
32nd European Symposium on Programming, ESOP 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2023
Paris, France, April 22–27, 2023
Proceedings

Programming
Languages
and SystemsLN

CS
 1

39
90

AR
Co

SS
Thomas Wies (Ed.)

Lecture Notes in Computer Science 13990

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Thomas Wies
Editor

Programming
Languages
and Systems
32nd European Symposium on Programming, ESOP 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2023
Paris, France, April 22–27, 2023
Proceedings

123

Editor
Thomas Wies
New York University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30043-1 ISBN 978-3-031-30044-8 (eBook)
https://doi.org/10.1007/978-3-031-30044-8

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication,
corrected publication 2023.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4051-5968
https://doi.org/10.1007/978-3-031-30044-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 26th ETAPS! ETAPS 2023 took place in Paris, the beautiful capital of
France. ETAPS 2023 was the 26th instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference established
in 1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronized conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attracted many researchers from all over the globe.

ETAPS 2023 received 361 submissions in total, 124 of which were accepted,
yielding an overall acceptance rate of 34.3%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2023 featured the unifying invited speakers Véronique Cortier (CNRS,
LORIA laboratory, France) and Thomas A. Henzinger (Institute of Science and
Technology, Austria) and the conference-specific invited speakers Mooly Sagiv (Tel
Aviv University, Israel) for ESOP and Sven Apel (Saarland University, Germany) for
FASE. Invited tutorials were provided by Ana-Lucia Varbanescu (University of
Twente and University of Amsterdam, The Netherlands) on heterogeneous computing
and Joost-Pieter Katoen (RWTH Aachen, Germany and University of Twente, The
Netherlands) on probabilistic programming.

As part of the programme we had the second edition of TOOLympics, an event to
celebrate the achievements of the various competitions or comparative evaluations in
the field of ETAPS.

ETAPS 2023 was organized jointly by Sorbonne Université and Université
Sorbonne Paris Nord. Sorbonne Université (SU) is a multidisciplinary,
research-intensive and worldclass academic institution. It was created in 2018 as the
merge of two first-class research-intensive universities, UPMC (Université Pierre and
Marie Curie) and Paris-Sorbonne. SU has three faculties: humanities, medicine, and
55,600 students (4,700 PhD students; 10,200 international students), 6,400 teachers,
professor-researchers and 3,600 administrative and technical staff members. Université
Sorbonne Paris Nord is one of the thirteen universities that succeeded the University of
Paris in 1968. It is a major teaching and research center located in the north of Paris. It
has five campuses, spread over the two departments of Seine-Saint-Denis and Val

d’Oise: Villetaneuse, Bobigny, Saint-Denis, the Plaine Saint-Denis and Argenteuil. The
university has more than 25,000 students in different fields, such as health, medicine,
languages, humanities, and science. The local organization team consisted of Fabrice
Kordon (general co-chair), Laure Petrucci (general co-chair), Benedikt Bollig (work-
shops), Stefan Haar (workshops), Étienne André (proceedings and tutorials), Céline
Ghibaudo (sponsoring), Denis Poitrenaud (web), Stefan Schwoon (web), Benoît Barbot
(publicity), Nathalie Sznajder (publicity), Anne-Marie Reytier (communication),
Hélène Pétridis (finance) and Véronique Criart (finance).

ETAPS 2023 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), EASST
(European Association of Software Science and Technology), Lip6 (Laboratoire
d'Informatique de Paris 6), LIPN (Laboratoire d'informatique de Paris Nord), Sorbonne
Université, Université Sorbonne Paris Nord, CNRS (Centre national de la recherche
scientifique), CEA (Commissariat à l'énergie atomique et aux énergies alternatives),
LMF (Laboratoire méthodes formelles), and Inria (Institut national de recherche en
informatique et en automatique).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Inria), Jan Křetínský (Munich),
and Lenore Zuck (Chicago).

Other members of the steering committee are: Dirk Beyer (Munich), Luís Caires
(Lisboa), Ana Cavalcanti (York), Bernd Finkbeiner (Saarland), Reiko Heckel
(Leicester), Joost-Pieter Katoen (Aachen and Twente), Naoki Kobayashi (Tokyo),
Fabrice Kordon (Paris), Laura Kovács (Vienna), Orna Kupferman (Jerusalem), Leen
Lambers (Cottbus), Tiziana Margaria (Limerick), Andrzej Murawski (Oxford), Laure
Petrucci (Paris), Elizabeth Polgreen (Edinburgh), Peter Ryan (Luxembourg), Sriram
Sankaranarayanan (Boulder), Don Sannella (Edinburgh), Natasha Sharygina (Lugano),
Pawel Sobocinski (Tallinn), Sebastián Uchitel (London and Buenos Aires), Andrzej
Wasowski (Copenhagen), Stephanie Weirich (Pennsylvania), Thomas Wies (New
York), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer-Verlag GmbH for their
support. I hope you all enjoyed ETAPS 2023.

Finally, a big thanks to Laure and Fabrice and their local organization team for all
their enormous efforts to make ETAPS a fantastic event.

April 2023 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

https://www.lip6.fr/

Preface

This volume contains the papers accepted at the 32nd European Symposium on Pro-
gramming (ESOP 2023), held during April 22–27, 2023, in Paris, France. ESOP is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS); it is
dedicated to fundamental issues in the specification, design, analysis, and implemen-
tation of programming languages and systems.

The 20 papers in this volume were selected from 55 submissions based on their
originality and quality. One submission was desk rejected due to formatting issues.
Each of the remaining submissions received at least three reviews. Authors were given
the opportunity to respond to the initial reviews of their papers during the rebuttal
period, December 6–8, 2022. Afterwards, the papers were discussed by the 30 Program
Committee (PC) members and the 37 external reviewers. ESOP 2023 followed a
double-blind review process. Roland Meyer kindly handled the two papers for which
the PC Chair had conflicts of interest.

ESOP 2023 continued the artifact evaluation process established by ESOP 2022. For
this edition, the evaluation was conducted by a joint Artifact Evaluation Committee
(AEC) with FoSSaCS 2023. Authors of accepted papers were invited to submit arti-
facts, such as code, datasets, and mechanized proofs that supported the conclusions
of their papers. The AEC members read the papers and explored the artifacts, assessing
their quality and checking that they supported the authors' claims. The authors of seven
of the accepted papers submitted artifacts, which were evaluated by 21 AEC members,
with each artifact receiving at least three reviews. Authors of papers with accepted
artifacts were assigned official EAPLS artifact evaluation badges, indicating that they
have taken the extra time and have undergone the extra scrutiny to prepare a useful
artifact. The ESOP 2023 AEC awarded Artifact Functional, Artifact (Functional and)
Reusable, and Artifact Available badges. All submitted artifacts were deemed Func-
tional and Available, and all but two were also found to be Reusable.

I sincerely thank everyone who contributed to the success of the conference.
Foremost, my deep gratitude goes to the authors who submitted their works for review,
providing the basis for an exciting conference program. I would like to thank the
members of the ESOP 2023 Program Committee for their detailed and constructive
reviews, and for their active participation in the online discussions. The external
reviewers provided additional expertise that was often crucial to arrive at an informed
decision. For this, they have my deepest gratitude. I also thank Niccolò Veltri and
Sebastian Wolff for serving as co-chairs of the joint ESOP/FoSSaCS 2023 Artifact
Evaluation Committee. It was an honor to work with all of you! Finally, I would like to
thank all who contributed to the organization of ESOP 2023: the ESOP steering

committee and its chairs Luis Caires and Peter Thiemann, as well as the ETAPS
steering committee and its chair Marieke Huisman, who often provided helpful guid-
ance and feedback.

April 2023 Thomas Wies

viii Preface

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Elvira Albert Universidad Complutense de Madrid, Spain
Timos Antonopoulos Yale University, USA
Suguman Bansal Georgia Institute of Technology, USA
Josh Berdine Meta, UK
Annette Bieniusa TU Kaiserslautern, Germany
Sandrine Blazy University of Rennes 1 - IRISA, France
Johannes Borgström Uppsala University, Sweden
Georgiana Caltais University of Twente, The Netherlands
Ankush Das Amazon, USA
Cezara Dragoi Inria Paris, ENS, France
Michael Emmi Amazon Web Services, USA
Simon Gay University of Glasgow, UK
Silvia Ghilezan University of Novi Sad, Mathematical Institute SASA,

Serbia
Jan Hoffmann Carnegie Mellon University, USA
Shachar Itzhaky Technion, Israel
Benjamin Lucien Kaminski Saarland University, Saarland Informatics Campus,

Germany
Robbert Krebbers Radboud University Nijmegen, The Netherlands
Viktor Kuncak Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Roland Meyer TU Braunschweig, Germany
David Monniaux CNRS/VERIMAG, France
Andrei Popescu University of Sheffield, UK
Jonathan Protzenko Microsoft, USA
Jorge A. Pérez University of Groningen, The Netherlands
Graeme Smith University of Queensland, Australia
Ana Sokolova University of Salzburg, Austria
Alexander J. Summers University of British Columbia, Canada
Tachio Terauchi Waseda University, Japan
Caterina Urban Inria, France
Niki Vazou IMDEA Software, Spain
Thomas Wies New York University, USA

Additional Reviewers

Abuah, Chike
Aman, Bogdan
Anastasiadi, Elli
Barrière, Aurèle
Bovel, Matthieu
Chassot, Samuel
Denis, Xavier
DeYoung, Henry
Di Giorgio, Alessandro
Eilers, Marco
Frumin, Daniil
Genaim, Samir
Goel, Aman
Goldstein, Mark
Gordillo, Pablo
Greenman, Ben
Grosen, Jessie
Ho, Son
Isabel, Miguel

Jacobs, Jules
Jothimurugan, Kishor
Khyzha, Artem
Kuperberg, Denis
Lam, Kait
Li, Yao
Liquori, Luigi
Middelkoop, Adriaan
Miné, Antoine
Padovani, Luca
Pham, Long
Rodríguez Carbonell, Enric
Rémy, Didier
Saville, Philip
Stanford, Caleb
Stein, Dario
Veltri, Niccolò
Wang, Di

x Organization

Contents

Logics for Extensional, Locally Complete Analysis via Domain
Refinements . 1

Flavio Ascari, Roberto Bruni, and Roberta Gori

Clustered Relational Thread-Modular Abstract Interpretation with Local
Traces . 28

Michael Schwarz, Simmo Saan, Helmut Seidl, Julian Erhard,
and Vesal Vojdani

Adversarial Reachability for Program-level Security Analysis 59
Soline Ducousso, Sébastien Bardin, and Marie-Laure Potet

Automated Grading of Regular Expressions . 90
Su-Hyeon Kim, Youngwook Kim, Yo-Sub Han, Hyeonseung Im,
and Sang-Ki Ko

Builtin Types Viewed as Inductive Families . 113
Guillaume Allais

Pragmatic Gradual Polymorphism with References . 140
Wenjia Ye and Bruno C. d. S. Oliveira

Modal Crash Types for Intermittent Computing . 168
Farzaneh Derakhshan, Myra Dotzel, Milijana Surbatovich,
and Limin Jia

Gradual Tensor Shape Checking . 197
Momoko Hattori, Naoki Kobayashi, and Ryosuke Sato

A Type System for Effect Handlers and Dynamic Labels 225
Paulo Emílio de Vilhena and François Pottier

Interpreting Knowledge-based Programs. 253
Alexander Knapp, Heribert Mühlberger, and Bernhard Reus

Contextual Modal Type Theory with Polymorphic Contexts 281
Yuito Murase, Yuichi Nishiwaki, and Atsushi Igarashi

Quorum Tree Abstractions of Consensus Protocols . 337
Berk Cirisci, Constantin Enea, and Suha Orhun Mutluergil

MAGp: Types for Failure-Prone Communication . 363
Matthew Alan Le Brun and Ornela Dardha

System Fl
x with Context-free Session Types . 392

Diogo Poças, Diana Costa, Andreia Mordido, and Vasco T. Vasconcelos

Safe Session-Based Concurrency with Shared Linear State 421
Pedro Rocha and Luís Caires

Bunched Fuzz: Sensitivity for Vector Metrics . 451
June Wunder, Arthur Azevedo de Amorim, Patrick Baillot,
and Marco Gaboardi

Fast and Correct Gradient-Based Optimisation for Probabilistic
Programming via Smoothing . 479

Basim Khajwal, C.-H. Luke Ong, and Dominik Wagner

Type-safe Quantum Programming in Idris . 507
Liliane-Joy Dandy, Emmanuel Jeandel, and Vladimir Zamdzhiev

Automatic Alignment in Higher-Order Probabilistic Programming
Languages . 535

Daniel Lundén, Gizem Çaylak, Fredrik Ronquist, and David Broman

xii Contents

A Complete Inference System for Skip-free Guarded Kleene Algebra
with Tests . 309

Tobias Kappé, Todd Schmid, and Alexandra Silva

Correction to: Programming Languages and Systems C1
Thomas Wies

Author Index . 565

Logics for Extensional, Locally Complete
Analysis via Domain Refinements ?

Flavio Ascari(�) , Roberto Bruni , and Roberta Gori

Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, Pisa, Italy,
flavio.ascari@phd.unipi.it, {roberto.bruni,roberta.gori}@unipi.it

Abstract. Abstract interpretation is a framework to design sound static
analyses by over-approximating the set of program behaviours. While
over-approximations can prove correctness, they cannot witness incor-
rectness because false alarms may arise. An ideal, but uncommon, situ-
ation is completeness of the abstraction that can ensure no false alarm
is introduced by the abstract interpreter. Local Completeness Logic is a
proof system that can decide both correctness and incorrectness of a pro-
gram: any provable triple `A [P] c [Q] in the logic implies completeness
of an intensional abstraction of program c on input P and is such that
Q can be used to decide (in)correctness. However, completeness itself is
an extensional property of the function computed by the program, while
the above intensional analysis depends on the way the program is written
and therefore not all valid triples can be derived in the proof system. Our
main contribution is the study of new inference rules which allow one to
perform part of the intensional analysis in a more precise abstract do-
main, and then to transfer the result back to the coarser domain. With
these new rules, all (extensionally) valid triples can be derived in the
proof system, thus untying the set of provable properties from the way
the program is written.

Keywords: Abstract interpretation, Completeness in abstract interpre-
tation, Hoare logic, Abstract domain refinement, Extensionality

1 Introduction

Static program analysis has been widely used to help developers produce valid
software. Among static analysis techniques, abstract interpretation [6,7] is a
general formalism to define sound-by-construction over-approximations that has
been successfully applied in many fields, such as model checking, security and
optimization [8]. Static analyses are often defined as over-approximations, that
is the analysis computes a superset of the behaviors. This leads to no false
negatives, that is all issues of the software are identified by the analysis, but it
can cause false alarms: an incorrect behavior may be an artifact of the analysis,
added by the over-approximation. While the absence of false negatives allowed
a wide applicability of abstract interpretation techniques, it also make tools less

? Research supported by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Pro-
gram Analyses.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 1–27, 2023.
https://doi.org/10.1007/978-3-031-30044-8 1

http://orcid.org/0000-0003-4624-9752
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-7424-9576
mailto:flavio.ascari@phd.unipi.it
https://doi.org/10.1007/978-3-031-30044-8_1
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_1&domain=pdf

2 F. Ascari et al.

reliable to identify bugs. In fact, in many industrial applications any false alarm
reported by the analysis to the developers diminishes its credibility, making it
less effective in practice. This argument has recently led to the development of
a logic of under-approximations, called incorrectness logic [16,17].

The Problem. In abstract interpretation, an ideal situation is completeness.
Given an expressible specification, that is, one represented exactly in the abstract
domain, a complete abstraction reports no false alarms. In its most widespread
formulation [7], completeness is a global property: a program c is complete in the
abstraction A if a condition holds for all possible inputs. Let C be the concrete
domain and JcK : C → C be the (collecting) denotational semantics of c. Given
an abstract domain A, a concretization function γ : A → C and an abstrac-
tion function α : C → A, an abstract interpreter JcK]A : A → A is complete

in A if for all possible inputs P we have JcK]Aα(P) = α(JcKP). Unfortunately,
because of universal quantification over the possible inputs, this condition is dif-
ficult to meet in practice. Moreover, in most cases completeness is checked on
an intensional abstraction of JcK computed inductively on the syntax, through

inductive reasoning by an abstract interpreter JcK]A making completeness an in-
tensional property dependent on the program syntax [10]. However, in principle
completeness is an extensional property, that only depends on the best correct
abstraction JcKA of JcK in A, defined by JcKA , αJcKγ. We sum up what we may
call intensional (on the left) and extensional (on the right) completeness in the
following equations:

JcK]Aα = αJcK JcKAα = αJcKγα = αJcK (1)

We show the difference between JcKA and JcK]A in the following example.

Example 1 (Extensional and intensional properties). Consider the concrete do-
main of sets of integers and the abstract domain of signs:

∅

Z<0 Z=0 Z>0

Z≤0 Z 6=0 Z≥0

ZSign

The meaning of the abstract elements of Sign is to represent concrete values
that satisfy the respective property. So for instance, denoting with the function
γ the “meaning” of an abstract element, we have γ(Z<0) = {n ∈ Z |n < 0}.
Conversely, α “abstracts” a concrete set of values to the least abstract property
describing it, for instance α({0; 1; 100}) = Z≥0.

Consider the simple program fragment c , x := x + 1; x := x - 1. Its
denotational semantics JcK is the identity function idZ, so its best correct ab-
straction is the abstract identity idSign = α idZ γ. This is an extensional prop-
erty of the program because it only depends on the function it computes, i.e., its

Logics for Extensional, Locally Complete Analysis via Domain Refinements 3

denotational semantics. However, an analyzer does not know the semantics of c,
so it has to analyze the program syntactically, breaking it down in elementary
pieces and gluing the results together. So for instance, starting from the concrete
point P = {1} the analysis first abstracts it to the property α(P) = Z>0, then
it computes

JcK]Sign(Z>0) = Jx := x - 1K]SignJx := x + 1K]Sign(Z>0)

= Jx := x - 1K]Sign(Z>0) = Z≥0.

Analogous calculations for all properties in Sign yields the abstraction

JcK]Sign(a) =

⊥ if a = ⊥

Z≥0 if a ∈ { Z=0 , Z>0 ,Z≥0}

Z<0 if a = Z<0

> if a ∈ { Z≤0 , Z 6=0 ,>}

that, albeit sound, is less precise than idSign (we highlight with a gray background

all inputs on which JcK]Sign loses accuracy). If instead the program were written as

c′ , skip, the analysis in Sign would yield the best correct abstraction Jc′K]Sign =
idSign. Therefore, the abstraction depends on how the program is written and not
only on its semantics: it is what it is called an intensional property (see e.g. [1]
for more about intensional and extensional abstract properties). ut

To overcome the former limitation of “global” completeness, the concept of
local completeness [2] has been recently proposed that is related to some specific
input. While this condition is much more common in practice, it is also much
more complex to prove. In order to do so, the authors of [2] introduce a Local
Completeness Logic parametric with respect to an abstraction A (LCLA for
short), that is able to prove triples `A [P] c [Q] with the following meaning

1. Q is an under-approximation of the concrete semantics JcKP ,
2. Q and JcKP have the same over-approximation in A,
3. A is locally complete for the intensional abstraction JcK]A on input P .

The important consequence of the previous points is the fact that a triple in
LCLA is able to prove both correctness and incorrectness of a program with
respect to a specification Spec expressible in A. By point (2), if the abstract
analysis reports no errors in Q then there are none because of the over-approxi-
mation. However, if the analysis does report an issue, this must be present in the
abstraction of JcKP as well, that is the same as the abstraction of Q: this means
that Q contains a witness of the violation of Spec, and this witness must be in
JcKP because of the under-approximation ensured by point (1). While local com-
pleteness of point (3) is a key property to prove point (1-2), it would be enough
to guarantee that (3) holds for the extensional best correct approximation JcKA

of JcK rather than for the intensional abstract interpreter JcK]A: this suggests that
it is possible to weaken the hypothesis (3) in order to make the proof system
able to derive more valid triples.

4 F. Ascari et al.

Main Contributions. Building on the proof system of LCLA, we add new rules
to relax point (3) to local completeness of the extensional abstraction JcKA. This
way, while the proof system itself remains intensional as it deduces program
properties by working inductively on the syntax, the information it produces is
more precise. Specifically, since the property associated with triples is extensional
no precision is lost because of the intensional abstract interpreter, and in the
end allows us to prove more triples. In order to achieve this goal, we introduce
new rules to dynamically refine the abstract domain during the analysis. While
in general an analysis in a more concrete domain is more precise, LCLA requires
local completeness, which is not necessarily preserved by domain refinement [11].
For instance, a common way to combine two different abstract domains is their
reduced product [7], but it is not always the case that the analysis in the reduced
product is (locally) complete, even when it is such in the two domains.

To preserve local completeness, we introduce several rules for domain re-
finement in LCLA and compare their expressiveness and usability. All of them
provide extensional guarantees, in the sense that point (3) is replaced with local
completeness of the best correct abstraction JcKA on input P . The first one is
called (refine-ext). LCLA extended with (refine-ext) turns out to be logically com-
plete: any triple satisfying the above conditions (1–3) can be proved in our proof
system. This is a theoretical improvement with respect to LCLA, that instead
was intrinsically incomplete as a logic, i.e., for all abstractions A there exists a
sound triple that cannot be proved. While (refine-ext) is theoretically interesting,
one of its hypothesis is unfeasible to check in practice. To improve applicability,
we propose two derived rules, (refine-int) and (refine-pre), whose premises can
be checked effectively and imply the hypotheses of the more general (refine-ext).
Surprisingly, it turns out that (refine-int) enjoys a logical completeness result
too, while (refine-pre) is strictly weaker (in terms of strength of the logic, see
Example 6). Despite this, the latter is much simpler and preferable to use in
practice whenever possible (see Example 5), while the former can be used in
more situations and is at times the best choice.

We present a pictorial comparison among the expressiveness of the various
proof systems in Fig. 1. Each node represent the proof system LCLA extended
with one rule (the bottom one being plain LCLA). An arrow in the picture
means a more powerful proof system, i.e., a proof system that can prove more
triples, with its label pointing out the result justifying the claim. The two arrows
between the two topmost nodes are because the two proof systems are logically
equivalent, i.e., they can prove the same triples.

Structure of the paper. In Section 2 we explain the notation used in the paper
and recall the basics of abstract interpretation. In Section 3 we present LCLA,
mostly summarizing the content of [2], with a focus on what is used in the
following sections. In Section 4 we present and compare our new rules to refine
the abstract domain, namely (refine-ext) and the two derived rules (refine-int)
and (refine-pre). We conclude in Section 5. Some proofs and technical examples
are in Appendix A.

Logics for Extensional, Locally Complete Analysis via Domain Refinements 5

LCLA

LCLA +
(refine-pre)

LCLA +
(refine-int)

LCLA +
(refine-ext)

Ex 5

Ex 6

Th 4

Th 5

Ex 6

Fig. 1: Relations between the new proof systems

2 Background

Notation. We write P(S) for the powerset of S and idS : S → S for the identity
function on a set S, with subscripts omitted when obvious from the context. If
f : S → T is a function, we overload the symbol f to denote also its lifting
f : P(S) → P(T) defined as f(X) = {f(x) |x ∈ X} for any X ⊆ S. Given two
functions f : S → T and g : T → V we denote their composition as g ◦ f or
simply gf . For a function f : S → S, we denote fn : S → S the composition of
f with itself n times, i.e. f0 = idS and fn+1 = f ◦ fn.

In ordered structures, such as posets and lattices, with carrier set C, we
denote the ordering with ≤C , least upper bounds (lubs) with tC , greatest lower
bounds (glbs) with uC , least element with ⊥C and greatest element with >C . For
all these, we omit the subscript when evident from the context. Any powerset is
a complete lattice ordered by set inclusion. In this case, we use standard symbols
⊆, ∪, etc. Given a poset T and two functions f, g : S → T , the notation f ≤ g
means that, for all s ∈ S, f(s) ≤T g(s). A function f between complete lattices
is additive (resp. co-additive) if it preserves arbitrary lubs (resp. glbs).

2.1 Abstract Interpretation

Abstract interpretation [6,7,5] is a general framework to define static analyses
that are sound by construction. The main idea is to approximate the program
semantics on some abstract domain A instead of working on the concrete domain
C. The main tool used to study abstract interpretations are Galois connections.
Given two complete lattices C and A, a pair of monotone functions α : C → A

6 F. Ascari et al.

and γ : A→ C define a Galois connection (GC) when

∀c ∈ C, a ∈ A. α(c) ≤A a ⇐⇒ c ≤C γ(a).

We call C and A the concrete and the abstract domain respectively, α the ab-
straction function and γ the concretization function. The functions α and γ are
also called adjoints. For any GC, it holds idC ≤ γα, αγ ≤ idA, γ is co-additive
and α is additive. A concrete value c ∈ C is called expressible in A if γα(c) = c.
We only consider GCs in which αγ = idA, called Galois insertions (GIs). In a
GI α is onto and γ is injective. A GI is said to be trivial if A is isomorphic to
the concrete domain or if it is the singleton {>A}.

We overload the symbol A to denote also the function γα : C → C: this
is always a closure operator, that is a monotone, increasing (i.e. c ≤ A(c) for
all c) and idempotent function. In the following, we use closure operators as
much as possible to simplify the notation. Particularly, they are useful to denote
domain refinements, as exemplified in the next paragraph. Note that they are
still very expressive because γ is injective: for instance A(c) = A(c′) if and only
if α(c) = α(c′). Nonetheless, the use of closure operators is only a matter of
notation and it is always possible to rewrite them using the adjoints.

We use Abs(C) to denote the set of abstract domains over C, and we write
Aα,γ ∈ Abs(C) when we need to make the two maps α and γ explicit (we omit
them when not needed). Given two abstract domains Aα,γ , A

′
α′,γ′ ∈ Abs(C)

over C, we say A′ is a refinement of A, written A′ � A, when γ(A) ⊆ γ′(A′).
When this happens, the abstract domain A′ is more expressive than A, and in
particular for all concrete elements c ∈ C the inequality A′(c) ≤C A(c) holds.

Abstracting Functions. Given a monotone function f : C → C and an abstract
domain Aα,γ ∈ Abs(C), a function f] : A → A is a sound approximation (or
abstraction) of f if αf ≤ f]α. Its best correct approximation (bca) is fA = αfγ,
and it is the most precise of all the sound approximations of f : a function f] is
a sound approximation of f if and only if fA ≤ f].

A sound abstraction f] of f is complete if αf = f]α. It turns out that there
exists a complete abstraction f] if and only if the bca fA is complete. If this
is the case, we say that the abstract domain A is complete for f and denote
it with CA(f). Intuitively, completeness means that the abstract function f] is
as precise as possible in the given abstract domain A, and in program analysis
this allows to have greater confidence in the alarms raised. We remark that A
is complete for f if and only if αf = fAα = αfγα. Since γ is injective, this is
true if and only if γαf = γαfγα, so that we define the (global) completeness
property CA(f) as follows:

CA(f) ⇐⇒ Af = AfA.

2.2 Regular Commands.

Following [2] (see also [16]) we consider a language of regular commands :

Reg 3 r ::= e | r; r | r ⊕ r | r∗

Logics for Extensional, Locally Complete Analysis via Domain Refinements 7

This is a general language and can be instantiated differently changing the set
Exp of basic transfer expressions e. These determines the kind of operations
allowed in the language, and in our examples we assume to have deterministic
assignments and boolean guards. Using standard definitions for arithmetic and
boolean expressions a ∈ AExp and b ∈ BExp, we consider

Exp 3 e ::= skip | x := a | b?

skip does nothing, x := a is a standard deterministic assignment. The seman-
tics of b? is that of an “assume” statement: if its input satisfies b it does nothing,
otherwise it diverges. The term r; r represent the usual sequential composition,
and r⊕r is nondeterministic choice. The Kleene star r∗ denote a nondeterministic
iteration, where r can be executed any number of time (possibly 0) before exiting.
It can be thought as the solution of the recursive equation r∗ ≡ skip⊕(r; r∗). We
write rn to denote sequential composition of r with itself n times, analogously to
how we use fn for function composition.

This formulation can accommodate for a standard imperative programming
language [18] defining if and while statements as

if (b) then c1 else c2 , (b?; c1)⊕ ((¬b)?; c2)

while (b) do c , (b?; c)∗; (¬b)?

Concrete semantics. We assume the semantics L·M : Exp → C → C of basic
transfer expressions on a complete lattice C to be additive. We believe this
assumption not to be restrictive, and is always satisfied in collecting semantics.
For our instantiation of Exp, we consider a finite set of variables Var, then the
set of stores Σ = Var→ Z that are (total) functions σ from Var to integers. The
complete lattice C is then defined simply as P(Σ) with the usual poset structure
given by set inclusion. Given a store σ ∈ Σ, store update σ[x 7→ v] is defined
as usual for x ∈ Var and v ∈ Z. We consider standard, inductively defined
semantics L·M for arithmetic and boolean expressions. The concrete semantics of
regular commands J·K : Reg→ C → C is defined inductively as in Fig. 2a, where
the semantics of basic transfer expressions e ∈ Exp is defined as follows:

LskipMS , S

Lx := aMS , {σ[x 7→ LaMσ] |σ ∈ S}
Lb?MS , {σ ∈ S | LbMσ = tt}

Abstract Semantics. The (compositional) abstract semantics of regular com-

mands J·K]A : Reg → A → A on an abstract domain A ∈ Abs(C) is defined
inductively as in Fig. 2b. As common for abstract interpreters, we assume the
analyser knows the best correct abstraction of expression and thus is able to
compute JeKA. A straightforward proof by structural induction shows that the

abstract semantics is sound w.r.t. JrK (i.e., αJrK ≤ JrK]Aα) and monotone. How-

ever, in general it is less precise than the bca, i.e., JrK]A 6= JrKA = αJrKγ.

8 F. Ascari et al.

JeKc , LeMc

Jr1; r2Kc , Jr2KJr1K(c)

Jr1 ⊕ r2Kc , Jr1Kc tC Jr2Kc

Jr∗Kc ,
⊔
n≥0

JrKnc

(a) Concrete semantics

JeK]Aa , JeKAa = αLeMγ(a)

Jr1; r2K]Aa , Jr2K]AJr1K]A(a)

Jr1 ⊕ r2K]Aa , Jr1K]Aa tA Jr2K]Aa

Jr∗K]Aa ,
⊔
n≥0

(JrK]A)
na

(b) Abstract semantics

Fig. 2: Concrete and abstract semantics of regular commands, side by side

Shorthands. Throughout the paper, we present some simple examples of pro-
gram analysis. The programs discussed in the examples contain just one or two
variables (usually x and y), so we denote their sets of stores just as Σ = Z or
Σ = Z2. In these cases, the convention is that an element of Z is the value of
the single variable in Var, and a pair (n,m) ∈ Z2 denote the store σ(x) = n,
σ(y) = m. We also lift these conventions to sets of values in Z or Z2. At times,
to improve readability, we use logical formulas such as (y ∈ {1; 2; 99} ∧ x = y)
possibly using intervals, like in x ∈ [0; 5], to describe set of stores.

3 Local Completeness Logic

In this section we present the notion of local completeness and introduce the
proof system LCLA (Local Completeness Logic on A) as was defined in [2].

For a generic program and abstract domain, global completeness is a too
strong requirement: for conditionals to be complete the abstract domain should
basically contain a complete sublattice of the concrete domain. For this reason,
the weaker notion of local completeness can be more convenient in many cases.

Definition 1 (Local completeness, cf. [2]). Let f : C → C be a concrete
function, c ∈ C a concrete point and A ∈ Abs(C) and abstract domain for C.
Then A is locally complete for f on c, written CA

c (f), iff

Af(c) = AfA(c).

A remarkable difference between global and local completeness is that, while the
former can be proved compositionally irrespective of the input [10], the latter
needs it. Consequently, to carry on a compositional proof of local completeness,
information on the input to each subpart of the program is also required, i.e., all
traversed states are important. However, local completeness enjoys an “abstract
convexity” property, that is, local completeness on a concrete point c implies
local completeness on any concrete point d between c and its abstraction A(c).
This observation has been exploited in the design of the proof system LCLA.
The system is able to prove triples `A [P] r [Q] ensuring that:

Logics for Extensional, Locally Complete Analysis via Domain Refinements 9

CA
P (JeK)

`A [P] e [JeKP]
(transfer)

P ′ ≤ P ≤ A(P ′) `A [P ′] r [Q′] Q ≤ Q′ ≤ A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 ⊕ r2 [Q1 ∨Q2]
(join)

`A [P] r [R] `A [P ∨R] r∗ [Q]

`A [P] r∗ [Q]
(rec)

`A [P] r [Q] Q ≤ A(P)

`A [P] r∗ [P ∨Q]
(iterate)

Fig. 3: The proof system LCLA.

1. Q is an under-approximation of the concrete semantics JrKP ,
2. Q and JrKP have the same over-approximation in A,
3. A is locally complete for JrK on input P .

The second point means that, given a specification Spec expressible in A, any
provable triple `A [P] r [Q] either proves correctness of r with respect to Spec or
expose some alerts in Q \ Spec. These in turns correspond to true ones because
of the first point, as spelled out by Corollary 1 below.

The proof system is defined in Fig. 3. The crux of the proof system is to con-
strain the under-approximation Q to have the same abstraction of the concrete
semantics JrKP , as for instance explicitly required in rule (relax). This, by the
abstract convexity property mentioned above, means that local completeness of
JrK on the under-approximation P of the concrete store is enough to prove local
completeness.

The three key properties (1–3) listed above are formalized by the following
(intensional) soundness result:

Theorem 1 (Soundness, cf. [2]). Let Aα,γ ∈ Abs(C). If `A [P] r [Q] then:

1. Q ≤ JrKP ,
2. α(JrKP) = α(Q),

3. JrK]Aα(P) = α(Q).

As a consequence of this theorem, given a specification expressible in the abstract
domain A, a provable triple `A [P] r [Q] can determine both correctness and
incorrectness of the program r:

Corollary 1 (Proofs of Verification, cf. [2]). Let Aα,γ ∈ Abs(C) and a ∈ A.
If `A [P] r [Q] then

JrKP ≤ γ(a) ⇐⇒ Q ≤ γ(a).

The corollary is useful in program analysis and verification because, given a
specification a expressible in A and a provable triple `A [P] r [Q], it allows to
distinguish two cases.

– If Q ⊆ γ(a), then we have also JrKP ⊆ γ(a), so that the program is correct
with respect to the specification.

10 F. Ascari et al.

– If Q * γ(a), then also JrKP * γ(a), that means JrKP \ γ(a) is not empty and
thus contains a true alert of the program. Moreover, since Q ⊆ JrKP we have
that Q \ γ(a) ⊆ JrKP \ γ(a), so that already Q pinpoints some issues.

To better show how this work, we briefly introduce the following example (dis-
cussed also in [2] where it is possible to find all details of the derivation).

Example 2. Consider the concrete domain C = P(Z), the abstract domain Int of
intervals, the precondition P = {1; 999} and the command r , (r1 ⊕ r2)

∗, where

r1 , (x > 0)?; x := x - 1

r2 , (x < 1000)?; x := x + 1

In LCLA it is possible to prove the triple `Int [P] r [Q], whose postcondition
is Q = {0; 2; 1000}. Consider the two specification Spec = (x ≤ 1000) and
Spec′ = (x ≥ 100). The triple is then able to prove correctness of Spec and
incorrectness of Spec′. For the former, observe that Q ⊆ Spec. By Corollary 1
we then know JrKP ⊆ Spec, that is correctness. For the latter, Q exhibits two
witnesses to the violation of Spec′, that are 0, 2 ∈ Q \ Spec′. By point (1) of
soundness we then know that 0, 2 ∈ Q ⊆ JrKP are true alerts. ut

Strictly speaking, the proof of Corollary 1 only relies on points (1-2) of The-
orem 1. Point (3) is in turn needed to ensure the first two, but extensional
completeness would suffice to this aim. This means that we can weaken the
soundness theorem (logically speaking, that is we prove a stronger conclusion,
so the theorem as an implication is weaker) while still preserving the validity
of Corollary 1. To this end, we propose a new soundness result involving exten-
sional completeness: the important difference is that in point (3) we use the best

correct abstraction JrKA in place of the inductively defined JrK]A. Since Theorem 1

involves JrK]A, an intensional property of the program r that depends on how the
program is written (see Example 1 or Example 1 in Section 5 of [13]), while the
new statement we propose relies only on JrKA, an extensional property of the
computed function JrK and not of r itself, for the rest of the paper we use the
name intensional soundness for Theorem 1, and extensional soundness for the
following Theorem 2.

Theorem 2 (Extensional soundness). Let Aα,γ ∈ Abs(C). If `A [P] r [Q]
then:

1. Q ≤ JrKP ,
2. α(JrKP) = α(Q),
3. JrKAα(P) = α(Q).

Lastly, we remark that the original LCLA is intrinsically logically incomplete
([2], cf. Theorem 5.12): for every non trivial abstraction A there exists a triple
that is intensionally sound (satisfies points (1-3) of Theorem 1) but cannot be
proved in LCLA. We will discuss logical (in)completeness for our extensional
framework in Section 4.1.

Logics for Extensional, Locally Complete Analysis via Domain Refinements 11

`A′ [P] r [Q] A′ � A AJrKA
′
A(P) = A(Q)

`A [P] r [Q]
(refine-ext)

Fig. 4: Rule refine for LCLA.

4 Refining Abstract Domain

LCLA can prove a triple [P] r [Q] for some Q only when JrK]A is locally com-

plete, that is JrK]Aα(P) = α(JrKP) (see Theorem 1). Since JrK]A is computed in
a compositional way, the above condition strictly depends on how r is written:
to prove the local completeness of JrK]A, we need to prove that all its syntactic
components are locally complete, that is an intensional property. However, the
goal of the analysis is to study the behaviour of the function JrK, not how it is
encoded by r. Hence, our aim is to enhance the original proof system in order to
be able to handle triples where the extensional abstraction JrKA is proved to be
locally complete w.r.t. the given input, that is JrKAα(P) = α(JrKP). To this end,
we extend the proof system with a new inference rule, that is shown in Fig. 4. It
is named after “refine” because it allows to refine abstract domains A to some
A′ � A and “ext” since it involves the extensional bca JrKA

′
of JrK in A′ (to

distinguish it from the rules we will introduce in Section 4.2).
Using (refine-ext) it is possible to construct a derivation that proves local

completeness of portions of the whole program in a more precise abstract domain
A′ and then carries the result over to the global analysis in a coarser domain A.
The only requirement for the application of the rule is that domain A′ is chosen
in such a way that AJrKA

′
A(P) = A(Q) is satisfied.

Formally, given the two abstract domains Aα,γ , A
′
α′,γ′ ∈ Abs(C), this last

premise of rule (refine-ext) should be written as αγ′JrKA
′
α′A(P) = α(Q) to match

function domains and codomains. However we prefer the more concise, albeit a
little imprecise, notation used in Fig. 4. That writing is justified by the following
intuitive argument: since A′ � A we can consider with a slight abuse of notation
(seeing abstract domains as closures) A ⊆ A′ ⊆ C, so that for any element
a ∈ A ⊆ C we have γ(a) = γ′(a) = a and for any c ∈ C we have α′A(c) = A(c).
With these, it follows that

αγ′JrKA
′
α′A(P) = αJrKA

′
A(P) = AJrKA

′
A(P).

With rule (refine-ext) we cannot prove intensional soundness (Theorem 1):
since this rule allows to perform part of the analysis in a more concrete domain
A′, we do not get any information on JrK]A. However, we can prove extensional
soundness (Theorem 2) and get all the benefits of Corollary 1.

Theorem 3 (Extensional soundness of (refine-ext)). The proof system in
Fig. 3 with the addition of rule (refine-ext) (see Fig. 4) is extensionally sound
(cf. Theorem 2).

12 F. Ascari et al.

We also remark that a rule like (refine-ext), that allows to carry on part of the
proof in a different abstract domain, cannot come unconstrained. We present an
example showing that a similar inference rule only requiring the triple [P] r [Q]
to be provable in an abstract domain A′ � A without any other constraint would
be unsound.

Example 3. Consider the concrete domain C = P(Z) of integers, the point P =
{−5;−1}, the abstract domain Sign of Example 1 and the program

r , x := x + 10.

Then C � Sign and we can prove `C [P] r [{5; 9}] applying (transfer) since all
assignments are locally complete in the concrete domain. However, if f = JrK =
Lx := x + 10M, it is not the case that CSign

P (f): indeed

Sign(f(Sign(P))) = Sign(f(Z<0)) = Sign({n ∈ Z |n < 10}) = >

while

Sign(f(P)) = Sign({5, 9}) = Z>0.

This means that a rule without any additional condition can prove a triple which
is not locally complete, hence it is unsound. ut

4.1 Logical Completeness

Among all the possible conditions that can be added to a rule like (refine-ext),
we believe ours to be very general since, differently than the original LCLA proof
system (see Section 5.2 of [2]), the introduction of (refine-ext) allows us to derive
a logical completeness result, i.e. the ability to prove any triple satisfying the
soundness properties guaranteed by the proof system.

However, to prove such a result, our extension need an additional rule to
handle loops, just like the original LCLA and Incorrectness Logic [16]. The nec-
essary infinitary rule, called (limit), allows the proof system to handle Kleene
star, and is the same as LCLA:

∀n ∈ N. `A [Pn] r [Pn+1]

`A [P0] r∗ [
∨

i∈N Pi]
(limit)

Theorem 4 (Logical completeness of (refine-ext)). Consider the proof sys-
tem of Fig. 3 with the addition of rules (refine-ext) and (limit). If Q ≤ JrKP and
JrKAα(P) = α(Q) then `A [P] r [Q].

The previous theorem proves the logical completeness of our proof system with
respect to the property of extensional soundness. Indeed, if Q ≤ JrKP and
JrKAα(P) = α(Q) we also have:

α(Q) ≤ α(JrKP) ≤ JrKAα(P) = α(Q),

Logics for Extensional, Locally Complete Analysis via Domain Refinements 13

hence all three conditions of Theorem 2 are satisfied.
An interesting consequence of this result is the existence of a refinement A′

in which it is possible to carry out the proof. In principle such a refinement
could be the concrete domain C (as shown in the proof in Appendix A), that
is not computable. However, it is worth nothing that for a sequential fragment
(a portion of code without loops) the concrete domain can be actually used
(for instance via first-order logic). This opens up the possibility, for instance, to
infer a loop invariant on the body using C, and then prove it using an abstract
domain. In Section 4.3 we discuss this issue further.

4.2 Derived Refinement Rules

The hypothesis AJrKA
′
A(P) = A(Q) is added to rule (refine-ext) in order to

guarantee soundness: in general, the ability to prove a triple such as [P] r [Q] in a
refined domain A′ only gives information on AJrKA

′
A′(P) but not on AJrKA

′
A(P).

In fact, the Example 4 shows that AJrKA
′
A′(P) and AJrKA

′
A(P) can be different.

Example 4. Consider the concrete domain P(Z), the abstract domain of signs
Signα,γ ∈ Abs(P(Z)) (introduced in Example 1) and its refinement Sign1 below

∅

Z<0 Z=0 Z>0

Z≤0 Z 6=0 Z≥0

ZSign

∅

Z<0 Z=0

Z=1

Z>0

Z≤0 Z 6=0 Z≥0

ZSign1

For the command r , x := x - 1 and the concrete point P = {1} we have

SignJrKSign1Sign1(P) = SignJrKSign1(Z=1) = Z=0

but
SignJrKSign1Sign(P) = SignJrKSign1(Z>0) = Z≥0. ut

Despite being necessary, the hypothesis of rule (refine-ext) cannot be checked
in practice because the bca JrKA

′
of a composite command r is not known by the

analyser. To mitigate this issue, we present two derived rules whose premises
imply the premises of Rule (refine-ext), hence ensuring extensional soundness by
means of Theorem 3.

The first rule we present replaces the requirement on the extensional bca JrKA
′

with requirements on the intensional compositional abstraction JrK]A′ computed
in A′. For this reason, we call this rule (refine-int).

Proposition 1. The following rule (refine-int) is extensionally sound:

`A′ [P] r [Q] A′ � A AJrK]A′A(P) = A(Q)

`A [P] r [Q]
(refine-int)

14 F. Ascari et al.

It is worth noting that now the condition on the compositional abstraction JrK]A′
can easily be checked by the analyser, possibly alongside the analysis of r with
LCL or using a stand-alone abstract interpreter. Moreover, this rule is as pow-
erful as the original (refine-ext) because it allows to prove a logical completeness
result akin to Theorem 4.

Theorem 5 (Logical completeness of (refine-int)). Consider the proof sys-
tem of Fig. 3 with the addition of rules (refine-int) and (limit). If Q ≤ JrKP and
JrKAα(P) = α(Q) then `A [P] r [Q].

Just like logical completeness for (refine-ext), this result implies the existence of a
refinement A′ in which it is possible to carry out the proof (possibly the concrete
domain C). The discussion about how to find one is sketched in Section 4.3.

The second derived rule we propose is simpler than (refine-ext), as it just
checks the abstractions A(P) and A′(P), with no reference to the regular com-
mand r nor to the postcondition Q. Since the premise is only on the precondition
P , we call this rule (refine-pre).

Proposition 2. The following rule (refine-pre) is extensionally sound:

`A′ [P] r [Q] A′ � A A′(P) = A(P)

`A [P] r [Q]
(refine-pre)

Rule (refine-pre) only requires a simple check at the application site instead of
an expensive analysis of the program r, so it can be preferred in practice.

We present an example to highlight the advantages of this rule (as well as
(refine-int)), which allows us to use different domains in the proof derivation of
different parts of the program.

Example 5 (The use of (refine-pre)). Consider the two program fragments

r1 , (y != 0)?; y := abs(y)

r2 , x := y; while (x > 1) { y := y - 1; x := x - 1 }
= x := y; ((x > 1)?; y := y - 1; x := x - 1)∗; (x <= 1)?

and the program r , r1; r2. Here abs is a function to compute the absolute
value, and we assume, for the sake of simplicity, that the analyser knows its best
abstraction. Consider the concrete domain P(Z2) where a pair (n,m) denote
a state x = n, y = m, and the initial state P = (y ∈ [−100; 100]), a logical
description of the concrete {(n,m) |m ∈ [−100; 100]} ∈ P(Z2). The bca JrKInt in
the abstract domain of intervals is locally complete on P (since P is expressible

in Int), but the compositional abstraction JrK]Int is not:

JrKIntα(P) = Int(Jr2KJr1K({(n,m) |m ∈ [−100; 100]}))
= Int(Jr2K({(n,m) |m ∈ [1; 100]}))
= Int({(1, 1)})
= ([1; 1]× [1; 1]),

Logics for Extensional, Locally Complete Analysis via Domain Refinements 15

CInt 6=0

P (Jy != 0?K)
`Int 6=0 [P] y != 0? [R1]

(transfer)

CInt 6=0

R1
(Jy := abs(y)K)

`Int 6=0 [R1] y := abs(y) [y ∈ [1; 100]]
(transfer)

`Int 6=0 [R1] y := abs(y) [R]
(relax)

`Int 6=0 [P] r1 [R]
(seq)

Fig. 5: Derivation of `Int 6=0
[P] r1 [R] for Example 5.

while

JrK]Intα(P) = Jr2K
]
IntJr1K

]
Int([−∞; +∞]× [−100; 100])

= Jr2K
]
IntJy := abs(y)KInt([−∞; +∞]× [−100; 100])

= Jr2K
]
Int([−∞; +∞]× [0; 100])

= ([1; 1]× [0; 100]) 6= ([1; 1]× [1; 1]).

The issues are twofold. First, the analysis of r1 in Int is incomplete, so we need
a more concrete domain. For instance Int 6=0, the Moore closure of Int with the
addition of the element Z 6=0 representing the property of being nonzero would
work. Intuitively, Int 6=0 contains all intervals, possibly having a “hole” in 0.
Formally

Int 6=0 = Int ∪ {I 6=0 | I ∈ Int}
with γ′(I 6=0) = γ(I) \ {0}. However, note that there is no need for a relational
domain to analyze r1 since variable x is never mentioned in it. On the contrary,
the analysis of r2 requires a relational domain to track the information that the
value of variable x is equal to the value of variable y. This suggests, for instance,
to use the octagons domain Oct [15] to analyze r2. It is worth noting that the
domain of octagons Oct would not be able to perform a locally complete analysis
of r1 for the same reasons that the domain Int could not.

However, rule (refine-pre) allows us to combine these different proof deriva-
tions. Since the program state between r1 and r2 can be precisely represented in
Int, we use this domain as a baseline and refine it in Int 6=0 and Oct for the two
parts respectively.

Let R = (y ∈ {1; 2; 100}) that is an under-approximation of the concrete
state in between r1 and r2 with the same abstraction in Int, so we can prove
the triple `Int [P] r1 [R]. Note that the concrete point 2 was added to R in
order to have local completeness for (x > 1)? in r2. However, this triple cannot
be proved in Int because Jr1K

]
Int is not locally complete on P , so we resort to

(refine-pre) to change the domain to Int 6=0. The full derivation in Int 6=0 is shown
in Fig. 5, where R1 = (y ∈ [−100; 100] ∧ y 6= 0) and we omitted for simplicity
the additional hypothesis of (relax).

Again Jr2K is locally complete on R in Int, but the compositional analysis

Jr2K
]
Int is not. Hence to perform the derivation we resort to (refine-pre) to intro-

duce relational information in the abstract domain, using Oct instead of Int. Let

16 F. Ascari et al.

Q = (x = 1∧ y = 1), that is the concrete output of the program, so that we can
prove `Int [R] r2 [Q]. The derivation of this triple is only in Appendix A, Fig. 6.
However, the proof is just a straightforward application of rules (seq), (iterate)
and (transfer).

With those two derivation, the proof of the triple `Int [P] r [Q] is straightfor-
ward using (refine-pre):

`Int 6=0
[P] r1 [R]

`Int [P] r1 [R]
(refine-pre)

`Oct [R] r2 [Q]

`Int [R] r2 [Q]
(refine-pre)

`Int [P] r [Q]
(seq)

For the derivation to fit the page, we write here the additional hypotheses of the
rules. For the first application, Int 6=0 � Int and Int 6=0(P) = P = Int(P). For the
second, Oct � Int and Int(R) = (y ∈ [1; 100]) = Oct(R).

It is worth noting that, in this example, all applications of (refine-pre) can be
replaced by (refine-int). This means that also the latter is able to exploit Int 6=0

and Oct to prove the triple in the very same way, but its application requires
more expensive abstract analyses than the simple checks of (refine-pre). ut

While (refine-pre) is simpler than (refine-ext) and (refine-int), it is also weaker
in both a theoretical and practical sense. On the one hand, LCLA extended with
this rule does not admit a logical completeness result; on the other hand, there
are situations in which, even though (refine-pre) allows a derivation, the other
rules are more effective. We show these two points by examples. For the first,
we propose a sound triple that LCLA extended with (refine-pre) cannot prove.
Since the example is quite technical, here we only sketch the idea, and leave the
details only in Appendix A, Example 8.

Example 6 (Logical incompleteness of (refine-pre)). Consider the concrete do-
main C = P(Z) of integers, the abstract domain Int of intervals, the concrete
point P = {−1, 1} and commands r1 , x != 0?, r2 , x >= 0? and r , r1; r2.
Then the triple `Int [P] r1; r2 [{1}] is sound but cannot be proved in LCLA

extended with (refine-pre).
The key observations for this example are two. First, all strict subset P ′ ⊂ P

are such that Int(P ′) ⊂ Int(P). Moreover, for all refinements A′ � Int such
that A′(P) = Int(P) we have the same condition, namely if P ′ ⊂ P then
A′(P ′) ⊂ A′(P). This is because for all P ′ ⊂ P we have A′(P ′) ⊆ Int(P ′) ⊂
Int(P) = A′(P). Second, Jr1KP = P . This means that all triples appearing in
the derivation tree of `Int [P] r1; r2 [{1}] have the same precondition P . Since
(refine-pre) requires A′(P) = Int(P), all possible applications of this rule change
the abstract domain to some A′ satisfying the condition above. Since LCLA com-
putes under-approximations with the same abstraction of the strongest postcon-
dition, these two observations make it impossible to under-approximate P fur-
ther, both with (relax) and (refine-pre). This in turn make the triple not provable
because Jr2K is not locally complete on P in Int or in any refinement satisfying

Logics for Extensional, Locally Complete Analysis via Domain Refinements 17

A′(P) = Int(P):

A′Jr2K(P) = A′({1}) ⊆ Int({1}) = {1}
A′Jr2KA′(P) ⊇ Jr2KA′(P) = Jr2K(Int(P)) = {0, 1}.

Example 8 in Appendix A exhibits the formal argument showing that this triple
cannot be proved. ut

As a corollary, this example (and more in general logical incompleteness) shows
that is not always possible to find a refinement A′ to carry out the proof using
(refine-pre). Another consequence of this incompleteness result is the fact that,
even when a command is locally complete in an abstract domain A, we may need
to reason about properties that are not expressible in A in order to prove it, as
(refine-pre) may not be sufficient.

Second, we present an example to illustrate that there are situations in which
(refine-int) is more practical than (refine-pre), even though they are both able to
prove the same triple.

Example 7. Consider the two program fragments

r1 , (y != 0)?; x := y; y := abs(y)

r2 , x := y; while (x > 1) { y := y - 1; x := x - 1 }

and the program r , r1; r2. Consider also the initial state P = y ∈ [−100; 100].
This example is a variation of Example 5: the difference is the introduction

of the relational dependency x := y in r1, that is partially stored in the post-
condition R of r1. Because of this, Oct(R) and Int(R) are different, so we cannot
apply (refine-pre) to prove [R] r2 [Q] for some Q.

Following Example 5, the domain Int 6=0 is able to infer on r1 a subset R
of the strongest postcondition y ∈ [1; 100] ∧ y = abs(x) with the same ab-
straction Int 6=0(R) = [−100; 100] 6=0 × [1; 100]. However, for any such R we can-
not use (refine-pre) to prove the triple `Int [R] r2 [x = 1 ∧ y = 1] via Oct
because Int(R) = x ∈ [−100; 100] ∧ y ∈ [1; 100] while Oct(R) = 1 ≤ y ≤
100 ∧ −y ≤ x ≤ y. More in general, any subset of the strongest postcondition
contains the relational information y = abs(x), so relational domains like oc-
tagons and polyhedra [9] do not have the same abstraction as the non-relational
Int, preventing the use of (refine-pre). However, we can apply (refine-int): con-
sidering R = (y ∈ {1; 2; 100} ∧ y = abs(x)), Q = (x = 1 ∧ y = 1) and
rw , while (x > 1) { y := y - 1; x := x - 1 }, we have

IntJr2K
]
OctInt(R) = IntJr2K

]
Oct(x ∈ [−100; 100] ∧ y ∈ [1; 100])

= IntJrwK]OctJx := yK]Oct(x ∈ [−100; 100] ∧ y ∈ [1; 100])

= IntJrwK]Oct(1 ≤ y ≤ 100, y = x)

= Int(x = 1 ∧ y = 1)

= Int(Q).

18 F. Ascari et al.

In this example, rule (refine-pre) can be applied to prove the triple, but it
requires to have relational information from the assignment x := y in r1, hence
forcing the use of a relational domain (eg. the reduced product [7] of Oct and
Int 6=0) for the whole r, making the analysis more expensive. ut

4.3 Choosing The Refinement

All three new rules allow to combine different domains in the same derivation,
but do not define an algorithm because of the choice of the right refinement to
use is nondeterministic. A crucial point to their applicability is a strategy to
select the refined abstract domain. While we have not addressed this problem
yet, we believe there are some interesting starting points in the literature.

As already anticipated in previous sections, we settled the question from
a theoretical point of view. Logical completeness results for (refine-ext) (Theo-
rem 4) and (refine-int) (Theorem 5) implies the existence of a domain in which it
is possible to complete the proof (if this were not the case, then the proof could
not be completed in any domain, against the logical completeness). However, the
proofs of those theorems exhibit the concrete domain C as an example, which is
unfeasible in general. Dually, as (refine-pre) is logically incomplete (Example 6),
there are triples that cannot be proved in any domain with it.

As more practical alternatives, we envisage some possibilities. First, we are
studying relationships with counterexample-guided abstraction refinement (CE-
GAR) [4], which is a technique that exploits refinement in the context of abstract
model checking. However, CEGAR and our approach seem complementary. On
the one hand, our refinement rules allow a dynamic change of domain, during
the analysis and only for a part of it, while CEGAR performs a static refinement
and then a new analysis of the whole transition system in the new, more precise
domain. On the other hand, our rules lack an instantiation technique, while for
CEGAR there are effective algorithms available to pick a suitable refinement.

Second, local completeness shell [3] were proposed as an analogous of com-
pleteness shell [11] for local completeness. In the article, the authors proposed to
use local completeness shells to perform abstract interpretation repair, a tech-
nique to refine the abstract domain depending on the program to analyse, just
like CEGAR does for abstract model checking. Abstract interpretation repair
works well with LCLA, and could be a way to decide the best refinement for
one of our rules in presence of a failed local completeness proof obligation. The
advantage of combining repair with our new rules is given by the possibility of
discarding the refined domain just after its use in a subderivation instead of using
it to carry out the whole derivation. Investigations in this direction is ongoing.

Another related approach, which shares some common ground with CEGAR,
is Lazy (Predicate) Abstraction [12,14]. Both ours and this approach exploits dif-
ferent abstract domains for different parts of the proof, refining it as needed. The
key difference is that Lazy Abstraction unwinds the control flow graph (CFG)
of the program (with techniques to handle loops) while we work inductively on
the syntax. This means that, when Lazy Abstraction refines a domain, it must
use it from that point onward (unless it finds a loop invariant). On the other

Logics for Extensional, Locally Complete Analysis via Domain Refinements 19

Proof system Extensional Logical completeness

Plain LCLA 7 7

LCLA + (refine-ext) X X

LCLA + (refine-int) X X

LCLA + (refine-pre) X 7

Table 1: Comparison of the proof systems

hand, our method can change abstract domain even for different parts of se-
quential code. However, the technique used in Lazy Abstraction (basically to
trace a counterexample back with a theorem prover until it is either found to
be spurious or proved to be true) could be applicable to LCLA: a failed local
completeness proof obligation in (transfer) can be traced back with a theorem
prover and the failed proof can be used to understand how to refine the abstract
domain.

5 Conclusions

In this paper, we have proposed a logical framework to prove both correctness
and incorrectness of a program exploiting locally complete abstractions. Indeed,
from any provable triple [P] r [Q] we can either prove that r meets an expressible
specification Spec or find a concrete counterexample in Q. Differently from the
original LCLA [2], that was proved to be intensionally sound, our framework
is extensionally sound, meaning that is able to prove more properties about
programs. To achieve this, our inference rules are based on the best correct
abstraction of a program behaviour instead of a generic abstract interpreter.
The key feature of our proof systems is the ability to exploit different abstract
domains to analyse different portions of the whole program. In particular, the
domains are selected among the refinements of a chosen abstract domain from
which the analysis begins. The main advantage of our extensional approach is
the possibility of proving many triples that could not be proved in LCLA because
of the way the program is written. More in details, we presented three new rules
to refine the abstract domain, each of which can be added independently to the
proof system with different complexity-precision trade-off.

Table 1 summarizes the properties LCLA enjoys when extended with differ-
ent rules, and Figure 1 from the Introduction graphically compare the logical
strength of these proof systems. (refine-ext) is the most general rule, from which
the other two (refine-int) and (refine-pre) are derived. The former turns out to be
as strong as (refine-ext), since they are both logically complete, while the latter
is simpler to use, although weaker.

20 F. Ascari et al.

Future work. In principle completeness could be achieved either refining or sim-
plifying the abstract domain [11]. In this article we have only focused on refine-
ment rules for local completeness, but we are investigating some simplification
rules as well as their relation to the ones presented in this paper. To date, domain
simplification seems theoretically weaker, but apparently it can accommodate for
techniques useful in practice that are beyond the reach of refinement rules.

While the new rules we introduced are relevant from both a theoretical and
practical point of view, they do not define an algorithm because of their nonde-
terminism: we need techniques to determine when a change of abstract domain
is needed and how to choose the most convenient new domain. We believe these
two issues are actually related. For instance, if the analysis is unable to satisfy
a local completeness proof obligation to apply (transfer), an heuristics may de-
termine both what additional information is needed to make it true (i.e., how to
refine the abstract domain) and where that additional information came from
(i.e., when to refine). We briefly discussed in Section 4.3 some possibilities to
perform this choice. Ideally, one would systematically select an off-the- shelf ab-
stract domain best suited to deal with each code fragment and the heuristic
would inspect the proof obligations, and exploit some sort of catalog that can
track suitable abstract domains that are locally complete for the code and in-
put at hand or derive on-the-fly some convenient domain refinement as done,
e.g., by partition refinement. To this aim, we intend to investigate a mutual ex-
change of ideas between CEGAR and our approach, and to integrate abstract
interpretation repair into our framework.

Acknowledgments. We thank the anonymous referees for their helpful comments
that helped us to improve the presentation and the discussion with related work.

Appendix A Proofs and Supplementary Material

A.1 Extensional Soundness (Theorem 2)

Proof (Proof of Theorem 2). First we remark that points (1) and (3) implies
point (2):

α(Q) ≤ α(JrKP) [(1) and monotonocity of α]

≤ JrKAα(P) [soundness of JrKA]
= α(Q) [(3)]

So all the lines are equal, in particular α(Q) = α(JrKP). The proof is then by
induction on the derivation tree of `A [P] r [Q], but we only have to prove (1)
and (3) because of the observation above. We only include one inductive case as
an example, others are standard.
(seq): (1) Q ≤ Jr2KR ≤ Jr2K(Jr1KP) = Jr1; r2KP , where the inequalities follow
from inductive hypotheses and monotonicity of Jr2K.

Logics for Extensional, Locally Complete Analysis via Domain Refinements 21

(3) We recall that Jr1; r2KA ≤ Jr2KAJr1KA.

α(Q) ≤ α(Jr1; r2KP) [(1) and monotonicity of α]

≤ Jr1; r2KAα(P) [soundness of JrKA]

≤ Jr2KAJr1KAα(P) [recalled above]

= Jr2KAα(R) [inductive hp]

= α(Q) [inductive hp]

So all the lines are equal, in particular Jr1; r2KAα(P) = α(Q).
ut

A.2 Soundness and Completeness of (refine-ext)

This technical lemma is used in the following proofs.

Lemma 1. If A′ � A then A = AA′ = A′A

Proof. Fix a concrete element c ∈ C. Since A′ � A we have c ≤ A′(c) ≤ A(c).
Applying A, by monotonicity we get A(c) ≤ AA′(c) ≤ AA(c) = A(c), where
the last equality is idempotency of A. This means A = AA′. Now consider
A′A(c). Since A is a closure operator A′A(c) ≤ A(A′A(c)). But we just showed
AA′(A(c)) = A(A(c)) = A(c). Lastly, since A′ is a closure operator too, A(c) ≤
A′A(c). Hence A(c) ≤ A′A(c) ≤ A(c), so A(c) = A′A(c).

We point out that, by injectivity of γ, this also means αγ′α′ = α.

Proof (Proof of Theorem 3). We recall that the intuitive premise AJrKA
′
A(P) =

A(Q) of the rule formally is αγ′JrKA
′
α′A(P) = α(Q). Since the proof of The-

orem 2 is by induction, we can extend it just proving the inductive case for
(refine-ext).
(1) It’s the same as point (1) of extensional soundness (Theorem 2) applied to
`A′ [P] r [Q], since this conclusion does not depend on the abstract domain.
(2-3)

α(Q) ≤ α(JrKP) [(1) and monotonicity of α]

≤ JrKAα(P) [soundness of JrKA]
= αJrKγα(P) [definition]

= αγ′α′JrKγ′α′γα(P) [Lemma 1]

= αγ′JrKA
′
α′A(P) [definition]

= α(Q) [hypothesis of the rule]

Hence all the lines are equal; in particular α(JrKP) = α(Q) and JrKAα(P) =
α(Q). ut

22 F. Ascari et al.

Proof (Proof of Theorem 4). First, the hypotheses of the theorem implies
CA

P (JrK):

JrKAα(P) = α(Q) [hp of the theorem]

≤ α(JrKP) [monotonicity of α and hp of the theorem Q ≤ JrKP]

≤ JrKAα(P) [soundness of JrKA]

Hence α(JrKP) = JrKAα(P) = αJrKγα(P), that is local completeness. Moreover
α(Q) = α(JrKP).

Now consider a triple P, r, Q satisfying the hypotheses. If Q < JrKP , using
(relax) we get

P ≤ P ≤ A(P) `A [P] r [JrKP] Q ≤ JrKP ≤ A(Q)

`A [P] r [Q]
(relax)

But the first condition is trivial, and the third one is made of Q ≤ JrKP (the
hypothesis) and JrKP ≤ A(Q), that follows because α(JrKP) = α(Q) (shown
above) and in a GC this implies JrKP ≤ γα(Q) = A(Q). Hence without loss of
generality we can assume Q = JrKP .

Now we want to apply (refine-ext) to move to the concrete domain C. Clearly
C � A. The last hypothesis of the rule can be readily verified recalling that
JrKC = JrK and α′ = γ′ = idC :

αJrKCA(P) = αJrKA(P)

= JrKAα(P)

= α(JrKP)

so if we can show `C [P] r [JrKP] we can apply (refine-ext) to prove the triple
`A [P] r [JrKP]:

`C [P] r [JrKP] C � A AJrKCA(P) = A(JrKP)

`A [P] r [JrKP]
(refine-ext)

Lastly, we resort to logical completeness of LCLA (cf. [2], Th 5.11) to say that
the triple `C [P] r [JrKP] is provable. The hypothesis of that theorem are satisfied:
all expressions are globally complete in the concrete domain C, JrKP ≤ JrKP and

JrK]C idC(P) = JrKP = idC(JrKP), where we used α′ = idC and JrK]C = JrK. ut

A.3 Derived Refinement Rules

Proof (Proof of Proposition 1). We show that the hypotheses of (refine-int)
implies those of (refine-ext). This means than whenever we can apply the former
we could also apply the latter, that in turn means Theorem 3 ensures extensional
soundness.

Logics for Extensional, Locally Complete Analysis via Domain Refinements 23

The first two hypotheses `A′ [P] r [Q] and A′ � A are shared among the
two rules, so we only have to show αγ′JrKA

′
α′A(P) = α(Q). We recall that

`A′ [P] r [Q] implies Q ≤ JrKP by extensional soundness.

α(Q) ≤ α(JrKP) [Q ≤ JrKP and monotonicity of α]

≤ JrKAα(P) [soundness of JrKA]
= αJrKA(P) [definition]

= αγ′α′JrKA′A(P) [Lemma 1]

= αγ′JrKA
′
α′A(P) [definition]

≤ αγ′JrK]A′α
′A(P) [JrKA

′
≤ JrK]A′]

= α(Q) [Last hypothesis of the rule]

Hence all the lines are equal, and in particular αγ′JrKA
′
α′A(P) = α(Q). ut

Proof (Proof of Theorem 5). The proof is the same as that of Theorem 4, the

only difference being that to apply (refine-int) we need to show AJrK]CA(P) =
A(JrKP) instead of AJrKCA(P) = A(JrKP). However, since in the concrete domain

JrK]C = JrKC = JrK the proof still holds. ut

Proof (Proof of Proposition 2). As in the proof or Proposition 1 above, we show
that the hypotheses of (refine-pre) implies those of (refine-ext).

The first two hypotheses `A′ [P] r [Q] and A′ � A are shared among the
two rules, so we only have to show αγ′JrKA

′
α′A(P) = α(Q). We recall that

`A′ [P] r [Q] implies by extensional soundness (1) Q ≤ JrKP and (3) JrKA
′
α′(P) =

α′(Q).

α(Q) ≤ α(JrKP) [Q ≤ JrKP and monotonicity of α]

≤ JrKAα(P) [soundness of JrKA]
= αJrKA(P) [definition]

= αJrKA′(P) [hp of the rule]

= αγ′α′JrKA′(P) [Lemma 1]

= αγ′JrKA
′
α′(P) [definition]

= αγ′α′(Q) [extensional soundness (3)]

= α(Q) [Lemma 1]

Hence all the lines are equal, and in particular αγ′JrKA
′
α′A(P) = α(Q). ut

Details about Example 5. The full derivation of the triple `Oct [R] r2 [Q] for
Example 5 is shown in Fig. 6, rotated and split to fit the page. The command
ri = (x > 1)?; y := y - 1; x := x - 1 is iterated with the Kleene star and
we let R2 = (y ∈ {1; 2; 100} ∧ x = y). We also used the logical implication
R2 =⇒ (y ∈ {1; 99} ∧ x = y), both explicitly and implicitly in the equivalence
R2 ∨ (y ∈ {1; 99} ∧ x = y) = R2.

24 F. Ascari et al.

C
O
ct

y
∈
{
2
;1

0
0
}
∧
x
=
y
(J
y

:
=

y
-

1
K)

`
O
ct

[y
∈
{2

;
1
0
0
}
∧
x
=

y
]
y

:
=

y
-

1
[y
∈
{1

;
9
9
}
∧
x
−

1
=

y
]

(t
ra
n
sf
er
)

C
O
ct

y
∈
{
1
;9

9
}
∧
x
−

1
=
y
(J
x

:
=

x
-

1
K)

`
O
ct

[y
∈
{1

;
9
9
}
∧
x
−

1
=

y
]
x

:
=

x
-

1
[y
∈
{1

;
9
9
}
∧
x
=

y
]

(t
ra
n
sf
er
)

(*
*
)

(s
eq

)

C
O
ct

R
2
(J
(
x
>
1
)
?
K)

` O
ct
[R

2
]
(
x
>
1
)
?
[y

∈
{2

;1
0
0
}
∧
x
=

y
]
(t

ra
n

sf
er
)

(*
*
)

` O
ct
[y

∈
{2

;1
0
0
}
∧
x
=

y
]
y
:
=
y
-
1
;
x
:
=
x
-
1
[y

∈
{1

;9
9
}
∧
x
=

y
]
(s

eq
)

` O
ct
[R

2
]

r i
[y

∈
{1

;9
9
}
∧
x
=

y
]

(y
∈
{1

;9
9
}
∧
x
=

y
)
≤
A
(R

2
)

(s
eq
)

(*
)

(i
te

ra
te
)

C
O
ct

R
(J
x
:
=
y
K)

` O
ct
[R

]
x
:
=
y
[R

2
]
(t

ra
n

sf
er
)

(*
)

` O
ct
[R

2
]

r∗ i
[R

2
∨
(y

∈
{1

;9
9
}
∧
x
=

y
)]

(i
te

ra
te
)

C
O
ct

R
2
(J
(
x
<
=
1
)
?
K)

` O
ct
[R

2
]
(
x
<
=
1
)
?
[Q

]
(t

ra
n

sf
er
)

` O
ct
[R

2
]

r∗ i
;
(
x
<
=
1
)
?
[Q

]
(s

eq
)

` O
ct
[R

]
r 2

[Q
]

(s
eq
)

F
ig
.6
:
D
er
iv
a
ti
on

o
f
` O

ct
[R

]
r 2

[Q
]
fo
r
E
x
a
m
p
le

5
.

Logics for Extensional, Locally Complete Analysis via Domain Refinements 25

CIntP
P (Jx != 0?K)

`IntP [P] x != 0? [P]
(transfer)

CIntP
P (Jx >= 0?K)

`IntP [P] x >= 0? [Q]
(transfer)

`IntP [P] r1; r2 [Q] IntP � Int Int(JrK]IntP (Int(P))) = Int(Q)
(seq)

`Int [P] r1; r2 [Q]
(refine-int)

Fig. 7: Derivation of `Int [P] r [Q] for Example 8.

Example 8 (Supplement to Example 6). Consider the concrete domain C = P(Z)
of integers, the abstract domain Int of intervals, the concrete points P = {−1, 1}
and Q = {1}, commands r1 , x != 0?, r2 , x >= 0? and r , r1; r2. Let f1 =
Jr1K, f2 = Jr2K and f = JrK = f2 ◦ f1. Observe that in the concrete semantics
f1(P) = P and f(P) = f2(P) = {1}. Consider LCLA extended with (refine-pre),
and let us show that we cannot prove `Int [P] r [Q]. Inspecting the logic, we
can only apply three rules to prove this triple: (relax), (refine-pre) or (seq). To
apply rule (relax) we would need either an under-approximation P ′ of P with the
same abstraction, that does not exist, or an over-approximation of Q, that would
be unsound since Q = f(P). Hence we cannot apply (relax). Suppose to apply
(refine-pre): any A′ used in the rule should satisfy A′ � Int and A′(P) = Int(P);
as we remarked in Example 6 this means that P ′ ⊂ P implies A′(P ′) ⊂ A′(P).
Again this means we cannot apply (relax) even after the domain refinement. The
only rule that can be applied is then (seq): to do that, we must prove two triples
`A′ [P] r1 [R] and `A′ [R] r2 [Q]. Irrespective of how we prove the first triple,
by soundness (Theorem 2) we have R ⊆ f1(P) = P and A′(R) = A′(f1(P)) =
A′(P), so again R = P . Now we should prove a triple `A′ [P] r2 [Q], but this is
impossible since by soundness this would imply local completeness of Jr2K = f2
on P in A′, that does not hold:

A′f2(P) = A′({1}) ⊆ Int({1}) = {1}
A′f2A

′(P) ⊇ f2A
′(P) = f2(Int(P)) = {0, 1}

Observe that, if we add (refine-int) to the proof system, we can use it to
change the domain to one where we can express P (for instance, the concrete
domain P(Z) or the refinement Int∪{P}) to prove the triple applying (seq) and
then (transfer) on both subtrees, as shown in Fig. 7. ut

References

1. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract ex-
tensionality: On the properties of incomplete abstract interpretations. Proc. ACM
Program. Lang. 4(POPL) (dec 2019). https://doi.org/10.1145/3371096

2. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally com-
plete abstract interpretations. In: Proc. of LICS’21. pp. 1–13. IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470608

https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608

26 F. Ascari et al.

3. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: Abstract interpretation re-
pair. In: Jhala, R., Dillig, I. (eds.) Proc. of PLDI’22. pp. 426–441. ACM (2022).
https://doi.org/10.1145/3519939.3523453

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Proc. of CAV’00. pp.
154–169. Springer (2000). https://doi.org/10.1007/10722167 15

5. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL’77. p. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

7. Cousot, P., Cousot, R.: Systematic design of program analy-
sis frameworks. In: Proc. of POPL’79. p. 269–282. ACM (1979).
https://doi.org/10.1145/567752.567778

8. Cousot, P., Cousot, R.: Abstract interpretation: Past, present and future. In: Proc.
of CSL-LICS’14. ACM (2014). https://doi.org/10.1145/2603088.2603165

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among
variables of a program. In: Proc. of POPL’78. p. 84–96. ACM (1978).
https://doi.org/10.1145/512760.512770

10. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Ra-
jamani, S.K., Walker, D. (eds.) Proc. of POPL’15. pp. 261–273. ACM (2015).
https://doi.org/10.1145/2676726.2676987

11. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (mar 2000). https://doi.org/10.1145/333979.333989

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
Launchbury, J., Mitchell, J.C. (eds.) Proc. of POPL’02. pp. 58–70. ACM (2002).
https://doi.org/10.1145/503272.503279

13. Laviron, V., Logozzo, F.: Refining abstract interpretation-based static analyses
with hints. In: Hu, Z. (ed.) Proc. of APLAS’09. LNCS, vol. 5904, pp. 343–358.
Springer (2009). https://doi.org/10.1007/978-3-642-10672-9 24

14. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B.
(eds.) Proc. of CAV’06. LNCS, vol. 4144, pp. 123–136. Springer (2006).
https://doi.org/10.1007/11817963 14

15. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

16. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (dec
2019). https://doi.org/10.1145/3371078

17. Raad, A., Berdine, J., Dang, H., Dreyer, D., O’Hearn, P.W., Villard, J.: Local
reasoning about the presence of bugs: Incorrectness separation logic. In: Lahiri,
S.K., Wang, C. (eds.) Proc. of CAV’20, Part II. LNCS, vol. 12225, pp. 225–252.
Springer (2020). https://doi.org/10.1007/978-3-030-53291-8 14

18. Winskel, G.: The Formal Semantics of Programming Languages: an Introduction.
MIT press (1993)

https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/2603088.2603165
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-642-10672-9_24
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14

Logics for Extensional, Locally Complete Analysis via Domain Refinements 27

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Clustered Relational Thread-Modular
Abstract Interpretation with Local Traces

Michael Schwarz1(�), Simmo Saan2, Helmut Seidl1,
Julian Erhard1, and Vesal Vojdani2

1 Technische Universität München, Garching, Germany
{m.schwarz, helmut.seidl, julian.erhard}@tum.de

2 University of Tartu, Tartu, Estonia
{simmo.saan, vesal.vojdani}@ut.ee

Abstract. We construct novel thread-modular analyses that track rela-
tional information for potentially overlapping clusters of global variables
– given that they are protected by common mutexes. We provide a frame-
work to systematically increase the precision of clustered relational anal-
yses by splitting control locations based on abstractions of local traces. As
one instance, we obtain an analysis of dynamic thread creation and join-
ing. Interestingly, tracking less relational information for globals may re-
sult in higher precision. We consider the class of 2-decomposable domains
that encompasses many weakly relational domains (e.g., Octagons). For
these domains, we prove that maximal precision is attained already for
clusters of globals of sizes at most 2.

Keywords: thread-modular relational abstract interpretation, collect-
ing local trace semantics, clusters, dynamic thread creation, concurrency

1 Introduction

Tracking relationships between program variables is indispensable for proving
properties of programs or verifying the absence of certain programming errors
[14, 16, 33]. Inferring relational properties is particularly challenging for multi-
threaded programs as all interferences by other threads that may happen in
parallel, must be taken into account. In such an environment, only relational
properties between globals protected by common mutexes are likely to per-
sist throughout program execution. Generally, relations on clusters consisting
of fewer variables are less brittle than those on larger clusters. Moreover, mono-
lithic relational analyses employing, e.g., the polyhedral abstract domain are
known to be notoriously expensive [36, 54]. Tracking smaller clusters may even
be more precise than tracking larger clusters [19].

Example 1. Consider the following program. All accesses to globals g, h, and i
are protected by the mutex a.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 28–58, 2023.
https://doi.org/10.1007/978-3-031-30044-8_2

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30044-8_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_2&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

main :
x = create(t1); y = create(t2);
lock(a);
g = ?; h = ?; i = ?;
unlock(a); r = join(y); lock(a);
z = ?; g = z; h = z; i = z;
unlock(a); lock(a);
// ASSERT(h==i); (1) ASSERT(g==h); (2)
unlock(a);

t1 :
lock(a);
x = h;
i = x;
unlock(a);
return 1;

t2 :
lock(a);
g = ?; h = ?;
unlock(a);
return 0;

In this program, the main thread creates two new threads, starting at t1 and t2,
respectively. Then it locks the mutex a to set all globals non-deterministically
to some value and unlocks a again. After having joined the thread t2, it locks
a again and sets all globals to the same unknown value and unlocks a again.
Thread t1 sets i to the value of h. Thread t2 sets g and h to (potentially different)
unknown values. Assume we are interested in equalities between globals. In order
to succeed in showing assertion (1), it is necessary to detect that the main thread
is unique and thus cannot read its past writes since these have been overwritten.
Additionally, the analysis needs to certify that thread t2 also is unique, has been
joined before the assertion, and that its writes must also have been overwritten.

For an analysis to prove assertion (2), propagating a joint abstraction of the
values of all globals protected by a does not suffice: At the unlock of a in t1,
g=h need not hold. If this monolithic relation is propagated to the last lock of
a in main, (2) cannot be shown — despite t1 modifying neither g nor h. ⊓⊔

Here we show, that the loss of precision indicated in the example can be
remedied by replacing the monolithic abstraction of all globals protected by a
mutex with suitably chosen subclusters. In the example, we propose to instead
consider the subclusters {g, h} and {h, i} separately. As t1 does not write any
values to the cluster {g, h}, the imprecise relation ⊤ is not propagated to the
main thread and assertion (2) can be shown.

To fine-tune the analysis, we rely on weakly relational domains. A variety
of weakly relational domains have been proposed in the literature such as Two
Variables Per Inequality [53], Octagons [36, 37], or simplifications thereof [33, 35].
The technical property of interest which all these domains have in common is that
each abstract relation can be reconstructed from its projections onto subclusters
of variables of size at most 2. We call such domains 2-decomposable. Beyond the
numerical 2-decomposable domains, also non-numerical 2-decomposable domains
can be constructed such as a domain relating string names and function pointers.

Based on 2-decomposable domains, we design thread-modular relational anal-
yses of globals which may attain additional precision by taking local knowledge
of threads into account. Therefore, we do not rely on a global trace semantics,
but on a local trace semantics which formalizes for each thread that part of the
computational past it can observe [48]. Abstract values for program points de-
scribe the set of all reaching local traces. Likewise, values recorded for observable
actions are abstractions of all local traces ending in the corresponding action.
Such observable actions are, e.g., unlock operations for mutexes. The abstract

Clustered Relational Thread-Modular Abstract Interpretation 29

values are then refined by taking finite abstractions of local traces into account.
To this end, we propose a generic framework that re-uses the components of any
base analysis as black boxes. Our contributions can be summarized as follows:

– We provide new relational analyses of globals as abstractions of the local
trace semantics based on overlapping variable clusters (Sections 3, 4, and 8).

– Our analysis deals with dynamically created and joined threads, whose thread
ids may, e.g., be communicated to other threads via variables and which may
synchronize via mutexes (Section 3).

– We provide a generic scheme to incorporate history-based arguments into the
analysis by taking finite abstractions of local traces into account (Section 5).

– We give an analysis of dynamically created thread ids as an instance of
our generic scheme. We apply this to exclude self-influences or reads from
threads that cannot possibly run in parallel (Sections 6 and 7).

– We prove that some loss of precision of relational analyses can be avoided
by tracking all subclusters of variables. For the class of 2-decomposable
relational domains, we prove that tracking variable clusters of size greater
than 2 can be abandoned without precision loss (Section 8).

The analyses in this paper have all been implemented, a report of a practical
evaluation is included in Section 9, whereas Section 10 details related work.

2 Relational Domains

First, we define the notion of relational domain employed in the description of
our analysis. Let Vars be a set of variables, potentially of different types. We
assume all configurations and assignments to be well-typed, i.e., the type of the
(abstract) value matches the one specified for a variable. For each type τ of
values, we assume a complete lattice V♯

τ of abstract values abstracting the re-
spective concrete values from Vτ . Let V♯ denote the collection of these lattices,
and Vars →⊥ V♯ denote the set of all type-consistent assignments σ from vari-
ables to non-⊥ abstract values, extended with a dedicated least element (also
denoted by ⊥), and equipped with the induced ordering. A relational domain R
then is a complete lattice which provides the following operations

Jx← eK♯R : R → R (assignment for expression e)
r|Y : R → R (restriction to Y ⊆ Vars)

J?eK♯R : R → R (guard for condition e)

lift : (Vars →⊥ V♯)→ R
unlift : R → (Vars →⊥ V♯)

The operations to the left provide the abstract state transformers for the basic
operation of programs (with non-deterministic assignments expressed as restric-
tions), while lift and unlift allow casting from abstract variable assignments to
the relational domain as well as extracting single-variable information. We as-
sume that lift⊥ = ⊥ and unlift⊥ = ⊥, and require that unlift ◦ lift ⊒ id where ⊒
refers to the ordering of (Vars →⊥ V♯). Moreover, we require that the meet op-
erations ⊓ of V♯ and R safely approximate the intersection of the concretizations
of the respective arguments. Restricting a relation r to a subset Y of variables

M. Schwarz et al.30

amounts to forgetting all information about variables not in Y . Thus, we demand
r|Vars = r, r|∅ = ⊤, r|Y1

⊒ r|Y2
when Y1 ⊆ Y2, (r|Y1

)
∣∣
Y2

= r|Y1∩Y2
, and

unlift (r|Y)x = ⊤ (x ̸∈ Y) unlift (r|Y)x = (unlift r)x (x ∈ Y) (1)

Restriction thus is idempotent. For convenience, we also define a shorthand for as-
signment of abstract values3: Jx←♯ vK♯R r =

(
r|Vars\{x}

)
⊓ (lift (⊤⊕ {x 7→ v})).

In order to construct an abstract interpretation, we further require monotonic
concretization functions γV♯ : V♯ → 2V and γR : R → 2Vars→V satisfying the
requirements presented in Fig. 1.

Example 2. As a value domain V♯
τ , consider the flat lattice over the sets of values

of appropriate type τ . A relational domainR1 is obtained by collecting satisfiable
conjunctions of equalities between variables or variables and constants where the
ordering is logical implication, extended with False as least element. The greatest
element in this complete lattice is given by True. The operations lift and unlift
for non-⊥ arguments then can be defined as

liftσ =
∧
{x = σ x | x ∈ Vars , σ x ̸= ⊤} unlift r x =

{
c if r =⇒ (x = c)

⊤ otherwise

The restriction of r to a subset Y of variables is given by the conjunction of all
equalities implied by r which only contain variables from Y or constants. ⊓⊔

In line of Example 2, also non-numerical relational domains may be constructed.
A variable clustering S ⊆ 2Vars is a set of subsets (clusters) of variables. For

any cluster Y ⊆ Vars , let RY = {r | r ∈ R, r|Y = r}; this set collects all abstract
values from R containing information on variables in Y only. Given an arbitrary
clustering S ⊆ 2Vars , any relation r ∈ R can be approximated by a meet of
relations from RY (Y ∈ S) since for every r ∈ R, r ⊑

d
{r|Y | Y ∈ S} holds.

Some relational domains, however, can be fully recovered from their restric-
tions to specific subsets of clusters. We consider for k ≥ 1, the set Sk of all
non-empty subsets Y ⊆ Vars of cardinality at most k. We call a relational do-
main R k-decomposable if each abstract value from R can be precisely expressed

3 We use σ ⊕ {xi 7→ vi | i = 1, . . . ,m} to denote the variable assignment obtained
from σ by replacing the values for xi with vi (i = 1, . . . ,m).

∀a, b : a ⊑ b =⇒ γV♯ a ⊆ γV♯ b γR⊥ = ∅ ∀r, s : r ⊑ s =⇒ γR r ⊆ γR s

γR (Jx← eK♯R r) ⊇ {σ ⊕ {x 7→ JeKσ} | σ ∈ γRr}
γR(r|Y) ⊇ {σ ⊕ {x1 7→ v1, . . . , xm 7→ vm} | vi ∈ V, xi ∈ Vars \ Y, σ ∈ γRr}
γR (liftσ♯) ⊇ {σ | ∀x : σ x ∈ γV♯ (σ♯ x)} γV♯ (unlift r)x ⊇ {σ x | σ ∈ γR r}

Fig. 1: Required properties for γV♯ : V♯ → 2V and γR : R → 2Vars→V .

Clustered Relational Thread-Modular Abstract Interpretation 31

as the meet of its restrictions to clusters of Sk and when all least upper bounds
can be recovered by computing with clusters of Sk only; that is,

r =
d{

r|Q | Q ∈ Sk
}

(
⊔
R) |Q =

⊔{
r|Q | r ∈ R

}
(Q ∈ Sk) (2)

holds for each abstract relation r ∈ R and each set of abstract relations R ⊆ R.

Example 3. The domain R1 from the previous example is 2-decomposable. This
also holds for the octagon domain [36] and many other weakly relational numeric
domains (pentagons [33], weighted hexagons [21], logahedra [28], TVPI [53],
dDBM [46], and AVO [11]). The affine equalities or affine inequalities domains
[16, 30], however, are not. The relational string domains proposed by Arceri et al.
[6, Sec. 5.1 - 5.3], are examples of non-numeric 2-decomposable domains.

3 A Local Trace Semantics

We build upon the semantic framework for local traces, introduced by Schwarz
et al. [48]. A local trace records all past events that have affected the present
configuration of a specific thread, referred to as the ego thread. In [48], the local
trace semantics is proven equivalent to the global trace semantics which itself is
equivalent to a global interleaving semantics. In particular, any analysis that is
sound w.r.t. the local trace semantics also is w.r.t. the interleaving semantics.

While the framework of Schwarz et al. [48] allows for different formalizations
of traces, thread synchronization happens only via locking/unlocking and thread
creation. Generalizing their semantics, we identify certain actions as observable
by other threads when executing corresponding observing actions (see Table 1).
When the ego thread executes an observing action, a local trace ending in the
corresponding observable action is incorporated. Here, we consider as observ-
able/observing actions locking/unlocking mutexes and creating/joining threads.

Consider, e.g., the program in Fig. 2a and a corresponding local trace (Fig. 2b).
This trace consists of one swim lane for each thread representing the sequence
of steps it executed where each node in the graph represents a configuration at-
tained by it. Additionally, the trace records the create and join orders as well as
for each mutex a, the locking order for a (→c,→j , and →a, respectively). These

Table 1: Observable and observing actions and which concurrency primitive they
relate to. The primitives targeted by this paper are in bold font.

Observable Action Observing Action Programming Concept

unlock(a) lock(a) Mutex, Monitor, ...
returnx x′=join(x′′) Thread Returning / Joining
g = x x = g Writing/Reading a global variable

signal(c) wait(c) Condition Variables
send(chan,v) x = receive(chan) Channel-Based Concurrency, Sockets, ...
set_value get Futures / Promises

M. Schwarz et al.32

main :
x = create(t2);
y = create(t1);
lock(m g);
g = 1;
unlock(m g);
z = 28;

t2 :
z = 12;
return z;

t1 :
z = 1;
z = join(x);
lock(m g);
g = 2;
unlock(m g);
x = create(t2);

(a) Source code

y=create(t1)x=create(t2) lock(mg) g = 1 unlock(mg)

z = 12 return z

→c

→c

→j

z = 1 z = join(x) lock(mg) g = 2
→mg

→mg

(b) Local Trace; For this program, execution begins
at program point main, and x, y, z are local vari-
ables, whereas g is a global variable. To ensure atom-
icity, every access to the global g is protected by the
mutex mg, which we omit in the further examples.

Fig. 2: An example program and a corresponding local trace.

orders introduce extra relationships between thread configurations. The unique
start node of each local trace is an initial configuration of the main thread.

We distinguish between the sets X and G of local and global variables. We
assume that X contains a special variable self within which the thread id of
the current thread, drawn from the set I, is maintained. A (local) thread con-
figuration is a pair (u, σ) where u is a program point and the type-consistent
map σ : X → V provides values for the local variables. The values of globals
are not explicitly represented in a thread configuration, but can be recovered
by consulting the (unique) last write to this global within the local trace. To
model weak memory effects, weaker notions of last writes are conceivable. As in
[48], we consider a set of actions Act that consists of locking and unlocking a
(non-reentrant) mutex from a set M, copying values of globals into locals and
vice-versa, creating a new thread, as well as assignments with and branching on
local variables. We extend Act with actions for returning from and joining with
threads. We assume that writes to and reads from globals are atomic (or more
precisely, we assume copying values of integral type to be atomic). This is en-
forced for each global g by a dedicated mutex mg acquired just before accessing g
and released immediately after. For simplicity, we associate traces corresponding
to a write of g to this dedicated mutex mg, and thus do not need to consider
writing and reading of globals as observable/observing actions. In examples, we
omit explicitly locking and unlocking these mutexes. By convention, at program
start all globals have value 0, while local variables may initially have any value.

Each thread is represented by a control-flow graph with edges e ∈ E of the
form e = (u, act, u′) for some action act ∈ Act and program points u and u′

where the start point of the main thread is u0. Let T denote the set of all
local traces of a given program. A formalism for local traces must, for each
edge e of the control-flow graph, provide a transformation JeK : T k → 2T so
that JeK(t0, . . . , tk−1) extends the local trace t0, possibly incorporating other
local traces. For the operations lock(a), a ∈ M, or x=join(x′), x, x′ ∈ X , the

Clustered Relational Thread-Modular Abstract Interpretation 33

arity of JeK is two, another local trace, namely, with last operation unlock(a)
or returnx′′, respectively, is incorporated. The remaining edge transformations
have arity one. In all cases, the set of resulting local traces may be empty when
the operation is not applicable to its argument(s). We write JeK(T0, . . . , Tk−1)
for the set

⋃
t0∈T0,...,tk−1∈Tk−1

JeK(t0, . . . , tk−1).
Given definitions of JeK, the set T can be inductively defined starting from

a set init of initial local traces consisting of initial configurations of the main
thread. To develop efficient thread-modular abstractions, we are interested in
subsets T [u], T [a], T [i] of local traces ending at some program point u, ending
with an unlock operation for mutexes a (or from init), or ending with a return
statement of thread i, respectively. Schwarz et al. [48] showed that such subsets
can be described as the least solution of a side-effecting constraint system [5].
There, each right-hand side may, besides its contribution to the unknown on the
left, also provide contributions to other unknowns (the side-effects). This allows
expressing analyses that accumulate flow-insensitive information about globals
during a flow-sensitive analysis of local states with dynamic control flow [51].
Here, in the presence of dynamic thread creation, we use side-effects to express
that an observable action, unlock or return, should also contribute to the sets
T [a] or T [i], such that they can be incorporated at the corresponding observing
action. The side-effecting formulation of our concrete semantics takes the form:

(η, η [u0]) ⊒ ({[a] 7→ init | a∈M}, init) (η, η [u′]) ⊒ Ju, actKη (u, act, u′)∈E (3)

where the ordering ⊒ is induced by the superset ordering and right-hand sides
are defined in Fig. 3. A right-hand side takes an assignment η of the unknowns
of the system and returns a pair (η′, T) where T is the contribution to the
unknown occurring on the left (as in ordinary constraint systems). The first
component collects the side-effects as the assignment η′. If the right-hand sides
are monotonic, Eq. (3) has a unique least solution.

We only detail the right-hand sides for the creation of threads as well as the
new actions join and return; the rest remain the same as defined by Schwarz
et al. [48]. For thread creation, they provide the action x=create(u1). Here,
u1 is the program point at which the created thread should start. We assume
that all locals from the creator are passed to the created thread, except for the

Ju, lock(a)K η = (∅, JeK(η [u], η [a]))
Ju, unlock(a)K η =
let T = JeK(η [u]) in
({[a] 7→ T}, T)

Ju, x = gK η = (∅, JeK(η [u]))
Ju, g = xK η = (∅, JeK(η [u]))

Ju, x=create(u1)K η = let T = JeK(η [u]) in
({[u1] 7→ newuu1 (η [u])}, T)

Ju, x=join(x′)K η = let T = η [u] in
(∅, JeK(η [u],

⋃
{η [t (x′)] | t ∈ η [u]}))

Ju, returnxK η = let T = η [u] in
({[i] 7→ JeK({t ∈ T | t(self) = i}) | i ∈ I}, JeKT)

Fig. 3: Right-hand sides for side-effecting formulation of concrete semantics; t(y)
extracts the value of local variable y from the terminal configuration of trace t.

M. Schwarz et al.34

variable self. The variables self in the created thread and x in the creating thread
receive a fresh thread id. Here, newuu1 t computes the local trace at the start
point u1 from the local trace t of the creating thread. To handle returning and
joining of threads we introduce the following two actions:

– return x; – terminating a thread and returning the value of the local variable
x to a thread waiting for the given thread to terminate.

– x=join(x′); where x′ is a local variable holding a thread id – blocks the
ego thread, until the thread with the given thread id has terminated. As in
pthreads, at most one thread may call join for a given thread id. The value
provided to return by the joined thread is assigned to the local variable x.

For returning results and realization of join, we employ the unknown [i] for the
thread id i of the returning thread, as shown in Fig. 3.

4 Relational Analyses as Abstractions of Local Traces

Subsequently, we give relational analyses of the values of globals which we base
on the local trace semantics. They are generic in the relational domain R, with
2-decomposable domains being particularly well-suited, as the concept of clusters
is central to the analyses. We focus on relations between globals that are jointly
write-protected by some mutex. We assume we are given for each global g, a set
M[g] of (write) protecting mutexes, i.e., mutexes that are always held when g
is written. Let G[a] = {g ∈ G | a ∈M[g]} denote the set of globals protected by
a mutex a. Let ∅ ≠ Qa ⊆ 2G[a] the set of clusters of these globals we associate
with a. For technical reasons, we require at least one cluster per mutex a, which
may be the empty cluster ∅, thus not associating any information with a.

Our basic idea is to store at the unknown [a,Q] (for each mutex a and cluster
Q ∈ Qa) an abstraction of the relations only between globals in Q. By construc-
tion, all globals in Q are protected by a. Whenever it is locked, the relational
information stored at all [a,Q] is incorporated into the local state by the lattice
operation meet, i.e., the local state now maintains relations between locals as
well as globals which no other thread can access at this program point. When-
ever a is unlocked, the new relation between globals in all corresponding clusters
Q ∈ Qa is side-effected to the respective unknowns [a,Q]. Simultaneously, all
information on globals no longer protected, is forgotten to obtain the new local
state. In this way, the analysis is fully relational in the local state, while only
keeping relations within clusters of globals jointly protected by some mutex.

For clarity of presentation, we perform control-point splitting on the set of
held mutexes when reaching program points. Apart from this, the constraint
system and right-hand sides for the analysis closely follow those of the concrete
semantics (Section 3) — with the exception that unknowns now take values from
R and that unknowns [a] are replaced with unknowns [a,Q] for Q ∈ Qa.

All right-hand sides are given in detail in Fig. 4. For the start point of the
program and the empty lockset, the right-hand side init♯ returns the ⊤ relation
updated such that the variable self holds the abstract thread id i0 of the main

Clustered Relational Thread-Modular Abstract Interpretation 35

init♯ η =

let r(Q) = J{g ← 0 | g ∈ Q}K♯R⊤ in
let ρ = {[a,Q] 7→ r(Q) | a ∈ M, Q ∈ Qa}
in (ρ, Jself←♯ i0K♯R⊤)

J[u, S], x=create(u1)K♯η =
let r = η [u, S] in
let i = ν♯ uu1 r in
let r′ =

{
Jself←♯ iK♯R r

} ∣∣∣
X

in
let ρ = {[u1, ∅] 7→ r′} in
(ρ, Jx←♯ iK♯Rr)

J[u, S], g = xK♯η =

(∅, Jg ← xK♯R (η [u, S]))

J[u, S], x = gK♯η =

(∅, Jx← gK♯R (η [u, S]))

J[u, S], lock(a)K♯η =(
∅, η [u, S] ⊓

(d
Q∈Qa

η [a,Q]
))

J[u, S], unlock(a)K♯η =
let r = η [u, S] in
let ρ = {[a,Q] 7→ r|Q | Q ∈ Qa} in(
ρ, r|X∪

⋃
{G[a′]|a′∈(S\a)}

)
J[u, S], returnxK♯η =
let r = η [u, S] in
let i♯ = unlift r self in({

[i♯] 7→
(
Jret← xK♯R r

) ∣∣∣
{ret}

}
, r

)
J[u, S], x′=join(x)K♯η =
let v =

⊔
unlift r x′⊓i′ ̸=⊥ unlift (η[i′]) ret in(

∅, Jx′ ←♯ vK♯R(η [u, S])
)

Fig. 4: Right-hand sides for the basic analysis. All functions are strict in ⊥ (de-
scribing the empty set of local traces), we only display definitions for non-⊥
abstract values here. J{g ← 0 | g ∈ Q}K♯R is shorthand for the abstract trans-
former corresponding to the assignment of 0 to all variables in Q one-by-one.

thread. Additionally, init♯ produces a side-effect for each mutex a and cluster Q
that initializes all globals from the cluster with the value 0.

For a thread creating edge starting in program point u with lockset S, the
right-hand side J[u, S], x=create(u1)K♯ first generates a new abstract thread id,
which we assume can be computed using function ν♯. The new id is assigned to
the variable x in the local state of the current thread. Additionally, the start state
r′ for the newly created thread is constructed and side-effected to the thread’s
start point with empty lockset [u1, ∅]. Since threads start with empty lockset,
the state r′ is obtained by removing all information about globals from the local
state of the creator and assigning the new abstract thread id to the variable self.

When locking a mutex a, the states stored at unknowns [a,Q] with Q ∈ Qa

are combined with the local state by meet. This is sound because the value stored
at any [a,Q] only maintains relationships between variables write-protected by
a, and these values soundly account for the program state at every unlock(a)
and at program start. When unlocking a, on the other hand, the local state
restricted to the appropriate clusters Q ∈ Qa is side-effected to the respective
unknowns [a,Q], so that the changes made to variables in the cluster become
visible to other threads. Also, the local state is restricted to the local variables
and only those globals for which at least one protecting mutex is still held.

As special mutexes mg immediately surrounding accesses to g are used to
ensure atomicity, and information about g is associated with them, all reads and
writes refer to the local copy of g. Guards and assignments (which may only
involve local variables) are defined analogously. For a return edge, the abstract

M. Schwarz et al.36

value to be returned is looked up in the local state and then side-effected to the
abstract thread id of the current thread (as the value of the dedicated variable
ret). For join, the least upper bound of all return values of all possibly joined
threads is assigned to the left-hand side of the join statement in the local state.

Example 4. Consider the program4 whereM[g] = {a, b,mg},M[h] = {a, b,mh},
Qa = {{g, h}}, Qb = {{g, h}}.

main :
x = create(t1); y = ?;
lock(a); lock(b);
g = y; h = y+9;
unlock(b); lock(b);
h = y;
// ASSERT(g==y); (1)
// ASSERT(h==y); (2)
unlock(b); unlock(a);
x = create(t2);

t1 :
lock(b);
unlock(b);
lock(a);
lock(b);
// ASSERT(g==h); (3)
y = ?; g = y; h = y;
unlock(b);
unlock(a);

t2 :
lock(b);
lock(a);
// ASSERT(g==h); (4)
unlock(a);
unlock(b);

Our analysis succeeds in proving all assertions here. Thread t2 is of particular
interest: When locking b only g ≤ h is known to hold, and locking the additional
mutex a means that the better information g = h becomes available. The analysis
by Mukherjee et al. [42] on the other hand only succeeds in proving assertion
(2) — even when all globals are put in the same region. It cannot establish
(1) because all correlations between locals and globals are forgotten when the
mix operation is applied at the second lock(b) in the main thread. (3) cannot
be established because, at lock(b) in t1, the mix operation also incorporates the
state after the first unlock(b) in the main thread, where g = h does not hold.
Similarly, for (4). The same applies for assertion (3) and the analysis using lock
invariants proposed by Miné [39]. This analysis also falls short of showing (1), as
at the lock(b) in the main thread, the lock invariant associated with b is joined
into the local state. (4) is similarly out of reach. The same reasoning also applies
to [39, 42, 48] after equipping the analyses with thread ids. ⊓⊔

Theorem 1. Any solution of the constraint system is sound w.r.t. the local trace
semantics.

Proof. The proof is by fixpoint induction, the details are given in Appendix B
of the extended version [49] of this paper.

We remark that, instead of relying onM[g] being pre-computed, an analysis can
also infer this information on the fly [58].

The analysis however still has some deficiencies. All writes to a global are
accumulated regardless of the writing thread. As a consequence, a thread does,
e.g., not only read its latest local writes but also all earlier local writes, even if
4 In all examples, g, h, and i are globals, whereas x, y, and z are locals, and the

clusters at special mutexes mg contain only g: Qmg = {{g}}. Unless explicitly stated
otherwise, domain R1 from Example 2, enhanced with variable inequalities is used.

Clustered Relational Thread-Modular Abstract Interpretation 37

those are definitely overwritten. Excluding some threads’ writes is an instance
of the more general idea of excluding writes that cannot be last writes. Instead
of giving ad hoc remedies for this specific shortcoming, we propose a general
mechanism to improve the precision of any thread-modular analysis in the next
section, and later instantiate it to the issue highlighted here.

5 Refinement via Finite Abstractions of Local Traces

To improve precision of thread-modular analyses we take additional abstractions
of local traces into account. Our approach is generic, building on the right-hand
sides of a base analysis and using them as black boxes. We will instantiate this
framework to exclude writes based on thread ids from the analysis in Section 4.
Other instantiations are conceivable as well. To make it widely applicable, the
framework allows base analyses that already perform some splitting of unknowns
at program points (e.g., locksets in Section 4). We denote by [û] such (possibly)
extended unknowns for a program point u. A (base) analysis is defined by its
right-hand sides, and a collection of domains: (1) DS for abstract values stored
at unknowns for program points; (2) Dact for abstract values stored at observable
actions act (e.g., in Section 4, DM for unlocks and DT for thread returns).

Let A be a set of finite information that can be extracted from a local trace
by a function αA:T →A. We call αA t∈A the digest of some local trace t. Let
Ju, actK♯A:Ak→2A be the effect on the digest when performing a k-ary action
act ∈ Act for a control flow edge originating at u. We require for e=(u, act, v)∈E ,

∀A0, . . . , Ak−1 ∈ A : |Ju, actK♯A(A0, . . . , Ak−1)| ≤ 1

∀t0, . . . , tk−1 ∈ T : αA(JeK(t0, . . . , tk−1)) ⊆ Ju, actK♯A(αA t0, . . . , αA tk−1)
(4)

where αA is lifted element-wise to sets. While the first restriction ensures deter-
minism, the second intuitively ensures that Ju, actK♯A soundly abstracts JeK.

For thread creation, we additionally require a helper function new♯
A : N →

N → A→ A that returns for a thread created at an edge originating from u and
starting execution at program point u1 the new digest. The same requirements
are imposed for edges (u, x=create(u1), v) ∈ E ,

∀A0∈A : |new♯
A uu1 A0| ≤ 1 ∀t0∈T : αA(newuu1 t) ⊆ new♯

A uu1 (αA t0) (5)

Also, we define for the initial digest at the start of the program

init♯A = {αA t | t ∈ init} (6)

Under these assumptions, we can perform control-point splitting according to
A. This means that unknowns [û] for program points u are replaced with new
unknowns [û, A], A ∈ A. Analogously, unknowns for observable actions [act] are
replaced with unknowns [act, A] for A ∈ A. Consider a single constraint from
an abstract constraint system of the last section, which soundly abstracts the
collecting local trace semantics of a program.

(η, η [v̂]) ⊒ J[û], actK♯ η

M. Schwarz et al.38

J[û, A0], act, A1K♯ η =
let η′ [x] = if [x] = [û] then

η [û, A0]
else η [x,A1]

in
J[û], actK♯ η′

J[û, A0], act′′K♯ η =
let η′ [x] = η [x,A0] in
J[û], act′′K♯ η′

J[û, A0], act′, A′K♯ η =
let η′ [x] = η [x,A0] in
let (ρ, v) = J[û], act′K♯ η′ in
let ρ′ = {[x,A′] 7→ v′ | ([x] 7→ v′) ∈ ρ} in
(ρ′, v)

J[û, A0], x=create(u1)K♯ η =
let η′ [x] = η [x,A0] in
let ({[û1] 7→ v′}, v) = J[û], x=create(u1)K♯ η′ in
({[û1, A

′] 7→ v′ | A′ ∈ new♯
A uu1 A0}, v)

Fig. 5: Right-hand sides for an observing action act, an observable action act′, a
create action, and an action act′′ that is neither for the refined analyses, defined
as wrappers around the right-hand sides of a base analysis.

The corresponding constraints of the refined system with control-point splitting
differ based on whether the action act is observing, observable, or neither.

– When act is observing, the new right-hand side additionally gets the digest
A1 associated with the local traces that are to be incorporated:

(η, η [v̂, A′]) ⊒ J[û, A0], act, A1K♯ η for A0, A1 ∈ A, A′ ∈ Ju, actK♯A (A0, A1)

– When act is observable, the digest A′ of the resulting local trace is passed,
so the side-effect can be redirected to the appropriate unknown:

(η, η [v̂, A′]) ⊒ J[û, A0], act, A′K♯ η for A0 ∈ A, A′ ∈ Ju, actK♯A (A0)

– When act is neither, no additional digest is passed:

(η, η [v̂, A′]) ⊒ J[û, A0], actK♯ η for A0 ∈ A, A′ ∈ Ju, actK♯A (A0)

The new right-hand sides are defined in terms of the right-hand side of the base
analysis which are used as black boxes (Fig. 5). They act as wrappers, mapping
any unknown consulted or side-effected to by the original analysis to the appro-
priate unknown of the refined system. Thus, the refined analysis automatically
benefits from the extra information the digests provide. It may, e.g., exploit that
Ju, actK♯A(A0, A1) = ∅ meaning that, no local traces with digests A0, A1 can be
combined into a valid local trace ending with action act. The complete definition
of the refined constraint system instantiated to the actions considered here and
unknowns for program points enriched with locksets is given in [49, Fig. 14].

Enriching program points with locksets can in fact be seen as a first applica-
tion of this framework. The right-hand sides are given in Fig. 6.

Example 5. As a further instance, consider tracking which mutexes have been
locked at least once in the local trace. At lock(a) traces in which a thread has
performed a lock(a) can not be combined with traces that contain no lock(a). The

Clustered Relational Thread-Modular Abstract Interpretation 39

corresponding right-hand sides are given in Fig. 7. When refining the analysis
from Section 4 accordingly (assuming a protects g and h), it succeeds in proving
the assert in this program as the initial values of 0 for g and h can be excluded.

main :
lock(a);
h = 9; g = 10;
unlock(a);
x = create(t1);

t1 :
x = create(t2);
lock(a);
h = 11; g = 12;
unlock(a);

t2 :
lock(a);
// ASSERT(h<=g);
unlock(a);

This naturally generalizes to counting how often some action (e.g., a write to a
global g) occurred, stopping exact bookkeeping at a constant (1 in this case). ⊓⊔

To prove soundness of local-trace-based refinement of our analysis from Sec-
tion 4, we first construct a corresponding refined collecting local trace semantics.
Then we verify that the refined analysis is sound w.r.t. this refined semantics –
which, in turn, is proven sound w.r.t. the original collecting local trace semantics.

Theorem 2. Assume that αA, new♯
A, and Ju, actK♯A fulfill requirements (4), (5),

and (6). Then any solution of the refined constraint system is sound relative to
the collecting local trace semantics.

Proof. A proof sketch instantiated with the actions considered here and un-
knowns enriched with locksets is provided in [49, Appendix D].

6 Analysis of Thread Ids and Uniqueness

We instantiate the scheme from the previous section to compute abstract thread
ids and their uniqueness. That refinement of the base analysis enhances precision
of the analysis by excluding reads, e.g., from threads that have not yet been
started. For that, we identify threads by their thread creation history, i.e., by
sequences of create edges. As these sequences may grow arbitrarily, we collect all
creates occurring after the first repetition into a set to obtain finite abstractions.

Example 6. In the program from Fig. 8, the first thread created by main receives
the abstract thread id (main · ⟨u1, t1⟩, ∅). It creates a thread with abstract thread
id (main · ⟨u1, t1⟩ · ⟨u3, t1⟩, ∅). At program point u3, the latter creates a thread
starting at t1 and receiving the abstract thread id (main · ⟨u1, t1⟩, {⟨u3, t1⟩}) –
as do all threads subsequently created at this edge. ⊓⊔

init♯A = {∅}
new♯

A uu1 S = {∅}
Ju, aK♯A S = {S} (other non-observing)

Ju, lock(a)K♯A (S, S′) = {S ∪ {a}}
Ju, unlock(a)K♯A S = {S \ {a}}
Ju, aK♯A (S, S′) = {S} (other observing)

Fig. 6: Right-hand sides for expressing locksets as a refinement.

M. Schwarz et al.40

Create edges, however, may also be repeatedly encountered within the creating
thread, in a loop. To deal with this, we track for each thread, the set C of possibly
already encountered create edges. As soon as a create edge is encountered again,
the created thread receives a non-unique thread id.

Example 7. The first time the main thread reaches program point u2 in the
program from Fig. 8, the created thread is assigned the unique abstract thread
id (main · ⟨u2, t1⟩, ∅). In subsequent loop iterations, the created threads are no
longer kept separate, and thus receive the non-unique id (main, {⟨u2, t1⟩}). ⊓⊔

Formally, let NC ,NS denote the subsets of program points with outgoing edge
labeled x=create(...), and of starting points of threads, respectively. Let P ⊆
NC × NS denote sets of pairs relating thread creation nodes with the starting
points of the created threads. The set I♯ of abstract thread ids then consists of all
pairs (i, s) ∈ (main·P∗)×2P in which each pair ⟨u, f⟩ occurs at most once. Given
the set I♯, we require that there is a concretization γ : I♯ → 2I and a function
single : I♯ → V♯

I with γ i♯ ⊆ γV♯ (single i♯). The abstract thread id of the main
thread is given by (main, ∅). Therein, the elements in (main · P∗)×{∅} represent
the unique thread ids representing at most one concrete thread id, while the
elements (i, s), s ̸= ∅, are ambiguous, i.e., may represent multiple concrete thread
ids. Moreover, we maintain the understanding that the concretizations of distinct
abstract thread ids from I♯ all are disjoint.

As refining information A we consider not only abstract thread ids – but
additionally track sets of executed thread creations within the current thread.
Accordingly, we set A = I♯×2P and define the right-hand sides as seen in Fig. 9,
where ī denotes the set of pairs occurring in the sequence i.

Example 8. Consider again the program from Fig. 8 with right-hand sides from
Fig. 9, and assume that the missing right-hand for join returns its first argument.
The initial thread has the abstract thread id i0 = (main, ∅). At its start point,
the digest thus is (i0, ∅). At the create edge originating at u1, a new thread
with id (main · ⟨u1, t1⟩, ∅) is created. The digest for this thread then is ((main ·
⟨u1, t1⟩, ∅), ∅). For the main thread, the encountered create edge ⟨u1, t1⟩ is added
to the second component of the digest, making it (i0, {⟨u1, t1⟩}).

When u2 is reached with (i0, {⟨u1, t1⟩}), a unique thread with id (main ·
⟨u2, t1⟩, ∅) is created. The new digest of the creating thread then is (i0, {⟨u1, t1⟩,
⟨u2, t1⟩}). In subsequent iterations of the loop, for which u2 is reached with
(i0, {⟨u1, t1⟩, ⟨u2, t1⟩}), a non-unique thread with id (main, {⟨u2, t1⟩}) is created.

init♯A = {∅}
new♯

A uu1 L = {L}
Ju, aK♯A S = {L} (other non-observing)

Ju, lock(a)K♯A (L,L′) =

{
∅ if a∈L ∧ a ̸∈L′

{L∪L′∪{a}} otherwise
Ju, aK♯A (L,L′) = {L∪L′} (other observing)

Fig. 7: Right-hand sides for refining according to encountered lock operations.

Clustered Relational Thread-Modular Abstract Interpretation 41

When reaching u3 with id (main, {⟨u2, t1⟩}), a thread with id (main, {⟨u2, t1⟩,
⟨u3, t1⟩}) is created as the id of the creating thread was already not unique. When
reaching it with the id (main · ⟨u1, t1⟩, ∅), a new thread with id (main · ⟨u1, t1⟩ ·
⟨u3, t1⟩, ∅) is created. When the newly created thread reaches this program point,
the threads created there have the non-unique id (main · ⟨u1, t1⟩, {⟨u3, t1⟩}), as
⟨u3, t1⟩ already appears in the id of the creating thread. ⊓⊔

Abstract thread ids should provide us with functions

– unique : I♯→bool tells whether a thread id is unique.
– lcu_anc : I♯→I♯→I♯ returns the last common unique ancestor of two threads.
– may_create : I♯→I♯→bool checks whether a thread may (transitively) cre-

ate another.

For our domain I♯, these can be defined as unique (i, s) = (s = ∅) and

lcu_anc (i, s) (i′, s′) = (longest common prefix i i′, ∅)
may_create (i, s) (i′, s′) = (̄i ∪ s) ⊆ (ī′ ∪ s′)

We use this extra information to enhance the definitions of Ju, lock(a)K♯A and
Ju, x′=join(x)K♯A to take into account that the ego thread cannot acquire a mutex
from another thread or join a thread that has definitely not yet been created.
This is the case for a thread t′

(1) that is directly created by the unique ego thread, but the ego thread has not
yet reached the program point where t′ is created;

(2) whose thread id indicates that a thread that has not yet been created ac-
cording to (1), is part of the creation history of t′.

Accordingly, we introduce the predicate may_run (i, C) (i′, C ′) defined as

(lcu_anc i i′ = i) =⇒ ∃⟨u, u′⟩ ∈ C : (i◦⟨u, u′⟩ = i′ ∨may_create (i◦⟨u, u′⟩) i′)

which is false whenever thread i′ is definitely not yet started. We then set

Ju, lock(a)K♯A (i, C) (i′, C ′) = Ju, x′=join(x)K♯A (i, C) (i′, C ′)

=

{
{(i, C)} if may_run (i, C) (i′, C ′)

∅ otherwise

This analysis of thread ids and uniqueness can be considered as a May-Happen-
In-Parallel (or, more precisely, Must-Not-Happen-In-Parallel) analysis. MHP

main :
x = g; // PP u1
y = create(t1);
for(i = 0; i < 5; i++) { // PP u2

z = create(t1); }

t1 :
g = 42; // PP u3
y = create(t1);

Fig. 8: Program with multiple thread creations.

M. Schwarz et al.42

information is useful in a variety of scenarios: a thread-modular analysis of data
races or deadlocks, e.g., that does not consider thread ids and joining, can be
refined with this analysis to exclude more data races or deadlocks. Subsequently,
we outline how the analysis from Section 4 may benefit from MHP information.

7 Exploiting Thread IDs to Improve Relational Analyses

We subsequently exploit abstract thread ids and their uniqueness to limit the
amount of reading performed by the analysis from Section 4.

I1 from other threads that have not yet been created.
I2 the ego thread’s past writes, if its thread id is unique.
I3 past writes from threads that have already been joined.

Improvements I1 and I3 have, e.g., been realized in a setting where thread ids
and which thread is joined where can be read off from control-flow graphs [31].
Here, however, this information is computed during analysis. In our framework,
I1 is already achieved by refining the base analysis according to Section 6.

Example 9. Consider the program below where M[g] = {a, b,mg}, M[h] =
{a, b,mh}, M[i] = {mi} and assume Qa = {{g, h}}.

main :
x = create(t1); lock(a);
// ASSERT(g==h); (1)
unlock(a);
y = create(t2); lock(a);
// ASSERT(g==h); (2)
g = 42; h = 42;
unlock(a); z = create(t3);
i = 3; i = 2; // ASSERT(i==2); (3)
i = 8;

t1 :
lock(a);
r = ?; g = r; h = r;
unlock(a);

t2 :
lock(a); v = g; unlock(a);

t3 :
lock(a); g = 19; unlock(a);

The analysis succeeds in proving (1), as the thread (starting at) t3 that breaks the
invariant g=h has definitely not been started yet at this program point. Without
refinement, the analysis from Section 4 could not prove (1). However, this does

init♯A = {((main, ∅), ∅)}
Ju, x=create(u1)K♯A (i, C) = {(i, C ∪ {⟨u, u1⟩})}
Ju, aK♯A (i, C) = {(i, C)} (for other actions a)
new♯

A uu1 ((d, s), C) =
let (d′, s′) = (d, s) ◦ ⟨u, u1⟩ in
if s′ = ∅ ∧ ⟨u, u1⟩ ∈ C then ((d, {⟨u, u1⟩}), ∅)
else ((d′, s′), ∅)

(d, s) ◦ ⟨u, u1⟩ =
if d = (d0 · ⟨u, u1⟩) · d1 then

(d0, s ∪ d̄1 ∪ {⟨u, u1⟩})
else if s = ∅ then (d · ⟨u, u1⟩, ∅)
else (d, s ∪ {⟨u, u1⟩})

Fig. 9: Right-hand sides for thread ids.

Clustered Relational Thread-Modular Abstract Interpretation 43

not suffice to prove (2). At this program point, t2 may already be started. At
the lock(a) in t2, t3 may also be started; thus, the violation of the invariant g=h
by t3 is incorporated into the local state of t2 at lock. At unlock(a), despite t2
only reading g, the imprecise abstract relation violating g=h, is side-effected to
[a, {g, h}, t2] and is incorporated at the second lock(a) of the main thread. The
final shortcoming is that each thread reads all its own past (and future!) writes
– even when it is known to be unique. This means that (3) cannot be proven. ⊓⊔

To achieve I2, some effort is required as our analysis forgets values of globals
when they become unprotected. This is in contrast, e.g., to [39, 42]. We thus
restrict side-effecting to mutexes to cases where the ego thread has possibly
written a protected global since acquiring it. This is in contrast to Section 4,
where a side-effect is performed at every unlock, i.e., everything a thread reads
is treated as if it was written by that thread.

Technically, we locally track a map L : (M×Q)→ R, where L (a,Q) main-
tains for a mutex a, an abstract relation between the globals in cluster Q ∈ Qa.
More specifically, the abstract relation on the globals from Q recorded in L (a,Q)
is the one that held when a was unlocked join-locally for the first time after the
last join-local write to a global in G [a]. If there is no such unlock(a), the relation
at program start is recorded. We call an operation in a local trace join-local to
the ego thread, if it is (a) thread-local, i.e., performed by the ego thread, or (b)
is executed by a thread that is (transitively) joined into the ego thread, or (c) is
join-local to the parent thread at the node at which the ego thread is created.
This notion will also be crucial for realizing I3. Join-locality is illustrated in
Fig. 10, where the join-local part of a local trace is highlighted.

For join-local contributions, it suffices to consult La instead of unknowns
[a,Q, i]. Such contributions are accounted for. To check whether a contribu-
tion from some thread id is accounted for, we introduce a function acc : (A ×
DS)→A→bool (see definition (7) below). Besides an abstract value from R, the
local state DS now contains two additional components:

– The map L : (M×Q)→ R for which the join is given component-wise;
– The set W : 2G (ordered by ⊆) of globals that may have been written since

one of its protecting mutexes has been locked, and not all protecting mutexes
have been unlocked since.

Just like r, L and W are abstractions of the reaching local traces. DT is also
enhanced with an L component, while DM remains unmodified. We sketch the
right-hand sides here, definitions are given in Fig. 11. For program start init♯,
in contrast to the analysis from Section 4, there is no initial side-effect to the
unknowns for mutexes. The initial values of globals are join-local, and thus ac-
counted for in the L component also passed to any subsequently created thread.

The right-hand sides for thread creation and return differ from the anal-
ysis from Section 4 enhanced with thread ids only in the handling of additional
data structures L and W . As the thread ids are tracked precisely in the A com-
ponent, this information is directly used when determining which unknown to
side-effect to and unknowns [(i, C)] replace unknowns [i′, (i, C)].

M. Schwarz et al.44

For join, if the return value of the thread is not accounted for, it is assigned
to the variable on the left-hand side and the L information from the ego thread
and the joined thread is joined. If, on the other hand, it is accounted for, the
thread has already been joined and cannot be joined again. There is a separate
constraint for each (i′, C ′), so that all threads that could be joined are considered.

For locking of mutexes, upon lock, if (i′, C ′) is not accounted for, its infor-
mation on the globals protected by a is joined with the join-local information
for a maintained in L (a,Q), Q ∈ Qa. This information about the globals pro-
tected by a is then incorporated into the local state by ⊓. For unlocking of
mutexes, if there may have been a write to a protected global since the mutex
was locked (according to W), the join-local information is updated and the local
state restricted to Q is side-effected to the appropriate unknown [a,Q, (i, C)] for
Q ∈ Qa. Just like in Section 4, r is then restricted to only maintain relation-
ships between locals and those globals for which at least one protecting mutex
is still held. Reading from and writing to globals once more are purely local
operations. To exclude self writes, we set

acc ((i, C),_) (i′, C ′) = unique i ∧ i = i′ (7)

The resulting analysis thus takes I1 (via J...K♯A defined in Section 6), as well as
I2 (via acc) into account. In Example 9, it is now able to show all assertions.

Theorem 3. This analysis is sound w.r.t. to the local trace semantics.

Proof. The proof relies on the following observations:

– When G[a] ∩W = ∅, no side-effect is required.
– Exclusions based on acc are sound, i.e., it only excludes join-local writes.

The detailed proof is a simplification of a proof for an enhanced analysis from the
extended version [49, Appendix F], which we outline in Appendix G there. ⊓⊔

The analysis does not make use of components C at unknowns [a,Q, (i, C)] and
[i, C]. In [49, Appendix E], we detail how this information can be exploited
to exclude a further class of writes – namely, those that are performed by an
ancestor of the ego thread before the ego thread was created. Alternatively, an
implementation may abandon control-point splitting according to C at mutexes
and thread ids, replacing [a,Q, (i, C)], [i, C] with [a,Q, i] and [i], respectively.

y=create(t1)x=create(t2) lock(mg) g = 1 unlock(mg)

z = 12 return z

→c

→c

→j

z = 1 z=join(x) lock(mg) g = 2→mg

→mg

Fig. 10: Illustration highlighting the join-local part of a local trace of the program
from Fig. 2a, and which writes are thus accounted for by L.

Clustered Relational Thread-Modular Abstract Interpretation 45

init♯(i,C) =

let L (a,Q) = J{g ← 0 | g ∈ Q}K♯R⊤ in
let r = Jself←♯ iK♯R⊤ in
(∅, ({(a,Q) 7→ L (a,Q) | a∈M, Q∈Qa} , ∅, r))

J[u, S, (i, C)], x′ = join(x), (i′, C′)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
if (single i′ ⊓ ((unlift r)x)=⊥) then
⊥ elseif acc ((i, C), (L,W, r)) (i′, C′)
then ⊥ else
let (L′, v) = η[(i′, C′)] in
let r′ = Jx′ ←♯ (unlift v) retK♯Rr in
(∅, (L ⊔ L′,W, r′))

J[u, S, (i, C)], lock(a), (i′, C′)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
let r′ = if acc ((i, C), (L,W, r)) (i′, C′)
then ⊥ else

d
Q∈Qa

η [a,Q, (i′, C′)] in(
∅,
(
L,W, r ⊓

((d
Q∈Qa

L (a,Q)
)
⊔ r′

)))
J[u, S, (i, C)], g = xK♯η =
let (L,W, r) = η [u, S,A] in
(∅, (L,W ∪ {g}, Jg ← xK♯R r))

J[u, S, (i, C)], x = gK♯η =
let (L,W, r) = η [u, S,A] in
(∅, (L,W, Jx← gK♯R r))

J[u, S, (i, C)], x=create(u1)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
let (i′, C′) = new♯

A uu1 (i, C) in
let r′ = (Jself←♯ (single i′)K♯Rr)

∣∣∣
X

in
let ρ={[u1, (∅, (i′, C′))] 7→(L, ∅, r′)} in
(ρ, (L,W, Jx←♯ single i′K♯Rr))

J[u, S, (i, C)], returnx, (i, C)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
let v =

(
Jret← xK♯R r

) ∣∣∣
{ret}

in

let ρ = {[(i, C)] 7→ (L, v)} in
(ρ, (L,W, r))

J[u, S, (i, C)], unlock(a), (i, C)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
let (L′, ρ) = if G[a]∩W=∅ then (L, ∅)

else (L⊕ {(a,Q) 7→ r|Q | Q ∈ Qa},
{[a,Q, (i, C))] 7→ r|Q | Q ∈ Qa})

in
let r′ = r|X∪

⋃
{G[a′]|a′∈(S\a)} in

let W ′={W | g∈W,M[g] ∩ S\{a}̸=∅}
in (ρ, (L′,W ′, r′))

Fig. 11: Right-hand sides for the improved (I1, I2) analysis using thread ids.

When turning to improvement I3, we observe that after joining a thread t
with a unique thread id, t cannot perform further writes. As all writes of joined
threads are join-local to the ego thread, it is not necessary to read from the
corresponding global unknowns. We therefore enhance the analysis to also track
in the local state, the set J of thread ids for which join has definitely been called
in the join-local part of the local trace and refine acc to take J into account:

acc ((i, C), (J, L,W, r)) (i′, C ′) = unique i′ ∧ (i = i′ ∨ i′ ∈ J)

The extended version [49, Appendix F] gives details on this enhancement.

8 Exploiting Clustered Relational Domains

Naïvely, one might assume that tracking relations among a larger set of globals
is necessarily more precise than between smaller sets. Interestingly, this is no
longer true for our analyses, e.g., in presence of thread ids. A similar effect
where relating more globals can deteriorate precision has also been observed in
the context of an analysis using a data-flow graph to model interferences [19].

M. Schwarz et al.46

Example 10. Consider again Example 1 in the introduction with Qa = {{g, h, i}}.
For this program, the constraint system of the analysis has a unique least solu-
tion. It verifies that assertion (1) holds. It assures for [a, {g, h, i}, t1] that h=i
holds, while for the main thread and the program point before each assertion,
L (a, {g, h, i}) = {g=h, h=i} holds, while for [a, {g, h, i},main] and [a, {g, h, i}, t2]
only ⊤ is recorded, as is for any relation associated with mg, mh, or mi. Asser-
tion (2), however, will not succeed, as the side-effect from t1 causes the older
values from the first write in the main thread to be propagated to the assertions
as well, implying that while h=i is proven, g=h is not. ⊓⊔

Intuitively, the analysis loses precision because, at an unlock of mutex a, the
current relationships between all clusters protected by a are side-effected. As
soon as one global is written to, the analysis behaves as if all protected globals
had been written. By limiting publishing to those clusters for which at least one
global has been written, more precise information may remain at others.

In the improved analysis, when unlocking a mutex a, side-effects are only
produced to clusters Q ∈ Qa containing at least one global that was written to
since the last lock(a). Definitions for locking and unlocking are given in Fig. 12.

For locking the mutex a, the abstract value to be incorporated into the local
state is assembled from the contributions of different threads to the clusters.
For that, the separate constraints for each admitted digest from Section 5 are
combined into one for the set I = {(i′, C ′) | (i, C) ∈ Jlock(a)K♯A((i, C), (i′, C ′))}
of all admitted digests. This is necessary as side-effects to unaffected clusters at
unlock(a) have been abandoned and thus the meet with the values for clusters of
one thread at a time is unsound. For each Q, the join-local information L (a,Q)
is joined with all contributions to Q by threads that are not yet accounted for,
but admitted for Q by the digests. Here, the contributions of threads that do not
write Q is ⊥, and thus do not affect the value for Q. Finally, the resulting value
is used to improve the local state by meet. The right-hand side for lock(a) thus
exploits the fine-grained, per-cluster MHP information provided by the digests
and the predicate acc. We obtain:

Theorem 4. Given domains R and V♯ fulfilling the requirements from Fig. 1,
any solution of the constraint system is sound w.r.t. the local trace semantics.
Maximum precision is obtained with Qa = 2G[a]. ⊓⊔

For Example 1, with Qa = 2G[a], both assertions are verified. Performing the
analysis with all subclusters simultaneously can be expensive when sets G[a] are
large. The choice of subclustering thus generally involves a trade-off between
precision and runtime. This is different for k-decomposable relational domains:

Theorem 5. Provided the relational domain is k-decomposable (Equation (2)),
the clustered analysis using all subclusters of sizes at most k only, is equally
precise as the clustered analysis using all subclusters Qa = 2G[a] at mutexes a.

Proof. Consider a solution η of the constraint system with Qa = 2G[a]. Then for
unknowns [a,Q, (i, C)] and [a,Q′, (i, C)] with Q ⊆ Q′ and |Q| ≤ k, and values
r=η [a,Q, (i, C)], r′=η [a,Q′, (i, C)], we have that r ⊑ r′|Q (whenever the smaller

Clustered Relational Thread-Modular Abstract Interpretation 47

J[u, S, (i, C)], unlock(a), (i, C)K♯η =
let (L,W, r) = η [u, S, (i, C)] in
let Q′ = {Q | Q ∈ Qa, Q ∩W ̸= ∅} in
let L′ = L⊕ {(a,Q) 7→ r|Q | Q ∈ Q

′} in
let ρ = {[a,Q, (i, C)] 7→ r|Q | Q ∈ Q

′} in
let r′ = r|X∪

⋃
{G[a′]|a′∈(S\a)} in

let W ′ = {W | g ∈W,M[g] ∩ S \ {a} ̸= ∅} in
(ρ, (L′,W ′, r′′))

J[u, S, (i, C)], lock(a), IK♯η =
let (L,W, r) = η [u, S, (i, C)] in
let l = ((i, C), (L,W, r)) in
let J(Q) =

⊔
{η [a,Q, (i′, C′)] |

(i′, C′) ∈ I,¬acc l (i′, C′)} in
let r′ =

d
Q∈Qa

(J(Q) ⊔ L (a,Q))

in
(∅, (L,W, r ⊓ r′))

Fig. 12: Right-hand sides for unlocking and locking when limiting side-effecting
to potentially written clusters.

cluster receives a side-effect, so does the larger one). Thus, by k-decomposability,
the additional larger clusters Q′, do not improve the meet over the clusters of
size at most k for individual thread ids as well as the meet of their joins over all
thread ids. The same also applies to the clustered information stored in L. ⊓⊔

Example 11. Consider again Example 1. If the analysis is performed with clusters
Qa = {{h, i}, {g, h}, {g, i}, {g}, {i}, {h}} both assertions can be proven. ⊓⊔

The one element clusters, on the other hand, cannot be abandoned – as indicated
by the example from Appendix H in the extended version [49].

9 Experimental Evaluation

We implemented [50] the analyses extending the context-sensitive static ana-
lyzer Goblint which provides the set of protecting mutexes for each global.
The implementation tracks information about integral variables using either the
Interval or the Octagon domains from Apron [29]. A comparison with other
tools is difficult, for details see [49, Appendix I]:

– Duet [19] — Its benchmarks are only available as binary goto-programs
which neither its current version nor any other tool considered here can
consume. Since Duet does not support function calls, it could only be run
on some of the benchmarks considered here.

– AstréeA [39] — A public version is available but not licensed for evaluation.
– Watts [31] — Since we were unable to run the tool on any program, we

compared with the numbers reported by the authors.
– NR-Goblint [48] — Goblint with the non-relational analyses from [48].

We considered four different configurations, namely, Interval: the analysis from
Section 4 with Intervals; Octagon: the same analysis with Octagons; TIDs: the
analysis from Section 7 with enhancement [49, Appendix F] with Octagons;
Clusters: TIDs using clusters of size at most 2 only. All benchmarks were run in

M. Schwarz et al.48

Table 2: Summary of evaluation results, with individual programs grouped to-
gether. For each group the number of programs and the total number of asser-
tions are given. ✓ (✗) indicates that all (no) assertions are proven, otherwise the
number of proven assertions is given. (—) indicates invalid results produced.

Our analyzer

Set Group # Asserts
Interval
(Sec. 4)

Octagon
(Sec. 4)

TIDs
(Sec. 7)

Clusters
(Sec. 8)

NR-Goblint
w/ interval Duet

Our Basic 3 4 ✓ ✓ ✓ ✓ ✓ 3
Relational 10 35 ✗ ✓ ✓ ✓ 4 2
TID 12 19 ✗ ✗ ✓ ✓ ✗ 2
Cluster 2 3 ✗ ✗ 1 ✓ ✗ 1

Goblint POSIX 5 1679 1146 1490 ✓ ✓ 1582 —
SV-COMP 7 360 ✓ ✓ ✓ ✓ ✓ —

Watts Created 3 3 2 2 2 2 2 ✗

SV-COMP 5 5 1 1 1 1 1 ✗

LKMPG 1 2 ✗ ✗ ✗ ✗ ✗ ✗

DDVerify 28 1071 1043 1043 ✓ ✓ 1043 —
Scalability 5 740 735 735 ✓ ✓ 735 —

Ratcop 19 34 4 14 18 18 6 4

a virtual machine on an AMD EPYC 7742 64-Core processor5 running Ubuntu
20.04. The results of our evaluation are summarized in Table 2.

