qualitatively. This scenario bends together 2 requirements from
Table 2 (row 1 and 2 ). We are looking to establish which categories of touristic
activities are mostly associated (close in terms of proxemic) with tourists going
to the beach. The purpose is to give the beach-oriented city an idea of what
types of beach-related touristic activities should be developed and invested in.
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Table 2. Example of tourism analyses and how to model them using our framework

We set up an inter-location distance between thematic locations. To
define those, we use relevant touristic concepts extracted from the WTO The-
saurus. The distance, normalized between 0 and 100, is defined as: dlocation =
dassociation + dsequence. dassociation represents the frequency two touristic con-
cepts are found together in the same tweet (e.g., a tourist tweets that he is
surfing at the beach). dsequence represents the frequency two touristic concepts
have been found continuously in tourists’ thematic movements (e.g., a tourist
tweets about being at the beach , then tweets again that he is surfing).

Figure 4 shows the result of our modeling and analysis. We calculated dis-
tances between the thematic location Beach and each other thematic location,
respectively (from the WTO Thesaurus). The size of each square displays the
amount of time the thematic location was found in our dataset’s posts and the
black lines show the distance between locations (thicker means shorter).

At first sight, we can see several obvious short distances, such as the Beach
location being very close to Ocean, Summer and Sun, but also to Gliding Activ-
ities (e.g., Surfing, etc.). It shows us that the distance we have implemented
models phenomena and behaviors that are real and plausible.

Furthermore, other interesting analyses start to appear, like the relatively
close distance of Beach with Casino. It seems that many beachgoers are also
interested in the casino. The same goes for Spectator Events where street ani-
mations and spectacles also seem to be of great interest to beach tourists. All of
these elements are valuable to help decision making processes of tourism stake-
holders. Other representations around the tourism domain have been created
regarding the use of soft mobilities, cross-border travel or business tourism in
the region but we will not present them here due to space limitations. These
representations provide domain experts, such as tourism offices, with deeper
understanding and improved insight into the given domain of interest.
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Fig. 4. Thematic map of the tourism space applied to tweets coming from a beach city

6 Conclusion

In this article, we introduced a novel proxemic framework dedicated to modeling
and analyzing data from social media. This framework was designed as part of a
local project aiming to analyze tourism practices in the Basque Country. To this
purpose, we proposed a redefinition of the dimensions of proxemics fit for social
media along with a multidimensional, modular and extensible proxemic-based
trajectory model. We then defined 3 new proxemic distances that can be used to
express the requirements of end-users. Our experiments with this framework in
the domain of tourism have shown its flexibility to answer common requirements
from tourism offices. We are now looking to experiment it on a larger social media
corpus for several use cases: (1) to build a tourism recommender system able to
suggest places, activities and itineraries fed by multiple proxemic distances, (2)
for a tourist connection system (connecting tourists with similar interests) and
(3) to use proxemics as a query language dedicated to social media corpus to
abstract low-level IE (Information Extraction) concepts. Another step to take
would be to experiment our framework on various domains (e.g., politics, health)
to ensure its genericity.
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Abstract. Gaining information about how users interact with systems is key to
behavioural biometrics. Particularly mouse movements of users have been proven
beneficial to authentication tasks for being inexpensive and non-intrusive. State-
of-the-art approaches consider this problem an instance of supervised classifica-
tion tasks. In this paper, we argue that the problem is actually closer to unsu-
pervised one-class classification tasks. We thus propose to view behavioural user
authentication as an unsupervised task and learn individual models using data
from a single user only. We further show that, by being purely unsupervised,
losses in performance can be counterbalanced by augmenting additional data
into the training processes (outlier exposure). Empirical results show that our
approach is very effective and outperforms the state-of-the-art in several perfor-
mance metrics.

Keywords: User Authentication · Mouse Dynamics · Anomaly Detection

1 Introduction

User authentication is most commonly based on user-determinant keys, such as pass-
words or pin codes. In contrast to these traditional systems, biometric authentication
[22,40] provides an additional layer of security. But these approaches come at the cost
of storing sensitive data like fingerprints and require dedicated pieces of hardware.

An inexpensive and readily-available alternative is offered by behavioural biomet-
rics [14]. In contrast to their biometric peers, these methods are non-intrusive and con-
tinuously analyze user behaviour for authentication during a session. Behavioural traits
of users have been analysed in handwriting [9], voice [41], or keyboard and mouse
dynamics [26]. Particularly the latter suggests itself for user authentication in computer-
based systems since keyboard and mouse are considered standard equipment. While
keystroke dynamics may contain sensitive personal information like passwords, mouse
movements offer an implicit and non-sensitive measurement of idiosyncratic behaviour
[17]. In fact, Rodden et al. [29] show that eye and mouse movement are significantly
correlated and conclude that mouse movement serves as an appropriate proxy to address
implicit user behaviour.

Mouse movement dynamics are typically handled in a fully-supervised multi-class
or multi-label setup, where class labels are identified with user IDs. While being purely
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supervised can add to predictive accuracy and detection performance, there are impor-
tant limitations with this formalization. Firstly, the above approaches are often biased
towards the data of other users present in training due to learning discriminating func-
tions. Secondly, maintaining a multi-class approach in practice is close to being infea-
sible as every new user requires a full re-training of all models.

By contrast, we consider user authentication in an unsupervised approach, which
learns a user’s representations by using only the data of this very user. Learning indi-
vidual models of normality for every user allows to create features which are indepen-
dent from other users. This allows the model to generalise better with respect to the
target user, especially in the presence of unknown users who have not been seen during
training.

In this paper, we propose a novel methodology for user authentication using mouse
dynamics and a deep one-class setup. Our contributions are as follows: (i) We phrase
user authentication as a deep one-class machine learning problem that can enhance user
authentication and (ii) show the effectiveness of using a multifaced input to extract
appropriate features from mouse data. Finally, (iii) we visualise the individual and rel-
evant parts of the user’s mouse trajectory to gain an understanding of our approach,
showing our model indeed focuses on characteristics previously known to be important
from hand-crafted features but unattended in unsupervised approaches so far.

2 Related Work

Many studies have shown that mouse dynamics can deliver insights into a user’s mood
[42], satisfaction and frustration [6] or mental state [13]. Consequentially, mouse move-
ment has received much attention in behavioural analyses [2,3,24,38].

The identification of users based on mouse strokes has been first investigated on
the example of mouse-written signatures [9]. Many algorithmic approaches in deal-
ing with mouse movement rely on hand-crafted features [11,14]. Such representations
are often extended by peers to increase expressiveness and/or incorporate additional
characteristics like the number of pauses or pause length [25]. Matthiesen et al. [25]
showed that using a fixed feature set for every user does not cover all of them equally.
Similar conclusions were made by [34]. Therefore, an individual feature set for every
single user is required. Neural approaches try to overcome the dependency on hand-
crafted features while mapping the input data to a feature space using correspond-
ing objectives. Using mouse dynamics to tell users apart can have two main objec-
tives: User identification and user authentication. Many of the previous work addresses
the topic of user identification, which is to detect the right user in a set of all users
[1,11,14,21,36]. The usual setup for this is a supervised multi-class classification. In
contrast, user authentication underlies a binary decision, e.g. is the target user/ is not the
target user [7,21,26,34,35,39]. Note that the common approach here is still supervised,
i.e. using data of both classes. Chong et al. [7] are the first to investigate the potential of
deep neural networks for mouse dynamics. They investigate multiple network architec-
tures while casting the problem as a supervised multi-label problem. Applying a similar
architecture, [1] propose a one-dimensional convolutional network (1D-CNN) for mod-
elling temporal aspects of mouse movement. They train the models in a supervised one
vs. rest manner using a binary-cross entropy loss.
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Fig. 1. Setups of AD, from only using the target class to incorporate an additional dataset.

Multi-class approaches imply retraining the whole model when adding/deleting
users and are not feasible in dynamic environments. Binary one-vs-all strategies, on the
other hand, are often biased towards the seen anomalies. Thus, we argue that an unsu-
pervised anomaly detection (AD) method is more suitable for mouse-dynamics-based
user authentication in real-world applications.

In the context of AD, unsupervised one-class approaches are appealing because
they find minimum volume summarization of data at hand through hyperplanes [33] or
hyperspheres [37]. Neural peers [20,30] introduce improvements by identifying anoma-
lies through their alterity in feature space. This is often done by including additional
data that are not part of the target concept, into the training process, for example by
semi-supervised learning [16], pre-training [19,28], reference data [27,28] or outlier
exposure (OE) [19]. We will make use of the latter in the remainder. An overview of
common setups incorporating additional data into AD and their typical optimisation
can be found in Fig. 1. For example, in contrast to a binary one-vs-rest strategy, the
OE-approach extract rich descriptive features from the mouse trajectories instead of
focussing on increasing the distance between the two entities (normal and anomalous
data). Note that the concept of OE in AD can be found widely in the literature under
various terms, such as reference dataset [27,28], auxiliary or OE dataset [19,31]. This
auxiliary dataset enables the anomaly detector to generalize better for unseen data.

3 Representing Mouse Trajectories

Formally, a mouse trajectory is given by a sequence of spatial (x, y) coordinates ordered
in time τ . In addition to the spatio-temporal information, mouse data contains events,
for example e ∈ {∅, cL, cR, cM , sup, sdown}, with left (cL), right (cR) or center (cM )
clicks, up {sup} and down {sdown} scrolls, or ∅ in case there is no event. We represent a
mouse trajectory as a sequence x = 〈(τ1, x1, y1, e1), . . . , (τT , xT , yT , eT )〉.

Mouse data records consist likewise of movements for interacting with the applica-
tion as well as idiosyncratic movements. In the following, we aim at devising a repre-
sentation that is as independent as possible from actual user interface (UI) and rather
aim at capturing how a user moves the pointer to a certain location instead of where
exactly an action has been performed. While such velocities are translation invariant,
they also render certain patterns almost undetectable (e.g. loops).
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Fig. 2. Views of mouse movement with different splitting criterions.

3.1 Image-Based Tensor Representations

We propose to represent different views of mouse trajectories (e.g., trajectory, speed,
click, pause) as an image, which allows to access shape of motion as well as charac-
teristic patterns like loop or hesitation [4,7], see Fig. 2 for examples. A convolutional
neural network (CNN) can detect edges very well and is therefore perfectly suited for
such shapes. For the trajectory view, sub-sequences of the trajectory are re-scaled, plot-
ted and saved as images. We adapt the size of the plot to the range of the respective
trajectory to assure no bias from the positioning on the screen. Later, those images will
be transformed into a multidimensional tensor to serve as an input for the network. To
maintain the temporal information, we encode the speed of the movement with a colour
interval, where the colour is determined by the actual speed of movement st at that
position. To encode the speed value, we test two different normalisation approaches.
We report on experiments with different normalisations in Sect. 6.1. Both ground on
the speed st = dt

τt
of the movement, where d is the Euclidean distance, but are nor-

malized (i) by the average speed: s
(avg)
t = st

1
T

∑T
t=1

dt
τt

and (ii) with a log-variant with

s̃t = log(1+st) s
(log)
t = s̃t−s̃max

s̃max−s̃min
, respectively, where s̃max = maxt log(1+st) and

s̃min analogously. A click view is simply containing indicators at click positions which
are visualized by black crosses in the figure. The pause view contains the length of the
pauses at the observed positions and is visualized by circles with radii corresponding to
the length of the pause. We scale every pause so that the radius of the smallest pauses
starts at a fixed radius. The different layers are aggregated to a multi-dimensional tensor,
using one channel each, and serve as input to the model. We experiment with several
combinations of input information and report the results in Table 1 (left).

3.2 Splitting Sessions

The overall sequences of our data cover a whole session of a user. Therefore we divide
the total session into sub-sequences. The length of those sequences in the images is
another aspect of representing mouse trajectory data. Since it is not obvious how to split
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a long user session into smaller meaningful pieces, we study three different splitting
criteria in the empirical evaluation in Sect. 6.1 and describe them in the following.

Time Difference Split (TD). TD [7] splits a sequence when the time difference between
two consecutive mouse operations (movement or click) exceeds a predefined threshold
ρ ∈ {1s, 60s}. Since this may result in very short sub-trajectories, we only split if the
resulting sub-sequences contain at least 100 data points.

Equal Length Split (EL). EL [25] splits the data into sub-sequences of the same length,
ω ∈ {200, 1000}, irrespective of occurring events or movements. The last sequence is
naturally shorter and usually discarded. In contrast to the TD method, the resulting
sequences have the same length. Note that the identical number of data points does not
result in the same amount of coloured pixels in the generated image.

Equal Time Split (ET). There exist two main ways of recording trajectories: (i) record
the position in equal time stamps, so that a static position will results in duplicates
coordinates or (ii) recording on movements, meaning the distances between consec-
utive points will not be the same. Since the latter is the case in the Balabit data, we
introduce an additional method: The Equal Time Split (ET). It is a temporal analogy
to the previous splitting criterion and splits the trajectory after a fixed amount of time.
We experiment with the thresholds υ ∈ {10s, 120s}. Since the used mouse data is
not recorded using equal time stamps but rather recorded on movements, this split-
ting method will not result in equally sized sub-sequences. Although this extension is
straightforward, there does not seem to exist related work on this method.

4 Deep Anomaly Detection and Outlier Exposure

The main goal in an AD task is to obtain a feature map φ which separates the nor-
mal data from the outliers either linearly [33] or spherically [37]. Following the latter
approach, a neural variant of the so-called Support Vector Data Description (SVDD),
maps the data into a feature space F and finds the minimal enclosing sphere with cen-
ter c and radius R > 0 that contains the majority of points. We derive two important
characteristics for features for our one-class setup similar to [28].

(i) Compactness. Following the above-described cluster assumption [32], we want a
similar feature representation extracted from the same class lie compactly in an
enclosing hypersphere within feature space. Similar to the SVDD, the objective is
to minimise the R of the hypersphere will result in reducing its volume and a more
compact representation. However, if no further constraints are included this will
directly result in the hypersphere collapse [8], when all data is mapped to the same
point.

(ii) Descriptiveness. A feature map that gives rise to compact representations may not
be rich enough to distinguish other users. We thus aim to devise a rich feature rep-
resentation that is general enough to not only summarize individual user data well
but, at the same time, allows us to identify other users because of their unique traits
in moving the mouse. Thus, we need descriptiveness but cannot give up on com-
pactness either (cf. [27]). Producing descriptive features is likewise a desired char-
acteristic in multi-class classification, where those features would ensure a large
inter-class distance.
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Fig. 3. Depiction of the network (a) structure and of (b) the process for training and testing.

4.1 Outlier Exposure

The idea of OE originates in the observation that when learning a target concept, myr-
iads of labelled examples exist that live in the same space but are known to not match
the target concept [19]. While this insight borders on triviality, it is particularly pow-
erful in unsupervised learning tasks like one-class and density estimation problems.
Instead of only feeding observations of the desired target concept, additional data from
possibly very different origins and sources is made available to the learner that now
faces contrastive tasks: Ultimately, the goal is to provide a minimal description of the
desired target concept but additionally, there is a classification problem that needs to be
solved simultaneously using only the auxiliary data. The goal of the learning process
is to identify a set of features that not only accounts for minimal description of the tar-
get concept but also induces high predictive accuracies on the auxiliary data. Note that
OE-based approaches are generally classifies as unsupervised methods across literature
[19,27,28,31] since the standard approach uses only data of one data (normal data)
from the target dataset during training.

5 Authentication of Users

For the underlying architecture for our model, we consider the AlexNet CNN archi-
tecture [23]. We modify the network and separate it into the two parts φ und ψ for



306 J. J. Matthiesen et al.

feature extraction and classification layers respectively. The network architecture is
depicted in Fig. 3a. The feature extraction component of the network φ : X → R

p

acts on both sources, the target classes Du and the OE data DOE , to render learning
compact as well as descriptive representations feasible. While the auxiliary data then
branches into a standard feed-forward classification component ψ : Rp → R

|Y| with
a final softmax layer for descriptiveness, the compactness of the user data is evaluated
by a variance-based criterion. The task in the optimization is now to find an appropri-
ate feature extraction φ, such that the classification error and variance of user data is
small, while simultaneously ensuring a compact representation of the features for Du.
This is achieved by deploying dedicated loss functions for controlling compactness and
descriptiveness, respectively, and minimizing the two losses simultaneously (cf. [28]).
The loss-controlling compactness measures the squared intra-batch distance

EC =
1
N

N∑

n=1

(φ(xn; θ) − x̄¬n)2, (1)

with mean x̄¬n = 1
N−1

∑
j �=n(φ(xj ; θ)) of the leave-one-out set Du \ {xn}. The

descriptiveness loss is given by the cross entropy over all involved classes Y , given by

ED = − 1
M

M∑

m=1

∑

ȳ∈Y
δȳ,yN+m

log (ψ(xN+m; θ)) , (2)

where δ is the Kronecker delta. The joint objective function for the entire architecture
is given by aggregating Eqs. (1) and (2). We minimize EC(Du) + λED(DOE), where
λ > 0 is a balancing term. In addition to user data Du, we introduce an auxiliary and
labelled M -sample DOE = {(xN+1, yN+1), . . . , (xN+M , yN+M )} with xN+m ∈ X
and yN+m ∈ Y for 1 ≤ m ≤ M and Y denotes the set of (arbitrary) class labels of the
auxiliary data. Recall that both user observations x(u)

n and auxiliary data xN+m live in
the same space X for all n,m. Here, we propose a neural architecture that combines
learning a compact representation of target data Du and a descriptive feature space on
target and auxiliary data.

6 Empirical Results

We evaluate on the Balabit Mouse Dynamics Challenge [12] for sampling Du and
incorporate instances of the Wolf of SUTD (TWOS) [18] data as DOE . Balabit con-
tains mouse movements from 10 users from 65 sessions between 13640 and 83091
data points each, recorded during a set of unspecified but common administrative tasks.
Since the screen resolution is not given, we normalize the trajectories based on the max-
imum coordinates. The TWOS data is the outcome of a gamified competition among
competing companies over five days. It consists of 320 h of activity of 24 users and com-
prises a mouse, keyboard and other actions and logs, where we only use legal mouse
movements in our experiments.

Setup. The two parts of the network φ and ψ are trained jointly with samples from
both Du and DOE . For each user u, we train an individual model using only data
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Table 1. Results of the experiments on different views (left) and splitting criteria (right). * Results
are averaged over 9 users, since some images of user 07 resulted in numerical issues for those
representations (see further details in Sect. 8).

avg. AUC avg. EER

trajectory 0.670 0.420

savg 0.656 0.268

savg, pause 0.698* 0.697*

slog, pause 0.710* 0.179*

savg, pause, click 0.755 0.272

slog, pause, click 0.777 0.240

Avg. No. Img. avg. AUC avg. EER

TD1 1074 0.517 0.017

TD60 77 0.576 0.476

ET10 2861 0.516 0.867

ET120 344 0.606 0.600

EL200 950 0.723 0.409

EL1000 188 0.777 0.240

from that user Dutrain (Balabit) plus a sample from the 24 users as additional OE data
DOE (TWOS). More formally, let the size of a batch be n. Then, for every ith sample
xDu

i ∈ R
k, where 1 ≤ i ≤ n, we calculate the distance between the networks output

and the rest of the batch. For every ith sample (xDOE
i , yi) ∈ R

k, where 1 ≤ i ≤ n,
we calculate a loss for each class label yi and sum the result. Hyperparameters are
found via grid search and given by λ = 1.0, 300 epochs and a learning rate of η =
0.0001 on balanced batches containing 100 user and OE samples. We observe that a
rather low learning rate results in better performance since it prevents overfitting on
the OE data while still assuring convergence on the compactness loss. At test time,
we use independent data of the target user Dutest and the nine remaining users from
Balabit, similar to [15,20,28,30]. Note that the model has never seen the other users
from Balabit during training. In this way, we ensure that the model can even distinguish
from unseen users. This allows scalability and does not require retraining of the model,
even if more new users are added.

6.1 Results

We first execute preliminary experiments, learning the optimal input and splitting strat-
egy as described in Sect. 3.2. Using the resulting best-performing representation of
mouse trajectories, we train the presented model in two different setups: (i) To show
the influence of the utilisation of the OE data, we first train the model without the usage
of the additional data. (ii) We build upon that and show the improvement in performance
reached through the usage of OE data. We report average Areas under the ROC curve
(AUCs) and equal error rates (EERs) over five repetitions.

Results for Optimal Representation. Table 1 (left) shows the results for different
views (layers of input tensors), presented in Sect. 3. The results lay out that including
likewise the pause and click view in the tensor leads to higher detection rates and the
log-average performs slightly better than the global average. Table 1 (right) shows the
results for different splitting criteria, also presented in Sect. 3. Firstly, the table nicely
shows that the heuristics lead to considerably different numbers of training instances,
however, recall that fewer instances contain longer parts of the respective user sessions.
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Table 2. Detection performance per class. Results are retrieved over 5 random seeds.

EER (↓) AUC (↑)

[30]
(features [25])

[30]
(images)

ours
Du

ours
Du ∪ DOE

[30]
(features [25])

[30]
(images)

ours
Du

ours
Du ∪ DOE

user 07 0.302 0.399 0.414 0.181 0.879 0.542 0.714 0.857

user 09 0.207 0.608 0.451 0.237 0.911 0.474 0.661 0.80

user 12 0.629 0.263 0.325 0.090 0.250 0.607 0.594 0.838

user 15 0.532 0.437 0.152 0.219 0.426 0.550 0.555 0.714

user 16 0.552 0.492 0.418 0.418 0.424 0.515 0.682 0.720

user 20 0.402 0.463 0.716 0.290 0.788 0.496 0.490 0.728

user 21 0.476 0.332 0.281 0.138 0.548 0.554 0.625 0.825

user 23 0.619 0.403 0.216 0.305 0.267 0.577 0.662 0.730

user 29 0.619 0.500 0.533 0.320 0.346 0.472 0.7 0.813

user 35 0.609 0.420 0.265 0.200 0.283 0.554 0.662 0.747

Mean 0.495 0.432 0.378 0.240 0.512 0.534 0.634 0.777

While most splitting methods are just slightly better than random guessing, the EL split
performs notably better. With ω = 1000, decreases the EER by almost half.

Results for User Authentication. We now use the best-performing representation to
compare to related work. As a baseline, we use the performance of the deepSVDD
proposed in [30] as well as the user authentication approach using features proposed
for Balabit from [25]. To show the influence of OE data, we also compare our app-
roach to a variant that does not leverage OE data. To prevent hypersphere collapse, we
incorporated an additional regularizer into Eq. (1) similar to [37]. To additionally show
the benefit of our representation over state-of-the-art handcrafted features, we train a
deepSVDD on features taken from [25] and another one on our tensor representation.

The results are shown in Table 2. Interestingly, the baseline on features and tensors
leaves a mixed picture in terms of AUC (right part of the table). For users 07, 09, and 20,
hand-crafted features outperform the tensor-based deepSVDD as well as the proposed
approach. For the other users, the image-based representation is favourable, often by a
large margin as seen for users 12, 23, or 35 which is also reflected by a slightly better
average AUC over all users. However, even without including OE data, our proposed
approach performs either on par or improves over the stronger baselines. This result
impressively improved by including OE. Our proposed approach already constitutes an
improvement in AUC by a factor of 1.2 over the baselines when no OE data is included
in the training. Note that in this case, a regularizer has to be added to Eq. 1 to avoid a
collapse of the hypersphere. The results for including OE are even better and raise the
improvement in AUC by a factor of 1.5.

7 Visualisation of Important Information of the Mouse Dynamics

Since the performance using all three views and the splitting method EL1000 result in
the best authentication performance, we can now investigate which parts of the input
lead to creating compact and descriptive features for each user. To achieve this, we
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Fig. 4. Two examples per user of trajectories images and their LRP visualisation using the split-
ting criterion EL1000. We refer to the left example as (a) and the right as example (b).

utilise the layer-wise relevance propagation (LRP) [5]. It can help identify the parts of
the input while highlighting input features that were decisive for the network’s decision.
The relevance R of every neuron is computed as follows: R

(l)
i =

∑
j

aiwij∑
i′ ai′wi′j

R
(l+1)
j ,

where R
(l)
i and R

(l+1)
i represent the relevance score of the neurons i and j in the layers

l and l + 1 respectively. The activation of neuron i is represented as ai and the weight
connecting neuron i and j as wij . The LRP heatmap is then obtained by applying this
principle to all layers. In addition, we implement the z+-rule and a relevance filter as
suggested in [10]: We adapt the threshold value for the filter to k = 0.05.

The results are shown in Fig. 4. Note that the trajectory is reconstructed for better
legibility. The images used as input carry one channel per view, where different shadings
are hard to detect for the human eye. The trajectory of user 07 (a) shows clearly the
advantage of incorporating pauses into the input image. It can be seen that the pauses
got a much higher relevance score than the clicks (black cross). Locally overlapping
occurrences of pauses and clicks are likewise relevant. In contrast, the clicks are much
more relevant to user 20 as can be seen in example a). When no clicks are made, the
pauses are getting more relevant. In [7] only the plotted trajectory was used as input for
the CNN. It was shown that the edges are the relevant element for the decision process
of the network. Added pauses and clicks carry even more relevant information for user
authentication and should not be left out in image-based deep learning approaches.

8 Discussion and Limitation

In this study, we cast user authentication base on mouse dynamics as a one-class prob-
lem. Multiple views of the trajectories are used as input to a CNN for extracting features
using the objective of compactness and descriptiveness. Related work using deep neural
networks for mouse trajectory data view the problem as a purely supervised task and
often rely on pieces of information that is not always present, such as screen resolu-
tion [1,7]. We remove this implicit dependency on the screen to avoid identifying users
based on their personal preferences or hardware but still report state-of-the-art results.

In our setup, we reached the best performance by equally weighted both losses,
setting λ = 1.0. We did not detect a large difference in performance though. With the
EL1000 split the trajectories of users 07, 09 and 20 cover much shorter (pixel-wise)
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distances than the remaining users. Interestingly, these are exactly the users for which
the hand-crafted features were performing well. However, our results are in line with
[25] and show that even shorter sequences for the remaining users did not enhance the
performance. Mouse trajectories are not translation invariant. While some movements,
like patterns of confidence (e.g. straight and direct movements), can still be detected in
mirrored or rotated images, other mouse movement motifs can not be orientation invari-
ant and lose their idiosyncratic characteristic. Therefore, we did not include additional
data augmentation to generate more data (e.g. through mirroring or rotation).

In contrast to our setup, a binary one-vs-rest strategy as used in [1] assumes that the
“rest” classes (e.g. anomaly samples) are representative for all other occurring anoma-
lies. Often the same classes are used in training as well as testing, resulting in a high
accuracy, but introducing a selection bias. Using an auxiliary dataset from the same
field as the target dataset has been shown beneficial to increase authentication perfor-
mance in mouse trajectories. Since the auxiliary dataset is just used for training but not
for testing, the model even performs well when testing against trajectories of unseen
users. In comparison to previous methods [25], the CNN-based model overcomes the
dependency on hand-crafted features while learning to extract an individual feature set
for every user.

For the presented approach, we compare different setups and views. To ensure a fair
comparison we left the structure of the underlying model untouched. However, when
taking the [savg, pause] view or the [slog, pause] view, some images form user 07 caused
numerical instabilities. There is no obvious visual difference in data between user 07
and other similar users. We excluded the models with these setups for further analysis
and emphasize to utilise other combinations of trajectory representations when using
this particular model.

9 Conclusion and Future Work

In this paper, we proposed an unsupervised learning approach for user authentication
using only the data of one user for training. We showed that incorporating additional
data can enhance the model’s performance so that a distinction even to unknown users,
which were never seen during training, becomes possible. This enables a deeper under-
standing of mouse cursor movements by visualising important key parts of the mouse
trajectory for single users. Future research efforts should be directed to improve the
discovery of mouse cursor motifs for individual users and their interplay with pauses.
We thank the web-netz GmbH for funding this research and all former reviewers for the
valuable feedback.
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Abstract. Despite the increased attention to explainable AI, explain-
ability methods for understanding reinforcement learning (RL) agents
have not been extensively studied. Failing to understand the agent’s
behavior may cause reduced productivity in human-agent collaborations,
or mistrust in automated RL systems. RL agents are trained to opti-
mize a long term cumulative reward, and in this work we formulate a
novel problem on how to generate explanations on when an agent could
have taken another action to optimize an alternative reward. More con-
cretely, we aim at answering the question: What does an RL agent need
to do differently to achieve an alternative target outcome? We introduce
the concept of a counterfactual policy, as a policy trained to explain in
which states a black box agent could have taken an alternative action to
achieve another desired outcome. The usefulness of counterfactual poli-
cies is demonstrated in two experiments with different use-cases, and the
results suggest that our solution can provide interpretable explanations.

Keywords: Explainable AI (XAI) · Reinforcement Learning ·
Counterfactual Explanations

1 Introduction

Reinforcement learning (RL) is an area of machine learning in which learning
is based on rewarding desired behaviors and penalizing undesired ones. Unlike
classical machine learning, RL is an active learning method in which an RL agent
learns through trial and error, with the goal of taking actions in an environment
maximizing a cumulative future reward [11]. An agent’s decisions are defined by
a policy, which dictates the actions to be taken in a given state. For example,
in a healthcare setting, an agent acting on behalf of a medical practitioner can
decide what treatment (action) to recommend to an observed patient situation
(state), given the treatment policy it has learned by observing other state-action
pairs. RL has successfully been applied in several areas, such as games [10],
recommendation systems [1], and in healthcare decision support systems [8].
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Despite the recent advancements in the field of RL, the decision-making pro-
cesses of RL agents are challenging for humans to understand. The policies of RL
agents can be more or less interpretable depending on the problem complexity
and the policy function used; The increased complexity of the problems for which
RL is applied, and the use of neural networks as approximate policy functions,
have led to the less interpretable policies. In these cases, the policies can be seen
as black boxes for which only the input and the output are known, but little
is known about the inner workings of the model. The field of explainability for
RL has emerged to provide methods for explaining RL agents with the goal of
improving transparency and establishing trust in these systems [4]. However, few
studies have investigated or studied the use of counterfactual explanations for RL
[9]. Counterfactual explanations are a specific form of explanations that provide
answers to what-if questions of the form: what-if the world would have looked
different, how would that impact the outcome? [12]. The area of explainable
machine learning has adopted and successfully applied counterfactual explana-
tions, especially in classical machine learning tasks, such as classification and
regression [6]. At the same time, in the field of RL, earlier work has focused on
generating counterfactual state explanations, i.e., how a state needs to be mini-
mally changed (e.g., an image in an Atari game) so that the agent (i.e., a player)
takes another action [9], resulting in a set of counterfactual states. Hence, the
focus in [9] is mainly on how changes to a state affect the actions of the agent,
rather than explaining how the chosen policy affects the long-term goal of the
agent.

In this paper, we focus on the following question: What does an RL agent need
to do differently to achieve an alternative target outcome?, which, to the best of
our knowledge, has not been explored and tackled in the current RL literature.
More concretely, we introduce the concept of counterfactual policy as a policy
that can explain in which states the agent could have taken a different action to
get to another desired outcome. Given an agent that follows a black box policy,
hereafter referred to as a black box agent, the goal is to create a counterfactual
policy that learns when an intervention needs to be done on the black box agent’s
actions, and learn what action should be taken instead. Importantly, the goal
is not to find a more optimal policy but rather a policy that is optimized for
explaining in which key states, i.e. the most important states, the black box
agent could do something differently to reach a different outcome. We do not
limit our method to only one state, but instead look at the full trajectory of
the black box agent. Explanations can be given in our method in two ways: (1)
online, through direct feedback on the black box agent’s actions, and (2) offline,
through statistics on disagreement states, which we define as the states for which
the counterfactual policy needed to intervene on the black box policy’s actions.

Motivational Real-World Example. To give an example on when counter-
factual policies could be useful in practice we consider the case of a black box
RL agent providing treatment recommendations to patients in a health care
decision-support setting. The black box agent can be optimized for some dif-
ferent rewards, both long and short term rewards: e.g., few side effects of the
medication and cure of the patient. We now focus on the question: How would
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Fig. 1. Using a counterfactual policy online in a decision support system. In
this example a healthcare provider uses a black box agent to make recommendations on
treatments to patients. A counterfactual policy could, in this case, be used to explain
in which key cases the black box policy could select less expensive treatments, while
still curing the patient.

the agent need to act differently to recommend less expensive treatments with the
same beneficial effects on the patient’s health? In this case, our goal is to create a
counterfactual policy that can explain for which key cases (i.e., key states) other
medications (e.g., actions) could result in cheaper but still curing treatments for
the patients. Acknowledge here that the goal of the counterfactual policy is to
explain the black box policy, rather than being a better performing policy on the
black box agent’s main task (i.e., having few side effects and curing the patient).
We search for a counterfactual policy that disagrees with the black box policy
as few times as possible to only disturb the decision support system in a few
key cases, while still leading to cheaper treatments. Furthermore, there is value
of providing this information both when the decision-support system is in use
online (as illustrated in Fig. 1), and as an evaluation summary of one or more
agents before deciding to launch one of them online at the health-care provider.

Contributions. Our contributions are threefold: (1) We introduce and formalize
the problem of generating counterfactual explanations describing the alternative
actions an RL agent could have taken to reach another outcome, (2) we provide
an algorithmic solution to the problem based on counterfactual policies, and
(3) we instantiate the problem with two use-cases from the following applica-
tion areas: medical treatment recommendation and cliff walking; we additionally
demonstrate the utility of our formulation and solution by presenting the gen-
erated explanations for these use-cases.1

1 Our code is available at https://github.com/dsv-data-science/rl-counterfactual-poli
cy-explanations.git.

https://github.com/dsv-data-science/rl-counterfactual-policy-explanations.git
https://github.com/dsv-data-science/rl-counterfactual-policy-explanations.git
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2 Related Work

The importance of understanding RL agents has been highlighted in several
papers and some different approaches have been explored [4]. The concept of
critical states was introduced by Huang et al. [5] as a way to increase trust
in RL agents. The critical states are states in which an agent greatly prefers
a few actions, and performance would be greatly affected if the agent were to
take a random action. The idea is that the action the agent takes in critical
states can help the users to get a better mental model of the policy and work
as an explanation on the agent’s behavior. Instead of focusing on critical states,
a recent work has shown the benefit of using disagreement states as a summary
when comparing two agents [2]. Amitai et al. [2] showed that using states in which
two policies disagree provide summaries that are easier to understand for users
compared to summaries based on critical states. The use of disagreement states,
and contrastive explanations are similar to our work. However, our work does not
focus on generating summaries to compare two agents, but rather explanations
on how a black box agent can reach another outcome.

The idea of counterfactual explanations for RL agents has been explored in
earlier works [3,9]. Olson et al. [9] aimed at providing explanations in the form
of what needs to change in a state for the RL agent to take another action.
They used a deep generative model to generate new counterfactual states in
which the agent takes another action, and tested the method on Atari games.
Instead of creating synthesized states from deep generative models, Frost el al.
[3] used states that can be reached by valid actions, to make sure the states were
reachable, and provided the full trajectory from those states as explanations.
Different from our study, none of these studies aimed at explaining what the
agent itself needs to do differently to achieve a target goal.

3 Explaining RL Agents Through Counterfactual Policies

3.1 Reinforcement Learning Preliminaries

RL is different from other machine learning techniques in that an agent is try-
ing to learn the optimal way of interacting with an environment by trial and
error, rather than learning from labels (supervised learning), or patterns in
the data (unsupervised learning). The RL problem to be solved and its envi-
ronment are often described as a Markov Decision Process (MDP), defined by
{S,A,Pa,s, Ra, γ}, where S is the state space, A is the action space, Pa,s is the
transition probability matrix to a new state given the previous state s and an
action a, Ra is the reward in the current state given action a, and γ ∈ [0, 1] is
the discount factor which weighs the importance of future rewards. In this work,
we focus on episodic reinforcement learning for which the agent interacts with
the environment in episodes with a given start and end state for each episode.
For each step in the episode, the agent chooses an action based on the cur-
rent state, the environment provides the next state, based on Pa,s, alongside a
reward based on Ra. The actions of the agent are provided by a policy π(a|s)
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that decides which action a to take at a given state s. The general goal in RL is
to find a policy that optimizes the cumulative reward given the environment of
the MDP. A Q-value function for a policy π, Qπ(s, a), represents the expected
discounted cumulative reward if the agent performs action a at state s, and then
follows policy π. Q-learning is an RL algorithm that iteratively updates a Q-
table with the Q-values to improve the behavior of the agent after exploring and
exploiting the possible actions in the state space [11].

3.2 Problem Formulation

Consider a fixed black box policy πbb trained to solve an episodic problem in a
known environment described by a MDP, with MDPbb = {Sbb,Abb,Pbb, Rbb, γbb}.
Our goal is to generate a counterfactual policy πc based on a MDP that is related
to MDPbb, which we denote as MDPc = {Sc,Ac,Pc, Rc, γc}. The goal of the
counterfactual policy is to explain in which states s ∈ Sbb the black box policy
πbb takes a non-optimal action a ∈ Abb. The action can either be non-optimal
in regards to the reward function Rbb of the black box policy, or with respect
to another reward function, denoted as Routcome, designed for an alternative
outcome. The explanation is done through counterfactual disagreement states,
defined as the states for which the black box policy πbb and the counterfactual
policy πc choose different actions, i.e., πc(ac|s) �= πbb(abb|s).

Since it is important that the counterfactual policy πc is not just another
better policy, but rather a policy that can explain the black box policy πbb, we
also introduce the concept of degree of disagreement, defined as the number of
disagreement states between two policies. Hence, we search for a counterfactual
policy πc for which the degree of disagreement between πc and the black box
policy πbb is minimized, while still reaching the target goal. This is similar to the
sparsity metric commonly used for counterfactual explanations in other machine
learning areas [6].

Problem 1. (Explanations through Counterfactual Policies) Given an
environment described by a MDP, an agent Abb following a black box policy
πbb, and an alternative reward function Routcome, our goal is to find a coun-
terfactual policy πc with a minimum degree of disagreement with πbb so that
Routcome is maximized.

In other words, our objective is to generate sparse explanations on when Abb

should take a different action than what is suggested by πbb, in order to receive
a higher alternative reward based on Routcome.

3.3 Counterfactual Policy Generation

Defining the Environment for the Counterfactual Policy. To train the
counterfactual policy we first define the MDP of the policy, MDPc, which relates
to the MDP of the black box, MDPbb:
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Algorithm 1. Learning the Counterfactual Policy with Q-Learning
Require: πbb, step size α ∈ (0, 1], small ε > 0

Initialize Q((s, abb), a) for all (s, abb) ∈ Sc, a ∈ Ac arbitrarily
Q((goal state, .).) ← 0
for all episodes do

s ← start state
for all steps in episode do

abb ← πbb(a|s)
Chose action a using an ε-greedy policy derived from Q((s, abb), a)
Take action a, observe R, next state s′ and next black box action a′

bb

Q((s, abb), a) ← Q((s, abb), a) + α[R + γmaxaQ((s′, a′
bb), a) − Q((s, abb), a)]

s ← s′

– Sc: a state space which consists of the combination of all states Sbb and actions
Abb that the black box policy can take. The size of the state space is, hence,
|Sbb × Abb|.

– Ac: equal to Abb; the both policies use the same discrete action space.
– Pc: equal to Pbb; the same state transition probability as for the black box

agent.
– Rc: a reward function that entails two parts, one that controls the main goal

of the task and one that controls the number of disagreements. We present
more details on how it is defined in the next section.

– γ: the discount factor which weighs the importance of future rewards.

Defining the Counterfactual Reward Function. One of the most important
parts in generating the counterfactual policy is the design of the reward func-
tion Rc, as it needs to represent the target goal of the explanation. To aid this,
we define Rc to be a sum of two reward functions, i.e., Routcome and Rdisagree

(Eq. 1). Routcome needs to be designed to help the agent succeed with the alter-
native outcome, while Rdisagree needs to penalize the counterfactual policy when
disagreeing with the black box policy.

Rc = Routcome + Rdisagree (1)

For example, if we want to understand how a certain black box policy could take
safer actions, we need to define a reward function for the counterfactual policy
that penalizes unsafe actions (Routcome). Additionally, we prefer sparse explana-
tions, and thus we seek a counterfactual policy that disagrees with the black box
policy as few times as possible. This is achieved by defining a reward function
that additionally penalizes the counterfactual policy each time it disagrees with
the black box policy (Rdisagree). Our objective, hence, boils down to maximizing
the reward function expressed by Eq. 1.

Learning and Using the Counterfactual Policy. When the problem is for-
mulated into the MDP we optimize the policy using Q-learning as described in
Algorithm 1. The trained counterfactual policy can thereafter be used to give
online explanations to the black box model by providing online feedback on
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Algorithm 2. Algorithmic Overview of our Method
Require: πbb, πc,P, online

s ← start state
disagreement_states ← []
while s �= goal_state do

abb ← πbb(a|s)
ac ← πc(a|s, abb) � CF policy evaluate action from BB policy
if abb = ac then

achosen ← abb

else if online = True then � Online with human-in-the-loop
achosen ← abb or ac based on human decision

else if online = False then � Offline to generate statistics
disagreement_states append ((s, abb, ac))
achosen ← abb or ac randomly � To search both paths

s ← st+1 based on P[st+1|achosen, s]
return disagreement_states

when it disagrees with the black box policy, or to provide offline explanations in
the form of statistics of the disagreement states. An overview of our method is
presented in Algorithm 2. The offline statistics are gathered by running an eval-
uation over a set of episodes. Since we want to make sure to explore a diverse set
of trajectories to understand both where the disagreement states lie, and how
the black box policy behaves after an intervention, we randomly choose between
following the black box or counterfactual policy when there is disagreement.

4 Experiments

We provide two instantiations of our problem and demonstrate the proposed
solution. The two use-cases we explore are taken from healthcare decision support
and grid world cliff walking, respectively.

4.1 Synthetic Medication

We introduce a synthetic use-case for which we have full control over the envi-
ronment and have predefined the optimal actions in each state. The use-case is
inspired by decision support systems in healthcare. More specifically, we assume
we have a patient and a doctor (either a human or a decision support system)
that decides the medication for the patient. The goal is to cure the patient as
quickly and with as few medications as possible. The doctor can choose between
two different medications, i.e., a green or a red pill. The patients are cured when
they first are provided a red pill, followed by a green pill.

Instantiation of πbb. The problem and environment from the black box policy’s
πbb view can be formulated as a MDP in the following way:

– Sbb: a discrete state space of three possible states {ill, under medication,
cured} describing the patient’s state.
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– Abb: a discrete action space {green pill, red pill, wait} describing the actions
the doctor/policy can take in the different states.

– Pbb: the transition probability matrix. This problem is deterministic and is
described by moving to the next state only if the right pill in the sequence
is taken, otherwise the patient goes back to the state of being ill (and starts
over on medication).

– Rbb: the reward function in this problem is set to minimize the amount of
medication given to the patient, and thus the agent gets ‘−1’ for each step
taken, plus one extra ‘−1’ if the wrong action is taken (i.e., wrong medication).

– γ: the discount factor is set to 1 for simplicity.

We test three different fixed black box policies πbb(a|s): (1) always providing a
green pill πg

bb, (2) randomly choosing an action πr
bb, and (3) training the policy

using Q-learning and solving the problem optimally πo
bb. To better understand

how these three policies can cure patients quicker and with fewer pills we apply
our method to generate explanations through counterfactual policies.

Instantiation of πc. The problem for the counterfactual policy’s πc view can be
described by a MDP that is related to the MDP of the black box policy. Recall
from our formulation that the action space, A, and the transition probabilities,
P, are the same for both MDPs. The rest of the MDP is instantiated as follows:

– Sc: a discrete state space describing the patient’s state, i.e., {ill, under medi-
cation, cured}, combined with the black box policy’s action space, i.e., {green
pill, red pill, wait}.

– Rc: Routcome is set to the reward for the black box Rbb, and Rdisagree is set
to −1 for each time the counterfactual policy disagrees with the black box
policy.

– γ: the discount factor, which we set to 1 in this experiment.

Learning the Counterfactual Policy. We train three counterfactual policies
(πg

c , πr
c , πo

c ), one for each black box policy, using 1000 randomly sampled episodes
using Q-learning (ε = 0.5, α = 0.1) as described in Algorithm 1. The disagree-
ment states were thereafter evaluated offline during another 1000 episodes as
described in Algorithm 2.

Explanations. In Table 1 we present the disagreement rates for the three differ-
ent black box policies. As expected, overall the counterfactual policy πg

c disagreed
with πg

bb half of the times (when πg
bb should have chosen the red pill), πr

c had
overall disagreements with πr

bb two thirds of the time (πr
bb randomly took the

right action a third of the time), while the optimal policy, πo
bb did not have any

disagreements with its corresponding counterfactual policy πo
c . The overall dis-

agreement rate provides some understanding of the models, but to really get an
explanation on where the policies should have taken a different action we also
present the disagreement states (Table 1). This result shows that πg

c disagreed
with πg

bb 100% of the times in the Ill state where πg
bb needs to take a red pill to

move to the Under medication state, while πr
c disagreed with the random policy

πr
bb equally often in both states.
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Table 1. Disagreement rate between the black box policies (πbb) and corresponding
counterfactual policies

Disagreement state Always green πg
bb Random πr

bb Optimal πo
bb

Overall 0.5 0.67 0.0
Ill 1.0 0.67 0.0
Under medication 0.0 0.67 0.0

Fig. 2. Grid world cliff walking maps. The goal for the RL agent is to walk from the
start state (S) to the goal state (G), without falling into one of the cliffs (X).

4.2 Grid World Cliff Walking

In the synthetic medication example we showed that our method works as
expected on a trivial problem with few actions and states. To increase the com-
plexity we include the cliff walking grid world example presented in [11]. It is
an episodic problem where an agent’s goal is to walk in a grid from the start
state (S) to the goal state (G). If the agent falls into one of the cliffs (X) that are
present on the grid, it needs to start from S again. There are different approaches
on how to train an agent to perform this walk. One way is to find the shortest
path, i.e., it can be trained to take as few steps as possible, while another way is
to find a safe path, i.e., it can prefer to take a route that is as far from the cliffs
as possible. This is an interesting example for this paper, since we can use it to
evaluate cases when the counterfactual policy has another outcome goal com-
pared to the black box policy (Routcome �= Rbb). We will run our experiments
over three different grids, presented in Fig. 2. The idea is to get counterfactual
explanations on what a black box agent trained to walk the short path needs to
do differently to become safer. This will be achieved by providing disagreement
states generated by a counterfactual policy trained to explain how the black
box model can act so that it takes a safer path, but with as few disagreements
between the policies as possible.

Instantiation of πbb. The problem and environment for the black box agent
can be formulated as follows:

– Sbb: a discrete state space describing the agent’s position on the grid.
– Abb: a discrete action space {up, down, left, right} describing the actions the

agent can take in the different states.
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– Pbb: the state transition probability, which includes constraints, such that the
agent cannot move outside of the grid and if it falls into the cliff it transitions
back to the start state S.

– Rbb: The agent receives a reward of ‘−1’ for each step it takes, and in addition
‘−100’ if it falls into a cliff.

– γ: the discount factor is set to 1 in this experiment.

Instantiation of πc. The problem for the counterfactual policy can be formu-
lated as follows (remember that Ac = Abb and Pc = Pbb):

– Sc: a discrete state space describing the black box agent’s position on the grid
combined with the 4 actions the black box agent can take.

– Rc: The instantiation of reward functions is described in detail below.
– γ: the discount factor is set to 1 in this experiment.

Instantiation of Rc. The goal of the first part of the reward function, Routcome,
is to reward safe actions while still taking as few steps as possible. The change
we introduce compared to Rbb is to add a penalty that is based on the distance
of the agent to the nearest cliff point (cp) on every move (Eq. 2). This way, we
incentive moving towards the goal while remaining as far as possible from any
cliffs. The second part of the reward function, Rdisagree, is set to −1 for each
time the counterfactual policy disagrees with the black box policy.

Routcome = Rbb − 1
argmincp D(s, cp)

(2)

Learning the Counterfactual Policy. We run counterfactual policy learning
for the grid maps depicted in Fig. 2. For each grid, we learn a black box pol-
icy using Q-learning for 5000 episodes (ε = 0.1, α = 0.1), followed by learning
a counterfactual policy using Q-learning for 1000 episodes (ε = 0.5, α = 0.1)
(Algorithm 1).

Explanations. The counterfactual trajectories are presented in Fig. 3, where
we visualize the path of the black box policy and that suggested by the coun-
terfactual policy in disagreement states. These were collected by sampling 500
episodes, where in disagreement states we choose to either follow the black box
or the counterfactual policy at random. Across all three maps, the counterfactual
policy suggests changes that make the agent steer clear of cliffs. Yet, there are
other patterns uncovered from the disagreement states, such as the one in Fig. 3e,
where the black box policy can get locked in loop forever, and the counterfactual
policy suggests actions to help it achieve its goal.

4.3 Lessons Learned

In this paper, we made a first attempt to explain RL agents by generating coun-
terfactual policies. A counterfactual policy can provide informative knowledge
of a black box policy by learning when to intervene on the black box policy’s
chosen actions to achieve a target goal. Nonetheless, the field of explainable RL
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Fig. 3. Grid world (GW) maps: arrows represent disagreement states between a black
box policy, πbb, and a counterfactual policy, πc, trained to explain where πbb can be
safer.

is still largely unexplored [4] and this work can be used as a starting point for
further investigation into the area of explaining RL agents. The idea of using a
counterfactual policy to explain a black box policy is novel and provides several
benefits over earlier RL explainability methods. First, it provides explanations
through the full trajectory of an episodic problem. This differs from the work
by Olson et al. [9] since they simplified the problem into a classification task by
only considering one state at the time. Our work considers the full trajectory
and the outcome of the black box agent. Second, we focus on the agent rather
than the environment which makes it easier to understand what the agent is
doing wrong rather than how the environment impacts the agent.

One of the challenging parts of our method is to design the right reward func-
tion. It is non-trivial to balance between the number of disagreements and the
main optimization goal. In some cases it might be extremely important to reach
the optimal target reward with the number of disagreements being less impor-
tant. However, in other cases, the number of disagreements might be of higher
importance, and thus it needs to be tuned based on the problem at hand. This
is equivalent to how counterfactual explainability methods are tuned for other
machine learning tasks, such as classification and regression, where an explana-
tion that changes few features (sparsity) is preferable, however, optimizing too
heavily for sparsity might lead to less robust and faithful explanations [7]. The
other challenge lies in the cardinality of the state space of our counterfactual pol-
icy, |Sbb × Abb|. For moderately sized state or action spaces, it can significantly
affect the computational efficiency of learning a counterfactual policy.
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In this work we have limited our experiments to tabular episodic RL problems
with finite state and action spaces. A natural extension would be to explore con-
tinuous state spaces and explain more complex and deep RL agents. Expressing
disagreement states and counterfactual trajectories is more challenging in that
setting, and one alternative is to discretize continuous problems.

5 Conclusions

In this paper we formulated the problem of generating counterfactual policies
for reinforcement learning (RL) and provided an algorithmic solution for solving
the problem. We instantiated our formulation and solution using two use-cases
and demonstrated how our solution can explain black box RL agents through
counterfactual policies. Since the ultimate goal of any explainable RL method
is to be useful for humans to understand RL agents, an interesting next step
would be to evaluate the usefulness of our method in a user study. This would
help understand our method’s advantages but also its limitations which can
provide ideas on how it can be improved.

Acknowledgements. Special thanks to docent Jussi Karlgren working at Spotify,
who provided us with valuable early feedback on the project and thorough feedback
on the final paper.
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1 Introduction

Detecting group behaviors based on users’ spatio-temporal trajectories has
numerous social and urban applications [1,4,10]. For example, detecting groups
of pupils playing in a schoolyard facilitates psychologists in understanding pupils’
social behavior [10]. Most previous studies in group detection tasks relied on
heavy feature engineering [13,16]. These approaches extract selected features
from raw trajectory data based on domain knowledge specific to an application
area. This restricts generalization to other similar problems. This approach may
also ignore informative underlying spatio-temporal patterns that are present in
the raw data.

Recently, graph neural networks (GNNs) showed strong potential for rela-
tional reasoning [2]. GNNs could be used in group detection by modeling agents
(or members of a community) as nodes and their relationships as edges. For
example, Thompson et al. [14] proposed a graph convolutional network (GCN)
to detect conversational groups among static agents involved in the same con-
versation.

In contrast with static groups, moving groups might dynamically change their
distance from other groups in the same environment. This adds extra challenges
to the group detection task. Kipf et al. [7] proposed a GNN-based method,
Neural Relational Inference (NRI), which applied a GNN to infer the interactions
between moving particles given their spatio-temporal sequences in a physical
system. In this work, the interactions in a physical system are assumed constant
among certain pairs of particles over the given time window. In a realistic social
group setting, however, individuals often change their interaction partners. This
renders the group detection problem a more challenging task compared to the
interaction detection tasks considered by Kipf et al. [7]. For example, while the
atoms in a molecule constantly interact with particular atoms over time, children
playing in a playground might switch their playmates.

The strong performance of the NRI model in recovering the ground-truth
interaction graphs makes it a suitable candidate to be further investigated in
group detection tasks. The current study extends the original NRI method in
two directions to extend its use from interaction detection to the more complex
and realistic social group detection task: (1) We propose a GNN architecture
for capturing both short and long dependence in the group detection task where
the interactions between agents may change over time. For this purpose, the
1D convolutional layer in NRI is replaced with a gated dilated residual causal
convolutional (GD-RCC) block, as proposed by Wavenet [11]. (2) The original
NRI builds and updates edge features by simply concatenating the node features,
which does not satisfy the symmetric property of group relationships. We propose
using symmetric temporal edge features and symmetric edge updating to tackle
this problem.

Overall, this paper makes the following contributions:

– We propose a framework for group detection building upon the NRI inter-
action detection method. Our framework can capture short and long depen-
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dencies in the spatio-temporal data and can satisfy the symmetric property
of group behavior.

– We extend NRI by applying the Louvain community detection algorithm to
transform the predicted interactions into predicted groups.

– We evaluate our group detection framework using three group-interaction
simulation datasets and three pedestrian datasets and further compare our
method against four state-of-the-art methods.

– We investigate the effectiveness of our two proposed changes, namely, the
GD-RCC block and symmetric temporal edge feature with symmetric edge
updating processes, on the original NRI in an ablation study.

The rest of the paper is organized as follows. In Sect. 2, we formulate the group
detection problem. Section 3 discusses the related works. We present our pro-
posed methodology in Sect. 4. In Sect. 5, the experiments are discussed. Finally,
Sect. 6 presents conclusions and future research directions.

2 Problem Formulation

Assume given the spatio-temporal trajectories of N agents in a time window
with a duration of T time steps, where the spatio-temporal measurements (e.g.,
position, speed, acceleration, etc.) of each agent i ∈ 1, ..., N at a time step
t ∈ 1, ..., T is denoted by Xt

i and the spatio-temporal sequences of all agents are
denoted by Xt

1:N . The goal is to detect groups C = {cj |j = 1, ...,K} of agents,
where K ≤ N is the number of groups, assuming that the group relationships
are constant in a time window, while agents could interact with other agents
from a different group. We aim to learn the probability of pairwise interactions
Î between agents within the time window given X1:T

1:N , i.e., P (Î|X), such that
the predicted pairwise interactions reflect the group memberships of agents in
community detection algorithms.

Our proposed method to solve this problem employs a GNN encoder to pre-
dict pairwise interactions Î. The Louvain community detection algorithm [3]
transforms the predicted pairwise interactions Î into predicted groups Ĉ. We
train the GNN encoder in a supervised way using the ground-truth pairwise
group relationships G where G(i,j) = 1 denotes that agent i and agent j are
in the same group and otherwise G(i,j) = 0. In the training phase, the goal is
to minimize the difference between G and Î by minimizing the weighted cross-
entropy loss function.

3 Related Work

This section discusses the related work in group detection algorithms and further
explores studies that proposed GNN models for spatio-temporal data.

Group Detection: Many previous studies in group detection tasks are based on
classic machine learning methods with hand-crafted features [13,16]. Yamaguchi
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et al. [16] proposed an SVM-based framework applying normalized histograms of
distances, velocity, and direction features to classify the binary group detection.
Using supervised clustering, Solera et al. [13] proposed a structural SVM [15]
framework to find groups of pedestrians based on hand-crafted features, e.g.,
distance, motion causality, trajectory shape, and paths convergence. Despite
acceptable results, generating hand-crafted features needs domain knowledge.
Besides, these features usually depend on particular data types and applications,
e.g., the features created for detecting pedestrians walking on streets may not
apply to other complex social settings (e.g., children playing).

To address this problem, many recent studies proposed deep learning-based
methods. In GD-GAN [5], an LSTM-based generator predicts future trajectories.
In this work, groups are detected by clustering the hidden states of this LSTM-
based generator. Contrary to GD-GAN, which predicts future trajectories, our
work predicts the pairwise interactions using a GNN encoder. This is beneficial
because it can be directly trained with the ground-truth group relationships
without special optimization algorithms, such as the Block-coordinate Frank-
Wolfe (BCFW) algorithm, in a computationally efficient way [9].

GNN for Spatio-Temporal Data: Most GNN-based works for spatio-
temporal data, such as TrafficGraphNet [8], focus on improving the performance
of forecasting tasks. This approach learns the node representations by aggregat-
ing the nodes’ neighborhoods and does not directly model the pairwise inter-
actions or group relationships needed for group detection tasks. Methods such
as NRI [7] that focus on predicting the edges between nodes can denote the
interaction or relation types between nodes. For instance, the encoder part of
NRI [7] applies a GNN-encoder to predict the interaction types between particles
in a physical system. In our study, we extended the encoder part of NRI, which
predicts the interactions between agents for a group detection task.

4 Methodology

In this section, we first present the interaction model implemented using a GNN
encoder. Next, the two main proposed features of this model, (i) symmetric edge
features and (ii) GD-RCC, are each discussed separately. We employ a GNN
encoder, based on NRI [7], and a GD-RDCC block, based on Wavenet [11], to
create our proposed model “WavenetNRI”.

4.1 GNN Encoder: Interactions Modelling

The core part of the proposed method is a GNN encoder proposed in NRI [7],
which predicts the distribution of the interaction and non-interaction edges. In
NRI, the initial edge features and edge updating are implemented by concate-
nating the features of the end nodes as follows:

et(i,j) = [Xt
i ,X

t
j ](t ∈ 1, ..., T ), h1

j = fv(
∑

i�=j

h1
(i,j)), h2

(i,j) = fe([h1
i , h

1
j ]) (1)
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where the spatio-temporal sequence of agent i at period of time t ∈ 1, ..., T is
denoted by Xt

i. The initial edge feature of the agents i and j at time step t is
denoted by et(i,j). [·, ·] denotes concatenation. h1

j and fe denotes node representa-
tion of the agent j and edge updating function, respectively. The edge and node
updating functions fe and fv are multilayer perceptrons (MLPs). NRI further
applies a 1D convolutional layer with attentive pooling to transform the edge
sequence et(i,j) into the vector representations of edges h1

(i,j) =
∑

t atst, where
a and s are attention score and edge representation, respectively (details are
shown in Fig. 1).

There are several limitations in the GNN encoder of the original NRI method:
(1) Building and updating edge features, and representations by simply concate-
nating the node features (shown in Eq. 1) cannot explicitly model the spatial
differences of agents. Furthermore, the results of this concatenation are not sym-
metric, which may not satisfy the symmetric nature of group relationships. (2)
Using only one convolutional layer may not capture the long-term interactions of
the sequences of edge features. To tackle these limitations, we made the following
changes to the original NRI:

– We included the spatial differences between agents and temporal increments
in the initial temporal edge features et(i,j) and updated the edge features
by element-wise product of the end nodes’ representations. Consequently, the
final edge vector representations h2

(i,j) are symmetric and capture both spatial
differences between the agents and their movements (explained in Sect. 4.2).

– We replaced the single 1D convolutional layer in NRI with a GD-RCC block
based on Wavenet model [11] to learn the temporary edge features and capture
both short and long-term interactions of the edge feature sequences (explained
in Sect. 4.3).

4.2 Symmetric Edge Features and Updating

In our proposed method, the edge features are constructed by concatenating
the spatial differences of the node measurements and the temporal increments,
which is formulated as follows:

et(i,j) = [‖Xt
i − Xt

j‖,ΔXt
i � ΔXt

j ], t ∈ 1, ..., T − 1, ΔXt
i = Xt+1

i − Xt
i (2)

where the Euclidean distance between agent i and agent j is denoted by
‖Xt

i − Xt
j‖ and is used to model the spatial difference between agents and their

movements (temporal increments). The element-wise production of the incre-
ments of the two agents is denoted by ΔXt

i � ΔXt
j . We achieve two benefits

with this formulation: (i) the temporal edge et(i,j) captures both the spatial dif-
ference between agent i and agent j as well as the temporal increments of the
agents; (ii) the edge features are symmetric, i.e., et(i,j) = et(j,i), corresponding to
the symmetric properties of the pairwise group relationships.

The edge sequences et(i,j) are passed to a GD-RCC block to get the vector
representations of edges, denoted by h1

(i,j). For a node j, the vector representation
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h1
(i,j) of incoming edges are aggregated and fed to a node updating function fv

to get a higher level node representation h1
j of the node j, which is the same as

the node updating process in NRI as shown in Eq. 1.
These node representations are combined by element-wise production and

fed to another neural network fe to get final edge representations h2
(i,j), which

represents the logits of categorical distributions of edges, shown in Eq. 3. Through
this process, the final edge representation h2

(i,j) captures not only the interaction
between node i and node j but also the interactions of node i and node j with
other nodes [7].

h1
j = fv(

∑

i�=j

h1
(i,j)), h2

(i,j) = fe([h1
(i,j), h

1
i � h1

j ]) (3)

After supervised training, a community detection algorithm is applied to the
interaction graphs to find clusters denoting groups.

4.3 GD-RCC Block

A GD-RCC block [11] is used to transform the edge sequences et(i,j) into the vec-
tor representation h1

(i,j). The causal convolution preserves the order of the edge
sequences by using features from past time steps. With dilated convolutional
kernels, the receptive fields are expanded exponentially by staking convolutional
layers [11]. The skip connection, a 1D CNN, solves the gradient vanishing prob-
lem when increasing the number of layers [6]. The gating activation function,
as formulated in Eq. 4, regulates the information flow and performs significantly
better than rectified linear activation (ReLU) [11]:

el+1 = tanh(W 1
l ∗ el) � σ(W 2

l ∗ el) (4)

where l is the layer index. W 1
l and W 2

l are two different learnable 1D-convolution
parameters of the layer l; el denotes the hidden states of edge features of the layer
l. ∗ denotes the convolutional operation. σ and � denote the Sigmoid function
and element-wise multiplication, respectively.

A 1D convolutional layer with attentive pooling over all time steps is applied
afterward to get the vector representations of the edges h1

(i,j). This process is
visualized in Fig. 1.

During the supervised training phase, the ground-truth pairwise group rela-
tionships G(i,j) are used as labels; i.e., G(i,j) = 1 denotes agent i and agent j are
in the same group while G(i,j) = 0 denotes otherwise. Due to the imbalanced
distribution of the labels, the weighted cross-entropy H(Î , G), as described in
Eq. 5, is used as a loss function in which the rare labels are assigned higher
weights:

H(Î , G) = −
∑

(i,j)

[wGG(i,j)log(I(i,j),2) + wNG(1 − G(i,j))log(I(i,j),1)], (5)
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Fig. 1. 1D GD-RCC CNN block (green dashed line block) with Attentive Pooling (red
dashed line block) calculated over the sequence of edges et. The edge feature sequences
e1:T will be fed into a 1D GD-RCC CNN block with skip connections to get hidden
states o1:T . Here each mi denotes a node in the first hidden layer. W 1

l and W 2
l denote

two different learnable convolutional parameters of the layer l (the blue arrows). Ws

denotes the 1D CNN skip connection (the green arrow). The hidden states o1:T will be
fed into two 1D CNNs fpred (predicts the edge representation st (the red arrows)) and
fscore (predicts the attention score at (the yellow arrows)). The vector representations
of edges is h1

(i,j). (Color figure online)

where wG = nG+nNG

2nG
and wNG = nG+nNG

2nNG
denote the weight of the group label

and the weight of the non-group label, respectively. While nG and nNG are the
number of group labels and non-group labels in the training dataset, respectively.
By minimizing the weighted cross-entropy, the encoder is optimized to identify
the “interaction” versus “no interaction” relation between agents.

5 Experiments

We studied the performance of our method on two types of datasets, i.e., real-
world and simulated datasets. Before presenting the results, we first discuss these
dataset types, the evaluation metrics, baseline measures, and the experimental
setup.

5.1 Dataset

We trained and validated our model on three simulation datasets and three
real-world pedestrian datasets. In pedestrian datasets, people walk in different
group settings without interacting with other group members. In contrast, in the
simulation datasets, cross-group interactions between particles are possible. The
real-world datasets have been widely used by other researchers. Due to the lack
of interaction between different groups in the pedestrian datasets, the devel-
oped methods can be tailored only to improve performance on these datasets
and often are not applicable in real-world scenarios. Therefore, we chose to use
simulation data, in addition to the pedestrian datasets, to increase the diver-
sity of the datasets by considering the probability of cross-group interactions.
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This probability is mostly close to zero in pedestrian datasets. This enabled us
to simulate more accurately real-world communities, such as schoolyards, where
pupils from a particular group might have temporary interactions with peers
from different groups over time.

Pedestrian Datasets: We selected three public pedestrian datasets, namely
zara01, BIWI ETH and BIWI Hotel [12]. We used the sequences of annotated
locations of the pedestrians, i.e., the trajectories, as input features to detect
pedestrians walking in groups. The duration of measurement, the number of
pedestrians, and the number of groups are listed in Table 1 per dataset.

Table 1. The specification of pedestrian datasets

Dataset name Duration(s) Number of pedestrians Number of groups

zara01 360.4 148 45

BIWI ETH 713.4 360 65

BIWI Hotel 722.4 389 41

Group-Interaction Simulation Datasets: To simulate group interactions,
we extended the spring simulator introduced by Kipf et al. [7], which simulates
the movement of particles randomly connected by a spring in a 2D box. We
extended this simulation by defining groups of particles such that particles within
a group have a higher probability of having interaction. In our proposed group-
interaction simulation, the probability that particle vi and particle vj interact
with each other given their group relation G(i,j) is formulated as follows:

P (I(i,j) = 1|G(i,j)) = 1 − exp(−a(G(i,j) + b)), (a > 0, b > 0) (6)

where interaction and group relationship between particles vi and vj is denoted
by I(i,j) and G(i,j), respectively. G(i,j) = 1 if vi and vj are in the same group
otherwise G(i,j) = 0. The values of a and b control group interaction and non-
group interaction probabilities. Specifically, the value of a controls the overall
magnitude of the probabilities, and the value of b impacts the non-group inter-
action probability. The specification of the three simulation datasets is described
in Table 2. Each dataset has 2500 simulations, which include the locations and
velocities of the particles over time. The duration of each simulation is 20 s,
corresponding to 50 time steps.

5.2 Evaluation Metrics

We applied Group Mitre ΔGM (C, Ĉ) [13] to measure the quality of the predicted
groups, where C and Ĉ are disjoint sets denoting the true groups and predicted
groups, respectively. The exact procedure for calculating the Group Mitre (pre-
cision and recall) is presented in the work of Solera et al. [13], and we omitted
the details due to the limit in space.
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Table 2. The specification of the group-interaction simulation datasets.

Dataset Number of
particles

a b Probability of
group interaction

Probability of non-group
interaction

Simulation I 5 3 0.02 95.3% 5.8%

Simulation II 10 3 0.02 95.3% 5.8%

Simulation III 10 3 0.05 95.7% 13.9%

5.3 Baselines

We compared the results of our method with the following four baselines:

– ATTR [16] is a classification-based method that adopts a linear SVM to
classify the binary group relationships based on hand-crafted histograms of
distance, direction, and velocity. The regularisation parameter is set to 10.

– S-SVM [13] is a clustering-based method that uses a structured SVM to
predict the pairwise similarities of the agents and further applies a correla-
tion clustering component to predict the clusters. S-SVM is trained with the
BCFW [9] algorithm. The regularisation parameter is set to 10.

– GD-GAN [5] is a clustering-based method that adopts an LSTM-based GAN
to predict the future trajectory of agents. The DBSCAN algorithm is applied
to the hidden states of the LSTM to find the groups. The dimensions of
hidden states are set to 256.

– NRI [7] is a classification-based method extended by applying the Louvain
community detection algorithm to transform the predicted pairwise interac-
tions to the clusters denoting groups. The kernel size of the 1D convolutional
layer is set to 5. The node updating and edge updating processes are MLPs
with a hidden dimension of 256.

5.4 Experiment Settings

In our experiments, we set the kernel size of the GD-RCC block to five in Eq. 4.
The hidden dimension size of the node and edge functions in Eq. 3 were set to
256. The stochastic gradient descent with a momentum equal to 0.9 was applied
for optimization. The code to generate the group-interaction simulation datasets
and to implement WavenetNRI is available in the Github repository1.

5.5 Results

In this section, the results of our experiments are discussed. In each dataset, 60%
of the samples were randomly chosen for training; 20% were randomly chosen as
validation, and the remaining 20% were testing set. The results of both group-
interaction simulation datasets and pedestrian datasets are listed in Table 3.

1 https://github.com/fatcatZF/WavenetNRI.

https://github.com/fatcatZF/WavenetNRI
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According to Table 3, NRI and WavenetNRI outperformed all other baselines,
and NRI performed slightly better than WavenetNRI on simulation datasets in
both recall and precision of group mitre ΔGW . While on pedestrian datasets,
GD-GAN [5] outperformed all other methods in both measures. The proposed
WavenetNRI could outperform the original NRI [7] and ATTR [16] as the two
classification-based baselines.

Concerning the impact of the population size (comparing Simulation I and
Simulation II ), we observed that by increasing the number of particles in simula-
tion datasets, both precision and recall were decreased for all methods, except for
NRI [7]. The same behavior was observed regarding the probability of non-group
interactions (comparing Simulation I and Simulation III ).

Furthermore, we calculated the average pairwise Euclidean distance between
the group and non-group members of the two datasets. Our investigation of
the differences between these two types of datasets showed that in the pedes-
trian datasets, the pairwise average Euclidean distances between group members
(0.950 m) were much lower than those from different groups (4.698 m), i.e., the
pedestrians were closer to their group members than other groups. While in the
group-interaction simulation datasets, the differences between the Euclidean dis-
tances of the same groups (1.039 m) and that of different groups (1.725 m) were
not significant.

Thus, distinguishing between group members and non-group members is
more challenging in the simulation datasets compared with pedestrian datasets.
Moreover, the fact that baselines do not generalize to simulation datasets sug-
gests that available research might not be applicable to real-world scenarios
where there is a chance for cross-group interactions.

Table 3. Experimental results of recall (R) and precision (P) based on Group Mitre
ΔGW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel

R P R P R P R P R P R P

ATTR [16] 0.579
±0.017

0.481
±0.020

0.512
±0.009

0.388
±0.015

0.511
±0.006

0.386
±0.005

0.889
±0.076

0.879
±0.077

0.745
±0.067

0.746
±0.087

0.833
±0.072

0.841
±0.068

S-SVM [13] 0.664
±0.075

0.600
±0.067

0.529
±0.039

0.413
±0.017

0.459
±0.037

0.382
±0.030

0.893
±0.026

0.906
±0.033

0.887
±0.027

0.911
±0.021

0.925
±0.024

0.927
±0.030

GD-GAN [5] 0.531
±0.003

0.430
±0.004

0.514
±0.003

0.383
±0.004

0.512
±0.003

0.383
±0.004

0.949
±0.046

0.934
±0.051

0.931
±0.037

0.950
±0.028

0.925
±0.084

0.944
±0.058

NRI [7] 0.995
±0.002

0.994
±0.003

0.997
±0.002

0.994
±0.002

0.998
±0.001

0.996
±0.001

0.801
±0.096

0.737
±0.108

0.663
±0.083

0.669
±0.080

0.577
±0.122

0.565
±0.122

Wavenet-
NRI

0.990
±0.010

0.988
±0.013

0.985
±0.005

0.970
±0.010

0.986
±0.004

0.972
±0.007

0.893
±0.090

0.900
±0.107

0.793
±0.078

0.815
±0.079

0.748
±0.106

0.790
±0.086

5.6 Ablation Study

Our proposed approach applied two changes to the original NRI (i.e., adding
symmetric edge features and symmetric edge updating process and the GD-
RCC block). In this section, we explored the effects of these changes by per-
forming an ablation study. To test the impact of the symmetric edge features



A GNN-Based Architecture for Group Detection 337

and symmetric edge updating process, the same 1D convolutional as the original
NRI with the symmetric edge features and the symmetric edge updating process
was applied. This model is called “NRI-Symmetric”. To test the effects of the
GD-RCC block, “Wavenet-GD-RCC” was designed, which used the GD-RCC
block with the same edge features and edge updating process as the original
NRI. We compared the performance of these two methods with the proposed
WavenetNRI and the original NRI on the simulation and pedestrian datasets.
The results of both experiments are listed in Table 4. According to the results
listed in Table 4, the Wavenet-GD-RCC performed slightly better than NRI,
while the performance of NRI-Symmetric was lower than NRI. Therefore, the
GD-RCC block could slightly improve the performance of NRI on the group-
interaction datasets, and the symmetric edges and symmetric edge updating
process negatively affected the original NRI. Additionally, the NRI-Symmetric
performed better than the NRI, and Wavenet-GD-RCC performed similarly to
NRI on the pedestrian data sets. Therefore, the symmetric edge features with the
symmetric edge updating process could improve the performance of NRI on the
pedestrian data sets, and the GD-RCC block did not significantly affect NRI’s
performance. Thus, the results were consistent per dataset type but not overall.
We also noticed that either change could add value to one dataset category. As
discussed earlier, the complexity of the simulation datasets in the behavior and
interactions of the group members and non-group members might explain the
inconsistent performance in these two types of datasets.

Table 4. Ablation study results of recall (R) and precision (P) based on Group Mitre
ΔGW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel

R P R P R P R P R P R P

NRI [7] 0.995
±0.002

0.994
±0.003

0.997
±0.002

0.994
±0.002

0.998
±0.001

0.996
±0.001

0.801
±0.096

0.737
±0.108

0.663
±0.083

0.669
±0.080

0.577
±0.122

0.565
±0.122

NRI-
Symmetric

0.990
±0.004

0.987
±0.006

0.981
±0.007

0.964
±0.013

0.981
±0.007

0.961
±0.009

0.851
±0.093

0.813
±0.091

0.679
±0.094

0.686
±0.096

0.708
±0.121

0.739
±0.115

Wavenet-
GD-RCC

0.998
±0.002

0.997
±0.001

0.999
±0.001

0.997
±0.002

0.998
±0.001

0.997
±0.001

0.719
±0.138

0.625
±0.165

0.542
±0.146

0.530
±0.147

0.566
±0.169

0.554
±0.163

Wavenet
NRI

0.990
±0.010

0.988
±0.013

0.985
±0.005

0.970
±0.010

0.986
±0.004

0.972
±0.007

0.893
±0.090

0.900
±0.107

0.793
±0.078

0.815
±0.079

0.748
±0.106

0.790
±0.086

6 Discussion and Conclusions

The present study explored the application of GNN by extending the NRI
model [7] for group detection in two directions: (1) by applying symmetric
edge features with symmetric edge updating processes and (2) by replacing the
1D convolution layer with a GD-RCC block, as proposed by Wavenet [11]. We
compared the performance of WavenetNRI with other baselines on the three
group-interaction simulation datasets and three pedestrian datasets. NRI and
WavenetNRI outperformed all other baselines on the group-interaction simu-
lation datasets. Although the pedestrian datasets were captured in real-world
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setups, the simulation datasets were better reflecting complex group interactions
with larger groups, which stresses the importance of the obtained results. On the
pedestrian datasets, although our proposed method did not compete against the
clustering-based baselines, i.e., GD-GAN [5] and S-SVM [13], it outperformed
classification-based methods, i.e., ATTR [16] and the original NRI [7]. Yet, base-
line methods did not generalize very well to the simulation datasets. We further
evaluated the effects of our changes to the original NRI in the ablation study.
We found that on the group-interaction data sets, the GD-RCC block slightly
improved the performance of NRI. Simultaneously, the symmetric edge features
with symmetric edge updating processes negatively affected the performance of
NRI. On the pedestrian data sets, the symmetric edge features with symmetric
edge updating processes improved the performance of NRI, while the GD-RCC
block had no significant effect on NRI.

Our analysis demonstrates that WavenetNRI is highly effective at predicting
pairwise interactions, which ultimately reflect the group memberships of agents
in an interacting environment. One drawback of the proposed method is its
dependency on ground truth data. Unsupervised methods such as GD-GAN are
preferable if ground truth is not available for a particular study. Many real-
world communities, such as sports clubs and schoolyards, can be understood as
a dynamic interacting system, where applying a trained WavenetNRI model can
be helpful in predicting group memberships within the system.

The current study can be improved by investigating how to adapt the
proposed neural network design more efficiently to different datasets using
meta-learning. Additionally, it is worth studying how to extend the proposed
classification-based method to a supervised clustering task. And finally, design-
ing a fully supervised model by adding a final layer to classify nodes into the
group they belong to could be investigated in the future.
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Abstract. Interpretable machine learning focuses on learning models
that are inherently understandable by humans. Even such interpretable
models, however, must be trustworthy for domain experts to adopt them.
This requires not only accurate predictions, but also reliable explanations
that do not contradict a domain expert’s knowledge. When considering
rule-based models, for example, rules may include certain variables either
due to artefacts in the data, or due to the search heuristics used. When
such rules are provided as explanations, this may lead to distrust.

We investigate whether human guidance could benefit interpretable
machine learning when it comes to learning models that provide both
accurate predictions and reliable explanations. The form of knowledge
that we consider is that of preferred variables, i.e., variables that the
domain expert deems important enough to be given higher priority than
the other variables. We study this question for the task of multiclass
classification, use probabilistic rule lists as interpretable models, and use
the minimum description length (MDL) principle for model selection.

We propose S-Classy, an algorithm based on beam search that learns
rule lists and takes preferred variables into account. We compare S-
Classy to its baseline method, i.e., without using preferred variables,
and empirically demonstrate that adding preferred variables does not
harm predictive performance, while it does result in the preferred vari-
ables being used in rules higher up in the learned rule lists.

Keywords: Classification · Probabilistic rule lists · Minimum
description length (MDL) principle · Human-guided machine learning

1 Introduction

Explainable Artificial Intelligence (XAI) and interpretable machine learning [10]
are important topics that currently attract a lot of attention within and outside
the academic community. Although the two fields are clearly related in that
both aim to provide explanations for predictions (or other outcomes) given by
AI systems, they usually refer to slightly different approaches. XAI approaches
typically attempt to provide post-hoc explanations for predictions [16], which can
be done for any type of predictive model—whether it’s a complex, ‘black box’
model such as a neural network, or a simpler model such as a linear regression
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model. Interpretable machine learning, on the other hand, focuses on learning
interpretable models, models that are inherently understandable by humans—
such as linear regression models and rule- and tree-based models.

In application domains where high-stake decisions are made, such as law and
health care, predictive models are used for decision support, i.e., assisting the
domain experts making decisions rather than autonomously making decisions.
This calls for human-centred AI, where machine learning models augment human
experts rather than replace them. This leads to extra requirements on models and
algorithms: for domain experts to adopt an AI system, it must be trustworthy,
i.e., it must not only provide accurate predictions, but also reliable explanations.

Providing reliable explanations is by no means a simple feat. Models are often
learned from relatively small datasets—especially in high-stake settings where
data is typically expensive—and certain associations may be perceived as more
reliable than others. In health care, for example, a medical doctor will only trust
explanations using patient properties of which they think a relationship with
the target variable is plausible. Explanations that contradict a domain expert’s
knowledge, in contrast, are likely to be detrimental to their trust.

We argue that interpretable machine learning has an advantage over XAI in
such settings, because interpretable models make it easier to explain how and
why predictions are made. Nevertheless, this does not imply that the predictions
made by interpretable models are “right for the right reasons” [15]. When con-
sidering rule-based models, for example, rules may be based on certain variables
either due to associations in parts of the data, or due to the search heuristics
used. When such rules are provided as explanations, this will lead to distrust.

Approach and Contributions. In this paper we investigate whether human
guidance could benefit interpretable machine learning when it comes to learning
models that provide both accurate predictions and reliable explanations. More
specifically, we study whether prior knowledge provided by a domain expert
may lead to models consistent with that knowledge. This can be seen as an
instance of informed machine learning [17], in which prior knowledge (given as,
e.g., knowledge graphs or human feedback) informs the learning process.

The form of knowledge that we consider is that of preferred variables, i.e.,
variables that the domain expert deems important enough to be given higher
priority than the other variables while learning a predictive model. The idea is
that specifying detailed knowledge is often hard, but experts will usually have a
good idea of which variables they expect to be the most informative with regard
to the variable of interest, for which predictions are to be made.

We consider the task of multiclass classification, because it is one of the most
commonly studied and practically used machine learning tasks. As models we
use probabilistic rule lists, because they are interpretable and we have recently
introduced algorithms for finding good rule lists using the minimum description
length (MDL) principle as model selection criterion [11,12]. That is, we use
compression as optimisation criterion, which has as most notable advantages
that it makes hyper-parameter tuning unnecessary and avoids overfitting.

After discussing related work in Sect. 2, we motivate and formalise the prob-
lem of discovering rule lists with preferred variables in Sect. 3. Following this, in
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Sect. 4 we propose S-Classy, an algorithm based on beam search that learns
rule lists and takes preferred variables into account by first exploring and con-
sidering rules that include at least one preferred variable. Section 5 empirically
investigates the effect of having preferred variables on compression, runtime,
predictive accuracy, overfitting, and rule list size. For this we simulate external
knowledge by ranking variables by feature importances that we obtained with
random forests. We compare S-Classy to its baseline method bClassy, which
does not use the preferred variables, on commonly used benchmark datasets. The
results demonstrate that augmenting the rule learning process with background
knowledge—in the form of preferred variables—does not harm any of the major
evaluation criteria, while it does result in the preferred variables being used in
rules higher up in the rule list.

2 Related Work

Based on the type of model used, rule learning can be roughly divided in rule
list learning, rule set learning, and mixtures of both. Well-known classification
algorithms such as Ripper [3], C4.5 [13], Furia [6], and unordered-CN2 [2] use
an ordered one-vs-all approach to learn rules for the multiclass classification
problem, as a result of which they essentially return ordered lists of rule sets.
Such lists of sets are harder to interpret than ‘plain’ rule lists or rule sets. CBA
[8] uses large numbers of association rules, which also hampers interpretability.

Direct rule set learning methods include IDS [7] and DRS [19], but unlike
our approach they are not probabilistic. Turs [18] is a recent method for learn-
ing ‘truly unordered’ probabilistic rule sets, using a surrogate score to tackle
incomplete rule sets. Another recent approach is Classy [12], a state-of-the-art
algorithm for learning ordered rule lists. It discovers probabilistic rules for multi-
nomial targets with both categorical and quantitative predictive variables. Both
Turs and Classy use the minimum description length (MDL) principle [5] as
model selection criterion to select rules that compress the data well but have a
relatively low model complexity. While Classy uses a pre-mined set of candi-
date patterns, Proença et al. [11] later proposed SSD++, an improved algorithm
that directly finds good rule lists using beam search for candidate generation.
Although SSD++ was introduced for subgroup list discovery, it can just as well
be be used for classification; we will call this beam search version bClassy.

As far as we are aware, how to influence search in rule learning using back-
ground knowledge has hardly been studied. In subgroup discovery, IDSD [4] is
an interactive search where the user can influence the beam of a beam search by
providing feedback (like/dislike). This results in erratic search behaviour though.

3 Rule Learning with Preferred Variables

We start with important definitions and notation in Subsect. 3.1, after which
we introduce the problem statement in Subsect. 3.2 and briefly summarise the
model and data encoding that we will use in Subsect. 3.3.



Discovering Rule Lists with Preferred Variables 343

3.1 Data, Rules, and Rule Lists

Let D = (X,Y ) be a supervised dataset, consisting of a dataset X and a
(multi)class label vector Y . Let X and Y be the instance space and the set
of all |Y| classes, respectively. Let V = {v1, v2, ..., vm} be the set of all m = |V |
variables in X, with each vi representing a one-dimensional variable with domain
dom(vi). Each (x, y) ∈ D is a record, where instance x = (x1, x2, ..., xm) ∈ X is
a vector of values with xi ∈ dom(vi) for each vi, and y ∈ Y is the class label
belonging to the instance. Dataset D has n = |D| records.

We are interested in learning rules from data. Here, a rule r is a conditional
statement that links occurrences of patterns to class probabilities. More precisely,
a rule is a pair r = (p, π(p)), where antecedent p is a pattern and its consequent
is a probability distribution π(p). A pattern is a conjunction of conditions over
variables, e.g., p = [v1 = ‘A’ ∧ v3 = 0]. Further, π(p) is a categorical probability
distribution π = (πy1 , πy2 , ..., πy|Y|) over all class labels Y. An example rule could
be if [v1 = ‘A’ ∧ v3 = 0] then πy1 = 0.85, πy2 = 0.05, πy3 = 0.10.

A probabilistic rule list (PRL) R is an ordered list of l + 1 rules
(r1, r2, ..., rl, r∅), where the last rule in the list, r∅, is called the default rule.
It has the empty set as antecedent and is assigned a probability distribution π∅.

The usage of a pattern p ∈ R is the number of its occurrences in a dataset D,
disregarding all instances that were covered by previous patterns in R, i.e.,

usg(pi |R,D) = |{x ⊂ D | pi � x ∧ (
∧

∀j<i

pj �� x)}|, (1)

where p � x denotes that pattern p occurs in instance x, i.e., x satisfies all
conditions in p, and �� is the reverse. The label-oriented usage of a pattern
pi ∈ R is the number of pattern occurrences in dataset D that correspond to
class label l, where Dy=l = {(x, y) ⊂ D | y = l} is the subset of D where class
label l occurs:

usg(pi |R,Dy=l) = |{x ⊂ Dy=l | pi � x ∧ (
∧

∀j<i

pj �� x)}|. (2)

We consider the problem of rule learning for multiclass (or multinomial) clas-
sification, meaning that it is our aim to learn a rule list from a given supervised
dataset such that it can accurately predict the class labels for unseen instances.

3.2 Problem Statement

As mentioned in the previous section, the minimum description length (MDL)
principle [5] has previously been successfully used for rule learning [12,18]. Infor-
mally, the principle states that the best model is the one that best compresses
the data together with the model. Formally, given a (training) supervised dataset
D and a corresponding model class R, consisting of all possible rule lists for D,
the optimal rule list R∗ is given by

R∗ = argmin
R∈R

L(D,R) = argmin
R∈R

[L(R) + L(Y |X,R)] , (3)
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where L(R) is the encoded length, in bits, of the rule list and L(Y |X,R) is the
encoded length, in bits, of class labels Y given data X and rule list R.

This is the same problem formalisation as was previously used for
Classy [12], and was shown to result in compact rule lists that performed well
in terms of predictive performance. One advantage of using the MDL principle
is that it automatically protects from overfitting by balancing model complexity
with goodness of fit, hence cross-validation for hyperparameter tuning is not
necessary.

Since finding the optimal rule list R∗ is a hard problem, heuristic algorithms—
such as Classy and bClassy—are used in practice. Although predictive perfor-
mance of the resulting rule lists may be excellent, the patterns used may be less
than ideal to a domain expert due to two reasons: 1) the optimal rule list may
not be found due to the use of heuristic search; and 2) under certain circum-
stances multiple variables may lead to equally ‘good’ rules, in which case one of
those is arbitrarily chosen and used. The latter may happen, for example, when
two variables are strongly associated. For high-stake decisions it is crucial that
a model uses the ‘right’ variables for a prediction though, so that the patterns
can be served to domain experts as explanations and gain their trust.

Because of the second reason, improving the learning algorithms is unlikely
to ever completely address this issue: in practice only a limited sample of data is
available, and that may contain insufficient information to be able to choose the
‘right’ variables. We therefore argue that it may be needed to integrate external
knowledge in the learning process in order to obtain more reliable explanations.

As an initial step in this direction, we investigate whether injecting limited
expert knowledge may be helpful in guiding the heuristic search to rule lists
that are at least equally predictive but use patterns that are potentially more
informative to domain experts than if no such knowledge is provided.

More specifically, we assume that we have access to a domain expert who is
knowledgeable on the domain of the classification problem under consideration.
The domain expert specifies a (small) set of preferred variables U ⊂ V of which
they are convinced they could and should be used for predicting the target
variable Y . The preferred variables should be given higher priority during the
search for a rule list than the remaining variables, i.e., V \U , meaning that they
should be considered for pattern growth first. Note that this does not mean that
the preferred variables should be used regardless of the data; if the domain expert
is wrong, this should not result in models with poor predictive performance.

3.3 Encoding

For the code length of the model and the code length of the data given the
model, i.e., L(R) and (Y |X,R), respectively, we use the same encoding as used
by Classy [12]. We here only provide a brief overview.

Model Encoding. We use the universal code for integers1 LN(i) to penalise
for rule length, while the uniform code provides a means to assign equal-length
1 LN(i) = log∗ i + log λ, where log∗ i = log i + log log i + ... and constant λ ≈ 2.865064..
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codes to variables and values of variables. The length of a pattern pi is given
by the number of conditions in that pattern encoded by the universal code for
integers, and then each condition cj in pi is encoded using uniform codes for
the variables and values, i.e., L(pi) = LN(|pi|) +

∑
cj∈pi

(log |V | + log dom(vj)).
Now, the total length of a probabilistic rule list R is computed as the sum of the
number of rules and the lengths of the individual patterns, given by

L(R) = LN(|R|) +
∑

pi∈R

L(pi). (4)

Data Encoding. For the encoding of the class label vector the prequential plug-
in code is used, which at each stage is the optimal code given the data so far
(i.e., it sequentially predicts the next symbol). It is given by

πplug−in(yi = l|Yi−1) :=
|{y ∈ Yi−1|y = l}| + ε∑

k∈Y |{y ∈ Yi−1|y = k}| + ε
, (5)

where yi is the ith class label, Yi−1 = {y1, ..., yi−1} is the sequence of the i − 1
first class labels, and ε = 1 (for a uniform prior). The above can be expressed
by the maximum likelihood estimator (MLE) πl

i for any probability π(y = l | pi),
any rule pi and any class label l. The Laplace smoothing (pseudocount ε) is
added to the equation of the maximum likelihood estimator to all label-oriented
usages to avoid probabilities of zero. Then, the smoothed MLE is formalised as

πl
i =

usg(pi |R,Dy=l) + ε

usg(pi |R,D) + |Y|ε . (6)

4 Beam Search with Preferred Variables

Rule learning is generally a hard problem, and finding the MDL-optimal rule
list is certainly hard—heuristic algorithms are therefore common practice. The
original Classy algorithm [12] iteratively selected patterns from a pre-mined
candidate set. The SSD++ algorithm [11] improved on this by means of a beam
search; although SSD++ is aimed at finding subgroup sets, Proença’s disserta-
tion [9] has shown that rule learning and subgroup discovery are closely related.
We here employ the SSD++ beam search algorithm for learning rule lists as in
Classy, and dub this beam search variant of the algorithm bClassy. Using
the beam search has several advantages: 1) there is no need to pre-mine candi-
dates, allowing to prune the search space as the search progresses; 2) on-the-fly
discretisation can be used, giving better results for quantitative variables [11].
An additional advantage that is of particular importance to us is that the beam
search allows to guide the search using preferred variables.