Our benchmarks. To capture particular challenges for multi-threaded relational
analysis, we collected a set of small benchmarks (including the examples from this
paper) and added assertions. On these, we evaluated our analyzer, NR-Goblint,
and Duet. Our analysis in the Clusters configuration is capable of verifying all
the programs. The other tools could only prove a handful of relational assertions.

Goblint benchmarks [48]. These benchmarks do not contain assertions. To still
relate the precision of our analyzer to the non-relational NR-Goblint and to
Duet, we used our tool in the Clusters setting to automatically derive invariants
at each locking operation. Perhaps surprisingly, NR-Goblint could verify 95%
of the invariants despite being non-relational and not using thread ids.

Watts benchmarks [31]. These programs were instrumented with asserts and
significantly changed by the authors. Our analyses can verify all but 7 out of
over 1000 assertions. Due to necessary fixes to programs and our inability to run
their tool, numbers are not directly comparable. Nevertheless, for their scalability
tests, reported runtimes for Watts are up to two orders of magnitude worse than
ours. See [49, Appendix I] for a more detailed discussion.

5 The analyzer is single-threaded, so it only used one (virtual) core per analysis job.

Clustered Relational Thread-Modular Abstract Interpretation 49

Name LLoC
#TIDs
(unique)

TIDs ⊏
Octagon

pfscan 550 3 (2) 19.0%
aget 581 6 (4) 0.0%
ctrace 651 3 (3) 0.0%
knot 973 9 (5) 0.0%
smtprc 3013 2 (2) 0.8%

iowarrior 1358 4 (4) 17.1%
adutux 1509 4 (4) 0.0%
w83977af 1515 6 (4) 12.1%
tegra20 1560 7 (5) 0.0%
nsc 2394 11 (7) 32.2%
marvell1 2476 6 (5) 59.5%
marvell2 2476 6 (5) 58.4%

(a) Number of discovered thread
ids and proportion of program
points where analysis with thread
ids is more precise.

Interval Octagon TIDs Clusters

ctr
ac

e

pfs
ca

n
ag

et

iow
ar
rio

r

w83
97

7a
f

ad
ut

ux
kn

ot

sm
tp

rc
0

2

4

6

8

A
na

ly
si

s
ti

m
e

[s
]

ns
c

mar
ve

ll1

mar
ve

ll2

teg
ra
20

0

10

20

30

40

50

(b) Analysis times.

Fig. 13: Precision and performance evaluation on the Goblint benchmark set.

Ratcop benchmarks [42]. These were Java programs. After manual transla-
tion to C, our analyzer succeeded in proving all assertions any configuration of
Ratcop could with Octagons, while Ratcop required polyhedra in one case.

Internal comparison We evaluated our analyses in more detail on the Goblint
benchmark set [48]. Fig. 13a shows sizes of the programs (in Logical LoC) and the
number of thread ids found by the analysis from Section 6. The high number of
threads identified as unique is encouraging. To evaluate precision, we compared
the abstract values at each program point (joined over contexts). Fig. 13a shows
for what proportion of program points tracking thread ids increases precision.
There were no program points where precision decreased or values became in-
comparable, while for some programs gains of over 50% were observed. Fig. 13b
illustrates runtimes. In 9 of 12 cases, performance differences between our re-
lational analyses are negligible. In all cases, using clusters incurs no additional
cost. Thus, the more precise analysis with clusters of size ≤ 2 seems to be the
method of choice for thread-modular relational abstract interpretation.

10 Related Work

Since its introduction by Miné [36, 37], the weakly relational numerical domain
of Octagons has found wide-spread application for the analysis and verification
of programs [8, 14]. Since tracking relations between all variables may be expen-
sive, pre-analyses have been suggested to identify clusters of numerical variables
whose relationships may be of interest [8, 14, 26, 45]. A dynamic approach to
decompose relational domains into non-overlapping clusters based on learning

M. Schwarz et al.50

is proposed by Singh et al. [55]. While these approaches trade (unnecessary)
precision for efficiency, others try to partition the variables into clusters without
compromising precision [15, 23, 24, 44, 54, 56]. These types of clustering are
orthogonal to our approach and could, perhaps, be combined with it.

The integration of relational domains into thread-modular abstract inter-
pretation was pioneered by Miné [39]. His analysis is based on lock invariants
determining for each mutex a relation which holds whenever the mutex is not
held. Weak interferences are used to account for asynchronous variable accesses.
For practical analyses, a relational abstraction only for lock invariants is pro-
posed, while using a coarse, non-relational abstraction for the weak interfer-
ences. This framework closely follows the framework for non-relational analysis
[38], while abandoning background locksets. Our relational analysis, on the other
hand, maintains at each mutex a only relations between variables write-protected
by a. For these relations more precise results can be obtained, since they are in-
corporated into the local state at locks by meet (while [39] uses join).

Monat and Miné [40] present an analysis framework which is orthogonal to
our approach. It is tailored to the verification of algorithms that do not rely on
explicit synchronization via mutexes such as the Bakery algorithm. Suzanne and
Miné [57] extend [40] to handle weak memory effects (PSO, TSO) by incorporat-
ing memory buffers into the thread-local semantics. The notion of interferences
is also used by Sharma and Sharma [52] for the analysis of programs under the
Release/Acquire Memory Model of C11 by additionally tracking abstractions
of modification sequences for global variables. They consider fixed finite sets of
threads only, and do not deal with thread creation or joining.

Earlier works on thread-modular relational analysis rely on Datalog rules
to model interferences in the sense of Miné in combination with abstract inter-
pretation applied to the Data-Flow Graph [19] or the Control-Flow Graph [31]
(later extended to weak memory [32]), respectively. Botbol et al. [10] give a
non-thread-modular analysis of multi-threaded programs with message-passing
concurrency by encoding the program semantics as a symbolic transducer.

In all these approaches clusters of variables, if there are any, are predefined
and not treated specially by the analysis. This is different in the thread-modular
analysis proposed by Mukherjee et al. [42]. It propagates information from un-
locks to locks. It is relational for the locals of each thread, and within disjoint
subsets of globals, called regions. These regions must be determined beforehand
and must satisfy region-race freedom. In contrast, the only extra a priori infor-
mation required by our analysis, are the sets of (write-) protecting mutexes of
globals – which can be computed during the analysis itself. The closest concept
within our approach to a region is the set of globals jointly protected by mutexes.
These sets may overlap – which the analysis explicitly exploits. Like ours, their
proof of correctness refers to a thread-local semantics. Unlike ours, it is based
on interleavings and thus overly detailed. The concrete semantics on which our
analyses are based, is a collecting local trace semantics extending the semantics
of Schwarz et al. [48] by additionally taking thread termination and joins into

Clustered Relational Thread-Modular Abstract Interpretation 51

account. The analyses in [48], however, are non-relational. No refinement via
further finite abstractions of local traces, such as thread ids is provided.

The thread id analysis perhaps most closely related to ours, is by Feret
[20] who computes ids for agents in the π-calculus as abstractions of sequences
of encountered create edges. Another line of analysis of concurrent programs
deals with determining which critical events may happen in parallel (MHP) [1–
4, 7, 17, 43, 59] to detect programming errors like, e.g., data races, or identifying
opportunities for optimization. Mostly, MHP analyses are obtained as abstrac-
tions of a global trace semantics [18]. We apply related techniques for improving
thread-modular analyses – but based on a local trace semantics. Like MHP anal-
yses, we take thread creation and joining histories as well as sets of held mutexes
into account. Additionally, we also consider crucial aspects of the modification
history of globals and provide a general framework for further refinements.

In a sequential setting, splitting control locations according to some abstrac-
tion of reaching traces is a common technique for improving the precision of
dataflow analyses [9, 27] or abstract interpretation [25, 34, 41, 47]. Control point
splitting can be understood as an instance of the reduced cardinal power do-
main [12, 13, 22]. For the analysis of multi-threaded programs, Miné [39] applies
the techniques of Mauborgne and Rival [34] to single threads, i.e., independently
of the actions of all other threads. Our approach, on the other hand, may take
arbitrary properties of local traces into account, and thus is more general.

11 Conclusion and Future Work

We have presented thread-modular relational analyses of global variables tailored
to decomposable domains. In some cases, more precise results can be obtained by
considering smaller clusters. For k-decomposable domains, however, we proved
that the optimal result can already be obtained by considering clusters of size
at most k. We have provided a framework to incorporate finite abstractions of
local traces into the analysis. Here, we have applied this framework to take cre-
ation as well as joining of threads into account, but believe that it paves the way
to seamlessly enhance the precision of thread-modular abstract interpretation.
The evaluation of our analyses on benchmarks proposed in the literature indi-
cates that our implementation is competitive both w.r.t. precision and efficiency.
In future work, we would like to experiment with further abstractions of local
traces, perhaps tailored to particular programming idioms, and also explore the
potential of non-numerical 2-decomposable domains.

Acknowledgements. This work was supported by Deutsche Forschungsgemein-
schaft (DFG) – 378803395/2428 ConVeY and the Estonian Centre of Excellence
in IT (EXCITE), funded by the European Regional Development Fund.

M. Schwarz et al.52

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of x10 programs. In: PPoPP ’07, p. 183–193, ACM (2007), doi: 10.1145/
1229428.1229471

2. Albert, E., Flores-Montoya, A., Genaim, S.: Analysis of may-happen-in-parallel in
concurrent objects. In: Giese, H., Rosu, G. (eds.) Formal Techniques for Distributed
Systems - Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and
32nd IFIP WG 6.1 International Conference, FORTE 2012, Stockholm, Sweden,
June 13-16, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7273, pp.
35–51, Springer (2012), doi: 10.1007/978-3-642-30793-5_3, URL https://doi.
org/10.1007/978-3-642-30793-5_3

3. Albert, E., Genaim, S., Gordillo, P.: May-happen-in-parallel analysis for asyn-
chronous programs with inter-procedural synchronization. In: Blazy, S., Jensen,
T.P. (eds.) Static Analysis - 22nd International Symposium, SAS 2015, Saint-Malo,
France, September 9-11, 2015, Proceedings, Lecture Notes in Computer Science,
vol. 9291, pp. 72–89, Springer (2015), doi: 10.1007/978-3-662-48288-9_5, URL
https://doi.org/10.1007/978-3-662-48288-9_5

4. Albert, E., Genaim, S., Gordillo, P.: May-happen-in-parallel analysis with re-
turned futures. In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for
Verification and Analysis - 15th International Symposium, ATVA 2017, Pune,
India, October 3-6, 2017, Proceedings, Lecture Notes in Computer Science, vol.
10482, pp. 42–58, Springer (2017), doi: 10.1007/978-3-319-68167-2_3, URL
https://doi.org/10.1007/978-3-319-68167-2_3

5. Apinis, K., Seidl, H., Vojdani, V.: Side-effecting constraint systems: a swiss army
knife for program analysis. In: APLAS ’12, pp. 157–172, Springer (2012), doi:
10.1007/978-3-642-35182-2_12

6. Arceri, V., Olliaro, M., Cortesi, A., Ferrara, P.: Relational string abstract do-
mains. In: Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Ab-
stract Interpretation - 23rd International Conference, VMCAI 2022, Philadelphia,
PA, USA, January 16-18, 2022, Proceedings, Lecture Notes in Computer Science,
vol. 13182, pp. 20–42, Springer (2022), doi: 10.1007/978-3-030-94583-1_2, URL
https://doi.org/10.1007/978-3-030-94583-1_2

7. Barik, R.: Efficient computation of may-happen-in-parallel information for concur-
rent Java programs. In: LCPC ’06, vol. 4339 LNCS, pp. 152–169, Springer (2006),
doi: 10.1007/978-3-540-69330-7_11

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation, p. 196–207, PLDI ’03, Association for Computing Machinery, New
York, NY, USA (2003), ISBN 1581136625, doi: 10.1145/781131.781153, URL
https://doi.org/10.1145/781131.781153

9. Bodík, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible
paths. SIGSOFT Softw. Eng. Notes 22(6), 361–377 (Nov 1997), ISSN 0163-5948,
doi: 10.1145/267896.267921, URL https://doi.org/10.1145/267896.267921

10. Botbol, V., Chailloux, E., Gall, T.L.: Static analysis of communicating processes
using symbolic transducers. In: Bouajjani, A., Monniaux, D. (eds.) Verification,
Model Checking, and Abstract Interpretation - 18th International Conference,
VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings, Lecture Notes
in Computer Science, vol. 10145, pp. 73–90, Springer (2017), doi: 10.1007/
978-3-319-52234-0_5, URL https://doi.org/10.1007/978-3-319-52234-0_5

Clustered Relational Thread-Modular Abstract Interpretation 53

http://dx.doi.org/10.1145/1229428.1229471
http://dx.doi.org/10.1145/1229428.1229471
http://dx.doi.org/10.1007/978-3-642-30793-5_3
https://doi.org/10.1007/978-3-642-30793-5_3
https://doi.org/10.1007/978-3-642-30793-5_3
http://dx.doi.org/10.1007/978-3-662-48288-9_5
https://doi.org/10.1007/978-3-662-48288-9_5
http://dx.doi.org/10.1007/978-3-319-68167-2_3
https://doi.org/10.1007/978-3-319-68167-2_3
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1007/978-3-030-94583-1_2
http://dx.doi.org/10.1007/978-3-540-69330-7_11
http://dx.doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/267896.267921
https://doi.org/10.1145/267896.267921
http://dx.doi.org/10.1007/978-3-319-52234-0_5
http://dx.doi.org/10.1007/978-3-319-52234-0_5
https://doi.org/10.1007/978-3-319-52234-0_5

11. Chen, L., Liu, J., Miné, A., Kapur, D., Wang, J.: An abstract domain to infer
octagonal constraints with absolute value. In: Müller-Olm, M., Seidl, H. (eds.)
Static Analysis - 21st International Symposium, SAS 2014, Munich, Germany,
September 11-13, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8723,
pp. 101–117, Springer (2014), doi: 10.1007/978-3-319-10936-7_7, URL https:
//doi.org/10.1007/978-3-319-10936-7_7

12. Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in ab-
stract interpretation. In: Banerjee, A., Danvy, O., Doh, K., Hatcliff, J. (eds.) Se-
mantics, Abstract Interpretation, and Reasoning about Programs: Essays Dedi-
cated to David A. Schmidt on the Occasion of his Sixtieth Birthday, Manhattan,
Kansas, USA, 19-20th September 2013, EPTCS, vol. 129, pp. 325–336 (2013), doi:
10.4204/EPTCS.129.19, URL https://doi.org/10.4204/EPTCS.129.19

13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979, pp. 269–282, ACM Press (1979), doi: 10.1145/567752.567778, URL
https://doi.org/10.1145/567752.567778

14. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
astrée scale up? Form. Methods Syst. Des. 35(3), 229–264 (dec 2009), ISSN
0925-9856, doi: 10.1007/s10703-009-0089-6, URL https://doi.org/10.1007/
s10703-009-0089-6

15. Cousot, P., Giacobazzi, R., Ranzato, F.: a2i: Abstract2 interpretation. Proc. ACM
Program. Lang. 3(POPL) (Jan 2019), doi: 10.1145/3290355, URL https://doi.
org/10.1145/3290355

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978, pp. 84–96, ACM Press (1978), doi: 10.1145/
512760.512770, URL https://doi.org/10.1145/512760.512770

17. Di, P., Sui, Y., Ye, D., Xue, J.: Region-based may-happen-in-parallel analysis for
C programs. In: ICPP, pp. 889–898, IEEE (2015), ISBN 978-1-4673-7587-0, doi:
10.1109/ICPP.2015.98

18. Dwyer, M.B., Clarke, L.A.: Data flow analysis for verifying properties of concurrent
programs. ACM SIGSOFT Software Engineering Notes 19(5), 62–75 (dec 1994),
doi: 10.1145/195274.195295

19. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by
modular reasoning about data and control. In: Proceedings of the 39th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, p. 297–308, POPL ’12, Association for Computing Machinery, New York,
NY, USA (2012), ISBN 9781450310833, doi: 10.1145/2103656.2103693, URL
https://doi.org/10.1145/2103656.2103693

20. Feret, J.: Abstract interpretation of mobile systems. J. Log. Algebraic Methods
Program. 63(1), 59–130 (2005), doi: 10.1016/j.jlap.2004.01.005, URL https:
//doi.org/10.1016/j.jlap.2004.01.005

21. Fulara, J., Durnoga, K., Jakubczyk, K., Schubert, A.: Relational abstract domain
of weighted hexagons. Electron. Notes Theor. Comput. Sci. 267(1), 59–72 (2010),
doi: 10.1016/j.entcs.2010.09.006, URL https://doi.org/10.1016/j.entcs.
2010.09.006

22. Giacobazzi, R., Ranzato, F.: The reduced relative power operation on ab-
stract domains. Theor. Comput. Sci. 216(1-2), 159–211 (1999), doi: 10.

M. Schwarz et al.54

http://dx.doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-319-10936-7_7
http://dx.doi.org/10.4204/EPTCS.129.19
https://doi.org/10.4204/EPTCS.129.19
http://dx.doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
http://dx.doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
http://dx.doi.org/10.1145/3290355
https://doi.org/10.1145/3290355
https://doi.org/10.1145/3290355
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
http://dx.doi.org/10.1109/ICPP.2015.98
http://dx.doi.org/10.1145/195274.195295
http://dx.doi.org/10.1145/2103656.2103693
https://doi.org/10.1145/2103656.2103693
http://dx.doi.org/10.1016/j.jlap.2004.01.005
https://doi.org/10.1016/j.jlap.2004.01.005
https://doi.org/10.1016/j.jlap.2004.01.005
http://dx.doi.org/10.1016/j.entcs.2010.09.006
https://doi.org/10.1016/j.entcs.2010.09.006
https://doi.org/10.1016/j.entcs.2010.09.006
http://dx.doi.org/10.1016/S0304-3975(98)00194-7

1016/S0304-3975(98)00194-7, URL https://doi.org/10.1016/S0304-3975(98)
00194-7

23. Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce the space dimension
in polyhedra computations. Formal Methods in System Design 29(1), 79–95 (Jul
2006), ISSN 1572-8102, doi: 10.1007/s10703-006-0013-2, URL https://doi.
org/10.1007/s10703-006-0013-2

24. Halbwachs, N., Merchat, D., Parent-Vigouroux, C.: Cartesian factoring of polyhe-
dra in linear relation analysis. In: Cousot, R. (ed.) Static Analysis, pp. 355–365,
Springer Berlin Heidelberg, Berlin, Heidelberg (2003), ISBN 978-3-540-44898-3

25. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: Levi, G. (ed.) Static Analysis, pp. 200–214, Springer Berlin
Heidelberg, Berlin, Heidelberg (1998), ISBN 978-3-540-49727-1

26. Heo, K., Oh, H., Yang, H.: Learning a variable-clustering strategy for octagon from
labeled data generated by a static analysis. In: Rival, X. (ed.) Static Analysis, pp.
237–256, Springer Berlin Heidelberg, Berlin, Heidelberg (2016), ISBN 978-3-662-
53413-7

27. Holley, L.H., Rosen, B.K.: Qualified data flow problems. In: Proceedings of the 7th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
p. 68–82, POPL ’80, Association for Computing Machinery, New York, NY, USA
(1980), ISBN 0897910117, doi: 10.1145/567446.567454, URL https://doi.org/
10.1145/567446.567454

28. Howe, J.M., King, A.: Logahedra: A new weakly relational domain. In: Liu, Z.,
Ravn, A.P. (eds.) Automated Technology for Verification and Analysis, 7th In-
ternational Symposium, ATVA 2009, Macao, China, October 14-16, 2009. Pro-
ceedings, Lecture Notes in Computer Science, vol. 5799, pp. 306–320, Springer
(2009), doi: 10.1007/978-3-642-04761-9_23, URL https://doi.org/10.1007/
978-3-642-04761-9_23

29. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings, LNCS, vol. 5643, pp. 661–667, Springer (2009), doi: 10.1007/
978-3-642-02658-4_52, URL https://doi.org/10.1007/978-3-642-02658-4_
52

30. Karr, M.: Affine relationships among variables of a program. Acta Informatica
6, 133–151 (1976), doi: 10.1007/BF00268497, URL https://doi.org/10.1007/
BF00268497

31. Kusano, M., Wang, C.: Flow-sensitive composition of thread-modular abstract in-
terpretation. In: Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, p. 799–809, FSE 2016, Association
for Computing Machinery, New York, NY, USA (2016), ISBN 9781450342186, doi:
10.1145/2950290.2950291, URL https://doi.org/10.1145/2950290.2950291

32. Kusano, M., Wang, C.: Thread-modular static analysis for relaxed memory models.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, p. 337–348, ESEC/FSE 2017, Association for Computing Machinery, New
York, NY, USA (2017), ISBN 9781450351058, doi: 10.1145/3106237.3106243,
URL https://doi.org/10.1145/3106237.3106243

33. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for the
efficient validation of array accesses. In: Proceedings of the 2008 ACM Symposium
on Applied Computing, p. 184–188, SAC ’08, Association for Computing Machin-
ery, New York, NY, USA (2008), ISBN 9781595937537, doi: 10.1145/1363686.
1363736, URL https://doi.org/10.1145/1363686.1363736

Clustered Relational Thread-Modular Abstract Interpretation 55

http://dx.doi.org/10.1016/S0304-3975(98)00194-7
http://dx.doi.org/10.1016/S0304-3975(98)00194-7
http://dx.doi.org/10.1016/S0304-3975(98)00194-7
https://doi.org/10.1016/S0304-3975(98)00194-7
https://doi.org/10.1016/S0304-3975(98)00194-7
http://dx.doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2
http://dx.doi.org/10.1145/567446.567454
https://doi.org/10.1145/567446.567454
https://doi.org/10.1145/567446.567454
http://dx.doi.org/10.1007/978-3-642-04761-9_23
https://doi.org/10.1007/978-3-642-04761-9_23
https://doi.org/10.1007/978-3-642-04761-9_23
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
http://dx.doi.org/10.1145/2950290.2950291
https://doi.org/10.1145/2950290.2950291
http://dx.doi.org/10.1145/3106237.3106243
https://doi.org/10.1145/3106237.3106243
http://dx.doi.org/10.1145/1363686.1363736
http://dx.doi.org/10.1145/1363686.1363736
https://doi.org/10.1145/1363686.1363736

34. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) Programming Languages and Systems, pp. 5–20,
Springer Berlin Heidelberg, Berlin, Heidelberg (2005), ISBN 978-3-540-31987-0

35. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) Programs as Data Objects, Second Symposium,
PADO 2001, Aarhus, Denmark, May 21-23, 2001, Proceedings, LNCS, vol. 2053,
pp. 155–172, Springer (2001), doi: 10.1007/3-540-44978-7_10, URL https://
doi.org/10.1007/3-540-44978-7_10

36. Miné, A.: The octagon abstract domain. In: WCRE’ 01, p. 310, IEEE Computer
Society (2001), doi: 10.1109/WCRE.2001.957836

37. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1), 31–
100 (mar 2006), ISSN 1388-3690, doi: 10.1007/s10990-006-8609-1, URL https:
//doi.org/10.1007/s10990-006-8609-1

38. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C
programs. Logical Methods in Computer Science 8(1), 1–63 (mar 2012), doi:
10.2168/LMCS-8(1:26)2012

39. Miné, A.: Relational thread-modular static value analysis by abstract inter-
pretation. In: VMCAI ’14, vol. 8318 LNCS, pp. 39–58, Springer (2014), doi:
10.1007/978-3-642-54013-4_3

40. Monat, R., Miné, A.: Precise thread-modular abstract interpretation of concurrent
programs using relational interference abstractions. In: VMCAI ’17, vol. 10145
LNCS, pp. 386–404, Springer (2017), doi: 10.1007/978-3-319-52234-0_21

41. Montagu, B., Jensen, T.: Trace-based control-flow analysis. In: PLDI ’21, p. 482–
496, ACM (2021), doi: 10.1145/3453483.3454057, URL https://doi.org/10.
1145/3453483.3454057

42. Mukherjee, S., Padon, O., Shoham, S., D’Souza, D., Rinetzky, N.: Thread-
local semantics and its efficient sequential abstractions for race-free programs.
In: SAS ’17, vol. LNCS 10422, pp. 253–276, Springer (2017), doi: 10.1007/
978-3-319-66706-5_13

43. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for comput-
ing mhp information for concurrent Java programs. In: ESEC/FSE ’99, vol. 1687
LNCS, pp. 338–354, Springer (1999), doi: 10.1007/3-540-48166-4_21

44. Oh, H., Heo, K., Lee, W., Lee, W., Park, D., Kang, J., Yi, K.: Global sparse analysis
framework. ACM Trans. Program. Lang. Syst. 36(3) (sep 2014), ISSN 0164-0925,
doi: 10.1145/2590811, URL https://doi.org/10.1145/2590811

45. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective x-sensitive analysis guided
by impact pre-analysis. ACM Trans. Program. Lang. Syst. 38(2) (Dec 2015), ISSN
0164-0925, doi: 10.1145/2821504, URL https://doi.org/10.1145/2821504

46. Péron, M., Halbwachs, N.: An abstract domain extending difference-bound ma-
trices with disequality constraints. In: Cook, B., Podelski, A. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation, 8th International Conference,
VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings, Lecture Notes
in Computer Science, vol. 4349, pp. 268–282, Springer (2007), doi: 10.1007/
978-3-540-69738-1_20, URL https://doi.org/10.1007/978-3-540-69738-1_
20

47. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5), 26–es (Aug 2007), ISSN 0164-0925, doi: 10.1145/
1275497.1275501, URL https://doi.org/10.1145/1275497.1275501

48. Schwarz, M., Saan, S., Seidl, H., Apinis, K., Erhard, J., Vojdani, V.: Improving
thread-modular abstract interpretation. In: SAS ’21, vol. 12913 LNCS, pp. 359–
383, Springer (2021), doi: 10.1007/978-3-030-88806-0_18

M. Schwarz et al.56

http://dx.doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
http://dx.doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.2168/LMCS-8(1:26)2012
http://dx.doi.org/10.1007/978-3-642-54013-4_3
http://dx.doi.org/10.1007/978-3-319-52234-0_21
http://dx.doi.org/10.1145/3453483.3454057
https://doi.org/10.1145/3453483.3454057
https://doi.org/10.1145/3453483.3454057
http://dx.doi.org/10.1007/978-3-319-66706-5_13
http://dx.doi.org/10.1007/978-3-319-66706-5_13
http://dx.doi.org/10.1007/3-540-48166-4_21
http://dx.doi.org/10.1145/2590811
https://doi.org/10.1145/2590811
http://dx.doi.org/10.1145/2821504
https://doi.org/10.1145/2821504
http://dx.doi.org/10.1007/978-3-540-69738-1_20
http://dx.doi.org/10.1007/978-3-540-69738-1_20
https://doi.org/10.1007/978-3-540-69738-1_20
https://doi.org/10.1007/978-3-540-69738-1_20
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1145/1275497.1275501
https://doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1007/978-3-030-88806-0_18

49. Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clustered relational
thread-modular abstract interpretation with local traces. CoRR abs/2301.06439
(2023), URL https://arxiv.org/abs/2301.06439

50. Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clustered Relational
Thread-Modular Abstract Interpretation with Local Traces (Jan 2023), doi: 10.
5281/zenodo.7505428

51. Seidl, H., Vogler, R.: Three improvements to the top-down solver. Math. Struct.
Comput. Sci. 31(9), 1090–1134 (2021), doi: 10.1017/S0960129521000499, URL
https://doi.org/10.1017/S0960129521000499

52. Sharma, D., Sharma, S.: Thread-modular analysis of release-acquire concurrency.
In: Dragoi, C., Mukherjee, S., Namjoshi, K.S. (eds.) Static Analysis - 28th
International Symposium, SAS 2021, Chicago, IL, USA, October 17-19, 2021,
Proceedings, LNCS, vol. 12913, pp. 384–404, Springer (2021), doi: 10.1007/
978-3-030-88806-0_19, URL https://doi.org/10.1007/978-3-030-88806-0_
19

53. Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an abstract
domain. In: Leuschel, M. (ed.) Logic Based Program Synthesis and Tranforma-
tion, 12th International Workshop, LOPSTR 2002, Madrid, Spain, September 17-
20,2002, Revised Selected Papers, LNCS, vol. 2664, pp. 71–89, Springer (2002), doi:
10.1007/3-540-45013-0_7, URL https://doi.org/10.1007/3-540-45013-0_7

54. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, p. 46–59, POPL 2017, Association for Computing Machinery, New York,
NY, USA (2017), ISBN 9781450346603, doi: 10.1145/3009837.3009885

55. Singh, G., Püschel, M., Vechev, M.: Fast numerical program analysis with rein-
forcement learning. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification, pp. 211–229, Springer International Publishing, Cham (2018), ISBN
978-3-319-96145-3

56. Singh, G., Püschel, M., Vechev, M.: A practical construction for decomposing nu-
merical abstract domains. Proc. ACM Program. Lang. 2(POPL) (dec 2018), doi:
10.1145/3158143, URL https://doi.org/10.1145/3158143

57. Suzanne, T., Miné, A.: Relational thread-modular abstract interpretation under
relaxed memory models. In: APLAS ’18, vol. LNCS 11275, pp. 109–128, Springer
(dec 2018), doi: 10.1007/978-3-030-02768-1_6

58. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static Race
Detection for Device Drivers: The Goblint Approach. In: ASE ’16, pp. 391–402,
ACM (2016), doi: 10.1145/2970276.2970337

59. Zhou, Q., Li, L., Wang, L., Xue, J., Feng, X.: May-happen-in-parallel analysis with
static vector clocks. In: CGO ’18, pp. 228–240, ACM (2018), doi: 10.1145/3168813

Clustered Relational Thread-Modular Abstract Interpretation 57

https://arxiv.org/abs/2301.06439
http://dx.doi.org/10.5281/zenodo.7505428
http://dx.doi.org/10.5281/zenodo.7505428
http://dx.doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1007/978-3-030-88806-0_19
http://dx.doi.org/10.1007/978-3-030-88806-0_19
https://doi.org/10.1007/978-3-030-88806-0_19
https://doi.org/10.1007/978-3-030-88806-0_19
http://dx.doi.org/10.1007/3-540-45013-0_7
https://doi.org/10.1007/3-540-45013-0_7
http://dx.doi.org/10.1145/3009837.3009885
http://dx.doi.org/10.1145/3158143
https://doi.org/10.1145/3158143
http://dx.doi.org/10.1007/978-3-030-02768-1_6
http://dx.doi.org/10.1145/2970276.2970337
http://dx.doi.org/10.1145/3168813

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

M. Schwarz et al.58

http://creativecommons.org/licenses/by/4.0/

Adversarial Reachability
for Program-level Security Analysis?

Soline Ducousso1(�), Sébastien Bardin1(�), and Marie-Laure Potet2

1 Université Paris-Saclay, CEA, List, Saclay, France
soline.ducousso@cea.fr, sebastien.bardin@cea.fr
2 Univ. Grenoble Alpes, VERIMAG, Grenoble, France

marie-laure.potet@univ-grenoble-alpes.fr

Abstract. Many program analysis tools and techniques have been de-
veloped to assess program vulnerability. Yet, they are based on the stan-
dard concept of reachability and represent an attacker able to craft smart
legitimate input, while in practice attackers can be much more powerful,
using for instance micro-architectural exploits or fault injection methods.
We introduce adversarial reachability, a framework allowing to reason
about such advanced attackers and check whether a system is vulnera-
ble or immune to a particular attacker. As equipping the attacker with
new capacities significantly increases the state space of the program un-
der analysis, we present a new symbolic exploration algorithm, namely
adversarial symbolic execution, injecting faults in a forkless manner to
prevent path explosion, together with optimizations dedicated to reduce
the number of injections to consider while keeping the same attacker
power. Experiments on representative benchmarks from fault injection
show that our method significantly reduces the number of adversarial
paths to explore, allowing to scale up to 10 faults where prior work
timeout for 3 faults. In addition, we analyze the well-tested WooKey
bootloader, and demonstrate the ability of our analysis to find attacks
and evaluate countermeasures in real-life security scenarios. We were es-
pecially able to find an attack not mentioned in a previous patch.

Keywords: Program analysis · Attacker model · Fault injection · Sym-
bolic execution

1 Introduction

Context. Major works have delved into program analysis over the last decades,
leveraging techniques such as symbolic execution [24,53,18], static analysis [43],
abstract interpretation [30] or bounded model checking [29], to hunt for software
vulnerabilities and bugs in programs, or to prove their absence [35,60], leading
to industrial adoption in some leading companies [18,43,6,60,66]. As bugs are an
attack entry point, removing them is a first step towards better software security.

? Partially supported by grants ANR TAVA, PEPR Secureval and Carnot Flexsecurity.

c© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 59–89, 2023.
https://doi.org/10.1007/978-3-031-30044-8_3

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30044-8_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_3&domain=pdf

S. Ducousso et al.

Problem. Yet, stepping back from these successes, it appears that all these
methods consider a rather weak threat model, where the attacker can only craft
smart “inputs of death” through legitimate input sources of the program, ex-
ploiting corner cases in the code itself. Tools only looking for bugs and software
vulnerabilities may deem a program secure while the bar remains quite low for
an advanced attacker, able for example to take advantage of attack vectors such
as (physical) hardware fault injections [58], micro-architectural attacks [61,70],
software-based hardware attacks [86,55,69] like Rowhammer [70], or any com-
bination of vectors [63]. While previously limited to high-security devices and
systems such as smart cards and cryptography modules [16,13], these fault-based
attacks can now target a wider spectrum of systems, such as bootloaders [57],
firmware update modules [19], security enclaves [69], etc. The reasoning behind
automated software-implemented fault injection also applies to Man-At-The-End
attacks [3] and is similar to the (manual) reasoning performed in control-flow
integrity to evaluate countermeasures [1,21].

Goal & Challenges. Our goal is to devise a technique to automatically and
efficiently reason about the impact of an advanced attacker onto program se-
curity properties, where the standard reachability framework only supports an
attacker crafting smart legitimate inputs. The first challenge is to provide a for-
mal framework to study what an advanced attacker can do to attack a program.
Interestingly, while such frameworks are routinely used in cryptographic pro-
tocol verification [26,7], none has been studied for program-level analysis. The
second challenge is to design an efficient algorithm to assess the vulnerability of
a program to a given attacker model, while adding capabilities to the attacker
naturally gives rise to a significant path explosion – especially in the case of
multiple fault analysis.

The rare prior works in the field, mostly focused on encompassing phys-
ical fault injections for high-security devices, rely mostly on mutant genera-
tion [28,79,49,25,50] or forking analysis [76,15,20,63], yielding scalability issues.
Moreover, most of them are limited to a few predefined fault models and do not
propose any formalization of the underlying problem.

Proposal. We propose adversarial reachability, a formalism extending standard
reachability to reason about a program execution in the presence of an advanced
attacker, and we build a new algorithm based on symbolic techniques, named
adversarial symbolic execution, to address the adversarial reachability problem
from the bug finding point of view (bounded verification). Our algorithm pre-
vents path explosion thanks to a new forkless encoding of faults. We show it is
correct and k-complete with respect to adversarial reachability. To improve the
performance further, we design two new optimizations to reduce the number of
injected faults: Early Detection of fault Saturation and Injection On Demand.

Contributions. As a summary, we claim the following novelties:
– We formalize the adversarial reachability problem (Section 4), extending

standard reachability to take into account an advanced attacker, together
with the associated correctness and completeness definitions;

60

Adversarial Reachability

– We describe a new symbolic exploration method (Section 5), adversarial sym-
bolic execution, to answer adversarial reachability, featuring a novel forkless
fault encoding to prevent path explosion and two optimization strategies to
reduce fault injection. We establish their correctness and completeness;

– We propose an implementation of our techniques for binary-level analysis
(Section 6), on top of the BINSEC framework [38]. We systematically evalu-
ate its performances against prior work (Section 7), using a standard SWiFI
benchmark from physical fault attacks and smart cards. Experiments show
a very significant performance gain against prior approaches, for example
up to x10 and x215 times on average for 1 and 2 faults respectively – with
a similar reduction in the number of adversarial paths. Moreover, our ap-
proach scales up to 10 faults whereas the state-of-the-art starts to timeout
for 3 faults ;

– We finally perform a security analysis of the WooKey bootloader 1 (Section
8), a very well tested real-life security-focused program. We were able to find
known attacks and evaluate the adequacy of some of the countermeasures.
Especially, we found an attack not taken into account in a recently proposed
patch [63], and proposed a new patch to the developers.

This work is a first step in designing efficient program analysis techniques able to
take into account advanced attackers. The approach is generic enough to accom-
modate many common fault models, including the bit flip from RowHammer,
test inversion or arbitrary data modification; still, instruction skips or modifica-
tions are currently out of reach. Also, while we investigate the bug finding side
of the problem (underapproximation), the verification side (overapproximation)
is interesting as well. These are exciting directions for future research.

Our dataset and benchmark infrastructure are made available through arti-
fact2 for reproducibility purpose, and the code is open-sourced3.

2 Motivation

We start by motivating the need for adversarial reachability, first with a descrip-
tion of several realistic attack scenarios on software involving advanced attackers
(Section 2.1), second with a small example showing the need for dedicated anal-
ysis (Section 2.2).

2.1 Fault Injection across Security Fields

We describe hereafter several real software-level security scenarios where the
attacker goes beyond crafting legitimate input to abuse the system under at-
1 WooKey [14,89] is a secure USB mass storage device developed by the French Na-
tional Security Agency, and has recently served as a recent challenge among French
security evaluators.

2 DOI: 10.5281/zenodo.7507112
https://zenodo.org/record/7507112#.Y7cLsKfMJhE

3 https://github.com/binsec/binsec-ase

61

https://zenodo.org/record/7507112#.Y7cLsKfMJhE
https://github.com/binsec/binsec-ase

S. Ducousso et al.

tack. Interestingly, while these scenarios were historically focused on hardware-
hardened high-security systems (such as smart cards) and associated with com-
plex physical attack means, many recent scenarios do involve software-only at-
tacks on standard systems, with targets encompassing cryptographic libraries,
bootloaders, firmware updaters, security enclaves, etc.

Hardware Fault Injection Attacks [58] cause erroneous computations by
disturbing signal propagation in the chip with physical means such as electro-
magnetic pulses [39], laser beams [85,4], or power [19] and clock glitches. The
associated fault models include bit-, byte- or word- set and reset, bit-flips, in-
structions corruption and instruction skips. State-of-the-art attacks involve mul-
tiple fault injections [59], as expected by the high level of attack potential in
Common Criteria vulnerability analysis.

Software-implemented Hardware Attacks push the hardware into unstable
states using software controlled mechanisms, like delays in memory buses induc-
ing bit-flips in data fetched from memory [55] or CPU voltage and frequency
manipulations yielding bit-flips in the processor [86,69]. The notorious Rowham-
mer attack [70] abuses memory accesses to induce bit-flips in flash memory.

Micro-architectural Attacks use micro-architectural behaviors in unexpected
ways. For example: Spectre (version v1) [62] exploits branch predictors in spec-
ulative executions, which can be seen as a test inversion followed by a rollback;
Load Value Injection [87] injects arbitrary data into transient execution; race
attacks [54] corrupt data of other running processes and can be seen as arbitrary
data faults.

Man-At-The-End Attacks considers an attacker having full observability and
control over a software code and its execution [3], with the goal to steal sensitive
data or code (reverse engineering attacks). The associated attacker model is
hence very powerful, with capabilities such as halting and modifying data and
code at any point of the execution.

CFI Reasoning In order to assess the power of Control-Flow Integrity (CFI)
mechanisms, researchers [1,21] define hypothetical attackers by their capabilities,
such as “write anything anywhere” or “write anything somewhere”, and manually
prove that their countermeasure is indeed able to thwart such an opponent.
While not per se an applicative security scenario, the techniques developed in
this paper could help automate such essential reasoning.

2.2 Motivating Example

The motivating example in Figure 1 is a simple unrolled program inspired by
the VerifyPIN benchmark [42], from the domain of hardware fault injection and
smart cards. The user PIN digits u1 to u4 are checked against the reference digits
ref1 to ref4, using the accumulator res. The attacker seeks to be authenticated
(validate the assert l.16) without knowing the right digits (l.14).

62

Adversarial Reachability

1 bool g_authenticated ;
2 int u1 , u2 , u3 , u4 , r e f1 , r e f2 , r e f3 , r e f 4 ;
3
4 void ver i fyPIN () {
5 int r e s = 1 ;
6 r e s = r e s ∗ (u1 == r e f 1) ;
7 r e s = r e s ∗ (u2 == r e f 2) ;
8 r e s = r e s ∗ (u3 == r e f 3) ;
9 r e s = r e s ∗ (u4 == r e f 4) ;

10 g_authenticated = re s ;
11 }
12
13 void main (int argc , char const ∗argv []) {
14 a s s e r t (u1!= r e f 1 | | u2!= r e f 2 | | u3!= r e f 3 | | u4!= r e f 4) ;
15 ver i fyPIN () ;
16 a s s e r t (g_authenticated == true) ; /∗ Secur i t y o rac l e ∗/
17 }

Fig. 1: Motivating example, inspired by VerifyPIN [42]

Here, the attacker indeed cannot succeed by only crafting legitimate inputs.
However, an advanced attacker can leverage more powerful attack vectors to
inject faults into the program in order to succeed. For instance, corrupting
g_authenticated to true at l.10 achieves the attacker goal. It could be obtained
for example through a physical- or Rowhammer- attack.
Program Analysis As expected, standard symbolic execution tools such as
Klee [22], angr [84] or BINSEC [38] do not report any violation here, as they
consider the simplest possible attacker. We can try to use SWiFI techniques
[76,15,20,63] (detailed in Section 3.1) from high-security system evaluation. Yet,
the standard forking approach does not scale with multiple faults: here, 166
paths are explored in 0.6 seconds for 1 fault, 2994 paths in 11 seconds for 2
faults, and it keeps on adding a factor x10 in explored paths and analysis time
for each extra fault, until the analysis timeouts (12 hours) above 4 faults. On the
contrary, our forkless algorithm presented in Section 5 simulates fault injection
without creating new paths and, in this example, shows a constant runtime as
the number of faults increases from 1 to 10 – we explore 9 paths in 0.2 seconds
in all cases.

3 Background

We provide in this section background information on software-implemented
fault injection, standard reachability and symbolic execution.

63

S. Ducousso et al.

3.1 Software-implemented Fault Injection (SWiFI)

SWiFI tools [28,76,79,15,49,25,20,50,63,68] have been developed in the commu-
nity of high-secure systems to ease hardware fault injection campaigns, which
are time consuming and require special equipment. SWiFI evaluates a program
with the transformations induced by the effects of hardware faults, in order to
find interesting attack paths. We distinguish two main SWiFI techniques.

First, the Mutant generation approach [28,79,49,25,50] consists in analyzing
slightly modified versions of the program (named mutants), each of them embed-
ding a different faulty instruction. Each mutant is then analyzed on its own. The
main limitation of mutant generation is the explosion of mutants, in particular
for multiple faults. Also, as the different mutants differ only slightly, analyzing
each of them separately wastes lots of time repeating similar reasoning.

x := y + z

(a) Original statement

i f (f au l t_here)
then x := f au l t_va l u e
else x := y + z

(b) Forking transformation

Fig. 2: Forking code transformation in pseudo-code

Second, the forking approach [76,15,20,63] consists in instrumenting the anal-
ysis (or the code, via instrumentation) to add all possible faults as forking points
(branches) controlled by boolean values indicating whether a particular fault will
be taken or not, plus constraints on the maximal number of faults allowed. A
forking data fault is illustrated in Figure 2. A standard program analysis tech-
nique is then launched – typically symbolic execution or bounded model check-
ing. Compared with mutant generation, this method allows sharing the analysis
between the different possible faults. Still, the number of paths explodes with
the number of possible faults (forking points).
Scalability Issues These two approaches yield an explosion of the whole search
space w.r.t. the number of fault injection points in the program: the mutant
approach leads to consider up to Cn

k (k among n)4 mutants for a program under
analysis with n possible fault locations and k faults, while the forking approach
yields up to Cn

k paths to analyzed for a single original program path with n
possible fault locations and k faults.

In the following, we will consider the forking approach as the baseline – please
keep in mind that the mutant approach scales worse.
Fault Models Supported fault models vary for each tool, but they are usually
adapted from hardware fault models [47,82]. The most common fault models are
(1) data faults such as arbitrary data modifications, set and reset of bytes, words
or variables, bit-flips; and (2) instruction corruptions such as instruction skips
4 Remind that Cn

k = (k
n) =

n!
k!(n−k)!

64

Adversarial Reachability

and test inversions. Most tools are limited to one (sometimes two) hard-coded
fault models. Only few SWiFI tools can handle multiple faults [88,76,63,68] –
still with scalability issues.

3.2 Standard Reachability Formalization

Considering a program P , we denote S the set of all possible states of P . A state
is composed of the code memory, the data memory (i.e. the stack and heap),
the state of registers and the location of the next instruction to execute. The
set of input states of a program P is noted S0 ⊂ S. The set of transitions (or
instructions) of the program is denoted T . The execution of an instruction t is
represented by a one-step transition relation→t∈ S×S. We denote s→ s′ when
s →t s

′ for some t ∈ T . We extend the transition relation over any finite path
π ∈ T ∗ through composition. The transitive reflexive closure of → is noted →∗.
Finally, we use S → s′ as a shortcut for ∃s ∈ S.s→ s′, and→≤k for reachability
in at most k steps.

We consider in the rest of the paper the case of location reachability : given
a location l (instruction or code address) of the program under analysis, the
question is whether we can reach any state s at location l. More formally, L is
the finite set of locations of P , and we consider a mapping loc : S 7→ L from
states to locations. For example, loc may return the program counter value. We
write S →∗ l as a shortcut for ∃s′ ∈ S.S →∗ s′ ∧ loc(s′) = l.

Definition 1 (Standard reachability). A location l is reachable in a program
P if S0 →∗ l.

We now define correctness and completeness for a program analyzer.

Definition 2 (Correctness, completeness). Let V : (P, l) 7→ {1, 0} be a
verifier taking as input a program P and a target location l.
– V is correct when for all P , l, if V(P, l) = 1 then l is reachable in P ;
– V is complete when for all P , l, if l is reachable then V(P, l) = 1 ;
– if V also takes an integer bound n as input, V is k-complete when for all

bound n and P ,l, if l is reachable in at most n steps then V(P, l, n) = 1.

We want to stress out that while location reachability can be seen as a basic
case, we consider it sufficient here for two reasons: first, it keeps the formalism
light while still straightforward to generalize to stronger reachability properties
(e.g., local predicates of the form (l, ϕ), sets of finite traces, etc.); second, it
is already rather powerful on its own, as we can still instrument the code to
reduce some stronger forms of reachability to it (e.g., adding local assertions or
monitors).

3.3 Symbolic Execution

Symbolic execution (SE) [52,83,23,24] is a symbolic exploration technique for
standard reachability. Algorithm 1 gives a high-level view of a typical SE al-

65

S. Ducousso et al.

Algorithm 1: Standard symbolic execution algorithm, taken from [48]
Input: a program P , a bound k, a target location l
Output: Boolean value indicating whether l can be reached within k steps.

1 for path π in GetPaths(k) do
2 if π reaches l then
3 Φ := GetPredicate(π)
4 if Φ is satisfiable then
5 return true
6 end
7 end
8 end
9 return false

gorithm, adapted for location reachability5. The analysis follows each possible
path π of a program up to a depth bound k. If π reaches the target, then we
check whether π is indeed feasible by computing its path predicate Φ – a logical
formula representing the path constraints over the input variables along π, and
sending it to a SMT solver [12], that will try to answer whether the formula
is satisfiable or not, and provide a model for free variables (e.g. inputs) if it is
(omitted here for simplicity). SE is correct for location reachability, and even
k-complete if we assume a perfect encoding of path predicates.

Algorithm 2: Assignment evaluation in SE
Input: path predicate Φ, assignment instruction x := expr
Output: Updated Φ

1 Function eval_assign(Φ, x, expr) is
2 return Φ ∧ (x , expr)
3 end

In this paper, we will focus on the evaluation of assignments and conditional
jumps for SE, detailed in Algorithms 2 and 3 respectively, as this is where our ad-
versarial symbolic execution will mainly differ from the standard one. It requires
going slightly deeper into details. In practice, the program paths are explored
incrementally. A worklist WL records all pending paths together with their as-
sociated path predicate and their next instruction to explore. On conditional
branches, the symbolic path is split in two (one for each branch, updating the
path constraint accordingly), and each new prefix is added to the worklist (Al-

5 More complex properties can be verified with the same principles, such as local
predicate reachability, trace properties or hyper-properties [36].

66

Adversarial Reachability

Algorithm 3: Conditional jump evaluation in SE
Input: path predicate Φ, conditional jump instruction if cdt then lt else le
Data: a worklist WL containing the pending path prefixes to explore – list of

pairs (path predicate, next location)
Output: WL updated in place

1 Function eval_conditional_jump(Φ, cdt, lt, le) is
2 if Φ ∧ cdt is satisfiable then
3 Add (Φ ∧ cdt, lt) to WL
4 end
5 if Φ ∧ (¬cdt) is satisfiable then
6 Add (Φ ∧ ¬cdt, le) to WL
7 end
8 end

gorithm 3). Assignments are dealt with straightforwardly, simply adding a new
logical variable definition to the path predicate 6 (notation: x , y).

4 Adversarial Reachability

In this section, we detail the advanced attacker model we consider and define
the adversarial reachability problem. Especially, advanced attackers can do more
than carefully crafting legitimate inputs to trigger vulnerabilities in a software.
They can use a wide variety of attack vectors (e.g. hardware fault injection at-
tacks, software-implemented hardware attacks, micro-architectural attacks, soft-
ware attacks, etc), in any combination, and multiple times. We suppose attack
vectors prerequisites have been met, and only consider the impact of the faults
on the program under attack.

Our attacker model has three components: (1) a set of attacker actions, equiv-
alent to fault models; (2) the maximum number of actions the attacker can
perform; and (3) a goal, expressed here as a location reachability query.

Formally, given a program P with set of states S, set of transitions T and
set of locations L, we extend the transition model described in Section 3.2 to
include an adversarial transition ;A∈ S×S related to an attacker A, i.e. TA =
T∪ ;A. To specify practical fault models, restrictions are applied onto ;A,
limiting what part of the state can be modified and how. For instance, when
considering arbitrary data faults, only the data memory and the register values
can be modified. Then, the transition relation of P under attacker A is denoted
as 7→A=→ ∪;A= (∪t∈T t)∪;A. We extend the notations from Section 3.2 to
the relation 7→A. Especially, S 7→∗A s′ means ∃s ∈ S.s 7→∗A s′, the adversarial
transition relation up to k is denoted 7→A,≤k.
6 Actually, a symbolic state usually comprises the path predicate itself plus a mapping
from program variable names to logical variable names, and assignments involve both
creating new logical names and updating the mapping. We abstract away from these
details.

67

S. Ducousso et al.

Still, we need to take into account the maximum number of faults the at-
tacker can perform along an execution. Given a path π over T ∗A, π is said to be
legit if it does not contain ;A, and faulty otherwise. The number of occurrences
of transition ;A in π is its number of faults. Given a bound mA on the fault
capability of A, we define 7→∗(A,mA) by limiting the adversarial reachability rela-
tion to paths π with less than mA faults. We consider mA to be +∞ in case the
attacker has no such limitation. For the sake of simplicity, in the following, we
will consider mA as an implicit parameter of A, and simply write 7→∗A instead of
7→∗(A,mA).

Definition 3 (Adversarial reachability). Given an attacker A with a mA

faults budget and a program P , a location l ∈ L is adversarially reachable if
S0 7→∗A s′ ∧ loc(s′) = l for some s′ ∈ S.

In the following, adversarial reachability of location l from a set of states S0

will be denoted S0 7→∗A l.

Proposition 1. Standard reachability implies adversarial reachability. The con-
verse does not hold.

Proof. Standard reachability can be viewed as adversarial reachability with an
attacker able to perform 0 faults.

We redefine what it means for an analysis answering adversarial reachability
to be correct, complete and k-complete.

Definition 4. Let VA : (P,A, l) 7→ {1, 0} be a verifier taking as input a program
P , an attacker A with mA fault budget and a target location l.
– VA is correct given A when for all P , l, if VA(P,A, l) = 1 then l is adver-

sarially reachable in P for attacker A;
– VA is complete given A when for all P , l, if l is adversarially reachable for

attacker A then VA(P,A, l) = 1 ;
– if VA also takes an integer bound n as input, VA is k-complete given A when

for all integer n and P ,l, if l is adversarially reachable in at most n steps
then VA(P,A, l, n) = 1.

5 Forkless Adversarial Symbolic Execution (FASE)

In this section, we present our forkless algorithm for adversarial reachability. The
analysis aims to find inputs and a fault sequence compatible with the considered
attacker model and reaching the target location. Our primary goal is to deal
with the potential path explosion induced by possible faults. Our design guiding
principles are the following:
– First, prevent path explosion as much as possible with a forkless fault en-

coding. Yet, this forkless encoding leads to logical formulas potentially more
complex and harder to solve in practice;

– Second, reduce as much as possible the complexity of the created formulas,
by avoiding the undue introduction of extra-faults along a path.

68

Adversarial Reachability

5.1 Modelling Faults via Forkless Encoding

The forkless encoding aims to address the path explosion induced by the forking
treatment of fault injection in prior works. It is designed mainly for data faults
and consists of wrapping arithmetically an assignment right-hand side, as shown
in Figure 3 for an arbitrary data fault. The activation of this fault location is
determined by the symbolic Boolean value fault_here, and the corrupted value
of x is the fresh variable fault_value.

The point is to embed the fault injection as an expression inside the logical
formula, without any explicit path forking at the analysis top-level, in order to
let the analyzer reason about both legit executions and faulty executions at the
same time – this is akin to path merging in some ways, except that we do it only
for the treatment of fault injection (we could also see the approach as avoiding
undue path splits).

Multiple forkless arbitrary data encodings are possible. We chose to use the
ite expression operator, an inlined form of if-then-else at the expression level.
We also tried encodings inspired from branchless programming idioms (e.g.:
(b)·x+(1−b)·y. for ite(b, x, y) with b a Boolean value) – in our experiments they
worked as well as the ite operator. Other data fault models are supported, such
as set, reset, bit-flips, etc. Test inversion is also supported by applying faults to
the condition of conditional jumps. Table 1 illustrates various forkless encodings.
Note that the forkless encoding is not designed for instruction corruptions or in-
struction skips, as these modifications either yield permanent code modification
or span several instructions.

x := expr

(a) Original statement

x:= i t e f au l t_here ? f au l t_va l u e : expr

(b) Forkless transformation for arbitrary data fault

Fig. 3: Forkless injection technique

Table 1: Forkless encodings for various fault models
Fault model original instruction Forkless encoding
Arbitrary data x := expr x := ite fault_here ? fault_value : expr

Variable reset x := expr x := ite fault_here ? 0x00000000 : expr

Variable set x := expr x := ite fault_here ? 0xffffffff : expr

Bit-flip x := expr x := ite fault_here ?
(expr xor 1 << fault_value) : expr

Test inversion if cdt then goto 1 if (ite fault_here ? !cdt : cdt)
else goto 2 then goto 1 else goto 2

69

S. Ducousso et al.

Trade-off. While these sorts of encoding indeed allow a significant path re-
duction compared to forking approaches, the corresponding path predicates are
more complicated than standard path predicates, as they involve lots of extra-
symbolic variables for deciding whether the faults occur and for emulating their
effect. We show later in this section how to reduce these extra-variables.

5.2 Building Adversarial Path Predicates

Adversarial symbolic execution requires modifications to Algorithms 2 and 3, as
illustrated in Algorithms 4 and 5 respectively.

Algorithm 4: Forkless assignment evaluation
Input: path predicate Φ, assignment instruction x := expr, current number of

faults nbf
Output: Updated Φ

1 Function eval_assign(Φ, x, expr) is
2 Φ′, expr′, nbf := FaultEncoding(Φ, expr, nbf)
3 return Φ′ ∧ (x , expr′)

4 end

Algorithm 5: Forkless conditional jump evaluation
Input: path predicate Φ, conditional jump instruction if cdt lt else le
Data: fault counter nbf , maximal number of faults maxf , worklist WL
Output: WL updated in place

1 Function eval_conditional_jump(Φ, cdt, lt, le) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, lt) to WL
4 end

/* Idem for else branch (¬cdt) */
5 end

The assign evaluation process embeds a wrapper encoding the fault in a fork-
less manner. Note that FaultEncoding involves the declaration of fresh symbolic
variables for fault decisions and fault effects – hence the update of the path pred-
icate Φ. Also, the fault counter nbf is updated, and a new potentially faulted
expression expr′ is computed.

Note that checking if the fault counter nbf does not exceed the maximal
number of faults maxf can be performed at different places. We found the best
trade-off is to augment the conditional jump queries to check if we could explore

70

Adversarial Reachability

each branch without exceeding maxf (see Algorithm 5), as checking at the end
of a path often involves exploring many unfeasible faulty paths.

We refer to this set of modifications as Forkless Adversarial Symbolic Execu-
tion (FASE).

5.3 Algorithm Properties

We now consider the properties of the FASE algorithm.

Proposition 2. The FASE algorithm is correct and k-complete for adversarial
reachability.

Sketch of proof. If our algorithm finds an adversarial path reaching the target lo-
cation l, by providing specific input values and a fault sequence, then an attacker
executing the program with the provided inputs and performing the proposed
faults will reach its goal. Our algorithm is based on symbolic execution with
bounded path depth and explores all possible attack paths according to the
considered attacker model, hence its k-completeness for adversarial reachability.

Tightness of FASE. Consider a single path with no branching instruction
and an assert statement to be checked at the end, together with f possible fault
locations and a maximum ofm faults. Then the forking SE yields up to Cf

m paths
to analyze, and as many queries to send to the solver. In the same scenario, FASE
will analyze only the original path, and send a single query to the solver.

Still, the Forkless encoding increases query complexity, as shown in Section
7. We present in the remainder of this section two mitigation techniques.

5.4 Optimization via Early Detection of Fault Saturation
(FASE-EDS)

Algorithm 6: FASE-EDS conditional jump evaluation
Input: path predicate Φ, conditional jump instruction if cdt then lt else le
Data: fault counter nbf , maximal number of faults maxf , worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_EDS(Φ, cdt, lt, le) is
2 if Φ ∧ cdt ∧ (nbf < maxf) is satisfiable then
3 Add (Φ ∧ cdt, lt) to WL
4 else if Φ ∧ cdt ∧ (nbf == maxf) is satisfiable then
5 Stop injection in this path
6 Add (Φ ∧ cdt, lt) to WL

7 end
/* Idem for else branch (¬cdt) */

8 end

71

S. Ducousso et al.

The first angle we explore to minimize query complexity is to reduce the
number of injection points by stopping the injection process as soon as possible.
Indeed, fewer injection points mean fewer extra symbolic variables and in general
smaller and simpler queries for the SMT solver. We call this optimization Early
Detection of fault Saturation, and write FASE-EDS when it is activated.

Its difference compared to FASE is in handling conditional jumps, illustrated
in Algorithm 6. Instead of checking whether a branch can be explored without
exceeding the maximum number of faults, we double the check: (1) first we check
whether the branch can be explored with strictly fewer faults than allowed. If
the query is satisfiable, the analysis continues down that branch as usual; (2) if
not satisfiable, we check whether the branch is feasible with exactly the maximal
number of faults allowed. If not, the branch is infeasible and we stop as usual. Yet,
if it is feasible, then we know that we have spent all allowed faults. We can thus
continue the exploration without injecting any new fault in the corresponding
search sub-tree, leading to simpler subsequent queries.

Proposition 3. FASE-EDS is correct and k-complete for the adversarial reach-
ability problem.

Proof. FASE-EDS remains correct as it does not modify the path predicate
computation, and it remains k-complete as it only prunes fault injections that
are actually infeasible – and would have been proven so by the solver, later in
the solving process.

5.5 Optimization via Injection on Demand (FASE-IOD)

The second angle explored to reduce query complexity through the reduction of
injection points is to inject faults on demand, only when they are truly needed.
We call this optimization Injection On Demand, and write FASE-IOD when it
is activated.

To inject faults on demand, we now build two path predicates along a path:
the working path predicate Φ based on which solver queries are built (where we
try to minimize fault injection), and the normal adversarial path predicate ΦF

computed in previous sections (encompassing all the faults seen so far).

Algorithm 7: FASE-IOD assignment evaluation
Input: path predicate Φ, faulted path predicate ΦF , assignment instruction

x := expr, current number of faults (in ΦF) nbf
Output: Updated Φ, ΦF

1 Function eval_assign_IOD(Φ, ΦF , cdt, x, expr) is
2 Φ′F , expr′, nbf := FaultEncoding(ΦF , expr, nbf)
3 return (Φ ∧ (x , expr), Φ′F ∧ (x , expr′))
4 end

72

Adversarial Reachability

Algorithm 8: FASE-IOD conditional jump evaluation
Input: path predicate Φ, conditional jump instruction if cdt then lt else le
Data: fault counter nbf , maximal number of faults maxf , under

approximation counter under_counter, worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_IOD(Φ, ΦF , cdt, lt, le) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL
4 else if under_counter ≤ maxf then
5 if ΦF ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
6 Φ := ΦF

7 under_counter := under_counter + 1
8 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL

9 end
10 end

/* Idem for else branch (¬cdt) */
11 end

Algorithms are updated accordingly. Especially, assignment evaluation is du-
plicated as shown in Algorithm 7: The normal symbolic assignment, with the
original right-hand-side expression expr, is added to Φ, while ΦF is updated with
the fault encoding of the assignment, expr′.

The on-demand reasoning takes place in the conditional jump instruction
process detailed in Algorithm 8. The basic idea is to first check branch feasibility
with the simpler path predicate Φ, encompassing the least number of faults. We
continue this way as long as we can, meaning we rely on standard reachability
as much as we can.

When encountering a branch infeasible with Φ, we then check whether this
branch is feasible with all the possible faults seen so far, i.e. using ΦF . If no
that is a stop, otherwise we know that Φ does not encompass enough faults to
go further. We then replace Φ by ΦF (called a switch) at this stage, and thus
continue with strictly more faults. Note that this is straightforward as ΦF and
Φ only differ on fault injections. Then again, the new Φ will not accumulate any
fault (until a new switch) while ΦF continues accumulating all possible faults.

As a bonus, the number of path predicate switches gives us an under-
approximation under_counter of the number of faults already needed in the
path under analysis. We use it to stop the injection early, when at least maxf
faults have been used.

Proposition 4. FASE-IOD is correct and k-complete for the adversarial reach-
ability problem.

Proof. FASE-IOD explores the same feasible paths as FASE, hence preserving
its properties.

73

S. Ducousso et al.

5.6 Optimizations Combination

Algorithm 9: FASE-IOD and FASE-EDS combination, conditional
jump evaluation

Input: path predicate Φ, faulty path predicate ΦF , conditional jump
instruction if cdt then lt else le

Data: fault counter nbf , maximal number of faults maxf , under
approximation counter under_counter, worklist WL

Output: WL updated in place

1 Function eval_conditional_jump_EDS_IOD(Φ, ΦF , cdt, lt, le) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL
4 else if under_counter ≤ maxf then
5 if ΦF ∧ cdt ∧ (nbf < maxf) is satisfiable then
6 Φ := ΦF

7 under_counter := under_counter + 1
8 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL

9 else if ΦF ∧ cdt ∧ (nbf == maxf) is satisfiable then
10 Φ := ΦF

11 Stop Φ′ update and queries
12 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL

13 end
14 end

/* Idem for else branch (¬cdt) */
15 end

Both optimizations can be combined together as illustrated in Algorithm
9. Taking FASE-IOD as a basis, saturation detection is added in the faulted
path predicate ΦF queries at conditional branch handling. If the saturation is
detected, the main path predicate switch to ΦF but ΦF stops being updated and
queried further down that path, which stops fault injection.

Proposition 5. The combination of FASE-EDS and FASE-IOD is correct and
k-complete for the adversarial reachability problem.

Proof. This combination also explores all possible paths for the considered at-
tacker models, like FASE, hence preserving its properties.

6 Implementation

We now provide details about our forkless adversarial symbolic execution (FASE)
implementation, named BINSEC/ASE, for Adversarial Symbolic Execution. The
code is made open-source7.
7 https://github.com/binsec/binsec-ase

74

https://github.com/binsec/binsec-ase

Adversarial Reachability

Binary-level Fault Injection. While our method works for any program ab-
straction level, we choose to implement it for the binary level, which makes more
sense in many security scenarios. We implement our forkless adversarial symbolic
execution on top of the BINSEC symbolic engine [38,40,10]. It has already been
used in a number of significant case studies [9,81,80,36,37], and it is notably able
to achieve bounded verification (k-completeness) and to reasonably deal with
symbolic pointers [44].

We modified the path predicate computation of BINSEC 0.4.0 as described in
Section 5, and implemented our dedicated optimizations FASE-EDS, FASE-IOD
and FASE EDS+IOD. BINSEC consists of 60kloc of Ocaml and our modifica-
tions add 6kloc. The attacker goal is specified as a local predicate to reach,
using BINSEC directives. We currently support data faults such as arbitrary
modification, bit-flip and reset. Test inversion is emulated through faulting the
condition of conditional jumps. We let the user define an injection target range,
made of multiple code address intervals. For large programs, it enables focusing
on the security critical sections. Finally, we also provide a blacklist for some
memory locations which will never be faulted. The blacklist is mostly used for
the stack register (esp in x86, which is concretized in the analysis) and the pro-
gram counter, as our fault model does not include tampering with the stack nor
arbitrary control faults.

Details. Our exploration strategy is depth first, the underlying SMT solver is
Bitwuzla [71]. We constrain the faulted values to differ from the original values
in fault encodings, such that only true corruptions are reported as active faults.

7 Evaluation

We now evaluate our new algorithm for software verification against multi-fault
attacks. We consider the following research questions.
– RQ1: is our tool correct and complete? In particular, can we find attacks

on vulnerable programs and prove secure resistant programs?
– RQ2: can we scale in number of faults without path explosion?
– RQ3: what is the impact of our optimizations?

Besides this evaluation, we also show the use of our method in a number of
different security scenarios (Section 7.5), and on a larger case study (Section 8).

7.1 Experimental Setting

The Machine Used.We ran our experiments on a cloud machine with a proces-
sor Intel Dual Xeon 4214R with 48 CPU cores and 384GB of RAM. Experiments
ran in parallel on the 48 cores, each run using only one core.

The Attacker Model chosen in this evaluation can perform a varying number
of faults. Its goal is expressed as a security oracle directly written in C for each
benchmark, the computation of which is not faulted.

75

S. Ducousso et al.

The Benchmark used here is a standard set of programs from the SWiFI
literature on physical fault injections and high-security devices, characterized
in Table 2. First, the 8 versions of VerifyPIN from the FISSC [42] benchmark
suite, dedicated to the evaluation of physical fault attack analyses. VerifyPIN is
an authentication program. There are one unprotected and 7 different protected
versions, some vulnerable, some resistant to one test inversion fault. We added
2 manually unrolled versions of the unprotected VerifyPIN, with a PIN size of
4 and 16, to add diversity in the benchmarks with programs without loops.
An oracle is provided by FISSC, checking if the user PIN truly corresponds to
the reference PIN. Second, we take the 2 versions of the npo2 program from
Le et al. [65], together with their oracles. Npo2 is a program computing an
integer’s upper power of two. The attacker’s goal is to perform a silent data
corruption, i.e. change the end result without triggering countermeasures. One
version is vulnerable to one arbitrary data fault, the second is resistant due to
extra arithmetic checks.

Compilation. The benchmarks are written in C and have been compiled with
gcc for the Intel x86-32 architecture, using the flag “-O0” to preserve counter-
measures. For BINSEC compatibility, we use the “-static” flag to include the
necessary library functions directly in the binary.

Table 2: Benchmarks characteristics and statistics of a standard SE analysis
BINSEC analysis - no fault

Program group (#) C loc x86 loc #instruction #paths #branch Time
(explored) in a path

Section 7
VerifyPINs (8) 80-140 160-215 192-269 1 17-34 < 0.1s
VerifyPIN unrolled (2) 40-85 140-430 142-442 5-17 5-17 < 0.1s
npo2 (2) 50 200-220 607-653 3 31-33 < 0.1s

Section 8
WooKey bootloader 3.2k 2350 290k 17 18k 9s

Section 7.5
CRT-RSA (3) 125-170 400-600 108k-29M 1 5k-1.3M 0.4s - 1m27
Secret keeping
machine (2) 100-200 240-360 1k-1.3k 1 130-150 < 0.1s
VerifyPIN_0
with SecSwift 80 430 430 1 22 < 0.1s

BINSEC Settings. We limit the maximal depth of an analysis to the depth
necessary to perform an exhaustive non-faulty analysis, rounded to the upper
hundred. We exhaustively explore all the possible paths up to this bound and
do not stop at the first identified attack, in order to have comparable results.
We set the global analysis timeout for 1 day. We fault values and not addresses,

76

Adversarial Reachability

we do not directly fault the stack pointer nor the program counter, and we do
not fault the status flags unless explicitly specified.

7.2 Correctness and Completeness in Practice (RQ1)

We first show that our tool works as expected on several codes with known
ground truth. (1) We check that indeed, with no fault allowed, no attack is
found in any of the benchmarks; (2) We check that indeed the insecure npo2
program is vulnerable to a single arbitrary data fault while the secure version is
not – it can still be exploited with two faults; (3) According to their authors, the
VerifyPIN versions 0 to 4 are vulnerable to one test inversion, while VerifyPIN
5 to 7 are resistant to it. We indeed reproduce these results. When allowing two
faults, all VerifyPIN become vulnerable; (4) When using one arbitrary data fault
against the VerifyPINs, all versions are found vulnerable. We manually check
that indeed the identified attack paths make sense; (5) Our manually unrolled
versions of VerifyPINs do not contain conditional branching instructions in the
targeted function, making them resistant to test inversion. We check that this is
the case, while they are still vulnerable to a single arbitrary data fault.

Conclusion. Our tool indeed can showcase a program vulnerability to fault
injection attacks and prove resistance to fault injection attacks, as expected by
the correctness and k-completeness properties of the underlying algorithms.

7.3 Scalability (RQ2)

For this evaluation, we focus on an attacker capable of arbitrary data faults, as
those weigh the heaviest on the analysis.

We take FASE-IOD as our best performing technique (see Section 7.4). We
evaluate here its capability to handle multi-fault and avoid path explosion, com-
pared to the forking technique. Results are illustrated in Figures 4 and 5. Note
that all FASE variants explore the same number of paths, and are thus repre-
sented as FASE in Figure 5. For each benchmark, we took the arithmetic mean
for 100 runs. Values presented here are the geometric mean over the benchmarks.

FASE-IOD is 10x times faster than Forking for 1 fault, and x200 times faster
for 2 faults on average. For the best case benchmark, we are x224 times faster for
1 fault and x6121 for 2. Starting from three faults onward, Forking experiences
timeouts, rendering values non comparable. Half of the benchmark timeouts for
3 faults, three quarters for 4 faults, 11 over 12 for 6 faults and all of them after
that. FASE-IOD never timeouts in this experiment. This scaling is enabled by
avoiding path explosion. On average, Forking explores x50 times more paths for
2 faults than for one, while FASE-IOD only explores x3 times more paths. From
Figure 4, we see FASE on its own already scales better than Forking, being
x3 times faster for 1 fault and x108 times faster for 2, and never experiencing
timeouts either.

Conclusion. FASE-IOD shows improved scalability in terms of the maximum
number of faults allowed, for the arbitrary data fault model, compared to the
forking technique.

77

S. Ducousso et al.

Fig. 4: Analysis time

Fig. 5: Average number of explored paths, Average solving time per query

Fig. 6: Number of queries sent to the solver

78

Adversarial Reachability

7.4 Performance Optimization (RQ3)

We evaluate our forkless variants: FASE, FASE-EDS, FASE-IOD and FASE
EDS+IOD, to determine which performs best for arbitrary data faults. Results
are illustrated in Figures 4, 5 and 6.

We vary again the maximum number of faults from 1 to 10. Note that all
FASE variants explore the same number of paths for each number of faults, as
the optimizations reduce the number of faults injected but do not lose correct-
ness nor k-completeness. FASE indeed generates complex queries8, taking on
average around twice the time necessary for Forking queries to be solved. FASE-
EDS then gains a little bit in that regard. FASE queries take only x1.04 longer to
solve on average for all fault numbers. The real improvement comes with the On-
Demand logic of FASE-IOD (x2.02 times faster on average over all fault numbers)
and FASE EDS+IOD (x2.02 also), where query complexity drops to the level of
Forking. This improvement in query complexity is achieved algorithmically at
the price of query creation. However, due to more queries being arithmetically
simplified, fewer queries are sent in the end to the solver for FASE-IOD (x0.88
on average over all fault values compared with FASE) and FASE EDS+IOD
(x0.98). FASE-EDS sent approximately the same number of queries as FASE.
The number of queries sent to the solver explodes for Forking, correlated with
the path explosion experienced. In terms of performance, two trends appear
as the number of faults allowed increases. FASE and FASE-EDS tend to be be-
tween x2 and x3 times slower than FASE-IOD and FASE EDS+IOD. In the end,
FASE-IOD proves to be the fastest optimization (x1.1 times faster than FASE
EDS+IOD on average over all number of faults), likely due to the combination
of on-demand logic and fewer queries than FASE EDS+IOD.

Conclusion. We retain FASE-IOD as our best performing forkless adversarial
algorithm, at most x3.06 faster than FASE.

7.5 Other Experiments and Fault Models

CRT-RSA. Puys et al. [78] describe three versions of CRT-RSA: unprotected,
Shamir version and Aumuller version. Only the last one is shown to resist the
BellCoRe attack [16] which uses a single reset fault to break the cryptography.
We were able to automatically reproduce the attack with 1 reset fault on the
unprotected version of CRT-RSA, after 3s of analysis, and we were not able to
find attacks on the other two versions in 10 days time.

Secret-keeping Machine. Dullien [41] proposes two versions of a secret-keeping
machine. The one based on linked lists is manually shown to be exploitable by
an attacker able to perform a single bit-flip in the memory (not in registers),
while the array version is shown to be secure against that. For this benchmark,

8 When counting the number of ite operators introduced in queries, from having barely
any in a run without faults, we reach around 2,800 ite per query on average for FASE
and 1,500 for FASE-IOD for one fault.

79

S. Ducousso et al.

we activated faults on variables used as addresses. We were able to reproduce
the attack on the linked list implementation with one bit-flip fault and to show
the array implementation is secure for this fault model. In addition, if we allow
faults in registers too, the array implementation becomes vulnerable.

SecSwift Countermeasure. We applied the SecSwift countermeasure, a llvm-
level protection developed by STMicroelectronics [45,27], to VerifyPIN version 0.
We were able to find attacks yielding an early loop exit on this binary with either
a single test inversion or a single arbitrary data fault. These paths belonging
to the CFG of the program, these attacks are not unexpected, yet it is still
interesting that our method finds them automatically.

8 Case Study: the WooKey Bootloader

We now confront our tool to a real-life security system, WooKey.

Presentation of WooKey. First presented in 2018 by ANSSI, the French sys-
tem security agency, the WooKey platform [14,89] is “a custom STM32-based
USB thumb drive with mass storage capabilities designed for user data encryp-
tion and protection, with a full-fledged set of in-depth security defenses”. Their
choice to be open source and open hardware makes WooKey a relevant case
study: it is a real-life, complex device, security focused and available for repro-
ducibility. Note also that Wookey has been extensively analyzed, as it was the
target of an ANSSI cybersecurity challenge for security professionals [5].

Security Scenario and Goal of our Study. We focus on WooKey bootloader,
a dual-bank system enabling hot firmware updates. The system is hardened,
especially redundant test protections are present in critical sections to protect
against test inversion faults. We consider the same attacker model as the ANSSI
challenge did [5]: the attacker seeks to manipulate the bootloader logic to boot
on the older firmware, more likely to contain security vulnerabilities. We also
consider an attacker able to perform a single arbitrary data fault. We see in
Table 2 that WooKey bootloader size is orders of magnitude larger than the
programs used for evaluation in Section 7. Wookey is available as C code. We
compile it like we did for the evaluation benchmarks (Section 7.1).

We conduct the following three analyses:
1. automatically analyze WooKey at binary-level to check whether we are able

to find previously known faults [63], and/or new ones: we are indeed able
to find the two faults identified by prior work [63] (A1, A2), as well as an
attack they do not mention (A3);

2. automatically analyze at binary-level the patch version of Wookey proposed
by Lacombe et al. [63]: we found that the proposed patch indeed blocks the
two known attacks (A1 and A2), but not the new attack (A3);

3. propose a definitive patch by adding a counter-measure for A3 and remove
parts of the counter-measures which are shown to be useless here. The patch
is proven correct w.r.t. our attack model.

80

Adversarial Reachability

We discuss these results in the following and we present briefly in Section 8 the
discovery of two more known faults. Overall, it demonstrates that our technique
can scale to binary-level real-size systems.

Analyze Key Parts of Wookey. Lacombe et al. find an attack in the loader_
exec_req_selectbank function (A1) and another in the loader_exec_req_
flashlock function (A2). They correspond to data corruption in branching con-
ditions. We are able to find both attacks, linking faults back to their locations in
the C code with debug information. We also find an additional attack, faulting
another part of the loader_exec_req_flashlock function (A3).

Analyze a Security Patch of WooKey. We now evaluate the protection
scheme proposed by Lacombe et al. [63] for these attacks. It consists of four
extra counter-measures named from CM1 to CM4. We found indeed that the
full protection prevents attacks A1 and A2, as claimed by the authors of the
patch. Yet, our analysis shows that the protection does not prevent the new
attack A3.

Propose a New Patch and Evaluate It. We manually inspect these different
analysis results to understand what happens. We have especially been able to
identify the root cause of A3 and propose a dedicated countermeasure for it
(named CMA). Also, by analyzing each counter-measure in isolation, we have
been able to understand that counter-measures CM1 and CM3 do not block any
attack path as they are redundant with other tests in the code and can be safely
removed. Overall, our new patch (CMA + refined former patch) is shown by
our tool to protect against all the attacks, for an attacker able to perform one
arbitrary data fault (Table 3).

Table 3: Table summarizing the effects of countermeasures
Protection scheme A1 A2 A3

(new)
l.3 l.31 l.25

Normal Wookey 3 3 3

Prior patch (CM1+CM2+CM3+CM4) 7 7 3

Our patch (CM2+CM4+CMA) 7 7 7

Legend - 3: attack path found by our tool / 7: no attack found

Other Attacks on WooKey. We were also able to find two other known at-
tacks on Wookey. (Attack vector combination) The iso8716 library, used in
WooKey for secure communication, presents a vulnerability to fault injection
which enables a software buffer-overflow in function SC_get_ATR [63]. Us-
ing an attacker with a single arbitrary data fault, we were able to reproduce
this attack; (Faulty redundant test) Martin et al. [68] shows an incorrect im-

81

S. Ducousso et al.

plementation of a redundant test to prevent single test inversion faults in the
loader_set_state function. We reproduce this result.

9 Discussion

Fault Models. Our current approach does not support advanced control faults
such as instruction corruption or instruction skip. Instruction corruption is out
of scope as it permanently changes an instruction, while we modify computation
results. It is related to self-modification, a notoriously difficult point to address in
adversarial binary-level code analysis [17,77]. Instruction skip (or other arbitrary
control jumps) could be modeled by local modification of the program counter,
yet at the price of a huge path explosion. Also, regarding micro-architectural
attacks, modeling Spectre attacks is difficult due to the speculative windows
mechanism and its associated rollback.

Other Formal Methods. While in the paper we focus on symbolic execution,
we believe the main optimization ideas developed here can be used with other
formal techniques, e.g. Bounded Model Checking [29,31], Abstract Interpretation
[34] or CEGAR [30]. Note that for each of them, fault injection may result either
in path explosion or precision loss. Still, our forkless encoding should be able to
help at least all approaches based to some extent on path unrolling.

Other Properties. The forkless encoding can surely benefit other classes of
properties to be achieved by the attacker, especially those known to be sup-
ported by (extensions of) symbolic execution, for example: trace properties such
as use-after-free, k-hyperreachability properties (secret leakage, privacy leakage,
violation of constant-time, etc.) [36], the recent robust reachability proposal [48]
for replicable bugs, etc. Our formalism itself is quite generic and can accom-
modate a wide range of properties, as we mainly keep the property unchanged
but modify the underlying transition system. We could for example imagine an
attacker willing to activate a non-terminating execution (denial of service).

Forkless Encoding and Instrumentation. Several prior works use code-level
instrumentation [68] or LLVM-level instrumentation [76,63,65] in order to lever-
age standard program analyzers as is. The forkless encoding we propose can
also be used this way, for more flexibility but without additional optimizations.
Actually, we performed some experiments with Klee and a C-level forkless instru-
mentation, and do observe significant improvement over forking instrumentation.

10 Related Work

SWiFI. Prior work in SWiFI has already been discussed in Section 3. All meth-
ods in this domain consider low-level formalism: C [28,68], LLVM [76,63], binary
[25,15,20,50]. Half of the techniques rely on the mutant approach [28,79,49,25,50],
and the other half relies on forking [76,15,20,63]. While most approaches target

82

Adversarial Reachability

attack finding (with symbolic execution and bounded model-checking), some do
aim at full verification [79], especially with deductive verification [68,28]. Very

pose a static way of reducing injection points on C programs, that is comple-
mentary to our own method – still, static analysis at binary-level is known to be
hard. Note that a few methods do consider instruction skips [49,20,50], yet with
path explosion issues.

Robustness Analysis. SWiFI is also used for robustness evaluation
[64,74,56,88,65,72,32,90], in order to verify the correct behavior of error han-
dling mechanisms. They rely also on forking or mutant techniques. The fault
models are similar to hardware fault injection, yet multi-fault is not really an
issue there, as faults are supposed to originate from safety issues (e.g. cosmic
rays) and have no reason to accumulate unreasonably.

Formalizations and Fault Models. While it is common in the field of au-
tomated formal verification of cryptographic protocols to consider models of
attackers (typically, extensions of the “Dolev-Yao” model) – either by specifying
what the attackers can do [2] or what they cannot do [7], only very few for-
malizations of software-level attacker capabilities have been proposed so far. In
software security, control-flow integrity attacks have been categorized by the ca-
pability an attacker needs [21], but these efforts have been restricted to manual
reasoning. Interestingly, Given-Wilson et al. [51] propose a formalization of fault
injection using Turing machines, but to our knowledge, no algorithm has been
built for it. Also, Fournet et al. [46] propose a type system for program-level
non-interference, taking into account an active adversary modeled as adversarial
components able to perform any action at certain steps of the program.

Mutation Testing. Sometimes called software fault injection, mutation test-
ing [75,33] aims to generate a comprehensive test suite by building test cases
discriminating various mutants of a program, and is recognized as a very pow-
erful testing criterion. As it focuses on coverage, mutant explosion cannot be
avoided. Dedicated SE techniques [73,8,11,67] have been designed.

11 Conclusion

We formalize the concept of adversarial reachability, extending standard reach-
ability to include the presence of an advanced attacker in program analysis, and
we propose a dedicated symbolic algorithm for adversarial reachability, integrat-
ing a novel forkless encoding of faults together with dedicated optimizations.
Our technique is shown to significantly reduce the number of paths to explore,
and scales up to 10 faults on a standard SWiFI benchmark, where prior forking
attempts timeout for 3 faults. Also, we show that our method scale to realistic
size examples, such as the WooKey project where we have been able to replay
known fault attacks and to even find a vulnerability not mentioned in a recently
proposed countermeasure patch.

83

few works consider multi-faults [76,63 63] pro-,68]. Interestingly, Lacombe et al. [

S. Ducousso et al.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and System
Security (TISSEC) 13(1), 1–40 (2009)

2. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. In: International Colloquium on Automata, Languages, and Program-
ming. pp. 46–58. Springer (2004)

3. Akhunzada, A., Sookhak, M., Anuar, N.B., Gani, A., Ahmed, E., Shiraz, M., Fur-
nell, S., Hayat, A., Khan, M.K.: Man-at-the-end attacks: Analysis, taxonomy, hu-
man aspects, motivation and future directions. Journal of Network and Computer
Applications 48, 44–57 (2015)

4. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J.l., Tucoulou, R.:
Nanofocused X-ray beam to reprogram secure circuits. In: International Conference
on Cryptographic Hardware and Embedded Systems. pp. 175–188. Springer (2017)

5. ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA, Synacktiv,
Thales, Labs, T.: Inter-cesti: Methodological and technical feedbacks on hardware
devices evaluations. In: SSTIC 2020, Symposium sur la sécurité des technologies
de l’information et des communications (2020)

6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier: Tech-
nology transfer of formal methods inside microsoft. In: International Conference
on Integrated Formal Methods. pp. 1–20. Springer (2004)

7. Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for
equivalence properties. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 609–620 (2014)

8. Bardin, S., Chebaro, O., Delahaye, M., Kosmatov, N.: An all-in-one toolkit for
automated white-box testing. In: International Conference on Tests and Proofs.
pp. 53–60. Springer (2014)

9. Bardin, S., David, R., Marion, J.Y.: Backward-bounded dse: targeting infeasibility
questions on obfuscated codes. In: 2017 IEEE Symposium on Security and Privacy
(SP). pp. 633–651. IEEE (2017)

10. Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A.: The bincoa
framework for binary code analysis. In: International Conference on Computer
Aided Verification. pp. 165–170. Springer (2011)

11. Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. pp. 173–182. IEEE (2014)

12. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of model
checking, pp. 305–343. Springer (2018)

13. Barthe, G., Dupressoir, F., Fouque, P.A., Grégoire, B., Zapalowicz, J.C.: Synthesis
of fault attacks on cryptographic implementations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. pp. 1016–
1027 (2014)

14. Benadjila, R., Renard, M., Trebuchet, P., Thierry, P., Michelizza, A., Lefaure, J.:
Wookey: Usb devices strike back. Proceedings of SSTIC (2018)

15. Berthier, M., Bringer, J., Chabanne, H., Le, T.H., Rivière, L., Servant, V.: Idea:
embedded fault injection simulator on smartcard. In: International Symposium on
Engineering Secure Software and Systems. pp. 222–229. Springer (2014)

16. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: International conference on the theory and appli-
cations of cryptographic techniques. pp. 37–51. Springer (1997)

84

Adversarial Reachability

17. Bonfante, G., Fernandez, J., Marion, J.Y., Rouxel, B., Sabatier, F., Thierry, A.:
Codisasm: Medium scale concatic disassembly of self-modifying binaries with over-
lapping instructions. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 745–756 (2015)

18. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
Whitebox fuzz testing in production. In: 2013 35th International Conference on
Software Engineering (ICSE). pp. 122–131. IEEE (2013)

19. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing voltage fault
injection attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 199–224 (2019)

20. Bréjon, J.B., Heydemann, K., Encrenaz, E., Meunier, Q., Vu, S.T.: Fault attack
vulnerability assessment of binary code. In: Proceedings of the Sixth Workshop on
Cryptography and Security in Computing Systems. pp. 13–18 (2019)

21. Burow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer,
M.: Control-flow integrity: Precision, security, and performance. ACM Computing
Surveys (CSUR) 50(1), 1–33 (2017)

22. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. vol. 8, pp.
209–224 (2008)

23. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automat-
ically generating inputs of death. ACM Transactions on Information and System
Security (TISSEC) 12(2), 1–38 (2008)

24. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Communications of the ACM 56(2), 82–90 (2013)

25. Carré, S., Desjardins, M., Facon, A., Guilley, S.: Openssl bellcore’s protection helps
fault attack. In: 2018 21st Euromicro Conference on Digital System Design (DSD).
pp. 500–507. IEEE (2018)

26. Cervesato, I.: The dolev-yao intruder is the most powerful attacker. In: 16th Annual
Symposium on Logic in Computer Science—LICS. vol. 1, pp. 1–2. Citeseer (2001)

27. Chauvet, H., de Ferrière, F., Bizet, T.: Software fault injection for secswift quali-
fication (2021), https://jaif.io/2021/media/JAIF2021%20-%20deFerriere.pdf

28. Christofi, M., Chetali, B., Goubin, L.: Formal verification of an implementation of
crt-rsa vigilant’s algorithm. In: PROOFS workshop: pre-proceedings. vol. 28 (2013)

29. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. (2001)

30. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM (2003)

31. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 168–176. Springer (2004)

32. Cotroneo, D., De Simone, L., Liguori, P., Natella, R.: Profipy: Programmable soft-
ware fault injection as-a-service. In: 2020 50th annual IEEE/IFIP international
conference on dependable systems and networks (DSN). pp. 364–372. IEEE (2020)

33. Cotroneo, D., Natella, R.: Fault injection for software certification. IEEE Security
& Privacy 11(4), 38–45 (2013)

34. Cousot, P.: Abstract interpretation. ACM Computing Surveys (CSUR) 28(2), 324–
328 (1996)

35. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astreé analyzer. In: Programming Languages and Systems (2005)

85

https://jaif.io/2021/media/JAIF2021%20-%20deFerriere.pdf

S. Ducousso et al.

36. Daniel, L.A., Bardin, S., Rezk, T.: Binsec/rel: Efficient relational symbolic execu-
tion for constant-time at binary-level. In: 2020 IEEE Symposium on Security and
Privacy (SP). pp. 1021–1038. IEEE (2020)

37. Daniel, L.A., Bardin, S., Rezk, T.: Hunting the haunter-efficient relational symbolic
execution for spectre with haunted relse. In: NDSS (2021)

38. David, R., Bardin, S., Ta, T.D., Mounier, L., Feist, J., Potet, M.L., Marion,
J.Y.: Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis.
In: SANER (2016)

39. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 7–15. IEEE
(2012)

40. Djoudi, A., Bardin, S.: Binsec: Binary code analysis with low-level regions. In: In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 212–217. Springer (2015)

41. Dullien, T.: Weird machines, exploitability, and provable unexploitability. IEEE
Transactions on Emerging Topics in Computing 8(2), 391–403 (2017)

42. Dureuil, L., Petiot, G., Potet, M.L., Le, T.H., Crohen, A., Choudens, P.d.: Fissc:
A fault injection and simulation secure collection. In: International Conference on
Computer Safety, Reliability, and Security. pp. 3–11. Springer (2016)

43. Facebook: Infer static analyzer. https://fbinfer.com/
44. Farinier, B., David, R., Bardin, S., Lemerre, M.: Arrays made simpler: An efficient,

scalable and thorough preprocessing. In: LPAR. pp. 363–380 (2018)
45. de Ferrière, F.: Software countermeausres in the llvm risc-v compiler (2021),

https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-
15h00-Fran%C3%A7ois-de-Ferri%C3%A8re.pdf

46. Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM
(2008)

47. Gangolli, A., Mahmoud, Q.H., Azim, A.: A systematic review of fault injection
attacks on iot systems. Electronics 11(13), 2023 (2022)

48. Girol, G., Farinier, B., Bardin, S.: Not all bugs are created equal, but robust
reachability can tell the difference. In: International Conference on Computer Aided
Verification. pp. 669–693. Springer (2021)

49. Given-Wilson, T., Jafri, N., Lanet, J.L., Legay, A.: An automated formal process
for detecting fault injection vulnerabilities in binaries and case study on present.
In: 2017 IEEE Trustcom/BigDataSE/ICESS. pp. 293–300. IEEE (2017)

50. Given-Wilson, T., Jafri, N., Legay, A.: Combined software and hardware fault
injection vulnerability detection. Innovations in Systems and Software Engineering
16(2), 101–120 (2020)

51. Given-Wilson, T., Legay, A.: Formalising fault injection and countermeasures. In:
Proceedings of the 15th International Conference on Availability, Reliability and
Security. pp. 1–11 (2020)

52. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation. pp. 213–223 (2005)

53. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing.
Communications of the ACM 55(3), 40–44 (2012)

86

https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-15h00-Fran%C3%A7ois-de-Ferri%C3%A8re.pdf
https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-15h00-Fran%C3%A7ois-de-Ferri%C3%A8re.pdf

Adversarial Reachability

54. Goyal, B., Sitaraman, S., Venkatesan, S.: A unified approach to detect binding
based race condition attacks. In: Int’l Workshop on Cryptology & Network Security
(CANS). p. 16 (2003)

55. Gravellier, J., Dutertre, J.M., Teglia, Y., Moundi, P.L.: Faultline: Software-based
fault injection on memory transfers. In: 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). pp. 46–55. IEEE (2021)

56. Hari, S.K.S., Tsai, T., Stephenson, M., Keckler, S.W., Emer, J.: Sassifi: An
architecture-level fault injection tool for gpu application resilience evaluation. In:
2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 249–258. IEEE (2017)

57. Van den Herrewegen, J., Oswald, D., Garcia, F.D., Temeiza, Q.: Fill your boots:
Enhanced embedded bootloader exploits via fault injection and binary analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 56–
81 (2021)

58. Karaklajić, D., Schmidt, J.M., Verbauwhede, I.: Hardware designer’s guide to
fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
21(12), 2295–2306 (2013)

59. Kim, C.H., Quisquater, J.J.: Fault attacks for CRT based RSA: New attacks, new
results, and new countermeasures. In: IFIP International Workshop on Information
Security Theory and Practices. pp. 215–228. Springer (2007)

60. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
A software analysis perspective. Form. Asp. Comput. (2015)

61. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. In: SP (2019)

62. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., et al.: Spectre attacks: Exploiting speculative
execution. Communications of the ACM 63(7), 93–101 (2020)

63. Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis
and dynamic symbolic execution in a toolchain to detect fault injection vulner-
abilities. In: PROOFS WORKSHOP (SECURITY PROOFS FOR EMBEDDED
SYSTEMS) (2021)

64. Larsson, D., Hähnle, R.: Symbolic fault injection. In: International Verification
Workshop (VERIFY). vol. 259, pp. 85–103. Citeseer (2007)

65. Le, H.M., Herdt, V., Große, D., Drechsler, R.: Resilience evaluation via symbolic
fault injection on intermediate code. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 845–850. IEEE (2018)

66. Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding
real bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages 6(OOPSLA1), 1–27 (2022)

67. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: Proceedings of the 40th International
Conference on Software Engineering. pp. 456–467 (2018)

68. Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based counter-
measures: a case study. In: Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing. pp. 1849–1852 (2022)

69. Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against intel sgx. In: 2020 IEEE
Symposium on Security and Privacy (SP). pp. 1466–1482. IEEE (2020)

87

S. Ducousso et al.

70. Mutlu, O., Kim, J.S.: Rowhammer: A retrospective. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39(8), 1555–1571
(2019)

71. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

72. Palazzi, L., Li, G., Fang, B., Pattabiraman, K.: A tale of two injectors: End-to-
end comparison of ir-level and assembly-level fault injection. In: 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE). pp. 151–
162. IEEE (2019)

73. Papadakis, M., Malevris, N.: Automatic mutation test case generation via dynamic
symbolic execution. In: 2010 IEEE 21st International Symposium on Software Re-
liability Engineering. pp. 121–130. IEEE (2010)

74. Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: Symplfied: Symbolic
program-level fault injection and error detection framework. In: 2008 IEEE In-
ternational Conference on Dependable Systems and Networks With FTCS and
DCC (DSN). pp. 472–481. IEEE (2008)

75. Petrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., Just, R.: An industrial appli-
cation of mutation testing: Lessons, challenges, and research directions. In: 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). pp. 47–53. IEEE (2018)

76. Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: A symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation. pp. 213–222. IEEE (2014)

77. Preda, M.D., Giacobazzi, R., Debray, S., Coogan, K., Townsend, G.M.: Modelling
metamorphism by abstract interpretation. In: International Static Analysis Sym-
posium. pp. 218–235. Springer (2010)

78. Puys, M., Riviere, L., Bringer, J., Le, T.h.: High-level simulation for multiple fault
injection evaluation. In: Data Privacy Management, Autonomous Spontaneous Se-
curity, and Security Assurance, pp. 293–308. Springer (2014)

79. Rauzy, P., Guilley, S.: A formal proof of countermeasures against fault injection
attacks on crt-rsa. Journal of Cryptographic Engineering 4(3), 173–185 (2014)

80. Recoules, F., Bardin, S., Bonichon, R., Lemerre, M., Mounier, L., Potet, M.L.:
Interface compliance of inline assembly: Automatically check, patch and refine. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
pp. 1236–1247. IEEE (2021)

81. Recoules, F., Bardin, S., Bonichon, R., Mounier, L., Potet, M.L.: Get rid of inline
assembly through verification-oriented lifting. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). pp. 577–589. IEEE
(2019)

82. Richter-Brockmann, J., Sasdrich, P., Guneysu, T.: Revisiting fault adversary
models–hardware faults in theory and practice. IEEE Transactions on Comput-
ers (2022)

83. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes 30(5), 263–272 (2005)

84. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In: IEEE Symposium on Security
and Privacy (2016)

88

https://arxiv.org/abs/2006.01621

Adversarial Reachability

85. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Inter-
national workshop on cryptographic hardware and embedded systems. pp. 2–12.
Springer (2002)

86. Tang, A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: Exposing the perils of
{Security-Oblivious} energy management. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1057–1074 (2017)

87. Van Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M., Genkin, D.,
Yarom, Y., Sunar, B., Gruss, D., Piessens, F.: Lvi: Hijacking transient execution
through microarchitectural load value injection. In: 2020 IEEE Symposium on
Security and Privacy (SP). pp. 54–72. IEEE (2020)

88. Winter, S., Tretter, M., Sattler, B., Suri, N.: simfi: From single to simultaneous
software fault injections. In: 2013 43rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). pp. 1–12. IEEE (2013)

89. https://github.com/wookey-project, accessed july 2021
90. Zavalyshyn, I., Given-Wilson, T., Legay, A., Sadre, R., Riviere, E.: Chaos duck: A

tool for automatic iot software fault-tolerance analysis. In: 2021 40th International
Symposium on Reliable Distributed Systems (SRDS). pp. 46–55. IEEE (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

89

https://github.com/wookey-project
http://creativecommons.org/licenses/by/4.0/

Automated Grading of Regular Expressions

Su-Hyeon Kim1,3 , Youngwook Kim2 , Yo-Sub Han2 ,
Hyeonseung Im1 , and Sang-Ki Ko1(�)

1 Department of Computer Science & Engineering, Kangwon National University,
Gangwon-do 24341, Republic of Korea

{tngus98207,hsim,sangkiko}@kangwon.ac.kr
2 Department of Computer Science, Yonsei University, Seoul 03722, Republic of Korea

{youngwook,emmous}@yonsei.ac.kr
3 Artificial Intelligence Research Center, Korea Electronics Technology Institute,

Seongnam-si 13509, Republic of Korea
suhyeon0123@keti.re.kr

Abstract. With the rapid transition to distance learning, automatic
grading software becomes more important to both teachers and students.
We study the problem of automatically grading the regular expressions
submitted by students in courses related to automata and formal lan-
guage theory. In order to utilize the semantic information of the regular
expression, we define a declarative logic that can be described by regular
language and at the same time has natural language characteristics, and
use it for the following tasks: 1) to assign partial grades for incorrect
regular expressions and 2) to provide helpful feedback to students to
make them understand the reason for the grades and a way to revise
the incorrect regular expressions into correct ones. We categorize the
cases when students’ incorrect submissions deserve partial grades and
suggest how to assign appropriate grades for each of the cases. In order
to optimize the runtime complexity of the algorithm, two heuristics based
on automata theory are proposed and evaluated on the dataset collected
from undergraduate students. In addition, we suggest Regex2NL which
translates regular expressions to natural language descriptions to give in-
sight to students so that they can understand how the regular expressions
work.

Keywords: regular expressions · MSO logic · automated grading system
· automata theory

1 Introduction

Regular expressions (regexes) are a great tool for the pattern matching problem
as they can effectively describe pattern structures. Regexes are widely used
in software applications such as search engines, text processing, programming
languages, and compilers due to their compact representations. Although most

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 90–112, 2023.
https://doi.org/10.1007/978-3-031-30044-8_4

http://orcid.org/0000-0001-9144-689X
http://orcid.org/0000-0002-6660-2755
http://orcid.org/0000-0002-7211-6657
http://orcid.org/0000-0002-3901-0834
http://orcid.org/0000-0002-5406-5104
https://doi.org/10.1007/978-3-031-30044-8_4
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_4&domain=pdf

developers find that regexes are powerful and flexible tools, they also feel that
regexes are very difficult to learn for many reasons such as readability, validity,
reliability, and so on [7,16].

There have been several interesting approaches to automatically grading
student submissions in an automata-related course in the online education envi-
ronment. Alur et al. [2] propose a technique for automatically grading students’
DFA construction in automata courses while generating high-level hints for help-
ing students understand how to correct their wrong submissions. For instance,
they introduce the DFA edit difference to compute the amount of difference
between the correct DFA and students’ DFA and MOSEL (MSO-equivalent
declarative logic) even to capture the case where the student’s submission cor-
responds to a different logic in MOSEL. Later, D’Antoni et al. [6] utilize the
DFA edit difference in order to generate natural language feedback explaining
how to correct the submitted DFA. They also conduct an online survey to collect
students’ feedback about the quality, usability, and effectiveness of their grading
system.

Kakkar [10] studies a similar problem, namely, the problem of grading regexes
instead of DFAs. Inspired by the DFA edit difference [2], Kakkar proposes a
new criterion called ‘Regex Edit Distance’ which is basically based on the string
edit-distance between students’ regexes and correct ones. However, both works
suffer from a limitation that ‘optimal’ answers for the problems should be given by
TAs as they compare the students’ submissions with the answers for giving partial
grades. Recently, D’Antoni et al. [5] propose Automata Tutor v3 (abbreviated
to AT v3 hereafter), which is the latest version of the previous work [2]. In
AT v3, they include automated grading and feedback generation for a variety
of new automata problems including the problems that ask to create regexes,
context-free grammars, pushdown automata, and even Turing machines for a
given description (e.g., a natural language description, or an automaton, or a
grammar that belongs to a different class). However, they also rely on the string
edit-distance for grading regexes similar to the work of [10]. Note that AT v3
provides counterexamples of incorrect regexes such as strings that should (or not)
be accepted by students as feedback.

In this paper, we introduce an automated grading framework for regular ex-
pressions that gives reasonable grades and helpful feedback. The overall structure
of our regex grading scheme is illustrated in Fig. 1. As the regex construction
problem’s goal is to make regex from the natural language description, TA first
assigns the problem by giving the natural description of the problem and the
logic formula of the regex which is one of the forms of the regular language. Then
students submit the regex corresponding to the given description. Finally, we use
three algorithms for generating more convincing partial grades and feedback by
comparing the answer logic formula with the submission.

We aim to overcome several remaining limitations that have not been resolved
by the earlier approaches. First, we claim that it is not appropriate to grade
a student’s regex just by calculating the string edit-distance with the ‘solution
regex’. There could be infinitely many regexes that describe the same language.
Even when we consider the set of most compact regexes describing the regular

Automated Grading of Regular Expressions 91

Description

Logic

TA Student
Regex

Editted Regex TreeStudent's Regex Tree

Editted Logic TreeTA's Logic Tree

False
Positive

False
Negative

Counter Examples

Feedback: Star operator is missing.
Grade: 7/10 for one edit

Problem

TA's Logic

Student A's Regex Student A's Regex

Student B's Regex

Student C's Regex

Editted Regex
(eq. with TA's Logic)

TA's Logic Editted Logic
(eq. with B's Regex)

Counter Example

's

Feedback: Yours accepts "Even number of 's".
Grade: 7/10 for one parameter edit (about)

Feedback: Not accept strings consisting only of 's.
Grade: 8/10

Syntactic
Grading

Logical
Grading

Corner Case
Grading Enumeration

Fig. 1. Overview of our automated regex grading framework

language in question, there can be multiple regexes since it is not guaranteed
that there is a unique minimal regex for a given regular language. Also, the
string edit-distance cannot take the structural similarity into account while we
can obtain hierarchical information from the tree form of the regex. Second,
we should consider not only the syntactic discrepancies but also the semantic
discrepancies arising from the misinterpretation of the problem. In order to
compare the logical differences in real-time, the regex must be transformed with
the logic and converted to DFA in polynomial time. However, there is no compact
logic to do so. Lastly, there is a lack of abundant feedback that helps students
study regexes. More detailed feedback such as suggesting the shortest form of the
regex, logical differences between the answer and the submission, and organized
form of the corner case would be more helpful than simple symbol correction
feedback.

In order to resolve the above-mentioned issues, we propose a 3-step regex
grading scheme that considers both syntactic and semantic discrepancies between
submitted regexes and answer logic formulas (natural language descriptions).
More specifically, first, to consider the syntactic discrepancy, instead of comparing
a student’s regex with the solution regex, we compare the possible transforms
of the student’s regex with the language of the solution. To this end, we apply
tree-level edits to the parse tree of the regex to detect the possible syntactic
mistakes made by the student. As shown in Fig. 1, after one tree-edit with adding
the star operator to student A’s submission b+ab∗a, the edited regex is equivalent
to TA’s logic (b + ab∗a)∗. Second, we take into account the possibility that a
student simply misinterprets the specification of the language. For instance, we
may consider that a submitted regex deserves a partial grade if the language
expressed by the submission corresponds to a specification that is very similar
to the given specification. Therefore, we consider the semantic discrepancy by
applying logic-level edits to the logic formula for the specification and searching

S.-H. Kim et al.92

for a similar specification that exactly corresponds to the student’s regex. In this
way, by considering the ‘similarity’ to the student’s regex, we can give a partial
grade. For example, after one logic-edit with changing the parameter from ‘a’ to
‘b’ on the TA’s logic, edited logic num_div(b, 2, 0) is equivalent to the student
B’s submission (a+ ba∗b)∗. Finally, we take some corner cases into accounts such
as when the language of a submitted regex misses a reasonably small portion of
the target language such as the empty string or a language consisting of a single
symbol (a∗ or b∗ when Σ = {a, b}). For instance, we can find that (b∗ab∗ab∗)∗
cannot generate strings that have zero number of a’s and at least one b while
it generates the empty string. Moreover, we generate productive feedback for
students using the byproduct of each partial grading algorithm so that they can
understand what is wrong with the current submission and how to correct the
submission into a correct regex.

The rest of the paper is organized as follows. Section 2 gives some definitions
and notations. We introduce a set of declarative logic formulas for describing
regular languages in Section 3 and our regex grading scheme in Section 4. The
experimental results are provided in Section 5 and Section 6 concludes the paper.

2 Preliminaries

The size of a finite set S is denoted by |S|. Let Σ denote a finite alphabet
and Σ∗ denote the set of all finite strings over Σ. For m ∈ N, Σ≤m is the set
of strings of length at most m over Σ. A language over Σ is a subset of Σ∗.
Given a set X, 2X denotes the power set of X. The symbol λ denotes the empty
string. We define mod(m,n) to be {k | k mod m = n, k ∈ N}. We also define
ind(w, x) = {k | w[k : k + |x|] = x, k ∈ N}, where w[i : j] for i ≤ j denotes a
substring of w concatenating characters of w from index i to j − 1, to be the set
of indices where x appears in w. Note that the index starts from 1.

A regular expression (regex) over Σ is a ∈ Σ or the empty string λ, or is
obtained by applying the following rules finitely many times. For regexes R1 and
R2, the union R1 +R2, the concatenation R1 ·R2, and the Kleene-star R∗1 are
also regexes.

Now we introduce a formal logic to be used to formally describe languages.
Let w = w1w2 · · ·wn be a word over Σ. For any i ∈ [1, n] and a symbol a ∈ Σ,
we say that a letter predicate a is true at i in w if wi = a. For example, the logic
formula a(x) ∧ ∃y(y > x ∧ b(y)) means that ‘there is a symbol a at the position
x and a symbol b at the position later than x’. It is readily seen that the formula
describes the language described by the following regex: a(a+ b)∗b(a+ b)∗. It is
well-known that regular languages are expressible in monadic second-order (MSO)
logic [4].

Given a regex R, we define the parse tree T (R) to be the rooted tree represent-
ing the hierarchical structure of R. Each leaf is labeled by a symbol in Σ ∪ {λ}
and each internal node is labeled by n-ary operations such as · (concatenation)
and + (union), or unary operation ∗ (Kleene-star). We define the regex tree
edit-distance edrt(R,R

′) of two regexes R and R′ to be the tree edit-distance
between two parse trees of R and R′. Note that the tree edit-distance between

Automated Grading of Regular Expressions 93

T (R) and T (R′) is defined as the minimum number of edit-operations required
to transform the tree T (R) into T (R′), where an edit-operations for the regex
tree edit-distance can be defined as a substitution of an operation symbol or
a character from Σ into a different operation symbol (or a character from Σ),
an insertion of a node, or a deletion of a node. It should be mentioned that we
perform unordered matching between children of nodes labeled by the union +
operator as the order of elements inside the union operator does not matter.

3 Simple Declarative Logic for Regular Languages

Since MSO logic formulas offer a relatively higher-level specification of regular
languages than finite-state automata recognizing the languages, they can be used
for describing regular languages in a human-readable format. Moreover, we can
always compile an MSO logic formula for a regular language into a corresponding
minimal DFA [12] and therefore, a regex as well.

As the transformation from MSO to DFA may require the size of the alphabet
to grow exponentially in the number of nested quantifiers [8], we restrict our
attention to the logic formulas that can describe all regular languages considered
in famous automata textbooks without covering the whole regular languages
while being able to be converted into a corresponding DFA in polynomial time.
Table 2 shows the list of declarative logic formulas considered in this paper. Recall
that MOSEL [2], an extension of MSO logic with some syntactic sugar to allow
describing regular languages more concisely, is introduced for a similar reason.
However, we claim that our logic formulas directly correspond to NL descriptions
at a much higher-level and allow us to perform language equivalence tests in
practical runtime.

Analogously to the parse tree of a regex, we define the parse tree T (φ) for a
given logic formula φ. Here each leaf is labeled by an atomic formula and each
internal node is labeled by unary logical connectives ¬ (negation) or n-ary logical
connectives such as ∧ (conjunction) and ∨ (disjunction). Similarly to the regex
tree edit-distance, we also define the logic tree edit-distance edlt(φ, φ̃) of two logic
formulas φ and φ̃ as the unordered tree edit-distance between two parse trees of
φ and φ̃. Note that we allow the substitution of an atomic logic formula and two
logical connectives, conjunction, and disjunction, for the logic tree edit-distance.
We also allow the insertion and deletion of negation. The substitution of an atomic
logic formula is available for a single parameter such as strings x, y, non-negative
integers m,n, and a comparison operator � ∈ {>,=, <}. While the edit cost of
the substitution of a logical connective equals 1, we assign the string edit-distance
for the substitution of a string parameter, the numerical difference for an integer,
and the value 1 for the substitution of a comparison operator.

We provide a list of regex problems and solutions collected from famous
automata textbooks in Table 1. For each problem, we provide a natural language
description for a regular language in question, a solution regular expression given
in the textbook, and the corresponding logic formula found by us. We denote
a+ λ by a? for brevity.

S.-H. Kim et al.94

Table 1. A list of regex problems from famous automata textbooks.

No. Description Solution Regex Logic Formula

1 Starts with a. aσ∗ pos(a, 1)
2 Ends with ab . σ∗ab pos_rev(ba, 1)
3 Contains the substring abab. σ∗ababσ∗ num(abab,>, 0)
4 Begins with b and ends with a. bσ∗a pos(b, 1) ∧ pos_rev(a, 1)
5 Length is at least 3 and the 3rd sym-

bol is a.
σσaσ∗ pos(a, 3)

6 Length is a multiple of 3. (σσσ)∗ len_div(a, 3, 0)
7 The number of a’s is divisible by 3 (b∗ab∗ab∗ab∗)∗. num_div(a, 3, 0)
8 Even number of a’s. (b+ ab∗a)∗ num_div(a, 2, 0)
9 The 5th symbol from the right end

is b.
σ∗bσσσσ pos_rev(b, 5)

10 a and b alternate. b?(ab)∗a? num(aa,=, 0)∧num(bb,=, 0)

11 Each a is followed by at least one b. (a?b)∗ allX_followedbyY(a, b)
12 anbm where n ≥ 3 and m is even aaaa∗(bb)∗. allX_beforeY(a, b) ∧

num(a,>, 2)∧
num_div(b, 2, 0)

13 Contains less than three a’s. b∗a?b∗a?b∗ num(a,<, 3)
14 Start with a and have odd length or

start with b and have even length.
a(σσ)∗ + bσ(σσ)∗ (pos(a, 1) ∧ len_div(2, 1)) ∨

(pos(b, 1) ∧ len_div(2, 0))

15 Any strings except a and b. ((σσ)σ∗)? ¬single_word(a) ∧
¬single_word(b)

16 Does not end with ab σ∗(aa+ ba+ bb) + σ?. ¬pos_rev(ba, 1)
17 Contains at least one a and at most

one b.
aa∗ + aa∗ba+ a∗baa∗ num(a,>, 0) ∧ num(b,<, 2)

18 At least two occurrences of b be-
tween any two occurrences of a.

b∗ + b∗(abbb∗)∗ab∗ exists_between(b, a, 2)

19 Does not contain baa as a substring. a∗(ba+ b)∗ num(baa,=, 0)

20 Every odd position is b. (b(σb)∗σ?)? pos_every(b, 2, 1)
21 Has exactly one pair of consecutive

a’s.
(ab+ b)∗aa(ba+ b)∗ num(aa,=, 1)

22 Does not end with ba and the length
is at least two.

σ∗(aa+ ab+ bb)∗ ¬pos_rev(ab, 1) ∧ len(1, >)

23 Even number of a’s and each a is
followed by at least one b.

b∗(abb∗abb∗)∗ 24 num_div(a, 2, 0) ∧
allX_followedbyY(a, b)

25 Every pair of adjacent a’s appears
before any pair of adjacent b’s.

(a+ ba)∗(b+ ab)∗a? allX_beforeY(aa, bb)

26 At most one pair of consecutive b’s. (a+ ba)∗(bb)?(a+ ab)∗ num(bb,<, 2)

4 Regex Grading Algorithm

In this section, we explain our automated regex grading algorithm by considering
both syntactic and semantic properties.

4.1 Grading of Regexes

Let us assume that exact logic formulas for regular languages asked in questions
are already known as teachers always can specify the regular languages with

Automated Grading of Regular Expressions 95

Table 2. A list of declarative logic formulas used to describe regular languages that
appear in famous automata textbooks, where m,n ∈ N, a, b ∈ Σ, x, y ∈ Σ∗ , and
� ∈ {>,=, <}. In the set notation, we broadcast +n and −n for some integer n to each
element of the given set.

Logic Formula Description / Set Notation

single_word(x) Accepts a string x. / {x}
pos(x, n) Substring x starts at nth position. /

{wxv | |w| = n− 1 ∧ w, v ∈ Σ∗}
pos_rev(x, n) Substring x starts at nth position in reverse order. /

{wxv | |v| = n− 1 ∧ w, v ∈ Σ∗}
len(�, n) Strings of length �n. / {x | |x|�n}
len_div(m,n) Strings of length ∈ mod(m,n). / {x | |x| ∈ mod(m,n)}
pos_every(x,m, n) Substring x appears at every mod(m,n)th position. /

{w | ind(w, x) = mod(m,n) ∩ [1, |w|]}
num(x,�, n) Contains x as a substring �n times. /

{w | |ind(w, x)|�n}
num_div(x,m, n) Contains x as a substring mod(m,n) times. /

{w | |ind(w, x)| ∈ mod(m,n)}
allX_followedbyY(x, y) Every substring x is followed by y. /

{w | ind(w, x) + |x| ⊆ ind(w, y)}
allX_followingY(x, y) Every substring x is following y. /

{w | ind(w, x)− |y| ⊆ ind(w, y)}
allX_beforeY(x, y, n) Every substring x appears before any occurrence of y. /

{w | max(ind(w, x)) < min(ind(w, y))}
exists_between(b, a, n) b appears n times between every adjacent pair of a’s. /

{w | ∀i, j ∈ ind(w, a) s.t. |ind(w, a) ∩ [i, j]| = 2,
|ind(w, b) ∩ [i, j]| = n}

consecutive(a,�, n) Every a appears �n times consecutively. /
{w | ∀i ∈ ind(w, a) s.t. w[i− 1] 6= a and

j = argmax
j
{w[i : j] ∈ a∗}, (j − i)�n}

consecutive_div(a,m, n) Every a appears mod(m,n) times consecutively. /
{w | ∀i ∈ ind(w, a) s.t. w[i− 1] 6= a and

j = argmax
j
{w[i : j] ∈ a∗}, (j − i) ∈ mod(m,n)}

Table 3. Examples of incorrect regexes for ‘Even number of a’s’, which has a possible
solution (b+ ab∗a)∗.

Error Type Regex Error Analysis

Syntactic error b+ ab∗a Star operator is missing.
Logical error (a+ ba∗b)∗ Accepts “Even number of b’s”.
Semantic error (b∗ab∗ab∗)∗ Does not accept strings consisting only of b’s.

the provided logic formulas in Table 2. We aim at grading the submitted regex
in terms of two types of syntactic correctness and a set of counterexamples as
follows:

S.-H. Kim et al.96

Syntactic grading Recall that previous approaches to computing the syntactic
similarity or dissimilarity between two regexes rely on string edit-distance between
two regexes. However, the string edit-distance between two regexes does not
take the structural similarity into account. We instead use the tree edit-distance
between two parse trees of regexes as the tree edit-distance better reflects the
structural similarity of regexes. One of the advantages of using the tree edit-
distance is that we can also easily identify semantically equivalent regexes when
they are viewed as parse trees rather than as strings.

Then, we define the syntactic grade of R based on the minimum tree edit-
distance between R and an unknown regex R̃ such that L(R̃) = L(φ). Formally
speaking, the syntactic grade of R is defined as follows:

Gsyn = Gfull − wsyn(R) ·min{edrt(R, R̃) | L(R̃) = L(φ)}, (1)

where Gfull means the full grade (10 in our implementation). The function wsyn

scales the deduct points based on the length of the submitted regex R because
if R is very long and it requires a single edit, then we may consider that R is
syntactically similar enough to a solution.

Let us explain the detailed procedure for computing Gsyn. We first parse
the regex R as a binary tree and construct the set SR,n = {R̃ | edrt(R, R̃) ≤ n}
of regexes where each regex is within the tree edit-distance n (n = 2 in our
experiments). Note that we use tree edit-distance instead of string edit-distance
used in AT v3 and RegED as the tree edit-distance makes more sense to compute
the syntactic difference between two regexes. For instance, the tree edit-distance
between a+ b and (b+ a)∗ is one while the string edit-distance is five.

For running the above procedure more efficiently, we increment the value of n
from zero by one at each iteration until we find such R̃. We also check whether or
not the current regex is already examined in the previous iteration by comparing
the parse trees of regexes so that our implementation can avoid redundant regex
equivalence tests.

Logical grading Given a problem ‘A regex for strings where the string aba appears
at 3th position.’, a student may submit an incorrect solution (a+ b)aba(a+ b)∗

by making a mistake of reading the number ‘3’ as ‘2’. Because the most plausible
answer is (a+ b)(a+ b)aba(a+ b)∗, the student’s submission is likely to receive no
partial grade according to the syntactic grading, which could be a harsh decision
for an elementary mistake. However, if we semantically compare the submission
and the problem, there is a hope to receive a partial grade as they turn out to be
very similar in terms of corresponding logic formulas pos(aba, 2) and pos(aba, 3).

The main challenge in logical grading is to find a logic formula that corresponds
to the submitted regex such that we can effectively quantify the amount of
semantic discrepancy between the submitted regex and the problem. Given a
regex, it requires a considerable amount of computation for finding a logic formula
described as a logical combination of formulas provided in Table 2, assuming
that the only feasible approach is an exhaustive tree search. Even worse, it is
not always possible to find such a corresponding logic as the provided set of

Automated Grading of Regular Expressions 97

logic formulas cannot cover the entire class of regular languages. In order to
save computation time, we instead utilize the solution logic formula by applying
tree-level edits to the parse tree of the solution logic formula at most n times
(again, n = 2 in our implementation) and checking whether the edited formula is
language-equivalent to the submitted regex.

If we manage to find a logic formula φ̃ that corresponds to the submitted
regex, then the logical grade of R is then computed as follows:

Glog = Gfull − wlog(φ) ·min{edlt(φ, φ̃) | L(φ̃) = L(R)}. (2)

Corner case grading In some cases, the submitted regex may describe a very
similar language to the language in question although the regex is syntactically
different (e.g., tree edit-distance is larger than n). For instance, let us consider
a problem with the following description: “Strings with even number of a’s.”
provided in Table 3. The language described by a regex (b∗ab∗ab∗)∗ is quite
similar to the described language except for strings only with b’s. In order to
check whether the submitted regex deserves a corner case partial grade, we
construct two DFAs for the following languages: L(R) ∩ L(φ) and L(R) ∩ L(φ).
The language L(R) ∩ L(φ) is the set of strings that can be described by R and
not by φ (false positive examples). On the contrary, L(R) ∩ L(φ) captures the
set of strings that are described by φ but not by R (false negative examples).
We enumerate the strings from both DFAs by using the enumDFA function in
FAdo library in lexicographical order and display them to users to make them
understand why their submissions are not correct by counterexamples.

We also assign a corner case grade Gcor =
4
5 ×Gfull if false positive and false

negative sets satisfy one of the following conditions::

1. There is only ε in either false positive or negative set.
2. There are only less than m false positive and negative strings.
3. L(R) ∪ {a∗} = L(φ) or L(R) ∪ {b∗} = L(φ).

4.2 State Complexity of Logic Formula’s DFAs

It is easy to see that all atomic logic formulas presented in Table 2 can be
represented by DFAs of size linear in the lengths of string parameters. In the
following proof, m,n ∈ N, a, b ∈ Σ, x, y ∈ Σ∗ , and � ∈ {>,=, <}.

Proposition 1. For each atomic logic formula φ in Table 2, we can construct a
DFA recognizing L(φ) with a polynomial number of states in |x| and |y|.

While most of the formulas in Table 2 can be represented as DFAs of size
linear in the numerical parameters m and n as well, there are two exceptions:
‘pos_rev(x, n)’ and ‘pos_every_rev(x,m, n)’.

Proposition 2. For each atomic logic formula φ in Table 2 except pos_rev(x, n)
and pos_every_rev(x,m, n), we can construct a DFA recognizing L(φ) with a
polynomial number of states in m and n.

S.-H. Kim et al.98

q0 q1 q2 qn

qn+1

a, b

a a, b · · ·

a, b

Fig. 2. An NFA for pos_rev(a, n).

Unlike the other formulas, the state complexity of pos_rev(x, n) and
pos_every_rev(x,m, n) is exponential in n in the worst case.

Lemma 1. The state complexity of pos_rev(x, n) is exponential in n.

Proof. Since the NFA construction for pos_rev(x, n) requires |x|+ n+ 1 states,
we have a simple upper bound 2|x|+n+1 which is exponential in n for the state
complexity of pos_rev(x, n).

The simplest example where the lower bound is also exponential in n is when
x is a string of length one such as a or b. See Fig. 2 for an NFA accepting
the regular language pos_reverse(a, n). Since the initial state q0 has a self-loop
labeled by Σ, it is easy to see that the upper bound of the state complexity is 2n
as q0 is always in the state set in the subset construction.

Now we will show that the upper bound 2n can be reached by describing how
we can reach any subset of states from 2{q1,q2,...,qn+1}. Let us consider a state set
P = {qs1 , qs2 , . . . , qsk}, where si < sj for 1 ≤ i < j ≤ k ≤ n+ 1. Then, we can
reach P by reading the following string:

absk−sk−1−1absk−1−sk−2−1 · · · abs1−1.

Since it is easy to see that all states in 2{q1,q2,...,qn+1} are pairwise distinguishable,
we conclude that the state complexity of pos_rev(a, n) is 2n.

Now the following state complexity is obvious from the above observation.

Proposition 3. The state complexity of pos_every_rev(x,m, n) is exponential
in n.

4.3 Heuristics for Faster Computation

In order to avoid this exponential blow-up in the size of DFAs, we employ the
following two heuristics for faster computation of grades.

Regex reverse trick Interestingly, we can avoid this exponential blow-up caused
by pos_rev(x, n) by reversing the given regex and the logic formula at the
same time. We can trivially reverse the regex while maintaining the length and
construct polynomial-sized DFAs for all reversed logic formulas except pos(x, n).

Automated Grading of Regular Expressions 99

For instance, suppose that we are given a regex R and a declarative logic formula φ
as follows:

R = a(a+ b)b∗b and
φ = pos_rev(b, n) ∧ len(>, 3) ∧ num(a,>, 1).

In order to avoid the exponential blow-up by pos_rev(x, n), we reverse R
and φ as follows:

R′ = bb∗(a+ b)a and
φ′ = pos(b, n) ∧ len(>, 3) ∧ num(a,>, 1).

Note that the logic such as len(�, n) and len(x,�, n) are reversal-invariant.

Concise Normal Form Recall that we construct a set of regexes from a submitted
regex R by applying parse tree level edits for computing the syntactic grade.
The main computational bottleneck comes from the repetitive regex equivalence
tests as there are too many regexes in the set. In order to reduce the size of
the constructed set, we employ the concise normal form [11] of regexes which
are proven to be useful to sufficiently reduce the number of redundant regexes.
For instance, we inductively apply substitution rules for subregexes such as
R∗R → RR∗, R∗R∗ → R∗, R + R∗ → R∗, (R∗)∗ → R∗ for concise regex
representation and pruning of redundant regexes.

4.4 Description of Regex Grading Algorithm

Algorithm 1 precisely describes the whole procedure for computing the final
grade of a student’s regex R for a problem corresponding to a declarative logic
formula φ. First, we preprocess the given student’s regex R and declarative logic
formula using the normal form and reverse trick for faster computation and
convert them into the DFAs for partial grading. If the submission is equivalent to
the solution, then give 10 points. If not, give the highest point among the three
partial grades.

4.5 Converting Regex to NL Description

Many researchers have studied the problem of translating an NL description into
a corresponding regex [13,15,17]. Here we examine a dual problem, namely, the
problem of converting a regex into an NL description (Regex2NL) to help regex
learners easily understand the language accepted by the given regex. Consider
(b+ ab∗a)∗ for an example again. Instead of merely translating the semantics of
regex operators and symbols, our goal is to generate an ‘easy-to-understand’ NL
description such as ‘even number of a’s’ which corresponds to a logic formula
defined in Table 1.

Our approach involves two steps, where we first find a logic formula corre-
sponding to the regex and then translate the logic formula into an NL description

S.-H. Kim et al.100

Algorithm 1: Our Regex Grading Algorithm
Input :A student’s regex R and a declarative logic formula φ
Output :A grade, feedback of R for the problem specified by φ, and a set of

counter-examples
Convert R into R′ which is in a regex normal form;
if φ contains pos_reverse(x, n) and not pos(x, n) then

Reverse R′ and φ;
Construct a DFA AR′ for R′ and a DFA Aφ for φ;
if L(AR′) = L(Aφ) then

if |R′| < |R| then
return 10, ‘R can be written in more compact form such as R′’, ∅;

else
return 10, ‘Well constructed’, ∅

else
Compute (Gsyn, R̃) and (Glog, φ̃) of R;
Generate a set S of random strings from L(φ) ∩ L(R)c;
if Gsyn > Glog then

return Gsyn, ‘R should include ... to be the R̃’, S ;
else

return Glog, ‘R accepts a language specified by φ̃’, S ;

by rules. It is worth noting again that there are regexes that cannot be effectively
described by our logic. Therefore, it is not always possible to find a corresponding
logic from a given regex even if we enumerate all logic formulas. Even if there
exists a corresponding logic for the given regex, it takes too much time (more
than one minute in general) for practical use in most cases. Hence we propose to
use a deep learning-based approach that can predict a logic formula from a given
regex with reasonably high accuracy in practical runtime (less than one second).

First, we train the Regex2Logic model that translates a regex to a logic formula
using a sequence-to-sequence neural network with attention mechanism [3]. For
training our Regex2Logic model, we use a dataset consisting of 13,437 pairs of
regexes and logic formulas that are collected by time-consuming enumerations of
regexes and logic formulas, and regex templates. We construct the regex-logic
pair dataset for training our Regex2NL model which translates a given regex into
a logic formula defined by using our simple declarative logic formulas. We collect
the pairs by time-consuming enumerations of regexes and logic formulas and
regex templates. We split the pairs into the ratio of 8:1:1 for training, validation,
and test sets. We explain each process in more detail as follows:

1. Regex enumeration: enumerate regexes from the simplest one to more complex
ones by increasing the depth of parse trees of regexes and searching for
corresponding logic formulas until pre-defined thresholds (two for the depth,
three for the length of argument strings and integers) for the complexity of
logic formulas are reached.

Automated Grading of Regular Expressions 101

Table 4. Statistics of the constructed regex-logic pair dataset used to train our Regex2NL
model. φ, φ1, and φ2 denote atomic logic formulas found by enumerations of regexes
and logic formulas or regex templates.

Logic Formula # Examples

φ1 ∧ φ2 1,202
φ1 ∨ φ2 1,939
¬φ 463
single_word(x) 88
pos(x, n) 3,854
pos_rev(x, n) 3,824
len(�, n) 73
len_div(m,n) 20
pos_every(x,m, n) 0
num(x,�, n) 954
num_div(x,m, n) 8
allX_followedbyY(x, y) 699
allX_followingY(x, y) 0
allX_beforeY(x, y, n) 184
exists_between(a, b, n) 0
consecutive(a,�, n) 59
consecutive_div(a,m, n) 70

Total Number of Formulas 13,437

2. Logic formula enumeration: enumerate atomic logic formulas by varying the
arguments such as strings of length up to n and integers from 1 to n and find
a corresponding regex by exhaustively enumerating regexes.

3. Regex template: use regex templates for which we can easily match corre-
sponding logic formulas. For instance, regexes with no operator such as aba
correspond to the logic single_word(aba).

Table 4 shows the statistics of our dataset, especially in terms of the distri-
bution of logic formulas used. The conjunction or disjunction of the same logic
formulas is counted as a conjunction or disjunction.

In order to construct a set of regex-logic pairs, we can manually define a regex
in a generalized form for each logic formula with arbitrary arguments. We rely on
the following list of regex templates for generating various regexes by changing
arguments of the templates:

– pos(x, n) : σ(n−1)xσ∗

– pos_rev(x, n) : σ∗xRσ(n−1)

– len(=, n) : σn

– len(<,n) : (σ + λ)n−1

– len(<,n) : σ? + σ2 + σ3 + ...+ σn−1

– len(>,n) : σn+1σ∗

– len_div(x,m, n) : σn(σm)∗

– len_div(x,m, n) : (σm)∗σn

S.-H. Kim et al.102

By applying enumerated strings and integers as arguments, we can collect
many regex-logic pairs. Once we discover the initial set of regex-logic pairs, we
augment the data by combining the regexes and logic formulas with a regex
operator + and a logical connective ∨, respectively.

Note that our Regex2NL achieves about 92.3% prediction accuracy for the
test set. For 167 incorrect regex submissions from students, our logical grading
module finds 21 logic formulas that are within logic tree edit-distance two from
the solution logic formula. Among the remaining 146 regexes, our model predicts
39 logic formulas that actually correspond to given regexes. We can provide
natural language descriptions for 35.9% of the incorrect submissions from the
logical grading module and the Regex2Logic model. We believe it is very useful to
provide ‘easy-to-understand’ NL descriptions on 35.9% of submissions using our
Regex2NL model, while most regexes do not have corresponding logic formulas
definable by the proposed set of simple declarative logic formulas as we already
discussed.

Then, we can transform the logic formula given by Regex2Logic to the natural
language description with the heuristic template. We can make a template easily,
as the logic formula has the characteristic of the natural language. We can use
the entire framework of Regex2NL not only for feedback on incorrect submissions
but also for making the random regex problem. For example, we can make the
random regex first with regex enumeration of the regex template, then we can
translate the regex to the natural language description. We can make the pair of
regex-NL for using the regex problem.

4.6 Feedback Generation

There are natural types of feedback such as binary feedback (correct/wrong),
an example, and a natural language-based conceptual hint. Binary feedback
is the simplest yet necessary feedback that should be provided to students
who submitted regexes. We can also simply generate a counterexample if the
submitted regex is not correct. We focus on generating a natural language-based
conceptual hint that describes the discrepancy between the desired solution and
the submitted solution in an easily understandable manner.

When the submitted regex is not correct, there can be two cases as follows.
First, the submitted regex should be slightly revised in order to accept the desired
language. In this case, the most desirable feedback may be the way to revise the
submitted regex. Second, the submitted regex accepts a semantically different
language than the desired language as the student may have misinterpreted
the question. Then, we may need to inform the student about the semantic
discrepancy between the language described by the submitted regex and the
desired regular language in an easily understandable manner.

For the first case, we provide the regex edit sequence between the submitted
regex R and a regex R′ which is syntactically closest (with the smallest regex
edit-distance) to R while accepting the regular language specified in the problem.
For the second case, we suggest the logic edit sequence between the logic formula φ
corresponding to R and a logic formula φ̃ specified in the problem. If the problem

Automated Grading of Regular Expressions 103

asks a regular language “strings containing a substring abab at least once” which
corresponds to num(abab,>, 0) and the submitted regex captures a regular
language corresponding to num(ab,=, 0), then we provide the following feedback:
“Consider substring abab instead of ab and operator > instead of =.”

4.7 Converting Logic Formulas to NL Descriptions

Table 5 shows the NL descriptions for each atomic logic formula used in the rule-
based translation of logic formulas into NL descriptions. When a logic formula
is formed by combining more than two atomic formulas φ1 and φ2 using logical
connectives, we simply combine the corresponding NL descriptions. For example,
let NL(φ) be the NL description of an atomic logic formula φ following the rules
in Table 5. Then, NL(φ1 ∧ φ2) is defined as ‘The set of strings that satisfy the
following conditions: ‘NL(φ1)’ and ‘NL(φ2)’.

Using this, we present regexes in more concise form even when the submitted
regex is correct. Let us consider the problem ‘all runs of a’s have lengths that are
multiples of three’. Note that a regex (aaa+ b)∗ can be a solution. If a student
submits (aaa + b∗)∗ + b∗ as a solution, then the system should give the full
grade since the submitted regex recognizes the desired regular language. While
assigning a full grade to the submission, our algorithm provides (aaa + b)∗ to
the student by computing the concise normal form [11] of the submission so that
the student can recognize that there is a better solution (in terms of syntactic
conciseness).

5 Experiments

We recruited 20 undergraduate students who were taking or had taken an
automata course at the time of conducting our research, and ran our automatic
grading algorithm on students’ regex submissions for ten selected exercises
from famous automata textbooks [9,14,18]. In order to compare the results of
automated grading with the previous approaches including RegED [10] and AT
v3 [5], we implemented the algorithms in Python 3 on our own and used them for
comparison. We cannot use the existing implementations directly, because they
do not support a feature of adjusting the maximum number of allowed edits, and
not all of them are supported as a tool. We utilized the Python 3 port4 of the
FAdo [1] package, which is an open-source library for the symbolic manipulation
of automata and other computation models. We also restricted the number of
edits allowed for partial grades to two in our algorithm and AT v3, and one in
RegED since RegED applies edits from both solutions and submissions.

5.1 Main Results

Table 6 shows the experimental results in terms of the statistics of grading results.
We present the ratio of submissions that received partial grades by the considered
4 https://github.com/0xnurl/fado-python3

S.-H. Kim et al.104

https://github.com/0xnurl/fado-python3

Table 5. Natural language descriptions of our declarative logic formulas.

Logic Formula Description

single_word(x) only a single string x
pos(x, n) strings that have substring x at nth position
pos_rev(x, n) strings that have substring x at nth position in reverse

order
len(=, n) strings of length n
len(<,n) strings shorter than n
len(>,n) strings longer than n
len_div(2, 0) strings of even-length
len_div(2, 1) strings of odd-length
len_div(m,n) strings that have a remainder of n when it’s length is

divided by m
pos_every(x, 2, 0) strings in which character x appears every even-position
pos_every(x, 2, 1) strings in which character x appears every odd-position
pos_every(x,m, n) strings in which substring x appears every kth position

such that k mod m = n
pos_every_rev(x, 2, 0) strings in which character x appears every even-position

in reverse order
pos_every_rev(x, 2, 1) strings in which character x appears every odd-position

in reverse order
pos_every_rev(x,m, n) strings in which substring x appears every kth position

in reverse order such that k mod m = n
num(x,=, n) strings that contain x as a substring n times
num(x,<, n) strings that contain x as a substring less than n times
num(x,>, n) strings that contain x as a substring more than n times
num_div(x, 2, 0) strings that contain an even number of x’s
num_div(x, 2, 1) strings that contain an odd number of x’s
num_div(x,m, n) strings that contain x’s such that the number of its ap-

pearance modulo m is n
allX_followedbyY(x, y) strings in which every substring x is followed by y
allX_followingY(x, y) strings in which every substring x follows y
allX_beforeY(x, y) strings in which every substring x appears before y
exists_between(x, y, n) strings in which substring x appears n times between

every pair of y
consecutive(x,=, n) strings in which every x appears n times consecutively
consecutive(x,<, n) strings in which every x appears less than n times con-

secutively
consecutive(x,>, n) strings in which every x appears more than n times con-

secutively
consecutive_div(x, 2, 0) strings in which every consecutive x’s have even-length
consecutive_div(x, 2, 1) strings in which every consecutive x’s have odd-length
consecutive_div(x,m, n) strings in which every consecutive x’s have a length such

that when the length is divided by m, the remainder is n

grading algorithms in ‘Partial Total’ column. The ‘Partial Gsyn’ column shows
the ratio of regexes that received a partial ‘syntactic grade’ by AT v3, RegEd, and

Automated Grading of Regular Expressions 105

Table 6. Performance comparisons of the proposed grading algorithm with baseline
algorithms proposed in previous works [5,10].

Algorithm Partial Gsyn Partial Glog Partial Total

AT v3 [5] 30.2% 7.0% 30.2%
RegED [10] 45.3% 9.3% 45.3%

Syntactic grading (Ours) 37.2% 8.7% 37.2%
Logical grading (Ours) 10.5% 12.2% 12.2%
Corner case grading (Ours) 6.4% 0.0% 6.4%

Our algorithm 39.0% 12.2% 40.7%

our syntactic grading algorithms over all regexes. Since AT v3 and RegED only
consider syntactic grading, values in this column show the ratio of regexes that
received partial grades over all regexes. On the other hand, ‘Partial Glog’ column
shows the ratio of regexes that received a partial ‘logical grade’ by our algorithm
over all regexes. It is seen that AT v3 and RegED fail to assign partial grades to
some regexes as they only consider syntactic differences with solution regexes,
not the logic formulas behind the problem descriptions. Note that higher partial
grades do not always mean that the grades are ‘well-deserved’. It is important
whether the partial grade is convincing. We will explain in the following section
why RegED gives more partial grades than ours and why giving more partial
grades cannot be a good choice.

To put it briefly, RegED gives partial grades to more regexes (45.3%) than AT
v3 (30.2%) and even ours (40.7%). Table 7 shows several examples of the grades
and feedback examples for students’ submissions to the five problems in Table 1.

5.2 Validity of Grading Results

In order to verify that our algorithm indeed assigns partial grades to submissions
that are ‘well-deserved’, we provide several reasons.

First, we can find logical partial grades while AT v3 and RegED cannot.
We demonstrate two examples for the case. For the problem with the following
description ‘even number of a’s’, our algorithm assigns a partial grade to the
submission (a+ ba∗b)∗ while there is a possible solution (b+ ab∗a)∗. Our logical
grading module gives a partial grade, as it is possible that the student makes a
simple mistake of confusing a with b. For the problem ‘contains at most three a’s’,
our algorithm assigns a partial grade to b∗(a+ λ)b∗(a+ λ)b∗(a+ λ)b∗(a+ λ)b∗

while one of the possible solutions is b∗(a+ λ)b∗(a+ λ)b∗(a+ λ)b∗. This is again
possible due to our logical grading module, as the student could have confused
numbers.

Second, our syntactic grading gives some partial grades with tree-edit while
others cannot. For example, our syntactic grading gives a partial grade to
(b∗a∗)abab(b∗a∗) for the problem ‘contains the substring abab’ as we may in-
sert two star operators for the occurrences of (b∗a∗). However, RegED and AT

S.-H. Kim et al.106

Table 7. Grading and feedback examples generated by our regex grading algorithm for
problems in Table 1. We denote a+ b by σ for brevity.

No. Student’s Regex Grade Feedback Example

3 σ∗(abab)∗σ∗ 7 Remove the star operator to convert it into
σ∗ababσ∗.

3 b∗(abab)∗a∗ 0 Should accept {aabab, ababb, aaabab, aababa}.
4 aσ∗b 3 Strings should begin with b instead of a

(pos). Strings should end with a instead of b
(pos_reverse).

4 bσ∗a∗ 6 Insert a to convert it into bσ∗a∗a.
8 (b∗ab∗ab∗)∗ 6 Include strings of b∗ by inserting a union operator

and b.
8 (a+ ba∗b)∗ 6 Strings should contain an even number of a’s

instead of b’s (num_div).
11 ((b+ λ)a)∗ 3 Each a instead of b should be followed by b instead

of a (allX_followedbyY).
11 (ab)∗ 3 Insert a union operator and λ to convert it into

((a+ λ)b)∗.
26 (a+ ba)∗bbb∗(a+ ab)∗ 0 Should not accept {bbb, bbbb, abbba}.
26 (a+ba)∗(b+λ)(a+ab)∗ 6 Insert a concatenation operator with b to convert

it into (a+ ba)∗(bb+ λ)(a+ ab)∗.

v3 will not assign a partial grade if they are provided (a+ b)∗abab(a+ b)∗ and
(b + a)∗abab(b + a)∗ as possible solutions while our algorithm uses logic as a
solution. This is because RegED utilizes only one solution regex for comparing
with the submitted regex and it allows edits from both the solution and the
submitted regex. RegED performs an edit at solution regex and submitted regex,
respectively, to improve speed, but if solution regex is not given in an ideal form
as in the above example, RegED cannot grade properly. To solve this problem, all
possible variants of solution regex must be considered for editing and comparing
and this leads to significant time-consuming. We can compare with every possible
candidate without additional time, as our regex grading uses logic for the solution
and permits the edit only in submission regex.

Third, the string edit used by RegED tends to cover too many candidates
rather than our tree edit. For instance, it can change a+b+c to a∗b+c and aab+c
with a single edit. This may differ depending on the TA’s point of view, but we
believe that the edit should be conducted more strictly due to the perspective
of the tree structure, the original property of regex. Since given edits are more
fluid than the tree edit, it allows more areas to be covered by edit, which is not
considered the intended edit, suggesting that giving a lot of partial grading is
not always the right direction. Assigning higher partial grades is not always the
right direction, as it often jumps ahead of what we intended.

Automated Grading of Regular Expressions 107

Table 8. Evaluation for the similarity with TA partial grades.

Algorithm Precision Recall F1 score

AT v3 [5] 60.3% 50.8% 54.8%
RegED [10] 57.6% 71.1% 63.2%

Syntactic grading (Ours) 60.4% 53.3% 56.3%
Logical grading (Ours) 73.3% 25.8% 37.9%
Corner case grading (Ours) 60.0% 10.2% 17.3%

Our algorithm 62.2% 65.6% 63.3%

5.3 Comparison with TA Partial Grade

Table 8 demonstrates how the grading results by the algorithms align well with
the human TAs’ grading results. We ask five human TAs to give grades to 167
incorrect regex submissions by students. First, we calculate the precision, recall,
and F1 score for each algorithm and for each TA. Precision is the percent of
partial grades by the algorithm that matches the TA and recall is the percent
of TA partial grades that the algorithm agrees with. Then we get an average
score comparing the grading results with each result of human TAs. Since
correct submissions should always receive full marks, we only consider incorrect
submissions and check whether or not human TAs gave partial grades to the
submissions. In other words, we assume that human TAs always make the right
decisions in terms of giving partial grades to incorrect submissions and consider
the cases where the partial grades are given as positive cases. We can see that
the results in the ‘Precision’ column imply how the algorithms ‘carefully’ select
submissions that deserve partial grades and the ‘Recall’ column show that the
algorithms do not miss such cases.

Overall, our grading algorithm shows the best performance in terms of the
F1 score, which is the harmonic mean of precision and recall. Then, RegED is
places in the second position with a tiny gap between our algorithm and AT v3
following it.

Intuitively, it is natural that the recall is highest in RegED as RegED covers
more regexes than the other compared algorithms. We can also see from the
high precision of the logical grading module that the partial grade submissions
captured by the logical grading module are quite precise even compared with
the other modules used in our algorithm. However, the logical grading fails to
capture the regexes that received partial grades by TAs from the other algorithms.
On the other hand, the syntactic grading can capture much more regexes that
received partial grades by TAs than the other modules in our algorithm. This also
shows that human TAs tend to give partial grades to submissions with syntactic
mistakes rather than to submissions with logical mistakes.

S.-H. Kim et al.108

s1 s3 s5 s7 c1 c3 c5 c7

Logic

10−2

10−1

100

101

102

T
im

e
(s

ec
)

Baseline

With reverse trick

Fig. 3. Runtime comparison w/wo reverse trick. sn and cn indicate problems correspond-
ing to logic formulas pos_rev(a, n) and pos_rev(a, n) ∧ num(bba,>, 0), respectively.

5.4 Effectiveness of the Regex Reverse Trick

We demonstrate the effectiveness of the reverse trick in terms of runtime com-
plexity reduction of the proposed algorithm in Fig. 3. There is no noticeable
difference in short regexes. However, we can find that the time increases to log
scale as the length of the regex increases.

5.5 User Study

In Fig. 4, we provide a screenshot of a web page for the online ‘Regex Trainer’
in which our regex grading algorithm is employed. In the online Regex Trainer
page, the system displays each regex construction problem in turn to a student.
If the student inputs his/her answer for the problem, then the system shows the
grade with feedback and displays the next problem.

We conducted a user study by asking five questions to nine students who
performed tests on the usability and usefulness of our regex grading algorithm.
The result is shown in Table 9. Each student is asked to give their answer to
each question on a Likert scale from 1 (strongly disagree) to 5 (strongly agree).
The result shows that average scores for the five questions are all in the range
of [3.7, 4.4], which implies that the students in general find our grading system
easy-to-use and useful for studying regexes.

5.6 Limitations

In the following, we leave a list of limitations of our study. First, the proposed set
of logic formulas cannot express the entire class of regular languages. In future
work, we may extend the set of formulas by adding useful logic formulas that

Automated Grading of Regular Expressions 109

Fig. 4. A screenshot taken from the web page of online ‘Regex Trainer’ where our
automatic grading module is used inside.

Table 9. Student survey result. Nine students gave their judgments for the following
five questions on a Likert scale from 1 to 5.

Question Score

The grading module is easy to use. 4.4
I agree with the given partial grade. 3.8
Feedback for each partial grade is helpful and instructive. 3.9
Feedback is not misleading. 3.7
Feedback and NL description improved my understanding of the regex. 3.9

are suitable for potential regex construction problems. Second, there could be
another approach to catch student’s ‘mistakes’. We suggest three partial grades
that catch syntactic, logical, and corner case mistakes. Finding a new cause of
mistakes can provide richer and more detailed feedback for students. Moreover,
it is very likely that our grading algorithm takes too much time if the submitted
regex is unnecessarily long since in this case the number of regexes that should
be examined would increase exponentially.

6 Conclusions

Due to the transition from face-to-face teaching to online, distance learning, the
importance of developing an automated grading system has become more evident.
We have presented an efficient and powerful automated grading algorithm for
regexes in undergraduate automata and formal language courses. Our algorithm
takes students’ regex submissions and assigns appropriate grades with productive
feedback to the regexes by considering the syntactic and semantic alignment

S.-H. Kim et al.110

between the submitted regexes and the problem definition. Moreover, by employ-
ing several heuristics such as the reverse trick and intermediate regex simplifi-
cation, we could have reduced the runtime complexity for the repetitive regex
equivalence tests for grading regexes.

Acknowledgments

We thank the reviewers for their valuable comments and suggestions for improving
the presentation of the paper. This research was supported by the NRF grant (No.
2020R1A4A3079947), the IITP grant (No. 2022-0-00320), and the AI Graduate
School Program (No. 2020-0-01361) funded by the Korea government (MSIT).

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar. In:
Proceedings of the 14th International Conference on Implementation and Applica-
tion of Automata. pp. 65–74 (2009)

2. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grading
of DFA constructions. In: IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. pp. 1976–
1982. IJCAI/AAAI (2013)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015)

4. Büchi, J.R.: Weak second-order arithmetic and finite automata. Journal of Symbolic
Logic 28(1) (1963)

5. D’Antoni, L., Helfrich, M., Kretínský, J., Ramneantu, E., Weininger, M.: Automata
tutor v3. In: Proceedings of the 32nd International Conference on Computer Aided
Verification. vol. 12225, pp. 3–14. Springer (2020)

6. D’Antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan, M., Hartmann, B.:
How can automatic feedback help students construct automata? ACM Transactions
on Computer-Human Interaction 22(2) (2015)

7. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t
regular expressions a lingua franca? an empirical study on the re-use and portability
of regular expressions. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. pp. 443–454 (2019)

8. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sand-
holm, A.: Mona: Monadic second-order logic in practice. In: Tools and Algorithms
for the Construction and Analysis of Systems. pp. 89–110 (1995)

9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 2 edn. (1979)

10. Kakkar, H.: Automated Grading and Feedback of Regular Expressions. Master’s
thesis, Department of Computer Science (2017)

Automated Grading of Regular Expressions 111

11. Kim, S.H., Im, H., Ko, S.K.: Efficient enumeration of regular expressions for faster
regular expression synthesis. In: Implementation and Application of Automata. pp.
65–76. Springer International Publishing, Cham (2021)

12. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, Aarhus University (January 2001), notes Series NS-01-1.
Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3

13. Kushman, N., Barzilay, R.: Using semantic unification to generate regular expres-
sions from natural language. In: NAACL-HLT ’13. pp. 826–836 (2013)

14. Linz, P.: An Introduction to Formal Language and Automata. Jones and Bartlett
Publishers, Inc., USA (2006)

15. Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neural gener-
ation of regular expressions from natural language with minimal domain knowledge.
In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. pp. 1918–1923. The Association for Computational
Linguistics (2016)

16. Michael IV, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
Decision-making, difficulties, and risks in programming regular expressions. In: 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019. pp. 415–426. IEEE (2019)

17. Park, J., Ko, S., Cognetta, M., Han, Y.: Softregex: Generating regex from natural
language descriptions using softened regex equivalence. In: EMNLP-IJCNLP ’19.
pp. 6424–6430 (2019)

18. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

S.-H. Kim et al.112

http://creativecommons.org/licenses/by/4.0/

Builtin Types Viewed as Inductive Families

Guillaume Allais(�)

University of St Andrews, St Andrews, UK
guillaume.allais@ens-lyon.org

Abstract. State of the art optimisation passes for dependently typed
languages can help erase the redundant information typical of invariant-
rich data structures and programs. These automated processes do not
dramatically change the structure of the data, even though more efficient
representations could be available.
Using Quantitative Type Theory as implemented in Idris 2, we demon-
strate how to define an invariant-rich, typechecking-time data structure
packing an efficient runtime representation together with runtime irrele-
vant invariants. The compiler can then aggressively erase all such invari-
ants during compilation.
Unlike other approaches, the complexity of the resulting representation
is entirely predictable, we do not require both representations to have
the same structure, and yet we are able to seamlessly program as if we
were using the high-level structure.

Keywords: Quantitative Type Theory · Indexed families · Runtime rep-
resentation · Idris 2

1 Introduction

Dependently typed languages have empowered users to precisely describe their
domain of discourse by using inductive families [13]. Programmers can bake
crucial invariants directly into their definitions thus refining both their functions’
inputs and outputs. The constrained inputs allow them to only consider the
relevant cases during pattern matching, while the refined outputs guarantee that
client code can safely rely on the invariants being maintained. This programming
style is dubbed ‘correct by construction’.

However, relying on inductive families can have a non-negligible runtime
cost if the host language is compiling them naïvely. And even state of the art
optimisation passes for dependently typed languages cannot make miracles: if
the source code is not efficient, the executable will not be either.

A state of the art compiler will for instance successfully compile length-
indexed lists to mere lists thus reducing the space complexity from quadratic to
linear in the size of the list. But, confronted with a list of booleans whose length
is statically known to be less than 64, it will fail to pack it into a single machine
word thus spending linear space when constant would have sufficed.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 113–139, 2023.
https://doi.org/10.1007/978-3-031-30044-8_5

http://orcid.org/0000-0002-4091-657X
https://doi.org/10.1007/978-3-031-30044-8_5
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_5&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

G. Allais

In section 2, we will look at an optimisation example that highlights both
the strengths and the limitations of the current state of the art when it comes to
removing the runtime overheads potentially incurred by using inductive families.

In section 3 we will give a quick introduction to Quantitative Type Theory,
the expressive language that grants programmers the ability to have both strong
invariants and, reliably, a very efficient runtime representation.

In section 4 we will look at an inductive family that we use in a performance-
critical way in the TypOS project [2] and whose compilation suffers from the
limitations highlighted in section 2. Our current and unsatisfactory approach is
to rely on the safe and convenient inductive family when experimenting in Agda
and then replace it with an unsafe but vastly more efficient representation in our
actual Haskell implementation.

Finally in section 5, we will study the actual implementation of our efficient
and invariant-rich solution implemented in Idris 2. We will also demonstrate
that we can recover almost all the conveniences of programming with inductive
families thanks to smart constructors and views.

2 An Optimisation Example

The prototypical examples of the naïve compilation of inductive families being
inefficient are probably the types of vectors (Vect) and finite numbers (Fin).
Their interplay is demonstrated by the lookup function. Let us study this exam-
ple and how successive optimisation passes can, in this instance, get rid of the
overhead introduced by using indexed families over plain data.

A vector is a length-indexed list. The type Vect is parameterised by the type
of values it stores and indexed over a natural number corresponding to its length.
More concretely, its Nil constructor builds an empty vector of size Z (i.e. zero),
and its (::) (pronounced ‘cons’) constructor combines a value of type a (the
head) and a subvector of size n (the tail) to build a vector of size (S n) (i.e.
successor of n).

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect n a -> Vect (S n) a

The size n is not explicitly bound in the type of (::). In Idris 2, this means
that it is automatically generalised over in a prenex manner reminiscent of the
handling of free type variables in languages in the ML family. This makes it an
implicit argument of the constructor. Consequently, given that Nat is a type of
unary natural numbers, a naïve runtime representation of a (Vect n a) would
have a size quadratic in n. A smarter representation with perfect sharing would
still represent quite an overhead as observed by Brady, McBride, and McK-
inna [6].

A finite number is a number known to be strictly smaller than a given natural
number. The type Fin is indexed by said bound. Its Z constructor models 0 and
is bound by any non-zero bound, and its S constructor takes a number bound by

114

Builtin Types Viewed as Inductive Families

n and returns its successor, bound by (1 + n). A naïve compilation would here
also lead to a runtime representation suffering from a quadratic blowup.

data Fin : Nat -> Type where
Z : Fin (S n)
S : Fin n -> Fin (S n)

This leads us to the definition of the lookup function. Provided a vector of
size n and a finite number k bound by this same n, we can define a total function
looking up the value stored at position k in the vector. It is guaranteed to return
a value. Note that we do not need to consider the case of the empty vector in
the pattern matching clauses as all of the return types of the Fin constructors
force the index to be non-zero and, because the vector and the finite number talk
about the same n, having an empty vector would automatically imply having a
value of type (Fin 0) which is self-evidently impossible.

lookup : Vect n a -> Fin n -> a
lookup (x :: _) Z = x
lookup (_ :: xs) (S k) = lookup xs k

Thanks to our indexed family, we have gained the ability to define a function
that cannot possibly fail, as well as the ability to only talk about the pattern
matching clauses that make sense. This seemed to be at the cost of efficiency but
luckily for us there has already been extensive work on erasure to automatically
detect redundant data [6] or data that will not be used at runtime [22].

2.1 Optimising Vect, Fin, and lookup

An analysis in the style of Brady, McBride, and McKinna’s [6] can solve the
quadratic blowup highlighted above by observing that the natural number a
vector is indexed by is entirely determined by the spine of the vector. In partic-
ular, the length of the tail does not need to be stored as part of the constructor:
it can be reconstructed as the predecessor of the length of the overall vector.
As a consequence, a vector can be adequately represented at runtime by a pair
of a natural number and a list. Similarly a bounded number can be adequately
represented by a pair of natural numbers. Putting all of this together and re-
membering that the vector and the finite number share the same n, lookup can
be compiled to a function taking two natural numbers and a list. In Idris 2
we would write the optimised lookup as follows (we use the partial keyword
because this transformed version is not total at that type).

partial
lookup : (n : Nat) -> List a -> Nat -> a
lookup (S n) (x :: _) Z = x
lookup (S n) (_ :: xs) (S k) = lookup n xs k

We can see in the second clause that the recursive call is performed on the tail
of the list (formerly vector) and so the first argument to lookup corresponding

115

G. Allais

to the vector’s size is decreased by one. The invariant, despite not being explicit
anymore, is maintained.

A Tejiščák-style analysis [22] can additionally notice that the lookup function
does not use the bound’s value and drop it. This leads to the lookup function
on vectors being compiled to its partial-looking counterpart acting on lists.

partial
lookup : List a -> Nat -> a
lookup (x :: _) Z = x
lookup (_ :: xs) (S k) = lookup xs k

Even though this is in our opinion a pretty compelling example of erasing
away the apparent complexity introduced by inductive families, this approach
has two drawbacks.

Firstly, it relies on the fact that the compiler can and will automatically
perform these optimisations. But nothing in the type system prevents users
from inadvertently using a value they thought would get erased, thus preventing
the Tejiščák-style optimisation from firing. In performance-critical settings, users
may rather want to state their intent explicitly and be kept to their word by the
compiler in exchange for predictable and guaranteed optimisations.

Secondly, this approach is intrinsically limited to transformations that pre-
serve the type’s overall structure: the runtime data structures are simpler but
very similar still. We cannot expect much better than that. It is so far unrealistic
to expect e.g. a change of representation to use a balanced binary tree instead
of a list in order to get logarithmic lookups rather than linear ones.

2.2 No Magic Solution

Even if we are able to obtain a more compact representation of the inductive
family at runtime through enough erasure, this does not guarantee runtime effi-
ciency. As the Coq manual [11] reminds its users, extraction does not magically
optimise away a user-defined quadratic multiplication algorithm when extracting
unary natural numbers to an efficient machine representation. In a pragmatic
move, Coq, Agda, and Idris 2 all have ad-hoc rules to replace convenient but inef-
ficiently implemented numeric functions with asymptotically faster counterparts
in the target language.

However this approach is not scalable: if we may be willing to extend our
trusted core to a high quality library for unbounded integers, we do not want to
replace our code only proven correct thanks to complex invariants with a wildly
different untrusted counterpart purely for efficiency reasons.

In this paper we use Quantitative Type Theory [16,4] as implemented in Idris
2 [5] to bridge the gap between an invariant-rich but inefficient representation
based on an inductive family and an unsafe but efficient implementation us-
ing low-level primitives. Inductive families allow us to view [24,18] the runtime
relevant information encoded in the low-level and efficient representation as an
information-rich compile time data structure. Moreover the quantity annotations
guarantee the erasure of this additional information during compilation.

116

Builtin Types Viewed as Inductive Families

3 Some Key Features of Idris 2

Idris 2 implements Quantitative Type Theory, a Martin-Löf type theory enriched
with a semiring of quantities classifying the ways in which values may be used.
In a type, each binder is annotated with the quantity by which its argument
must abide.

3.1 Quantities

A value may be runtime irrelevant, linear, or unrestricted.
Runtime irrelevant values (0 quantity) cannot possibly influence control flow

as they will be erased entirely during compilation. This forces the language
to impose strong restrictions on pattern-matching over these values. Typical
examples are types like the a parameter in (List a), or indices like the natural
number n in (Vect n a). These are guaranteed to be erased at compile time. The
advantage over a Tejiščák-style analysis is that users can state their intent that
an argument ought to be runtime irrelevant and the language will insist that it
needs to be convinced it indeed is.

Linear values (1 quantity) have to be used exactly once. Typical examples
include the %World token used by Idris 2 to implement the IO monad à la Haskell,
or file handles that cannot be discarded without first explicitly closing the file.
At runtime these values can be updated destructively. We will not use linearity
in this paper.

Last, unrestricted values (denoted by no quantity annotation) can flow into
any position, be duplicated or thrown away. They are the usual immutable values
of functional programming.

The most basic of examples mobilising both the runtime irrelevance and
unrestricted quantities is the identity function.

id : {0 a : Type} -> (x : a) -> a
id x = x

Its type starts with a binder using curly braces. This means it introduces an
implicit variable that does not need to be filled in by the user at call sites and
will be reconstructed by unification. The variable it introduces is named a and
has type Type. It has the 0 quantity annotation which means that this argument
is runtime irrelevant and so will be erased during compilation.

The second binder uses parentheses. It introduces an explicit variable whose
name is x and whose type is the type a that was just bound. It has no quantity
annotation which means it will be an unrestricted variable.

Finally the return type is the type a bound earlier. This is, as expected, a
polymorphic function from a to a. It is implemented using a single clause that
binds x on the left-hand side and immediately returns it on the right-hand side.

If we were to try to annotate the binder for x with a 0 quantity to make it
runtime irrelevant then Idris 2 would rightfully reject the definition. The follow-
ing failing block shows part of the error message complaining that x cannot be
used at an unrestricted quantity on the right-hand side.

117

G. Allais

failing "x is not accessible in this context."
id : {0 a : Type} -> (0 x : a) -> a
id x = x

3.2 Proof Search

In Idris 2, Haskell-style ad-hoc polymorphism [25] is superseded by a more gen-
eral proof search mechanism. Instead of having blessed notions of type classes,
instances and constraints, the domain of any dependent function type can be
marked as auto. This signals to the compiler that the corresponding argument
will be an implicit argument and that it should not be reconstructed by uni-
fication alone but rather by proof search. The search algorithm will use the
appropriate user-declared hints as well as the local variables in scope.

By default, a datatype’s constructors are always added to the database of
hints. And so the following declaration brings into scope both an indexed family
So of proofs that a given boolean is True, and a unique constructor Oh that is
automatically added as a hint.

data So : Bool -> Type where
Oh : So True

As a consequence, we can for instance define a record type specifying what
it means for n to be an even number by storing its half together with a proof
that is both runtime irrelevant and filled in by proof search. Because (2 * 3 ==
6) computes to True, Idris 2 is able to fill-in the missing proof in the definition
of even6 using the Oh hint.

record Even (n : Nat) where
constructor MkEven
half : Nat
{auto 0 prf : So (2 * half == n)}

even6 : Even 6
even6 = MkEven { half = 3 }

We will use both So and the auto mechanism in section 5.3.

3.3 Application: Vect, as List

We can use the features of Quantitative Type Theory to give an implementa-
tion of Vect that is guaranteed to erase to a List at runtime independently of
the optimisation passes implemented by the compiler. The advantage over the
optimisation passes described in section 2 is that the user has control over the
runtime representation and does not need to rely on these optimisations being
deployed by the compiler.

The core idea is to make the slogan ‘a vector is a length-indexed list’ a reality
by defining a record packing together the encoding as a list and a proof its length
is equal to the expected Nat index. This proof is marked as runtime irrelevant
to ensure that the list is the only thing remaining after compilation.

118

Builtin Types Viewed as Inductive Families

record Vect (n : Nat) (a : Type) where
constructor MkVect
encoding : List a
0 valid : length encoding === n

Smart constructors Now that we have defined vectors, we can recover the usual
building blocks for vectors by defining smart constructors, that is to say func-
tions Nil and (::) that act as replacements for the inductive family’s data
constructors.

Nil : Vect Z a
Nil = MkVect [] Refl

The smart constructor Nil returns an empty vector. It is, unsurprisingly,
encoded as the empty list ([]). Because (length []) statically computes to Z,
the proof that the encoding is valid can be discharged by reflexivity.

(::) : a -> Vect n a -> Vect (S n) a
x :: MkVect xs eq = MkVect (x :: xs) (cong S eq)

Using (::) we can combine a head and a tail of size n to obtain a vector of
size (S n). The encoding is obtained by consing the head in front of the tail’s
encoding and the proof this is valid (cong S eq) uses the fact that propositional
equality is a congruence and that (length (x :: xs)) computes to (S (length
xs)).

View Now that we know how to build vectors, we demonstrate that we can also
take them apart using a view.

A view for a type T , in the sense of Wadler [24], and as refined by McBride
and McKinna [18], is an inductive family V indexed by T together with a total
function mapping every element t of T to a value of type (V t). This simple
gadget provides a powerful, user-extensible, generalisation of pattern-matching.
Patterns are defined inductively as either a pattern variable, a forced term (i.e.
an arbitrary expression that is determined by a constraint arising from another
pattern), or a data constructor fully applied to subpatterns. In contrast, the
return indices of an inductive family’s constructors can be arbitrary expressions.

In the case that interests us, the view allows us to emulate ‘matching’ on
which of the two smart constructors Nil or (::) was used to build the vector
being taken apart.

data View : Vect n a -> Type where
Nil : View Nil
(::) : (x : a) -> (xs : Vect n a) -> View (x :: xs)

The inductive family View is indexed by a vector and has two constructors
corresponding to the two smart constructors. We use Idris 2’s overloading capa-
bilities to give each of the View’s constructors the name of the smart constructor
it corresponds to. By pattern-matching on a value of type (View xs), we will be

119

G. Allais

able to break xs into its constitutive parts and either observe it is equal to Nil
or recover its head and its tail.

view : (xs : Vect n a) -> View xs
view (MkVect [] Refl) = Nil
view (MkVect (x :: xs) Refl) = x :: MkVect xs Refl

The function view demonstrates that we can always tell which constructor
was used by inspecting the encoding list. If it is empty, the vector was built
using the Nil smart constructor. If it is not then we got our hands on the head
and the tail of the encoding and (modulo some re-wrapping of the tail) they are
effectively the head and the tail that were combined using the smart constructor.

Application: map We can then use these constructs to implement the function
map on vectors without ever having to explicitly manipulate the encoding. The
maximally sugared version of map is as follows:

map : (a -> b) -> Vect n a -> Vect n b
map f xs@_ with (view xs)

_ | [] = []
_ | hd :: tl = f hd :: map f tl

On the left-hand side the view lets us seamlessly pattern-match on the input
vector. Using the with keyword we have locally modified the function definition
so that it takes an extra argument, here the result of the intermediate compu-
tation (view xs). Correspondingly, we have two clauses matching on this extra
argument; the symbol | separates the original left-hand side (here elided using
_ because it is exactly the same as in the parent clause) from the additional
pattern. This pattern can either have the shape [] or (hd :: tl) and, corre-
spondingly, we learn that xs is either [] or (hd :: tl).

On the right-hand side the smart constructors let us build the output vector.
Mapping a function over the empty vector yields the empty vector while mapping
over a cons node yields a cons node whose head and tail have been modified.

This sugared version of map is equivalent to the following more explicit one:

map : (a -> b) -> Vect n a -> Vect n b
map f xs with (view xs)

map f .([]) | [] = []
map f .(hd :: tl) | hd :: tl = f hd :: map f tl

In the parent clause we have explicitly bound xs instead of merely introducing
an alias for it by writing (xs@_) and so we will need to be explicit about the ways
in which this pattern is refined in the two with-clauses.

In the with-clauses, we have explicitly repeated the refined version of the
parent clause’s left-hand side. In particular we have used dotted patterns to
insist that xs is now entirely forced by the match on the result of (view xs).

We have seen that by matching on the result of the (view xs) call, we get to
‘match’ on xs as if Vect were an inductive type. This is the power of views.

120

Builtin Types Viewed as Inductive Families

Application: lookup The type (Fin n) can similarly be represented by a sin-
gle natural number and a runtime irrelevant proof that it is bound by n. We
leave these definitions out, and invite the curious reader to either attempt to
implement them for themselves or look at the accompanying code.

Bringing these definitions together, we can define a lookup function which is
similar to the one defined in section 2.

lookup : Vect n a -> Fin n -> a
lookup xs@_ k@_ with (view xs) | (view k)

_ | hd :: _ | Z = hd
_ | _ :: tl | S k’ = lookup tl k’

We are seemingly using view at two different types (Vect and Fin respec-
tively) but both occurrences actually refer to separate functions: Idris 2 lets us
overload functions and performs type-directed disambiguation.

For pedagogical purposes, this sugared version of lookup can also be ex-
panded to a more explicit one that demonstrates the views’ power.

lookup : Vect n a -> Fin n -> a
lookup xs k with (view xs) | (view k)
lookup .(hd :: tl) .(Z) | hd :: tl | Z = hd
lookup .(hd :: tl) .(S k’) | hd :: tl | S k’ = lookup tl k’

The main advantage of this definition is that, based on its type alone, we
know that this function is guaranteed to be processing a list and a single natural
number at runtime. This efficient runtime representation does not rely on the
assumption that state of the art optimisation passes will be deployed.

We have seen some of Idris 2’s powerful features and how they can be lever-
aged to empower users to control the runtime representation of the inductive
families they manipulate. This simple example only allowed us to reproduce the
performance that could already be achieved by compilers deploying state of the
art optimisation passes. In the following sections, we are going to see how we can
use the same core ideas to compile an inductive family to a drastically different
runtime representation while keeping good high-level ergonomics.

4 Thinnings, Cooked Two Ways

We experienced a major limitation of compilation of inductive families during
our ongoing development of TypOS [2], a domain specific language to define
concurrent typecheckers and elaborators. Core to this project is the definition
of actors manipulating a generic notion of syntax with binding. Internally the
terms of this syntax with binding are based on a co-de Bruijn representation (an
encoding we will explain below) which relies heavily on thinnings. A thinning
(also known as an Order Preserving Embedding [9]) between a source and a
target scope is an order preserving injection of the smaller scope into the larger
one. They are usually represented using an inductive family. The omnipresence of

121

G. Allais

thinnings in the co-de Bruijn representation makes their runtime representation
a performance critical matter.

Let us first remind the reader of the structure of abstract syntax trees in a
named, a de Bruijn, and a co-de Bruijn representation. We will then discuss two
representations of thinnings: a safe and convenient one as an inductive family,
and an unsafe but efficient encoding as a pair of arbitrary precision integers.

4.1 Named, de Bruijn, and co-de Bruijn Syntaxes

In this section we will use the S combinator (λg.λf.λx.gx(fx)) as a running
example and represent terms using a syntax tree whose constructor nodes are
circles and variable nodes are squares. To depict the S combinator we will only
need λ-abstraction and application (rendered $) nodes. A constructor’s argu-
ments become its children in the tree. The tree is laid out left-to-right and a
constructor’s arguments are displayed top-to-bottom.

Named Syntax The first representation is using explicit names. Each binder has
an associated name and each variable node carries a name. A variable refers to
the closest enclosing binder which happens to be using the same name.

λg. λf. λx. $

$

g

x

$
f

x

To check whether two terms are structurally equivalent (α-equivalence) po-
tentially requires renaming bound names. In order to have a simple and cheap
α-equivalence check we can instead opt for a nameless representation.

De Bruijn Syntax An abstract syntax tree based on de Bruijn indices [8] re-
places names with natural numbers counting the number of binders separating a
variable from its binding site. The S combinator is now written (λλλ 2 0 (1 0)).

You can see in the following graphical depiction that λ-abstractions do not
carry a name anymore and that variables are simply pointing to the binder
that introduced them. We have left the squares empty but in practice the var-
ious coloured arrows would be represented by a natural number. For instance
the dashed magenta one corresponds to 1 because you need to ignore one λ-
abstraction (the orange one) on your way towards the root of the tree before
you reach the corresponding magenta binder.

122

Builtin Types Viewed as Inductive Families

λ. λ. λ. $

$

$

To check whether a subterm does not mention a given set of variables (a
thickening test, the opposite of a thinning which extends the current scope with
unused variables), you need to traverse the whole term. In order to have a simple
cheap thickening test we can ensure that each subterms knows precisely what
its support is and how it embeds in its parent’s.

Co-de Bruijn Syntax In a co-de Bruijn representation [17] each subterm selects
exactly the variables that stay in scope for that term, and so a variable construc-
tor ultimately refers to the only variable still in scope by the time it is reached.
This representation ensures that we know precisely what the scope of a given
term currently is.

In the following graphical rendering, we represent thinnings as lists of full
(•) or empty (◦) discs depending on whether the corresponding variable is either
kept or discarded. For instance the thinning represented by ◦•• throws the blue
variable away, and keeps both the magenta and orange ones.

λ. λ. λ. $

$

$

• •• •••

◦••

•◦•

•◦

◦•
•◦

◦•
We can see that in such a representation, each node in the tree stores one

thinning per subterm. This will not be tractable unless we have an efficient
representation of thinnings.

4.2 The Performance Challenges of co-de Bruijn

Using the co-de Bruijn approach, a term in an arbitrary context is represented
by the pairing of a term in co-de Bruijn syntax with a thinning from its support
into the wider scope. Having such a precise handle on each term’s support allows

123

G. Allais

us to make operations such as thinning, substitution, unification, or common
sub-expression elimination more efficient.

Thinning a term does not require us to traverse it anymore. Indeed, embed-
ding a term in a wider context will not change its support and so we can simply
compose the two thinnings while keeping the term the same.

Substitution can avoid traversing subterms that will not be changed. Indeed,
it can now easily detect when the substitution’s domain does not intersect with
the subterm’s support.

Unification requires performing thickening tests when we want to solve a
metavariable declared in a given context with a terms seemingly living in a
wider one. We once more do not need to traverse the term to perform this test,
and can simply check whether the outer thinning can be thickened.

Common sub-expression elimination requires us to identify alpha-equivalent
terms potentially living in different contexts. Using a de Bruijn representation,
these can be syntactically different: a variable represented by the natural number
v in Γ would be (1+v) in Γ, σ but (2+v) in Γ, τ, ν. A co-de Bruijn representation,
by discarding all the variables not in the support, guarantees that we can once
more use syntactic equality to detect alpha-equivalence. This encoding is used
for instance (albeit unknowingly) by Maziarz, Ellis, Lawrence, Fitzgibbon, and
Peyton-Jones in their ‘Hashing modulo alpha-equivalence’ work [14].

For all of these reasons we have, as we mentioned earlier, opted for a co-de
Bruijn representation in the implementation of TypOS [2]. And so it is crucial
for performance that we have a compact representation of thinnings.

Thinnings in TypOS We first carefully worked out the trickier parts of the
implementation in Agda before porting the resulting code to Haskell. This pro-
cess highlighted a glaring gap between on the one hand the experiments done
using a strongly typed inductive representation of thinnings and on the other
hand their more efficient but unsafe encoding in Haskell.

Agda The Agda-based experiments use inductive families that make the key
invariants explicit which helps tracking complex constraints and catches design
flaws at typechecking time. The indices guarantee that we always transform the
thinnings appropriately when we add or remove bound variables. In Idris 2, the
inductive family representation of thinnings would be written:

data Thinning : (sx, sy : SnocList a) -> Type where
Done : Thinning [<] [<]
Keep : Thinning sx sy -> (0 x : a) -> Thinning (sx :< x) (sy :< x)
Drop : Thinning sx sy -> (0 x : a) -> Thinning sx (sy :< x)

The Thinning family is indexed by two scopes (represented as snoclists i.e. lists
that are extended from the right, just like contexts in inference rules): sx the
tighter scope and sy the wider one. The Done constructor corresponds to a thin-
ning from the empty scope to itself ([<] is Idris 2 syntactic sugar for the empty
snoclist), and Keep and Drop respectively extend a given thinning by keeping or

124

Builtin Types Viewed as Inductive Families

dropping the most local variable (:< is the ‘snoc’ constructor, a sort of flipped
‘cons’). The ‘name’ (x of type a) is marked with the quantity 0 to ensure it is
erased at compile time (cf. section 3).

During compilation, Idris 2 would erase the families’ indices as they are forced
(in the sense of Brady, McBride, and McKinna [6]), and drop the constructor
arguments marked as runtime irrelevant. The resulting inductive type would be
the following simple data type.

data Thinning = Done | Keep Thinning | Drop Thinning

At runtime this representation is therefore essentially a linked list of booleans
(Done being Nil, and Keep and Drop respectively (True ::) and (False ::)).

Haskell The Haskell implementation uses this observation and picks a packed
encoding of this list of booleans as a pair of integers. One integer represents the
length n of the list, and the other integer’s n least significant bits encode the list
as a bit pattern where 1 is Keep and 0 is Drop.

Basic operations on thinnings are implemented by explicitly manipulating
individual bits. It is not indexed and thus all the invariant tracking has to be
done by hand. This has led to numerous and hard to diagnose bugs.

Thinnings in Idris 2 Idris 2 is a self-hosting language whose core datatype is
currently based on a well-scoped de Bruijn representation. This precise indexing
of terms by their scope helped entirely eliminate a whole class of bugs that
plagued Idris 1’s unification machinery.

If we were to switch to a co-de Bruijn representation for our core language
we would want, and should be able, to have the best of both worlds: a safe and
efficient representation!

Thankfully Idris 2 implements Quantitative Type Theory (QTT) which gives
us a lot of control over what is to be runtime relevant and what is to be erased
during compilation. This should allow us to insist on having a high-level interface
that resembles an inductive family while ensuring that everything but a pair of
integers is erased at compile time. We will exploit the key features of QTT
presented in section 3 to have our cake and eat it.

5 An Efficient Invariant-Rich Representation

We can combine both approaches highlighted in section 4.2 by defining a record
parameterised by a source (sx) and target (sy) scopes corresponding to the two
ends of the thinnings, just like we would for the inductive family. This record
packs two numbers and a runtime irrelevant proof.

Firstly, we have a natural number called bigEnd corresponding to the size of
the big end of the thinning (sy). We are happy to use a (unary) natural number
here because we know that Idris 2 will compile it to an unbounded integer.

Secondly, we have an integer called encoding corresponding to the thin-
ning represented as a bit vector stating, for each variable, whether it is kept

125

G. Allais

or dropped. We only care about the integer’s bigEnd least significant bits and
assume the rest is set to 0.

Thirdly, we have a runtime irrelevant proof invariant that encoding is indeed
a valid encoding of size bigEnd of a thinning from sx to sy. We will explore the
definition of the relation Invariant later on in section 5.3.

record Th {a : Type} (sx, sy : SnocList a) where
constructor MkTh
bigEnd : Nat
encoding : Integer
0 invariant : Invariant bigEnd encoding sx sy

The first sign that this definition is adequate is our ability to construct any
valid thinning. We demonstrate it is the case by introducing functions that act
as smart constructor analogues for the inductive family’s data constructors.

5.1 Smart Constructors for Th

The first and simplest one is done, a function that packs a pair of 0 (the size of the
big end, and the empty encoding) together with a proof that it is an adequate
encoding of the thinning from the empty scope to itself. In this instance, the
proof is simply the Done constructor.

done : Th [<] [<]
done = MkTh { bigEnd = 0, encoding = 0, invariant = Done }

To implement both keep and drop, we are going to need to perform bit-level
manipulations. These are made easy by Idris 2’s Bits interface which provides us
with functions to shift the bit patterns left or right (shiftl, shiftr), set or clear
bits at specified positions (setBit, clearBit), take bitwise logical operations like
disjunction (.|.) or conjunction (.&.), etc.

In both keep and drop, we need to extend the encoding with an additional
bit. For this purpose we introduce the cons function which takes a bit b and an
existing encoding bs and returns the new encoding bs·b.

cons : Bool -> Integer -> Integer
cons b bs = let bs0 = bs ‘shiftL‘ 1 in

if b then (bs0 ‘setBit‘ 0) else bs0

No matter what the value of the new bit is, we start by shifting the encoding
to the left to make space for it; this gives us bs0 which contains the bit pattern
bs ·0. If the bit is True then we need to additionally set the bit at position 0
to obtain bs ·1. Otherwise if the bit is False, we can readily return the bs ·0
encoding obtained by left shifting. The correctness of this function is backed by
two lemma: testing the bit at index 0 after consing amounts to returning the
cons’d bit, and shifting the cons’d encoding to the right takes us back to the
unextended encoding.

126

Builtin Types Viewed as Inductive Families

testBit0Cons : (b : Bool) -> (bs : Integer) ->
testBit (cons b bs) 0 === b

consShiftR : (b : Bool) -> (bs : Integer) ->
(cons b bs) ‘shiftR‘ 1 === bs

The keep smart constructor demonstrates that from a thinning from sx to sy
and a runtime irrelevant variable x we can compute a thinning from the extended
source scope (sx :< x) to the target scope (sy :< x) where x was kept.

keep : Th sx sy -> (0 x : a) -> Th (sx :< x) (sy :< x)
keep th x = MkTh
{ bigEnd = S (th .bigEnd)
, encoding = cons True (th .encoding)
, invariant =

let 0 b = eqToSo $ testBit0Cons True (th .encoding) in
Keep (rewrite consShiftR True (th .encoding) in th.invariant) x

}

The outer scope has grown by one variable and so we increment bigEnd. The
encoding is obtained by cons-ing the boolean True to record the fact that this
new variable is kept. Finally, we use the two lemmas shown above to convince
Idris 2 the invariant has been maintained.

Similarly the drop function demonstrates that we can compute a thinning
getting rid of the variable x freshly added to the target scope.

drop : Th sx sy -> (0 x : a) -> Th sx (sy :< x)
drop th x = MkTh
{ bigEnd = S (th .bigEnd)
, encoding = cons False (th .encoding)
, invariant =
let 0 prf = testBit0Cons False (th .encoding)

0 nb = eqToSo $ cong not prf in
Drop (rewrite consShiftR False (th .encoding) in th .invariant) x

}

We once again increment the bigEnd, use cons to record that the variable is
being discarded and use the lemmas ensuring its correctness to convince Idris 2
the invariant is maintained.

We can already deploy these smart constructors to implement functions pro-
ducing thinnings. We use which as our example. It is a filter-like function that
returns a dependent pair containing the elements that satisfy a boolean predi-
cate together with a proof that there is a thinning embedding them back into
the input snoclist.

127

G. Allais

which : (a -> Bool) -> (sy : SnocList a) ->
(sx : SnocList a ** Th sx sy)

which p [<] = ([<] ** done)
which p (sy :< y) =

let (sx ** th) = which p sy in
if p y then (sx :< y ** keep th y)

else (sx ** drop th y)

If the input snoclist is empty then the output shall also be, and done builds
a thinning from [<] to itself. If it is not empty we can perform a recursive call
on the tail of the snoclist and then depending on whether the predicates holds
true of the head we can either keep or drop it.

We are now equipped with these smart constructors that allow us to seam-
lessly build thinnings. To recover the full expressive power of the inductive family,
we also need to be able to take these thinnings apart. Let us now tackle this issue.

5.2 Pattern Matching on Th

The View family is a sum type indexed by a thinning. It has one data constructor
associated to each smart constructor and storing its arguments.

data View : Th sx sy -> Type where
Done : View done
Keep : (th : Th sx sy) -> (0 x : a) -> View (keep th x)
Drop : (th : Th sx sy) -> (0 x : a) -> View (drop th x)

The accompanying view function witnesses the fact that any thinning arises
as one of these three cases.

view : (th : Th sx sy) -> View th

We show the implementation of view in its entirety but leave out the tech-
nical auxiliary lemma it invokes. The interested reader can find them in the
accompanying material. We will however inspect the code view compiles to after
erasure in section 5.5 to confirm that these auxiliary definitions do not incur any
additional runtime cost.

We first start by pattern matching on the bigEnd of the thinning. If it is 0
then we know the thinning has to be the empty thinning. Thanks to an inversion
lemma called isDone, we can collect a lot of equality proofs: the encoding bs has
to be 0, the source and target scopes sx and sy have to be the empty snoclists,
and the proof prf of the invariant has to be of a specific shape. Rewriting by
these equalities changes the goal type enough for the typechecker to ultimately
see that the thinning was constructed using the done smart constructor and so
we can use the view’s Done constructor.

128

Builtin Types Viewed as Inductive Families

view (MkTh 0 bs prf) =
let 0 eqs = isDone prf in
rewrite bsIsZero eqs in
rewrite fstIndexIsLin eqs in
rewrite sndIndexIsLin eqs in
rewrite invariantIsDone eqs in
Done

In case the thinning is non-empty, we need to inspect the 0-th bit of the
encoding to know whether it keeps or discards its most local variable. This is
done by calling the choose function which takes a boolean b and returns a value
of type (Either (So b) (So (not b)) i.e. we not only inspect the boolean but also
record which value we got in a proof using the So family introduced in section 3.

view (MkTh (S i) bs prf) = case choose (testBit bs Z) of

If the bit is set then we know the variable is kept. And so we can invoke an
inversion lemma that will once again provide us with a lot of equalities that we
immediately deploy to reshape the goal’s type. This ultimately lets us assemble
a sub-thinning and use the view’s Keep constructor.

Left so =>
let 0 eqs = isKeep prf so in
rewrite fstIndexIsSnoc eqs in
rewrite sndIndexIsSnoc eqs in
rewrite invariantIsKeep eqs in
rewrite isKeepInteger bs so in
let th : Th eqs.fstIndexTail eqs.sndIndexTail

th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
cast $ Keep th eqs.keptHead

If the bit is not set then we learn that the thinning was constructed using
drop. We can once again use an inversion lemma to rearrange the goal and finally
invoke the view’s Drop constructor.

Right soNot =>
let 0 eqs = isDrop prf soNot in
rewrite sndIndexIsSnoc eqs in
rewrite invariantIsDrop eqs in
rewrite isDropInteger bs soNot in
let th : Th sx eqs.sndIndexTail

th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
cast $ Drop th eqs.keptHead

We can readily use this function to implement pattern matching functions
taking a thinning apart. We can for instance define kept, the function that
counts the number of keep smart constructors used when manufacturing the

129

G. Allais

input thinning and returns a proof that this is exactly the length of the source
scope sx.

kept : Th sx sy -> (n : Nat ** length sx === n)
kept th = case view th of

Done => (0 ** Refl)
Keep th x => let (n ** eq) = kept th in

(S n ** cong S eq)
Drop th x => kept th

We proceed by calling the view function on the input thinning which imme-
diately tells us that we only have three cases to consider. The Done case is easily
handled because the branch’s refined types inform us that both sx and sy are the
empty snoclist [<] whose length is evidently 0. In the Keep branch we learn that
sx has the shape (_ :< x) and so we must return the successor of whatever the
result of the recursive call gives us. Finally in the Drop case, sx is untouched and
so a simple recursive call suffices. Note that the function is correctly detected as
total because the target scope sy is indeed getting structurally smaller at every
single recursive call. It is runtime irrelevant but it can still be successfully used
as a termination measure by the compiler.

5.3 The Invariant Relation

We have shown the user-facing Th and have claimed that it is possible to define
smart constructors done, keep, and drop, as well as a view function. This should
become apparent once we show the actual definition of Invariant.

Definition of Invariant The relation maintains the invariant between the
record’s fields bigEnd (a Nat) and encoding (an Integer) and the index scopes
sx and sy. Its definition can favour ease-of-use of runtime efficiency because we
statically know that all of the Invariant proofs will be erased during compilation.

data Invariant : (i : Nat) -> (bs : Integer) ->
(sx, sy : SnocList a) -> Type where

Done : Invariant Z 0 [<] [<]
Keep : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->

{auto 0 b : So (testBit bs Z)} ->
Invariant (S i) bs (sx :< x) (sy :< x)

Drop : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->
{auto 0 nb : So (not (testBit bs Z))} ->
Invariant (S i) bs sx (sy :< x)

As always, the Done constructor is the simplest. It states that the thinning
of size Z and encoded as the bit pattern 0 is the empty thinning.

The Keep constructor guarantees that the thinning of size (S i) and encoding
bs represents an injection from (sx :< x) to (sy :< x) provided that the bit at

130

Builtin Types Viewed as Inductive Families

position Z of bs is set, and that the rest of the bit pattern (obtained by a right
shift on bs) is a valid thinning of size i from sx to sy.

The Drop constructor is structured the same way, except that it insists the
bit at position Z should not be set.

We can readily use this relation to prove that some basic encoding are valid
representations of useful thinnings.

Examples of Invariant proofs For instance, we can always define a thinning
from the empty scope to an arbitrary scope sy.

none : (sy : SnocList a) -> Th [<] sy
none sy = MkTh (length sy) 0 (none sy)

The encoding of this thinning is 0 because every variable is being discarded
and its bigEnd is the length of the outer scope sy. The validity proof is provided
by the none lemma proven below. We once again use Idris 2’s overloading to give
the same to functions that play similar roles but at different types.

none : (sy : SnocList a) -> Invariant (length sy) 0 [<] sy
none [<] = Done
none (sy :< y) = Drop (none sy) y

The proof proceeds by induction over the outer scope sy. If it is empty, we
can simply use the constructor for the empty thinning. Otherwise we can invoke
Drop on the induction hypothesis. This all typechecks because (testBit 0 Z)
computes to False and so the nb proof can be constructed automatically by
Idris 2’s proof search (cf. section 3.2), and (0 ‘shiftR‘ 1) evaluates to 0 which
means the induction hypothesis has exactly the right type.

The definition of the identity thinning is a bit more involved. For a scope of
size n, we are going to need to generate a bit pattern consisting of n ones. We
define it in two steps. First, cofull defines a bit pattern of k zeros followed by
infinitely many ones by shifting k places to the left a bit pattern of ones only.
Then, we obtain full by taking the complement of cofull.

cofull : Nat -> Integer
cofull n = oneBits ‘shiftL‘ n

full : Nat -> Integer
full n = complement (cofull n)

We can then define the identity thinning for a scope of size n by pairing (full
n) as the encoding and n as the bigEnd.

ones : (sx : SnocList a) -> Th sx sx
ones sx = let n : Nat; n = length sx in MkTh n (full n) (ones sx)

The bulk of the work is once again in the eponymous lemma proving that
this encoding is valid.

131

G. Allais

ones : (sx : SnocList a) ->
let n = length sx in Invariant n (full n) sx sx

ones [<] = Done
ones (sx :< x) =
let 0 nb = eqToSo (testBitFull (S (length sx)) Z) in
Keep (rewrite shiftRFull (length sx) in ones sx) x

This proof proceeds once more by induction on the scope. If the scope is
empty then once again the constructor for the empty thinning will do. In the non-
empty case, we first appeal to an auxiliary lemma (not shown here) to construct
a proof nb that the bit at position Z for a non-zero full integer is known to
be True. We then need to use another lemma to cast the induction hypothesis
which mentions (full (length sx)) so that it may be used in a position where
we expect a proof talking about (full (length (sx :< x)) ‘shiftR‘ 1).

Properties of the Invariant relation This relation has a lot of convenient
properties.

First, it is proof irrelevant: any two proofs that the same i, bs, sx, and sy
are related are provably equal. Consequently, equality on Th values amounts to
equality of the bigEnd and encoding values. In particular it is cheap to test
whether a given thinning is the empty or the identity thinning.

Second, it can be inverted [12] knowing only two bits: whether the natural
number is empty and what the value of the bit at position Z of the encoding is.
This is what allowed us to efficiently implement the view function by using these
two checks and then inverting the Invariant proof to gain access to the proof
that the remainder of the thinning’s encoding is valid. We will see in section 5.5
that this leads to efficient runtime code for the view.

5.4 Choose Your Own Abstraction Level

Access to both the high-level View and the internal Invariant relation means
that programmers can pick the level of abstraction at which they want to work.
They may need to explicitly manipulate bits to implement key operators that
are used in performance-critical paths but can also stay at the highest level for
more negligible operations, or when proving runtime irrelevant properties.

In the previous section we saw simple examples of these bit manipulations
when defining none (using the constant 0 bit pattern) and ones using bit shifting
and complement to form an initial segment of 1s followed by 0s.

Other natural examples include the meet and join of two thinnings sharing
the same wider scope. The join can for instance be thought of either as a function
defined by induction on the first thinning and case analysis on the second, emit-
ting a Keep constructor whenever either of the inputs does. Or we can observe
that the bit pattern in the join is the disjunction of the inputs’ bit patterns and
prove a lemma about the Invariant relation instead. This can be visualised as
follows: in each column the meet is a • whenever either of the inputs is.

132

Builtin Types Viewed as Inductive Families

◦◦••◦
∨ •◦◦••
•◦•••

The join is of particular importance because it appears when we convert
an ‘opened’ view of a term into its co-de Bruijn counterpart. As we mentioned
earlier, co-de Bruijn terms in an arbitrary scope are represented by the pairing
of a term indexed by its precise support with a thinning embedding this sup-
port back into the wider scope. When working with such a representation, it
is convenient to have access to an ‘opened’ view where the outer thinning has
been pushed inside therefore exposing the term’s top-level constructor, ready for
case-analysis.

The following diagram shows the correspondence between an ‘opened’ ap-
plication node using the view (the diamond ‘$’ node) with two subterms both
living in the outer scope and its co-de Bruijn form (the circular ‘$’ node) with
an outer thinning selecting the term support.

$

t1

t2

◦◦••◦

•◦◦••

$

t1

t2

•◦•••

◦••◦

•◦••

The outer thinning of the co-de Bruijn term is obtained precisely by com-
puting the join of the respective outer thinnings of the ‘opened’ application’s
function and argument.

These explicit bit manipulations will be preserved during compilation and
thus deliver more efficient code.

5.5 Compiled Code

The following code block shows the JavaScript code that is produced when com-
piling the view function. We chose to use the JavaScript backend rather than
e.g. the ChezScheme one because it produces fairly readable code. We have mod-
ified the backend to also write comments reminding the reader of the type of
the function being defined and the data constructors the natural number tags
correspond to. These changes are now available to all in Idris 2 version 0.6.0.

The only manual modifications we have performed are the inlining of a func-
tion corresponding to a case block, renaming variables and property names to
make them human-readable, introducing the $tail definitions to make lines
shorter, and slightly changing the layout.

/* Thin.Smart.view : (th : Th sx sy) -> View th */
function Thin_Smart_view($th) {
switch($th.bigEnd) {

133

G. Allais

case 0n: return {h: 0 /* Done */};
default: {
const $predBE = ($th.bigEnd-1n);
const $test = choose(notEq(($th.encoding&1n), 0n)));
switch($test.tag) {
case 0: /* Left */ {
const $tail = $th.encoding>>1n;
return { tag: 1 /* Keep */

, val: {bigEnd: $predBE, encoding: $tail}}; }
case 1: /* Right */ {
const $tail = $th.encoding>>1n;
return { tag: 2 /* Drop */

, val: {bigEnd: $predBE, encoding: $tail}}; }
}}}}

Readers can see that the compilation process has erased all of the indices and
the proofs showing that the invariant tying the efficient runtime representation
to the high-level specification is maintained. A thinning is represented at run-
time by a JavaScript object with two properties corresponding to Th’s runtime
relevant fields: bigEnd and encoding. Both are storing a JavaScript bigInt (one
corresponding to the Nat, the other to the Integer). For instance the thinning
[01101] would be at runtime { bigEnd: 5n, encoding: 13n }.

The view proceeds in two steps. First if the bigEnd is 0n then we know the
thinning is empty and can immediately return the Done constructor. Otherwise
we know the thinning to be non-empty and so we can compute the big end of its
tail ($predBE) by subtracting one to the non-zero bigEnd. We can then inspect
the bit at position 0 to decide whether to return a Keep or a Drop constructor.
This is performed by using a bit mask to 0-out all the other bits ($th.bigEnd&1n)
and checking whether the result is zero. If it is not equal to 0 then we emit Keep
and compute the $tail of the thinning by shifting the original encoding to drop
the 0th bit. Otherwise we emit Drop and compute the same tail.

By running view on this [01101] thinning, we would get back (Keep [0110]),
that is to say { tag: 1, val: { bigEnd: 4n, encoding: 6n } }.

Thanks to Idris 2’s implementation of Quantitative Type Theory we have
managed to manufacture a high level representation that can be manipulated
like a classic inductive family using smart constructors and views without giving
up an inch of control on its runtime representation.

The remaining issues such as the fact that we form the view’s constructors
only to immediately take them apart thus creating needless allocations can be
tackled by reusing Wadler’s analysis (section 12 of [24]).

6 Conclusion

We have seen that inductive families provide programmers with ways to root out
bugs by enforcing strong invariants. Unfortunately these families can get in the

134

Builtin Types Viewed as Inductive Families

way of producing performant code despite existing optimisation passes erasing
redundant or runtime irrelevant data. This tension has led us to take advantage
of Quantitative Type Theory in order to design a library combining the best of
both worlds: the strong invariants and ease of use of inductive families together
with the runtime performance of explicit bit manipulations.

6.1 Related Work

For historical and ergonomic reasons, idiomatic code in Coq tends to center
programs written in a subset of the language quite close to OCaml and then
prove properties about these programs in the runtime irrelevant Prop fragment.
This can lead to awkward encodings when the unrefined inputs force the user to
consider cases which ought to be impossible. Common coping strategies involve
relaxing the types to insert a modicum of partiality e.g. returning an option type
or taking an additional input to be used as the default return value. This ap-
proach completely misses the point of type-driven development. We benefit from
having as much information as possible available during interactive editing. This
information not only helps tremendously getting the definitions right by ensuring
we always maintain vital invariants thus making invalid states unrepresentable, it
also gives programmers access to type-driven tools and automation. Thankfully
libraries such as Equations [20,21] can help users write more dependently typed
programs, by taking care of the complex encoding required in Coq. A view-based
approach similar to ours but using Prop instead of the zero quantity ought to be
possible. We expect that the views encoded this way in Coq will have an even
worse computational behaviour given that Equations uses a sophisticated elab-
oration process to encode dependent pattern-matching into Gallina. However
Coq does benefit from good automation support for unfolding lemmas, inversion
principles, and rewriting by equalities. It may compensate for the awkwardness
introduced by the encoding.

Prior work on erasure [22] has the advantage of offering a fully automated
analysis of the code. The main inconvenience is that users cannot state explicitly
that a piece of data ought to be runtime irrelevant and so they may end up
inadvertently using it which would prevent its erasure. Quantitative Type Theory
allows us users to explicitly choose what is and is not runtime relevant, with
the quantity checker keeping us true to our word. This should ensure that the
resulting program has a much more predictable complexity.

A somewhat related idea was explored by Brady, McKinna, and Hammond in
the context of circuit design [7]. In their verification work they index an efficient
representation (natural numbers as a list of bits) by its meaning as a unary
natural number. All the operations are correct by construction as witnessed by
the use of their unary counterparts acting as type-level specifications. In the end
their algorithms still process the inductive family instead of working directly
with binary numbers. This makes sense in their setting where they construct
circuits and so are explicitly manipulating wires carrying bits. By contrast, in our
motivating example we really want to get down to actual (unbounded) integers
rather than linked lists of bits.

135

G. Allais

6.2 Limitations and Future Work

Overall we found this case study using Idris 2, a state of the art language based
on Quantitative Type Theory, very encouraging. The language implementation
is still experimental but none of the issues are intrinsic limitations. We hope to
be able to push this line of work further, tackling the following limitations and
exploring more advanced use cases.

Limitations Unfortunately it is only propositionally true that (view (keep th
x)) computes to (Keep th x) (and similarly for done/Done and drop/Drop). This
means that users may need to manually deploy these lemmas when proving the
properties of functions defined by pattern matching on the result of calling the
view function. This annoyance would disappear if we had the ability to extend
Idris 2’s reduction rules with user-proven equations as implemented in Agda and
formally studied by Cockx, Tabareau, and Winterhalter [10].

In this paper’s case study, we were able to design the core Invariant relation
making the invariants explicit in such a way that it would be provably proof
irrelevant. This may not always be possible given the type theory currently
implemented by Idris 2. Adding support for a proof-irrelevant sort of propositions
(see e.g. Altenkirch, McBride, and Swierstra’s work [3]) could solve this issue
once and for all.

The Idris 2 standard library thankfully gave us access to a polished pure
interface to explicitly manipulate an integer’s bits. However these built-in oper-
ations came with no built-in properties whatsoever. And so we had to postulate
a (minimal) set of axioms and prove a lot of useful corollaries ourselves. There is
even less support for other low-level operations such as reading from a read-only
array, or manipulating pointers.

We also found the use of runtime irrelevance (the 0 quantity) sometimes
frustrating. Pattern-matching on a runtime irrelevant value in a runtime relevant
context is currently only possible if it is manifest for the compiler that the value
could only arise using one of the family’s constructors. In non-trivial cases this
is unfortunately only merely provable rather than self-evident. Consequently we
are forced to jump through hoops to appease the quantity checker, and end up
defining complex inversion lemmas to bypass these limitations. This could be
solved by a mix of improvements to the typechecker and meta-programming
using prior ideas on automating inversion [12,15,19].

Future work We are planning to explore more memory-mapped representations
equipped with a high level interface.

We already have experimental results demonstrating that we can use a read-
only array as a runtime representation of a binary search tree. Search can be
implemented as a proven-correct high level decision procedure that is seemingly
recursively exploring the "tree". At runtime however, this will effectively execute
like a classic search by dichotomy over the array.

More generally, we expect that a lot of the work on programming on serialised
data done in LoCal [23] thanks to specific support from the compiler can be

136

Builtin Types Viewed as Inductive Families

done as-is in a QTT-based programming language. Indeed, QTT’s type system
is powerful enough that tracking these invariants can be done purely in library
code.

In the short term, we would like to design a small embedded domain specific
language giving users the ability to more easily build and take apart products
and sums efficiently represented in the style we presented here. Staging would
help here to ensure that the use of the eDSL comes at no runtime cost. There
are plans to add type-enforced staging to Idris 2, thus really making it the ideal
host language for our project.

Our long term plan is to go beyond read-only data and look at imperative
programs proven correct using separation logic and see how much of this after-
the-facts reasoning can be brought back into the types to enable a high-level
correct-by-construction programming style that behaves the same at runtime.

Acknowledgements We are grateful to Conor McBride for discussions pertaining
to the fine details of the unsafe encoding used in TypOS, as well as James
McKinna, Fredrik Nordvall Forsberg, Ohad Kammar, and Jacques Carette for
providing helpful comments and suggestions on early versions of this paper.

This research was funded by the Engineering and Physical Sciences Research
Council (grant number EP/T007265/1).

The research data underpinning this publication [1] can be accessed at https:
//doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21.

References

1. Allais, G.: Builtin Types viewed as Inductive Families (code). Univer-
sity of St Andrews Research Portal (2023). https://doi.org/10.17630/
bd1085ce-a462-4a8b-ae81-9ededb4aea21

2. Allais, G., Altenmüller, M., McBride, C., Nakov, G., Forsberg, F.N., Roy, C.: Ty-
pOS: An operating system for typechecking actors. In: 28th International Confer-
ence on Types for Proofs and Programs, TYPES 2022, June 20-25, 2022, Nantes,
France (2022)

3. Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: Stump,
A., Xi, H. (eds.) Proceedings of the ACM Workshop Programming Languages
meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007. pp.
57–68. ACM (2007). https://doi.org/10.1145/1292597.1292608

4. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A., Grädel,
E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56–65. ACM
(2018). https://doi.org/10.1145/3209108.3209189

5. Brady, E.C.: Idris 2: Quantitative type theory in practice. In: Møller, A., Sridharan,
M. (eds.) 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference). LIPIcs, vol. 194,
pp. 9:1–9:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https:
//doi.org/10.4230/LIPIcs.ECOOP.2021.9

6. Brady, E.C., McBride, C., McKinna, J.: Inductive families need not store their
indices. In: Berardi, S., Coppo, M., Damiani, F. (eds.) Types for Proofs and Pro-
grams, International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4,

137

https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.17630/bd1085ce-a462-4a8b-ae81-9ededb4aea21
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

G. Allais

2003, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3085, pp.
115–129. Springer (2003). https://doi.org/10.1007/978-3-540-24849-1_8

7. Brady, E.C., McKinna, J., Hammond, K.: Constructing correct circuits: Verifi-
cation of functional aspects of hardware specifications with dependent types. In:
Morazán, M.T. (ed.) Proceedings of the Eighth Symposium on Trends in Func-
tional Programming, TFP 2007, New York City, New York, USA, April 2-4. 2007.
Trends in Functional Programming, vol. 8, pp. 159–176. Intellect (2007)

8. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Inda-
gationes Mathematicae (Proceedings) 75(5), 381–392 (1972). https://doi.org/10.
1016/1385-7258(72)90034-0, https://www.sciencedirect.com/science/article/
pii/1385725872900340

9. Chapman, J.M.: Type checking and normalisation. Ph.D. thesis, University of Not-
tingham (July 2009), http://eprints.nottingham.ac.uk/10824/

10. Cockx, J., Tabareau, N., Winterhalter, T.: The taming of the rew: a type the-
ory with computational assumptions. Proc. ACM Program. Lang. 5(POPL), 1–29
(2021). https://doi.org/10.1145/3434341

11. Coq Development Team, T.: The Coq Proof Assistant Reference Manual, version
8.15.2 (May 2022), http://coq.inria.fr

12. Cornes, C., Terrasse, D.: Automating inversion of inductive predicates in coq. In:
Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs, International Work-
shop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. Lecture Notes in
Computer Science, vol. 1158, pp. 85–104. Springer (1995). https://doi.org/10.
1007/3-540-61780-9_64

13. Dybjer, P.: Inductive families. Formal Aspects Comput. 6(4), 440–465 (1994).
https://doi.org/10.1007/BF01211308

14. Maziarz, K., Ellis, T., Lawrence, A., Fitzgibbon, A.W., Jones, S.P.: Hashing mod-
ulo alpha-equivalence. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, Virtual Event, Canada, June 20-25, 2021. pp. 960–973. ACM (2021).
https://doi.org/10.1145/3453483.3454088

15. McBride, C.: Inverting inductively defined relations in LEGO. In: Giménez, E.,
Paulin-Mohring, C. (eds.) Types for Proofs and Programs, International Workshop
TYPES’96, Aussois, France, December 15-19, 1996, Selected Papers. Lecture Notes
in Computer Science, vol. 1512, pp. 236–253. Springer (1996). https://doi.org/
10.1007/BFb0097795

16. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder, P.W.,
Sannella, D. (eds.) A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Lecture Notes
in Computer Science, vol. 9600, pp. 207–233. Springer (2016). https://doi.org/
10.1007/978-3-319-30936-1_12

17. McBride, C.: Everybody’s got to be somewhere. In: Atkey, R., Lindley, S. (eds.)
Proceedings of the 7th Workshop on Mathematically Structured Functional Pro-
gramming, MSFP@FSCD 2018, Oxford, UK, 8th July 2018. EPTCS, vol. 275, pp.
53–69 (2018). https://doi.org/10.4204/EPTCS.275.6

18. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69–
111 (2004). https://doi.org/10.1017/S0956796803004829

19. Monin, J.F.: Proof Trick: Small Inversions. In: Bertot, Y. (ed.) Second Coq Work-
shop. Yves Bertot, Edinburgh, United Kingdom (Jul 2010), https://hal.inria.
fr/inria-00489412

138

https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
http://eprints.nottingham.ac.uk/10824/
https://doi.org/10.1145/3434341
https://doi.org/10.1145/3434341
http://coq.inria.fr
https://doi.org/10.1007/3-540-61780-9_64
https://doi.org/10.1007/3-540-61780-9_64
https://doi.org/10.1007/3-540-61780-9_64
https://doi.org/10.1007/3-540-61780-9_64
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/BF01211308
https://doi.org/10.1145/3453483.3454088
https://doi.org/10.1145/3453483.3454088
https://doi.org/10.1007/BFb0097795
https://doi.org/10.1007/BFb0097795
https://doi.org/10.1007/BFb0097795
https://doi.org/10.1007/BFb0097795
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://hal.inria.fr/inria-00489412
https://hal.inria.fr/inria-00489412

Builtin Types Viewed as Inductive Families

20. Sozeau, M.: Equations: A dependent pattern-matching compiler. In: Kaufmann,
M., Paulson, L.C. (eds.) Interactive Theorem Proving, First International Confer-
ence, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6172, pp. 419–434. Springer (2010). https://doi.org/10.
1007/978-3-642-14052-5_29

21. Sozeau, M., Mangin, C.: Equations reloaded: high-level dependently-typed func-
tional programming and proving in coq. Proc. ACM Program. Lang. 3(ICFP),
86:1–86:29 (2019). https://doi.org/10.1145/3341690

22. Tejiščák, M.: A dependently typed calculus with pattern matching and erasure
inference. Proc. ACM Program. Lang. 4(ICFP), 91:1–91:29 (2020). https://doi.
org/10.1145/3408973

23. Vollmer, M., Koparkar, C., Rainey, M., Sakka, L., Kulkarni, M., Newton, R.R.:
Local: a language for programs operating on serialized data. In: McKinley, K.S.,
Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019. pp. 48–62. ACM (2019). https://doi.org/10.1145/3314221.3314631

24. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Conference Record of the Fourteenth Annual ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 21-23, 1987. pp. 307–313.
ACM Press (1987). https://doi.org/10.1145/41625.41653

25. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Confer-
ence Record of the Sixteenth Annual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, USA, January 11-13, 1989. pp. 60–76. ACM Press
(1989). https://doi.org/10.1145/75277.75283

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

139

https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
http://creativecommons.org/licenses/by/4.0/

Pragmatic Gradual Polymorphism with References

Wenjia Ye1(�) and Bruno C. d. S. Oliveira1

The University of Hong Kong, Hong Kong SAR, China
{wjye,bruno}@cs.hku.hk

Abstract. Gradualizing System F has been widely discussed. A big challenge is
to preserve relational parametricity and/or the gradual guarantee. Most past work
has focused on the preservation of parametricity, but often without the gradual
guarantee. A few recent works satisfy both properties by giving up System F syn-
tax, or with some restrictions and the introduction of sophisticated mechanisms
in the dynamic semantics.
While parametricity is important for polymorphic languages, most mainstream
languages typically do not satisfy it, for a variety of different reasons. In this
paper, we explore the design space of polymorphic languages that satisfy the
gradual guarantee, but do not preserve parametricity. When parametricity is not
a goal, the design of polymorphic gradual languages can be considerably simpli-
fied. Moreover, it becomes easy to add features that are of practical importance,
such as mutable references. We present a new gradually typed polymorphic cal-
culus, called λG

gpr, with mutable references and with an easy proof of the gradual
guarantee. In addition, compared to other gradual polymorphism work, λG

gpr is
defined using a Type-Directed Operational Semantics (TDOS), which allows the
dynamic semantics to be defined directly instead of elaborating to a target cast
language. λG

gpr and all the proofs in this paper are formalized in Coq.

Keywords: Gradual Typing · Type System · Polymorphism.

1 Introduction

Statically typed languages can statically detect potential errors in programs, but must
necessarily be conservative and reject some well-behaved programs. With dynamically
typed languages, all programs are accepted, which offers a great amount of flexibility.
However, the accepted dynamic programs include programs with type errors, making
it harder to detect programs that are ill-behaved because of type errors. Considering
the weaknesses and advantages of static and dynamic type systems, many approaches
have proposed to integrate these two spectrums [1,7,35,22,8]. Gradual typing [31,35]
provides a smooth integration of the two styles and has been under active research in
the programming languages community. In addition to the type soundness property, a
gradual language should behave as a static language if it is fully annotated. Conversely,
it should behave as a dynamic language for fully dynamic programs. Importantly, the
gradual guarantee [32] has been proposed to ensure a smooth transition between static
and dynamic typing.

The importance of System F as a foundation for programming languages with poly-
morphism naturally leads to the question of whether it is possible to gradualize it. Vari-
ous researchers have explored this question. In this line of research, a long-standing goal

c© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 140–167, 2023.
https://doi.org/10.1007/978-3-031-30044-8 6

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30044-8_6
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_6&domain=pdf

has been how to preserve relational parametricity [28]. Parametricity ensures a uniform
behavior for all instantiations of polymorphic functions, and is an important property of
System F. In addition it is also desirable to preserve the gradual guarantee [32], which
is recognized as an important property for gradual languages. Unlike System F, where
no dynamic mechanism is needed to ensure parametricity, with gradualized versions of
System F this is no longer the case. Ahmed et al. [3] showed that parametricity can be
enforced using a dynamic sealing mechanism at runtime. They prove parametricity, but
the gradual guarantee is not discussed. Igarashi et al. [17] improved on the dynamic
sealing approach and proposed a more efficient mechanism. While the gradual guar-
antee has been discussed, it was left as a conjecture. Toro et al. [37] even proved that
gradual guarantee and parametricity are incompatible. By giving up the traditional Sys-
tem F syntax, New et al. [24] proved the gradual guarantee and parametricity by using
user-provided sealing annotations, but this requires resorting to syntax that is not based
on System F. Finally, Labrada et al. [20] proved the gradual guarantee and parametricity
by inserting sealing with some restrictions. For instance, only base and variable types
can be used to instantiate type applications.

While parametricity is highly valued and it is guaranteed in practice in some func-
tional languages, many mainstream programming languages – such as Java, TypeScript
or Flow – do not have parametricity. In mainstream languages the value of paramet-
ric polymorphism, and its ability to express a whole family of functions in a reusable
and type-safe manner is certainly recognized. However, such languages are imperative
and come with a variety of programming language features (such as unrestricted forms
of mutable state, exceptions, parallelism and concurrency mechanisms, reflection, etc.)
that make it hard to apply reasoning principles known in functional programming. In
particular, most of those features are known to be highly challenging to deal with in
the presence of parametricity [2,18,23]. This makes it non-obvious how to design a lan-
guage with all those features, while preserving parametricity, in the first place. More-
over, preserving parametricity may require extra dynamic checks at runtime, which for
implementations where performance is a critical factor may discourage implementers
from doing such checks. Therefore all the aforementioned programming languages sup-
port System F like mechanisms to deal with polymorphism and benefit from the reuse
afforded by polymorphism. However, the reasoning principles that arise from polymor-
phism, such as parametricity is discarded, and parametricity is not enforced.

In particular, programming languages such as TypeScript or Flow, which support
some form of gradual/optional typing, and are widely used in practice, do not support
parametricity. Figure 1 encodes an example from Ahmed et al.’s work [3], which was
used to illustrate the parametricity challenge in gradual typing, in TypeScript and Flow.
In this program, the polymorphic function Ks has a polymorphic type: (X → Y → Y),
where X and Y are type variables. In a calculus with parametricity, we know that a
function with such type should always return the second argument or, in the presence
of runtime casts, return an error. In the program, Ks is as a function that casts a dynamic
constant function (K) that returns the first argument, which violates parametricity. When
the TypeScript and Flow programs are run the first argument 2 is returned, illustrating
that both languages do not enforce parametricity. In a gradual language with parametric-
ity the result that we would expect is an error. Furthermore, even if we turn to Typed

141Pragmatic Gradual Polymorphism with References

function K(x:any, y:any): any {
return x;

}

function Ks<X, Y>(x: X, y: Y): Y {
let CAST = (K as any) as ((x:
X, y: Y) ⇒ Y);

return CAST(x, y);
}

function run() {
console.log(Ks<number,

number>(2,3));
}

(a) TypeScript code.

function K(x:any, y:any): any {
return x;

}

function Ks<X, Y>(x: X, y: Y): Y {
let CAST = ((K : any) : ((x:
X, y: Y) ⇒ Y));

return CAST(x, y);
}

function run() {
console.log(Ks (2,3));

}

(b) Flow code.

Fig. 1: Ahmed et al. [3] program for illustrating parametricity in TypeScript and Flow.

Racket [36], which is a well-established gradual language used in both gradual typing
research and in practice, the result is similar and 2 is returned:

(: K Any)
(define K (λ (x) (λ (y) x)))

(define Ks
(cast K (All (X Y) (→ X (→ Y Y)))))

((Ks 2) 3)

Therefore Typed Racket does not enforce parametricity either.
In this paper, we explore the more pragmatic design space of polymorphic gradual

languages with the gradual guarantee, but no parametricity. We believe that such de-
signs are relevant because many practical language designs do not support parametric-
ity, but support various other programming features instead. Dropping the requirement
for parametricity enables us to explore language designs with many relevant practi-
cal features, while being in line with current designs for existing practical gradually
typed languages. In particular, this paper studies the combination of parametric poly-
morphism, gradual typing and references. We show that, when parametricity is not a
goal, the design of gradually polymorphic languages can be simplified, making it easier
to add features such as references. Moreover, the gradual guarantee, which has shown
to be quite problematic in all existing calculi with gradual polymorphism, is simple to
achieve. We present a standard static calculus with polymorphism and mutable refer-
ences called λgpr. Then we introduce the gradual counterpart, called λG

gpr.
The approach that we follow to give the dynamic semantics to λG

gpr is to use the re-
cently proposed Type-Directed Operational Semantics TDOS [16,42]. In contrast, tra-
ditionally the semantics of a gradually typed language is defined by elaboration to a
target cast calculus such as the blame calculus [39]. In other words, the dynamic se-
mantics of the gradual source language is given indirectly by translating to the target

W. Ye and B. C. d. S. Oliveira142

language. As Ye et al. [42] shows, TDOS avoids such indirection and uses bidirectional
typing and type annotations to enforce both implicit and explicit casting at runtime in
gradually typed languages.

In summary, we make the following contributions in this paper:

– The λG
gpr calculus: A gradual calculus with polymorphism and mutable references.

λG
gpr calculus is the gradual counterpart of the λgpr calculus. Both λG

gpr and λgpr are
shown to be type sound and deterministic.

– Gradual guarantee for λG
gpr. We prove the gradual guarantee for λG

gpr. The proof
is easy and quite simple, in contrast to previous work in gradual polymorphism,
where the gradual guarantee was a major obstacle.

– A TDOS extension. TDOS has been applied to gradual typing before [42]. How-
ever, the previous work on TDOS for gradual typing only works in a purely func-
tional, simply typed calculus. Our work shows that the TDOS approach can incor-
porate other features, including polymorphism and references.

– A mechanical formalization in the Coq theorem prover. All the calculi and
proofs in this paper have been mechanically formalized in the Coq theorem prover.
The Coq formalization can be found in the supplementary materials of this paper:

https://www.zenodo.org/badge/latestdoi/581421930

2 Overview

This section provides a background for gradual polymorphic calculi, calculi with grad-
ual references and the key ideas of our static system (λgpr) with polymorphism and
references and its gradual counterpart (λG

gpr).

2.1 Background

Gradual References. Mutable references read or write content into a memory cell.
A common set of operations is: allocating a memory cell (ref e); updating references
(e1 := e2) and reading the content from a reference (!e). Locations (o) point to the
memory cell. For a reference value ref 1, a new location (o) is generated and value 1
is stored in the cell at the location o. If 2 is assigned to this location o := 2, the cell
value is updated to 2. Later, when we read this cell (!o), 2 is returned. Siek et al. [31]
defined an invariant consistency relation for reference types. Reference types are only
consistent with themselves. For example:

(λx. (x := 2) : Ref ?→ Ref ?) (ref 1) – Rejected! Ref Int / Ref ?

Although the type Int is consistent with ?, it does not mean that Ref Int is consistent
with Ref ?. Therefore, the argument type is not consistent with the function input, and
the program is rejected. Herman et al. [14] proposed a gradually typed lambda source
language with references, which defines the dynamic semantics by elaborating to a co-
ercion calculus. The above program is allowed in their calculus. They define variant
consistency where if A is consistent with B then Ref A is consistent with Ref B. In their

143Pragmatic Gradual Polymorphism with References

https://www.zenodo.org/badge/latestdoi/581421930

calculus, casts are combined to achieve space-efficiency. Furthermore, Siek et al. [33]
explored monotonic references with variant consistency. Their main consideration is
space efficiency. No runtime overhead is imposed in the statically typed part of pro-
grams. All the above works have not considered the gradual guarantee.

Toro and Tanter [38] showed how to employ the Abstracting Gradual Typing (AGT)
[12] methodology to design a gradually typed calculus with mutable references (λR̃EF).
Their dynamic semantics of the source language is defined by translating to an evidence
base calculus. They prove a bisimulation with the coercion calculus by Herman et al. [14].
λR̃EF is proved to satisfy the gradual guarantee. The consistency of λR̃EF is also variant.

Gradual Polymorphism. Gradual polymorphism is a popular topic. Researchers have
been working in this area for a long time. Prior work has focused on two key properties:
relational parametricity [28] and the gradual guarantee [32]. Relational parametricity
ensures that all instantiations to a polymorphic value behave uniformly. The gradual
guarantee ensures that less dynamic programs behave the same as more static programs.

Satisfying these two properties at once has shown to be problematic. Ahmed et
al. [3] showed that a naive combination of the unknown type ? and type substitution
breaks relational parametricity. They show the problem using a simple expression with
two casts. To simplify the presentation, we ignore blame labels. Suppose that K? =

dλx.λy.xe, the dynamically typed constant function, is cast to a polymorphic type:

K? : ?⇒ ∀X.∀Y .X → Y → X K? : ?⇒ ∀X.∀Y .X → Y → Y

The notation e : A ⇒ B, borrowed from the blame calculus [29], means cast expres-
sion e from type A to type B. The constant function K? returns the first argument.
Considering relational parametricity, a value of type ∀X.∀Y .X → Y → X should
be a constant value which always returns the first argument. While a value of type
∀X.∀Y .X → Y → Y should return the second argument. Therefore, the first cast suc-
ceeds and the second cast should fail. However, if these two casts are applied to the
arguments in the usual way employing type substitutions, then we obtain the following:

(K? : ?⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ (K? : ?⇒ Int→ Int→ Int)
↪→∗ 2

(K? : ?⇒ ∀X.∀Y .X → Y → Y) Int Int 2 3
↪→∗ (K? : ?⇒ Int→ Int→ Int)
↪→∗ 2

The second cast succeeds and returns the first argument, which breaks parametricity.
The reason for this behavior is that, after the type substitution, the polymorphic in-
formation is lost. Note that, as we have seen in Section 1, this is exactly how various
practical languages (TypeScript, Flow and Typed Racket) behave.

Much of the work on gradual polymorphism aims at addressing the above prob-
lem. That is, for the second cast we would like to obtain blame instead of 2, so that
parametricity is not violated. While the preservation of parametricity is a worthy goal,

W. Ye and B. C. d. S. Oliveira144

it typically requires substantial changes to a calculus to ensure its preservation, since
naive direct type substitutions do not work. Furthermore, this also affects proofs, which
can become significantly more complicated due to the changes in the calculus. To ad-
dress this problem a well-known approach, originally proposed by Ahmed et al. [3], is to
employ dynamic sealing. With dynamic sealing we do not do the substitution directly
but record a fresh variable binding. However, even calculi that satisfy parametricity
have to compromise on the important gradual guarantee property, or System F syntax,
or be equiped with heavy forms of runtime evidence [37,20]. A thorough discussion of
various approaches is given in Section 6.

2.2 Key Ideas

Our key design decision is to give up support for parametricity in exchange for a simpler
calculus that is also easier to extend with other important practical features. In partic-
ular, in our work we illustrate how to obtain a polymorphic gradually typed calculus,
with gradual references and with the gradual guarantee. In contrast, none of the exist-
ing gradually polymorphic calculi supports references and the gradual guarantee is only
supported with restrictions [20]; or major modifications in the syntax and semantics of
the language [24]; or not supported/proved at all [37,3,17].

A direct semantics with a TDOS. Our gradually typed calculus λG
gpr has a direct seman-

tics by using a (TDOS) [15] approach. In λG
gpr, type annotations are operationally rele-

vant and they basically play a role similar to casts. Nevertheless, implicit casts should
also be enforced for a gradual calculus at runtime. Most previous work makes the im-
plicit casts explicit via the elaboration process. That is the reason why dynamic se-
mantics is not defined directly. We resort to bidirectional typing with inferred (⇒) and
checked (⇐) modes. Using the checking mode of bidirectional typing, the consistency
(∼) between values and the checked type is checked and enforced via an implicit cast.
At compile time, the flexible consistency relation allows more programs to be accepted,
while the checking mode signals casts that are needed at runtime. For example, in the
typing rule for applications.

Σ;Γ ` e1 ⇒ A1 → A2 Σ;Γ ` e2 ⇐ A1

Σ;Γ ` e1 e2 ⇒ A2
Typ-app

The checking mode signals an implicit cast for the argument. The argument e2 is checked
to be consistent with the type A1 using the bidirectional subsumption rule:

Σ;Γ ` e ⇒ B Γ ` B ∼ A

Σ;Γ ` e ⇐ A
Typ-sim

For instance, (λx. x : Int → Int) (True : ?) type-checks, but at run-time the invalid cast
to the value argument (True : ?) is detected and an error is reported.

Conservativity, no parametricity and direct substitutions. The λG
gpr calculus is a con-

servative extension of its static counterpart. Notably, our λG
gpr is a simple polymorphic

145Pragmatic Gradual Polymorphism with References

calculus, without using mechanisms such as dynamic sealing and evidences. Instead,
since parametricity is not a goal, we can simply use direct type substitutions during
reduction as follows:

((ΛX. e : A) : ∀X. B) C ↪→ e[X 7→ C] : A[X 7→ C] : B[X 7→ C]

Our type application rule substitutes type directly unlike in previous work with dynamic
sealing where a fresh type name variable is generated and stored in a global or local
context. Dynamic sealing takes extra time and space. With a large enough number of
type applications, the space consumption may go unbounded.

Gradual guarantee and references. Furthermore, λG
gpr is mechanically formalized and

shown to have the gradual guarantee. Our application of the eager semantics and the
choice of value forms for λG

gpr simplify the gradual guarantee. To prove the gradual
guarantee we need a precision (v) relation. The gradual guarantee theorem needs to
ensure that if the more static program does not go wrong, then the less static program
should not go wrong as well. The precision relation is used to relate two programs,
which have different type information. Type precision compares the amount of static
type information for programs and types. A type is more precise than another if it is
more static. The unknown type (?) is the least precise type, since we do not have any
static information about that type. Let’s consider two programs:

λx. 1 : Int→ Int

λx. 1 : ?→ ?

The first one is more precise than the second one because the second program is fully
dynamic. The value forms of λG

gpr are annotated and include terms such as i : Int and
(λx. e : A → B) : C. The simplicity of the proof of the gradual guarantee is greatly
related to the choice of representation of values. In λG

gpr, the gradual guarantee theorem
can be formalized in a simple way with a lemma similar to a lemma proposed by Garcia
et al. [12]. The lemma states that if e1 is more precise than e2 and e1 takes a step to e′1
then e2 takes a step to e′2 and e′1 is more precise than e′2. With this lemma, we can infer
that two expressions related by precision have the same behavior. Thus, this lemma is
enough to obtain the dynamic gradual guarantee. Notably, λG

gpr is extended with mu-
table references using a form of variant consistency [14,38]. This is in contrast to the
previously discussed gradually polymorphic calculi where references are not supported.

3 The λgpr Calculus: Syntax, Typing and Semantics

In this section, we will introduce the λgpr calculus, which is a calculus with references
and polymorphism. λgpr calculus is an extended version of System F with references and
is the static calculus that serves as a foundation for the gradual calculus in Section 4.

3.1 Syntax

The syntax of the λgpr calculus is shown in Figure 2.

W. Ye and B. C. d. S. Oliveira146

Syntax

Types A, BF Int | A→ B | X | ∀X. A | Unit | Ref A
Expressions eF x | i | λx : A. e | e : A | e1 e2 | ΛX. e | e A |!e | e1 := e2 | ref e | unit | o
Values vF i | ΛX. e | λx : A. e | unit | o
Contexts ΓF · | Γ, x : A | Γ,X
Stores µF · | µ, o = v
Locations Σ F · | Σ, o : A
Frame F F v � | � e | � A |! � | v1 := � | � := e2 | ref � | � : A

Fig. 2: λgpr syntax

Types. Meta-variables A, B range over types. Types include base types (Int), function
types (A → B), type variables (X), polymorphic types (∀X. A), the unit type Unit and
reference types Ref A, which denotes a reference with type A.

Expressions. Meta-variables e range over expressions. Most of the expressions are
standard: variables (x), integers (i), annotations (e : A), applications (e1 e2), type ap-
plications (e A), dereferences (!e), assignments e1 := e2, references (ref e), unit (unit),
locations o, lambda abstractions (λx : A. e) (which are annotated with input type A),
and type abstractions (ΛX. e).

Values. Meta-variables v range over values. A raw value is either an integer (i), a type
abstraction (ΛX. e), a lambda abstraction (λx : A. e), a unit (unit) or a location (o).

Contexts, stores, locations and frames. The type context Γ tracks the bound variables
x with their types and the bound type variables X. Typing location Σ tracks the bound
locations o with their types, while the store µ tracks locations with their stored val-
ues during the reduction process. Frames (F) include applications, type applications,
dereferences, assignments and references.

3.2 Type System

Before introducing the type system, we show the well-formedness of types at the top of
Figure 3. The well-formedness of types ensures that there are no free type variables and
that each type variable is bound in the contexts.

Typing relation. The typing relation of λgpr is shown at the bottom of Figure 3. The type
system essentially includes the usual System F rules, except that they also propagate the
location typing context (Σ). Reference locations o are stored in the location typing con-
text Σ (rule styp-loc). The bound type of locations indicates the type of stored values.
For instance, o points to 1 stored in a memory cell. The integer type for 1 is tracked by
the location o in the location typing context Σ. Other rules related to references such as
assignments (rule styp-assign), references (rule styp-ref) and dereferences (rule styp-
deref) are standard. Annotation expressions (e : A) are not necessary for the static

147Pragmatic Gradual Polymorphism with References

Γ ` A (Well-formedness of types)

TW-int

Γ ` Int

TW-unit

Γ ` Unit

TW-var
X ∈ Γ

Γ ` X

TW-arr
Γ ` A Γ ` B

Γ ` A→ B

TW-all
Γ,X ` A

Γ ` ∀X. A

TW-ref
Γ ` A

Γ ` Ref A

Σ;Γ `s e : A (Typing rules for expressions)

STyp-lit

Σ;Γ `s i : Int

STyp-unit

Σ;Γ `s unit : Unit

STyp-var
x : A ∈ Γ

Σ;Γ `s x : A

STyp-loc
o : A ∈ Σ

Σ;Γ `s o : Ref A

STyp-ref
Σ;Γ `s e : A

Σ;Γ `s ref e : Ref A

STyp-deref
Σ;Γ `s e : Ref A

Σ;Γ `s!e : A

STyp-assign
Σ;Γ `s e1 : Ref A
Σ;Γ `s e2 : A

Σ;Γ `s e1 := e2 : Unit

STyp-abs
Σ;Γ, x : A `s e : B

Σ;Γ `s λx : A. e : A→ B

STyp-app
Σ;Γ `s e1 : A1 → A2

Σ;Γ `s e2 : A1

Σ;Γ `s e1 e2 : A2

STyp-anno
Σ;Γ `s e : A

Σ;Γ `s (e : A) : A

STyp-tabs
Σ;Γ,X `s e : A

Σ;Γ `s ΛX. e : ∀X. A

STyp-tapp
Γ ` A Σ;Γ `s e : ∀X. B

Σ;Γ `s e A : B[X 7→ A]

Fig. 3: The type system of λgpr calculus.

system where the annotated types are syntactically equal (rule styp-anno), but they will
play an important role in the gradual system and are included here.
Definition 1 defines well-formed stores (µ) with respect to the typing locations Σ, using
the typing relation:

Definition 1 (Well-formedness of the store with respect to Σ).

Σ ` µ ≡ i f dom(µ) = dom(Σ) and Σ; · ` µ(o) : Σ(o), f or every o ∈ µ

A store is well-formed with the typing location if the store and the typing location
contain the same domains. For each location, which is in the store, the bounded value
µ(o) can be inferred with the type bound in the typing location (Σ(o)).

3.3 Dynamic Semantics

The operational semantics for the λgpr calculus is shown in Figure 4 (we ignore the
gray parts for now). µ; e ↪→ µ′; e′ represents the reduction rules, which states that e
with store µ reduces to e′ with the updated store µ′. The reduction rules of λgpr are

W. Ye and B. C. d. S. Oliveira148

µ; e ↪→s µ
′; e′ (Operational semantics)

step-eval
µ; e ↪→s µ

′; e′

µ; F[e] ↪→s µ
′; F[e′]

step-annov

µ; v : A : A ↪→s µ; v : A

step-assign

µ; o := v ↪→s µ[o 7→ v]; unit

step-tap

µ; ((ΛX. e) : ∀X. A) A ↪→s µ; (e[X 7→ A]) : (A[X 7→ A])

step-deref
o = v ∈ µ

µ; !o ↪→s µ; v : A

step-beta

µ; ((λx : A. e) : A→ B) v ↪→s µ; e[x 7→ v] : B : B

step-refv
o < µ

µ; ref v ↪→s µ, o = v; o

Fig. 4: Reduction rules for λgpr.

straightforward. A reference value is bound in the store by a fresh location as shown
in rule step-refv. The dereference rule extracts the bound value of the location in the
store (rule step-deref). Rule step-eval evaluates the frames. Let’s see how the example
o1 := (ΛX. (λx : X. x) !o2) Int with the existing store o1 = 1, o2 = 2 reduces. 2 is
read from store o1 = 1, o2 = 2. After the type substitution, 2 is substituted into the
lambda. Then 2 is used to update the store pointed by o1. Finally, the store becomes
o1 = 2, o2 = 2. The detailed steps are as follows:

o1 = 1, o2 = 2; o1 := (ΛX. (λx : X. x) !o2) Int

↪→ {by rule Step-eval, rule Step-deref }
o1 = 1, o2 = 2; o1 := (ΛX. (λx : X. x) 2) Int

↪→ {by rule Step-tap }
o1 = 1, o2 = 2; o1 := (λx : Int. x) 2

↪→ {by rule Step-beta}
o1 = 1, o2 = 2; o1 := 2

↪→ {by rule Step-assign}
o1 = 2, o2 = 2; unit

Theorem 1 shows that the λgpr calculus is deterministic:

Theorem 1 (Determinism of λgpr). If Σ; · `s e : A, Σ ` µ, µ; e ↪→s µ1; e1 and µ; e ↪→s

µ2; e2 then e1 = e2 and µ1 = µ2.

Furthermore, the preservation Theorem 2 and progress Theorem 3 of λgpr calculus are
shown below:

Theorem 2 (Type Preservation of λgpr). If Σ; · `s e : A, Σ ` µ and µ; e ↪→s µ
′; e′ then

Σ′; · `s e′ : A, Σ′ ` µ′ and Σ′ ⊇ Σ.

Theorem 3 (Progress of λgpr). If Σ; · `s e : A then e is a value or ∃e′µ′, µ; e ↪→s µ
′; e′.

149Pragmatic Gradual Polymorphism with References

Typing modes ⇔F ⇒|⇐

Σ;Γ �s e ⇔ A (Typing rules for expressions)

sty-lit

Σ;Γ �s i ⇒ Int

sty-unit

Σ;Γ �s unit ⇒ Unit

sty-var
x : A ∈ Γ

Σ;Γ �s x ⇒ A

sty-loc
o : A ∈ Σ

Σ;Γ �s o ⇒ Ref A

sty-ref
Σ;Γ �s e ⇒ A

Σ;Γ �s ref e ⇒ Ref A

sty-deref
Σ;Γ �s e ⇒ Ref A

Σ;Γ �s!e ⇒ A

sty-assign
Σ;Γ �s e1 ⇒ Ref A
Σ;Γ �s e2 ⇐ A

Σ;Γ �s e1 := e2 ⇒ Unit

sty-abs
Σ;Γ, x : A �s e ⇒ B

Σ;Γ �s λx : A. e ⇒ A→ B

sty-app
Σ;Γ �s e1 ⇒ A1 → A2

Σ;Γ �s e2 ⇐ A1

Σ;Γ �s e1 e2 ⇒ A2

sty-anno
Σ;Γ �s e ⇐ A

Σ;Γ �s e : A ⇒ A

sty-eq
Σ;Γ �s e ⇒ A

Σ;Γ �s e ⇐ A

sty-tabs
Σ;Γ,X �s e ⇒ A

Σ;Γ �s ΛX. e ⇒ ∀X. A

sty-tapp
Γ ` A

Σ;Γ �s e ⇒ ∀X. B

Σ;Γ �s e A ⇒ B[X 7→ A]

Fig. 5: Bidirectional typing for the λgpr calculus.

3.4 Bidirectional Typing

We also present a set of bidirectional typing rules (shown in Figure 5) for λgpr. Although
bidirectional typing is not essential for λgpr, it is used later for the gradual typing criteria
proofs. The typing judgment is represented as Σ;Γ ` e ⇔ A. The expression e is
inferred (⇒) or checked (⇐) by type A under the typing context Γ and location typing
context Σ. Typing modes (⇔) contain the inference mode (⇒) and checking mode (⇐),
which are shown at the top of Figure 5. One extra rule is rule sty-eq, which switches
modes. We proved that the two type systems are equivalent:

Lemma 1 (Typing Equivalence for λgpr). Σ;Γ `s e : A iff Σ;Γ �s e ⇔ A.

4 The λG
gpr Calculus

This section introduces the λG
gpr calculus, which gradualizes the λgpr calculus. Normally,

a gradually typed lambda calculus (GTLC) does not define the operational semantics
directly, but is elaborated to a cast calculus. λG

gpr instead defines the dynamic semantics
directly using the TDOS approach [15]. λG

gpr is proved to be type sound and it has a
gradual guarantee. The calculus does not have parametricity, enabling simplifications

W. Ye and B. C. d. S. Oliveira150

Syntax

Types A, BF Int | A→ B | X | ∀X. A | Unit | Ref A | ?
Expressions eF x | i | e : A | e1 e2 | e A |!e | e1 := e2 | ref e | unit | o | ΛX. e : A | λx. e : A→ B
Results rF e | blame
Raw Values uF i | ΛX. e : A | λx. e : A→ B | unit | o
Values vF u : A
Contexts ΓF · | Γ, x : A | Γ,X
Stores µF · | µ, o = v
Location Σ F · | Σ, o : A
Frame F F v � | � e | � A |!� | v1 := � | � := e2 | ref �

Γ ` A ∼ B (Consistency)

S-unit

Γ ` Unit ∼ Unit

S-var
Γ ` X

Γ ` X ∼ X

S-z

Γ ` Int ∼ Int

S-dynl
Γ ` A

Γ ` ? ∼ A

S-dynr
Γ ` A

Γ ` A ∼ ?

S-arr
Γ ` A1 ∼ B1

Γ ` A2 ∼ B2

Γ ` A1 → A2 ∼ B1 → B2

S-forall
Γ,X ` A ∼ B

Γ ` ∀X. A ∼ ∀X. B

S-ref
Γ ` A ∼ B

Γ ` Ref A ∼ Ref B

Fig. 6: λG
gpr syntax and consistency.

in the calculus, and the addition of features such as gradual references, which none of
the previous gradual calculi with polymorphism support.

4.1 Static Semantics

Syntax, type well-formedness and consistency. Figure 6 shows the syntax and consis-
tency of the λG

gpr calculus. The gray parts are the same as λgpr. The λG
gpr calculus extends

types with the unknown type ? with respect to λgpr. Because of the power of the un-
known type ?, dynamic type checking is required and run-time errors may be raised.
Therefore, in addition to expressions, λG

gpr has the run-time error blame. Because of
the run-time checking requirement for the gradual typing system, we need annotations
for type abstractions and lambda abstractions. Furthermore, due to the imprecision of
the unknown type ?, values are also annotated. Otherwise, examples such as 1 : ? are
troublesome. Because of the value forms, annotations are not included in frames, unlike
in the λgpr calculus. We will explain the details later.

Well-formed types are extended with the following rule for the unknown type ?:

Γ ` ?

Notably, instead of syntactic equality, a more general relation called consistency (Γ `
A ∼ B) is defined in λG

gpr. Every well-formed type is consistent with itself. The unknown

151Pragmatic Gradual Polymorphism with References

Σ;Γ ` e ⇔ A (Typing rules for expressions)

Typ-lit

Σ;Γ ` i ⇒ Int

Typ-unit

Σ;Γ ` unit ⇒ Unit

Typ-var
x : A ∈ Γ

Σ;Γ ` x ⇒ A

Typ-loc
o : A ∈ Σ

Σ;Γ ` o ⇒ Ref A

Typ-ref
Σ;Γ ` e ⇒ A

Σ;Γ ` ref e ⇒ Ref A

Typ-deref
A1 B Ref A

Σ;Γ ` e ⇒ A1

Σ;Γ `!e ⇒ A

Typ-assign
A1 B Ref A

Σ;Γ ` e1 ⇒ A1

Σ;Γ ` e2 ⇐ A

Σ;Γ ` e1 := e2 ⇒ Unit

Typ-abs
Σ;Γ, x : A ` e ⇐ B

Σ;Γ ` λx. e : A→ B ⇒ A→ B

Typ-app
A B A1 → A2

Σ;Γ ` e1 ⇒ A
Σ;Γ ` e2 ⇐ A1

Σ;Γ ` e1 e2 ⇒ A2

Typ-anno
Σ;Γ ` e ⇐ A

Σ;Γ ` e : A ⇒ A

Typ-sim
Γ ` A ∼ B

Σ;Γ ` e ⇒ A

Σ;Γ ` e ⇐ B

Typ-tabs
Σ;Γ,X ` e ⇐ A

Σ;Γ ` ΛX. e : A ⇒ ∀X. A

Typ-tapp
Γ ` A Σ;Γ ` e ⇒ A1

A1 B ∀X. B

Σ;Γ ` e A ⇒ B[X 7→ A]

A B A1 → A2 A B ∀X. A1 A B Ref A1

A→ B B A→ B ∀X. A B ∀X. A Ref A B Ref A

? B ?→ ? ? B ∀X. ? ? B Ref ?

Fig. 7: The type system for the λG
gpr calculus.

type is consistent with any other well-formed type. Structural types such as functions,
references and polymorphic types are consistent if their type sub-components are con-
sistent. Note that for two reference types, consistency is variant: if A and B are consis-
tent then Ref A and Ref B are consistent. Unlike invariant consistency [31], type A and
B do not have to be the same. As usual, consistency is reflexive and symmetric, but not
transitive. We use the following abbreviation for consistency: A ∼ B ≡ · ` A ∼ B.

Typing relation. Bidirectional typing is used to design the type system. Bidirectional
typing is not essential for λgpr but it is necessary for λG

gpr. Annotation expressions (e : A)
and the checking mode (⇐) signal the use of casts (explicitly or implicitly) at run-time.

The typing rules of the λG
gpr calculus are shown in Figure 7. They are almost the same

as λgpr’s type system. For rule Typ-app, rule Typ-tapp, rule Typ-assign and rule Typ-
deref, the unknown type ? can be matched with, respectively, a dynamic function type
(? → ?), a dynamic polymorphic type (∀X. ?) and a dynamic reference type (Ref ?).
In a system with gradual typing and the unknown type ? we always have to consider

W. Ye and B. C. d. S. Oliveira152

cases where the type may be unknown. For instance in an application e1 e2, e1 can
infer a function type as usual, but it can also infer type ? and still be well-typed. So, a
matching function (A B B) is needed to account for both possibilities. The table at the
bottom of Figure 7 shows the definition of the matching functions A B B. Note that we
overload the notation, but there are 3 different matching functions, in each column of
the table, that are employed by the rules correspondingly. For example, rule Typ-deref
employs the matching function in the third column of the table. The first row in the table
depicts the form of the matching function, while the other two rows give its definition.

The checking mode rule Typ-sim is generalized to check if the inferred type A and
checked type B are consistent. Note that rule Typ-sim is the only rule in the checked
mode and, as such, does not overlap with anything else. Moreover, all the rules in the
inference mode are syntax directed. Therefore, the rules are basically directly imple-
mentable, as usual for bidirectional type-checking rules. Note that in λG

gpr annotation
expressions combined with consistency play an important role, where more programs
are allowed. For instance, (λx. ((x : ?) 1) : Bool → ?) True is accepted, but raises a
blame error at run-time. Note that dynamically typed lambdas λx.e are syntactic sugar
for λx.e : ?→ ?. The use of this syntactic sugar enables us to encode the dynamically
typed lambda calculus (DTLC) [4] easily in λG

gpr.
Definition 2 shows dynamic type checking for raw and annotated values, which

is done at run-time. Dynamic type checking for values exploits the annotations that
are present at run-time, and does not make use of the typing relation. Dynamic type
checking is essentially a constant time operation, with little cost (note that the function
is not recursive).

Definition 2 (Dynamic type). |u|µ = A and |v|µ = A denote the dynamic type of the raw
and annotated values.

|i|µ = Int

|(λx. e : A→ B)|µ = A→ B

|(ΛX. e : A)|µ = ∀X. A

|unit|µ = Unit

|o|µ = Ref |v|µ when o = v ∈ µ

|(u : A)|µ = A

|u|µ = A states that the dynamic type of the raw value u is A under store µ. Notably,
for locations o, the dynamic type is defined by the dynamic type of the bounded values
in the store. Other rules are straightforward. Lemma 2 shows that if a raw value can be
inferred with type A, then its dynamic type is type A as well.

Lemma 2 (Synthesis of Dynamic Types). For any raw value u, if Σ ` µ and Σ; · `
u ⇒ A then |u|µ = A.

As in λgpr, a term typed using the inference mode is guaranteed to infer a unique
type. In addition, Lemma 3 shows that each well-typed term can be checked.

Lemma 3 (Synthesis principality). If Σ;Γ ` e ⇒ A then exists B, Σ;Γ ` e ⇐ B and
Γ ` A ∼ B.

153Pragmatic Gradual Polymorphism with References

µ; v ↪→A µ
′; r (Casting for values)

casting-sim
|u|µ ∼ B

µ; u : A ↪→B µ; u : B

casting-nsim
¬|u|µ ∼ B

µ; u : A ↪→B µ; blame

µ; v ↪→B,A µ
′; r (Double casting)

TLists-baseb
µ; v ↪→A µ; blame

µ; v ↪→B,A µ; blame

TLists-cons
µ; v ↪→A µ; v′

µ; v′ ↪→B µ; r

µ; v ↪→B,A µ; r

Fig. 8: Casting for values

4.2 Dynamic Semantics

The dynamic semantics contains two parts. The first part is casting, which casts a value
to another value with a target type. In casting the dynamic type of the value is the source
type. The second part is the reduction rules.

Casting. Figure 8 shows the casting rules of the λG
gpr calculus. µ; v ↪→A µ; r repre-

sents casting values v by type A under store µ. The dynamic type of the raw values
u is checked to be consistent with type A or not. If two types are consistent, then the
intermediate type can be removed and the raw values are annotated with target types.
Otherwise, a run-time error is raised. For example when 1 : ? is cast by type Bool, the
dynamic type of 1 is Int, which is not consistent with Bool, and blame is raised. While in
1 : ? cast by type Int, the type Int is consistent with type Int. Thus, type ? is erased and
1 is annotated with type Int. Since a location o is a raw value, if we want to obtain the
dynamic type of the location, we should obtain it from the store µ. Therefore, casting
uses the store. Casting by two types is shown at the bottom of Figure 8. It simply casts
the types one by one, using the basic casting relation.

Reduction. The reduction rules of λG
gpr calculus are shown in Figure 9. Raw values

are reduced to become values, which are annotated by the dynamic type of the raw
values with rule step-u. Due to this rule, annotations are not included in the frame. An-
notated expressions are further dealt by rule step-anno and rule step-annop. From the
typing rules of rules Typ-app, Typ-tapp, Typ-assign, and Typ-deref, type ? is allowed
to match, respectively, a dynamic function, a polymorphic function or a reference type.
Moreover, we know that ? is consistent with any type. Therefore, we should check
whether the internal values cannot match with the wanted type structure. For example,
ill-formed applications ((1 : ?) 2) where the internal value (1) is not an lambda abstrac-
tion. There are similar examples for type applications and assignments: (1 : ?) Bool
and (True : ?) := 2 where 1 is not a type abstraction and True is not a location. Using

W. Ye and B. C. d. S. Oliveira154

µ; e ↪→ µ′; r (Operational semantics)

vstep-eval
µ; e ↪→ µ′; e′

µ; F[e] ↪→ µ′; F[e′]

vstep-blame
µ; e ↪→ µ′; blame

µ; F[e] ↪→ µ′; blame

vstep-annop
µ; e ↪→ µ′; blame

µ; e : A ↪→ µ′; blame

vstep-beta
A B A2 → B2

µ; v ↪→A1 ,A2 µ; v′

µ; ((λx. e : A1 → B1) : A) v ↪→ µ; e[x 7→ v′] : B1 : B2

vstep-assignd
µ; v1 ↪→Ref ? µ; blame

µ; v1 := v2 ↪→ µ; blame

vstep-annov
µ; v ↪→A µ; r

µ; v : A ↪→ µ; r

vstep-betap
A B A2 → B2

µ; v ↪→A1 ,A2 µ; blame

µ; ((λx. e : A1 → B1) : A) v ↪→ µ; blame

vstep-betad
µ; v1 ↪→?→? µ; blame

µ; v1 v2 ↪→ µ; blame

vstep-tap
B B ∀X. B2

µ; ((ΛX. e : A) : B) C ↪→ µ; e[X 7→ C] : A[X 7→ C] : B2[X 7→ C]

vstep-tapd
µ; v ↪→∀X. ? µ; blame

µ; v B ↪→ µ; blame

vstep-refv
o < µ

µ; ref v ↪→ µ, o = v; o

vstep-deref
o = v ∈ µ A1 B Ref A

µ; !(o : A1) ↪→ µ; v : A

vstep-derefp
µ; v ↪→Ref ? µ; blame

µ; !v ↪→ µ; blame

vstep-assign
|o|µ = A1 A B Ref A2

µ; v2 ↪→A1 ,A2 µ; v′2
µ; (o : A) := v2 ↪→ µ[o 7→ v′2]; unit

vstep-assignp
|o|µ = A1 A B Ref A2

µ; v2 ↪→A1 ,A2 µ; blame

µ; (o : A) := v2 ↪→ µ; blame

vstep-u
|u|µ = A

µ; u ↪→ µ; u : A

vstep-anno
¬value e : A
µ; e ↪→ µ′; e′

µ; e : A ↪→ µ′; e′ : A

Fig. 9: Reduction rules for λG
gpr.

rules vstep-betad, vstep-tapd, vstep-derefp, and vstep-assignd, we cast the value to
the corresponding dynamic types and filter out programs with errors. To apply a value
to a functional value (rules vstep-beta and vstep-betap), the argument type must be
consistent with function input types A2. Moreover, the expected substituted value type
is A1. Thus, the argument value should be cast by A2 and A1, which may return a blame
error. To preserve the type, the substituted body is annotated with B1 and B2. When a
value v is annotated with a type A, the type of the value must be consistent with type A,
and run-time checking is needed to validate consistency (rule vstep-annov). A reference
value ref v is bound in the store with a fresh location o (rule vstep-refv). To obtain a
value from the store by the location, from the last expression we use rule vstep-deref.

155Pragmatic Gradual Polymorphism with References

Note that in the typing rule for references:

Σ; · ` o : A1 ⇒ A1 A1 B Ref A

Σ; · `!(o : A1) ⇒ A
Typ-deref

The expected type is A but the bound value type is consistent with A. Thus we annotate
v using type A. When assigning a value to replace the bound value in the reference using
rules vstep-assign and vstep-assignp :

A B Ref A2 Σ; · ` o : A ⇒ A Σ; · ` v2 ⇐ A

Σ; · ` (o : A) := v2 ⇒ Unit
Typ-assign

The bound value by location o has type A1, while the type of v2 is consistent with type
A2 and A2 is consistent with A1. The expected type to be replaced is type A1, therefore
v2 is cast by type A1 and A2. Note that the cast result can be blamed. If a type is applied
to a polymorphic value, from the last expression (rule vstep-tap):

B B ∀X. B2 Σ; · ` (ΛX. e : A) : B ⇒ B

Σ; · ` ((ΛX. e : A) : B) C ⇒ B2[X 7→ C]
Typ-tapp

The expected type is (B2[X 7→ C]) but the substituted expression (e[X 7→ C] : A[X 7→
C]) has type (A[X 7→ C]), so it is annotated with type (B2[X 7→ C]).

Properties of λG
gpr. λ

G
gpr is deterministic (Theorem 4) and type sound (Theorem 5 and

Theorem 6).

Theorem 4 (Determinism of λG
gpr). If Σ; · ` e ⇔ A, µ; e ↪→ µ1; r1 and µ; e ↪→ µ2; r2

then r1 = r2 and µ1 = µ2.

Theorem 5 (Type Preservation of λG
gpr). If Σ; · ` e ⇔ A, Σ ` µ, and µ; e ↪→ µ′; e′

then Σ′; · ` e′ ⇔ A, Σ′ ` µ′ and Σ′ ⊇ Σ.

Theorem 6 (Progress of λG
gpr). If Σ; · ` e ⇔ A then e is a value or ∃r µ′, µ; e ↪→ µ′; r.

4.3 Gradual Typing Criteria

Siek et al. [31,32] proposed a set of criteria for gradual typing system. At the end of the
spectrum, a fully annotated gradually typed program should behave as a statically typed
program. Conversely, a gradually typed program without annotations should behave as
a dynamic program. Siek et al. proposed the gradual guarantee, which states that having
annotations that are more/less precise should not change the behavior of the programs.
Here we show that λG

gpr has the gradual guarantee.
To prove the gradual guarantee, we define the precision for types, expressions and

stores. At the top of Figure 10 is type precision A v B, which states that type A is
more precise than B. The unknown type ? is less precise than any other types. Each
type is more precise than itself. The precision of functions, polymorphic functions and

W. Ye and B. C. d. S. Oliveira156

A v B (Type Precision)

tp-unit

Unit v Unit

tp-var

X v X

tp-z

Int v Int

tp-dyn

A v ?

tp-arr
A1 v B1 A2 v B2

A1 → A2 v B1 → B2

tp-forall
A v B

∀X. A v ∀X. B

tp-ref
A v B

Ref A v Ref B

e1 v e2 (Expression Precision)

ep-lit

i v i

ep-var

x v x

ep-unit

unit v unit

ep-o

o v o

ep-ref
e1 v e2

ref e1 v ref e2

ep-deref
e1 v e2

!e1 v!e2

ep-abs
e1 v e2

A1 v A2 B1 v B2

λx. e1 : A1 → B1 v λx. e2 : A2 → B2

ep-app
e1 v e3 e2 v e4

e1 e2 v e3 e4

ep-assign
e1 v e3 e2 v e4

e1 := e2 v e3 := e4

ep-anno
e1 v e2 A1 v A2

e1 : A1 v e2 : A2

ep-tabs
e1 v e2 A1 v A2

ΛX. e1 : A1 v ΛX. e2 : A2

ep-tapp
e1 v e2 A1 v A2

e1 A1 v e2 A2

µ1 v µ2 (Store Precision)

sp-nil

· v ·

sp-empty
µ1 v µ2 v1 v v2

µ1, o = v1 v µ2, o = v2

Fig. 10: Precision Relation.

reference types holds, if the precision of their sub-components holds. Note that the
precision of function types is “covariant” in the argument types since to compare the
precision of the two programs:

λx. 1 : Int→ Int

λx. 1 : ?→ Int

we should just say that the first one is more precise than the second one because the
input type of the second one is fully dynamic. Expression precision is shown in the
middle of Figure 10. The rules can mostly be derived from the type precision. Each
expression is in a precision relation with itself. Structural expressions are in a precision
relation if their sub-expressions are related. Lastly, store precision, shown at the bottom
of Figure 10, shows that precision holds if the precision of values in the store holds.

157Pragmatic Gradual Polymorphism with References

µ; e ↪→s∗ µ
′; e′ (Operational semantics)

Step-eval
µ; e ↪→s∗ µ

′; e′

µ; F[e] ↪→s∗ µ
′; F[e′]

Step-annov

µ; u : A : A ↪→s∗ µ; u : A

Step-assign

µ; o := v ↪→s∗ µ[o 7→ v]; unit

Step-tap

µ; ((ΛX. e : A) : ∀X. A) A ↪→s∗ µ; e[X 7→ A] : A[X 7→ A]

Step-deref
o = v ∈ µ

µ; !o ↪→s∗ µ; v : A

Step-beta

µ; ((λx. e : A→ B) : A→ B) v ↪→s∗ µ; e[x 7→ v] : B : B

Step-refv
o < µ

µ; ref v ↪→s∗ µ, o = v; o

Step-u
|u|µ = A

µ; u ↪→s∗ µ; u : A

Step-anno
¬value e : A
µ; e ↪→s∗ µ

′; e′

µ; e : A ↪→s∗ µ
′; e′ : A

Fig. 11: Reduction rules for λgpr.

Static criteria. We show that the full static type system of λG
gpr is equivalent to the

λgpr calculus (Theorem 7). We use s to denote a relation from the static system in case
of ambiguity. Theorem 8 shows the static gradual guarantee of λG

gpr. If a more precise
program is well-typed then a less precise program should be well-typed with a less
precise type.

Theorem 7 (Equivalence for λgpr (statics)). If ·; · �s e ⇔ A if and only if ·; · ` e ⇔ A.

Theorem 8 (Static Gradual Guarantee). If e1 v e2, ·; · ` e1 ⇔ A then ·; · ` e2 ⇔ B
and A v B.

Dynamic criteria. Theorem 9 says that fully static programs of λG
gpr calculus behaves in

the same as the λgpr at run-time. To make the proofs easier, the reduction rules of λgpr

calculus have extra annotations to follow λG
gpr (we denoted as s∗). It means that there

are extra identical annotations, as shown in the gray parts of Figure 4. However, these
annotations are identical and they can be removed without affecting the final reduction
result. In addition, as in λG

gpr: values have annotations; raw values should step to be
annotated values; and annotations are not included in Frames. This requires a few extra
rules, which are shown in Figure 11.

Notably, λG
gpr has the dynamic gradual guarantee (Theorem 10). The proof is simple

in comparison to the original proof by Siek et al. [32]. This simple theorem is formalized
following the work of Garcia et al. [12]. It says that if a more precise program with a
more precise store can reduce, then the less precise program with a less precise store can
also reduce. Furthermore, their resulting programs and stores should keep the precision
relation.

W. Ye and B. C. d. S. Oliveira158

Theorem 9 (Equivalence for λgpr (dynamic)). ∀ ·; · �s e ⇔ A,

– If µ; e ↪→s∗ µ
′; e′ then µ; e ↪→ µ′; e′.

– If µ; e ↪→ µ′; e′ then µ; e ↪→s∗ µ
′; e′.

Theorem 10 (Dynamic Gradual Guarantee). If e1 v e2 , µ1 v µ2, ·; · ` e1 ⇔ A,
·; · ` e2 ⇔ B and µ1; e1 ↪→ µ′1; e′1 then there exists e′2 and µ′2 such that µ2; e2 ↪→ µ′2; e′2
, e′1 v e′2 and µ′1 v µ

′
2.

5 Discussion

In this section, we briefly discuss alternative designs and possible extensions.

Preserving relational parametricity. An alternative design is to have a directed seman-
tics gradual polymorphism calculi, which preserves parametricity. We employ the eager
semantics similar to the AGT methodology, which is applied in the GSF calculus. Toro
et al. [37] analyzed the following example to show how parametricity is broken by the
naive use of the dynamic sealing in the eager semantics:

(ΛX.(λx : X.let y : ? = x in let z : ? = y in z + 1)) Int 1

The polymorphic function with type (∀X.X → ?) breaks parametricity, which should
be detected at run-time and raise an error. However, the application of the function
reduces to 2. A fresh name variable α is generated and is bounded to the type Int.
Variable x to y is flowing from type Int to type α; y to z is flowing from type ? to
type ?; and x to z is flowing from Int to ?. Any of these type flows are safe. Thus the
reason for the loss of parametricity is related to the loss of precise type information.
Consequently, dynamic sealing is not enough to enforce relational parametricity. For
the above example, GSF detects the error by the refining evidences such as (〈αE1 , αE2〉).
Importantly in the type flow from y to z, more precise types (Int and αInt) instead of
? and ? are obtained, so when moving from x to z the type changes from Int to αInt.
When doing the addition, the run-time error is detected since the flow from αInt to Int
is not defined. A potential approach for us is to use tracked types (A<B1,B2>), which are
similar to the refined evidences in the GSF calculus. Because λG

gpr is a source language,
we do not have evidences, thus a possible approach is to record information in types.
For the above example, tracked types can track the unknown type with more precise
types from y to z to be Int and αInt which is ?(Int,αInt) and then from x to z to be ?(Int,αInt)

as the refined evidences and a run-time error is detected when doing the addition.

A space-efficient gradual polymorphic calculus. Ozaki et al. [27] explored the space
efficiency problem in the gradual polymorphic calculus. They extended the coercion
calculus (λC) [29] with parametric polymorphism (called λC∀). Dynamic sealing was
applied in λC∀ to enforce relational parametricity. Consequently, a sequence of coer-
cions is allowed and they showed that it cannot be normalized to a smaller coercion.
In other words, the size of sequences is unbounded. Notably, they stated and proved
that λC∀ cannot be space-efficient when dynamic sealing is supported. Furthermore,

159Pragmatic Gradual Polymorphism with References

they conjectured that the gradual polymorphic calculus with dynamic sealing cannot
become space-efficient. Our λG

gpr calculus substitutes types directly, as the traditional
semantics without employing dynamic sealing. Moreover, the eager semantics is ap-
plied. Thus we believe that it is possible for our λG

gpr calculus to be a space-efficient
gradual polymorphic calculus. Two tentative and promising rules are as follows:

A ∼ C

e : A : B : C ↪→ e : A : C

¬A ∼ C

e : A : B : C ↪→ blame

With the above two rules, annotations are removed or an error is raised, to achieve
the space-efficient goal. Surprisingly, with these two rules, it seems possible to have a
space-efficient gradual references calculus naturally. We intend to explore this in the
future.

Implicit polymorphic references. Implicit (higher-rank) polymorphism [10,26,19] is
pervasive in theoretic and practical programming languages. Existing gradual polymor-
phic calculi are mainly explicitly polymorphic. One exception is the work of Xie et
al. [41]. Explicit polymorphism means that polymorphic types are not related to any of
its instantiated types but in implicit polymorphism, they are related. Xie et al. [41] de-
signed a source gradual implicit polymorphism calculus with consistent subtyping but
their dynamic semantics is defined by translating to the well-known polymorphic blame
calculus (λB∀) [3] without the proof of the dynamic gradual guarantee. A possible ex-
tension of Xie et al.’s work is to support implicit polymorphism with a direct dynamic
semantics, and to explore the dynamic gradual guarantee and parametricity properties.
However, it is well-known that a naive combination of implicit polymorphism and ref-
erences lead to an unsound language. A possible solution is to limit polymorphism to
syntactic let-bound values as adopted by Standard ML [40].

Alternative forms of values. In our calculus, all values are annotated, such as 1 : Int or
(λx. x : Int → Int) : Int → Int. This introduces some overhead as some annotations are
redundant. We can have an alternative and workable form of values as follows:

vF u | u : ? | (ΛX. e : A) : ∀X. B | (λx. e : A1 → B1) : A2 → B2

The above value form removes redundant annotations such as integers (1 : Int). This is
good for performance, but it would make the proof of dynamic gradual guarantee harder.
However, the resulting calculus with fewer annotations should have an equivalent se-
mantics to our calculus, and would be a better candidate for guiding an implementation.

6 Related Work

Gradual typing. Gradual typing is a term coined by Siek et al. [31]. The unknown type
?, which we represent as ?, is the new notion introduced to a gradual type system to
integrate dynamic and static typing. By using the unknown type ?, equality on types
is lifted to consistency. Any type is consistent with type ?. Therefore, run-time type

W. Ye and B. C. d. S. Oliveira160

checking is needed for a gradually typed lambda calculus. Traditionally, the dynamic
semantics of a gradual language is defined by elaborating to a target language, which

Garcia et al. [12] proposed the abstracting gradual typing (AGT) approach, which
allows for deriving a gradual type system by lifting the static type system. They argue
about the weakness of elaborating to a target language, and did not resort to a tar-
get language in their calculus by using intrinsic terms. Our λG

gpr defines the dynamic
semantics directly without using intrinsic terms, but employing instead an approach
based on type-directed operational semantics (TDOS). Type directed operational se-
mantics (TDOS) was proposed by Huang et al. [15] to design calculi with the merge
operator and intersection types. Ye et al. [42] explored the use of the TDOS in gradual
typing. In TDOS, type annotations are relevant at runtime and can affect the semantics,
unlike many traditional calculi where types are not runtime relevant. With a TDOS we
can design a gradually typed calculus without elaboration to a cast calculus, since the
semantics can be given directly. Our λG

gpr employs the eager semantics for higher-order
values following an approach similar to AGT. Ye et al. only consider a TDOS for a sim-
ply typed, purely functional language. Our work shows that the TDOS approach can be
extended to important features, such as polymorphism and references.

Gradual typing with references. Many languages with static and dynamic typing, em-
ploying some form of optional typing, support references. These include Flow [8],
Dart [6] and TypeScript [5]. However for optional typing, the run-time checking is not
performed for fully dynamic programs, leading to unsoundness with respect to the static
type system. In the work of Siek et al. [31], he already considered mutable references,
but in a very simple setting without annotation expressions. Furthermore, the gradually
typed lambda calculus is elaborated to a target language to define the dynamic seman-
tics. Herman et al. [14] designed a coercion calculus with references, which is space
efficient. A gradualizer, introduced by Cimini and Siek [9], can derive a gradual static
type system and cast insertion with references systematically. Toro et al. [38] designed
source gradual typing system with references λR̃EF and a corresponding target language
λε

R̃EF
using the Abstracting Gradual Typing (AGT) methodology. They designed the

λε
R̃EF

as a space-efficient calculus and proved the gradual guarantee. Our λG
gpr is the first

polymorphic gradually typed language with references.

Existing gradual polymorphic calculi. In the following we summarize some of the
solutions to the problem of preserving parametricity and gradual guarantee in gradual
polymorphic calculi and the changes that these solutions entail.

Dynamic sealing. Ahmed et al. [3] solved the problem in Section 2 by using dynamic
sealing, inspired by the work of Matthews et al. [21]. They proposed the polymorphic
blame calculus [3] (we present it as λB∀), which is a widely used cast calculus with
dynamic sealing. The most interesting construct of λB∀ is the named type binding νX :=
A.t, which is introduced to record the instantiated type of a type variable. The programs

161Pragmatic Gradual Polymorphism with References

includes cast calculi [39,34,29 ,3] and coercion calculi [13,14,30,29,27].,11

in Section 2 behave as expected in λB∀:

(K? : ?⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ νY := Int.νX := Int.(2 : X ⇒ ? : ?⇒ X)
↪→∗ 2

(K? : ?⇒ ∀X.∀Y .X → Y → Y) Int Int 2 3
↪→∗ νY := Int.νX := Int.(2 : X ⇒ ? : ?⇒ Y)
↪→∗ blame

The first program succeeds and returns the first argument. While the second program
fails, since the polymorphic information is recorded as X := Int and Y := Int in type
bindings and the original type variable names are preserved in the casts. Notably, for
higher-order values, λB∀ follows the lazy semantics as the blame calculus [39,29]. That
is, for a function value, the checking is delayed until an argument value is applied. This,
unfortunately results in unbounded space consumption for higher-order casts [13,14].

As Xie et al. [41] pointed out, the compatibility relation of λB∀ mixes explicit and
implicit polymorphism to some extent, since they employ the following rule:

A[X 7→ ?] ≺ B

∀X. A ≺ B

This compatibility rule of λB∀ allows ∀X.X → X to be compatible with any static
instantiated types such as Int → Int and Bool → Bool. These types are not related in
System F so λB∀ is not a conservative extension of System F. The gradual guarantee
has not been discussed in λB∀, but they show the parametricity property.

The FG and FC calculi. Igarashi et al. [17] improved on λB∀. They designed a source
calculus (FG) and a target calculus (FC), which is a conservative extension of System
F. The dynamic semantics of FG is indirect and defined by translation to FC . FG does
not relate ∀X.X → X with static instantiations, but only with the dynamic instantiation
? → ?. The type ? → ? is called quasi-polymorphic, since it is an instantiation of
∀X.X → X similarly to what happens with implicit polymorphism. However, a type
such as Int → Int is not quasi-polymorphic. Instead of binding types locally by (νX :=
A.t), they made the type bindings global. Their reduction form Σ . f ↪→ Σ′ . f ′ is
augmented with a store, which records the bounded type variables X := A. The above
example reduces in FC as follows.

Σ . (K? : ?⇒ ∀X.∀Y .X → Y → X) Int Int 2 3
↪→∗ Σ . (ΛX.ΛY.K? : ?⇒ X → Y → X) Int Int 2 3
↪→∗ Σ, X := Int,Y := Int . (K? : ?⇒ X → Y → X) Int 2 3
↪→∗ 2

Furthermore, they argue that type bindings generated locally lead to run-time overheads.
Their observation is that type bindings are not required for every substitution, but only

W. Ye and B. C. d. S. Oliveira162

for casts with the dynamic type (?). Therefore they employ two kinds of type vari-
ables, which are distinguished by labels. One kind is static type variables (X::S) and the
other kind is gradual type variables (X::G). Type application for static type abstraction
does not generate type bindings, which are only generated for gradual type abstractions.
Parametricity and the static gradual guarantee are proved, although the proofs are not
mechanized. However, the dynamic gradual guarantee is left as conjecture. In addition
their static gradual guarantee is proved with some constraints in the type precision rela-
tion. In their precision, ∀X.X → X is more precise than ∀X.X → ? but not ∀X. ?→ X.

The GSF calculus. Toro et al. [37] presented the gradual polymorphic calculus (named
GSF), which employs the Abstracting Gradual Typing (AGT) methodology. In AGT,
casting of higher-order values is eager compared to λB∀ and FC . This avoids the prob-
lem of space consumption although, as New et al. [25] pointed out, the η principle
(which ensures V ≡ λx.V x in the call-by-value languages) is broken. To preserve para-
metricity, global dynamic sealing, which does not distinguish between static and grad-
ual variables, is used. They also refine the presentation of evidence, which witnesses
the consistency judgement, ensuring that it holds. Instead of simple evidences such as
(〈α, Int〉), they employ sealing evidences (〈αE , Int〉). GSF satisfies parametricity but not
the gradual guarantee. Importantly, they proved that the gradual guarantee is incompat-
ible with parametricity.

Parametricity with the Gradual Guarantee. To achieve both parametricity and the grad-
ual guarantee, New et al. [24] designed PolyGv calculus which gave up the syntax of
System F and the users are required to provide different sealing options. They intro-
duced the sealed syntax as sealX M which explicitly seals terms. With the user-defined
syntax, the gradual guarantee and parametricity are proved. More recently, Labrada et
al. [20] improve on GSF. They do not change the syntax of System F but insert plausible
sealing forms during the elaboration from a gradual source language which is named
Funk to a target cast calculus. They proved the gradual guarantee and parametricity for
the target language, but for the source language (Funk), the gradual guarantee comes
with a restriction for type applications, which can only be instantiated with base and
variable types. Some of the main theorems are proved in Agda.

Summary. In order to keep parametricity we need several compromises. For instance,
we need to use a dynamic sealing mechanism instead of direct type substitution causing
extra space and time consumption. In many of the earlier calculi, the gradual guaran-
tee is not obtained. In the later calculi, the gradual guarantee is either restricted or we
need to give up the syntax of System F. Traditionally, many works on gradual typing
are based on two different calculi: a source gradually typed language, and a target cast/-
coercion calculus where casts/coercions are explicit. The dynamic semantics is defined
by elaborating the source language to the target calculus. In other words, the semantics
of the gradually typed language is given indirectly via a second, target language. All
previously discussed works follow this indirect way to give the semantics to a gradually
typed source language.