We propose S-Classy, a greedy algorithm based on bClassy that starts
with a rule list consisting of only the default rule and iteratively adds rules until
compression cannot be improved, taking into account the preferred variables as
given by the domain expert. Before we describe the algorithm in detail we briefly
summarise how compression gain is computed.
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Algorithm 1. S-Classy algorithm
Input: Dataset D, set of preferred variables S, beam width ωb, maximum pattern

length |r|max, minimum support threshold ms

Output: Probabilistic rule list R
1: R ← [r∅] � Start with default rule
2: while True do � Repeat while compression can be improved
3: Cands ← ∅
4: for s ∈ S do � Perform beam search for each preferred variable
5: Cands ← Cands ∪ BeamSearch(s, R, D, ωb, |r|max, ms)
6: end for
7: if Cands = ∅ then � No candidates? Perform full beam search
8: Cands ← BeamSearch(∅, R, D, ωb, |r|max, ms)
9: end if

10: r ← argmaxr′∈Cands δL(D, R ⊕ r′) � Pick rule that maximises normalised gain
11: if δL(D, R ⊕ r) > 0 then
12: R ← R ⊕ r � Add rule to rule list
13: S ← S \ V ariablesInPattern(r) � Update preferred variable set
14: else
15: return R � Return final rule list
16: end if
17: end while

Compression Gain. To find a good rule list according to Eq 3, in each iteration
we aim to find that rule that improves compression the most. To this end, abso-
lute compression gain ΔL is defined as ΔL(D,R⊕r) = L(D,R)−L(D,R⊕r), i.e.,
the number of bits gained by adding a rule r to rule list R. Since greedy search
combined with absolute compression gain has been shown to favour fewer rules
that are less accurate but cover more instances [12], we also use the normalised
compression gain. The normalised gain δL(D,R ⊕ r) is the absolute gain nor-
malised by the usage of the corresponding pattern p, δL(D,R⊕r) = ΔL(D,R⊕r)

usg(p | R,D) .

Algorithm. S-Classy is given by Algorithm 1. It starts by initialising a rule
list to the default rule (Ln 1). Then, one rule is added in each iteration of the
main loop (Ln 2–17) until no rule that improves compression can be found and
the resulting rule list is returned (Ln 15). In each iteration, first a beam search
is done for each preferred variable (Ln 4–6), starting the search from the given
preferred variable s (i.e., it only considers patterns that include a condition on
s). If S is empty or the previous beam searches did not result in any candidate
rules, then a beam search considering all possible rules is conducted (Ln 7–9).
In all calls to the beam search, the beam width, maximum pattern length, and
minimum support threshold hyper-parameters are given to constrain the search.

After all beam search procedures have been completed, the candidate rule
with the largest normalised compression gain is selected (Ln 10). If its compres-
sion gain is larger than 0 (Ln 11), it improves overall compression (Eq. 3) and is
thus added to the rule list (Ln 12). Note that all rules are added at the end of
the rule list, but just before the default rule (which is always updated to reflect
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Table 1. Dataset characteristics: number of records (|D|); total number of values for
all vi, denoted |x|; number of variables m; number of class labels (|Y|); size of set S,
denoted K. Further, ∗ indicates dataset characteristics after the removal of rows with
NaN values. Relative compression (L%) and runtime (sec) are averaged over all 10
folds using the top-K set of preferred variables S.

Dataset Characteristics μ(L%) μ(sec)

|D| |x| m |Y| K S-Classy bClassy S-Classy bClassy

Breast∗ 683 16 9 2 1 0.62 0.62 0.12 0.13

Cong. voting∗ 231 34 16 2 2 0.75 0.75 0.37 0.42

Dermatology∗ 358 49 12 6 2 0.47 0.47 3.09 3.11

Heart∗ 297 50 13 5 2 0.12 0.13 1.14 1.21

Ionosphere 351 157 34 2 4 0.39 0.39 3.35 3.48

Iris 150 19 4 3 1 0.75 0.75 0.31 0.33

Led7 3200 24 7 10 1 0.51 0.51 6.21 6.11

Letter 20000 102 16 26 2 0.50 0.50 822.08 823.55

Mushroom∗ 5644 80 21 2 3 0.97 0.97 1.94 1.99

Pen digits 10992 86 16 10 2 0.84 0.84 294.91 294.09

Pima Indians 768 38 8 2 1 0.10 0.10 0.01 0.01

Tic-tac-toe 958 29 9 2 1 0.46 0.46 1.22 1.26

Waveform 5000 101 21 3 3 0.44 0.44 42.75 42.76

Wine 178 68 13 3 3 0.62 0.64 2.78 2.94

the class distribution of the uncovered instances). Finally, the set of preferred
variables is updated: any of the preferred variables used in the pattern of rule r
are removed from S, and they will not be given priority in further iterations.

Note that the algorithm only adds rules that improve overall compression.
In that sense the preferred variables can help guide the search, but if no viable
rules using those variables are found the algorithm falls back to using other
variables—if the knowledge provided by a domain expert is not in agreement
with the evidence in the data, then this cannot have a negative impact.

5 Experiments

All experiments2 use a minimum support threshold of ms = 5% and maximum
pattern length of |r|max = 4, following the baseline comparisons of Proença [12].

Data. We evaluate our algorithm using 14 discrete-valued datasets publicly
available from LUCS/KDD3, see Table 1 for their characteristics. We randomise
the order of the instances before splitting into folds for 10-fold cross-validation.
2 The source code is available at: https://github.com/ioannapap/S-CLASSY.
3 https://cgi.csc.liv.ac.uk/˜frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSe

ts.html#datasets.

https://github.com/ioannapap/S-CLASSY
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html#datasets
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html#datasets


348 I. Papagianni and M. van Leeuwen

Simulating Knowledge. As no expert knowledge is available for these datasets
and we aim for reproducible results, we choose to simulate expert knowledge. For
fairness we do not wish to use bClassy or other interpretable models for this.
Instead we use Random Forest (RF), which is widely implemented and often
used in real world applications [1,14]. We train a random forest on the entire
dataset and rank all variables based on the entropy-based feature importance
scores. Next, we select a set S of K variables as preferred variables, where K
depends on the number of variables in a dataset. We use K = m · 10%, rounded
upwards, which is a small but substantial percentage of the total number of
variables m. For our empirical evaluation, we consider three sets of variables as
preferred variables to be given as input: 1) top-K, the K highest ranked variables;
bottom-K, the K lowest ranked variables; and 3) random-K, K variables that
are selected uniformly at random from V (once, before all experiments are done).

Evaluation Criteria. We evaluate the algorithm on 1) compression, 2) run-
time, 3) classification performance, 4) overfitting, and 5) interpretability. For
the compression criterion, we calculate relative compression gain as

L% = 1 − L(D,R)
L(D, {∅})

. (7)

That is, it is the compressed size of the data given the final rule list L(D,R)
over the compressed size of the data given the rule list with only the default rule
L(D, {∅}). We subtract the fraction from 1, so that the closer to 1 the relative
compression gets, the better. We use a timer to measure runtime in seconds
for every fold and then average it over all 10 folds (μ(sec)). Similar to [12],
we check the Area Under the ROC Curve (AUC) to quantify the classification
performance. We weigh per class binary AUCs with their marginal frequencies
since the majority of the datasets are multinomial.

Overfitting is here evaluated as the mean absolute difference in AUC between
the train and test set, i.e., |μ(AUC)train − μ(AUC)test|. How to evaluate the
interpretability of a rule-based model is a complex topic on itself. A minimum
requirement for a rule list to be interpretable is that it needs to be small, i.e.,
it must contain relatively few rules that are not too long. We therefore quantify
interpretability using average rule length (μ|r|) and the average number of rules
in a rule list (μ|R|). Lastly, we are interested in investigating whether the pre-
ferred variables influenced the rules learned. For this we use the frequencies f
and positions of the preferred variables in the learned rules. Specifically, we care
mostly about the frequency of preferred variables in the first rule of each rule
list, which we annotate by f@1 and average over all folds.

5.1 Results

Regarding relative compression and runtime, we recognise that when the top-K
preferred variable set S is used, S-Classy performs similarly to bClassy, see
Table 1. S-Classy’s runtime is slightly lower overall. Our algorithm also ranks
first regarding accuracy when using the top-K, as seen in Table 2. This is a
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Table 2. Mean (μ) results per dataset using 10-fold cross-validation, with fixed
ms = 5%, ωb = 100 and |r|max = 4. Bottom, random and top are the three differ-
ent sets of simulated ‘preferred variables’ used for S-Classy. AUC is the Area Under
the ROC Curve in test set, |μ(AUC)train − μ(AUC)test| is the overfitting. Then, f@1
and max (f@1) is the frequency of all preferred variables and the maximum (highest)
frequency of a preferred variable respectively, both at 1st position of the rule list, for
S-Classy (abbreviated S-Cl) and bClassy (abbreviated bCl).

Dataset μ(AUC)test |μ(AUC)train − μ(AUC)test| μ(f@1) max (f@1)

S-Classy bClassy RF S-Classy bClassy RF S-Cl bCl S-Cl bCl

bottom random top bottom random top top top

Breast 0.50 0.94 0.94 0.94 0.95 0 0.007 0.007 0.007 0 1 1 1 1

Cong. voting 0.97 0.97 0.97 0.97 0.96 0.002 0.002 0.002 0.002 0.007 0.50 0.50 1 1

Dermatology 0.50 0.86 0.86 0.86 0.73 0 0.029 0.034 0.029 0.006 0.50 0 0.60 0

Heart 0.50 0.66 0.67 0.66 0.67 0 0.018 0.018 0.019 0.012 0.95 1 1 1

Ionosphere 0.54 0.84 0.85 0.85 0.90 0.004 0.081 0.072 0.075 0.009 0.25 0.47 1 1

Iris 0.95 0.95 0.95 0.95 0.95 0.019 0.019 0.019 0.019 0.022 1 0 1 0

Led7 0.84 0.84 0.84 0.84 0.50 0.005 0.005 0.005 0.005 0.001 1 1 1 1

Letter 0.79 0.79 0.79 0.79 0.50 0.007 0.008 0.007 0.011 0 1 0.45 1 0.90

Mushroom 0.50 1 1 1 0.99 0 0 0 0 0 0.33 0.33 1 1

Pen digits 0.97 0.97 0.98 0.97 0.50 0.010 0.010 0.011 0.011 0 0.33 0.33 1 1

Pima Indians 0.50 0.50 0.66 0.66 0.67 0 0 0.001 0.001 0.012 1 1 1 1

Tic-tac-toe 0.87 0.87 0.87 0.87 0.64 0.009 0.009 0.009 0.009 0.025 1 1 1 1

Waveform 0.82 0.82 0.83 0.82 0.77 0.026 0.026 0.026 0.026 0.006 0.57 0.50 1 1

Wine 0.92 0.92 0.92 0.92 0.94 0.058 0.058 0.058 0.058 0.034 0.37 0.33 1 0.90

rankall 2.86 1.86 1.29 1.57 3.14 1.36 2.21 2.36 2.57 2.36 1.14 1.36 1 1.29

good result, as it shows that adding preferred variables does not harm predic-
tive performance and may even benefit it. When using the bottom-K variables
as background knowledge, performance is worse than for the other variants and
also worse than bClassy. This indicates that providing preferred variables is
not entirely without risk: despite our goals, poorly chosen variables may result in
worse predictive performance. All variants of S-Classy perform better overall
than RF (rankall)4, which is interesting because the RF-based feature impor-
tance does benefit S-Classy. With regard to overfitting, bottom and random
sets do well but that is to be expected; poor predictions on training data are still
poor on test data. More interestingly, the results suggest that providing infor-
mative preferred variables potentially leads to less overfitting, as S-Classy with
‘top’ evaluation sets ranks higher than bClassy and equal to RF with regard
to overfitting.

Clearly, the average number5 of conditions and rules that were discovered in
all different sets of S-Classy and bClassy, presented in Table 3, show little
to no difference with bClassy scoring overall first. However, when we calculate
the Jaccard distance6 between the conditions of bClassy rules and S-Classy
rules per rule position, we discover that the rules are in fact different. The non-

4 Rankall (smaller is better) is the average rank over all datasets.
5 The lowest (> 0) μ|r|, μ|R| the better, 0 is treated as the worst.
6 For Jaccard distance, the closer to 0 the more similar and the closer to 1 the more

different (preferred state).
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Table 3. Mean (μ) number of 1) conditions in a rule r (|r|); and 2) rules in a rule list
R (|R|) per experiment, using 10-fold cross validation with fixed ms = 5%, ωb = 100
and |r|max = 4. Bottom, random and top are the simulated sets of ‘preferred variables’
used for S-Classy. The mean (μ) Jaccard distance is calculated between each simulated
variable set with bClassy.

Dataset µ|r| µ|R| µ(Jaccard distance)
S-Classy bClassy S-Classy bClassy S-Classy

bottom random top bottom random top bottom random top

Breast 0 4 4 4 0 2 2 2 1 0 0
Cong. voting 2 1 1 1 1 1 1 1 0.47 0 0
Dermatology 1 2 2 2 1 7 7 7 1 0.07 0.34
Heart 0 3 3 2 0 2 2 2 1 0.37 0.37
Ionosphere 1 2 2 2 1 6 5 5 1 0.66 0.04
Iris 2 2 2 2 2 2 2 2 0.23 0.23 0.47

Led7 3 3 3 3 21 21 21 21 0 0 0

Letter 4 4 4 4 153 150 151 151 0.91 0.67 0.68
Mushroom 1 2 2 2 1 2 5 5 1 0.85 0
Pen digits 4 4 4 4 77 73 76 76 0.94 0.94 0
Pima Indians 0 0 1 1 0 0 1 1 1 1 0
Tic-tac-toe 4 3 3 3 5 5 5 5 0.13 0.24 0
Waveform 4 4 3 4 39 39 40 39 0.76 0.81 0.27
Wine 3 3 3 2 4 4 4 4 0.08 0.08 0.08

rankall 2.14 1.57 1.36 1.29 2 1.5 1.64 1.43 1.21 1.71 2.21

Fig. 1. Mean (μ) frequency of top preferred variables per rule position in the rule list
using 10-fold cross validation in Dermatology, Heart, Iris and Wine dataset.

zero Jaccard distances shown in Table 3 are further explained by Table 2, where
we present the mean frequency f of all variables s ∈ S in the top-K set and
the maximum frequency f of the most used preferred variable at the first rule
position in the rule list. Moreover, Fig. 1 shows—for four datasets—in more detail
the differences in the variables used in the rules learned by top-K S-Classy and
bClassy, making it visible that our algorithm manages to include and combine
the preferred variables more often than bClassy as earlier as possible. These
results not only demonstrate that our method manages to learn different rules
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in the rule list from its predecessor algorithm, but at the same time 1) ensure
that the preferred variables are incorporated at the very beginning of our rule
list, and 2) keep competitive, and even in some experiments higher, classification
performance.

6 Conclusions and Future Work

We argued that human guidance might be beneficial to interpretable machine
learning, especially in settings where predictions need to be accurate as well
as reliable and trustworthy explanations are needed. We investigated whether
this is the case for the problem of multiclass classification and used rule lists as
models. The form of knowledge that we considered is that of preferred variables,
i.e., variables that the domain expert deems important enough to be given higher
priority in the learning process than the other variables.

We proposed S-Classy, an algorithm based on beam search that learns rule
lists and takes preferred variables into account by first only exploring rules that
include one of the preferred variables. An empirical comparison of S-Classy to
its baseline method, i.e., without using preferred variables, demonstrated that
adding preferred variables does not harm predictive performance, while it does
result in the preferred variables being used in rules higher up in the learned rule
lists. From this we conclude that human guidance might indeed be beneficial to
rule learning, for predictive accuracy but also for learning the ‘right’ rules.

We consider this only to be a first step towards human-guided rule learning.
In the future, interesting directions would be to examine other model classes,
such as (unordered) rule sets, and expand the background knowledge language,
e.g., by allowing constraints based on conditions or patterns, or based on other
properties of a rule-based model. A more extensive study on the consequences
of using specified/preferred variables in terms of classification performance and
interpretability is also worth pursuing. In addition, we aim to evaluate our app-
roach with real-world case studies involving actual domain knowledge provided
by domain experts. Finally, we think that interactive rule learning is a promising
avenue for future research.
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Abstract. Many text classification tasks face a severe class imbalance
problem that limits the ability to train high-performance models. This
is partly due to the small number of instances in the minority class,
so that the minority class patterns are not well-represented. A common
approach in such cases is to resort to data augmentation techniques; how-
ever, these have shown mixed results on text data. Our proposed solution
is to Optimize the data Sampling prior to Labeling (OpSaLa) to obtain
overrepresented minority class(es) in the training dataset. We evaluate
our approach on three real-world hate speech datasets and compare it
to four commonly used approaches: training on the “natural” class dis-
tribution, a class weighting approach, and two oversampling approaches:
minority oversampling and backtranslation. Our results confirm that the
OpSaLa approach yields better models while the labeling budget stays
the same.

1 Introduction

A general assumption in machine learning is that the training data should match
the natural distribution of the data [21]. However in many cases the natural
distribution of the data is severely skewed, leading to models that are unable
to generalize well on the minority classes due to the low amount of training
instances.

One example of a text classification task where data skewness is a common
phenomenon is hate speech detection, a task which has recently attracted interest
both in industrial context as well as for conducting social science experiments on
large corpora [2,6]. Several works have however noted the relatively low amount
of hate speech content compared to respectful content on social media platforms.
Consequently, studies report low performance on the minority hateful classes;
in the extreme cases, as much as 40% of instances containing hate speech are
misclassified [4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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A common modeling approach in the presence of unbalanced class distri-
bution is to resort to one of the popular data oversampling and augmentation
techniques. However, several recent works have shown that for a large range of
text classification tasks and datasets, common data augmentation methods have
limited effect on performance when state-of-the-art modelling techniques based
on large pre-trained language models are used [10,17]. Furthermore, the perfor-
mance gain of training on the augmented examples is considerably lower than
training on the same amount of real-world examples [23]. In order to improve
the performance, especially for the underrepresented classes, real examples rich
with patterns representative of each class are needed in the training dataset.

In this work, we propose the Optimized Data Sampling before Labelling
(OpSaLa) approach for tackling text classification problems with severely unbal-
anced natural class distributions. The idea of this approach is to use external
information sources that aid us in sampling more real examples of the minority
class(es) at the data selection for labeling phase. This way, we achieve a more
balanced class distribution for training the model as well as obtain a training
dataset richer with real patterns for the minority class. The proposed approach
is to be used early in the data preparation stage before any labeling takes place.

While the OpSaLa approach is very simple and has proven to be applicable
in practice, we thoroughly evaluate its benefits and implications. In this paper,
we address the following methodological research questions:

– Is OpSaLa better compared to the default train-test split?
– How does OpSaLa compare to the commonly used cost-sensitive reweight-

ing schemes as well as state-of-the-art data oversampling and augmentation
approaches?

To address the above research questions, we perform experiments on three
relatively large (cca. 50.000 training data instances each) real-world hate speech
datasets, in three languages and from two social media platforms. Our results
show that with our OpSaLa approach, we are able to train better performing
models than we would if we were training directly on an unbiased (more skewed)
training set. We further show that our approach also yields better models when
compared to other data oversampling and augmentation approaches. Due to
the variety and sizes of the datasets as well as the use of the state-of-the-art
methods, we are confident our results are general and applicable to similar text
classification tasks.

2 Related Work

The assumption that training and test data should follow the same distribu-
tion for machine learning was recently reevaluated. A study performed on tab-
ular data with classical machine learning methods has shown that changing the
minority class distribution is beneficial for the final model performance on the
minority class [21]. A comprehensive survey identifying the challenges of handling
imbalanced class problems during classification process using machine learning
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algorithms is presented in [1]. In the specific case of text classification, there are
three main approaches to alleviate the impact of unbalanced class distribution:
data resampling, cost-sensitive re-weighting and data augmentation.

Cost-sensitive re-weighting refers to tuning the loss function of neural net-
works to increase the misclassification cost of minority class instances compared
to the other classes. A widely used strategy is to assign weights which are
inversely proportional to the class frequency [7]. A more elaborate reweight-
ing scheme [3] suggests to count instances in a small neighbouring region as one
instance for the purposes of weight calculation. However, this scheme mainly
leads to improvements for problems with large (>10) number of classes.

Data resampling uses sampling techniques on the input labeled training set
to output a transformed data set with a (more) balanced class distribution. Two
common approaches to data resampling are oversampling the minority class and
undersampling the majority class. A study comparing these approaches using
classical machine learning techniques in the hate speech domain [14] shows that
undersampling the majority class generally leads to better results. However, in
the presence of severe class imbalance, undersampling can remove a large number
of samples and severely reduce the training set size. This can lead to high loss
of information which negatively impacts the overall performance of the final
model. A recent study has introduced a dynamic sampling approach, where the
distribution of the classes varies cyclically at each batch during training [12],
improving over classical “static” resampling.

Data augmentation approaches increase the number of instances of the minor-
ity class by generating different synthetic examples using real ones. These are
slightly modified versions of the original instances or newly created synthetic
instances. Several data augmentation approaches were developed specifically for
textual data: among other, using WordNet as a dictionary to randomly replace
words/phrases with their synonyms in an instance [25], replacing words using
the nearest neighbour of the word from a given word embedding [20], or replac-
ing random words in a sentence based on the predictions from a BERT model
conditioned on the label for a particular instance [24]. In [16], backtranslation
between two languages was used as an augmentation method for a sentiment
analysis task. Compared to resampling and cost-sensitive approaches, data aug-
mentation approaches introduce knowledge from external resources in the train-
ing dataset, thus including more variance by introducing syntactic changes to
the original instance.

Our work focuses on text classification settings where large corpora of unla-
beled data are typically available (for example, social media data). We argue that
when dealing with class-unbalanced domains (like hate speech), the decision on
which data to select for labeling is important and influences the downstream
task. Similar to resampling approaches, we aim at a more even class distribu-
tion in our training set (compared to the natural class unbalance). A benefit of
our approach is that our training dataset is richer in real minority class exam-
ples, and we show in our experiments that this improves the performance of
state-of-the-art transformer-based text classification models.
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3 Methodology

We propose the Optimized Data Sampling before Labelling (OpSaLa) approach.
It addresses text classification with unbalanced class distribution when vast
amount of unlabeled data is available. The goal is to obtain a minority-class-rich
training dataset. The OpSaLa approach is depicted in Fig. 1. The main differ-
ences to the usual data annotation procedures is as follows:

1. Collect more unlabeled data than you plan to label.
2. Use available external sources relevant to your task to guide the sampling

towards an overrepresented minority class(es) dataset for the training set.
3. Separately, sample randomly the examples for the test set.

Fig. 1. OpSaLa schema. Schema describing the optimized data selection before label-
ing approach (OpSaLa): We create a training set with over-represented minority class
and a randomly sampled test set.

With the first (1) step, we collect as much relevant unlabeled data as possible,
ideally orders of magnitude more than our labeling budget permits to label and
thus construct an unlabeled corpus. In step (2) we use external information
sources to select training instances to be labeled from this unlabeled corpus.
The purpose of step (2) is to guide our sampling in choosing instances which are
more likely to belong to the underrepresented classes before any human-labelling
step is performed. The OpSaLa method does not strictly propose which external
sources of information to use during sampling. These can be as simple as a list of
keywords with which we can filter instances that are more likely to belong to the
underrepresented class. Alternatively, we can use more sophisticated methods;
we may for example use dictionary methods or even existing computational
approaches to produce soft labels for our unlabeled instances. We detail the
external resources used for the experiments in this paper in Sect. 4.1.

Step (3) deals with sampling and labeling our test set, which we also sample
from the gathered unlabeled collection. It is crucial that the test set is sampled
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Table 1. Datasets description in terms of number of annotated instances in the training
and test set as well as distributions of the training and test set. Per-class distributions
are reported in the following order: Acceptable, Inappropriate, Offensive, Violent.

Language Train set
size

Test set
size

Train set
distribution (%)

Test set
distribution (%)

English 51 655 10 759 51.3 / 1.7 / 44.5 / 2.5 71.6 / 1 /26.9 / 0.5

Italian 59 870 10 536 64.9 / 4.6 / 27.3 / 3.2 75.7 / 3.7 / 19.3 / 1.3

Slovenian 50 000 10 000 61.1 / 3.8 / 34.3 / 0.8 66.4 / 1.4 / 31.8 / 0.4

randomly so it retains the natural class distribution of the data. This way, we
can objectively evaluate the inference capabilities of our models on unseen data
which come from the natural, real class distribution. In this work, all methods
are evaluated on this set with the natural distribution of classes, that we call
the Natural test set.

4 Experimental Framework

We perform extensive evaluation of our proposed OpSaLa data sampling app-
roach by comparing it to a train-test split baseline (Sect. 4.3) and to other
commonly-used approaches for handling class imbalance in text classification
(Sect. 4.4): class weighting, minority class oversampling and backtranslation
oversampling. Our experiments are performed on three datasets (Sect. 4.1) using
state-of-the-art transformer language models (Sect. 4.2).

4.1 Datasets and External Resources

We used the proposed OpSaLa approach to construct three labeled hate speech
datasets. We collected social media posts in three languages, English, Italian
and Slovenian, from two social media platforms, YouTube and Twitter. In our
current setting, we trained three probabilistic binary offensive speech classifiers
on publicly available data as external resources for the OpSaLa approach. We
used the FRENK data [9] for Slovenian and English, and a dataset of hate speech
against immigrants for Italian [15]. Although the class distribution for these data
sets is also skewed, we did not resample the data for training the classifiers. The
labels from these classifiers were only used to guide data selection for training
set labeling, so weak (better than random) classifiers were sufficient for this
phase. For the training set selection, we apply the classifiers to our collection
of unlabeled data and select instances with an increased probability of being
offensive. Instances for our test set are randomly selected from a later time
period than the training set. All datasets were then labeled by human observers.
The statistics for the datasets can be found in Table 1.
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In this work, we model the hate speech task as a 4-class problem distinguish-
ing between the following four speech types:

– Acceptable: does not present inappropriate, offensive or violent elements.
– Inappropriate: contains terms that are obscene or vulgar; but the text is

not directed at any specific target.
– Offensive: includes offensive generalizations, contempt, dehumanization, or

indirect offensive remarks.
– Violent: threatens, indulges, desires or calls for physical violence against a

target; it also includes calling for, denying or glorifying war crimes and crimes
against humanity.

Each instance in the datasets is labeled by two annotators. The impact of having
diamond standard labels (i.e., the labels are not consolidated) instead of gold
standard labels has been thoroughly explored in our previous work [8].

4.2 Classification Models

We perform the experiments with Transformer language models. For each lan-
guage, we fine-tune a monolingual language model for hate speech detection on
our dataset. For the English YouTube dataset, we use the English base version of
the BERT language model [5], for Italian YouTube dataset, we use the Alberto
model [13], while for the Slovenian Twitter data, we use the Sloberta model [19].
All the models have similar architectures based on the original BERT model.

Fine-tuning of the language models is performed end-to-end in a standard
way for classification tasks as presented in [5]. We perform the training of the
models using the HuggingFace Transformers library [22]. In this work, we do
not perform any hyperparameter optimization; instead, all the models are fine-
tuned using a common set of hyperparameters. The set of hyperparameters is
the default one used in the Transformers library and was optimized for a large
selection of classical NLP tasks. We train the models for 3 epochs and select the
best model based on the validation set score.

We tokenize the textual input for the neural models with the respective
language models’ tokenizers. After tokenizing all inputs, their maximum length
is set to 256 tokens. Longer sequences are truncated, while shorter sequences are
zero-padded.

We evaluate the performance using three standard machine learning mea-
sures, namely Accuracy, macro-averaged F1 score and F1 score for the minority
class. Additionally, we use the Krippendorff’s Alpha reliability measure. This
metric was originally developed to measure the agreement between human anno-
tators, but can also be used to measure the agreement between a classification
model prediction and a gold standard. The main advantage of Krippendorff’s
Alpha compared to macro F1 score is that it takes ordering of classes into account
and has the agreement by chance as the baseline. The measure ranges form –1
to 1 where –1 denotes systematic disagreement, 1 denotes perfect agreement and
0 denotes agreement by chance.
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4.3 OpSaLa vs. Training on the Natural Distribution

For each dataset, we create an OpSaLa-optimized train set and a Natural test
set on which we evaluate all the trained models, as described in Sect. 3. As a
baseline, we first compare model performance of models trained on OpSaLa-
optimized train datasets to the performance of models trained on a train set
with the natural distribution. For each dataset, we obtain this Natural train
set by resampling our OpSaLa-optimized training set so that it matches the
distribution of the natural test set, which reflects the natural distribution of the
data. To control for the double annotations present in the collected datasets,
we include both labels into the training set during resampling if it does not
violate the distribution requirements. In order to control for the differences in
sizes between the Natural and OpSaLa-optimized training set, we reduce the
size of our OpSaLa training set by randomly removing instances but keeping the
same optimized class distribution. We then test both models on the Natural test
set.

We repeat the experiment 10 times to control for variability in data instances
which are chosen to be included in the resampled training sets. We test the two
settings for statistically significant differences using Mann-Whitney U nonpara-
metric test [11]. We preselect the significance value of the statistical test and set
it to p = 0.01. Results are presented in Table 2.

4.4 OpSaLa vs. Approaches for Class Imbalance Handling

We compare our OpSaLa approach to other commonly used approaches for
alleviating high class imbalance in text classification: class weighting, minority
class oversampling and backtranslation oversampling. To control for the effect
of dataset size on the results, the class oversampling and backtranslation over-
sampling approaches are compared to training on the original OpSaLa-optimized
training set without any undersampling. For this reason, the results are obtained
only on one training sample and are reported separately.

Sample weighting is an approach where the goal is to change the impact of
training instances on the optimization based on the class they belong to. These
weights are applied to the loss function during training. In order to compensate
for the impact of class imbalance, instances of the minority classes are weighted
more than the instances of the majority classes.

The experimental setting mirrors the one described in Sect. 4.4. Using the
Natural train set, we associate instances of each class to their appropriate weight.
More precisely, we weight each instance belonging to a given class with the
inverse of the number of samples in this class: WC = 1

NC
, where WC represents

the weight associated with the instances of the given class and NC represents
the number of samples in the training set for this class. Using this reweighting
schema we train the model on the Natural train set and compare the performance
with the performance on the resized OpSaLa-optimized training set.
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Minority class oversampling randomly selects instances from the minority
class and reintroduces them in the training set. Starting from the Natural train
set, we iteratively sample instances from the minority class and reintroduce them
into the training set thus getting a more balanced class distribution. To control
for the size, the resampling is performed until we reach the same dataset size
as the original OpSaLa-optimized train set. We then train the model on this
oversampled training set and compare its performance to the model trained on
the original OpSaLa-optimized train set. Results are presented in Table 3.

Backtranslation oversampling is a data augmentation approach which ran-
domly selects instances from the minority class, translates them into another
language and then translates them back into the original language. The back-
translated examples are then reintroduced into the training set. Similarly to
the minority class oversampling, we start from the Natural train set, iteratively
sampling instances from the minority class, backtranslating them before adding
them into this training set. To control for the size, this resampling is performed
until the new train set reaches the same size as the original OpSaLa-optimized
train set.

To perform backtranslation of instances, we use the OPUS-MT neural
machine translation models [18]. For each source language in our datasets, we
select the best target language for translation based on the reported ROGUE
scores of the neural machine translation models for the source-target language
pair. For the Slovenian dataset, we select Russian as target language; for Italian,
we select French; and for English, we select Italian to perform the translation.
Results are presented in Table 3.

5 Results

The results (see Table 2) show that training the models on the training set opti-
mized using the proposed OpSaLa approach yields consistently better results
when compared with training on training set with the natural class distribution.
Training on the OpSaLa-optimized training set yields models with better overall
performance as measured with the Krippendorf’s Alpha and macro F1 scores.
We observe statistically significant differences in terms of macro F1 score on all
three datasets and statistically significant differences in terms of Krippendorf’s
Alpha on two out of three datasets. Furthermore, we observe that models trained
on the OpSaLa-optimized training set are better at classifying the underrepre-
sented minority class. We observe statistically significant differences in terms of
F1 score for the minority class on two out of three datasets. Higher accuracy
scores are observed for models trained on training set with natural class distri-
bution, however these must be considered with caution as in highly skewed data
settings accuracy tends to favor models that perform well on majority class and
may be misleading for overall model performance.

We generally observe that training on the OpSaLa-optimized training set
leads to better performing models when comparing training on the optimized
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Table 2. OpSaLa vs. natural class distribution and class reweighting. Results
comparing models trained on OpSaLa-optimized training set with models trained on
Natural training set, and with models trained using class reweighting. ∗ denotes sta-
tistically significant results between OpSaLa and natural distribution while † denotes
statistically significant results between OpSaLa and class reweighting. Both settings
were tested with Mann-Whitney U test.

OpSaLa Natural
distribution

Class
reweighting

YouTube English

Alpha 0.5903 ± 0.006∗† 0.5439 ± 0.008 0.5636 ± 0.006

F1 minority 0.2833 ± 0.031∗† 0.0612 ± 0.048 0.2215 ± 0.043

F1 macro 0.5325 ± 0.015∗ 0.4498 ± 0.011 0.5140 ± 0.012

Accuracy 0.8232 ± 0.004∗† 0.8236 ± 0.001 0.8017± 0.005

YouTube Italian

Alpha 0.5716 ± 0.010∗† 0.5428 ± 0.009 0.5423 ± 0.005

F1 minority 0.4369 ± 0.016∗† 0.3512 ± 0.034 0.3898 ± 0.021

F1 macro 0.6296 ± 0.006∗† 0.5994 ± 0.008 0.5991 ± 0.006

Accuracy 0.8380 ± 0.001† 0.8391 ± 0.002 0.7990 ± 0.004

Twitter Slovenian

Alpha 0.5720 ± 0.023† 0.5676 ± 0.007 0.4665 ± 0.223

F1 minority 0.1916 ± 0.130 0.0239 ± 0.037 0.1103 ± 0.112

F1 macro 0.5546 ± 0.045∗† 0.4904 ± 0.013 0.4652 ± 0.106

Accuracy 0.8054 ± 0.008† 0.8075 ± 0.002 0.7544 ± 0.035

training set against other post-hoc oversampling approaches (see Table 3). On
English and Italian YouTube datasets, the models trained on the OpSaLa-
optimized training set achieve better overall performance as well as better per-
formance for the underrepresented minority class when compared with both
backtranslation an minority oversampling approaches. On the Slovenian Twit-
ter dataset, we observe less clear benefits form training on the OpSaLa-optimized
training dataset.

We also observe that training on the OpSaLa-optimized training set leads
to better performing models when comparing to training with class reweighting.
The results are again consistent across all three datasets, showing that we train
models which perform better overall and are also more accurate when detecting
instances from the underrepresented class. The results are presented in Table 2.

6 Discussion

Our analysis shows that optimizing the training dataset selection using the pro-
posed OpSaLa approach is beneficial for text classification problems where we
observe high class imbalance. The results show that we are able to train models
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Table 3. OpSaLa vs. oversampling and backtranslation. Results comparing
models trained on OpSaLa-optimized training set with models trained on training set,
augmented using minority and backtranslation oversampling. Th two oversampling
approaches are compared to training on the original OpSaLa-optimized training set
without any undersampling. For this reason, results for only one sample are reported.

OpSaLa Minority oversampling Backtranslation oversampling

YouTube English

Alpha 0.5869 0.5416 0.5421

F1 minority 0.3300 0.2121 0.2158

F1 macro 0.5581 0.5047 0.4899

Accuracy 0.8195 0.8227 0.8196

YouTube Italian

Alpha 0.5854 0.5357 0.5347

F1 minority 0.4697 0.4406 0.3681

F1 macro 0.6397 0.6215 0.5913

Accuracy 0.8386 0.8349 0.8314

Twitter Slovenian

Alpha 0.5873 0.5646 0.5589

F1 minority 0.2080 0.3130 0.2857

F1 macro 0.5661 0.5735 0.5528

Accuracy 0.8077 0.8056 0.8055

which perform better for underrepresented classes without sacrificing the overall
performance of the model. Our experiments also show that the OpSala approach
is better compared to state-of-the-art approaches for handling class imbalance in
text classification. Training on the OpSaLa-optimized training set yields better
performing models than training on oversampled training sets with artificially
augmented instances. This observation further implies that for textual data,
examples sampled from the real world cannot be effectively replaced with syn-
thetic ones. Furthermore, by using the OpSaLa approach, we make better use
of time and resources used for labeling as we are able to train better models for
the same labeling budget compared to training on a randomly sampled training
set.

Our results confirm the assumption of the OpSaLa approach: intentional
manipulation of training data sampling leads to better performing models even
though we are effectively biasing the distribution of our training set. We show
empirically that even small changes in the class distribution can have significant
impact on the performance of our final model. The class distributions in our
OpSaLa-optimized training sets do not drastically differ from the natural class
distributions and are far from balanced. Yet they yield a significant beneficial
effect. We assume this phenomenon is due to the optimized training set being
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richer in patterns which are representative of the minority class, leading to better
performance of the final model.

In our application, we used simple probabilistic binary offensive classifica-
tion models to obtain toxicity labels for each instance. A potential downside of
this approach is the bias that the external information sources introduce in the
training set. We argue, however, that this bias is properly controlled for by the
requirement that the test set is randomly sampled. Excessive bias from exter-
nal resources would result in reduced performance on the test set compared to
training on a natural train set.

A potential limitation of our study is the fact that the OpSaLa approach was
not tested against a completely unbiased training set. While our initial exper-
iment compares models trained on the OpSaLa-optimized training set and a
training set with natural class distribution, it should be noted that the train-
ing set with natural class distribution is artificially created from the OpSaLa-
optimized sample which could suggest that some bias is introduced in terms of
the diversity of patterns for each class. Given that our results are tested on a
completely unbiased test set, we argue that the impact of such bias is minimal.
Even so, a follow-up experiment with a randomly sampled and manually labeled
training set could further solidify our conclusions.

7 Conclusion

This work presents OpSaLa, an approach to optimizing the data selection step
before labeling so that minority classes are better represented in the training set.
It is applicable in classification scenarios with severely unbalanced natural class
distributions. We have shown that, given the same annotation budget, training
on an OpSaLa-optimized training set improves the classification performance on
minority classes without reducing the overall performance of the model. It also
outperforms state-of-the-art methods that aim to compensate for class imbal-
ance: class weighting, minority oversampling and backtranslation. Our experi-
ments in hate speech text classification have shown that OpSaLa is effective and
efficient in producing information-rich training datasets that improve the overall
model performance without increasing the data annotation budget.
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S.: Sentiment classification by incorporating background knowledge from financial
ontologies. In: Proceedings of the 4th FNP Workshop (2022, to appear)

18. Tiedemann, J., Thottingal, S., et al.: OPUS-MT-Building open translation services
for the world. In: Proceedings of the 22nd Annual Conference of the European
Association for Machine Translation (2020)
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Abstract. Social media platforms have become popular worldwide.
Online discussion forums attract users because of their easy access,
speech freedom, and ease of communication. Yet there are also possible
negative aspects of such communication, including hostile and hate lan-
guage. While fast and effective solutions for detecting inappropriate lan-
guage online are constantly being developed, there is little research focus-
ing on the bias of compressed language models that are commonly used
nowadays. In this work, we evaluate bias in compressed models trained
on Gab and Twitter speech data and estimate to which extent these
pruned models capture the relevant context when classifying the input
text as hateful, offensive or neutral. Results of our experiments show
that transformer-based encoders with 70% or fewer preserved weights
are prone to gender, racial, and religious identity-based bias, even if
the performance loss is insignificant. We suggest a supervised attention
mechanism to counter bias amplification using ground truth per-token
hate speech annotation. The proposed method allows pruning BERT,
RoBERTa and their distilled versions up to 50% while preserving 90%
of their initial performance according to bias and plausibility scores.

Keywords: Hate speech recognition · Model fairness · Structured
pruning · Compressing transformers

1 Introduction

The spread of offensive speech in social media is considered a precursor of numer-
ous existing social issues, such as the distortion of victims’ portrayal in society,
social tension, dissemination of entrenched stereotypes, provoking hostility and
hate crime, not to mention the mental toll. Rational content moderation and fil-
tering in social networks is the primary tool for preventing these consequences of
offensive speech. Given the number of everyday social media posts, the need for
automated content monitoring looks inevitable. Automated solutions also help
to prevent moral damage and the negative impact of disturbing texts on anno-
tators [20]. Recently, algorithmic moderation has become a ubiquitous tool for
the vast majority of social networks, including Facebook, YouTube and Twitter.
Nevertheless, existing challenges of the hate speech detection task form a stum-
bling block to guaranteeing accurate and unbiased models’ predictions. Context
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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sensitivity and an unclear author’s intention are the main challenges at the
data annotation stage. These factors are the primary sources of the annotators’
disagreement during the dataset creation. And the annotation bias in data influ-
ences learning bias accumulated when training a classifier, so the risk of the
annotators’ bias inheritance increases. In the case of hate speech classification,
there is a risk of unintended identity-based bias. For example, non-hateful texts
containing mentions of gender, nationality or other protected attributes can be
classified as a harmful utterances. The cases of biased decision-making are gov-
erned by law. For example, the social media platforms that signed the EU hate
speech code [1] have to delete posts using offensive and inappropriate language
within 24 h. Given the number of everyday posts to check, automated modera-
tion system feedback delay is highly restricted. For that reason, accelerated and
compressed models receive more attention for the task.

Our paper presents one of the first attempts to analyze biased outcomes of
compression in the context of hate and offensive language detection. In particu-
lar, we analyze the impact of encoder layer pruning in pre-trained Transformer
Language Models (LMs, in short). Removing layers does not require additional
fine-tuning and allows for explaining the contribution of the encoder blocks to
model decision-making. We analyse the layers’ contribution to rational model
decision-making in terms of performance and fairness.1

The main contributions of this work are the following: (i) We measure
identity-based bias in pruned Transformer LMs. (ii) We study which group
of encoder layers (bottom, middle or upper) can be efficiently pruned without
biased outcomes. (iii) We propose word-level supervision in pruned Transformer
LMs as a debiasing method.

The paper is organized as follows. First, we report an analysis of related lit-
erature in Sect. 2. Section 3 provides the definition of pruning strategies, super-
vised token-wise attention learning methodology, and a list of evaluation crite-
ria2. Section 4 provides the results and analysis of bias evaluation in compressed
models.

2 Related Work

Inappropriate language with identity-targeted insults posted online provokes the
dissemination of stereotypes about minority members [9]. To prevent hate and
offensive language from being posted, automated hate speech detectors and filters
are used [3]. The detectors vary depending on the task solved, such as profanity,
individual cyberbullying, sexism, harassment, and othering language recognition.

Early research works approach the tasks using statistical and machine learn-
ing models trained on a suite of linguistic features extracted from text [7,21,23].
Recently, pre-trained Transformer LMs predominated over conventional machine
learning methods [13]. Despite being efficient in a range of tasks associated
1 The implementation of the experiments can be found at https://github.com/upun

aprosk/fair-pruning.
2 In our work, we use token-wise and word-level supervision interchangeably.

https://github.com/upunaprosk/fair-pruning
https://github.com/upunaprosk/fair-pruning
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with hate speech classification, Transformer LMs can lack generalisation ability,
increasing the risks of unintended bias [19,24]. There is little research studying
whether compression could amplify bias, though novel model compression tech-
niques in NLP are constantly being developed. Compression can be achieved, for
instance, through pruning some parts of the Transformer LMs: neurons, heads,
layers [4,14].

At the same time, in other fields, recent research shows that even when
compressed models perform on par with the baselines, the predictions of pruned
models can become considerably disproportionate and skewed. For example, the
image features underrepresented in the training data could be misclassified by
the compressed models [5].

To the best of our knowledge, our work is one of the first attempts to anal-
yse bias amplification in compressed models in the context of a hate speech
classification task. We transfer the hypothesis from the related work [5] to a
compression impact study in Transformer LMs: if the impact of compression is
uniform, then the shift in scores achieved on the texts mentioning a target com-
munity t should also be uniform compared to the overall scores shift β. That
forms our null hypothesis H0:

H0 : βt
0 − β0 = βt

c − βc

H1 : βt
0 − β0 �= βt

c − βc,
(1)

where β is an overall score, the superscript t is used to denote the score on texts
mentioning community t, the subscript 0 is used for the scores of non-pruned
full models, and the subscript c is used to denote the compressed models. We
use fairness-related measures as β. We use the Wilcoxon Mann Whitney test
to decide whether to accept the null hypothesis or an alternative one H1, that
the compression is not uniform and there is a relative difference in fairness for
particular target subgroup t across 10 experiment runs.

3 Methodology

We approach the hate speech detection problem as a supervised multi-class clas-
sification with three classes: hate, offensive, and neutral. In this section, we
first elaborate on Transformer LMs background and our pruning techniques
and explain the motivation behind these compression strategies. Afterwards,
we describe the experimental setup, including data, baselines, and evaluation
criteria.

3.1 Transformer Background and Models

BERT is a Transformer LM known for achieving state-of-the-art results in var-
ious tasks, including hate language detection [12]. The BERT model configura-
tion is defined by the number of encoder layers L and attention heads H. Each
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Fig. 1. End-to-end experimental pipeline. We prune the model by removing the layers,
then use output attentions and predicted labels to evaluate Token F1 score, Accu-
racy/F1 scores, and Subgroup/BPSN/BNSP AUCs.

attention head receives a matrix Xn×d as an input with row-wise token repre-
sentation, where n is the number of tokens in the input sequence, and d is the
representation dimension. The output of the head is an updated matrix Xout:

Xout = WA(XWV ),

where WA = softmax( (XWQ)(XWK)T√
d

) ∈ R
n×n is matrix with attention weights,

and WQ,WV ,WK are projection matrices, the weights updated during the train-
ing. We consider a Transformer LM configuration defined by L encoder layers
(blocks): {l1, l2, . . . lL} and H attention heads.

3.2 Pruning Techniques

Following recently proposed pruning approaches, allowing for probing the impor-
tance of the layers [17], we explore six layer removal strategies: top, bottom,
symmetric, alternate (odd and even), and contribution-based. Finally, we prune
K of the layers selected via the pruning strategy, where K = 2, 4, 6 for architec-
tures with L = 12 layers and K = 1, 2, 3 for L = 6 layers models. The end-to-end
pipeline of experiments is illustrated in Fig. 1.