Furthermore, none of the gradually typed polymorphic calculi supports references.
However, even for a static polymorphic calculus extended with mutable references ob-

163Pragmatic Gradual Polymorphism with References

λB∀ FG GSF PolyGv Funk λG
gpr

2011 2017 2019 2020 2022 present work

Direct Substitution × × × × × X

System F extension × X X × X X

Direct Semantics × × × × × X

Parametricity X X X X X ×

Gradual Guarantee × × × X X - X

Semantics Lazy Lazy Eager Lazy Eager Eager

Mechanized Proofs × × × × X - X

References × × × × × X

Table 1: Comparison among gradual polymorphism calculi. A × denotes no. A X de-
notes yes while X -denotes partial yes.

taining parametricity is highly non-trivial. As Ahmed et al. [2] stated: “combing muta-
ble references with polymorphism can be extremely tricky.” From the analysis of Jaber
and Tzevelekos [18], we know that naively moving from a polymorphic calculus to
incorporate with mutable references, breaks parametricity. The reason is that common
references can be instantiated with differently typed variables. Therefore, extending a
gradual polymorphic calculus with the mutable references is non-trivial, and none of
the existing gradual languages with polymorphism support references.

Table 1 summarizes several features and differences in existing gradually polymor-
phic calculi.

7 Conclusion

In this paper, we design a static system λgpr with polymorphism and references and its
gradual counterpart λG

gpr. λ
G
gpr has a direct semantics without resorting to a cast calculi.

In λG
gpr, the gradual guarantee is proved but we give up parametricity. In exchange, our

calculus can be simplified, since sophisticated mechanisms such as dynamic sealing are
not needed. Our calculus follows the original semantics of System F, based on direct
type substitutions, avoiding extra space and time complexity that is necessary by mech-
anisms such as dynamic sealing. In the future, we could try to find out if there is a way
to keep both gradual guarantee and relational parametricity for the source language, or
explore more efficient formulations of λG

gpr.

Acknowledgements We are grateful to anonymous reviewers and our colleagues at the
HKU PL group. This work has been sponsored by Hong Kong Research Grants Council
projects number 17209520 and 17209821.

W. Ye and B. C. d. S. Oliveira164

References

1. Abadi, M., Cardelli, L., Pierce, B.C., Plotkin, G.D.: Dynamic typing in a statically-typed
language. In: POPL ’89 (1989)

2. Ahmed, A., Appel, A.W., Virga, R.: An indexed model of impredicative polymorphism and
mutable references (2003)

3. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proceedings of the 38th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp.
201–214 (2011)

4. Barendregt, H.P., Church, A.: The impact of the lambda calculus (2014)
5. Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: European Conference

on Object-Oriented Programming. pp. 257–281. Springer (2014)
6. Bracha, G.: The dart programming language. Addison-Wesley Professional (2015)
7. Cartwright, R., Fagan, M.: Soft typing. In: PLDI ’91 (1991)
8. Chaudhuri, A.: Flow: a static type checker for javascript. SPLASH-I In Systems, Program-

ming, Languages and Applications: Software for Humanity (2015)
9. Cimini, M., Siek, J.G.: The gradualizer: a methodology and algorithm for generating gradual

type systems. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (2016)

10. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking for higher-
rank polymorphism. In: Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Functional Programming, pp. 429–442. ICFP ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013). https://doi.org/10.1145/2500365.2500582, https:
//doi.org/10.1145/2500365.2500582

11. Garcia, R.: Calculating threesomes, with blame. In: Proceedings of the 18th ACM SIGPLAN
International Conference on Functional programming. pp. 417–428 (2013)

12. Garcia, R., Clark, A.M., Tanter, E.: Abstracting gradual typing. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 429–442. POPL ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2837614.2837670, https://doi.org/10.1145/
2837614.2837670

13. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: In Trends in Func-
tional Programming (TFP (2007)

14. Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. Higher-Order and Sym-
bolic Computation 23(2), 167 (2010)

15. Huang, X., Oliveira, B.C.d.S.: A Type-Directed Operational Semantics For a Calculus
with a Merge Operator. In: Hirschfeld, R., Pape, T. (eds.) 34th European Conference on
Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 166, pp. 26:1–26:32. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.26, https:
//drops.dagstuhl.de/opus/volltexte/2020/13183

16. Huang, X., Zhao, J., Oliveira, B.C.d.S.: Taming the merge operator. Journal of Functional
Programming 31, e28 (2021)

17. Igarashi, Y., Sekiyama, T., Igarashi, A.: On polymorphic gradual typing. Proc. ACM Pro-
gram. Lang. 1(ICFP) (aug 2017). https://doi.org/10.1145/3110284, https://doi.org/10.
1145/3110284

18. Jaber, G., Tzevelekos, N.: Trace semantics for polymorphic references*. 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1–10 (2016)

19. Jones, S.L.P., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for arbitrary-
rank types. Journal of Functional Programming 17, 1 – 82 (2007)

Pragmatic Gradual Polymorphism with References 165

https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://drops.dagstuhl.de/opus/volltexte/2020/13183
https://drops.dagstuhl.de/opus/volltexte/2020/13183
https://doi.org/10.1145/3110284
https://doi.org/10.1145/3110284
https://doi.org/10.1145/3110284

20. Labrada, E., Toro, M., Tanter, E., Devriese, D.: Plausible sealing for gradual parametric-
ity. Proc. ACM Program. Lang. 6(OOPSLA1) (apr 2022). https://doi.org/10.1145/3527314,
https://doi.org/10.1145/3527314

21. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing or, theorems
for low, low prices! In: Drossopoulou, S. (ed.) Programming Languages and Systems. pp.
16–31 (2008)

22. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. ACM
Trans. Program. Lang. Syst. 31(3) (apr 2009). https://doi.org/10.1145/1498926.1498930,
https://doi.org/10.1145/1498926.1498930

23. Møgelberg, R.E., Simpson, A.K.: Relational parametricity for computational effects. Logical
Methods in Computer Science 5, 1–31 (2009)

24. New, M.S., Jamner, D., Ahmed, A.: Graduality and parametricity: together again for the first
time. Proceedings of the ACM on Programming Languages 4, 1 – 32 (2020)

25. New, M.S., Licata, D.R., Ahmed, A.: Gradual type theory. Proc. ACM Program.
Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290328, https://doi.org/10.1145/
3290328

26. Odersky, M., Läufer, K.: Putting type annotations to work. In: POPL ’96 (1996)
27. Ozaki, S., Sekiyama, T., Igarashi, A.: Is space-efficient polymorphic gradual typing possible?

(2021)
28. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP Congress (1983)
29. Siek, J., Thiemann, P., Wadler, P.: Blame and coercion: Together again for the first time.

In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. p. 425–435. PLDI ’15, Association for Computing Machinery, New
York, NY, USA (2015). https://doi.org/10.1145/2737924.2737968, https://doi.org/10.
1145/2737924.2737968

30. Siek, J.G., Garcia, R., Taha, W.: Exploring the design space of higher-order casts. In: ESOP
(2009)

31. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and Functional
Programming Workshop. vol. 6, pp. 81–92 (2006)

32. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual typing.
In: 1st Summit on Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2015)

33. Siek, J.G., Vitousek, M.M., Cimini, M., Tobin-Hochstadt, S., Garcia, R.: Monotonic refer-
ences for efficient gradual typing. In: ESOP (2015)

34. Siek, J.G., Wadler, P.: Threesomes, with and without blame. In: Proceedings for the 1st
Workshop on Script to Program Evolution. p. 34–46. STOP ’09, Association for Com-
puting Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1570506.1570511,
https://doi.org/10.1145/1570506.1570511

35. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to programs. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Sys-
tems, Languages, and Applications. pp. 964–974 (2006)

36. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In:
POPL ’08 (2008)

37. Toro, M., Labrada, E., Tanter, É.: Gradual parametricity, revisited. Proceedings of the ACM
on Programming Languages 3, 1 – 30 (2019)

38. Toro, M., Tanter, É.: Abstracting gradual references. Sci. Comput. Program. 197, 102496
(2020)

39. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: European Symposium
on Programming. pp. 1–16. Springer (2009)

40. Wright, A.K.: Simple imperative polymorphism. LISP and Symbolic Computation 8, 343–
355 (1995)

W. Ye and B. C. d. S. Oliveira166

https://doi.org/10.1145/3527314
https://doi.org/10.1145/3527314
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/1570506.1570511
https://doi.org/10.1145/1570506.1570511

41. Xie, N., Bi, X., d. S. Oliveira, B.C.: Consistent subtyping for all. ACM Transactions on
Programming Languages and Systems (TOPLAS) 42, 1 – 79 (2018)

42. Ye, W., Oliveira, B.C.d.S., Huang, X.: Type-directed operational semantics for gradual
typing. In: 35th European Conference on Object-Oriented Programming (ECOOP 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

167Pragmatic Gradual Polymorphism with References

http://creativecommons.org/licenses/by/4.0/

Modal Crash Types for Intermittent Computing⋆

Farzaneh Derakhshan(B), Myra Dotzel, Milijana Surbatovich, and Limin Jia

Carnegie Mellon University, Pittsburgh PA, USA
{fderakhs,mdotzel,milijans,liminjia}@andrew.cmu.edu

Abstract. Intermittent computing is gaining traction in application do-
mains such as Energy Harvesting Devices (EHDs) that experience arbi-
trary power failures during program execution. To make progress, pro-
grams require system support to checkpoint state and re-execute after
power failure by restoring the last saved state. This re-execution should
be correct, i.e., simulated by a continuously-powered execution. We study
the logical underpinning of intermittent computing and model check-
point, crash, restore, and re-execution operations as computation on
Crash types. We draw inspiration from adjoint logic and define Crash
types by introducing two adjoint modality operators to model persistent
and transient memory values of partial (re-)executions and the transi-
tions between them caused by checkpoints and restoration. We define
a Crash type system for a core calculus. We prove the correctness of
intermittent systems by defining a novel logical relation for Crash types.

Keywords: intermittent computing · modal Crash type · logical relation

1 Introduction

Intermittent computing is gaining importance in application domains that re-
quire inaccessible or large-scale device deployments, such as wildlife monitor-
ing [28], tiny satellites [22,29], or smart civil infrastructure [1]. As battery main-
tenance may be infeasible in these environments, programs can instead run on
batteryless Energy Harvesting Devices (EHDs). An EHD can run solely off en-
ergy harvested from its environment, at the cost of being powered intermit-
tently. The device harvests energy (e.g., via solar panel) into a re-chargeable
buffer. Once the energy buffer is full, the device turns on and begin to compute,
consuming the stored energy. When the buffer drains, the device turns off at
an arbitrary location until it can recharge and repeat this operational cycle. A
power failure erases volatile execution state (e.g., the program counter), while

⋆ This work was generously funded in part through National Science Foundation (NSF)
Award 2007998, NSF Graduate Research Fellowship Program grants DGE1745016
and DGE2140739, and the CMU CyLab Security & Privacy Institute. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsoring organizations.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp.
https://doi.org/10.1007/978-3-031-30044-8 7

168–196, 2023.

https://doi.org/10.1007/978-3-031-30044-8_7
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_7&domain=pdf

nonvolatile state persists. For programs to make progress, they require inter-
mittent system support to save state at checkpoints and restore the saved state
after power failure, potentially causing re-execution from the last checkpoint.

As EHDs aim to enable long-term deployments with little or no mainte-
nance, intermittent systems must execute programs reliably despite frequent
power failures and partial executions. Initial systems [35,43,24] relied only on in-
formal notions of correctness that left them susceptible to memory consistency
bugs caused by reading the results of partial executions [23] or by allowing sensor
reads from past executions to remain in the nonvolatile memory [39]. More recent
work [41,40,9,13] provides formal frameworks and correctness criteria for reason-
ing about intermittent execution. More concretely, all intermittent executions of
a program must be simulated by some continuously-powered execution [41]. In
other words, intermittent execution should be idempotent. Even if the system in-
duces multiple partial executions of a program due to power failure, the program
should not generate a different result than it would on a single execution.

The correctness of an intermittent execution relies on checkpointing, restor-
ing, and finalizing state upon reaching the next checkpoint; mistakes in these op-
erations can lead to incorrect, non-idempotent behavior. Few works have tried to
understand the fundamental logical underpinning of these operations. This work
fills this gap by formalizing checkpointing, crash, restoration, and re-execution
as computation on Crash types. Crash types capture the core notion of inter-
mittent computing: some values and computations persist across power failures
and others do not. For instance, nonvolatile memory state persists across power
failure and reboots, while volatile memory does not. Conversely, partially com-
puted results do (or rather should) not persist across power failures, while com-
pleted/checkpointed computations do. We call the former unstable values and
computations and the latter stable values and computations. Our key insight is
that the interactions between these stable and unstable components bear close
resemblance to shifts in adjoint logic [8,36]. Computation of a stable value can
only rely on locations that store stable values, while computation on unstable
values can rely on both stable and unstable values. Moreover, checkpoint and
restore operations can turn values of one type to the other. We define terms and
their associated types so that each of the key intermittent computing operations
must be well-typed under our Crash types.

We define a core calculus for intermittent computing and develop a type sys-
tem for Crash types by using the two adjoint modality operators. The Crash type
of an intermittent computation is: Cunit = ↓(nat⇝ ↑ Cunit)∨↓↑unit, which says
that the computation will either encounter a power failure (the left disjunct),
or succeed in producing a stable value (the right disjunct). In the former case,
the computation is suspended until energy arrives, after which it will again act
as an intermittent computation. This recursive definition captures the multi-
ple re-executions of a computation under repeated power failures. To prove the
correctness of intermittent systems, we define a novel logical relation for Crash
types, indexed by the number of power failures, which relates a continuously-

Modal Crash Types for Intermittent Computing 169

powered execution to an intermittent execution. While intermittent computing
motivates our results, the methods we develop are generally applicable to other
system failures with the same effect on persistent and transient storage.

This paper makes the following technical contributions:

– The first logical interpretation of key operations of intermittent execution.
– Novel Crash types to specify how stable and unstable portions of the system

and computation interact.
– A core calculus for Crash types with progress and preservation.
– A novel logical relation to prove the correctness of intermittent executions.

Detailed proofs and definitions can be found in the extended TR [15].

2 Background

We provide background on intermittent computing and detail how checkpoint
systems work to store and restore program state to handle power failures.

Intermittent Computing on EHDs. EHDs need intermittent system sup-
port to save necessary state before power failure and to restore it after re-
boot. When and where such checkpoints occur governs the intermittent exe-
cution model under which software executes. The two prevailing intermittent
execution models are just-in-time (JIT) checkpoints [5,4] and atomic execu-
tion [23,24,43,37]. Under a JIT model, state is saved immediately prior to power
failure so that execution resumes from the same point after reboot. Under an
atomic execution model, state is saved at the beginning of an atomic region. If
power fails before the end of the region, the system will reboot to the beginning
of the region, re-executing until the region completes without power failure (akin
to software transactions [38]). State-of-the-art intermittent systems use a hybrid
“JIT + Atomics” model that defaults to JIT checkpoints except when there is
an explicit atomic region [40,25,19]. Our core calculus follows this hybrid model.

To ensure idempotence, an intermittent system must save the value of volatile
state and often a portion of the nonvolatile state. To illustrate why, consider an
execution of the simple program in Fig. 1. The program has four variables stored
in nonvolatile memory: x, y, and z of type int and u of type bool. It consists
of two code blocks: an atomic region declared with the Ckpt construct (lines
1-7 on the left of Fig. 1) and a regular code block executed in JIT mode (lines
8-14 on the right). A continuous execution of the atomic region with initial state
x = 2, y = 0, z = 1, u = ff ends in x = 2, y = 1, z = 1, u = tt. Now, suppose power
fails after the execution of Line 2. Once the device recharges, the program restarts
from the start of the atomic region. If the system does not restore y’s original
value, this re-run computes an incorrect result: x = 2, y = 2, z = 1, u = ff. Thus,
to ensure idempotent execution, an intermittent system must checkpoint, i.e.,
save the value of, both volatile and nonvolatile memory. We next explain correct
execution of the program in Fig. 1 for atomic and JIT modes.

Atomic Region Execution. As EHDs are highly resource constrained, the
system should save state judiciously; checkpointing all of nonvolatile memory is

F. Derakhshan et al.170

1 Ckpt[a1; x,z:read-only](

2 y:=y+z;

3 let w= x-y in

4 if w>0 then

5 u:=tt

6 else

7 u:=ff);

8 let w=not u in

9 if w then

10 x=x+y;

11 w=ff

12 else

13 skip;

14 skip

Fig. 1. An example program with an atomic region and a JIT region

2 0 1 ff
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 0 1 ff
ℓ! ℓ! ℓ" ℓ"

𝖭𝖵% 0 ff
ℓ! ℓ#

𝖵!
Crash

Restore

1 ff2 0 1 ff𝖭𝖵!

2 0 1 ff𝖭𝖵&
ℓ% ℓ"

2 0 1 ff𝖭𝖵" 𝖵" 0 ff
ℓ! ℓ#

InitWorld

2 0 1 ff𝖭𝖵' 1 tt 1
⋮

FinWorld

2 1 1 tt𝖭𝖵(

ℓ! ℓ! ℓ" ℓ#

Ω!,#: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ!,#: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK

L1

L2

L7
ℓ)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ#,
𝑧 ↦ ℓ$, 𝑢 ↦ ℓ%

𝛾:= ⋯ ,𝑤 ↦ ℓ)

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK

Ω$: = 𝑥: ↑ 𝑖@RD, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ": = 𝑦: ↓↑ 𝑖@RD, 𝑢: ↓↑ 𝑏@CK

Ω(: = 𝑥: ↑ 𝑖@RD, 𝑦 : ↑ 𝑖@CK, 𝑧: ↑ 𝑖@RD, 𝑢 : ↑ 𝑏@CK
Σ(: = 𝑦: ↓↑ 𝑖@CK, 𝑢: ↓↑ 𝑏@CK, 𝑤: ↓↑ 𝑖@CK

Ω): = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

(6)

↑ 𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

𝐶*+,-

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶*+,-

ck ck

ℓ! ℓ"ck ck

𝖵′
⋮ ⋮

ck

ck

ck

ck ck

ck

ck

ck

L1-L6

Initial state

Final state

Fig. 2. Intermittent execution of an atomic region. We write i for int and b for bool.

expensive and unnecessary. For example, variables in an atomic region that are
read-only (i.e., never updated) do not change value and need not be checkpointed.
In our example, x and z are read-only, so checkpointing y and u is enough to ensure
correct intermittent execution. Many intermittent systems follow this design of
checkpointing all variables that are not read-only [37,19,17,26,44,12]. Given such
a system, Fig. 2 shows an execution of the atomic region in Fig. 1. For now, ignore
the last two columns about typing. To save and restore state, the system follows
redo-log semantics. It records updates to checkpointed variables in a special
volatile region, not main memory. This region clears if power fails, throwing
out partial updates. Upon reaching the next atomic or JIT region, the system
commits the updates by copying them back to main memory.

Row (0) shows initial nonvolatile locations, their values, and the mapping
between variables and memory locations; locations ℓ1, ℓ2, ℓ3, and ℓ4 in the non-
volatile memory correspond to variables x, y, z and u, respectively. When starting
the atomic region (Row (1)), the system takes a snapshot of ℓ2 and ℓ4 and stores
it in the volatile region V1. We mark the original nonvolatile locations as check-
pointed with the superscript ck. i.e., ℓck2 and ℓck4 .Checkpointed locations ℓck2 and
ℓck4 remain untouched for the remainder of the atomic region execution. Every
access to variables y and u will instead be associated with their volatile copy ℓ2
and ℓ4, e.g., the assignment in Line 2 is applied to the volatile logs of Row (2).

Modal Crash Types for Intermittent Computing 171

On power failure, all volatile memory clears (Row (3)), throwing out the
log. The system shuts down until more energy is harvested, at which point the
system regenerates the volatile copies ℓ2 and ℓ4 (Row (4)) and resumes execution
from Line 2. When the execution of the atomic region is complete (Row (5)),
the system commits the updated values of the checkpointed locations (ℓ2 and ℓ4)
from volatile memory to their original nonvolatile locations (Row (6)). During
execution, local variables are stored to volatile memory via a let construct, e.g.,
location ℓ5 for variable w on Line 3, corresponding to a volatile execution stack.
On power failure, the device clears all volatile memory, but such stack allocated
locations will be recreated upon re-execution.

JIT Region Execution. The JIT execution model prevents re-execution, so the
intermittent system only saves and restores volatile state at checkpoints. Fig. 3
shows the details of executing the code on the right of Fig. 1 in JIT mode. Row
(0) shows the initial nonvolatile locations, their values, and the mapping from
variables to locations. The system starts the JIT region by creating an empty
context to be populated by volatile locations (Row (1)). The let construct in
Line 8 allocates a fresh location ℓ5 in V2 and updates the mapping to associate
variable w to ℓ5. On a power failure in JIT mode, the system creates a nonvolatile
copy of the volatile location ℓ5 just before it loses the location (Row (3)). It marks
the nonvolatile copy with the superscript ck. When restoring the program, the
system restores these copies to volatile memory and dismisses the nonvolatile
backups (Row (4)). The program then continues with the if clause on lines
9-12, finally dropping the volatile location ℓ5, as it is out of scope (Row (5)).

2 1 1 tt
ℓ! ℓ! ℓ" ℓ#

𝖭𝖵$

𝖵%2 1 1 tt𝖭𝖵%

𝖵!
Crash

Restore

2 1 1 tt𝖭𝖵!

2 1 1 tt𝖭𝖵&

2 1 1 tt𝖭𝖵" 𝖵"

2 1 1 tt𝖭𝖵'

⋮

Ω!: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CKStart

L8
(let clause)

𝛾:= 𝑥 ↦ ℓ!, 𝑦 ↦ ℓ",
𝑧 ↦ ℓ#, 𝑢 ↦ ℓ$

𝛾:= ⋯ ,𝑤 ↦ ℓ(

Ω%: = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK

Ω&: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK,

Ω#: = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

Ω': = 𝑥: ↑ 𝑖@CK, 𝑦 ∶↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢 ∶↑ 𝑏@CK

(0)

(1)

(2)

(3)

(4)

(5)

↑ 𝐶()*+

𝐶()*+

𝐶()*+

𝐶()*+

↑ 𝑈𝑛𝑖𝑡

𝑛𝑎𝑡 ⇝↑ 𝐶()*+

⋮

L9-L12
(if clause)

Initial state

Final state

Σ!: = !

Ω": = 𝑥: ↑ 𝑖@CK, 𝑦: ↑ 𝑖@CK, 𝑧: ↑ 𝑖@CK, 𝑢: ↑ 𝑏@CK
Σ": =𝑤: ↓↑ 𝑏

𝑤 ∶↑ 𝑏@CKck

Σ#: =𝑤: ↓↑ 𝑏
ff

ff

ff

Fig. 3. Intermittent execution of a JIT region. We write i for int and b for bool.

3 Key Ideas of Crash Types

We present the intuition behind the stable and unstable memory types (Sec. 3.1),
Crash types which internalize checkpointing, power failure/crash, restoration, re-

F. Derakhshan et al.172

execution, and finalization of atomic regions (Sec. 3.2), and the independence
principle applied to intermittent computing (Sec. 3.3).

3.1 Modal Store Types

An unstable value is an intermediate result of an execution towards a stable value
and will be lost upon a power failure. However, if the result of a partial execution
is committed to a nonvolatile location, it will persist and is thus stable. To
reflect the behavior of a memory location in its type, we introduce two (adjoint)
modalities ↑su (read as “up shift from unstable to stable”) and ↓su (read as “down
shift from stable to unstable”), where ↑su τ indicates that the location stores a
stable value of type τ and ↓su τ indicates that the location stores an intermediate
result of an execution toward a value of type τ . To fully capture how intermittent
execution interacts with a memory location, we also annotate the type of a
memory location with an access qualifier, RD or CK, that represents whether the
location is read-only or checkpointed by the system, respectively.

In our example in Fig. 2, the read-only variable x is stored in nonvolatile
memory, so it has type x :↑su int@RD. The checkpointed variable y has type
yck :↑su int@CK in the nonvolatile memory, while y’s volatile copy has type
y :↓su↑su int@CK. We use the context Ω to type nonvolatile memory and the
context Σ to type volatile memory, as shown in the third columns of Figs. 2
and 3. We drop the superscript s and subscript u from the modalities for brevity.

3.2 Crash Types

To capture the effects of intermittent execution in the type of expressions and
commands, we introduce Crash types, as the notion of stable and unstable values
is insufficient. One might expect the expression x − y to have the type ↓↑int
as it is a (partial) execution towards computing a stable integer value. How-
ever, this type does not account for steps due to power failure: the crash itself,
waiting for the device to charge, restoration, and re-execution. To reflect these
runtime system steps at the type level, we assign the expression a type in the
form of a disjunction ? ∨ ↓↑int, where ? is a type for computations that
handle power failures. This type means that the expression either power fails, or
completes its execution that evaluates to int. Next, we fill in ? for commands

and expressions. ? is a recursive type since it handles re-execution.

Commands. The Crash type for commands is: Cunit = ↓(nat ⇝ ↑ Cunit) ∨
↓↑unit. The right disjunct states that if no power failure occurs while executing
a command, then it computes a stable value of type unit. The left disjunct states
that on power failure, the computation continues as a function; after receiving
a (logical) energy input from the environment, it becomes a computation that
yields a stable value of a command type, i.e., Cunit. This computation will execute
after the restore, which differs for atomic and JIT modes. In an atomic region,
the system re-executes the region from the beginning, and in a JIT region, the
system continues with the same command that was interrupted by the failure.

Modal Crash Types for Intermittent Computing 173

Expressions. The definition of the Crash type for expressions depends on the
execution mode, just as the continuation of the program after a power failure
depends on the mode. In an atomic region, the system restores an interrupted
run of the expression to the original command enclosed in the region, so the type
of an atomic mode expression is CatomA = ↓(nat ⇝ ↑ Cunit) ∨ ↓↑A, where the left
disjunct is the same as that of a command. On the other hand, an interrupted
run of an expression in JIT mode will be restored to the expression itself. Hence,
the type of a JIT mode expression is CjitA = ↓(nat⇝ ↑CjitA) ∨ ↓↑A, where the left
disjunct states that after power failure and reception of the energy input, the
computation again yields a stable value of a JIT mode expression type.

3.3 Independence Principle for Typing Intermittent Execution

We design our typing rules to follow the rules for ↓ and ↑ modalities in adjoint
logic. We introduce two judgment categories. The first category (Js) is for deriv-
ing stable types and corresponds to the judgments of the form Ω ⊢ τ s, meaning
that the rules can rely only on stable locations to evaluate computation on a
stable type. The second category (Ju) is for deriving unstable types and corre-
sponds to the judgments of form Ω;Σ ⊢ τu, meaning that the rules can rely on
both stable and unstable locations to evaluate computation on an unstable type.

The adjoint modalities allow going back and forth between judgments Js
and Ju, mirroring checkpointing and restoration operations. The following four
sequent calculus rules in the underlying logic govern this back-and-forth behavior
in our system. The rules are derivable from the more general rules in prior
work [8,34,36]—in particular, the ↑L∗ rule can be derived from a cut rule and
↓L. Typical of sequent calculus style rules, we read them bottom-up and match
each execution step of a command with the reading of a corresponding rule.
Next, we illustrate this matching using the execution steps in Figs. 2 and 3.

Ω; · ⊢ τu

Ω ⊢ ↑τu ↑R
Ω, ↑Au;Σ, ↓↑Au ⊢ τu

Ω, ↑Au;Σ ⊢ τu ↑L∗ Ω ⊢ τs

Ω;Σ ⊢ ↓τs ↓R
Ω, ↑Au;Σ ⊢ τu

Ω;Σ, ↓↑Au ⊢ τu ↓L

Shifts in Atomic Mode (Fig. 2): A combination of ↑R and two ↑L∗ rules
corresponds to creating a volatile log from the nonvolatile locations when starting
the atomic region, i.e., the step from Row (0) to Row (1). The last two columns in
Row (0) correspond to the conclusion of a ↑R rule: Ω0 ⊢ ↑ Cunit. An application
of ↑R from bottom to top drops the ↑ modality from the type of the program and
opens an empty volatile region, i.e., Ω0; · ⊢ Cunit. Next, one application of ↑L∗,
copies the variable y of type ↑ int to the volatile memory with the type ↓ ↑ int.
Similarly, the next application of ↑L∗ copies the variable u of type ↑ bool to
the volatile memory with the type ↓ ↑ bool. The same combination corresponds
to creating a volatile log from a nonvolatile location when restarting the atomic
region, i.e., the step from Row (3) to Row (4), again copying variables y and u
to the volatile memory.

The ↓R rule corresponds to a power failure, which erases the volatile memory
Σ. From Row (2) to Row (3) in Fig. 2, the system loses the volatile locations of y

F. Derakhshan et al.174

and u and closes off the volatile context. Row (2) corresponds to the conclusion
of the rule, and Row (3) corresponds to its premise. The type of the command in
Row (2) changes from Cunit to ↓(nat⇝ ↑Cunit) (by another ∨-R rule as a crash
is detected), and then to the type (nat⇝ ↑Cunit) in Row (3).

Finally, a ↓L rule combined with a standard weakening rule and a ↓R rule
corresponds to the final commit of the volatile context, i.e., stepping from Row
(5) to Row (6), the nonvolatile context drops the locations y and u of types
↑int and ↑bool, respectively, by a weakening rule. These two variables map to
the locations with outdated values. Next, the volatile locations of y and u in
Σ′, which contain the up-to-date values, commit their values to the nonvolatile
context by a ↓L rule. Then, a ↓R rule closes off the remaining volatile context,
which contains w of type ↓ ↑int. The type of the command in Row (2) changes
from Cunit to ↓↑unit (by a separate ∨-R rule as the system detects a successful
execution) and from that to type ↑int in Row (6).

Shifts in JIT Mode (Fig. 3): A ↑R rule corresponds to creating an empty
volatile context Σ1 when starting the JIT region, i.e., the step from Row (0)
to Row (1). A combination of the ↓L rule and ↓R rule corresponds to a power
failure, i.e., the stepping from Row (2) to Row (3). A ↓L rule copies the location
w of type ↓ ↑ bool from volatile memory Σ2 to nonvolatile memory Ωc. A ↓R rule
closes off the (empty) nonvolatile memory. As in atomic mode, a combination
of ↑R and ↑L∗ rules corresponds to creating a volatile log from a nonvolatile
location when restarting the command after the failure, i.e., the step from Row
(3) to Row (4). The ↑R rule clears a portion of volatile memory, and the ↑L∗

rule copies variable w from nonvolatile memory into volatile memory. We need
an extra weakening rule to eliminate the remaining variable w in nonvolatile
memory. The dropping of volatile memory at the end of execution (Row (5)) is
not a modal step, but rather follows from a standard rule for the let clause.

4 A Basic Calculus for Intermittent Execution

We present the syntax, semantics, and the Crash type system for a basic calculus.

4.1 Syntax

The syntactic constructs are summarized in Fig. 4. Expressions include con-
stants, variables, and binary operations while commands include assignments,
mutable let bindings, sequencing, and if branching. A program consists of se-
quenced blocks of commands and atomic regions, denoted Ckpt[aID, ρ](c) with a
unique identifier aID, read-only variables ρ, and the enclosed command c.

Nonvolatile memory (NV) and volatile memory (V) map locations ℓ to values.
Each location is annotated with its access mode q (RD or CK). The nonvolatile
memory location ℓck is the checkpointed copy of location ℓ in volatile memory.
The context γ maps variable names to memory locations. Access mode qualifiers
in V and NV have constrained values (to be discussed in the semantics).

Modal Crash Types for Intermittent Computing 175

Command, expression, and memory
values v ::= n | tt | ff | x access qualifier q ::= CK | RD
exprs e ::= v | e⊙ e var loc map γ ::= · | γ, x 7→ ℓ
cmds c ::= skip | letx = e in c | c; c nonvolatile mem NV ::= · | ℓ@ q ↪→ v,NV

| if e then c else c | x ::= e | ℓck @ CK ↪→ v,NV
progs p ::= Ckpt[aID, ρ](c); p | c; p | skip volatile mem V ::= · | l@ CK ↪→ v,V

Instructions, statements, and configurations.
commands c ::= · · · c;W c crash instrs i ::= ↓ε # in(b > 0, ↑κ)
continuations κ ::= c | e | ε # in(b > 0, ↑κ) |↑ κ
statements s ::= κ | i | p open config Ko ::= (γ | Md | g | NV | V | s)
energy level g ::= · | n | (γ | Md | g | NV | s)
charge stream χ ::= n :: χ closed config Kc ::= [χ▷ ε] ⊗Ko

exec. mode Md ::= aID(c) | jit

Fig. 4. Summary of syntax

The runtime instruction c1;W c2 is used for evaluating c1 under the execu-
tion context W . To model energy harvesting from the environment, we assume a
unique external energy channel, ε, from which the system receives energy. Three
crash instructions control the system in the event of a power failure. The instruc-
tion ↓ε # in(b > 0, ↑κ) models the system that faces a power failure, where κ is
the interrupted command or expression, and b > 0 is a guard to ensure that the
bound incoming energy variable b is positive. The instruction ε # in(b > 0, ↑κ)
models the system awaiting an energy input to be bound to b. The instruction
↑κ models the system ready to restore memory and re-execute.

We write Ko to denote an open system configuration, consisting of the map-
ping γ, the mode of execution Md (i.e., atomic or JIT), energy available for this
execution g, memories, and the statement s to be executed. The energy level (·)
models the state right after power failure. We close an open configuration with
[χ ▷ ε]; we connect it via an external energy channel ε to an infinite charging
stream Ξ of natural numbers, which models available energy the configuration
harvests from the environment at each power failure point for re-execution.

We call a configuration that cannot take a step a value configuration (value
for short). An open configuration of form (· · · | g | · · · | s) is a value, i.e.,
Val(· · · | g | · · · | s), if either s is a constant or skip, it has depleted all energy for
this execution (g=0), or s is a crash instruction. The latter two cases are values
because they cannot take a step without interacting with the environment or
perform operations on the volatile and novolatile memory specific to handling
power failures. A closed configuration is a value only if the statement s is skip
with some energy left (g > 0). We list all values in the extended TR [15].

4.2 Operational Semantics

Top-level Program Execution. The top-level semantic rules for setting up
and finalizing the atomic and JIT execution contexts are shown in Fig. 5. The
P-Ckpt rule applies if the next code block is an atomic region. The nonvolatile

F. Derakhshan et al.176

n > 0 InitWorldd(NV; ρ; γ) = NV0, V0

[χ▷ ε] ⊗ γ | aID(c0) |n |NV0 |V0| c0 ⇒∗ [χ′ ▷ ε] ⊗ γ′ | aID(c0) |n′|NV′|V′| skip
n′ > 0 NV1 = FinWorldd(NV′;V′)

[χ▷ ε] ⊗ γ | n | NV | Ckpt[(aID; ρ)](c0); p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV1 | p
(P-CKpt)

n > 0 n′ > 0
[χ▷ ε] ⊗ γ | jit | n | NV | · | c ⇒∗ [χ′ ▷ ε] ⊗ γ′ | jit | n′ | NV′ | V′ | skip

[χ▷ ε] ⊗ γ | n | NV | c; p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV′ | p
(P-seq)

Fig. 5. Closed configuration semantics for programs

NV0 and volatile V0 locations are initialized based on a given NV, declared read-
only variables ρ, and their mapping γ to locations. The InitWorldd function (a)
changes the qualifier of locations in NV that are declared as read-only in ρ from
CK to RD, (b) creates V0 by copying the rest of the locations of NV that still have
qualifier CK, and (c) marks the original version of the locations ℓ in NV that
still have qualifier CK as checkpointed (ℓck). This part corresponds to the step
from Row (0) to Row (1) in Fig. 2. The closed configuration of c0 is evaluated
until completion, using the rules in Fig. 6. This execution may undergo several
power failures and corresponds to the steps from Row (1) to Row (5) in Fig. 2.
Finally, the FinWorldd function closes off atomic regions, finalizing the volatile
and nonvolatile locations. FinWorldd (a) copies the values of volatile locations in
V′ that have a checkpointed version into NV′, (b) removes CK from the locations
in NV′, i.e., converts ℓck to ℓ, and (c) replaces the RD qualifier of the locations in
NV′ with CK. This corresponds to the step from Row (5) to Row (6) in Fig. 2.

The P-seq rule applies when the next code block is a regular command c.
The closed configuration of c with an empty initial set of volatile locations is
fully evaluated. This corresponds to the steps from Row (0) to Row (1) and Row
(1) to Row (5) in Fig. 3. Then the resulting volatile locations V′ scoped in c are
dropped, corresponding to the step from Row (5) to Row (6) in Fig. 3.

Command Execution (Closed Config). We summarize rules for a closed
configuration in the top part of Fig. 6. Rule D-step steps the closed command
configuration when the corresponding open configuration steps. Next, we explain
the trio of power failure, charge, and restore rules. When the energy for this
execution is depleted (i.e., g = 0), theD-Crash rule applies, stepping the system
to the crash instruction ↓ε # in(b > 0; ↑κ). Next,D-S-Jit orD-S-aID rules apply
and operate on volatile memory based on the execution mode Md. In JIT mode,
D-S-Jit checkpoints and stores all volatile memory in nonvolatile locations. In
atomic mode, D-S-aID drops all volatile memory locations. Then, D-charge
applies and inputs a natural number n > 0 from the energy channel, replenishing
the configuration’s energy level for re-execution. Finally, the program is restored
via D-restore-Jit and D-restore-aID which copy checkpointed locations
into volatile memory. D-restore-Jit drops the checkpointed regions and steps

Modal Crash Types for Intermittent Computing 177

Closed Configuration Semantics for Commands and Crash Instructions

γ | Md |n |NV |V | c → γ | Md |n′ |NV′ |V′ | c′

[χ▷ ε] ⊗ γ | Md |n |NV |V | c ⇒ [χ▷ ε] ⊗ γ | Md |n′ |NV′ |V′ | c′
(D-step)

[χ▷ ε] ⊗ γ | Md | 0 |NV |V | c ⇒ [χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ ε # in(b > 0; ↑c)
(D-Crash)

Md = jit

[χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ε # in(b > 0; ↑κ)
⇒ [χ▷ ε] ⊗ γ | Md |NV,Vck | ε # in(b > 0; ↑κ)

(D-S-Jit)

Md = aID(c0) γ′ ⊆ γ range(γ′) = dom(NV)

[χ▷ ε] ⊗ γ | Md | · |NV |V | ↓ε # in(b > 0; ↑κ)
⇒ [χ▷ ε] ⊗ γ′ | Md | · |NV | ε # in(b > 0; ↑κ)

(D-S-aID)

[n :: χ▷ ε] ⊗ γ | Md | · |NV | ε # in(b > 0; ↑κ) ⇒ [χ▷ ε] ⊗ γ | Md |n |NV | ↑κ
(D-charge)

NV = NV′,NV′′
ck

[χ▷ ε] ⊗ γ | jit |n |NV | ↑ κ ⇒ [χ▷ ε] ⊗ γ | jit |n |NV′ |NV′′ |κ
(D-restore-Jit)

NV = NV′,NV′′
ck

[χ▷ ε] ⊗ γ | aID(c0) |n |NV | ↑ κ ⇒ [χ▷ ε] ⊗ γ | aID(c0) |n |NV |NV′′ | c0
(D-restore-aID)

Selected expression and command semantics

γ = γ′, [x 7→ ℓ] V = ℓ@q ↪→ v,V′ n = n′ + 1

γ | Md | n | NV | V | x → γ | Md | n′ | NV | V | v
(D-V-Read)

Val(γ | Md | n | NV | V | e)
V = V′, ℓ@q ↪→ v′ q ̸= RD γ = γ′, [x → ℓ] n = n′ + 1

γ | Md | n | NV | V | x := e → γ | Md | n′ | NV | V′, ℓ@q ↪→ e | skip
(D-Assign-V)

Fig. 6. Statement steps

to the interrupted command κ, while D-restore-aID keeps the checkpointed
regions and steps to the original command c0 in the atomic region.

Command/Expression Execution (Open Config). The rules for executing
commands and expressions in an open configuration are standard. We present
a selection of them on the bottom of Fig. 6. Each step decrements the energy
level by one. The rules ensure that checkpointed location ℓck in NV is not read
by the program, as it could store outdated data, and is not written to, as this
would tamper with the checkpointed value.

4.3 Types, Typing Contexts, and Judgments

This section introduces the typing judgments used in our static typing.

F. Derakhshan et al.178

(Ju) Md | bR 0 : nat | Ω;Σ ⊢ c :: Cunit c could crash
(Ju) Md | b : nat | Ω;Σ ⊢ skip :: ↓↑unit c will not crash
(Js) Md | b : nat | Ω ⊢ skip :: ↑unit after commit

(Ju) Md | bR 0 : nat | Ω;Σ ⊢RD e :: CMdA e read, could crash
(Js) Md | b : nat | Ω;Σ ⊢RD v :: ↓↑A e read no crash
(Js) Md | b : nat | Ω ⊢RD v :: ↑A e read, commit
(Ju) Md | b : nat | Ω;Σ ⊢WT x :: ↓↑A write on x, no crash
(Js) Md | b : nat | Ω ⊢WT x :: ↑A write on x, commit

(Js) Md | b : nat | Ω ⊢ p :: ↑Cunit before execution

(Ju) Md | b = 0 : nat | Ω;Σ ⊢ κ :: CMdT about to crash
(Ju) Md | · | Ω;Σ ⊢ ↓ε # in(b > 0, ↑κ) :: ↓(nat⇝ ↑ CMdT) crash state
(Js) Md | · | Ω ⊢ ε # in(b > 0, ↑κ) :: nat⇝ ↑ CMdT waiting for energy
(Js) Md | b > 0 : nat | Ω ⊢ ↑κ :: ↑CMdT before re-execution

Table 1. Typing judgment summary

Types and Static Context. Our types are summarized below. The two modal-
ities stratify types into the varieties stable (τ s) and unstable (τu). The base store
types int and bool are considered unstable. A type variable vt denotes a type
in the set {Cunit, CatomA , CjitA}, and implements the recursive nature of Crash types.
We include the connectives ∨ and ⇝ solely for the purpose of defining Crash
types; they are not used elsewhere. Defining Crash types using these connec-
tives will allow us to define the logical relation in Sec. 5 based on the intended
meaning of its index type. Some well-formed types, e.g., nat ⇝ nat ⇝ ↑unit,
are not accepted by our type system introduced in Sec. 4.4. These types have
no inhabitants, i.e., no well-typed configuration is of these types.

store types A := int | bool stable types τ s := nat⇝ τ s |↑ τu

basic types T := unit | A unstable types τu := T |↓ τ s | τu ∨ τu | vt
Volatile store typing context Σ := · | x : ↓su↑suA@Ck, Σ
Nonvolatile store typing context Ω := · | x : ↑suA@Rd, Ω | xck : ↑suA@CK, Ω

| x : ↑suA@CK, Ω

A nonvolatile store typing context Ω assigns stable types to nonvolatile lo-
cation variables, i.e. all variables in Ω have a type of the form ↑suA. A volatile
store typing context Σ assigns unstable types to volatile location variables, i.e.,
variables in Σ are of the type ↓su↑suA. xck refers to a location that has been
checkpointed. In the atomic mode, xck has an active volatile log in Σ.

Typing Judgments. Table 1 summarizes all the typing judgments. These judg-
ments are parameterized over the execution mode Md of the expression or com-
mand to be typed. The judgment also tracks a variable b corresponding to the
current energy level of this execution. b ranges over natural numbers (nat) and
is constrained by a relation R ∈ {≥, >} or is set to 0; where b ≥ 0 is uncon-
strained. The constraint on b determines whether or not a command can evaluate
a value without power failure. There are three judgments for command typing.
The first judgment is used when the command has not yet successfully finished

Modal Crash Types for Intermittent Computing 179

jit | b ≥ 0 : nat | Ω; · ⊢∅ c : Cunit b : nat | Ω ⊢ p : ↑Cunit
b : nat | Ω ⊢ c; p : ↑Cunit

(T-P-seq)

Ω0 | Σ0 = InitWorldt(Ω; ρ)
Sig = {aID(c0) | b ≥ 0 : nat | Ω0;Σ0 ⊢ c0 : Cunit}

aID(c0) | b ≥ 0 : nat | Ω0; Σ0 ⊢Sig c0 : Cunit b : nat | Ω ⊢ p : ↑Cunit
b : nat | Ω ⊢ Ckpt[aID, ρ](c0); p : ↑Cunit

(T-P-Ckpt)

Fig. 7. Program typing

executing; its next step, depending on its constraint R, may or may not crash.
When the command reaches type ↓↑unit, b no longer needs to be constrained
as the execution succeeded without power failure. The second judgment invokes
the third judgment to type the configuration after the volatile log is committed:
in the typing rule for committing the volatile log, the conclusion is of the form of
the second judgment and the premise is of the form of the third. For expression
typing, we distinguish expressions on the right of an assignment (being read)
from those on the left of an assignment (being written to) via subscripts RD and
WT, respectively. The expressions that are being written to are only of the sim-
ple form x. As no execution is required to evaluate x, we consider its judgment
crash free, so no constraint is required on b. For program typing, we only have
one judgment that refers to the type of the program before the execution of its
next block starts. The rest of the judgments type states after a crash. The first
judgment uses the constraint b = 0, which corresponds to the power failure con-
dition. It invokes the second judgment, which types a state right after crash. The
third judgment types the state awaiting energy to continue re-execution, and the
final judgment types the state that is ready for restoration and re-execution.

4.4 Typing Rules

Program Typing. Fig. 7 shows the typing rules for programs. The P-seq rule
types program c; p by first typing c under jit mode, requiring b ≥ 0, and then
typing the rest of the program. The volatile memory context is empty for now,
but will be populated when the let commands allocate new volatile locations.

The P-Ckpt rule types the command c0 enclosed in an atomic region under
the mode aID(c0) and then types the rest of the program p. The first premise
sets up the initial typing contexts for nonvolatile and volatile memories, as illus-
trated in Fig. 2. The partial function InitWorldt initializes the volatile memory
by creating a log of variables in Ω that are not read-only. Ω can be uniquely
split into Ωc and Ωr, where Ωr is the set of all read-only locations in Ω, and Ωc

is the set of all locations that are not read-only. This function is defined below:
Ω0 | Σ0 = InitWorldt(Ω; ρ) iff ρ ⊆ dom(Ω), Ω0 = Ωr, Ωc

ck and Σ0 = ↓Ωc

where Ω = Ωc, Ωr and Ωr = Ω↾ρ.
Here Ωr = Ω↾ρ is a subset of Ω where locations are declared in ρ to be
read-only, and Ωc are all other locations in Ω. The context Ωc

ck, is defined as

F. Derakhshan et al.180

Ωc
ck = {xck : ↑A@q | x : ↑A@q ∈ Ωc}, and the context ↓Ωc, is defined as

↓Ωc = {x : ↓↑A@q | x : ↑A@q ∈ Ωc}. If the set of read only variables, ρ, is not in
the domain of Ω, then the function InitWorldt is not defined.

In rules P-seq and P-ckpt, the command typing judgment in the premise
makes use of a signature (subscripts ∅ and Sig, respectively) to type check
the command relative to the signature. The signature is populated at different
stages of type checking the JIT and atomic regions. In an atomic region, rule
T-P-Ckpt populates the signature at the beginning of the region with the initial
judgment which includes the region’s original command c0 and static memory
context Ω0;Σ0. The region is then typed relative to the signature. In JIT mode,
the signature is populated later with the judgment just at the point of the failure
(rule T-enough?). The program remembers that it built a typing derivation for
the judgment in the signature such that when it restores from a power failure, it
refers to the signature and checks that the restored judgment matches the one
stored in the signature without needing to derive it again. This makes the typing
derivations finitary and inductive.

Command and Expression Typing. Fig. 8 shows selected typing rules for
commands. The T-skip rule declares the command skip as the stable type ↑unit.
Rule T-∨-Succ applies when the command successfully completes its execution
and still has one unit of energy available (b > 0) to conclude the execution. In
this case, we close off the energy level variable and continue typing the com-
mand against the type ↓↑ unit. Rule T-C-shift is invoked by T-∨-Succ and
updates the memory typing contexts by removing checkpointed locations in Ω
as now they are not needed, and making locations in Σ stable as now they are
committed. This corresponds to the last step of Fig. 2.

The rules T-let and T-assign, are mostly standard except that we consider
crashes. For example, in typing the assign command x := e, the first premise
of T-assign considers the type of expression e to be the Crash type CMd

A , but
in the second premise we require the location x to be of type ↓↑A, i.e., the
location only considers the type corresponding to the case where execution of e
can be completed successfully. The reason is that the assignment only occurs if
the execution of e is successful. The constraint on the energy levels for premises
goes back to b ≥ 0, as we use one energy unit to deconstruct these commands.

The rule T-Enough? checks two premises based on the value of b ≥ 0. The
third premise, a crash judgment, corresponds to the case where b = 0 (typing
rules for crash judgments are given later in this section) and the fourth premise
corresponds to the case where b > 0. The condition b > 0 states that there is at
least one unit of energy available to decompose one command construct, e.g., via
T-let or T-assign. This rule populates the signature for JIT commands. The
second premise states that the signature remains intact if the mode is atomic, but
is populated by Sig′ if the mode is JIT. In the JIT mode, after a power failure,
the command c is restored to itself, and Sig′ remembers that the well-typedness
of the command when the energy level is non-negative has been checked already.

Expression typing rules are very similar to those of the commands. Fig. 8
shows a few selected rules. The T-Loc-Write and T-Loc-Read rules match

Modal Crash Types for Intermittent Computing 181

Commands

Md | b : nat | Ω ⊢Sig skip : ↑unit
(T-Skip)

Σ = ↓Σ′ Ω = Ω′, Ω′′
ck Md | b : nat | Ω′, Σ′ ⊢Sig skip : ↑unit

Md | b : nat | Ω;Σ ⊢Sig skip : ↓↑unit
(T-C-Shift)

Md | b : nat | Ω;Σ ⊢Sig skip : ↓↑unit
Md | b > 0 : nat | Ω;Σ ⊢Sig skip : τ ∨ ↓↑unit

(T-∨-Succ)

Md | b ≥ 0 : nat | Ω;Σ ⊢RD;Sig e1 : CMdA
Md | b ≥ 0 : nat | Ω;Σ, x:↓↑A@CK ⊢Sig c : τ

Md | b > 0 : nat | Ω;Σ ⊢Sig letx = e1 in c : τ
(T-Let)

Md | b ≥ 0 : nat | Ω;Σ ⊢RD;Sig e : CMdA Md | b > 0 : nat | Ω;Σ ⊢WT x : ↓↑A
Md | b > 0 : nat | Ω;Σ ⊢Sig x := e : CMdunit

(T-Assign)

Sig
′ = {Md | b ≥ 0 : nat | Ω;Σ ⊢ c : τ}

Sig
′′ = if Md = jit, then Sig′, else Sig

Md | b = 0 : nat | Ω;Σ ⊢Sig′′ c : τ Md | b > 0 : nat | Ω;Σ ⊢Sig c : τ

Md | b ≥ 0 : nat | Ω;Σ ⊢Sig c : τ
(T-enough?)

Expressions

Ω,Σ′ = x:↑A@q,Ω′
2 q ̸= RD

Md | b : nat | Ω,Σ′ ⊢Wt x : ↑A
(T-Loc-Write)

Ω = x : ↑A@q,Ω′

Md | b : nat | Ω ⊢RD x : ↑A
(T-Loc-Read)

Md | b : nat | Ω ⊢RD tt :↑ bool
(T-Bool-t)

Fig. 8. Selected command and expression typing

the location variable x with an existing variable inside the context. T-Loc-Write
performs an extra check to make sure that x is not a read-only variable.

Statement typing Fig. 9 presents the typing rules for crash instructions. The
crash is detected by the depleted energy level b = 0 in the T-∨-crash rule. In
the premise, the crash instruction ↓ε # in(b > 0, ↑κ′) is typed. In JIT mode,
the T-Jit-stop rule brings a checkpointed version of all the volatile variables
in Σ inside Ω since they are checkpointed then. In atomic mode, T-aID-Stop
rule simply drops the volatile locations in Σ. The T-charge rule inputs a new
energy level from the energy channel ε, regardless of the mode. The first premise
shows that the energy channel is needed to provide a natural number greater
than zero. Finally, the T-Jit-Restore and T-aID-Restore rules prepare and
check rebooted system in JIT and atomic modes, respectively. In both modes,
volatile memory is restored from the checkpointed locations in Ω. In the atomic
mode, the checkpointed locations persist in Ω as we may need them for the

F. Derakhshan et al.182

Md | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ CMdT ′)

Md | b = 0 : nat | Ω;Σ ⊢Sig κ
′ : ↓(nat⇝ ↑ CMdT ′) ∨ ↓↑T

(T-∨-Crash)

Σ = ↓↑Σ′ jit | · | Ω, ↑Σ′
ck ⊢Sig ε # iņ(b > 0, ↑κ′) : (nat⇝ ↑CsT)

jit | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ CsT)
(T-Jit-stop)

aID(c0) | · | Ω ⊢Sig ε # iņ(b > 0, ↑κ′) : (nat⇝ ↑Csunit)
aID(c0) | · | Ω;Σ ⊢Sig ↓ε # iņ(b > 0, ↑κ′) : ↓(nat⇝ ↑ Csunit)

(T-aID-stop)

ε # iņ() : nat > 0 Md | b > 0 : nat | Ω ⊢Sig↑ κ′ : ↑CsT
Md | · | Ω ⊢Sig ε # iņ(b > 0, ↑ κ′) : (nat⇝ ↑CsT))

(T-Charge)

Ω = Ω′, Ω′′
ck jit | b ≥ 0 : nat | Ω′; ↓Ω′′ ⊢ κ′ : CT ∈ Sig

jit | b > 0 : nat | Ω ⊢Sig ↑κ′ :↑ CT
(T-Jit-Restore)

Ω = Ω′, Ω′′
ck aID(c0) | b ≥ 0 : nat | Ω; ↓Ω′′ ⊢ c0 : Cunit ∈ Sig

aID(c0) | b > 0 : nat | Ω ⊢Sig ↑κ′ :↑ Cunit
(T-aID-Restore)

Fig. 9. Crash, restore, and checkpoint typing

next power failure. Alternatively, in the JIT mode, checkpoints are dropped
from Ω and execution continues with the expression or command κ, which was
running right before the crash. In the atomic mode, execution continues with
the original command c0 enclosed in the atomic region. Instead of retyping the
restored judgments, we check if there are already typing derivations by matching
them up with the saved judgment in the signature.

5 Logical Relation for Intermittent Execution

We establish a logical relation to prove idempotency, which states that every
intermittent execution of a program can be simulated by a continuous execu-
tion. The logical relation relates an intermittent execution with a continuous
one and is indexed by Crash types. A continuous run is one with an infinite en-
ergy level, ∞. Crash types are recursive, yielding possible infinite atomic region
re-executions. Thus, we use the maximum number of executions (also power fail-
ures) as a step index to stratify our logical relation to ensure its well-foundedness.

The logical relation (defined in Sec. 5.1) relies on PwOff, Restore, and Commit

functions, referred to as power failure, restore, and commit policies, respec-
tively. We establish specific policies for atomic and JIT execution modes. We
formalize semantic typing as every atomic and JIT region of the program being
logically-related to themselves. We prove that the semantically well-typed pro-
grams are idempotent across power failures in Sec. 5.2. The definitions match
the memory operations in the dynamic rules that deal with crash, restore,
and re-execution (D-S-aID/ D-S-Jit, D-R-aID/ D-R-Jit, and D-P-Ckpt/

Modal Crash Types for Intermittent Computing 183

Md | b ≥ 0 : nat | Ω | Σ ⊩ c1 ≤ c2 : Cunit
iff ∀n,m ≥ 0. ∀γ,NV,V.s.t.NV | V ⊩ γ :: Ω | Σ.

(γ | Md | n | NV | V | c1, γ | Md | ∞ | NV | V | c2) ∈ EJCunitKm

Term Relation

EJCunitKm+1 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2) s.t.
∃.(γ′

1 | Md′ | n′
1 | NV′

1 | V′
1 | c′1) s.t.

γ1 | Md | n1 | NV1 | V1 | c1 →∗
irred γ′

1 | Md′ | n′
1 | NV′

1 | V′
1 | c′1 ∧

∃.(γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2) s.t .

γ2 | Md | ∞ | NV2 | V2 | c2 →∗ γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2 ∧

(γ′
1 | Md′ | n′

1 | NV′
1 | V′

1 | c′1, γ′
2 | Md′ | ∞ | NV′

2 | V′
2 | c′2)∈VJCunitKm+1}

EJCunitK0 = {(γ1 | Md | n1 | NV1 | V1 | c1, γ2 | Md | ∞ | NV2 | V2 | c2)}

Value Relation

VJ↑unitKm = {(γ | Md |n1 |NV1 | skip, γ | Md |∞ |NV2 | skip) s.t.NV1 = NV2}

VJ↓↑unitKm = {(γ1 | Md |n1 |NV1 |V1 | skip, γ2 | Md |∞ |NV2 |V2 | skip) s.t.
Commit(γi | Md |NVi |Vi) = γ′

1 |NV′
i ∧

(γ′
1 | Md |n1 |NV′

1 | skip, γ2 | Md |∞ |NV′
2 | skip) ∈ VJ↑unitKm}

VJ↑CunitKm = {(γ1 | Md |n |NV1 | ↑κ, γ2 | Md |∞ |NV2 |V2 | c2) s.t.
restore(γ1, Md,NV1, κ) = NV0 |V0 | c0 ∧
(γ1 | Md |n |NV0 |V0 | c0, γ2 | Md |∞ |NV2 |V2 | c2) ∈ EJCunitKm}

VJnat⇝↑CunitKm = {(γ1 | Md | · |NV1 | ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2|V2|c2) s.t.
∀n>0.(γ1 | Md |n |NV1| ↑κ, γ2 | Md |∞ |NV2|V2| c2)∈VJ↑ CunitKm}

VJ↓(nat⇝↑Cunit)Km = {(γ1 | Md | · |NV1|V1| ↓ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2|V2| c2)
s.t. PwOff(γ1, Md,NV1,V1) = γ′

1 |V′ ∧
(γ′

1 | Md | · |V′,NV1 | ε # in(n > 0, ↑κ), γ2 | Md |∞ |NV2 |V2 | c2)
∈ VJnat⇝ ↑CunitKm}

VJCunitKm+1 = {(γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)
s.t. either
n1 = 0 ∧ (γ1 | Md | · |NV1 |V1 | ↓ε # in(n1 > 0, ↑c1),

γ2 | Md |∞ |NV2 |V2 | c2) ∈ VJ↓(nat⇝↑ Cunit)Km, or
n1 > 0 ∧ (γ1 | Md |n1 |NV1 |V1 | c1, γ2 | Md |∞ |NV2 |V2 | c2)

∈ VJ↓↑ unitKm}

Fig. 10. Logical relation

D-P-seq) for atomic and JIT regions, We prove that our syntactically well-typed
programs are semantically well-typed. We generalize semantic typing rules, al-
lowing custom power failure, restore, and commit policies (Sec. 5.3).

5.1 Semantic Typing via a Logical Relation

The logical relation, written Md | b ≥ 0 : nat | Ω | Σ ⊩ c1 ≤ c2 : Cunit, is defined
in Fig. 10 by a lexicographic induction on the index m and the structure of the

F. Derakhshan et al.184

types. The judgment NV | V ⊩ γ :: Ω | Σ in the definition states that γ maps the
variables in Σ and Ω to locations in V and NV resp., such that their qualifiers
and types match. Similar to prior work [2,16,42], our definition consists of a term
relation EJCunitKm and a value relation VJτKm.

Term Relation. A pair of open command configurations of type Cunit are in
the term relation of index m if any intermittent execution of the first one after
m power failures is indistinguishable from a continuous execution of the second
one. In particular, for index m+1, the term relation relates two configurations at
type Cunit if the first configuration eventually steps to a value (or “irreducible”)
configuration, i.e., it either evaluates to skip or its energy level depletes (n′

1 = 0),
and the second configuration can take zero or more steps such that the pair con-
tinue to be in the value relation of VJCunitKm+1. When the index is m = 0,
no execution is observed, so any two configurations are in the term relation.
Here, irred refers to γ′

1 | Md′ |n′
1 |NV′

1 |V′
1 | c′1 being an irreducible configuration,

i.e. it cannot take any more steps. Since our semantics for commands is deter-
ministic, for each configuration γ1 | Md |n1 |NV1 |V1 | c1 there is exactly one such
irreducible configuration.

Value Relation. The value relation is defined based on the intended meaning
of the type, and relates two value configurations that will have the same effect
on the stores. The value relation relates two open command configurations at
type Cunit and index m+1 if either (a) the first configuration has faced a power
failure, and the two configurations continue to relate by VJ↓(nat ⇝ ↑Cunit)Km,
or (b) the first configuration executed successfully without any power failures,
and the two configurations are related by VJ↓↑unitKm. This definition matches
the disjunctive nature of type Cunit, which is recursively defined in the signature
as ↓(nat ⇝ ↑Cunit) ∨ ↓↑unit. Since we unfold the recursive definition of Cunit,
we decrease the index from m+1 to m to ensure the relation’s well-foundedness.
Note that the value relation is neither defined nor called for Cunit at index 0.

The value relations in the third, fourth, and fifth rows of Fig. 10 are defined
based on the type of the first configuration; the second configurations in these
relations continue to be of type Cunit. Only in the relations defined in the first
and second rows of Fig. 10 do the types of both configurations match the indexed
type of the relation. Hence, the value relation has varying arity: in the first and
second rows of Fig. 10, the relation is binary while in the rest, the relation
degenerates to unary, with the second configuration as its Kripke world [18].

The value relation at type ↓(nat ⇝ ↑Cunit) relates two configurations if the
first one runs the crash instruction ↓ε # in(n > 0, ↑κ) and a power failure policy
creates a checkpoint of volatile locations such that the configurations continue
to be in the value relation at type (nat ⇝ ↑Cunit). The power failure function
in an atomic mode is defined to checkpoint none of the volatile locations, i.e.,
PwOff(γ, aID(c0),NV1,V1) = γ′ | ∅, where γ′ is the largest restriction of γ with
range(γ′) = dom(NV1), and defined to checkpoint all volatile locations in JIT
mode, i.e., PwOff(γ, jit,NV1,V1) = γ | V1.

Modal Crash Types for Intermittent Computing 185

The value relation at type (nat ⇝ ↑Cunit) is defined similarly to a function
type in a value relation and requires the configurations to be related at type
(↑Cunit) for every energy input level n provided to the first configuration.

The value relation at type ↑Cunit requires the first configuration to run the
crash instruction ↑κ. The defined restore policy restores the nonvolatile memory
NV0, volatile memory V0, and re-execution command c0 such that the config-
urations continue to be related in the term interpretation at type Cunit. In an
atomic mode, the restore function is defined as restore(γ, aID(c),NV1, κ) =
NV1 | NV′′ | c where NV1 = NV′,NV′′

ck. In the JIT mode, the restore function
is defined as restore(γ, jit(c),NV1, κ) = NV′

1 | NV′′ | c where NV1 = NV′,NV′′
ck.

We write NV1 = NV′,NV′′
ck to state that NV1 can be uniquely partitioned into

all locations (NV′′
ck) that are checkpointed, i.e., of the form ℓck, and regular lo-

cations (NV′) of the form ℓ. NV′′ is the non-checkpointed version of NV′′
ck which

could be retrieved by removing the ck subscript from every location in NV′′
ck.

The value relation at type ↓↑unit requires both configurations to run skip,
and the defined commit policy creates nonvolatile memories for both runs such
that they continue to be related at type ↑unit. In an atomic mode, the commit
function is defined to replace the checkpointed locations in the nonvolatile mem-
ory with their volatile log, i.e., Commit(γ | aID(c0) | NV1 | V1) = γ′ | NV′

1 | V′′,
where NV1 = NV′

1,NV
′′
ck and V1 = V′

1,V
′′ and dom(V′′) = dom(NV′′). Moreover,

γ′ ⊆ γ, with range(γ′) = dom(NV1) ∪ dom(V ′′). In the JIT mode, the commit
function simply drops all volatile memory, i.e., Commit(γ | jit | NV1 | V1) = γ′ |
NV1, γ

′ ⊆ γ, with range(γ′) = dom(NV1).
The value relation at type ↑unit requires the successful executions to store

the same values in their memories, i.e., NV1 = NV2.

Semantic Typing. A program is semantically well-typed if every JIT and
atomic region of it is self-related under our logical relation.

jit | b ≥ 0 : nat | Ω; · ⊩ c ≤ c : Cunit b : nat | Ω ⊩ p : ↑Cunit
b : nat | Ω ⊩ c; p : ↑Cunit

(P-seq-semantic)

Ω0 |Σ0 = InitWorldt(Ω; ρ)
aID(c0) | b≥ 0 : nat |Ω0;Σ0 ⊩ c0 ≤ c0 : Cunit b : nat |Ω ⊩ p : ↑Cunit

b : nat |Ω ⊩ Ckpt[aID, ρ](c0); p : ↑Cunit
(P-Ckpt-semantic)

5.2 Semantic Typing for Idempotency

The fundamental theorem of our logical relation states that syntactically well-
typed programs are also semantically well-typed by proving that syntactically
well-typed JIT and atomic regions are self-related. We state and prove the theo-
rem in Sec. 6 but devote this section to explaining why being self-related implies
idempotency. We explain it separately for JIT and atomic blocks.

Stepping a JIT block. Consider a program of form [χ1▷ε]⊗γ1 | n | NV1 | c1; p
that can take a step to [χk ▷ ε] ⊗ γ | n′

k | NV′
k | p via the D-P-Seq rule. By

the D-P-Seq rule, we know that the command c1 is successfully executed to
completion with possibly m-many power failures along the way: [χ1 ▷ ε] ⊗ γ1 |

F. Derakhshan et al.186

jit | n | NV1 | · | c1 ⇒∗ [χk ▷ ε] ⊗ γ′
k | jit | n′

k | NV′
k | V′

k | skip. Our goal is to
simulate this execution in a continuous setting. To model a continuous run, we
run the configuration with ∞, an energy level: [χ ▷ ε] ⊗ γ1 | jit | ∞ | NV1 | · |
c1 ⇒∗ [χ▷ ε]⊗ γ′

j | jit | ∞ | NV′
j | V′

j | skip.
Fig. 11 shows the construction of the simulation. We start with the assump-

tion that the configuration with n energy level is self-related when given energy
level ∞ for every index, including m + 1 (point (1) in Fig. 11). We show that
if the first configuration takes one or more steps, the second configuration can
take zero or more steps so that the intermediate regions continue to relate.

By definition of the term interpretation, c1 in the first configuration is ex-
ecuted until the first power failure occurs. Moreover, by the relation, we can
execute c1 in the second configuration, too, such that the resulting configura-
tions remain related (point (2) in Fig. 11) by the value interpretation at type
Cunit. The first configuration takes a step from point (2) to point (3) using the
D-crash rule by the computational semantics. By the definition of the logical
relation, the two configurations continue to be related by the value interpretation
at type ↓(nat⇝↑ Cunit). Then the first configuration takes a step from point (3)
to point (4) by the D-S-Jit rule; in this case, we know (by the assumptions of
the rule) V′ = V′

1 and γ′′
1 = γ. This matches the definition of the power-off policy

for JIT blocks (see Sec. 5.1), and thus the two configurations remain related by
the value relation at type nat ⇝↑ Cunit. Next, the first configuration takes a
step to point (5) by inputting a new energy level from the environment (n2). By
the definition of the value relations, the two configurations will remain related
by the value interpretation at type ↑ Cunit.

Finally, the configuration steps to point (6) by D-Restore-Jit that copies
all checkpointed locations inside the volatile memory and continues by running
the interrupted command κ, i.e., here NV0 = NV′

1 and V0 = V′ = V′
1 and c0 = κ.

This matches the restore policy defined for JIT regions; thus, the configurations
continue to be related by the term relation at type Cunit, similar to what we had
earlier at point (1) in Fig. 11, but with fewer power failures remaining.

Now, when the first configuration finally steps to point (8), by the definition
of the logical relation, we know that the second configuration steps into skip too.
Thus, we can apply the D-Ckpt rule on the second configuration. The volatile
memory V′

j is dropped, and the mapping is reset to γ, i.e., it matches the commit

policy defined for JIT blocks. in the logical relation. By Fig. 11-d, we get NV′
j =

NV′
k, which completes deriving our goal.

Stepping an atomic region. We can build the desired simulation by tak-
ing the same steps described for a JIT region. Similarly, the key point is that
the power-off and restore policies exactly match how the rules D-S-aID and
D-restore-aID, respectively, handle nonvolatile and volatile memories, and
the commit policy corresponds to the FinWorld function in the D-ckpt rule.

We showed that our logical relation ensures idempotency for JIT and atomic
regions. In the next section, we show that our logical relation formalizes a se-
mantic typing to ensure idempotency of more general policies.

Modal Crash Types for Intermittent Computing 187

([χ1 ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ n ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1, [χ ▹ ϵ] γ1 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵1 ∣ 𝖵1 ∣ c1)

([χ1 ▹ ϵ] γ′ 1 ∣ 𝙼𝚍 ∣ 0 ∣ 𝖭𝖵′ 1 ∣ 𝖵′ 1 ∣ c′ 1, [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

∈ ℰ Cunit

∈ 𝒱 Cunit

([χ′ 1 ▹ ϵ] γ0 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵0 ∣ 𝖵0 ∣ c0, [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

⟹

[χ1 ▹ ϵ] γ′ 1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′ 1 ∣ 𝖵′ 1 ∣ ↓ ϵ#in(b > 0; ↑ c′ 1)
([χ1 ▹ ϵ] γ′ ′ 1 ∣ 𝙼𝚍 ∣ ⋅ ∣ 𝖭𝖵′ 1, 𝖵′ ∣ ϵ#in(b > 0; ↑ c′ 1), [χ ▹ ϵ] γ′ 2 ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′ 2 ∣ 𝖵′ 2 ∣ c′ 2)

[χ′ 1 ▹ ϵ] γ′ ′ 1 ∣ 𝙼𝚍 ∣ n0 ∣ 𝖭𝖵′ 1, 𝖵′ ∣ ↑ c′ 1

χ1 = n0 :: χ′ 1) ∈ 𝒱 nat ⇝ ↑ Cunit

∈ ℰ Cunit

(a)

([χk ▹ ϵ] γk ∣ 𝙼𝚍 ∣ nk ∣ 𝖭𝖵k ∣ 𝖵k ∣ ck, [χ ▹ ϵ]γj ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵j ∣ 𝖵j ∣ cj)

([χk ▹ ϵ] γ′ k ∣ 𝙼𝚍 ∣ n′ k ∣ 𝖭𝖵′

k ∣ 𝖵′ k ∣ skip, [χ ▹ ϵ] γ′ j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′

j ∣ 𝖵′ j ∣ skip)

∈ ℰ Cunit

∈ 𝒱 ↓ ↑ unit
(b) (γ′ k ∣ 𝙼𝚍 ∣ n′ k ∣ 𝖭𝖵′

k, 𝖵′ ′ k ∣ skip, γ′ j ∣ 𝙼𝚍 ∣ ∞ ∣ 𝖭𝖵′

j, 𝖵′ ′ j ∣ skip) ∈ 𝒱 ↑ unit

𝖭𝖵′

k, 𝖵′ ′ k = 𝖭𝖵′

j, 𝖵′ ′ j(c)

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

⋯ ⋯

⟹ ⟹
0

⟹
0

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
*

⟹
⟹

*
⟹

⟹
*

(where

Fig. 11. Why the logical relation is enough.

5.3 More General Policies

We utilize our semantic typing to allow custom policies for power failure, restore,
and commit. We extend the grammar of programs as p := · | Reg[aID,−→arg](c); p,
where −→arg refers to the arguments that the programmer decides to pass to
the region for initialization. To each region, we assign a unique identifier aID
that is associated with the three policies and two functions InitGeneralt and
InitGenerald to initialize the static and dynamic memories, respectively. We
add the following semantic typing rule for the general regions:

c0 |Ω0 |Σ0 = InitGeneralt(Ω; aID; c;−→org)
aID(c0) | b≥ 0 : nat |Ω0;Σ0 ⊩ c0 ≤ c0 : Cunit b : nat |Ω ⊩ p : ↑Cunit

b : nat |Ω ⊩ Reg[aID,−→arg](c); p : ↑Cunit
(P-Reg-semantic)

For a self-related region to be idempotent, its policies Commit, PwOff, and
Restore must match the dynamics, so we add dynamic rules for custom regions
in Fig. 12. The JIT and atomic region policies and their dynamic rules are
instances of these general policies. As an example, the programmer can customize
the policies of the first block of Fig. 1 to not checkpoint variable u. The program
remains idempotent as the atomic region never reads u before writing to it. This

F. Derakhshan et al.188

γ0 | NV0 | V0 | c0 = restore(NV,V, κ, Md, γ)

[χ▷ ε] ⊗ γ | Md | n | NV |↑ κ ⇒ [χ▷ ε] ⊗ γ0 | Md | n | NV0 | V0 | c0
(D-R-Reg)

n > 0 InitGenerald(NV; aID; c; γ;−→arg) = c0,NV0,V0

[χ▷ ε] ⊗ aID(c0) | n | NV0 | V0 | c0 ⇒∗ [χ′ ▷ ε] ⊗ aID(c0) | n′ | NV′ | V′ | skip
n′ > 0 NV1 = Commit(NV′;V′; aID;−→arg)

[χ▷ ε] ⊗ γ | n | NV | Reg[(aID; arg)](c); p ⇒ [χ′ ▷ ε] ⊗ γ | n′ | NV1 | p
(D-Reg)

V′ = PwOff(NV,V, Md, γ)

[χ▷ ε] ⊗ γ | Md | · | NV | V | ↓ε # in(b > 0; ↑κ) ⇒
[χ▷ ε] ⊗ γ | Md | · | NV,V′ | ε # in(b > 0; ↑κ)

(D-S-Reg)

Fig. 12. Custom dynamic rules

policy is implemented by real systems [23,24,41]. Our static typing rules can be
extended to reason about them as shown in the companion technical report.

6 Metatheory

This section establishes the main properties of the system, which are progress and
preservation, adequacy, and the most important result: the fundamental theorem
where we prove that statically well-typed programs are semantically well-typed.
The theorems and their complete proofs are provided in the companion TR [15].

The progress and preservation theorems assume memory locations to be well-
formed, ⊢Md

γ NV | V : Ω | Σ, which is defined similarly to the NV | V ⊩ γ : Ω | Σ
used in the logical relation, but imposes extra conditions based on the execution
mode Md. It states that γ maps variables in contexts Ω and Σ to the nonvolatile
and volatile memories, NV and V, respectively, such that their qualifiers and the
type of the stored values match. Moreover, it requires specific properties on the
contexts depending on Md; in atomic mode, each checkpointed location in NV
and Ω must have copies in V and Σ. We state the theorems below.

Theorem 1 (Progress for Commands). If Md | b R m : nat | Ω;Σ ⊢Sig c : τ ,
then ∀n : nat with nRm and ∀ γ,NV,V with ⊢Md

γ NV | V : Ω | Σ, either γ | Md |
n | NV | V | c is a value, or for some configuration γ′ | Md′ | n′ | NV′ | V′ | c′ we
have γ | Md | n | NV | V | c → γ′ | Md′ | n′ | NV′ | V′ | c′. Moreover, if Md is an
atomic mode, we have NV′ = NV.

Theorem 2 (Preservation for Commands). If Md | b ≥ 0 : nat | Ω;Σ ⊢Sig

c : τ , and for some ⊢Md
γ NV | V : Ω | Σ and n:nat ≥ 0, we have γ | Md |

n | NV | V | c → γ′ | Md | n′ | NV′ | V′ | c′, then for some Σ1, we have
Md | b ≥ 0 : nat | Ω;Σ1 ⊢Sig c

′ : τ , where ⊢Md
γ′ NV

′ | V′ : Ω | Σ1 and n′ ≥ 0.

Theorem 3 (Fundamental Theorem). If b : nat | Ω ⊢ p : ↑Cunit, then
b : nat | Ω ⊩ p : ↑Cunit.

Modal Crash Types for Intermittent Computing 189

Fig. 13. Proof of the fundamental theorem for P-Ckpt

The proof of Theorem 3 is by induction on the static typing derivation for p
and considers the last step in the derivation. Fig. 13 explains the idea of the
proof for the case where P-Ckpt is the last step of the derivation. By inversion,
p = Ckpt[aID, ρ](c); p′. Also, c is well-typed for static contexts Ω′ and Σ, where
Ω′ = Ω′′, Σck. The goal is to establish point (1) in the figure: c is related to
itself in the term interpretation for arbitrary n, m, γ, NV and V where NV | V ⊩
γ::Ω′′, Σck | Σ. The last condition enforces that the static contexts match the
dynamic context. The condition also establishes the more refined well-formedness
condition that ⊢Md

γ NV | V : Ω | Σ in atomic mode, required by progress and
preservation, since it enforces that each checkpointed location in NV and Ω have
copies in V and Σ. In particular, NV = NV′,Vck and range(γ) = dom(NV).
When m = 0, the proof is trivial. Consider the case where m = k + 1. By the
progress and preservation theorems, the first configuration can take multiple
steps until it becomes a value γ1 | aID(c) | n′ | NV | V1 | c1 that continues to be
well-typed. If n′ > 0, the second configuration steps similarly to completion and
establishes that the two resulting configurations are in the value relation. This
case is not shown in the figure. If n′ = 0, the second configuration does not step
and instead reaches point (2) in Fig. 13. At point (2), the proof must show that
the configurations are in the value interpretation at type Cunit.

The dashed line in the figure states that establishing point (2) implies the
relation in point (1). The cascade of implications (dashed lines) follows the def-
inition of the value relations at each type. At each step, we invert on the typing
rule of the open configuration and show that runtime memories stay well-defined
for static contexts. At point (4), we apply the power failure policy for atomic
regions, which drops the volatile memory V1 and creates a mapping using the
domain of NV. By the prior conditions established, we know the created map-
ping is the original mapping γ. At point (6), we apply the restore policy for
atomic regions, which creates a new volatile memory based on NV. Again by the

F. Derakhshan et al.190

prior conditions established, we know the volatile memory created is the original
volatile V. The goal at point (6) is similar to our original goal at point (1), except
that the proof uses an inductive argument to relate the two configurations at k.

Finally the Adequacy Theorem states that semantically well-typed programs
are idempotent, defined below. The proof is illustrated in Section 5.2.

Definition 1 (Idempotency). A triple of a program p, nonvolatile memory
NV, and a mapping γ is idempotent, if every intermittent execution of the pro-
gram can be simulated by a continuous execution of it: for all n, n′, χ1, χ

′
1,NV

′, p′,
if [χ1 ▷ ε]⊗ γ | n | NV | p ⇒ [χ′

1 ▷ ε]⊗ γ | n′ | NV′ | p′, then [χ2 ▷ ε]⊗ γ | ∞ |
NV | p ⇒ [χ2 ▷ ε]⊗ γ | ∞ | NV′ | p′.

Theorem 4 (Adequacy). Consider b : nat | Ω ⊩ p : Cunit, a nonvolatile mem-
ory NV and a bijective map γ that matches qualifiers and types from variables
in Ω to locations in NV. The triple of p, NV, and γ is idempotent.

7 Discussion & Related Work

Intermittent Computing. Surbatovich et al. [41] provide the first formal
framework for reasoning about intermittent execution, give the correctness defi-
nition that we use, and identify precise memory invariants needed for an execu-
tion to be correct. Our Crash types capture some of these invariants; capturing
all requires reasoning about the effects of non-deterministic sensor inputs, which
we leave to future work. This work is the first to treat intermittent operations
at the type level and explore the logical interpretation of intermittent execution.
We speculate that our type-based approach using logical relations will provide
a cleaner foundation for reasoning about the correctness of more complex inter-
mittent systems, e.g., concurrent ones. Other works that investigate the formal
properties of intermittent computing either reason about the effects of intermit-
tent execution on peripheral interactions [9] or enforce timeliness constraints on
sensor readings [40], which are orthogonal to ours.

Adjoint Logic. Benton et al. [7,8] provided the first categorical foundation for
using adjoint functors to combine linear and nonlinear logics and showed that a
well-behaved calculus requires an independence principle: linear formulae cannot
appear in the assumptions of a nonlinear sequent. Follow up works further gen-
eralized the system [20,21,36]. There, the relation to Pfenning and Davies’s [30]
formulation of the lax ⃝ modality was noted; ⃝ corresponds to UF, where F and
U are adjunctions between truth and validity categories. Short of a full curry-
howard correspondence for our type system and underlying logic, we designed
the rules for ↑ and ↓ based on the above calculi. Our stable and unstable contexts
correspond to the validity and truth contexts respectively. Thus, we speculate
that the combination ↑↓ in our system corresponds to the lax modality.

Several prior works used type systems with adjoint modalities to model
switching between program modes [6,14,34], e.g., switching a processes’ mode
between shared and unshared [6], or adding multicasting, replicable services,
and cancellation modes to a session-typed message passing system [34]. We are

Modal Crash Types for Intermittent Computing 191

the first to use these modalities to handle unforeseen shut-downs and distinguish
between stable and power-failure prone modes.

Logical Relations. Prior work [3,42] uses step indexing to ensure the well-
foundedness of logical relations that handle heaps with cyclic references, dynamic
memory allocation, or recursive types. Our Crash types model the infinite com-
putation that an atomic region can experience under a non-deterministic number
of power failures and re-executions. This recursion necessitates an-indexed rela-
tion that limits the number of execution attempts a program can make.

Jung and Tiuryn introduced a logical relation for lambda definability that
allows varying arities [18]. The idea is to increase the arity when passing to
later worlds instead of starting with a large arity. Our logical relation can also
be viewed as a relation with different arities; the initial type of the relation is
binary, while after a crash the type of the value relation only corresponds to
the intermittent configuration. During these value steps, the relation is unary,
with the continuous configuration acting as a kripke world for the intermittent
configuration. After restoration, the relation reverts to binary.

Logical relations have been widely used to prove program equivalence, e.g.,
[2,3,10,16]. At a high level, idempotency is similar to program equivalence, but
it handles re-execution and requires us only to prove simulation from an inter-
mittent to continuous run, not vice-versa.

Algebraic Effect Handlers. Algebraic effect handlers [27,31,32,33] give a uni-
fied theory for computational effects, e.g., exceptions and interactive input/out-
put. A handler accesses the continuation to transform the computation. Follow-
ing effect handler syntax, we write effectful environmental interactions of our
system as ε#in(b > 0, ↑κ), where b refers to a natural number returned by the
environment and ↑κ is the continuation. Our restore policy resembles a handler,
in that it has access to the continuation, but an atomic region may dismiss the
continuation, restarting from a saved command.

Crash Hoare Logic. Crash Hoare logic (CHL) [11] ensures the correctness of
crash and restore operations in a file system. CHL extends Hoare logic with a
crash condition and a recovery procedure. The crash condition states what hap-
pens to the state on a crash. The recovery procedure runs after the crash and
manipulates the state before resuming. The system checks that if the program
crashes, the storage system will recover to a state consistent with the specifica-
tions. Unlike us, they do not care about idempotency, requiring manual effort
to formalize the crash condition and recovery policy. Our syntactic typing fixes
the power failure, restore, and commit policies, and our formal results guarantee
that following the policies ensures idempotency, the common correctness con-
dition for intermittent execution. We also allow the programmer to formalize
bespoke semantically well-typed policies.

8 Conclusion

This work provides the first logical interpretation of intermittent execution. It
shows that adjoint logic can be applied to define Crash types, which internalize

F. Derakhshan et al.192

the dualities between stable and unstable values, and complete versus partial
(re-)executions of intermittent programs. The typing constraints capture invari-
ants of power failure, restoration, and re-execution in intermittent systems. The
proofs of progress, preservation, and the fundamental theorem imply the cor-
rectness of intermittent systems, i.e. idempotency of execution.

References

1. Adkins, J., Campbell, B., Ghena, B., Jackson, N., Pannuto, P., Dutta, P.:
The signpost network: Demo abstract. In: Proceedings of the 14th ACM Con-
ference on Embedded Network Sensor Systems CD-ROM. SenSys ’16 (2016).
https://doi.org/10.1145/2994551.2996542

2. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation in-
dependence. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. p. 340–353. POPL
’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1480881.1480925

3. Ahmed, A.J.: Semantics of types for mutable state. Princeton University (2004)

4. Balsamo, D., Weddell, A., Das, A., Arreola, A., Brunelli, D., Al-Hashimi, B.,
Merrett, G., Benini, L.: Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems PP(99), 1–1 (2016).
https://doi.org/10.1109/TCAD.2016.2547919

5. Balsamo, D., Weddell, A.S., Merrett, G.V., Al-Hashimi, B.M., Brunelli, D.,
Benini, L.: Hibernus: Sustaining computation during intermittent supply for
energy-harvesting systems. IEEE Embedded Systems Letters 7(1), 15–18 (2015).
https://doi.org/10.1109/LES.2014.2371494

6. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Proceedings of the 29th European Symposium on Programming. pp. 611–
639 (2019)

7. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Proceed-
ings 11th Annual IEEE Symposium on Logic in Computer Science. pp. 420–431.
IEEE (1996)

8. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
International Workshop on Computer Science Logic. pp. 121–135. Springer (1994)

9. Berthou, G., Dagand, P.E., Demange, D., Oudin, R., Risset, T.: Intermittent com-
puting with peripherals, formally verified. In: The 21st ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems. pp. 85–96.
LCTES ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372799.3394365

10. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of parametric
polymorphism, general references, and recursive types. In: International Conference
on Foundations of Software Science and Computational Structures. pp. 456–470.
FOSSACS ’09, Springer (2009)

11. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the fscq file system. In: Proceedings of the
25th Symposium on Operating Systems Principles. pp. 18–37. SOSP ’15 (2015)

Modal Crash Types for Intermittent Computing 193

https://doi.org/10.1145/2994551.2996542
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/3372799.3394365

12. Colin, A., Lucia, B.: Chain: Tasks and channels for reliable intermittent pro-
grams. In: Proceedings of the ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications. OOPSLA ’16 (2016).
https://doi.org/10.1145/2983990.2983995

13. Dahiya, M., Bansal, S.: Automatic verification of intermittent systems. In: Dillig,
I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract Interpretation.
VMCAI ’18 (2018)

14. Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-aware ses-
sion types for digital contracts. In: IEEE 34th Computer Security Foundations
Symposium. pp. 1–16. CSF ’21 (2021)

15. Derakhshan, F., Dotzel, M., Surbatovich, M., Jia, L.: Technical report: Modal crash
types for intermittent computing. Tech. rep., Carnegie Mellon University (2023).
https://doi.org/10.1184/R1/21950804

16. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming 22(4-5),
477–528 (2012)

17. Hester, J., Storer, K., Sorber, J.: Timely execution on intermittently powered bat-
teryless sensors. In: Proceedings of the 15th ACM Conference on Embedded Net-
work Sensor Systems (2017). https://doi.org/10.1145/3131672.3131673

18. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Inter-
national Conference on Typed Lambda Calculi and Applications. pp. 245–257.
Springer (1993)

19. Kortbeek, V., Yildirim, K.S., Bakar, A., Sorber, J., Hester, J., Pawe lczak,
P.: Time-sensitive intermittent computing meets legacy software. In: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. pp. 85–99. ASP-
LOS ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3373376.3378476

20. Licata, D.R., Shulman, M.: Adjoint logic with a 2-category of modes. In: Inter-
national Symposium on Logical Foundations of Computer Science. pp. 219–235.
Springer (2016)

21. Licata, D.R., Shulman, M., Riley, M.: A fibrational framework for substructural
and modal logics. In: 2nd International Conference on Formal Structures for Com-
putation and Deduction. FSCD ’17, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017)

22. Lucia, B., Denby, B., Manchester, Z., Desai, H., Ruppel, E., Colin,
A.: Computational nanosatellite constellations: Opportunities and chal-
lenges. GetMobile: Mobile Comp. and Comm. 25(1), 16–23 (Jun 2021).
https://doi.org/10.1145/3471440.3471446

23. Lucia, B., Ransford, B.: A simpler, safer programming and execution model
for intermittent systems. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’15 (2015).
https://doi.org/10.1145/2737924.2737978

24. Maeng, K., Colin, A., Lucia, B.: Alpaca: Intermittent execution without
checkpoints. Proc. ACM Program. Lang. 1(OOPSLA), 96:1–96:30 (Oct 2017).
https://doi.org/10.1145/3133920

25. Maeng, K., Lucia, B.: Supporting peripherals in intermittent systems with just-in-
time checkpoints. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. p. 1101–1116. PLDI ’19 (2019).
https://doi.org/10.1145/3314221.3314613

F. Derakhshan et al.194

https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1184/R1/21950804
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3471440.3471446
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3314221.3314613

26. Maeng, K., Lucia, B.: Adaptive low-overhead scheduling for periodic and reac-
tive intermittent execution. In: Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 1005–1021.
PLDI ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3385412.3385998

27. Moggi, E.: Computational lambda-calculus and monads. University of Edinburgh,
Department of Computer Science, Laboratory for Foundations of Computer Science
(1988)

28. Nardello, M., Desai, H., Brunelli, D., Lucia, B.: Camaroptera: A bat-
teryless long-range remote visual sensing system. In: Proceedings of the
7th International Workshop on Energy Harvesting & Energy-Neutral Sens-
ing Systems. pp. 8–14. ENSsys’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3362053.3363491

29. NASA: What is KickSat-2? https://www.nasa.gov/ames/kicksat (2019), visited
April 15th, 2022

30. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical structures in computer science 11(4), 511–540 (2001)

31. Plotkin, G., Power, J.: Semantics for algebraic operations. Electronic Notes in
Theoretical Computer Science 45, 332–345 (2001)

32. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Proceedings of the 19th
European Symposium on Programming. pp. 80–94. Springer (2009)

33. Pretnar, M., Plotkin, G.D.: Handling algebraic effects. Logical methods in com-
puter science 9 (2013)

34. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. Jour-
nal of Logical and Algebraic Methods in Programming 120, 100637 (2021)

35. Ransford, B., Sorber, J., Fu, K.: Mementos: System support for long-running com-
putation on RFID-scale devices. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS XVI (2011). https://doi.org/10.1145/1950365.1950386

36. Reed, J.: A judgmental deconstruction of modal logic. Unpublished manuscript,
January (2009)

37. Ruppel, E., Lucia, B.: Transactional concurrency control for intermittent, energy-
harvesting computing systems. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 1085–1100. PLDI
’19 (2019). https://doi.org/10.1145/3314221.3314583

38. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing. pp.
204–213. PODC ’95 (1995). https://doi.org/10.1145/224964.224987

39. Surbatovich, M., Jia, L., Lucia, B.: I/o dependent idempotence bugs in intermit-
tent systems. Proc. ACM Program. Lang. 3(OOPSLA), 183:1–183:31 (Oct 2019).
https://doi.org/10.1145/3360609

40. Surbatovich, M., Jia, L., Lucia, B.: Automatically enforcing fresh and consistent
inputs in intermittent systems. In: Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation. p.
851–866. PLDI ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3453483.3454081

41. Surbatovich, M., Lucia, B., Jia, L.: Towards a formal foundation of inter-
mittent computing. Proc. ACM Program. Lang. 4(OOPSLA) (Nov 2020).
https://doi.org/10.1145/3428231

42. Thamsborg, J., Birkedal, L.: A kripke logical relation for effect-based program
transformations. ACM SIGPLAN Notices 46(9), 445–456 (2011)

Modal Crash Types for Intermittent Computing 195

https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/3362053.3363491
https://www.nasa.gov/ames/kicksat
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3453483.3454081
https://doi.org/10.1145/3428231

43. Van Der Woude, J., Hicks, M.: Intermittent computation without hard-
ware support or programmer intervention. In: Proceedings of OSDI’16: 12th
USENIX Symposium on Operating Systems Design and Implementation (2016).
https://doi.org/10.5555/3026877.3026880

44. Yildirim, K.S., Majid, A.Y., Patoukas, D., Schaper, K., Pawelczak, P., Hester, J.:
Ink: Reactive kernel for tiny batteryless sensors. In: Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems. pp. 41–53. SenSys ’18, ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3274783.3274837

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

F. Derakhshan et al.196

https://doi.org/10.5555/3026877.3026880
https://doi.org/10.1145/3274783.3274837
http://creativecommons.org/licenses/by/4.0/

Gradual Tensor Shape Checking

Momoko Hattori(�), Naoki Kobayashi(�) , and Ryosuke Sato(�)

The University of Tokyo, Tokyo, Japan
{momohatt,koba,rsato}@is.s.u-tokyo.ac.jp

Abstract. Tensor shape mismatch is a common source of bugs in deep
learning programs. We propose a new type-based approach to detect
tensor shape mismatches. One of the main features of our approach is
the best-effort shape inference. As the tensor shape inference problem
is undecidable in general, we allow static type/shape inference to be
performed only in a best-effort manner. If the static inference cannot
guarantee the absence of the shape inconsistencies, dynamic checks are
inserted into the program. Another main feature is gradual typing, where
users can improve the precision of the inference by adding appropriate
type annotations to the program. We formalize our approach and prove
that it satisfies the criteria of gradual typing proposed by Siek et al. in
2015. We have implemented a prototype shape checking tool based on
our approach and evaluated its effectiveness by applying it to some deep
neural network programs.

1 Introduction

Tensor Shape Checking and Its Difficulties. Tensor shape mismatch is
one of the common sources of dynamic errors in programs using tensors (i.e.,
multi-dimensional arrays). For example, the reshape operation of tensors takes a
tensor x and an integer list S and returns a new tensor of the shape S obtained
by realigning the elements in x. The input and output tensors must have the
same number of elements; a tensor of shape [2; 3; 4]1 can be reshaped into a
shape [3; 2; 4], while trying to reshape it into [3; 4] results in a runtime error.

Early detection of tensor shape mismatch errors is critical in particular for
deep learning programs, where tensors are frequently used. Since deep learning
programs often take a considerable amount of time to train networks, it is often
the case that a program takes hours and days to compute the weights of deep
neural networks only to be terminated by one tensor shape mismatch error,
throwing away the trained weights. Even worse, some tensor shape mismatches
can be harder to notice: mixing up the height and the width of square images does
not raise runtime errors but degrades the performance of the neural network.

The existing work on static detection of tensor shape mismatch errors
can be classified into two categories. One is the whole-program analysis ap-
proach [17,31], which collects tensor shape information by partially evaluating
1 In this paper, we denote lists in the OCaml-style as in [1; 2; 3] to disambiguate it
from the citations.

c© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 197–224, 2023.
https://doi.org/10.1007/978-3-031-30044-8_8

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0001-8679-2747
https://doi.org/10.1007/978-3-031-30044-8_8
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_8&domain=pdf

M. Hattori et al.

1 let model s =
2 let f = ... in let g = ... in fun x -> let y = f x in g y
3 let _ = model 1 (Tensor.rand [20])

Fig. 1. An OCaml program written with OCaml-Torch.

the program in the style of abstract interpretation. The other is the type-based
approach [3,25], which expresses the shapes of tensors as a part of the type infor-
mation. Still, none of them is fully satisfactory: either they are too conservative
and reject valid programs, or fail to detect some shape mismatch errors.

This paper pursuits the type-based approach as it is expected to provide
modular detection of tensor shape inconsistencies. Designing an appropriate
type system and a type inference procedure to reason about tensor shapes is
challenging because shapes are first-class objects. For example, the library func-
tion Tensor.zeros of OCaml-Torch [4] (which provides OCaml bindings for
libtorch [20]) takes a list S of integers, and returns a new tensor whose shape is
S. Thus, we have to work with dependent types : Tensor.zeros would be given
the type S : int list → {r : tensor | r.shape = S}. It is difficult to infer
such dependent (refinement) types fully automatically. Yet, we wish to avoid
programmers’ burden of writing too many type annotations.

Another difficulty is that shape constraints can be so complex that even type
checking, let alone inference, can be too costly or impossible. For instance, the
reshape operation explained earlier needs the proof that the shape of the input
tensor x is compatible with the given shape S = [s1; . . . ; sn] (i.e., if the shape
of x is to be [s′1; . . . ; s

′
m], then Πm

i=1s
′
i = Πn

i=1si holds)2. Thus, type checking
requires complex reasoning about (non-linear) integer arithmetic and lists.

Overview of Our Approach. Based on the observations above, we propose an
approach that is expected to work well in practice despite the above-mentioned
difficulties. Our approach can be characterized by three main features: best-effort
type inference, hybrid type checking, and gradual typing [27]. We explain them
using our prototype tool GraTen3.

Best-Effort Type Inference. GraTen does not try to infer the most general
types; it performs type/shape inference in a best-effort manner. Thanks to this
design choice, GraTen works even if no type annotations are provided (de-
spite that the underlying type system involves dependent types), and yet it can
statically detect (not necessarily all but) some shape mismatch errors.

As an example, let us consider the program in Figure 1. The function model
takes an integer parameter s, defines functions f and g, and returns a layer
(which is a function that takes a tensor and returns a tensor) which composes f

2 Actually, some si can be −1, in which case the size of the i-th dimension is unspec-
ified.

3 The tool is publicly available at https://doi.org/10.5281/zenodo.7590480. The
source code is also publicly available at https://github.com/momohatt/graten.

198

https://doi.org/10.5281/zenodo.7590480
https://github.com/momohatt/graten

Gradual Tensor Shape Checking

1 let model s =
2 let f = ... in let g = ... in
3 fun x -> let y = if s = 1 then x else f x in g y

Fig. 2. The program from Figure 1 with small modification.

1 let model s =
2 let f = ... in let g = ... in
3 fun x -> let y = if s = 1 then x else f x in
4 g (assert (y.shape = [10]); y)

Fig. 3. The program returned by GraTen given the program in Figure 2.

and g. The definitions of f and g are omitted here, but their types are assumed
as below, where s in the type of f is the argument of model and the function
nth(n, S) returns the n-th element of the list S (the index starts with 0).

f : x:{ν : tensor | len(ν.shape) = 1} → tensor ([nth(0, x.shape)/s])

g : tensor([10])→ tensor([1])

These types indicate that f takes a 1-dimensional tensor (i.e., a vector) and
returns a vector whose length equals the length of the argument vector divided
by s, and that g expects a vector of length 10 and returns a vector of length 1.
The formal syntax of types will be introduced later in Section 2.

For the program above, GraTen’s best-effort inference outputs the following
type for the function model.
s:int→ x: {ν:tensor | len(ν.shape) = 1 ∧ nth(0, ν.shape)/s = 10} → tensor([1])

Here, the constraint nth(0, ν.shape)/s = 10 for the shape of x is necessary for
this program not to raise a shape mismatch error at the application of g. The
inferred type of model is used to prevent any calls to model that violate the
constraint. Indeed, GraTen rejects the call on line 4 of Figure 1, where the
arguments do not satisfy the constraint nth(0,ν.shape)

s = 10. As in this example,
our approach can statically detect shape mismatches when enough type infor-
mation has been obtained from the best-effort type inference or user-provided
type annotations.

Hybrid Type Checking. Another main feature of our approach is hybrid type
checking: we combine static and dynamic checking. The type checker inserts
assertions to program points where the type safety is not statically guaranteed,
à la Knowles and Flanagan’s hybrid type checking [16]. For example, consider
the program in Figure 2, which is obtained by adding a conditional branch to
the one in Figure 1. The type of the then and else branch of the if expression
are inferred to be tensor(x.shape) and tensor([nth(0,x.shape)s]), respectively. In
this case, the type of y is simply inferred to be tensor without any information
about its shape, and the inferred type for model is as follows.

s:int→ x:{ν : tensor | len(ν.shape) = 1} → tensor([1])

Thus, the best-effort inference of GraTen fails to capture the constraint
nth(0,ν.shape)

s = 10 for x due to the imprecise type information of y. Along with

199

M. Hattori et al.

1 let model s =
2 let f = ... in let g = ... in
3 fun x ->
4 let y = ((if s = 1 then x else f x) : tensor([nth 0 x.shape / s]))
5 in g y

Fig. 4. The program from Figure 2 after adding type annotations.

the inferred types, GraTen outputs the program in Figure 3, which is the same
as the original program except for the assertion inserted at the argument of g.
Since the statically inferred type of y fails to guarantee that the application of
g to y does not leads to a shape mismatch error, GraTen inserts the assertion
to check the requirement dynamically.

Gradual Typing. Lastly, our approach incorporates gradual typing [27]4 so that
the users can improve the precision of inferred types by adding type annotations.
For example, let us consider the program in Figure 4, which is obtained from
the one in Figure 2 by adding a type annotation to y. With this annotation,
GraTen infers the same type for model as it did for model in Figure 1, and no
assertions are inserted. As such, adding correct type annotations improves the
type checking and decreases the number of assertions inserted.

Thanks to the best-effort inference, users need not add type annotations to
everywhere in the program. They can focus on the program points where the
static inference did not perform well, which is indicated by the insertion of asser-
tions. We prove that our type system satisfies the gradual guarantee [27], which
ensures that adding type annotation preserves the type-ability and the behavior
of the program (with some assertions inserted) regardless of its precision, as long
as the annotation does not disagree with the program.

Among the three features, the notion of hybrid type checking was first pro-
posed by Knowles and Flanagan [16], and our gradual typing is closely related to
gradual refinement types by [18], but we believe that the particular combination
of three features is new. In particular, unlike the original gradual refinement
types [18], we insert assertions instead of carrying around evidence terms [11] in
the reduction to guarantee type safety.

The contributions are summarized as follows. (i) The formalization of a type
system that combines hybrid type checking and gradual typing. We define our
type system as the type-based transformation relation from source programs to
programs with run-time assertion checks. We prove the soundness of our type
system as well (Section 2). (ii) A proof that our system satisfies the gradual
guarantee [27] (Section 3). (iii) Implementation of a best-effort type inference

4 Usually, gradual typing introduces new syntax for gradual types and makes a dis-
tinction between static types and gradual types. However, our type system does not
have such distinction; it only uses the standard refinement types. As we see later,
we extend the standard refinement type system with cast (assertion) insertion rules
so that it can be viewed as a gradualized type system.

200

Gradual Tensor Shape Checking

M (term) ::= c | x | λx:τ.M |M x | (M : τ) | let x =M1 in M2

| fix(f :(x:τ1 → τ2), x,M) | if x then M1 else M2

τ (type) ::= {x : B | ϕ} | x:τ1 → τ2

Γ (type env.) ::= ∅ | Γ, x : τ ∆ (base type env.) ::= ∅ | ∆,x : B

Fig. 5. Syntax of the source language, the types and the type environments.

on a prototype system GraTen inference (Section 4). (iv) Experimental evalu-
ation of GraTen using the examples of deep learning programs bundled in the
OCaml-Torch library. We confirm that GraTen can statically type-check the
programs effectively with a reasonable amount of type annotations (Section 5).

2 A Gradually-Typed Language with Refinement Types

In this section, we formalize our type system and the translation to insert asser-
tions. We first introduce the source and target languages of the translation in
Sections 2.1 and 2.2. We then formalize the type system and the translation and
prove their soundness in Section 2.3. The gradual guarantee is discussed later in
Section 3.

2.1 Source Language

We consider a call-by-value functional language, whose syntax is given in Fig-
ure 5. Throughout this paper, n, c, and x respectively denote integers, constants
(including integers and primitive functions) and variables. The base types B and
refinement predicates ϕ are explained later.

Type annotations can be added to the function arguments λx:τ.M , recursive
functions fix(f :(x:τ1 → τ2), x,M) and to arbitrary expressions by (M : τ). In
the implementation of GraTen, users may omit the type annotations in lambda
expressions and recursive functions as the best-effort type inference tries to com-
plete them.

The argument of a function application and the branching condition of an
if-expression are restricted to variables for the sake of simplicity of typing rules.
Note that this restriction does not lose generality, as a general function applica-
tion M1M2 can be normalized to let f =M1 in let x =M2 in f x.

Types are defined following the standard definition of refinement types. Intu-
itively, the type {x:B | ϕ} describes a value x of type B such that ϕ holds. For ex-
ample, {x :int | x ≥ 0} is the type of non-negative ints. We may omit the refine-
ment predicates when they are true. For example, we may write {x :int | true}
as int.

The language presented so far is general; in GraTen it is instantiated to a
language for tensor programs by defining the base types and refinement pred-
icates as in Figure 6, and assuming that primitive operations on tensors are
included in the set of constants ranged over c. The refinement predicates, shapes

201

M. Hattori et al.

B (base type) ::= bool | int | int list | tensor
ϕ (predicate) ::= true | false | s1 = s2 | S1 = S2 | x | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| broadcastable(S1, S2) | reshapeable(S1, S2)

S (shape) ::= [s1; . . . ; sn] | x | x.shape | cons(s, S) | append(S1, S2) | tail(S)
| init(S) | insertAt(s1, s2, S) | dropAt(s, S) | swap(s1, s2, S)
| reshape(S1, S2) | broadcast(S1, S2) | matmul(S1, S2)

s (size) ::= n | x | −s | s1 + s2 | s1 × s2 |
s1
s2
| head(S) | last(S)

| len(S) | nth(s, S) | prod(S)

Fig. 6. Syntax of base types B and predicates ϕ in GraTen.

v (value) ::= c | x | [v1, . . . , vn] | λxτ .N | fix(fτ , x,N)

N (cast term) ::= v | if v then N1 else N2 | N v | let xτ = N1 in N2 | assert(ϕ);N

Fig. 7. Syntax of the target language.

and sizes are expressions of type bool, int list and int respectively. The sup-
ported predicates are those described by quantifier-free formulas of first-order
logic. As shown in the definition, they may use some built-in predicates and
functions over integer lists such as append and primitives on integer arithmetic
in order to express common tensor operations. We implicitly assume that the
refinement predicates are well formed (as defined in the full version [13]).

2.2 Target Language

As explained in Section 1, we insert run-time checks into places where type-safety
cannot be statically guaranteed. Figure 7 shows the syntax of programs obtained
by the insertion of assertions. A main difference from the source language is the
addition of assertion assert(ϕ);N , which is used to implement the run-time
checks. Like Flanagan’s hybrid type system [16] (and unlike the blame calcu-
lus [32]), we guarantee the safety of target programs by assertions. Compared
with the blame calculus, this method is expected to be easier to implement since
most of the modern programming languages are equipped with assertions, and
more efficient in that it avoids the accumulation of dynamic casts at runtime.
This implementation of the dynamic cast is possible since our system is only
“gradualized” at the predicate level of the refinement type and the underlying
simple type is static.

Another difference is that the binders in let expressions are annotated with
their type. This is required when defining the precision relation over the cast
terms in Section 3.

The substitution and the reduction rules of the cast terms are presented
in Figure 8. The evaluation of primitive function ev(c, v) is defined to be the
return value of the primitive function c applied to an argument v if v meets the

202

Gradual Tensor Shape Checking

[v/x]N

[v/x](assert(ϕ);N) = assert([v/x]ϕ); [v/x]N

[v/x](λyτ .N) = λy[v/x]τ .[v/x]N

(Variables are assumed to be alpha-renamed so that
variables at different scopes do not collide)

N1 −→ N2

assert(true);N −→ N

assert(false);N −→ error

c v −→ ev(c, v)

(λxτ .N1) v −→ [v/x]N1

Fig. 8. Selected rules of substitution and reduction of the target language (the full
definition is given in the full version [13]).

Γ ;ϕ ` c : ty(c) (CT-Con)
Γ (x) = y:τ1 → τ2

Γ ;ϕ ` x : Γ (x)
(CT-VF)

Γ (x) = {y : B | ϕ′}
Γ ;ϕ ` x : {y : B | y = x}

(CT-VB)

Γ, x : τ1;ϕ ` N : τ2

Γ ;ϕ ` λxτ1 .N : x:τ1 → τ2
(CT-Lam)

Γ ;ϕ ` N : x:τ1 → τ2 Γ ;ϕ ` v : τ1

Γ ;ϕ ` N v : [v/x]τ2
(CT-App)

Γ, f : (x:τ1 → τ2), x : τ1;ϕ ` N : τ2

Γ ;ϕ ` fix(fx:τ1→τ2 , x,N) : x:τ1 → τ2
(CT-Fix)

Γ ;ϕ ∧ ϕ′ ` N : τ

Γ ;ϕ ` assert(ϕ′);N : τ
(CT-Ass)

Γ ;ϕ ` v : {x : bool | ϕ′} Γ ;ϕ ∧ v ` N1 : τ Γ ;ϕ ∧ ¬v ` N2 : τ

Γ ;ϕ ` if v then N1 else N2 : τ
(CT-If)

Γ ;ϕ ` N1 : τ1 Γ, x : τ1;ϕ ` N2 : τ

Γ ;ϕ ` let xτ1 = N1 in N2 : τ
(CT-Let)

Γ ;ϕ ` N : τ ′ Γ ;ϕ ` τ ′ <: τ

Γ ;ϕ ` N : τ
(CT-Sub)

Fig. 9. Typing rules for the cast terms Γ ;ϕ ` N : τ .

constraint of the argument of c, and otherwise undefined. We denote N ⇑ if there
exists an infinite reduction sequence from N .

The substitution for cast terms is defined in the standard manner, except that
the implicitly-annotated type information and the predicate in the assertion need
to be updated as well. As can be seen in the definition of the cast term reduction,
these implicitly-annotated types are only required for the sake of formalization
and ignored at runtime.

We also introduce the type derivation rules for the cast terms Γ ;ϕ ` N : τ
in Figure 9. This relation is used in the discussion of the soundness of the type
system later in Section 2.3. The quadruple relation Γ ;ϕ ` N : τ denotes that
a cast term N has type τ under a type environment Γ and a logical context
ϕ. The logical context ϕ holds the information of logically valid predicates at
respective program points. New predicates are added at the then branch and
the else branch of (CT-If), and the post-assertion cast term in (CT-Ass). The
subsumption is allowed in (CT-Sub) by the subtyping relation Γ ;ϕ ` τ1 <: τ2
(Figure 10), which is defined in a standard manner.

203

M. Hattori et al.

Φ(Γ), BT(Γ)
Φ(∅) = true

Φ(Γ, x : {y : B | ϕ}) = Φ(Γ) ∧ [x/y]ϕ

Φ(Γ, x : (y:τ1 → τ2)) = Φ(Γ)

BT(∅) = ∅
BT(Γ, x : {x : B | ϕ}) = BT(Γ), x : B

BT(Γ, x : (y:τ1 → τ2)) = BT(Γ)

Γ ;ϕ ` τ1 <: τ2

� ∀BT(Γ), x:B.Φ(Γ) ∧ ϕ ∧ ϕ1 ⇒ ϕ2

Γ ;ϕ ` {x : B | ϕ1} <: {x : B | ϕ2}
(Sub-Base)

Γ ;ϕ ` τ3 <: τ1 Γ, x : τ3;ϕ ` τ2 <: τ4

Γ ;ϕ ` x:τ1 → τ2 <: x:τ3 → τ4
(Sub-Fun)

Fig. 10. Subtyping rules.

Γ ;ϕ ` c c : ty(c) (CI-Const)
Γ (x) = y:τ1 → τ2

Γ ;ϕ ` x x : Γ (x)
(CI-Var-Fun)

Γ (x) = {y : B | ϕ′}
Γ ;ϕ ` x x : {y : B | y = x}

(CI-Var-Base)

Γ, x : τ1;ϕ `M N : τ2

Γ ;ϕ ` λx:τ1.M λxτ1 .N : x:τ1 → τ2
(CI-Lam)

Γ ;ϕ `M1 N1 : y:τ1 → τ2 Γ (x) = τ3 Γ ;ϕ ` τ3 . τ1 N2

Γ ;ϕ `M1 x (let xτ1 = N2 x in N1 x) : [x/y]τ2
(CI-App)

Γ, f : (x:τ1 → τ2), x : τ1;ϕ `M N : τ2

Γ ;ϕ ` fix(f :(x:τ1 → τ2), x,M) fix(fx:τ1→τ2 , x,N) : x:τ1 → τ2
(CI-Fix)

Γ ;ϕ `M1 N1 : τ1 Γ, x : τ1;ϕ `M2 N2 : τ BT(Γ) `wf τ
Γ ;ϕ ` (let x =M1 in M2) (let xτ1 = N1 in N2) : τ

(CI-Let)

Γ ;ϕ ` v : {x : bool | ϕ′} Γ ;ϕ ∧ v `M1 N1 : τ Γ ;ϕ ∧ ¬v `M2 N2 : τ

Γ ;ϕ ` if v then M1 else M2 if v then N1 else N2 : τ
(CI-If)

Γ ;ϕ `M N : τ

Γ ;ϕ ` (M : τ) N : τ
(CI-Annot)

Γ ;ϕ `M1 N1 : τ1 Γ ;ϕ ` τ1 . τ N2

Γ ;ϕ `M1 let xτ1 = N1 in N2 x : τ
(CI-Sub)

Fig. 11. Type derivation rules for the source language Γ ;ϕ `M N : τ .

204

Gradual Tensor Shape Checking

2.3 Typing Rules

Inserting Assertions Next, we discuss the typing rules for the source language
and the assertion insertion into it. Figure 11 defines the type judgement and cast
insertion relation. The intuition of 5-ary relation Γ ;ϕ ` M N : τ is: under
a type environment Γ and a logical context ϕ, a term M translates to a cast
term N and has type τ . If we ignore the part “ N ” and replace the gradual
subtyping relation . with the standard subtyping relation on refinement types
(Figure 10), our type system is a standard refinement type system. Thus, the
main novelty in the rules in Figure 11 lies in the use of the consistent subtyping
relation Γ ;ϕ ` τ1 . τ2 N , which is explained below.

The consistent subtyping relation Γ ;ϕ ` τ1 . τ2 N (Figure 12)5 is used
in the cast insertion relation to guarantee that there exists a value that has both
of the types τ1 and τ2 under Γ and ϕ, and to produce an assertion term N that
checks at runtime if a value that is statically known to be of type τ1 can be used
as a value of type τ2.

The rule for the base case (Cast-Base) checks if there exists a value, and an
assignment of the values to the variables in the type environment, that satisfies
both τ1 and τ2. This intuitively holds if τ1 is castable to τ2 for some runtime
values. The rule also produces a lambda function that implements the cast with
an assertion. It is defined in such a way that ϕ2 can always be used as the content
of the assertion ϕ′, but true can also be used for ϕ′ if ϕ1 implies ϕ2. Note that
we cannot use ϕ2 as the content of the assertion in the definition, or otherwise
Proposition 1 does not hold.

The rule for the function types (Cast-Fun) recursively checks the castability
of the argument types and the return types and combines the assertion terms
for them. Notice how the subsumption for the return types τ2 and τ4 has the
meet of two argument types τ1 u τ3 in the type environment. The meet of two
types (Figure 12) is defined as a conjunction of the refinement predicates6.

The consistent subtyping relation can be seen as a gradualization of the
subtyping relation Γ ;ϕ ` τ1 <: τ2 (Figure 10). In fact, when a type τ1 is a
subtype of another type τ2, it is possible that the assertion term generated by
casting τ1 to τ2 only contains assertions that always succeed, which can be erased
by some optimization. The following proposition states this fact. Note that this
corresponds to the blame-subtyping theorem, one of the criteria for gradual
typing presented in [27].

Proposition 1. Γ ;ϕ ` τ1 <: τ2 implies Γ ;ϕ ` τ1 . τ2 N for some N where
all the assertions in N are of the form assert(true);N ′.

5 This can be understood as the refinement-type version of the differential subtyping
in [23], although in the implementation we do not calculate the “difference” between
ϕ1 and ϕ2 for ϕ′ in the assertion unless ϕ1 implies ϕ2 (and thus ϕ′ can be true).

6 Although the meet of two function types is defined, it does not make any difference
in the definition of consistent subtyping relation since function types in the type
environment is not used.

205

M. Hattori et al.

{x : B | ϕ1} u {x : B | ϕ2} = {x : B | ϕ1 ∧ ϕ2}
(x:τ1 → τ2) u (x:τ3 → τ4) = x:(τ1 u τ3)→ (τ2 u τ4)

� ∃BT(Γ), x:B.Φ(Γ) ∧ ϕ ∧ ϕ1 ∧ ϕ2 � ∀BT(Γ), x:B.Φ(Γ) ∧ ϕ ∧ ϕ1 ⇒ (ϕ′ ⇔ ϕ2)

Γ ;ϕ ` {x : B | ϕ1} . {x : B | ϕ2} λx{x:B|ϕ1}.assert(ϕ′);x
(Cast-Base)

Γ ;ϕ ` τ3 . τ1 N1 Γ, x : τ1 u τ3;ϕ ` τ2 . τ4 N2

Γ ;ϕ ` x:τ1 → τ2 . x:τ3 → τ4
λfx:τ1→τ2 .λxτ3 .(let yτ1uτ3 = N1 x in let zτ2 = f y in N2 z)

(Cast-Fun)

Fig. 12. Definition of the consistent subtyping relation Γ ;ϕ ` τ1 . τ2 N .

Type Safety We conclude this section with a note on the soundness of our
type system. The soundness is based on the fact that if the source program is
well-typed, the program after the assertion insertion is also well-typed.

The most critical part of the proof is to prove the assertion term can be
assigned a function type from the pre-assertion type to the post-assertion type.

Lemma 1. Γ ;ϕ ` τ1 . τ2 N implies Γ ;ϕ ` N : x:τ1 → τ2 for some variable
x that does not occur in τ2.

The proof is found in the full version [13]. With Lemma 1, we can prove
that the assertion-inserted program can be assigned the same type as that of the
original program.

Lemma 2 (Assertion Insertion Preserves Types). Γ ;ϕ ` M N : τ
implies Γ ;ϕ ` N : τ .

We can also prove the standard progress and preservation properties under
a reasonable assumption that the types of the primitive functions are properly
defined as follows (see the full version [13] for the proofs).

Assumption 1 ` c v : τ implies ev(c, v) is defined and ` ev(c, v) : τ

Combining Lemma 2 with the progress and preservation properties, we obtain
the type safety as follows.

Theorem 1 (Type Safety). With Assumption 1, ∅; true ` M N : τ
implies N −→∗ v for some v, N ⇑, or N −→∗ error.

The type safety property states that a well-typed program does not cause
untrapped dynamic errors. The only case where a cast-inserted program causes
untrapped errors is when the result of an application of a primitive function
is undefined (i.e., ev(c, v) is undefined). The type safety property ensures that
such untrapped errors do not happen for well-typed terms as long as the ty(c)
is defined appropriately.

206

Gradual Tensor Shape Checking

x̃ ` τ1 v τ2
� ∀ỹ, x.ϕ1 ⇒ ϕ2

ỹ ` {x : B | ϕ1} v {x : B | ϕ2}
(Prec-Base)

ỹ ` τ1 v τ3 ỹ, x ` τ2 v τ4
ỹ ` x:τ1 → τ2 v x:τ3 → τ4

(Prec-Fun)

Γ1 v Γ2

∅ v ∅

Γ1 v Γ2 dom(Γ1) ` τ1 v τ2
Γ1, x : τ1 v Γ2, x : τ2

Fig. 13. Precision relation of types and type environments.

3 Gradual Guarantee

In a standard gradual type system, programs are compared by their precision,
or the amount of information contained in the type annotations. This notion is
used to define the gradual guarantee [27], which is the core property of gradual
typing. The gradual guarantee comes in two parts. The first one is called static
gradual guarantee, which states that decreasing the precision of type annotation
from a well-typed program still preserves the typeability of the program at a less
precise type. The second one is called dynamic gradual guarantee, which claims
that a less precise program behaves the same as the more precise one with fewer
assertion errors.

Below we first define the precision for the language introduced in Section 2.
We then show that our type system satisfies the gradual guarantee.

Precision. Figure 13 defines the precision relation x̃ ` τ1 v τ2 on types by
using the logical implication between the refinement predicates. The sequence
of variables x̃ keeps the variables that may appear in the refinement predicates.
For example, the following is an example of the type precision relation for the
base type.

` {x : tensor | x.shape = [3]} v {x : tensor | len(x.shape) = 1}
Note that in the rule (Prec-Fun), the precision of the argument type and the

return type are compared independently; the type information on x is not used in
the comparison of the return types. This is in contrast with the rule (Sub-Fun)
in Figure 10 for subtyping. Figure 13 also extends the relation to Γ v Γ ′ on type
environments. The precision relation is also extended to the relation x̃ `M vM ′
on terms, by the rules in Figure 14. Here, x̃ is the sequence of variables in scope.
Finally, we define the precision relation of the cast terms in Figure 14. Unlike
the term precision relation (Figure 14), the precision relation Γ ;ϕ ` N1 v N2

on cast terms requires the type environment Γ and the logical context ϕ in the
judgement, and the refinement extraction from the type environment Φ(Γ) is
used in the rule (PC-Assert). We also assume the following property on the
evaluation of the primitive functions.

Assumption 2 If ev(c, v2) and ev(c, v1) are both defined, then v1 v v2 implies
ev(c, v1) v ev(c, v2)

207

M. Hattori et al.

x̃ `M1 vM2

ỹ ` τ1 v τ2 ỹ, x `M1 vM2

ỹ ` λx:τ1.M1 v λx:τ2.M2

(PM-Lam)

ỹ `M1 vM2 ỹ ` τ1 v τ2
ỹ ` (M1 : τ1) v (M2 : τ2)

(PM-Annot)

Γ ;ϕ ` N1 v N2

∀BT(Γ).Φ(Γ) ∧ ϕ ∧ ϕ1 ⇒ ϕ2 Γ ;ϕ ∧ ϕ1 ` N1 v N2

Γ ;ϕ ` assert(ϕ1);N1 v assert(ϕ2);N2

(PC-Assert)

Fig. 14. Selected rules for the precision relation on terms and cast terms (the full
definition is found in the full version [13]).

Intuitively, the precision of cast terms are designed in such a way that, when
∅; true ` N1 v N2 holds, the assertions in N1 is more strict than that of N2,
and therefore the dynamic checks in N1 is more likely to fail than in N2. The
following two propositions state this intuition (the proofs are found in the full
version [13]).

Proposition 2. Suppose ∅; true ` N1 : τ and ∅; true ` N2 : τ ′. Then,
∅; true ` N1 v N2 and N1 −→ N ′1 imply N2 −→ N ′2 and ∅; true ` N ′1 v N ′2
for some N ′2.

Proposition 3. Suppose ∅; true ` N1 : τ and ∅; true ` N2 : τ ′. Then,
∅; true ` N1 v N2 and N2 −→ N ′2 imply either of the following.

– N1 −→ N ′1 and N ′1 v N ′2 for some N ′1
– N1 −→ error

Gradual Guarantee. We show that our system satisfies the gradual guaran-
tee [27]. First, we prove that the consistent subtyping relation Γ ;ϕ ` τ1 . τ2
N is upper-closed with respect to the precision relation x̃ ` τ1 v τ3 on types.

Lemma 3. Γ ;ϕ ` τ1 . τ2 N1, dom(Γ) ` τ1 v τ3, dom(Γ) ` τ2 v τ4 and
Γ v Γ ′ implies Γ ′;ϕ ` τ3 . τ4 N2 for some N2.

We can further prove that the cast term N2 in the statement of Lemma 3 is
less precise than the original cast term N1 as follows.

Lemma 4. Suppose Γ v Γ ′, dom(Γ) ` τ1 v τ ′1 and dom(Γ) ` τ2 v τ ′2. Then,
Γ ;ϕ ` τ1 . τ2 N and Γ ′;ϕ ` τ ′1 . τ ′2 N ′ implies Γ ;ϕ ` N v N ′.

Using the above properties, we can prove the following lemma which consti-
tutes the core part of the proof of the gradual guarantee.

Lemma 5. Γ v Γ ′, dom(Γ) ` M v M ′ and Γ ;ϕ ` M N : τ imply Γ ′;ϕ `
M ′ N ′ : τ ′, Γ ;ϕ ` N v N ′ and dom(Γ) ` τ v τ ′ for some N ′ and τ ′.

208

Gradual Tensor Shape Checking

Finally, we can show the static and dynamic gradual guarantee as follows.

Theorem 2 (Static gradual guarantee). ∅ `M1 vM2 and `M1 : τ1 imply
`M2 : τ2 and ∅ ` τ1 v τ2 for some τ2.

Proof. This follows immediately from Lemma 5. ut

Theorem 3 (Dynamic gradual guarantee). Suppose ∅ ` M1 v M2 and
`M1 N1 : τ1. Then, there exist N2 and τ2 that satisfy all of the following.

– `M2 N2 : τ2.
– N1 −→∗ v1 implies N2 −→∗ v2 and v1 v v2 for some v2.
– N1 ⇑ implies N2 ⇑.
– N2 −→∗ v2 implies N1 −→∗ v1 and v1 v v2 for some v1, or N1 −→∗ error.
– N2 ⇑ implies N1 ⇑ or N1 −→∗ error.

Proof. By Lemma 5, `M2 N2 : τ2 holds for some N2 and τ2 where ` N1 v N2

and ` τ1 v τ2. Also, from Lemma 2, we obtain ` N1 : τ1 and ` N2 : τ2. Using
Proposition 2, N1 −→∗ v1 for some v1 implies N2 −→∗ v2 for some v2 such that
v1 v v2. Also, N1 −→∞ implies N2 −→∞. Using Proposition 3, N2 −→∗ v2 for
some v2 implies N1 −→∗ v1 for some v1 such that v1 v v2, or N1 −→∗ error.
Also, N2 −→∞ implies N1 −→∞ or N1 −→∗ error. ut

4 Best-Effort Type Inference

Thanks to our combination of gradual typing and hybrid checking described in
the previous sections, a type inference procedure need not necessarily output
the most precise types. It is allowed to perform type inference only in a best-
effort manner, and the results in the previous sections do not depend on the
particular design of the type inference procedure. Nevertheless, it is desirable
for the procedure to infer reasonably good types. In this section, we report a
specific design of the type inference procedure, which we have implemented in
our prototype system GraTen; as reported in the Section 5, our procedure
works reasonably well for actual deep learning programs.

4.1 Overview of Type Inference and Checking in GraTen

The type checking in GraTen consists of the following three phases: (1) sim-
ple type inference, (2) best-effort refinement type inference, and (3) consistent
subtyping checking and assertion insertion.

In the first phase, GraTen performs the simple type inference using the
standard Hindley-Milner algorithm and annotates the AST with the inferred
simple types of each node.

In the second phase, GraTen first collects all the consistent subtyping con-
straints of the form Γ ;ϕ ` τ1 . τ2 N from the source program. When it
encounters AST nodes whose refinement type cannot be constructed directly,
GraTen generates template refinement types using the simple types inferred in

209

M. Hattori et al.

the previous phase. Template refinement types may contain variables for unde-
termined predicates (referred to as predicate variables).

Using the collected constraints, GraTen then tries to find a solution for all
of the predicate variables with its hand-made constraint solver. The constraint
solving takes place on every let binding to allow let-polymorphism on shapes.
We discuss the detail of the implementation of the solver in the next subsection,
but at a high level, the solver tries to find such a solution that:

– only general types are inferred, as otherwise it could result in rejecting well-
typed programs.

– Γ ;ϕ ` τ1 <: τ2 holds for as many constraints Γ ;ϕ ` τ1 . τ2 N as possible.
This is to make the cast term N consist of trivial assertions (which can
statically be discharged to avoid run-time overheads; recall Proposition 1).

Given that the subtyping constraints can be expressed in the form of constrained
Horn clauses (CHC) and not all the subtyping constraints need to hold, the
problem above is essentially a CHC solving problem with weak constraints and
maximality [22] where the optimization objective of the problem is defined by
pointwise logical comparison of the solutions.

The constraint solver of GraTen does not always find a solution for all
predicate variables. In such cases, GraTen assigns true to the undetermined
predicate variables; that way, they will at least not invalidate the consistent
subtyping constraints.

Note that GraTen does not take into account the consistent subtyping
Γ ;ϕ ` τ1 . τ2 N itself when trying to find a solution, as we expect that
it would be rare for a consistent subtyping Γ ;ϕ ` τ1 . τ2 N to hold when
the subtyping relation Γ ;ϕ ` τ1 <: τ2 does not hold. GraTen therefore defers
the check of consistent subtyping constraints to the next phase.

In the third phase, GraTen checks the validity of consistent subtyping con-
straints using the inference results for the predicate variables from the previous
phase. GraTen first attempts to simplify and verify the constraints by a hand-
made solver, but it falls back on using z3 [5] with timeouts if it does not work.
Simultaneously, it also generates the assertion terms and inserts them into the
source program.

4.2 Heuristics of Best-Effort Type Inference

To solve the subtyping constraints explained above, we have implemented a
hand-made constraint solver. GraTen does not use off-the-shelf SMT or CHC
solvers such as Z3 [5], since the refinement predicates in GraTen often use
complicated predicates on integer lists, for which standard SMT/CHC solvers
cannot find a solution in a reasonable time. Also, while GraTen should infer
general types (so as not to reject well-typed programs), those generic solvers are
not biased towards generality and return any (non-general) solution that satisfies
the constraints. This subsection describes the heuristics used in GraTen for
constraint solving.

210

Gradual Tensor Shape Checking

The preparation for the inference is already started when GraTen generates
the template refinement types during the constraint collection. For each predicate
variable generated, GraTen attaches the set of program variables it depends
on, which is calculated from the type environment. This is used in the constraint
solving later to avoid assigning irrelevant predicates to the predicate variables.
We denote predicate variables as px̃(ỹ), where x̃ denotes the set of program
variables it depends on and ỹ denotes the parameters of the predicate variable.

After collecting the constraints, GraTen decomposes the subtyping con-
straints to constrained Horn clauses of the form ϕ̃1 ∧ ϕ̃2 ⇒ ϕ̃3 following the
definition of the subtyping relation (Figure 10). The notation ϕ̃ denotes a set of
predicates, logically interpreted as the conjunction of the predicates. The first,
second, and third set of predicates in the clause respectively corresponds to the
predicates from the context Φ(Γ)∧ ϕ, the refinement of the type on the left ϕ1,
and that of the type on the right ϕ2. We intentionally distinguish between ϕ̃1

and ϕ̃2 on the left-hand side of the clauses in describing the constraint solving
algorithm. For example, let us reconsider the program in Figure 2. The subtyping
constraints collected from the if expression of the program would be as follows,
where p, q and r are the predicate variables generated for the type of s, x and
the if expression respectively.

Γ ; (s = 1) ` {ν:tensor | qs,ν(ν)} <: {ν:tensor | rs,x,ν(ν)}
Γ ; (s 6= 1) ` {ν:tensor | qs,ν(ν)} <: {ν:tensor | len(ν.shape) = 1}
Γ ; (s 6= 1) ` tensor([nth(0, x.shape)/s]) <: {ν:tensor | rs,x,ν(ν)}
where Γ := [s 7→ {ν:int | pν(ν)}, x 7→ {ν:tensor | qs,ν(ν)}]

These constraints are decomposed into the following clauses.
{ps(s), qs,x(x), s = 1} ∧ {qs,ν(ν)} ⇒ rs,x,ν(ν)

{ps(s), qs,x(x), s 6= 1} ∧ {qs,ν(ν)} ⇒ len(ν.shape) = 1

{ps(s), qs,x(x), s 6= 1} ∧ {ν.shape = [nth(0, x.shape)/s]} ⇒ rs,x,ν(ν)

(1)

From the clauses obtained as above, GraTen tries to find a solution for the
predicate variables using an algorithm presented in Algorithm 1.

The algorithm processes the constraints by first trying to find a solution for
predicate variables that occur on the right-hand side of a clause ϕ̃1 ∧ ϕ̃2 ⇒ ϕ̃3

(Line 6-10), and then on the left-hand side of a clause (Line 11-15), and repeats it
until either all of the constraints are solved or the constraints cannot be processed
any further (Line 4). In Line 8 and Line 13, the set of program variables x̃ of a
predicate variable px̃ is used to assign the predicates to the predicate variables7.

During the iteration, the constraints need to be occasionally updated with
the current solutions θ by applying the substitution θ to all the predicates in
the constraints. After that, we also simplify the set of clauses (with simplify
in Algorithm 1) by removing the predicates from the right-hand side of a clause
that trivially follows from the left-hand side, and by removing clauses whose

7 The set of program variables used in predicates is defined following the standard
definition of free variables, except that the program variables used in a predicate
variable px̃ is defined as x̃.

211

M. Hattori et al.

right-hand side is empty. For example, a clause {} ∧ {x = 1} ⇒ {x = 1} is
simplified to {} ∧ {x = 1} ⇒ {}, and then removed from the set of clauses.

To illustrate the behavior of Algorithm 1, consider applying it to the clauses
(1). During the first iteration of the while loop (Line 4), the first for loop (Line
6) exits with an empty θ as r appears on the right-hand side of multiple clauses
and cannot be resolved here due to the check at Line 7. In the next for loop
(Line 11), θ is updated to:

[qs,ν(ν) 7→
(
len(ν.shape) = 1 ∧ q′s,ν(ν)

)
] (2)

where q′s,ν(ν) is a fresh predicate variable, and the constraints c would be updated
as follows.
{ps(s), len(x.shape) = 1, q′s,x(x), s = 1} ∧ {len(ν.shape) = 1 ∧ q′s,ν(ν)} ⇒ rs,x,ν(ν)

{ps(s), len(x.shape) = 1, q′s,x(x), s 6= 1} ∧ {ν.shape = [nth(0, x.shape)/s]} ⇒ rs,x,ν(ν)

The while loop exits after the second iteration, as no new predicate variables
can be added to θ and c = c′ holds. Thus, we only obtain (2) from Algorithm 1.
After the inference, GraTen assigns true to the remaining predicate variables
p, q′ and r.

Algorithm 1 Algorithm for calculating the solutions θ to predicate variables
from constrained Horn clauses c.

Input: constrained Horn clauses c
Output: the mapping from predicate variables to its solution (predicates) θ

1: procedure solve(c)
2: Let θ be an empty substitution
3: c′ ← c
4: while c 6= ∅ and c 6= c′ do
5: c′ ← c
6: for every clause of the form ϕ̃1 ∧ ϕ̃2 ⇒ px̃(ỹ) in c do
7: if px̃(ỹ) /∈ ϕ̃3

′ for any other ϕ̃1
′ ∧ ϕ̃2

′ ⇒ ϕ̃3
′ in c then

8: Let ϕ̃2
′ be the maximal subset of ϕ̃2 that only uses variables in x̃

9: θ ← [px̃(ỹ) 7→
∧
ϕ̃2

′] ◦ θ . ◦ is a composition of mappings.
10: c← simplify(θ c) . simplify(·) is described in the main text.
11: for ϕ̃1 ∧ ϕ̃2 ⇒ ϕ̃3 in c do
12: for every predicate variable px̃(ỹ) in ϕ̃1 ∪ ϕ̃2 do
13: Let ϕ̃3

′ be the maximal subset of ϕ̃3 that only uses variables in x̃
14: Let qx̃(ỹ) be a fresh predicate variable
15: θ ← [px̃(ỹ) 7→

(∧
ϕ̃3

′) ∧ qx̃(ỹ)] ◦ θ
16: c← simplify(θ c) . Also updates the remaining items iterated by L11.
17: return θ

5 Experiment

This section reports on experiments to evaluate the effectiveness of our approach
by running our tool GraTen for the example programs bundled in the OCaml-

212

Gradual Tensor Shape Checking

Torch library [4]. We have also checked how type annotations changed the infer-
ence results.

5.1 Methods

Input and Output of GraTen GraTen takes an OCaml program and
performs type checking with its best-effort type inference. If the type checking
is successful, it returns the inferred types of top-level variables defined in the
program, and the source program with necessary assertions inserted. Otherwise,
the type checking fails with an error message.

The assertions are inserted into the output program only when they are
needed. Namely, assertions are inserted into the places where the consistent
subtyping Γ ;ϕ ` τ1 . τ2 N is used only when Γ ;ϕ ` τ1 <: τ2 doesn’t hold
(see Proposition 1).

Besides the source program, GraTen also reads the types of the library
functions (including those of OCaml-Torch) from manually prepared stub files.
For example, the type of tr (matrix transpose function) is defined as follows.

val tr : x:{ v:tensor | len v.shape = 2 }
-> tensor([nth 1 x.shape; nth 0 x.shape])

Note that describing the types of some higher-order OCaml-Torch functions
requires the polymorphic extension, which we sketch in the full version [13]. For
example, the type of Layer.forward is defined as follows.
∀b1:bool, b2:bool.
(x:{x:tensor | b1} → {y:tensor | b2})→ x:{x:tensor | b1} → {y:tensor | b2}

GraTen handles such types by instantiating the quantified parameters (b1 and
b2 in the above case) with fresh predicate variables.

Test Cases We applied GraTen to programs under examples/ directory of
the repository of OCaml-Torch8. The list of programs tested is shown in Table 1.
Since some programs use features of OCaml or OCaml-Torch that are not yet
supported by GraTen, they were modified not to use such features without
changing the structure of the neural network. Major modifications added to the
target programs are listed below. Other smaller syntactic modifications can be
found in the supplementary materials.

(M1) Replacing or removing type-polymorphic functions. Some functions that cre-
ate loops such as List.foldl are replaced with recursive functions. Others
such as no_grad are replaced with the type-instantiated versions.

(M2) Removing use of non-integer lists, especially tensor lists and layer9 lists. As a
result, two list-taking primitive functions are removed. One is Tensor.cat,
which takes a list of tensors and returns the concatenation of them. It is

8 https://github.com/LaurentMazare/ocaml-torch/tree/a6499811f4/examples
9 Functions that take a tensor and return a tensor.

213

https://github.com/LaurentMazare/ocaml-torch/tree/a6499811f4/examples

M. Hattori et al.

replaced with a variant Tensor.cat_ which takes only two tensors. The
other is Layer.sequential, which takes a list of layers and returns a layer
that sequentially applies all the input layers.

(M3) Replacing mutable float objects with 0-dimensional tensors, as GraTen
does not support reference types.

As an example of (M1) and (M2), consider the following function, which
creates a list of linear layers and returns a new layer that applies all the layers
in the list.

1 let f vs ~num_layers =
2 List.init num_layers ~f:(fun i -> Layer.linear vs ~input_dim:(i+1) (i+2))
3 |> Layer.sequential

The i-th layer in the list takes a tensor whose last dimension is size i+1, and
returns a tensor of the same shape except that the last dimension is changed
to i+2. By the modifications (M1) and (M2), the above function definition is
replaced with:

1 let f vs ~num_layers =
2 let rec loop i xs =
3 if i = 0
4 then Layer.id xs
5 else loop (i-1) xs ~is_training |> Layer.linear vs ~input_dim:i (i+1)
6 in Layer.of_fn (loop num_layers)

Some programs in the examples/ directory are excluded from the test cases
for the following reasons.

– neural_transfer uses a library function Vgg.vgg16_layers whose type
cannot be described in GraTen; the relation between its inputs and its output
tensor’s shape could not be expressed in the syntax supported by GraTen.

– Programs dqn.ml, dqn_atari.ml and dqn_pong.ml in
reinforcement-learning use queues which are not supported in GraTen yet.

– env_gym_pyml.ml and venv_env_gym_pyml.ml under
reinforcement-learning use Python objects whose verification is not
the scope of this paper.

– reinforcement-learning/policy_gradient.ml uses mutable lists which
cannot be replaced with another datatype already supported in GraTen.

– yolo/darknet.ml and translation/lang.ml use hash tables which are
not supported in GraTen yet.

– translation/dataset.ml and translation/lang.ml are irrelevant as
tensor objects do not appear in them.

Evaluation We evaluated the best-effort inference of GraTen on the following
three aspects.

First, we counted the assertions inserted into the original program when
GraTen is used for the target program. Since the assertions indicate the pro-
gram points that could fail at runtime, the user of GraTen would wish to

214

Gradual Tensor Shape Checking

pay attention to the location and the number of inserted assertions and try to
decrease them.

Second, we counted the minimum number of type annotations required to
type-check the program with minimum assertions inserted. This is for evaluating
the realistic programmers’ burden of trying to statically verify the program with
type annotations. The annotations were added in such a way that the types of the
functions do not lose the original generality. The type annotations are counted
by the number of refinement types with non-true refinement predicates in them.
For example, the following annotation counts as 3 because the refinement of the
input tensor and the two output tensors are not true, but the refinement of the
annotation of the second argument bool is true.

tensor([x]) -> ~is_training:bool -> tensor([x]) * tensor([x])

Third, we also measured the time taken by GraTen to analyze the unan-
notated and annotated programs. The experiments were conducted on a Linux
machine with 12-core Intel i5-11400 (2.60GHz) and GraTen is implemented in
Haskell with GHC version 9.0.2.

5.2 Experimental Results

Table 1 summarizes the experimental results. We analyze those results by the
following three aspects: assertions, type annotations and analysis time.

Inserted Assertions Out of the 26 programs tested, 10 programs required
no type annotations to type-check without assertions, and other 7 programs
type-checked without assertions after adding appropriate type annotations. For
the remaining 9 programs such as gan/began.ml and gan/gan_stability.ml, we
could not eliminate all assertions, although some of them were removed after
adding type annotations. The remaining assertions were due to the imprecise
type signatures of some library functions. For instance, Torch.Serialize.load
is a function that loads a tensor from a file and its type signature is defined as
follows.

val load : ~filename:string -> tensor

The return type of load is simply defined as tensor since it is impossible to
assume any properties about its shape. As a result, an assertion was inserted to
check if the loaded tensor satisfies the requirement to run the program without
uncaught errors. Even adding type annotations to the loaded tensor does not
remove the assertion.

Some other functions are given imprecise types due to GraTen’s immature
support of polymorphic data types. For example, the type of Tensor.stack is
defined as follows because GraTen does not effectively support non-integer lists
yet. Refining the return types of such functions is left as future work.

val stack : ~dim:int -> list (tensor) -> tensor

215

M. Hattori et al.

Location under examples/ LOC Unannotated Annotated
time (s) #assert #annot time (s) #assert

char_rnn/char_rnn.ml 98 1.647 1 2 0.664 0
cifar/cifar_train.ml 72 0.311 0 - - -
cifar/densenet.ml 116 2.603 6 2 1.304 0
cifar/fast_resnet.ml 64 0.293 0 - - -
cifar/preact_resnet.ml 85 2.535 8 5 0.346 0
cifar/resnet.ml 78 2.597 8 4 0.396 0
gan/began.ml 220 1.581 1 - - -
gan/gan_stability.ml 224 4.441 40 2 1.410 2
gan/mnist_cgan.ml 117 0.498 1 - - -
gan/mnist_dcgan.ml 136 1.418 4 2 0.500 0
gan/mnist_gan.ml 83 0.308 0 - - -
gan/progressive_growing_gan.ml 118 0.734 0 - - -
gan/relativistic_dcgan.ml 171 0.659 1 - - -
jit/load_and_run.ml 16 0.214 1 - - -
min-gpt/mingpt.ml 207 3.036 8 6 2.686 0
mnist/conv.ml 53 0.250 0 - - -
mnist/linear.ml 50 0.235 0 - - -
mnist/nn.ml 39 0.210 0 - - -
pretrained/finetuning.ml 69 0.294 0 - - -
pretrained/predict.ml 68 0.303 2 - - -
reinforcement-learning/a2c.ml 105 0.418 0 - - -
reinforcement-learning/ppo.ml 129 0.438 0 - - -
reinforcement-learning/rollout.ml 91 0.734 9 5 0.425 1
translation/seq2seq.ml 258 3.800 11 34 1.023 3
vae/vae.ml 78 1.233 4 10 0.312 0
yolo/yolo.ml 144 1.027 4 1 0.985 3
Table 1. Results of running GraTen to the test cases. The second column is the size
of the program after the modification. The third and fourth columns are the results
for unannotated programs. The third column is the duration of the type-checking and
the fourth column is the number of assertions inserted. From the fifth to the seventh
columns are for the annotated programs. The fifth column is the number of annotations
added to the program.

216

Gradual Tensor Shape Checking

Patterns of Added Type Annotations As we added type annotations to
the test cases, we observed that the program points that require type annota-
tions have similarities. All of the type annotations fall into one of the following
patterns.

(P1) Branches i.e., if expressions and match expressions with multiple branches
(e.g., Figure 4 in Section 1).

(P2) Recursive functions. For example, loop in translation/seq2seq.ml is anno-
tated as follows.

let rec loop
: ~state:tensor([1; enc.hidden_size])
-> ~prevs:list ({ v:tensor | prod v.shape = 1 })
-> ~max_length:int -> list ({ v:tensor | prod v.shape = 1 })

= fun ~state ~prevs ~max_length -> ...

(P3) Higher-order shape-polymorphic arguments. For example, sample in
char_rnn.ml is annotated as follows.

let sample ~dataset ~lstm
~linear:(linear : x:{ v:tensor | last v.shape = hidden_size }

-> tensor(init x.shape @ [dataset.labels]))
~device = ...

(P4) Definition of record types. The current implementation of GraTen expects
that the definition of record types describes the refinement types of each
field.

(P5) Imprecise type signatures of primitive functions, or user-defined functions of
dependent modules. For example, translation/seq2seq.ml has the following
type annotation since the return type of Tensor.stack is only inferred to
be tensor due to its imprecise type signature.

let enc_outputs : tensor([1; nth 1 v.shape; enc.hidden_size]) =
Tensor.stack enc_outputs ~dim:1

The statically inferred type of enc_outputs here is tensor([1;
enc.hidden_size]) list, so we would not need this type annotation if
the type signature of Tensor.stack is appropriately defined. Since it is not
possible to statically verify the correctness of these types of annotations,
assertions would still be inserted after adding these annotations.

The first three patterns indicate that GraTen’s current best-effort type infer-
ence does not effectively infer precise refinements for branches, recursive func-
tions and higher-order shape-polymorphic arguments. The fourth pattern (P4)
would be inevitable when using record types. It remains as future work to exempt
users from having to add type annotations for (P5). With such improvements,
we believe that it will become easier to find program points that require type
annotations for better inference.

217

M. Hattori et al.

Number of Type Annotations There is no correlation between the number of
assertions inserted into the unannotated program and the number of annotations
needed to the program to minimize the number of assertions.

For example, adding two type annotations to gan/gan_stability.ml re-
sulted in removing 38 assertions. This is because GraTen inferred an imprecise
type for a helper function resnet_block without any type annotations, and
it degraded the precision of the inference for the 24 callers of the function.
Meanwhile, translation/seq2seq.ml required comparatively many type anno-
tations as it has many definition of record types and several recursive functions
with multiple inputs.

Analysis Time For all of the 11 annotated programs, GraTen’s type checking
for annotated programs was faster than the unannotated counterparts. This
would be because having more static information made it easier for GraTen to
infer more precise types and resolve more subsumption constraints easily.

5.3 Discussions

In this subsection, we discuss the strengths, weaknesses and our perspective on
the future development of our system.

Performance of Best-Effort Inference As reported in the previous sub-
section, the best-effort inference of GraTen does not infer precise types for
branches, recursions and higher-order shape-polymorphic arguments. While this
may seem unsatisfying at a glance, the aim of this research is not to develop a
perfect inference algorithm, but to propose a method that can work on unanno-
tated programs and allows users to work interactively with the type checker to
gradually add type annotations. With this respect, we believe that GraTen has
achieved desirable results since it will be easy for the user to find out where to
add type annotations. This is because (1) the inserted assertions can inform the
user of the location of potential dynamic errors, and (2) all of the required type
annotations would fall into one of the patterns listed in the previous section and
thus should be predictable.

Lists of Tensors and Layers As of now, the refinement inference for lists
in GraTen is limited to integer lists. Meanwhile, lists of tensors or lists
of functions are commonly used in deep learning programs: Tensor.cat and
Tensor.stack both take a list of tensors and return their concatenation, and
Layer.sequential takes a list of layers (functions that take and return a tensor)
and returns their composition.

A potential approach to support these library functions would be to add new
refinement predicates for tensors lists or layer lists. For example, we can add a
predicate composable(x, S1, S2) which means that the composition of a list of
layers x takes a tensor of shape S1 and returns a tensor of shape S2. The type of

218

Gradual Tensor Shape Checking

Layer.sequential would be expressed with the shape polymorphic extension
(see the full version [13]) as follows.

val sequential : forall S1 S2.
{ v:list(tensor -> tensor) | composable(x,S1,S2) }

-> tensor(S1) -> tensor(S2)

To practically infer composable predicate for layer lists, we would need to change
the type-instantiated versions of list-manipulating functions as well. For instance,
the type of the cons function for layers would need to be defined as follows.

val cons_layers
: forall S1 S2 S3. (tensor(S1) -> tensor(S2))
-> { v:list(tensor -> tensor) | composable(v, S2, S3) }
-> { v:list(tensor -> tensor) | composable(v, S1, S3) }

Reporting Incorrect Type Annotations Since our type system sees the
standard refinement types as gradual, some users might find the behavior of
GraTen unexpected in some cases. Consider the following function f which
takes a matrix and returns a matrix obtained by transposing the input. Suppose
that the programmer mistakenly annotated the return value of f to have the
same shape as the input matrix.

let f x = (tr x : tensor(x.shape))

Although this type annotation does not hold in general, this program is not
rejected by our type system because the annotation can hold if the input x is a
square matrix. GraTen would output the following program with an assertion.

let f x = (fun y -> assert(y.shape = x.shape); y) (tr x)

To avoid such a situation, it would be possible to extend the type system with
types with fully statically known refinements, and let the annotated types be
interpreted as such.

6 Related Work

Tensor Shape Checking in Deep Learning Programs. The problem of
tensor shape checking has been studied for decades by various contexts such as
the numeric analysis [7,2] and the array-oriented languages with rank polymor-
phism [29,28,12]. Tensor shape checking for deep learning programs is still a new
challenge because the shapes can be more complicated, and a variety of methods
have been proposed both in academia and in industry.

Some tools statically check tensor shapes with advanced type systems. Hask-
torch [3] is a Haskell binding of libtorch [20] which provides a mode that stati-
cally checks tensor shapes. Since they use the type-level programming feature of
Haskell to implement the tensor shapes, tensor shapes are not first-class objects.

219

M. Hattori et al.

As a result, programs such as the one in Figure 1 cannot be expressed since it is
impossible to define the function f whose type depends on the first-class object
s. Relay [25,24] is an IR for deep learning compilers with a rich type system for
tensor shape with type inference. Both Relay and Hasktorch support dynamic
shape as a wild card in the static shape checking.

Apart from the type-based verification methods, some tensor shape error de-
tection tools also take a static approach. Pythia [17,6] statically detects shape
fault for TensorFlow [1] programs by keeping track of the tensor shapes through-
out the program using value-flow analysis. The tracking of shape is in a best-
effort manner, allowing the shape inference results to be “unknown” in some
cases. The analysis crucially relies on the programming practice in TensorFlow
to annotate tensor shapes as much as possible.

Other static checking tools took an approach that uses symbolic execution to
collect constraints from the program and verifies it with a solver; Tensors Fitting
Perfectly [21] and PyTea [15] are on this approach. Both methods remove loops
from the program in an ad-hoc manner based on a reasonable assumption for
the program.

Lastly, some took dynamic approaches to provide lightweight shape fault de-
tection. ShapeFlow [31] is an abstract interpreter of TensorFlow programs; it
shares the same APIs as TensorFlow but only calculates the shape of tensors.
Users can run the analysis by replacing the import of TensorFlow with Shape-
Flow in the target program, which executes more efficiently than the original
TensorFlow program. Elichika [14] uses a similar method to ShapeFlow with
a feature to display the interpreted shapes with a symbolic expression. These
dynamic approaches enable quick analysis and require no type annotations, but
provide no guarantee for untested inputs.

Static and Dynamic Checking for Refinement Types. Earlier work on
dependent type system focused on decidable type checking and inference with
restricted refinement logic [10,34,33,26]. Dynamic checking with contracts [19,9]
offers expressive verification that cannot be covered with a static type system,
but at a cost of runtime overhead. Naturally, the combination of static and
dynamic checking has been actively explored by the successors of both parties.

Hybrid type checking [16], which our work is based on, extends the purely-
dynamic method of using contracts by verifying specifications statically as much
as possible. This method differs from ours in that it inserts a dynamic check
only when the subtyping constraint is not proven to be valid or invalid. As a
result, this method statically rejects the incorrectly annotated program that we
discussed in Subsection 5.3, while our method accepts it with a dynamic check in
the hope that a more precise type annotation will remove the need for a dynamic
check. Our method can be understood as a variant of hybrid type checking with
a focus on being gradual in adding type annotations.

The application of gradual typing to dependent type systems has also been
studied [18,8]. Especially, gradual refinement types [18] is very similar to our type
system in that it gradualizes only the predicate part of a refinement type system

220

Gradual Tensor Shape Checking

and the underlying simple type is static. One of the differences is that their
system distinguishes statically-unknown refinement predicates with statically-
known ones, while our system assumes that any refinement predicates can have
a statically-unknown portion. For example, consider the following program:

let f x (y : {ν : int | true}) = x/y

This program is rejected in their system because the type annotation of y in-
dicates that the programmer is confident that y can be any integers including
0; otherwise, the type annotation should have been {ν : int | ? }. Meanwhile,
our system interprets the type annotation as not precise enough and accepts the
program by inserting a dynamic check to y. Intuitively, {x : B | ϕ} in our type
system translates to {x : B | ϕ ∧ ?} in gradual refinement types [18].

The type inference for gradual refinement types has been studied by Vazou et
al. [30]. Their work restricts the refinement to liquid predicates [26] to maintain
the decidability, while our work does not impose such a limitation.

7 Conclusion and Future Work

We presented an extension to the standard refinement type system which can be
viewed as a gradual type system. The essence of this extension is the introduction
of the consistent subtyping relation, which inserts to the source program asser-
tions that checks statically-unverified properties at runtime. We also presented
that the extended type system satisfies the refined criteria of gradual typing.

We then applied this type system for verifying tensor shapes with best-effort
type inference. This application makes use of the property of the proposed type
system that allows us to cover the limitation of the static best-effort analysis
with dynamic checks. We also implemented a prototype type checker GraTen
and applied it with some of the example programs publicly available in OCaml-
Torch repository. We observed that, thanks to the best-effort type inference,
users would not be required too many type annotations to statically type-check
the whole program, and it would not be difficult to find where to add type
annotations to improve the inference.

We conclude with some ideas for future work.
– Extension with type polymorphism. As we observed in the experiments,

type polymorphic functions are frequently used in realistic programs. Extending
our type system with ML-style type polymorphism would make the type checker
more practical.

– Application for imperative languages with a dynamic type system, like
Python. In this paper, we have chosen OCaml as the target of the prototype to
ensure that the input program is statically-typed. Python would, however, be a
more attractive target since it is widely used in the machine learning community.

Acknowledgments We would like to thank anonymous referees for use-
ful comments. This work was supported by JSPS KAKENHI Grant Number
JP20H05703.

221

M. Hattori et al.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Abe, A., Sumii, E.: A simple and practical linear algebra library interface with
static size checking. arXiv preprint arXiv:1512.01898 (2015)

3. contributors, H.: Hasktorch. http://hasktorch.org/ (2020), [Online; accessed 15-
July-2021]

4. contributors, O.T.: Ocaml-torch. https://github.com/LaurentMazare/
ocaml-torch (2020), [Online; accessed 05-July-2021]

5. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

6. Dolby, J., Shinnar, A., Allain, A., Reinen, J.: Ariadne: analysis for machine learning
programs. In: Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. pp. 1–10 (2018)

7. Eaton, F.: Statically typed linear algebra in haskell. In: Proceedings of the 2006
ACM SIGPLAN workshop on Haskell. pp. 120–121 (2006)

8. Eremondi, J., Tanter, É., Garcia, R.: Approximate normalization for gradual de-
pendent types. Proceedings of the ACM on Programming Languages 3(ICFP),
1–30 (2019)

9. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings of
the seventh ACM SIGPLAN international conference on Functional programming.
pp. 48–59 (2002)

10. Freeman, T., Pfenning, F.: Refinement types for ml. In: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation.
pp. 268–277 (1991)

11. Garcia, R., Clark, A.M., Tanter, É.: Abstracting gradual typing. In: Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 429–442 (2016)

12. Gibbons, J.: Aplicative programming with naperian functors. In: Proceedings of
the 1st International Workshop on Type-Driven Development. pp. 13–14 (2016)

13. Hattori, M., Kobayashi, N., Sato, R.: Gradual tensor shape checking. arXiv preprint
arXiv:2203.08402 (2022)

14. Hattori, M., Sawada, S., Hamaji, S., Sakai, M., Shimizu, S.: Semi-static type, shape,
and symbolic shape inference for dynamic computation graphs. In: Proceedings
of the 4th ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. pp. 11–19 (2020)

15. Jhoo, H.Y., Kim, S., Song, W., Park, K., Lee, D., Yi, K.: A static analyzer for
detecting tensor shape errors in deep neural network training code. arXiv preprint
arXiv:2112.09037 (2021)

16. Knowles, K., Flanagan, C.: Hybrid type checking. ACM Trans. Program.
Lang. Syst. 32(2), 6:1–6:34 (2010). https://doi.org/10.1145/1667048.1667051,
https://doi.org/10.1145/1667048.1667051

17. Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., Smaragdakis, Y.: Static
analysis of shape in tensorflow programs. In: 34th European Conference on Object-
Oriented Programming (ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik (2020)

222

http://hasktorch.org/
https://github.com/LaurentMazare/ocaml-torch
https://github.com/LaurentMazare/ocaml-torch
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1145/1667048.1667051

Gradual Tensor Shape Checking

18. Lehmann, N., Tanter, É.: Gradual refinement types. In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages. pp. 775–
788 (2017)

19. Meyer, B.: Eiffel: the language. Prentice-Hall, Inc. (1992)
20. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)
21. Paszke, A., Saeta, B.: Tensors fitting perfectly. arXiv preprint arXiv:2102.13254

(2021)
22. Prabhu, S., Fedyukovich, G., Madhukar, K., D’Souza, D.: Specification synthesis

with constrained horn clauses. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation. pp.
1203–1217 (2021)

23. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 167–180 (2015)

24. Roesch, J., Lyubomirsky, S., Kirisame, M., Weber, L., Pollock, J., Vega, L., Jiang,
Z., Chen, T., Moreau, T., Tatlock, Z.: Relay: A high-level compiler for deep learn-
ing. arXiv preprint arXiv:1904.08368 (2019)

25. Roesch, J., Lyubomirsky, S., Weber, L., Pollock, J., Kirisame, M., Chen, T., Tat-
lock, Z.: Relay: A new ir for machine learning frameworks. In: Proceedings of the
2nd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages. pp. 58–68 (2018)

26. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 159–169 (2008)

27. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual
typing. In: 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

28. Slepak, J., Manolios, P., Shivers, O.: Rank polymorphism viewed as a constraint
problem. In: Proceedings of the 5th ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming. pp. 34–41 (2018)

29. Slepak, J., Shivers, O., Manolios, P.: An array-oriented language with static rank
polymorphism. In: European Symposium on Programming Languages and Sys-
tems. pp. 27–46. Springer (2014)

30. Vazou, N., Tanter, É., Van Horn, D.: Gradual liquid type inference. Proceedings
of the ACM on Programming Languages 2(OOPSLA), 1–25 (2018)

31. Verma, S., Su, Z.: Shapeflow: Dynamic shape interpreter for tensorflow. arXiv
preprint arXiv:2011.13452 (2020)

32. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: European
Symposium on Programming. pp. 1–16. Springer (2009)

33. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Proceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation. pp. 249–257 (1998)

34. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 214–227 (1999)

223

M. Hattori et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

224

http://creativecommons.org/licenses/by/4.0/

A Type System for Effect Handlers
and Dynamic Labels

Paulo Emílio de Vilhena(�) and François Pottier

Inria, Paris, France
{paulo-emilio.de-vilhena,francois.pottier}@inria.fr

Abstract. We consider a simple yet expressive λ-calculus equipped with
references, effect handlers, and dynamic allocation of effect labels, and
whose operational semantics does not involve coercions or rely on type in-
formation. We equip this language with a type system that supports type
and effect polymorphism, allows reordering row entries and extending a
row with new entries, and supports (but is not restricted to) lexically
scoped handlers. This requires addressing the issue of potential aliasing
between effect names. Our original solution is to interpret a row not only
as a permission to perform certain effects but also as a disjointness re-
quirement bearing on effect names. The type system guarantees strong
type soundness: a well-typed program cannot crash or perform an un-
handled effect. We prove this fact by encoding the type system into a
novel Separation Logic for effect handlers, which we build on top of Iris.
Our results are formalized in Coq.

1 Introduction

Effect handlers [30,17] can be viewed as a generalization of exception handlers.
Like raising an exception, performing an effect interrupts the normal flow of
execution and transfers control to a handler. Unlike an exception handler, an
effect handler gains access to a delimited continuation, which represents the
fragment of the evaluation context comprised between the point where the effect
was performed and the point where the effect handler was installed. Invoking
this continuation resumes the computation whose execution was suspended by
performing an effect.

To allow programmers to exploit several independent effects simultaneously,
it is desirable for effects to have names. Each effect handler handles a specific
name, or a specific set of names. When an effect is performed, the name of this
effect determines which handler is selected. This idea immediately gives rise to
several key questions about names. What are they: strings, variables, addresses?
Where are they defined? What is their scope?

In the simplest approach [2,14,22], effect names are global. All possible names
are predefined and are in scope everywhere. This approach is simple but unsatis-
factory in terms of expressiveness and modularity: an accidental collision, where
two unrelated pieces of code happen to use the same effect name, can have
surprising unintended consequences. We illustrate this problem later on (§2).

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 225–252, 2023.
https://doi.org/10.1007/978-3-031-30044-8_9

https://doi.org/10.1007/978-3-031-30044-8_9
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_9&domain=pdf

P. E. de Vilhena and F. Pottier

To remedy this problem, several authors have proposed to change the nature
of names. Their work falls broadly in two categories: the “lexical approach” and
the “generative approach”.

The “lexical approach” introduces local effect names with lexical scope. One
can then think of an effect name essentially as a variable. Tunneled exceptions [42]
and lexically scoped handlers [41,6,7,27] fall in this approach. In some of these
proposals, the local effect name is never exposed to the user, but a “capability” to
perform the effect is made available via a local variable. A potential pain point of
this approach is that one must somehow ensure that a name or capability cannot
escape its scope: this must be guaranteed by some combination of syntactic
restrictions, runtime tests, and static typing rules.

The “generative approach” consists in allowing new effects to be generated
afresh at runtime. This requires introducing a distinction between effect labels,
which are allocated at runtime, and effect names, which are variables (with
lexical scope) that the programmer uses to refer to effect labels. This is similar
to the distinction between memory locations and variables that is traditionally
used in the operational semantics of mutable references [29]. This approach has
long been in use for exceptions in Standard ML [25] and OCaml [24], and is
used also for effects in OCaml 5. It is powerful: in particular, it can simulate
lexically scoped handlers.1 However, it introduces several pitfalls of its own.
First, it creates the possibility of nameless effects, that is, the possibility that
there is no static effect name for a certain effect label. Second, it introduces
the possibility of aliasing between effect names, that is, the possibility that two
distinct effect names denote the same effect label. Aliasing creates a challenge
for type system designers: if one cannot statically tell whether two effect names
denote distinct labels, then it seems unclear how one can propose a sound and
precise type discipline.

At least three ways of evading or addressing this challenge appear in the
literature.

First, several mainstream languages adopt the generative approach but avoid
the aliasing challenge by offering a weak type soundness guarantee: a well-typed
program cannot crash, but can halt due to an unhandled exception or effect.
This is the case in Standard ML, where exceptions are untracked, and in OCaml,
where exceptions and effects are untracked. It is also the case in Eff [3].

Second, a number of authors evade or resolve the aliasing challenge by altering
the syntax and the operational semantics of the language. Instead of letting
the correspondence between an effect and a handler be determined purely by
the notion of equality of effect labels or effect names, they introduce coercions

1 This can be a source of confusion. A language that has “lexically scoped handlers”
can, technically, be presented in either of these two styles. Biernacki et al. [6] present
one semantics in each style, the “open semantics” and the “generative semantics”, and
prove an equivalence between them. Zhang and Myers [41] adopt what we believe is
a combination of lexically scoped handlers and implicit arguments, which they refer
to as “tunneling”, in their surface language. This language is then translated down
to a core language whose operational semantics is in the generative style.

226

A Type System for Effect Handlers and Dynamic Labels

that enable explicit disambiguation and collision avoidance. Examples include
Koka [21] as well as several papers by Biernacki et al. [4,5].

Third, some authors evade the challenge by restricting the programming
language in one or more ways, such as restricting attention to lexically scoped
handlers [6,7] and forbidding first-class functions [7].

This sets the scene for this paper. We stick with the generative approach,
which offers a simple and expressive semantics. We do not introduce coercions
or otherwise alter the operational semantics. We do not restrict our attention to
lexically scoped handlers. We address the aliasing challenge.

We propose Tes, a type-and-effect system that statically rules out unhandled
effects. As in most previous work, the potential effects of an expression are de-
scribed by a row, a concept introduced to type-check records and variants [32,38]
and later applied to the analysis of exceptions [28] and effects [14,22]. Type and
effect polymorphism are supported. Furthermore, a simple and powerful sub-
sumption relation allows reordering the entries in a row and extending a row
with new entries, without any side conditions.

How is this possible? How is the aliasing challenge addressed? Our key idea
is this: whenever a question about aliasing arises, require absence of aliasing.
In other words, we interpret a row not just as a description of the names and
types of the effects that may be performed, but also as a requirement that these
names be pairwise distinct. For instance, if a typing judgment states that an
expression e has effect (s : ι ⇒ κ) · (s′ : ι′ ⇒ κ′), then this means not only that
e may perform the effects s and s′, but also that e requires the effect labels
denoted by s and s′ to be distinct. In the presence of effect polymorphism, if e
has effect (s : ι ⇒ κ) · θ, where θ is a row variable, then we take this to mean
that e requires the effect label denoted by s to lie outside the set of effect labels
denoted by θ. We adapt our typing and subtyping rules, where needed, so as to
be sound with respect to this new interpretation of rows.

The reader may find our approach somewhat reminiscent of the manner in
which the separating conjunction of Separation Logic [31] requires disjointness
between the footprints of two formulae. Although this requirement may at first
seem strong, experience has shown that Separation Logic is in fact concise and
expressive. The examples that we present in Section 4.4 seem to suggest that our
disjointness requirement is acceptable; we have not yet found examples where
it is problematic. That said, we do not yet have practical experience with an
implementation of this type system.

Tes offers a strong type soundness guarantee: a well-typed program cannot
crash and cannot halt due to an unhandled effect. To prove this fact, we follow
a semantic approach that has become popular in the last few years [1,20,19]. We
introduce TesLogic, a novel variant of Separation Logic, constructed on top of
Iris [16], which allows reasoning about programs in the presence of effects and
handlers, multi-shot continuations, and dynamic allocation of effect labels. We
prove that this logic is sound, and we provide an interpretation of Tes’s typing
rules in terms of TesLogic’s reasoning rules. All of our results are formalized
in Coq, and our Coq formalization is available [36].

227

In summary, the main contributions of this paper are the design of Tes,
a type system for TesLang, a λ-calculus equipped with general references, effect
handlers, and dynamic allocation of effect labels, and a proof of type soundness,
which is carried out via a semantic interpretation into a new program logic,
TesLogic.

In Section 2, we provide more background and examples about the semantics
of effect handling: we discuss name collisions, effect coercions, lexically scoped
handlers, and dynamic allocation of effect labels, and we justify why we wish
to study a calculus where effect handling and dynamic allocation of effect labels
are separate constructs. In Section 3, we present the syntax and operational
semantics of TesLang. In Section 4, we introduce Tes and show a number
of examples of constructions that Tes is able to type-check. In Section 5, we
present a brief overview of the proof of type soundness. Finally, we discuss the
related work and conclude.

2 A Panorama of Semantics for Effect Handlers

The various mechanisms that we have mentioned so far, namely lexically scoped
handlers, dynamic allocation of effect labels, and effect coercions, aim to resolve
the basic problem of accidental collisions between effect names. Let us illustrate
this problem with an example.

Anticipating on Section 3, we use a λ-calculus equipped with constructs to
perform and handle effects. The expression perform s v performs an effect with
effect name s and payload v. The expression handle e with s : h | r installs an
effect handler which monitors the execution of the subexpression e and which
handles the effects that carry the name s.2 If e returns a value v, then the return
branch r is invoked and receives the value v as an argument. If e performs an
effect with name s and with payload v, then the execution of e is suspended and
control is transferred to the effect branch h, which receives the payload v and a
continuation k representing the suspended computation.

Let us now introduce the function bad_counter. In a system of simple types,
which does not keep track of effects, bad_counter expects a function ff of type
(α → β) → γ and returns a function of type (α → β) → γ × int. The intended
behavior of bad_counter ff is to produce a new function ff ′ such that ff ′ behaves
like ff but at the same time counts how many times ff uses its argument. That
is, for an arbitrary function f , the application ff ′ f is expected to return a
pair (v, n), where v is the result of the computation ff f and n is the number
of invocations of f that have taken place during this computation. The function
bad_counter is defined as follows:

bad_counter ff = λf.

(
handle ff (λx. perform tick (); f x) with
tick : λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0

This code has a free effect name, tick . The function f is wrapped in a proxy
which performs an effect named tick . This effect is handled by bad_counter; the
2 For simplicity, this construct selects just one name, as opposed to a set of names.

P. E. de Vilhena and F. Pottier228

handler implements a memory cell (in state-passing style) to count the number
of ticks, that is, the number of calls made by ff to f .

Unfortunately, because this function uses a fixed effect name, tick , it can
exhibit an unintended behavior, caused by an accidental collision of effect names.
The following use of bad_counter exhibits this issue:

bad_counter (bad_counter (λf. f ())) (λ_. ())

Because the function λf. f () calls its argument once, one might expect the
above expression to return (((), 1), 1). Its actual result, however, is (((), 2), 0). In
the interest of space, we omit an explanation of its operational behavior. The
key reason why it behaves incorrectly is that the two instances of bad_counter
use the same effect name. Each application of bad_counter installs a handler for
the effect name tick . One handler is nested inside the other. As a result, the
innermost handler intercepts two tick effects and the outermost handler never
observes any effect, whereas what was naively intended was that each handler
observes and handles one effect. As a result of the name collision, one of the
effects is accidentally handled by the innermost handler.

To avoid or help avoid accidental collisions between names, the literature
describes several mechanisms: (1) effect coercions, (2) lexically scoped handlers,
which can be viewed as a restricted case of (3) dynamic allocation of effect labels.
Let us now say a little more about these mechanisms.

Effect coercions. An effect coercion modifies the manner in which an effect is
matched with one of the enclosing handlers. Perhaps the simplest example is that
of the lift coercion [4,5], but there are other forms of coercions in the literature,
such as swap. Normally, performing an effect named s transfers control to the
innermost enclosing handler that selects the name s. However, in a language
with effect coercions, if there is a lift coercion between the point where the
effect is performed and the innermost enclosing handler, then this handler is
skipped and control is transferred instead to the next enclosing handler for the
name s.3 Under such a semantics, a coercion can be employed to write a fixed
version of bad_counter:

lift_counter ff =

λf.

(
handle ff (λx. perform tick (); lift tick (f x)) with
tick : λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0

As desired, lift_counter (lift_counter (λf. f ())) (λ_. ()) returns the
value (((), 1), 1). One tick effect is intercepted by the innermost handler; the
other effect is intercepted by the outermost handler thanks to the lift coercion.
In Biernacki et al.’s λHEL [5], lift_counter is well-typed. The lift coercion is
mandatory; without it, the code would be ill-typed.

3 A lift coercion behaves like an end-of-scope marker for the name s. This concept
has been studied, independently of effects, by various authors [13,10].

A Type System for Effect Handlers and Dynamic Labels 229

Lexically scoped handlers and dynamic allocation of effect labels. Perhaps the
most straightforward way to describe the operational behavior of lexically scoped
handlers is by means of their encoding in terms of ordinary effect handlers and
dynamic generation of effect labels. So, let us first extend our calculus with
dynamic allocation of effect labels. We introduce the construct effect s in e,
which binds the effect name s to a freshly generated effect label, then executes e.
The effect name s is a local variable: its scope is the subexpression e. An effect
label is a runtime entity; later in the paper, we let ` range over effect labels. In
this setting, a “lexically scoped handler” is encoded (simulated) as follows:

lex-handle e with h | r =
effect s in handle e (λx. perform s x) with s : h | r

(1)

This code first generates a fresh effect label, denoted by the name s. Then, it
installs a handler for the name s. This handler monitors the execution of the
expression e to the anonymous function λx. perform s x, which can be viewed as
a “capability” to perform the effect s.

A noteworthy aspect of the syntactic sugar lex-handle e with h | r is that it
does not explicitly involve any effect name. This construct is known as a “lexically
scoped handler”.

A lexically scoped handler can be used to write a fixed version of bad_counter:

counter ff = λf.

(
lex-handle λtick . ff (λx. tick (); f x) with
λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0 (2)

When lex-handle is executed, a fresh effect label (which is never explicitly
mentioned in this code) is generated. The variable tick stands for the “capabil-
ity” to perform this fresh nameless effect. One can check that the expression
counter (counter (λf. f ())) (λ_. ()) reduces to the value (((), 1), 1), as desired,
because the two instances of counter generate two distinct dynamic labels and
install one handler for each of these labels. Thus, no collision takes place.

Arguments in favor of dynamic allocation of effect labels. In summary, dynamic
allocation of effect labels is a way of avoiding collisions between effect names. It
can express lexically scoped handlers, but does not impose the use of lexically
scoped handlers: it also allows working with global names when desired. Its
dynamic semantics is simple. It is in use in several established programming
languages, such as Standard ML and OCaml.

We believe that lexically scoped handlers are an elegant idiom, which is well
suited to many but not all situations. So, we would not be satisfied with a
restricted programming language where lexically scoped handlers are the sole
form of effect handling. Indeed, lexically scoped handlers impose a somewhat
unnatural “capability-passing” style, where the capability to perform an effect
must be passed as an argument to a function (or captured in its closure). This
style becomes especially cumbersome when multiple effects are involved. Implicit
arguments can help, as suggested by Zhang and Myers [41] and by Odersky et
al. [27]. However, elaboration of implicit arguments is usually a type-directed

P. E. de Vilhena and F. Pottier230

n ::= s | `
v ::= () | ` | rec f x. e | §K
e ::= v | x | e e | ref e | ! e | e := e
| effect s in e | perform n e | handle e with n : v | v | eff ` v K

K ::= • | e K | K v | ref K | !K | e := K | K := v
| perform ` K | handle K with ` : v | v

Fig. 1. Syntax of effect values, values, expressions, and evaluation contexts

effect s in e / σ → e[`/s] / σ[` 7→ ()]
perform ` v / σ → eff ` v • / σ

handle v with ` : h | r / σ → r v / σ
handle (eff ` v K) with ` : h | r / σ → h v §(handle K with ` : h | r) / σ

§K v / σ → K[v] / σ

(eff ` v1 K) v2 / σ → eff ` v1 (K v2) / σ
e1 (eff ` v2 K) / σ → eff ` v2 (e1 K) / σ

handle (eff ` v K) with `′ : h | r / σ → eff ` v (handle K with `′ : h | r) / σ

Fig. 2. The head reduction relation (selected rules)

translation. If at all possible, we wish to preserve the “type erasure” property:
that is, we prefer a language whose operational semantics is not influenced by
type information, because such a semantics is easier to explain to an end user.
Similarly, we wish to avoid effect coercions because we believe that they introduce
unwarranted complexity, making the language and its dynamic semantics more
difficult to explain to programmers.

3 Syntax and Semantics

We introduce TesLang, a calculus with mutable state, effect handlers, multiple
named effects, dynamic allocation of effect labels, and multi-shot continuations.
The operational semantics of this calculus allows a continuation to be invoked
several times. With respect to this semantics, the type system presented in this
paper (§4) is strongly sound: it rules out all runtime errors (§5). With respect
to a dynamic semantics where invoking a continuation twice causes a runtime
failure, such as the semantics of OCaml 5, our type system would be weakly
sound, because it does not rule out this kind of runtime failure. Ensuring that
every continuation is invoked at most once would require an affine type system
and is beyond the scope of this paper. We note that an affine program logic, such
as Hazel [35], can guarantee that no continuation is invoked twice, therefore can
guarantee strong soundness even in the presence of one-shot continuations.

Our small-step operational semantics is very straightforward. It is equipped
with dynamic allocation of effect labels and with a standard treatment of effects

A Type System for Effect Handlers and Dynamic Labels 231

and effect handlers [2]. When an effect with label ` is performed, a dynamic
lookup takes place: the nearest enclosing handler that is able to handle the
label ` is selected. This is expressed, in small-step style, via several reduction
rules. In contrast with some papers in the literature, where coercions influence
the process of selecting a handler [21,4,5], here, this process is based purely on
equality of effect labels.

3.1 Syntax

We let f and x range over an infinite set of variables. We let s range over an
infinite set of variables, and we refer to these variables as effect names. These two
namespaces are independent of one another: an effect name cannot be passed
as a parameter to a function. We let ` range over an infinite set of addresses.
These addresses model both memory locations and effect labels. Both kinds of
entities are dynamically allocated, so, for simplicity, we use a single namespace
of addresses and a single store. Whereas variables f, x and effect names s can
appear in source programs, memory locations and effect labels ` exist only at
runtime. The reduction rules of the small-step semantics cause them to appear.

The syntax of effect values, values, expressions, and evaluation contexts is
shown in Figure 1.

An effect value n is either an effect name s or an effect label `. This syntactic
category is closed under substitutions of effect labels for effect names. It is used
in the constructs perform n e and handle e with n : v | v. A programmer always
writes perform s e and handle e with s : v | v, where s is an effect name, but the
more general form is required in the operational semantics.

A value v is the unit value (), a memory location `, a possibly recursive
function rec f x. e, or a continuation §K.

The syntax of expressions e includes values, variables, function application,
operations for allocating, reading, and writing references, as well as constructs
for allocating a fresh effect label, performing an effect, and handling an effect.
Sequencing is encoded as function application: let x = e1 in e2 is sugar for
(λx. e2) e1. The construct effect s in e dynamically allocates a new effect
label and binds the effect name s to this label in the expression e. The con-
struct perform s v performs an effect whose name is s and whose payload is
the value v. The construct handle e with s : h | r monitors the execution of the
expression e. If an effect named s is performed, then the effect branch h takes
control. If a value is returned, then the return branch r takes control. An ef-
fect that carries a name other than s is propagated up through this construct.
Finally, the construct eff ` v K, an active effect, does not appear in source
program, but plays a role in the operational semantics, as we shall explain in
the next subsection.

Our Coq formalization [36] covers a richer calculus, whose features include
base types, pairs, sums, and lists.

The syntax of evaluation contexts K defines a right-to-left evaluation order.
This choice is arbitrary: it is inspired by Iris’s HeapLang language [33], but our
results would hold also with left-to-right evaluation.

P. E. de Vilhena and F. Pottier232

3.2 Semantics

The operational semantics of TesLang involves two relations, namely the head
reduction relation e / σ → e′ / σ′ and the reduction relation e / σ −→ e′ / σ′.
They act on configurations, where a configuration e / σ is a pair of an expres-
sion e and a store σ. The head reduction relation, a fragment of whose definition
appears in Figure 2, is the most interesting relation. The reduction relation,
whose definition is omitted, allows one step of head reduction to take place
under an evaluation context.

A store is a finite map of addresses to values. We use addresses ` to denote
both memory locations and effect labels. If ` denotes a memory location (that
is, the address of a reference), then σ(`) is the value stored at this address. If `
denotes an effect label, then the value σ(`) is irrelevant: by convention, we use
the unit value ().

The rules not shown in Figure 2, such as βv-reduction and the rules for
allocating, reading, and writing references, are standard.

The first rule in Figure 2 states that effect s in e allocates a fresh address `,
extends the store with a mapping of ` to the unit value, and substitutes the effect
label ` for the effect name s in the expression e. (The rule has the side condition
` /∈ dom σ.) According to the second reduction rule, perform ` v reduces to an
active effect eff ` v •. An active effect has the ability to capture the surrounding
evaluation context, until it reaches a handler that is able to handle it. In this
rule, it is initialized with an empty evaluation context •. The last three rules in
Figure 2 show how an active effect captures its evaluation context, one frame
at a time. (The last rule has the side condition ` 6= `′.) The third and fourth
rules in Figure 2 show how the return branch or the effect branch of a handle

construct are taken. In the latter rule, the handler h is applied to the payload
value v and to a continuation, which reifies the captured evaluation context K.
The continuation contains a copy of the effect handler: this is a deep-handler
semantics [15]. The fifth reduction rule in Figure 2 describes the application of
a continuation §K to a value v.

4 Type System

4.1 Syntax of types, rows, and signatures

We let α, β, and γ range over an infinite set of type variables. We let θ range
over an infinite set of row variables. We distinguish three syntactic categories,
namely types, rows, and signatures (Figure 3). The syntax of types is stable under
substitutions of types τ for type variables α. The syntax of rows is stable under
substitutions of rows ρ for row variables θ, for an ad hoc notion of substitution,
which reduces row concatenation expressions “ρ · ρ′” on the fly.4

4 The distinction between rows and signatures enforces the view that a row ρ is a list
where each component (known as a “signature”) is either a signature for an effect
name s or a row variable θ. Thus, we impose a simple form on rows. As an alternate

A Type System for Effect Handlers and Dynamic Labels 233

τ, κ, ι ::= unit | ⊥ | > | α | τ ref | τ ρ−→ τ | ∀α. τ | ∀θ. τ
ρ ::= 〈〉 | σ · ρ
σ ::= (s : τ ⇒ τ) | θ

Fig. 3. Syntax of types, rows, and signatures

Sub
Ξ | ∆ | Γ ` e : ρ : τ

ρ′ `b ρ ≤R ρ′ ρ′ ` τ ≤T τ ′

Ξ | ∆ | Γ ` e : ρ′ : τ ′

Var
Γ (x) = τ

Ξ | ∆ | Γ ` x : ρ : τ

RecFun
Ξ | ∆ | Γ, f : τ

ρ−→ κ, x : τ ` e : ρ : κ

Ξ | ∆ | Γ ` rec f x. e : 〈〉 : τ ρ−→ κ

App
Ξ | ∆ | Γ ` e : ρ : τ

ρ−→ κ
Ξ | ∆ | Γ ` e′ : ρ : τ

Ξ | ∆ | Γ ` e e′ : ρ : κ

TypeIntro
α /∈ Ξ,Γ, ρ

Ξ, α | ∆ | Γ ` v : ρ : τ

Ξ | ∆ | Γ ` v : ρ : ∀α. τ

TypeElim
Ξ | ∆ | Γ ` e : ρ : ∀α. τ
Ξ | ∆ | Γ ` e : ρ : τ [τ ′/α]

RowIntro
θ /∈ Ξ,Γ, ρ

Ξ, θ | ∆ | Γ ` v : ρ : τ

Ξ | ∆ | Γ ` v : ρ : ∀θ. τ

RowElim
Ξ | ∆ | Γ ` e : ρ : ∀θ. τ
Ξ | ∆ | Γ ` e : ρ : τ [ρ′/θ]

Effect
s /∈ Γ, ρ, τ

Ξ | ∆, s | Γ ` e : (s : abs) · ρ : τ

Ξ | ∆ | Γ ` effect s in e : ρ : τ

Perform
s ∈ ∆ (s : ι⇒ κ) ∈ ρ
Ξ | ∆ | Γ ` e : ρ : ι

Ξ | ∆ | Γ ` perform s e : ρ : κ

Handle
s ∈ ∆ Ξ | ∆ | Γ ` e : ρ : τ

ρ = (s : ι⇒ κ) · ρ0 ρ′ = (s : ι′ ⇒ κ′) · ρ0
Ξ | ∆ | Γ ` h : ρ′ : ι −→ (κ

ρ′−→ τ ′)
ρ′−→ τ ′ Ξ | ∆ | Γ ` r : ρ′ : τ

ρ′−→ τ ′

Ξ | ∆ | Γ ` handle e with s : h | r : ρ′ : τ ′

Fig. 4. The type system (selected rules)

P. E. de Vilhena and F. Pottier234

Our types are standard: they include the unit type unit, the bottom and top
types ⊥ and >, type variables α, reference types, effect-annotated arrow types,
value-polymorphic types, and effect-polymorphic types. Effect-annotated arrow
types and effect-polymorphic types are discussed below.

A row is a list of signatures σ. A signature, in turn, is either a singleton
signature s : ι′ ⇒ κ′ or a row variable θ. A singleton signature s : ι′ ⇒ κ′ means
that performing the effect s is permitted and is analogous to calling a function
of argument type ι′ and return type κ′. According to this reading, a singleton
signature of the form s :⊥ ⇒ > actually forbids the effect s, because a function
whose argument type is ⊥ can never be called. We write s : abs as a short-hand
for this signature, and we refer to it as an absence signature for the effect s.

In addition to an argument type τ and a return type κ, an arrow type τ ρ−→ κ

carries an “effect”, that is, a row ρ. Intuitively, a value of type τ ρ−→ κ is a function,
which, when applied to an argument of type τ , either returns a result of type κ or
performs an effect that is permitted by the row ρ. On top of this standard reading
of effect annotations, Tes introduces a novel aspect. The effect annotation ρ is
interpreted not only as a set of permitted effects, but also as a precondition: we
impose the semantic requirement that a function of type τ ρ−→ κ can be invoked
only if the multiset of effect labels denoted by the row ρ has no duplicate elements.
This is not a syntactic requirement, which would be either “true” or “false” and
would be decided just by inspecting the syntax of the row ρ. Indeed, in general,
a row contains occurrences of effect names s, which denote a-priori-unknown
effect labels, and of row variables θ, which denote a-priori-unknown multisets of
effect labels. What we wish to require is that, at runtime, after effect names and
row variables have been substituted away by some substitution η, a function of
type τ ρ−→ κ can be invoked only if no effect label appears twice in the closed
row η(ρ). Thus, the requirement that “ρ contains no duplicate labels” should be
thought of as a disjointness hypothesis bearing on the row ρ. Such a hypothesis
may or may not be satisfied, depending on how the effect names and row variables
that occur in ρ are instantiated.

In Tes, disjointness hypotheses are sometimes explicit and most of the time
implicit. In the subsumption judgments (Figure 5), a disjointness context D is
explicit: it can be interpreted as a conjunction of disjointness hypotheses. In
function types τ ρ−→ κ and in typing judgments Ξ | ∆ | Γ ` e : ρ : τ , an
implicit disjointness hypothesis bearing on the row ρ is built in, so there is no
need for an explicit disjointness context.

An effect-polymorphic type ∀θ. τ involves a universal quantification over a
row variable θ. For instance, the function iter, which iterates over a list, can be
defined as follows:

iter = rec iter xs f. match xs with (λx xs . f x; iter xs f | λ_. ()) (3)

path, one could use a single syntactic category ρ ::= 〈〉 | ρ · ρ | (s : τ ⇒ τ) | θ,
where a more general form of row concatenation is allowed. This would allow using
a standard notion of substitution, and would lead to different statements for some
of the row subsumption rules.

A Type System for Effect Handlers and Dynamic Labels 235

This function admits the following value- and effect-polymorphic type:

iter : ∀α. ∀θ. α list→ (α
θ−→ unit)

θ−→ unit

This type states that the call iter xs f is safe, regardless of what the elements
of the list xs might be, and regardless of what effects the user function f might
perform. This type also guarantees that iter does not perform any effect of
its own: instantiating θ with 〈〉 shows that this must be the case. Finally, one
might think that this type guarantees that iter cannot intercept the effects
performed by f . This may or may not be true, depending on which interpretation
of effect-polymorphic types is chosen. A stronger interpretation can guarantee
this property, but rules out certain useful programming language constructs, such
as “dynamic-wind”. Conversely, a weaker interpretation of effect-polymorphic
types allows type-checking “dynamic-wind”, but breaks this guarantee. At this
time, the interpretation that we have verified in Coq is the weaker one (§5). We
further discuss this point in Section 6.

4.2 The typing judgment

A typing judgment in Tes takes the form Ξ | ∆ | Γ ` e : ρ : τ . It involves
three environments: a row- and type-variable context Ξ, which binds row and
type variables θ and α; an effect-name context ∆, which binds effect names s; and
a type environment Γ , which maps variables x to types τ . This typing judgment
states that the expression e has effect ρ and type τ . Like an arrow type, this
judgment involves an implicit disjointness hypothesis bearing on the row ρ. That
is, this judgment guarantees that it is safe to execute e provided the row variables
and type variables in Ξ are instantiated in such a way that the multiset of effect
labels denoted by ρ has no duplicate elements.

A selection of the typing rules appears in Figure 4. The typing rules for
variables, functions, and applications are the same as in most type-and-effect
systems. The typing rules for references are also standard, and are omitted.
The rules TypeIntro, TypeElim, RowIntro, RowElim, which introduce and
eliminate value- and effect-polymorphic types, are also standard. In the presence
of mutable state, an unrestricted introduction rule for polymorphic types is un-
sound [34]. In this paper, we avoid this problem simply by building the value
restriction [39,12] into TypeIntro and RowIntro. Our Coq formalization [36]
proposes a more elaborate approach, where function types and typing judgments
are annotated with purity attributes. This approach yields a slightly more expres-
sive system, where, in particular, perform s x is considered a pure expression,
therefore can receive a polymorphic type.

Rule Effect, read from bottom to top, changes the current effect from ρ to
(s : abs) ·ρ. Intuitively, this means several things. First, while type-checking e, it
is safe to assume that the effect label denoted by s is disjoint from the multiset
of effect labels denoted by ρ. This assumption is implicitly expressed by the mere
appearance of the row (s : abs) · ρ in the premise. This assumption is justified
indeed, since the effect name s is bound to a fresh effect label when effect s in e

P. E. de Vilhena and F. Pottier236

is executed. Second, because of the absence signature s : abs, one must check
that the expression e does not perform any effect with the name s. This seems
a natural and unavoidable restriction: if such an effect was allowed, there would
be no static effect name by which it can be described. Third, because of the
side condition s /∈ ρ, one must check that the row that appears in the premise
contains at most one singleton signature for the effect name s. As a counter-
example, if the expression e has effect (s : abs) · (s : abs), then the typing rule
Effect cannot be applied. The subsumption rule Sub cannot help, because the
subsumption judgment (s : abs) · (s : abs) ≤ (s : abs) does not hold. Thus, the
rule Effect enforces a disjointness constraint.

Rule Perform states that, when one performs an effect whose signature
is s : ι ⇒ κ, one must pass a payload value of type ι, and, in return, one can
expect a value of type κ. This supports the intuitive idea that performing an
effect is analogous to calling an effect-free function of type ι→ κ.

Rule Handle type-checks handle e with s : h | r, where the expression e
is monitored by a handler for the effect s. This rule expresses the idea that
this construct establishes a boundary between the inside, where effects named s
may be performed in accord with the signature s : ι⇒ κ, and the outside, where
effects named s may be performed in accord with a different signature s : ι′ ⇒ κ′.
Because s : abs is sugar for s :⊥ ⇒ >, this rule also covers the common case
where the effect s is absent on the outside. Both the effect branch h and the
return branch r are part of the “outside world”, so their effects are described
by the outside row ρ′. This remark explains all occurrences of ρ′ in the last two
premises, except the one in the type of the continuation. The continuation, which

is the second parameter of the effect branch h, has type κ ρ′−→ τ ′. Because we
have adopted a “deep-handler” semantics (§3), a copy of the handler is reinstalled
inside the continuation. This explains why the effect ρ′ and the result type τ ′ of
the continuation are the same as those of the whole handle construct.

Rule Sub weakens a typing judgment by replacing an effect ρ and a type τ
with a weaker effect ρ′ and a weaker type τ ′. This rule relies on several sub-
sumption judgments, which we discuss next.

4.3 The subsumption judgments

The subsumption judgments on types, signatures, and rows appear in Figure 5.
An original aspect is that these judgments depend on a disjointness context D,
which appears on the left of the turnstile. A disjointness context is a (possibly
empty, unordered) list of rows, and is interpreted as a conjunction of disjointness
hypotheses: one hypothesis bears on each row. For instance, the disjointness
context (s1 : ι1 ⇒ κ1) · (s2 : ι2 ⇒ κ2), (s3 : ι3 ⇒ κ3) · θ, which is a list of
two rows, is equivalent to a conjunction of two disjointness hypotheses. The
first hypothesis is equivalent to s1 6= s2: it represents the assumption that the
effect names s1 and s2 denote two distinct effect labels. The second hypothesis
expresses the assumption that the effect label denoted by s3 is not a member of
the multiset of effect labels denoted by θ and that this multiset has no duplicate
elements.

A Type System for Effect Handlers and Dynamic Labels 237

Type subsumption

TypeRefl
D ` τ ≤T τ

Bot
D ` ⊥ ≤T τ

Top
D ` τ ≤T >

TypeTrans
D ` τ ≤T τ ′ D ` τ ′ ≤T τ ′′

D ` τ ≤T τ ′′

Arrow
D, ρ′ ` τ ′ ≤T τ D, ρ′ `b ρ ≤R ρ′ D, ρ′ ` κ ≤T κ′

D ` τ ρ−→ κ ≤T τ ′
ρ′−→ κ′

Signature subsumption

SigRefl
D ` σ ≤S σ

SigCons
D ` ι ≤T ι′ D ` κ′ ≤T κ
D ` (s : ι⇒ κ) ≤S (s : ι′ ⇒ κ′)

Row subsumption

Empty
D `b 〈〉 ≤R 〈〉

Extend
D `b ρ ≤R σ · ρ

Swap
D `b σ · σ′ · ρ ≤R σ′ · σ · ρ

RowCons
D ` σ ≤S σ′

D `false ρ ≤R ρ′

D `b σ · ρ ≤R σ′ · ρ′

Erase
D s # ρ

D `true (s : abs) · ρ ≤R ρ

RowTrans
D `b ρ ≤R ρ′
D `b ρ′ ≤R ρ′′

D `b ρ ≤R ρ′′

Effect/row disjointness

D s # 〈〉
D s # σ D s # ρ

D s # (σ · ρ)

ρ ∈ D {(s : · ⇒ ·), (s′ : · ⇒ ·)} ⊆m ρ

D s # (s′ : ι′ ⇒ κ′)

ρ ∈ D {(s : · ⇒ ·), θ} ⊆m ρ

D s # θ

Fig. 5. The subsumption judgments

P. E. de Vilhena and F. Pottier238

In the subsumption rules, the disjointness context is extended in the rule
Arrow and exploited in the rule Erase. Elsewhere, it is just transported.

Subsumption on types. The subsumption judgment on types D ` τ ≤T τ ′ means
that, under the hypothesis D, τ is a subtype of τ ′. The rules in Figure 5 state
that this relation is reflexive, transitive, and admits ⊥ and > as bottom and
top elements. On function types, as usual, subsumption is contravariant in the
domain and covariant in the effect and in the codomain. One original aspect
of Arrow is that this rule enriches the disjointness context: in the premises, the
disjointness context changes from D to D, ρ′. The intuitive reason why this is

sound is that if someone uses a function at type τ ′ ρ
′

−→ κ′ then (at the point where
the function is used) the disjointness hypothesis ρ′ must be satisfied, because this
hypothesis is part of our interpretation of function types. Thus, when proving

that a function of type τ ρ−→ κ can be used as a function of type τ ′ ρ
′

−→ κ′, it is
safe to rely on the disjointness hypothesis ρ′.

Subsumption on signatures. The subsumption judgment on signatures takes the
formD ` σ ≤S σ′. Signature subsumption is reflexive and transitive. (Reflexivity
is given by SigRefl; transitivity is derivable.) According to SigCons, unlike
the standard function type constructor · → ·, the signature constructor s : · ⇒ ·
is covariant in its domain and contravariant in its codomain. Indeed, when the
signature s : ι ⇒ κ appears in the effect of an expression e, this means that e
has permission to perform an effect named s at type ι ⇒ κ. In other words, e
can assume that performing an effect named s is analogous to calling a function
of type ι→ κ. This explains the reversed variance.

Subsumption on rows. The row subsumption judgment is D `b ρ ≤R ρ′. The
Boolean parameter b will be explained shortly. Row subsumption is reflexive
and transitive. (Reflexivity is derivable; transitivity is given by RowTrans.)
By combining Empty, Extend, RowCons, Swap, and RowTrans, one finds
that if two rows, viewed as multisets of effect signatures, are related by multi-
set inclusion, then they are related by subsumption. Thus, subsumption allows
permuting row entries in arbitrary ways and extending a row with new entries.

The last row subsumption rule, Erase, allows dropping an effect signature
of the form s : abs. This rule may seem plausible because, both in the presence
of the effect signature s : abs and its absence, the effect s is forbidden. However,
an unqualified axiom ` (s : abs) · ρ ≤R ρ would be unsound. This is due to our
interpretation of the row carried by a typing judgment (or by a function type)
as a disjointness hypothesis. By changing a typing judgment that carries the row
(s : abs) · ρ into one that carries the row ρ, one removes the hypothesis that the
effect label denoted by s is not a member of the multiset of effect labels denoted
by ρ. In order to safely remove a hypothesis, one must prove that it is satisfied.
This explains why Erase must carry the premise D s # ρ, whose intuitive
meaning is that “the hypotheses in D guarantee that the effect label denoted
by s is not among the effect labels denoted by ρ”.

A Type System for Effect Handlers and Dynamic Labels 239

The parameter b serves to forbid a use of Erase under RowCons. Erase
requires this flag to be true, but RowCons sets it to false in its premise. Without
this restriction, one could first combine Erase and DisjEmpty to prove `
(s : abs)·〈〉 ≤R 〈〉, then use RowCons and induction to obtain ` (s : abs)·ρ ≤R ρ
without any side condition, thus circumventing the side condition in Erase.

The four rules that define the effect/row disjointness judgment D s # ρ
are straightforward. The first two rules decompose the row ρ, which is a list of
effect signatures σ. The last two rules look up the disjointness context D so as
to find a disjointness hypothesis ρ that implies the goal. Whether ρ implies the
goal is decided based on a simple syntactic criterion: the relation · ⊆m · denotes
multiset inclusion; the row on the right-hand side is viewed as a multiset of effect
signatures.5

The desire to support Erase is the reason why the subsumption judgments
carry a disjointness context. In a hypothetical simplified system where these
judgments do not carry such a context, the premise of Erase would have to use
an empty disjointness context True. This premise would become True s # ρ,
which is false, so Erase would become inapplicable. Yet Erase is desirable,
because it is useful in practice. We use it to type-check our encoding of a lexically
scoped handler: this is illustrated in Section 4.4.

Why is ` (s : abs)·ρ ≤R ρ unsound? In the presence of this axiom, the judgment
` (s : abs) · (s : abs) ≤R (s : abs) would be derivable. This judgment can be
exploited to type-check the following unsafe program:

1 effect s in
2 handle

3 handle (perform s ()) with s : λx_. not x | λ_. true
4 with s : λ__. () | λ_. ()

This program is unsafe because the effect s is performed with a payload of
type unit, namely the unit value () on line 3, and this effect is handled by the
innermost handler, also on line 3, which expects the payload x to be a Boolean
value. When this program is executed, it becomes stuck by attempting to execute
the function application not ().

Yet, under the assumption ` (s : abs) · (s : abs) ≤R (s : abs), this program
is well-typed, with an empty row and with the type unit. Beginning at the
root and working towards the leaves, the type derivation begins with an appli-
cation of Effect, which changes the empty row into the row (s : abs). Then,
by using Sub and by exploiting the above assumption, the row (s : abs) can be
changed to (s : abs) · (s : abs). At this point, the harm is done. Indeed, under the
row (s : abs) · (s : abs), the subprogram at lines 2–4 is well-typed. The fact that
this row includes two signatures for the effect name s allows us to install two
handlers for this name. The handler on line 2 allows its handlee—the expression
5 Our Coq code [36] presently employs a different representation of disjointness con-
texts and a different definition of the effect/row disjointness judgment. We believe,
but have not yet checked, that the Coq and paper formulations are equivalent.

P. E. de Vilhena and F. Pottier240

on line 3—to perform effects according to the signature s : unit ⇒ unit. The
handler on line 3 allows its handlee to perform effects as per s : bool ⇒ unit.
The expression perform s () is type-checked with respect to the composite row
(s : unit ⇒ unit) · (s : bool ⇒ unit), which means that this expression must
respect either of these two signatures. It does indeed respect the first one, so it
is well-typed.

4.4 Examples

Filter Recall the higher-order iteration function iter (Eq. 3), whose type is

iter : ∀α. ∀θ. α list→ (α
θ−→ unit)

θ−→ unit.

Let us use iter in the definition of filter:

filter xs f = let g = (λx. if f x then perform yield x) in iter xs g

The expression filter xs f “yields” each element x of the list xs in turn, by
performing a yield effect if f x returns true. In Tes, filter is well-typed, and
its type is:

filter : ∀α. ∀θ. α list→ (α
θ−→ bool)

(yield :α⇒unit)·θ−−−−−−−−−−−→ unit

Checking that filter is well-typed is not difficult. Under the assumption that
f has type α θ−→ bool, the subexpression f x has effect θ. Under the assumption
that x has type α, the subexpression perform yield x has effect (yield :α ⇒
unit). Because our subsumption rules allow extending a row with a new entry and
exchanging row entries, the composite subexpression if f x then perform yield x
admits the composite effect (yield :α⇒ unit) · θ.

What does filter’s type mean? Ostensibly, the row (yield :α ⇒ unit) · θ
tells us that every effect performed by filter xs f must be either a yield effect
or an effect caused by f . Less obviously, these alternatives must be mutually
exclusive: indeed, the row (yield :α⇒ unit) · θ carries the implicit requirement
that the effect label denoted by yield is not among the effect labels denoted by
θ. In other words, filter’s type forbids f from performing yield effects.

The reader may wonder what prevents us from instantiating θ with a row
that includes the effect name yield , such as (yield :α ⇒ unit). The answer is,
nothing prevents such an instantiation. The result, however, would be a view of
filter as a function whose effect is (yield :α⇒ unit) · (yield :α⇒ unit). Such
an effect carries an unsatisfiable disjointness hypothesis, namely yield 6= yield .
As a result, once the type of filter has been instantiated in this way, filter
cannot be called anymore.6

6 Technically, an application of this instantiated filter function can still be well-typed,
but only if it appears in the body of a function which itself carries an unsatisfiable
disjointness hypothesis and therefore can never be called.

A Type System for Effect Handlers and Dynamic Labels 241

Lexically scoped handlers We now derive a typing rule for lexically scoped
handlers. Recall the encoding of a lexically scoped handler (Eq. 1):7

lex-handles e with h | r =
effect s in handle e (λx. perform s x) with s : h | r

For this construct, Tes admits the following derived typing rule:

LexHandle

Ξ | ∆ | Γ ` e : ρ : ∀θ. (ι θ−→ κ)
θ·ρ−−→ τ s /∈ Γ, ρ, ι, κ, τ, τ ′

Ξ | ∆ | Γ ` h : ρ : ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′ Ξ | ∆ | Γ ` r : ρ : τ
ρ−→ τ ′

Ξ | ∆ | Γ ` lex-handles e with h | r : ρ : τ ′

This rule is similar to the typing rule for lexically scoped handlers that appears
in Figure 3 of Biernacki et al.’s paper [6]. What is new and noteworthy is that we
obtain this rule as a special case of a more permissive type discipline, Tes, which
supports general effect handlers, as opposed to just lexically scoped handlers.

In LexHandle, whereas the effect on the outside is ρ, the effect on the inside
is θ · ρ. That is, inside the handlee, one more effect is permitted. The handlee
(the expression e) must be polymorphic in the row variable θ: that is, it must
treat this extra effect as an abstract effect.

The derivation of LexHandle involves an application of Effect and an
application of Handle. While proving that the premises of Handle hold, a key
step is to prove that the type of the effect branch h can be weakened as follows,
where ρ′ is a shorthand for (s : abs) · ρ:

Ξ | ∆ | Γ ` h : ρ : ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′

Ξ | ∆ | Γ ` h : ρ : ι −→ (κ
ρ′−→ τ ′)

ρ′−→ τ ′
ρ′ = (s : abs) · ρ

It is not at all obvious that this is possible! Two occurrences of ρmust be changed
into ρ′. One occurrence is positive and one is negative, and the rows ρ and ρ′

are not equal. Still, this implication can be established, via rule Sub. One must
check the following chain of subsumption relations:

ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′ ≤T ι −→ (κ
ρ−→ τ ′)

ρ′−→ τ ′ ≤T ι −→ (κ
ρ′−→ τ ′)

ρ′−→ τ ′

The first step requires `b ρ ≤R ρ′, which, by Extend, is true. The second step
requires ρ′ `true ρ′ ≤R ρ, which, by Erase, is true as well. The disjointness
hypothesis ρ′ plays a key role: indeed, True `true ρ′ ≤R ρ is false. In other
words, Erase is applicable because the disjointness hypothesis ρ′ is available,
and this hypothesis exists because Arrow causes it to appear as it descends
into the domains of two function types that are annotated with ρ′.
7 This encoding requires choosing an arbitrary name s that does not occur in e, h
or r. Furthermore, in the derivation of the typing rule LexHandle, s may need
to be renamed. On paper, we would normally not mention these details. However,
because our Coq code does not currently allow α-conversion of effect names, we
make s a parameter of the macro lex-handle and we include a freshness hypothesis
bearing on s in LexHandle.

P. E. de Vilhena and F. Pottier242

Counter Using the type rule LexHandle, it is straightforward to check that
counter (§2, Eq. 2) can be assigned the following type:

counter : ∀αβ γ. (∀θ. (α θ−→ β)
θ−→ γ) → ∀θ. (α θ−→ β)

θ−→ (γ * int)

This means that counter accepts an arbitrary effect-polymorphic second-order
function ff and produces a function ff ′ whose type is similar to ff ’s type. The
only difference between the types of ff and ff ′ is in their result types, to wit,
γ versus γ * int.

It is not hard to see that the expression counter (counter (λf. f ())) (λ_. ()),
where two instances of counter are nested, is also well-typed, and that its type
is (unit * int) * int.

Mix The following second-order function, mix, involves a potentially challenging
mixture of features:

mix f =
handle (perform s (); f ())
with s : λ_ k. k () | λ_. ()

The effect name s occurs free in this code, so this is not an instance of a lexically
scoped handler. (We assume that the name s is introduced by the surrounding
context.) The subexpression perform s (); f () visibly performs the effect s and
calls the unknown function f , which itself may perform various effects, perhaps
including the effect s. This subexpression is monitored by a handler for the
effect s at type unit⇒ unit.

In Tes, mix is well-typed. In fact, it admits several types. We show three:
the first two are equivalent, and the last one subsumes the first two.

The first idea that comes to mind may be: “since f has an unknown effect, let’s
represent this effect with a row variable θ”. Thus, one introduces a row variable θ,
and one assumes that f has type unit

θ−→ unit. Under this assumption, one finds
that perform s (); f () has effect (s : unit ⇒ unit) · θ. (The subsumption rule
Extend is used, twice, to merge the effect of perform s () and the effect of f ().)
Finally, using Handle, one finds that the body of the function mix has effect
(s : abs) · θ. In summary, mix admits the following type:

mix : ∀θ. (unit θ−→ unit)
(s : abs)·θ−−−−−−→ unit (4)

The effect (s : abs) · θ carried by the second arrow means that mix never throws
the effect s and transmits whatever effects f may throw, provided these effects do
not include s. Indeed, the row (s : abs) ·θ is interpreted not only as a description
of mix’s potential effects, but also as a disjointness constraint. Thus, the row
(s : abs) · θ in this type (4) cannot be replaced with just θ. Such a replacement
would amount to discarding the disjointness constraint, which would be unsound.

The reader may wonder what happens if θ is instantiated, in the above type,
with a row that mentions s, such as s : int⇒ int. Technically, this is permitted,
but yields a version of mix whose effect is (s : abs) · (s : int ⇒ int). Such a
function can never be called.

A Type System for Effect Handlers and Dynamic Labels 243

Thus, this type (4) effectively forbids f from performing effect s. One may
wonder whether this fact can be made explicitly visible in the type of mix. In fact,
it can. By the subsumption rules Arrow, Extend, and Erase, the type (4) is
equivalent to the following type:

mix : ∀θ. (unit (s : abs)·θ−−−−−−→ unit)
(s : abs)·θ−−−−−−→ unit (5)

Indeed, under the disjointness constraint carried by the outer arrow, the rows θ
and (s : abs) · θ are equivalent.

It is worth noting that this type allows the function f to use the effect s
internally, if desired, and at an arbitrary type, provided this effect is handled
internally by f and does not escape.

Finally, one may wonder whether it is necessary to forbid f from visibly
performing effect s. In fact, it is not: one can allow f to perform this effect and
let it escape, provided it is performed at type unit ⇒ unit, which is the type
expected by the handler inside mix. It is not difficult to check that mix admits
the following type:

mix : ∀θ. (unit (s : unit⇒unit)·θ−−−−−−−−−−→ unit)
(s : abs)·θ−−−−−−→ unit (6)

This type (6) is in fact more general than (that is, a subtype of) the previous
type (5). This follows directly from the fact that s : abs is a short-hand for
s :⊥ ⇒ > and from the subsumption rules SigCons, RowCons, and Arrow.

5 Metatheory

In this section, we present the general architecture of the proof of our type
soundness statement (Theorem 3), which states that, if a closed program e is
well-typed, then e is safe: that is, e may diverge or terminate with a value, but
cannot perform an unhandled effect. Full details are found in our Coq code [36].

Our first step is to interpret our typing judgments as semantic typing judg-
ments. A semantic typing judgment Ξ | ∆ | Γ � e : ρ : τ is a logical assertion
stating that substituting certain values for the free variables of e yields a closed
program that meets a certain specification. To fill in the details, one must define
precisely which values may be substituted and what specification is met.

To do so, we introduce TesLogic, an extension of Iris [16], an expressive
Separation Logic. Iris’s base logic has no built-in support for effects and han-
dlers, but allows constructing a program logic with such support. de Vilhena and
Pottier define such a logic, Hazel [35]. Because Hazel is tailored for unnamed ef-
fects and one-shot continuations, we cannot re-use it. Nevertheless, in the design
of TesLogic, we do rely on one of Hazel’s key features, protocols.

A protocol Ψ describes a service on which the handlee can rely and which
the handler must implement. Mathematically, it is a binary relation between a
value v, the payload of the effect, and a predicate Φ, the precondition of the con-
tinuation for this effect. A typical example of a protocol is the pre/post protocol

P. E. de Vilhena and F. Pottier244

Weakest precondition

wp e 〈E〉{Φ} , ValidDistinct E.1 −−∗ ewp e 〈E〉{Φ}

Basic weakest precondition

ewp v 〈E〉{Φ} , Φ(v)

ewp (eff ` v K) 〈E〉{Φ} , ∃Ψ.(`, Ψ) ∈ E ∗ (↑�Ψ) v (λw. . ewp K[w] 〈E〉{Φ})
ewp e 〈E〉{Φ} , ∀σ. S(σ) ≡∗> ∅

∃ e′, σ′. e / σ −→ e′ / σ′ ∗
∀ e′, σ′. e / σ −→ e′ / σ′ ≡∗∅ ∅ . |V∅ >

S(σ′) ∗ ewp e′ 〈E〉{Φ}

Persistent upward closure

(↑�Ψ) v Φ , ∃Φ′. Ψ v Φ′ ∗ � ∀w.Φ′(w) −−∗ Φ(w)

Validity-and-distinctness property

ValidDistinct L , NoDup L ∧
∧
`∈L

` 7→� ()

Fig. 6. Definition of the weakest precondition

{Φ1}.{Φ2}, defined as λ v Φ. Φ1(v) ∗ � ∀w. Φ2(w) −−∗ Φ(w). We use this protocol
(in the interpretation of signatures, Figure 7) to attach a precondition Φ1 and a
postcondition Φ2 to an effect: performing an effect with payload v is permitted
if Φ1(v) holds, and one can assume that it returns a value w such that Φ2(w)
holds. The symbol � is Iris’s persistence modality. Here, it reflects the fact that
continuations are multi-shot: a single perform expression can “return” several
times with several different values of w, so we must be prepared to exploit Φ2

several times.

To reason about labeled effects, we introduce the notion of a protocol list E,
a list of pairs of a label and a protocol. Therefore, whereas Hazel’s weakest
precondition modality is parameterized with a single protocol, ours is param-
eterized with a protocol list. In our setting, the assertion wp e 〈E〉{Φ} means
that (1) it is safe to execute e; (2) if e produces a value v then Φ(v) holds; and
(3) if e performs an effect labeled ` then it does so according to a protocol Ψ such
that (`, Ψ) ∈ E holds. Its definition appears in Figure 6. It is broadly similar
to Hazel’s wp modality, save for three aspects: the use of a protocol list E; the use
of a persistent upward closure ; and the appearance of a validity-and-distinctness
property as an assumption of the weakest precondition assertion. The persistent
upward closure again has to do with the fact that continuations are multi-shot.
The validity-and-distinctness property expresses two properties of the labels in
the list E; first, these labels are pairwise distinct; second, these labels have been
allocated. The latter fact is expressed by a persistent points-to assertion [37].

A Type System for Effect Handlers and Dynamic Labels 245

Interpretation of types (selected cases)

VJτ ρ−→ κKδη(v) , � ∀w. VJτKδη(w) −−∗ wp (v w) 〈RJρKδη〉{VJκKδη}
VJ∀θ. τKδη(v) , ∀E. VJτKδη,θ 7→E(v)

Interpretation of rows and signatures

RJρKδη ,
⋃
σ∈ρ
SJσKδη

SJ(s : ι⇒ κ)Kδη , (δ(s), {VJιKδη}.{VJκKδη})
SJθKδη , η(θ)

Interpretation of typing judgments

Ξ | ∆ | Γ � e : ρ : τ , ∀ η, δ, vs. GJΓ Kδη(vs) −−∗ wp (e[vs][δ]) 〈RJρKδη〉{VJτKδη}
GJΓ Kδη(vs) , ∀ {x 7→ τ} ⊆ Γ. VJτKδη(vs(x))

Fig. 7. Interpretation of types, rows, signatures, and typing judgments

This notion of wp enjoys a set of reasoning rules that we omit. The following
theorem states that it is sound to reason about programs by means of these
rules:

Theorem 1 (Soundness of TesLogic). If wp e 〈[]〉{Φ} holds, then e is safe.

With TesLogic at hand, let us come back to the definition of the semantic
judgment Ξ | ∆ | Γ � e : ρ : τ .

As usual, a type τ is interpreted as a semantic type, that is, a persistent
predicate VJτKδη on values. More unusually, a row ρ is interpreted as a protocol
list RJρKδη, defined as

⋃
σ∈ρ SJσKδη, the list concatenation of the interpretations

of the elements of ρ. The environment δ maps effect names to effect labels; η
maps type variables to semantic types and row variables to protocol lists.

This said, our interpretation of types (Figure 7) is mostly standard [19]. The
interpretation of a function type, VJτ ρ−→ κKδη, is the set of values v such that
the application of v to a value w in VJτKδη satisfies a wp assertion with protocol
list RJρKδη and postcondition VJκKδη. What is crucial is that the validity-and-
distinctness property that we have built into the definition of wp formalizes
the requirement that effect names be pairwise distinct. The interpretation of an
effect-polymorphic type involves a quantification ∀E over protocol lists.

Theorem 2 (Fundamental Theorem). The syntactic judgment entails the
semantic judgment: Ξ | ∆ | Γ ` e : ρ : τ =⇒ Ξ | ∆ | Γ � e : ρ : τ .

We establish this theorem by induction on the syntactic typing judgment. For
every syntactic typing rule, we prove that the interpretation of the conclusion
follows from the interpretations of the premises.

The previous two theorems lead directly to the desired type soundness result:

P. E. de Vilhena and F. Pottier246

Theorem 3 (Soundness of Tes). If ∅ | ∅ | ∅ ` e : 〈〉 : unit, then e is safe.

6 Related Work

Hillerström and Lindley [14] study the core calculus of Links [9], a functional
programming language for web applications, which they extend with support
for effect handlers. Taking advantage of Links’s row-based approach to type-
checking records, they annotate function types with rows of effects. Their rows
use Rémy’s kind discipline [32] to ensure that an effect name can never appear
twice in a row.

Leijen [22] formalizes a subset of the Koka language [23]. He presents a cal-
culus with support for handlers and globally defined effects, a type system with
value and effect polymorphism, and a compilation strategy for explicitly-typed
programs. This strategy relies on a selective CPS transformation [26], which
he extends with support for effect polymorphism. A row in Leijen’s system is
univariate: it contains at most one row variable. Tes, in contrast, allows a row
to contain several row variables. This ability is exploited, for example, in the
typing rule LexHandle. Indeed, the premise contains the effect-polymorphic
type ∀θ. (α θ−→ β)

θ·ρ−−→ τ, where θ abstracts away the fresh effect label that is
allocated by lex-handle.

A notable omission from Leijen’s formalization is Koka’s inject [21], which
is akin to a lift coercion. Biernacki et al. [4] are the first authors to provide
a formal treatment of such a construct. They define its operational semantics
and they propose a type system with effect polymorphism and univariate rows.
They present the first binary logical relations for effect handlers, and they use
these relations to prove that their system is sound. In a later paper [5], the same
authors introduce λHEL, a calculus that supports both dynamic allocation of
effect labels and effect coercions. In addition to the lift coercion, they consider
(1) the swap coercion, which exchanges two effects in a row; (2) the cons coercion,
which rearranges effects deep in a row; and (3) composition of coercions. These
new coercions do not add expressiveness: they can be expressed in terms of
lift. Still, they help programmers control the dynamic search for a handler.
Biernacki et al. propose a type system with support for universal and existential
types. Although counter, discussed in Sections 2 and 4, is expressible in λHEL,
Biernacki et al.’s type system does not accept this program. (This has been
confirmed by the authors in a personal communication.) The technical reason
why counter is ill-typed is that the subsumption rules are not sufficiently flexible:
an abstract row θ cannot be weakened to a larger row. It is not trivial how to
overcome this issue, because the interpretation of a signature in Biernacki et al.’s
system depends on the signature’s position in the row. Tes, in contrast, allows
extension, thanks to the rule Extend.

Zhang and Myers [41] present “a new semantics based on tunneling”, which
they claim avoids “accidental handling” by construction. As far as we understand,
however, they do not propose a semantics in the usual sense, that is, a reduction
semantics. Instead, their “semantics” seems to be a translation of the surface

A Type System for Effect Handlers and Dynamic Labels 247

language into a core calculus, λ⇓⇑. This translation is not formally defined: it is
sketched by way of examples. Furthermore, as noted by Biernacki et al. [6], there
is a discrepancy between the paper presentation of λ⇓⇑ and its Coq formalization.
The paper does not mention dynamic generation of effect labels, but the calculus
that is formalized in Coq supports this feature via a construct that generates a
fresh effect label and installs a handler for this label; in other words, a lexically
scoped handler.

For this calculus with lexically scoped handlers, Zhang and Myers propose a
type system with support for effect polymorphism. They prove its soundness us-
ing binary logical relations. Then, they exploit these logical relations to establish
interesting typed contextual equivalence laws. One law [41, Example 1] shows
that an effect-polymorphic function cannot intercept the effects represented by
an abstract row variable. This law seems to express the intuitive idea of “absence
of accidental handling”, but we remark that this notion is never formally defined.

Zhang and Myers [41] and other authors [8] suggest that “absence of acciden-
tal handling”, sometimes also referred to as “effect safety”, has something to do
with parametricity. Unfortunately, “parametricity” itself is a somewhat loosely-
defined concept. As far as we understand, the word “parametricity” refers to the
fact that a syntactic universal type is interpreted via a meta-level universal quan-
tification over a certain universe of semantic types. However, the strength of this
meta-level quantification depends on which universe of semantic types is chosen.
A smaller universe yields a system with weaker universal types, which may enjoy
fewer equivalence laws, but may also admit more well-typed programs.

To illustrate this point, let us ask whether our calculus, TesLang, can be ex-
tended with a “dynamic-wind” construct [11]. This construct, dynamic-wind p e q,
monitors the execution of e and invokes the thunk p whenever control enters e
(at the beginning of e’s execution and every time e is resumed) and invokes the
thunk q whenever control leaves e (at the end of e’s execution and every time e
performs an effect). To type-check this construct, one might extend Tes with
the following typing rule:

DynamicWind
Ξ | ∆ | Γ ` e : ρ : τ

Ξ | ∆ | Γ ` p : ρ : unit −→ unit Ξ | ∆ | Γ ` q : ρ : unit −→ unit

Ξ | ∆ | Γ ` dynamic-wind p e q : ρ : τ

We have proved that this rule is sound with respect to the interpretation of
types presented in Section 5. So, our semantic model supports dynamic-wind.
Furthermore, our semantic model arguably enjoys “parametricity”, since a univer-
sal type is interpreted via a meta-level universal quantification. Yet, introducing
dynamic-wind breaks Zhang and Myers’s desired equivalence law [41, Example 1],
because it allows observing arbitrary effects, without knowledge of their name
and type. Therefore, “parametricity” does not guarantee “absence of accidental
handling”.

The lesson that we draw from this remark is that a programming language
designer is faced with a tension between making the language more powerful

P. E. de Vilhena and F. Pottier248

by introducing constructs such as dynamic-wind, allowing new programs to be
written, and making the language less powerful by forbidding such constructs,
thereby validating new equivalence laws. Our (unary) semantic model (§5) errs
on the side of admitting more constructs and fewer equivalence laws. In future
work, it would be interesting to propose a (binary) semantic model that ad-
mits fewer constructs and validates more laws, so as to prove that Tes without
dynamic-wind validates Zhang and Myers’s law [41, Example 1].

Despite their previous studies of coercions [4,5], Biernacki et al. [6] argue
against coercions, which they deem impractical for real-world programming, and
propose a type system for a language that supports lexically scoped handlers
only. They present two semantics for this language: (1) an open semantics, where
effect names are not substituted with labels, and where evaluation is defined
among open terms in a capture-avoiding way; and (2) a generative semantics,
where effect names are substituted at runtime with effect labels, as in TesLang.
By means of binary logical relations, they prove that the type system is sound
and that the two semantics are equivalent.

Kammar and Pretnar [18] show that a calculus with effects and handlers but
without references and without dynamic allocation of effect labels admits a type
system with unrestricted polymorphism. Thus, generalization applies even to an
expression that performs and handles effects. Kammar and Pretnar establish the
soundness of their system via a syntactic approach [40]. The version of Tes that
we have formalized in Coq [36] distinguishes pure and impure expressions and
allows generalizing the type of a pure expression. The pure expressions include
expressions that perform or handle effects. Allocating a fresh effect label is still
considered impure. Although such an allocation seems intuitively harmless, our
current semantic model interprets allocation as an Iris “update”, and Iris does
not allow exchanging a universal quantifier with an update modality, so we are
unable to justify that allocation is pure. We conjecture that this problem would
perhaps not appear in a syntactic approach.

7 Conclusion

In this paper, we have argued in favor of a simple semantics for effect handlers,
where the dynamic search for a handler is based purely on equality of effect
labels, and where fresh labels can be generated at runtime. This language can
express, but is not restricted to, lexically scoped handlers. We have proposed a
type system equipped with type and effect polymorphism and with a powerful
subsumption relation. A distinguishing feature is the idea that a row expresses
a disjointness requirement on effect labels. We have established type soundness
via a semantic approach.

In future work, it would be desirable to strengthen our semantic model and
turn it into a binary model, so as to establish contextual equivalence laws such
as Zhang and Myers’s [41]. We also wish to investigate support for modules and
inference of principal types, with the ultimate aim of proposing a strong type
system for OCaml 5.

A Type System for Effect Handlers and Dynamic Labels 249

References

1. Ahmed, A.J., Fluet, M., Morrisett, G.: A step-indexed model of substructural state.
In: International Conference on Functional Programming (ICFP). pp. 78–91 (Sep
2005)

2. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers. Logical
Methods in Computer Science 10(4) (2014)

3. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming 84(1), 108–123 (2015)

4. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Handle with care: relational
interpretation of algebraic effects and handlers. Proceedings of the ACM on Pro-
gramming Languages 2(POPL), 8:1–8:30 (2018)

5. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Abstracting algebraic effects.
Proceedings of the ACM on Programming Languages 3(POPL), 6:1–6:28 (2019)

6. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Binders by day, labels by
night: effect instances via lexically scoped handlers. Proceedings of the ACM on
Programming Languages 4(POPL), 48:1–48:29 (2020)

7. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effects as capabilities: effect han-
dlers and lightweight effect polymorphism. Proceedings of the ACM on Program-
ming Languages 4(OOPSLA), 126:1–126:30 (2020)

8. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effekt: Capability-passing style
for type- and effect-safe, extensible effect handlers in Scala. Journal of Functional
Programming 30, e8 (2020)

9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: Formal Methods for Components and Objects. Lecture Notes in Computer
Science, vol. 4709, pp. 266–296. Springer (Nov 2006)

10. Dolan, S., White, L.: Syntax with shifted names (Aug 2019), presented at the
Workshop on Type-driven Development (TyDe)

11. Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding delimited and composable
control to a production programming environment. In: International Conference
on Functional Programming (ICFP). pp. 165–176 (Oct 2007)

12. Garrigue, J.: Relaxing the value restriction. In: Functional and Logic Programming.
Lecture Notes in Computer Science, vol. 2998, pp. 196–213. Springer (Apr 2004)

13. Hendriks, D., van Oostrom, V.: adbmal. In: International Conference on Auto-
mated Deduction (CADE). Lecture Notes in Computer Science, vol. 2741, pp.
136–150. Springer (Aug 2003)

14. Hillerström, D., Lindley, S.: Liberating effects with rows and handlers. In: Inter-
national Workshop on Type-Driven Development (TyDe@ICFP). pp. 15–27 (Sep
2016)

15. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Asian Symposium on Pro-
gramming Languages and Systems (APLAS). Lecture Notes in Computer Science,
vol. 11275, pp. 415–435. Springer (Dec 2018)

16. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming 28, e20 (2018)

17. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: International Conference
on Functional Programming (ICFP). pp. 145–158 (Sep 2013)

18. Kammar, O., Pretnar, M.: No value restriction is needed for algebraic effects and
handlers. Journal of Functional Programming 27, e7 (2017)

P. E. de Vilhena and F. Pottier250

http://www.cs.rit.edu/~mtf/research/substruct-state/ICFP05/icfp05.pdf
https://arxiv.org/pdf/1306.6316.pdf
http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3158096
http://www.ii.uni.wroc.pl/~mpirog/papers/biernacki-al-popl19.pdf
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
http://ps.informatik.uni-tuebingen.de/publications/brachthaeuser19effekt-revision.pdf
http://ps.informatik.uni-tuebingen.de/publications/brachthaeuser19effekt-revision.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/links-fmco06.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/links-fmco06.pdf
http://tydeworkshop.org/2019-abstracts/paper16.pdf
https://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf
https://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
https://doi.org/10.1007/978-3-540-45085-6_11
http://homepages.inf.ed.ac.uk/slindley/papers/links-effect.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/shallow-extended.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/handlers.pdf
http://denotational.co.uk/publications/kammar-pretnar-no-value-restriction-is-neede-for-algebraic-effects-and-handlers.pdf
http://denotational.co.uk/publications/kammar-pretnar-no-value-restriction-is-neede-for-algebraic-effects-and-handlers.pdf

19. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order con-
current separation logic. In: Principles of Programming Languages (POPL) (Jan
2017)

20. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of type-and-
effects in higher-order concurrent separation logic. In: Principles of Programming
Languages (POPL). pp. 218–231 (Jan 2017)

21. Leijen, D.: Koka: Programming with row polymorphic effect types. In: Workshop
on Mathematically Structured Functional Programming (MSFP). vol. 153, pp.
100–126 (Apr 2014)

22. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Principles
of Programming Languages (POPL). pp. 486–499 (Jan 2017)

23. Leijen, D.: Koka. https://www.microsoft.com/en-us/research/project/koka/

(2020)
24. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml

system: documentation and user’s manual (Sep 2019)
25. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML

– Revised. MIT Press (May 1997)
26. Nielsen, L.R.: A selective CPS transformation. Electronic Notes in Theoretical

Computer Science 45, 311–331 (Nov 2001)
27. Odersky, M., Boruch-Gruszecki, A., Brachthäuser, J.I., Lee, E., Lhoták, O.: Safer

exceptions for Scala. In: Symposium on Scala. pp. 1–11 (Oct 2021)
28. Pessaux, F., Leroy, X.: Type-based analysis of uncaught exceptions. ACM Trans-

actions on Programming Languages and Systems 22(2), 340–377 (2000)
29. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
30. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: European Symposium

on Programming (ESOP). Lecture Notes in Computer Science, vol. 5502, pp. 80–
94. Springer (Mar 2009)

31. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science (LICS). pp. 55–74 (2002)

32. Rémy, D.: Type checking records and variants in a natural extension of ML. In:
Principles of Programming Languages (POPL). pp. 77–88 (1989)

33. The Iris Team: HeapLang. https://gitlab.mpi-sws.org/iris/iris/-/blob/master/
iris_heap_lang/lang.v (2022)

34. Tofte, M.: Type inference for polymorphic references. Information and Computa-
tion 89(1), 1–34 (1990)

35. de Vilhena, P.E., Pottier, F.: A separation logic for effect handlers. Proceedings of
the ACM on Programming Languages 5(POPL) (Jan 2021)

36. de Vilhena, P.E., Pottier, F.: A type system for effect handlers and dynamic labels:
Coq formalization. https://gitlab.inria.fr/pdevilhe/tes (2022)

37. Vindum, S.F., Birkedal, L.: Contextual refinement of the Michael-Scott queue. In:
Certified Programs and Proofs (CPP). pp. 76–90 (Jan 2021)

38. Wand, M.: Type inference for record concatenation and multiple inheritance. In-
formation and Computation 93(1), 1–15 (Jul 1991)

39. Wright, A.K.: Simple imperative polymorphism. Lisp and Symbolic Computation
8(4), 343–356 (Dec 1995)

40. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (Nov 1994)

41. Zhang, Y., Myers, A.C.: Abstraction-safe effect handlers via tunneling. Proceedings
of the ACM on Programming Languages 3(POPL), 5:1–5:29 (2019)

A Type System for Effect Handlers and Dynamic Labels 251

http://cs.au.dk/~birke/papers/ipm-conf.pdf
http://cs.au.dk/~birke/papers/ipm-conf.pdf
https://iris-project.org/pdfs/2017-popl-effects-final.pdf
https://iris-project.org/pdfs/2017-popl-effects-final.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/paper-20.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/algeff-tr-2016-1.pdf
https://www.microsoft.com/en-us/research/project/koka/
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
https://www.sciencedirect.com/science/article/pii/S1571066104809691
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3486610.3486893
https://xavierleroy.org/publi/exceptions-toplas.pdf
http://www.cis.upenn.edu/~bcpierce/tapl/
http://homepages.inf.ed.ac.uk/gdp/publications/Effect_Handlers.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://doi.acm.org/10.1145/75277.75284
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris_heap_lang/lang.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris_heap_lang/lang.v
https://doi.org/10.1016/0890-5401(90)90018-D
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
https://gitlab.inria.fr/pdevilhe/tes
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/ic-91.dvi
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
http://www.cs.cornell.edu/andru/papers/tunnel-eff/tunnel-eff.pdf

42. Zhang, Y., Salvaneschi, G., Beightol, Q., Liskov, B., Myers, A.C.: Accepting blame
for safe tunneled exceptions. In: Programming Language Design and Implementa-
tion (PLDI). pp. 281–295 (Jun 2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

P. E. de Vilhena and F. Pottier252

http://www.cs.cornell.edu/andru/papers/exceptions/exceptions-pldi16.pdf
http://www.cs.cornell.edu/andru/papers/exceptions/exceptions-pldi16.pdf
http://creativecommons.org/licenses/by/4.0/

Interpreting Knowledge-based Programs

Alexander Knapp1(�) , Heribert Mühlberger1, and Bernhard Reus2

1 Universität Augsburg, Augsburg, Germany
{knapp, muehlber}@informatik.uni-augsburg.de

2 University of Sussex, Brighton, UK
bernhard@sussex.ac.uk

Abstract Knowledge-based programs specify multi-agent protocols with epi-
stemic guards that abstract from how agents learn and record facts or information
about other agents and the environment mutual dependency between the evaluation
of epistemic guards over the reachable states and the derivation of the reachable
states depending on the evaluation of epistemic guards synchronous programming
languages to the interpretation problem of knowledge-based programs and demon-
strate that the resulting constructive interpretation is monotone and has a least fixed
point. We relate our approach with existing interpretation schemes for both syn-
chronous and asynchronous programs interpretation and illustrate the procedure
by several examples and an application to the Java memory model.

1 Introduction

Knowledge-based programs [14] describe multi-agent systems based on explicit know-
ledge tests on what an agent knows or does not know about itself, other agents, and
the environment: Extending standard programs, an agent may look beyond what it can
directly observe by reasoning about the possible states of the other agents and the envir-
onment in all possible program executions. Such non-local, epistemic conditions abstract
from how an agent may learn and record particular environmental facts or information
about other agents. Thus knowledge-based programs rather are specifications of (multi-
agent) protocols that may be implemented by standard, directly executable programs. For
being implementable in the first place, however, it has to be ensured that the knowledge
guards can be resolved consistently given all possible program executions.

Consider for example a bit transmission [14, Ex. 4.1.1, Ex. 7.1.1], where a sender S
has to transmit a bit sbit over a lossy channel to a receiver R who has to acknowledge the
reception, again over a lossy channel. This can bemodelled by a knowledge-based program
over the state variables sbit ∈ {0, 1}, rval ∈ {⊥, 0, 1}, and ack ∈ {0, 1} as follows: S
can only directly observe (read) sbit and ack, and R only rval (but both may write all
variables); (KR sbit = 0) ∨ (KR sbit = 1) expresses that R knows sbit’s value and is
abbreviated byKR sbit . The behaviour description consists of a looping guarded command
with two branches that is started with rval = ⊥ and ack = 0, but sbit left undetermined:

do ¬KS KR sbit _ (rval← sbit or skip) — S
8 KR sbit ∧ ¬KR KS KR sbit _ (ack← 1 or skip) od — R

The guarded branches are separated by a 8, or means a non-deterministic choice, and
skip doing nothing: S sends the bit as long as it does not know that R received it, and R

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 253–280, 2023.
https://doi.org/10.1007/978-3-031-30044-8_10

http://orcid.org/0000-0002-4050-3249
http://orcid.org/0000-0002-5807-856X
mailto:bernhard@sussex.ac.uk
https://doi.org/10.1007/978-3-031-30044-8_10
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_10&domain=pdf

A. Knapp et al.

keeps acknowledging once it has learnt the bit and does not know that S knows this fact.
The epistemic formulæ Ka ϕ in the program are to be interpreted as in classical Kripke
semantics: ϕ holds in all states (or worlds) that agent a currently deems possible. Which
states these are is regulated on the one hand by what a can observe: any state that is
indistinguishable from the current one by the available observations is possible for the
agent. In the example only S can observe sbit, though, due to the protocol, it should be
possible that eventually R knows its value. On the other hand, the possible states depend
on which runs of the knowledge-based program may actually happen, i.e., which states
are reachable taking epistemically guarded transitions: If only the actions of the program
are taken, it is impossible to reach a state satisfying both rval 6= ⊥ and rval 6= sbit,
which, however, is present in the global state space; but it is decisive that it is not reachable
in any execution in order to have some execution where KR sbit can become true.

The interpretation of knowledge-based programs hinges precisely on this mutual
dependency between the evaluation of epistemic guards over the reachable states and the
derivation of the reachable states depending on the evaluation of the epistemic guards.
This implicit definition of the epistemic state of the agents by the observables and the
reachable states of the commonly known protocol is in stark contrast to Baltag’s epistemic
action models [4,31], where the epistemic state is given and manipulated explicitly. In
many cases, including the bit transmission protocol, the reachable state space may be
computed using static analysis techniques without taking into account the epistemic
nature of the guards. However, the interplay between knowledge and reachability may
sometimes become more intricate: The more states are reachable the less is known
definitely, and the guards will in turn influence what is reachable positively or negatively.

Consider, for another example, a variable setting problem [14, Exc. 7.5] involving
a single agent a and a single state variable x ∈ {0, 1, 2, 3}, where a cannot observe x
directly. The agent executes the following guarded command starting with x = 0:

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

Being an initial condition, x = 0 is reachable, whereas x = 2 is not reachable as 2 is
never assigned. However, two different sets of reachable states make for a consistent
interpretation of the knowledge guards for the remaining values: {x = 0, x = 1}, where
Ka x 6= 1 is false and Ka x 6= 3 is true, and {x = 0, x = 3}, with the opposite results.
The singleton set {x = 0} is ruled out, since both guards would be true such that x = 3
and x = 1 are reachable; and {x = 0, x = 1, x = 3} is impossible, since both guards are
false and thus neither x = 1 nor x = 3 are reachable. Breaking this cycle by making one
of the transitions unconditional on knowledge as, e.g., in

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 2
8 true _ x← 1 fi

yields a knowledge-based program with the unique consistent interpretation {x = 1, x =
2}. For computing its behaviour, however, several steps are needed, first reasoning that
x = 1 is reachable, then that x = 3 is not reachable, and, finally, that x = 2 is reachable.

254

Interpreting Knowledge-based Programs

Related Work. In their introduction and seminal treatise on knowledge-based pro-
grams [13,14], Fagin et al. characterise the unique interpretability of such programs by
their “dependence on the past” w.r. t. some non-empty class of transition systems: The eval-
uation of knowledge guards in a state coincides for all interpretations in the class that share
a common past of the state. A sufficient condition for this dependence is that the program
“provides epistemic witnesses” for all interpretations of the class such that not knowing
something at some point in time has a counter example in the past. A sufficient condition
for this provision, in turn, is that the program is “synchronous”, i.e., that all agents can de-
termine the global time from their local states. For example, the bit transmission protocol
provides epistemic witnesses and thus is uniquely interpretable; but it is not synchronous.
The cycle-breaking variable setting program is also uniquely interpretable, but does not
provide epistemic witnesses. For “asynchronous” knowledge-based programs, De Haan et
al. [10] suggest to rely on classical iteration of the non-monotone reachability functional
that interprets the knowledgemodalities according towhat currently is assumed to be reach-
able. The computation process is started with all states assumed to be reachable and stops
when some set of states is repeated. This approach fixes some semantics for all knowledge-
based programs, also for those which are cyclic and contradictory or only self-fulfilling.

The problem of mutual dependence of guard evaluation and reachability has also
occurred in the design of synchronous programming languages [6] for embedded systems,
like Esterel [7] or Lustre [18], which rely on “perfect synchrony”: a step for reacting to
some inputs takes zero time and output signals are produced at exactly the same time as the
input signals. Since thus the status of a signal to be produced can be queried at the same
time, this requires “logical coherence” saying that a (non-input) signal is present in a step of
execution if, and only if, a command emitting this signal is executed in this step. Whereas
Lustre forbids cyclic programs on a syntactic basis, Berry’s approach to the semantics
of Esterel [8] singles out “reactive” — at least one execution — and “determinate” —
at most one execution — programs using a static executability analysis: It is computed
which signals must be present, i.e., have to occur inevitably, and which signals cannot be
present, i.e., have no emitting execution. This is also referred to as must/cannot analysis
and has to be performed several times for finding a fixed point of all the signal statuses.

In logic programming involving “negation as failure” under- and over-approximations
in terms of three- and four-valued logics lead to the “Kripke-Kleene fixpoint” and “well-
founded” models; see [11] for an overview. There, however, the temporal dimension of
reachability or executability is not involved. The “stable model semantics” [16,5] stresses
the rational inclusion or exclusion of atoms: A set of atomsM is “stable” for a logic
programΠ if it coincides with the minimal set of atoms inferable from the “reduct”ΠM

which is obtained from Π by deleting each clause that has a negative literal ¬p in its
body with p ∈M , and all negative literals in the bodies of the remaining clauses. The
definition is not algorithmic or constructive; the minimality condition rules out self-
fulfilling solutions, the reduction process avoids contradictions. Gelfond’s “epistemic
specifications” [15] extend (disjunctive) logic programs with a modality K for “subjective
literals” for representing incomplete information in programs with several stable models.

Contributions. We apply the principles of the must/cannot analysis to the interpretability
problem of knowledge-based programs. After recalling some basic notions of epistemic
logic and epistemic transition structures (Sect. 2), we first recapitulate the approaches

255

by Fagin et al. [14] and De Haan et al. [10] in terms of epistemically guarded transition
systems, a syntax-agnostic format for knowledge-based programs (Sect. 3). For a
more direct analysis, our account of those designs is state-based rather than run-based.
We demonstrate the results and the limits of both interpretation schemes by several
examples that illustrate (a-)synchronicity and non-monotone interpretation for cyclic,
contradictory, or self-fulfilling programs. The latter behaviour is the main motivation for
our reformulation of the interpretation problem in terms of epistemic must/can transition
structures which offer lower and upper bounds on the behaviour of a knowledge-based
program (Sect. 4). We show that this constructive interpretation is always monotone
and yields a least fixed point. However, lower and upper bound of the fixed point need
not always coincide and we relate decided fixed points with the notions of “providing
epistemic witnesses” and synchronicity. We then derive a representation of the behaviour
of a knowledge-based program as a general rule system with not only positive but
also negative premisses (Sect. 5). Such rule systems correspond to logic programs
involving “negation as failure” and the intended solutions form “stable models”. The
must/can approximation technique, its monotonicity, and it fixed point properties directly
transfer to such rule systems. We finally describe an implementation of our constructive
interpretation approach in the “Temporal Epistemic Model Interpreter and Checker”
(tEmIc, Sect. 6). For model checking interpreted knowledge-based programs, the tool
supports CTLK, the combination of “Computational Tree Logic” (CTL) with epistemic
logic. Moreover, this logic can also be used in program guards; the interpretation of
such temporal-epistemic programs extends the previous approaches. We give some
applications to the analysis of the Java memory model.

2 Epistemic Logic and Epistemic Transition Structures

We briefly summarise the basic notions of epistemic logic for expressing knowledge
guards [31,30]. We then define epistemic transition structures as the domain of interpret-
ation of knowledge-based programs. These transition structures combine the temporal
dimension of executing a program with the epistemic dimension for evaluating what
agents know. Both the logic and the transition structures are built over an epistemic
signature Σ = (P,A) that consists of a set of propositions P and a set of agents A.

2.1 Epistemic Logic

An epistemic structure K = (W,R,L) over (P,A) is given by a set of worldsW , an
A-family of epistemic accessibility relations R = (Ra ⊆W ×W)a∈A, and a labelling
L : W → ℘P assigning each world a set of propositions. In concrete examples, we will
require Ra to be an equivalence relation such that if (w1, w2) ∈ Ra, then agent a cannot
distinguish between the two worlds w1 and w2. The epistemic formulæ ϕ ∈ ΦP,A over
(P,A) are defined by the following grammar:

ϕ ::= p | false | ¬ϕ | ϕ1 ∧ ϕ2 | Ka ϕ

A. Knapp et al.256

where p ∈ P and a ∈ A. The epistemic formula Ka ϕ is to be read as “agent a knows ϕ”.
We use the usual propositional abbreviations true for¬false andϕ1∨ϕ2 for¬(¬ϕ1∧¬ϕ2).
Furthermore, we consider the epistemic modality M as the dual of K, such that Ma ϕ
abbreviates ¬Ka ¬ϕ and is to be read as “agent a deems ϕ possible”. The satisfaction
relation of an epistemic formula ϕ ∈ ΦP,A over an epistemic structureK = (W,R,L)
over (P,A) at a world w ∈W , writtenK,w |= ϕ, is inductively defined by

K,w |= p ⇐⇒ p ∈ L(w)

K,w 6|= false

K,w |= ¬ϕ ⇐⇒ K,w 6|= ϕ

K,w |= ϕ1 ∧ ϕ2 ⇐⇒ K,w |= ϕ1 andK,w |= ϕ2

K,w |= Ka ϕ ⇐⇒ K,w′ |= ϕ f. a. w′ ∈W with (w,w′) ∈ Ra

2.2 Epistemic Transition Structures

An epistemic transition structure combines a temporal transition relationwith an epistemic
accessibility relation over a common set of states. The transitions describe which states
can be reached from a set of initial states, the accessibilities specify which states are
indistinguishable. Knowledge formulæ are evaluated over the associated global epistemic
structure. This derived structure has the reachable states as its worlds and reuses the
accessibility relation and the labelling but restricted to the reachable states.

Formally, an epistemic transition structure M = (S,E,L, S0, T) over (P,A) is
given by an epistemic structure (S,E,L), a set of temporally initial states S0 ⊆ S,
and a temporal transition relation T ⊆ S × S. We write S(M) for S, T (M) for T ,
etc. The (temporally) reachable states Sω(M) =

⋃
0≤k Sk(M) and transition relation

Tω(M) =
⋃

0≤k Tk(M) ofM are inductively defined by

S0(M) = S0, Sk+1(M) = Sk(M) ∪ {s′ | ex. s ∈ Sk(M) s. t. (s, s′) ∈ T} ;
T0(M) = ∅, Tk+1(M) = Tk(M) ∪ {(s, s′) ∈ T | s ∈ Sk(M)} .

The associated epistemic structure ofM is given by

K(M) = (Sω(M), E ∩ Sω(M)2, L�Sω(M))

where Sω(M)2 abbreviates Sω(M)×Sω(M) and L�Sω(M) denotes labelling L restric-
ted to domain Sω(M). The satisfaction relation of an epistemic formula ϕ ∈ ΦP,A over
M at an s ∈ Sω(M), writtenM, s |= ϕ, is defined as

M, s |= ϕ ⇐⇒ K(M), s |= ϕ .

The set of epistemic transition structures over Σ = (P,A) sharing the same epistemic
state basis B = (S,E,L, S0) is denoted by MΣ(B). We say that M1 ⊆ M2 for
M1,M2 ∈ MΣ(B) if T (M1) ⊆ T (M2) and similarly extend union and intersection
from transition relations to epistemic transition structures.

Interpreting Knowledge-based Programs 257

3 Knowledge-based Programs

Knowledge-based programs extend standard programs by explicit knowledge tests. Their
interpretation involves a cycle: the evaluation of the epistemic guards depends on the
program’s reachable states, the derivation of the reachable states on the evaluation of the
program’s epistemic guards.

We render knowledge-based programs in a syntax-agnostic format as epistemically
guarded transition systems. Like epistemic transition structures, these guarded systems
operate on a global set of states with epistemic accessibilities and a propositional labelling.
All program steps are represented as knowledge-guarded actions of the form ϕ ⊃ B with
ϕ an epistemic formula and B a relation on the semantic states. Knowledge-independent
decisions are obtained by choosing ϕ = true, and any kind of program control structure
can be expressed by a judicious choice of guarded actions.

Breaking up the cyclic step of assigning meaning to a knowledge-based program,
an epistemically guarded transition system Γ is interpreted over an epistemic transition
structureM yielding another epistemic transition structure ΓM . A guarded action ϕ ⊃ B
of Γ contributes those (s, s′) ∈ B for which M, s |= ϕ, where, in particular, s is
reachable inM . What is sought for is a consistent interpretation with ΓM = M such
that reachability and knowledge are mutually justified. Finding such a balanced structure
is complicated by the fact that the interpretation functional is not monotone in general:
The more is reachable the less is known and this may make more or less states reachable.

After introducing and illustrating our format of knowledge-based programs we
summarise and adapt two existing approaches to their interpretation that have been devised
for run-based rather than state-based systems: De Haan et al. [10] propose to iterate the
interpretation functional starting from an epistemic transition structure where all states are
reachable. Iteration stops when either a fixed point is reached or, due to non-monotonicity,
a contradiction is found. In this way all knowledge-based programs are assigned some
semantics and there is no distinction between meaningful and contradictory or just self-
fulfilling programs. The original approach by Fagin et al. [13,14] characterises knowledge-
based programs that admit a unique consistent interpretation by the notion of dependence
on the past. A sufficient condition of providing epistemic witnesses is developed which,
in particular, applies to the subclass of synchronous knowledge-based programs.

3.1 Epistemically Guarded Transition Systems

An epistemically guarded transition system Γ = (S,E,L, S0, T) over (P,A) is given by
an epistemic state basis (S,E,L, S0) over (P,A) and a set T of epistemically guarded
actions ϕ ⊃ B consisting of an epistemic formula ϕ ∈ ΦP,A as guard and a transition
relation B ⊆ S × S.

Example 1. (a) Consider the bit transmission problem of the introduction:

do ¬KS KR sbit _ (rval← sbit or skip)
8 KR sbit ∧ ¬KR KS KR sbit _ (ack← 1 or skip) od

A sender agent S sends a bit sbit ∈ {0, 1} to a receiver agent R over an unreliable channel
by setting rval ∈ {⊥, 0, 1}; and R acknowledges the reception over an unreliable channel
by setting ack ∈ {0, 1}. Again, we abbreviate (KR ¬sbit) ∨ (KR sbit) expressing that

A. Knapp et al.258

the receiver knows the bit to be sent by KR sbit . We concretise the problem into an epi-
stemically guarded transition system Γbt = (Bbt , Tbt) with Bbt = (Sbt , Ebt , Lbt , Sbt,0)
over Σbt = (Pbt , Abt) with Pbt = {sbit, rbit, snt, ack} and Abt = {S,R}. Since we
use a propositional encoding, we represent rval ∈ {⊥, 0, 1} by a proposition rbit for
the transmitted bit and a proposition snt for the validity of rbit. Further abbreviating
the knowledge guards KR sbit by kr , KS KR sbit by ksr , and KR KS KR sbit by krsr , the
transition system Γbt is graphically given by

z0

snt
z1

ack
z2

snt, ack
z3

sbit
z4

sbit, rbit, snt
z5

sbit, ack
z6

sbit, rbit, snt, ack
z7

Obt,S = {sbit, ack}
Obt,R = {rbit, snt}

¬ksr? kr ∧ ¬krsr?

kr ∧ ¬krsr? ¬ksr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr? kr ∧ ¬krsr?

kr ∧ ¬krsr? ¬ksr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

¬ksr?
kr ∧ ¬krsr?

The states Sbt comprise of {z0, z1, . . . , z7} with Lbt(z0) = ∅, Lbt(z1) = {snt}, . . . ,
Lbt(z7) = {sbit, rbit, snt, ack} as outlined in the graph above; the set of initial states is
Sbt,0 = {z0, z4}. The epistemic accessibility relations Ebt,a for a ∈ Abt are given by
observability setsObt,a that declare two states s1, s2 ∈ Sbt to beObt,a-indistinguishable,
written as s1 ∼Obt,a

s2, if for all p ∈ Obt,a it holds that p ∈ Lbt(s1) ⇐⇒ p ∈ Lbt(s2),
and consequently Ebt,a = ∼Obt,a

, such that Ebt,a forms an equivalence relation. Due to
sbit /∈ Obt,R, the receiver R cannot “see” sbit and hence cannot distinguish between
states z0 and z4, but S can. On the other hand, R can distinguish between z1 and z5 as R
has access to rbit. Finally, Tbt consists of two epistemically guarded actions

¬KS KR sbit ⊃ {(zi, zi) | 0 ≤ i ≤ 7} ∪ {(z0, z1), (z2, z3), (z4, z5), (z6, z7)} and
KR sbit ∧ ¬KR KS KR sbit ⊃ {(zi, zi) | 0 ≤ i ≤ 7} ∪

{(z0, z2), (z1, z3), (z4, z6), (z5, z7)} ,

which directly reflect the sending and acknowledging actions of the bit transmission
problem: The system can only advance from z0 to z1 (and z4 to z5), where sending has
been done successfully, if S does not know that R knows the bit; but it need not make
such progress, i.e., sending can be unsuccessful. Similarly, the system can only advance
from z1 to z3 (and z5 to z7), where an acknowledgement has been sent successfully, if R
knows the bit and R does not know that S knows that R knows the bit.

(b) Consider the variable setting problem of the introduction for a single agent a:

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

Encoding the integer x ∈ {0, 1, 2, 3} by two bits q1 and q2, we model the problem as the
following epistemically guarded transition system Γvs = (Bvs , Tvs) with Bvs = (Svs ,
Evs , Lvs , Svs,0) over Σvs = (Pvs , Avs) with Pvs = {q1, q2} and Avs = {a}:

Interpreting Knowledge-based Programs 259

¬q1,¬q2

s0
x = 0

¬q1, q2

s1
x = 3 q1,¬q2

s2
x = 1 q1, q2

s3
x = 2

Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)?

Ka ¬(¬q1 ∧ q2)?

Ovs,a represents a “blind” agent a that deems all states equally accessible. State s3 is
definitely not reachable. Tvs consists of the epistemically guarded actions

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} and Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} .

3.2 Interpreting Epistemically Guarded Transition Systems

An epistemically guarded transition system Γ = (S,E,L, S0, T) over (P,A) is inter-
preted over an epistemic transition structureM ∈MP,A(S,E,L, S0) by interpreting
each guarded action (ϕ ⊃ B) ∈ T w.r. t.M as

(ϕ ⊃ B)
M

= {(s, s′) ∈ B | s ∈ Sω(M) andM, s |= ϕ} ,

and combining these interpretations into the epistemic transition structure

ΓM = (S,E,L, S0,
⋃
τ∈T τ

M) .

We callM a solution for Γ if ΓM = M .

Example 2. For the bit transmission problem as described in Ex. 1(a), the epistemic
transition structure Mbt = (Bbt , Tbt) with Tbt = {(zi, zi) | i ∈ {0, 1, 3, 4, 5, 7}} ∪
{(z0, z1), (z1, z3), (z4, z5), (z5, z7)} satisfies Γbt

Mbt = Mbt . This structure just omits
the states z2 and z6 withLbt(z2) = {ack} andLbt(z6) = {sbit, ack}which are definitely
not reachable, as KR sbit is false in z0 ∼Obt,R

z4. Indeed,

Mbt , s |= ¬KS KR sbit ⇐⇒ s ∈ {z0, z1, z4, z5}
Mbt , s |= KR sbit ⇐⇒ s ∈ {z1, z3, z5, z7}
Mbt , s |= ¬KR KS KR sbit ⇐⇒ s ∈ {z0, z1, z3, z4, z5, z7}

However, finding a solution is complicated by the fact that the functional of interpreting
an epistemically guarded transition system over an epistemic transition structure is not
monotone, in general, as illustrated by the following examples.

Example 3. (a) Continuing Ex. 1(b) for the variable setting problem Γvs , consider the
epistemic transition structure Mvs,0 ∈ MΣvs

(Bvs) with the empty transition relation
T (Mvs,0) = ∅, and hence S0(Mvs,0) = {s0}. SettingMvs,i+1 = Γvs

Mvs,i for 0 ≤ i ≤ 2
we obtain successively

τ τMvs,0 τMvs,1 τMvs,2

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} {(s0, s1)} ∅ {(s0, s1)}
Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} {(s0, s2)} ∅ {(s0, s2)}

A. Knapp et al.260

In particular,Mvs,2 = Γvs
Mvs,1 = Γvs

Γvs
Mvs,0

= Mvs,0. However, forMvs,4,Mvs,5 ∈
MΣvs (Bvs) with T (Mvs,4) = {(s0, s1)} and T (Mvs,5) = {(s0, s2)} we obtain that
Γvs

Mvs,4 = Mvs,4 and Γvs
Mvs,5 = Mvs,5.

(b) For capturing the cycle-breaking variable setting of the introduction consider the
following epistemically guarded transition system Γvsb = (Bvs , Tvsb) over Σvs that
shares the epistemic state basis Bvs with Ex. 1(b):

¬q1,¬q2

s0

x = 0

¬q1, q2

s1
x = 3 q1,¬q2

s2
x = 1 q1, q2

s3
x = 2

Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)? Ka ¬(¬q1 ∧ q2)?

ForMvsb,0 = (Bvs , ∅) with S0(Mvsb,0) = {s0}, and settingMvsb,i+1 = Γvsb
Mvsb,i for

0 ≤ i ≤ 3 we obtain successively

τ τMvsb,0 τMvsb,1 τMvsb,2 τMvsb,3

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} {(s0, s1)} ∅ ∅ ∅
true ⊃ {(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}

Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s3)} {(s0, s3)} ∅ {(s0, s3)} {(s0, s3)}

ForMvsb,3 with Sω(Mvsb,3) = {s0, s1, s3} it finally holds thatΓvsb
Mvsb,3 = Mvsb,3.

3.3 Iteration Semantics

For illustrating the non-monotonicity of the interpretation functional we have started
the interpretation sequence for Γ with the smallest epistemic transition structure which
suggests to look for a smallest fixed point—which need not exist. DeHaan et al. [10] argue
that a substitute consisting of the greatest fixed point would bemore liberal. They construct
a transfinite approximation sequence starting from anN0 having all states reachable. For a
successor ordinalα+1, the approximationNα+1 is just the interpretation ofΓ inNα; for a
limit ordinalλ, the approximationNλ =

⋂
α<λ

⋃
α≤β<λNβ is “the intersection of unions

of approximations that are sufficiently close to the limit” [10, p. 269]. The latter is preferred
over a union of intersections as it includes more states which implies less knowledge,
such that “agents [know] facts only when there are good reasons for them” (ibid.). Due to
cardinality reasons, the ordinal ηΓ = inf{α | ex. β s. t. α < β and Nα = Nβ} exists. If
Nα+1 ⊆ Nα for all α ≥ ηΓ , then NηΓ+1 = NηΓ ; otherwise there is some α ≥ ηΓ such
that Nα+1 6⊆ Nα. Thus αΓ = inf{α | ηΓ ≤ α and (Nα = Nα+1 or Nα+1 6⊆ Nα)}
exists and the iteration semantics of Γ is defined as NαΓ . This yields the greatest fixed
point if the interpretation functional is monotone.

Example 4. (a) For the variable setting problem Γvs of Ex. 1(b) the interpretation
sequence (Nvs,α)0≤α starts with Nvs,0 showing T (Nvs,0) = Svs × Svs . Using the
epistemic transition structures from Ex. 3(a) it holds that Nvs,k+1 = Γvs

Nvs,k = Mvs,2

for k even and Nvs,k+1 = Mvs,1 for k ≥ 1 odd. Thus, Nvs,1 = Nvs,3 such that
ηΓvs

= 1 = αΓvs
, since T (Nvs,2) = {(s0, s0), (s0, s1), (s0, s2)} 6⊆ ∅ = T (Nvs,1).

Hence the iteration semantics of Γvs is given by Nvs,1 = Mvs,2; since its transition
relation is empty, Γvs has the same iteration semantics as an epistemically guarded
transition system without any guarded actions.

Interpreting Knowledge-based Programs 261

(b) Computing the iteration semantics sequence (Nvsb,α)0≤k of the cycle-breaking
variable setting Γvsb of Ex. 3(b) proceeds as Nvsb,k = Mvsb,k+1. Since this time the
functional is monotone from α = 1 onwards, the iteration semantics is Nvsb,2.

(c) Consider the following epistemically guarded transition system Γnc = (Bvs , Tnc)
over Σvs that shares the epistemic basis Bvs with the variable setting problem Γvs of (a)
and only adds the guarded action Ka ¬q2 ⊃ {(s0, s3)}:

¬q1,¬q2

s0

¬q1, q2

s1
q1,¬q2

s2
q1, q2

s3
Ovs,a = ∅

Ka ¬(q1 ∧ ¬q2)?

Ka ¬(¬q1 ∧ q2)?

Ka ¬q2?

The interpretation process runs as for Γvs , and the epistemic transition structure with
the empty transition relation is also the iteration semantics of Γnc . This time, however,
there is a unique non-empty interpretation, viz. the transition structure consisting only of
(s0, s1). Finding this solution is not constructive and some speculation is necessary: there
is no solution where s2 is reachable; if s2 were reachable, then s1 would be reachable
leading to a contradiction due to the (non-)reachability of s3. Thus only the possibility of
s0 and s1 being reachable, and s2 and s3 unreachable, remains.

(d) For the epistemically guarded transition system Γmay over ({p}, {a}) given by

¬p
u0

p

u1

Omay,a = ∅
Ma p?

the iteration process when started withNmay,0 having T (Nmay,0) = {u0, u1}×{u0, u1}
evaluatesMa p to true and we obtainNmay,1 with T (Nmay,1) = {(u0, u1)}which in turn
is confirmed by the next iteration yielding a fixed point. This iteration semantics, however,
has a touch of a “vaticinium ex eventu”: p can be reached since p may be reached.

3.4 Unique Interpretation Solutions

A knowledge-based program can be executed reliably just step by step if each knowledge
guard can be stably decided based on what has been computed up to the current point of
execution. In particular, in order to obtain a solution by execution, knowledge must not
be invalidated by information only to be gained later on. Conversely, if all knowledge
guards can be decided by just looking to the past, there is at most a single solution.

Based on this observation, Fagin et al. [13,14] develop a formal characterisation of
unique interpretability by capturing the notion that solutions “depend on the past”. They
then show that “providing epistemic witnesses” is a sufficient criterion for “dependence on
the past”, which in turn always holds for “synchronous” programs. We briefly summarise
their main line of argument adapting the demonstration from their run-based account for
knowledge-based programs to our state-based epistemically guarded transition systems.3

3 The proofs are available in a long version at https://arxiv.org/abs/2301.10807.

A. Knapp et al.262

https://arxiv.org/abs/2301.10807

An epistemic formulaϕ ∈ ΦP,A is said to depend on the pastw.r. t. a class of epistemic
transition structuresM⊆MP,A(B) if for allM1,M2 ∈M and all k ∈ N it holds that
Tk(M1) = Tk(M2) impliesM1, s |= ϕ ⇐⇒ M2, s |= ϕ for all s ∈ Sk(M1)∩Sk(M2);
an epistemically guarded transition system Γ = (B, T) over (P,A) is depending on the
past w.r. t.M if every ϕ in (ϕ ⊃ B) ∈ T depends on the past w.r. t.M.

Example 5. For Ex. 3(a) neitherKa ¬(q1∧¬q2) norKa ¬(¬q1∧q2) depends on the past
w.r. t. {Mvs,0,Mvs,1}. In particular, T0(Mvs,0) = ∅ = T0(Mvs,1) and S0(Mvs,0) =
{s0} = S0(Mvs,1), butMvs,0, s0 |= Ka ¬(q1 ∧ ¬q2) andMvs,1, s0 6|= Ka ¬(q1 ∧ ¬q2).
Similarly for Ex. 3(b), these two formulæ do not depend on the past w.r. t. {Mvsb,0,
Mvsb,1,Mvsb,2,Mvsb,3}, but they do w.r. t. {Mvsb,1,Mvsb,2,Mvsb,3}.

An epistemically guarded transition systemΓ has at most one solution if, and only if, it
depends on the past w.r. t. all its solutions. Due to the dependence on the past the successive
reachable transition relations Tk(M) of all solutionsM = ΓM , i.e., their pasts, coincide.

Proposition 1. Let Γ = (B, T) be an epistemically guarded transition system over
Σ. Then Γ has at most one solution if, and only if, there is anM ⊆ MΣ(B) with
{M ∈MΣ(B) | ΓM = M} ⊆ M such that Γ depends on the past w.r. t.M.

In order to obtain a solution of Γ by execution, the system is interpreted repeatedly
to construct the approximations (Mk)0≤k withMk+1 = ΓMk for k ≥ −1 starting with
someM−1. Each approximationMk with k ≥ 0 contributes a transition relation Tk(Mk)
which can be combined into a limit Mω. If Γ depends on the past w.r. t. the class of
epistemic transition structures from which the approximands are constructed and which
also contains the limit, then the interpretation of the limitMω yields a fixed point.

Proposition 2. Let Γ = (B, T) be an epistemically guarded transition system over Σ,
letM⊆MΣ(B) such that ΓM ∈M for everyM ∈M and (B,

⋃
0≤k Tk(Mk)) ∈M

for all (Mk)0≤k ⊆ M with Tk(Mk′) = Tk(Mk) for all k′ ≥ k ≥ 0, and let Γ
depend on the past w.r. t. M. Let M−1 ∈ M, Mi+1 = ΓMi for all i ≥ −1, and
Mω = (B,

⋃
0≤k Tk(Mk)). Then ΓMω = ΓΓ

Mω .

A sufficient criterion for obtaining a comprehensive class of epistemic transition
structuresM such thatΓ depends on the past w.r. t.M is provided by epistemic witnesses:
If some knowledge formula Ka ϕ of Γ does not hold at some state of an interpreting
epistemic transition structure there is evidence in the past of this structure why it does not
hold. Formally, a structureM ∈MP,A(B) provides epistemic witnesses for a formula
Ka ϕ ∈ ΦP,A if for all k ≥ 0, s ∈ Sk(M) it holds that ifM, s 6|= Ka ϕ, then there is an
s′ ∈ Sk(M) with (s, s′) ∈ Ea andM, s′ 6|= ϕ.

Lemma 1. Let Γ = (B, T) be an epistemically guarded transition system over Σ and
letM⊆MΣ(B) such that allM ∈M provide epistemic witnesses for all knowledge
guards in Γ . Then Γ is depending on the past w.r. t.M.

A sufficient criterion, in turn, for a structure M ∈ MP,A(S,E,L, S0) to provide
epistemic witnesses is M being synchronous: if for all a ∈ A and all reachable s1 ∈

Interpreting Knowledge-based Programs 263

Sk1(M) and s2 ∈ Sk2(M) with (s1, s2) ∈ Ea it holds that s1, s2 ∈ Smin{k1,k2}(M). In
a synchronous structure the temporal and the epistemic dimension for each agent are hence
tightly coupled and agents cannot access the future, but also do not need to know the future.

Example 6. The interpretation Mbt of the bit transmission problem given in Ex. 2
provides epistemic witnesses, but is not synchronous: the sender S cannot distinguish z0
reachable at depth 0 ofMbt from z1 that is only reachable at depth 1, and similarly the
receiver R cannot distinguish z1 from z3 at the respective depths of 1 and 2.

An epistemically guarded transition system Γ = (B, T) over Σ provides epistemic
witnesses if for eachM ∈MΣ(B) the interpretation ΓM provides epistemic witnesses
for all knowledge formulæ occurring in some of the action guards of Γ ; Γ is synchronous
if each ΓM is synchronous. Moreover, Γ can syntactically be seen to be synchronous
(cf. [14, p. 135]) if it is round-based where all agents perform some action in each round
and record locally which actions they have taken.

4 (Re-)Interpreting Knowledge-based Programs

The results by Fagin et al. [13,14] guarantee a unique interpretation for all synchronous
knowledge-based programs; the approach by De Haan et al. [10] aims at extending the
interpretation to asynchronous programs, but assigns semantics also to contradictory or
self-fulfilling programs.

The necessity of avoiding contradictory or self-fulfilling behaviour already occurs in
the design of synchronous programming languages [6]: Their underlying principle is
“perfect synchrony”, that any reaction of a program takes zero time and that thus whatever
is output in reaction to some input is already present at the same time as the input. Since
the presence or absence of signals can be tested, this requires “logical coherence” saying
that a (non-input) signal is present in a reaction if, and only if, this signal is emitted in
this very reaction. A program needs to be both reactive in the sense of leading to some
logically coherent signal status, and determinate, i.e., not showing several such statuses.
For example, in Esterel [7], the program fragment

present S then nothing else emit S end

is not reactive, but contradictory: signal S is only emitted if it is not emitted; and

present S then emit S else nothing end

is not determinate, but self-fulfilling: S is emitted if it is emitted, and it is not emitted if it
is not. Such programs can be revealed by using a cycle-detecting static analysis, as is done
in Lustre [18], or, for including more intricate cases, by Berry’s “constructive semantics”
as for Esterel [8]. Building on a “logical semantics” recording what is emitted in each step
of execution, a must/cannot analysis is performed: what must/cannot be emitted, which
branch must/cannot be executed. It is then required that for each signal it can be decided
whether it must be present or it cannot be present. For example, in the parallel execution

[present S1 then emit S1 end]
|| [present S1 then present S2 then nothing else emit S2 end end]

A. Knapp et al.264

both signals can be emitted — if S1 is assumed to be present, and S2 absent —, but
none must be emitted. Thus the constructive semantics does not reach a decision of what
must/cannot be present and the program is not constructive. Intriguingly, however, there
is exactly one coherent signal status that can be reached by execution: S1 and S2 absent.

We adapt Berry’s constructive semantics approach to knowledge-based programs.
In fact, the first, non-reactive Esterel program fragment resembles the variable setting
problem described in Ex. 3(a), the second, non-determinate fragment directly corresponds
to Ex. 4(d), and the last, combined fragment is essentially the same as Ex. 4(c). We first
define a must/can version of epistemic transition structures with a lower (must) and an
upper bound (can). Based on a positive (must) and negative (cannot) satisfaction relation
of epistemic formulæ over these structures we show how an epistemically guarded
transition system can be interpreted yielding another epistemic must/can transition
structure. For uniformity, we rephrase this interpretation in terms of the negation normal
form of formulæ and demonstrate that the constructive interpretation is always monotone
and leads to a least fixed point. For any knowledge-based program, this fixed point
soundly shows which executions are necessary and which are possible. However, the
fixed point need not be decided, and more can be possible than is necessary. We show
that synchronous programs always lead to decided fixed points.

4.1 Epistemic Must/Can Transition Structures

An epistemic must/can transition structure Y = (S,E,L, S0, (Tµ, Tν)) overΣ = (P,A)
is given by an epistemic state basis B = (S,E,L, S0) and two lower and upper transition
relations Tµ, Tν ⊆ S × S with Tµ ⊆ Tν . In particular, Yµ = (B, Tµ) and Yν = (B, Tν)
are epistemic transition structures over Σ with Yµ ⊆ Yν .

The positive and negative satisfaction relations of an epistemic formulaϕ ∈ ΦP,A over
the epistemic must/can transition structure Y at a state s ∈ Sω(Yν), written Y, s |=p ϕ
and Y, s |=n ϕ, are defined as follows:

Y, s |=p p ⇐⇒ p ∈ L(s) Y, s |=n p ⇐⇒ p /∈ L(s)

Y, s 6|=p false Y, s |=n false

Y, s |=p ¬ϕ ⇐⇒ Y, s |=n ϕ Y, s |=n ¬ϕ ⇐⇒ Y, s |=p ϕ

Y, s |=p ϕ1 ∧ ϕ2 ⇐⇒ Y, s |=n ϕ1 ∧ ϕ2 ⇐⇒
Y, s |=p ϕ1 and Y, s |=p ϕ2 Y, s |=n ϕ1 or Y, s |=n ϕ2

Y, s |=p Ka ϕ ⇐⇒ Y, s′ |=p ϕ Y, s |=n Ka ϕ ⇐⇒ Y, s′ |=n ϕ

for all s′ ∈ Sω(Yν)
with (s, s′) ∈ Ea

for some s′ ∈ Sω(Yµ)
with (s, s′) ∈ Ea

A formula is positively satisfied over Y if it must be true given the upper bound Yν of
possible behaviour, it is negatively satisfied if it cannot be true given the lower bound Yµ
of necessary behaviour. In fact, it holds that what must be true can also be true:4

Lemma 2. Let Y = (S,E,L, S0, (Tµ, Tν)) be an epistemic must/can transition struc-
ture over (P,A) and ϕ ∈ ΦP,A. Then for all s ∈ Sω(Yν), Y, s |=p ϕ implies Y, s 6|=n ϕ.