Each pruning strategy is motivated by the redundancy of the layer that shows
the relevancy of linguistic signals that the layer brings up. The syntactic and
semantic information from the text is captured between the middle and upper
layers [15]. However, the latter are more affected by the fine-tuning [11] and
can be indifferent to decision-making. Therefore, the top pruning strategy for
removing K upper layers (i.e., close to the model output) from pre-trained mod-
els could prevent overfitting issues. Surface features of the text being captured
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in bottom layers are necessary for various text classification tasks, making these
layers more prominent for efficient distillation [22]. Bottom layer removal can,
thus, cause considerable performance loss. We still consider that strategy since
the consequences of such pruning need to be clarified regarding bias. Middle lay-
ers store syntax information of the text [6], but can hold redundant knowledge
from the bottom and upper layers accumulated during the training. To study the
importance of middle layers, we consider a symmetric layers removal strategy by
keeping the X top and bottom layers and removing the K layers in the middle
such that 2X + K = L. Alternate pruning consists of removal K layers starting
from the upper ones; for example, {9, 11} (odd alternate) and {10, 12} (even
alternate) pruning, when K = 2 and L = 12. Alternate pruning is motivated
by the similar attention matrices of the close layers. One of the two consecutive
layers can be dropped since the other holds almost the same information about
the input text.

Lastly, we also estimate each layer’s contribution to the decision-making.
Given an input text sequence si, we measure the contribution of the layer l with
cosine similarity between an input and output representations of the [CLS]-
token, corresponding to the input sequence representation:

φsi(l) = cos(Zl−1, Zl),

where Zl is a vector of hidden states of the layer l, corresponding to the [CLS]-
token3. We average the values over the validation texts. We prune K layers for
each model with the highest contribution scores. Based on the obtained contribu-
tion scores, we consider the following layers removal lists for the models: BERT
{5, 10, 9, 7, 2, 4}, RoBERTa {1, 2, 6, 8, 9, 4}, DistilBERT {2, 3, 4}, DistilRoBERTa
{6, 2, 3}.

The efficiency of pruning models following the observed strategies depends on
the number of pruned layers. The ratio of removed layers decreases the number
of model parameters, resulting in fine-tuning speed-up [17].

3.3 Debiasing Approach

For these experiments, we use attention weights WA to interpret model-decision.
We suggest a debiasing approach that prompts the model to assign the larger
weights to truly important tokens for the prediction, i.e. word-level supervision.
For that, we change the loss computed during the training:

Loss∑ = Losspred + λLossattn, (2)

where Losspred is conventional cross-entropy classification loss, Lossattn is atten-
tion loss, computed based on the rationales provided along with data annota-
tions, and λ is a hyper-parameter regulating the contribution of attention loss
to the overall loss. Here, we use ground truth attention for calculating attention

3 That token is used for classification in Transformer LMs.
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loss, which we introduced above (2) that is also depicted in Fig. 1. We calcu-
late the difference between the final hidden state corresponding to [CLS]-token
and ground truth attentions (rationales). At the same time, using ground truth
attention makes the model focus on truly important tokens (ground truth ratio-
nales) for classification, reducing bias in models [10]. So, we treat fine-tuning
with supervised attention on training set to compensate for the knowledge lost
during compression and simultaneously prevent biased outcomes in compressed
models.

3.4 Experimental Setup

We use state-of-the-art Transformer LMs for our experiments: base uncased con-
figurations (L = 12, H = 12) of BERT [22] and RoBERTa [8], and their distilled
[18] versions (L = 6, H = 12): DistilBERT, DistilRoBERTa. As the baselines,
we use LMs fine-tuned for ten epochs with the batch size 16 and learning rate
2 ·10−5 on training data. We use the benchmark dataset for explainable offensive
and hate language detection HateXplain [10]. That dataset contains 20,148
posts collected from Twitter and Gab, each labelled as hateful, offensive, or
normal. The dataset was annotated through crowdsourcing and contains extra
annotations: hate and offence target communities and textual highlights, marked
by annotators as reasoning for decision labelling, i.e. rationales. Rationales are
represented as binary arrays, with one corresponding to the words marked by
annotators as the ones influencing their labelling decision (offensive, hate or nor-
mal) and 0 for the rest of the words. To our knowledge, no other datasets have
a similar range of annotations. For the experiments devoted to debiasing, we
consider the following ranges of hyper-parameter, regulating the contribution of
attention loss to the overall loss: λ ∈ {10{−2,−1,0}}.

3.5 Evaluation

We use the train, development and test stratified split provided along with
the dataset for the three following steps: models fine-tuning (train), hyper-
parameters search (development), and evaluation (test).

We use a suite of evaluation metrics when establishing the baselines [10].
We report accuracy and macro F1-score reflecting the ability of the model to
distinguish between hate, offensive and normal classes.

We measure identity-based bias in pruned models with the threshold-agnostic
fairness metrics first introduced in [2]. These measures are AUC scores on the
selected subset of the data. In particular, the data is divided into four domains:
D+, D+

t , D−, and D−
t , where D+ are posts labelled as hateful or offensive, D−

are normal posts, and Dt are the posts mentioning target community t. We use
the following metrics: (1) Subgroup AUC = AUC(D+

t ∪ D−
t ), (2) Background

Positive Subgroup Negative BPSN = AUC(D+
\t ∪ D−

t ), and (3) Background
Negative Subgroup Positive BNSP = AUC(D−

\t ∪ D+
t ). Here, Background refers

to the texts not mentioning the community t. BPSN (BNSP) measures the false-
positive (false-negative) rates for the texts mentioning target community t. We
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report aggregated scores for communities computed with Generalized Mean of
Bias (GMB):

GMB (mt) =

(
1
N

N∑
s=1

mp
t

) 1
p

,

where mt is a bias metric calculated for community t, N is a number of communi-
ties, and p is a constant exponent. We set p = −5 to emphasize the contribution
of the lowest values mt to the generalized score. The value p that is used is the
same as the one used by the authors of the dataset [10].

Lastly, we estimate whether the models focus on relevant context when mak-
ing the predictions. For that, we compare the context marked by annotators as
influencing their class labelling decision, i.e. aforementioned (ground truth) ratio-
nales, and the model output rationales (Fig. 1). As for the model output ratio-
nales, we select top-5 tokens with the largest attention weights. Given ground
truth rationales, we compute the token F1-scores calculation based on preci-
sion and recall for model output rationales. The token F1 score refers to the
plausibility suite of metrics [10].

4 Results

4.1 Pruning Impact

We find a typical pattern across the layer removal strategies: pruning leads to
unintended identity-based bias, and the risks of unethical predictions increase
with the ratio of pruned weights. Furthermore, layer removal provokes statisti-
cally significant differences in community-level fairness between a range of com-
pressed and non-compressed models. Table 1 reports the results obtained for
different models when pruning upper layers. The token F1 scores are low; the
rationales annotation procedure can explain that. Most tokens can be labelled as
0, including articles, prepositions and other probably related tokens to the hate
span. Low per-token alignment between predicted and ground truth rationales
also provokes high variance in the Token F1 scores.

We find similar trends according to fairness loss between different pruning
strategies and present results only for the upper layers of pruning. We observe
that the disparate effect of pruning on a target-level basis is less common for
BERT than for RoBERTa. For BERT, the maximum number of target commu-
nities with statistically significant difference scores shift is 4 (out of 10 most
frequent communities in the data). In contrast, for RoBERTa, that number is
maximum and equal to 6. DistilBERT is more robust to pruning in terms of
both fairness and performance. DistilRoBERTa is also less sensitive to pruning,
but only in terms of performance. We also find that the disproportionate effect
of pruning takes place even when maintaining up to 90% of the original perfor-
mance (for instance, that is the case of DistilBERT with 3/6 layers removed).
That shows that there is also another side of pruning: performance loss does not
necessarily go along with fairness loss.
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Table 1. Performance of original and pruned models on HateXplain test set. Layers
correspond to the number of upper layers left. For the pruned models, we report
the number of target communities for which the assumption H0, formulated in (1), of
compression uniform impact, is rejected, which means the compression has increased
the biases.

Model Layers F1 score Token F1 score Count Signif Target Classes

Subgroup BNSP BPSN

BERT 12/12 67.28±0.13 48.583.28 - - -

10/12 65.31±0.17 38.35±4.11 2 0 1

8/12 64.82±0.15 32.57±4.06 2 0 2

6/12 63.46±0.21 34.4±3.87 4 0 2

DistilBERT 6/6 66.19±0.44 43.31±3.42 - - -

5/6 66.08±0.62 42.77±4.13 0 0 0

4/6 65.66±0.51 42.1±3.98 3 0 1

3/6 64.31±0.83 39.81±4.22 3 1 2

RoBERTa 12/12 83.42±0.4 46.64±3.51 - - -

10/12 81.46±0.41 39.37±4.61 4 2 2

8/12 78.67±0.58 38.49±4.23 6 3 4

6/12 77.08±0.33 24.47±4.08 6 5 5

DistilRoBERTa 6/6 82.02±0.36 42.08±5.24 - - -

5/6 81.08±0.4 33.2±4.75 3 0 2

4/6 77.06±0.48 32.76±5.21 3 2 4

3/6 74.05±0.43 32.6±4.61 6 5 6

In Fig. 2a, we plot BERT and RoBERTa Subgroup AUC scores for the ten
most frequent communities in data. We find that pruning disproportionately
affects some subgroups. For example, for RoBERTa with two last layers removed,
there is a subgroup AUC score gain for some subgroups compared to the original
model (Asian, Hispanic); for other cases, the score decreases considerably (Jewish,
Refugee). At the same time, for BERT, the results are mostly stable, except for
Women, Arab, and a few other subgroups. We also observe that there is sometimes
an improvement between compressed and non-compressed BERT and RoBERTa
models. We suggest that this is due to the dynamics of fine-tuning: some lay-
ers could learn wrong features from text and add bias. The results for distilled
models are displayed in Fig. 2b. The general trend is the same for distilled mod-
els: fairness steadily decreases with an increase in the number of removed layers.
Figure 3 shows Subgroup AUC scores when removing bottom layers. We do not
report results for other pruning techniques for the lack of space. The general pat-
tern of fairness loss is the same for the bottom layer pruning strategy.

4.2 Debiasing with Word-Level Supervision

The reported token F1 scores (Table 1, column 3) drop with an increasing num-
ber of pruned layers across all the models. That means that pruned models



374 I. Proskurina et al.

Fig. 2. Community-wise Subgroup AUC scores on HateXplain test set. r∗ = set of
upper removed layers.

pay less attention to important contexts when making predictions. Recall that
critical context is defined by ground truth rationales provided along with data
annotations. We suppose that supervised attention learning can compensate for
that loss during fine-tuning of the pruned model. We conduct the experiments on
the models with the maximum of layers removed: pruned BERT with L = 6 and
RoBERTa and distilled models with L = 3. Table 2 and Table 3 report fairness
scores obtained for the models when pruning the upper and bottom layers. We
present the scores for two strategies for the lack of space; the scores obtained
when pruning other layers fall under the conclusion we draw.

We find that supervised attention reduces bias for all the models; the fairness
improvement is substantial for non-distilled models: +0.172 for RoBERTa and
+0.213 for pruned BERT when using λ = 1 (in comparison to models trained
without attention learning). However, the performance loss is substantial for
values greater than 1, so we do not report that result. For distilled models,
the maximum improvements are +0.028 for DistilBERT and +0.03 for Distil-
RoBERTa.



Measuring Bias in Pruned Transformers 375

Table 2. Performance and fairness scores (Subgroup AUC) of models trained with
word-level supervision. The numbers in parentheses represent the ratio of the layers
preserved when pruning upper layers. λ = 0 stands for non-supervised attention
learning.

Model λ F1 score Token F1 score Subgroup AUC

BERT (6/12) 0 63.46±0.21 34.4±3.87 0.59±0.01

0.01 65.12±0.38 36.3±4.01 0.707±0.11

0.1 65.92±0.24 39.26±3.91 0.784±0.07

1 66.61±0.17 45.54±3.29 0.803±0.12

DistilBERT (3/6) 0 64.31±0.83 39.81±4.22 0.768±0.24

0.01 64.35±0.51 40.4±3.04 0.748±0.16

0.1 65.11±0.7 41.03±3.28 0.794±0.31

1 66.71±0.22 42.67±3.14 0.796±0.28

RoBERTa (6/12) 0 77.08±0.33 24.47±4.08 0.519±0.21

0.01 80.86±0.22 33.19±3.28 0.612±0.29

0.1 78.58±0.23 36.49±4.11 0.681±0.17

1 82.38±0.26 40.52±3.81 0.691±0.14

DistilRoBERTa (3/6) 0 71.05±0.43 32.6±4.61 0.62±0.08

0.01 79.14±0.47 34.41±4.11 0.634±0.04

0.1 81.25±0.33 36.51±3.5 0.635±0.08

1 81.96±0.51 43.02±4.14 0.65±0.09

We also report F1 scores showing how supervised attention learning improves
performance, similar to fairness increase. The scores are on par with the base-
lines when using λ = 1. We show that the debiasing conducted via supervised
attention learning improves all models’ fairness scores.

5 Conclusion

In this work, we conducted two chains of experiments to analyse the effect of
Transformer LMs pruning in the context of hate speech classification tasks. We
performed the experiments on a dataset containing Twitter and Gab data. First,
we analysed the effect of pruning in terms of both fairness and performance loss
for BERT, RoBERTa, and their distilled versions. We also estimated to which
extent the pruned models rely on relevant context when making predictions. Our
results show that removing any layer from Transformer LMs results in fairness
loss even when the performance loss could be negligible. We statistically prove
that there is a deviation in target community-level predictions when removing
the layers from the models. Second, we conduct supervised attention-learning
experiments to reduce bias in pruned models. Our results show that fairness
score improvement depends on the hyper-parameter regulating the addition of
attention loss to the overall loss. The pruned models achieve the best scores
when λ = 1.
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From the theoretical perspective, our work suggests a new research direc-
tion, focusing on fairness loss that should not be ignored when designing and
evaluating compressed models, including the classification task. We also sug-
gest using supervised attention learning to compensate for the knowledge lost
for pruned models. That correspondingly highlights the usefulness of relevant
context annotations when designing the dataset.

The main limitations of our work are caused by the scope of data we use
to study compression impact. Due to the demand for other datasets with sim-
ilar fine-grained supervision, we are working on building new datasets in other
languages. Future work may focus on compression impacts study (tensor decom-
position, quantization, parameters sharing) and other debiasing techniques. The
latter can be applied to the original model before the compression to estimate
the consequences of initial bias in compressed versions. When compared to other
debiasing approaches, the results of current research may serve as the baselines.
The results of our work can also be used for further linguistic analysis, focusing
on functional attributes of text [16].

Acknowledgements. This work was funded by the ANR project Dikè (grant number
ANR-21-CE23-0026-02).
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Fig. 3. Community-wise Subgroup AUC scores on HateXplain test set. r∗ = set of
bottom removed layers.
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Table 3. Performance and fairness scores (Subgroup AUC) of models trained with
word-level supervision. The numbers in parentheses represent the ratio of the layers
preserved when pruning bottom layers. λ = 0 stands for non-supervised attention
learning.

Model λ F1 score Token F1 score Subgroup AUC

BERT (6/12) 0 62.97±0.11 30.5±5.02 0.52±0.09

0.01 62.5±0.18 33.2±4.67 0.54±0.07

0.1 63.25±0.24 34.05±4.47 0.591±0.12

1 65.93 ±0.26 35.77±3.88 0.692±0.54

DistilBERT (3/6) 0 64.22±0.36 37.18±4.04 0.738±0.17

0.01 63.08±0.27 38.07 ±4.71 0.736±0.23

0.1 63.32±0.4 40.11±3.96 0.75±0.09

1 64.1±0.28 40.05±2.88 0.791±0.22

RoBERTa (6/12) 0 78.18±0.32 25.32±4.51 0.683±0.31

0.01 78.77±0.29 29.9±4.42 0.669±0.34

0.1 78.92±0.35 31.54±4.06 0.684±0.28

1 79.98±0.32 39.062.88 0.693±0.31

DistilRoBERTa (3/6) 0 78.13±0.48 34.18±3.85 0.625±0.27

0.01 77.05±0.53 36.05±4.06 0.618±0.14

0.1 78.21±0.41 43.61±3.92 0.626±0.11

1 78.83±0.36 44.5±2.92 0.643±0.15
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16. Röttger, P., Vidgen, B., Nguyen, D., Waseem, Z., Margetts, H., Pierrehumbert,
J.B.: Hatecheck: functional tests for hate speech detection models. arXiv preprint
arXiv:2012.15606 (2020)

17. Sajjad, H., Dalvi, F., Durrani, N., Nakov, P.: Poor man’s BERT: smaller and faster
transformer models. CoRR abs/2004.03844 (2020)

18. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 (2019)

19. Soares, I.B., Wei, D., Ramamurthy, K.N., Singh, M., Yurochkin, M.: Your fairness
may vary: pretrained language model fairness in toxic text classification. In: Annual
Meeting of the Association for Computational Linguistics (2022)

20. Steiger, M., Bharucha, T.J., Venkatagiri, S., Riedl, M.J., Lease, M.: The psycholog-
ical well-being of content moderators. In: Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, ACM, May 2021. https://doi.org/10.
1145/3411764.3445092

21. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for
hate speech detection on twitter. In: Proceedings of the NAACL Student Research
Workshop, pp. 88–93 (2016)

22. Xu, C., Zhou, W., Ge, T., Wei, F., Zhou, M.: Bert-of-theseus: compressing BERT
by progressive module replacing. arXiv preprint arXiv:2002.02925 (2020)

23. Xu, J.M., Jun, K.S., Zhu, X., Bellmore, A.: Learning from bullying traces in social
media. In: Proceedings of the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pp. 656–666 (2012)

24. Yin, W., Zubiaga, A.: Towards generalisable hate speech detection: a review on
obstacles and solutions. PeerJ Comput. Sci. 7, e598 (2021)

https://doi.org/10.18653/v1/P19-1356
http://arxiv.org/abs/1907.11692
https://doi.org/10.1080/10463280340000072
https://doi.org/10.1080/10463280340000072
http://arxiv.org/abs/2004.14448
http://arxiv.org/abs/2006.03669
http://arxiv.org/abs/2012.15606
https://doi.org/10.1145/3411764.3445092
https://doi.org/10.1145/3411764.3445092
http://arxiv.org/abs/2002.02925


Dropping Incomplete Records is (not so)
Straightforward

Rianne M. Schouten, Victoria Taşcău(B), Gabriel G. Ziegler, Davide Casano,
Marco Ardizzone, and Michael-Angelos Erotokritou

Eindhoven University of Technology, Eindhoven, The Netherlands
r.m.schouten@tue.nl, {v.tascau,g.gomes.ziegler,d.casano,m.ardizzone,

m.a.erotokritou}@student.tue.nl

Abstract. A straightforward approach to handling missing values is
dropping incomplete records from the dataset. However, for many forms
of missingness, this method is known to affect the center and spread of
the data distribution. In this paper, we perform an extensive empirical
evaluation of the effect of the drop method on the data distribution.
In particular, we analyze two scenarios that are likely to occur in prac-
tice but are not often considered in simulation studies: 1) when features
are skewed rather than symmetrically distributed and 2) when multiple
forms of missingness occur simultaneously in one feature. Furthermore,
we investigate implications of the drop method for classification accu-
racy and demonstrate that dropping incomplete records is doubtful, even
when test cases are dropped as well.

Keywords: Missing data · dropping incomplete records · skewness

1 Introduction

A straightforward approach to handling missing values is dropping incomplete
records from the dataset [3]. For some forms of missingness, this method is known
to affect the data distribution by creating a shift in the mean of the distribution
and by influencing its standard deviation. In other situations, dropping incom-
plete records merely reduces the dataset size, although this could bring about
new problems such as imprecise statistical estimates or lack of training data
[11,16].

For the student, scientist or engineer, dropping incomplete records allows
to quickly move forward with developing the desired machine learning model.
However, such a model may not live up to its expectations, albeit because after
deployment incomplete cases that are dropped cannot be predicted nor classified.
At the same time, incomplete training data could make the development of an
AI system conceptually or practically impossible [14].

In this paper, we perform an extensive empirical evaluation of the effects of
missing data. The goal of our investigation is twofold. First, we add to exist-
ing knowledge by studying how measures of the center and spread of the data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 379–391, 2023.
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distribution are affected when 1) features are skewed rather than symmetrically
distributed and 2) several forms of missingness occur simultaneously rather than
separately. Both situations are likely to occur in practice but are often not con-
sidered in analyses of missing data problems.

Second, we investigate implications of the drop method for classification accu-
racy. In the study of missing data, incomplete datasets are generally randomly
split into training and test data [7–9]. Although such an approach does justice
to a development process that should align with the situation after deployment,
it prohibits the direct investigation of effects of missing data and only allows the
study of imputation methods. On the other hand, when test data is a specific
selection of complete records in an incomplete dataset, the distribution of the
training data may differ from test or application data, creating issues such as
concept drift [22]. In this paper, we demonstrate how missing data shifts the
observed data distribution, that some forms of missingness behave unexpect-
edly when the distribution is skewed and that classification accuracy is affected
whether or not you drop incomplete test records.

2 Background

2.1 Preliminaries

We consider a d-dimensional space X = {X1,X2, ...,Xd−1,Y} and let X =
(X1,X2, ...,Xd−1, Y ) be a random variable taking values in X . Note that we
write Xj and Y to distinguish predictor variables from the assigned outcome
variable, but we assume that all variables have a joint distribution P (X). Next,
we define a complete dataset D ∈ R

n×d = {x1,x2, ...,xn} to be a collection of n
independent and identically distributed realizations of X.

Furthermore, we define a missing data indicator R ∈ {0, 1}n×d that reveals
whether values in D are missing or not. Here, rij = 1 when dij is observed and
rij = 0 when dij is missing for all i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., d}. We dis-
tinguish the hypothetically complete dataset D from the masked, or incomplete,
dataset by denoting the latter with by D̃ = {x̃1, x̃2, ..., x̃n}.

In this paper, we investigate the effect of dropping incomplete records for
various missing data scenarios. Essentially, the procedure discards all observa-
tions that have at least one missing value. We denote the resulting dataset by
D̄ = {x̃i|ri = 1}; the vector of indications for case i should be an all-ones vector.
Denoting the sample size of the dropped dataset by n̄, the overall missingness
percentage is defined as ρ = 100 n̄

n .

2.2 Missing Data Mechanisms

In the study of missing data, the process that governs the probability that certain
values are missing is called the missing data model or missing data mechanism
[3,11,15]. It is helpful to understand which missing data mechanisms are present
in order to choose appropriate missing value treatments. Rubin [15] distinguishes
the following three missing data mechanisms.



Dropping Incomplete Records is (not so) Straightforward 381

First, data is said to be Missing Completely At Random (MCAR) if the prob-
ability of being missing is unrelated to observed and missing data distribution:
P (R|Dobs,Dmis, ψ) = P (R|ψ). With MCAR every data value has the same, fixed
probability of being missing, denoted by ψ. Consequently, observed and missing
data distributions will be similar, and a method such as dropping incomplete
records will allow for the estimation of unbiased statistical parameters [3].

Second, data is Missing At Random (MAR) if observed data governs the
missingness probabilities: P (R|Dobs,Dmis, ψ) = P (R|Dobs, ψ). Here, observed
and missing data distribution may be different and statistical inferences based on
observed data alone may be severely biased. However, under the MAR assump-
tion, observed data contains all information necessary to model the missing data;
P (Dmis|Dobs, R). This concept of ignorability is an important starting point for
many imputation methods [5].

When data is neither MCAR nor MAR, information about the missing values
is missing from the dataset. Then, data is Missing Not At Random (MNAR). In
other words, the probability to be missing depends on the missing value itself:
P (R|Dobs,Dmis, ψ).

2.3 Missing Data Types

The missing data model can be any function that maps a numerical value to a
probability: f : x �→ p, with p ∈ [0, 1]. In practice, when performing experiments
with missing data, the logistic or sigmoid function flogistic(x) = 1

1+exp−x is a
convenient choice, partially because for any normally distributed input vector
x = {x1, x2, ..., xn}, the sum of n Bernoulli trials with success probabilities
p = {p1, p2, ..., pn} equals np̄ with p̄ = 1

n

∑n
i=1 pi = 0.5 [13]. In practice, this

means that 50% of the records will be incomplete.
Recently, [17] proposed a multivariate amputation procedure that allows for

easy control of missing data characteristics such as missing data mechanisms,
percentage and patterns (every unique row in R is considered a pattern). In
addition, they distinguish four versions of the logistic function that allows the
researcher to control what part of the data distribution will be masked. These
versions are called missing data types and can be seen in Fig. 1.

The right missingness type is the normal logistic function and assigns high
probabilities to large values: fright(x) = flogistic(x). The opposite is the left miss-
ingness type: fleft(x) = flogistic(−x). Furthermore, tail and mid missingness
assign high probabilities to values in the tails and center of the distribution
respectively: ftail(x) = flogistic(|x| − 0.75) and fmid(x) = flogistic(−|x| + 0.75).
Here, 0.75 is a fixed value that ensures ρ = 50% missingness (other percent-
ages are easily obtained by shifting the logistic functions horizontally). All these
missing data types reflect real-world scenarios such as survey questions not being
answered for extreme values or medical tests not being executed for ‘average’
patients. In Sect. 5, we show that the effect of dropping incomplete records varies
for these missingness types [17,18].
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Fig. 1. Four missing data types according to [17]. Standardized weighted sum scores
are linear combinations of observed data. In our notation, we use the general term x.

3 Related Work

Handling missing values by dropping incomplete records is also known as
complete-case analysis or listwise deletion. Especially in the domain of statis-
tics, the effect of complete-case analysis on the validity of statistical estimates
has been studied substantially [2,4,10,11,21]. In the machine learning domain,
dropping incomplete records is generally accepted if missingness percentages are
small or missing values are evenly divided over the data distribution [1,8]. How-
ever, it is not part of empirical studies simply because dropped test cases cannot
be evaluated [7–9].

We consider our paper to build on work by [18]. Schouten et al. [18] investi-
gate whether the correlation between data features influences the effect of missing
data on estimates of the mean, standard deviation and correlation. They find
that for an estimate of the mean, when data correlations are small, the effects
of MAR missingness converge towards those of MCAR missingness; in contrast,
for large data correlations MAR behaves like MNAR.

Furthermore, [18] compare the effects of right, left, tail and mid missingness
types. They empirically show that right and left missingness affect the cen-
ter of the distribution, whereas tail and mid missingness affect the spread of
the distribution. The larger the data correlation, the more these effects appear.
These results are interesting because they show that for some forms of MAR and
MNAR missingness, depending on the statistical quantity of interest, dropping
incomplete records may not be as harmful as we may think.
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In this paper, we evaluate the behavior of missing data for two scenarios
that are likely to occur in practice but have not been studied empirically: 1) the
effect of skewness and 2) the simultaneous presence of multiple mechanisms. We
furthermore investigate the drop method from a machine learning point of view
by analyzing its effect on classification accuracy.

4 Experimental Design

We design two experiments. First, we perform a synthetic data experiment to
investigate the effect of skewness. Thereafter, Sect. 4.1 outlines our experiments
with a real-world, public dataset. All our experimental code and results are
available at https://github.com/Research-Topics-in-Data-Mining/missingness-
effect-complete-dataset.

Synthetic dataset generation is done by drawing a dataset H with n = 10 000
observations from a multivariate normal distribution X ∼ N (μ,Σ) with mean
vector μH = [10, 10] and covariance matrix ΣH = [1, 0.5; 0.5, 1]. In a copy
H ′ = H we then create right-directed skewness in the first feature by squar-
ing all values larger than 3 standard deviations from the center. Formally, for
i ∈ {1, 2, ..., n}, Ai = (Hi

1)
2 if Hi

1 > fmean(H1) + 3fstd(H1) and Ai = Hi
1 other-

wise. Then, H ′
1 = A1 ∩ A2 ∩ ... ∩ An. The amount of skewness can be calculated

by fskew(Dj) = 3(fmean(Dj) − fmedian(Dj))/fstd(Dj) [13]. With our approach,
the average skewness is 0.11.

To ensure fair comparison between datasets H and H ′, we standardize both
datasets into D and D′ respectively such that μD = μD′ = [0, 0] and ΣD =
ΣD′ = I−1

2 . Subsequently, for both D and D′ separately, we generate ρ = 50%
missingness in the first feature for all combinations of missing data mechanisms
and the four missingness types; resulting in 9 scenarios: MCAR, 4 × MAR,
4 × MNAR. MAR missingness is created by using the observed values in the
second feature. For the exact procedure, we apply the multivariate amputation
procedure implemented in function ampute [17] in R.

We evaluate effects of missing data on the center and spread of the distribu-
tion by calculating the difference between the dropped and the complete dataset
for two measures of the center, the mean and median, and two measures of the
spread, the standard deviation and interquartile range. We do this for the skewed
and non-skewed data separately. For instance, the mean shift for the non-skewed
data is ϕmean shift non-skewed = fmean(D1)−fmean(D̄1). We repeat the experiment
T = 1000 times.

4.1 Real-world Data Experiment

The real-world public Breast Cancer dataset1 [12,20] contains 10 predictor fea-
tures and 1 binary outcome variable for n = 569 cases. We generate a simple
missing data pattern where missing values occur in one feature. Specifically, we

1 https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic).

https://github.com/Research-Topics-in-Data-Mining/missingness-effect-complete-dataset
https://github.com/Research-Topics-in-Data-Mining/missingness-effect-complete-dataset
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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decide to ampute smoothness based on observed data in feature symmetry ; the
two features have a correlation coefficient of 0.6 and smoothness has a medium
importance in a Random Forests (RF) classification model.

We investigate the effect of the simultaneous occurrence of missing data
mechanisms. Note that such a concurrent existence can happen in several ways.
For instance, multiple patterns exist where each pattern follows a different mech-
anism, or the missingness probabilities come from both observed and unobserved
data. We choose an option where missing values occur in one feature; yet for each
mechanism some other subsection of the data is used to determine which cases
should be amputed. We use the implementation of the multivariate amputation
procedure in Python: pyampute [19]).

Specifically, MCAR, MAR and MNAR mixtures are created by varying the
missingness percentages for each mechanism ρmcar, ρmar, ρmnar ∈ {0, 10, 20}.
Consequently, we obtain 26 configurations (the scenario 0-0-0 will not gener-
ate any missing values), where some configurations contain a single mechanism
and others mixtures of 2 or 3 mechanisms. We sequentially perform the experi-
ment for right, left, mid and tail missingness types (thus, a MAR-MNAR mixture
follows the same type), and repeat every simulation scenario T = 1000 times.
Our evaluation metrics are the same as the ones described for the synthetic data
experiment in Sect. 4. The true mean, median, standard deviation and interquar-
tile range of the complete smoothness feature are 0.096, 0.096, 0.014 and 0.018
respectively.

Next, we investigate implications of the drop method for classification accu-
racy. In this study, we apply random forests using the Scikit-learn library in
Python with a maximum tree depth of 3 and no tuned hyperparameters. This
random forest has an accuracy of 0.936 on the complete dataset. The incomplete
dataset is analyzed using two scenarios as shown in Fig. 2:

a) An incomplete dataset is randomly split into training and test data, and
incomplete records are dropped from both sets.2

b) The test data is a selection of complete records in an incomplete dataset.
During development, incomplete cases will be dropped from the training
data.

Although the first scenario is not applicable during deployment, it may still
reveal interesting patterns since the smoothness feature is skewed with a factor
0.10. Consequently, different missingness types may affect the observed data
distribution differently. The second scenario is generally not applied in practice
(at least, we hope so), but provides an excellent way of studying the extent to
which distribution shift affects classification accuracy.

2 N.B.: in the general case, this may affect training and test distribution, but it is
unclear how. Homogeneity might increase, but the data might also become more
scattered and hence variance might increase. Since the distribution can be affected in
a wide variety of possible ways, we will simply ignore this effect; note that technically
this might affect the definition of accuracy.
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Fig. 2. Two scenarios for splitting incomplete data into train and test set.

Fig. 3. Mean shift after dropping incomplete rows for 9 missing data scenarios.

5 Results

All results can also be found in our Github repository.

5.1 Results for Skewness

Figure 3 shows the mean shift for all 9 simulation settings; symmetrical data in
red and skewed data in green. Without skew, results confirm existing knowledge
that MCAR, and mid and tail types of MAR and MNAR missingness do not
create mean shift. In contrast, left and right types of MAR and MNAR missing-
ness shift the mean to the right (positive shift) and to the left (negative shift)
respectively. MNAR generates more shift than MAR missingness.

When data has right-directed skewness, left and right missingness types cre-
ate less mean shift than in the case of symmetrical data (compare the green and
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Fig. 4. Standard deviation shift after dropping incomplete rows for 9 missing data
scenarios.

red boxplots). Interestingly, for skewed data, the average mean shift is approx-
imately similar for MAR and MNAR, although there is more variation across
simulation repetitions for MAR. In addition, for skewed data, mid and tail miss-
ingness types induce mean shift such that mid missingness mimics left and tail
missingness mimics right missingness.

Evaluating the shift in standard deviation for symmetrical data does not give
unexpected results (see Fig. 4). Without skew, MCAR does not affect the spread
of the distribution, while mid and tail missingness types respectively increase
and decrease the standard deviation. Furthermore, for both left and right types
of missingness the standard deviation is reduced.

Interestingly, for left missingness, right-directed skewness increases the stan-
dard deviation rather than decreasing it (compare green with red boxplots in
second panel). Furthermore, when data is skewed, effects of missing data on
the standard deviation vary more between simulation repetitions, especially for
MCAR and MAR mechanisms. For measures of the median and interquartile
range, results are similar as in Figs. 3 and 4 but less extreme.

5.2 Results for Mixtures of Mechanisms

We present the average mean shift over T = 1000 repetitions for mixtures of
MCAR, MAR and MNAR mechanisms in Fig. 5. Naturally, for right missingness,
we see that the higher the missingness percentage, the more the mean shifts.
This increase is larger for MNAR than for MAR missingness. For instance, for
10% MNAR missingness (center of the figure), the increase per 10% of MAR
missingness is around 0.0005 (from light orange to dark orange). In contrast,
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Fig. 5. Average mean shift for mixtures of MCAR, MAR and MNAR mechanisms.
MCAR missingness is fixed to 10%.

for 10% MAR missingness (the very light orange bars), the increase per 10%
of MNAR missingness is around 0.001. On average, the mean shift for MNAR
missingness is twice the amount of the shift for MAR missingness.

Figure 5 demonstrates that the effect of combining multiple mechanisms is
additive (rather than, for example, multiplicative). For instance, compare the
mixture of 10% MNAR and 10% MNAR (medium orange, center of the figure)
with a single MNAR mechanism of 20% (light orange, right side). It turns out
that the former creates an approximate mean shift of 0.001 + 0.0005 = 0.0015;
the latter shifts 2 · 0.001 = 0.002. In addition, a higher missingness percentage
may not necessarily result in more mean shift. For instance, the combination of
10% MNAR and 20% MAR (dark orange, center of the figure) shifts the mean
with 0.001+2 · 0.0005 = 0.002, but a pure 20% MNAR mechanism has a similar
effect. Our findings confirm that not only the missingness percentage determines
the extent to which the mean shifts, but especially the occurrence of certain
(combinations of) missingness mechanisms play a role.

Figure 6 displays the effects of left and mid missingness types on the standard
deviation. Similarly as when we evaluated mean shift, combining multiple mech-
anisms has an additive effect. For instance, for mid missingness, 10% MNAR
combined with 20% MAR increases the standard deviation with 0.0008. A pure
20% MNAR mechanism induces the same amount of shift.

Interestingly, a pure left-type of MNAR missingness decreases the standard
deviation (light orange bars show negative shift). In contrast, combinations of
MNAR and MAR missingness increase the standard deviation. Here, it seems
that the MNAR component behaves as if the smoothness feature is symmetrically
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Fig. 6. Average standard deviation shift for mixtures of MCAR, MAR and MNAR
mechanisms. MCAR missingness is fixed to 10%.

distributed, whereas the MAR component seems to be affected by the right-
directed skewness in the feature (see Sect. 5.1). This may be explained by the
fact that for MAR, missingness probabilities depend on observed data in the
symmetry feature, which is skewed as well.

5.3 Results for Classification Accuracy

We present results for our investigation of the effect of the drop method on
classification accuracy in Table 1. We present the correlation between the abso-
lute shift and classification accuracy. Interestingly, when incomplete data is ran-
domly split in training and test data and incomplete records are dropped in
both datasets (split scenario a in Fig. 2), all significant correlations are positive
(orange values), which means that a larger shift will increase the classification
accuracy. This finding is rather counterintuitive, but there may possibly be an
effect on the symmetry of the data such that records that are difficult to predict
are dropped from both training and test data.

When the test data is a selection of complete records from an incomplete
dataset (split scenario b in Fig. 2), all significant correlations are negative (teal
values). Here, the larger the shift, the lower the classification accuracy. These
findings confirm intuitions; if training data has a different data distribution than
test data, classification accuracy will decrease.
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Table 1. Correlation between the absolute mean and standard deviation shift and
classification accuracy for two train-test split scenarios. MCAR = 0%, SEs are 0.011 in
all scenarios, non-significant correlations are italicized. Orange and teal values present
an increase and decrease in accuracy respectively.

sigmoid mean shift std shift

accuracy accuracy

a b a b

right 0.009 -0.165 0.009 -0.081

left 0.254 0.006 0.017 0.014

tail 0.015 -0.046 0.107 -0.009

mid 0.123 -0.034 0.191 -0.088

6 Discussion and Conclusion

Dropping incomplete records is straightforward; at least when there is no doubt
about the effects on the center and spread of the data distribution. However,
we demonstrated that when data contains right-directed skewness, tail and
mid missingness types induce mean shift, left missingness increases rather than
decreases the standard deviation, and the effects of MAR missingness fluctuate
substantially. We furthermore showed that when multiple missing data mecha-
nisms occur simultaneously, their effects on the data distribution are additive.

We evaluated the relation between dropping incomplete records and classifi-
cation accuracy using a Random Forests (RFs) classification model. In reality,
RFs are able to handle missing data by making surrogate splits or by treating
missing values as a separate category. Moreover, [6] connect RFs to Probabilistic
Circuits and propose Generative Forests (GeFs); a family of models that could
handle incomplete features internally. Nevertheless, in this paper, our interest
is not in creating the best classification model, but rather to show relations
between data distribution shift and accuracy.

We found that classification accuracy decreases when training and test
data are not identically distributed. Alternatively, when incomplete records are
dropped before making a train-test split, accuracy increased. A possible expla-
nation is that in such a situation, records that were difficult to predict were
dropped. Note that classification accuracy changes when a record crosses the
decision threshold; subtle differences in accuracy may be better detectable by
evaluating a prediction model.

In sum, we showed that dropping incomplete records alters the data distribu-
tion considerably; some changes are straightforward, others are not. In general,
our findings have implications for popular imputation methods such as mean
imputation since imputations based on shifted data may transform the data
structure even more.
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6.1 Limitations and Future Work

This paper expands upon a long tradition of missing data research, historically
driven by statisticians more than data miners. We explore the three canonical
missing data mechanisms MCAR, MAR and MNAR as proposed by Rubin [15],
and consider the four missing data types from [17] as also illustrated in Fig. 1.
We believe that the conclusions we draw here are valid and well-supported by
a rigorous set of experiments, but these experiments do come with some limi-
tations. The experiments are run on variations of only a single dataset, apart
from the class label all attributes are real-valued, the experiments employ only a
single classifier, only a single feature has missing values, only unimodal distribu-
tions are investigated, further parameter sensitivity analyses could be imagined
(for instance, do the conclusions change when the missingness rate is varied, or
when missingness depends on the class label?). It is apparent that more work
on this topic is to be done in the (near) future.
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Abstract. In anomaly detection, a prominent task is to induce a model
to identify anomalies learned solely based on normal data. Generally,
one is interested in finding an anomaly detector that correctly identi-
fies anomalies, i.e., data points that do not belong to the normal class,
without raising too many false alarms. Which anomaly detector is best
suited depends on the dataset at hand and thus needs to be tailored.
The quality of an anomaly detector may be assessed via confusion-based
metrics such as the Matthews correlation coefficient (MCC). However,
since during training only normal data is available in a semi-supervised
setting, such metrics are not accessible. To facilitate automated machine
learning for anomaly detectors, we propose to employ meta-learning to
predict MCC scores using the metrics that can be computed with nor-
mal data only and order anomaly detectors using the predicted scores
for selection. First promising results can be obtained considering the
hypervolume and the false positive rate as meta-features.

Keywords: Anomaly Detection · Meta-learning · AutoML

1 Introduction

Automated machine learning (AutoML) [1] refers to the vision of automating the
data science process emerging from the unmatched demand for expertise in data
science and machine learning in particular. A substantial part of AutoML litera-
ture is concerned with the selection, configuration, and composition of machine
learning algorithms tailored for a certain task, consisting of a dataset and a per-
formance measure [2]. After first promising results for standard (binary or multi-
class) classification and regression tasks on tabular data could be achieved [3–5],
AutoML quickly spread to further data types, learning problems, and tasks, such
as image classification [6], multi-label classification [7], remaining useful lifetime
estimation in predictive maintenance [8], online learning [9], natural language
processing [10], and multi-modal data [11]. While the aforementioned extensions
of AutoML require supervision in terms of labels being provided for fitting the
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models, more recently, AutoML methods for dealing with unsupervised or semi-
supervised machine learning tasks are proposed as well.

One such problem class deals with the detection of outliers, sometimes
also referred to as anomalies. While performance complementarity can also be
observed for anomaly detectors, i.e., for different datasets, different anomaly
detection methods perform best, this setting imposes severe challenges for adopt-
ing AutoML methods to determine the most suitable anomaly detection method.
First, if the provided dataset contains both classes at all, i.e., normal and anoma-
lous, their frequency is typically unbalanced. More specifically, it is usually
assumed that anomalies occur only with very low frequency. Second, the dataset
at hand may comprise no anomalies at all, and the anomaly detection method is
meant to detect any new data points that deviate from the training data and thus
represent anomalies [12,13], e.g., in intrusion detection. In the following, we refer
to this setting as being semi-supervised. For commonly available sampling-based
AutoML approaches, the latter data situation is difficult to handle since they rely
on probing sampled algorithms and hyperparameter values for the given data. For
example, a solution candidate is evaluated via cross-validation and the average
performance for a performance measure of interest is observed, e.g., error rate for
classification or mean squared error for regression. Obviously, in the domain of
anomaly detection, we are interested in finding a model that can detect anoma-
lies reliably but also classifies normal data points as such. Performance measures
such as Matthews correlation coefficient (MCC) or the area under the ROC curve
are considered to account for the imbalance between normal and anomalous data
points. However, these performance measures require the presence of both types
of data points, normal and anomalous data points, such that they cannot be com-
puted in the semi-supervised setting mentioned above.

In this paper, we investigate the use of meta-learning to overcome the issue
of evaluating algorithms and their hyperparameter values for a performance
measure of interest, which may require data points of both classes. To this end,
we assess the predictive power of two metrics that can be computed with normal
data points only: hypervolume of anomaly detectors and the false positive rate
(FPR). In our experimental section, we find promising results when utilizing
these metrics in terms of meta-features for landmarking and feature descriptions
of anomaly detectors. In the following, we formally introduce the problem that
we target in this publication.

2 CASH for Semi-supervised Anomaly Detection

Let X and Y = {0, 1} be an instance space and a target space respectively. Fur-
thermore, we assume instances x ∈ X to be (non-deterministically) associated
with a label y ∈ Y. In the setting of anomaly detection, we associate instances
x with y = 1 in case it is an anomaly and y = 0 if it is normal. Moreover,
anomalies are assumed to occur only seldomly, i.e., y = 1 is a minority class,
and during training only normal data points are provided. This setting is also
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occasionally referred to as semi-supervised anomaly detection [12]. For conve-
nience, let {0} =: Y0 ⊂ Y. We seek to learn a hypothesis h : X → Y from
training data given in the form of D = {(xi, yi) ∈ X × Y0 | 1 ≤ i ≤ n} that is
able to discriminate well between normal and anomalous data points.

Let be A := {A(1), A(2), . . . A(m)} a set of anomaly detectors with correspond-
ing hyperparameter spaces Λ(1), Λ(2), . . . Λ(m). Additionally, a dataset of training
instances D := {(X ,Y0)}n

i=1, and a performance measure m : Y×Y → R, we aim
to find the most suitable anomaly detector A∗ together with its hyperparameter
setting λ∗ with respect to m:

A∗
λ∗ ∈ arg max

A(i)∈A,λ∈Λ(i)
E(x,y)∼P

[
m(A(i)

λ (D, x), y)
]
, (1)

where A
(i)
λ is trained on training data D and makes a prediction on x which is

then compared to the ground truth y and without loss of generality m is to be
maximized. This problem is better known as the combined algorithm selection
and hyperparameter optimization (CASH) problem as initially formalized in [3].

To find such an A∗
λ∗ , in sampling-based AutoML systems, one would split

the dataset D into subsets of training and validation data Dtrain and Dval,
respectively, and use the performance on the validation data as an estimate of
the true generalization performance:

Â∗
̂λ∗ ∈ arg max

A(i)∈A,λ∈Λ(i)
EDtrain,Dval=(xj ,yj)sj=1

⎡
⎣1

s

s∑
j=1

m(A(i)
λ (Dtrain, xj), yj)

⎤
⎦ . (2)

3 Related Work

To the best of our knowledge, there are no other publications that focus on the
CASH problem in a semi-supervised setting. Therefore, we refer to approaches
that target related problems, i.e., unsupervised approaches and semi-supervised
hyperparameter optimization approaches in this section.

In [14], Zhao et al. present MetaOD, an approach to unsupervised outlier
model selection. It is based on the construction of meta-features for a cor-
pus of training datasets with outlier labels and the performance of over 300
models for each dataset. Similarly to our evaluation, Zhao et al. use the meta-
features and performance values to train a performance predictor, which is used
to choose high-performing models for new datasets. However, we focus on the
semi-supervised setting of outlier detection rendering landmark features meant
to capture information regarding potential outliers not applicable.

Putina et al. introduce AutoAD [15], a framework with the same purpose as
MetaOD but without utilizing meta-learning. They measure the performance of
an anomaly detector via metrics applied to the data before and after removing
the top-ranked anomalies predicted by the detector in question. Again, this app-
roach is not applicable to our semi-supervised setting as the employed metrics
imply the existence of anomalies in the tails of the data distribution. We do
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not assume any anomalies being present in the datasets for which an anomaly
detector is to be optimized. Other approaches like PyODDS [16], TODS [17],
AutoOD [18], and LSCP [19] utilize supervised performance metrics rendering
them not applicable to our semi-supervised setting too.

Tax et al. have a body of works evolving from the idea of the hypervolume
of one-class classifiers as being the hypervolume of the subspace that a one-
class classifier predicts to belong to the target class [20–22]. In [21], they aim to
optimize the hyperparameters of the support vector data description. For this
purpose, they estimate the hypervolume of the support vector data description
and use a linear combination of this estimation and the FPR (error on the
target class) as performance metric for optimization. The linear combination
encompasses a trade-off parameter that has to be set manually.

Our approach is motivated by this idea to a large extent. However, we focus
on the more general CASH problem. To this end, we evaluate the utilization of
the hypervolume and the FPR as features description of anomaly detectors and
for landmarking purposes. Furthermore, we train a meta-model for the prediction
of the quality of anomaly detectors on unseen datasets.

4 Meta-Learning for Selecting Anomaly Detectors

According to the assumption that D only contains normal data, i.e., data points
of the form (xj , yj) with yj ∈ Y0, performance measures that quantify how
accurately an anomaly detector may identify anomalies, e.g., via MCC, precision,
recall, or AUC, cannot be assessed for evaluation. Hence, such measures can
neither be employed by AutoML systems to search for the most appropriate
anomaly detector for a given data set.

To overcome this issue, we aim to substitute the performance measure m
in Eq. 2 by a surrogate model m̂, which provided a feature description fA ∈
R

k of algorithm A(i) together with its hyperparameter setting λ and a feature
description fD ∈ R

l of the dataset D in question predicts the measure of interest.
To this end, the surrogate is built on datasets for which anomalies are actually
known, and hence a performance value can be computed. Then, we can substitute
m by m̂ in Eq. 2 to obtain

Â∗
̂λ∗ ∈ arg max

A(i)∈A,λ∈Λ(i)
m̂(fA(A(i), λ), fD(D)).

In the following, we consider mainly two types of meta-features to describe
algorithms as well as datasets (in terms of landmarking features): hypervolume
and FPR.

Hypervolume The hypervolume can be considered as a means to describe
how tightly an anomaly detector fits the normal data points. With a smaller
hypervolume, chances are low that anomalies are missed, whereas a larger
hypervolume may lead to anomalies not being identified as such.
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False Positive Rate The FPR assesses how many data points in the training
data are falsely classified as anomalies, i.e., the anomaly detector would raise
a false alarm in this case.

It is easy to see that minimizing both the hypervolume and the FPR conflicts
with each other. Therefore, we seek to find a method yielding a suitable trade-off
between the two measures.

5 Experimental Evaluation

In the following, we assess the predictive power of the hypervolume and the
FPR for the task of selecting a suitable anomaly detector for an unseen dataset.
Particularly, we try to answer the following research questions:

RQ1 Does the combination of the hypervolume and FPR meta-features yield
an advantage over utilizing only one of the features?

RQ2 Is the combination of the hypervolume and FPR meta-features reasonably
informative to select configurations of anomaly detectors?

To answer these research questions, we consider a linear combination of the
features to order anomaly detectors and evaluate the general usefulness of these
metrics in terms of a feature description of the detectors. Furthermore, we train
a meta-model to predict the MCC score of anomaly detectors. This model gets as
input landmarking features resulting from the hypervolume and FPR of a fixed
portfolio of anomaly detectors and the hypervolume and FPR of the anomaly
detector in question.

Figure 1 shows the process that we follow for our experiments. We contin-
uously refer to this figure in the course of this section. All experiments of the
evaluation were executed on virtual machines with Ubuntu 20.04.4, 16 cores
(Intel Xeon E5-2695 v3), and 128 GB RAM. Sections 5.1 and 5.2 elaborate on
the assimilation of the meta-learning dataset and a correlation analysis, respec-
tively. Thereafter, Sect. 5.3 discusses the results of the evaluation.

5.1 Meta-learning Dataset Assimilation

We base our meta-learning datasets on a number of datasets for outlier detec-
tion. The source of these datasets is the collection of Tax et al. [24]. The
estimation of the hypervolume of anomaly detectors, which we explain in the
context of the corresponding activity, scales poorly with an increasing number
of dimensions. Thus, we only select those datasets that have eight features or
less, resulting in 15 Base Datasets, which can be inferred from Table 1. We
execute the Meta-learning Dataset Assimilation activity iteratively for all
these datasets.

One of our basic assumptions is that outliers are the minority class (cf.
Sect. 2). Not all of the datasets reflect this assumption. Thus, we Sub-sample
Outliers to ensure that anomalies constitute between 5% and 10% of the total
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Fig. 1. BPMN Diagram [23] of the Experiments

dataset. We do this only for those datasets, where outliers originally amount
to more than 10% of the dataset. To Create the Train and Test Datasets,
we shuffle the Base Dataset and perform a stratified split into Train (70%)
and Test Datasets (20%). The remaining 10% are kept for future experiments
that are not in the focus of this publication. Furthermore, we remove all outliers
from the Train dataset to match our semi-supervised setting. Lastly, we scale
the Train and Test Datasets by subtracting the mean and scaling the features
independently to the interquartile range with respect to the Train Dataset.

Figure 1 shows that the control flow forks at this point into the Construct
Landmark Dataset and Construct Detector Dataset activities. These activ-
ities extract our meta-features, which are meant to characterize datasets and
anomaly detectors, respectively.
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The landmark features are the hypervolume and the FPR of the Anomaly
Detectors provided by PyOD1 [25] in their default configuration. Here, we
exclude those algorithms that do not finish after one week of runtime for each
dataset resulting in at most 18 Anomaly Detectors per Base Dataset.

The estimation of the hypervolume that a model spans with respect to a cer-
tain dataset follows the approach of Tax et al. [22]. Correspondingly, we fit the
smallest hyper-sphere around the train data and generate 35 million uniformly
distributed data instances within this sphere. We train the Anomaly Detectors
on the Train Dataset. The fraction of instances classified as belonging to the
target class is an estimate of the hypervolume of the corresponding anomaly
detector. Please note that we inferred the number of generated data instances
from initial experiments. Here, it is important that the sphere is sampled with
a sufficient resolution as, otherwise, the estimated hypervolume collapses. The
Anomaly Detector would predict only very few instances as belonging to the
target class in this case, which means that the hypervolume as a meta-feature is
not informative. Meaning the number of necessary data instances grows exponen-
tially with the number of dimensions of the Train Dataset. This is the reason
for the aforementioned bad scaling of the hypervolume estimation. To compute
the FPR, we execute a monte-carlo cross validation with a 30% test-size and ten
repetitions on the Train Dataset.

The parallel activity Construct Detector Dataset extracts the hypervol-
ume, the FPR, and the MCC of 50 randomly configured Anomaly Detectors
of PyOD per Train Dataset. The estimation of the hypervolume of these 50
Anomaly Detectors and the FPR follows the computations in the context of
the Landmark Dataset explained above. We use the MCC of these anomaly
detectors as a performance measure, which we compute on the corresponding
Test Dataset. If the feature extraction via a particular anomaly detector does
not terminate within 5 h (while executing 4 anomaly detectors in parallel), we
replace it with a newly configured anomaly detector.

The last activity is Combine Datasets, which uses the Landmark Dataset
and the Detector Dataset to create the Meta-learning Dataset. We com-
bine the features of the former datasets such that each instance of the resulting
Meta-learning Dataset encompasses all landmarking features of the Train
Dataset and the detector features of one particular anomaly detector.

5.2 Correlation Analysis

We execute the Correlation Analysis iteratively for all 15 Meta-learning
Datasets. The Meta-train and Meta-test Datasets are created in a leave-
one-out fashion. Meaning, in each iteration of the Correlation Analysis one
Meta-learning Dataset is used as Meta-test Dataset and the remainder is
merged and used as Meta-train Dataset. Since not all of the 18 Anomaly
Detectors terminate for all datasets in the context of the Compute Landmark
Dataset activity, we remove all landmark features that have no values in the
Meta-test Dataset and scale the remaining features individually to be in [0, 1].
1 https://pyod.readthedocs.io/ in version 0.9.7.

https://pyod.readthedocs.io/
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After the creation of these datasets, the control flow forks again. The lower
control flow ranks the Anomaly Detectors covered by the Meta-test Dataset
according to the simple linear combination of their detector features as a score:

lc(Aλ,D) = 1 − hypervolume(Aλ,D) + FPR(Aλ,D)
2

.

The upper control flow ranks the Anomaly Detectors via a meta-model
that predicts the MCC of the Anomaly Detectors covered by the Meta-test
Dataset based on the landmarking and detector hypervolume and FPR fea-
tures. We opt for a mean strategy to impute missing values. Furthermore, we
use the Meta-train Dataset to train a random forest regressor (Meta-Model) in
default parameterization2. Thereafter, we rank the Anomaly Detectors of the
Meta-test Dataset using the predicted MCC of the Meta-Model as a score.

We execute the Compute Metrics activity for the Linear Ranking and the
Meta-learn Ranking separately. At the beginning of the activity, we scale the
MCC to the [0, 1] interval to avoid coping with negative scores. As metrics, we
use the regret@k, Kendalls rank correlation coefficient (τ) [26], and the normal-
ized discounted cumulative gain (NDCG) [27], which are metrics that refer to
rankings. We base our evaluation on ranking metrics because a correct order of
the anomaly detectors’ scores is more important to guide an AutoML system
than precise prediction of an anomaly detectors performance, e.g., in terms of
the mean squared error. While a high precision in the predicted quality is cer-
tainly desirable, it is not necessary for choosing the most promising out of a set
of anomaly detectors. Here, a precise ranking is sufficient.

The regret@k compares the performance of the best model within a top-k
ranking with the actual best model known for a dataset and reports the absolute
difference. In our case, it refers to the scaled MCC and gives an intuition about
the performance of the top-ranked anomaly detectors.

τ measures the correspondence between two rankings, which are the ranking
given by the method in question and the optimal ranking given by the true MCC
values. τ ranges in the interval [−1, 1] where negative values indicate a negative
correlation of the rankings and positive values a positive correlation. We utilize
the b-version of τ , which accounts for ties.

Similarly, the NDCG is a measure to compare a predicted ranking to an
optimal one. In comparison to τ , the actual scores (in our case the scaled MCC
values) influence the NDCG and not only the ranking inferred from those scores.
The NDCG ranges in the [0, 1] interval where values close to 1 denote a high
quality of the predicted ranking.

2 https://scikit-learn.org/1.1/modules/generated/sklearn.ensemble.RandomForestRe
gressor.html.

https://scikit-learn.org/1.1/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/1.1/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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5.3 Results

In this section, we discuss the performance of the Linear Ranking and
Meta-learn Ranking approaches introduced in Sect. 5.2. Due to the lack of
directly comparable approaches (cf. Sect. 3), we introduce three different base-
lines. Table 1 reports on the performance of the approaches with respect to the
metrics introduced in Sect. 5.2. Additionally, it reports the maximum, mean,
and minimum of the MCC of the anomaly detectors considered for prediction
scaled to [0, 1] to give an impression of the corresponding distribution. Please
note that the NDCG is generally not particularly insightful and is reported for
completeness.

The first baseline approach is based on randomization. Here, we report the
mean values of 50 randomized rankings. The second approach utilizes the FPR
detector feature introduced in Sect. 5.1 and ranks the 50 anomaly detectors per
dataset with the inversed FPR (1 − FPR(Aλ)) as score. The last baseline app-
roach works analogously to the second one but uses the inverse of the hypervol-
ume detector feature.

Table 1 shows the conflicting nature of the FPR and hypervolume features
already mentioned in Sect. 4, as good τ performances for one approach are typ-
ically accompanied by rather poor ones for the other. Additionally, the regret
and τ indicate that the FPR is more informative than the hypervolume. One
possible reason for this is that the FPR directly influences the MCC but the
hypervolume only if it correlates with the false negative rate. This is not nec-
essarily the case, e.g., if an anomaly detector exactly covers the hypersphere,
which in turn does not cover any anomalies. Furthermore, the hypervolume is
very sensitive to noisy features. An anomaly detector can expand in the direction
of such features and drastically increase its volume without affecting its MCC.
Please note that τ of the randomized approach is not meaningful on its own,
with the mean converging against zero as expected.

Referring to RQ1 (cf. Sect. 5), Table 1 shows that the linear combination
of hypervolume and FPR detector features outperforms the separate baseline
approaches introduced before. For 5 datasets the linear rankings have the top
detector in the first place and for two more datasets it is within the top-5 ranked
detectors. Furthermore, we see that the mean and median of τ indicate a positive
association in relation to optimal rankings, which is better than the correspond-
ing performances of the baseline approaches.

Please note that neither the FPR nor the hypervolume-based approach would
be able to guide an AutoML system that can freely choose hyperparameter val-
ues from the configuration space definition. The AutoML system would favor
detectors that heavily underapproximate the outlier class when utilizing only
the FPR detector feature, e.g., by choosing close to zero values for the hyperpa-
rameter used to define a threshold on the decision function (typically denoted
as contamination). Analogously, the hypervolume-based approach would favor
detectors that heavily overapproximate the outlier class. Thus, the exploration
of the configuration space of anomaly detectors done by the AutoML system
would almost exclusively explore such bad detectors. Generally, the FPR-based
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approach performs much better than we intuitively expected. A reason for this
might be that there are only relatively few anomaly detectors that heavily under-
approximate the outlier class in the 50 randomly configured anomaly detectors
per dataset. Another reason is that the FPR directly influences the MCC as
described before.

Referring to RQ2 (cf. Sect. 5), ranking according to the linear combination of
hypervolume and FPR detector features yields decent results. The linear combi-
nation of the hypervolume and the FPR seems to be a suitable means to compare
different anomaly detectors to each other and rank them accordingly. However,
investigating τ for the separate datasets yields that 5 datasets show negative
τ values, which is also the reason for the relatively low mean and median τ
of .14 and .16, respectively. Cross-checking these results with the mean MCC
values of the 50 randomly configured anomaly detectors per dataset indicates
a strong relation. If we restrict the evaluation to those datasets with a mean
scaled MCC of at least .6, we end up with a mean regret@1 of .05, regret@5 of
0, NDCG of .97, and τ of .38 (not shown in Table 1). Hence, the features seem
to be more informative for those datasets for which we randomly find better
anomaly detectors on average.

The meta-model-based approach, which uses the hypervolume and FPR as
features for both datasets and the anomaly detector, is clearly worse than the
linear combination of the detector features alone. Overall, it can be regarded as
being on par with the randomized approach. Given the decent performance of the
linear ranking approach, we assume that the FPR and hypervolume landmark
features are not informative and simply introduce noise into the training process
of the meta-model when considering all datasets.

However, a leave-one-out evaluation on cherry-picked datasets – analogously
to what we describe in the context of the linear ranking – leads to the meta-
model slightly outperforming the cherry-picked linear ranking in terms of the
mean NDCG and τ . Thus, we once more see a strong relation to particularities
of the corresponding meta-learning datasets and the performance of the encom-
passed anomaly detectors, which – obviously – the landmarking features cannot
sufficiently express. Additionally, the hypervolume estimation is very sensitive
to the data distribution of the target class. On the one hand, for distributions
well approximated by the sampled hypersphere, a good anomaly detector has a
hypervolume close to 1. On the other hand, for a distribution on a submanifold,
the hypervolume of a good detector tends towards 0. This relation might be hard
to learn.

Still, we find the results to be promising, particularly considering that
we do not assume any information regarding the outlier class of the unseen
dataset. Thus, they form a potential base from which interesting future work
may emerge. Especially whether additional meta-features, other types of meta-
models, or improved sampling strategies for the hypervolume estimation may
help to improve the accuracy of the predictions for the MCC.
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6 Conclusion

In this paper, we have considered the learning problem of anomaly detection
where during training, only a dataset with normal data points is available.
While this impedes the use of performance measures explicitly quantifying how
well an anomaly detector is able to identify anomalies for the task of automati-
cally selecting and configuring anomaly detectors, we proposed to employ meta-
learning to predict measures of interest. In this regard, we considered mainly
two types of meta-features. One that is based on the hypervolume covered by
trained anomaly detectors and the other one considering the FPRs of anomaly
detectors. While a lower value for the former seems favorable as the anomaly
detector fits the training data more tightly, this is usually in conflict with min-
imizing the FPR since the smaller the hypervolume, the more training data
points may be classified as positive. Used in combination, the two features have
shown promising performance to be used directly for ranking anomaly detectors
and as meta-features for a meta-model to predict a measure of interest that
would actually require anomalies in the training data to be evaluated. Moreover,
results of the corresponding experiments, which can rather be considered a proof
of concept, indicate that AutoML for anomaly detectors might be feasible using
such surrogate measures for performance evaluation.

Whether AutoML systems can really work well with such surrogate models
for selecting and configuring anomaly detectors, however, is still an open question
and also outlines interesting future work. Thus, we aim to extend our approach
by augmenting the set of meta-features with more types of informative features
describing the data or the anomaly detector to improve the quality of the meta-
model. Other research directions are to improve the hypervolume estimation and
to formalize the problem directly as ranking problem.
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project funded by the German Federal Ministry of Education and Research (No.
01IS20094D). Furthermore, we want to thank Jörg Holtmann and Eyke Hüllermeier
for their valuable feedback.
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Abstract. Networks are structures used in many fields for which it is
necessary to have analytical systems. Often, the size of networks increases
over the time so that the connectivity of the nodes follows a power law.
This scale-free nature also causes analytical queries to be concentrated on
nodes with higher connectivity. Rather than computing the query results
for each node in advance, this paper considers an on-demand approach
to evaluate its potential gain. To this end, we propose a cost model ded-
icated to scale-free networks for which we compute the cost for both the
offline and on-demand systems. It is reasonable in an on-demand app-
roach to cache part of the results on the fly. We study theoretically and on
real-world networks three policies: caching nothing, caching everything
and minimizing the total cost. Experiments show that the on-demand
approach is relevant if some of the results are cached, especially when
the query load is low and the query complexity is reasonable.

Keywords: Decision support system · Analytical queries ·
On-demand system

1 Introduction

Networks are complex structures often used to represent information where
vertices are entities and edges are their relationships. For example, in cita-
tion networks, articles are connected by their references. The Web is a set of
pages connected by their links. Social networks connect people through directed
(“follower” relationship) or non-directed links (“frienship”). Finally, knowledge
graphs connect entities by directed and labeled relations. Most often these net-
works are characterized by a rapid growth of the number of nodes where the
connectivity follows a preferential attachment mechanism leading to nodes that
concentrate links – see the Web [2], social networks [5] or knowledge graphs [7].

In many fields including bibliometrics [4] or webometrics [3], network analyt-
ics aims to analyze and extract insights from networks. Many analytical systems
produce rich indicators for each node of the network. Typically, Google Scholar
offers the same page for each author (with citation number, h-index, and so on).
Producing these analyses is a challenge because of the volume of data and the
complexity of some indicators. In the era of Big Data, these challenges have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Crémilleux et al. (Eds.): IDA 2023, LNCS 13876, pp. 406–418, 2023.
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mostly been met by resorting to cluster computing frameworks (e.g., MapRe-
duce or Spark) [21]. Scaling up is not a difficulty for this kind of approach where
it is always possible to add computer nodes if the volume of data increases or
if the difficulty of the analysis requires it. With this approach, the results once
computed are kept and then, when the system is online, the results are returned
instantly to the users following their queries. However, since networks evolve
rapidly, it is necessary to repeat the costly offline processing regularly. More-
over, with the preferential attachment mechanism, the most popular nodes are
also the most accessed. For instance, Yann LeCun’s page will be more accessed
than those of the PhD students in deep learning publishing their first paper.
The undifferentiated processing of nodes thus leads to the generation of analyses
that will be computed and stored uselessly because they will never be consulted
before the next refresh. It would be possible not to analyze the less popular nodes
of the network to reduce costs, or even forget them [6,13]. But, such an approach
would be detrimental to the diversity of the analytical system, especially since
some rare entities are sometimes the most important (e.g., some little-known
entries in a dictionary like DBnary studied in Sect. 6). In order to reduce costs
while preserving the diversity of the network, this paper aims at determining
whether it would not be preferable to produce the analyses on-demand.

In this paper, we propose a generic model to understand the impact of dif-
ferent computational and storage strategies for analytical systems in scale-free
networks. More specifically, our contributions are as follows:

– We propose a cost model specific to analytical systems in scale-free hetero-
geneous networks based on types (source entities) and their items (produced
entities).

– We theoretically compare offline systems with on-demand systems by distin-
guishing several caching policies (all, nothing, compromise). In particular, we
study the utility ratio of cached results.

– We evaluate our approach on several real-world graphs showing the interest
of using on-demand systems in certain scenarii.

The outline of this paper is as follows. Section 2 reviews some related work
about decision support systems. Section 3 introduces basic definitions and the
cost model framework. We compute the cost of offline and on-demand systems
in Sects. 4 and 5 respectively. We apply these models on real-world networks in
Sect. 6 and conclude in Sect. 7.

2 Related Work

In the introduction, we have already mentioned approaches based on the MapRe-
duce paradigm to implement distributed and parallel algorithms on clusters.
Typically, [16] proposes a method for large-scale social network analysis based
on MapReduce. There are generalist frameworks based on MapReduce to ana-
lyze data like Apache Pig or Apache Hive [8]. In-memory analytics frameworks,
such as Apache Spark, that also well-adapted for graph-based analytics [1] have
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also been designed to better handle iterative processes. [15] shows how to exploit
in-memory frameworks to analyze knowledge graphs. All these approaches pro-
cess the entirety of the data indiscriminately to produce analyses for each entity.
For simplicity, we will refer to this type of approach as offline analytical systems.

Many works in the literature have been interested in analytical queries in
the database field (where by nature, the system returns the result of its query
on the fly). In particular, they have proposed caching policies and cost models
dedicated to this type of queries in relational model [11,22] and non-relational
models [10,17]. However, the goal of these decision support systems is to be
able to answer very diverse queries, whereas in our case we are always interested
in the same query applied to a large number of distinct entities. Consequently,
most of these works seek to minimize the cost of executing a query while we
seek to minimize the cost of a set of queries. More specifically, it is our query set
that is unbalanced (few frequent queries, many rare ones) rather than the data
associated with a query (which may require the use of histograms [12]). Moreover,
in the following, the cost function of a query is an input to our problem. Another
consequence of the variety of queries is that database systems cannot store all
the results, contrary to our setup. They therefore implement cache replacement
policies [14] such as least recent used or least frequently used. In contrast, in this
work, we implement a global cache policy that avoids any replacement.

3 Preliminaries

Scale-Free Heterogeneous Network. Let us consider a (heterogeneous) network
N = 〈I, T, τ〉 made of a set of items I, a set of types T and a membership relation
τ ⊆ I × T . (i, t) ∈ τ means that the item i belongs to the type t. Considering
that I ⊆ V and T ⊆ V , we can also consider non-heterogeneous network. The
number of types is denoted by s: s = |T |. The degree of the type t ∈ T is the
number of items in relation with that t: degτ (t) = |{i ∈ I : (i, t) ∈ τ}|. The
frequency nτ (k) in τ counts how many types t ∈ T are exactly in relation with k
items (i.e., its degree degτ (t) = k): nτ (k) = |{t ∈ T : degτ (t) = k}|. The total
degree is defined as mτ =

∑∞
k=1 k ×nτ (k) = |τ |. When the membership relation

τ is clear, we omit it: deg(t) refers to degτ (t), n(t) refers to nτ (t) and so on. A
scale-free network is a network whose frequencies n(k) follow a power law (at
least asymptotically): n(k) ∼ k−γ with γ > 2. For instance, Fig. 1 shows on the
left the in-degree distribution of entities in Wikidata (see Sect. 6 for more details)
with the magenta dots. The distribution can be approximated by a power law
of exponent γ = 2.058 (see the dash lines).

Analytical System. The end users are interested in an analytical query Q on the
network N for different types t. This query Q may lead to complex manipulations
of the items of t. For instance, if the types are authors and the items are their
publications (with years and citation numbers), a query may compute at the
same time the total number of citations, the number of papers per year, the
h-index, and so on. An analytical system SQ (or simple S) is a decision support
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Fig. 1. Rationale for our cost model

system that efficiently evaluates the analytical query Q on the network N to
obtain the result Q(t,N ). In the following, we consider that the network evolves
and that a result remains valid for a period Δ.

Cost Model. Given a type t and a network N , we assume that the cost of the
query Q for t in N only depends on its degree deg(t): C(deg(t)) where C is a cost
function. In the following, our goal is to evaluate the (average) cost C(S, q,N ) of
the system S when it receives q queries during the validity period Δ. Naively, we
could think that this average cost of executing q queries is equal to the average
query cost repeated q times:

C(S, q,N ) = q · 1
s

·
∑

t∈T

C(deg(t))

This formula is wrong for two reasons: 1) types do not have the same probability
of being queried and 2) the system S (whether offline or on-demand) can store
query results avoiding the repetition of some queries. For the first point, it is clear
that some types will be queried more because of their popularity (as illustrated
in the introduction with the Yann LeCun’s page). For this purpose, we make
the important and realistic assumption that the probability of querying a type
t is proportional to its degree deg(t). It is difficult to find data to justify this
assumption. Nevertheless, Fig. 1 on the right illustrates this phenomenon with
the pages of Wikipedia where we see that globally the longest pages are also the
most viewed. For the second point, we will see the impact of storing all query
results in advance (see offline analytical system in Sect. 4) or caching a part of
the query results on the fly (see on-demand analytical system in Sect. 5).

4 Offline Analytical Systems

The principle of an offline system is to compute in advance the queries for all
types in order to cache them. When the system is online, it will be enough to
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return the appropriate result already cached. For the end-user, this approach has
the advantage of providing instant answers. Of course, once the validity period
Δ has expired, it will be necessary to invalidate what has been cached to refresh
the results. Unfortunately, the cost of this caching is very important since it
corresponds exactly to the cost of executing each of the queries:

Property 1 (Offline system cost). Given a network N and a cost function C,
the cost of the system Soff for q queries is:

C(Soff, q,N ) =
∞∑

k=1

n(k) · C(k)

Due to the lack of space, we omit most of the proofs. For simplicity, Property 1
ignores the parallelization costs which can be significant in some cluster comput-
ing architectures. Nonetheless, this cost remains very high because all network
types in T are considered without distinction. Unfortunately, a large part of the
cached results will never be used. Considering a linear cost C(k) = αk and a
scale-free network with exponent γ > 2, we can demonstrate that the cost of the
system Soff is simply s×α× γ−1

γ−2 as the mean degree is given by (γ−1)/(γ−2) [18].
To evaluate the quality of a system, we calculate the utility ratio (denoted

by UR) that is the proportion of the caching cost that was reused. The idea
is to evaluate how much of the caching effort was worthwhile. The utility ratio
is close to 1 when each caching cost involved a query that was queried again.
Conversely, it is close to 0 when what was cached was not queried again resulting
in unnecessary caching costs. The following property gives this measure for an
offline system:

Property 2 (Utility ratio). Given a network N and a cost function C, the utility
ratio of the system Soff for q queries is:

UR(Soff, q,N ) =
1

C(Soff, q,N )
·

∞∑

k=1

(

1 −
(

1 − k

m

)q)

· n(k) · C(k)

This property calculates the average probability that a type is queried at
least once (i.e., 1 − (1 − k/m)q) in order to obtain the average number of types
queried at least once. Only the costs corresponding to these queries are really
useful. It is easy to see that the utility ratio tends towards 1 when the number
of queries q becomes large. In contrast, offline systems may not be very relevant
in very high velocity networks where the refresh are numerous leading to low
query number q.

5 On-Demand Analytical Systems

The principle of an on-demand system is to evaluate the query for a type t at the
time the user requests it. However, it may make sense to cache some frequently
requested queries. The challenge is to choose which queries to cache to minimize
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the overall cost of the query set. To address this problem, we first compute the
on-demand system cost (see Sect. 5.1) and then, we study several caching policies
(see Sect. 5.2).

5.1 Cost of On-Demand Systems

With our cost model, the higher the degree of a type, the more likely it is
to be queried. Intuitively, we must therefore determine a degree kcache beyond
which we must cache all queries. Below this threshold kcache, the queries will be
systematically computed on-demand without any storage. Above this threshold
kcache, we check if the result is already cached for returning it directly. If the
result is not cached, it is computed and cached. The following property provides
the theoretical cost of the system Son:

Property 3 (On-demand system cost). Given a network N and a cost function
C, the cost of the system Son for q queries and the degree kcache is:

C(Son, q,N ) =
∑

k<kcache

q · k

m
·n(k) ·C(k)+

∑

k≥kcache

(

1 −
(

1 − k

m

)q)

·n(k) ·C(k)

This property sums the costs degree by degree by separating them into two
parts with respect to the threshold kcache. For degrees less than kcache, the cost
for a degree k is the product of the number of performed queries q ×k/m×n(k)
and the cost of a query C(k). For degrees greater than kcache, only the types
queried incur a cost and this cost is unique (because a second query exploits the
cache).

It is important to note that the part without cache increases linearly with
the number of queries q while the part with cache is upper bounded by∑

k≥kcache
n(k)×C(k). To estimate the computation cost Cc, these two parts are

useful and we have, in the linear case, the following cost per degree: Cc(k) = αck.
Conversely, for the storage cost Cs, the part without cache has no cost which
can be modeled with the following cost per degree:

Cs(k) =

{
0 if k < kcache

αsk otherwise

As in the previous section, we compute the utility ratio:

Property 4 (Utility ratio). Given a network N and a cost function C, the utility
ratio of the system Son for q queries (assuming that q � 1) is:

UR(Son, q,N ) ≈ 1
C(Son, q,N )

·
∑

k≥kcache

(

1 −
(

1 − k

m

)q (

1 +
q · k

m

))

·n(k)·C(k)

It is again necessary to calculate the cost of what is really useful by nor-
malizing it by the cost of what has been cached. Caching is useful if a type of
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degree greater than degree kcache is queried at least twice (1 time for caching
and 1 time for use). The probability of querying a type at least twice is
1 − ∑1

i=0

(
q
i

)
(1 − k/m)q−i (k/m)i which simplifies if q is large by assuming that

(1 − k/m)q−1 ≈ (1 − k/m)q. As previously, this utility ratio tends towards 1
when the number of queries q becomes large.

5.2 Cache Policies

Based on the cost model for the on-demand system, we can now consider differ-
ent policies: caching nothing, caching everything or minimizing the overall cost.
Other policies could be considered such as having a maximum cache size.

Let us first consider the extreme cases. The policy of caching nothing (i.e.,
kcache = +∞) boils down to a linear cost with the number of queries. Therefore,
as soon as the number of queries is very large, this strategy has a high cost making
it inefficient. On the opposite, the policy of caching everything (i.e., kcache = 0)
appears interesting if you have an unlimited amount of storage space. However,
the results cached for queries concerning types with a low degree have little
chance of being used again. Even if they have a low storage cost, it is a waste of
storage.

For this reason, we propose to choose the degree kbest that minimizes the
total linear cost Ct(k) = Cc(k)+Cs(k) (see above for the definition of Cc(k) and
Cs(k)). Intuitively, the idea is to choose the degree where the costs with cache
and without are in equilibrium. In the case of a linear complexity, the below
property approximates kbest:

Property 5 (Theoretical result). Given a network N and the total linear cost
function Ct(k), the degree kbest minimizing the overall cost is given by:

kbest ≈ m

q
·
αc · W

(
− (αc+αs)e−αs/αc−1

αc

)
+ αc + αs

αc

where W is the Lambert W function.

Proof. We give the main steps of the proof. First, we look for the degree k such
that the cost without cache is equal to that with cache (see Property 3) by
injecting the costs (i.e., Ct(k) = αck for “with cache” and Ct(k) = (αc + αs)k
for “without cache”):

q · k

m
· n(k) · αck =

(

1 −
(

1 − k

m

)q)

· n(k) · (αc + αs)k

It is possible to approximate (1 − k/m)q by exp (−q · k/m) as k/m 
 1 (that
explains the approximation ≈ in the final result). After simplification, we obtain
the following equation:

q · k

m
· αc =

(

1 − exp
(

−q · k

m

))

· (αc + αs)

Solving this equation gives the right-hand side of the result in Property 5. ��
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This property gives a theoretical approximation of the degree kcache which is
based on the Lambert W function, quite complex to compute in practice. There-
fore, it is simpler to determine kcache by performing a dichotomic search between
0 and kmax looking for the minimum cost C(Son, q,N ). Interestingly, this algo-
rithmic approach works for any convex cost function. Furthermore, considering
the total linear cost Ct(k) and a scale-free network with exponent γ > 2, we
simplify the approximation kbest by neglecting the Lambert function term and
injecting the mean:

kapprox =
m

q
· αc + αs

αc
=

s

q
· γ − 1
γ − 2

· αc + αs

αc

6 Experimental Study

This experimental study applies our cost models on real-world networks in order
to identify the evolution of the total cost and the utility ratio with the number
of queries and the complexity of the query.

Table 1. Main characteristics of networks

Network Vertices number Edge number Maximum degree Exponent γ

Wikidata 37,256,044 675,226,687 37,656,116 2.058

DBnary 38,069,118 198,355,239 19,310,138 2.237

Cell-Cell 1,018,524 49,471,006 848 2.021

Twitch 168,116 13,595,116 35,279 2.012

Experimental Setting. We prepare two knowledge graph benchmarks (denoted
by Wikidata and DBnary) based on crowdsourcing projects of Wikimedia Foun-
dation: Wikidata [24] and DBnary [20]. For Wikidata, we used a truthy dump
(February 2022)1 and we filtered each dump to remove literals and external
entities whose Uniform Resource Identifier (URI) is not prefixed by http://www.
wikidata.org/. For DBnary, we simply used a dump in turtle format (May 2022)2.
We also use two existing networks from the SNAP repository: Cell-Cell [25] and
Twitch [19]. Table 1 provides the main characteristics of these four networks. We
set the same complexity for storage and computation (e.g., Cc(k) = Cs(k) = k2

for quadratic complexity). For reproducibility, the source code and frequency
distributions corresponding to the four networks are available online: https://
github.com/asoulet/ida2023ondemand

1 https://dumps.wikimedia.org/other/incr/wikidatawiki/.
2 http://kaiko.getalp.org/static/ontolex/latest/.

http://www.wikidata.org/
http://www.wikidata.org/
https://github.com/asoulet/ida2023ondemand
https://github.com/asoulet/ida2023ondemand
https://dumps.wikimedia.org/other/incr/wikidatawiki/
http://kaiko.getalp.org/static/ontolex/latest/
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Fig. 2. Total cost of offline/on-demand systems with different cache policies

Total Cost Study. We will start by evaluating which strategy is the most parsi-
monious i.e., with the lowest total cost (computation plus storage). Considering
a linear complexity, Fig. 2 presents the evolution of the cost with the number of
queries for 5 approaches: the offline system, the on-demand system with every-
thing cached (i.e., kcache = 0), nothing cached (i.e., kcache = +∞), best (using
kbest) and scale-free approximation (using kapprox). Note that the scales are log-
arithmic. The offline system (denoted by offline) is obviously independent of the
number of queries. Therefore, the more the load increases, the more relevant this
approach is. But for the largest datasets, a very high number of queries must be
reached, which is unlikely to be achieved due to the data velocity of most net-
works. Unsurprisingly, the no-cache system (denoted by no cache) is unattractive
because its linear cost grows rapidly with the number of queries, exceeding the
offline system. The on-demand system caching all queries (denoted by all cache)
is not far from te best policy. It is therefore probably the most reasonable policy if
the distribution over the whole network is not known. Of course, the on-demand
system with cost minimization (denoted by best) is the least expensive approach
whatever the number of queries even if its gain is significant for low volumes of
queries. Finally, the proposed approximation (denoted by approx) works particu-
larly well since the deviation is not large enough to distinguish the approx curve
from the best curve.
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Fig. 3. Total cost of offline/on-demand systems w.r.t. cost function complexity

Now considering 100,000 queries, Fig. 3 gives the total cost with different cost
function complexity for the same 5 approaches as above. Of course, the higher
the complexity of the cost function, the higher the total cost. Typically, there
is an order of magnitude increase from constant to linear and from linear to
quadratic. The gain of the on-demand system decreases when the complexity
is higher. Nevertheless, depending on the network, the on-demand system can
remain relevant as it is the case for Cell-Cell with 100,000 queries. As in the pre-
vious experiment, the no-cache policy appears to be of little relevance (except
for low complexity). Finally, the policy where everything is cached remains com-
petitive with the best and approx policies which, although more subtle, are not
significantly better.

Utility Ratio Study. We now study the interest of what has been cached. Con-
sidering a linear complexity, Fig. 4 presents the evolution of the utility ratio with
the number of queries for 4 approaches: the offline system, the on-demand system
with three policies: all cache, best and approx. The no-cache policy is not rele-
vant for this study. It clearly appears that the least good approaches are offline
and all-cache where a large part of the stored information is never queried. The
utility ratio for Cell-Cell is zero up to 10,000 queries because the best solution
is to cache nothing. In this experiment, it is visible that the best and approx
policies are slightly different. Most often, the best approach stores a little less
data explaining a slightly higher utility ratio.
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Fig. 4. Utility ratio of offline/on-demand systems w.r.t. load of queries

To sum up, the on-demand system is always the most parsimonious if a cache
is used. Its gain is stronger when the query load is low and the cost function
complexity per query is low. With the best and approx policies, on-the-fly caching
is efficient guaranteeing high reuse.

7 Concluding Remarks

Our study based on a cost model shows the importance of considering an analyt-
ical system as a whole. It determines the advantages and weaknesses of different
strategies depending on the query complexity and the number of queries:

On-Demand System Interest. When the query load is low or network velocity
quickly invalidates the cache, on-demand systems are preferred. This avoids per-
forming computation and storing data for types that will never be queried. It
should be noted, however, that in our study we did not consider a mechanism
for updating the cache of the query result. For example, when a new publica-
tion arrives, it is easy to update the different bibliometric indicators without
recalculating everything from scratch. Such mechanisms are possible for certain
queries, as it is the case with materialized views [9] in the database field.

Cache Policy Recommendations. The use of a cache is absolutely mandatory for
on-demand systems in order to store the results of the types with the highest
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degrees (that are the most queried). When one knows the distribution of the
data, it is easy to determine the degree above which query results should be
kept. Otherwise, caching everything is still a reasonable policy because types with
lower degree have lower storage complexity. However, our study has implicitly
focused on a centralized context where caching and retrieval are negligible. In a
decentralized context, the situation can be reversed with high storage complexity
(due to network communications) while computational costs at the client can be
neglected.

Interactivity Challenge. The advantage of offline systems is that they guarantee
excellent interactivity when their results are used online. For a query on a given
type, it is fast to return to the user the result already pre-computed. For on-
demand systems, this interactivity is more complicated to guarantee especially
for queries with high complexity on a high degree type. We think that two main
workarounds can be used. First, systems with low response time (e.g., based
on anytime algorithm [23]) should be preferred to those with low execution
time. Indeed, it is often possible to propose a partial result quickly that will be
refined later. Second, a hybrid strategy could be considered by pre-computing
the answers for all types above a certain degree.

Acknowledgments. This work was partially supported by the grant ANR-21-CE23-
0033 (“SELEXINI”).
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20. Sérasset, G.: DBnary: wiktionary as a lemon-based multilingual lexical resource in
RDF. Semant. Web 6(4), 355–361 (2015)

21. Shi, J., et al.: Clash of the titans: MapReduce vs. Spark for large scale data ana-
lytics. Proc. VLDB Endow. 8(13), 2110–2121 (2015)

22. Shim, J., Scheuermann, P., Vingralek, R.: Dynamic caching of query results for
decision support systems. In: Proceedings of the Eleventh International Conference
on Scientific and Statistical Database Management, pp. 254–263. IEEE (1999)

23. Soulet, A., Suchanek, F.M.: Anytime large-scale analytics of linked open data. In:
Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 576–592. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30793-6 33

24. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

25. Zheng, G.X., et al.: Massively parallel digital transcriptional profiling of single
cells. Nat. Commun. 8(1), 1–12 (2017)

https://doi.org/10.1007/s00778-021-00660-x
https://doi.org/10.1007/s00778-021-00660-x
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1007/978-3-319-13960-9_6
https://doi.org/10.1007/978-3-319-13960-9_6
https://doi.org/10.1007/978-3-030-30793-6_33


ROCKAD: Transferring ROCKET
to Whole Time Series Anomaly Detection

Andreas Theissler(B) , Manuel Wengert, and Felix Gerschner

Aalen University of Applied Sciences, 73430 Aalen, Germany
andreas.theissler@hs-aalen.de

Abstract. The analysis of time series data is of high relevance in fields
like manufacturing, health, automotive, or science. In this paper, we pro-
pose ROCKAD, a kernel-based approach for semi-supervised whole time
series anomaly detection, i.e. the assignment of a single anomaly score to
an entire time series. Our key idea is to use ROCKET as an unsupervised
feature extractor and to train a single as well as an ensemble of k-nearest
neighbors anomaly detectors to deduce an anomaly score. To the best of
our knowledge, this is the first approach to transfer the ideas of ROCKET
to the task of anomaly detection. We systematically evaluate ROCKAD
for univariate time series and show it is statistically significantly better
compared to baseline methods. Additionally, we show in a case study
that ROCKAD is also applicable to multivariate time series.

Keywords: Machine learning · Anomaly detection · Time series

1 Introduction

Time series data are omnipresent, examples being manufacturing data [3,17],
recordings from automotive systems [32,34], medical data [23,27], or envi-
ronmental data [1,35]. Machine learning-based classification, forecasting, or
anomaly detection has enabled new applications in the aforementioned fields.

In this paper, we address the problem of whole time series anomaly detection,
i.e. assigning a single anomaly score to an entire time series [10,30]. The majority
of research on time series anomaly detection (AD) aims to detect anomalous data
points or subsequences. Whole time series anomaly detection [10], on the other
hand, is used (a) when the entire time series is expected to have anomalous
behavior, or (b) when time series are segmented prior to the analysis either by
fixed interval sizes or based on change-point detection. Examples are time series
from manufacturing [2], from vehicle tests [32], or medical data like ECG [10].

We address the question, if the unsupervised feature extraction of the time
series classifier ROCKET (RandOm Convolutional KErnel Transform), proposed
by Dempster et al. [14], can be exploited for anomaly detection. We propose
the approach ROCKAD (ROCKET Anomaly Detector), using ROCKET,
enhanced by an anomaly detection pipeline. To the best of our knowledge, this
is the first attempt to transfer ROCKET to the task of anomaly detection.
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Since anomalies correspond to rare and unusual events, it is typically not pos-
sible to obtain a representative set of anomalous time series. A set of normal data,
on the other hand, can be obtained easily, for example by monitoring a system in
its normal operation mode. Hence, unsupervised and semi-supervised AD [9] are
common settings. We address semi-supervised AD [9] where an anomaly detec-
tor MAD is trained on a training set Xtr solely containing data from the normal
class CN .

While semi-supervised settings are more likely to be applicable to real prob-
lem settings, they suffer from the inherent problem that model tuning is based on
the normal class only. This has the following implications: (1) The discriminative
power of some feature space F cannot be determined with approaches like recur-
sive feature elimination. The same is valid for implicit features in some latent
space of Deep Learning models, since these are found w.r.t. tuneable hyperpa-
rameters. (2) A model’s hyperparameters cannot be tuned with standard loss
functions that incorporate the trade-off between the different per-class errors.

As a solution, existing approaches use data heuristics, create artificial anoma-
lies [26], incorporate data from the anomaly class [28], use the fraction of
expected anomalies [28], define some cost function based on assumptions [28,31],
or allow users to interactively tune the model [33,37].

Our key idea is, to use the original ROCKET as an unsupervised feature
extractor, yielding a high-dimensional feature space FR without parameter tun-
ing. In the feature space, we evaluate anomaly detectors, which for a time series
xT output an anomaly score α. Specifically designed for time series, ROCKET
uses convolutional kernels known from 1D-convolutional neural networks. How-
ever, as the key difference which we exploit in our paper, rather than learning the
kernel parameters, ROCKET creates a high number of kernels with randomly
sampled parameters. Moving these kernels over a time series xT , ROCKET trans-
forms xT into a feature space where a small number of features is relevant for
class discrimination. The original ROCKET uses a subsequent classifier to sepa-
rate the classes. We replace this by an AD pipeline (preprocessing and anomaly
detectors).

This paper makes the following contributions:

1. We transfer the ideas of the ROCKET time series classifier to the task
of anomaly detection (AD), hoping to inspire research in AD to exploit
ROCKET’s success for classification tasks.

2. We evaluate the approach w.r.t. further anomaly detectors on the UCR time
series repository, allowing for reproducible and comparable research.

2 Related Work

The general field of anomaly detection is surveyed and structured in [9]. Current
surveys on AD for time series are presented in [7,24]. In [7,10], the problem
setting of whole time series anomaly detection is defined.

In [10], anomalous segments in univariate ECG time series are detected in
a semi-supervised setting using nearest neighbors. In [32], anomalies in mul-
tivariate time series are detected with an ensemble. With a sliding window,
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fixed-sized segments are extracted and evaluated by an ensemble of different
anomaly detectors. In contrast to our approach, [10,32] work on the raw time
series representations.

As opposed to working on the time series representation, a variety of methods
for feature extraction were proposed in literature. Examples, which were used for
AD, are briefly reviewed in the following: In [29], tsfresh [11] is used to extract a
set of features which is then reduced to a small set of discriminative features. The
number of those features is user-defined. AD is achieved in the reduced feature
space using PCA. In contrast to [29], our approach uses ROCKET as a feature
extractor. A different approach is to learn shapelets [38], which are subsequences
that are most representative for a class membership. Hence, shapelets can be
used to classify time series and have also been used for AD [5,41]. While the
extraction of shapelets in [5,41] requires a learning procedure, our approach uses
the computationally efficient idea to use a randomly generated, overparmeterized
features space.