4 The proofs are available in a long version at https://arxiv.org/abs/2301.10807.

Interpreting Knowledge-based Programs 265

https://arxiv.org/abs/2301.10807

The set of epistemic must/can transition structures over Σ and the epistemic state
basis B is denoted by YΣ(B). We say that Y1 v Y2 for Y1, Y2 ∈ YΣ(B) if Y1,µ ⊆ Y2,µ
and Y1,ν ⊇ Y2,ν : an extension raises the lower bound and reduces the upper bound.

As with epistemic transition structures, an epistemically guarded transition system
Γ = (S,E,L, S0, T) over (P,A) can be interpreted over an epistemicmust/can transition
structure Y ∈ YP,A(S,E,L, S0): The interpretation of a guarded action (ϕ ⊃ B) ∈ T
w.r. t. to Y is given by the pair (ϕ ⊃ B)

Y
= ((ϕ ⊃ B)

Y,µ
, (ϕ ⊃ B)

Y,ν
) with

(ϕ ⊃ B)
Y,µ

= {(s, s′) ∈ B | s ∈ Sω(Yµ) and Y, s |=p ϕ} ,

(ϕ ⊃ B)
Y,ν

= {(s, s′) ∈ B | s ∈ Sω(Yν) and Y, s 6|=n ϕ} .

By Lem. 2 it holds that τY,µ ⊆ τY,ν for each τ ∈ T . The constructive interpretation of
Γ w.r. t. Y is given by the epistemic must/can transition structure

ΓY = (S,E,L, S0, (
⋃
τ∈T τ

Y,µ,
⋃
τ∈T τ

Y,ν)) .

This is well defined, i.e., (ΓY)µ ⊆ (ΓY)ν . We call Y a constructive solution for Γ if
ΓY = Y ; a constructive solution is decided if Yµ = Yν .

Again as with epistemic transition structures, this interpretation over epistemic
must/can transition structures can be iterated for finally reaching a stable structure — and
this time interpretation turns out to be monotone.

Example 7. (a) Re-consider the cycle-breaking variable setting problem of Ex. 3(b). We
start the interpretation in Yvsb,0 = (Bvs , (∅, S2

vs)) and successively obtain the following
epistemic must/can transition structures:

τ τYvsb,0 τYvsb,1 τYvsb,2 τYvsb,3

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)}
∅ ∅ ∅ ∅

{(s0, s1)} ∅ ∅ ∅

true ⊃ {(s0, s2)}
{(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}
{(s0, s2)} {(s0, s2)} {(s0, s2)} {(s0, s2)}

Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s3)}
∅ ∅ {(s0, s3)} {(s0, s3)}

{(s0, s3)} {(s0, s3)} {(s0, s3)} {(s0, s3)}

Not only does it hold that Γvsb
Yvsb,3 = Yvsb,3, but the interpretations indeed evolve

monotonically w.r. t. v. Moreover, the structure Yvsb,3 is decided and everything what
can happen also must happen, i.e., (Yvsb,3)µ = (Yvsb,3)ν .
(b) For the cyclic variable setting problem, see Ex. 1(b) and Ex. 3(a), the interpretation
process is monotone, but only yields

τ τYvs,0 τYvs,1

Ka ¬(q1 ∧ ¬q2) ⊃ {(s0, s1)} (∅, {(s0, s1)}) (∅, {(s0, s1)})
Ka ¬(¬q1 ∧ q2) ⊃ {(s0, s2)} (∅, {(s0, s2)}) (∅, {(s0, s2)})

The epistemic must/can transition structure Yvs,1 is not decided, and indeed there are
two solutions of Γvs in terms of epistemic transition structures. However, the same
undecidedness holds true for Γnc of Ex. 4(c), that is, the unique solution is also missed
by the constructive interpretation.

A. Knapp et al.266

4.2 Constructive Interpretation
The separated positive (must) and negative (cannot) satisfaction relations over an epistemic
must/can transition structure Y ∈ YP,A(S,E,L, S0) can bemerged into a single, uniform
satisfaction relation relying on the negation normal form of epistemic formulæ where
negation only occurs in front of propositions. For an arbitrary ϕ ∈ ΦP,A there exists an
equivalent nnf(ϕ) ∈ ΦP,A in negation normal form, such that, in particular

nnf(¬p) = ¬p nnf(¬¬ϕ) = nnf(ϕ)

nnf(¬false) = true nnf(¬(ϕ1 ∧ ϕ2)) = nnf(¬ϕ1) ∨ nnf(¬ϕ2)

nnf(¬Ka ϕ) = Ma nnf(¬ϕ)

The constructive satisfaction relation Y, s |= ϕ for a state s ∈ Sω(Yν) and an epistemic
formula ϕ ∈ ΦP,A in negation normal form is defined just as for arbitrary epistemic
formulæ, but using the upper bound Yν for the universal quantifier of Ka and the lower
bound Yµ for the existential quantifier of Ma; in particular,

Y, s |= ¬p ⇐⇒ p /∈ L(s)

Y, s |= Ka ϕ ⇐⇒ Y, s′ |= ϕ f. a. s′ ∈ Sω(Yν) with (s, s′) ∈ Ea
Y, s |= Ma ϕ ⇐⇒ ex. s′ ∈ Sω(Yµ) s. t. (s, s′) ∈ Ea and Y, s′ |= ϕ

The constructive satisfaction relation indeed combines |=p and |=n:
Lemma 3. Let Y ∈ YP,A(B), ϕ ∈ ΦP,A, and s ∈ Sω(Yν). Then Y, s |=p ϕ iff
Y, s |= nnf(ϕ) and Y, s |=n ϕ iff Y, s |= nnf(¬ϕ).

It follows that if Yµ = Yν , then Y, s |= ϕ if, and only if, Yµ, s |= ϕ or, equivalently,
Yν , s |= ϕ. We also obtain that constructive satisfaction is preserved when extending
epistemic must/can transition structures:
Lemma 4. Let Y, Y ′ ∈ YP,A(B) with Y v Y ′ and let ϕ ∈ ΦP,A. Then Y, s |= nnf(ϕ)
implies Y ′, s |= nnf(ϕ) for all s ∈ Sω(Y ′ν).

This preservation of satisfaction yields that constructive interpretation is monotone.
Proposition 3. Let Γ = (B, T) be an epistemically guarded transition system over Σ
and Y, Y ′ ∈ YΣ(B) such that Y v Y ′. Then ΓY v ΓY ′

.
Finally, we can observe that YΣ(B) for B = (S,E,L, S0) with the ordering v is

an inductive partial order: each directed subset ∆ ⊆ YΣ(B) has a least upper bound⊔
∆ w.r. t. v, where directed means that every two Y1, Y2 ∈ ∆ have an upper bound

Y ∈ ∆ such that Y1 v Y and Y2 v Y ; and there is also a bottom or least element
⊥Σ,B = (S,E,L, S0, (∅, S × S)) ∈ YΣ(B).
Proposition 4. (YΣ(B),v,⊥Σ,B) is an inductive partial order.

Pataraia’s fixed-point theorem [9, §8.22] now guarantees that the monotone operator
Y 7→ ΓY for each epistemically guarded transition system Γ = (B, T) has a least fixed
point in the inductive partial order. It can be computed by, possibly transfinite, iterated
application of constructive interpretation to ⊥Σ,B, that is, Y0 = ⊥Σ,B, Yα+1 = ΓYα for
a successor ordinal α+ 1, and Yλ =

⊔
α<λ Yα until equality [9, Exc. 8.19]. Compared

to the iteration semantics of Sect. 3.3, the computation of the constructive semantics thus
does not have to record all previous approximations in order to find a repetition.

Interpreting Knowledge-based Programs 267

4.3 (Un-)Decided Constructive Fixed Points

If any constructive fixed point Y = ΓY with Y ∈ YΣ(B) is decided, then there is
the solution Yµ = ΓYµ = ΓYν = Yν in terms of epistemic transition structures, and
Γ is not contradictory. Even if it is not decided, the must/can structures Yµµ = (B,
(T (Yµ), T (Yµ))) ∈ YΣ(B) and Yνν = (B, (T (Yν), T (Yν))) ∈ YΣ(B) satisfy Y v Yµµ
and Y v Yνν , such that by Prop. 3 we obtain Y = ΓY v ΓYµµ , ΓYνν which yields
Yµ ⊆ ΓYµ and ΓYν ⊆ Yν , but not equality, in general. For the least constructive fixed
point µΓ , any solutionM = ΓM thus satisfies (µΓ)µ ⊆ M ⊆ (µΓ)ν , always giving
sound lower and upper bounds and, if µΓ is decided, moreover unique solvability:

Proposition 5. Let Γ = (B, T) be an epistemically guarded transition system over Σ
and assume µΓ ∈ YΣ(B) is decided. Then Γ has a unique solution in MΣ(B).

Still, even for epistemically guarded transition systems that provide epistemic
witnesses it is not guaranteed that the least constructive fixed point is decided:

Example 8. Consider the following epistemically guarded transition systemΓnd = (Bnd ,
Tnd) over Σnd = (Pnd , And) with Pnd = {p, q} and And = {a, b}:

p,¬q
u0

p, q

u1
Ond,a = {q}
Ond,b = ∅

Kb Ma p?

Constructive interpretation yields the non-decided fixed point Ynd with T (Ynd,µ) = ∅
and T (Ynd,ν) = {(u0, u1)}, as Ynd , u0 6|= Kb Ma p, but also Ynd , u0 6|= Mb Ka ¬p: the
states u0 and u1 can be distinguished by agent a, and agent b cannot tell whether a step
has been taken. In u0 the formula Ma p holds w.r. t. Ynd , but in u1 it does not, since
(u1, u0) 6∈ End,a. On the other hand, Γnd provides epistemic witnesses pathologically,
since Γnd

M , s |= Kb Ma p for anyM ∈MΣnd
(Bnd) and any s ∈ Sω(Γnd

M), and hence
has a unique interpretation, which in this case is Γnd

Ynd,µ = Ynd,ν = Γnd
Ynd,ν .

For synchronous epistemically guarded transition systems, however, the least fixed
point is decided, since all knowledge refers to a past that must have happened:

Lemma 5. Let Γ = (B, T) be an epistemically guarded transition system over Σ that is
synchronous. Let Y ∈ YΣ(B) satisfy ΓY = Y . Then Y is decided.

Summing up, the constructive approach to interpreting knowledge-based programs
subsumes the solutions for synchronous programs and provides a sound procedure for
obtaining lower and upper bounds for the execution of both synchronous and asynchronous
programs. The approach, however, is not complete: If the least constructive fixed point µΓ
is undecided, a system Γ may be contradictory without any solution (see Ex. 3(a)), self-
fulfilling with several solutions (see Ex. 4(d)), or it may have a unique solution in terms of
epistemic transition structures (see Ex. 4(c)). One strategy that suggests itself for analysing
Γ further is to check whether an interpretation using the lower bound (µΓ)µ of the
least fixed point satisfies Γ (µΓ)µ = (µΓ)ν = Γ (µΓ)ν , which means that when executing
according to what must happen all what can happen is already covered (see Ex. 8).

A. Knapp et al.268

5 Knowledge-based Programs as Rule Systems

The “executions” of an epistemically guarded transition system Γ can be captured as
derivations of two mutually dependent inductive rule systems, like used for inductive
definitions [1,19]. One rule system defines the reachability in Γ , the other one the
satisfaction of knowledge formulæ in negation normal form over Γ . When Γ provides
epistemic witnesses, the mutual dependence can be resolved by stratifying the rule system
for reachability according to the depth of the execution. In the general case, the non-
monotone dependence of the formula satisfaction system on the reachability system— the
more states are reachable, the less is known — can be mitigated by extending the notion
of rule systems to include also negative premisses: The conclusion of a rule is derivable if
all its (positive) premisses are derivable, but none of its negative premisses. When applied
to knowledge formulæ, negative premisses express that no counterexample is reachable.

The general rule systems can also be read as logic programs with “negation as
failure” [11]. A direct application of the must/can approximation technique to the general
rule system or, equivalently, the logic program resulting from a knowledge-based program
reconstructs the Kripke-Kleene fixed point; the possible solutions correspond to “stable
models” [16].

5.1 Inductive Rule Systems

An inductive rule systemR consists of rules of the formX/y where the premissesX ⊆ U
and the conclusion y ∈ U are drawn from some universe of judgements U . A rule X/y
is interpreted as “if all X can be inferred, then y can be inferred”. The derivations in R
together with their sets of premisses and conclusions are inductively defined as follows:

– a y ∈ U is itself a derivation; its set of premisses is {y}, its conclusion is y;
– if X/y ∈ R and (dx)x∈X a family of derivations with conclusions (x)x∈X , then

(dx)x∈X/y is a derivation; its set of premisses is the union of the premisses of (dx)x∈X ,
its conclusion is y.

A y ∈ U is derivable in R if there is a derivation in R with the empty set of premisses
and conclusion y. The set of derivable conclusions of R coincides with the least fixed
point µR̂ of R̂ : ℘U → ℘U defined by R̂(P) = {y ∈ U | ex. X/y ∈ R s. t. X ⊆ P}.

In logic programming terms, a ruleX/y ∈ R yields a Horn clause y ← X [11]. The
least fixed point µR̂ coincides with minimal Herbrand model of the logic program corres-
ponding to R and thus with the single stable model, as no negation is involved [11,16].

For expressing reachability and the satisfaction of knowledge formulæ in an epi-
stemically guarded transition system Γ = (S,E,L, S0, T) over (P,A) as inductive rule
systems, we use two types of judgements, one of the form s ∈Γ Sω with s ∈ S for “state
s is reachable in Γ ”, and one of the form s |=Γ ϕ with s ∈ S and ϕ ∈ ΦP,A in negation
normal form for “state s satisfies formula ϕ in Γ ”. The rules for reachability read:

s0 ∈Γ Sω
if s0 ∈ S0

s ∈Γ Sω
s′ ∈Γ Sω

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B, and s |=Γ ϕ

Interpreting Knowledge-based Programs 269

where s |=Γ ϕ in the side condition of the second rule requires this judgement to be
derivable in the rule system for satisfaction. The rules for this system read:

s |=Γ true
if s ∈Γ Sω

s |=Γ p

if s ∈Γ Sω ,
p ∈ L(s) s |=Γ ¬p

if s ∈Γ Sω ,
p /∈ L(s)

s |=Γ ϕ1 s |=Γ ϕ2

s |=Γ ϕ1 ∧ ϕ2

s |=Γ ϕ1

s |=Γ ϕ1 ∨ ϕ2

s |=Γ ϕ2

s |=Γ ϕ1 ∨ ϕ2

s′ |=Γ ϕ

s |=Γ Ma ϕ

if (s, s′) ∈ Ea,
s′ ∈Γ Sω

(s′ |=Γ ϕ)s′∈ΓSω, (s,s′)∈Ea

s |=Γ Ka ϕ

Here, the last rule for satisfaction in fact is not monotone w.r. t. reachability: In order
to infer s |=Γ Ka ϕ it is not necessary to infer s′ |=Γ ϕ for all s′ with (s, s′) ∈ Ea, but
only for those for which s′ ∈Γ Sω can be deduced — and also for all of those.

The notion of providing epistemic witnesses allows to stratify the inductive rule
systems according to the involved depth k ≥ 0: We specialise the judgement s ∈Γ Sω into
s ∈Γ Sk meaning “state s is reachable in Γ in up to k steps” and, similarly, the judgement
s |=Γ ϕ into s |=Γ

k ϕ meaning “formula ϕ is satisfied in Γ at state s considering states
reachable in up to k steps”. The rules for reachability become for all k ≥ 0:

s0 ∈Γ Sk
if s0 ∈Γ S0

s ∈Γ Sk
s′ ∈Γ Sk+1

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B, and s |=Γ

k ϕ

Analogously the rules for satisfaction become for all k ≥ 0:

s |=Γ
k true

if s ∈Γ Sk
s |=Γ

k p

if s ∈Γ Sk,
p ∈ L(s) s |=Γ

k ¬p
if s ∈Γ Sk,
p /∈ L(s)

s |=Γ
k ϕ1 s |=Γ

k ϕ2

s |=Γ
k ϕ1 ∧ ϕ2

s |=Γ
k ϕ1

s |=Γ
k ϕ1 ∨ ϕ2

s |=Γ
k ϕ2

s |=Γ
k ϕ1 ∨ ϕ2

s′ |=Γ
k ϕ

s |=Γ
k Ma ϕ

if (s, s′) ∈ Ea,
s′ ∈Γ Sk

(s′ |=Γ
k ϕ)s′∈ΓSk, (s,s′)∈Ea

s |=Γ
k Ka ϕ

In particular, the rules for s |=Γ
k Ma ϕ and s |=Γ

k Ka ϕ are sound for epistemically guarded
transition systems providing epistemic witnesses. The notion of “providing epistemic
witnesses” requires that, if Ka ϕ does not hold at depth k, there is a counterexample to ϕ
at depth ≤ k. The general case can be covered by dropping the depths and taking into
account that Ka ϕ does not hold at some state s if, and only if, there is some reachable,
a-indistinguishable state s′ at which ϕ does not hold. Therefore, in order to derive that
Ka ϕ indeed holds at some reachable state s, it is necessary and sufficient to show that it
is not possible to derive that ¬ϕ holds at some reachable, a-indistinguishable state s′.

5.2 General Rule Systems with Positive and Negative Premisses

For expressing negative information in terms of a rule system, we complement the
positive premisses of the rules by negative ones: We consider general rule systemsR over

A. Knapp et al.270

a universe U consisting of rules of the form (X, /Z)/y whereX,Z ⊆ U are the positive
and negative premisses, and y ∈ U is the conclusion; it is interpreted as “if all X can be
inferred but no Z, then y can be inferred”. The derivations inR together with their sets of
positive and negative premisses and conclusions are again inductively defined as follows:

– a y ∈ U is itself a derivation; its set of positive premisses is {y}, its set of negative
premisses is ∅, and its conclusion is y;

– if (X, /Z)/y ∈ R and (dx)x∈X a family of derivations with conclusions (x)x∈X ,
then ((dx)x∈X , /Z)/y is a derivation; its set of positive premisses is the union of
the positive premisses of (dx)x∈X , its set of negative premisses is the union of the
negative premisses of (dx)x∈X together with Z, and its conclusion is y.

For a B ⊆ U , let R̄(B) be all those y ∈ U such that there is a derivation of y in R with
the empty set of positive premisses and no negative premisses in B. The set of derivable
conclusions of R is given by the least fixed point of R̄ if it exists.

From the logic programming perspective, a general rule (X, /Z)/y ∈ R can be seen
as a clause of the form y ← X, /Z with / read as “negation as failure” [5,11]. Checking
that a B ⊆ U is a “stable model” of the logic program obtained from R in this way
corresponds to the following process on general rule systems: first the reductRB is formed
by disregarding all rules (X, /Z)/y ∈ RwithB∩Z 6= ∅ and transforming the remaining
rules (X, /Z)/y ∈ R intoX/y ∈ RB ; thenRB is an inductive rule system andB is stable
if B = µR̂B . In particular, the stable models correspond to the solutions of R̄(B) = B.

With this generalised notion of rule systems we can reformulate and combine the two
inference systems for reachability and satisfaction in an epistemically guarded transition
system Γ = (S,E,L, S0, T) over (P,A) by using a single judgement s |=Γ

ω ϕ for “state
s satisfies ϕ in Γ and state s is reachable in Γ ”. A negative premiss /(s |=Γ

ω true) thus
stands for “s ∈Γ Sω cannot be deduced”. The new rules with also negative premisses read:

s0 |=Γ
ω true

if s0 ∈ S0

s |=Γ
ω ϕ

s′ |=Γ
ω true

if ex. (ϕ ⊃ B) ∈ T ,
(s, s′) ∈ B

s |=Γ
ω true

s |=Γ
ω p

if p ∈ L(s)
s |=Γ

ω true

s |=Γ
ω ¬p

if p /∈ L(s)

s |=Γ
ω ϕ1 s |=Γ

ω ϕ2

s |=Γ
ω ϕ1 ∧ ϕ2

s |=Γ
ω ϕ1

s |=Γ
ω ϕ1 ∨ ϕ2

s |=Γ
ω ϕ2

s |=Γ
ω ϕ1 ∨ ϕ2

s′ |=Γ
ω ϕ

s |=Γ
ω Ma ϕ

if (s, s′) ∈ Ea
s |=Γ

ω true /(s′ |=Γ
ω nnf(¬ϕ))(s,s′)∈Ea

s |=Γ
ω Ka ϕ

The rule for s |=Γ
ω Ka ϕ checks that s is reachable, but that no counterexample to ϕ can

be reached at an a-undistinguishable state.
Using general rule systems, the solvability of an epistemically guarded transition

system is shifted to computing derivable conclusions. As for knowledge-based programs,
it is not obvious from just the rules of a system R whether there are solutions of
R̄(B) = B at all, and whether there is a least one.

Interpreting Knowledge-based Programs 271

Example 9. (a) The general rule system

R0 =

{
x1

x1
,
/x1 /x2
x2

}
over {x1, x2}

has no set of derivable conclusions, since R̄0 has no fixed point; in particular, R̄0(∅) =
{x2} and R̄0({x1}) = ∅ = R̄0({x2}). In terms of stable models, computing R̄0(∅)
amounts to removing the negative premisses from the rule (∅, /{x1, x2})/x2, such that
the inductive rules {x1}/x1 and ∅/x2 remain; and computing R̄0({xi}) leads to the
single inductive rule {x1}/x1 for i ∈ {1, 2}.

R0 also demonstrates that the set of derivable conclusions of a general rule system R
need not coincidewith the least fixed point of the operator R̂ : ℘U → ℘U when transferred
from inductive rule systems by now setting R̂(P) = {y ∈ U | ex. (X, /Z)/y ∈
R s.t. X ⊆ P , P ∩ Z = ∅}: µR̂0 = {x1}.

On the other hand, in view of the general rule system for epistemically guarded
transition systems R0 can also be rephrased as a knowledge-based program with a single
agent a and a single variable x ∈ {0, 1, 2}, which a cannot observe, started with x = 0:

if Ma x = 1 _ x← 1
8 Ka(x 6= 1 ∧ x 6= 2) _ x← 2 fi

(b) There may be several solutions of a general rule system, but no least one:

R1 =

{
/x1
x3

,
/x3
x1

}
over {x1, x3}

has the solutions {x1} and {x3}, but ∅ is no solution. It corresponds to the “variable
setting” knowledge-based program of the introduction, see Ex. 1(b):

if Ka x 6= 1 _ x← 3
8 Ka x 6= 3 _ x← 1 fi

(c) Combining a contradictory rule (∅, /{x1, x2})/x2 with the non-determined rules of
R1 we obtain the rule system

R2 =

{
/x1
x3

,
/x3
x1

,
/x1 /x2
x2

}
over {x1, x2, x3}

which has the unique solution {x1}: if x3 were inferable, i.e., x1 not inferable, this would
trigger the contradictory rule for x2 (see Ex. 4(c)).

5.3 Solving General Rule Systems

The observations and definitions for epistemic must/can transition structures and con-
structive interpretation, see Sect. 4.2, can now readily be transferred to a more abstract
account for general rule systems. In fact, this reconstructs the “Kripke-Kleene fixpoint”

A. Knapp et al.272

using under- and over-approximations [11], though now using an inductive partial order.
We also relate the case where the constructive interpretation is not only monotone, but
continuous to knowledge-based programs.

Define, for a universe U , the set ℘±U as {(P,Q) ∈ ℘U × ℘U | P ⊆ Q} and the
relation⊆± ⊆ ℘±U ×℘±U as (P,Q) ⊆± (P ′, Q′) if, and only if, P ⊆ P ′ andQ ⊇ Q′.

Lemma 6. (℘±U,⊆±,⊥±U) with ⊥±U = (∅, U) is an inductive partial order.

For a general rule system R over U with positive and negative premisses define the
operator Ř : ℘±U → ℘±U that describes what must and what can be derived given what
is assumed to be definitely and potentially derivable:

Ř(P,Q) = ({y ∈ U | ex. (X, /Z)/y ∈ R s. t. X ⊆ P, Q ∩ Z = ∅},
{y ∈ U | ex. (X, /Z)/y ∈ R s. t. X ⊆ Q, P ∩ Z = ∅})

This is well-defined: if (P,Q) ∈ ℘±U , then Ř(P,Q) ∈ ℘±U , since for P ⊆ Q and each
(X, /Z)/y ∈ R with X ⊆ P and Q ∩ Z = ∅ it holds that X ⊆ Q and P ∩ Z = ∅. The
operator is always monotone:

Lemma 7. LetR be a rule system overU . If (P1, Q1) ⊆± (P2, Q2), then Ř(P1, Q1) ⊆±
Ř(P2, Q2).

As for constructive interpretation, Pataraia’s fixed-point theorem now guarantees that
the monotone operator Ř on the inductive partial order (℘±U,⊆±,⊥±U) has a least fixed
point. Again, it can be “computed” by possibly transfinite iterated application of Ř to
⊥±U . If, however, Ř is even continuous, then, by Kleene’s fixed-point theorem, it suffices
to consider all finite approximations, i.e., µŘ =

⋃±
n∈N Ř

n(⊥±U); that Ř is continuous
means that if ∆ ⊆ ℘±U is directed, then

⋃±
Ř(∆) = Ř(

⋃±
∆).

Lemma 8. Let R be a rule system over U such that every rule of R has only finitely
many positive and negative premisses. Then Ř is continuous.

The rule system for an epistemically guarded transition system Γ = (S,E,L, S0, T)
over (P,A) always has only finitely many positive premisses; if for each s ∈ S and each
a ∈ A the set {s′ ∈ S | (s, s′) ∈ Ea} is finite, then there are also only finitely many
negative premisses, such that the corresponding must/can operator is continuous.

6 Reasoning About Knowledge-based Programs

We have implemented the constructive interpretation of knowledge-based programs in
the prototypical “Temporal Epistemic Model Interpreter and Checker” (tEmIc5). The
tool first computes the least constructive fixed point of a (finite state) epistemically
guarded transition system. If the least fixed point is decided, the least solution in terms
of epistemic transition structures has been found; otherwise it is checked whether the re-
interpretation using the lower bound of the undecided least fixed point yields a solution.

5 https://bitbucket.org/knappale/temic

Interpreting Knowledge-based Programs 273

https://bitbucket.org/knappale/temic

If either succeeds, properties of the resulting model can be checked. These properties
can be expressed in CTLK, the combination of the branching “Computation Tree Logic”
(CTL) and epistemic logic [21]. What is more, CTLK can also be used in tEmIc for the
action guards. The constructive interpretation just evaluates each universal quantifier
of a CTL formula — A for “on all paths” — over the upper bound and each existential
quantifier — E for “on some path” — over the lower bound. This adds the temporal
dimension to the domain of application of knowledge-based programs. For the run-based
interpreted systems of Fagin et al. [13], Van der Hoek and Woolridge [20] and Su [27]
provide transformations for linear-time model checking based on local propositions,
though for a fixed set of runs that does not depend on the evaluation of knowledge guards.
The CTLK-model checker MCMAS [21] similarly operates on a fixed, predetermined
model. In dynamic epistemic logic and its model checker DEMO [31], the transition
structure is given by epistemic actions.

We first recapitulate briefly CTLK and then show its constructive evaluation over
epistemic must/can transition structures. We next describe tEmIc by means of the bit
transmission problem and the small paradoxical exercise of the “unexpected examination”;
the tEmIc distribution also contains specifications for the well-known problems “Muddy
Children” [31, pp. 93ff.] and “Sum-and-Product” [31, pp. 96f.]. Finally, we proceed to
an application where CTLK is also used in the action guards: the Java memory model.

6.1 CTLK

The CTLK-formulæ over (P,A) are defined by the following grammar:

ϕ ::= p | false | ¬ϕ | ϕ1 ∧ ϕ2 | Ka ϕ | EXϕ | EGϕ | E[ϕ1 U ϕ2]

where p ∈ P and a ∈ A. The path quantifier E is interpreted as “there is a path”, the
temporal modality X as “in the next step”, G as “always”, and U as “until”. We also
consider the path quantifier A for “on all paths” and the modalities F for “eventually”
and R for “release”, such that ¬EG¬ϕ is abbreviated by AFϕ and ¬E[¬ϕ1 U ¬ϕ2]
by A[ϕ1 R ϕ2]. The satisfaction relationM, s |= ϕ of a CTLK-formula ϕ over (P,A)
at state s ∈ S of an epistemic transition structure M = (S,E,L, S0, T) over (P,A)
conservatively extends the satisfaction relation of epistemic formulæ by

M, s |= EXϕ ⇐⇒ ex. s0, s1, . . . ∈P(M, s) s. t.M, s1 |= ϕ

M, s |= EGϕ ⇐⇒ ex. s0, s1, . . . ∈P(M, s) s. t.M, si |= ϕ f. a. i ∈ N
M, s |= E[ϕ1 U ϕ2] ⇐⇒ ex. s0, s1, . . . ∈P(M, s) and l ∈ N s. t.

M, si |= ϕ1 f. a. 0 ≤ i < l andM, sl |= ϕ2

where P(M, s) denotes all paths ofM , i.e., the infinite state sequences s0, s1, . . . ∈ S
with s0 = s and (si, si+1) ∈ T for all i ∈ N. A CTLK-formula ϕ is valid inM , written
M |= ϕ, if it is satisfied in all initial states, i.e.,M, s0 |= ϕ for all s0 ∈ S0(M).

For a direct definition of the satisfaction of CTLK-formulæ with an A, the existential
path quantification for E has to be replaced by universal path quantification. As for simple
epistemic logic, CTLK including AXϕ, AGϕ etc. admits a negation normal form (see,
e.g., [3, pp. 333f.]). The constructive satisfaction relation of a CTLK-formula in negation

A. Knapp et al.274

normal form over an epistemic must/can transition structure Y = (S,E,L, S0, T) over
(P,A) at a state s ∈ Sω(Yν), written Y, s |= ϕ, conservatively extends the constructive
satisfaction relation of epistemic formulæ and interprets E over the lower bound Yµ and
A over the upper bound Yν such that, in particular,

Y, s |= EFϕ ⇐⇒ ex. s0, s1, . . . ∈P(Yµ, s) and i ∈ N s. t. Y, si |= ϕ

Y, s |= AFϕ ⇐⇒ f. a. s0, s1, . . . ∈P(Yν , s) ex. i ∈ N s. t. Y, si |= ϕ

6.2 tEmIc

tEmIc is a symbolic model interpreter and checker for epistemically guarded transition
systems using CTLK. It is written in Java and uses binary decision diagrams for state
space representation [28]; it also supports bounded integers and their arithmetic. Given a
specification, tEmIc first computes the least constructive fixed point by iterated must/can
interpretation. If this fixed point is not decided it checks whether another interpretation
using the lower bound of the fixed point yields a solution. If either succeeds, tEmIc
proceeds with model checking given properties; these statements can be specified as
CTLK-formulæwhich have to hold in all initial states or as a reachability query. Reachable
deadlock states without outgoing transitions result in a warning.

For example, the bit transmission problem of the introduction as formalised in Ex. 1(a)
can be represented as a tEmIc specification as follows (rules are introduced by keyword
action followed by a name of the rule and the rule definition):
var sbit, ack, rbit, snt : boolean initial (ack | rbit | snt) <-> false;

agent S = { sbit, ack }; agent R = { rbit, snt };
let R_knows_bit = exists bit:boolean . K[R] sbit <-> bit;

action S_sends_bit_ok
guard not K[S] R_knows_bit do rbit := sbit, snt := true;
action S_sends_bit_failed
guard not K[S] R_knows_bit do ;
action R_sends_ack_ok
guard R_knows_bit and not K[R] K[S] R_knows_bit do ack := true;
action R_sends_ack_failed
guard R_knows_bit and not K[R] K[S] R_knows_bit do ;

Constructive interpretation yields in a few milliseconds the decided least fixed point
of Ex. 2, over which some CTLK-properties can be checked:
check initial EF R_knows_bit;
check initial EF K[S] R_knows_bit;
check initial EF K[R] K[S] R_knows_bit;

The first two are reported to hold, but the last does not since agent R cannot gather
enough information to be sure that the bit has been received by agent S.

For another example, consider the “unexpected examination” paradox [10, Sect. 4.7,
there called “unexpected hanging”] (for a detailed account see, e.g., [26, Sects. 5.2f.]): A
class is told that within the next week there will be an exam, but it will be a surprise. The
class might reason that the exam cannot happen on Friday, because if there has been no
exam up to Thursday it will not be a surprise on Friday any more; by backward induction
it might reason that there cannot be a surprise exam in the next week at all. This problem
statement can be readily expressed as a tEmIc specification:

Interpreting Knowledge-based Programs 275

var day : 0..5 initial day = 0;
var exam : 0..4;
var written : boolean initial written <-> false;

agent P = { day, written };

action act1
guard day < 5 and (day = exam) and (not K[P] day = exam) and not written
do written := true, day := day+1;
action act2
guard day < 5 and (day != exam) do day := day+1;
action stutter
do ;

Again, constructive interpretation yields in a few milliseconds a decided least fixed
point. Over this epistemic transition structure we can check that on, e.g., Wednesday the
exam can be written and still is indeed a surprise:
check reachable exam = 2 & written;

For such a reachability check tEmIc also provides a witness that tells that act2 is
executed twice after which act1 follows. The following CTLK-property, however, is not
satisfied, as it would have to hold in all initial states — and with exam being 4 the class
cannot be surprised any more:
check initial EF written;

6.3 Memory Models

Memory models regulate the interaction between threads, their caches, and the main
memory [23]. The original Java memory model — one of the first formal such models —
has been harshly criticised for making several compiler optimisations impossible and
has subsequently been superseded by a more liberal model [17, Ch. 17]. Keeping strong
guarantees for sequentially consistent, well-synchronised programs, reorderings of data-
independent statements or early, “prescient” reads from other threads are allowed for
programs with data races. Still, some limits, like consistency with data or control flow
dependencies or no “out-of-thin-air” values, should be in force [25,2].

For example, in the following two-threaded Java-like program to the left it should be
possible that both thread-local registers r1 and r2 are assigned the value 1 when reading
the global, shared variables x and y: A compiler could reorder the data-independent
statements in both threads. This behaviour, however, should be forbidden in the example
to the right, since there is a symmetric data dependence.

x = y = 0
r1 = r2 = 0

r1 = x; r2 = y;
y = 1; x = 1;

r1 = r2 = 1?

x = y = 0
r1 = r2 = 0

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)
y = 1; x = 1;

r1 = r2 = 1?

We want to capture the behaviour of a multi-threaded (Java) program with a liberal
memory model without having to check all possible compiler transformations — the

A. Knapp et al.276

correctness of such transformations would actually depend on the program semantics
including the memory model. In fact, in the current Java memory model out-of-order
executions have to be justified by other legal executions. We interpret these justifications
as witnesses in terms of knowledge-based programs; our current exposition, however,
neglects synchronisation. We first represent the state space of a two-threaded (Java)
program like the ones above by the following tEmIc declarations:
var x, y, r1, r2 : 0..2 initial x = 0 & y = 0 & r1 = 0 & r2 = 0;
var step1, step2 : 1..3 initial step1 = 1 & step2 = 1;

agent t1 = { step1, r1 }; agent t2 = { step2, r2 };

The thread agents t1 and t2 can only observe their local registers and their program
counters. The program steps for both threads are turned into actions like
action t1_1 guard step1 = 1 do r1 := x, step1 := step1+1;
action t1_2 guard step1 = 2 do y := 1, step1 := step1+1;

Additionally, we allow for a “prescient reading” of the value v from the main memory
variable x by thread θ into the local variable r at step s by the following action:
action readθ_x_v_r_s
guard stepθ = s and K[θ] (EF (r = 0 & x = v) and EF (r = v & x = v))
do r := v, stepθ := stepθ+1;

The thread θ can read v from x into r early on if it knows that there is an execution
where x has value v without dependence on already setting r to v, and, furthermore, that
there is an execution where the early setting is confirmed. The statement r1 = x; of the
first thread is expanded into three read actions read1_x_0_r1_1, read1_x_1_r1_1,
and read1_x_2_r1_1 plus the plain reading action t1_1. With this encoding, tEmIc
reports that for the first example to the left it is indeed possible to obtain r1 = r2 = 1 in
the least constructive fixed point, but that this is impossible for the example to the right.

A more intriguing case is presented by the following two examples: According
to Manson et al. [23, pp. 35f.] (cf. also [2]), the program to the left can result in
r1 = r2 = r3 = 1:

x = y = 0
r1 = r2 = r3 = 0

r1 = x; r3 = y;
if (r1 == 0) x = r3;
x = 1;
r2 = x;
y = r2;

r1 = r2 = r3 = 1?

x = y = 0
r1 = r2 = r3 = 0

r1 = x; r2 = x; r3 = y;
if (r1 == 0) y = r2; x = r3;
x = 1;

r1 = r2 = r3 = 1?

A compiler could see that only 0 and 1 are possible for x and y and “can then replace r2
= x by r2 = 1, because either 1 was read from x on line 1 and there is no intervening
write, or 0 was read from x on line 1, 1 was assigned to x on line 3, and there was
no intervening write”; this definite assignment can be used to transform the last line
to y = 1; which finally can be made the first action of the first thread, as there are no
dependencies. But the same transformation is not possible for the program to the right,
and there the same behaviour should be disallowed. Still, the left program is the result
of inlining the second thread into the first. Our encoding of the two programs in tEmIc

Interpreting Knowledge-based Programs 277

confirms these considerations and the witness for the left program indeed first sets r3 to
1 and confirms this only in the last step setting y to 1.

7 Conclusions and Future Work

We have introduced a must/can analysis for the interpretation of knowledge-based
programs inspired by the constructive semantics of synchronous programming languages.
The resulting constructive interpretation provides lower and upper bounds for the possible
executions. This interpretation has been shown to be monotone and to yield a least fixed
point. We have also transformed knowledge-based programs to general rule systems with
positive and negative premisses. Finally, we have described our tool tEmIc for constructive
interpretation and temporal-epistemic model checking over CTLK and demonstrated
some applications of interpreting knowledge-based programs including CTLK-guards.

Our epistemic logic could be complemented by group knowledge [14, Ch. 6], like
common or distributed knowledge. The temporal dimension could be extended to “Linear-
Time Logic” (LTL), and, more importantly, to include some notion of fairness. Criteria for
ensuring decided least fixed points for the must/can interpretation beyond synchronicity
would be desirable. Also a comparisonwith non-monotone inductive definitions [12], SOS
rules with negative premisses [24], and solution strategies for epistemic specifications [5],
would be of interest. On the other hand, the general constructive approach may be
useful to complement existing intuitionistic approaches to the semantics of synchronous
programming languages [22]. Finally, the domain of memory models should be covered
more comprehensively by interpreting knowledge-based programs.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of
Mathematical Logic, chap. C.7, pp. 783–818. North-Holland (1977)

2. Aspinall, D., Ševčík, J.: Java Memory Model examples: Good, bad and ugly. In: Proc.
Verification and Analysis of Multi-Threaded Java-like Programs (VAMP 2007) (2007)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
4. Baltag, A., Moss, L.S.: Logics for Epistemic Programs. Synth. 139(2), 165–224 (2004).

https://doi.org/10.1023/B:SYNT.0000024912.56773.5e
5. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Logic Program.

19–20(Suppl. 1), 73–148 (1994)
6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone, R.: The

synchronous languages twelve years later. Proc. IEEE 91(1), 64–83 (2003)
7. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof,

Language and Interaction: Essays in Honour of Robin Milner, pp. 425–454. Foundations of
Computing Series, MIT Press (2000)

8. Berry, G.: The Constructive Semantics of Pure Esterel, Draft v3 (2002), https://www-sop.
inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf

9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press,
2nd edn. (2002)

10. de Haan, H.W., Hesselink, W.H., de Lavalette, G.R.R.: Knowledge-based asynchronous
programming. Fund. Inform. 63(2-3), 259–281 (2004)

A. Knapp et al.278

https://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
https://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf

11. Denecker, M., Bruynooghe, M., Marek, V.: Logic programming revisited: Logic programs as
inductive definitions. ACM Trans. Comput. Logic 2(4), 623–654 (2001)

12. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM Trans.
Comput. Log. 9(2), 14:1–14:52 (2008)

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs. Distr. Comput.
10(4), 199–225 (1997)

14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press
(2003)

15. Fandinno, J., Faber, W., Gelfond, M.: Thirty years of epistemic specifications. Theo. Pract.
Logic Program. 22(6), 1043–1083 (2022)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Proc. 5th Intl. Conf. Symp. Logic Programming. pp. 1070–1080.
MIT Press (1988)

17. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. Addison-Wesley,
3rd edn. (2005)

18. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow programming
language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

19. Harper, R.: Practical Foundations of Programming Languages. Cambridge University Press
(2013)

20. van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In: Bosnacki, D.,
Leue, S. (eds.) Proc. 9th Intl. Ws. Model Checking of Software (SPIN 2002). Lect. Notes
Comp. Sci., vol. 2318, pp. 95–111. Springer (2002). https://doi.org/10.1007/3-540-46017-9_9

21. Lomuscio, A., Penczek, W.: Model checking temporal epistemic logic. In: van Ditmarsch et al.
[29], chap. 8, pp. 397–441

22. Lüttgen, G., Mendler, M.: The intuitionism behind statecharts steps. ACM Trans. Comput.
Log. 3(1), 1–41 (2002). https://doi.org/10.1145/504077.504078

23. Manson, J., Pugh, W., Adve, S.: The Java memory model (2005), http://dl.dropbox.com/
u/1011627/journal.pdf, draft

24. Mousavi,M., Phillips, I., Reniers,M.A., Ulidowski, I.: Semantics and expressiveness of ordered
SOS. Inform. & Comput. 207(2), 85–119 (2009). https://doi.org/10.1016/j.ic.2007.11.008

25. Pugh, W.: The Java memory model (1999–), http://www.cs.umd.edu/~pugh/java/
memoryModel/

26. Sainsbury, R.M.: Paradoxes. Cambridge University Press, 3rd edn. (2009)
27. Su, K.: Model checking temporal logics of knowledge in distributed systems. In: McGuiness,

D.L., Ferguson, G. (eds.) Proc. 19th Natl. Conf. Artificial Intelligence, 16th Conf. Innovative
Applications ofArtificial Intelligence (AAAI 2004). pp. 98–103.AAAI Press,MITPress (2004)

28. Vahidi, A.: JDD: A pure Java BDD and Z-BDD library. https://bitbucket.org/vahidi/
jdd (2003)

29. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook of Epistemic
Logic. College Publ. (2015)

30. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.: An introduction to logics of
knowledge and belief. In: Handbook of Epistemic Logic [29], chap. 1, pp. 1–51

31. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese Library,
vol. 337. Springer (2008)

Interpreting Knowledge-based Programs 279

http://dl.dropbox.com/u/1011627/journal.pdf
http://dl.dropbox.com/u/1011627/journal.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://www.cs.umd.edu/~pugh/java/memoryModel/
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

A. Knapp et al.280

http://creativecommons.org/licenses/by/4.0/

Contextual Modal Type Theory
with Polymorphic Contexts

Yuito Murase1(�) , Yuichi Nishiwaki2 , and Atsushi Igarashi1

1 Kyoto University, Kyoto, Japan
{murase@fos.kuis.kyoto-u.ac.jp, igarashi@kuis.kyoto-u.ac.jp}

2 Tokyo, Japan
yuichi.nishiwaki@icloud.com

Abstract. Modal types—types that are derived from proof systems of
modal logic—have been studied as theoretical foundations of metapro-
gramming, where program code is manipulated as first-class values. In
modal type systems, modality corresponds to a type constructor for code
types and controls free variables and their types in code values. Nanevski
et al. have proposed contextual modal type theory, which has modal types
with fine-grained information on free variables: modal types are explicitly
indexed by contexts—the types of all free variables in code values.
This paper presents λ∀[], a novel extension of contextual modal type
theory with parametric polymorphism over contexts. Such an extension
has been studied in the literature but, unlike earlier proposals, λ∀[] is
more general in that it allows multiple occurrence of context variables in
a single context. We formalize λ∀[] with its type system and operational
semantics given by β-reduction and prove its basic properties including
subject reduction, strong normalization, and confluence. Moreover, to
demonstrate the expressive power of polymorphic contexts, we show a
type-preserving embedding from a two-level fragment of Davies’ λ©,
which is based on linear-time temporal logic, to λ∀[].

Keywords: Contextual modal types, Fitch-style modal lambda-calculi,
Metaprogramming, Polymorphic contexts

1 Introduction

It is a common technique in metaprogramming to use code as a first-class value
to generate, combine, and evaluate code at compile- and run-time. Type sys-
tems for first-class code are known to correspond to proof systems of modal
logic under the Curry–Howard isomorphism [5,19,6,30,17]: Modality corresponds
to a type constructor for code types, controlling free variables and their types
in code values. Such modal type systems have been proposed for various ar-
eas of metaprogramming, including multi-stage computation [29,2,13], syntactic
metaprogramming [7,27], and, more recently, applied to proof assistants [3,21,26].

Modal types come in two flavors: implicit and explicit contexts. On the one
hand, modal types with implicit contexts do not show typing contexts—free

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 281–308, 2023.
https://doi.org/10.1007/978-3-031-30044-8_11

http://orcid.org/0000-0001-6038-6249
http://orcid.org/0000-0002-8944-5924
http://orcid.org/0000-0002-5143-9764
https://doi.org/10.1007/978-3-031-30044-8_11
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_11&domain=pdf

Y. Murase et al.

variables and their types—of code values. A classical example of a modal type
system with implicit contexts is λ© [5], in which a code type is expressed by
©T (“code of T ”), no matter what variables are referenced in the code. It has
been applied to real programming languages for multi-stage programming, such
as MetaOCaml [2,13]. Since the type operator © is derived from the modal-
ity “next” in linear-time temporal logic, we call these code types linear-time
temporal types. On the other hand, modal types with explicit contexts show
typing contexts in code types. For example, the type of code x+2 is expressed
by [x : int]int, which stands for code of an integer expression that includes
free occurrences of an integer variable x. Such types are often called contex-
tual modal types [17]. Prior work points out that contextual modal types have
advantages over linear-time temporal types in dealing with mutable reference
cells and run-time code evaluation [12,24,14] although it is not actively applied
to real multi-stage programming languages so far. Contextual modal types is
rather known for its applications to proof assistants [20,3,21,26], where users
can operate on code representation of proof terms with explicit contexts.

Some previous work [12,16,3,21,23] on contextual modal types has suggested
polymorphic contexts—polymorphism over typing contexts in contextual modal
types—to abstract part of typing contexts by context variables γ: For example,
a type ∀γ.[γ]T1 → [γ]T2 denotes functions that take code of type T1 under an
arbitrary typing context γ and return code of type T2 under the same typing
context γ. Although we can see that polymorphic contexts will play an impor-
tant role in metaprogramming with contextual modal types, its type-theoretic
foundations are not fully investigated yet.

Our contributions. This paper proposes a novel contextual modal type theory
λ∀[] that provides a type-theoretic foundation for polymorphic contexts. Our
technical contributions are summarized below:

– We develop contextual modal type theory λ∀[] with polymorphic contexts
formally: we give its syntax, type system, and operational semantics given
by β-reduction. A notable feature of λ∀[] is that it allows multiple occurrences
of context variables in a single context, e.g., ∀γ1.∀γ2.[γ1, x : T1, γ2]T2.

– We prove basic properties of λ∀[]: subject reduction, strong normalization,
and confluence. Our strong normalization proof is based on Girard’s para-
metric reducibility method, which is adapted to polymorphic contexts.

– To demonstrate the expressive power of polymorphic contexts, we give trans-
lation from a two-level fragment of λ© [5] to λ∀[] and prove that the transla-
tion preserves typing. To our knowledge, this is the first result that formally
describes the relation between linear-time temporal types and contextual
modal types. We will see that λ∀[]’s major advantage that allows multiple
occurrences of context variables in a single context plays a vital role.

Organization of the paper. Section 2 provides motivating examples from metapro-
gramming. Our formal development starts with a simple Fitch-style modal type
theory λ[] in Section 3. We extend λ[] to λ∀[] with polymorphic contexts and

282

Contextual Modal Type Theory with Polymorphic Contexts

prove subject reduction in Section 4; we prove strong normalization of λ∀[] in
Section 5. Section 6 develops a sound embedding from linear-time temporal types
to contextual modal types. Finally, we discuss related work in Section 7 and give
a conclusion in Section 8.

2 Motivation

This section provides examples from common metaprogramming use cases. We
use a hypothetical OCaml-like language with contextual modal types we present
later. Note that the language is supposed only to illustrate the type theory’s
informal ideas and is not intended as practical language.

2.1 Simple Contextual Modal Types: Specializing Power Function

First, we show a typical example from staged computation, the power function,
to demonstrate how we can use contextual modal types for staged computation.

(* val pow : int -> [int |- int] *)
let rec pow n = match n with

| 0 -> ‘<x: int> 1
| n -> let u = pow (n-1) in ‘<x: int>(x * ,1(u)[x])

(* val power4 : int -> int *)
let power4 = ,0(‘<>(fun x:int -> ,1(pow 4)[x]))[]

The function pow generates a piece of code: x * (. . . * (x * 1). . .) that
multiplies variable x n times; the function power4 puts the code generated by
pow under function abstraction and evaluates the code at run-time to obtain a
function value to compute x4 without recursion.

This example uses two constructs for code manipulation: quote of the form
‘<Γ>M and unquote of the form ,n(M)[M1, . . . ,Mk]. The former, which is
similar to quasi-quotation in Lisp, generates code of an expressionM paired with
a variable environment Γ under which the code is evaluated. In the example,
the quote ‘<x: int> 1 is code of constant 1 with the environment with single
integer variable x. The quote has a contextual modal type [int |- int], where
the premise (int on the left of |-) corresponds to the environment x:int and
the succedent (int on the right) to the code body.

Given a contextual modal type [C ` T], we call C a context. A context
is a sequence of types and does not involve variables. Similarly to de Bruijn
indices, we identify variables in a context by their position rather than by their
names. For instance, two quotes, ‘<x:int, y:int>x and ‘<z:int, w:int>z,
are considered α-equivalent because both use the first variable in the environment
even though the variable names in the two environments are different. Both terms
have the same type [int, int |- int].

An unquote ,n(M)[M1, . . . ,Mk] is used to expand a code value M . For
example, ,1(u)[x] expands u of type [int |- int]. In addition to the code

283

to be expanded, an unquote involves two annotations, an explicit substitution
[M1, . . . ,Mk] and a stage transition n. An explicit substitution provides the
definitions of the variables in the environment of a quote value. In the exam-
ple code, ,1(u)[x] supplies an explicit substitution [x] as the definition for a
single-variable context int. If u is ‘<y:int>y * 1, then the unquote will ex-
pand to x * 1, replacing y with its definition x. Roughly speaking, a stage tran-
sition represents the number of nested quotes surrounding M . The expression
,1(u)[x] applies the explicit substitution to u, and splices the obtained code into
the surrounding quote. Thus, the code ‘<x: int>(x * ,1(u)[x]) adds “x *”
to the code denoted by u. On the contrary, the unquote ,0(‘<>(fun x:int ->
,1(pow 4)[x]))[] computes ‘<>(fun x:int -> ,1(pow 4)[x]) (to obtain the
code value fun x:int -> (x * (x * (x * (x * 1)))) with the empty envi-
ronment) and expands it; since there is no surrounding quote, the expansion
amounts to running the code. In this sense, the unquote in this language can be
considered as unquote in Lisp-like languages if the stage transition is 1 and as
eval function if it is 0.

2.2 Polymorphic Contexts: Macro repeat

Secondly, consider a macro called repeat, which repeats a given piece of code
n times. For example, we expect Lisp code (repeat 2 (print "hello")) to
show hello two times. We can imitate such a macro as follows:

(* val repeat : int -> [string -> unit |- unit]
-> [string -> unit |- unit] *)

let rec repeat n body = match n with
| 0 -> ‘<pr: string -> unit>(())
| n -> let u = repeat (n-1) body in

‘<pr: string -> unit>(,1(u)[pr]; ,1(body)[pr])

This function repeat takes an integer n for the number of repetitions and code
to be repeated. For example, a macro call in Lisp (repeat 2 (print "hello"))
can be represented below.

,1(repeat 2 ‘<pr:string -> unit>(pr "hello"))[print]

To model macro expansion, we assume the whole code with macro calls is
surrounded by a quote; hence, we use the stage transition 1, instead of 0,
to splice the result of the macro call of repeat. Note that the environment
pr:string -> unit is expected to be the function print. After applying the
function repeat, we obtain the following code.

,1(‘<pr:string -> unit>(pr "hello"; pr "hello"; ()))[print]

Finally, by evaluating unquote, the code is fully expanded (with substituting
library the function print for pr) to

print "hello"; print "hello"; () .

Y. Murase et al.284

A problem with the function repeat is that it accepts code values with an
environment that consists of a single variable of type string -> unit. We rather
expect the function to accept code values with various patterns of contexts and
to have multiple types that differ only in contexts: e.g.,

– int -> [string -> unit |- unit] -> [string -> unit |- unit],
– int -> [string -> unit, int, int |- unit]

-> [string -> unit, int, int |- unit], and
– int -> [unit -> unit |- unit] -> [unit -> unit |- unit] .

We will resolve this issue by abstracting the context part of the function
with a context variable G. As a result, we obtain the type for generic repeat:
forall G. int -> [G |- int] -> [G |- int]. We call the type starting with
forall G. a polymorphic context type, which means that we can instantiate the
context variable G with any context. We can implement this generic function
poly_rep by using a context variable as follows.

(* val poly_rep : forall G. int -> [G |- unit] -> [G |- unit] *)
let rec poly_rep [G] n body =

match n with
| 0 -> ‘<xs: G>(())
| n -> let u = poly_rep [G] (n-1) body in

‘<xs: G>(,1(u)[xs]; ,1(body)[xs])

This function takes an additional context argument G, which is used in quotes.
xs is a series variable, which is a novel sort of variables in this paper. A series
variable stands for a sequence of (ordinary) variables—corresponding to the fact
that a context variable stands for a sequence of types—and forms an environment
by pairing with a context variable. For example, xs:G will represent environment
x:int, y:string if we substitute x, y for xs, and int, string for G. We can
also use series variables for explicit substitution. If we use a series variable in an
explicit substitution, as in ,1(u)[xs], xs stands for an explicit substitution con-
sists of a series of variables. For instance, if xs:G expands to x:int, y:string,
then ,1(u)[xs] also expands to ,1(u)[x,y]. In this case, series variables work
like identity substitutions in prior work [26,3,21,23], which pass variables from
an environment to explicit substitutions as-is.

Using poly_rep, we can repeat code with two variables as follows:

poly_rep [unit->int, int->unit] 3
(‘<rand:unit->int, printInt:int->unit>(printInt(rand())))

We apply to the context unit->int, int->unit in order to instantiate the
context variable G. It is worth noting that the series variables accompanied by G
will also be replaced automatically with fresh variables. In this case, the quote
‘<xs: G>(,u[xs]; ,body[xs]) will turn into

‘<x: unit->int, y:int->unit>(,u[x,y]; ,body[x,y])

where the series variable xs is replaced with fresh variables x,y. This way, a
mapping between variables and types is well maintained.

Contextual Modal Type Theory with Polymorphic Contexts 285

2.3 More Polymorphic Contexts: Combining Different Environments

Sometimes, we might want to use pieces of code with different environments.
Consider a function generic_plus, which takes two pieces of code as arguments
and returns a piece of code that sums the values of the two arguments. We can
implement such a function with ease.

(* val generic_plus:
forall G H. [G |- int] -> [H |- int] -> [G, H |- int] *)

let generic_plus [G H] x y = ‘<xs:G, ys:H>(,1(x)[xs] + ,1(y)[ys])

It takes two context variables G and H and puts them together in the same con-
text. As a result, we can use variables from both contexts. Although this example
is very simple, it demonstrates the novel feature of our contextual modal type
theory: it permits multiple occurrences of context variables in the same context,
as in [G, H |- int]. As far as we understand, previous work that supports
context polymorphism only allows a single occurrence of context variables. We
discuss the detail in Section 7.

One may wonder whether multiple occurrences of context variables are useful.
As we answer in Section 6, this novel feature is crucial to achieve the express-
ibility of the multi-stage programming languages in the literature.

3 Simple Fitch-Style Contextual Modal Type Theory

As an introduction to contextual modal types, this section formulates simple con-
textual type theory λ[] without polymorphic contexts. Nanevski et al. [17] formu-
lated their original contextual modal type theory in dual-context style [19,6,11],
which has judgments with two-level contexts. In contrast, we formulate λ[] in
so-called Fitch- or Kripke-style [4,1,15,6,31]. We choose this design because the
Fitch-style formulation provides Lisp-like quote/unquote syntax, which is akin
to that in linear-temporal type theories [5,30], and hence it is easier to compare
these two type theories. We demonstrate a formal comparison in Section 6.

We obtain λ[] by extending S4 Fitch-style modal calculus with contextual
modal type theory. One can consider it a combination of the Fitch-style modal
calculi by Valliappan et al. [31], and the contextual extension by Nanevski et
al. [17]. At the same time, we tweak definitions for an extension to polymorphic
contexts in Section 4.

3.1 Syntax and Type System

Types and terms in λ[] are shown in Fig. 1. Types consist of base types ranged
over by ι, function types S → T , and contextual modal types [C ` T]. A
contextual modal type [C ` T] generalizes an S4 modal type �T by adding a
context C , which is a finite sequence of types. It describes code of type T with
free variables whose types are C . Note that a contextual modal type with a
empty context [• ` T] has the same meaning as �T , which denotes closed code

Y. Murase et al.286

Types S ,T ::= ι | S → T | [C ` T]
Contexts C ,D ::= • | C ,T
Stage transitions k ∈ N
Terms M ,N ::= x | λxT .M |MN | quo〈Γ̂ 〉M | unqkM [θ]
Explicit Subst. θ ::= • | θ,M
Named Contexts Γ,∆ ::= • | Γ, x : T | Γ,µ

(Γ̂ and ∆̂ denote named contexts with no µ.)

Fig. 1. Syntax of λ[]

of type T . In addition to standard terms of simply typed lambda calculus, λ[] has
two forms, quote quo〈Γ̂ 〉M and unquote unqkM [θ]. We define stage transitions
as natural numbers, and explicit substitutions as sequences of terms.

We often use the word named contexts for typing contexts with variables and
use “contexts” for type-only ones. Similarly to other Fitch-style formulations, λ[]
extends named contexts with a special symbol µ (called lock) that delimits levels
of variables. For example, in a named context x : T1,µ, y : T2, z : T3, the variable
x has one higher level than y and z (we will revisit the notion of levels in the
definition of free variables). A named context is well formed iff the variables in
it do not have duplication; we assume that all named contexts are well formed.
We also require a named context in a quote to be single-level, i.e., not to contain
µ. We write Γ̂ for such µ-free named contexts. rg(Γ̂) denotes the range of Γ̂ , a
context obtained by forgetting variables in Γ̂ , and dom (Γ) denotes the domain
of Γ , the set of variables in Γ (locks can appear in Γ , unlike rg). We also define
the weakening relation Γ1 ≤ Γ2 as follows.

• ≤ •
Γ1 ≤ Γ2

Γ1, x : T ≤ Γ2, x : T

Γ1 ≤ Γ2

Γ1 ≤ Γ2, x : T

Γ1 ≤ Γ2

Γ1,µ ≤ Γ2,µ

As is common in other Fitch-style formulations, λ∀[] has a somewhat com-
plex binding structure. We show the definition of free variables in Fig. 2. For
a term M and integer k , FVk (M) is a set of free variables in M at level k ,
which roughly stands for the number of quotes surrounding M . Since an un-
quote unqk1M [θ] cancels k1 surrounding quotes, the level is lowered by k1. λ[]
has two binding forms: A lambda abstraction λxT .M binds all level-0 free oc-
currences of x in M and a quote quo〈Γ̂ 〉M binds all level-0 free variables from
Γ̂ in M . According to these binding forms, we define α-equivalence (but omit
its definition). For example, λx [T1`T2].quo〈x : T1〉(unq1(x)[x]) is α-equivalent to
λy [T1`T2].quo〈z : T3〉(unq1(z)[y]). As we shall see later, the typing rules of λ[]
enforce well-typed terms to be closed with regard to negative-level free variables.
Thus, we only care about positive-level free variables in this paper and assume
that the meta variable k ranges over natural numbers.

Typing rules are given in Fig. 3. The judgment k : Γ C ∆ states that there
is a stage transition k between two named contexts Γ and ∆. The rules mean
that k is the number of locks between Γ and ∆, e.g., 0: x : T C x : T and
2: y : T1 C y : T1,µ,µ, z : T2. The judgments Γ ` M : T and Γ ` θ : C state

Contextual Modal Type Theory with Polymorphic Contexts 287

FVk (M) FVk (θ)

FVk (x) =

{
{x} if k = 0

∅ otherwise

FVk (λxT .M) =

{
FVk (M)− {x} if k = 0

FVk (M) otherwise

FVk (M N) = FVk (M) ∪ FVk (N)

FVk (quo〈Γ̂ 〉M) =

{
FV0(M)− dom (Γ̂) if k = −1

FVk+1(M) otherwise

FVk2(unqk1
M [θ]) = FVk2−k1(M) ∪ FVk2(θ)

FVk (•) = ∅ FVk (θ,M) = FVk (θ) ∪ FVk (M)

Fig. 2. Free variables. This definition assumes k is an integer, but typing rules enforces
that FVk (M) = ∅ if k < 0.

that term M has type T and explicit substitution θ has context C under named
context Γ , respectively. The rules for variable x , lambda abstraction λxT .M ,
and application M1 M2 are almost the same as those in simply typed lambda
calculus, except that we only care about variables from tail (Γ), the level-0 part
of Γ . The type of a quote quo〈Γ̂ 〉M is derived by popping all level-0 variables in
the named context (Recall lock does not appear in Γ̂). Thus, Γ̂ binds all level-
0 free variables in M . An unquote unqkM [θ] uses θ as a substitution for the
context C , and k as the stage transitions between M and θ. We call a judgment
derivable when it is derived from these typing rules. We assume that judgments
in this paper are derivable if not stated explicitly.

3.2 Substitution

We define substitution on terms and explicit substitutions. We follow the style
of Valliappan et al. [31], which proposes simultaneous substitution on all free
variables with any level. We provide definitions related to substitutions in Fig. 4.

A substitution typing judgment ` σ : ∆ ⇒ Γ denotes that we can replace
a named context ∆ with another Γ by applying a substitution σ, e.g., ` (z :=
x y) : (z : T2) ⇒ (x : T1 → T2, y : T1). A lock substitution µk has two roles.
First, they provide information on the level of free variables to be substituted.
For example, if σ = σ1,µk , σ2 where σ2 does not have lock substitutions, σ2
substitutes level-0 free variables, and σ1 substitutes higher-level free variables.
Second, they replace the lock themselves. If σ has a lock substitution µk , it
means that it replaces a lock in ∆ with k locks in Γ .

Y. Murase et al.288

k : Γ C∆

0: Γ C Γ
k : Γ C∆

k : Γ C∆, x : T

k : Γ C∆
k + 1: Γ C∆,µ

Γ ` M : T Γ ` θ : C

x : T ∈ tail (Γ)

Γ ` x : T

Γ, x : T1 ` M : T2

Γ ` λxT1 .M : T1 → T2

Γ ` M1 : T1 → T2 Γ ` M2 : T1

Γ ` M1 M2 : T2

Γ,µ,∆ ` M : T

Γ ` quo〈∆̂〉M : [rg(∆̂) ` T]

Γ ` M : [C ` T] ∆ ` θ : C k : Γ C∆

∆ ` unqkM [θ] : T

Γ ` • : •
Γ ` θ : C Γ ` M : T

Γ ` θ,M : C ,T

Auxiliary function

tail (•) = • tail (Γ,µ) = • tail (Γ, x : T) = tail (Γ), x : T

Fig. 3. Typing rules of λ[]

Substitution application on terms M [σ] and explicit substitutions θ[σ] per-
forms actual substitution operations. They are defined to satisfy the following
lemma, which is expected by the intuition of substitution typing.

Lemma 1 (Substitution Lemma). If Γ ` M : T and ` σ : Γ ⇒ ∆, then
∆ ` M [σ] : T .

For example, let us consider Γ ` (unq1(x)[y]) y : T , where Γ = x : [S ` S →
T],µ, y : S . We can construct the following substitution that provides a term for
each variable in Γ .

` (x := x ′,µ0, y := z w) : Γ ⇒ (x ′ : [S ` S → T], z : S → S , w : S)

This substitution replaces level-0 occurrences of y to z w and level-1 occurrences
of x to x ′. µ0 in the substitution denotes that level-1 free variables of target
terms are mapped to level-0 terms; that is why the level-0 term x ′ is supplied for
the level-1 variable x . We can observe that the substitution is applied as follows.

((unq1(x)[y]) y)[x := x ′,µ0, y := z w] (1)
= (unq1(x)[y])[x := x ′,µ0, y := z w] (y [x := x ′,µ0, y := z w]) (2)
= (unq0(x [x := x ′])[y [x := x ′,µ0, y := z w]]) (y [x := x ′,µ0, y := z w]) (3)
= (unq0(x ′)[z w]) (z w) (4)

The most interesting equation is the one from (2) to (3). The substitution for x
is shifted by 1 level, and the stage transition of the unquote changes from 1 to 0
to align staging levels. The resulting term is given type T under the new named
context, as the substitution lemma states.

Contextual Modal Type Theory with Polymorphic Contexts 289

Substitution σ ::= • | σ, x := M | σ,µk

` σ : ∆⇒ Γ

` • : • ⇒ Γ

` σ : ∆⇒ Γ1 k : Γ1 C Γ2

` (σ,µk) : (∆,µ)⇒ Γ2

` σ : ∆⇒ Γ Γ ` M : T
` (σ, x := M) : (∆, x : T)⇒ Γ

M [σ] θ[σ]

x [σ] =

{
M if x := M ∈ tail (σ)

x otherwise

(λxT .M)[σ] = λxT .(M [σ]) where x 6∈ dom (tail (σ)) and x 6∈ FV0(σ)

(M N)[σ] = (M [σ]) (N [σ])

(quo〈Γ̂ 〉M)[σ] = quo〈Γ̂ 〉(M [σ,µ1, idΓ̂])

(unqkM [θ])[σ] = unq(count(k,σ))(M [σ ↑ k])[θ[σ]]

•[σ] = • (θ,M)[σ] = θ[σ],M [σ]

Auxiliary functions

FVk (σ, x := M) = FVk (σ) ∪ FVk (M) FVk2(σ,µk1) =

{
FVk2−k1(σ) if k2 ≥ k1

∅ otherwise

tail (σ, x := M) = tail (σ), x := M

tail (σ,µk) = •
count(0, σ) = 0

count((k1 + 1), •) = k1 + 1

count((k + 1), (σ, x := M)) = count(k + 1, σ)

count((k1 + 1), (σ,µk2)) = count(k1, σ) + k2

id• = •
idΓ,x : T = idΓ , x := x

idΓ,µ = idΓ ,µ1

σ ↑ 0 = σ

• ↑ (k + 1) = •
(σ, x := M) ↑ (k + 1) = σ ↑ (k + 1)

(σ,µk1) ↑ (k2 + 1) = σ ↑ k2

Fig. 4. Substitution

In Fig. 4, we also define identity substitutions that satisfies ` idΓ : Γ ⇒ Γ
for any Γ . We can confirm that idΓ does not affect the result of substitution, as
stated in the following lemma. We use this property to define reduction later.

Lemma 2. M [σ] = M [idΓ , σ] for any Γ .

3.3 Local Soundness/Completeness and Reduction

According to Pfenning and Davies [19], the introduction and elimination rules
for a type constructor should satisfy local soundness and local completeness,
which correspond to β-reduction and η-expansion, respectively. We confirm that
contextual modal types meet those conditions and then define reduction rules.

Local soundness states that the elimination rule is not too strong. For the
case of contextual modal types, we can witness it by the following local re-

Y. Murase et al.290

duction where we obtain the derivation D′ by application of the substitution
[idΓ ,µk , ∆̂ := θ], which we obtain from E and k : Γ C Γ ′. Here, ∆̂ := θ denotes
a substitution that maps each variable in ∆̂ to each term in θ.

D
Γ,µ, ∆̂ ` M : T

Γ ` quo〈∆̂〉M : [C ` T]

E
Γ ′ ` θ : C k : Γ C Γ ′

Γ ′ ` unqk (quo〈∆̂〉M)[θ] : T ⇒
D′

Γ ′ ` M [idΓ ,µk , ∆̂ := θ] : T

Local completeness states that the elimination rule is sufficiently strong. We
can confirm this condition by the following local expansion (we assume that
rg(∆̂) = C).

D
Γ ` M : [C ` T] ⇒

D
Γ ` M : [C ` T]

...
Γ,µ, ∆̂ ` dom(∆̂) : C

...
1: Γ C Γ,µ, ∆̂

Γ,µ, ∆̂ ` unq1M [dom(∆̂)] : T

Γ ` quo〈∆̂〉unq1M [dom(∆̂)] : [C ` T]

These patterns provide base cases for β-reduction and η-expansion. This
paper focuses on β-reduction, which we define as follows.

Definition 1 (β-reduction). We inductively define full reduction relations on
terms and explicit substitutions, →β. We show main rules other than congruence
below. We also define →∗β as the reflexive transitive closure of →β.

(λxS .M)N →β M [x := N] unqk (quo〈−→x : C 〉M)[θ]→β M [µk ,
−→x := θ]

We safely omit identity substitutions found in these rules, thanks to Lemma 2.
We do not dive into the basic properties of λ[] for now because we discuss those
of its extension λ∀[] in Sections 4 and 5.

4 Polymorphic Contexts

This section proposes a novel type theory λ∀[] that extends λ[] with polymorphic
contexts. We quickly go through an overview of its syntax and semantics, focus-
ing on the differences from λ[]. As examples in Section 2, the critical idea of λ∀[]
is the notion of series variables, which can be considered the term representation
for context variables.

4.1 Syntax, Type System, and Substitution

We provide the syntax of λ∀[] in Fig. 5. First, λ∀[] has two additional sorts of
variables: context variables γ, δ, standing for contexts, and series variables x, y,
representing sequences of variables. λ∀[] adds polymorphic context types of the

Contextual Modal Type Theory with Polymorphic Contexts 291

Types S ,T ::= . . . | ∀γ.T
Contexts C ,D ::= . . . | C , γ
Terms M ,N ::= · · · | Λγ.M | M@C
Explicit Subst. θ ::= . . . | θ, x
Named Contexts Γ,∆ ::= . . . | Γ, x : γ

Fig. 5. Syntax of λ∀[]

form ∀γ.T , which binds γ in T . It represents the set of types obtained by sub-
stituting any context C for the context variable γ. Two kinds of terms Λγ.M
and M@C are added as introduction and elimination for polymorphic context
types. We allow C to include polymorphic context types; thus, polymorphism
in λ∀[] is impredicative. The definition of contexts means that we can abstract
any part of a context with context variables, e.g., ∀γ1.∀γ2.[γ1, ι, γ2 ` ι]. Accord-
ingly, series variables can appear in explicit substitutions, and a pair of a series
variable and a context variable can appear in a named context. FV is updated
to accommodate series variables but we omit the definition here.

It is worth noting that context variables are not subject to staging. This
allows us to use the same context variable across levels—for example, the type
∀γ.[γ ` [γ ` T]] binds both occurrences of γ although they are in different levels.
The definition of free context variables, denoted by FCV(−), is straightforward
and we omit it in this paper.

We give additional typing rules and defining clauses of substitutions in Fig. 6.
We also extend the auxiliary functions such as tail to accommodate the new
syntax but we omit their definitions. The introduction and elimination rules
for polymorphic context types are similar to those for the polymorphic types
in System F [8]. The definition of context substitution T [γ := C] for types is
straightforward and omitted. The other rule for explicit substitutions states that
we can add x : γ to an explicit substitution if it appears in the level-0 part of Γ .
The point of the extension of substitution is that a series variable can only be
replaced with another series variable, not an explicit substitution. With these
extensions, we can confirm that the substitution lemma holds as expected.

4.2 Context Substitution

We also define substitution for context variables, which is the most non-trivial
part of λ∀[]. To describe the core idea of context substitution, let us consider a
term quo〈x : γ〉(unq1M [x]). If we naively substitute a context T , δ for the con-
text variable γ in this term, we would obtain quo〈x : (T , δ)〉(unq1M [x]), where
x : (T , δ) is simply ill formed as a named context. Instead, we will take the fol-
lowing steps.

1. We check the occurrences of γ in the named context of the quote
quo〈x : γ〉(unq1M [x]), and collect series variables that are associated to γ.
In this case, we have only x.

2. We generate a series of fresh variables to be substituted for x. Each variable
corresponds to each element of the new context T , δ. Suppose we generate

Y. Murase et al.292

Γ ` M : T Γ ` θ : C

Γ ` M : T γ 6∈ FCV (Γ)

Γ ` Λγ.M : ∀γ.T
Γ ` M : ∀γ.T

Γ ` M@C : T [γ := C]

Γ ` θ : C x : γ ∈ tail (Γ)

Γ ` θ, x : C , γ

Substitution σ ::= . . . | σ, x := y

M [σ] θ[σ]

. . . (Λγ.M)[σ] = Λγ.(M [σ]) if γ 6∈ FCV (σ) (M@C)[σ] = (M [σ])@C

. . . (θ, x)[σ] =

{
θ[σ], y if x := y ∈ tail (σ)

θ[σ], x else

` σ : ∆⇒ Γ

` σ : ∆⇒ Γ y : γ ∈ tail (Γ) x 6∈ dom (∆)

` σ, x := y : ∆, x : γ ⇒ Γ

Fig. 6. Additional typing rules and definitions of substitutions in λ∀[]

new variables x , y for T , δ. As a result, we get a variable series substitution
x := x , y.

3. We apply context substitution γ := T , δ to the named context x : γ along
with x := x , y. As a result, we get a new named context x : T , y : δ.

4. We also apply the variable series substitution to unq1M [x] and obtain
unq1M [x , y].

5. As a result, we obtain a substituted term quo〈x : T , y : δ〉(unq1M [x , y]).

In this way, substitution for context variables essentially requires three op-
erations (1) to replace context variables with contexts, (2) to generate fresh
variables to be substituted for series variables, and (3) to replace series variables
with sequences of variables. We start its formal definition with the following
new objects. We write Gv and Gs for infinite sequences of ordinary variables
and series variables without duplication, respectively.

Context substitution Σ ::= • | Σ, γ := C
Variable series −→x ,−→y ::= • | −→x , y | −→x , y
Variable series substitution σ̄ ::= • | σ̄, x := −→y | σ̄, µ
Variable generator G ::= (Gv, Gs)

A context substitution Σ maps context variables to contexts, and a variable
series substitution σ̄ maps series variables to variable series, that is, sequences

Contextual Modal Type Theory with Polymorphic Contexts 293

of ordinary/series variables. Note that series substitution does not affect stage
levels; hence, locks in series substitution are not annotated with stage transitions.
A variable generator consists of streams of non-duplicating variables and series
variables. We use it to generate fresh variables. rg (σ̄) denotes the variable series
obtained from the range of σ̄.

We define application of context substitution in Fig. 7. Application of a con-
text substitution to types T [Σ] and contexts C [Σ] is straightforward; we simply
replace context variables in a capture-avoiding manner. We omit their definitions
from the figure. On the contrary, context substitution on terms M [Σ; σ̄]G and
explicit substitutions θ[Σ; σ̄]G comes with not only Σ but also a variable series
substitution σ̄ and a variable generator G. Σ is used to replace context variables
in types in λ-abstractions and Γ in a quote; σ̄ is used to substitute series vari-
ables in explicit substitutions and Γ in a quote. The most interesting is the case
for a quote quo〈Γ̂ 〉M : first, a variable series substitution σ̄′ is generated by the
auxiliary function destruct (Step 2 above); second, Σ and the generated σ̄′ are
applied to Γ̂ to yield the new named context (Step 3); finally, we apply Σ and
σ̄, µ, σ̄′ to the body of the quote (Step 4), after removing variables in dom (Γ̂)
and generated ones from the generator; here, (Gv, Gs)−S means (Gv \S,Gs\S).
The auxiliary function destructG(Γ,Σ) scans Γ to find context variables in the
domain of Σ, generates fresh (ordinary/series) variables by using gensyms, and
returns a variable series substitution. gensymsG(C , V) produces a sequence of
ordinary/series variables of the same length as C ; fresh variables are chosen
from earlier ones in G but not in V .

For example, consider applying Σ = γ := T1, γ
′ and the empty variable series

substitution to M = quo〈x : γ, x : ι, y : γ〉M0. destructG((x : γ, x : ι, y : γ), (γ :=
T1, γ

′)) returns x := (x ′, x′), y := (y ′, y′) for some fresh x ′, x′, y ′, and y′ (with re-
spect toG) and, thus,M [Σ; •]G is quo〈x ′ : T1, x′ : γ′, x : ι, y ′ : T1, y′ : γ′〉M ′0 where
M ′0 = M0[Σ; (•, µ, x := (x ′, x′), y := (y ′, y′))]G′ andG′ = G−{x, x , y, x ′, x′, y ′, y′}.

We can confirm that context substitution preserves derivable judgments.

Lemma 3 (Context Substitution Lemma).
1. If Γ ` M : T then Γ [Σ; σ̄] ` M [Σ; σ̄]G′ : T [Σ] where σ̄ = destructG(Γ,Σ)

and G′ = G− (dom (Γ) ∪ rg (σ̄)) for any Σ and G.
2. If Γ ` θ : C then Γ [Σ; σ̄] ` θ[Σ; σ̄]G′ : C [Σ] where σ̄ = destructG(Γ,Σ) and

G′ = G− (dom (Γ) ∪ rg (σ̄)) for any Σ and G.

Although we use variable generators to get fresh variables, the result of con-
text substitution should be equivalent under renaming. We can confirm this
intuition by the following lemma.

Lemma 4. If Γ ` M : T , σ̄1 = destructG1
(Γ,Σ) and σ̄2 = destructG2

(Γ,Σ),
then there is a renaming substitution σ such that Γ [Σ; σ̄1] ` M [Σ; σ̄2]G′

1
[σ] : T [Σ]

with some G′1.

Corollary 1. If dom (Σ) ∩ FCV (Γ) = ∅ and Γ ` M : T , then M [Σ; •]G1 =α

M [Σ; •]G2
.

Based on this nature of context substitution, we may omit variable generators
from context substitution applications.

Y. Murase et al.294

M [Σ; σ̄]G

x [Σ; σ̄]G = x

(λxT .M)[Σ; σ̄]G = λx (T [Σ]).(M [Σ; σ̄]G)

(M N)[Σ; σ̄]G = (M [Σ; σ̄]G) (N [Σ; σ̄]G)

(quo〈Γ̂ 〉M)[Σ; σ̄]G = quo〈Γ̂ [Σ; σ̄′]〉(M [Σ; (σ̄, µ, σ̄′)]G′)

where σ̄′ = destructG(Γ̂ , Σ)

and G′ = G− (dom (Γ̂) ∪ rg (σ̄′))

(unqkM [θ])[Σ; σ̄]G = unqk (M [Σ; σ̄ ↑ k]G)[θ[Σ; σ̄]G]

(Λγ.M)[Σ; σ̄]G = Λγ.(M [Σ; σ̄]G) if γ 6∈ dom (Σ) and γ 6∈ FCV (Σ)

(M@C)[Σ; σ̄]G = (M [Σ; σ̄]G)@(C [Σ])

θ[Σ; σ̄]G

•[Σ; σ̄]G = •
(θ,M)[Σ; σ̄]G = (θ[Σ; σ̄]G), (M [Σ; σ̄]G)

(θ, x)[Σ; σ̄]G =

(θ[Σ; σ̄]G),−→y

if x := −→y ∈ tail (σ̄)

(θ[Σ; σ̄]G), x otherwise

Γ [Σ; σ̄]

•[Σ; σ̄] = •
(Γ, x : T)[Σ; σ̄] = Γ [Σ; σ̄], x : T [Σ]

(Γ, x : γ)[Σ; σ̄] =

Γ [Σ; σ̄],−→y : C

if x := −→y ∈ tail (σ̄)

and γ := C ∈ Σ

Γ [Σ; σ̄], x : γ else

(Γ,µ)[Σ; σ̄] = Γ [Σ; σ̄ ↑ 1],µ

Auxiliary functions

destructG((Γ, x : T), Σ) = destructG(Γ,Σ)

destructG((Γ, x : γ), Σ) =

σ̄, x := −→x if γ := C ∈ Σ

where σ̄ = destructG(Γ,Σ)

and −→x = gensymsG(C , dom (Γ) ∪ rg (σ̄))

destructG(Γ,Σ) otherwise

destructG((Γ,µ), Σ) = destructG(Γ,Σ), µ

gensyms(Gv,Gs)
(•, V) = •

gensyms(Gv,Gs)
((C ,T), V) = gensyms(Gv,Gs)

(C , V ∪ {x}), x

where x is the first element of Gv such that x 6∈ V

gensyms(Gv,Gs)
((C , γ), V) = gensyms(Gv,Gs)

(C , V ∪ {x}), x

where x is the first element of Gs such that x 6∈ V

Fig. 7. Context substitutions and variable series substitutions

Contextual Modal Type Theory with Polymorphic Contexts 295

4.3 Local Soundness and Completeness

Local soundness and local completeness are extended to polymorphic context
types as follows. We use context substitution to obtain D′ in the local re-
duction pattern. In this pattern, we observe destruct(Γ, γ := C) = • because
γ 6∈ FCV (Γ), and hence we get Γ ` M [γ := C ; •] : T [γ := C]. For the local
expansion pattern, we have to pick a context variable δ that is fresh against Γ .

Local Soundness

D
Γ ` M : T γ 6∈ FCV (Γ)

Γ ` Λγ.M : ∀γ.T
Γ ` (Λγ.M)@C : T [γ := C] =⇒

D′
Γ ` M [γ := C ; •] : T [γ := C]

Local Completeness

D
Γ ` M : ∀γ.T =⇒

D′
Γ ` M : ∀γ.T

Γ ` M@δ : T [γ := δ] δ 6∈ FCV (Γ)

Γ ` Λδ.(M@δ) : ∀δ.(T [γ := δ])

As a result, we obtain an additional reduction rule for →β below.

(Λγ.M)@C →β M [γ := C ; •]

By using the substitution and context substitution lemmas, it is not hard to
show subject reduction with regard to this β-reduction.

Theorem 1 (Subject Reduction).

1. If Γ ` M : T and M →β M ′, then Γ ` M ′ : T .
2. If Γ ` θ : C and θ →β θ

′, then Γ ` θ′ : C .

Furthermore, β-reduction satisfies strong normalization and confluence. We
only refer to confluence here because we will prove strong normalization in the
next section.

Theorem 2 (Confluence). If Γ ` M : T , M →∗β N1 and M →∗β N2, then
there exists a term N3 such that N1 →∗β N3 and N2 →∗β N3. The same holds also
for well-typed explicit substitutions.

Proof. We use Newmann’s lemma [25]. We have strong normalizaiton from The-
orem 3 (in Section 5) and weak confluence is easy to show.

Y. Murase et al.296

5 Parametric Reducibility and Strong Normalization

This section provides a proof of strong normalization of β-reduction in λ∀[].
A common approach to proving strong normalization of a modal calculus is
to provide a reduction-preserving translation to another strongly normalizing
calculus such as simply typed lambda calculi [15,1]. We tried this approach,
reducing strong normalization of λ∀[] to that of System F [8]. However, it turned
out not to be straightforward. Instead, we directly prove strong normalization of
λ∀[] using reducibility in this paper. We follow Girard’s parametric reducibility [8]
to define reducibility with polymorphic contexts. We also adopted techniques
from logical relation for Fitch-style modal calculi proposed by Valliappan et
al. [31] to extend reducibility to our Fitch-style modal type theory. Along with
these existing methods, our approach requires several non-trivial extensions of
reducibility for contextual modal types, which we detail in this section.

We start with the definition of neutral terms and explicit substitutions.

Definition 2 (Neutral Terms and Explicit Substitutions).

1. A term M is neutral iff M is either of a variable, application, unquote, or
context application.

2. An explicit substitution θ is neutral iff it can be derived from the rules below.

• is neutral
θ is neutral M is neutral

θ,M is neutral
θ is neutral
θ, x is neutral

The definition of neutral terms is standard, while the one for neutral explicit
substitutions is somewhat specific to λ∀[] but straightforward: θ is neutral iff all
terms in θ are neutral. Then, we define reducibility candidates.

Definition 3 (Reducibility Candidates). Given a type T , let R be a set of
derivable judgments of type T . We write R(Γ,M) iff Γ ` M : T ∈ R. R is a
reducibility candidate of T iff it satisfies all of the following properties.

CR0 If R(Γ,M) and Γ ≤ Γ ′, then R(Γ ′,M).
CR1 If R(Γ,M), then M is strongly normalizing with regard to →β.
CR2 If R(Γ,M) and M →β M ′, then R(Γ,M ′).
CR3 If M is neutral, Γ ` M : T , and R(Γ,M ′) for all M ′ such that M →β M ′,

then R(Γ,M).

We also define a reducibility candidate of context C similarly.

We abbreviate reducibility candidate as RC. As a next step, we define re-
ducibility candidate assignments to define reducibility with parameters. We only
need to care about reducibility candidates of contexts because λ∀[] does not have
polymorphic types.

RC assignment Σ̃ ::= • | Σ̃, γ : C := R (where R is an RC of C)

Contextual Modal Type Theory with Polymorphic Contexts 297

Σ̃ is well-formed if it does not have duplicating context variables in it. We
assume that all reducibility candidate assignments are well-formed. We write
dom (Σ̃) for the set of context variables on the left side of := in Σ̃, and Σ for
the context substitution that we can obtain by forgetting RCs in Σ̃.

On top of that, we define reducibility with parameters.

Definition 4 (Parametric Reducibility). Given an RC assignment Σ̃, a type
T , and a context C where FCV (T) ⊆ dom (Σ̃) and FCV (C) ⊆ dom (Σ̃), we
define RedT [Σ̃] and RedC [Σ̃], a set of derivable judgments of a type T [Σ]
and a context C [Σ], respectively, as follows. We write RedT [Σ̃](Γ,M) iff Γ `
M : T [Σ] ∈ RedT [Σ̃]; similarly for RedC [Σ̃](Γ, θ).

– If T = ι, then RedT [Σ̃](Γ,M) iff M is strongly normalizing with regard to
→β.

– If T = T1 → T2, then RedT [Σ̃](Γ,M) iff RedT2
[Σ̃](∆,M N) for any ∆

and N such that Γ ≤ ∆ and RedT1
[Σ̃](∆,N).

– If T = [C ` T ′], then RedT [Σ̃](Γ,M) iff RedT ′ [Σ̃](∆′, unqkM [θ]) for any
∆, ∆′, k and θ such that Γ ≤ ∆, k : ∆C∆′ and RedC [Σ̃](∆′, θ).

– If T = ∀γ.T ′, then RedT [Σ̃](Γ,M) iff RedT ′ [Σ̃, γ : C := R](Γ,M@C) for
any C and an RC R of C .

– If C = •, then RedC [Σ̃](Γ, θ) always holds (where θ is always •).
– If C = C ′,T , then RedC [Σ̃](Γ, θ) iff RedC ′ [Σ̃](Γ, θ′) and RedT [Σ̃](Γ,M)

where θ = θ′,M .
– If C = C ′, γ, then RedC [Σ̃](Γ, θ) iff RedC ′ [Σ̃](Γ, θ1) and R(Γ, θ2) for some
θ1, θ2, and R such that θ = θ1, θ2 and γ : D := R ∈ Σ̃.

The definition for context variables is somewhat complicated. As (C ′, γ)[Σ] =
C ′[Σ],D , we need two reducible explicit substitutions θ1 and θ2 where θ1 is for
C ′[Σ] and θ2 for D . Because D comes from the context variable γ, we use the
RC R from Σ̃ to confirm that θ2 is reducible.

The parametric reducibility is a reducibility candidate in fact, stated as the
following lemma.

Lemma 5. 1. RedT [Σ̃] is an RC of T .
2. RedC [Σ̃] is an RC of C .

We prove a few more auxiliary lemmas for the basic lemma. Firstly, we con-
firm that context substitution on types or context can be lifted to reducibility
assignment.

Lemma 6. 1. RedT [γ:=C][Σ̃] = RedT [Σ̃, γ : C [Σ] := RedC [Σ̃]].
2. RedD[γ:=C][Σ̃] = RedD [Σ̃, γ : C [Σ] := RedC [Σ̃]].

Besides, we state three lemmas that correspond to introduction of function
types, contextual modal types, and polymorphic context types.

Lemma 7. If Γ, x : S [Σ] ` M : T [Σ] and RedT [Σ̃](Γ ′,M [idΓ , x := N]) for any
Γ ′ and N such that Γ ≤ Γ ′ and RedS [Σ̃](Γ ′,N), then RedS→T [Σ̃](Γ, λxS .M).

Y. Murase et al.298

Lemma 8. If Γ,µ,−→x : C [Σ] ` M : T [Σ] and RedT [Σ̃](Γ2,M [idΓ1
,µk ,

−→x :=
θ]) for any Γ1, Γ2, k and θ such that Γ ≤ Γ1, k : Γ1 C Γ2 and RedC [Σ̃](Γ2, θ),
then Red[C`T][Σ̃](Γ, quo〈−→x : C [Σ]〉M).

Lemma 9. If Γ ` M : T [Σ], γ 6∈ FCV (Γ) ∪ FCV (Σ) ∪ dom (Σ), and
RedT [Σ̃, γ : C := R](Γ,M [γ := C ; •]) for any C , R such that R is an RC
of C , then Red∀γ.T [Σ̃](Γ,Λγ.M).

We can prove these lemmas by CR3 and induction on the number of reduction
steps of strongly normalizing terms/explicit substitutions.

Before the basic lemma, we define reducibility for named contexts. Although
we would like something like RedΓ [Σ̃], this definition does not work because
it does not have information on how a named context with series variable x : γ
will be replaced. Therefore we also need to pass series variables substitution, like
RedΓ [Σ̃, σ̄] in the same way as context substitution for named contexts.

Definition 5 (Reducibility for Substitution). Given an RC assignment Σ̃,
a named context Γ , and a series substitution σ̄ where FCV (Γ) ⊆ dom (Σ̃), we de-
fine RedΓ [Σ̃, σ̄], a set of derivable judgments of a named context ` σ : Γ [Σ; σ̄]⇒
∆, as follows. We write RedΓ [Σ̃, σ̄](∆,σ) iff ` σ : ∆⇒ Γ ∈ RedΓ [Σ̃, σ̄].

– If Γ = •, then RedΓ [Σ̃, σ̄](∆,σ) always holds (where σ = •).
– If Γ = Γ ′, x : T , then RedΓ [Σ̃, σ̄](∆,σ) iff RedΓ ′ [Σ̃, σ̄](∆,σ′) and

RedT [Σ̃](∆,M) for some σ′, M such that σ = (σ′, x := M).
– If Γ = Γ ′, x : γ, then RedΓ [Σ̃, σ̄](∆,σ) iff RedΓ ′ [Σ̃, σ̄](∆,σ′) and R(∆, θ)

for some σ′, θ and R such that γ : C := R ∈ Σ̃, σ = (σ′,−→x := θ) and
x := −→x ∈ σ̄ (−→x := θ is a point-wise mapping between −→x and θ).

– If Γ = Γ ′,µ, then RedΓ [Σ̃, σ̄](∆,σ) iff RedΓ ′ [Σ̃, σ̄](∆ ↑ k , σ′) for some σ′
and k such that σ = (σ′,µk).

We use series variables substitution in the third rule to generate a substitution
for (x : γ)[Σ; σ̄] = −→x : C . Finally, we prove the basic lemma.

Lemma 10 (Basic Lemma).

– If Γ ` M : T and RedΓ [Σ̃, σ̄](∆,σ′) where σ̄ = destruct(Γ,Σ), then
RedT [Σ̃](∆,M [Σ; σ̄][σ′]).

– If Γ ` θ : C and RedΓ [Σ̃, σ̄](∆,σ′) where σ̄ = destruct(Γ,Σ), then
RedC [Σ̃](∆, θ[Σ; σ̄][σ′]).

Strong normalization is proved as a special case of the basic lemma, where
we choose Σ, σ̄ and σ′ as identity substitutions respectively.

Theorem 3 (Strong Normalization). If Γ ` M : T , then M is strongly nor-
malizing with regard to →β.

Contextual Modal Type Theory with Polymorphic Contexts 299

Level-0 Types T 0, S0 := ι | S0 → T 0 | ©T 1

Level-0 Terms M0, N0 := x | λxT
0

.M0 |M0N0 | quoM1

Level-1 Types T 1, S1 := ι | S1 → T 1

Level-1 Terms M1, N1 := x | λxT
1

.M1 |M1N1 | unqM0

Named Contexts Γ ◦,∆◦ := · | Γ ◦, x :0 T 0 | Γ ◦, x :1 T 1

Γ ◦ `i M i : T i (i ∈ {0, 1})

x :i T i ∈ Γ ◦

Γ ◦ `i x : T i
Γ ◦, x :i T i1 `i M i : T i2

Γ ◦ `i λxT
i
1 .M i : T i1 → T i2

Γ ◦ `i M i : T i1 → T i2 Γ ◦ `i N i : T i1

Γ ◦ `i M iN i : T i2

Γ ◦ `1 M1 : T 1

Γ ◦ `0 quoM1 : © T 1

Γ ◦ `0 M0 : © T 1

Γ ◦ `1 unqM0 : T 1

Fig. 8. Syntax and typing rules of λ© (two-level fragment)

6 Embedding Linear-Time Temporal Type Theory

In multi-stage computation, contextual modal types are known to overcome weak
points of linear-time temporal types from λ© by Davies [5], regarding type safety
of mutable reference cells and/or run-time code evaluation [12,24,14]. However,
simple contextual modal theories, such as λ[], are known to be less expressive
than linear-time temporal types. That is why polymorphic contexts are explored
in the literature, which will endow expressiveness to contextual modal types.
Then it is natural to ask if polymorphic contexts are strong enough to express
linear-time temporal types. This section proves that the answer is yes, by provid-
ing a sound translation from linear-time temporal types to λ∀[]. We first define
a two-level fragment of λ©, as a source language to simplify our embedding
(Fig. 8). We call the fragment itself λ© later in this paper. Then, we discuss the
core insights of our embedding from λ© and give a formal definition of our em-
bedding from λ© to λ∀[]. We also prove its soundness—the embedding preserves
typing—while a proof that it also preserves semantics is left for future work.

λ© has two stages: level-1 is the future stage. We define types and terms
for each level (and metavariables are indexed by 0 or 1). A temporal type ©T 1

denotes a code for the future-stage value of T 1. Unlike contextual modal types,
temporal types do not show context explicitly. Instead, typing judgments hold
future-stage named contexts that implicitly represent contexts of those code
types. A type judgment Γ ◦ `i M i : T i (where i = 0, 1) means typing at the
stage i , where Γ ◦ includes variables of both levels. λ© also has syntax for quote
and unquote as in λ∀[] but they are not annotated with named contexts and
explicit substitutions. Typing rules do little with named contexts.

These differences lead to the difference in binding structure. For example,
consider a λ©-term λf©T

1
1→©T

1
2 .quo(λxT

1
1 .unq(f quox)). In this term, the outer

lambda binds the level-0 occurrence of f and the inner lambda binds the level-1

Y. Murase et al.300

occurrence of x , although quo and unq are placed between binders and variable
references. To embed λ© to λ∀[], we have to emulate this behavior of λ©.

We design our embedding from λ© to λ∀[] based on the following insights.
First of all, we naturally embed quote and unquote of λ© to those of λ∀[] (by
recovering missing annotations). Secondly, we can recover a hidden context of
code types in λ© from the types of level-1 free variables. For example, in the
judgment

x :0 ©int, y :1 int `0 quoy : © int,

the context of the type ©int (of quoy) should be int because the named context
has a level-1 binding y :1 int. As a result, ©int under x :0 ©int, y :1 int is
embedded into [int ` int]. Thirdly, recovered contexts of code types sometimes
need to be extended. Let us consider the following judgment:

· `0 λf©int→©str.quo(λx int.unq(f quox)) : (©int→©str)→©(int→ str).

The hidden context of the f is empty, and hence the type of f should be [• `
int] → [• ` str]. However, f is used inside the level-1 binder λx int, and hence
this use of f should be typed as [int ` str]→ [int ` str]. We need to extend the
context of the code type as an abstraction under quo extends the level-1 context.
Thus, the polymorphic context type ∀γ.[γ ` int]→ [γ ` str] is more appropriate
for f . In this way, polymorphic contexts allow us to extend the context of an
argument of code type, according to where the argument is used.

The formal definition of our embedding is shown in Figure 9. Level-1 types
are translated to λ∀[] types in a straightforward manner; the translation of level-
0 types carries a context, which is used to signify the context of code types. If
it translates a function type, we introduce a polymorphic context type to the
argument type so that we can extend the context of the type later. For example,
(©int → ©str) → ©(int → str) translates to (∀γ.(∀δ.[γ, δ ` int]) → [γ `
str])→ [• ` int→ str] under an empty context.

Before discussing term translation, we introduce intermediate named contexts
Γ̃ , an intermediate representation of embedded named contexts. Their structure
is similar to named contexts in λ© while its elements are variables and types
of λ∀[]. We write |Γ̃ |0 for the level-0 fragment of Γ̃ and |Γ̃ |1 for the level-1
fragment of Γ̃ . The relation Γ ◦ Γ̃ means that Γ ◦ can be translated into
Γ̃ . The point is that Γ ◦ can be translated into different intermediate named
contexts. For example, the λ© named context x :1 T 1, y :0 ©S1, z :0 ©S1

can be translated to both x :1 JT 1K, y :0 [JT 1K ` JS1K], z :0 [JT 1K ` JS1K] and
x :1 JT 1K, y :0 [JT 1K ` JS1K], x :1 γ, z :0 [JT 1K, γ ` JS1K] due to the last rule of .
We use this relation to prove the soundness theorem (Theorem 4) later.

Term embedding carries an intermediate named context for two purposes.
Firstly, it is used to infer a named context and an explicit substitution for quote
and unquote. Secondly, it is used to know a missing context that we need to
extend when using level-0 variables. The level-1 types in a named context always
translate to polymorphic context types so that we can extend their context when
those variables are used. diff (x , Γ̃) determines the missing context, defined as
diff (x , (Γ̃ , x :0 T , ∆̃)) = rg(|∆̃|1) (or undefined otherwise).

Contextual Modal Type Theory with Polymorphic Contexts 301

JT 1K JM1KΓ̃

JιK = ι

JT 1
1 → T 1

2 K = JT 1
1 K→ JT 1

2 K

JxKΓ̃ = x

JλxT
1

.M1KΓ̃ = λx JT1K.JM1KΓ̃ ,x :1JT1K

JM1N1KΓ̃ = JM1KΓ̃ JN1KΓ̃
JunqM0KΓ̃ = unq1JM

0KΓ̃ [dom(|Γ̃ |1)]

JT 0KC JM0KΓ̃

JιKC = ι

JT 0
1 → T 0

2 KC = (∀γ.JT 0
1 KC ,γ)→ JT 0

2 KC
for fresh γ

J©T 1KC = [C ` JT 1K]

JxKΓ̃ = x@diff (x , Γ̃)

JλxT
0

.M0KΓ̃ = λxT .JM0KΓ̃ ,x :0T
where T = ∀γ.JT 0Krg(|Γ̃ |1),γ
for fresh γ

JM0N0KΓ̃ = JM1KΓ̃ (Λγ.JN1KΓ̃ ,x:1γ)

for a fresh x and γ

JquoM1KΓ̃ = quo〈|Γ̃ |1〉JM1KΓ̃

Intermediate Named Context Γ̃ := · | Γ̃ , x :0 T | Γ̃ , x :1 T | Γ̃ , x :1 γ

Γ ◦ Γ̃
· ·

Γ ◦ Γ̃

Γ ◦, x :0 T 0 Γ̃ , x :0 ∀γ.JT 0Krg(|Γ̃ |1),γ

Γ ◦ Γ̃

Γ ◦, x :1 T 1 Γ̃ , x :1 JT 1K
Γ ◦ Γ̃

Γ ◦ Γ̃ , x :1 γ

Fig. 9. Embedding from λ©

Finally, we prove the soundness of the translation.

Theorem 4 (Soundness of Embedding from λ©).

– If Γ ◦ `0 M0 : T 0 and Γ ◦ Γ̃ , then |Γ̃ |0 ` JM0KΓ̃ : JT 0Krg(|Γ̃ |1).
– If Γ ◦ `1 M1 : T 1 and Γ ◦ Γ̃ , then |Γ̃ |0,µ, |Γ̃ |1 ` JM1KΓ̃ : JT 1K.

Proof (Sketch). By mutual induction on derivation of λ©.
We focus on the case of level-0 application. If M0 = M0

1 M
0
2 , then Γ ◦ `0

M0
1 : S0 → T 0 and Γ ◦ `0 M0

2 : S0 for some S0. By the induction hypothesis, we
have the two λ∀[] judgments below.

– |Γ̃ |0 ` JM0
1 KΓ̃ : (∀γ.JS0Krg(|Γ̃ |1),γ)→ JT 0Krg(|Γ̃ |1)

– |Γ̃ , x :1 γ|0 ` JM0
2 KΓ̃ ,x:1γ : JS0Krg(|Γ̃ ,x:1γ|1)

The second judgment holds because Γ ◦ Γ̃ , x :1 γ can be derived from Γ ◦ Γ̃ .
We can derive |Γ̃ |0 ` Λγ.JM0

2 KΓ̃ ,x:1γ : ∀γ.JS0Krg(|Γ̃ ,x:1γ|1) from the second judg-
ment considering that |Γ̃ , x :1 γ|0 = |Γ̃ |0. Then we can apply this judgment to
the first judgment, and we obtain |Γ̃ |0 ` JM0

1 KΓ̃ (Λγ.JM0
2 KΓ̃ ,x:1γ) : JT 0Krg(|Γ̃ |1). �

Y. Murase et al.302

It is worth noting that this embedding requires multiple occurrences of con-
text variables in a single context: As we have seen, (©int→©str)→©(int→
str) translates to (∀γ.(∀δ.[γ, δ ` int]) → [γ ` str]) → [• ` int → str], where
the type [γ, δ ` int] uses two context variables. This fact strongly suggests that
context variables in λ∀[] are essential for embedding linear-time temporal types
and hence also staged computation.

7 Related Work

Contextual Modal Type Theory. Early work on calculi for metaprogramming
with explicit contexts include λpolyopen by Kim et al. [12] and ν� by Nanevski and
Pfenning [16]. On the one hand, λpolyopen has a Fitch-style-like modal type system
with explicit contexts and is type safe in the presence of mutable reference and
run-time evaluation. On the other hand, ν� has a dual-context-like modal type
system that is type sound with run-time evaluation. Both calculi use symbolic
representation for named contexts of quoted code. As a result, names in quoted
code are not subject to α-conversion. It is worth noting that both papers discuss
context polymorphism to achieve flexibility for computation with contexts.

Nanevski et al. refined ν� to contextual modal type theory (CMTT) [17],
allowing α-conversion for variables in quoted code. CMTT is very close to our
λ[] while it employs dual-context style formulation. We believe it is not difficult
to apply polymorphic context types to dual-context CMTT, although we do
not explore it in this paper. CMTT provides a basis for several metaprogram-
ming languages [9,20,26]. We expect that λ∀[] will contribute to future designs
of metaprogramming languages as well.

One notable difference between CMTT and λ[] is that CMTT has a named
context inside a contextual modal type, instead of an (unnamed) context. This
approach makes α-conversion somewhat complicated: a CMTT term box(x : T.x)
has a type [x : T]T while an α-equivalent term box(y : T.y) has a bit different
type [y : T]T . Instead, λ[] omits names from contexts in contextual modal types
by identifying variables in a context by their positions; hence α-equivalent terms
always have the same type in λ[].

Prior Work on Polymorphic Contexts. Contextual modal type systems have
been applied to proof assistants [20,3,21,26]. Those proof assistants are designed
to allow users to inspect code representation of proof terms using contextual
modal types. In particular, Beluga [20,3] allows users to perform pattern match
against code with polymorphic contexts, whereas λ∀[] allows only for genera-
tive metaprogramming. The prior proposals used an identity substitution idφ
as a term representation of a context variable φ, whereas we use series vari-
ables for that purpose. Type-theoretic formalization of identity substitutions
is examined by Puech’s unpublished work [23]. He proposed dual-context and
Fitch-style contextual modal type theories with polymorphic types and iden-
tity substitutions. However, a formalization with identity substitutions intro-
duces a significant restriction: only one occurrence of context variable is al-
lowed in a single context. Suppose we allow multiple occurrences of context

Contextual Modal Type Theory with Polymorphic Contexts 303

variables in a context with identity substitutions. In that case, we have a term
like quo〈γ, γ〉(unq(x)[idγ]) that is ill-scoped because we do not know which γ
is referred to by idγ . One might consider introducing a restriction that context
variable do not duplicate in a context. However, it is still hard to avoid ill-scoped
terms like (Λδ.quo〈γ, δ〉(unq(x)[idγ]))@γ, which reduces to the previous term.
That is why we introduce series variables in λ∀[].

Context Subtyping. Rhiger [24] proposed a Fitch-style contextual modal type
system λ

[]
< that achieves safe code operation with mutable reference and run-

time evaluation. An interesting point of λ[]< is that it employs linear-time fla-
vored named contexts where a quote does not discard a future-stage context, and
achieves flexibility of computation with context by introducing structural sub-
typing for contexts. Kiselyov et al. proposed a type system <NJ> with a notion
of refined environment classifiers [14], which can be interpreted as encapsulated
representation of contexts. <NJ> is similar to λ[]< in the sense that it employs clas-
sifier subtyping while it is closer to nominal subtyping. They suggested bounded
polymorphism over classifiers as potential extension of <NJ>, which will allow
a type like ∀γ.(∀δ � γ.〈T1〉δ → 〈T2〉δ) → 〈T1 → T2〉γ . Their bounded poly-
morphism is likely as expressive as polymorphic contexts of λ∀[], and we are
interested in the formal relation between them.

Pattern matching against code Analytic metaprogramming that allows pat-
tern matching against code values is considered beneficial and explored re-
cently [18,28,9]. Especially, Mœbius [9] provides a contextual modal type system
capable of pattern matching against open code with polymorphic types. It should
be feasible to extend λ∀[] to allow pattern matching against code values, but it
is left for future work.

Modal Types for Algebraic Effects and Handlers. ECMTT [32] is an interesting
application of contextual modal types to algebraic effects and handlers [22]. It
uses contexts to track effects of computations and use explicit substitutions to
supply effect handlers. The authors mentioned that ECMTT needs some form
of context polymorphism to support effect polymorphism. We expect the poly-
morphic context types in λ∀[] will provide a basis for such an extension. As our
formulation allows multiple occurrences of context variables; hence, we can de-
scribe a function that combines computations with different polymorphic effects,
e.g., ∀γ, δ.[γ ` T]→ [δ ` T]→ [γ, δ ` T].

Linear-Time Temporal Types. There are several attempts at revealing the rela-
tion between contextual modal type theory and linear-time temporal type theory.
However, not all of them achieved their goal. For example, Davies [5] pointed
out that the translation from λpolyopen to λ©, proposed by Kim et al. [12], was not
sound for some cases. Puech [23] also claimed a sound translation from λctxI to
λα [29], which is an extension of λ© with environment classifiers, but it did not
work for some cases, either. His translation infers hidden contexts by introduc-
ing logic variables for unknown contexts and collecting constraints on those logic

Y. Murase et al.304

variables through typing derivations. Consequently, the following judgment fails
to translate because f is used in two different scopes, and hence contradicting
constraints for f is generated.

f :0 ©T →©T, g :0 ©T →©T →©T, z :1 T

` g (quo((λx : T.unq(fquox))z)(fquoz))

These failing translations conversely indicate that the hypothesis by Davies [5]
is right: a sound translation from λ© requires a full form of context polymor-
phism as in our λ∀[]. Kameyama et al. [10] provided a sound translation from
a 2-level fragment of λα to System F with products and a fixed point opera-
tor. Their translation uses polymorphic types to represent unknown contexts,
similarly to our approach. However, their translation takes an approach dif-
ferent from ours. For example, a λ© type ©T → ©T → ©T is encoded to
∀γ.([γ ` T] → ∀δ.([γ, δ ` T] → [γ, δ ` T])) if we apply their approach to λ∀[],
whereas the same type is encoded to (∀γ.[γ ` T]) → (∀γ.[γ ` T]) → [• ` T]
by the approach discussed in Section 6. There are two major differences be-
tween their approach and ours. Firstly, their translation needs to insert coercion
functions that extend contexts in types in conjunction with polymorphic types.
On the contrary, our approach achieves the same goal purely by polymorphic
contexts, making the translation much more concise. Secondly, their source lan-
guage supports richer expressions than λ©, including run-time evaluation and
fixpoint. It is left for future work to figure out whether our approach can also
embed such features of λα to λ∀[].

8 Conclusion

This paper has proposed a novel contextual modal type theory λ∀[] with poly-
morphic contexts. It is novel in that it supports parametric polymorphic contexts
and allows us to have multiple context variables in a single context. We have
given its semantics by β-reduction and proved subject reduction, strong nor-
malization, and confluence. We have also demonstrated sound embedding from
linear-time temporal type theory. We expect that this result shows that λ∀[]
endows expressiveness sufficient to describe programs with staged computation.

We regard this work as a first step to establishing a mature modal type the-
ory that reasons hygienic binding operations provided by procedural macros of
Scheme, Racket, and several languages. Future work includes formal reasoning
of the relation between contextual modal types and refined environment clas-
sifiers and developing contextual modal type theory that can express first-class
variable names.

Acknowledgements We would like to express gratitude to anonymous ref-
erees for their constructive feedback. This work is supported in part by JSPS
KAKENHI Grant Number JP20H00582 and JST, the establishment of university
fellowships towards the creation of science technology innovation, Grant Number
JPMJFS2123.

Contextual Modal Type Theory with Polymorphic Contexts 305

References

1. Borghuis, V.A.J.: Coming to terms with modal logic: on the interpretation of
modalities in typed lambda-calculus. Ph.D. thesis, Technische Universiteit Eind-
hoven (1994). https://doi.org/10.6100/IR427575

2. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage lan-
guages using ASTs, gensym, and reflection. In: Pfenning, F., Smaragdakis, Y.
(eds.) Generative Programming and Component Engineering, Second Interna-
tional Conference, GPCE 2003, Erfurt, Germany, September 22-25, 2003, Proceed-
ings. Lecture Notes in Computer Science, vol. 2830, pp. 57–76. Springer (2003).
https://doi.org/10.1007/978-3-540-39815-8_4

3. Cave, A., Pientka, B.: First-class substitutions in contextual type theory. In: Pro-
ceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frame-
works & Meta-Languages: Theory & Practice. pp. 15–24. LFMTP ’13, Association
for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.114
5/2503887.2503889

4. Clouston, R.: Fitch-style modal lambda calculi. In: Baier, C., Dal Lago, U. (eds.)
Proc. of Foundations of Software Science and Computation Structures. pp. 258–
275. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-89366-2_14

5. Davies, R.: A temporal logic approach to binding-time analysis. J. ACM 64(1)
(Mar 2017). https://doi.org/10.1145/3011069

6. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (May 2001). https://doi.org/10.1145/382780.382785

7. Ganz, S.E., Sabry, A., Taha, W.: Macros as multi-stage computations: Type-
safe, generative, binding macros in macroml. In: Pierce, B.C. (ed.) Proceedings
of the Sixth ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001. pp. 74–85. ACM
(2001). https://doi.org/10.1145/507635.507646

8. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press (1989)

9. Jang, J., Gélineau, S., Monnier, S., Pientka, B.: Mœbius: Metaprogramming using
contextual types: The stage where System F can pattern match on itself. Proc.
ACM Program. Lang. 6(POPL) (Jan 2022). https://doi.org/10.1145/3498700

10. Kameyama, Y., Kiselyov, O., Shan, C.: Closing the stage: From staged code to
typed closures. In: PEPM’08 – Proceedings of the 2008 ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation. pp.
147–157 (Dec 2008). https://doi.org/10.1145/1328408.1328430

11. Kavvos, G.A.: Dual-context calculi for modal logic. In: Proc. of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). pp. 1–12 (2017).
https://doi.org/10.1109/LICS.2017.8005089

12. Kim, I., Yi, K., Calcagno, C.: A polymorphic modal type system for lisp-like multi-
staged languages. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006. pp. 257–268.
ACM (2006). https://doi.org/10.1145/1111037.1111060

13. Kiselyov, O.: The design and implementation of BER MetaOCaml: System de-
scription. In: Codish, M., Sumii, E. (eds.) Functional and Logic Programming –
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8475, pp. 86–102. Springer
(2014). https://doi.org/10.1007/978-3-319-07151-0_6

Y. Murase et al.306

https://doi.org/10.6100/IR427575
https://doi.org/10.6100/IR427575
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1145/2503887.2503889
https://doi.org/10.1145/2503887.2503889
https://doi.org/10.1145/2503887.2503889
https://doi.org/10.1145/2503887.2503889
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1145/3011069
https://doi.org/10.1145/3011069
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/3498700
https://doi.org/10.1145/3498700
https://doi.org/10.1145/1328408.1328430
https://doi.org/10.1145/1328408.1328430
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.1145/1111037.1111060
https://doi.org/10.1145/1111037.1111060
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6

14. Kiselyov, O., Kameyama, Y., Sudo, Y.: Refined environment classifiers. In:
Igarashi, A. (ed.) Proc. of Asian Symposium on Programming Languages and
Systems. pp. 271–291. Springer International Publishing, Cham (2016). https:
//doi.org/10.1007/978-3-319-47958-3_15

15. Martini, S., Masini, A.: A computational interpretation of modal proofs. In: Proof
Theory of Modal Logic, pp. 213–241. Springer Netherlands, Dordrecht (1996). ht
tps://doi.org/10.1007/978-94-017-2798-3_12

16. Nanevski, A., Pfenning, F.: Staged computation with names and necessity. J.
Funct. Program. 15(6), 893–939 (Nov 2005). https://doi.org/10.1017/S095
679680500568X

17. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Trans. Comput. Logic 9(3) (Jun 2008). https://doi.org/10.1145/1352582.
1352591

18. Parreaux, L., Voizard, A., Shaikhha, A., Koch, C.E.: Unifying analytic and
statically-typed quasiquotes. Proc. ACM Program. Lang. 2(POPL) (Dec 2017).
https://doi.org/10.1145/3158101, https://doi.org/10.1145/3158101

19. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical. Structures in Comp. Sci. 11(4), 511–540 (Aug 2001). https://doi.org/10.1
017/S0960129501003322

20. Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning with
deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) Automated
Reasoning. pp. 15–21. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). http
s://doi.org/10.1007/978-3-642-14203-1_2

21. Pientka, B., Thibodeau, D., Abel, A., Ferreira, F., Zucchini, R.: A type theory
for defining logics and proofs. In: Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’19, IEEE Press (2019). https:
//doi.org/10.1109/LICS.2019.8785683

22. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.)
Programming Languages and Systems, 18th European Symposium on Program-
ming, ESOP 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5502, pp. 80–94. Springer (2009).
https://doi.org/10.1007/978-3-642-00590-9_7

23. Puech, M.: A contextual account of staged computations (2016), preprint on web-
page at http://cedric.cnam.fr/~puechm/draft_contextual.pdf

24. Rhiger, M.: Staged computation with staged lexical scope. In: Seidl, H. (ed.)
Programming Languages and Systems - 21st European Symposium on Program-
ming, ESOP 2012, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7211, pp. 559–
578. Springer (2012). https://doi.org/10.1007/978-3-642-28869-2_28,
https://doi.org/10.1007/978-3-642-28869-2_28

25. Sørensen,M.H.,Urzyczyn,P.:TheCurry–Howard Isomorphism, Studies inLogic and
the Foundations of Mathematics, vol. 149, chap. 4, pp. 77–101. Elsevier (2006). http
s://doi.org/https://doi.org/10.1016/S0049-237X(06)80005-4, https:
//www.sciencedirect.com/science/article/pii/S0049237X06800054

26. Stampoulis, A., Shao, Z.: VeriML: Typed computation of logical terms inside a
language with effects. In: Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming. pp. 333–344. ICFP ’10, Association for
Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/
1863543.1863591

Contextual Modal Type Theory with Polymorphic Contexts 307

https://doi.org/10.1007/978-3-319-47958-3_15
https://doi.org/10.1007/978-3-319-47958-3_15
https://doi.org/10.1007/978-3-319-47958-3_15
https://doi.org/10.1007/978-3-319-47958-3_15
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1007/978-94-017-2798-3_12
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1109/LICS.2019.8785683
https://doi.org/10.1109/LICS.2019.8785683
https://doi.org/10.1109/LICS.2019.8785683
https://doi.org/10.1109/LICS.2019.8785683
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
http://cedric.cnam.fr/~puechm/draft_contextual.pdf
https://doi.org/10.1007/978-3-642-28869-2_28
https://doi.org/10.1007/978-3-642-28869-2_28
https://doi.org/10.1007/978-3-642-28869-2_28
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80005-4
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80005-4
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80005-4
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80005-4
https://www.sciencedirect.com/science/article/pii/S0049237X06800054
https://www.sciencedirect.com/science/article/pii/S0049237X06800054
https://doi.org/10.1145/1863543.1863591
https://doi.org/10.1145/1863543.1863591
https://doi.org/10.1145/1863543.1863591
https://doi.org/10.1145/1863543.1863591

27. Stucki, N., Biboudis, A., Odersky, M.: A practical unification of multi-stage pro-
gramming and macros pp. 14–27 (2018). https://doi.org/10.1145/3278122.32
78139, https://doi.org/10.1145/3278122.3278139

28. Stucki, N., Brachthäuser, J.I., Odersky, M.: Multi-stage programming with gener-
ative and analytical macros. In: Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts and Experiences. p.
110–122. GPCE 2021, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3486609.3487203, https://doi.org/10.114
5/3486609.3487203

29. Taha, W., Nielsen, M.F.: Environment classifiers. In: Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp. 26–
37. POPL ’03, Association for Computing Machinery, New York, NY, USA (2003).
https://doi.org/10.1145/604131.604134, https://doi.org/10.1145/604131
.604134

30. Tsukada, T., Igarashi, A.: A logical foundation for environment classifiers. Log.
Methods Comput. Sci. 6(4) (2010). https://doi.org/10.2168/LMCS-6(4:8)2010,
https://doi.org/10.2168/LMCS-6(4:8)2010

31. Valliappan, N., Ruch, F., Tomé Cortiñas, C.: Normalization for fitch-style modal
calculi. Proc. ACM Program. Lang. 6(ICFP) (Aug 2022). https://doi.org/10.1
145/3547649, https://doi.org/10.1145/3547649

32. Zyuzin, N., Nanevski, A.: Contextual modal types for algebraic effects and han-
dlers. Proc. ACM Program. Lang. 5(ICFP) (Aug 2021). https://doi.org/10.1
145/3473580

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Y. Murase et al.308

https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/604131.604134
https://doi.org/10.2168/LMCS-6(4:8)2010
https://doi.org/10.2168/LMCS-6(4:8)2010
https://doi.org/10.2168/LMCS-6(4:8)2010
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3473580
https://doi.org/10.1145/3473580
https://doi.org/10.1145/3473580
https://doi.org/10.1145/3473580
http://creativecommons.org/licenses/by/4.0/

A Complete Inference System for Skip-free
Guarded Kleene Algebra with Tests

Abstract. Guarded Kleene Algebra with Tests (GKAT) is a fragment
of Kleene Algebra with Tests (KAT) that was recently introduced to
reason efficiently about imperative programs. In contrast to KAT, GKAT
does not have an algebraic axiomatization, but relies on an analogue of
Salomaa’s axiomatization of Kleene Algebra. In this paper, we present an
algebraic axiomatization and prove two completeness results for a large
fragment of GKAT consisting of skip-free programs.

1 Introduction

Kleene algebra with tests (KAT) [26] is a logic for reasoning about semantics and
equivalence of simple imperative programs. It extends Kleene Algebra (KA) with
Boolean control flow, which enables encoding of conditionals and while loops.

KAT has been applied to verification tasks. For example, it was used in proof-
carrying Java programs [24], in compiler optimization [28], and file systems [8].
More recently, KAT was used for reasoning about packet-switched networks,
serving as a core to NetKAT [4] and Probabilistic NetKAT [12,43].

The success of KAT in networking is partly due to its dual nature: it can be
used to both specify and verify network properties. Moreover, the implementa-
tions of NetKAT and ProbNetKAT were surprisingly competitive with state-of-
the-art tools [13,44]. Part of the surprise with the efficiency of these implemen-
tations is that the decision problem for equivalence in both KAT and NetKAT
is PSPACE-complete [29,4]. Further investigations [42] revealed that the tasks
performed in NetKAT only make use of a fragment of KAT. It turns out that
the difficulty of deciding equivalence in KAT can largely be attributed to the
non-deterministic nature of KAT programs. If one restricts to KAT programs
that operate deterministically with respect to Boolean control flow, the associ-
ated decision problem is almost linear. This fragment of KAT was first identified
in [30] and further explored as guarded Kleene algebra with tests (GKAT) [42].

The study in [42] proved that the decision problem for GKAT programs is
almost linear, and proposed an axiomatization of equivalence. However, the ax-
iomatization suffered from a serious drawback: it included a powerful uniqueness

Todd Schmid ,Tobias Kappé , (�) , and Alexandra Silva4

University College London, London, UK

Open University of the Netherlands, Heerlen, The Netherlands
tobias.kappe@ou.nl

ILLC, University of Amsterdam, Amsterdam, The Netherlands

4 Cornell University, Ithaca, NY, USA

1 2 3

3

1

2

©
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 309–336, 2023.
https://doi.org/10.1007/978-3-031-30044-8 12

The Author(s) 2023, corrected publication 2023

The original version of this chapter was revised: The order of the author names has

https://doi.org/10.1007/978-3-031-30044-8_21
been corrected to alphabetical order. The correction to this chapter is available at

http://orcid.org/0000-0002-9838-2363
http://orcid.org/0000-0002-6068-880X
http://orcid.org/0000-0001-5014-9784
mailto:tobias.kappe@ou.nl
https://doi.org/10.1007/978-3-031-30044-8_12
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_12&domain=pdf

of solutions axiom (UA), which greatly encumbers algebraic reasoning in prac-
tice. In order to use (UA) to show that a pair of programs are equivalent, one
needs to find a system of equations that they both satisfy. Even more worry-
ingly, the axiomatization contained a fixed-point axiom with a side condition
reminiscent of Salomaa’s axiomatization for regular expressions, which is known
to be non-algebraic and impair the use of the axiomatic reasoning in context (as
substitution of atomic programs is not sound anymore). The authors of [42] left
as open questions whether (UA) can be derived from the other GKAT axioms and
whether the non-algebraic side condition can be removed. Despite the attention
GKAT has received in recent literature [40,48,41], these questions remain open.

In the present work, we offer a partial answer to the questions posed in [42].
We show that proving the validity of an equivalence in GKAT does not require
(UA) if the pair of programs in question are of a particular form, what we call
skip-free. This fragment of GKAT is expressive enough to capture a large class
of programs, and it also provides a better basis for algebraic reasoning: we show
that the side condition of the fixed-point axiom can be removed. Our inspiration
to look at this fragment came from recent work of Grabmayer and Fokkink’s on
the axiomatization of 1-free star expressions modulo bisimulation [15,14], an im-
portant stepping stone to solving a decades-open problem posed by Milner [33].

In a nutshell, our contribution is to identify a large fragment of GKAT, what
we call the skip-free fragment, that admits an algebraic axiomatization. We ax-
iomatize both bisimilarity and language semantics and provide two completeness
proofs. The first proves completeness of skip-free GKATmodulo bisimulation [40],
via a reduction to completeness of Grabmayer and Fokkink’s system [15]. The
second proves completeness of skip-free GKAT w.r.t. language semantics via a
reduction to skip-free GKAT modulo bisimulation. We also show that equivalence
proofs of skip-free GKAT expressions (for both semantics) embed in full GKAT.

The next section contains an introduction to GKAT and an overview of the
open problems we tackle in the technical sections of the paper.

2 Overview

In this section we provide an overview of our results. We start with a motivating
example of two imperative programs to discuss program equivalence as a verifi-
cation technology. We then show how GKAT can be used to solve this problem
and explore the open questions that we tackle in this paper.

Equivalence for Verification. In the game Fizz! Buzz! [36], players sit in
a circle taking turns counting up from one. Instead of saying any number that
is a multiple of 3, players must say “fizz”, and multiples of 5 are replaced with
“buzz”. If the number is a multiple both 3 and 5, the player must say “fizz buzz”.

Imagine you are asked in a job interview to write a program that prints out
the first 100 rounds of a perfect game of Fizz! Buzz!. You write the function
fizzbuzz1 as given in Figure 1(i). Thinking about the interview later that day,
you look up a solution, and you find fizzbuzz2, depicted in Figure 1(ii). You

et al.310 T. Kappé

def fizzbuzz1 = (i)
n := 1;
while n ≤ 100 do

if 3|n then
if not 5|n then

print fizz ; n++;
else

print fizzbuzz ; n++;
else if 5|n then

print buzz ; n++;
else

print n; n++;
print done!;

def fizzbuzz2 = (ii)
n := 1;
while n ≤ 100 do

if 5|n and 3|n then
print fizzbuzz ;

else if 3|n then
print fizz ;

else if 5|n then
print buzz ;

else
print n;

n++;
print done!;

Fig. 1. Two possible specifications of the ideal Fizz! Buzz! player.

suspect that fizzbuzz2 should do the same thing as fizzbuzz1, and after thinking
it over for a few minutes, you realize your program could be transformed into the
reference solution by a series of transformations that do not change its semantics:

1. Place the common action n++ at the end of the loop.

2. Replace not 5|n with 5|n and swap print fizz with print fizzbuzz .

3. Merge the nested branches of 3|n and 5|n into one.

Feeling somewhat more reassured, you ponder the three steps above. It seems
like their validity is independent of the actual tests and actions performed by the
code; for example, swapping the branches of an if - then - else - block while negat-
ing the test should be valid under any circumstances. This raises the question:
is there a family of primitive transformations that can be used to derive valid
ways of rearranging imperative programs? Furthermore, is there an algorithm to
decide whether two programs are equivalent under these laws?

Enter GKAT. Guarded Kleene Algebra with Tests (GKAT) [42] has been pro-
posed as a way of answering the questions above. Expressions in the language
of GKAT model skeletons of imperative programs, where the exact meaning of
tests and actions is abstracted. The laws of GKAT correspond to program trans-
formations that are valid regardless of the semantics of tests and actions.

Formally, GKAT expressions are captured by a two-level grammar, generated
by a finite set of tests T and a finite set of actions Σ, as follows:

BExp ∋ b, c ::= 0 | 1 | t ∈ T | b ∨ c | b ∧ c | b
GExp ∋ e, f ::= p ∈ Σ | b | e +b f | e · f | e(b)

BExp is the set of Boolean expressions, built from 0 (false), 1 (true), and primitive
tests from T , and composed using ∨ (or), ∧ (and) and (not). GExp is the set
of GKAT expressions, built from tests (assert statements) and primitive actions
p ∈ Σ. Here, e +b f is a condensed way of writing ‘if b then e else f’, and e(b)

is shorthand for ‘while b do e’; the operator · models sequential composition. By
convention, the sequence operator · takes precedence over the operator +b.

A Complete Inference System 311

Example 2.1. Abbreviating statements of the form print foo by simply writing
foo, Figure 1(i) can be rendered as the GKAT expression

(n := 1) ·
(

(fizz · n++ +
5|n fizzbuzz · n++) +3|n

(buzz · n++ +5|n n · n++)

)(n ≤ 100)

· done! (1)

Similarly, the program in Figure 1(ii) gives the GKAT expression

(n := 1) · ((fizzbuzz +5|n ∧ 3|n (fizz +3|n (buzz +5|n n))) · n++)(n ≤ 100) · done! (2)

Semantics. A moment ago, we stated that GKAT equivalences are intended to
witness program equivalence, regardless of how primitive tests and actions are
interpreted. We make this more precise by recalling the relational semantics of
GKAT programs [42].5 The intuition behind this semantics is that if the possible
states of the machine being programmed are modelled by some set S, then tests
are predicates on S (comprised of all states where the test succeeds), and actions
are relations on S (encoding the changes in state affected by the action).

Definition 2.2 ([42]). A (relational) interpretation is a triple σ = (S, eval, sat)
where S is a set, eval : Σ → P(S × S) and sat : T → P(S). Each relational
interpretation σ gives rise to a semantics J−Kσ : GExp → P(S × S), as follows:

J0Kσ = ∅ JaKσ = J1Kσ \ JaKσ
J1Kσ = {(s, s) : s ∈ S} JpKσ = eval(p)

JtKσ = {(s, s) : s ∈ sat(t)} Je +b fKσ = JbKσ ◦ JeKσ ∪ JbKσ ◦ JfKσ
Jb ∧ cKσ = JbKσ ∩ JcKσ Je · fKσ = JeKσ ◦ JfKσ
Jb ∨ cKσ = JbKσ ∪ JcKσ Je(b)Kσ = (JbKσ ◦ JeKσ)

∗ ◦ JbKσ

Here we use ◦ for relation composition and ∗ for reflexive transitive closure.

Remark 2.3. If eval(p) is a partial function for every p ∈ Σ, then so is JeKσ for
each e. The above therefore also yields a semantics in terms of partial functions.

The relation JeKσ contains the possible pairs of start and end states of the
program e. For instance, the input-output relation of Je +b fK consists of the
pairs in JeKσ (resp. JfKσ) where the start state satisfies b (resp. violates b).

Example 2.4. We could model the states of the machine running Fizz! Buzz! as
pairs (m, ℓ), where m is the current value of the counter n, and ℓ is a list of
words printed so far; the accompanying maps sat and eval are given by:

sat(k|n) = {(m, ℓ) ∈ S : m ≡ 0 mod k}
sat(n ≤ k) = {(m, ℓ) ∈ S : m ≤ k}
eval(n++) = {((m, ℓ), (m + 1, ℓ) : (m, ℓ) ∈ S}

eval(n := k) = {((m, ℓ), (k, ℓ)) : (m, ℓ) ∈ S)}
eval(w) = {((m, ℓ), (m, ℓw)) : (m, ℓ) ∈ S} (w ∈ {fizz , buzz , fizzbuzz})

eval(n) = {((m, ℓ), (m, ℓm)) : (m, ℓ) ∈ S}
5 A probabilistic semantics in terms of sub-Markov kernels is also possible [42].

et al.312 T. Kappé

For instance, the interpretation of n++ connects states of the form (m, ℓ) to states
of the form (m+ 1, ℓ)—incrementing the counter by one, and leaving the output
unchanged. Similarly, print statements append the given string to the output.

On the one hand, this parameterized semantics shows that programs in the
GKAT syntax can be given a semantics that corresponds to the intended meaning
of their actions and tests. On the other hand, it allows us to quantify over all
possible interpretations, and thus abstract from the meaning of the primitives.

As it happens, two expressions have the same relational semantics under any
interpretation if and only if they have the same language semantics [42], i.e., in
terms of languages of guarded strings as used in KAT [26]. Since equivalence un-
der the language semantics is efficiently decidable [42], so is equivalence under
all relational interpretations. The decision procedure in [42] uses bisimulation
and known results from automata theory. These techniques are good for mecha-
nization but hide the algebraic structure of programs that plays. To expose this,
algebraic laws of GKAT program equivalence were studied.

Program transformations. GKAT programs are (generalized) regular expres-
sions, which are intuitive to reason about and for which many syntactic equiv-
alences are known and explored. In [42], a set of sound axioms e ≡ f such that
JeKσ = JfKσ for all σ was proposed, and it was shown that these can be used to
prove a number of useful facts about programs. For instance, the following two
equivalences are axioms of GKAT:

e · g +b f · g ≡ (e +b f) · g f +b e ≡ e +b f

The first of these says that common code at the tail end of branches can be
factored out, while the second says that the code in branches of a conditional
can be swapped, as long as we negate the test. Returning to our running example,
if we apply the first law to (1) three times (once for each guarded choice),

(n := 1) ·
((

(fizzbuzz +5|n fizz) +3|n
(buzz +5|n n)

)
· n++

)(n ≤ 100)

· done! (3)

Finally, we can apply (e +b f) +c (g +b h) ≡ e +b∧c (f +c (g +b h)), which is
provable from the axioms of GKAT, to transform (3) into (2).

Being able to transform one GKAT program into another using the axioms of
GKAT is useful, but the question arises: do the axioms capture all equivalences
that hold? More specifically, are the axioms of GKAT powerful enough to prove
that e ≡ f whenever JeKσ = JfKσ holds for all σ?

In [42], a partial answer to the above question is provided: if we extend the
laws of GKAT with the uniqueness axiom (UA), then the resulting set of axioms
is sound and complete w.r.t. the language semantics. The problem with this is
that (UA) is not really a single axiom, but rather an axiom scheme, which makes
both its presentation and application somewhat unwieldy.

To properly introduce (UA), we need the following notion.

A Complete Inference System 313

Definition 2.5. A left-affine system is defined by expressions e11, . . . , enn ∈
GExp and f1, . . . , fn ∈ GExp, along with tests b11, . . . , bnn ∈ BExp. A sequence
of expressions s1, . . . , sn ∈ GExp is said to be a solution to this system if

si ≡ ei1 · s1 +bi1 ei2 · s2 +bi2 · · · +bi(n−1)
ein +bin fi (∀i ≤ n)

Here, the operations +bij associate to the right.
A left-affine system is called guarded if no eij that appears in the system

successfully terminates after reading an atomic test. In other words, each coeffi-
cient denotes a productive program, meaning it must execute some action before
successfully terminating—we refer to Section 7.3 for more details.

Stated fully, (UA) says that if expressions s1, . . . , sn and t1, . . . , tn are solutions
to the same guarded left-affine system, then si ≡ ti for 1 ≤ i ≤ n.

On top of the infinitary nature of (UA), the side condition demanding guard-
edness prevents purely algebraic reasoning: replacing action symbols in a valid
GKAT equation with arbitrary GKAT expressions might yield an invalid equa-
tion! The situation is analogous to the empty word property used by Salomaa [38]
to axiomatize equivalence of regular expressions. The side condition of guarded-
ness appearing in (UA) is inherited from another axiom of GKAT, the fixed-point
axiom, which in essence is the unary version of this axiom scheme and explicitly
defines the solution of one guarded left-affine equation as a while loop.

g ≡ eg +b f =⇒ g ≡ e(b)f if e is guarded.

Remark 2.6. Part of the problem of the uniqueness axiom is that the case for
general n does not seem to follow easily from the case where n = 1. The problem
here is that, unlike the analogous situation for Kleene algebra, there is no general
method to transform a left-affine system with n + 1 unknowns into one with n
unknowns [30], even if this is possible in certain cases [42].