3 ROCKAD: Kernel-Based Whole Series Anomaly
Detection

We introduce an anomaly detector for time series, the Random Convolutional
Kernel Transform Anomaly Detector (ROCKAD)1. In short, ROCKAD trans-
forms a time series to a more abstract feature space, capturing its temporal
information. Using a nearest neighbor approach, the transformed time series are
compared by their distances to the transformed normal time series in Xtr and an
anomaly score α is deduced. We systematically evaluate ROCKAD for univariate
time series, however, since the underlying ROCKET also works for multivariate
time series, ROCKAD is also applicable to these. The approach was inspired by
ROCKET’s strong performance in time series classification and was developed
on the same data sets as the classification counterpart [13].

3.1 Definitions

Time series can be univariate or multivariate, where observations of one variable
are referred to as univariate time series, defined as follows:

Definition 1. A univariate time series xT :
−→
T �→ −→

X is a finite sequence of
N data points ordered by time. For every time point ti in

−→
T = {t1, ..., tN}, there

exists one data point xi in
−→
X = {x1, ..., xN}. The time points ti are equidistant.

For time series, we address the problem of semi-supervised anomaly detection.
As opposed to the detection of single abnormal data points or the detection of
abnormal subsequences, our focus is whole series anomaly detection which we
define as follows (in accordance with [10]):

1 ROCKAD source code and further information: https://ml-and-vis.org/rockad.

https://ml-and-vis.org/rockad
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Definition 2. Semi-supervised whole series anomaly detection is the
assignment of a single anomaly score α to an entire time series xT by an anomaly
detector MAD, i.e. “whole series”. MAD is trained on a training set Xtr solely
containing instances from the normal class CN , i.e. “semi-supervised”.

3.2 Architecture of ROCKAD

ROCKAD consists of three stages, namely feature extraction, transformation
and AD: (1) on each input time series xT , ROCKET is used as an unsupervised
feature extractor, (2) on the ROCKET-induced feature space, a power trans-
former is applied, and (3) k-nearest neighbors is used to deduce an anomaly
score α for xT . The components are depicted in Fig. 1 and described in the
following:

Fig. 1. Steps of ROCKAD (Power-transformed ROCKET Anomaly Detector).

1. ROCKET: Our approach builds on the time series classifier ROCKET [14]
which generates a set of K convolutional kernels (default: K = 10, 000 [14])
that are moved over the time series xT . The kernel parameters (weights, bias,
dilation and padding) are randomly sampled from predefined ranges or distri-
butions. Sliding the kernels over xT , two features are extracted for each kernel:
(1) the greatest weighted sum of the kernels’ elements from all convolutional
operations (max ) and (2) the proportion of weighted sums that were posi-
tive over all convolutional operations for the kernel (ppv). ROCKET reaches
SOTA accuracy for time series classification while demanding only a fraction
of time [14]. We use ROCKET as an unsupervised feature extractor, yielding
a high-dimensional feature space without parameter tuning. We denote this
ROCKET-induced feature space by FR.

2. Power transformer: We found that transforming FR to a more Gaussian-
like distribution, improves the separation of CN and CA. We use the power
transformer by Yeo and Johnson [39], which can deal with negative values.
The resulting features are scaled using z-score, i.e. mean = 0, std = 1. We
denote the transformed feature space by FR′.

3. Anomaly detector (k-nearest neighbors, KNN): We use KNN to deter-
mine an anomaly score α for a time series xT ∈ Xte, by calculating the average
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distance of FR′(xT ) to its k nearest neighbors in FR′(Xtr). We use two vari-
ants: a single KNN and a bagging ensemble of n KNN estimators.

We created two variants of ROCKAD (see Table 1): ROCKAD(1) default uses
a single KNN and ROCKAD(n) default uses an ensemble of n KNNs. In addition,
we evaluate tuned versions denoted as ROCKAD(1) tuned and ROCKAD(n) tuned

(see Table 1). We tuned the hyperparameters {K,n, k} of ROCKAD(n) using the
“development data sets” from the ROCKET paper [13]. These data sets are also
included in the evaluation, hence, we acknowledge that the tuned versions could
have a tendency to be optimized towards the UCR evaluation data.

Table 1. Evaluated ROCKAD variants

variant configuration parameters

ROCKAD(1) default single KNN; default parameters K = 10000, k = 5

ROCKAD(n) default KNN-ensemble; default parameters K = 10000, k = 5, n = 10

ROCKAD(1) tuned single KNN; tuned parameters K = 600, k = 3

ROCKAD(n) tuned KNN-ensemble; tuned parameters K = 600, k = 3, n = 21

3.3 Training and Detection Procedure

During training of ROCKAD(n), ROCKET generates a set of K kernels and
extracts the max and ppv features (see [14]) from the time series in Xtr which
are then transformed as described in Sect. 3.2. The transformed series FR′(Xtr)
are passed to the KNN-ensemble, whereas each estimator j ∈ [1;n] is built on
a bootstrapped subset of the transformed training data, denoted as FR′(Xtr)j .
During detection, the kernels obtained from training are applied on xT ∈ Xte

and extract the features FR(xT ). The power transformer maps FR(xT ) with
the parameters found in the training phase. Afterwards, z-score is applied using
the parameters obtained from FR(Xtr). Eventually, the KNN-ensemble queries
the resulting FR′(xT ) through each estimator j which calculates the average
Euclidean distance of FR′(xT ) to the k nearest neighbors of the estimators’
training subset FR′(Xtr)j . The resulting distances are averaged over all estima-
tors resulting in α:

α =
1
n

n∑

j=1

∑k
i=1 dist(FR′(xT ),NNi(FR′(Xtr)j))

k
(1)

ROCKAD(1) adopts these procedures but trains a single KNN on the entire
training data. The anomaly score for ROCKAD(1) corresponds to (1) with n = 1
and FR′(Xtr)j replaced by FR′(Xtr).
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4 Experimental Results

This section describes the evaluation data sets and data preparation steps, fol-
lowed by an introduction of the baseline models, ROCKAD is compared with.
Following that, the results are reported in critical difference diagrams. More
details and the raw results can be found at https://ml-and-vis.org/rockad.

4.1 Evaluation Data Sets

Data sets for whole time series AD are rarely available. Therefore, the widely
used UCR time series classification data sets [12], were used for development
and evaluation. In order to transform the problem setting from classification to
AD, each data set was prepared as follows:

1. The class containing the most time series is used as the normal class CN , the
class with the least time series as the anomaly class CA.

2. Xtr is created using 80% of the data in CN .
3. The test set Xte contains the remaining 20% of CN and is enriched with time

series from CA, such that �10%� of Xte are anomalies.
4. Data sets, where 10% of Xte > |CA| or sampling 10% anomalies for Xte leads

to |CA| < 1, were excluded. As a consequence, 93 UCR data sets were used
in the evaluation.

5. The above procedure was repeated such that 10 resamples were drawn. The
10 results are averaged to obtain robust results, as suggested in [12].

4.2 Baseline Anomaly Detectors

As baselines to compare ROCKAD to, we first use a number of feature space
models that do not capture the temporal relations in time series, i.e. each data
point xti is interpreted as a feature:

1. Isolation Forest (iForest): An isolation forest [19] is an ensemble of isola-
tion trees. Anomalies are detected by separating rare and unusual data points
from the rest of the data. The underlying idea is that anomalous data points
are easier to separate, creating a tree path that is less deep.

2. Local Outlier Factor (LOF): LOF [8] assigns outlier scores to data points
based on the idea that anomalies are in low density regions of the fea-
ture space. We use the LOF-variant for novelty detection, implemented in
sklearn [22].

3. One Class Support Vector Machine (OCSVM): An OCSVM [25] sep-
arates the classes CN and CA with a hyperplane in a kernel-induced feature
space. We set the hyperparameter ν = 0.05 and use the RBF-Kernel with
γ = 1/(|F| × σ2).

4. k-nearest neighbors (KNN): KNN is adapted to AD by calculating a
data point’s mean distance to its k nearest neighbors in Xtr and reporting
this distance as anomaly score α.

https://ml-and-vis.org/rockad


ROCKAD: Transferring ROCKET to Whole Time Series Anomaly Detection 425

As further baseline models, we use a number of time series models, modeling the
temporal behaviour – two of them adapted to whole series AD:

5. LSTM Encoder Decoder (LSTMED): An LSTMED consists of
LSTMs [16] for encoding and decoding of a time series. Based on the recon-
struction error, anomalies are detected – similar to the idea of autoencoders.
We adapted LSTMED for whole series AD by reporting the sum of recon-
struction errors as anomaly score.

6. Temporal Convolutional Network Autoencoder (TCNAE): Based
on the temporal convolutional network (TCN) [4], an enhancement with an
autoencoder for AD was proposed in [36]. Analogously to LSTMED, the sum
of reconstruction errors is used as anomaly score.

7. LSTM-Deep Autoencoding Gaussian Mixture Model (L-DAGMM):
The DAGMM [42] is a sequence of a deep autoencoder and a Gaussian mixture
model, jointly optimizing the parameters of both models. We use it in the
variant replacing the deep autoencoder with an LSTMED [18].

8. Recurrent Energy Based Model (REBM): The REBM [40] combines
the ideas of Restricted Boltzman Machines and recurrent networks.

Furthermore, as an alternative feature extractor we use tsfresh [11] in com-
bination with the feature space models 1–4 (denoted as tsfresh OCSVM,
tsfresh iForest, etc.). We use the full tsfresh-feature space, but we acknowl-
edge that in [29] it was shown that reducing the number of tsfresh-features
yields higher detection rates. However, this requires a user-defined number of
features.

4.3 Evaluation Metrics

For each anomaly detector MAD we obtain anomaly scores α instead of crisp
decisions, for example distances or inherent outlier scores. From α, we calculcate
the ROC curve showing the trade-off between TPR and FPR, where we define
CA as the positive class. As evaluation metric, we report the AUROC (area
under the ROC curve) which expresses the overall performance of each MAD

independent of a threshold. The AUROC is considered a common metric for
evaluating anomaly detectors as shown e.g. in [21]. To compare the MAD, we use
the Friedman-posthoc-Wilcoxon-Holm test. As recommended in [15], Friedman’s
test compares the anomaly detectors by their average rank on the evaluation data
sets and tests the differences for statistical significance. In accordance with [6],
a Wilcoxon signed rank test with Holm’s alpha correction is applied. The results
are shown as a critical difference (CD) diagram showing the MAD sorted by their
rank averaged over the evaluation data sets. Those MAD, with differences in the
ranks not being statistically significant, are connected by a horizontal line.

4.4 Results for ROCKAD Compared to Baseline Models

The evaluation shows both ROCKAD models compared to the baselines. The
primary result of our evaluation is that ROCKAD significantly outperformed the
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baseline models for both versions on the 93 UCR data sets, as shown in Fig. 2.
The temporal models yielded a significantly lower mean rank than the others.
We acknowledge, that we had to adapt two of these models to whole series AD.
Furthermore, the models’ performances depend on hyperparameter tuning using
validation sets, which was not conducted throughout the evaluation.

Fig. 2. CD-Diagram of the anomaly detection evaluation results (AUROC) for the
baseline anomaly detectors and ROCKAD (small ranks = better performance).

Fig. 3. CD-Diagram (AUROC) of different MAD attached to a sequence of ROCKET
(K = 10, 000) and power transformer, compared to ROCKAD.

Figure 3 shows the performance for different estimators applied to ROCKET
and tsfresh with a power transformer. The diagram displays a significant differ-
ence between the tsfresh and ROCKET models, except for ROCKET iForest.
ROCKAD(1) default outperformed the ensemble on the default setting. However,
if the number of kernels K has to be reduced due to computational limitations,
we suggest to try both versions since the tuned models with a smaller K had no
statistical difference.

4.5 Sensitivity Analysis

We examine the effects of varying the number of kernels, estimators, and neigh-
bors with a sensitivity analysis. The analysis was conducted on 31 of ROCKET’s
“development data sets” [13] that were in accordance with steps 1–5 in Sect. 4.1.
Starting with ROCKAD’s default settings, the hyperparameters {K,n, k} were
tuned sequentially. Therefore, the best number of kernels K was determined and
used to evaluate the number of estimators n and the best {K,n} were taken to
assess the number of neighbors k per estimator. The AUROCs of each model
were subtracted from the model with the default parameter of its origin. The
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AUROC changes are shown by the differences for the data sets, where a differ-
ence of 0 corresponds to the origin model. A negative difference implies a worse
performance than the origin. To select the best hyperparameter, the differences’
mean ranks are given in parentheses (smaller = better). The best hyperparam-
eters are used for the tuned versions ROCKAD(1) tuned and ROCKAD(n) tuned.

Fig. 4. AUROC differences for varying
numbers of kernels K. On the develop-
ment data, K = 600 kernels yielded the
best results.

Fig. 5. AUROC differences for num-
bers of estimators n with K = 600,
where n = 21 yielded the best results
on the development data.

Varying the Number of Kernels: First, the impact of the number of kernels
K is evaluated. As shown in Fig. 4, a small K can lead to slightly better results
compared to K = 10, 000. However, K = 500 and K = 100 show that a smaller
K may also produce outstanding worse or better results for individual sets.
Moreover, a high K reduces the variance of AUROC over multiple data sets, as
visible for K = 5, 000. Summarizing, a small K can increase the AUROC, if a
few labels are available for a sanity check. Otherwise, a high K seems the safer
choice. K = 600 had the best mean rank in this experiment and was chosen for
the tuned versions of ROCKAD.

Varying the Number of Estimators: Figure 5 shows the benefit of ensem-
bling, as the model with n = 1 yields the highest variance over multiple data
sets. Additionally, a leveling trend towards 0 can be seen for an increasing n.
The slope of increasing AUROCs decreases and flattens at approximately n = 10.
The best mean rank was achieved at n = 21.
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Fig. 6. AUROC differences for varying
numbers of neighbors k (with K = 600
and n = 21).

Fig. 7. Standard deviations over 10
kernel initializations on a single resam-
ple for the four ROCKADs.

Varying the Number of Neighbors for KNN: As shown in Fig. 6, the
variance is lower for lower values of k, whereas the negative span increases for
k > 6. The default parameter k = 5 is near-optimal, the best mean rank was
obtained with k = 3. Furthermore, [14] pointed out that a small K leads to a
high standard deviation for different kernel initializations. As the tuned model
suggests a small K, the robustness was investigated by measuring the standard
deviation of the four models over 10 different initializations on a single resample.
The results, shown in Fig. 7, could not confirm this behavior with KNNs.

5 Case Study: Detecting Anomalous Textures

To show the applicability of ROCKAD, a texture recognition case study was con-
ducted with a data set of recordings from a 6-axis force/torque sensor, resulting
in a 6D-multivariate time series (MTS) (taken from [20]). Transforming the clas-
sification data set to AD, the procedure described in Sect. 4.1 was used. The task
was to train on time series of the material wood (CN = {“wood”,“osb”}) and
detect the remaining 19 materials as anomalies. In order to obtain a crisp classi-
fication result for the nearest neighbor-based anomaly score α, i.e. {CN , CA}, we
use the method proposed in [28], turning ROCKAD into a one-class classifier.
We report the AUROC and the F1-score in Table 2.

We evaluated ROCKAD(n) tuned, ROCKAD(1) tuned and ROCKET+
OCSVM. First, ROCKAD was analyzed for univariate whole series AD using
the measured horizontal force Fz applied on the texture. Further, we show
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Table 2. Results for the texture recognition case study. Fz denotes the univariate and−→
F &

−→
T the multivariate time series.

Fz (univariate)
−→
F &�T (multivariate)

F1-score AUROC F1-score AUROC

ROCKAD(n) tuned 0.916 0.936 0.864 0.977

ROCKAD(1) tuned 0.739 0.754 0.740 0.778

ROCKET OCSVM 0.907 0.915 0.870 0.884

that ROCKAD can be applied to multivariate whole time series AD. The 6-
dimensional MTS composed of measurements of the applied force and torque in
x, y and z direction (

−→
F &

−→
T ) is used. Analogously to the univariate case, this

experiment was done using ROCKAD and ROCKET+OCSVM. Applying the
proposed model to MTS anomaly detection is possible without further adjust-
ments since ROCKET works for both cases (i.e. univariate and multivariate time
series).

6 Conclusion

The novel approach ROCKAD for whole series anomaly detection was proposed,
exploiting the time series classifier ROCKET [14]. Using ROCKET as a fea-
ture extractor, ROCKAD transforms the data and trains a single KNN and an
ensemble of KNN anomaly detectors. The results on the univariate UCR time
series showed the efficacy of the approach. Furthermore, a case study showed
promising results regarding ROCKAD’s generalizability as well as its use on
multivariate time series. Yet, our research is not without limitations: (a) We
proposed ROCKAD in a default setting and a setting tuned on a subset of the
UCR data. While this procedure is in accordance with [14], we acknowledge that
the tuned variant might have been implicitly optimized towards the UCR data.
Yet, we could report that ROCKAD with default settings is also statistically
significantly better than the baseline models. (b) We had to adapt two of the
time series baseline models to the problem of whole series anomaly detection.
(c) In order to be comparable, we used the UCR data set. However, these data
sets are relatively small, i.e. the neural network baseline models might perform
better than reported on larger data sets. Future work could be (1) a systematic
evaluation, possibly an advancement, of ROCKAD for multivariate time series
and (2) the development of a novel one-class classifier based on ROCKAD, i.e.
the introduction of crisp decisions as opposed to an anomaly score, as we have
preliminarily shown in the case study.
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37. Trittenbach, H., Böhm, K., Assent, I.: Active learning of SVDD hyperparameter
values. In: 2020 IEEE 7th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 109–117 (2020)

38. Ye, L., Keogh, E.: Time series shapelets. In: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM (2009)

39. Yeo, I.K., Johnson, R.: A new family of power transformations to improve normal-
ity or symmetry. Biometrika 87, 954–959 (2000)

https://doi.org/10.1186/s40537-021-00514-x
https://doi.org/10.1007/s00521-022-07809-x
https://doi.org/10.1038/s41598-021-83350-6
https://doi.org/10.1038/s41598-021-83350-6
https://doi.org/10.1007/978-3-030-63710-1_13
https://doi.org/10.1007/978-3-030-63710-1_13


432 A. Theissler et al.

40. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for
anomaly detection. In: International Conference on Machine Learning, pp. 1100–
1109. PMLR (2016)

41. Zhang, J., Zeng, B., Shen, W., Gao, L.: A one-class Shapelet dictionary learning
method for wind turbine bearing anomaly detection. Measurement 197, 111318
(2022)

42. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised
anomaly detection. In: International Conference on Learning Representations
(2018)



Out-of-Distribution Generalisation
with Symmetry-Based Disentangled

Representations

Loek Tonnaer(B), Mike Holenderski, and Vlado Menkovski

Eindhoven University of Technology, Eindhoven, The Netherlands
{l.m.a.tonnaer,m.holenderski,v.menkovski}@tue.nl

Abstract. Learning disentangled representations is suggested to help
with generalisation in AI models. This is particularly obvious for combi-
natorial generalisation, the ability to combine familiar factors to produce
new unseen combinations. Disentangling such factors should provide a
clear method to generalise to novel combinations, but recent empirical
studies suggest that this does not really happen in practice. Disentan-
glement methods typically assume i.i.d. training and test data, but for
combinatorial generalisation we want to generalise towards factor com-
binations that can be considered out-of-distribution (OOD). There is
a misalignment between the distribution of the observed data and the
structure that is induced by the underlying factors.

A promising direction to address this misalignment is symmetry-based
disentanglement, which is defined as disentangling symmetry transfor-
mations that induce a group structure underlying the data. Such a
structure is independent of the (observed) distribution of the data and
thus provides a sensible language to model OOD factor combinations
as well. We investigate the combinatorial generalisation capabilities of
a symmetry-based disentanglement model (LSBD-VAE) compared to
traditional VAE-based disentanglement models. We observe that both
types of models struggle with generalisation in more challenging settings,
and that symmetry-based disentanglement appears to show no obvious
improvement over traditional disentanglement. However, we also observe
that even if LSBD-VAE assigns low likelihood to OOD combinations,
the encoder may still generalise well by learning a meaningful mapping
reflecting the underlying group structure.

1 Introduction

It is suggested that learning representations that disentangle underlying factors
of variation in the data is an important goal towards better generalisation [1].
This is particularly obvious if we consider combinatorial generalisation, the abil-
ity to generalise to novel combinations of previously seen factors. Ideally a model
should be able to disentangle the underlying factors of a datapoint, even if that
particular combination of factors was never observed during training, as long as
each individual factor value has been seen before.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Disentanglement models are typically trained on data that covers most factor
combinations [10], but the number of combinations scales exponentially with the
number of factors, which quickly becomes unmanageable for realistic scenarios
with more than a few factors. Thus, it is beneficial if models can learn the under-
lying mechanisms behind the factors without seeing all possible combinations.

However, recent studies have shown that current disentanglement methods
do not deliver on their promise in this so-called out-of-distribution (OOD) gen-
eralisation setting [12,17]. Correlations between the factors of variation in the
observed data are reflected in the learned latent representations of disentan-
glement models [20], since the training methods are designed for independent
and identically distributed (i.i.d.) data. For example, two factors that correlate
strongly with each other may be represented in a single latent dimension, even
if they represent two fundamentally different properties.

There is clearly a misalignment between the concept of disentangling underly-
ing factors of variation, which may not be independently distributed in the data,
and learning to model the distribution of the data. Whereas most disentangle-
ment methods aim to uncover the former, their methodology mostly focuses on
the latter.

One promising direction to resolve this misalignment is symmetry-based dis-
entanglement (SBD) [5], which provides a formal language (using group theory)
to reason about the structure of underlying factors. This allows to model this
structure separate from the distribution of the data. SBD focuses on disen-
tangling symmetry transformations that act on the data, reasoning that these
transformations induce the underlying factors of variation. The idea is to learn
representations that are equivariant to such transformations. By focusing on
these transformations during training, we hope to learn a model that can gen-
eralise well to unseen factor combinations, since such combinations are still the
result of applying transformations that were seen during training.

In this paper, we evaluate how well disentangled representations generalise
to unseen factor combinations, with a particular focus on linear SBD (LSBD)
representations, which provide a fixed formulation of how transformations affect
representations. We investigate how much coverage of factor combinations is
needed for current methods to generalise well to unseen combinations, exposing
the limits of these methods. We confirm previous findings that disentanglement
does not seem to improve OOD generalisation much, even in relatively simple
settings. Moreover, we show that LSBD representations also generalise poorly to
unseen factor combinations, despite the more suitable perspective of modelling
transformations. However, we also observe that this partially depends on how
we measure OOD generalisation: for VAE-based models, unseen factors may be
encoded fairly well (reflecting the underlying factor structure) even if they are
decoded poorly.

Our results suggest that more work is needed to learn representations that
can generalise better to unseen factor combinations, even if equivariance with
respect to disentangled transformations is used as a learning signal. We expose
the limitations of LSBD representations to generalise to unseen factor combina-
tions, even if the transformation mechanisms are captured well for the observed
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data. We hope that our results provide a basis for further research on how to
design methods that generalise better to unseen factor combinations, and on
how to evaluate such generalisation.

2 Background

Disentanglement. Since the suggestion that disentangling underlying factors
of variation in data is important for better generalisation [1], various methods
and metrics to learn and evaluate disentangled representations have been pro-
posed [3,6,7,9]. Most methods focus on expanding a Variational Autoencoder
(VAE) [8,16] with some regularisation term to encourage disentanglement. They
assume the data is independent and identically distributed. However, these meth-
ods showed only limited success, mostly on toy problems. Moreover, disentangle-
ment in general is shown to be impossible without some sort of inductive bias [10].

Symmetry-Based Disentanglement. Disentanglement is typically explained
from the perspective of independent factors of variation, but this doesn’t provide
a formal definition of what constitutes a disentangled representation. To address
this, symmetry-based disentanglement (SBD) [5] gives a formal definition by
means of group theory. The motivation is that symmetries in the real world
are what leads to variability in data observations. A symmetry is a transforma-
tion that affects some factor of variation, but leaves all others invariant. Such
symmetry transformations can be described with the formal language of group
theory, as a decomposable transformation group acting on both the data and the
learned representations. The goal of SBD is then to learn representations that
are invariant to such symmetries, resulting in disentangled subspaces where one
symmetry (or subgroup) affects only one subspace. Several recent works focus on
learning SBD representations [4,13,15,19], with varying degrees of supervision
on transformations.

We focus on Linear SBD (LSBD), where an additional requirement is that
transformations act on the representations as linear operators (i.e. matrix multi-
plications). This allows for a simple and consistent description of transformations
in latent space, which is useful for generalising beyond factor combinations seen
during training. We provide more detail in Sect. 3.

OOD Generalisation. Generalisation has always been one of the main goals
in machine learning, and representation learning in particular. Machine learning
methods are however mostly based on the i.i.d. assumption that train and test
data are independent and identically distributed. In realistic scenarios this is
hard to realise, so there is significant interest in dropping this assumption and
investigating out-of-distribution (OOD) generalisation (see [18] for an overview).

Disentanglement seems a sensible solution to improve OOD generalisation,
especially from the perspective of combinatorial generalisation where the goal is
to generalise to unseen combinations of factor values observed during training.
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However, recent work [12] shows somewhat surprisingly that disentanglement
does not seem to help with combinatorial generalisation. In this paper we follow
their evaluation protocol and expand on it, focusing mostly on LSBD instead
of traditional disentanglement. Our setting is similar to the “composition” set-
ting in [17], which provides a benchmark to evaluate OOD detection for visual
representation learning. Related work [20] shows that disentanglement methods
trained on data with correlations between the factors of variation learn repre-
sentations that reflect these correlations, which further emphasises the need for
better disentanglement methods that can generalise to OOD data.

3 Symmetry-Based Disentanglement Should Enable
Out-of-Distribution Generalisation

Linear Symmetry-Based Disentanglement (LSBD). We are mostly inter-
ested in a specific definition of disentanglement, LSBD [5]. The idea is to disen-
tangle symmetry transformations that act on a set of real-world factors W . Such
transformations can be modelled by a group G acting on W . The key assumption
is that this group can be decomposed into subgroups G = G1 × . . . × GK , such
that each subgroup only affects one aspect of the real world W . Data observa-
tions are assumed to come from a generative process b : W → X. A learned
inference map (i.e. encoder model) h : X → Z to a representation space (or
latent space) Z is defined to be LSBD if the following holds:

1. there is a decomposition of the latent space into subspaces Z1 ⊕ . . . ⊕ ZK ,
2. there is a group representation for each subgroup in the corresponding vector

subspace ρk : Gk → GL(Zk) for k = 1, . . . ,K,
3. the group representation ρ : G → GL(Z) acts on Z as ρ(g) · z = (ρ1(g1) ·

z1, . . . , ρK(gK) · zK), and
4. the composition f = h ◦ b is equivariant with respect to the actions of G on

W and Z, i.e. for all w ∈ W and g ∈ G it holds that f(g · w) = ρ(g) · f(w).

There is also a non-linear definition of symmetry-based disentanglement [5], but
we focus on the linear version since it allows for a simple and explicit way to
express transformations acting in the latent space, namely as linear operators.

We use the DLSBD metric proposed by [19] to quantify disentanglement with
respect to the LSBD definition.

OOD Generalisation Through Equivariance. LSBD is based on the idea
that transformations describe the sources of variability in observed data. From
this perspective, OOD generalisation means that we want to generalise to any
observation that is the result of applying some transformation to a previously
seen data observation, even if the resulting observation has never been seen
before. Since LSBD provides a clear formulation of how a transformation should
act on a latent representation, a well-trained LSBD model should also be able
to represent unseen data that is the result of such a transformation, because of
the equivariance of the model with respect to this transformation. LSBD thus
provides a suitable framework for this kind of OOD generalisation in theory.
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4 Experimental Setup

We investigate the out-of-distribution (OOD) generalisation of a number of VAE-
based disentanglement models for datasets with known factorised generative
factors, by splitting off data with certain factor combinations into an OOD set
and using the remaining data as training set. We then evaluate those models on
their performance on the left-out OOD data using various metrics in Sect. 5.

Datasets. We consider two datasets with an underlying SO(2) × SO(2) group
structure (i.e. having 2 cyclic factors), Square and Arrow; as well as two popular
disentanglement datasets, dSprites and 3D Shapes. See Fig. 1 for some examples.
The datasets can be fully generated by known factors of variation. All datasets
contain images with 64 × 64 pixels (black-and-white or RGB).

Fig. 1. Example images of Square, Arrow,
dSprites, and 3D Shapes.

Square has factors x-position and
y-position, squares wrap around the
edges of the canvas so the factors are
cyclic. Arrow has factors orientation
and hue. Each factor can attain 64
values, yielding 4096 datapoints in
each dataset.

dSprites [11] has factors shape,
scale, orientation, x-position, and
y-position, with 3, 6, 40, 32, and 32
values each, for a total of 737,280 datapoints. The shape factor is categorical,
whereas the other factors describe continuous properties, of which orientation
is cyclic. 3D Shapes [2] has factors floor hue, wall hue, object hue, scale, shape,
and orientation, with 10, 10, 10, 8, 4, and 15 values each, for a total of 480,000
datapoints. The shape factor is categorical, whereas the other factors describe
continuous properties, of which all hue values are cyclic.

OOD Splits: Left-Out Factor Combinations. For Arrow and Square we
define different OOD splits by leaving out images where both factors are within
a certain range. If we represent the factors as values f1 and f2 on a scale from 0
to 1, we split off images with factor values f1 < r and f2 < r simultaneously, see
Fig. 2. We do this for various values of r, namely 0.125, 0.25, 0.375, 0.5, 0.625,
0.750, and 0.875, leading to 7 different OOD splits. Note that the ratio of the
number of datapoints we split off from the full dataset grows quadratically as
r2, i.e. each OOD split contains roughly 1.5%, 6%, 14%, 25%, 39%, 56%, and
77% of the full dataset, respectively.

For the dSprites and 3D Shapes dataset, we follow the experimental setup
of [12], defining three experiments for each dataset: recombination-to-element
(RTE), recombination-to-range (RTR) and extrapolation (EXTR). Table 1 sum-
marises the factor combinations that are left out as OOD combinations for each
of these settings on both datasets. Note that factors scale and x-position for



438 L. Tonnaer et al.

dSprites and object scale, orientation and all hues for 3D Shapes are given as
values from 0 to 1. Hue values above 0.5 correspond to cyan, blue, and purple.

Table 1. OOD splits for dSprites and 3D Shapes.

RTE RTR EXTR

dSprites shape = ellipsis, scale < 0.6, shape = square, x-position > 0.5

120◦ < orientation < 240◦, x-position ≥ 0.5

x-position ≥ 0.6

3D Shapes floor hue ≥ 0.5, wall hue ≥ 0.5, object hue ≥ 0.5, floor hue ≥ 0.5

object hue ≥ 0.5, object shape = oblong

object shape = cylinder,

object scale = 1, orientation = 0

r=0.625

OOD

Training

f1

f2

Fig. 2. OOD splits for datasets
with 2 factors.

LSBD-VAE. To investigate the generalisation
of LSBD representations, we train a model called
LSBD-VAE [19]. We choose this model since it
can be trained with supervision on the under-
lying transformations in a batch of datapoints,
such that we can easily and reliably learn LSBD
representations for the training data even with
challenging OOD splits.

Like a regular Variational Autoencoder
(VAE) [8,16], LSBD-VAE consists of an encoder
(or approximate posterior) q(Z|X), a prior p(Z),
and a decoder p(X|Z), where X and Z are
the data and latent space, respectively. Given
a group decomposition G = G1 × . . . × GK that
represents the symmetry structure underlying the data, LSBD-VAE defines suit-
able topologies for the corresponding latent subspaces Z = Z1 × . . . × ZK and a
matching linearly disentangled group representation ρ. The factors in our Square
and Arrow datasets can be described with subgroups Gk = SO(2), i.e. the Spe-
cial Orthogonal group of 2D rotations. As matching latent subspaces we use unit
circles (or 1-spheres) Zk = S1 = {z ∈ R

2 : ||z|| = 1}. Group representations ρk

are then 2D rotation matrices.
LSBD-VAE uses a ΔVAE [14] to learn encoded (posterior) distributions on

these latent subspaces. Like a regular VAE, the unsupervised ΔVAE model is
trained by minimising the negative Evidence Lower Bound (ELBO), but the prior
and approximate posterior (encoder) are defined on a (typically non-Euclidean)
Riemannian manifold Z. The prior is uniform over this manifold, whereas the
approximate posterior is defined by a location and scaling parameter. To esti-
mate the intractable terms of the negative ELBO, the reparameterisation trick
is implemented via a random walk.
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Transformation-Supervised Batches. The LSBD-VAE can be trained both on
unsupervised images and transformation-supervised batches (x1, x2, . . . , xM )
where all samples can be expressed as a known transformation of the first, i.e.
xm = gm ·x1 for m = 2, . . . ,M . Each transformation g corresponds to changes in
each of the factor values, and can be represented with rotation matrices acting
on each of the latent subspaces.

Given such transformation-supervised batches, LSBD-VAE includes an addi-
tional loss term LLSBD that encourages learning LSBD representations. LLSBD

measures the dispersion of the points ρ(g−1
m ) · zm for m = 1, . . . ,M , where zm

is the model’s encoding of data point xm. Ideally, since x1 = g−1
m · xm, all these

points should be equal to achieve LSBD, so the dispersion provides a term to
encourage LSBD. Formally, it is defined as

LLSBD =
1
M

M∑

m=1

∥∥∥∥∥ρ(g−1
m ) · zm − Π

(
1
M

M∑

m=1

ρ(g−1
m ) · zm

)∥∥∥∥∥

2

,

where g1 = e, the group identity.
In this paper we train only on transformation-supervised batches without

unsupervised training. This is a rather strong type of supervision, but our goal
is to investigate how well-trained LSBD representations perform in OOD gener-
alisation, not to find the most efficient way to train an LSBD-VAE model. We
split up the training set into transformation-supervised batches of size M = 32.

Non-Cyclic Factors. Although dSprites and 3D Shapes contain factors that don’t
really have an underlying SO(2) structure, we can still use this formulation to
train an LSBD-VAE on these datasets, by mapping the factor values to suitable
angle values from 0 to 2π radians. The shape factors in both datasets can be
represented as equally spaced values with an in-between angle of 2π

nclasses
. Since

there are only a few classes, this naturally encourages a class-based clustering in
the corresponding latent subspaces. Factors scale, x-position and y-position in
dSprites as well as scale and orientation in 3D Shapes, are essentially continuous
but not cyclic. Thus, we map them to a range of angle values from 0 to 0.9 · 2π
radians, to introduce a discontinuity in the lowest and highest observed factor
value. The remaining factors are cyclic so we represent them with regular angle
values between 0 and 2π.

Architecture and Hyperparameters. For the encoder we use a convolutional archi-
tecture as in [10], with 4 convolutional layers (4×4 kernels and 2×2 strides, each
layer has 32, 32, 64, and 64 filters, respectively), followed by a fully-connected
layer with 256 units. The output of this is connected by fully-connected layers to
the parameters of the LSBD-VAE latent subspaces. The decoder is the reverse
of this, using strided transposed convolutions. All hidden layers use “ReLU”
non-linearity, the output layer uses a sigmoid activation to predict pixel values.
Each model is trained with the Adam optimiser, using an early stopping crite-
rion. We use a mini-batch size of 8, where each element in the mini-batch is in
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fact a transformation-supervised batch of M = 32 images, thus each mini-batch
consists of 256 images with batch shape (8, 32). We train each dataset and OOD
split combination 3 times, and report the mean scores over these 3 iterations in
our evaluations.

Traditional Disentanglement Models. For comparison, we train a regu-
lar VAE [8,16] as well as 5 traditional unsupervised disentanglement mod-
els: BetaVAE [6], DIP-VAE-I and II [9], FactorVAE [7], and cc-VAE [3], as
implemented in disentanglement lib [10], which use the same architecture as
described above for LSBD-VAE. These models do not address disentanglement
from the perspective of LSBD, but are instead based on statistical properties
of the data. We train each model-dataset combination only once, due to the
large number of such combinations and limited computing power. Each model
is trained for 30,000 training steps with a batch size of 64.

For the Square and Arrow datasets, which have 2 cyclic factors, we trained
each model-dataset combination with 2, 4 and 7 latent dimensions. Although
2 factors could technically be disentangled in 2 latent dimensions, at least 4
dimensions are needed to represent the cyclic topology as well (see [5] and [14]).
Nevertheless, we observed that the extra capacity of 7 latent dimensions led
to better OOD generalisation results, thus we report only those experiments in
Sect. 5. For dSprites and 3D Shapes (with 5 and 6 factors, respectively) we only
trained with 7 latent dimensions.

5 Experiments and Results

Likelihood Ratio: Training vs. OOD ELBO. We follow a similar evaluation
protocol to [12], where we compute the mean negative log-likelihood (approx-
imated with the negative Evidence Lower Bound or ELBO) for the training
data as well as the OOD test data. A small difference between the training and
OOD ELBOs indicates good generalisation. Note that since the ELBO is an
approximation for the log-likelihood, the difference between ELBOs represents
a likelihood ratio.

Figure 3 shows the differences for all models and datasets. We observe that
LSBD-VAE only shows improved generalisation for the Square dataset, whereas
for other datasets it mostly gets outperformed by the traditional methods.

This is particularly surprising for the Arrow dataset, where the symmetry-
based paradigm is most suitable. We suspect that the increased model capacity
of the traditional models with 7 latent dimensions helps more for generalisation
than the strong regularisation of the LSBD-VAE. To illustrate this, we compare
the reconstructions of OOD samples from the Arrow 0.625 split by DIP-VAE and
LSBD-VAE, see Fig. 4. Both models reconstruct training data similarly well, but
their behaviour on OOD data is quite different. DIP-VAE reconstructs OOD
samples to darkened images with an uneven colour that nevertheless capture
the underlying factors (orientation and hue) fairly well, whereas LSBD-VAE
reconstructs into clearer images with an incorrect factor combination (one that
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Fig. 3. Differences between train and OOD ELBO for all datasets and models. The
horizontal axis shows different OOD splits.

Fig. 4. Examples of training and OOD samples (top lines) and their reconstructions
(bottom lines) by two different models, for the Arrow 0.625 split.

has been seen during training). Therefore, DIP-VAE achieves a lower pixel-wise
reconstruction error, which is a main component of the ELBO computation.

Reconstructions of OOD Combinations. We can better understand the
generalisation of LSBD-VAE on dSprites and 3D Shapes by inspecting recon-
structions of OOD data from the different splits, as shown in Fig. 5. For RTE
we see that OOD data is reconstructed fairly well for both datasets, although
dSprites images are sometimes reconstructed with the wrong shape. This seems
mostly the effect of good interpolation, since for RTE only a limited number of
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combinations are left out during training. For RTR we see clear failure cases.
The dSprites squares in unseen x -positions are reconstructed to the wrong shapes
in the correct x -positions, so only one factor from the missing combination is
inferred correctly. For 3D Shapes we see similar behaviour; oblong shapes in
unseen colours are reconstructed into incorrect (mostly spherical) shapes but
with the correct colour. For EXTR we see that the unseen factor values are not
reconstructed well at all, dSprites images in unseen x -positions are reconstructed
in different positions, often with a different shape and in one case the reconstruc-
tion even shows two objects. Similarly, for 3D Shapes the unseen floor colours
are not reconstructed well at all, but they are substituted with floor colours that
have been seen during training.

Fig. 5. LSBD-VAE reconstructions of OOD data from various splits of dSprites (left)
and 3D Shapes (right).

Equivariance of OOD Combinations. So far, the evaluations we showed
rely mostly on reconstruction performance, which is the main component of
the ELBO in a VAE-based model. Such evaluations are heavily focused on the
generalisation of the decoder. Yet, in a representation learning setting we are
typically mostly interested in the behaviour of the encoder, which is the model
that actually learns representations.

In symmetry-based disentanglement (SBD), we can use the notion of equiv-
ariance to evaluate the generalisation of the encoder. In particular, for Linear
SBD (LSBD) we can use the DLSBD metric from [19] to quantify the equiv-
ariance with respect to the transformations in the full dataset including the
left-out OOD combinations. This gives us a measure of how well a model can
represent (in a linear manner) the underlying structure of the data, even if it
hasn’t observed certain parts of this structure.

Figure 6 shows the DLSBD scores for all models on the Square and Arrow
datasets, lower scores are better (0 is optimal). dSprites and 3D Shapes contain
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factors that cannot clearly be mapped to LSBD symmetries, so we do not evalu-
ate DLSBD on those datasets. We emphasise that LSBD-VAE is the only model
that attempts to disentangle from an LSBD point of view, so the traditional
models are included not for fair comparison but as indicative results. Indeed
we observe that LSBD-VAE achieves better DLSBD scores overall, though some
traditional models perform fairly well on the Square dataset. LSBD-VAE per-
formance on DLSBD hardly suffers for the smaller OOD splits (up until the 0.5
split), and still performs fairly well for the larger OOD splits. This indicates that
even though OOD generalisation seems poor when inspecting ELBO values, the
encoder appears to represent the underlying structure of the data quite well.

Fig. 6. DLSBD scores (lower is better) for various OOD splits.

To visualise this more clearly, we show 2D latent embeddings and traversals
for LSBD-VAE on the Arrow datasets in Fig. 7, for increasingly large OOD
splits. From the top row we see that until the 0.5 split, the underlying structure
is captured quite well even for unseen OOD combinations. For the 0.5 split we
can clearly identify where the unseen OOD combinations are encoded since they
break the axis-alignment, but the overall topology is still intact. For larger OOD
splits we see that this topology starts to break, and that OOD encodings start
overlapping with training encodings, thus the model starts failing to represent
these OOD factor combinations.

The bottom row of Fig. 7 shows how the decoder fails for OOD combinations.
For the 0.5 split, orientation and hue are easily recognisable and disentangled
in the generated images. For larger splits, shapes become more disfigured, and
eventually orientation and hue are no longer well-represented.



444 L. Tonnaer et al.

Fig. 7. 2D latent embeddings (top) and latent traversals (bottom) for LSBD-VAE
trained on Arrow for increasingly large OOD splits, visualised on a flattened 2D torus.
The embeddings colour map shows an ideal mapping if the pattern forms an axis-
aligned grid. Embeddings of OOD data are shown in a lighter shade.

6 Conclusion

In this work we investigated the out-of-distribution (OOD) generalisation of dis-
entangled representations, in particular from the perspective of linear symmetry-
based disentanglement (LSBD). We reason why such representations should in
theory generalise well to unseen (OOD) factor combinations, but in practice
we observe that disentanglement models struggle to generalise well. We provide
empirical results that showcase for which settings OOD generalisation seems to
work, and where and how models fail. Overall our results imply that there is
still work to be done to achieve OOD generalisation with disentangled models.
The results, however, also show some promise that LSBD models can learn to
express unseen factor combinations if there is sufficient coverage of combinations,
although in practice decoders seem to struggle more with correctly representing
the unseen combinations even if their encodings satisfy equivariance quite well.
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Abstract. We are interested in electricity price forecasting at the Euro-
pean scale. The electricity market is ruled by price regulation mechanisms
that make it possible to adjust production to demand, as electricity is
difficult to store. These mechanisms ensure the highest price for produc-
ers, the lowest price for consumers and a zero energy balance by setting
day-ahead prices, i.e. prices for the next 24 h. Most studies have focused
on learning increasingly sophisticated models to predict the next day’s 24
hourly prices for a given zone. However, the zones are interdependent and
this last point has hitherto been largely underestimated. In the following,
we show that estimating the energy cross-border transfer by solving an
optimization problem and integrating it as input of a model improves
the performance of the price forecasting for several zones together.

Keywords: Electricity Price Forecasting · Optimization-based data
augmentation · Machine learning

1 Introduction

Energy challenges are even more important as our societies have become
extremely dependent on it. However, the production of energy, and in partic-
ular electricity, is linked to many intricate factors, based on different estimates
such as weather forecasts (influencing both production and consumption) or
production capacities for various means. Added to this complexity is a tariff
regulation mechanism [13] used to balance production and consumption, as elec-
tricity is hard to store. This algorithm maximizes social welfare defined as the
sum of consumer surplus, supplier surplus and congestion rents from cross-border
exchanges. It ensures the highest price for producers, the lowest price for sup-
pliers and a constant energy balance by setting day-ahead prices, i.e., 24-hourly
prices for the next day.

Being able to forecast day-ahead energy prices is crucial to control energy
production and for a successful energy transition. Thus, many works [5,9,15,16]
have sought to produce the most accurate price prediction models possible. In
[14], we have shown that approaches based on machine learning models are
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superior to benchmark auto-regressive models. They provide much more accurate
predictions and are fast enough to be used operationally. We also strove for
predicting the prices of different zones jointly. Although we did not obtain a
significant improvement in the forecasts, the analysis of the contributions of the
variables highlighted the importance of integrating data from foreign countries
for the price forecast. For example, we have shown that Swiss prices contribute
significantly to increasing the accuracy of French, Belgian and German price
forecasts. We concluded that we had not used enough information to correctly
model the European network, in particular that we had not sufficiently taken
into account transfer capacities and cross-border energy flows in our models.

We propose to overcome these limitations by putting forward different ways
to integrate cross-border flows into predictive models. Cross-border flows are
constrained by the Available Transfer Capacity (ATC) between two countries
that share a border. However, this maximum capacity is not fully used continu-
ously and knowing the flows between countries would undoubtedly improve the
prediction models. For this, we propose to take advantage of domain knowledge
to estimate cross-border flows by a combinatorial optimization model.

The proposed approach is reversed from the predict-then-optimize
approaches [3,11] used to solve many decision-making problems by combin-
ing machine learning and combinatorial optimization. In this framework, some
parameters of a combinatorial optimization problem are estimated from other
features based on historical data. Our approach use a combinatorial optimiza-
tion model to estimate features that are then used to train a machine learning
model.

In this paper, we introduce the problem of electricity price forecasting on the
European market (Sect. 2). Our research hypothesis is that we can improve the
model prediction by enriching the input data thanks to domain knowledge. Espe-
cially, we introduce the problem of estimating the cross-border flows (Sect. 3). We
design two distinct combinatorial optimization problems and their combination.
Then, we use the results of these optimization problems in a multi-zone fore-
casting model that predicts prices for 35 distinct zones of the European market
(Sect. 4). The experimental evaluation (Sect. 5) confirms that the cross-border
flows estimation makes it possible to improve the model performance. We then
conclude with a broader discussion and a forward look (Sect. 6).

2 Electricity Price Forecasting Problem on the European
Market

Unlike other commodities (e.g., cereals, oil), electricity cannot be efficiently
stored. To prevent failures on the electricity network, balancing algorithms are
used. On the European market, the euphemia [13] algorithm fixes hourly prices
by matching demand, production and exchanges across Europe in a way to max-
imize the social welfare while taking into account the market and network con-
straints: (1) The energy balance must be zero for all zones at all times. (2)
The flow of energy between two zones must not exceed the maximum transfer
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Fig. 1. European electricity market map: Some countries are divided into several zones
(e.g., Italy, Norway). Prices are established for each zone. Energy can flow between
connected zones. Areas or connections colored in red are excluded from our dataset
due to lack of data.

capacity between these two zones. (3) Where possible, the energy flow between
two areas is maximized to generate more profit from congestion rents. This algo-
rithm runs daily at noon and determines the day-ahead prices, matched demand
and supply and energy flows of the 46 European zones (see Fig. 1). The elec-
tricity price forecasting problem (EPF) consists in predicting the prices over
24 h before their settlement. Electricity prices are constrained by fundamentals
variables: consumption, generation, transfer capacities. More precisely, pricing
algorithms use a forecast of those variables for the next day.

To solve the EPF problem, we represent the European market on day d
using a graph. Each zone is represented by a node z for which day-ahead prices
Dz ∈ R

24 must be predicted. For some problems, the required amount of energy
to be produced Ez ∈ R

24 also has to be predicted. Connected zones on the
market are linked in the graph by edges (z, z′), associated with day-ahead flows
Fz,z′ ∈ R

24. The features used by the pricing algorithm are (1) Consumption
forecast for the next day Cz ∈ R

24 (2) Renewable generation forecast for the
next day Rz ∈ R

24, (3) Programmable generation forecast for the next day
Gz ∈ R

24, (4) Maximal generation capacity for the next day Vz ∈ R
24, (5)

Current Prices Pz ∈ R
24, (6) Available Transfer Capacities for the next day
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Az,z′ ∈ R
24 which is the maximum amount of energy that can be sent from z to

z′. Since renewable energy production is subject to external factors that are not
controllable (wind speed, solar radiation, etc.), we distinguished the two types
of source by Rz and Gz.

Hence, C,R,G,P,V and A are known at prediction time, while D, E and
F are unknown. In what follows, we propose to take advantage of knowledge
from the field of electricity pricing to estimate the flows F between zones by
combinatorial optimization, before using those results to forecast the day-ahead
prices D.

3 Estimate Cross-Border Flows by Combinatorial
Optimization

The euphemia algorithm sets electricity prices on the European market by sat-
isfying the constraints listed in Sect. 2. These constraints lead to sophisticated
and counter-intuitive flows between zones, some zones playing the role of transit
zones to make possible energy exchanges between two other zones. To better
model these dynamics, we use domain knowledge to approximate day-ahead
flows F and use them as predictive variables into EPF models. In this section,
we describe four different methods for predicting F.

3.1 A Formalization by Linear Programming

The most natural way to formulate the flow optimization problem is to write the
euphemia algorithm as a linear programming problem. In doing so, the network
constraints are explicitly enforced, and the Day-Ahead Flow F and required
energy generation E are computed:

Flin = arg max
Fz,z′ and Ez

∑

z,z′
Fz,z′(Pz′ − Pz)

under const.

⎧
⎪⎪⎨

⎪⎪⎩

Cz − Rz − Ez +
∑
z′
Fz,z′ − ∑

z′
Fz′,z = 0 ∀z

Ez ≤ Vz ∀z

Fz,z′ ≤ Az,z′ ∀z, z′

Flow-related profit is maximized under three constraints. The first constraint
ensures a zero energy balance, the second stipulates that the planned production
must not exceed its maximum capacity, and the third imposes that the flows do
not exceed the capacities of the lines. The cost aims to maximize congestion
rents by maximizing potentially valuable flows: flows from a zone with lower
prices to a zone with higher prices. In this set-up, we consider the consumption
Cz and renewable generation forecasts Rz as fixed. The required generation Ez

is determined to match Cz − Rz.
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Table 1. CC, MAE and SMAPE metrics between Flin and Flsq optimized flows and
actual day-ahead flow values F on the train dataset.

Problem CC MAE (MWh SMAPE (%)

Flin 0.153 944.63 120.32

Flsq 0.389 418.05 105.93

3.2 Formalizing the Problem by a Least-Squares Loss

The formulation of the problem by linear programming has a major drawback.
We allow the generation of zone to expand to its maximum capacity Ez ≤ Vz

without penalty to the cost. In practice, switching power plants on or off has a
cost that is not linear with respect to the generated volume. We thus propose to
rewrite the problem by transforming the energy balance constraint into a cost
to be minimized.

Flsq = arg min
Fz,z′

∑

z

(
∑

z′
Fz,z′ −

∑

z′
Fz′,z + Cz − (Rz + Gz)

)2

under constraint 0 ≤ Fz,z′ ≤ Az,z′ ∀z,z′

The squared loss ensures that unbalanced zones are heavily penalized. Thus,
we do not have to penalize the objective by the price difference and, we can also
remove the determination of Ez from the problem and we use the programmable
generation forecast Gz instead.

3.3 Combining the Two Formalizations

To study the estimation quality of these two models, we solved the two optimiza-
tion problems for each hour of our train dataset (see Sect. 4.1) using scipy1. As
flow values are known a posteriori, we can evaluate the quality of the estimation
on the train set using standard measures (see description in Sect. 5). The met-
rics obtained are reported in Table 1. It is obvious that Flsq outperforms Flin
on the dataset. However, by analyzing the estimations with a lower granularity,
we observe that the performances vary according to graph edges. For example,
the flow on the edge between Norway-5 and Norway-1 is well handled by prob-
lem Flsq as shown in Fig. 2 (left) while the flow on edge between France and
Germany is better handled by problem Flin (see Fig. 2 right). To take advan-
tage of these two models, we sought to identify the market conditions allowing
to differentiate these two scenarios. For this, we first define the loss difference
between the results of the two problems as

L(t)(z, z′) = |F(t)
z,z′ − Flsq(t)

z,z′ | − |F(t)
z,z′ − Flin(t)

z,z′ |
1 https://scipy.org/.

https://scipy.org/
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Fig. 2. Optimized flows Flin (blue), Flsq (green) and the actual Day-Ahead flows F
(red) between the Norway-5 and Norway-1 zones (left) and the France and Germany
zones (right). On the left, we observe that Flsq comes close enough to the Day-Ahead
flow F, while Flin does not. On the right, we observe the opposite.

where t = (d, h) is one of the N possible time-steps. We analyze the relationship
between L(t)(z, z′) and the characteristics of the market

x ∈ (Cz,Cz′ ,Rz,Rz′ ,Pz,Pz′).

We break down x into 100 quantiles xq and compute the average loss for each
(x, q):

L(z, z′, x, q) =
1
N

∑

t∈T (x,q)

L(t)(z, z′)

with T (x, q) = {t | x(t) ∈ [xq, xq+1]}. Market conditions where L(z, z′, x, q) >
0 correspond to situations where it is preferable to use Flin instead of Flsq.
We name the results of this combination Fcmb. To generate Fcmb on the
test dataset, we keep the same market conditions (z, z′, x, q) as found on the
train dataset. This prevents data leaks related to the use of posterior data for a
prediction.

3.4 One-Sided Flows

In the above formalization, we enable bilateral flows between two zones, i.e.
Fz,z′ > 0 and Fz′,z > 0 can both occur, which matches the logic of euphemia.
However, in practice most connections never have two-sided flows. To further
improve our flow modeling, we identify one-sided connections and apply one-
sideness in our flow estimations. For each link (z, z′), we count the number of
times on the train dataset when the flow is one-sided i.e. when we have Fz,z′ ≥ 0
and Fz′,z = 0. If this occurs more than 75% of the time, we consider the edge
(z, z′) as always one-sided. For this, we keep the most important predicted flow
from which we subtract the least important flow. We set the latter to 0. In
this way, the energy balance in the two zones remains the same. We apply this
transformation to Fcmb and call the result Fos.
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4 Electricity Price Forecasting Models

4.1 The Dataset

In this section, we tackle the EPF problem on the European market. The data
is available free of charge2 and we collected 35 out of 46 zones, linked by 63
connections. For each zone z, the attributes are Xz = (Cz,Rz,Gz,Pz) ∈ R

96.
Hence, each day is described by 35×96 predictive features and the targets to be
predicted are the 24 hourly prices for each zone. We exclude the Swiss and Great-
Britain prices from the prediction task. Although they are part of the network,
their prices are determined prior to the closing of euphemia and we prefer to use
them as predictive variables. We predict the 24 prices of the remaining 33 zones
every day: Y ∈ R

792. Our dataset spans from 01/01/2016 to 31/12/2021. We use
the last two years (2020, 2021) as test set. Two years is a good duration because
the prices show a strong seasonality. The year 2019 is kept as a validation set
for hyper-parameter search.

In addition to the 35 × 96 predictive features cited above, we consider the
Available Transfer Capacities for each connection A or instead one of the flow
estimates Flin, Flsq, Fcmb, or Fos for each link, leading to 126×24 additional
predictive variables. Each line of our dataset corresponds to a day and has 6384
values.

4.2 The Machine Learning Models

We use Deep Neural Network and Convolutional Neural Network to predict the
electricity prices. Deep Neural Networks (DNN) [6–8,12] are the most commonly
used models in EPF. Its training samples are vectors s ∈ R

6384. Convolutional
Neural Networks (CNN) have also seen a growing interest in EPF over the past
years [1,4,7]. We compute the convolutions along time and each sample is a
vector s ∈ R

(35+126)×24. Finally, we propose to use a Graph Neural Network
(GNN), which is new for the EPF domain. GNNs make it possible to exploit
data structured as graphs as described in Sect. 2. We train our GNN for the node
prediction problem by stacking graph convolution layers that update the node
embeddings. This is followed by linear layers that map node embeddings to their
predicted values. We use tensorflow and pytorch-geometric libraries3. Each model
(DNN, CNN, GNN) is trained on 5 different versions of our dataset according
to the method use to estimate F: A, Flin, Flsq, Fcmb, Fos. To be fair in our
experiments, we set a time limit for the hyper-parameter search. More precisely,
we let our program explore the hyper-parameter grid for 24 h for each model with
F = A on a 20cpus computer and use the same configuration for all variants
of F. This introduces a slight bias as the resulting best configuration is chosen
for its performance on the A dataset. After finding the optimal configuration,
we calculate forecasts on the test dataset using recalibration. It consists in re-
training the model using the most recent data before making forecasts. Once a
2 https://transparency.entsoe.eu.
3 https://www.tensorflow.org/, https://pytorch-geometric.readthedocs.io.

https://transparency.entsoe.eu
https://www.tensorflow.org/
https://pytorch-geometric.readthedocs.io
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Table 2. Metrics for flow estimation on the test dataset for the different methods. The
Flsq method outperforms the Flin methods. The Fcmb method does not improves
the metrics, while the Fos method improves performances.

Problem CC MAE (MWh) SMAPE (%)

A 0.14 917.59 111.43

Flin 0.116 876.51 111.12

Flsq 0.380 388.95 105.35

Fcmb 0.367 396.46 102.52

Fos 0.375 314.5 81.19

test set sample is predicted, we can integrate its predictions into the training
dataset and retrain the model. We recalibrate our models every 30 days.

5 Experiments

We compare the values between the predicted Ŷz,h and the real Yz,h target
variables for the different zones z and hours h. We use standard measures as
MAE(Y, Ŷ ) (the average of the absolute difference between the values over the
target variables), SMAPE(Y, Ŷ ) (the symmetric mean absolute percentage error
over the target variables), and CC (the average correlation coefficient over the
target variables). To check the statistical significance of the results, we use the
Diebold & Mariano (DM) test [2] that compares two models M1 and M2. The null
hypothesis H0 is that Loss(M1) > Loss(M2), i.e.the first model is less efficient
than the second. We can reject H0 and conclude that M1 outperforms M2 if
the resulting P-value is lower than a fixed threshold of 0.05. We use SMAPE as
Loss to better account for the different price scales. To make the experiments
reproducible, the source code and the data are made available4.

5.1 Results

Flow Estimate. The results of the flow estimation problems on the test set are
first presented in Table 2. For comparison, we also calculated the error between
the network constraints A and the actual flows. We make the same observation
as for the train set: Flin barely improves the quality of the flows while Flsq
dramatically reduces the error. Then, their combination Fcmb does not shows
notable metric improvement while setting up one-sided flows Fos does. We per-
form DM tests that confirms that the flow estimate quality increases with the
complexity of the estimation method i.e. Fos outperforms every method, Fcmb
outperforms every method except Fos and Flsq is better than Flin.

4 https://github.com/Leonardbcm/OPALE.git.

https://github.com/Leonardbcm/OPALE.git
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Price Forecast. The results of the EPF problem on the test period are presented
in Table 3. The left part display the metrics, while the right part of details the
P-values of the DM tests. On each line, we first compare the model on the
line with the same model using other flow estimates (first 5 columns), then we
compare it to other models using the same flow estimate (last 3 columns). We
can for instance confirm that the DNN model using the network constraints A
is significantly more efficient than the CNN using A (first line).

The CNN models are less competitive. They obtain the worst metrics and
the DM test confirms that they are significantly less efficient than other models
using the same flows (penultimate column). The GNN models are the most
adequate models for this problem. Their metrics are better and the DM test
statistically confirms that they outperform other models using the same flows
(last column). The DNN models thus stand in between. We now analyse the
performance variations with respect to the flow estimation method. We compare
results obtained using the network constraints A and those using estimation
methods F (4th column). We notice that, except for Flin, estimating the flows
significantly improves performances for all models. Moreover, the Flin method
is significantly less efficient than every other (5th column). However, which flow
estimation method is better for all models remains unclear. The best flow esti-
mate for the DNN model is the Flsq (3rd row), Fcmb (9th row) for the CNN,
while for the GNN, it is impossible to statistically decide between Fos and
Flsq, despite metric differences.

Detailing the DM tests by zone, we observe that replacing A by Flsq, Fcmb
or Fos leads to overall improvements, even though local decrease can occur (FR,
HU, CZ, SK, SI, NO-5, DE, AT). Using Flin improves performances less often
than other methods and can degrade forecasts on multiple neighboring areas
(Italy for the CNN). Fcmb shows the biggest improvements and the lowest
decrease for all models. Using Fcmb in a EPF model seems to be a reasonable
default choice. Lastly, almost all zones profit from using F for the DNN.

5.2 SHAP Values

It is possible to further analyze our models and determine the impact of the
different groups of features on the predictions. To that end, we consider the
SHAP value approach [10], a feature attribution method that assigns to each
feature a value that reflects its contribution in the prediction process. We denote
the contribution of a column c to the target o on day d as Φd,o

c . A column
c = (f, h, z) refers to the feature f at hour h for zone z or pair of zones (z, z′)
if f is an edge attribute. Hence, the contribution tensor Φ ∈ R

731×792×6385 is
made of 3.7 billion values. For computational issues, we only compute 500 SHAP
values on the first 30 days of the test dataset. We normalize the results so that
the sum of each contribution equals 1 for each target of a given day to obtain
Φ̄d,o
c , and the sum of the contributions for each feature f is denoted Φ̄f .

We compute Φ̄f for each f ∈ (C,G,R,P,F) and display them in Table 4.
First, we observe that the GNN’s top contributing features are the prices that
explain 30% of the forecasts, against approximately 20% for the other models.
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Table 3. (Left) Metrics on the test period. (Right) DM test’s P-values. For each trained
model (line), the P-value is computed against the same model with other flows (first
5 columns) and against other models with the same flows (last 3 columns). The null
hypothesis states that the column model outperforms the row model. With a threshold
of 0.05, the bold values indicate that the row model outperform the column model.

Models CC MAE SMAPE

(e/MWh) (%)

DNN A 0.893 13.97 29.76

DNN Flin 0.903 13.44 28.51

DNN Flsq 0.904 12.96 28.26

DNN Fcmb 0.906 13.07 28.38

DNN Fos 0.909 13.2 28.84

CNN A 0.866 14.41 32.17

CNN Flin 0.865 14.54 32.23

CNN Flsq 0.875 14.19 32.01

CNN Fcmb 0.867 14.04 31.81

CNN Fos 0.872 14.26 31.87

GNN A 0.925 10.23 24.59

GNN Flin 0.926 10.22 24.6

GNN Flsq 0.925 10.17 24.6

GNN Fcmb 0.926 10.18 24.46

GNN Fos 0.926 10.14 24.52

A Flin Flsq Fcmb Fos DNN CNN GNN

- 1.0 1.0 1.0 1.0 - 0.008 1.0

0.0 - 1.0 1.0 0.998 - 0.0 1.0

0.0 0.0 - 0.001 0.0 - 0.0 1.0

0.0 0.0 0.999 - 0.001 - 0.0 1.0

0.0 0.002 1.0 0.999 - - 0.0 1.0

- 0.035 0.992 1.0 0.958 0.992 - 1.0

0.965 - 1.0 1.0 0.998 1.0 - 1.0

0.008 0.0 - 0.996 0.175 1.0 - 1.0

0.0 0.0 0.004 - 0.002 1.0 - 1.0

0.042 0.002 0.825 0.998 - 1.0 - 1.0

- 0.819 0.981 0.928 1.0 0.0 0.0 -

0.181 - 0.957 0.884 0.996 0.0 0.0 -

0.019 0.043 - 0.31 0.942 0.0 0.0 -

0.072 0.116 0.69 - 0.937 0.0 0.0 -

0.0 0.004 0.058 0.063 - 0.0 0.0 -

Table 4. Average contribution (%) for the predictions grouped by feature. For the
DNN and CNN models, we observe that the average contribution of the flows F
increases as we use more sophisticated estimation methods.

Model DNN CNN GNN

FA Flin Flsq Fcmb Fos FA Flin Flsq Fcmb Fos FA Flin Flsq Fcmb Fos

C 19.4 19.2 19.3 19.3 18.8 19.3 19.2 18.9 18.8 18.6 16.7 17.0 16.7 16.7 17.0

G 20.4 20.5 20.0 20.0 19.5 20.1 20.6 10.7 20.5 20.0 18.1 18.0 18.0 18.0 18.3

R 21.5 21.6 20.7 20.7 20.1 22.1 21.5 21.0 20.9 22.3 19.4 19.1 19.5 19.6 19.5

P 20.5 20.5 20.7 20.5 20.3 20.1 20.5 21.3 21.7 20.4 31.6 31.5 31.0 30.9 30.6

F 18.5 18.2 19.3 19.4 21.2 18.4 18.1 18.1 18.2 18.7 14.2 14.4 14.8 14.8 14.5

The GNN also uses F the less (14% against 18–20%). Next, we observe that
the DNN model favors the use of F at the expense of C, G and R as we use
more sophisticated flow estimate (Flsq, Fcmb, Fos). In contrast, the average
contribution of F in the CNN and GNN does not show a clear pattern. To detail
these observations, we display in Fig. 3 the differences of contribution between
A and the used estimate F. Green squares on coordinate (i, j) indicate that the
contribution of F is more important than the contribution of A for predicting
the zone i for model j. We observe that the Flin contribution differences are
mostly negative i.e. models rely less on Flin than on A for forecasting prices.
Next, we see that the DNN increases the contribution of F for almost all zones.
Finally, the CNN always lowers the contribution of Spain (ES), Portugal (PT),
and Italy (CNOR, CSUD and SARD). These zones are characterized by having
few (1 or 2) connections. Latvia (LT) has a similar behavior for the GNN model.
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Fig. 3. Difference in contribution made by the flow estimates F compared to the avail-
able transfer capacity A for the different models and zones. The green (resp. red)
squares indicate that F contributes more (resp. less) than A.

5.3 Discussion

The joint analysis of the model’s performances and SHAP values of Flin shows us
significant degradation of the forecasts and less contribution for the forecast than
A. This leads us to conclude that the Flin method is not a good flow estimation
method. Apart from Flin, other flow estimation methods are all beneficial for the
EPF task, without being able to select the best one overall. The DNN is the less
sophisticated model and cannot model the network. However, observing both a
significant performance improvement and an increase of the average contribution
of F over A for almost all zones, we infer that the DNN model takes benefit
from using flow estimation methods. Next, the CNN use a matrix of arbitrary-
arranged input features and a convolution kernel and dilation rate inconsistent
with the European network. Consequently, zones and flows are not associated.
Hence, CNN is the less tailored model for EPF. Lastly, the GNN model uses
the graph representation of the network, with connections modeled as edges.
This ability lowers the contribution of A or F in the forecast: node embeddings
are already updated using their neighbors even with no flows. This is even more
the case for isolated zones as their relationships with other zones are simpler.
Another consequence is that GNN is the best model for EPF at the European
scale.

6 Conclusion

In this paper, we introduce the problem of day-ahead electricity price forecast-
ing considering many zones together and their interdependence due to price
regulation mechanisms. While many works have focused on the construction
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of increasingly sophisticated models for specific regions of the European mar-
ket, we propose new ways of estimating features based on domain knowledge,
and this upstream of learning. We show that an optimize then predict strategy
makes it possible to improve the learned models by fully considering cross-border
energy flows estimated by several optimization problems. A SHAP-value analy-
sis confirms that the estimated flows contribute more to the prediction than the
Available Transfer Capacities, especially when the model is simple (DNN). For
more sophisticated models such GNN, flows better influence predictions at the
center of the European market while being less important for the zones at the
periphery of the market.

Two main directions can be considered as future work. First, we could replace
the generation forecast used in our models by a start-up/shut-down cost model
for power plants. It would better capture dynamics between generation and day-
ahead prices. Going further, we could also model part of the EUPHEMIA algo-
rithm. Then, our work brings forward the question of mixing optimization prob-
lems and Machine Learning. Integrating the optimization problem as a layer in
our Neural Network to achieve a Optimize and Predict framework would directly
link the task loss (day-ahead price forecast) to the sub-task (flow estimation).
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Abstract. Recent advances in technology and societal changes have
increased the amount of patient data that is being collected remotely,
outside of hospitals. As technology enables the ability to collect Eco-
logical Momentary Assessments (EMAs) of patient symptoms remotely,
personalised predictors have become especially relevant in the field of
medicine. However, focusing a predictive model on a single patient’s data
comes with sometimes extreme trade-offs on the amount of data available
for training. While it is possible to mitigate this loss of data by including
data from similar patients, the concept of similarity itself may be poorly
defined in cases where patient data are available in two modalities -
one that is fixed and relatively static (for e.g.: age, gender, etc.), and
those that are more dynamic (instantaneous symptom severity). Includ-
ing data from users with similar EMA data and disease characteristics
has been explored with respect to building personalised predictors of the
near future of a patient. We propose a method to build personalised pre-
dictors by discovering a neighbourhood for each user that decreases the
prediction error of a model over that user’s data. This method is useful
not just for building better personalised predictors, but may also serve as
a starting point for future investigations into what properties are shared
by patients whose EMA data predict each other. We test our method on
two EMA datasets, and show that our proposed method achieves signif-
icantly better RMSE than a single non-personalised global model, and
that our framework provides better predictions for 82%–89% of the users
compared to the global model for two datasets.
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1 Introduction

Along with rising interest and recent developments in extracting knowledge
from healthcare data, the digital revolution and the ubiquity of smartphones
is enabling clinicians, through the use of mobile health (mHealth) tools, to mon-
itor the disease of the patient outside the hospital. Data can be collected to
assess the momentary state of a variable of interest, and since the measurement
happens in the patient’s natural surroundings, these measurements are called
“Ecological Momentary Assessments” (EMAs). EMAs are widely applied in the
study of mental health and psychological affect, and are expected to reduce phe-
nomena like the ‘recall effect’ [13], where the patient’s recollection of an event is
affected by events that have occurred later.

This work uses EMA data from two mHealth smartphone applications: Track-
YourTinnitus, and the UNITI app. Both apps collect EMA data pertaining to
tinnitus, a psychoacoustic disorder characterised frequently by the perception of
a phantom sound in the absence of external stimuli. Each app caters to different
demographics. The UNITI app was developed as a part of the UNITI project
[12], with the main purpose of studying the changes in the dynamic presentation
of the disease as the patient takes part in a randomised controlled trial where
they receive a randomly-selected treatment, while the TrackYourTinnitus app is
aimed at the general public. The patients in the UNITI app are also monitored
for their participation in the app, strongly affecting the amount of data available
for learning. It is important to note that ‘typical’ user engagement is more likely
to approximate that observed in the TrackYourTinnitus app. Since the users of
both apps are assumed to suffer from tinnitus, we will use the word ‘patient’
and ‘user’ interchangeably, although only a subset of users of the UNITI app are
confirmed patients in a hospital.

Previous work on developing personalised predictors for similar data has
already shown that data from other similar patients/users helps in improving
the predictive performance of the models. However, this presents two problems:
(a) The exact features that contribute in measuring the ‘similarity’ between two
patients is sometimes unknown, and (b) the exact number of users whose data
are used to develop the personalised predictor (i.e., the ‘neighbourhood size’)
is fixed for all users. Given that each user may contribute different amounts of
EMA data, a user with neighbours that contributed little data will have less data
for learning compared to another user with neighbours that contributed heavily.

Our proposed neighbourhood discovery framework tackles this problem by
optimising for the predictive performance of the personalised neighbourhood,
instead of finding a one-size-fits-all neighbourhood size. i.e., all users who improve
the predictive performance of the model are included in the neighbourhood.
This approach is useful in cases where the notion of similarity is not clearly
defined, and in cases where the neighbourhood as well as the size of the neigh-
bourhood needs personalisation. The amount of data available from different
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EMA users can vary over orders of magnitude (from a few tens of rows to the
thousands), making traditional time series distance metrics like dynamic time
warping (DTW) inapplicable. However, since a brute-force exploration of every
possible combination of users for every possible number of user neighbourhoods
is computationally intractable, we order the search process to include users in
decreasing order of their similarity to the user for whom a predictor is being
trained. Towards this end, we apply a simple cosine similarity between the first
sim (in our case, sim = 7) observations of a target variable from two users. Using
a small number of observations from the beginning of the time series makes it
possible to order the brute-force search process, decreasing the number of models
trained to a large extent. Additionally, the small number of observations used to
compute the similarity decreases the ’leakage’ from of testing data information,
since they are sufficiently temporally distant from both the validation and test
data. Each user’s observations are also scaled separately, removing the effect of
the mean values from each user, and focusing instead on the variations.

To summarise, this work proposes a neighbourhood discovery framework that
answers the following questions:

– How to discover an ‘optimal’ neighbourhood for a user in the context of
building personalised predictors?

– How does the discovered neighbourhood perform compared to a non-
personalised global model that is trained on data from all users?

– Which users benefit from a personalised neighbourhood?

This paper is structured as follows: Sect. 2 presents some related literature,
and Sects. 3 and 4 introduce the proposed method and details of the dataset
that we apply it on, followed by a discussion of the results. We close with some
remarks on threats to validity and some possible extensions in Sect. 5.

2 Related Work

The idea of using machine learning to develop personalised predictors is receiving
increasing attention, as healthcare information from electronic health records is
presented with the opportunity to be integrated with additional data sources like
wearable sensors, etc. [1]. While many studies recommend caution when it comes
to promising better outcomes through personalised medicine [5,17], the authors
also suggest that the focus should be on how to best combine information from
machine learning models to assist clinicians understand the disease better. This
has been shown in [7], where the predictive power of a model that incorporates
newly identified proteins and genes in colorectal cancer patients is found to be
better than current state of the art models without these novel variables. In our
work, since there is no clearly established positive or negative outcome in the
EMA domain for tinnitus, we focus instead on predicting the EMA data in the
immediate future.

Developing personalised predictors for EMA data has been explored in [14],
but it has been found that the relevant neighbourhood of a patient can be dif-
ficult to infer based on the relatively ‘static’ information (age, gender, sociode-
mographics, and standardised questionnaire assessments collected in a hospital)
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available on the patient. While such ‘neighbourhoods’ may be improved with
expert information, there has still been no exploration on how the data from the
EMA domain may be used to improve the prediction methods. The idea that the
time series information may be accompanied by additional exogenous variables
is only recently gaining attention, as only the most recent version of the M-5
time series forecasting competition has included such information alongside time
series [4]. The M-5 competition also acknowledges other properties of collections
of time series, like that they might be intermittent (like for time series that
capture demand that may be sporadic), and include many zeros. The intermit-
tent nature of data arrival is a property that is of high relevance to EMA data,
although unlike in the case discussed in [4], the intermittence does not suggest
the absence of data, only that it has not been observed.

Although the idea that a single model may be trained from multiple time
series as inputs has been proposed early [10], the topic is still a matter of active
research, with interest not just in developing global time series models, but also
explanations for forecasts [11]. The latter point is especially relevant because
practitioners have found that well tuned statistical models are often competitive
when compared to modern machine learning methods, although a well tuned
machine learning model can be expected to outperform their statistical coun-
terparts [8]. It is further acknowledged in [2] that more research is needed to
understand the relationships between individual time series that make a global
time series model built on them more accurate than if the models were trained
on the separate time series. Although not explored in this work, this is a strong
motivation for pursuing our proposed methodology of discovering patients with
similar symptom presentation, since a global time series that benefits from the
shared data of multiple patients may reveal hitherto unknown clinically relevant
similarities between these patients.

Another difference of the proposed workflow is that unlike [14] which devel-
ops neighbourhood based predictors of the current state of a target variable
given all other EMA variables, but we extend this to a basic one-step forecaster,
which forecasts the target variable for the next day given all EMAs of today.
This extension follows naturally since it has already been seen in [3] that there
are Granger-causal relationships between the EMA variables - i.e., the past val-
ues of some variables are predictive of the future values of others. Predicting
the immediate future is also expected to be of more interest to the clinician,
since advance warning of short-term symptom deterioration can facilitate early
intervention.

The notion of discovering the neighbourhood for a user has also been explored
in [15], but in the context of learning models for users with very little data.
We generalise the framework to search for a neighbourhood for all users in the
dataset, not just the ones that have too little data for learning.

Our workflow’s error-driven adjustments are similar to boosting methods
like localised boosting, [6] - but different in a few ways: firstly, that we deal
with a regression, not a classification problem, but also in that the addition of
a user adds all data from taht user’s training data to the data accumulated for
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learning, as opposed only to localised weighting of the accumulated data from
different users. This is bacause of the third and arguably the most important
difference - that our proposed method provides us a set of useful neighbours
for each user, which in turn can be useful in guiding further clinical analyses,
since it is possible to explore the data of those users’ static data to investigate
what similarities exist between them. This is useful because understanding what
features contribute to a meaningful similarity between users can help understand
the dynamics of the disease better.

3 Neighbourhood Discovery Framework

3.1 Definitions

For all patients p ∈ P , our approach discovers a neigbourhood(p) ⊆ P such that a
predictive model trained on the data of all patients in neighbourhood(p) achieves
the best performance. It is clear that as |P | increases, the number of unique
subsets of P increases exponentially. Therefore, we discover the neighbourhood of
patient p incrementally using a greedy approach, which uses a similarity function
S(pi, pj),∀pi, pj ∈ P and i �= j.

EMA Data: Our proposed approach trains a personalised predictor for the time
series of each patient p in the dataset D. The n dimensional multivariate time
series of each patient p’s EMA data is denoted by EMAs(p) = Xp

0 . . . X
p
T , where

T denotes time, and Xp
T=t = {xt

1 . . . x
t
n} are the n dimensions (questions) cap-

tured at time step t, where 0 ≤ t ≤ T . The superscript ‘t’ is omitted when
referring to the entire series of observations collected for a particular dimension
over all time points.

Train, Test and Validation Data: The data of each patient EMAs(p) is
split into train data(p), val data(p) and test data(p), where train data(p) =
Xp

0 . . . X
p
tv−1, tv < T , val data(p) = Xp

tv . . . X
p
te−1, and test data(p) =

Xp
te . . . X

p
T . i.e., the full sequence of observations from a user p are split into

contiguous chunks of train, validation and test data while preserving chronologi-
cal ordering (validation data comes after test data, etc.). In this case, we reserve
the last 30% of the data for testing, and use 70% of the rest for training, and 30%
for validation. The target variable of prediction interest is xtarget ∈ x1 . . . xn.

Similarity Function S(pi, pj): This function computes the similarity between
two patients pi and pj . Any measure of similarity can be used here, but for the
sake of simplicity, we use cosine similarity between the first sim observations of
the target variable. S(pi, pj) is computed as the cosine similarity between the
EMA values for pi(x0...sim

target ) and pj(x0...sim
target ).

Applying the similarity function S to all pairs of patients (pi, pj)∀i, j ∈ P
provides a similarity matrix SM . For each p, we can select the row corresponding
to that user and sort the values in descending order in order to find the near-
est neighbours of user p. The framework searches this list in decreasing order
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of similarity in order to discover an optimal neighbourhood DN(p) ⊆ P that
maximises the predictive performance of a personalised model PM(p) trained
over the data of all users in DN(p).

3.2 Error-Driven Neighbourhood Discovery Framework

Figure 1 shows an overview of the neighbourhood discovery framework, including
the data used for training, validation, or testing by each component. The main
goal of the framework is to train a personalised model for each patient p in the
dataset, which is invoked only when predictions are required for patient p.

The neighbourhood discovery process begins with a model that includes data
only from a single user, i.e., DN = {p}. The quality of this model is assessed
against the validation data val data(p). In the next step, the next-most-similar
user from P is added to DN , and the performance of the model PM(p) trained
on all data in DN is assessed on val data(p). If the performance of the model
deteriorates, the last added user is removed from the discovered neighbourhood
DN , and the search process continues until all users have been checked.

Models: Most users have too little EMA data, so building complex data-intensive
models increases the likelihood of overfitting. Since the neighbourhood discovery
process begins with just the user’s own data, we stick to a simple linear regression
model to predict the value of the target variable tomorrow given the EMA data
of today. The framework design is, however, agnostic to the exact model used.
More complex models can be used if there is more data available for learning.

Avoiding Local Minima: The search process has two ways to get stuck in local
minima. One is due to a poorly defined similarity metric, which might compute
a similarity on the basis of data that is not relevant to improving the prediction
performance, and the other is due to small variations in the validation error
of the personalised neighbourhood model as users are added. We mitigate the
impact of wrong users added early in the search process by not terminating the
search until all users have been iterated through. This is expected to give the
model the chance to overcome a poor initialisation. In order to avoid strongly
restricting amount of training data available to the model, we track the RMSE
of the best-performing neighbourhood seen so far, and allow users to be added
to DN(p) even if the error increases by a small margin, as long as the model
performance does not deteriorate beyond 10% of the error achieved by the best-
performing neighbourhood. This way, we hope to overcome the local minima
from overfit neighbourhoods, and expect that the additional data from a user
that increases the error by a minor amount improves generalisation performance.

Reusing Models to Decrease Performance Overhead: The neighbourhood dis-
covery process starting at different users may iterate through models trained on
the same set of users multiple times. i.e., two users pa and pb with neighbour-
hoods DN(pa) = {pa, pb, pu, pv, pw} and DN(pb) = {pb, pa, pu, pv, pw} share the
exact same neighbourhood. If all the models of user pa were trained before the
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Fig. 1. An overview of the error-driven neighbourhood discovery process

neighbourhood discovery process for pb began, then all the intermediate mod-
els DN ′(pb) = {pb, pa}, DN ′(pb) = {pb, pa, pu}, DN ′(pb) = {pb, pa, pu, pv} and
DN ′(pb) = {pb, pa, pu, pv, pw} have already been trained once during the neigh-
bourhood discovery process for user pa, albeit evaluated on val data(pa). In order
to avoid retraining models that have already been trained during the neighbour-
hood search process for other users, all models trained during the search process
are saved in a way that they can be retrieved by a hash which is the set of
users over which the model was learned. A model thus retrieved may be directly
applied to compute the prediction error over the new user pb’s validation data.

4 Experiments and Discussion

4.1 Datasets

This study uses two datasets from two mHealth applications for tracking tin-
nitus: the TrackYourTinnitus (TYT) application [9], and the more advanced
UNITI mHealth application [16]. The TrackYourTinnitus application is a mobile
crowd sensing platform that is developed to enable experience sampling of the
app user to better understand the dynamic presentation of tinnitus symptoms in
the user’s natural environment. The more recent UNITI app has been developed
as part of the Horizon 2020 “UNITI” project [12], which aims at discovering
treatment combinations that are particularly effective in treating tinnitus using
a randomised controlled trial. Both apps periodically deliver notifications to the
users on their mobile devices, prompting them to answer the EMA question-
naire. The user is also allowed to manually answer the EMA questionnaire at
any time of their choosing.

TYT Dataset: For both the TYT and the UNITI datasets, all users with less than
30 days of data were excluded. This is higher than cut-offs applied in previous
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studies [14], but sufficiently large validation and test data for each patient p
is required since the framework tests multiple neighbourhoods iteratively, and
the chance of overfitting the neighbourhood has to be guarded against. After
applying this cutoff, we were left with data collected from 227 users, with mean =
90.0, min = 30, max = 841, and std = 104.9 days. it can be seen that the
distribution of lengths of interactions is very heavily skewed, with the shortest
user contributing approx. 30 times less data than the longest. The data collected
spans from May 2014 to January 2022. In the case of the TYT EMAs, questions
2 through 7 are numeric with values between 0 and 1, and question 1 and 8
are binary (Yes/No). Questions q1 and q8 were not included as part of the
analysis. The target variable for the forecast step is set ‘tinnitus distress’, which
is the variable of clinical interest. The included EMA questions track the tinnitus
loudness, distress, patient’s current mood, arousal, stress, and concentration
(answers to each lie in between 0–1).

UNITI Dataset: Similarly to the TYT dataset, all users who contributed less
than 30 days of data were excluded from the UNITI dataset. This left us with 222
patients, and on average 64.8 days of data per person, with a minimum of 30 days,
a maximum of 263 days, and a standard deviation of 37.0 days. The data spans
from Apr. 2021 to Apr. 2022, and hence does not allow for very long time series.
The longest series is only approx. 9 times longer than the shortest, although the
less skewed interaction patterns may also be a consequence of closer monitoring
of these patients by physicians (the app has features for the physician to monitor
patient state and provide feedback). The EMA questionnaire has 10 questions
measuring momentary as well as daily symptoms: tinnitus loudness, distress,
tension of the jaw and neck are measured at the moment, and daily values are
also requested for how often the patient thought about tinnitus, extent to which
the day was affected by tinnitus, maximum daily volume, amount of physical
exercise, the stress level and general emotion (answers to each lie in between
0–100).

4.2 Experiments

In order to compare the performance of our proposed framework for both the
TYT and UNITI datasets, we run experiments to answer the questions raised in
Sect. 1.

We evaluate the neighbourhood discovery framework by comparing the pre-
diction errors generated by the models trained over the discovered neighbour-
hood against those generated by a global model trained over the data of all users.
The performance of the neighbourhood discovery framework is compared to the
performance of a non-personalised global model trained on all the training data.
Note: For most users, the model trained on the discovered neighbourhood has
been trained on less data than the global model.

Apart from the root mean squared error (RMSE) over all predictions, we
further investigate the user-level RMSEs to better understand the degree to
which the personalised neighbourhood is more predictive than the RMSEs for
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those users when they are predicted by the global model. i.e., box plots of the
user-level RMSEs are compared for the predictions from the global model and the
personalised models. We further investigate the degree to which the personalised
neighbourhood improves the predictions by comparing the number of users who
were better predicted by their personalised neighbourhood than by the global
model.

4.3 Results and Discussion

Overall Prediction Error: Figure 2 shows boxplots of the prediction errors from
the personalised predictors and the global models for the TYT and UNITI
datasets respectively. For both datasets, it can be seen that our neighbourhood
discovery framework achieves lower errors than a single non-personalised global
model.

Fig. 2. User-level RMSEs for TYT dataset (left) and the UNITI dataset (right): Com-
paring predictions generated by the discovered neighbourhoods vs. the global model.
(Green triangle: mean RMSE over all users, Green line: median RMSE over all users)
(Color figure online)

For the TYT dataset, the mean RMSE over all users for the global model and
the discovered neighbourhood were 0.1534 and 0.1335 for the TYT dataset. This
translates to a 12.99% improvement when using the discovered neighbourhood
instead of the global model for the TYT dataset.

For the UNITI dataset, the mean RMSE for the global model and the dis-
covered neighbourhoods were 12.767 and 10.772. This translates to a 15.62%
improvement.

User-Level RMSEs: The overall performance of the discovered neighbourhoods
as measured by the RMSE for all predictions is shown as the green triangle
in Fig. 2. The fact that the means are lower for the discovered neighbourhood
shows that the average performance is indeed better. The medians in the boxplot
indicate that the performance benefits are shared by all users, since the median
user-level RMSEs for the discovered neighbourhoods are lower than the median
user-level RMSEs when users are predicted by the global model.
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A Wilcoxon signed-rank test was performed to check if the user-level RMSEs
generated by the global and personalised models come from the same distribu-
tion. For both the TYT and the UNITI datasets, we can reject the null hypothesis
that the user-level RMSEs generated by the global model and the personalised
predictors come from the same distribution with p=4.55e-27, and p=3.16e-35
respectively.

Finally, we also check the number of users who are better predicted by
their discovered neighbourhood compared to the global model (i.e., the num-
ber of times our proposed framework dominates the global model). For the TYT
dataset, the neighbourhood discovered by our framework gave better predic-
tions than the global model for 188/227 users (82.82% of the users), and for
the UNITI dataset, our framework outperformed the global model for 199/222
users (89.64% of the users).

Though a majority of the users are better predicted by our approach, the
difference in the mean RMSEs between the discovered neighbourhood and the
global model (Fig. 2) is small. This suggests that the neighbourhood discovery
might be serving the purpose of neighbourhood exclusion - i.e., there is a group
of anomalous users who are contributing negatively to the models of most users
during the neighbourhood growth phase. In order to test this, we plot a map of
the discovered user neighbourhoods as a heatmap. For each row in the heatmap,
the presence of another user in its discovered neighbourhood is marked with a
1 (bright cell), and other users are marked with a 0 (dark cell). The resultant
heatmaps for the TYT and UNITI datasets are shown in Fig. 3.

Fig. 3. Heatmap of discovered user neighbourhoods for TYT (left) and UNITI (right)
datasets. Dark vertical bands (TYT - left and UNITI - mid-right) show ‘unpopular’
users who are not used in most users’ neighbourhoods.

In both heatmaps, there is a black band of users (Fig. 3 left side of left
figure for TYT, middle-right of right-figure for UNITI) who are appearing in the
neighbourhoods of very few users, as well as a white band of users who are used
very often in other’s neighbourhoods. This result suggests that the benefit that
most users get from the discovery framework is in the elimination of data that
detracts from good predictive performance. The fact that there are users that
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are rarely used also has consequences for the likelihood of model reuse (discussed
below), since the presence of a single rare user in the list of common users makes
the use of a cached model much rarer.

Discussion on Model Reuse and Performance Considerations: The caching
mechanishm described in Sect. 3 was designed to reduce the need to retrain
models already built while exploring the neighbourhoods for another user. In
order to assess the impact of this mechanism, we investigated the number of
times a model was uncached vs. the number of times the cache was polled for
a model trained over some particular set of users. Unfortunately, for both the
TYT and UNITI datasets, very few of the trained models were requested by
more than one user. For the TYT dataset, the hit rate for cached models was
105 out of 51529 requests (0.2%), and for the UNITI dataset there were 177 hits
out of 49284 requests (0.3%). Given that the models we train were simple regres-
sors, the training time even on commodity hardware was fast enough (<5 min) to
not require performance optimisation using cached models. However, even small
increases in the number of users might reverse this result, given the exponential
increase in the number of trained models as users are added.

5 Closing Remarks

In this work, we proposed a method to build personalised neighbourhoods that
maximise the predictive power over a user’s EMA observations. We tackle the
large number of user-neighbourhood permutations by searching the candidate
neighbourhood of a user iteratively in decreasing order of similarity, and propose
further memoisation-inspired techniques to reuse duplicate models trained over
the same candidate set of users.

We tested our proposed framework on two EMA datasets, and showed that
our framework achieves 13% and 15% better RMSE compared to a global model.
We further show that the prediction errors on using the discovered neighbour-
hoods are statistically significantly lower with p=4.5e−27 and p=3.1e−35
when compared to the global model. 82.8% and 89.6% of the users are better
predicted by our discovered neighbourhood compared to the global model (which
in almost all cases is trained on more data).

Apart from our current results, several avenues remain open for further explo-
ration. The current work only considers the errors for each user, where better pre-
dictions of the patient’s near future can be of value especially when facilitating
early interventions. It is expected, however, that apart from the prediction error,
the predictive neighbourhood of a user can be of interest to the physician for dis-
eases like tinnitus that have a very heterogeneous presentation. Our results sug-
gest that there are some users that appear frequently in the neighbourhoods of
others, and some users that are very rarely useful in predicting others. A closer
analysis of the discovered neighbourhoods, and the users within those neighbour-
hoods that appear frequently and also infrequently may be useful in furthering the
understanding of the disease itself. Graph mining methods may reveal interesting
patterns or clusters of patients with similar disease development.
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The current work also explores only linear regression models to predict tomor-
row’s EMA values given today’s symptom severity. Since the framework is appli-
cable for any data which is a collection of time series, it would be interesting
to investigate if the framework is also applicable for more complex models from
domains that are less strongly challenged by data availability. Larger datasets
and more complicated models may also make caching the intermediate models
useful again, a step that is not required for the datasets used in this study. It
may also be possible to use the framework as a first step in learning global time
series models over well-selected subsets of the time series.
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Abstract. Using a single model across various tasks is beneficial for
training and applying deep neural sequence models. We address the prob-
lem of developing generalist representations of text that can be used to
perform a range of different tasks rather than being specialised to a single
application. We focus on processing short questions and developing an
embedding for these questions that is useful on a diverse set of problems,
such as question topic classification, equivalent question recognition, and
question answering. This paper introduces QBERT, a generalist model
for processing questions. With QBERT, we demonstrate how we can
train a multi-task network that performs all question-related tasks and
has achieved similar performance compared to its corresponding single-
task models.