The open questions. We are motivated by two open questions from [42]:

– First, can the uniqueness axiom be eliminated? The other axioms of GKAT
contain the instantiation of (UA) for n = 1, which has so far been sufficient
in all handwritten proofs of equivalence that we know. Yet (UA) seems to be
necessary in both known completeness proofs.

– Second, can we eliminate the guardedness side condition? Kozen [25] showed
that Salomaa’s axiomatization is subsumed by a set of axioms that together
imply existence and uniqueness of least solutions to systems of equations,
but this approach has not yet borne fruit in GKAT.

This paper. Our main contribution is to show that, in a particular fragment
of GKAT, both questions can be answered in the positive (see Figure 2).

In Section 3, we present what we call the skip-free fragment of GKAT, con-
sisting of programs that do not contain assert statements in the body (other than
assert false); in other words, Boolean statements are restricted to control state-
ments. For this fragment, we show that the axiom scheme (UA) can be avoided

et al.314 T. Kappé

Guarded Union Sequencing Loops

x = x+b x

x = x+1 y

x+b y = y +b̄ x

x+b (y +c z) = (x+b y) +b∨c z

0x = 0

x0
(†)
= 0

x(yz) = (xy)z

(x+b y)z = xz +b yz

x(b)y = x(x(b)y) +b y

z = xz +b y

z = x(b)y

Fig. 2. Axioms for language semantics skip-free GKAT (in addition to Boolean algebra
axioms for tests, see Fig. 3). If the axiom marked † is omitted the above axiomatize a
finer semantics, bisimilarity.

entirely. In fact, this is true for language semantics (as first introduced in [42])
as well as for the bisimulation semantics of [40].

In Section 4, we provide a bridge to a recent result in process algebra. In the
80s, Milner offered an alternative interpretation of regular expressions [33], as
what he called star behaviours. Based on work of Salomaa from the 1960s [38],
Milner proposed a sound axiomatization of the algebra of star behaviours, but left
completeness an open problem. After 38 years, it was recently solved by Clemens
Grabmayer [14] following up on his joint work with Wan Fokkink showing that
a suitable restriction of Milner’s axioms is complete for the one-free fragment
of regular expressions modulo bisimulation [15]. We leverage their work with an
interesting embedding of skip-free GKAT into the one-free regular expressions.

This leads to two completeness results. In Section 5, we start by focusing
on the bisimulation semantics of the skip-free fragment, and then in Section 6
expand our argument to its language semantics. More precisely, we first provide
a reduction of the completeness of skip-free GKAT up to bisimulation to the
completeness of Grabmayer and Fokkink’s 1-free regular expressions modulo
bisimulation [15]. We then provide a reduction of the completeness of skip-free
GKAT modulo language semantics to the completeness of skip-free GKAT modulo
bisimulation via a technique inspired by the tree pruning approach of [40].

Finally, in Section 7, we connect our semantics of skip-free GKAT expressions
to the established semantics of full GKAT. We also connect the syntactic proofs
between skip-free GKAT expressions in both our axiomatization and the existing
one. In conjunction with the results of Sections 5 and 6, the results in Section 7
make a significant step towards answering the question of whether the axioms
of GKAT give a complete description of program equivalence, in the positive.

Proofs appear in the full version [22].

3 Introducing Skip-free GKAT

The axiom scheme (UA) can be avoided entirely in a certain fragment of GKAT,
both for determining bisimilarity and language equivalence. In this section, we
give a formal description of the expressions in this fragment and their semantics.

Skip-free expressions. The fragment of GKAT in focus is the one that excludes
sub-programs that may accept immediately, without performing any action. Since
these programs can be “skipped” under certain conditions, we call the fragment

A Complete Inference System 315

x ∨ 0 = x x ∨ x̄ = 1 x ∨ y = y ∨ x x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ 1 = x x ∧ x̄ = 0 x ∧ y = y ∧ x x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Fig. 3. The axioms of Boolean algebra [18].

that avoids them skip-free. Among others, it prohibits sub-programs of the form
assert b for b ̸= false, but also while false do p, which is equivalent to assert true.

Definition 3.1. Given a set Σ of atomic actions, the set GExp− of skip-free
GKAT expressions is given by the grammar

GExp− ∋ e1, e2 ::= 0 | p ∈ Σ | e1 +b e2 | e1 · e2 | e(b)1 e2

where b ranges over the Boolean algebra expressions BExp.

Unlike full GKAT, in skip-free GKAT the loop construct is treated as a binary
operation, analogous to Kleene’s original star operation [23], which was also
binary. This helps us avoid loops of the form e(b), which can be skipped when b

does not hold. The expression e
(b)
1 e2 corresponds to e

(b)
1 · e2 in GKAT.

Example 3.2. Using the same notational shorthand as in Example 2.1, the block
of code in Figure 1(ii) can be cast as the skip-free GKAT expression

(n := 1) · ((fizzbuzz +3|n∧5|n (fizz +3|n (buzz +5|n n))) · n++)(n ≤ 100)(done!)

Note how we use a skip-free loop of the form e1
(b)e2 instead of the looping

construct e
(b)
1 before concatenating with e2, as was done for GKAT.

3.1 Skip-free Semantics

There are three natural ways to interpret skip-free GKAT expressions: as au-
tomata, as behaviours, and as languages.6 After a short note on Boolean algebra,
we shall begin with the automaton interpretation, also known as the small-step
semantics, from which the other two can be derived.

Boolean algebra. To properly present our automata, we need to introduce one
more notion. Boolean expressions BExp are a syntax for elements of a Boolean
algebra, an algebraic structure satisfying the equations in Fig. 3. When a Boolean
algebra is freely generated from a finite set of basic tests (T in the case of
BExp), it has a finite set At of nonzero minimal elements called atoms. Atoms
are in one-to-one correspondence with sets of tests, and the Boolean algebra is
isomorphic to P(At), the sets of subsets of At, equipped with ∨ = ∪, ∧ = ∩,
and (−) = At \ (−). In the context of programming, one can think of an atom
as a complete description of the machine state, saying which tests are true and
which are false. We will denote atoms by the Greek letters α and β, sometimes
with indices. Given a Boolean expression b ∈ BExp and an atom α ∈ At we say
that α entails b, written α ≤ b, whenever α ∨ b = 1, or equivalently α ∨ b = b.

6 We will connect these to the relational semantics from Definition 2.2 in Section 7.

et al.316 T. Kappé

p α|p−−→ ✓

e1
α|p−−→ e′ α ≤ b

e1 +b e2
α|p−−→ e′

e2
α|p−−→ e′ α ̸≤ b

e1 +b e2
α|p−−→ e′

e1
α|p−−→ e′

e1e2
α|p−−→ e′e2

e1
α|p−−→ ✓

e1e2
α|p−−→ e2

e1
α|p−−→ e′ α ≤ b

e
(b)
1 e2

α|p−−→ e′(e
(b)
1 e2)

e1
α|p−−→ ✓ α ≤ b

e
(b)
1 e2

α|p−−→ e
(b)
1 e2

e2
α|p−−→ e′ α ̸≤ b

e
(b)
1 e2

α|p−−→ e′

Fig. 4. The small-step semantics of skip-free GKAT expressions.

Automata. Throughout the paper, we use the notation • + S where S is a set
and • is a symbol to denote the disjoint union (coproduct) of {•} and S.

The small-step semantics of a skip-free GKAT expression uses a special type
of deterministic automaton. A skip-free automaton is a pair (X,h), where X is
a set of states and h : X → (⊥ + Σ × (✓ + X))At is a transition structure. At
every x ∈ X and for any α ∈ At, one of three things can happen:

1. h(x)(α) = (p, y), which we write as x α|p−−→ y, means the state x under α
makes a transition to a new state y, after performing the action p;

2. h(x)(α) = (p,✓), which we write x α|p−−→ ✓, means the state x under α
successfully terminates with action p;

3. h(x)(α) = ⊥, which we write x ↓ α, means the state x under α terminates
with failure. Often we will leave these outputs implicit.

Definition 3.3 (Automaton of expressions). We equip the set GExp− of
all skip-free GKAT expressions with an automaton structure (GExp−, ∂) given in
Fig. 4, representing step-by-step execution. Given e ∈ GExp−, we denote the set
of states reachable from e by ⟨e⟩ and call this the small-step semantics of e.

The small-step semantics of skip-free GKAT expressions is inspired by Brzo-
zowski’s derivatives [7], which provide an automata-theoretic description of the
step-by-step execution of a regular expression. Our first lemma tells us that, like
regular expressions, skip-free GKAT expressions correspond to finite automata.

Lemma 3.4. For any e ∈ GExp−, ⟨e⟩ has finitely many states.

Example 3.5. The automaton that arises from the program fizzbuzz2 is below,
with a = n ≤ 100, b = 3|n, and c = 5|n. The expression e is the same as in
Example 3.2, e1 is the same as e but without the action n := 0 in front, and

e2 = n++ · e1. We also adopt the convention of writing x b|p−−→ x′ where b ∈ BExp

to represent all transitions x α|p−−→ x′ where α ≤ b.

e e1 e2

✓

1 | n := 1

abc | fizzbuzz, abc̄ | fizz,

ab̄c | buzz, ab̄c̄ | n

1 | n++

ā | done!

A Complete Inference System 317

The automaton interpretation of a skip-free GKAT expression (its small-step
semantics) provides an intuitive visual depiction of the details of its execution.
This is a useful view on the operational semantics of expressions, but sometimes
one might want to have a more precise description of the global behaviour of the
program. The remaining two interpretations of skip-free GKAT expressions aim
to capture two denotational semantics of expressions: one finer, bisimilarity, that
makes a distinction on the branching created by how its states respond to atomic
tests, which actions can be performed, and when successful termination and
crashes occur; another coarser, language semantics, that assigns a language of
traces to each expression capturing all sequences of actions that lead to successful
termination. The key difference between these two semantics is their ability to
distinguish programs that crash early in the execution versus programs that
crash later—this is evident in the axiomatizations of both semantics. We start by
presenting the language semantics as this is the more traditional one associated
with GKAT (and regular) expressions.

Language semantics. Formally, a (skip-free) guarded trace is a nonempty
string of the form α1p1 · · ·αnpn, where each αi ∈ At and pi ∈ Σ. Intuitively,
each αi captures the state of program variables needed to execute program ac-
tion pi and the execution of each pi except the last yields a new program state
αi+1. A skip-free guarded language is a set of guarded traces.

Skip-free guarded languages should be thought of as sets of strings denoting
successfully terminating computations.

Definition 3.6 (Language acceptance). In a skip-free automaton (X,h) with
a state x ∈ X, the language accepted by x is the skip-free guarded language

L(x, (X,h)) = {α1p1 · · ·αnpn | x α1|p1−−−→ x1 −→ · · · −→ xn
αn|pn−−−−→ ✓}

If (X,h) is clear from context, we will simply write L(x) instead of L(x, (X,h)).
If L(x) = L(y), we write x ∼L y and say that x and y are language equivalent.

Each skip-free GKAT expression is a state in the automaton of expressions
(Definition 3.3) and therefore accepts a language. The language accepted by a
skip-free GKAT expression is the set of successful runs of the program it denotes.
Analogously to GKAT, we can describe this language inductively.

Lemma 3.7. Given an expression e ∈ GExp−, the language accepted by e in
(GExp−, ∂), i.e., L(e) = L(e, (GExp−, ∂)) can be characterized as follows:

L(0) = ∅ L(p) = {αp | α ∈ At} L(e1 +b e2) = bL(e1) ∪ b̄L(e2)

L(e1 · e2) = L(e1) · L(e2) L(e
(b)
1 e2) =

⋃
n∈N

(bL(e1))n · b̄L(e2)

Here, we write bL = {αpw ∈ L | α ≤ b} and L1 · L2 = {wx : w ∈ L1, x ∈ L2},
while L0 = {ϵ} (where ϵ denotes the empty word) and Ln+1 = L · Ln.

Lemma 3.7 provides a way of computing the language of an expression e
without having to generate the automaton for e.

et al.318 T. Kappé

Bisimulation semantics. Another, finer, notion of equivalence that we can
associate with skip-free automata is bisimilarity.

Definition 3.8. Given skip-free automata (X,h) and (Y, k), a bisimulation is
a relation R ⊆ X × Y such that for any x R y, α ∈ At and p ∈ Σ:

1. x ↓ α if and only if y ↓ α,

2. x α|p−−→ ✓ if and only if y α|p−−→ ✓, and

3. for any x′ R y′, x α|p−−→ x′ if and only if y α|p−−→ y′.

We call x and y bisimilar if x R y for some bisimulation R and write x ↔ y.

In a fixed skip-free automaton (X,h), we define ↔ ⊆ X × X to be the
largest bisimulation, called bisimilarity. This is an equivalence relation and a
bisimulation.7 The bisimilarity equivalence class of a state is often called its
behaviour.

Example 3.9. In the automaton below, x1 and x2 are bisimilar. This is witnessed
by the bisimulation {(x1, x2), (x2, x2)}.

x1 x2

✓

a | p

ā | q

a | p

ā | q

We can also use bisimulations to witness language equivalence.

Lemma 3.10. Let e1, e2 ∈ GExp−. If e1 ↔ e2, then L(e1) = L(e2).

The converse of Lemma 3.10 is not true. Consider, for example, the program
p(1)q that repeats the atomic action p ∈ Σ indefinitely, never reaching q. Since

L(p(1)q) =
⋃
n∈N

L(p)n · ∅ = ∅ = L(0)

we know that p(1)q ∼L 0. But p(1)q and 0 are not bisimilar, since Fig. 4 tells us

that p(1)q α|p−−→ p(1)q and 0 ↓ α, which together refute Definition 3.8.1.

3.2 Axioms

Next, we give an inference system for bisimilarity and language equivalence con-
sisting of equations and equational inference rules. The axioms of skip-free GKAT
are given in Fig. 2. They include the equation (†), which says that early deadlock
is the same as late deadlock. This is sound with respect to the language interpre-
tation, meaning that (†) is true if x is replaced with a skip-free guarded language,
but it is not sound with respect to the bisimulation semantics. For example, the
expressions p · 0 and 0 are not bisimilar for any p ∈ Σ. Interestingly, this is the
only axiomatic difference between bisimilarity and language equivalence.

7 This follows directly from seeing skip-free automata as a special type of coalgebra and
the fact that the functor involved preserves weak pullbacks [37]. In fact, coalgebra
has been an indispensable tool in the production of the current paper, guiding us to
the correct definitions and simplifying many of the proofs.

A Complete Inference System 319

Remark 3.11. The underlying logical structure of our inference systems is equa-
tional logic [5], meaning that provable equivalence is an equivalence relation that
is preserved by the algebraic operations.

Given expressions e1, e2 ∈ GExp−, we write e1 ≡† e2 and say that e1 and
e2 are ≡†-equivalent if the equation e1 = e2 can be derived from the axioms in
Fig. 2 without the axiom marked (†). We write e1 ≡ e2 and say that e1 and e2
are ≡-equivalent if e1 = e2 can be derived from the whole set of axioms in Fig. 2.

The axioms in Fig. 2 are sound with respect to the respective semantics they
axiomatize. The only axiom that is not sound w.r.t. bisimilarity is x · 0 ≡ 0, as
this would relate automata with different behaviours (x may permit some action
to be performed, and this is observable in the bisimulation).

Theorem 3.12 (Soundness). For any e1, e2 ∈ GExp−,

1. If e1 ≡† e2, then e1 ↔ e2.
2. If e1 ≡ e2, then e1 ∼L e2.

We consider the next two results, which are jointly converse to Theorem 3.12,
to be the main theorems of this paper. They state that the axioms in Fig. 2 are
complete for bisimilarity and language equivalence respectively, i.e., they describe
a complete set of program transformations for skip-free GKAT.

Theorem 3.13 (Completeness I). If e1 ↔ e2, then e1 ≡† e2.

Theorem 3.14 (Completeness II). If e1 ∼L e2, then e1 ≡ e2.

We prove Theorem 3.13 in Section 5 by drawing a formal analogy between
skip-free GKAT and a recent study of regular expressions in the context of process
algebra [15]. We include a short overview of this recent work in the next section.

We delay the proof of Theorem 3.14 to Section 6, which uses a separate
technique based on the pruning method introduced in [40].

4 1-free Star Expressions

Regular expressions were introduced by Kleene [23] as a syntax for the algebra
of regular events. Milner offered an alternative interpretation of regular expres-
sions [33], as what he called star behaviours. Based on work of Salomaa [38],
Milner proposed a sound axiomatization of the algebra of star behaviours, but
left completeness an open problem. After nearly 40 years of active research from
the process algebra community, a solution was finally found by Grabmayer [14].

A few years before this result, Grabmayer and Fokkink proved that a suit-
able restriction of Milner’s axioms gives a complete inference system for the
behaviour interpretation of a fragment of regular expressions, called the one-
free fragment [15]. In this section, we give a quick overview of Grabmayer and
Fokkink’s one-free fragment [15], slightly adapted to use an alphabet that will
be suitable to later use in one of the completeness proofs of skip-free GKAT.

et al.320 T. Kappé

αp αp−−→ ✓

r1
αp−−→ r′

r1 + r2
αp−−→ r′

r2
αp−−→ r′

r1 + r2
αp−−→ r′

r1
αp−−→ r′

r1r2
αp−−→ r′r2

r1
αp−−→ ✓

r1r2
αp−−→ r2

r1
αp−−→ r′

r1 ∗ r2 αp−−→ r′(r1 ∗ r2)
r1

αp−−→ ✓

r1 ∗ r2 αp−−→ r1 ∗ r2
r2

αp−−→ x

r1 ∗ r2 αp−−→ x

Fig. 5. The small-step semantics of one-free star expressions.

Syntax. In the process algebra literature [33,15,14], regular expressions gen-
erated by a fixed alphabet A are called star expressions, and denote labelled
transition systems (LTSs) with labels drawn from A. As was mentioned in Sec-
tion 3, skip-free automata can be seen as certain LTSs where the labels are
atomic test/atomic action pairs. In Section 5, we encode skip-free GKAT expres-
sions as one-free regular expressions and skip-free automata as LTSs with labels
drawn from At · Σ. We instantiate the construction from [15] of the set of star
expressions generated by the label set At ·Σ.

Definition 4.1. The set StExp of one-free star expressions is given by

StExp ∋ r1, r2 ::= 0 | αp ∈ At ·Σ | r1 + r2 | r1r2 | r1 ∗ r2

Semantics. The semantics of StExp is now an instance of the labelled transition
systems that originally appeared in [15], with atomic test/atomic action pairs
as labels and a (synthetic) output state ✓ denoting successful termination.

For the rest of this paper, we call a pair (S, t) a labelled transition system
when S is a set of states and t : S → P(At ·Σ×(✓+S)) is a transition structure.
We write x αp−−→ y if (αp, y) ∈ t(x) and x αp−−→ ✓ if (αp,✓) ∈ t(x).

The set StExp can be given the structure of a labelled transition system
(StExp, τ), defined in Fig. 5. If r ∈ StExp, we write ⟨r⟩ for the transition system
obtained by restricting τ to the one-free star expressions reachable from r and
call ⟨r⟩ the small-step semantics of r.

The bisimulation interpretation of one-free star expressions is subtler than
the bisimulation interpretation of skip-free GKAT expressions. The issue is that
labelled transition systems (LTSs) are nondeterministic in general: it is possible
for an LTS to have both a x αp−−→ y and a x αq−→ z transition for p ̸= q or y ̸= z.
The appropriate notion of bisimilarity for LTSs can be given as follows.

Definition 4.2. Given labelled transition systems (S, t) and (T, u), a bisimula-
tion between them is a relation R ⊆ S × T s.t. for any x R y and αp ∈ At ·Σ,

1. x αp−−→ ✓ if and only if y αp−−→ ✓,

2. if x αp−−→ x′, then there exist x′ R y′ such that y αp−−→ y′, and

3. if y αp−−→ y′, then there exist x′ R y′ such that x αp−−→ x′.

As before, we denote the largest bisimulation by ↔. We call x and y bisimilar
and write x ↔ y if x R y for some bisimulation R.

A Complete Inference System 321

Union Sequencing Loops

x = x+ x

x = x+ 0

x+ y = y + x

x+ (y + z) = (x+ y) + z

0x = 0

x(yz) = (xy)z

(x+ y)z = xz + yz

x ∗ y = x(x ∗ y) + y

z = xz + y

z = x ∗ y

Fig. 6. Axioms for equivalence for one-free star expressions.

The following closure properties of bisimulations of LTSs are useful later.
They also imply that bisimilarity is an equivalence relation. Like in the skip-free
case, the bisimilarity equivalence class of a state is called its behaviour.

Lemma 4.3. Let (S, t), (T, u), and (U, v) be labelled transition systems. Fur-
thermore, let R1, R2 ⊆ S × T and R3 ⊆ T × U be bisimulations. Then Rop

1 =
{(y, x) | x R1 y}, R1 ∪R2 and R1 ◦R3 are bisimulations.

Axiomatization. We follow [15], where it was shown that the axiomatization
found in Fig. 6 is complete with respect to bisimilarity for one-free star expres-
sions. Given a pair r1, r2 ∈ StExp, we write r1 ≡∗ r2 and say that r1 and r2 are
≡∗-equivalent if the equation r1 = r2 can be derived from the axioms in Fig. 6.

The following result is crucial to the next section, where we prove that the
axioms of ≡† are complete with respect to bisimilarity in skip-free GKAT.

Theorem 4.4 ([15, Theorem. 7.1]). r1 ↔ r2 if and only if r1 ≡∗ r2.

5 Completeness for Skip-free Bisimulation GKAT

This section is dedicated to the proof of our first completeness result, Theo-
rem 3.13, which says that the axioms of Fig. 2 (excluding †) are complete with
respect to bisimilarity in skip-free GKAT. Our proof strategy is a reduction of
our completeness result to the completeness result for StExp (Theorem 4.4).

The key objects of interest in the reduction are a pair of translations: one
translation turns skip-free GKAT expressions into one-free star expressions and
maintains bisimilarity, and the other translation turns (certain) one-free star
expressions into skip-free GKAT expressions and maintains provable bisimilarity.

We first discuss the translation between automata and labelled transition sys-
tems, which preserves and reflects bisimilarity. We then introduce the syntactic
translations and present the completeness proof.

5.1 Transforming skip-free automata to labelled transition systems

We can easily transform a skip-free automaton into an LTS by essentially turning
α|p−−→ transitions into αp−−→ transitions. This can be formalized, as follows.

Definition 5.1. Given a set X, we define grphX : (⊥ + Σ × (✓ + X))At →
P(At ·Σ× (✓+X)) to be grphX(θ) = {(αp, x) | θ(α) = (p, x)}. Given a skip-free
automaton (X,h), we define grph∗(X,h) = (X, grphX ◦ h)

et al.322 T. Kappé

The function grphX is injective: as its name suggests, grphX(θ) is essentially
the graph of θ when viewed as a partial function from At to Σ × (✓ + X). This
implies that the transformation grph∗ of skip-free automata into LTSs preserves
and reflects bisimilarity.

Lemma 5.2. Let x, y ∈ X, and (X,h) be a skip-free automaton. Then x ↔ y
in (X,h) if and only if x ↔ y in grph∗(X,h).

Leading up to the proof of Theorem 3.13, we also need to undo the effect of
grph∗ on skip-free automata with a transformation that takes every LTS of the
form grph∗(X,h) to its underlying skip-free automaton (X,h).

The LTSs that can be written in the form grph∗(X,h) for some skip-free
automaton (X,h) can be described as follows. Call a set U ∈ P(At ·Σ×(✓+X))
graph-like if whenever (αp, x) ∈ U and (αq, y) ∈ U , then p = q and x = y. An
LTS (S, t) is deterministic if t(s) is graph-like for every s ∈ S.

Lemma 5.3. An LTS (S, t) is deterministic if and only if (S, t) = grph∗(X,h)
for some skip-free automaton (X,h).

Remark 5.4. As mentioned in Footnote 7, there is a coalgebraic outlook in many
of the technical details in the present paper. For the interested reader, grph and
func are actually natural transformations between the functors whose coalgebras
correspond to skip-free automata and labelled transitions, and are furthermore
inverse to one another. This implies that grph∗ and func∗ witness an isomorphism
between the categories of skip-free automata and deterministic LTSs.

5.2 Translating Syntax

We can mimic the transformation of skip-free automata into deterministic la-
belled transition systems and vice-versa by a pair of syntactic translations going
back and forth between skip-free GKAT expressions and certain one-free star
expressions. Similar to how only some labelled transition systems can be turned
into skip-free automata, only some one-free star expressions have corresponding
skip-free GKAT expressions—the deterministic ones.

The definition of deterministic expressions requires the following notation:
given a test b ∈ BExp, we define b · r inductively on r ∈ StExp as follows:

b · 0 = 0 b · αp =

{
αp α ≤ b

0 α ̸≤ b
b · (r1 + r2) = b · r1 + b · r2

b · (r1r2) = (b · r1)r2 b · (r1 ∗ r2) = (b · r1)(r1 ∗ r2) + b · r2

for any αp ∈ At ·Σ and r1, r2 ∈ StExp.

Definition 5.5. The set of deterministic one-free star expressions is the small-
est subset Det ⊆ StExp such that 0 ∈ Det and αp ∈ Det for any α ∈ At and p ∈ Σ,
and for any r1, r2 ∈ Det, and b ∈ BExp, b·r1+b̄·r2, r1r2, and (b·r1)∗(b̄·r2) ∈ Det.

A Complete Inference System 323

From GExp− to Det. We can now present the translations of skip-free expres-
sions to deterministic one-free star expressions.

Definition 5.6. We define the translation function gtr : GExp− → Det by

gtr(0) = 0 gtr(p) =
∑
α∈At

αp gtr(e1 +b e2) = b · gtr(e1) + b̄ · gtr(e2)

gtr(e1 · e2) = gtr(e1) gtr(e2) gtr(e
(b)
1 e2) = (b · e1) ∗ (b̄ · e2)

for any b ∈ BExp, p ∈ Σ, e1, e2 ∈ GExp.

Remark 5.7. In Definition 5.6, we make use of a generalized sum
∑

α∈At. Tech-
nically, this requires we fix an enumeration of At ahead of time, say At =
{α1, . . . , αn}, at which point we can define

∑
α∈At rα = rα1

+ · · · + rαn
. Of

course, + is commutative and associative up to ≡∗, so the actual ordering of
this sum does not matter as far as equivalence is concerned.

The most prescient feature of this translation is that it respects bisimilarity.

Lemma 5.8. The graph of the translation function gtr is a bisimulation of la-
belled transition systems between grph∗(GExp−, ∂) and (StExp, τ). Consequently,
if e1 ↔ e2 in grph∗(GExp−, ∂), then gtr(e1) ↔ gtr(e2) in (StExp, τ).

From Det to GExp−. We would now like to define a back translation function
rtg : Det → GExp− by induction on its argument. Looking at Definition 5.5, one
might be tempted to write rtg(b · r1 + b̄ · r2) = rtg(r1) +b rtg(r2), but the fact
of the matter is that it is possible for there to be distinct b, c ∈ BExp such that
b · r1 + b̄ · r2 = c · r1 + c̄ · r2, even when b and c have different atoms.

Definition 5.9. Say that r1, r2 ∈ StExp are separated by b ∈ BExp if r1 = b · r1
and r2 = b̄ · r2. If such a b exists we say that r1 and r2 are separated.

Another way to define Det is therefore to say that Det is the smallest subset
of StExp containing 0 and At ·Σ that is closed under sequential composition and
closed under unions and stars of separated one-free star expressions.

Suppose r1 and r2 are separated by both b and c. Then one can prove that
(b ∨ c)r1 ≡∗ br1 + cr1 ≡∗ r1 and (b ∨ c)r2 = (b̄ ∧ c̄)r2 ≡∗ b̄(c̄r2) ≡∗ r2, so r1
and r2 are separated by b∨ c as well. Since there are only finitely many Boolean
expressions up to equivalence, there is a maximal (weakest) test b(r1, r2) ∈ BExp
such that r1 and r2 are separated by b(r1, r2).

Definition 5.10. The back translation rtg : Det → GExp− is defined by

rtg(0) = 0 rtg(αp) = p +α 0 rtg(r1 + r2) = rtg(r1) +b(r1,r2) rtg(r2)

rtg(r1r2) = rtg(r1) · rtg(r2) rtg(r1 ∗ r2) = rtg(r1)(b(r1,r2)) rtg(r2)

for any r1, r2 ∈ StExp. In the union and star cases, we may use that r1 and r2
are separated (by definition of Det), so that b(r1, r2) is well-defined.

et al.324 T. Kappé

The most prescient property of rtg is that it preserves provable equivalence.

Lemma 5.11. Let r1, r2 ∈ Det. If r1 ≡∗ r2, then rtg(r1) ≡† rtg(r2).

The last fact needed in the proof of completeness is that, up to provable
equivalence, every skip-free GKAT expression is equivalent to its back-translation.

Lemma 5.12. For any e ∈ GExp−, e ≡† rtg(gtr(e)).

We are now ready to prove Theorem 3.13, that provable bisimilarity is com-
plete with respect to behavioural equivalence in skip-free GKAT.

Theorem 3.13 (Completeness I). If e1 ↔ e2, then e1 ≡† e2.

Proof. Let e1, e2 ∈ GExp be a bisimilar pair of skip-free GKAT expressions.
By Lemma 5.2, e1 and e2 are bisimilar in grph∗(GExp−, ∂). By Lemmas 4.3
and 5.8, the translation gtr : grph∗(GExp−, ∂) → (StExp, τ) preserves bisimilar-
ity, so gtr(e1) and gtr(e2) are bisimilar in (StExp, τ) as well. By Theorem 4.4,
gtr(e1) ≡∗ gtr(e2). Therefore, by Lemma 5.11, rtg(gtr(e1)) ≡† rtg(gtr(e2)). Fi-
nally, by Lemma 5.12, we have e1 ≡† rtg(gtr(e1)) ≡† rtg(gtr(e2)) ≡† e2.

6 Completeness for Skip-free GKAT

The previous section establishes that ≡†-equivalence coincides with bisimilarity
for skip-free GKAT expressions by reducing the completeness problem of skip-
free GKAT up to bisimilarity to a solved completeness problem, namely that of
one-free star expressions up to bisimilarity. In this section we prove a complete-
ness result for skip-free GKAT up to language equivalence. We show this can be
achieved by reducing it to the completeness problem of skip-free GKAT up to
bisimilarity, which we just solved in the previous section.

Despite bisimilarity being a less traditional equivalence in the context of
Kleene algebra, this reduction simplifies the completeness proof greatly, and
justifies the study of bisimilarity in the pursuit of completeness for GKAT.

The axiom x · 0 = 0 (which is the only difference between skip-free GKAT up
to language equivalence and skip-free GKAT up to bisimilarity) indicates that the
only semantic difference between bisimilarity and language equivalence in skip-
free GKAT is early termination. This motivates our reduction to skip-free GKAT
up to bisimilarity below, which involves reducing each skip-free expression to an
expression representing only the successfully terminating branches of execution.

Now let us turn to the formal proof of Theorem 3.14, which says that if
e, f ∈ GExp− are such that L(e) = L(f), then e ≡ f . In a nutshell, our strategy is
to produce two terms ⌊e⌋, ⌊f⌋ ∈ GExp− such that e ≡ ⌊e⌋, f ≡ ⌊f⌋ and ⌊e⌋ ↔ ⌊f⌋
in (GExp−, ∂). The latter property tells us that ⌊e⌋ ≡† ⌊f⌋ by Theorem 3.13,
which allows us to conclude e ≡ f . The expression ⌊e⌋ can be thought of as the
early termination version of e, obtained by pruning the branches of its execution
that cannot end in successful termination.

To properly define the transformation ⌊−⌋ on expressions, we need the notion
of a dead state in a skip-free automaton, analogous to a similar notion from [42].

A Complete Inference System 325

Definition 6.1. Let (X,h) be a skip-free automaton. The set D(X,h) is the
largest subset of X such for all x ∈ D(X,h) and α ∈ At, either h(x)(α) = ⊥ or
h(x)(α) ∈ Σ ×D(X,h). When x ∈ D(X,h), x is dead; otherwise, it is live.

In the sequel, we say e ∈ GExp− is dead when e is a dead state in (GExp−, ∂),
i.e., when e ∈ D(GExp−, ∂). Whether e is dead can be determined by a simple
depth-first search, since e can reach only finitely many expressions by ∂. The
axioms of skip-free GKAT can also tell when a skip-free expression is dead.

Lemma 6.2. Let e ∈ GExp. If e is dead, then e ≡ 0.

We are now ready to define ⌊−⌋, the transformation on expressions promised
above. The intuition here is to prune the dead subterms of e by recursive descent;
whenever we find a part that will inevitably lead to an expression that is never
going to lead to acceptance, we set it to 0.

Definition 6.3. Let e ∈ GExp− and a ∈ BExp. In the sequel we use ae as a
shorthand for e +a 0. We furthermore define ⌊e⌋ inductively, as follows

⌊0⌋ = 0 ⌊p⌋ = p ⌊e1 +b e2⌋ = ⌊e1⌋ +b ⌊e2⌋

⌊e1 · e2⌋ =

{
0 e2 is dead

⌊e1⌋ · ⌊e2⌋ otherwise
⌊e1(b)e2⌋ =

{
0 be2 is dead

⌊e1⌋(b)⌊e2⌋ otherwise

The transformation defined above yields a term that is ≡-equivalent to e,
provided that we include the early termination axiom e · 0 ≡ 0. The proof is a
simple induction on e, using Lemma 6.2.

Lemma 6.4. For any e ∈ GExp−, e ≡ ⌊e⌋.

It remains to show that if L(e) = L(f), then ⌊e⌋ and ⌊f⌋ are bisimilar. To
this end, we need to relate the language semantics of e and f to their behaviour.
As a first step, we note that behaviour that never leads to acceptance can be
pruned from a skip-free automaton by removing transitions into dead states.

Definition 6.5. Let (X,h) be a skip-free automaton. Define ⌊h⌋ : X → GX by

⌊h⌋(x)(α) =

{
⊥ h(x)(α) = (p, x′), x′ is dead

h(x)(α) otherwise

Moreover, language equivalence of two states in a skip-free automaton implies
bisimilarity of those states, but only in the pruned version of that skip-free
automaton. The proof works by showing that the relation on X that connects
states with the same language is, in fact, a bisimulation in (X, ⌊h⌋).

Lemma 6.6. Let (X,h) be a skip-free automaton and x, y ∈ X. We have

L(x, (X,h)) = L(y, (X,h)) =⇒ x ↔ y in (X, ⌊h⌋)

et al.326 T. Kappé

The final intermediate property relates the behaviour of to states in the
pruned skip-free automaton of expressions to the syntactic skip-free automaton.

Lemma 6.7. The graph {(e, ⌊e⌋) | e ∈ GExp−} of ⌊−⌋ is a bisimulation of
skip-free automata between (GExp−, ⌊∂⌋) and (GExp−, ∂).

We now have all the ingredients necessary to prove Theorem 3.14.

Theorem 3.14 (Completeness II). If e1 ∼L e2, then e1 ≡ e2.

Proof. If e1 ∼L e2, then by definition L(e1) = L(e2). By Lemma 6.6, e1 ↔ e2 in
(GExp−, ⌊∂⌋), which by Lemma 6.7 implies that ⌊e1⌋ ↔ ⌊e2⌋ in (GExp−, ∂). From
Theorem 3.13 we know that ⌊e1⌋ ≡† ⌊e2⌋, and therefore e1 ≡ e2 by Lemma 6.4.

7 Relation to GKAT

So far we have seen the technical development of skip-free GKAT without much
reference to the original development of GKAT as it was presented in [42] and [40].
In this section, we make the case that the semantics of skip-free GKAT is merely
a simplified version of the semantics of GKAT, and that the two agree on which
expressions are equivalent after embedding skip-free GKAT into GKAT. More
precisely, we identify the bisimulation and language semantics of skip-free GKAT
given in Section 3 with instances of the existing bisimulation [40] and lan-
guage [42] semantics of GKAT proper. The main takeaway is that two skip-free
GKAT expressions are equivalent in our semantics precisely when they are equiv-
alent when interpreted as proper GKAT expressions in the existing semantics.

7.1 Bisimulation semantics

To connect the bisimulation semantics of skip-free GKAT to GKAT at large, we
start by recalling the latter. To do this, we need to define GKAT automata.

Definition 7.1. A (GKAT) automaton is a pair (X, d) such that X is a set and
d : X → (⊥ + ✓ + Σ × X)At is a function called the transition function. We

write x α|p−−→ y to denote d(x)(α) = (p, y), x ⇒ α to denote d(x)(α) = ✓, and
x ↓ α if d(x)(α) is undefined.

Automata can be equipped with their own notion of bisimulation.8

Definition 7.2. Given automata (X,h) and (Y, k), a bisimulation between them
is a relation R ⊆ X × Y such that if x R y, α ∈ At and p ∈ Σ,:

1. if h(x)(α) = ⊥, then k(y)(α) = ⊥; and
2. if h(x)(α) = ✓, then k(y)(α) = ✓; and
3. if h(x)(α) = (p, x′), then k(y)(α) = (p, y′) such that x′ R y′.

8 As in previous sections, automata can be studied as coalgebras for a given functor
and the notions below are instances of general abstract notions [17,37].

A Complete Inference System 327

α ≤ b

b ⇒ a

α ≤ b e1 ⇒ α

e1 +b e2 ⇒ α

α ≤ b̄ e2 ⇒ α

e1 +b e2 ⇒ a

α ≤ b e1
α|p−−→ e′

e1 +b e2
α|p−−→ e′

α ≤ b̄ e2
α|p−−→ e′

e1 +b e2
α|p−−→ e′

p α|p−−→ 1

e ⇒ α e2 ⇒ α

e1 · e2 ⇒ a

e ⇒ α f α|p−−→ e′

e1 · e2 α|p−−→ e′
e α|p−−→ e′

e1 · e2 α|p−−→ e′ # e2

α ≤ b e α|p−−→ e′

e(b) α|p−−→ e′ # e(b)
α ≤ b̄

e(b) ⇒ a

Fig. 7. The transition function δ : GExp → (⊥+✓+Σ × GExp)At defined inductively.
Here, e1 #e2 is e2 when e = 1 and e1 ·e2 otherwise, b ∈ BExp, p ∈ Σ, and e, e′, ei ∈ GExp.

We call x and y bisimilar and write x ↔ y if x R y for some bisimulation R.

Remark 7.3. The properties listed above are implications, but it is not hard to
show that if all three properties hold for R, then so do all of their symmetric
counterparts. For instance, if k(y)(α) = (p, y′), then certainly h(x)(α) must be
of the form (q, x′), which then implies that q = p while x′ R y′.

Two GKAT expressions are bisimilar when they are bisimilar as states in the
syntactic automaton [40], (GExp, δ), summarised in Fig. 7.

Remark 7.4. The definition of δ given above diverges slightly from the definition
in [40]. Fortunately, this does not make a difference in terms of the bisimula-
tion semantics: two expressions are bisimilar in (GExp, δ) if and only if they
are bisimilar in the original semantics. The full version [22] contains a detailed
account.

There is a fairly easy way to convert a skip-free automaton into a GKAT
automaton: simply reroute all accepting transitions into a new state ⊤, that
accepts immediately, and leave the other transitions the same.

Definition 7.5. Given a skip-free automaton (X, d), we define the automaton
embed(X, d) = (X + ⊤, d̃), where d̃ is defined by

d̃(x)(α) =

✓ x = ⊤
(p,⊤) d(x)(α) = (p,✓)

d(x)(α) otherwise

We can show that two states are bisimilar in a skip-free automaton if and
only if these same states are bisimilar in the corresponding GKAT automaton.

Lemma 7.6. Let (X, d) be a skip-free automaton, and let x, y ∈ X.

x ↔ y in (X, d) ⇐⇒ x ↔ y in embed(X, d)

The syntactic skip-free automaton (GExp−, ∂) can of course be converted to
a GKAT automaton in this way. It turns out that there is a very natural way of
correlating this automaton to the syntactic GKAT automaton (GExp, δ).

et al.328 T. Kappé

Lemma 7.7. The relation {(e, e) : e ∈ GExp−} ∪ {(⊤, 1)} is a bisimulation
between embed(GExp−, ∂) and (GExp, δ).

We now have everything to relate the bisimulation semantics of skip-free
GKAT expressions to the bisimulation semantics of GKAT expressions at large.

Lemma 7.8. Let e, f ∈ GExp−. The following holds:

e ↔ f in (GExp−, ∂) ⇐⇒ e ↔ f in (GExp, δ)

Proof. We derive using Lemmas 7.6 and 7.7, as follows: since the graph of embed
is a bisimulation, e ↔ f in (GExp−, ∂) iff e ↔ f in embed(GExp−, ∂) if and only
if e ↔ f in (GExp, δ). In the last step, we use the fact that if R is a bisimulation
(of automata) between (X,h) and (Y, k), and S is a bisimulation between (Y, k)
and (Z, ℓ), then R ◦ S is a bisimulation between (X,h) and (Z, ℓ).

7.2 Language semantics

We now recall the language semantics of GKAT, which is defined in terms of
guarded strings [29], i.e., words in the set At · (Σ ·At)∗, where atoms and actions
alternate. In GKAT, successful termination occurs with a trailing associated test,
representing the state of the machine at termination. In an execution of the
sequential composition of two programs e · f , the test trailing the execution of e
needs to match up with an input test compatible with f , otherwise the program
crashes at the end of executing e. The following operations on languages of
guarded strings record this behaviour by matching the ends of traces on the left
with the beginnings of traces on the right.

Definition 7.9. For L,K ⊆ At · (Σ ·At)∗, define L ⋄K = {wαx : wα ∈ L,αx ∈
K} and L(∗) =

⋃
n∈N L(n), where L(n) is defined inductively by setting L(0) = At

and L(n+1) = L ⋄ L(n).

The language semantics of a GKAT expression is now defined in terms of the
composition operators above, as follows.

Definition 7.10. We define L̂ : GExp → P(At·(Σ ·At)∗) inductively, as follows:

L̂(b) = {α ∈ At | α ≤ b} L̂(p) = {αpβ | α, β ∈ At} L̂(e · f) = L̂(e) ⋄ L̂(f)

L̂(e +b f) = L̂(b) ⋄ L̂(e) ∪ L̂(b) ⋄ L̂(f) L̂(e(b)) = (L̂(b) ⋄ L̂(e))(∗) ⋄ L̂(b)

This semantics is connected to the relational semantics from Definition 2.2:

Theorem 7.11 ([42]). For e, f ∈ GExp, we have L̂(e) = L̂(f) if and only if
JeKσ = JfKσ for all relational interpretations σ

Moreover, since skip-free GKAT expressions are also GKAT expressions, this
means that we now have two language interpretations of the former, given by L̂
and L. Fortunately, one can easily be expressed in terms of the other.

A Complete Inference System 329

Guarded Union Sequencing Loops

x = x+b x

x+b y = y +b̄ x

x+b (y +c z) = (x+b y) +b∨c z

x+b y = bx+b y

(x+b y)z = xz +b yz

x(yz) = (xy)z

0x = 0

x0
(†)
= 0

1x = x

x1 = x

xx(b) +b 1 = x(b)

(x+a 1)(b) = (ax)(b)

z = xz +b y E(x) = 0

z = x(b)y

Fig. 8. Axioms for language semantics GKAT (without the Boolean algebra axioms
for tests). The function E : GExp → BExp is defined below. If the axiom marked (†) is
omitted, the above potentially axiomatizes bisimilarity.

Lemma 7.12. For e ∈ GExp−, it holds that L̂(e) = L(e) · At.

As an easy consequence of the above, we find that the two semantics must
identify the same skip-free GKAT-expressions.

Lemma 7.13. For e, f ∈ GExp−, we have L(e) = L(f) iff L̂(e) = L̂(f).

By Theorem 3.14, these properties imply that ≡ also axiomatizes relational
equivalence of skip-free GKAT-expressions, as a result.

Corollary 7.14. Let e, f ∈ GExp−, we have e ≡ f if and only if JeKσ = JfKσ
for all relational interpretations σ.

7.3 Equivalences

Finally, we relate equivalences as proved for skip-free GKAT expressions to those
provable for GKAT expressions, showing that proofs of equivalence for skip-free
GKAT expressions can be replayed in the larger calculus, without (UA).

The axioms of GKAT as presented in [42,40] are provided in Figure 8. We
write e ≈† f when e = f is derivable from the axioms in Figure 8 with the
exception of (†), and e ≈ f when e = f is derivable from the full set.

The last axiom of GKAT is not really a single axiom, but rather an axiom
scheme, parameterized by the function E : GExp → BExp defined as follows:

E(b) = b E(p) = 0 E(e +b f) = (b ∧ E(e)) ∨ (b ∧ E(f))

E(e · f) = E(e) ∧ E(f) E(e(b)) = b

The function E models the analogue of Salomaa’s empty word property [38]: we
say e is guarded when E(b) is equivalent to 0 by to the laws of Boolean algebra.
Notice that as GKAT expressions, skip-free GKAT expressions are always guarded.

Since skip-free GKAT expressions are also GKAT expressions, we have four
notions of equivalence for GKAT expressions: as skip-free expressions or GKAT
expressions in general, either with or without (†). These are related as follows.

Theorem 7.15. Let e, f ∈ GExp−. Then (1) e ≈† f if and only if e ≡† f , and
(2) e ≈ f if and only if e ≡ f .

et al.330 T. Kappé

Proof. For the forward direction of (1), we note that if e ≈† f , then e ↔ f in
(GExp, δ) by Theorem 3.12. By Lemma 7.8, e ↔ f in (GExp−, δ) and therefore
e ≡† f by Theorem 3.13. Conversely, note that any proof of e = f by the axioms
of Figure 2 can be replayed using the rules from Figure 8. In particular, the
guardedness condition required for the last skip-free GKAT axiom using the last
GKAT axiom is always true, because E(g) ≈† 0 for any g ∈ GExp−.

The proof of the second claim is similar, but uses Theorem 3.13 instead.

8 Related Work

This paper fits into a larger research program focused on understanding the
logical and algebraic content of programming. Kleene’s paper introducing the
algebra of regular languages [23] was a foundational contribution to this re-
search program, containing an algebraic account of mechanical programming
and some of its sound equational laws. The paper also contained an interesting
completeness problem: give a complete description of the equations satisfied by
the algebra of regular languages. Salomaa was the first to provide a sound and
complete axiomatization of language equivalence for regular expressions [38].

The axiomatization in op. cit. included an inference rule with a side condition
that prevented it from being algebraic in the sense that the validity of an equa-
tion is not preserved when substituting letters for arbitrary regular expressions.
Nevertheless, this inspired axiomatizations of several variations and extensions
of Kleene algebra [46,42,41], as well as Milner’s axiomatization of the algebra of
star behaviours [33]. The side condition introduced by Salomaa is often called
the empty word property, an early version of a concept from process theory called
guardedness9 that is also fundamental to the theory of iteration [6].

Our axiomatization of skip-free GKAT is algebraic due to the lack of a guard-
edness side-condition (it is an equational Horn theory [32]). This is particularly
desirable because it allows for an abundance of other models of the axioms.
Kozen proposed an algebraic axiomatization of Kleene algebra that is sound
and complete for language equivalence [25], which has become the basis for a
number of axiomatizations of other Kleene algebra variants [13,19,20,47] includ-
ing Kleene algebra with tests [26]. KAT also has a plethora of relational models,
which are desirable for reasons we hinted at in Section 2.

GKAT is a fragment of KAT that was first identified in [30]. It was later
given a sound and complete axiomatization in [42], although the axiomatization
is neither algebraic nor finite (it includes (UA), an axiom scheme that stands for
infinitely many axioms). It was later shown that dropping x · 0 = 0 (called (S3)
in [42]) from this axiomatization gives a sound and complete axiomatization of
bisimilarity [40]. The inspiration for our pruning technique is also in [40], where
a reduction of the language equivalence case to the bisimilarity case is discussed.

9 This is a different use of the word “guarded” than in “guarded Kleene algebra with
tests”. In the context of process theory, a recursive specification is guarded if every
of its function calls occurs within the scope of an operation.

A Complete Inference System 331

Despite the existence of an algebraic axiomatization of language equivalence
in KAT, GKAT has resisted algebraic axiomatization so far. Skip-free GKAT hap-
pens to be a fragment of GKAT in which every expression is guarded, thus
eliminating the need for the side condition in Fig. 8 and allowing for an alge-
braic axiomatization. An inequational axiomatization resembling that of KAT
might be gleaned from the recent preprint [39], but we have not investigated this
carefully. The GKAT axioms for bisimilarity of ground terms can also likely be
obtained from the small-step semantics of GKAT using [1,2,3], but unfortunately
this does not appear to help with the larger completeness problem.

The idea of reducing one completeness problem in Kleene algebra to another
is common in Kleene algebra; for instance, it is behind the completeness proof of
KAT [29]. Cohen also reduced weak Kleene algebra as an axiomatization of star
expressions up to simulation to monodic trees [10], whose completeness was con-
jectured by Takai and Furusawa [45]. Grabmayer’s solution to the completeness
problem of regular expressions modulo bisimulation [14] can also be seen as a
reduction to the one-free case [15], since his crystallization procedure produces
an automaton that can be solved using the technique found in op. cit. Other in-
stances of reductions include [9,4,11,47,19,21,31,35,27]. Recent work has started
to study reductions and their compositionality properties [11,20,34].

9 Discussion

We continue the study of efficient fragments of Kleene Algebra with Tests (KAT)
initiated in [42], where the authors introduced Guarded Kleene Algebra with
Tests (GKAT) and provided an efficient decision procedure for equivalence. They
also proposed a candidate axiomatization, but left open two questions.

– The first question concerned the existence of an algebraic axiomatization,
which is an axiomatization that is closed under substitution—i.e., where one
can prove properties about a certain program p and then use p as a variable
in the context of a larger program, being able to substitute as needed. This
is essential to enable compositional analysis.

– The second question left open in [42] was whether an axiomatization that
did not require an axiom scheme was possible. Having a completeness proof
that does not require an axiom scheme to reason about mutually dependent
loops is again essential for scalability: we should be able to axiomatize single
loops and generalize this behaviour to multiple, potentially, nested loops.

In this paper, we identified a large fragment of GKAT, which we call skip-free
GKAT (GKAT−), that can be axiomatized algebraically without relying on an ax-
iom scheme. We show how the axiomatization works well for two types of equiva-
lence: bisimilarity and language equivalence, by proving completeness results for
both semantics. Having the two semantics is interesting from a verification point
of view as it gives access to different levels of precision when analyzing program
behaviour, but also enables a layered approach to the completeness proofs.

et al.332 T. Kappé

We provide a reduction of the completeness proof for language semantics to
the one for bisimilarity. Moreover, the latter is connected to a recently solved [14]
problem proposed by Milner. This approach enabled two things: it breaks down
the completeness proofs and reuses some of the techniques while also highlighting
the exact difference between the two equivalences (captured by the axiom e·0 ≡ 0
which does not hold for bisimilarity). We also showed that proofs of equivalence
in skip-free GKAT transfer without any loss to proofs of equivalence in GKAT.

There are several directions for future work. The bridge between process
algebra and Kleene algebra has not been exploited to its full potential. The
fact that we could reuse results by Grabmayer and Fokkink [14,15] was a major
step towards completeness. An independent proof would have been much more
complex and very likely required the development of technical tools resembling
those in [14,15]. We hope the results in this paper can be taken further and more
results can be exchanged between the two communities to solve open problems.

The completeness problem for full GKAT remains open, but our completeness
results for skip-free GKAT are encouraging. We believe they show a path towards
studying whether an algebraic axiomatization can be devised or a negative re-
sult can be proved. A first step in exploring a completeness result would be
to try extending Grabmayer’s completeness result [14] to a setting with output
variables—this is a non-trivial exploration, but we are hopeful will yield new
tools for completeness. As mentioned in the introduction, NetKAT [4] (and its
probabilistic variants [12,43]) have been one of the most successful extensions of
KAT. We believe the step from skip-free GKAT to a skip-free guarded version of
NetKAT is also a worthwhile exploration. Following [16], we hope to be able to
explore these extensions in a modular and parametric way.

Acknowledgements A. Silva and T. Schmid were partially funded by ERC
grant Autoprobe (grant agreement 101002697). T. Kappé was supported by the
EU’s Horizon 2020 research and innovation programme under Marie Sk lodowska-
Curie grant agreement No. 101027412 (VERLAN).

References

1. Aceto, L.: Deriving complete inference systems for a class of GSOS languages
generation regular behaviours. In: CONCUR. pp. 449–464 (1994). https://doi.org/
10.1007/978-3-540-48654-1 33

2. Aceto, L., Caltais, G., Goriac, E., Ingólfsdóttir, A.: Axiomatizing GSOS with pred-
icates. In: SOS. pp. 1–15 (2011). https://doi.org/10.4204/EPTCS.62.1

3. Aceto, L., Caltais, G., Goriac, E., Ingólfsdóttir, A.: PREG axiomatizer - A ground
bisimilarity checker for GSOS with predicates. In: CALCO. pp. 378–385 (2011).
https://doi.org/10.1007/978-3-642-22944-2 27

4. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: POPL. pp. 113–126
(2014). https://doi.org/10.1145/2535838.2535862

5. Birkhoff, G.: On the structure of abstract algebras. Mathematical Proceedings of
the Cambridge Philosophical Society 31(4), 433–454 (1935). https://doi.org/10.
1017/S0305004100013463

A Complete Inference System 333

https://doi.org/10.1007/978-3-540-48654-1_33
https://doi.org/10.1007/978-3-540-48654-1_33
https://doi.org/10.1007/978-3-540-48654-1_33
https://doi.org/10.1007/978-3-540-48654-1_33
https://doi.org/10.4204/EPTCS.62.1
https://doi.org/10.4204/EPTCS.62.1
https://doi.org/10.1007/978-3-642-22944-2_27
https://doi.org/10.1007/978-3-642-22944-2_27
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1017/S0305004100013463
https://doi.org/10.1017/S0305004100013463
https://doi.org/10.1017/S0305004100013463
https://doi.org/10.1017/S0305004100013463

6. Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Iterative Pro-
cesses. EATCS Monographs on Theoretical Computer Science, Springer (1993).
https://doi.org/10.1007/978-3-642-78034-9

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494
(1964). https://doi.org/10.1145/321239.321249

8. Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Argosy: verifying layered
storage systems with recovery refinement. In: PLDI. pp. 1054–1068 (2019). https:
//doi.org/10.1145/3314221.3314585

9. Cohen, E.: Hypotheses in Kleene algebra. Tech. rep., Bellcore (1994)
10. Cohen, E.: Weak Kleene algebra is sound and (possibly) complete for simulation

(2009). https://doi.org/10.48550/arXiv.0910.1028
11. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypotheses.

In: FOSSACS. pp. 207–223 (2019). https://doi.org/10.1007/978-3-030-17127-8 12
12. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Proba-

bilistic NetKAT. In: ESOP. pp. 282–309 (2016). https://doi.org/10.1007/
978-3-662-49498-1 12

13. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: POPL. pp. 343–355 (2015). https://doi.org/10.1145/
2676726.2677011

14. Grabmayer, C.: Milner’s proof system for regular expressions modulo bisimilarity
is complete: Crystallization: Near-collapsing process graph interpretations of regu-
lar expressions. In: LICS. pp. 34:1–34:13 (2022). https://doi.org/10.1145/3531130.
3532430

15. Grabmayer, C., Fokkink, W.J.: A complete proof system for 1-free regular expres-
sions modulo bisimilarity. In: LICS. pp. 465–478 (2020). https://doi.org/10.1145/
3373718.3394744

16. Greenberg, M., Beckett, R., Campbell, E.H.: Kleene algebra modulo theories: a
framework for concrete KATs. In: PLDI. pp. 594–608 (2022). https://doi.org/10.
1145/3519939.3523722

17. Gumm, H.P.: Functors for coalgebras. Algebra Universalis 45 (11 1998). https:
//doi.org/10.1007/s00012-001-8156-x

18. Huntington, E.V.: Sets of independent postulates for the algebra of logic. Trans-
actions of the American Mathematical Society 5(3), 288–309 (1904). https://doi.
org/10.1090/S0002-9947-1904-1500675-4

19. Kappé, T., Brunet, P., Rot, J., Silva, A., Wagemaker, J., Zanasi, F.: Kleene algebra
with observations. In: CONCUR. pp. 41:1–41:16 (2019). https://doi.org/10.4230/
LIPIcs.CONCUR.2019.41

20. Kappé, T., Brunet, P., Silva, A., Wagemaker, J., Zanasi, F.: Concurrent Kleene
algebra with observations: From hypotheses to completeness. In: FOSSACS. pp.
381–400 (2020). https://doi.org/10.1007/978-3-030-45231-5 20

21. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: Free
model and completeness. In: ESOP. pp. 856–882 (2018). https://doi.org/10.1007/
978-3-319-89884-1 30

22. Kappé, T., Schmid, T., Silva, A.: A complete inference system for skip-free guarded
Kleene algebra with tests (2023). https://doi.org/10.48550/arXiv.2301.11301

23. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
studies 34, 3–41 (1956)

24. Kot, L., Kozen, D.: Kleene algebra and bytecode verification. Electron. Notes
Theor. Comput. Sci. 141(1), 221–236 (2005). https://doi.org/10.1016/j.entcs.2005.
02.028

et al.334 T. Kappé

https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3314221.3314585
https://doi.org/10.48550/arXiv.0910.1028
https://doi.org/10.48550/arXiv.0910.1028
https://doi.org/10.1007/978-3-030-17127-8_12
https://doi.org/10.1007/978-3-030-17127-8_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1007/s00012-001-8156-x
https://doi.org/10.1007/s00012-001-8156-x
https://doi.org/10.1007/s00012-001-8156-x
https://doi.org/10.1007/s00012-001-8156-x
https://doi.org/10.1090/S0002-9947-1904-1500675-4
https://doi.org/10.1090/S0002-9947-1904-1500675-4
https://doi.org/10.1090/S0002-9947-1904-1500675-4
https://doi.org/10.1090/S0002-9947-1904-1500675-4
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.48550/arXiv.2301.11301
https://doi.org/10.48550/arXiv.2301.11301
https://doi.org/10.1016/j.entcs.2005.02.028
https://doi.org/10.1016/j.entcs.2005.02.028
https://doi.org/10.1016/j.entcs.2005.02.028
https://doi.org/10.1016/j.entcs.2005.02.028

25. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994). https://doi.org/10.1006/inco.1994.
1037

26. Kozen, D.: Kleene algebra with tests and commutativity conditions. In: TACAS.
pp. 14–33 (1996). https://doi.org/10.1007/3-540-61042-1 35

27. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: ICALP. pp. 280–292
(2014). https://doi.org/10.1007/978-3-662-43951-7 24

28. Kozen, D., Patron, M.: Certification of compiler optimizations using Kleene algebra
with tests. In: CL. pp. 568–582 (2000). https://doi.org/10.1007/3-540-44957-4 38

29. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability.
In: CSL. pp. 244–259 (1996). https://doi.org/10.1007/3-540-63172-0 43

30. Kozen, D., Tseng, W.D.: The Böhm-Jacopini theorem is false, propositionally. In:
MPC. pp. 177–192 (2008). https://doi.org/10.1007/978-3-540-70594-9 11

31. Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and
concurrent Kleene algebras (2017). https://doi.org/10.48550/arXiv.1705.05896

32. Makowsky, J.A.: Why Horn formulas matter in computer science: Initial structures
and generic examples. J. Comput. Syst. Sci. 34(2/3), 266–292 (1987). https://doi.
org/10.1016/0022-0000(87)90027-4

33. Milner, R.: A complete inference system for a class of regular behaviours. J.
Comput. Syst. Sci. 28(3), 439–466 (1984). https://doi.org/10.1016/0022-0000(84)
90023-0

34. Pous, D., Rot, J., Wagemaker, J.: On tools for completeness of Kleene alge-
bra with hypotheses. In: RAMICS. pp. 378–395 (2021). https://doi.org/10.1007/
978-3-030-88701-8 23

35. Pous, D., Wagemaker, J.: Completeness theorems for Kleene algebra with top. In:
CONCUR. pp. 26:1–26:18 (2022). https://doi.org/10.4230/LIPIcs.CONCUR.2022.
26

36. Rees, J.: Fizz Buzz: 101 Spoken Numeracy Games. Learning Development Aids
(2002)

37. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

38. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966). https://doi.org/10.1145/321312.321326

39. Schmid, T.: A (co)algebraic framework for ordered processes (2022). https://doi.
org/10.48550/arXiv.2209.00634

40. Schmid, T., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with tests:
Coequations, coinduction, and completeness. In: ICALP. pp. 142:1–142:14 (2021).
https://doi.org/10.4230/LIPIcs.ICALP.2021.142

41. Schmid, T., Rozowski, W., Silva, A., Rot, J.: Processes parametrised by an alge-
braic theory. In: ICALP. pp. 132:1–132:20 (2022). https://doi.org/10.4230/LIPIcs.
ICALP.2022.132

42. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene
algebra with tests: verification of uninterpreted programs in nearly linear time. In:
POPL. pp. 61:1–61:28 (2020). https://doi.org/10.1145/3371129

43. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets Scott:
semantic foundations for probabilistic networks. In: POPL. pp. 557–571 (2017).
https://doi.org/10.1145/3009837.3009843

44. Smolka, S., Kumar, P., Kahn, D.M., Foster, N., Hsu, J., Kozen, D., Silva, A.:
Scalable verification of probabilistic networks. In: PLDI. pp. 190–203 (2019). https:
//doi.org/10.1145/3314221.3314639

A Complete Inference System 335

https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.48550/arXiv.1705.05896
https://doi.org/10.48550/arXiv.1705.05896
https://doi.org/10.1016/0022-0000(87)90027-4
https://doi.org/10.1016/0022-0000(87)90027-4
https://doi.org/10.1016/0022-0000(87)90027-4
https://doi.org/10.1016/0022-0000(87)90027-4
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.1007/978-3-030-88701-8_23
https://doi.org/10.4230/LIPIcs.CONCUR.2022.26
https://doi.org/10.4230/LIPIcs.CONCUR.2022.26
https://doi.org/10.4230/LIPIcs.CONCUR.2022.26
https://doi.org/10.4230/LIPIcs.CONCUR.2022.26
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/321312.321326
https://doi.org/10.1145/321312.321326
https://doi.org/10.48550/arXiv.2209.00634
https://doi.org/10.48550/arXiv.2209.00634
https://doi.org/10.48550/arXiv.2209.00634
https://doi.org/10.48550/arXiv.2209.00634
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://doi.org/10.4230/LIPIcs.ICALP.2022.132
https://doi.org/10.4230/LIPIcs.ICALP.2022.132
https://doi.org/10.4230/LIPIcs.ICALP.2022.132
https://doi.org/10.4230/LIPIcs.ICALP.2022.132
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3314221.3314639

45. Takai, T., Furusawa, H.: Monodic tree Kleene algebra. In: RelMICS/AKA. pp.
402–416 (2006). https://doi.org/10.1007/11828563 27

46. Wagemaker, J., Bonsangue, M.M., Kappé, T., Rot, J., Silva, A.: Completeness
and incompleteness of synchronous Kleene algebra. In: MPC. pp. 385–413 (2019).
https://doi.org/10.1007/978-3-030-33636-3 14

47. Wagemaker, J., Brunet, P., Docherty, S., Kappé, T., Rot, J., Silva, A.: Partially
observable concurrent Kleene algebra. In: CONCUR. pp. 20:1–20:22 (2020). https:
//doi.org/10.4230/LIPIcs.CONCUR.2020.20

48. Zetzsche, S., Silva, A., Sammartino, M.: Guarded Kleene algebra with tests: Au-
tomata learning (2022). https://doi.org/10.48550/arXiv.2204.14153

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

et al.336 T. Kappé

https://doi.org/10.1007/11828563_27
https://doi.org/10.1007/11828563_27
https://doi.org/10.1007/978-3-030-33636-3_14
https://doi.org/10.1007/978-3-030-33636-3_14
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20
https://doi.org/10.48550/arXiv.2204.14153
https://doi.org/10.48550/arXiv.2204.14153
http://creativecommons.org/licenses/by/4.0/

Quorum Tree Abstractions of Consensus
Protocols

Berk Cirisci1(�) , Constantin Enea2 , and Suha Orhun Mutluergil3

1 IRIF, Université Paris Cité, Paris, France
cirisci@irif.fr

2 LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris, Palaiseau,
France

cenea@lix.polytechnique.fr
3 Sabanci University, Istanbul, Turkey
suha.mutluergil@sabanciuniv.edu

Abstract. Distributed algorithms solving agreement problems like con-
sensus or state machine replication are essential components of modern
fault-tolerant distributed services. They are also notoriously hard to un-
derstand and reason about. Their complexity stems from the different as-
sumptions on the environment they operate with, i.e., process or network
link failures, Byzantine failures etc. In this paper, we propose a novel ab-
stract representation of the dynamics of such protocols which focuses on
quorums of responses (votes) to a request (proposal) that form during a
run of the protocol. We show that focusing on such quorums, a run of
a protocol can be viewed as working over a tree structure where differ-
ent branches represent different possible outcomes of the protocol, the
goal being to stabilize on the choice of a fixed branch. This abstraction
resembles the description of recent protocols used in Blockchain infras-
tructures, e.g., the protocol supporting Bitcoin or Hotstuff. We show
that this abstraction supports reasoning about the safety of various al-
gorithms, e.g., Paxos, PBFT, Raft, and HotStuff, in a uniform way. In
general, it provides a novel induction based argument for proving that
such protocols are safe.

1 Introduction

Consensus or state-machine replication protocols are essential ingredients for
maintaining strong consistency in modern fault-tolerant distributed systems.
Such protocols must execute in the presence of concurrent and asynchronous
message exchanges as well as benign (message loss, process crash) or Byzantine
failures (message corruption). Developing practical implementations or reason-
ing about their correctness is notoriously difficult. Standard examples include
the classic Paxos [21] or PBFT [5] protocols, or the more recent HotStuff [37]
protocol used in Blockchain infrastructures.

In this paper, we propose a new abstraction for representing the executions
of such protocols that can be used in particular, to reason about their safety,

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 337–362, 2023.
https://doi.org/10.1007/978-3-031-30044-8_13

http://orcid.org/0000-0003-4261-090X
http://orcid.org/0000-0003-2727-8865
http://orcid.org/0000-0002-0734-7969
https://doi.org/10.1007/978-3-031-30044-8_13
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_13&domain=pdf

B. Cirisci et al.

i.e., ensuring Agreement (e.g., all correct processes decide on a single value) and
Validity (e.g., the decided value has been proposed by some node participat-
ing in the protocol). Usually, protocol executions are composed of a number of
communication-closed rounds [11], and each round consists of several phases in
which a process broadcasts a request and expects to collect responses from a
quorum of processes before advancing to the next phase. The abstraction is de-
fined as a sequential object called Quorum Tree (QTree) which maintains a tree
structure where each node corresponds to a different round in an execution. The
operations of QTree, to add or change the status of a node, model quorums of
responses that have been received in certain phases of a round.

For instance, a round in single-decree Paxos consists of two phases: a prepare
phase where a pre-determined leader broadcasts a request for joining that round
and expects a quorum of responses from the other processes before advancing to
a vote phase where it broadcasts a value to agree upon and expects a quorum
of responses (votes) in order to declare that value as decided in that round.
Rounds are initiated by their respective leaders and can run concurrently. The
idea behind QTree is to represent a Paxos execution using a rooted tree where
each node different from the root corresponds to a round where the leader has
received a quorum of responses in the prepare phase. The parent-child relation
models the data flow from one round to a later round: responses to join requests
contain values voted for in previous rounds (if any) and one of them will be
included by the leader in the vote phase request. The round in which that value
was voted defines the parent. Then, each node has one out of three possible
statuses: ADDED if the vote phase can still be successful (the leader can collect a
quorum of votes) but this did not happen yet, GHOST if the vote phase can not
be successful (e.g., a majority of processes advanced to the next round without
voting), and COMMITTED if the leader has received a quorum of responses in the
vote phase. This is a tree structure because before reaching a quorum in the vote
phase of a round, other rounds can start and their respective leaders can send
other vote requests (with possibly different values). The specific construction of
requests and responses in Paxos ensures that all the COMMITTED nodes in this
tree belong to a single branch, which entails the agreement property (this will
become clearer when presenting the precise definition of QTree in Section 2).

The QTree abstraction is applicable to a wide range of protocols beyond
the single-decree Paxos sketched above. It applies to state-machine replication
protocols like Raft [36] and HotStuff [37] where the tree structure represents
logs of commands (inputted by clients) stored at different processes and orga-
nized according to common prefixes (each node corresponds to a single com-
mand) and multi-decree consensus protocols like multi-Paxos [21] and its vari-
ants [16,26,23,18], or PBFT [5] where different consensus instances (for different
indices in a sequence of commands) are modeled using different QTree instances.

We show that all these protocols are refinements of QTree in the sense that
their executions can be mapped to sequences of operations on a QTree state,
which are about agreeing on a branch of the tree called the trunk. These oper-
ations are defined as invocations of two methods add and commit for adding a

338

Quorum Tree Abstractions of Consensus Protocols

new leaf to the tree (during which some other nodes may turn to GHOST) and
changing the status of a node from ADDED to COMMITTED, respectively. Any se-
quence of invocations to these methods ensures that all the COMMITTED nodes lie
on the same branch of the tree (the trunk). In relation to protocol executions,
add and commit invocations that concern the same node correspond to receiving
a quorum of responses in two specific phases of a round, which vary from one
protocol to another.

The mapping between protocol executions and QTree executions is defined as
in proofs of linearizability for concurrent objects with fixed linearization points.
Analogous to linearizability, where the goal is to show that an object method
takes effect instantaneously at a point in time called linearization point, we
show that it is possible to mark certain steps of a given protocol as linearization
points of add or commit operations4, such that the sequence of add and commit
invocations defined by the order between linearization points along a protocol
execution is a correct QTree execution. We introduce a declarative character-
ization of correct QTree executions that simplifies the proof of the latter (see
Section 3).

The QTree abstraction offers a novel view on the dynamics of classic consen-
sus or state-machine replication protocols like Paxos, Raft, and PBFT, which
relates to the description of recent Blockchain protocols like HotStuff and Bit-
coin [27], i.e., agreeing on a branch in a tree. It provides a formal framework
to reason uniformly about single-decree consensus protocols and state-machine
replication protocols like Raft and HotStuff. For single-decree protocols (or com-
positions thereof), the parent-child relation between QTree nodes corresponds
to the data-flow between a quorum of responses to a leader and the request he
sends in the next phase while for Raft and HotStuff, it corresponds to an order
set by a leader between different commands.

Our work relies on a hypothesis that correctness proofs based on establishing
a refinement towards an operational specification such as QTree, which can be
understood as a sequence of steps, are much more intuitive and “explainable”
compared to classic proofs based on inductive invariants. An inductive invariant
has to describe all intermediate states produced by all possible orders of receiving
messages and a precise formalization is quite complex. As an indication, the
Paxos invariant used in recent work [29] (see formulas (4) to (12) in Section 5.2)
is a conjunction of eight quantified first-order formulas which are hard to reason
about and not re-usable in the context of a different protocol.

We believe that operational specifications are also helpful in taming com-
plexity while designing new protocols or implementations theoreof, or in gaining
confidence about their correctness without going through ad-hoc and brittle
proof arguments. For instance, our proofs are very clear about the phases of a
round in which quorums need to intersect, which provides flexibility and opti-

4 These linearization points are fixed in the sense that they correspond to specific
instructions in the code of the protocol, and they do not depend on the future of
an execution. For an expert reader, this actually corresponds to a proof of strong
linearizability [15].

339

mization opportunities for deciding on quorum sizes in each phase. Depending on
environment assumptions, quorum sizes can be optimized while preserving cor-
rectness. Compared to previous operational specifications for reasoning about
consensus protocols, e.g., [3,12], QTree is designed to be less abstract so that
the refinement proof, establishing the relationship between a given protocol and
QTree, is less complex (see Section 8 for details).

2 Quorum Tree

We describe the QTree sequential object which operates on a tree and has two
methods add and commit for adding a new node and modifying an attribute
of a node (committing a node), respectively. When used as an abstraction of
consensus protocols, invocations of these two methods correspond to certain
quorums that are reached during a round of the protocol.

2.1 Overview

QTree is a sequential rooted-tree, a possible state being depicted in Figure 1.
The nodes with black dashed margins are not members of the tree and they are
discussed later. Each node in the tree contains a round number, a value, and a
status field set to ADDED, GHOST, or COMMITTED. The round number acts as an
identifier of a node since there can not exist two nodes with the same round
number. The Root node is part of the initial state and its status is COMMITTED.
A QTree state consists of a trunk, alive branches, and dead branches; a branch is
a chain of nodes connected by the parent relation. Alive branches are extensible
with new ADDED nodes but dead branches are not. The trunk is a particular
branch of the tree that starts from the root. It contains all the COMMITTED nodes
and it ends with a COMMITTED node. It may also contain ADDED or GHOST nodes.
For example, in Figure 1, the trunk consists of Root and n3. All alive branches are
connected to the last COMMITTED node of the trunk (alive branches can include
ADDED or GHOST nodes). For instance, in Figure 1, the subtree rooted at n3
contains a single alive branch whose leaf node is n5. Dead branches can contain
only GHOST nodes. In Figure 1, the tree contains a single dead branch containing
the node n1.

Nodes can be added to the tree as leaves. The status of a newly added node is
either ADDED or GHOST. The status ADDED may turn to GHOST or COMMITTED. The
GHOST status is “final” meaning that it can never turn into COMMITTED afterwards.
However, GHOST nodes can be part of alive branches, and they can help in growing
the tree.

QTree has two methods add and commit :

– add generates a new leaf with a round number r value v and parent p iden-
tified by the round number rp given as an input. Its status is set to ADDED
or GHOST provided that some conditions hold. If the status of the new node
is set as ADDED, then it either extends (has a path to the end of) an existing
alive branch or creates a new alive branch from the trunk. The new node

B. Cirisci et al.340

may also “invalidate” some other nodes by changing their status from ADDED
to GHOST.

– commit extends the trunk by turning the status of a node from ADDED to
COMMITTED. This extension of the trunk may prevent some branches to be
extended in the future (some alive branches may become dead), i.e., future
invocations of add that extend those branches will add only GHOST nodes.

Each node models the evolution of a round in a consensus protocol and the value
attribute represents the value proposed by the leader of that round. The round
and value attributes of a node are immutable and cannot be changed later. We
assume that round numbers are strictly positive except for Root whose round
number is 0.

QTree applies uniformly to a range of consensus or state-machine replication
protocols. We start by describing a variation that applies to single-decree con-
sensus protocols, where a number of processes aim to agree on a single value.
Multi-decree consensus protocols that are used to solve state-machine replication
can be simulated using a number of instances of QTree, one for each decree (the
instances are independent one from another). Then, state-machine replication
protocols like HotStuff that rely directly on a tree structure to order commands
can be simulated by the QTree for single-decree consensus modulo a small change
that we discuss later.

2.2 Definition of the Single-Decree Version

Algorithm 1 lists a description of QTree in pseudo-code. The following set of
predicates are used as conditions inside methods:

1. link(n) ≡ n.parent ∈ Nodes ∧ n.parent.round < n.round
2. newRound(n) ≡ ∀n′ ∈ Nodes. n′.round 6= n.round
3. maxCommitted(n) ≡ n.status = COMMITTED ∧

(∀n′ ∈ Nodes. n′.status = COMMITTED =⇒ n′.round < n.round)
4. extendsTrunk(n) ≡ ∃n′ ∈ Nodes. maxCommitted(n′) ∧

(n extends n′ ∨ n.round < n′.round)
5. valid(n) ≡ link(n) ∧ newRound(n) ∧ extendsTrunk(n)
6. valueConstraint(n) ≡ n.parent 6= Root =⇒ n.value = n.parent.value

The add method (lines 5-17) generates a new node n with round, value, and
parent set according to the method’s inputs. Then, it adds n to the tree by
linking it to the selected parent if n satisfies the following validity conditions:
– n’s parent belongs to the tree and its round number is smaller than r (pred-

icate link at (1)),
– the tree does not contain a node with round number r (predicate newRound

at (2)),
– if r is bigger than the round number of the last node of the trunk, then n

must extend the trunk (predicate extendsTrunk at (4)),
– n’s value must be the same as its parent’s value unless the parent is the Root

(predicate valueConstraint at (6)).

Quorum Tree Abstractions of Consensus Protocols 341

Algorithm 1: The QTree object
1 Initialize:

/* ⊥ denotes non-initialized values */
2 Root.round = 0; Root.status = COMMITTED;
3 Root.value = ⊥; Root.parent = Root;
4 Nodes = {Root};
5 Method add (r, v, rp)
6 Pre: r > 0
7 n = new Node(round = r, status = ⊥,

value = v, parent = p : p.round = rp);
8 if valid(n) ∧ valueConstraint(n)

9 Nodes = Nodes ∪ {n};
10 n.status = ADDED;
11 if ∃n′ ∈ Nodes. n′.round > n.round
12 n.status = GHOST;

13 forall n′ ∈ Nodes. n′.round < n.round
14 if n is conflicting with n′

15 n′.status ← GHOST;

16 return OK

17 return FAIL

18 Method commit (r)
19 if ∃ n ∈ Nodes. n.round = r ∧

n.status = ADDED
20 n.status ← COMMITTED;
21 return OK

22 return FAIL

round = 0
value = ⏊

round = 2
value = v2

n2

Root

round = 3
value = v3

n5

n3

round = 5
value = v3

round = 6
value = v3

n6

round = 1
value = v1

n1

round = 4
value = v1

n4

Fig. 1: A state of QTree.
We represent ADDED nodes
with green solid margins,
GHOST nodes with red double-
line margins, and COMMITTED
nodes with blue thick mar-
gins. The nodes with black
dashed margins are not part
of the state, they are ficti-
tious nodes used to explain
the method for adding new
nodes.

The valid predicate at (5) is the conjunction of the first three constraints.
For example, let us consider an invocation of add in a state of QTree that

contains the non-dashed nodes in Figure 1. If the invocation generates n2, n4, or
n6 (receiving as input the corresponding attributes), then n2 and n6 do satisfy
all these constraints and can be added to the tree. The node n4 fails the extend-
sTrunk predicate because it is not extending the last node of the trunk (n3) and
its round number is higher.

If a node n satisfies the conditions above, the add method turns its status
to either ADDED or GHOST. If there is another node in the tree with a higher
round number, n’s status becomes GHOST. Otherwise, it becomes ADDED. As a
continuation of the example above, the status of n2 is set to GHOST because the
tree contains node n3 with a higher round number and the status of n6 is set to
ADDED.

Moreover, the addition of n can “invalidate” some other nodes, turn their
status to GHOST. This is based on a notion of conflicting nodes. We say that
two nodes are conflicting if they are on different branches, i.e., there is no path
from one node to the other. An add invocation that adds a node n changes the

B. Cirisci et al.342

round = 0
value = ⊥

round = 1
value = v1

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 2
value = v1

41

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 2
value = v1

2

QTree

n1 n1 n3 n3n1

n2 n2

n1 n3

Root Root Root Root

Fig. 2: Explaining the behavior of add and commit methods. Colors are inter-
preted as in Fig 1.

status of all the nodes n′ in the tree that conflict with n and have a lower round
number than n, to GHOST. For example, Figure 2 pictures a sequence of QTree
states in an execution, to be read from left to right. The first state represents
the result of executing add(1, v1, 0) on the initial state of QTree, adding node
n1. Executing add(3, v2, 0) on this first state creates another node n3 and sets
its status to ADDED. This invocation will also turn the status of n1 to GHOST since
its round number is less than the round number of n3 and they are on different
branches. Afterwards, by executing add(2, v1, 1), a node n2 is added to the tree
with status GHOST since there is a node n3 on a different branch which has a
higher round number.

The method add returns OK when the created node is effectively added to
the tree (it satisfies the conditions described above) and FAIL, otherwise.

Lastly, the commit method takes a round number r as input and turns the
status of the node containing r to COMMITTED if it was ADDED. If successful, it
returns OK and FAIL, otherwise. As a continuation of the example above, the
right part of Figure 2 pictures a state obtained by executing commit(3) on the
state to the left. This sets the status of n3 to COMMITTED as n3 was previously
ADDED. Note that the conditions in add ensure that the tree can not contain two
nodes with the same round number.

Safety Properties. We show that the QTree object in Algorithm 1 can be used
to reason about the safety of single-decree consensus protocols, in the sense that
it satisfies a notion of Validity (processes agree on one of the proposed values)
and Agreement (processes decide on a single value). More precisely, we show that
every state that is reachable by executing a sequence of invocations of add and
commit (in Algorithm 1), called simply reachable state, satisfies the following:

– Validity : every node different from Root contains the same value as a child
of Root, and

– Agreement : every two COMMITTED nodes different from Root contain the same
value.

Proposition 1 (Validity). Every node in a reachable state that is different
from Root contains the same value as a child of Root.

Proof. A node n is added to the tree only if the predicate valueConstraint holds,
which implies that it is either a child of Root or it has the same value as its

Quorum Tree Abstractions of Consensus Protocols 343

parent which is a descendant of Root. Also, since the value attribute of a node
is immutable, any COMMITTED node contains the same value that it had when it
was created by an add invocation.

Therefore, the fact that a consensus protocol refining QTree satisfies validity,
i.e., processes decide on a value proposed by a client of the protocol, reduces
to proving that the phases of a round simulated by add invocations that add
children of Root use values proposed by a client. This is ensured using additional
mechanisms, i.e., a client broadcasts its value to all participants in the protocol,
so that each participant can check the validity of a value proposed by a leader.

Next, we focus on Agreement, and show that COMMITTED nodes belong to a
single branch of the tree.

Proposition 2. Let n1 and n2 be two COMMITTED nodes in a reachable state.
Then, n1 and n2 are not conflicting.

Proof. Assume towards contradiction that QTree reaches a state where two
COMMITTED nodes n1 and n2 are conflicting. Let r1 = n1.round and r2 = n2.round.
Without loss of generality, we assume that r1 < r2. Such a state is reachable if
add(r1,_,_) and add(r2,_,_) resulted in adding the nodes n1 and n2 and set
their status to ADDED (we use _ to denote arbitrary values), and subsequently,
commit(r1) and commit(r2) switched the status of both n1 and n2 to COMMITTED.
If add(r1,_,_) were to execute before add(r2,_,_), then add(r2,_,_) would
have changed the status of n1 to GHOST because it is conflicting with n2. Other-
wise, if add(r2,_,_) were to execute before add(r1,_,_) , then the latter would
have set the status of n1 to GHOST since the tree contains n2 that has a higher
round number. In both cases, executing commit(r1) can never turn the status of
n1 to COMMITTED.

Proposition 2 allows to conclude that any two COMMITTED nodes (different
from Root) contain the same value. Indeed, a node can become COMMITTED only
if it was ADDED, which implies that is has the same value as its parent (the
predicate valueConstraint holds), and by transitivity, as any of its ancestors,
except for Root.
Proposition 3 (Agreement). Let n1 and n2 be two COMMITTED nodes in a
reachable state, which are different from Root. Then, n1.value = n2.value.

2.3 State Machine Replication Versions

The single-decree version described above can be extended easily to a multi-
decree context. As multi-decree consensus protocols, used in state machine repli-
cation, can be seen as a composition of multiple instances of single-decree consen-
sus protocols, a multi-decree version of QTree is obtained by composing multiple
instances of the single-decree version. Each of these instances manipulates a tree
as described above without interference from other instances. The validity and
agreement properties above apply separately to each instance.

The single-decree version can also be extended for state machine replica-
tion protocols like HotStuff and Raft where the commands (values) are a-priori

B. Cirisci et al.344

structured as a tree, i.e., each command given as input is associated to a pre-
determined parent in this tree. Then, the goal of such a protocol is to agree
on a sequence in which to execute these commands, i.e., a branch in this tree.
Simply removing the valueConstraint condition in the add method (underlined
in Algorithm 1) enables QTree to simulate such protocols. A node’s value need
not be the same as its parent’s value to be valid for add . Proposition 2 that
implies the agreement property of such protocols still holds (Proposition 3 does
not hold when the valueConstraint condition is removed; this property is specific
to single-decree consensus). Since the value field remains immutable, the validity
property of such protocols reduces to ensuring that the values generated during
phases simulated by add correspond to commands issued by the client (Proposi-
tion 1 is also specific to single-decree consensus and it does not hold). As before,
this requires additional mechanisms, i.e., a client broadcasting a command to
all the participants in the protocol, whose correctness can be established quite
easily.

3 Consensus Protocols Refining QTree

In the following, we show that a number of consensus protocols are refinements of
QTree in the sense that their executions can be mimicked with add and commit
invocations. This is similar to a linearizable concurrent object being mimicked
with invocations of a sequential specification. The refinement relation allows to
conclude that the Validity and Agreement properties of QTree imply similar
properties for any of its refinements.

The definition of the refinement relation relies on a formalization of protocols
and QTree as labeled transition systems. For a given protocol, a state is a tuple of
process local states and a set of messages in transit, and a transition corresponds
to an indivisible step of a process (receiving a set of messages, performing a local
computation step, or sending a message). For QTree, a state is a tree of nodes
as described above and a step corresponds to an invocation to add or commit .
An execution is a sequence of transitions from the initial state.

Refinement corresponds to a mapping between protocol executions and QTree
executions. This mapping is defined as in proofs of linearizability for concurrent
objects with fixed linearization points, where the goal is to show that each con-
current object method appears to take effect instantaneously at a point in time
that corresponds to executing a fixed statement in its code. Therefore, certain
steps of a given protocol are considered as linearization points of add and commit
QTree invocations (returning OK), and one needs to prove that the sequence of
invocations defined by the order of linearization points in a protocol execution
is a correct execution of QTree.

Formally, a labeled transition system (LTS) is a tuple L = (Q, q0, T ,AL)
where Q is a set of states, q0 is the unique initial state, AL is a set of actions
(transition labels) and T is a set of transitions (q, a, q′) such that q, q′ ∈ Q
and a ∈ AL. An execution E from q0 is a finite sequence of alternating states
and actions such that E = q0, a0, q1, a1, . . . , qn with (qi, ai, qi+1) ∈ T for each

Quorum Tree Abstractions of Consensus Protocols 345

0 ≤ i ≤ n−1. A trace t is the sequence of actions projected from some execution
E. T (L) denotes the set of traces of L.

The standard notion of refinement between LTSs states that an LTS L is a
refinement of another LTS L′ when T (L) ⊆ T (L′). In this paper, we consider a
slight variation of this definition of refinement that applies to LTSs that do not
share the same set of actions, representing for instance, some concrete protocol
and QTree, respectively. This notion of refinement is parametrized by a mapping
Γ between actions of L and L′, respectively. We say that L Γ -refines L′ when
Γ (T (L)) ⊆ T (L′). Here, a mapping Γ : AL → AL′ is extended to sequences
and sets of sequences as expected, e.g., Γ (a1 . . . an) = Γ (a1) . . . Γ (an). With this
extension, the preservation of safety specifications from an LTS to a refinement
of it requires certain constraints on the mapping Γ that will be discussed in
Section 4.2.

In the context of proving that a concrete protocol refines QTree, the goal is
to define a mapping Γ between actions of the protocol and QTree add/commit
invocations such that Γ applied to protocol executions results in correct QTree
executions. In the following, we provide a characterization of correct QTree ex-
ecutions that simplifies such refinement proofs.

3.1 Characterizing QTree Invocation Sequences

An invocation label add(r, v, rp) ⇒ RET or commit(r) ⇒ RET combines a
QTree method name with input values and a return value RET ∈ {OK,FAIL}.
An invocation label is called successful when the return value is OK. A sequence
σ of invocation labels is called correct when there exist QTree states q0, . . ., q|σ|,
such that q0 is the QTree initial state and for each i ∈ [1, |σ|], executing σi
starting from qi−1 leads to qi.

Theorem 1. A sequence σ of successful invocation labels is correct if and only
if the following hold (we use _ to denote arbitrary values):

1. for every r, σ contains at most one invocation label add(r,_,_) and at most
one invocation label commit(r)

2. every commit(r) is preceded by an add(r,_,_)
3. if rp > 0, every add(r, v, rp) is preceded by add(rp, v

′,_) where 0 < rp < r
(a) and v = v ′

4. if σ contains add(r,_,_) and add(r′,_, r′′) with r′′ < r < r′, then σ does
not contain commit(r)

Properties 1–3 are straightforward consequences of the add and commit defini-
tions. Indeed, it is impossible to add two nodes with the same round number r,
which implies that there can not be two successful add(r,_,_) invocations, the
status of a node can be flipped to COMMITTED exactly once, which implies that
there can not be two successful commit(r) invocations, and a commit(r) is suc-
cessful only if a node with round number r already exists, hence Property 2 must
hold. Moreover, a node’s parent defined by the input rp must already exist in the

B. Cirisci et al.346

tree, which implies that Property 3 must also hold. Property 4 is more involved
and relies on the fact that a node n with round number r can be COMMITTED only
if there exist no other conflicting node n′ with a bigger round number r′ (the
parent of n′ having a round smaller than r implies that n and n′ are conflicting).

Proof. (⇒): Assume that σ is correct. We show that it satisfies the above prop-
erties:

– Property 1: The newRound(n) predicate used at line 8 in Algorithm 1 en-
sures that it is impossible to add two nodes with the same round number r,
and therefore σ can not contain two successful add(r,_,_) ⇒ OK invoca-
tions. The conditions at line 19 ensure that commit(r) ⇒ OK can flip the
status of a node only once, and therefore only one such successful invocation
can occur in σ.

– Property 2: The conditions at line 19 in Algorithm 1 imply that the state
in which commit(r) ⇒ OK is executed contains a node with round num-
ber r. This node could have only added by a previous add(r,_,_) ⇒ OK
invocation.

– Property 3: The link(n) predicate used at line 8 in Algorithm 1 ensures
that the state in which add(r, v, rp) ⇒ OK is executed contains a node
with round number rp. This node could have only added by a previous
add(rp, v

′,_)⇒ OK invocation, for some v′.
• Property 3a: It is a direct consequence of the valueConstraint(n) pred-

icate used at line 8 in Algorithm 1.
– Property 4: Let n and n′ be the nodes of the QTree state q reached after exe-

cuting σ, which have been added by add(r,_,_)⇒ OK and add(r′,_, r′′)⇒
OK, respectively. We have that n′.round > n.round > n.parent.round. Since
the round numbers decrease when going from one node towards Root in a
reachable QTree state, it must be the case that n and n′ are conflicting. By
Lemma 1, we get that n.status is GHOST. Since the GHOST status can not
be turned to COMMITTED and vice-versa, it follows that σ can not contain
commit(r)⇒ OK.

(⇐): We prove that every sequence σ that satisfies properties 1–4 is correct. We
proceed by induction on the size of σ. The base step is trivial. For the induction
step, let σ be a sequence of size k + 1. If σ satisfies properties 1-4, then the
prefix σ′ containing the first k labels of σ satisfies properties 1-4 as well. By
the induction hypothesis, σ′ is correct. We show that the last invocation of σ,
denoted by σk+1 can be executed in the QTree state q|σ′| reached after executing
σ′. We start with a lemma stating an inductive invariant for reachable QTree
states:

Lemma 1. For every node n in any state q reached after executing a correct
sequence σ of successful invocations, n.status is COMMITTED if n is Root or σ
contains a commit(r) invocation. Else, n.status is GHOST if q contains a node n′
with n′.round > n.round and n′ is conflicting with n, and it is ADDED, otherwise.

Quorum Tree Abstractions of Consensus Protocols 347

Proof. We proceed by induction on the size of σ. The base step is trivial. For
the induction step, let σ be a sequence of size m+1. Let qm be the state reached
after executing the prefix of size m of σ, and let σm+1 be the last invocation
label of σ. We show that the property holds for any possible σm+1 that takes
the QTree state qm to some other state qm+1:

– σm+1 = add(r, v, rp) ⇒ OK, for some r, v, rp: Let n be the new node
added by this invocation. The status of n can be ADDED or GHOST. If qm
contains a node n′ with n′.round > r (since round numbers are decreasing
going towards the Root and n is a new leaf node, any existing node with a
higher round number such as n′ is also conflicting with n), then the status
of n becomes GHOST by the predicate at line 11 in Algorithm 1 (otherwise,
it remains ADDED). This implies that n’s status satisfies the statement in the
lemma. This invocation may also turn the status of some set of nodes N
from ADDED to GHOST by the statement at line 13 in Algorithm 1. The nodes
in N have a lower round number than r and conflicting with n. Therefore,
the statement of the lemma is satisfied for the nodes in N .

– σm+1 = commit(r) ⇒ OK, for some r: For commit(r) to be successful the
conditions at line 19 in Algorithm 1 must be satisfied. If it is satisfied, only
the status of node n is changed from ADDED to COMMITTED. Note that Root
exists by definition and its status is COMMITTED. Since the statuses of the rest
of the nodes stay the same, the statement of the lemma holds. �

There are two cases to consider depending on whether σk+1 is an add or
commit invocation label:

– add(r, v, rp): This invocation label is successful if and only if the predicates
valid(n) and valueConstraint(n) at line 8 in Algorithm 1 are satisfied after
generating a new node n with the given inputs in the state q|σ′|:
• newRound(n): Due to Property 1, r 6= n′.round for any other node
n′ ∈ q|σ′| and the predicate is satisfied.

• link(n): To satisfy this predicate, there must exist a node in q|σ′| with
round rp where rp < r. By Property 3, if σ contains add(r,_, rp)⇒ OK
with rp 6= 0, then add(rp,_,_) ⇒ OK also exists in σ. Hence, there
exists a node p with round rp in q|σ′|, and the predicate is satisfied. If
rp = 0, then q|σ′| contains the Root node (with round 0) which ensures
that the predicate is satisfied.

• extendsTrunk(n): This predicate states that n extends the node n′

which has the highest round number among the nodes with COMMITTED
status, if n.round > n′.round. Assume by contradiction that this is not
the case, i.e., n.round > n′.round but n and n′ are conflicting. Let n1 be
the lowest common ancestor of n and n′ (the first common node on the
paths from n and n′ to the Root). Since the round numbers decrease when
going from one node towards Root, we have that n1.round < n′.round.
If we consider the nodes on the path from n to n1, since n.round >
n′.round, there must exist a node n2 such that n2.round > n′.round
but n2.parent.round < n′.round. The node n2 in q|σ′| corresponds to the

B. Cirisci et al.348

invocation label add(n2.round,_, n2.parent.round) in σ′. Moreover, the
COMMITTED status of n′ implies the existence of commit(n′.round) in σ′
as stated in Lemma 1. However, it is impossible that σ′ contains both
these invocation labels if Property 4 holds.
• valueConstraint(n): It is implied trivially as Property 3a holds.

– commit(r): It is successful if and only if the conditions at line 19 in Algo-
rithm 1 are satisfied. Then by Property 1 and 2, there exist add(r,_,_)
in σ′ but not commit(r). As add(r,_,_) is successful, there already exist
a node n in q|σ′| where its round is r but its status can be either ADDED or
GHOST. Towards a contradiction, assume that n.status = GHOST in q|σ′|. This
means that there exists a node n′ conflicting with n such that n′.round >
n.round as stated in Lemma 1. Let n1 be the least common ancestor of n and
n′. Since round numbers are decreasing going towards the Root, n1.round <
n.round. If we consider nodes on the path from n′ to n1, there exists a node
n2 such that n2.round > n.round and n2.parent.round < n.round. That’s
why, there is an invocation label add(n2.round,_, n2.parent.round) in σ′.
However, σ cannot contain both of these invocation labels together according
to Property 4. �

4 Linearization Points

We describe an instrumentation of consensus protocols with linearization points
of successful QTree invocations, and illustrate it using Paxos as a running ex-
ample. Section 5 and Section 6 will discuss other protocols like HotStuff, Raft,
PBFT, and multi-Paxos. This instrumentation defines the mapping Γ between
actions of a protocol and QTree, respectively, such that the protocol is a Γ -
refinement of QTree. We also discuss the properties of this instrumentation which
imply that establishing Γ -refinement is an effective proof for the safety of the
protocol.

The identification of linearization points relies on the fact that protocol exe-
cutions pass through a number of rounds, and each round goes through several
phases (rounds can run asynchronously – processes need not be in the same
round at the same time). The protocol imposes a total order over the phases
inside a round and among distinct rounds. Processes executing the protocol can
only move forward following the total order on phases/rounds. Going from one
phase to the next phase in the same round is possible if a quorum of processes
send a particular type of message. The refinement proofs require identifying two
quorums for each round where a value is first proposed to be agreed upon and
then decided. They correspond to linearization points of successful add(r,_,_)
and commit(r), respectively. The linearization point of add(r, v, rp) ⇒ OK oc-
curs when intuitively, the value v is proposed as a value to agree upon in round
r. For the protocols we consider, v is determined by a designated leader after
receiving a set of messages from a quorum of processes. For single-decree con-
sensus, members of the quorum send the latest round number and value they
adopted (voted) in the past and the leader picks a value corresponding to the

Quorum Tree Abstractions of Consensus Protocols 349

maximum round number rp. If no one in the quorum has adopted any value yet,
then the leader is free to propose any value received from a client, and rp equals
a default value 0. For state-machine replication protocols like HotStuff or Raft,
the round rp is defined in a different manner – see Section 5 (and the full version
of this work [9]). The linearization point of commit(r) ⇒ OK occurs when a
quorum of nodes adopt (vote for) a value v proposed at round r.

By Theorem 1, proving that the order between linearization points along a
protocol execution defines a correct QTree execution reduces to showing Prop-
erties 1–4. In general, Properties 1–3 are quite straightforward to establish and
follow from the control-flow of a process. Property 3a is specific to single-decree
consensus protocols or compositions thereof, e.g., (multi-)Paxos and PBFT. It
will not hold for Raft or Hotstuff. Property 4 is related to the fact that any two
quorums of processes intersect in a correct process.

Above, we have considered the case of a protocol that is a refinement of a
single instance of QTree. State machine replication protocols that are composed
of multiple independent consensus instances, e.g., PBFT (see Section 6), are
refinements of a set of QTree instances (identified using a sequence number) and
every linearization point needs to be associated with a certain QTree instance.

4.1 Linearization Points for Paxos

For concreteness, we exemplify the instrumentation with linearization points
on the single-decree Paxos protocol. We start with a brief description of this
protocol that focuses on details relevant to this instrumentation.

Paxos proceeds in rounds and each round has a unique leader. Since the set
of processes running the protocol is fixed and known by every process, the leader
of each round can be determined by an a-priorly fixed deterministic procedure
(e.g., the leader is defined as r mod N where r is the round number and N the
number of processes). For each round, the leader acts as a proposer of a value
to agree upon.

A round contains two phases. In the first phase, the leader broadcasts a
START message to all the processes to start the round, executing the START
action below, and processes acknowledge with a JOIN message if some conditions
are met, executing the JOIN action:

• START Action: The leader p of round r > 0 (the proposer) broadcasts a
START(r) message to all processes.

• JOIN Action: When a process p′ receives a START(r) message, if p′ has not
sent a JOIN or VOTE message (explained below) for a higher round in the
past5, it replies by sending a JOIN(r) message to the proposer. This message
includes the maximum round number (maxVotedRound) for which p′ has sent
a VOTE message in the past and the value (maxVotedValue) proposed in that
round. If it has not voted yet, these fields are 0 and ⊥.

5 Each process has a local variable maxJoinedRound that stores the maximal round
it has joined or voted for in the past and checks whether maxJoinedRound < r

B. Cirisci et al.350

If the leader receives JOIN messages from a quorum of processes, i.e., at least
f+1 processes from a total number of 2f+1, the second phase starts. The leader
broadcasts a PROPOSE message with a value, executing the PROPOSE action
below. Processes may acknowledge with a VOTE message if some conditions are
met, executing a VOTE action. If the leader receives VOTE messages from a
quorum of processes, then the proposed value becomes decided (and sent to the
client) by executing a DECIDE action:

• PROPOSE Action: When the proposer p receives JOIN(r) messages from a
quorum of (f + 1) processes, it selects the one with the highest vote round
number and proposes its value by broadcasting a PROPOSE(r) message (which
includes that value). If there is no such highest round (all vote rounds are
0), then the proposer selects the proposed value randomly simulating a value
given by the client (whose modeling we omit for simplicity).

• VOTE Action: When a process p′ receives a PROPOSE(r) message, if p′ has
not sent a JOIN or VOTE message for a higher round in the past, it replies
by sending a VOTE(r) message to the proposer with round number r.

• DECIDE Action: When the proposer p receives VOTE(r) messages from a quo-
rum of processes, it updates a local variable called decidedVal to be the value
it has proposed in this round r. This assignment means that the value is de-
cided and sent to the client.

Linearization points in Paxos.We instrument Paxos with linearization points
as follows:

– the linearization point of add(r, v, r′) ⇒ OK occurs when the proposer
broadcasts the PROPOSE(r) message containing value v after receiving a
quorum of JOIN(r) messages (during the PROPOSE action in round r). The
round r′ is extracted from the JOIN(r) message selected by the proposer.

– the linearization point of commit(r)⇒ OK occurs when the leader of round
r updates decidedVal after receiving a quorum of VOTE(r) messages (during
the DECIDE Action).

We illustrate the definition of linearization points for Paxos in relation to QTree
executions in the full version [9].

Theorem 2. Paxos refines QTree.

Proof. We show that the sequence of successful add and commit invocations
defined by linearization points along a Paxos execution satisfies the properties
in Theorem 1 and therefore, it represents a correct QTree execution:

– Property 1: Each round has a unique leader and the leader follows the rules
of the protocol (no Byzantine failures), thereby, making a single proposal.
Therefore, the linearization point of an add(r,_,_) ⇒ OK will occur at
most once for a round r. Since a single value can be proposed in a round,
and all processes follow the rules of the protocol, they can only vote for that
single value. Thus, at most one linearization point of commit(r)⇒ OK can
occur for a round r.

Quorum Tree Abstractions of Consensus Protocols 351

– Property 2: This holds trivially as all the processes follow the rules of the
protocol and they need to receive a PROPOSE(r) message (which can occur
only after the linearization point of an add(r,_,_)⇒ OK) from the leader
of round r to send a VOTE(r) message.

– Property 3: By the definition of the PROPOSE action, the proposer selects
a highest vote round number r′ from a quorum of JOIN(r) messages that
it receives, before broadcasting a PROPOSE(r) message. If such a highest
vote round number r′ > 0 exists, then there must be a VOTE(r′) message
which is a reply to a PROPOSE(r′) message. Thus, if the linearization point of
add(r,_, r′)⇒ OK occurs where r′ 6= 0, then it is preceded by add(r′,_,_).
Also, by the definition of JOIN, a process can not send a JOIN(r) message
after a VOTE(r′) message if r ≯ r′.
• Property 3a: By the definition of PROPOSE, the proposer selects the

JOIN message with the highest vote round number and proposes its
value. Thus, if the linearization points of both add(r, v, r′) ⇒ OK and
add(r′, v′,_)⇒ OK occur, then v = v ′.

– Property 4: Assume by contradiction that the linearization point of commit
(r)⇒ OK occurs along with the linearization points of add(r,_,_)⇒ OK
and add(r′,_, r′′) ⇒ OK, for some r′′ < r < r′. The linearization point of
commit(r) occurs because of a quorum of VOTE(r) messages sent by a set
of processes P1, and add(r′,_, r′′) occurs because of a quorum of JOIN(r′)
messages sent by a set of processes P2. Since P1 and P2 must have a non-
empty intersection, by the definition of JOIN, it must be the case that r′′ ≥ r,
which contradicts the hypothesis.
The proof of Property 4 relies exclusively on the quorum of processes in

the first phase of a round intersecting the quorum of processes in the second
phase of a round. It is not needed that quorums in first, resp., second, phases
of different rounds intersect. This observation is at the basis of an optimization
that applies to non-Byzantine protocols like Flexible Paxos [18] or Raft (see the
full version [9]).

4.2 Inferring Safety

The main idea behind these linearization points is that successful add and
commit invocations correspond to some process doing a step that witnesses for
the receipt a quorum of messages sent in a certain phase of a round. Intuitively,
linearization points of successful add invocation occur when some process in
some round is certain that a quorum of processes received or will receive the
same proposal (same value, parent etc.) for the same round and acts accordingly
(sends a message). Such proposal on a value v in a round r is denoted by the
linearization point of successful add(r, v, r′) for some r′. On the other hand, the
linearization point of a successful commit(r) invocation occurs when a process
decides on a value in round r (e.g., after receiving a quorum of votes). Formally,
if we denote the actions of a protocol that correspond to linearization points of
successful add(r, v, r′) and commit(r) invocations using aa and ac, respectively,
then Γ (aa) = add(r, v, r′)⇒ OK and Γ (ac) = commit(r)⇒ OK.

B. Cirisci et al.352

When the protocol is such a Γ -refinement of QTree, then, it satisfies agree-
ment and validity. If a decision on a value v in a round r of a protocol is the
linearization point of a successful commit(r), then by Theorem 1, the corre-
sponding QTree state contains a node n with n.round = r, n.value = v, and
n.status = COMMITTED. For single-decree consensus, Proposition 3 ensures that
all rounds decide on the same value. For state machine replication protocols
like Raft and HotStuff, where the goal is to agree on a sequence of commands,
Proposition 2 ensures that all the decided values lie on the same branch of the
tree which ensures that all processes agree on the same sequence of commands.

For validity, when valueConstraint(n) is considered, successful add(r, v, 0)
invocations represent proposals of client values. Theorem 1 ensures that these
invocations correspond to nodes n that are immediate children of Root and for
any such node n, n.value = v. Therefore, by Proposition 1, we can conclude that
only client values can be decided. When valueConstraint(n) is not considered,
the fact that the value of each node is obtained from a client is ensured using
additional mechanisms that are straightforward, e.g., a client broadcasting a
command to all the participants in the protocol.

5 HotStuff Refines QTree

We present an instrumentation of HotStuff with linearization points of successful
add and commit invocations. We use HotStuff as an example of a state machine
replication protocol where processes agree over a sequence of commands to exe-
cute, and any new command proposed by a leader to the other processes comes
with a well-identified immediate predecessor in this sequence. Agreement over
a command entails agreement over all its predecessors in the sequence. This is
different from protocols such as multi-Paxos or PBFT, discussed in the next
section, where commands are associated to indices in the sequence and they can
be agreed upon in any order. Instrumentation of Raft is presented in the full
version [9] and behaves in a similar manner.

In HotStuff, f out of a total of N = 3f + 1 processes might be Byzantine
in the sense that they might show arbitrary behavior and send corrupt or spu-
rious messages. However, they are limited by cryptographic protocols. HotStuff
requires that messages are signed using public-key cryptography, which implies
that Byzantine processes cannot imitate messages of correct (non-faulty) pro-
cesses. Additionally, after receiving a quorum of messages, leaders must include
certificates in their own messages to prove that a quorum has been reached.
These certificates are constructed using threshold signature schemes and correct
processes will not accept any message from the leader if it is not certified. Be-
cause of Byzantine processes, HotStuff requires quorums of size of 2f + 1 which
ensures that the intersection of any two quorums contains at least one correct
process.

Each process stores a tree of commands. When a node in this tree (represent-
ing some command) is decided, all the ancestors of this node in the tree (nodes
on the same branch) are also decided. For a node to become decided, a leader

Quorum Tree Abstractions of Consensus Protocols 353

must receive a quorum of messages in 3 consecutive phases after the proposal.
After each quorum is established, the leader broadcasts a different certificate to
state which quorum has been achieved and the processes update different local
variables accordingly, with the same node (if the certificate is valid). These local
variables are preNode, votedNode and decidedNode in the order of quorums.

To start a new round, processes send their preNode’s to the leader of the
next round in ROUND-CHANGE(r) messages and increment their round number.
After getting a quorum of messages and selecting the preNode with the highest
round, the leader broadcasts a PROPOSE(r) message with a new node (value
is taken from the client) whose parent is the selected preNode. When the mes-
sage is received by a process, it first checks if the new node extends the selected
preNode. Then it accepts the new node if the node extends its own votedNode (it
is a descendant of votedNode in the tree) or it has a higher round number than
the round number of its votedNode, and sends6 a JOIN(r) message with the
same content. In the second (resp., third) phase, if a quorum of JOIN(r) (resp.,
PRECOMMIT_VOTE(r)) messages is received by the leader, it broadcasts a PRE-
COMMIT(r) (resp., COMMIT(r)) message, and processes update their preNode
(resp., votedNode) with the new node, sending a PRECOMMIT_VOTE(r) (resp.,
COMMIT_VOTE(r)) message. In the fourth phase, when the leader receives a
quorum of COMMIT_VOTE(r), it broadcasts a DECIDE(r) message and pro-
cesses update their decidedNode accordingly. See the full version [9] for more
details.

For HotStuff, the linearization points of add and commit occur with the
broadcasts of PRECOMMIT(r) and DECIDE(r) messages, respectively, that are
valid , i.e., (1) they contain certificates for quorums of JOIN(r) or COM-
MIT_VOTE(r) messages, respectively, which respect the threshold signature
scheme, and (2) they contain the same node as in those messages. More pre-
cisely,

– the linearization point of add(r, v, r′) ⇒ OK occurs the first time when a
valid PRECOMMIT(r) message containing node v is sent. r′ is the round of the
node which is the parent of v and it is contained in a previous PROPOSE(r)
message (r′ can be 0 in which case parent of v is a distinguished root node
that exists in the initial state).

– the linearization point of commit(r) ⇒ OK occurs the first time when a
valid DECIDE(r) message is sent.

Note that a Byzantine leader can send multiple valid PRECOMMIT(r) messages
that include certificates for different quorums of JOIN(r) messages. A lineariza-
tion point occurs when the first such message is sent. Even if processes reply to
another valid PRECOMMIT(r) message sent later, this later PRECOMMIT(r) mes-
sage contains the same preNode value, and their reply will have the same content.
The same holds for DECIDE(r) messages. This remark along with the restriction

6 For all received messages, a correct process also checks if the round number of the
node sent by the leader is equal to the current round number of its own, and can
send only one message for each phase in each round.

B. Cirisci et al.354

to valid messages and the fact that any two quorums intersect in at least one
correct process implies that the sequence of successful add and commit invoca-
tions defined by these linearization points satisfies the properties in Theorem 1
and therefore,

Theorem 3. HotStuff refines QTree.

A detailed proof of the theorem above is given in the full version [9].

6 PBFT Refines QTree

The protocols discussed above are refinements of a single instance of QTree.
State-machine replication protocols based Multi-decree consensus like Multi-
Paxos or PBFT can be seen as compositions of a number of single-decree con-
sensus instances that run concurrently, one for each index in a sequence of com-
mands to agree upon, and they are refinements of a set of independent QTree
instances. We describe the instrumentation of PBFT and delegate multi-Paxos
(and variants) to the full version [9].

PBFT is a multi-decree consensus protocol in which processes aim to agree
on a sequence of values. As in HotStuff, f out of a total number of 3f + 1
processes might be Byzantine and quorums are of size at least 2f +1. To ensure
authentication, messages are signed using public-key cryptography. Messages
sent after receiving a quorum of messages in a previous phase include that set
of messages as a certificate.

A new round r starts with the leader receiving a quorum of ROUND-CHANGE(r)
messages (like in HotStuff). Each such message from a process p includes the
VOTE message with the highest round (similarly to the JOIN action of Paxos)
that p sent in the past, for each sequence number that is not yet agreed by
a quorum. For an arbitrary set of sequence numbers sn, the leader selects the
VOTE message with the highest round and broadcasts a PROPOSE(r,sn) message
that includes the same value as in the VOTE message or a value received from a
client if there is no such highest round. As mentioned above, this message also
includes the VOTE messages that the leader received as a certificate for the selec-
tion. When a process receives a PROPOSE(r,sn) message, if r equals its current
round, the process did not already acknowledge a PROPOSE(r,sn) message, and
the value proposed in this message is selected correctly w.r.t. the certificate, then
it broadcasts a JOIN(r,sn) message with the same content (this is sent to all
processes not just the leader). If a quorum of JOIN(r,sn) messages is received
by a process, then it broadcasts a VOTE(r,sn) message with the same content.
If a process receives a quorum of VOTE(r,sn) messages, then the value in this
message is decided for sn. When a process sends its highest round number VOTE
messages to the leader of the next round (in ROUND-CHANGE messages), it also
includes the quorum of JOIN messages that it received before sending the VOTE,
as a certificate.

PBFT is a refinement of a set of independent QTree instances, one instance
for each sequence number. The linearization points will refer to a specific instance

Quorum Tree Abstractions of Consensus Protocols 355

identified using a sequence number, e.g., sn.add(r, v, r′) denotes an add(r, v, r′)
invocation on the QTree instance sn. Therefore,

– the linearization point of sn.add(r, v, r′)⇒ OK occurs the first time when a
process p sends a VOTE(r, sn) message, assuming that p is honest, i.e., it al-
ready received a quorum of JOIN(r, sn) messages with the same content. v is
the value of the VOTE(r′, sn) message that is included in the PROPOSE(r,sn)
message (it is possible that r′ = 0 and v is selected randomly).

– the linearization point of sn.commit(r)⇒ OK occurs the first time when a
process p decides a value for sn, assuming that p is honest, i.e., it already
received a quorum of JOIN(r, sn), resp., VOTE(r, sn), messages with the
same content.

A protocol refines a set of QTree instances identified using sequence numbers
when it satisfies Properties 1-4 in Theorem 1 for each sequence number, e.g.,
Property 1 becomes for every sn and every r, a protocol execution contains a
linearization point for at most one invocation sn.add(r,_,_) ⇒ OK and at
most one invocation sn.commit(r) ⇒ OK. A detailed proof of the following
theorem is given in the full version [9].

Theorem 4. PBFT refines a composition of independent QTree instances.

7 Discussion

Protocols considered in this work can be grouped under three classes: single-
decree consensus (Paxos), multi-decree consensus (PBFT, Multi-Paxos) and
state machine replication (Raft, HotStuff)7. We show that they all refine QTree:
a single instance for Paxos and HotStuff, and a set of independent instances
(one for each sequence number in a command log) for PBFT, Multi-Paxos, and
Raft. The more creative parts of the refinement proofs are the identification of
add and commit linearization points and establishing Property 4 in Theorem 1
which follows from the intersection of quorums achieved in different phases of a
round. The other 3 properties in Theorem 1 which guarantee that the lineariza-
tion points are correct are established in a rather straightforward manner, based
on the control-flow of a process participating to the protocol.

The linearization points of successful add and commit invocations correspond
to some process doing a step that witnesses for the receipt a quorum of messages
sent in a certain phase of a round, e.g., the leader broadcasting a PROPOSE(r)
message in Paxos entails that a quorum of JOIN(r) messages have been sent in
the first phase and received. Protocols vary in the total number of phases in a
round, and the phases for which quorums of sent messages should be received in
order to have a linearization point of add or commit . A summary is presented in
Table 1. The * on the total number of phases means that the first phase is skipped
in rounds where the leader is stable. For Multi-Paxos and Raft, if the first phase
7 This is a slight abuse of terminology since multi-decree consensus protocols are
typically used to implement state machine replication.

B. Cirisci et al.356

is skipped, then the linearization point of an add is determined by a quorum of
received messages sent in the next phase (and coincides with the linearization
point of a commit). We use “1/2” to denote this fact. In PBFT and HotStuff,
due to Byzantine processes, quorums of messages sent in two consecutive phases
need to be received in order to ensure that the processes are going to vote on
the same valid proposal. The 3rd phase in HotStuff is used to ensure progress
and can be omitted when reasoning only about safety.

Table 1: Summary of linearization point definitions. For each protocol, we give
the total number of phases in a round and the number of the phase for which
a quorum of sent messages should be received in order to have a linearization
point of add or commit .

Class Protocol #Phases add Quorum Pha. commit Quorum Pha.
Single-Decree Cons. Paxos 2 1 2

Multi-Decree Cons. Multi-Paxos 2* 1/2 2
PBFT 3* 2 3

State Machine Repl. Raft 2* 1/2 2
HotStuff 4 2 4

8 Conclusion and Related Work

We have proposed a new methodology for proving safety of consensus or state-
machine replication protocols, which relies on a novel abstraction of their dy-
namics. This abstraction is defined as a sequential QTree object whose state rep-
resents a global view of a protocol execution. The operations of QTree construct
a tree structure and model agreement on values or a sequence of state-machine
commands as agreement on a fixed branch in the tree. Our methodology applies
uniformly to a range of protocols like (multi-)Paxos, HotStuff, Raft, and PBFT.
We believe that this abstraction helps in improving the understanding of such
protocols and writing correct implementations or optimizations thereof.

As a limitation, it is not clear whether QTree applies to protocols such as
Texel [31] which do not admit a decomposition in rounds. As future work, we
might explore the use of QTree in reasoning about liveness. This would require
some fairness condition on infinite sequences of add/commit invocations, and a
suitable notion of refinement which ensures that infinite sequences of protocol
steps cannot be mapped to infinite sequences of stuttering QTree steps.

The problem of proving the correctness of such protocols has been studied in
previous work. We give an overview of the existing approaches that starts with
safety proof methods based on refinement, which are closer to our approach.
Refinement based safety proofs. Verdi [35] is a framework for implementing
and verifying distributed systems that contains formalizations of various network

Quorum Tree Abstractions of Consensus Protocols 357

semantics and failure models. Verdi provides system transformers useful for re-
fining high-level specifications to concrete implementations. As a case study, it
includes a fully-mechanized correctness proof of Raft [36]. This proof consists
of 45000 lines of proof code (manual annotations) in the Coq language for a
5000 lines RAFT implementation, showing the difficulty of reasoning on consen-
sus protocols and the manual effort required. Iron Fleet [17] uses TLA [22] style
transition-system specifications and refine them to low-level implementations de-
scribed in the Dafny programming language [25]. Boichat et al. [3] defines a class
of specifications for consensus protocols, which are more abstract than QTree
and can make correctness proofs harder. Proving Paxos in their case is reduced
to a linearizability proof towards an abstract specification, which is quite com-
plex because the linearization points are not fixed, they depend on the future of
an execution. As a possibly superficial quantitative measure, their Paxos proof
reduces to 7 lemmas that are formalized by Garcia-Perez et al. [12,13] in 12
pages (see Appendix B and C in [13]), much more than our QTree proof. Our
refinement proof is also similar to a linearizability proof, but the linearization
points in our case are fixed (do not depend on the future of an execution) which
brings more simplicity. In principle, the specifications in [3] could apply to more
protocols, but we are not aware of such a case. The inductive sequentialization
proof rule [20] is used for a fully mechanized correctness proof of a realistic
Paxos implementation. This implementation is proved to be a refinement of a
sequential program which is quite close to the original implementation, much
less abstract than QTree, and relies on commutativity arguments implied by the
communication-closed round structure [11]. A similar idea is explored in [14],
but in a more restricted context.
Inductive invariant based safety proofs. Ivy [30] is an SMT-based safety
verification tool that can be used for verifying inductive invariants about global
states of a distributed protocol. In order to stay in a decidable fragment of
first-order logic, both the modeling and the specification language of IVY are
restricted. A simple model of Paxos obeying these restrictions is proven correct
in [29].
Beyond safety. The TLA+ infrastructure [22] of Lamport has been used to ver-
ify both safety and liveness (termination) of several variations of Paxos, e.g., Fast
Paxos [23] or Multi-Paxos [6]. Bravo et al. [4] introduce a generic synchronization
mechanism for round changes, called the view synchronizer, which guarantees
liveness for various Byzantine consensus protocols including our cases studies
HotStuff and PBFT. This work includes full correctness proofs for single-decree
versions of HotStuff and PBFT and a two-phase version of HotStuff. PSync [10]
provides a partially synchronous semantics for distributed protocols assuming
communication-closed rounds in the Heard-Of model [8]. PSync is used to prove
both safety and liveness of a Paxos-like consensus protocol called lastVoting.
Relating different consensus protocols. Lamport defines a series of refine-
ments of Paxos that leads to a Byzantine fault tolerant version, which is refined
by PBFT [24]. Our proof that Paxos refines QTree can be easily extended to
this Byzantine fault tolerant version in the same manner as we did for PBFT.

B. Cirisci et al.358

Wang et al. [34] shows that a variation of RAFT is a refinement of Paxos, which
enables porting some Paxos optimizations to RAFT. Renesse et al. [32] compare
Paxos, Viewstamped Replication [28] and ZAB [19]. They define a rooted tree of
specifications represented in TLA style whose leaves are concrete protocols. Each
node in this tree is refined by its children. Common ancestors of concrete pro-
tocols show similarities whereas conflicting specifications show the differences.
Similarly, [33] shows that Paxos, Chandra-Toueg [7] and Ben-Or [2] consensus
algorithms share common building blocks. Aublin et al. [1] propose an abstract
data type for specifying existing and possible future consensus protocols. Unlike
our QTree, core components of this data type are not implemented and inten-
tionally left abstract so that it can adapt to different network and process failure
models.

References

1. Aublin, P., Guerraoui, R., Knezevic, N., Quéma, V., Vukolic, M.: The next 700
BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015). https://
doi.org/10.1145/2658994, https://doi.org/10.1145/2658994

2. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro,
N. (eds.) Proceedings of the Second Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Montreal, Quebec, Canada, August
17-19, 1983. pp. 27–30. ACM (1983). https://doi.org/10.1145/800221.806707,
https://doi.org/10.1145/800221.806707

3. Boichat, R., Dutta, P., Frølund, S., Guerraoui, R.: Deconstructing paxos. SIGACT
News 34(1), 47–67 (2003). https://doi.org/10.1145/637437.637447, https://
doi.org/10.1145/637437.637447

4. Bravo, M., Chockler, G.V., Gotsman, A.: Making byzantine consensus live. In:
Attiya, H. (ed.) 34th International Symposium on Distributed Computing, DISC
2020, October 12-16, 2020, Virtual Conference. LIPIcs, vol. 179, pp. 23:1–23:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.DISC.2020.23, https://doi.org/10.4230/LIPIcs.DISC.2020.23

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I., Leach,
P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), New Orleans, Louisiana, USA, Febru-
ary 22-25, 1999. pp. 173–186. USENIX Association (1999), https://dl.acm.org/
citation.cfm?id=296824

6. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-paxos for dis-
tributed consensus. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou,
A. (eds.) FM 2016: Formal Methods - 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9995, pp. 119–136 (2016). https://doi.org/10.1007/978-3-319-48989-6_8,
https://doi.org/10.1007/978-3-319-48989-6_8

7. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996). https://doi.org/10.1145/226643.226647,
https://doi.org/10.1145/226643.226647

Quorum Tree Abstractions of Consensus Protocols 359

https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/637437.637447
https://doi.org/10.1145/637437.637447
https://doi.org/10.1145/637437.637447
https://doi.org/10.1145/637437.637447
https://doi.org/10.4230/LIPIcs.DISC.2020.23
https://doi.org/10.4230/LIPIcs.DISC.2020.23
https://doi.org/10.4230/LIPIcs.DISC.2020.23
https://doi.org/10.4230/LIPIcs.DISC.2020.23
https://doi.org/10.4230/LIPIcs.DISC.2020.23
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647

8. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
heard-of model. Int. J. Softw. Informatics 3(2-3), 273–303 (2009), http://www.
ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1

9. Cirisci, B., Enea, C., Mutluergil, S.O.: Quorum tree abstractions of consensus pro-
tocols (2023). https://doi.org/10.48550/ARXIV.2301.09946, https://arxiv.
org/abs/2301.09946

10. Dragoi, C., Henzinger, T.A., Zufferey, D.: Psync: a partially synchronous language
for fault-tolerant distributed algorithms. In: Bodík, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. pp. 400–415. ACM (2016). https://doi.org/10.1145/2837614.2837650,
https://doi.org/10.1145/2837614.2837650

11. Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155–173 (1982).
https://doi.org/10.1016/0167-6423(83)90013-8, https://doi.org/10.1016/
0167-6423(83)90013-8

12. García-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, decon-
structed and abstracted. In: Ahmed, A. (ed.) Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10801, pp. 912–939. Springer (2018). https://doi.org/10.1007/
978-3-319-89884-1_32, https://doi.org/10.1007/978-3-319-89884-1_32

13. García-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, de-
constructed and abstracted (extended version). CoRR abs/1802.05969 (2018),
http://arxiv.org/abs/1802.05969

14. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. Proc.
ACM Program. Lang. 3(POPL), 59:1–59:30 (2019). https://doi.org/10.1145/
3290372, https://doi.org/10.1145/3290372

15. Golab, W.M., Higham, L., Woelfel, P.: Linearizable implementations do not suf-
fice for randomized distributed computation. In: Fortnow, L., Vadhan, S.P. (eds.)
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011. pp. 373–382. ACM (2011). https://doi.org/
10.1145/1993636.1993687, https://doi.org/10.1145/1993636.1993687

16. Gray, J., Lamport, L.: Consensus on transaction commit. CoRR cs.DC/0408036
(2004), http://arxiv.org/abs/cs.DC/0408036

17. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems correct.
In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium on Oper-
ating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015. pp.
1–17. ACM (2015). https://doi.org/10.1145/2815400.2815428, https://doi.
org/10.1145/2815400.2815428

18. Howard, H., Malkhi, D., Spiegelman, A.: Flexible paxos: Quorum intersection re-
visited. CoRR abs/1608.06696 (2016), http://arxiv.org/abs/1608.06696

19. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: High-performance broadcast for
primary-backup systems. In: Proceedings of the 2011 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2011, Hong Kong, China,
June 27-30 2011. pp. 245–256. IEEE Compute Society (2011). https://doi.org/
10.1109/DSN.2011.5958223, https://doi.org/10.1109/DSN.2011.5958223

B. Cirisci et al.360

http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1
https://doi.org/10.48550/ARXIV.2301.09946
https://doi.org/10.48550/ARXIV.2301.09946
https://arxiv.org/abs/2301.09946
https://arxiv.org/abs/2301.09946
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1016/0167-6423(83)90013-8
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1007/978-3-319-89884-1_32
https://doi.org/10.1007/978-3-319-89884-1_32
http://arxiv.org/abs/1802.05969
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/1993636.1993687
http://arxiv.org/abs/cs.DC/0408036
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
http://arxiv.org/abs/1608.06696
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223

20. Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive se-
quentialization of asynchronous programs. In: Donaldson, A.F., Torlak, E. (eds.)
Proceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, June 15-
20, 2020. pp. 227–242. ACM (2020). https://doi.org/10.1145/3385412.3385980,
https://doi.org/10.1145/3385412.3385980

21. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229, https://doi.org/10.1145/
279227.279229

22. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002), http://research.microsoft.
com/users/lamport/tla/book.html

23. Lamport, L.: Fast paxos. Distributed Comput. 19(2), 79–103 (2006).
https://doi.org/10.1007/s00446-006-0005-x, https://doi.org/10.1007/
s00446-006-0005-x

24. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) Distributed
Computing - 25th International Symposium, DISC 2011, Rome, Italy, September
20-22, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6950, pp. 211–
224. Springer (2011). https://doi.org/10.1007/978-3-642-24100-0_22, https:
//doi.org/10.1007/978-3-642-24100-0_22

25. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelli-
gence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/
978-3-642-17511-4_20, https://doi.org/10.1007/978-3-642-17511-4_20

26. Malkhi, D., Lamport, L., Zhou, L.: Stoppable paxos. Tech. Rep. MSR-TR-2008-192
(April 2008)

27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2008),
https://bitcoin.org/bitcoin.pdf

28. Oki, B.M., Liskov, B.: Viewstamped replication: A general primary copy. In: Dolev,
D. (ed.) Proceedings of the Seventh Annual ACM Symposium on Principles of
Distributed Computing, Toronto, Ontario, Canada, August 15-17, 1988. pp. 8–
17. ACM (1988). https://doi.org/10.1145/62546.62549, https://doi.org/10.
1145/62546.62549

29. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (2017). https://doi.org/10.1145/3140568, https://doi.org/10.1145/
3140568

30. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety ver-
ification by interactive generalization. In: Krintz, C., Berger, E.D. (eds.) Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016. pp. 614–630. ACM (2016). https://doi.org/10.1145/2908080.2908118,
https://doi.org/10.1145/2908080.2908118

31. van Renesse, R.: Asynchronous consensus without rounds. CoRR abs/1908.10716
(2019), http://arxiv.org/abs/1908.10716

32. van Renesse, R., Schiper, N., Schneider, F.B.: Vive la différence: Paxos vs. view-
stamped replication vs. zab. IEEE Trans. Dependable Secur. Comput. 12(4), 472–
484 (2015). https://doi.org/10.1109/TDSC.2014.2355848, https://doi.org/
10.1109/TDSC.2014.2355848

Quorum Tree Abstractions of Consensus Protocols 361

https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https: //bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/62546.62549
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
http://arxiv.org/abs/1908.10716
https://doi.org/10.1109/TDSC.2014.2355848
https://doi.org/10.1109/TDSC.2014.2355848
https://doi.org/10.1109/TDSC.2014.2355848
https://doi.org/10.1109/TDSC.2014.2355848

33. Song, Y.J., van Renesse, R., Schneider, F.B., Dolev, D.: The building blocks
of consensus. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) Distributed Computing and Networking, 9th International Confer-
ence, ICDCN 2008, Kolkata, India, January 5-8, 2008. Lecture Notes in Com-
puter Science, vol. 4904, pp. 54–72. Springer (2008). https://doi.org/10.1007/
978-3-540-77444-0_5, https://doi.org/10.1007/978-3-540-77444-0_5

34. Wang, Z., Zhao, C., Mu, S., Chen, H., Li, J.: On the parallels between paxos
and raft, and how to port optimizations. In: Robinson, P., Ellen, F. (eds.) Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Comput-
ing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. pp. 445–
454. ACM (2019). https://doi.org/10.1145/3293611.3331595, https://doi.
org/10.1145/3293611.3331595

35. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015. pp. 357–368. ACM (2015). https://doi.org/
10.1145/2737924.2737958, https://doi.org/10.1145/2737924.2737958

36. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.:
Planning for change in a formal verification of the raft consensus protocol. In:
Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, Saint Petersburg, FL, USA, January 20-
22, 2016. pp. 154–165. ACM (2016). https://doi.org/10.1145/2854065.2854081,
https://doi.org/10.1145/2854065.2854081

37. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT
consensus with linearity and responsiveness. In: Robinson, P., Ellen, F. (eds.)
Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-
puting, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. pp. 347–
356. ACM (2019). https://doi.org/10.1145/3293611.3331591, https://doi.
org/10.1145/3293611.3331591

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

B. Cirisci et al.362

https://doi.org/10.1007/978-3-540-77444-0_5
https://doi.org/10.1007/978-3-540-77444-0_5
https://doi.org/10.1007/978-3-540-77444-0_5
https://doi.org/10.1007/978-3-540-77444-0_5
https://doi.org/10.1007/978-3-540-77444-0_5
https://doi.org/10.1145/3293611.3331595
https://doi.org/10.1145/3293611.3331595
https://doi.org/10.1145/3293611.3331595
https://doi.org/10.1145/3293611.3331595
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
http://creativecommons.org/licenses/by/4.0/

MAGπ: Types for Failure-Prone Communication

Matthew Alan Le Brun(�) and Ornela Dardha(�)

University of Glasgow, Glasgow, UK
m.le-brun.1@research.gla.ac.uk

ornela.dardha@glasgow.ac.uk

Abstract. Multiparty Session Types (MPST) are a typing discipline
for communication-centric systems, guaranteeing communication safety,
deadlock freedom and protocol compliance. Several works have emerged
which model failures and introduce fault-tolerance techniques. However,
such works often make assumptions on the underlying network, e.g., as-
suming TCP-based communication where messages are guaranteed to
be delivered; or adopting centralised reliable nodes and ad-hoc notions
of reliability; or only addressing a single kind of failure, such as node
crashes. In this work, we develop MAGπ—a Multiparty, Asynchronous
and Generalised π-calculus, which is the first language and type system
to accommodate in unison: (i) the widest range of non-Byzantine faults,
including message loss, delays and reordering ; crash and link failures ;
and network partitioning ; (ii) a novel and most general notion of relia-
bility, taking into account the viewpoint of each participant in the proto-
col; (iii) a spectrum of network assumptions from the lowest UDP-based
network programming to the TCP-based application level. We prove sub-
ject reduction and session fidelity; process properties (deadlock freedom,
termination, etc.); failure-handling safety and reliability adherence.

Keywords: Session types · Distributed protocols · Failures · Timeouts

1 Introduction

Despite large investments into fault-prevention techniques, failures still regularly
occur in complex distributed applications. It is widely agreed that traditional
methods of verification using software testing do not provide high levels of confi-
dence in the correctness of distributed algorithms. This is mainly due to the non-
deterministic behaviour inherent to these protocols, which makes it unfeasible to
manually test for all edge cases. This problem is bypassed by using exhaustive
techniques such as model checking [9,31], capable of exploring the entirety of
the state space of a program to verify its correctness. However, building suit-
able models for complex distributed algorithms is arduous, expensive, and often
intractable (due to the state explosion problem [10]). Furthermore, even if an
algorithm is successfully encoded into a suitable model and checked, guarantees
of correctness are on the design of the algorithm, and not on the software imple-
mentation; handwritten code is still prone to human error. Contrastively, types

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp.
https://doi.org/10.1007/978-3-031-30044-8 14

363–391, 2023.

https://orcid.org/0000-0001-7394-0122
https://orcid.org/0000-0001-9927-7875
https://doi.org/10.1007/978-3-031-30044-8_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_14&domain=pdf

M. A. Le Brun and O. Dardha

and type systems [29] are lightweight forms of verification. Baked in program-
ming languages, types provide guarantees directly on handwritten code and aid
developers in implementing software which is correct by construction. Specific
to concurrent and distributed computing, session types [14,35,15,36,33,16] have
quickly grown in popularity since their initial conceptualisation [14], spanning
from binary–two participants, to multiparty–many participants.

Session types enforce that processes communicate according to a protocol
specification. Consequently, desirable properties about communication, e.g., type
safety (communication occurs error-free), protocol compliance (or session fidelity;
processes behave according to their predefined protocol), and deadlock free-
dom (processes do not get stuck waiting), can be statically determined by a
type checker. To this aim, session types have been implemented in various pro-
gramming languages, including Java [18,11], Go [21], Haskell [17,27], Scala [32],
Rust [19], Elixir [34].

To date, most session type theories are designed for concurrent, as opposed to
distributed processes—i.e., it is commonly assumed that communication failures
do not occur. For the few (and rapidly increasing) works that do consider failures,
heavy assumptions are made that impede their viability for realistic complex dis-
tributed applications. E.g., asynchronous theories [24,16,33] use message buffers
to model distributed communication under “TCP-like” assumptions: messages
are guaranteed to be delivered and messages from a single sender do not get re-
ordered. Affine sessions [25,12,6] only allow failure-handling of application level
failures through try-catch blocks; there is no support for arbitrary failures that
may stem from hardware faults, network inconsistencies etc. Coordinator model
approaches [1,8,37] assume some degree of reliability, be it as a central resilient
process, a reliable broadcast, or fixed synchronisation points.

The harsh reality is that many real-world distributed protocols (e.g., con-
sensus algorithms) cannot assume any of these conditions. Networks introduce
many points of failure into a system: nodes may crash, messages can be dropped,
delayed or duplicated, links between nodes may fail etc. Designers of distributed
protocols have acknowledged that failure is inevitable, and so algorithms are
designed to withstand a threshold of failure whilst still achieving their expected
behaviour—known as fault-tolerance [22]. Examples of fault-tolerant protocols
(extensively) used today include the Paxos [20] and Raft [26] consensus algo-
rithms, which assume the possibility of all non-Byzantine faults—i.e., node
crashes, link failures, network partitions, and message inconsistencies.