Keywords: Multi-task Learning · Deep Learning · Text Processing

1 Introduction

There is increased attention to the problem of learning generalist agents (as
opposite to specialist) in a way that the same representation can be used in a
range of tasks, even if it does not excel at any specific task [14]. While a specialist
should be expected to excel at its one task, a generalist is expected to be good
at many problems. In this paper, we focus on building a generalist model for
processing a special type of short text: Question.

The development of online communities produces a massive amount of text
every day. For example, in the question domain, with the rise of commercial voice
assistants such as Siri and Alexa and communities such as Quora, numerous
questions are asked on a daily basis. Processing these questions can provide a
new perspective on understanding communities and people’s interests.

In this paper, we define the generalist model as a question-processing model
that targets analysing the semantic and syntactic information in the question.
More specifically, this generalist model can process the questions in terms of ques-
tion topic classification, equivalent question recognition, and question answering,
which will be explained in Sect. 2.
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Some state-of-the-art deep learning models like Transformer [16] are widely
used in natural language processing (NLP). They resulted in leading perfor-
mance for various tasks [5,10,21]. Train a language model requires lots of train-
ing data. Therefore, researchers had to create pre-trained language models using
large-scale unsupervised tasks and then fine-tune them with labelled task-specific
data. However, labelled data for a specific task are always limited and hard to
obtain. Besides, a language model can have a size of millions or billions of param-
eters. It is usually expensive to train and use a separate network for each task. A
generalist model can help address these problems by applying multi-task learn-
ing, a learning approach that improves generalisation by adding inductive bias
such as tasks and domain information [2].

There are two main strategies for multi-task learning. One standard approach
is adding extra tasks, also referred to as auxiliary tasks, to improve the perfor-
mance of the target task. Empirically, adding auxiliary tasks to a pre-trained
network is more similar to transfer learning, which improves primary tasks with
additional tasks. Another [9] is learning all the tasks jointly without identifying
the primary task so that all the tasks can achieve balanced performance, which
can be leveraged for training a generalist agent.

We fine-tune the pre-trained language model with all the tasks jointly with-
out identifying primary and auxiliary tasks. These tasks share the same domain,
which is referred to as inductive bias multi-task learning [13]. Research [8,11]
shows that multi-task learning and pre-trained language models are comple-
mentary and can be combined to generate better performance on learning text
representations.

There are many different types of tasks included in multi-task natural lan-
guage understanding. For example, single sentence classification like sentiment
analysis, pairwise classification like natural language inference, and regression
task like sentence similarity. MT-DNN [8] trains their multi-tasking model with
the transformer encoder and task-specific layer so that it can apply to classifica-
tion and regression tasks. To adapt to various tasks, some researchers re-frame
all the datasets into the same format. MQAN [9] formulates all the datasets into
question answering over context. T5 [11] creates a sequence-to-sequence format
for the tasks. All these models focus on general language understanding tasks
like GLUE [17], and decaNLP [9].

In contrast, we focus on a range of different tasks for processing questions.
And we report here on a generalist network called QBERT to solve three pro-
cessing tasks we defined in the question domain. QBERT intends to work as
a “generalist” language model that can perform multiple question tasks rather
than a “specialist” who is only trained to maximise the performance on one
specific task.

QBERT is based on sentence-BERT (SBERT) [15], a Siamese BERT (Bidi-
rectional Encoder Representations from Transformers) [5] that projects the sen-
tences into high-dimensional vector space. This process is known as embedding.
The sentence embeddings with similar semantic meanings are close to each other
in the vector space. Note that our intention is not to design a new algorithm but
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to fine-tune SBERT in a multi-task way so that the same representations can
be used for processing questions in multiple ways. After fine-tuning SBERT, the
embeddings generated from the input sequence can be used for both classification
and retrieval tasks.

A previous study [19] on the question-related multi-tasking model shows that
the training curriculum is critical. They reported that one certain curriculum
could obtain a balanced performance on all the tasks. However, one of the lim-
itations of the previous study is that the model lacked consistency on different
question tasks. Reference [19] performed topic classification with a single BERT
structure, others with Siamese BERT. To improve this, we re-frame the single
sentence classification into a retrieval task.

During inference, QBERT produces the representation of the input sequence
without any task-specific modules. Instead, it contains a threshold filter to deter-
mine the cosine similarity of the embedding pairs. Compared to the standard
multi-task structure, reducing task-specific layers simplifies the complexity of
the network. The network shares all the weights between tasks, also known as
hard parameter sharing. More details of QBERT will be explained in Sect. 3.

After that, we compare QBERT with SBERT and the single-task version of
SBERT in Sect. 4. The results in Sect. 5 also show how the training curriculum
affects the performance of QBERT.

2 Tasks

In this paper, we define task (T) by data (X), label (Y), and loss function (L)
as follow.

T
.= {p(X), p(Y | X), L} (1)

where p(X) is the distribution of the input data, p(Y | X) is the distribution of
label Y given data X, and L is the loss function.

QBERT combines 3 different types of tasks: question topic classification,
equivalent question recognition, and question answering. These tasks
target common natural language understanding problems such as single sentence
classification, pairwise classification, and information retrieval.

Question Topic Classification (QT): Given a question, the model labels the
topic of the question.

Equivalent Question Recognition (QE): There are two sub-tasks included
in QE, classification and retrieval. In classification, the model aims at classifying
if the question pairs are similar or not, and based on the outcome, retrieve all
similar questions from a question corpus with the given question.

Question Answering (QA): Given a question, the model searches for the
answer from lists of candidate sentences. We determine this task as an open-
domain open-book QA in which the question has no limitation in domains; the
model allows answering the question with the content provided.
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3 QBERT: A Multi-task Question-Processing Version
of BERT

Our model is inspired by SBERT [15], which projects input sequence (sentence in
this case) in high dimensional space. In such a way, we can evaluate the similarity
between input sequences in the vector space using cosine similarity and retrieve
the most similar sequence within a given corpus. Additionally, we can apply our
model in classification by introducing a similarity threshold.

The three question tasks we defined in the previous section include three
kinds of machine learning tasks: single sentence multiclass classification, pair-
wise classification, and information retrieval. In the previous research [19], topic
classification was performed with a separate network because it is a multiclass
classification that requires single input instead of pairwise. To perform these
three tasks with one Siamese model, we consider the topic classification as pair-
wise classification by taking the (Question, Topic) as the pairwise input. During
inference, instead of categorising the topic of a question, we retrieve the closest
topic to a question.

Figure 1 illustrates the architecture of QBERT. During training, all the tasks
are trained as to minimise the cosine distance using the binary labels and update
the shared BERT layer. Task-specific loss functions are introduced for different
types of data. While inference, the model only requires shared layers without
task-specific layers, which manages to simplify the model.

Fig. 1. QBERT architecture. The architecture is based on SBERT but trained to have
a balanced performance on various tasks.Top: Training as binary classification, Bottom:
Inference by calculating the cosine similarity between input sequences. All BERTs share
the same parameters.

Input Layer: S = (s1, ..., sn) is an input sequence with n words. The sequence
can be either a topic, question, sentence, or paragraph. The model takes a pair-
wise input (S, S′) such as a question pair, question-topic pair, or question-answer
pair. The pairwise input is then passed to two identical BERTs.

BERT Layer: BERTs in this layer share all the parameters. The shared embed-
ding layer following the setup of BERTbase which takes the sequence input as
word tokens and generates an output for each token as well as a [CLS] token at
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the beginning of the output sequence. BERTbase uses the an encoder containing
12 layers and 110M parameters and is pre-trained with two unsupervised tasks:
masked language model and next sentence prediction. The output of the BERT
layer is in R

d vector space, and according to BERT, d = 768.

Pooling Layer: Similar to SBERT, the model leverages a mean pooling strategy
that computes the mean of all output tokens (except [CLS]) of the sequence from
BERT. According to SBERT, the mean pooling strategy outperforms using the
[CLS] token as the embedding on capture sequence similarity. After the pooling
function, the model generates a pair of embedding U and embedding V as Eq. 2,
where U ∈ R

d and V ∈ R
d.

Embedding =
1
n

n∑

i=1

ΦBERT (si) (2)

We apply two different loss functions for different types of data. Online
contrastive loss is introduced for binary classification. And multiple negatives
ranking loss is used for information-retrieving datasets (containing only positive
samples) and multi-class classification. For multi-class classification, instead of
classifying the category of the data, we retrieve the class label for the data. Adam
optimiser [7] minimises the loss based on the cosine similarity Dcosine(U, V ).

Pairwise Classification Specific Layer: QBERT introduces the contrastive
loss [6] for pairwise classification. It aims to gather positive pairs in the vector
space while separating negative pairs. For embedding U, V, the loss is calculated
as follows.

Lcontrastive =
1
2

{
Y (1 − Dcosine)

2 + (1 − Y ) [max (0,m − (1 − Dcosine))]
2
}

(3)
where Y is the binary label. Y = 1 if U and V are related. And the distance
D = 1−Dcosine between U , V is minimised. When Y = 0, the distance increases
between U , V until larger than the given margin m. In particular, we apply
online contrastive loss that only computes the loss between hard positive and
hard negative pairs.

Retrieval Specific Layer: One of the advantages of applying multiple negative
ranking loss is that the training dataset no longer requires both positive and
negative labels. For a given positive sequence pair (Si, S

′
i), the function assumes

that any (Si, S
′
j) is negative when i �= j. For example, in QA, for question set

Q = {q1, ..., qm} and answer set A = {a1, ..., am}, (qi, ai) is a positive pair given
by the dataset, (qi, aj) is a negative pair randomly generated from the dataset.
The cross-entropy loss of all the sequences pairs is calculated as follows.

Lmultiple negative = −(Y log (Dcosine) + (1 − Y ) log(1 − Dcosine)) (4)

During inference, QBERT no longer leverages a task specific layer. Instead,
it introduces a threshold filter. QBERT calculates the Dcosine(U, V ), the
cosine similarity between embeddings U and V , and applies different similar-
ity thresholds for each task to determine if two sequences are related in terms
of topic, equivalent question, or corresponding answer. The threshold of best
performance is selected after training.
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3.1 Training Curriculum

During training, the data in each dataset get divided into batches B =
{b1, ..., bn}. In each step, one batch bi is selected randomly, and the model
parameters are updated by stochastic gradient descent. As shown in the pre-
vious research [19], the training curriculum was critical for multi-task question
processing. In reference [19], the tasks were trained once at a time, from QE
to QA to QT (QT was trained with different network architecture). However,
the tasks learned in the earlier stage had a worse performance compared to the
tasks learned in the later stage. To improve this, we train QBERT in a fixed-
order round robin (RR) curriculum and compare the results with one by one
(OBO) curriculum.

In the OBO approach, we train QBERT following QT, QE, and QA orders.
Every dataset is divided into multiple batches, each with specific batch size, and
is trained one at a time. The parameters are updated during the training and
shared amongst all the datasets.

On the contrary, QBERT trains all the tasks simultaneously in the RR cur-
riculum. The data in each task-specific layer are built as mini-batches and divided
into two task-specific layers. During each step, the model is trained and updated
by batches from both classification and retrieval tasks. QBERT-RR alternates
between tasks during training which prevents the model from forgetting about
the tasks learned at the beginning of the training.

3.2 Threshold Filter

In QE and QA, apart from classifying if the sequences are related, it is also
crucial for the system to search all the related sequences (equivalent question or
answer) for the given questions. The problem is how to quantify “related” with
embeddings. A cosine similarity threshold is introduced in this model. Using a
threshold simplifies the network structure of QBERT during inference by remov-
ing the task-specific layer. The threshold filter acts like a margin separating
related (S, S′) from others. Furthermore, with this threshold, the network can
not only search the information that is closest to the query but can also identify
if the information is related (close enough) to the query. For example, a question
might be unique in the corpus so that the closest question to the given question
is not equivalent to the given question if it has a smaller cosine similarity than
the threshold; or a question might not have a high-confidence answer from the
candidate corpus, the closest candidate with a cosine similarity smaller than the
threshold will not be considered as the right answer.

To decide the threshold, first, all the sequences in the training set are embed-
ded with the fine-tuned model. The sequence pairs are classified as positive if
they have more similarity than the threshold. The similarity threshold with the
best accuracy in the training set is found to quantify any question pairs during
testing. With a threshold, the model is capable of searching and grouping all the
related sequences in a given candidate corpus.
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4 Experiments

Training QBERT includes pre-training and multi-task training. We follow the
pre-training of BERT and SBERT. Then we perform multi-task learning on five
question related datasets and evaluate on four of them.

4.1 Datasets

Quora Question Pair (QQP) [4] first released on Quora in 2017. It is a dataset
that contains 404k question pairs collected and annotated by Quora. QQP labels
if the questions are duplicated or not. There are 537k unique questions in the
dataset. Training on QQP, we aim at improving the performance of QE tasks for
QBERT. We then evaluate QQP in both pairwise classification and equivalent
questions retrieval.

WikiQA [20] is a question-answering dataset which has the questions from
query logs on Bing and answers from Wikipedia’s summaries. The questions in
WikiQA are factual questions that start with WH words like who, what, and
when etc. The candidate answers are extracted sentences from the first paragraph
of Wikipedia articles (also known as Wikipedia Summary). The dataset includes
3,047 questions and 26k candidate sentences, of which 1,239 questions contain a
correct answer. We train WikiQA as a classification task and evaluate it as an
answer selection task.

Yahoo! Answer [22] data were originally collected by Yahoo! Research
Alliance Webscope program. Zhang et al., built up a corpus which contains
1.46M samples within 10 most popular topics on Yahoo! Answer. The sample
includes the topic, question title, question content, and the best answer provided
by the user. We apply this corpus in both QT and QA tasks. For QT, QBERT
takes the question title and topic as the input sequence pairs. Question title and
best answer are leveraged for training QA tasks. To distinguish the data used in
different tasks, we use YT for the data applied in QT and YQA for data in QA.

Stanford Question Answering Dataset (SQuAD) [12] is a corpus that
contains questions, answers and contexts for reading comprehension tasks. The
contexts are extracted from Wikipedia. We use SQuAD 1.1, which all the ques-
tions have a corresponding answer phrase in the given context. There are 98,169
question-answer pairs in the dataset. To train QBERT, we take the question and
the one sentence in the context that contains the answer phase as input.

4.2 Implementation Details

For each input sequence, the length is limited to 35 tokens because we use two
BERTs to read the sequence pair instead of concatenating two sequences into one
as the input. Besides, most questions in the datasets have less than 35 tokens.
The sequence is truncated at the end if it is longer than the limitation (Table 1).

We train QBERT with the multiple negative ranking loss for QT and the
online contrastive loss for QE. And we define the similarity threshold for QE
based on the best accuracy on the training set. Then we evaluate the model on
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Table 1. Statistics of the training datasets. Note that the test set of SQuAD is confi-
dential from researcher. The number of test data states here is the validation set that
is publicly accessed. The metrics for SQuAD in this paper is “exact match in sentence”
which will defined in Sect. 5.

Dataset #Train #Test Label Metrics

YT 1,400,000 60,000 10 Accuracy

QQP 283,001 121,286 2 Accuracy/F1

WikiQA 23,080 6,116 2 Accuracy/F1

YQA 14,000,000 600,000 1 -

SQuAD 87,355 10,539 1 EM*

both QE classification and retrieval tasks. The QE retrieval candidate corpus is
constructed by sampled queries in the QQP test set.

For QA, we train WikiQA with the online contractive loss and YQA and
SQuAD with multiple negative ranking loss. This is because YQA and SQuAD
only contain question answering pairs and do not come with negative samples.
However, for WikiQA, there are questions with no answers in the dataset. Thus,
a threshold is needed to identify if the closest candidate to the question is the
high-confidence answer. The threshold is defined as the one that creates the best
precision in the WikiQA training set.

The implementation of QBERT is based on PyTorch and SBERT. The margin
for positive samples and negative samples is 0.5. We train the model for 5 epochs
with a batch size of 32 and a learning rate of 2e − 5. 10% of the training data is
used for warm-up.

We train QBERT with one GeForce GTX TITAN X GPU. To train QBERT-
OBO, it takes 45.5 h, and 93 h for QBERT-RR. Even though training the model
is time-consuming, once trained, the model is much faster during inference. It
takes 1.5 ms, 5.44 ms, 19.62 ms, and 49.76 ms per question in YQT, QQP,
WikiQA, and SQuAD, respectively.

5 Performance of QBERT

We evaluate QBERT with YT for QT classification, QQP for QE classification
and QE retrieval, and WikiQA and SQuAD for QA retrieval.

For QE, we evaluate classification and retrieval task accuracy with the QQP
dataset. If the question pair has a similarity larger than the threshold, it is
categorised as equivalent in classification. To perform similar question mining,
we create a question corpus based on QQP. First, all the relevant questions
for the given query are included in the dataset, ensuring that there is always
a relevant question in the corpus. Second, we fill the rest of the corpus with
irrelevant questions. There are 104,033 samples in total. While mining the similar
questions from the corpus, the candidate with the highest similarity larger than
the threshold is defined as the duplicate question.
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We assess the QA performance only on WikiQA and SQuAD, because the
answers in the YQA are paragraphs provided by Yahoo! users, and it is hard to
construct a candidate corpus used for single-sentence answer retrieval. We count
the number of questions that can correctly identify the answer (or None for the
questions without an answer) from the corpus while evaluating QA tasks.

In WikiQA, the question is not guaranteed to have an answer. Therefore, for
each question, the model takes the sentence with the highest cosine similarity
score in the candidate set and compares it with the threshold. If the similarity
is above the threshold and the sentence is labelled as a correct answer, then
the prediction is correct. For SQuAD, each query has a corresponding answer in
the given context. Thus, we take the sentence with the highest cosine similarity
score as the candidate. Note that for SQuAD, the ground truth answer is a
short answer phrase extracted from the given context. Since QBERT retrieves
one sentence as the answer, we evaluate the exact match phrase in the sentence,
which depends on whether the answer phrase is in the selected sentence.

To understand the performance of multi-task learning, we use SBERT, which
is fine-tuned with natural language inference dataset [1,18] and semantic textual
similarity dataset [3] as our baseline. We also compare QBERT with the single-
tasks model. The result is shown in Table 2.

Table 2. The performance of QBERT-RR and QBERT-OBO compares with single-
task SBERT trained on QT, QA and QE. SBERT without training on any question
dataset is used as our baseline. We evaluate the QQP dataset on both classification
and retrieval. Note that for SQuAD, we measure the accuracy by checking if the exact
match phrase is contained in the retrieved sentence.

Curriculum
YQT QQP-C QQP-R

Acc. Acc. Acc./F1

Baseline 35.27± 0.58 74.80± 0.32 54.53± 0.89/53.01± 0.82

QT 72.44± 0.39

QE 89.79± 0.23 56.98± 0.65/55.36± 0.60

QA

OBO 59.84± 0.32 78.85± 0.44 57.46± 0.78/55.87± 0.70

RR 73.77± 0.58 90.13± 0.19 58.22± 0.78/56.53± 0.75

Curriculum
WikiQA SQuAD

Acc./F1 Acc.

Baseline 77.46± 2.82/58.24± 12.48 67.04± 0.93

QT

QE

QA 79.05± 5.89/72.50± 11.08 78.59± 0.82

OBO 80.16± 6.03/69.29± 9.00 76.09± 0.66

RR 81.90± 5.60/73.73± 8.12 71.42± 1.45
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SBERT was only trained on natural language inference dataset and semantic
textual similarity dataset containing sentence pairs with labels. It therefore,
manages to detect similar question pairs albeit with poor performance. However,
SBERT was not trained to group sentences with the same topic, and it is unable
to identify the question topic. Since SBERT achieves a similar accuracy to other
models on WikiQA dataset, it has a worse F1 score compared to others.

In Table 2, model SBERT-QT, SBERT-QE, SBERT-QA represent single-task
training. It leverages the same architecture as QBERT. However, for each task,
it has a separate model. While fine-tuning the single-task model, we update both
the BERT layer and task-specific layer for each dataset. The results show that
QBERT-RR achieves a similar performance on most question datasets, except
for retrieving answer from SQuAD, with the generalist representation.

The previous research [19] proved that the training curriculum is important
for training a multi-task network. Thus, we investigate two different training
strategies. The QBERT-OBO shows better performance on WikiQA; on the
other hand, it has worse performance on QT and QE compared to the single-
task models. When training QBERT-OBO, we train one dataset after another.
This causes the model to “forget” what it learnt during the early stages.

In contrast, while training with the RR curriculum, the model achieves a
balanced performance on each task. Although QBERT-RR does not excel in any
task compared to the single task model, it is able to generate a representation
that can be used to perform a range of question tasks. Figure 2a shows the
performance of QE and QA classification tasks.

Fig. 2. (a): ROC curve for QE and QA classification from model QBERT-RR. The
black dashed line represents the performance of a random classifier. (b): Accuracy@K
of different corpus sizes in QE retrieval task.

We also evaluate the accuracy@k among different retrieval corpus sizes for
QE using the QQP test set. Accuracy@k is a top-k accuracy classification score.
In QE, it counts the number of times where the relevant question is contained
in the top k candidates. According to the results illustrated in Fig. 2b, it is
more challenging to retrieve among the larger corpus. When all the queries in
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the dataset are included in the retrieval corpus, the accuracy@1, accuracy@3,
accuracy@5 are 58.24%, 82.72%, and 89.26%, respectively. More than 80% of the
related questions are located in the top 3 candidates. However, only 58.150% of
them are the closest to the given query, which can be improved in the future.

Lastly, we notice one limitation while evaluating QA retrieval with the
SQuAD dataset. When creating the candidate corpus, we leverage a sentence
tokenizer to split the paragraph into sentences. However, the sentence tokenizer
split the sentence based on the punctuation. For example, “Washington, D.C.”
is considered two sentences: “Washington, D.” and “C.”. During evaluation, we
compare the selected sentence with the answer phrase. In this case, retrieving a
sentence may yield an incomplete answer to a question.

6 Conclusion

In this paper, we propose a generalist model to process questions in a variety of
tasks, namely Question Topic Classification, Equivalence Question Recognition,
and Question Answering. The idea is that sometimes a generalist model can be
useful even when it does not beat specialist models at their own speciality.

We fine-tune SBERT as a generalist model for processing questions. We
observe that one version of the generalist model QBERT-RR turns out to per-
form similar to the specialists in many cases except for QA retrieval on the
SQuAD dataset. The specialist methods used here for comparison are SBERT
models fine-tuned respectively on QT, QE (classification data) and QA (both
datasets). Instead, another generalist method QBERT-OBO performs worse
than the specialists on QT and QE (classification). The reasons for this per-
formance need to be further investigated, but it may happen because the OBO
curriculum results in forgetting the tasks that are learnt in the earlier training
stage.

In the future, it would also be useful to experiment with more tasks that can
be represented with sentence embedding.
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Abstract. Representing data items as vectors in a space is a common
practice in machine learning, where it often goes under the name of
“data embedding”. This representation is typically learnt from known
relations that exist in the original data, such as co-occurrence of words,
or connections in graphs. A property of these embeddings is known as
compositionality, whereby the vector representation of an item can be
decomposed into different parts, which can be understood separately.
This property, first observed in the case of word embeddings, could help
with various challenges of modern AI: detection of unwanted bias in the
representation, explainability of AI decisions based on these represen-
tations, and the possibility of performing analogical reasoning or coun-
terfactual question answering. One important direction of research is to
understand the origins, properties and limitations of compositional data
embeddings, with the idea of going beyond word embeddings. In this
paper, we propose two methods to test for this property, demonstrat-
ing their use in the case of sentence embedding and knowledge graph
embedding.

Keywords: Embedding Compositionality · Sentence Embedding ·
Knowledge Graph

1 Introduction

A popular way to represent data is as vectors in an “embedding space”, so the
relations of interest can be represented as geometric or algebraic relations in that
space. The distance between two vectors is often used to represent the presence
of a relation, and their coordinates are chosen by an algorithm on the basis of
the relations that we wish to incorporate. Various algorithms exist, based on
different principles, to calculate “embedding vectors” for words, sentences, or
entities in a knowledge graph, among other types of data.

In this approach, the values of each coordinate are not considered to be indi-
vidually meaningful, so they cannot be used to interpret what information is
being used by the AI system. This considerably limits the possibility of explain-
ing the decisions of a system or to audit the system for possible biases.
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A property of certain embeddings that has the potential to help with the
above concerns (as well as others) is that of “compositionality”. Introduced in
the domain of traditional linguistics, this property has been extended to also
cover vector representations. Traditionally it refers to how the meaning of a lin-
guistic expression results from its components. For example, the word “composi-
tionality” can be decomposed into parts “Com+pos+ition+al+ity” that modify
the meaning of the initial word stem.

In the case of vector embeddings, we substitute the “string concatenation”
operation with the “vector addition” operation, so that a vector representation
is compositional if it can be regarded as the sum of a small set of components
(which can hopefully be interpreted and even manipulated). As an artificial
example of this idea, we could imagine an embedding Φ that maps from items
(tokens) to vectors in such a way that

Φ(compositionality) ≈ Φ(com) + Φ(pos) + Φ(ition) + Φ(ality)

Two important studies on word embeddings motivate our investigation.
The first [8] highlighted that word embeddings can present compositionality

to such an extent that simple analogies can be performed in that representation,
as in the standard examples:

Φ(Germany) − Φ(Berlin) ≈ Φ(France) − Φ(Paris)
Φ(waitress) − Φ(waiter) ≈ Φ(actress) − Φ(actor)

The second study [4] showed that not only is gender often present in the
embedding of words, but this information is distributed across words in a biased
way; for example, it was observed that certain job titles are represented in a way
that aligns more with male, or female, reference words.

Both of those effects seem to originate from the way that a word embedding
is learnt, which is from the distribution of words that are found in its vicinity.
Finding the same effects in more general settings, such as in the embedding of
Knowledge Graphs, would lead to a deeper understanding of the phenomenon.

Being able to understand and exploit compositionality as a general phe-
nomenon would allow to manipulate these representations, to improve their
usability for analogical reasoning, to remove unwanted biases, and to explain the
decisions made by an algorithm that uses them. Many of the present questions
in AI can benefit from a more general theory of compositionality in representa-
tions. Breaking down the representations into smaller, more manageable parts
can help us understand what elements lead to the decision made by AI systems.
Furthermore, some of these elements might be biased. Therefore, testing for com-
positionality can help design more transparent, interpretable, and accountable
AI systems.

In this paper, we develop and demonstrate two different ways to test for
compositionality in data embeddings, using the examples of sentence embedding
and knowledge graph embedding as demonstration. In the first case, we use a
pre-trained Bidirectional Encoder Representations from Transformers (BERT)
[5] to embed simple sentences that are created for this purpose. Then we show
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that these embeddings can be decomposed into the contributions of the subject,
verb and object. In the second case, we use various methods to embed the nodes
of a knowledge graph (based on the IMDB movies dataset) and then examine
how user behaviour descriptions can be decomposed in terms of user attributes.

Graph Embedding can be used to express multiple relations. For example, in
the case of bipartite graphs, it can express the property that a certain user likes
a certain movie. It is reasonable to ask if the embedding of users correlates with
their age or gender, but an interesting question is how this can be rigorously
measured. Follow-up questions involve the possibility of removing such bias and
the trade-offs that this creates with performance in the task of “link prediction”.

Sentence Embedding is currently performed in a different way through the use
of Neural Networks. However, at the end, it generates embeddings of sentences,
for which it is again reasonable to ask if they display the compositional property.

In this paper, we explain embedding and compositionality in Sect. 2 and
how words, sentences, and graphs are embedded in Sect. 3. In Sect. 4, we intro-
duce methods for testing the compositionality in embeddings. And we apply the
methods to sentence embedding in Sect. 3.2 and knowledge graph embedding in
Sect. 6.

2 Embedding and Compositionality

In machine learning, embedding is the process of mapping the elements of a set
to points in a vector space. We write a set of coordinates B to represent the
items of I as follows.

B = Φ(I)

Where Φ is the mapping function that maps the items (elements of the set) to
their coordinates. This embedding function can be learned from a set of data
containing those items: for words, this can be done by exploiting co-occurrence
statistics between words; for elements of a graph, by exploiting the topology,
therefore, the relations between different elements.

A learned representation is compositional when it can represent complex
concepts or items by combining simple attributes [6]. In this paper, we mainly
look into additive compositionality as follows.

bI =
N∑

i=1

xi

where I is an item that has a set of N attributes. I can be represented with
embedding vector bI , and the attributes can be represented with x.

3 Words, Sentences and Graphs

Three types of data that greatly benefit from embedded representation are words,
sentences and graphs.
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3.1 Word Embedding: GloVe

GloVe (Global Vectors for Word Representation) is an unsupervised learning
algorithm for obtaining the vector representation of each word in a corpus [10].
The signal used to inform the embedding comes from the statistics of word
occurrences in a reference corpus: words are represented as a vector, in such a
way that the inner product of two vectors reflects the probability of these two
words co-occurring near each other. This means that the representation of each
word is informed by the distribution of its context words. This high-dimensional
distributed vector has been proved to reveal some semantic information. Thus, we
can define the distribution/semantic similarity just by calculating the distance
of the high-dimensional vectors.

3.2 Sentence Embedding: BERT

To embed the sentence, we apply a pre-trained sentence embedding model called
SBERT [11], which is a sentence embedding version of BERT [5]. BERT was
pre-trained with Wikipedia, Bookcorpus to perform tasks such as guessing a
masked word or a neighbouring sentence, so once more the signal informing the
embedding is one of co-occurrence statistics, albeit obtained with a much more
complex method than the simple GloVe. Differently than GloVe, BERT can also
embed items that were not seen in the training set.

For our purposes, we will use SBERT as a generic embedding function, and
we will just note that SBERT was trained on natural language inference corpora
(NLI). NLI corpora [3,13] contain contradiction, entailment, and neural sentence
pairs. SBERT is a version of BERT trained specifically for generating a sentence
representation as follows,

ΦBERT : I → B ∈ R
768

where I is a set of sentences and B is a space of 768-dimensional vectors. These
representations can be compared using cosine similarity in the embedding space.

3.3 Knowledge Graph Embedding

A knowledge graph is formed of nodes and edges to represent entities and rela-
tions. In general, it is a heterogeneous directed multigraph: there can be dif-
ferent types of nodes and edges (heterogeneous), the edge can have a direction
(directed), and multiple edges between the same nodes can exist (multigraph).
As the edge is directed, these two nodes are often called “head” and “tail”, and
the link is called “relation”. This forms a triple (head, tail, relation) also known
as “a fact”. For example, a triplet can express the relation: John Watched “Toy
Stories”, where John is a user, “Toy Stories” s a movie, and watched is a specific
type of relation, with its own specific directionality.

This kind of graph can be embedded by assigning coordinates to its nodes,
in such a way that related nodes (for a given type of relation) are mapped to
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nearby positions, in a given metric. An optimisation algorithm calculates these
embeddings on the bases of triples representing either true or false “facts”, such
as: John, “Toy Stories”, rel=watched is true, while John, “Star Wars”, rel =
disliked might be false. In practice, false facts are often not available, and are
therefore approximated by randomly sampled facts, which are assumed to be, on
average false. To summarise, a graph embedding function maps nodes to points
in a vector space, that is:

ΦKG : V → R
d, h ∈ V, t ∈ V

The training algorithm simultaneously learns the embedding of each entity
and the parameters for the specific metric that is used to represent each relation.

To embed the knowledge graph, we use GC-MC [1] with negative entity
sampling [2]. We apply this to the IMDB movie dataset, where the relation
between users and movies is given by their ratings.

4 Methods

For sentence embedding, we are interested in testing the possible approximation

Φ(Sentence) ≈ Φ(Word1) + · · · + Φ(WordN )

In our experiments, we will generate a simple sentence corpus by creating
sentences containing only subject, verb and object.

For Knowledge graph embedding, we are interested in the situation where
the embedding of a user based on their behaviour can be approximated by a
combination of their personal attributes.

Φ(UserBehaviour) ≈ Φ(Age) + · · · + Φ(Gender) + Φ(Occupation)

For this we will leverage the data from the IMDB movie recommendation website.
We use the standard statistical method of Canonical Correlation Analysis

(CCA) to analyse the linear dependencies between two paired sets of vectors.
We also make use of Linear Systems to refine the analysis.

4.1 Methods - 1: Canonical Correlation Analysis

CCA is a method concerned with comparing two multivariate variables, each
describing different properties of the same individual item [12]. For example, a
multivariate variable might contain a vector representation of a patient’s clinical
information, and another vector representation of the same patient’s demograph-
ics. Given two such sets of variables, CCA can be used to discover if certain linear
functions of one variable are correlated with certain linear functions of the other.

Suppose we are given two paired sets of vectors BY = {byi
} and BZ = {bzi}.

We are interested in finding the projections WY and WZ such that the Pearson
correlation coefficient Corrcoef(WT

Y BY ,WT
ZBZ) is maximal. And we analyse
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the significance of these dependencies between the vectors by comparing the
Pearson correlation with randomised pairs of vectors represent different items,
which is designed to deliberately violate the assumption that each pair of vectors
represents the same item.

Note that we only apply the CCA method on the user embedding generated
by the knowledge graph. This is because the user behaviour embeddings are
generated without personal attributes. CCA can discover if the user behaviour
is related to personal attributes. On the other hand, for sentence embedding,
which is learned by understanding the words and content, it is not essential to
validate the relation between word and sentence with CCA.

4.2 Methods - 2: Linear System

Based on the definition of additive compositionality (as seen in word embedding),
we postulate the existence of (unknown) component vectors that can be used as
building blocks to create the representation of a sentence or a graph node.

We will assume that the embeddings of a set of items are called B, and
the unknown components that formed them are called X, while the informa-
tion about which components are combined to form which item is stored in a
composition matrix of coefficients A, so that

AX = B

Assuming that there are three types of components i, j, k that determine the
embedding of an item bi,j,k, we can represent them as vectors xi,∗,∗ or x∗,k,∗
etc. that add a contribution to bi,j,k in terms of Eq. 1.

bi,j,k = xi,∗,∗ + x∗,j,∗ + x∗,∗,k (1)

This can be written in matrix form AX = B by introducing the binary
compositonal matrix Am,n, where Am,n records whether a given building block
(indicated by n) is present in a given item (indicated by m).

As the list of building blocks is formed by three lists, for three types of
building blocks, the indicator n can be obtained from the indicators of these
three lists. In the case where there are 10 elements or less for each type of
building block, we can write: m = 100 ∗ i + 10 ∗ j + k.

Am,n =

{
1, if n = i or n = 10 + j or n = 20 + k

0, otherwise
(2)

Given a set of embeddings B for all items in a set of interest, we can find all the
unknown vectors xi,∗,∗, x∗,j,∗, and x∗,∗,k by solving the linear system AX = B.

4.3 Statistical Hypothesis Testing

The linear system encodes the assumption that the embeddings of the items and
the components are related. We test this assumption by introducing the null
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hypothesis that no such relation exists and using a non-parametric test. This is
done by generating randomly shuffled data, in such a way that item embeddings
and those of the building blocks are randomly matched. This null hypothesis can
be discarded if the test statistic computed on the original data has a value that
cannot be obtained, with high probability, in the randomised data.

To test that Bi,j,k ≈ xi,∗,∗+x∗,j,∗+x∗,∗,k, we apply three evaluation matrices
and compare the results with 100 random permutations by shuffling embedding
B. Using the randomly reshuffled pairs of (component, shuffled item) breaks
down the connection between embedding and its building blocks.

Test Statistic: We use three different test statistics: (1) the loss of the linear
system; (2) the cosine similarity between B and reconstruct embedding B̂; (3)
the accuracy of retrieving B with B̂.

Null Hypothesis (H0): The embeddings of an item and its components are
independent. There is no benefit in the decomposing item into components.

Alternative Hypothesis (Ha): The item embeddings can be represented by
adding up the components.

Significance threshold: α = 0.01.

5 Decomposing Sentence Embeddings

When decomposing learned word embedding like word2vec [9], research [8]
found that the embedding can include both semantic and syntactic relationships
between words, which can be revealed using simple linear algebra. For example,
Φ(king) − Φ(man) + Φ(women) ≈ Φ(queen) (semantic) and Φ(dog) − Φ(dogs) ≈
Φ(cat) − Φ(cats) (syntactic). The question here is if sentence embedding can be
decomposed in a similar way. Sentences are compositional structures that are
built from words. Therefore, it is natural to ask if the learned representations
reflect the compositionality. We assume that there is an additive composition-
ality between words and sentences so that the sentence representation can be
decomposed in terms of

ΦBERT (Sentence) ≈ Φ(Word1) + · · · + Φ(WordN )

We leverage a linear system to decompose the sentence embedding into word
representations to investigate the compositionality in BERT sentence embed-
ding. To do this, we generated a sentence corpus that includes 1,000 sentences.
Each sentence consists of the simplest elements required for completing a sen-
tence: subject, verb and object.

5.1 Data Generation

We generated the sentence corpus1 with 30 components, equally divided into
subject (Sbj), verb, and object (Obj). These components were combined into
1 The corpus is available at https://github.com/CarinaXZZ/On Compositionality in

Data Embedding.

https://github.com/CarinaXZZ/On_Compositionality_in_Data_Embedding
https://github.com/CarinaXZZ/On_Compositionality_in_Data_Embedding
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10× 10× 10 (Sbj, V erb,Obj) triplets. Then the (Sbj, V erb,Obj) makes up short,
simple sentences with the same preposition and article. For example, for triplet
(cat, sat,mat), the sentence is generated as “The cat sat on the mat.”. There
are 1,000 sentences in total. By creating the SVO sentence corpus, we can look
into and understand each part we decompose with a linear system.

BERT tokenises the sentence into word tokens with a subword-based
tokeniser. Some words such as “bookshelf” will be tokenised into two words
(“book” and “shelf”). To keep all the sentences in the same number of tokens,
we carefully picked the words we used to build the corpus. Note that BERT
takes punctuation as an input token as well; there are 7 tokens in total for each
sentence.

To construct a sentence (I), we add the subject, verb, and object phrases
with indices i, j, and k, respectively. Thus, Ii,j,k = Sbji + V erbj + Objk. We
calculate sentence embedding Bi,j,k = ΦBERT (Ii,j,k) with a fine-tuned BERT
introduced in Sect. 3.2.

5.2 The Linear System and the Statistical Test

Having computed a set B of embeddings for all our sentences, we can find the
unknown vectors xi,∗,∗, x∗,j,∗, and x∗,∗,k by solving the linear system AX = B,
where A ∈ R

1000×30, X ∈ R
30×768, and B ∈ R

1000×768. This system of 1000
equations with 30 variables does not have (in general) an exact solution, so we
approximate the solution by solving a linear least squares problem, using the
pseudo-inverse method, as follows:

X = (AT · A)+ · AT · B (3)

We evaluated the linear system by calculating the loss (L) as Eq. 4. The
smaller the loss, the more accurately the embeddings can be represented as a
composition of components X (which is our definition of compositionality).

L = ‖AX − B‖2 (4)

To create the null hypothesis, the sentence embeddings are shuffled to break
the link between the sentence and its embedding, and after that, we calculate
the loss on the randomised data. We repeat this process 100 times.

One of the interesting challenges is if we can predict the sentence embedding
bi,j,k with the word representations solved by the linear system without seeing
the actual sentences. To test this, we utilise the leave one out method to solve the
linear system and reconstruct the sentence embedding by adding up the word
representations we obtained with Eq. 3 so that

ΦComposed(Ii,j,k) = ΦComposed(Sbji) + ΦComposed(V erbj) + ΦComposed(Objk)
ˆbi,j,k = xi,∗,∗ + x∗,j,∗ + x∗,∗,k

(5)
By using the leave one out method, we remove the target sentence from the
dataset during the learning process of the linear system. As a result, the word
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representations are learned without previous knowledge of the target sentence
Ii,j,k. We will test the quality of these components by trying to predict the
embedding of a new sentence from that of its components, and then comparing
it with the BERT embedding of that sentence. This comparison is done in two
ways: 1) by computing the cosine similarity between the predicted and the actual
embedding, and 2) by using the reconstructed embedding to retrieve the correct
one from a set of 1000 candidates. To do this, we repeat the process of leaving a
sentence out, solving the linear system with the remaining 999 sentences, then
using those components to predict its embedding.

5.3 Results

Figure 1 illustrates the performance of decomposing BERT sentence embedding.
These results show that the BERT sentence embedding can be decomposed into
three separate components: subject, verb, and object. And those components
can then be used to predict the embedding of a new sentence.

Fig. 1. The test statistics for sentence embedding decomposition. AVG BERT is the
average performance of B̂ learned from the BERT embedding. The bars are the distri-
bution of the results from random permutations that run for 100 times.

The linear system decomposes the sentence embedding with a loss of 100.14,
which is lower than the lowest loss from random permutations (335.65). Hence,
the p-value for the non-parametric testing is smaller than the significance thresh-
old (α = 0.01), which rejects H0. In other words, the BERT sentence embedding
can be approximated as the composition of three different attributes.

Moreover, it is possible to approximately reconstruct the embedding of a
sentence just from the Sbj, Verb, Obj components learned from the linear system.
This reconstruction embedding B̂ can be compared with the reconstruction that
would result from using the same method but based on randomised (attributes,
embeddings) pairs with cosine similarity. The cosine similarity between B̂ and
the BERT embedding is 98.44%, which is higher than any randomised trial.

The reconstructed embedding can retrieve the actual embedding with 99.5%
accuracy. On the other hand, the composed embedding with randomised
attribute/embedding pairs failed to retrieve the randomised embeddings, with
the highest accuracy of 0.4%.
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6 Decomposing Knowledge Graph Embeddings

While decomposing knowledge graph embedding, we focus on the case of movie
recommendation. This knowledge graph contains the relations (ratings) between
a set of users and a set of movies. The embedding function ΦKG is such that users
are mapped close to movies they rate highly, for an appropriate distance. This
function does not make use of personal attributes of the user. We are interested
in testing of these user embedding can be decomposed into components that
depend on personal attributes of the user.

6.1 Dataset

Movie lens [7] is widely used for movie recommender systems, consisting of a
set of movie ratings for each individual user. There are 6,040 users and approxi-
mately 3,900 movies in this dataset, and each user-movie pair is rated from five
ratings (1–5). 5 represents the strongest preference and vice versa. After training
on the movie lens dataset, the knowledge graph embeddings are able to predict
the rating of an unseen movie from a user’s history ratings.

For each user, the dataset also contains their personal attributes, such as
gender, age, and occupation, which are not used to calculate the knowledge
graph embedding. In this data, there are 2 genders, 7 ages, and 21 occupations.
We represent them as categorical variables, and make use of indicator vectors
(one-hot vectors), so that the attributes can be encoded as a Boolean vector of
dimension 30, ΦBoolean : I → B ∈ R

30. This representation will be used for the
rest of the analysis, but we will repeat the tests with and without occupation.

6.2 CCA Results on Knowledge Graph Embedding

In this experiment, we apply CCA on the pairwise user representations
ΦBoolean(I) and ΦKG(I)). By calculating the Pearson correlation ρ between these
two types of embeddings, we aim to understand whether the learned knowledge
graph embedding contains information about the user attributes.

To perform a statistical test, we randomly shuffle the pairing between embed-
ding and attributes of the users, ΦKG(I) and ΦBoolean(I). The Pearson corre-
lation between randomised embeddings is compared with ρ in Fig. 2. It illus-
trates that the first Pearson correlation coefficient is larger than the largest
value obtained on permuted data. Thus, we believe that the user embeddings
ΦKG(I) produced by the knowledge graph embedding are able to capture some
of the personal attributes without having the prior information during training.
These personal attributes could lead to unwanted bias because they show some
private traits of users. Detecting them with CCA can help people build a more
fair AI system.
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Fig. 2. Pearson value comparison for each component of CCA between knowledge
graph embedding and permuted embedding.

6.3 Linear System

We then try to interpret the knowledge graph embedding with user attributes.
Similar to sentence embedding, a linear system is used to calculate the represen-
tation for each user attribute. Note that not all of the combinations of attributes
exist in the movie lens dataset. For each type of user, we calculate the mean of
their embeddings for decomposition. We decompose the user embedding into
gender and age. The results are illustrated in Fig. 3.

Fig. 3. The test statistics for knowledge graph embedding decomposition. AVG KG is
the average performance of B̂ learned from the knowledge graph embedding. The bars
are the distribution of the results from random permutations that run for 100 times.
p value < 0.01.

These results show that the knowledge graph embedding can be decomposed
into 2 genders and 7 age attributes, which can then be used to predict the
embedding of a new user. The linear system can decompose the knowledge
graph embedding with a loss of 0.37, which is lower than the random permu-
tations. Moreover, it is possible to approximately reconstruct the embedding of
a user just from the age and gender attributes obtained from the linear sys-
tem. This reconstruction embedding B̂ can be compared with the reconstruc-
tion that would result from using the same method but based on randomised
user-attributes/embeddings pairs using cosine similarity. The cosine similarity
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of the reconstruction embedding to the actual knowledge graph embedding is
99.79%, which is higher than any randomised trial (between 96.02% and 98.86%).
The reconstructed embedding also retrieves the actual embedding 92.90% of
the times, which outperforms the random permutations (between 0.00% and
28.57%). The p-value for the non-parametric testing is smaller than the signifi-
cance threshold (α = 0.01), thus, H0 is discarded.

Our results are not so clear when we add more features. When we include
the occupation in the representation, the linear system has decomposed the
embedding into gender, age, and occupation (p-value smaller than the thresh-
old). However, when we try to use the composed embedding B̂ to retrieve the
actual knowledge graph embedding, there is 4% accuracy in retrieving the actual
user embedding. Although the result is still statistical significant compared to
the random permutation, the composed embedding is not closest to the actual
embedding. More work is on the way in this direction.

7 Conclusion

Both the sentence embeddings produced by BERT and the knowledge graph
embeddings generated on the basis of IMDB data by GC-MC present some com-
positionality, that is some of the information contained in them can be explained
in terms of known attributes. This creates the possibility to manipulate those
representations, for the purpose of removing bias, or to explain the decisions of
the algorithm using them, or to answer analogical or counterfactual questions.

A general way to decompose embedding vectors, based on solving linear sys-
tems and CCA problems, has been presented as an example here, but a number
of other methods could be of use. As a matter of fact, many such methods
already exist in different fields (for example methods related to the technique of
“projection pursuit”). Future work should import those techniques within the
field of Learning Embedding Representations.
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