Although the correctness of these algorithms has been heavily studied, many
of them are developed with limited confidence in the correctness of the deploy-
able artifact, due to the reasons previously outlined. To fill this gap, we need
type-based verification, which can be made available to programming languages,
thus supporting designers and developers in designing and implementing cor-
rect distributed algorithms. While (multiparty) session types have made great
impact in modelling structured communication and guaranteeing relevant prop-
erties, their theory is not yet expressive to model these complex algorithms.

364

MAGπ: Types for Failure-Prone Communication

In this paper, we take steps towards filling this gap by presenting MAGπ—a
Multiparty, Asynchronous and Generalised π-calculus—the first language and
type system able to accommodate: (i) the widest range of non-Byzantine faults,
including message loss, delays and reordering ; crash and link failures ; and net-
work partitioning—all by using timeouts ; (ii) a novel and most general notion of
reliability, taking into account the viewpoint of each participant in the protocol;
and (iii) a spectrum of network assumptions—from the lowest level of network
programming based on UDP, to application level based on TCP.

Example 1 (Ping Pong: Types). We illustrate MAGπ with a simplified version
of the ping utility from the Internet Control Message Protocol (ICMP1), which
is our running example. The ping utility consists of a total of three roles commu-
nicating amongst each other: two roles, p and r, communicate reliably with each
other, and both communicate unreliably with a third role q. Our definition of re-
liability (§ 3.2) takes into account the viewpoint of each role, thus allowing roles
to have their own (possibly empty) reliability set. Following the assumptions
above, the reliability set for p is {r}, for r is {p}, and for q is ∅.

Below we give the session types, denoted Sr, Sp and Sq for roles r, p and q
respectively.

Sr = & {p ? ok().end, p ? ko().end}

Sp = q ! ping().&

q ? pong().r ! ok().end,

�. q ! ping().&

q ? pong().r ! ok().end,

�. q ! ping().&

{
q ? pong().r ! ok().end,
�. r ! ko().end

Sq = &

p ? ping().p ! pong().end,

�. &

p ? ping().p ! pong().end,

�. &

{
p ? ping().p ! pong().end,
�. end

Role r is the receiver (&–called branching), which waits on two options: it receives
from p either the label ok or ko and then it terminates the protocol (end). Role p is
the sender (⊕2–called selection), and it tries to obtain information on the status of
q. It begins by sending a ping message to q (q ! ping()), then waits to receive from q.
If a pong is received (q ? pong()) in the top branch, then it concludes that the status
of q is reachable and sends this information to r (r ! ok()), after which it terminates.
Alternatively, p enters a timeout branch (�). For simplicity, we assume p will attempt
to communicate with q three times (shown in the three-time indentation of the timeout
branch) before assuming q is unreachable; after which the session will also terminate
by sending ko to r, followed by end. In the same lines, the protocol for role q is given
by the session type Sq, where its timeout branches match the timeouts from Sp.

1 https://www.rfc-editor.org/rfc/rfc792
2 For readability, we adopt a shorthand notation for sending towards a single role and
for payloads of type unit, such that ⊕{s !m(unit).S} is represented by s !m().S.

365

https://www.rfc-editor.org/rfc/rfc792

1.1 Contributions

We now present our contributions w.r.t. our Multiparty, Asynchronous, and
Generalised π-calculus (MAGπ).

1. MAGπ language (§ 2):
– MAGπ is the first language to support the widest set of non-Byzantine

faults, including message loss,message delays andmessage reordering;
crash failures and link failures; and network partitioning.

– MAGπ is the first language to introduce timeouts in receive branches
(used for handling network failures), as well as support undirected
branching in a generalised setting—the ability to simultaneously expect
an incoming message from more than one sender.

2. MAGπ type system (§ 3):
– is a conservative extension of a generalised asynchronous MPST the-

ory [33], benefiting from: the ability to model more protocols than tradi-
tional syntactic theories (e.g. global types); and the flexibility of checking
desired properties, such as deadlock freedom or termination, a posteri-
ori—as opposed to during the design phase.

– supports undirected branching/selection and is the first type system
to introduce timeout branches.

– supports a novel and most general reliability definition (§ 3.2), taking
into account the viewpoint of each participating role, and is built on
optional role-dependant reliability assumptions.

3. Type properties (§ 4): We prove subject reduction (theorem 1) and session
fidelity (theorem 2). We show failure-handling safety (cor. 1) and its inverse,
reliability adherence (cor. 2), which strictly connect timeouts and reliability.
We prove process properties (theorem 3) e.g. deadlock-freedom, termination,
liveness, in line with [33]. Finally, as our MAGπ type system is Turing-
complete, we prove decidable type checking (theorem 4) and decidability of
process properties for finite message buffers (theorem 5).

4. TCP vs. UDP (§ 5): MAGπ is expressive enough to capture a range of
network assumptions: from low-level network programming operating over
the User Datagram Protocol (UDP); to application-level software operating
over the Transmission Control Protocol (TCP).

5. Case study (§ 6): we further demonstrate the use of timeouts and undi-
rected branching to model a Domain Name System (DNS) distributed pro-
tocol with a cache and in-built load-balancer; we also show the properties it
satisfies, including safety and deadlock freedom. Further examples are avail-
able in the technical report [23], including a prototype specification of a
leader election algorithm used by consensus protocols.

2 MAGπ: Language

We present a multiparty session π-calculus, based on the theory of Scalas and
Yoshida [33], extended to accurately model real-world distributed network envi-
ronments. We assume the lowest level of abstraction—the only failure detection
mechanism available to a process is an upper-bound wait limit, i.e., a timeout.

M. A. Le Brun and O. Dardha366

c ::= x | s[p] (variable, session w/ role)

d ::= v | c (basic value, variable, session w/ role)

w ::= v | s[p] (basic value, session w/ role)

P,Q ::= 0 | (νs)P (inaction, restriction)

| P |Q | P +Q (composition, non-deterministic choice)

| c⊕ [q] !m⟨d⟩. P (selection towards role q)

| c&i∈I{[qi] ?mi(xi).Pi} (reliable branching from roles qi)

| c&i∈I{[qi] ?mi(xi).Pi, �. Q} (branching from roles qi w/ timeout Q)

| def D in P | X⟨d̃⟩ (process definition, process call)

| s : σ (session buffer)

D ::= X(x̃) = P (process declaration)

σ ::= (p ▷ q ◁m⟨w⟩) · σ | ϵ (session queue, empty session queue)

Fig. 1. Syntax for MAGπ

Our calculus presents three novel features: (i) the new timeout primitive;
(ii) the capability of expecting a message from different senders ; and (iii) oper-
ational semantics which can model various non-Byzantine failures. Timeouts can
be attached to receive actions—henceforth referred to as branches—and are used
to describe an alternative process to be executed in case failures are assumed to
occur (akin to error handlers).

Failures are said to be assumed, as opposed to detected, since we model the
impossibility result of distinguishing between a delayed vs lost message. Thus,
it is possible for a processes to prematurely timeout without its corresponding
message having been lost—just like the real-world!

The benefit of our approach is that the failure detection mechanism is agnos-
tic to the type of fault, allowing us to model in unison message loss, message
delay, crash-stop failures, link failures, and network partitions.

2.1 Syntax

Definition 1 (Language Syntax). The Multiparty, Asynchronous and Gen-
eralised π-calculus syntax is defined by the grammar in fig. 1.

Communication happens over sessions (s, s′) between a number of roles (p, q)
ranging over set ρ. The primitives of the calculus are sessions with roles s[p],
and basic values v, both of which can be abstracted using variables (x, y). Pro-
cesses (P,Q), include the following standard constructs: (i) inaction 0 repre-
sents process termination; (ii) session restriction (νs) P binds a new session s
in P ; (iii) parallel composition declares two concurrent processes; (iv) selection
c⊕[q] !m⟨d⟩. P uses channel c to send a message to q with label m and payload

MAGπ: Types for Failure-Prone Communication 367

[R-⊕] s[p]⊕[q] !m⟨w⟩. P | s:σ −→ P | s:σ · (p ▷ q ◁m⟨w⟩) · ϵ

[R-&] s[q] &i∈I{[pi] ?mi(xi).Pi [, �. Q]} | s:(pk ▷ q ◁mk⟨w⟩) · σ
−→ Pk[

w/xk
] | s:σ for k ∈ I

[R-�] s[q] &i∈I{[pi] ?mi(xi).Pi, �. Q} | s:σ −→ Q | s:σ

[R-+] P1+P2 −→ Pi for i ∈ {1, 2}

[R-X] def X(x1,. . . ,xn) = P in (X⟨w1,. . . ,wn⟩ | Q)

−→ def X(x1,. . . ,xn) = P in (P [w1/x1
] · · · [wn/xn

] | Q)

[R-C] P −→ P ′ =⇒ C[P] −→ C[P ′]

[R-↓] s:h · σ −→ s:σ

Fig. 2. Reduction rules for MAGπ

d—after sending, the process continues according to P ; (v) definition and dec-
laration allow processes to be assigned names, modelling recursion through the
use of process calls. We now elaborate on the novelties in our language.

c&i∈I{[qi] ?mi(d).P} Quantification over roles in a branch allows processes

to receive from one in a range of other roles. This has practical applications
in a multitude of distributed protocols, e.g. load balancers.

c&i∈I{[qi] ?mi(d).P , �. Q } Timeouts are used as a failure detection mecha-
nism in receive branches. If a failure is assumed to have lost or prevented the
incoming message, then process Q is initiated. It is key to note that time-
outs are non-deterministic—they model an arbitrary and unknown duration
of time a process waits before assuming a failure has occurred.

P +Q Non-deterministic choice randomly picks between two possible process
continuations. We use this construct to simplify examples for better pre-
sentation. Concretely, it replaces the need for expressions and if-then-else
constructs, which are routine and orthogonal to our formulation.

s : σ Message buffer for session s. An entry in the buffer (p ▷ q ◁m⟨w⟩) models
a message “in transit” from role p to q with label m and payload w. This is
needed to accommodate asynchrony in our language.

2.2 Operational Semantics

We begin with definitions of a reduction context and buffer congruence.

Definition 2 (Reduction Context). A reduction context C abstracts away
an outer environment from a process, and is given by:

C ::= C |P | (νs)C | def D in C | []

Hence, C[P] refers to process P under some arbitrary context C.

M. A. Le Brun and O. Dardha368

Definition 3 (Buffer Congruence). A process containing only a buffer un-
der its restriction is congruent to inaction. Message buffers observe total reorder-
ing.

(νs) s :σ ≡ 0 s :σ1 · h1 · h2 · σ2 ≡ s :σ1 · h2 · h1 · σ2

Definition 4 (OS). The operational semantics for MAGπ is given via a reduc-
tion relation −→ inductively defined in fig. 2, together with standard structural
congruence rules [33] and two buffer congruence rules defined in def. 3.

Let us now comment on the reduction rules (fig. 2). Processes send messages
using the selection rule [R-⊕]; this adds the sent message as a new entry in the
session buffer, and advances the process to its continuation. Sent messages are
read from the buffer using the branching rule [R-&]. If the receiver has a valid
branch matching the sender and message label, then it advances to the specific
continuation of said branch (a timeout branch for this rule is optional). The
substitution Pk[

w/xk
] denotes the replacement of variable xk with the payload

value w in the continuation process Pk. The timeout rule [R-�] advances
processes to their timeout branch without changing the buffer. Non-deterministic
choice is resolved using the choice rule [R-+], which advances the process to
one of the two possible continuations. The call rule [R-X] replaces a process
call with its defined process, substituting each parameter. Processes can reduce
under a context using the context rule [R-C]. Lastly, messages can be lost
from the buffer with the drop rule [R-↓].

We now unpack how our semantics deals with failures. The reduction rules in
fig. 2 allow various forms of failures to be modelled, stemming from the versatility
and elegance of the drop rule [R-↓]. The following elaborates on how this rule
can be utilised to model different types of failure:

– Message loss is modelled directly through the reduction rule [R-↓].
– Crash-failure is modelled through repeated applications of [R-↓] for a partic-

ular role. E.g., to model a crash of role p, the reduction step [R-↓] should be
applied to all messages that enter the buffer matching the pattern (p▷ ◁ ⟨ ⟩)
(symbolises a “don’t care” value).

– Link-failure is modelled using a similar method; the difference being that
messages between two specific recipients are dropped. E.g., modelling a link-
failure between roles p and q requires [R-↓] to be applied to all messages
entering the buffer with the patterns (p ▷ q ◁ ⟨ ⟩) and (q ▷ p ◁ ⟨ ⟩).

– Message delay is modelled by applying rule [R-�] to a branch whilst a valid
message resides in the buffer. E.g.:

s[q] &i∈I{[pi] ?mi(xi).Pi, �. Q} | s : (pk ▷ q ◁mk⟨w⟩) · σ
−→ Q | s : (pk ▷ q ◁mk⟨w⟩) · σ for k ∈ I.

– Total message reordering is modelled via buffer congruence rules (def. 3).
– Network partitions can be represented using multiple link failures.

MAGπ: Types for Failure-Prone Communication 369

The granularity at which we model failures allows for degrees of customi-
sation. E.g., benign fault-tolerant consensus algorithms typically assume the
possibility of all non-Byzantine faults, therefore all the aforementioned failures
are required. Alternatively, an application assumed to run over a trusted TCP
network need not worry about single message drops, and hence [R-↓] should
only be applied to model node crash and link failures.

Definition 5 (Well-formedness). To ensure that communication is possible,
we require that a well-formed process has a buffer for each session, i.e.,

P = (νs)Q =⇒ Q ≡ (νs̃′) (Q′ | s :σ)

Def. 5 introduces a well-formedness condition to guarantee that a session
always guards its buffer, hence ensuring that messages always have a queue to
be placed in. From now on, we will only consider well-formed processes.

Before concluding this section, we recall our ping pong running example from
the introduction, and present below the processes for roles p, q and r.

Example 2 (Ping Pong: Processes).

Pp = s[p]⊕ [q] ! ping⟨⟩. s[p] &

[q] ? pong().P ok

p ,

�. s[p]⊕ [q] ! ping⟨⟩. s[p] &
{
[q] ? pong().P ok

p ,
�. s[p]⊕ [q] ! ping⟨⟩. P ′

p

P ok
p = s[p]⊕ [r] ! ok⟨⟩.0 P ′

p = s[p] &

{
[q] ? pong().P ok

p ,
�. s[p]⊕ [r] ! ko⟨⟩.0

Pq = s[q] &

[p] ? ping().P pong

q ,

�. s[q] &

{
[p] ? ping().P pong

q ,
�. s[q] &{[p] ? ping().P pong

q , �.0}

P pong
q = s[q]⊕ [p] ! pong⟨⟩.0

Pr = s[r] &{[p] ? ok().0, [p] ? ko().0}

3 MAGπ: Type System

We introduce the type system for MAGπ, which is a conservative extension of
the generalised asynchronous MPST theory [33, sec. 7]. Generalised MPST stray
away from global protocol specifications (global types) and instead operate on
user-defined localised specifications of each participating role (local types). The
benefits of working with such theory include: (i) the ability to capture a larger
set of viable protocols compared to traditional syntactic methods (e.g. global
types) of enforcing consistent communication; (ii) the ability to model proto-
cols of different requirements. In particular, instead of syntactically enforcing
programmers to write, e.g., deadlock-free code, a generalised theory allows pro-
grammers to unrestrictedly design protocols that are checked a posteriori against
any number of required properties, such as deadlock-freedom, termination etc.

M. A. Le Brun and O. Dardha370

Basic and Session Types

T ::= B | S
B ::= int | bool | real | unit | · · ·
S ::= &i∈I{pi ?mi(Ti).Si[, �. S′]}

| ⊕i∈I{pi !mi(Ti).Si}
| µt.S | t | end

Buffer Types

M ::= p !m(T)·M | ϵ

Session-Buffer Types

τ ::= M | S | (M ; S)

Fig. 3. Basic Types, Session Types, Buffer Types and Session-Buffer Types

T ≡ T M1 ·M2 ≡ M2 ·M1 ϵ · ϵ ≡ ϵ

M ≡ M′ S ≡ S′

(M ; S) ≡ (M′ ; S′)

Fig. 4. Type congruence rules

The novelties of our type system include: (i) undirected branching/selection ;
(ii) timeout branches (syntax in § 3.1); and (iii) reliability sets—sets of roles
assumed to not fail, from the perspective of each role (§ 3.2). Reliability sets
(possibly empty) enforce the use of timeouts for all failure-prone communication.

As in [33], our type system does not use global types, but solely relies on
local types. Consequently, typing contexts must obey a safety property to ensure
subject reduction (§ 3.3). Finally, we present the rules for our type system in
§ 3.4, and discuss its key properties in § 4.

3.1 Types

Our MPST theory is designed for the distributed computing setting. Concretely,
our type system (def. 6) is asynchronous ; it allows branching (resp. selection)
from (resp. to) multiple roles; and supports timeout continuation types.

Definition 6 (Typing syntax). The typing syntax is defined using the gram-
mar in fig. 3. For undirected branching and selection, I ̸= ∅ and role-label tuples
(pi,mi) must be pairwise distinct. Recursion variables cannot be free and must
appear guarded under branching/selection types.

Type T denotes either a basic type B, or a session type S, and is used to type
variables. Session types describe how a channel should be used: (i) undirected
branching (external choice) &i∈I{pi ?mi(Ti).Si[, �. S′]} denotes receiving a mes-
sage with label mi and payload of type Ti from role pi, then continuing accord-
ing to Si. The (optional) timeout continuation type S′ describes the protocol
for handling failure on that branch; (ii) undirected selection (internal choice)
⊕i∈I{pi !mi(Ti).Si} denotes sending a message with label mi and payload Ti

to role pi, then continuing according to Si; (iii) type end marks a channel as
closed, and terminates communication. A session buffer is typed using the buffer

MAGπ: Types for Failure-Prone Communication 371

type M. Entries in the buffer must correspond to the type p !m(T)·M, denoting
a message sent to p with label m and payload of type T. A session with role is
typed using session-buffer types, combining a session type and a buffer type.

Type congruence ≡ is defined in fig. 4. Notably, buffer types can be re-
ordered, and two session-buffer types are congruent if their individual buffer and
session types are congruent. Buffer type reordering is necessary to match the
total message reordering supported by the language (def. 3).

3.2 Reliability

We go on a short detour and talk about reliability. Previous related work [4,1,38]
have included the notion of reliability into their type systems. Generally, either
one specific role, or a pre-defined set of roles, are assumed to be reliable—i.e.,
no failures occur for communication involving the identified set of roles.

Our definition of reliability (def. 7) is the most general and the first to take
into account the viewpoint of each role. We argue that this is necessary in a
distributed setting since reliability in networks is dependant on the physical
topology of processes. Recalling the ping utility (example 1), we could imagine
the processes representing roles p and r reside on the same physical hardware,
thus their communication cannot be affected by network faults; and the process
for q resides on geographically separated hardware, therefore its communication
with both p and r is vulnerable to failure.

Definition 7 (Reliability). The reliability set R for a role p ∈ ρ is defined
as R ⊆ ρ \ {p}, capturing the viewpoint of p. Reliability R is defined as a
function mapping roles to their reliability set, i.e., R : ρ → R.

To better model real distributed environments, our definition of reliability
allows each role to have its own (possibly empty) reliability set.

Example 3 (Ping Pong: Reliability Sets). W.r.t. example 1, as the three roles
have different viewpoints on each other, then the reliability set for each of them
is different. In particular, we have R(p) = {r}, R(r) = {p}, R(q) = ∅.

Investigating the extremes, we have: for a set of roles ρ, if for all p ∈ ρ·R(p) = ∅,
then no communication is reliable; conversely, if for all p ∈ ρ · R(p) = ρ \ {p},
then all communication is reliable—referred to as a reliable network. This work
only considers static configurations for R, thus reliability sets cannot change
at runtime. We find that even with this restriction, our definition is the most
general compared to related work.

3.3 Contexts

Definition 8 (Type contexts). Context Θ is a partial mapping from process
variables to n-tuples of types and context Γ is a partial mapping from variables
to types, and sessions with roles to session-buffer types, both defined below:

Θ ::= ∅ | Θ,X : T1, . . . ,Tn Γ ::= ∅ | Γ , x : T | Γ , s[p] : τ

M. A. Le Brun and O. Dardha372

The composition of contexts (Γ1, Γ2) is defined iff:

∀c ∈ dom(Γ1) ∩ dom(Γ2) : Γi(c) = M ∧ Γj(c) = S

For such c, (Γ1,Γ2)(c) = (M ; S).
Contexts are congruent Γ1 ≡ Γ2 iff:

dom(Γ1) = dom(Γ2) ∧ ∀c ∈ dom(Γ1) : Γ1(c) ≡ Γ2(c)

Context Θ is non-linear and types process variables by tracking the types of
their parameters. Context Γ is linear and allows variables to have basic or ses-
sion types, and sessions with roles to have session-buffer types ; as a program
progresses, a role may simultaneously have both an active session type and mes-
sages queued in the message buffer.

Context composition allows two contexts to coexist as long as their common
channels map to buffer types in one context, and session types in the other.

Context congruence holds if two contexts have the same domain and the
types of their channels are congruent. It is key to note that by the definitions of
context composition and congruence we have s[p] : (M ; S) ≡ s[p] : M, s[p] : S.
Buffer types (resp. session-buffer types) are only used internally by the type
system; end-users are not expected to explicitly define these types.

Definition 9 (Context reduction). An action α is given as:

α ::= s[p] !q : m(T) | s[p][q] : m | s[p]�

From left to right, this reads as (i) a sent message; (ii) communication of

a message; and (iii) the timeout of a channel. Context transition
α−→(Σ;R) is

defined in fig. 5. We write Γ
α−→(Σ;R) iff ∃Γ ′ : Γ

α−→(Σ;R) Γ
′. We define two

context reductions →(Σ;R) and →Σ as:

Γ →(Σ;R) Γ
′ holds iff Γ

α−→(Σ;R) Γ
′

Γ →Σ Γ ′ holds iff Γ
α−→Σ Γ ′ for α ∈ {s[p] !q : m(T), s[p][q] : m}

We write →+
(Σ;R) (resp. →+

Σ) and →∗
(Σ;R) (resp. →∗

Σ) for their transitive and

reflexive/transitive closures respectively.

A context Γ keeps track of open buffers using a buffer-tracker Σ. Whenever
a new session is initialised, it is added to Σ, details in § 3.4 item [T-ν]. For now it
suffices to know that buffer trackers restrict communication to occur only over
restricted sessions, thus by def. 5 (well-formedness), it guarantees that a session
buffer exists for all sessions in Σ.

Context reduction (def. 9) models communication at the type-level. Context
Γ can reduce by sending, communicating, or timing out. By [Γ -�], Γ = s[p] :
&i∈I{qi ?mi(Ti).Si, �. S′} can reduce to a timeout branch continuation type S′
if s is in the buffer-tracker (i.e., a buffer exists for session s), and at least one

MAGπ: Types for Failure-Prone Communication 373

[Γ -�]

s ∈ Σ ∃ k ∈ I : qk ̸∈ R(p)

s[p] : &i∈I{qi ?mi(Ti).Si, �. S′}
s[p]�−−−−→(Σ;R) s[p] : S′

[Γ -Snd1]

s ∈ Σ k ∈ I

s[p] : ⊕i∈I{qi !mi(Ti).Si}
s[p] ! qk:mk(Tk)−−−−−−−−−−→(Σ;R) s[p] : (qk !mk(Tk) · ϵ ; Sk)

[Γ -Snd2]

s ∈ Σ k ∈ I

s[p] : (M ; ⊕i∈I{qi !mi(Ti).Si})
s[p] ! qk:mk(Tk)−−−−−−−−−−→(Σ;R) s[p] : (M · qk !mk(Tk) · ϵ ; Sk)

[Γ -Com]

s ∈ Σ ∃ k ∈ I : (p,m,T) = (pk,mk,Tk)

s[p] : q !m(T) ·M, s[q] : &i∈I{pi ?mi(Ti).Si [,�. S′]} s[p][q]:m−−−−−→(Σ;R) s[p] : M, s[q] : Sk

[Γ -µ]

s[p] : S[µt.S/t]
α−→(Σ;R) Γ ′

s[p] : µt.S α−→(Σ;R) Γ
′

[Γ -Cong]

Γ1
α−→(Σ;R) Γ2

Γ,Γ1
α−→(Σ;R) Γ , Γ2

Fig. 5. Context reduction rules

of the roles in the branch is unreliable. The latter prevents taking a timeout
for communication that is sure to be delivered. Reductions [Γ -Snd1] and [Γ -Snd2]

simulate sending a message by reducing the selection type ⊕i∈I{qi !mi(Ti).Si}
to one of its continuations Si, and by inserting the sent message into the buffer
type. The difference is that [Γ -Snd1] creates the buffer type if it was previously
not specified, whereas [Γ -Snd2] appends the message to an already existing buffer
type. Communication between two roles is simulated through [Γ -Com], where a
branch type s[q] : &i∈I{pi ?mi(Ti).Si [,�. S′]} consumes the message from a
buffer type s[p] : q !m(T) ·M, reducing to the continuations s[p] : M, s[q] : Sk.
Lastly, [Γ -µ] allows reduction through recursion and [Γ -Cong] reduces substructures
of compatibly composed contexts.

Definition 10. Property φs is a (Σ;R)-safety property on typing contexts iff:

[S-R1] φs(Γ , s[p] : &i∈I{qi ?mi(Ti).Si}) =⇒ ∀i ∈ I : qi ∈ R(p)

[S-R2] φs(Γ , s[p] : &i∈I{qi ?mi(Ti).Si, �. S′}) =⇒ ∃i ∈ I : qi ̸∈ R(p)

[S-Com] φs(Γ , s[p] : &i∈I{qi ?mi(Ti).Si [, �. S′]}, s[q] :M)
and M ≡ p !m(T) ·M′

and ∃ k ∈ I : qk = q ∧mk = m =⇒ Tk = T
[S-µ] φs(Γ , s[p] : µt.S) =⇒ φs(Γ , s[p] : S[µt.S/t])
[S-→] φs(Γ) and Γ →(Σ;R) Γ

′ =⇒ φs(Γ
′)

M. A. Le Brun and O. Dardha374

As previously mentioned, our type system is a generic one that does not use
syntactic methods of enforcing consistent communication. Therefore, we define
a safety property in def. 10 on type contexts that is used to guarantee subject
reduction and other theorems (presented in § 4).

We say φs is the largest safety property required to guarantee subject re-
duction. The property can be re-instantiated with more specific conditions (as
demonstrated in § 5) as per the requirements of the implementation. Concretely,
[S-R1] and [S-R2] ensure that timeouts are only not defined if communication is re-
liable and that timeouts are defined if communication is unreliable respectively.
Condition [S-Com] ensures that communicating messages have matching payload
types. Lastly, [S-µ] preserves φs through recursion unfolding and [S-→] requires
safety to hold after context reduction.

3.4 Typing Rules

Our type system is defined by the typing rules in fig. 6. Below we explain them
in detail. Typing judgements are of the form: Θ · Γ ⊢ P reading “process P is
well typed under type contexts Θ and Γ”; and Γ ⊢ d : T reading “value (or
variable, or channel) d is of type T under type context Γ”.

[T-0] The inaction process 0 is typed by a context that is “end typed”, deter-
mined by the predicate end(Γ)—defined in fig. 7. The predicate holds: (i) if
Γ = ∅; (ii) if Γ consists of variables, then it holds if all the variables are
either of a basic type, or can be typed by end; and (iii) if Γ consists of
sessions with roles, then it holds if all the channels can be typed by end.

[T-Var] A variable or session with role c has type T in a context only containing
the mapping of c to T.

[T-Val] A value v is typed by a basic type B if v is contained in the set of that
basic type. E.g., 42 : N is typed under an empty context ∅ since 42 ∈ N.

[T-X] A process variable X is typed to an n-tuple of types T1, . . . ,Tn under
context Θ, if Θ maps the process variable to the same n-tuple of types.

[T-⊕] The selection process c ⊕ [qk] !mk⟨d⟩. P is typed under a context which
maps the sending channel c to a selection session type ⊕i∈I{qi !mi(Ti).Si},
where a selection option matches the send process, i.e., k ∈ I. The context
should match the payload d to the type indicated in the selection (Tk), and
continuation process P should be typed under the continuation type Sk.

[T-&] The branching process c&i∈I{[pi] ?mi(xi).Pi} is typed under a context
which maps the receiving channel c to a branch type &i∈I{pi ?mi(Ti).Si},
where all roles and message labels of each branch match. Every continuation
process Pi must be typed under the continuation type Si and payload typed
by Ti. If the process is a timeout branch c&i∈I{[pi] ?mi(xi).Pi, �. Q}, then
it should be typed by a session type also containing a timeout continuation
&i∈I{pi ?mi(Ti).Si, �. S′}, and the timeout process Q must be typed by S′.

[T-Call] A process call X⟨d1, . . . , dn⟩ is correctly typed if Θ types the process
variable to a n-tuple of types T1, . . . ,Tn and Γ maps each parameter di to
the corresponding Ti (for i ∈ 1..n). Any remaining channels in Γ cannot be
open, and hence must be end typed.

MAGπ: Types for Failure-Prone Communication 375

[T-0]

end(Γ)

Θ · Γ ⊢ 0

[T-Var]

c : T ⊢ c : T

[T-Val]

v ∈ B
∅ ⊢ v : B

[T-X]

Θ(X) = T1, . . . ,Tn

Θ ⊢ X : T1, . . . ,Tn

[T-⊕]

Γ1 ⊢ c : ⊕i∈I{qi !mi(Ti).Si} k ∈ I Γ2 ⊢ d : Tk Θ · Γ , c : Sk ⊢ P

Θ · Γ , Γ1, Γ2 ⊢ c⊕ [qk] !mk⟨d⟩. P

[T-&]

Γ ′ ⊢ c : &i∈I{pi ?mi(Ti).Si [, �. S′]}
[Θ · Γ , c : S′ ⊢ Q] ∀i ∈ I ·Θ · Γ , xi : Ti, c : Si ⊢ Pi

Θ · Γ , Γ ′ ⊢ c&i∈I{[pi] ?mi(xi).Pi [, �. Q]}

[T-Call]

Θ ⊢ X : T1, . . . ,Tn end(Γ ′) ∀i ∈ 1..n · Γi ⊢ di : Ti

Θ · Γ1, . . . , Γn, Γ
′ ⊢ X⟨d1, . . . , dn⟩

[T-Def]

Θ,X : T1, . . . ,Tn · x1 : T1, . . . , xn : Tn ⊢ P Θ,X : T1, . . . ,Tn · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 : T1, . . . , xn : Tn) = P in Q

[T-+]

Θ · Γ ⊢ P1 Θ · Γ ⊢ P2

Θ · Γ ⊢ P1 + P2

[T-Lift]

Θ · Γ ⊢ P

Θ · Γ ⊢∅ P

[T-ϵ]

gc(Γ)

Θ · Γ ⊢{s} s : ϵ

[T-σ1]

Θ · Γ ′ ⊢{s} s : σ Γ ⊢ w : T
Θ · Γ , Γ ′, s[p] : q !m(T) · ϵ ⊢{s} s : (p ▷ q ◁m⟨w⟩) · σ

[T-σ2]

Θ · Γ ′, s[p] : M ⊢{s} s : σ Γ ⊢ w : T
Θ · Γ , Γ ′, s[p] : q !m(T) ·M ⊢{s} s : (p ▷ q ◁m⟨w⟩) · σ

[T-σw]

Γ = (Γ0 ⇝ Γ1), Γ2 Θ · Γ1 ⊢Σ s : σ gc(Γ0, Γ2)

Θ · Γ ⊢Σ s : σ

[T-|]
Θ · Γ1 ⊢Σ1 P1 Θ · Γ2 ⊢Σ2

P2 Σ1 ∩Σ2 = ∅
Θ · Γ1, Γ2 ⊢Σ1∪Σ2

P1 | P2

[T-ν]

Γ ′ = {s[p] : τp}p∈ρ s ̸∈ Γ ({s} ;R)-φs(Γ
′) Θ · Γ , Γ ′ ⊢Σ P

Θ · Γ ⊢Σ\{s} (νs :Γ ′)P

Fig. 6. Typing rules

M. A. Le Brun and O. Dardha376

end(∅)
∀i ∈ 1..n · basic(Ti) ∨ xi : Ti ⊢ xi : end

end(x : T1, . . . , xn : Tn)

end(Γ1) end(Γ2)

end(Γ1, Γ2)

∀i ∈ 1..n, p ∈ ρ · si[p] : τi ⊢ si[p] : end

end(si[p] : τ1, . . . , si[p] : τn)

Fig. 7. Predicate end(Γ)

gc(∅)
gc(Γ)

gc(Γ , s[p] : ϵ)

basic(T) gc(Γ , s[p] : M)

gc(Γ , s[p] : q !m(T) ·M)

Γ = Γ ′, s′[p′] : T gc(Γ ′, s[p] : M)

gc(Γ , s[p] : q !m(T) ·M)

Fig. 8. The garbage collector predicate gc(Γ)

s[p] : q !m(T) · ϵ⇝ Γ , s[p] : M = Γ , s[p] : q !m(T) ·M
s[p] : q !m(T) · ϵ⇝ Γ when s[p] : M ̸∈ Γ = Γ , s[p] : q !m(T) · ϵ

Fig. 9. Message insertion function Γ ′⇝Γ

[T-Def] Process declaration X(x1 : T1, . . . , xn : Tn) = P is well typed if P is self-
contained, i.e., contexts containing the types of the declaration parameters
(along with any previous Θ) should type P . Process definition def X(x1 :
T1, . . . , xn : Tn) = P in Q is typed under Θ ·Γ if its declaration is well typed
and Q is typed under Γ and Θ composed with the new process variable.

[T-+] Non-deterministic choice is well typed if processes are typed by Θ · Γ in
isolation. This is in line with how case or if-then-else processes are typed.

[T-Lift] We annotate the typing judgement Θ · Γ ⊢ P with the buffer-tracker
to obtain Θ · Γ ⊢Σ P , denoting that the sessions in Σ occur in P . The
lifting rule annotates the typing judgement with an empty buffer-tracker if
the buffer-less judgement (⊢) types P (using the rules mentioned thus far).

[T-ϵ] In standard asynchronous MPST theory, the empty buffer s : ϵ is typed
under the empty context ∅, ensuring a one-to-one correlation between buffer
types in the context and messages in a session buffer. However, since our
calculus models message loss, it is possible that a context contains buffer
types for messages that have been dropped from the process buffer. Thus,
our theory types s : ϵ under a garbage collected Γ . The predicate gc is
defined in fig. 8, and states that valid leftover types gc(Γ) are: (i) empty;
(ii) empty buffer types; (iii) message buffer types with basic-type payloads;
or (iv) message buffer types with channel payloads that are typed under Γ .

MAGπ: Types for Failure-Prone Communication 377

[T-σ1] [T-σ2] An entry in a session buffer s : (p ▷ q ◁ m⟨w⟩) · σ is typed under a
context containing a mapping from s[p] to a buffer type q !m(T)·M, matching
the recipient and message label. The message payload w must be of type T,
indicated by the buffer type, and buffer continuation s : σ should be typed
under the buffer continuation type M in the case that it is not empty ([T-σ2]).

[T-σw] Weakening allows a session buffer to be typed under a larger context if the
addition can be garbage collected and inserted into the original context using
the message insertion function (fig. 9). This is partial function that either
appends a message to an existing buffer type, or inserts it as the head of a
new buffer type. Put differently, weakening allows a buffer to be typed under
a larger context containing irrelevant types that can be garbage collected.

[T-|] If a process P1 is typed by Γ1, and process P2 is typed by Γ2, then the
composition Γ1,Γ2 types the parallel composition P1 | P2. It is also required
that parallel processes cannot each contain a buffer for the same session s.
This guarantees the uniqueness of one session buffer per restricted session.

[T-ν] Session restriction (νs :Γ ′)P requires session s to be instantiated with a Γ ′

mapping each session with role to its session-buffer type. φs(Γ
′) must hold

to ensure subject reduction, as discussed in § 3.3. Session s should not be
present in a previous context Γ , and process P should be typed under the
composition of the previous and newly instantiated context with the updated
buffer-tracker Θ · Γ , Γ ′ ⊢Σ P (since the buffer for s is contained in P).

Example 4 (Ping Pong: Type Context). Recalling the ping pong example, the
whole system can then be described by a parallel composition of the three pro-
cesses representing each role p, q, r together with an empty buffer, which is
closed under a type context Γ with the following typing assumptions.

Γ = {s[p] : Sp, s[q] : Sq, s[r] : Sr}

Pping = (νs : Γ) Pp | Pq | Pr | s : ϵ

4 Type Properties

The main results of our MPST system for MAGπ processes are subject reduction
(theorem 1) and session fidelity (theorem 2). It is key to note that our results
are parametric on the reliability function R. Thus, the theorems we present hold
for any configuration of reliability, i.e., from no reliable communication all the
way to completely reliable networks.

In order to synchronise reliability assumptions between types and processes,
we define the reliable process reduction −→R, such that −→R ⊆ −→.

Definition 11 (Reliable process reduction). The reliable process reduction
−→R is inductively defined by the same reduction rules for −→ (in fig. 2), with
the following changes 3:

[R-�] s[q] &i∈I{[pi] ?mi(xi).Pi,�. Q} | s : σ −→R Q | s : σ if ∃k ∈ I : pk ̸∈ R(q)

[R-↓] s : (p ▷ q ◁m⟨w⟩) · σ −→R s : σ for q ̸∈ R(p)
3 For a fully unreliable network, i.e., ∀p ∈ ρ · R(p) = ∅, −→R is equivalent to −→.

M. A. Le Brun and O. Dardha378

Intuitively, the reliable process reduction disregards network faults for reliable
communication. Concretely, a timeout reduction [R-�] is only possible if at least
one role in the branch is unreliable; and message loss [R-↓] can only occur for
messages that are not reliable from the viewpoint of the sender. This ensures
that no messages are ignored or lost for reliable communication. Proofs of our
theorems, along with any auxiliary results, are given in the technical report [23].

4.1 Subject Reduction

Using −→R, we now present our result of subject reduction. Intuitively, subject
reduction states that, if a process P is typed under a safe context, and P reliably
reduces to some process P ′, then the context also reduces (in 0 or 1 steps) to a
safe context, which types the new process P ′.

Theorem 1 (Subject Reduction).

Θ · Γ ⊢Σ P and (Σ;R)-φs(Γ) and P →R P ′ =⇒

∃Γ ′ : Γ →{0,1}
(Σ;R) Γ

′ and (Σ;R)-φs(Γ
′) and Θ · Γ ′ ⊢Σ P ′

A key novel result of our type system is that no unexpected network failures
can occur at runtime, i.e., a process always has a failure-handling subprotocol
defined for unreliable communication. This follows from the definition of our
safety property φs (def. 10) and holds through subject reduction. We state the
result in cor. 1. More precisely, this corollary states that timeout branches are
guaranteed to be defined for unreliable communication. The inverse is stated in
cor. 2, i.e., timeouts are not defined for branches containing only reliable sources.

Corollary 1 (Failure handling safety). Given a reliability function R :
p ̸∈ R(q) and Θ · Γ ⊢Σ P with (Σ;R)-φs(Γ) and P −→∗

R P ′ ≡ C[Q] implies
Q ̸= s[q] &i∈I{. . . , [p] ?m(x).Q′}. I.e., Q cannot be a branch at q receiving from
p and not define a timeout.

Corollary 2 (Reliability adherence). Given a reliability function R :
R(q) = Rq and Θ ·Γ ⊢Σ P with (Σ;R)-φs(Γ) and P −→∗

R P ′ ≡ C[Q] implies
Q ̸= s[q] &i∈I{[pi] ?mi(xi).Qi, �. Q

′} st: ∀i ∈ I : pi ∈ Rq. I.e., Q cannot be a
branch at q only receiving from reliable roles pi and define a timeout.

4.2 Session Fidelity

Session fidelity states the opposite implication of subject reduction, i.e., if Γ
types a process P , and Γ can reduce, then P can match at least one of the
context reductions.

Consequently, relevant properties of process P can be deduced from the be-
haviour of its type context Γ (as we will see in theorem 3). However, as shown
by Scalas and Yoshida [33, sec. 5.2], the result does not hold for all well-typed

MAGπ: Types for Failure-Prone Communication 379

processes. Concretely, session fidelity is violated by: (i) processes that recurse
infinitely without being productive (e.g. def X(x) = X⟨x⟩ in X⟨s[p]⟩); and
(ii) processes that deadlock by interleaving communication across multiparty
sessions. Hence, we assume the necessary conditions on processes to restrict the
aforementioned violations, by adapting [33, def. 5.3].

Definition 12 (Conditions for session fidelity). Assuming ∅ · Γ ⊢{s} P .
We say that P:

1. has guarded definitions iff each process definition in P of the form

def X(x1 : T, . . . , xn : T) = Q in P ′

∀j ∈ 1..n : if Tj is a session type, then a process call Y ⟨. . . , xj , . . .⟩ can
only occur in Q as a subterm of

xj &i∈I{[pi] ?mi(yi).Pi[, �. Pt]} or xj ⊕ [p] !m⟨y⟩. P ′′,

i.e., after xj is used for input or output.

2. only plays role p in s, by Γ iff: (i) P has guarded definitions (from 1);
(ii) fv(P) = ∅; (iii) Γ = Γ0, s[p] : τ with τ ̸= end and end(Γ0); and
(iv) for all (νs′ :Γ ′)P ′ subterm of P , end(Γ ′).

We say “P only plays role p in s” iff ∃Γ : ∅ · Γ ⊢{s} P and condition 2 holds.

Def. 12 formalises guarded recursion in condition 1, and the notion of only
playing a single role for a given session in condition 2. Together, these conditions
ensure that session fidelity, stated in theorem 2, holds for all well-typed processes.

Theorem 2 (Session Fidelity). Assuming ∅ · Γ ⊢Σ P with (Σ;R)-φs(Γ),
P ≡ (Πp∈I Pp) | s : σ and Γ =

⋃
p∈I Γp, and for each Pp: (i) ∅ · Γp ⊢Σ Pp, and

(ii) Pp being 0 (up-to-≡) or only plays role p in s, by Γp. Then,

Γ −→(Σ;R) implies ∃Γ ′, P ′: (i) Γ −→(Σ;R) Γ
′, (ii) P −→+

R P ′, (iii) ∅·Γ ′ ⊢Σ P ′

with (Σ;R)-φs(Γ
′), (iv) P ′ = (Πp∈I P

′
p) | s : σ′ and Γ ′ =

⋃
p∈I Γ ′

p, and (v) for
each P ′

p: ∅ · Γ ′
p ⊢Σ P ′

p, and P ′
p is 0 (up-to-≡) or only plays role p in s, by Γ ′

p.

4.3 Process Properties

Our result of session fidelity (§ 4.2) allows us to infer runtime properties about
programs in MAGπ from their types. We proceed by defining desirable runtime
properties on processes (def. 13); expressing the equivalence of these properties
at type-level (def. 14); and presenting our result of process properties verification
(theorem 3), linking process properties to their type-level equivalences.

From def. 13 below, a process is: (i) RF -communication-safe (new w.r.t.[33])
if it reaches the end of communication over reliable reductions and has no leftover
messages in the buffer; (ii) deadlock-free if it either reduces or it is inaction;
(iii) terminating if it is deadlock free and can reach inaction in a finite number

M. A. Le Brun and O. Dardha380

of steps; (iv) never-terminating if it can always infinitely reduce; and (v) live
if, for every reliable branch it can reduce to, it can eventually reduce to some
branch continuation. We need not consider branches with timeouts since these
are trivially live, given that a process can always reduce over the timeout.

Definition 13 (Process properties, adapted from [33]). For some reliability
function R, and full reliability function RF , a process P is said to be:

(i) RF -communication-safe iff

P −→∗
RF

P ′ ̸−→RF
and P ′ = C[s : σ] implies σ = ϵ;

(ii) deadlock-free iff P −→∗
R P ′ ̸−→R implies P ′ ≡ 0;

(iii) terminating iff it is deadlock free, and

∃ i finite st: ∀n ≥ i : P = P0 −→R P1 −→R · · · −→R Pn implies Pn ̸−→R ;

(iv) never-terminating iff P −→∗
R P ′ implies P ′ −→R;

(v) live iff P −→∗
R P ′ ≡ C[Q] implies

if Q = c&i∈I{[qi] ?mi(xi).Q
′
i}, then

∃C′, k ∈ I, w : P ′ −→∗
R C′[Q′

k[
w/xk

]].

Note that, differently from other works [4,33], our definition of liveness only
speaks about receiving processes, and not sending. Typically, liveness also re-
quires that a sent message—in the case of MAGπ, any message in a session
buffer—is always eventually consumed. However, because of the failures that
our calculus models, it is possible that a process is live and still have uncon-
sumed messages in the buffer (e.g., as a result of timing out due to a message
delay). Additionally, for a RF -communication-safe process it follows that all sent
messages are consumed in the reliable case. Hence, the traditional definition of
liveness still holds for reliable network configurations, and our new definition
provides the largest guarantees possible given the failure assumptions.

We now present the type-level equivalences of the above process properties.
For liveness, we generalise to the largest liveness property, as done with safety in
def. 10, allowing users to define more fine-grained notions of liveness, if required.

From def. 14 below, a type context is: (i) RF -communication-safe if it has
no populated buffer types when it can no longer reliably reduce; (ii) deadlock-
free if the reason why it can no longer reduce is because it is end typed (and
possibly, as a result of network failures, has some leftover types that can be
garbage collected); (iii) terminating if it is deadlock free and can reach the end
of the protocol in a finite number of steps; (iv) never-terminating if it can always
infinitely reduce; and (v) live if, for every reliable branch it can reduce to, there
is a series of steps that can reduce to a continuation of that branch.

Definition 14 (Type context properties). For some reliability function R,
a full reliability function RF , and a set of sessions Σ, we say context Γ is:

MAGπ: Types for Failure-Prone Communication 381

(i) (Σ;RF)-communication-safe iff

Γ −→∗
(Σ;RF) Γ

′ ̸−→(Σ;RF) and s[p] : M ∈ Γ ′ implies M = ϵ;

(ii) (Σ;R)-deadlock-free iff

Γ −→∗
(Σ;R) Γ

′ ̸−→(Σ;R) implies Γ ′ = Γ ′
0, Γ

′′ st: end(Γ ′
0) and gc(Γ ′′);

(iii) (Σ;R)-terminating iff it is (Σ;R)-deadlock-free, and ∃ i finite st:

∀n ≥ i : Γ = Γ0 −→(Σ;R) Γ1 −→(Σ;R) · · · −→(Σ;R) Γn implies Γn ̸−→(Σ;R) ;

(iv) (Σ;R)-never-terminating iff Γ −→∗
(Σ;R) Γ

′ implies Γ ′ −→(Σ;R);

(v) (Σ;R)-live iff it obeys some liveness property (Σ;R)-φL st:

(Σ;R)-φL(Γ , s[p] : S) and S = &i∈I{qi ?mi(Ti).Si}
=⇒ ∃Γ ′, k ∈ I : Γ , s[p] : S −→∗

(Σ;R) Γ
′, s[p] : Sk

(Σ;R)-φL(Γ , s[p] : µt.S) =⇒ (Σ;R)-φL(Γ , s[p] : S[µt.S/t])
(Σ;R)-φL(Γ) and Γ →(Σ;R) Γ

′ =⇒ (Σ;R)-φL(Γ)

We are now ready to use these type-level equivalent properties to infer be-
haviours of the processes they type. We present our result in theorem 3 which
formally states that, under the same assumptions given in session fidelity (theo-
rem 2), if a process is typed under some type context, and a property holds on
that context, then the same property holds for the process itself.

Theorem 3 (Process properties verification). Assuming: ∅ · Γ ⊢Σ P with
(Σ;R)-φs(Γ), P ≡ (Πp∈I Pp) | s : σ and Γ =

⋃
p∈I Γp. Further, for each Pp:

(i) ∅ · Γp ⊢Σ Pp, and (ii) Pp ≡ 0 or Pp only plays role p in s, by Γp. Then,
∀ϕ ∈ {RF -communication-safe, deadlock-free, terminating, never-terminating,
live}, if (Σ;R)-ϕ(Γ), then P is ϕ.

4.4 Decidability

Since MAGπ is Turing-complete, determining the properties listed in def. 13
from processes is undecidable [5]. A benefit of our generalised theory is that un-
decidable process properties can be inferred from decidable type-level properties.

Theorem 4 (Decidability). If (Σ;R)-ϕ(Γ) is decidable, then “Θ · Γ ⊢Σ P
with (Σ;R)-ϕ(Γ)” is decidable.

Our decidability result (theorem 4) states that for any decidable type-level
property, type-checking with that property is decidable. However, since MAGπ
is asynchronous, we have no results on decidability of ϕ. On the contrary, as
discussed in [33, sec. 7], type-level properties for asynchronous type theories are,
in some cases, undecidable. This is a result of pairing buffer types with session
types—which makes the type system Turing-powerful [3, thm. 2.5]. Scalas and
Yoshida [33] address this issue through two methods: (i) standard global types

M. A. Le Brun and O. Dardha382

produce type contexts that can be captured through a decidable consistency
property; and (ii) restricting the size of the message buffer to make proper-
ties decidable. The former ensures decidability by restricting communication to
match the expressivity of global types. For the latter, they show that any type
context that remains bound within a finite-sized buffer is decidable (since the
type has a finite state transition system representation). In line with their re-
sults, we lift their definition of boundedness, i.e., a restriction on the size of a
buffer, to MAGπ’s type system.

Definition 15 (Boundedness, from [33]). We say Γ is (Σ;R)-boundk iff
∃k ∈ N : Γ −→∗

(Σ;R) Γ
′, s[p] : M implies |M| < k.

We say Γ is (Σ;R)-bounded iff ∃k finite : (Σ;R)-boundk(Γ).

Using def. 15, we present our result of decidable bounded properties in theorem 5.

Theorem 5 (Decidable bounded properties). (Σ;R)-boundk(Γ) is de-
cidable for all Σ,R, and k. Furthermore, if (Σ;R)-bounded(Γ), then ∀ϕ ∈
{RF -communication-safe, deadlock-free, terminating, never-terminating, live},
it holds that (Σ;R)-ϕ(Γ) is decidable.

Thus, decidability is guaranteed for all protocols expressible through stan-
dard asynchronous global type theory, and all protocols that use finite message
buffers—now with the benefit of reasoning about and handling network errors!

Example 5 (Ping Pong: Properties). Inspecting the types in example 1 and
example 4, we can conclude that Γ = {s[p] : Sp, s[q] : Sq, s[r] : Sr} is bound4.
By theorem 5, Γ is decidable to check for type-level properties. On doing so, we
determine that Γ is: (i) safe, it satisfies the safety property (def. 10) required
for subject reduction; (ii) RF -communication-safe, since if we only consider
reliable reductions, no buffer types remain populated; (iii) terminating, since
we can count the number of steps taken to reach the end of the protocol; and
(iv) live, as reliable communication Sr always reduces—i.e., a result is always
obtained.

5 Generalising Network Assumptions

The work presented thus far covers worst-case network assumptions for commu-
nication. As beneficial as this may be for low-level networks programming, and
for complex distributed applications with minimal assumptions (e.g. consensus
protocols), not all applications are built on these pessimistic conditions. E.g.
many distributed applications operate over the Transmission Control Protocol
(TCP), and thus assume that if consecutive messages are received from the same
source, then they are guaranteed to arrive in the order in which they were sent.

We now showcase the few changes to MAGπ required to alter its network
assumptions. It is key to note that these changes produce a subset of MAGπ,
thus all relevant properties continue to be valid for its TCP-compliant version.

MAGπ: Types for Failure-Prone Communication 383

5.1 From Total to Partial Reordering

In a reliable network configuration designed to run over TCP, message reordering
for communication between two parties is guaranteed to not occur. Therefore,
we can adjust the message reordering of MAGπ to model this environment, and
strengthen our safety property φs to TCP-safe communication. MAGπ models
message reordering through buffer congruence rules. Therefore, strengthening
congruence suffices to restrict communication to the TCP-safe assumptions.

Definition 16 (TCP process-congruence). The process congruence for the
TCP-compliant subset of MAGπ, ≡TCP, is inductively defined using the same
rules defining ≡ (in def. 3), but with the following change:

s :σ1 · h1 · h2 · σ2 ≡ s :σ1 · h2 · h1 · σ2

replaced by

p1 ̸= p2 or q1 ̸= q2

s :σ1 · (p1 ▷ q1 ◁m1⟨w1⟩) · (p2 ▷ q2 ◁m2⟨w2⟩) · σ2

≡TCP s :σ1 · (p2 ▷ q2 ◁m2⟨w2⟩) · (p1 ▷ q1 ◁m1⟨w1⟩) · σ2

To obtain the TCP-compliant subset of MAGπ, we assume reductions over
fully reliable networks and adopt TCP process congruence from def. 16, which
no longer allows reordering of messages for each role couple. We now reflect this
definition of TCP congruence at the type-level in def. 17, and use this to define
a TCP-safety property on type contexts in def. 18.

Definition 17 (TCP type-congruence). The type congruence for the TCP-
compliant subset of MAGπ, ≡TCP, is inductively defined using the same rules as
≡ (fig. 4), but with the following change:

M1 ·M2 ≡ M2 ·M1

replaced by
p ̸= q

p !m1(T1) · q !m2(T2) ·M
≡TCP q !m2(T2) · p !m1(T1) ·M

Definition 18 (TCP safety). Predicate φTCP is a Σ-TCP-safety property
on typing contexts iff:

φTCP(Γ , s[p] : &i∈I{qi ?mi(Ti).Si}, s[q] :M)
and M ≡TCP p !m(T) ·M′

and ∃ k ∈ I : qk = q =⇒ mk = m ∧ Tk = T
φTCP(Γ , s[p] : µt.S) =⇒ φTCP(Γ , s[p] : S[µt.S/t])
φTCP(Γ) and Γ →Σ Γ ′ =⇒ φTCP(Γ

′)

Similar to our previous definition of safety in def. 10, TCP safety ensures that
payload types of communicating entities match. In addition, it also requires
correct ordering of messages (up to ≡TCP) by checking message labels—this is
possible since messages between two parties do not get reordered, and so they
must be received in the same order they are sent. In order to benefit from the
session theorems proved in § 4, all that is required is to show that φTCP ⊆ φs,
i.e., any context that is TCP-safe is also safe. This is the only requirement since
all theorems in § 4 (i) are parametric on the reliability function R, including
fully reliable networks; and (ii) are proven for (Σ;R)-φs(Γ).

M. A. Le Brun and O. Dardha384

Proposition 1 (Containment of φTCP in φs). ∀Γ ∈ φTCP : Γ ∈ φs.

Proof. φTCP uses a fully reliable configuration of MAGπ—i.e., is void of failure-
handling timeouts—and thus trivially abides by [S-R1] and [S-R2]. [S-µ] is reflected
directly in φTCP. [S-→] is reflected for R = RF , i.e., for a fully reliable configura-
tion. [S-Com] is never violated by Γ ∈ φTCP since ≡TCP ⊂ ≡. ⊓⊔

6 Case Study

This work presents the Ping (examples 1–5) and Domain Name System (§ 6.1)
examples as they are widely known, and between them cover the full range of
our contributions. Previous related works are not expressive enough to model
either protocol with our range of failure assumptions. Thus Ping and DNS are
suitable to illustrate how MAGπ pushes the boundaries of MPST. Additional
examples are provided in the technical report [23].

6.1 DNS

We now demonstrate the key features of MAGπ through a case study. We
present a multiparty example of a Domain Name System (DNS) with a cache
and inbuilt load-balancer. This example: (i) reasons about failures in its unreli-
able connections that are specified using our novel viewpoint-specific reliability
sets; (ii) defines failure-handling protocols for these possible failures; (iii) is
bounded (def. 15), and thus has decidable type-level properties; and (iv) is safe,
RF -communication-safe, deadlock-free, terminating, and live. Typically, DNS is
implemented over TCP, however the distributed components can still suffer hard-
ware failures. To cater for this, and for better demonstration of our contributions,
we describe the protocol in our failure-prone setting.

Specification We consider a specification of a client-DNS interaction, where
the client consults a cache, and the DNS delegates requests to workers.

The client, represented by role c, wishes to retrieve a web-address for a par-
ticular URL, and can do so by issuing a request to the DNS. As an optimisation,
the client also stores recently retrieved addresses in a local and reliable cache—
thus before issuing new requests to the DNS, it first consults this cache. Upon
receiving a request, the DNS offloads processing work to one of two workers,
represented by roles w1 and w2. After retrieving the appropriate address, the
worker sends the response to the client.

The reliability configuration of this application is as such: the client and
cache have reliable connections, formally R(c) = {cache} and R(cache) = {c};
the DNS and workers have reliable connections, formally R(DNS) = {w1,w2}
and R(w1) = R(w2) = {DNS}; all other communications are unreliable.

We now present the session types specifying the communication protocol for
this distributed application. We adopt shorthand notion for singleton selections,
and omit payload types for simplicity, as with the ping example.

MAGπ: Types for Failure-Prone Communication 385

Example 6 (DNS protocol).

Sc = cache ! req().&

cache ? ans().end,

cache ? 404().DNS ! req().&

w1 ? ans().cache ! new().end,
w2 ? ans().cache ! new().end,
�. cache ! ko().end

Scache = &

c ? req().⊕

c ! ans().end,

c ! 404().&

{
c ? new().end,
c ? ko().end

SDNS = &

 c ? req().⊕
{
w1 ! req().w2 ! ko().end
w2 ! req().w1 ! ko().end

�.w1 ! ko().w2 ! ko().end

Swi = &

{
DNS ? req().c ! ans().end,
DNS ? ko().end

Our viewpoint-specific definition of reliability is necessary to specify the re-
liable connections with the DNS and workers whilst maintaining unreliable con-
nections with the client. Additionally, the client type Sc (resp. the DNS type
SDNS) is dependant on using undirected branching (resp. selection). Hence this
example is not expressible using previous theory [4,33].

7 Related Work, Conclusions and Future Work

Modelling failures has become a relevant and widely researched topic in recent
years. We elaborate on how our generic type system and modular language differs
from, and in some cases may possibly subsume, related work.

Majumdar et al. [24] introduce undirected branching as a means of cater-
ing for the non-deterministic partial reordering of messages that is possible in
networks using the Transmission Control Protocol (TCP). As shown in § 5, the
modularity of our type system allows MAGπ to be adapted to support this
network configuration, as well as other settings with lower levels of abstraction.

Affine type systems define types that can be used at most once. Affine session
types [25,12,6] use affine typing metatheory to allow sessions to be prematurely
cancelled in the event of failure. These works only model application-level failure
(using try/catch blocks) and do not necessarily describe how a failure is handled,
but only allow the initial protocol to be abandoned if failure occurs.

Viering et al. [38] present a MPST theory for event-driven distributed sys-
tems, where processes are restarted by monitors if they crash. This approach
requires a centralised reliable node, a notion that is subsumed by our view-point
specific definition of reliability, def. 7.

Chen et al. [8] remove the need for a centralised reliable node. They equip
their type system with synchronisation points capable of detecting and handling
failures raised by the nodes that experience them. Similarly, Adameit et al. [1]
consider an environment free from a centralised reliable node where unstable
links between participants can fail. They introduce the concept of optional blocks,

M. A. Le Brun and O. Dardha386

allowing default values to substitute data not received due to communication
failure. Viering et al. [37], motivated by consensus algorithms, delegate a group
of processes as a permanently available recovery system capable of monitoring
processes and informing them of failures. Thus, they no longer rely on one cen-
tralised robust node, but instead assume that at least some of the processes that
make up the coordinator are alive at any given time. The drawback in these
approaches is their reliance on coordination to handle faults. This may not be
suitable with certain network configurations and failure-models. Since our type
system handles failure through low-level techniques, it remains agnostic to the
types of failures, and is suitable for any non-Byzantine network configuration.

Recent work by Peters et al. [28] extends global type theory with failure
annotations—marking communication susceptible to failures and the kind of
failure (specifically either process crashes or message loss). They handle failure
by defining default values and branches. Since the theory is an extension of global
types, it suffers from the same problems that are addressed through generalised
MPST. Additionally, the work is not agnostic to failure-models, and so it is
uncertain if the theory is capable of model failures other than the two considered.

Most similar to MAGπ is work by Barwell et al. [4], where generalised
session type theory is extended to reason about crash-stop failures. They re-
serve the crash message label, which can be used in receive branches to detect
node failure and specify failure-handling subprotocols. In line with our research,
their type system is generic, thus improving its expressiveness. However, unlike
MAGπ, their theory is not asynchronous, does not support undirected branch-
ing/selection, and assumes crash-stops to be the only possible faults—we address
and capture a range of failures such as crash failures, link failures, message loss,
delays and reordering and network partitioning.

Distributed variations of the π-calculus [2,30,7,13] introduce process loca-
tions—representations of real-world physical hardware. Processes are assigned
to locations to form a topology, and locations can be crashed to model failures.
None of these calculi model the range of failures that are supported by MAGπ,
nor do they have type systems to ensure communication-safe failure handling.

To conclude the paper, we presented MAGπ—a Multiparty, Asynchronous
and Generalised π-calculus which addresses the widest set of non-Byzantine
faults by using timeouts and the most general reliability definition. Our language
builds on the generalised and asynchronous MPST, which is the most flexible
for distributed programming. We prove subject reduction and session fidelity; a
series of process properties, as well as fault-handling safety and reliability ad-
herence. As future work, we aim to investigate linear logic for Curry-Howard
correspondences in order to understand the foundational and canonical meaning
of faults and reliability. We aim to investigate Byzantine faults in combination
with the non-Byzantine faults addressed here. Lastly, we will explore the use of
model checking to streamline the verification of process properties.

Acknowledgements. We thank the anonymous reviewers and give a special
thanks to Simon Fowler for his invaluable support and feedback.

MAGπ: Types for Failure-Prone Communication 387

References

1. Adameit, M., Peters, K., Nestmann, U.: Session types for link failures. In: Bouaj-
jani, A., Silva, A. (eds.) Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held
as Part of the 12th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10321, pp. 1–16. Springer (2017).
https://doi.org/10.1007/978-3-319-60225-7_1

2. Amadio, R.M.: An asynchronous model of locality, failure and process mobility.
In: Garlan, D., Métayer, D.L. (eds.) Coordination Languages and Models, Second
International Conference, COORDINATION ’97, Berlin, Germany, September 1-
3, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1282, pp. 374–391.
Springer (1997). https://doi.org/10.1007/3-540-63383-9_92

3. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. Log. Methods
Comput. Sci. 12(4) (2016). https://doi.org/10.2168/LMCS-12(4:7)2016

4. Barwell, A.D., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty session
types with crash-stop failures. In: Klin, B., Lasota, S., Muscholl, A. (eds.) 33rd In-
ternational Conference on Concurrency Theory, CONCUR 2022, September 12-16,
2022, Warsaw, Poland. LIPIcs, vol. 243, pp. 35:1–35:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CONCUR.2022.
35

5. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, repli-
cation and iteration in process calculi. Math. Struct. Comput. Sci. 19(6), 1191–
1222 (2009). https://doi.org/10.1017/S096012950999017X

6. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions.
Math. Struct. Comput. Sci. 26(2), 156–205 (2016). https://doi.org/10.1017/
S0960129514000164

7. Castellani, I.: Process algebras with localities. In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 945–1045. North-Holland / Elsevier
(2001). https://doi.org/10.1016/b978-044482830-9/50033-3

8. Chen, T., Viering, M., Bejleri, A., Ziarek, L., Eugster, P.: A type theory for ro-
bust failure handling in distributed systems. In: Albert, E., Lanese, I. (eds.) For-
mal Techniques for Distributed Objects, Components, and Systems - 36th IFIP
WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9688, pp. 96–113. Springer (2016). https://doi.org/10.1007/
978-3-319-39570-8_7

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)
10. Clarke, E.M., Klieber, W., Novácek, M., Zuliani, P.: Model checking and the

state explosion problem. In: LASER Summer School. Lecture Notes in Com-
puter Science, vol. 7682, pp. 1–30. Springer (2011). https://doi.org/10.1007/
978-3-642-35746-6_1

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types
for Object-Oriented Languages. In: ECOOP 2006. vol. 4067, pp. 328–352. Springer
Berlin Heidelberg (2006). https://doi.org/10.1007/11785477_20, http://link.
springer.com/10.1007/11785477_20, lecture Notes in Computer Science

12. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous session
types: session types without tiers. Proc. ACM Program. Lang. 3(POPL), 28:1–
28:29 (2019). https://doi.org/10.1145/3290341

M. A. Le Brun and O. Dardha388

https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/3-540-63383-9_92
https://doi.org/10.1007/3-540-63383-9_92
https://doi.org/10.2168/LMCS-12(4:7)2016
https://doi.org/10.2168/LMCS-12(4:7)2016
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1016/b978-044482830-9/50033-3
https://doi.org/10.1016/b978-044482830-9/50033-3
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
http://springerlink.bibliotecabuap.elogim.com/10.1007/11785477_20
http://springerlink.bibliotecabuap.elogim.com/10.1007/11785477_20
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341

13. Hennessy, M.: A distributed Pi-calculus. Cambridge University Press (2007)
14. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR ’93, 4th

International Conference on Concurrency Theory, Hildesheim, Germany, August
23-26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 509–
523. Springer (1993). https://doi.org/10.1007/3-540-57208-2_35

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 122–138. Springer (1998). https://doi.org/10.1007/BFb0053567

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

17. Kokke, W., Dardha, O.: Deadlock-free session types in linear haskell. In: Hage, J.
(ed.) Haskell 2021: Proceedings of the 14th ACM SIGPLAN International Sympo-
sium on Haskell, Virtual Event, Korea, August 26-27, 2021. pp. 1–13. ACM (2021).
https://doi.org/10.1145/3471874.3472979

18. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and stmungo. In: Cheney, J., Vidal, G. (eds.) Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming,
Edinburgh, United Kingdom, September 5-7, 2016. pp. 146–159. ACM (2016).
https://doi.org/10.1145/2967973.2968595

19. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: Affine rust pro-
gramming with multiparty session types. In: 36th European Conference on Object-
Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany. LIPIcs,
vol. 222, pp. 4:1–4:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4

20. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

21. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017. pp. 748–761. ACM (2017). https://doi.org/10.1145/3009837.
3009847

22. Laprie, J.C.: Dependable computing and fault-tolerance. Digest of Papers FTCS-15
10(2), 124 (1985)

23. Le Brun, M.A., Dardha, O.: Magπ: Types for failure-prone communication (2023).
https://doi.org/10.48550/ARXIV.2301.10827, https://arxiv.org/abs/2301.

10827

24. Majumdar, R., Mukund, M., Stutz, F., Zufferey, D.: Generalising projection
in asynchronous multiparty session types. In: Haddad, S., Varacca, D. (eds.)
32nd International Conference on Concurrency Theory, CONCUR 2021, Au-
gust 24-27, 2021, Virtual Conference. LIPIcs, vol. 203, pp. 35:1–35:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/

LIPIcs.CONCUR.2021.35

25. Mostrous, D., Vasconcelos, V.T.: Affine sessions. Log. Methods Comput. Sci. 14(4)
(2018). https://doi.org/10.23638/LMCS-14(4:14)2018

26. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algo-
rithm. In: USENIX Annual Technical Conference. pp. 305–319. USENIX Associa-
tion (2014), https://www.usenix.org/conference/atc14/technical-sessions/
presentation/ongaro

27. Orchard, D., Yoshida, N.: Session types with linearity in haskell. Behavioural
Types: from Theory to Tools p. 219 (2017)

MAGπ: Types for Failure-Prone Communication 389

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.48550/ARXIV.2301.10827
https://doi.org/10.48550/ARXIV.2301.10827
https://arxiv.org/abs/2301.10827
https://arxiv.org/abs/2301.10827
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.23638/LMCS-14(4:14)2018
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

28. Peters, K., Nestmann, U., Wagner, C.: Fault-tolerant multiparty session types. In:
Mousavi, M.R., Philippou, A. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems - 42nd IFIP WG 6.1 International Conference, FORTE
2022, Held as Part of the 17th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13273, pp. 93–113. Springer (2022).
https://doi.org/10.1007/978-3-031-08679-3_7

29. Pierce, B.C.: Types and programming languages. MIT Press (2002)
30. Riely, J., Hennessy, M.: Distributed processes and location failures. Theor. Com-

put. Sci. 266(1-2), 693–735 (2001). https://doi.org/10.1016/S0304-3975(00)
00326-1

31. Rossi, M.: Modeling and analysis of communicating systems. Formal Aspects Com-
put. 33(2), 297–298 (2021). https://doi.org/10.1007/s00165-021-00533-8

32. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multi-
party sessions for safe distributed programming. In: Müller, P. (ed.) 31st Euro-
pean Conference on Object-Oriented Programming, ECOOP 2017, June 19-23,
2017, Barcelona, Spain. LIPIcs, vol. 74, pp. 24:1–24:31. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.
24

33. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343

34. Tabone, G., Francalanza, A.: Session types in elixir. In: Castegren, E., Koster,
J.D., Fowler, S. (eds.) AGERE 2021: Proceedings of the 11th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and Decen-
tralized Control, Virtual Event / Chicago, IL, USA, 17 October 2021. pp. 12–23.
ACM (2021). https://doi.org/10.1145/3486601.3486708

35. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE ’94. LNCS, vol. 817, pp. 398–413. Springer (1994)

36. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/j.ic.2012.05.002

37. Viering, M., Chen, T., Eugster, P., Hu, R., Ziarek, L.: A typing discipline for stat-
ically verified crash failure handling in distributed systems. In: Ahmed, A. (ed.)
Programming Languages and Systems - 27th European Symposium on Program-
ming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10801, pp. 799–826. Springer
(2018). https://doi.org/10.1007/978-3-319-89884-1_28

38. Viering, M., Hu, R., Eugster, P., Ziarek, L.: A multiparty session typing disci-
pline for fault-tolerant event-driven distributed programming. Proc. ACM Pro-
gram. Lang. 5(OOPSLA), 1–30 (2021). https://doi.org/10.1145/3485501

M. A. Le Brun and O. Dardha390

https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1016/S0304-3975(00)00326-1
https://doi.org/10.1016/S0304-3975(00)00326-1
https://doi.org/10.1016/S0304-3975(00)00326-1
https://doi.org/10.1016/S0304-3975(00)00326-1
https://doi.org/10.1007/s00165-021-00533-8
https://doi.org/10.1007/s00165-021-00533-8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3486601.3486708
https://doi.org/10.1145/3486601.3486708
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

MAGπ: Types for Failure-Prone Communication 391

http://creativecommons.org/licenses/by/4.0/

System F µ
ω with Context-free Session Types?

Diogo Poças(B) , Diana Costa , and Andreia Mordido ,
and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
{dmpocas,dfdcosta,afmordido,vmvasconcelos}@ciencias.ulisboa.pt

Abstract. We study increasingly expressive type systems, from Fµ—an
extension of the polymorphic lambda calculus with equirecursive types—
to Fµ;ω —the higher-order polymorphic lambda calculus with equirecur-
sive types and context-free session types. Type equivalence is given by a
standard bisimulation defined over a novel labelled transition system for
types. Our system subsumes the contractive fragment of Fµω as studied
in the literature. Decidability results for type equivalence of the various
type languages are obtained from the translation of types into objects
of an appropriate computational model: finite-state automata, simple
grammars and deterministic pushdown automata. We show that type
equivalence is decidable for a significant fragment of the type language.
We further propose a message-passing, concurrent functional language
equipped with the expressive type language and show that it enjoys
preservation and absence of runtime errors for typable processes.

Keywords: System F, Higher-order kinds, Context-free session types

1 Introduction

Extensions of the λ-calculus to include increasingly sophisticated type struc-
tures have been extensively studied and have led to systems whose importance
is widely recognized: System F [60], System Fµ [30], System Fω [36], System
Fµω [14]. Ideally, we would like to combine a wishlist of type structures and get
a super-powerful system with vast expressiveness. However, the expressiveness
of types is naturally limited by the universe where they are supposed to live:
programming languages. Expressive type systems pose challenges to compilers
that other (less expressive) types do not even reveal; one such example is type
equivalence checking.

System F can be enriched with different type constructors for specifying
communication protocols. We analyse the impact of combinations of such con-
structors on the type equivalence problem. In order to do so, we extend System F
with session types [42,43,67]. Session types provide for detailed protocol specifi-
cations in the form of types. Traditional recursive session types are limited to tail

? Support for this research was provided by the Fundação para a Ciência e a Tecnologia
through project SafeSessions, ref. PTDC/CCI-COM/6453/2020, and by the LASIGE
Research Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020. A full version is
available on arXiv [20].

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 392–420, 2023.
https://doi.org/10.1007/978-3-031-30044-8 15

http://orcid.org/0000-0002-5474-3614
http://orcid.org/0000-0002-8312-429X
http://orcid.org/0000-0002-1547-0692
http://orcid.org/0000-0002-9539-8861
https://doi.org/10.1007/978-3-031-30044-8_15
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_15&domain=pdf

recursion, thus failing to capture all protocols whose traces cannot be character-
ized by regular languages. Context-free session types overcome this limitation by
extending types with a notion of sequential composition, T ;U [2,68]. The set of
types together with the ; binary operation constitutes a monoid, for which a new
type, Skip, acts as the neutral element and End acts as an absorbing element.

The regular recursive type µα : s.&{Done : End,More : ?Int;α} describes an
integer stream as seen from the point of view of the consumer. It offers a choice
between Done—after which the channel must be closed (as witnessed by type
End)—and More—after which an integer value must be received, followed by the
rest of the stream. Types are categorised by kinds, so that we know that the
recursion variable α is of kind session—denoted by s—and, thus, can be used
with semicolon. Instead, we might want to write a type with a more context-free
flavour. The type µα : s.&{Leaf : Skip,Node : α; ?Int;α};End describes a proto-
col for the type-safe streaming of integer trees on channels. The continuation
to the Leaf option is Skip, where no communication occurs but the channel is
still open for further composition. The continuation to the Node choice receives
a left subtree, an integer at the root and a right subtree. In either case, once
the whole tree is received, the channel must be closed, as witnessed by the final
End. Beyond first-order context-free session types (where only basic types are
exchanged) [2,68] we may be interested in higher-order session types capable of
exchanging values of complex types [19]. A goal of this paper is the integration
of higher-order context-free session types into system Fµω . We want to be able
to abstract the type that is received on a tree channel, which is now possible by
writing λα : t.µ β : s.&{Leaf : Skip,Node : β; ?α;β};End, where t is the kind of
functional types.

A form of abstraction over session types with general recursion was proposed
by Das et al. [24,25] via (nested) parametric polymorphism. In the notation of
Das et al., we can write a type equation for abstracting the type being received
on a stream channel Stream〈α〉 .

= &{Done : End,More : ?α; Stream〈α〉}. Using
abstractions, we can write Stream as a function of its parameter α, Stream

.
=

λα : t.&{Done : End,More : ?α; Streamα}; alternatively, we can use the µ-operator
to rewrite the Stream type as λα : t.(µβ : s.&{Done : End,More : ?α.β}). Das
et al. proved that parametrized type definitions over regular session types are
strictly more expressive than context-free session types. To some extent, this
analogy guides our approach: if adding abstraction (via parametric polymor-
phism) to regular types leads to nested types, what exactly does it mean to add
abstraction (via a type-level λ-operator) to context-free types? Throughout this
paper we analyse several increments to System Fµ that culminate in adding
λ-abstraction to context-free session types.

One of our focuses is necessarily the analysis of the type equivalence problem.
The uncertainty about the decidability of this problem over recursive parametric
types goes back to the 1970s [16,63]. Although the type equivalence problem for
parametric (nested) session types and context-free session types is decidable,
that for the combination of abstractions over context-free types may no longer
be. In fact, this analysis constitutes an interesting journey towards a better

System Fµω with Context-free Session Types 393

understanding of the role of higher-order polymorphic recursion in presence of
sequential composition, as well as the gains (and losses) resulting from combining
abstraction with arbitrary (rather than tail) recursion.

Ultimately, decidability is not a sufficiently valuable measure regarding a type
system’s practicality. We look for type systems that may be incorporated into
compilers. For that reason, we are interested in algorithms for type equivalence
checking. Equivalence in Fµω alone is already at least as hard as equivalence of
deterministic pushdown automata. If we restrict recursion to the monomorphic
case (requiring recursion variables to denote proper types, that is of kind s or t,
collectively denoted by ∗) we lower the complexity of type equivalence to that
of equivalence for finite-state automata. The extension with context-free session
types is slightly more complex. In order to obtain “good” algorithms, we restrict
the recursion to the monomorphic case, arriving at classes Fµ∗

ω , Fµ∗;
ω . Now the

type equality problem for Fµ∗;
ω translates to the equivalence problem for simple

grammars, which is still decidable [4,33]. Since Fµ∗;
ω subsumes Fµ∗

ω , our proof
of the decidability of type equivalence serves as an alternative to that of Cai et
al. [14] (restricted to contractive types).

Higher-order polymorphism allows for the definition of type operators and
the internalisation of various (session-type) constructs that would otherwise be
offered as built-in constructors. In this way, we are able to internalise basic
session-type constructors such as sequential composition ; and the Dual type op-
erator (which reverses the direction of communication between parties). Duality
is often treated as an external macro. Gay et al. [34] explore different ways of
handling the dual operator, all in a monomorphic setting. In the presence of
polymorphism the dual operator cannot be fully eliminated without introducing
co-variables. Internalisation offers a much cleaner solution.

Due to the presence of sequential composition, regular trees are not a power-
ful enough model for representing types (type TreeC a in Section 2 is an exam-
ple). The main technical challenge when combining System Fµω and context-free
session types is making sure that the resulting model can still be represented by
simple grammars, so that type equivalence may be decided by a practical algo-
rithm. The difficulties arise with renaming bound variables. For infinite types,
both renaming with fresh variables and using de Bruijn indices may create an infi-
nite number of distinct variables, which makes the construction of a simple gram-
mar simply impossible. For example, take the type λα : t.µ γ : t. λβ : t.α→ γ,
which stands for the infinite type λα : t.λβ : t.α→ λβ : t.α→ λβ : t... Renam-
ing this type using a fresh variable at each step would result in a type of the form
λυ1 : t.λυ2 : t.υ1 → λυ3 : t.υ1 → λυ4 : t..., requiring infinitely many variables.
Similarly, de Bruijn indices [27] yield a type of the form λtλt1→ λt2→ λt3→ . . .
that requires an infinite number of natural indices. We thus introduce minimal
renaming that uses the least amount of variable names as possible (cf. Gauthier
and Pottier [30]). This ensures that only finitely many terminal symbols are
necessary, allowing for translating types into simple grammars.

Type languages live in term languages and we propose a term language to
consume Fµ;ω types. Based on Almeida et al. [2], we introduce a message-passing

D. Poças et al.394

concurrent programming language. Type checking is decidable if type equivalence
is, and it is, in particular, for Fµ∗;

ω .
The main contributions of this paper are as follows.

– The integration of (higher-order) context-free session types into system Fµω ,
dubbed Fµ;ω .

– A semantic definition of type equivalence via a labelled transition system.
– The identification of a suitable fragment of System Fµ;ω for which type equiv-

alence is reduced to the bisimilarity of simple grammars.
– A proof that type equivalence on the full System Fµ;ω is at least as hard as

bisimilarity of deterministic pushdown automata.
– The first internalisation of the Dual type operator in a type language.
– A term language to consume Fµ;ω types and an accompanying metatheory.

The type system presented in the paper combines three constructions: se-
quential composition of session types, higher-order kinds via type-level abstrac-
tion and application, and higher-order recursion. Prior to our work there is the
system by Almeida et al. [4] which incorporates sequential composition and (first-
order) recursion, but no higher-order kinds. There is also the system by Cai et
al. [14] which incorporates higher-order kinds and higher-order recursion, but no
sequential composition. Our system is the first to incorporate all three construc-
tions. Although some of the results are incremental and generalize results from
the literature, the main technical challenge is understanding the border past
which they do not hold anymore. For example, “just” including higher-order
kinds into the system by Almeida et al. does not work, since we need to pay
close attention to variable names, making sure that type equivalence is invari-
ant with respect to alpha-conversion (renaming of bound variables). This called
for a novel notion of renaming, inspired by Gauthier and Pottier [30]. Similarly,
“just” including sequential composition into the system of Cai et al. does not
work, since finite-state automata (or regular trees) are not enough to capture
the expressive power of the new type system, even when restricted to first-order
recursion. This required us to look at the more expressive framework of simple
grammars, and introduce a translation from types to words of a simple grammar.

The rest of the paper is organised as follows. The next section motivates
the type language and introduces the term language with an example. Section 3
introduces System Fµ;ω , Section 4 discusses type equivalence and Section 5 shows
that type equivalence is decidable for a fragment of the type language. Section 6
presents the term language and its metatheory. Section 7 discusses related work
and Section 8 concludes the paper with pointers for future work. Proofs for the
main results can be found in a technical report on arXiv [20].

2 Motivation

Our goal is to study type systems that combine equirecursion, higher-order poly-
morphism, and higher-order context-free session types, while incorporating these
in programming languages.

System Fµω with Context-free Session Types 395

LM ::= {} | 〈〉] ::= ? | ! � ::= & | ⊕ ∗ ::= t | s

T ::= T → T | Lli : TiM | ∀α : κ. T | µα : κ. T | α (Fµ) κ = t

T ::= (Fµ) |]T .T | �{li : Ti} | End (Fµ·) κ = ∗

T ::= (Fµ) |]T | �{li : Ti} | End | T ;T | Skip (Fµ;) κ = ∗

T ::= (FM) | λα : κ.T | T T (FMω),M ::= µ, µ·, µ;

κ = ∗ | κ⇒ κ

Fig. 1: Six F -systems.

Extensions of System F . Figure 1 motivates the construction by proposing six
different type languages, culminating with Fµ;ω . The initial system, Fµ, includes
well-known basic type operators [57]: functions T → U , records {li : Ti} and
variants 〈li : Ti〉. Type Unit is short for {}, the empty record; we can imagine
that Unit stands in place of an arbitrary scalar type such as Int and Bool. We also
include variable names α, type quantification ∀α : κ. T and recursion µα : κ. T .
To control type formation, all variable bindings must be kinded with some kind
κ, even if for the initial system, Fµ, we only use the functional kind t.

We then build on Fµ by considering (regular, tail recursive) session types;
we represent the resulting system by Fµ·. For example ?Int.!Bool.End is a type
for a channel endpoint that receives an integer, sends a boolean, and terminates.
At this point we introduce a kind s of session types to restrict the ways in
which we can combine session and functional types together. For example, a
well-formed type ?T .U is of kind s and requires U to be also of kind s (whereas
T can be of kind ∗, that is s or t). An example of an infinite session type is
µα : s. !Int.α that endlessly outputs integer values. For a more elaborate example
consider the type IntStream = µα : s.&{Done : End,More : ?Int.α} that specifies
a channel endpoint for receiving a (finite or infinite) stream of integer values.
Communication ends after choice Done is selected.

The next step of our construction takes us to context-free session types; the
resulting system is denoted by Fµ;. We introduce a new construct for sequen-
tial composition T ;U , and a new type Skip, acting as the neutral element of
sequential composition [68]. The message constructors are now unary (?T and
!T) rather than binary. In System Fµ; we distinguish between the traditional
End type and the Skip type. These types have different behaviours: End termi-
nates a channel, while Skip allows for further communication. Type equality is
more subtle for context-free session types, because of the monoidal semantics of
sequential composition. It is derivable from the following axioms:

Skip;T ∼ T Neutral element

End;T ∼ End Absorbing element

(T ;U);V ∼ T ; (U ;V) Associativity

�{li : Ti};U ∼ �{li : Ti;U} Distributivity

(1)

D. Poças et al.396

Fµ

Fµ·

Fµ;

Fµ∗
ω

Fµ∗·
ω

Fµ∗;
ω

Fµω

Fµ·ω

Fµ;ω

finite-state
automata

simple
grammars ≥ deterministic

pushdown automata

Fig. 2: Relation between the main classes of types in this paper (arrows denote
strict inclusions).

Although the syntax of Fµ· is not formally included in the syntax of Fµ;,
we can embed recursive session types into context-free session types by mapping
]T .U into]T ;U . It is well-known that context-free session types allow for higher
computational expressivity: while Fµ and Fµ· can be represented via finite-state
automata, Fµ; can only be represented with simple grammars [4,33].

To finalise our construction, we include type abstraction λα : κ.T and type
application T U . Again, type abstraction binds a variable which must be kinded.
Kinds can now be of higher-order κ⇒ κ′. For each of the three systems Fµ, Fµ·,
Fµ; we arrive at a higher-order version, respectively Fµω , Fµ·ω , Fµ;ω (all of which
we represent as FMω). In System Fµ·ω , for example, we can specify channels for
receiving (finite or infinite) sequences of values of arbitrary (but fixed) types,

Stream = λα : t.(µβ : s.&{Done : End,More : ?α.β})

where α can be instantiated with the desired type; in particular, Stream Int would
be equivalent to the aforementioned IntStream.

It turns out that the expressive power of general higher-order systems FMω
is too large for practical purposes. Even the simplest case Fµω is at least as ex-
pressive as deterministic pushdown automata (or equivalently, first-order gram-
mars), for which known equivalence algorithms are notoriously impractical. By
impractical we mean that, although there exists a proof of decidability (due to
Sénizergues [61], later improved by Stirling and Jancar [46,65]), the underlying
algorithm is rather complex. To the best of our knowledge, there is no practical
implementation of an algorithm to decide the equivalence of deterministic push-
down automata. This is essentially due to polymorphic recursion, which can be
encoded by a higher-order µ-operator (we provide an example at the end of Sec-
tion 5). Therefore, it makes sense to restrict the kind κ of the recursion operator
µα : κ. T . We use the notation µ∗ to mean the subclass of types written using
only ∗-kinded recursion, i.e., µα : t. T or µα : s. T .

Figure 2 summarizes the main relations between the classes of types in our
paper. Firstly, we obtain a lattice where the expressive power increases as we
travel down (from functional to session to context-free session types) and right
(from simple polymorphism to higher-order polymorphism with monomorphic

System Fµω with Context-free Session Types 397

recursion to arbitrary recursion). Four of the classes can be represented using
finite-state automata (up to Fµ∗·

ω). By including sequential composition (Fµ;

and Fµ∗;
ω) we are still able to represent types using simple grammars. Once

we allow for arbitrary recursion, the expressiveness of our model requires the
computational power of deterministic pushdown automata.

Programming with Fµ;ω . We now turn our attention to the term language, a mes-
sage passing, concurrent functional language, equipped with context-free session
types. Start with a stream of values of type a. Such a stream, when seen from
the side of the reader, offers two choices: Done and More. In the former case the
interaction is over; in the latter the reader reads a value of type a, as in ?a, and
recurses. This is the stream type we have seen before only that, rather than clos-
ing the channel endpoint (with type End), it terminates with type Skip, so that
it may be sequentially composed with other types. In this informal introduction
to the term language we omit the kinds of type variables.

type Stream a = &{Done: Skip , More: ?a ; Stream a}

A fold channel, as seen from the side of the folder, is a type of the following
form. We assume that application binds tighter than semicolon, that is, type
Stream a ; !b ; End is interpreted as (Stream a) ; !b ; End.

type Fold a b = ?(b → a → b) ; ?b ; Stream a ; !b ; End

Consumers of this type first receive the folding function, then the starting ele-
ment, then the elements to fold in the form of a stream, and finally output the
result of the fold. The type terminates with End for we do not expect type Fold to
be further composed. Compare Fold with the type for a conventional functional
left fold: (b → a → b) → b → List a → b.

We now develop a function that consumes a Fold channel. Syntax x . f is for
the inverse function application with low priority, that is x . f . g = g (f x).
Recall that Unit is an alternative notation for the empty record type, {}.

foldServer : ∀a.∀b. Fold a b → Unit

foldServer c = let (f, c) = receive c in

let (e, c) = receive c in foldS f e c

foldS : ∀a.∀b. (b → a → b) → b → Stream a;!b;End → Unit

foldS f e c = match c with

{ Done c → c . send e . close

, More c → let (x, c) = receive c in foldS f (f e x) c

}

Function foldServer consumes the initial part of the channel and passes the rest
of the channel to the recursive function foldS that consumes the whole stream
while accumulating the fold value. In the end, when branch Done is selected,
the fold value is written on the channel and the channel closed. In general, the
channel operators—receive, send, select—return the same channel in the form
of a new identifier. It is customary to reuse the identifier name—c in the example,
as in let (f, c)= receive c—since it denotes the same channel. Syntax c

D. Poças et al.398

hides the continuation channel. The case for the external choice—match—also
returns the continuation (in each branch) so that interaction on the channel
endpoint may proceed.

We may now write different clients for the foldServer. Examples include a
client that generates a stream from a pair of integer values (denoting an inter-
val); another that generates the stream from a list of values; and yet another
that generates the stream from a binary tree. We propose a further client. Con-
sider the type of a channel that exchanges trees in a serialized format [68]. Its
polymorphic version, as seen from the point of view of the reader, is as follows:

type TreeChannel a = TreeC a ; End

type TreeC a = &{Leaf: Skip , Node: TreeC a;?a;TreeC a}

We transform trees as we read from tree channels into streams. Function
flatten receives a tree channel and a stream channel (as seen from the point of
view of the writer, hence the Dual) and returns the unused part of the latter.

flatten : ∀a.∀c. TreeChannel a → (Dual Stream a);c → c

We are now in a position to write a client that checks whether all values in
a tree channel are positive.

allPositive : TreeChannel Int → Dual (Fold Int Bool) → Bool

allPositive t c =

let c = send (λx:Bool.λy:Int. x && y > 0) c in

let c = send True c in

let c = flatten [Int] [?Bool;End] t c in

let (x, c) = receive c in

close c; x

The client sends a function and the starting value on the fold channel. Then,
it flattens the given tree t, receives the folded value and closes the channel.
Syntax flatten [Int] [?Bool;End] is for term-level type application. We mean
to flatten a tree of Int values on a stream channel whose continuation is of type
?Bool;End. The continuation channel is bound to c so that we may further receive
the fold value and thereupon close the channel. Syntax e1;e2 is for sequential
composition and abbreviates let {} = e1 in e2 given that {}, the Unit value, is
linear and hence must be consumed.

Finally, a simple application creates a new TreeC channel, passing one end
to a thread that produces a tree channel. Function new creates a channel and
returns its two ends. It then creates a Fold channel, distributes one end to a
thread foldServer and the other to function allPositive. The fork primitive
receives a suspended computation (a thunk, of the form λx:Unit.e) and creates
a new thread that runs in parallel with that from where the fork was issued.

system : Bool

system = let (tr, tw) = new [TreeC Int] () in

fork (λ_:Unit. produce tw);

let (fr , fw) = new [Fold Int Bool] () in

fork (λ_:Unit. foldServer fr);

allPositive tr fw

System Fµω with Context-free Session Types 399

∗ ::= Kind of proper types

s session

t functional

κ ::= Kind

∗ kind of proper types

κ⇒ κ kind of type operators

T ::= Type

ι type constant

α type variable

λα : κ.T type-level abstraction

T T type-level application

Fig. 3: The syntax of types.

ι ::= Type constant

→ ∗ ⇒ ∗ ⇒ t arrow

LliM ∗ ⇒t record, variant

µκ (κ⇒ κ)⇒ κ recursive type

∀κ (κ⇒ ∗)⇒ t universal type

Skip s skip

End s end

] ∗ ⇒ s input, output

; s⇒ s⇒ s seq. composition

�{li} s⇒ s choice operators

Dual s⇒ s dual operator

Fig. 4: Type constants and kinds.

Type renaming renameS(T)

renameS(ι) = ι renameS(α) = α renameS(T U) = renameS∪fv(U)(T) renameS(U)

renameS(λα : κ.T) = λυ : κ.renameS(T [υ/α]) where υ = firstS(λα : κ.T)

Fig. 5: Type renaming.

3 Kinds and Types

This section introduces in detail System Fµ;ω , an extension of System Fµω incorpo-
rating higher-order context-free session types. The syntax of types is presented
in Fig. 3. A type is either a constant ι (as in Fig. 4), a type variable α, an
abstraction λα : κ.T or an application T U . Besides incorporating the standard
session type constructors as constants, system Fµ;ω also includes Dual as a con-
stant for a type operator mapping a session type to its dual. Note also that
∀α : κ. T is syntactic sugar for ∀κ(λα : κ.T). Analogously, µα : κ. T abbreviates
µκ(λα : κ.T). This simplifies our analysis as lambda abstraction becomes the
only binding operator.

A distinction between session and functional types is made resorting to kinds
s and t, respectively. These are the kinds of proper types, ∗; we use the symbol
κ to represent either the kind of a proper type or that of a type operator, of the
form κ⇒ κ′. A kinding context ∆ stores kinds for type variables using bindings
of the form α : κ. Notation ∆ + α : κ denotes the update of kinding context ∆,
defined as (∆,α : κ) + α : κ′ = ∆,α : κ′ and ∆+ α : κ = ∆,α : κ when α 6∈ ∆.

To define type formation, we require a few notions. Firstly comes the notion
of renaming, adapted from Gauthier and Pottier [30] and presented in Fig. 5.
Renaming essentially replaces a type T by a minimal alpha-conversion of T . By

D. Poças et al.400

alpha-conversion we mean that renameS(T) renames bound variables in T . By
“minimal” we mean that each bound variable is renamed to its lowest possible
value. We assume at our disposal a countable well-ordered set of type variables
{υ1, . . . , υn, . . .}. In renameS(T), parameter S is a set containing type variables
unavailable for renaming; in the outset of the renaming process S is the empty
set, since all variables are available. In that case the subscript S is often omitted.
The case for lambda abstraction renames the bound variable by the smallest
variable not in the set S ∪ fv(λα : κ.T), which we denote by firstS(λα : κ.T).

Renaming is what allows us to check whether type abstractions λα : κ.T ,
λβ : κ.U are equivalent. For the types to be equivalent, both bound variables α
and β ought to be renamed to the same variable υj . In summary, renaming pro-
vides a syntax-guided approach to the equivalence of lambda-abstractions, where
the names of bound variables should not matter. Our notion of type equivalence
preserves alpha-conversions up to renaming: if T and U only differ on bound vari-
ables, then rename(T) = rename(U) and in particular rename(T) ∼ rename(U).
We will come back to this point after we define type equivalence in Section 4.

We can easily see that renaming uses the minimum amount of variable names
possible; for example, rename(λα : t.λβ : s.β) = λυ1 : t.λυ1 : s.υ1. Notice how
both bound variables α and β are renamed to υ1, the first variable available
for replacement. Also, renaming blatantly violates the Barendregt’s variable
convention [9] used in so many works; for example rename(υ1 (λα : T .α)) =
υ1 (λυ1 : T .υ1), where variable υ1 is both free and bound in the resulting type.
Even if renaming violates the variable convention, substitution can still be per-
formed without resorting to the “on-the-fly” renaming of Curry and Feys [21,40].
When υ1 6= υ2, we have that

(λυ1 : κ.λυ2 : κ′.U)T reduces to rename((λυ2 : κ′.U)[T/υ1]).

Then, we have (λυ2 : κ′.U)[T/υ1] = λυ2 : κ′.(U [T/υ1]) since the renaming rule
for application guarantees that υ2 /∈ fv(T). Otherwise if υ1 = υ2, we have
(λυ1 : κ′.U)[T/υ1] = λυ1 : κ′.U . This justifies the inclusion of set S in the re-
naming process. From now on, we assume that all types have gone through the
renaming process.

Next comes the notion of type reduction (Fig. 6). Apart from beta reduc-
tion (rule R-β), the definition provides for sequential composition, for unfolding
recursive types and for reducing DualT types. Note that renaming is further
invoked in rule R-β for beta reduction does not preserve renaming: consider the
renamed type (λυ1 : t.λυ2 : t.υ1 → υ2)Unit. The type resulting from the sub-
stitution (λυ2 : t.υ1 → υ2)[Unit/υ1] is λυ2 : t.Unit→ υ2 which is not renamed
and, therefore, not equivalent to λυ1 : t.Unit→ υ1 according to our rules in Sec-
tion 4. Thanks to our modified rule R-β, we preserve renaming under reductions:
if T = rename(T) and T −→ U then U = rename(U).

We also need the notion of weak head normal form borrowed from the lambda
calculus [9,10]. We say that a type T is in weak head normal form, T whnf, if it
is irreducible, i.e., T 6−→. Although this is a negative definition, in the technical
report we provide an equivalent, rule-based characterisation of weak head normal

System Fµω with Context-free Session Types 401

Type reduction T −→ T

R-Seq1
Skip;T −→ T

R-Seq2
T −→ V

T ;U −→ V ;U

R-Assoc
(T ;U);V −→ T ; (U ;V)

R-µ

µk T −→ T (µk T)

R-β

(λα : κ.T)U −→ rename(T [U/α])

R-TAppL
T −→ U

TV −→ UV

R-D;

Dual (T ;U) −→ DualT ;DualU

R-DSkip
Dual Skip −→ Skip

R-DEnd
Dual End −→ End

R-D?
Dual (?T) −→ !T

R-D!
Dual (!T) −→ ?T

R-D&
Dual (&{li : Ti}) −→ ⊕{li : Dual(Ti)}

R-D⊕
Dual (⊕{li : Ti}) −→ &{li : Dual(Ti)}

R-DCtx
T −→ U

DualT −→ DualU

R-DDVar
Dual (Dual (α T 1 . . . Tm)) −→ α T 1 . . . Tm

Fig. 6: Type reduction.

Type formation ∆ ` T : κ

K-Const
∆ ` ι : κι

K-Var
α : κ ∈ ∆
∆ ` α : κ

K-TAbs
∆+ α : κ ` T : κ′

∆ ` λα : κ.T : κ⇒ κ′

K-TApp
∆ ` T : κ⇒ κ′ ∆ ` U : κ T U norm

∆ ` T U : κ′

Fig. 7: Type formation.

form types, which can be used in a compiler as well as in our proofs. We say that
type T normalises to type U , written T ⇓ U , if U whnf and U is reached from T
in a finite number of reduction steps (note that any term which is already whnf
normalises to itself). We write T norm to denote that T ⇓ U for some U .

For example, suppose we want to normalise the type µs T , where T is the type
λυ1 : s.⊕{Done : End,More : !α};Dual υ1. By computing all reductions from µsT ,
we obtain µsT −→ T (µsT) −→ ⊕{Done : End,More : !α};Dual (µsT) 6−→ for
which we conclude that µs T ⇓ ⊕{Done : End,More : !α};Dual (µsT). Similarly,
we can reason that µt (λυ1 : t.υ1), µs (λυ1 : s.Skip; υ1) and µs (λυ1 : s.Dual υ1)
are all examples of non-normalising expressions.

Equipped with normalisation, we can introduce type formation, which we
do via the rules in Fig. 7. Rule K-Const introduces constants as types whose
kinds match those of Fig. 4. Rule K-Var reads the kind of a type variable from
context ∆. An abstraction λα : κ.T is a well-formed type with kind κ⇒ κ′ if T
is well formed in context ∆ updated with entry α : κ (rule K-TAbs). The update

D. Poças et al.402

is necessary since we are dealing with renamed types and the same type variable
may appear with different kinds in nested abstractions.

It is not until we reach rule K-TApp that we find a proviso about the normal-
isation of a type. This is standard and analogous to a condition on contractivity.
The goal is to eliminate types that reduce indefinitely without reaching a whnf.

Theorem 1. Let ∆ ` T : κ.

Preservation. If T −→ U , then ∆ ` U : κ.
Confluence. If T −→ U and T −→ V , then U −→∗ W and V −→∗ W .
Weak normalisation. T ⇓ U for some U . Furthermore, if T ⇓ V , then U = V .

We finally arrive at the main decidability result in this section. In its proof,
we make use of the fact that recursion is restricted to kind ∗ to limit the possible
subexpressions of the form µ∗ U that might appear in the normalisation of T .

Theorem 2 (Decidability of type formation). ∆ ` T : κ is decidable for
types in Fµ∗;

ω .

4 Type equivalence

This section introduces type bisimulation as our notion of type equivalence. We
define a labelled transition system (LTS) on the space of all types and write

T
a−→ U to denote that T has a transition by label a to U . The grammar for

labels and the LTS rules are in Fig. 8.
If T is not in weak head normal form, then we must normalise it to some

type U , so that T has the same transitions as U (rule L-Red). Otherwise if
T whnf, then the transitions of T can be immediately derived by looking at the
corresponding rule for T as follows. If T is a variable, use rule L-Var1 (with
m = 0). If T is a constant (other than Skip), use rule L-Const. Note that if T is
a lone Skip, then it has no transitions. If T is an abstraction, use rule L-Abs.

If T is an application, then we need to look inside the head. We write T as
T0 T1 . . . Tm with m ≥ 1 where T0 is not an application, and look at T0. If T0
is a variable, use rules L-Var1 and L-Var2. If T0 is one of the constants →, ∀κ,
�{li} or LliM, use rule L-ConstApp. Note that T0 is neither an abstraction nor
µκ, since T is in weak head normal form. If T0 is], we use rules L-Msg1 and
L-Msg2. If T0 is Dual, then the only way for T to be well-formed and in weak
head normal form is if m = 1 and T1 is α or α U1 . . . Um, in which case we use
rules L-DualVar1 and L-DualVar2.

If T0 is ; , we require an additional case analysis on T1. If m = 1, use rule
L-Seq1. Otherwise m = 2 due to kinding. If T1 is a variable, use rule L-VarSeq1

(with m = 0). If T1 is a constant, then it must be of kind s. T1 cannot be Skip,
because T is in weak normal form, so it must be End, in which case we use rule
L-EndSeq (End is an absorbing element, so End;U simply makes a transition to
Skip without executing U). If T1 is End. Note that T1 cannot be an abstraction
due to kinding.

System Fµω with Context-free Session Types 403

a ::= αi | ιi | λα : κ (i ≥ 0, ι 6= Skip) Transition labels

Labelled transition system T
a−→ U

L-Red
T −→ U U

a−→ V

T
a−→ V

L-Var1
m ≥ 0

α T1 . . . Tm
α0−→ Skip

L-Var2
1 ≤ j ≤ m

α T1 . . . Tm
αj−→ Tj

L-Const
ι 6= Skip

ι
ι0−→ Skip

L-ConstApp
ι =→, ∀κ,�{`i}, L`iM 1 ≤ j ≤ m

ι T1 . . . Tm
ιj−→ Tj

L-Abs

λα : κ.T
λα : κ−→ T

L-Msg1

]T
]1−→ T

L-Msg2

]T
]2−→ Skip

L-Seq1

; T
;1−→ T

L-VarSeq1
m ≥ 0

(α T1 . . . Tm);U
α0−→ U

L-VarSeq2
1 ≤ j ≤ m

(α T1 . . . Tm);U
αj−→ Tj

L-MsgSeq1

]T ;U
]1−→ T

L-MsgSeq2

]T ;U
]2−→ U

L-ChoiceSeq
1 ≤ j ≤ m

�{`i : Ti};U
�{`i}j−→ Tj ;U

L-EndSeq

End;U
End−→ Skip

L-DualVar1

Dual (α T1 . . . Tm)
Dual1−→ α T1 . . . Tm

L-DualVar2

Dual (α T1 . . . Tm)
Dual2−→ Skip

L-DualSeq1

(Dual (α T1 . . . Tm));U
Dual1−→ α T1 . . . Tm

L-DualSeq2

(Dual (α T1 . . . Tm));U
Dual2−→ U

Fig. 8: Labelled transition system for types.

If T1 is an application, then again we write T1 as U0 U1 . . . Un with n ≥ 1
where the head U0 is not an application, and look at U0. If U0 is a variable, use
rules L-VarSeq1 and L-VarSeq2. If U0 is a constant, it must be one of ; , µκ,],
�{li} or Dual due to kinding. If U0 is], use rules L-MsgSeq1 and L-MsgSeq2.
If U0 is �{li}, use rule L-ChoiceSeq. If U0 is Dual, the only way for T to be
well-formed and in weak head normal form is if n = 1 and U1 is α or α V1 . . . V`,
in which case we use rules L-DualSeq1 and L-DualSeq2. Note that U0 cannot
be ; , µκ or an abstraction, since T is in weak normal form.

Let us clarify our LTS rules with an example. Consider the following type
λυ1 : t.µ υ2 : s.⊕{Done : End,More : !υ1};Dual υ2 and call it T . T is a type ab-
straction (on type variable υ1), of kind t⇒ s. It specifies a channel alternating
between: offer a choice and output a value of type υ1; or select a choice and
input a value of type υ1. The polarity is swapped thanks to the application of
constant Dual to the recursion variable υ2. To construct the (fragment of the)
LTS generated by this type, let us first desugar T into λυ1 : t.U where U is the

D. Poças et al.404

λυ1 : t.U U

⊕{Done : End,More : !υ1};DualU

End;DualU Skip

!υ1;DualU

υ1

Skip

DualU&{Done : End,More : ?υ1};Dual (DualU)

End;Dual (DualU)Skip

?υ1;Dual (DualU)

υ1

Skip

Dual (DualU)

λυ1 : t

⊕{Done,More}1

End

⊕{Done,More}2

!1

υ1

!2

&{Done,More}1
End

&{Done,More}2

?1

υ1

?2

Fig. 9: The LTS for type λυ1 : t.U . Normalisation T1 ⇓ T2 is represented as T1 ⇒
T2 and U is a shorthand for type µs (λυ2 : s.⊕{Done : End,More : !υ1};Dual υ2).

type µs (λυ2 : s.⊕{Done : End,More : !υ1};Dual υ2). Notice that U normalises to
⊕{Done : End,More : !υ1};DualU . The LTS for the example is sketched in Fig. 9.
In this case, only finitely many types appear. However, more elaborate exam-
ples involving sequential composition or higher-order recursion may lead to an
infinite graph of transitions.

Given the LTS rules, we can define, in the standard way, a notion of bisimula-
tion. A binary relation R on types is called a bisimulation if, for every (T ,U) ∈ R
and every transition label a:

1. if T
a−→ T ′, then there exists U ′ s.t. U

a−→ U ′ and (T ′, U ′) ∈ R;

2. if U
a−→ U ′, then there exists T ′ s.t. T

a−→ T ′ and (T ′, U ′) ∈ R.

We say that types T and U are bisimilar, written T ∼ U , if there exists a
bisimulation R such that (T , U) ∈ R.

Intuitively, a notion of type equivalence must preserve and reflect the syn-
tax of type constructors: for example, a type T → U is equivalent to a type
T ′ → U ′ iff T , T ′ are equivalent and U , U ′ are equivalent. Using the bisimula-
tion technique, we achieve this by considering a labelled transition system on
types: T → U has a transition labelled →1 to T and a transition labelled →2 to
U . In this way, T → U can only be equivalent to another type which has two
transitions with those same labels. For each of the type constructors (→, ∀κ, !, ?,
�{`i}, and so on) we have suitable transition rules. Moreover, a type sometimes
needs to be reduced before a type constructor is found at the root of the syn-
tax tree. If T normalizes to U , then we expect T and U to be bisimilar, which
is achieved thanks to rule L-Red. This handles the various reductions: beta-
reductions arising from lambda-abstraction and applications (e.g., (λα : κ.T)U
reduces to rename(T [U/α])), reductions arising from the monoidal structure of
sequential composition (e.g., Skip;T reduces to T), reductions arising from the
internalisation of duality as a type constructor (e.g., Dual (!T) reduces to ?T)
and reductions arising from the recursion (e.g., µκ T reduces to T (µκ T)).

System Fµω with Context-free Session Types 405

Our notion of type equivalence enjoys natural properties and behaves as
expected with respect to the notions of reduction, normalisation and kinding
from Section 3. We can derive rules for type equivalence, that could be used
to define another coinductive notion of equivalence, via effective syntax-directed
rules. We can show that type equivalence is preserved under renaming, reduction
and normalisation. We can also show that the axioms for sequential composition
in the introduction (1) are derivable from our notion of bisimulation. These
additional results are presented in the technical report [20].

5 Decidability of type equivalence

This section presents results on decidability of type equivalence. Our approach
consists in translating types to objects in some computational model. We look
at finite-state automata (for types in Fµ, Fµ∗

ω , Fµ·, and Fµ∗·
ω), simple grammars

(for types in Fµ; and Fµ∗;
ω) and deterministic pushdown automata (for types in

Fµω , Fµ·ω and Fµ;ω).
We say that a grammar in Greibach normal form is a tuple (T ,N , γ,R)

where: T is a set of terminal symbols, denoted by a, b, c; N is a set of nonterminal
symbols, denoted by X,Y , Z; γ ∈ N ∗ is the starting word; and R ⊆ N ×T ×N ∗
is a set of productions. A grammar is said to be simple if, for every nonterminal
X and every terminal a, there is at most one production (X, a, δ) ∈ R [51].

Greek letters γ and δ denote (possibly empty) words of nonterminal symbols.

Productions are written as X
a−→ δ. We define a notion of bisimulation for

grammars via a labelled transition system. The system comprises a set of states
N ∗ corresponding to words of nonterminal symbols. For each production X

a−→
γ and each word of nonterminal symbols δ, we have a labelled transition Xδ

a−→
γδ. We let ≈ denote the bisimulation relation for grammars (the definition is
similar to that in Section 4).

For the moment we focus on the class Fµ∗;
ω and we explain how to con-

vert a type T into a simple grammar (TT ,NT ,word(T),RT). The conversion is
based on a function word(T) that maps each type T into a word of nonterminal
symbols, while introducing fresh nonterminals and productions. In our construc-
tion, following the approach by Costa et al. [19], we use a nonterminal symbol
with no productions, denoted by ⊥, in order to separate the two descendants
of a send/receive operation such as !T ;U . The sequence of nonterminal symbols
word(T) is defined as follows. First consider the cases in which T whnf.

– For any m ≥ 0: word(α T1. . .Tm) = Y for Y a fresh nonterminal symbol

with a production Y
α0−→ ε as well as Y

αj−→ word(Tj)⊥ for each 1 ≤ j ≤ m.
– word(Skip) = ε.

– word(End) = Y for Y a fresh symbol with a single production Y
End−→ ⊥.

– for any ι 6= Skip,End: word(ι) = Y for Y a fresh nonterminal symbol with a

single production Y
ι−→ ε.

– word(λα : κ.T) = Y for Y a fresh symbol with a production Y
λα : κ−→ word(T).

D. Poças et al.406

– for any m ≥ 1 and for ι one of→, ∀κ, �{li}, LliM: word(ι T1 · · ·Tm) = Y for a

fresh nonterminal Y with a production Y
ιj−→ word(Tj) for each 1 ≤ j ≤ m.

– word(]T) = Y for Y fresh with productions Y
]1−→ word(T)⊥ and Y

]2−→ ε.

– word(; T) = Y for Y a fresh symbol with a production Y
;1−→ word(T).

– word(T ;U) = word(T) word(U).

– word(Dual (α T1. . .Tm)) = Y for Y a fresh symbol with productions Y
Dual1−→

word(α T1. . .Tm) and Y
Dual2−→ ε.

Finally, let us handle the cases where T is not in weak head normal form.

– If T ⇓ Skip, then word(T) = ε.
– Otherwise if T ⇓ U 6= Skip, then word(T) = Y for Y a fresh nonterminal

symbol. Let Zδ = word(U). Then Y has a production Y
a−→ γδ for each

production Z
a−→ γ.

In the above construction, we create fresh symbols each time we encounter a
weak head normal form other than Skip. In other words, NT is the set contain-
ing ⊥ and all nonterminals Y created during the computation of word(T). An-
other key insight is that the sequential composition of types is translated into a
concatenation of words: word(T1;T2; . . . ;Tn) = word(T1) word(T2) . . .word(Tn).
This allows our construction to terminate: even if the transitions lead to in-
finitely many types, they are split on the sequential composition operator, and
so we only need to consider finitely many subexpressions.

For the last case in our construction to be well-defined, i.e., when T ⇓ U 6=
Skip, we require word(U) to be non-empty. Indeed, if Uwhnf, then we can observe
(by inspecting all cases) that word(U) = ε iff U = Skip. We also need to argue
that the construction of word(T) eventually terminates. For this, we keep track of
all types visited during the construction, and we only add a fresh nonterminal Y
to our grammar if the type visited is syntactically different from all types visited
so far. Therefore, we reuse the same symbol Y with the same productions each
time we revisit a type. With all these observations, we get the following result.

Lemma 1. Suppose that T ∈ Fµ∗;
ω . Then the construction of word(T) termi-

nates producing a simple grammar.

We illustrate the above construction with the polymorphic tree exchanging
example from Section 2,

type TreeC a = &{Leaf: Skip , Node: TreeC a; ?a ; TreeC a}

that is written in Fµ∗;
ω as T0 = λυ1 : t.µ υ2 : s.&{Leaf : Skip,Node : υ2; ?υ1; υ2}.

For ease of notation, in this example we write &i as shorthand for &{Leaf,Node}i.
Since T0 is in weak head normal form, word(T0) returns a fresh symbol, which

we call X0. We also have a production X0
λυ1 : t−→ word(T1), where T1 is the

type µυ2 : s.&{Leaf : Skip,Node : υ2; ?υ1; υ2}. Since T1 is not in whnf, we must
normalise it, to get T2 = &{Leaf : Skip,Node : T1; ?υ1;T1}. Therefore word(T1)
returns a fresh symbol, which we call X1. To obtain the transitions of X1, we

System Fµω with Context-free Session Types 407

must first compute word(T2), which is a fresh symbol X2 with transitions X2
&1−→

word(Skip) and X2
&2−→ word(T1; ?υ1;T1). Thus we also get X1

&1−→ word(Skip)

and X1
&2−→ word(T1; ?υ1;T1).

We have word(Skip) = ε, but we still need to compute word(T1; ?υ1;T1).
This type normalises to T3 = T2; ?υ1;T1 since T1 ⇓ T2. Thus word(T1; ?υ1;T1)
is a fresh symbol X3. To obtain the productions of X3 we must compute
word(T2; ?υ1;T1) = word(T2) word(?υ1) word(T1). At this point we already have
word(T1) = X1 and word(T2) = X2. We still need to compute word(?υ1), which

is a fresh symbol X4 with productions X4
?1−→ word(υ1)⊥ and X4

?2−→ ε. In

turn, word(υ1) is a fresh symbol X5 with a production X5
υ1−→ ε. Finally, we get

word(T2; ?υ1;T1) = X2X4X1, which means we can write the productions for X3:

X3
&1−→ X4X1 and X3

&2−→ X3X4X1.
Putting all this together, we can finally obtain the simple grammar:

X0
λv1 : t−→ X1 X1

&1−→ ε X1
&2−→ X3 X2

&1−→ ε X2
&2−→ X3

X3
&1−→ X4X1 X3

&2−→ X3X4X1 X4
?1−→ X5⊥ X4

?2−→ ε X5
v1−→ ε

Next, we argue that type equivalence (i.e., bisimilarity on types) corresponds
to bisimilarity on the corresponding grammars. This is achieved by the following
lemma, that asserts that the LTS of a type and the LTS of the corresponding
word of nonterminals have exactly the same transitions.

Lemma 2 (Full abstraction). Let T ∈ Fµ∗;
ω and (TT ,NT ,word(T),RT) the

corresponding simple grammar. Suppose also that word(T) ≈ γ.

1. If T
a−→ U then there exists γ′ such that γ

a−→ γ′ and word(U) ≈ γ′.
2. If γ

a−→ γ′ then there exists U such that T
a−→ U and word(U) ≈ γ′.

As a consequence of the above result, we get soundness and completeness
of the bisimilarity word(T) ≈ word(U) with respect to the bisimilarity T ∼ U .
Indeed by Lemma 2, any sequence of transitions starting from T can be matched
by a sequence of transitions starting from word(T); and similarly for U . Thus
T ∼ U iff word(T) ≈ word(U).

Theorem 3. The type equivalence problem is decidable for types in Fµ∗;
ω .

For the remainder of this section, we look at the other classes of types in
Fig. 2 and examine the computation models they correspond to. Since class Fµ;

is contained in Fµ∗;
ω , we can express types without λ-abstractions with simple

grammars as well. In this way we recover previous results in the literature [4,19].
Let us now look at the class Fµ∗·

ω . In this class we do not have Skip nor
sequential composition and message operators are binary (]T .U) rather than
unary. Since we do not have sequential composition, there is no need to consider
words of nonterminals, and instead it suffices to translate types into single sym-
bols, i.e., states in an automaton. Moreover, since there is no recursion beyond
µκ, only finitely many types can be reached from a given T . We can thus adapt
our construction as follows for Fµ∗·

ω . In the definition of the LTS (Fig. 8):

D. Poças et al.408

– discard all rules involving sequential composition;
– discard rules L-Var1 for m > 0 and L-DualVar2 (they were only needed to

distinguish types in sequential composition);
– discard case ι = End in rule L-Const (so that End no longer has transitions);
– replace Skip with End on the right-hand side of rules L-Var1 with m = 0

and L-Const;
– discard rules L-Msg1 and L-Msg2 and treat ι =] like the other constants in

rule L-ConstApp.

Also replace the construction of word(T) into a construction of state(T), as-
sociating to each type T a state in a finite-state automata. For each transition
T

a−→ U we have the corresponding transition state(T)
a−→ state(U). Notice

that the resulting automata is deterministic since the original LTS is also deter-
ministic (for each type T and label a, there is at most one transition T

a−→ U).
Since bisimilarity of deterministic finite-state automata can be decided in poly-
nomial time [44], we get the following results.

Theorem 4.

1. To each type T in Fµ∗·
ω we can associate a finite-state automata correspond-

ing to the (fragment of the) LTS generated by T .
2. The type equivalence problem is polynomial-time decidable for types in Fµ∗·

ω .

Clearly, Theorem 4 applies to the subclasses of Fµ∗·
ω : Fµ, Fµ· and Fµ∗

ω . In
this way we recover previous results in the literature [14,19,33].

Finally, we consider the classes Fµω , Fµ·ω and Fµ;ω involving arbitrarily-kinded
recursion. We shall show that these classes are already powerful enough to simu-
late deterministic pushdown automata; hence, the type equivalence problem be-
comes impractical (i.e., no practical implementation of an algorithm is known).
We only focus on the simplest case Fµω , as the others two classes are even more
expressive. Instead of looking at deterministic pushdown automata, we look at
deterministic first-order grammars, which constitute an equivalent model of com-
putation [46]. This choice simplifies our construction. We say that a first-order
grammar is a tuple (X , T ,N , E,R) where:

– X is a set of variables α, β, . . .; T is a set of terminal symbols a, b, . . .; N is
a set of nonterminal symbols X,Y , . . .

– each nonterminal X has an arity m = arity(X) ∈ N.
– the set E of expressions over X , N is inductively defined by two rules: any

variable α is an expression; if arity(X) = m and E1, . . . , Em are expressions,
then so is X E1 . . . Em. Whenever m = 0, X is called a constant.

– E is an expression over N , called the initial expression.
– R is a set of productions. Each production is a triple (X, a,E), written as

X α1 . . . αm
a−→ E, where m = arity(X) and the variables in E must be

taken from α1, . . . , αm.

A first-order grammar is deterministic if, for every X and a, there is at most
one production (X, a,E) ∈ R.

System Fµω with Context-free Session Types 409

Just as a simple grammar defines an LTS over words of nonterminals, a first-
order grammar defines an LTS over the set E0 of closed expressions. For each
production X α1 . . . αm

a−→ E we have the labelled transition X E1 . . . Em
a−→

E[E1/α1, . . . ,Em/αm].
Let ≈ denote bisimilarity over closed expressions according to a first-order

grammar. We now present a fully abstract (i.e., preserving bisimilarity) trans-
lation of a deterministic first-order grammar into a type in Fµω . Each gram-
mar variable α has a corresponding type variable α (of kind t). An expression
X E1 . . . Em is represented as a type application X E1 . . . Em. If X has arity

m and the productions X α1 . . . αm
aj−→ Ej for a range of j, then we write the

equation specifying X as a record (since the first-order grammar is determinis-
tic, all record labels are distinct, and thus the right-hand side on the equation
specifying X is well-formed).

X
.
= λα1 : t.. . . λαm : t.{a1 : E1, . . . , am : Em}

This gives rise to a system of equations {Xi
.
= Ti}, one for each nonterminal Xi,

where the nonterminals may appear in the right-hand sides Ti. Finally, given
an initial expression E, it is standard how to convert it into a µ-type using the
system above.

Using the above translation, we are able to simulate a transition E
aj−→ F of

the first-order grammar as a transition E
{ai}j−→ F on the corresponding types.

Therefore, the translation is fully abstract and we get the following result.

Theorem 5. Let E and F be closed expressions on a first-order grammar and
E,F the corresponding types. Then E ≈ F iff E ∼ F .

Let us work on an example to better understand the above translation. Con-
sider the language L3 = {`narna | n ≥ 0} ∪ {`nbrnb | n ≥ 0} over the alpha-
bet {a, b, `, r}. L3 is a typical example of a language that cannot be described
with a simple grammar, but can be accepted by a deterministic pushdown au-
tomaton [51]. Consider the first-order grammar with nonterminals X,R,A,B,⊥,
initial expression X A B, and productions

X α β
`−→ X (R α) (R β) X α β

a−→ α X α β
b−→ β

R α
r−→ α A

a−→ ⊥ B
b−→ ⊥

Note that ⊥ is a constant without productions. It is easy to see that the traces
of this first-order grammar correspond exactly to the words in L3. By following
the steps in the above translation, we arrive at the system of equations

X
.
= λα : t.λβ : t.{` : X(Rα)(Rβ), a : α, b : β} R

.
= λα : t.{r : α}

A
.
= {a : ⊥} B

.
= {b : ⊥} ⊥ .

= {}
Therefore, the initial expression X A B becomes the type

(µ ξ : t⇒ t⇒ t. λα : t.λβ : t.{` : ξ{r : α}{r : β}, a : α, b : β}){a : {}}{b : {}},
whose transitions simulate the transitions of the first-order grammar.

D. Poças et al.410

v ::= c | x | λx : T .t | recx : T .v | Λα : κ.v | {li = vi} | 〈l = v〉 asT
receive[T] | receive[T][T] | send[T] | send[T] v | send[T] v[T]

t ::= v | t t | t[T] | {li = ti} | let {li = xi} = t in t

〈l = t〉 asT | case t of t | match twith t

p ::= 〈t〉 | p | p | (νxx)p

c ::= Term constant

receive ∀α : t. ∀β : s. ?α.β → α⊗ β receive on a channel

send ∀α : t. α→ ∀β : s. !α.β → β send on a channel

select lj as⊕{li : Ti} ⊕{li : Ti} → Tj internal choice

close End→ Unit channel close

fork (Unit→ Unit)→ Unit fork a new thread

new ∀α : s. a→ α⊗ Dualα channel creation

Fig. 10: Terms and types for term constants.

6 The term language and its metatheory

This section briefly introduces a concurrent functional language equipped with
Fµ∗;
ω types, together with its metatheory. The results mostly follow from those in

the literature, although explicit recursion at the term level and the unrestricted
bindings in typing contexts are somewhat new in session types. The complete
set of rules is to be found in the technical report [20].

The syntax of terms and processes is defined by the grammar in Fig. 10. The
same figure introduces types for the constants. The term language is essentially
the polymorphic lambda calculus with support for session operators, formulated
as in Almeida et al. and Cai et al. [2,14]. From System F it comprises terms and
type abstractions, records and variants, including constructors and destructors in
each case. The support for session operations and concurrency includes channel
creation (new), the different channel operations (receive, send, match, select and
close) and thread creation (fork). We program at the term level and use processes
only for the runtime. Processes include terms as threads, parallel composition
and channel creation, all inspired in the pi-calculus with double binders [73].

Process typing and an excerpt of term typing is in Fig. 11. A judgement of
the form ∆ | Γ ` t : T records the fact that term t has type T under contexts ∆
(recording kinds for type variables) and Γ (recording types for term variables).
The judgement for processes, Γ ` p, says that p is well-typed under context Γ .
It simplifies that for terms, since processes feature no free type variables and
are assigned no particular type. Once again, the rules are adapted from the two
above cited works. The difference to Cai et al. is that we work in a linear setting
and hence axioms (T-Const and T-Var) work on an empty context, and most
of the other rules must split the context accordingly. Rule T-TAbs simplifies

System Fµω with Context-free Session Types 411

Term typing ∆ | Γ ` t : T

T-Const
∆ ` Tc : ∗
∆ | · ` c : Tc

T-Var
∆ | x : T ` x : T

T-App
∆ | Γ1 ` t1 : U → T ∆ | Γ2 ` t2 : U

∆ | Γ1, Γ2 ` t1 t2 : T

T-Rec
∆ ` T : ∗ ∆ | Γ, x :ω T → U ` v : T → U

∆ | Γ ` recx : T → U.v : T → U

T-TAbs
∆,α : κ | Γ ` v : T α

∆ | Γ ` (Λα : κ.v) : ∀κ T

T-Match
∆ | Γ1 ` t1 : &{li : T i} ∆ | Γ2 ` t2 : {li : Ti → T}

∆ | Γ1, Γ2 ` match t1 with t2 : T

T-Eq
∆ | Γ ` t : U ∆ ` U : ∗ U ∼ T

∆ | Γ ` t : T

T-Dereliction
∆ | Γ, x : T ` t : U
∆ | Γ, x :ω T ` t : U

T-Weakening
∆ | Γ ` t : U

∆ | Γ, x :ω T ` t : U

T-Contraction
∆ | Γ, y :ω T , z :ω T ` t : U

∆ | Γ, x :ω T ` t[x/y][x/z] : U

Process typing Γ ` p

ε | Γ ` t : Unit
Γ ` 〈t〉

Γ1 ` p1 Γ2 ` p2
Γ1, Γ2 ` p1 | p2

Γ, x : T , y : DualT ` p
Γ ` (νxy)p

Fig. 11: Typing (excerpt).

that of Cai et al.; we can easily show that both rules are interchangeable. We
support exponentials [37] for recursive functions, so that one may write functions
that feature more than one recursive call (good for consuming binary trees, for
example) and branches that do not use the recursive function (for code that is
supposed to terminate). Towards this end, we add an unrestricted binding x :ω T
in term variable contexts, an explicit rule for rec (as opposed to making rec a
constant as in Cai et al. [14]) and substructural rules for unrestricted bindings
(T-Dereliction, T-Weakening and T-Contraction).

Thanks to the power of System F , most of the session and concurrency
operators are expressed as constants. For example, receive receives a session
type !α.β with α, the payload of the message, an arbitrary type and β, the
continuation, a session type, and returns a pair of the value received and the
continuation channel. As usual ∀α : κ. T abbreviates the type ∀κ (λα : κ.T). The
exception is the external choice (T-Match) which can not be captured by a type
(similarly to T-Case) and hence requires a dedicated typing rule.

Process reduction is in Fig. 12. Following Milner [55] we factor out processes
by means of a structural congruence relation that accounts for the associative
and commutative nature of parallel composition, scope extrusion and exchanging
the order of channel bindings.We now address the metatheory of our language,
starting with preservation for both terms and processes.

D. Poças et al.412

Process reduction p→ p

t1 → t2

〈t1〉 → 〈t2〉
〈E[fork v]〉 → 〈E[{}]〉 | 〈v {}〉 〈E[new[T]]〉 → (νxy)〈E[{x, y}]〉

(νxy)(〈E1[receive[T][U] y]〉 | 〈E2[send[V][W] v x]〉)→ (νxy)(〈E1[{y, v}]〉 | 〈E2[x]〉)

(νxy)(〈E1[match ywith {li = ti}]〉 | 〈E2[(select lj asT)x]〉)→ (νxy)〈E1[tj y]〉 | 〈E2[x]〉

(νxy)(〈E1[close y]〉 | 〈E2[closex]〉)→ 〈E1[{}]〉 | 〈E2[{}]〉
p1 → p2

p1 | q → p2 | q

p1 → p2

(νxy)p1 → (νxy)p2

p1 ≡ p2 p2 → p3 p3 ≡ p4
p1 → p4

Fig. 12: Process reduction.

Theorem 6 (Preservation).

1. If ∆ | Γ ` t : T and t→ t′, then ∆ | Γ ` t′ : T .
2. If Γ ` p and p ≡ p′, then Γ ` p′.
3. If Γ ` p and p→ p′, then Γ ` p′.

Progress for the term language is assured only when the typing context con-
tains channel endpoints only. When ∆ is understood from the context we write
Γ s to mean that Γ contains only types of kind s, that is ∆ ` T : s for all types
T in Γ . Well typed terms are values, or else they may reduce or are ready to
reduce at the process level. Reduction in the case of session operations—receive,
send, match, select, close—is pending a matching counterpart.

Theorem 7 (Progress for the term language). If ∆ | Γ s ` t : T , then t is
a value, t reduces, or t is stuck in one of the following forms: E[fork v], E[new[T]],
E[receive[T][U] v], E[send[U]T [v]x], E[match ywith {li = ti}], E[(select lj asT)x],
or E[closex].

In order to state our result on the absence of runtime errors we need a few
notions on the structure of terms and processes; here we follow Almeida et al. [2].
The subject of an expression e, denoted by subj(e), is x in the following cases.

receive[T][U]x send[T] v[U]x matchxwith t (select lj asT)x closex

Two terms e1 and e2 agree on channel xy, notation agreexy(e1, e2), in the
following cases (symmetric forms omitted).

agreexy(receive[T][U]x, send[V] v[W] y) agreexy(closex, close y)

agreexy(matchxwith {li = ti}i∈I , (select lj asT) y) j ∈ I
A closed process is a runtime error if it is structurally congruent to some

process that contains a subexpression or subprocess of one of the following forms.

System Fµω with Context-free Session Types 413

1. v u where v is not a λ or a rec and v 6= receive[T][U], send[T]u, send[T]w[U],
select lj asT , close, fork;

2. v[T] where v in not a Λ and v 6= receive, receive[U], send, send[U], new;
3. let {li = xi} = v in t and v is not of the form {li = ui};
4. case v of t and v 6= 〈lj = u〉 asT or t 6= {li = ui}i∈I with j /∈ I;
5. receive[T][U] v or send[T]u[U] v or match vwith t or (select l asT) v or close v

and v is not an endpoint x;
6. 〈E1[e1]〉 | 〈E2[e2]〉 and subj(e1) = subj(e2);
7. (νxy)(〈E1[e1]〉 | 〈E2[e2]〉) and subj(e1) = x, subj(e2) = y, ¬ agreexy(e1, e2).

The four cases are standard to system F with records and variants. The
support for session types and concurrency in the first two cases (term and type
application) are derived from the types of values for such operators (Fig. 10).
Item 5 addresses session operators applied to non endpoints. Item 6 is for two
concurrent session operators on the same channel end. Finally, Item 7 is for
mismatches on two session operations on two endpoints for the same channel.

Theorem 8 (Safety). If Γ s ` p, then p is not a runtime error.

An algorithmic typing system can be easily extracted from the declarative
system for terms in Fig. 11 via a bidirectional type system, formulated along the
lines of Almeida et al. [2].

7 Related Work

Equirecursion in system F . In first investigations on equirecursive types, the no-
tion of type equivalence is often formulated in a coinductive fashion [5,11,18,29,38].
Two types are equivalent if they unroll into the same infinite tree. Whenever this
unrolling is the only type-level computation, such trees are regular, enabling ef-
ficient decision procedures. Some authors have studied equirecursion together
with other notions of type-level computation. Solomon considers parameterized
type definitions, which correspond to higher-order kinds [63]. These implicitly
correspond to λ-terms, since reduction occurs as types are allowed to call other
types. Some authors consider equirecursion in system Fω, with weaker or stronger
notions of equality [1,12,14,41]. Regarding equirecursion in system F , the model
of Cai et al. [14] is the closest to ours, and indeed our results up to Fµ∗·

ω can
be seen as a generalisation of theirs. However, Cai et al. depart from the usual
setting by allowing non-contractive types (which most authors forbid, including
this work), requiring a sort of infinitary lambda calculus. Moreover, this work
further extends additional equivalence properties by including session types with
their distinctive semantics, such as sequential composition and duality.

Session type systems. Session types were introduced in the 90s by Honda et
al. [42,43,67]. Equirecursion was the first approach used to construct infinite
session types, which often allows type equality to be interpreted according to
a coinductive notion of bisimulation [52]. In this vein, Keizer et al. [48] utilize
coalgebras to represent session types. Since the inception of session types, there

D. Poças et al.414

has been an interest in extending the theory to nonregular protocols [58,59,66].
Context-free session types emerged as a natural extension, as it still allowed for
practical type equality algorithms [3,4,19,28,56,68]. Other approaches that go
beyond regular session types include nested session types [24] as well as 1-counter,
pushdown and 2-counter session types [33]. However, the more expressive notions
are not amenable to practical type equivalence algorithms, just like the higher-
order types present in our system Fµω . Polymorphism in session types has also
been a topic of interest, with or without recursion [15,22,23,31,39].

Dual type operator. This work is, to the best of our knowledge, the first that
internalises duality as a type constructor. Other settings, such as the language
Alms [72], consider duality for session types as a user-definable, not built in,
type function. Our Dual is a type operator, not a type function. The difference
is that a type function involves a type-level computation, which converges to a
type written without dual. For example, in Alms we would have dual(!Int.End) =
?Int.End (as a type-level computation), both sides being the same type. In our
setting, Dual (!Int;End) is a type on its own, which happens to be equivalent
to ?Int;End. At the same time, our setting allows for types such as Dualα, or
(Dualα);T1;T2, which do not reduce.

Type equivalence algorithms. Algorithms for deciding the equivalence of types
must inherently be related to the computational power of the corresponding
type system. This has been used implicitly or explicitly to obtain decidability
results. As already explained, if equirecursion is the only type-level computation,
types can be represented as finite-state automata (or equivalently, infinite regular
trees). Although some exponential time algorithms were first proposed [32], it
has been established that the problem can be solved in quadratic time [53],
which is to be expected as it matches the corresponding problem of bisimulation
of finite-state automata [44]; see also Pierce [57].

The next ‘simplest’ model of computation is that of simple grammars, which
intuitively correspond to deterministic pushdown automata with a single state [33].
Almeida et al. [4] provided a practical algorithm for checking the bisimilar-
ity of simple grammars. By dropping the determinism assumption, we arrive
at Greibach normal form grammars, which are equivalent to basic process al-
gebras [6,7]. Bisimilarity algorithms have been studied extensively in this set-
ting [13,17,47,49]; presently it is known that the complexity of the problem lies
between EXPTIME and 2-EXPTIME, which does not exclude the possibility of
a polynomial time algorithm for the simpler model of simple grammars.

In this paper we present a reduction from first-order grammars to Fµω -types,
showing that the more expressive type systems (Fµω , presented here and in Cai et
al. [14], as well as its extensions) are at least as powerful as deterministic push-
down automata. As far as we know, the closest result to ours is by Solomon [63],
which shows conversions between a universe of “context-free types” and deter-
ministic context-free languages. The universe of types studied by Solomon is
different from Fµω . With some work we could prove that Solomon’s types can be
embedded into Fµω , which would entail our result as a corollary. However, it is
easier and simpler to prove directly the reduction as we did.

System Fµω with Context-free Session Types 415

The equivalence problem for deterministic pushdown automata was a noto-
rious open problem for a long time, until Sénizergues showed it to be decid-
able [61,62]. Since his proof, many authors have tried to refine the result in an
attempt to arrive at an implementable algorithm [46,64,65].

Concurrent term languages. The usefulness of a type system is directly related
to its capability to be used in a programming language. Type systems such as
the ones discussed in this work lend themselves quite readily to functional term
languages [45]. For session types, existing term languages are either inspired
in the pi calculus [26,73,69] or in the lambda calculus [35,54,70], or even the
two [71]. The system presented in this paper is linear, meaning that resources
must be used exactly once [50,74]. Some authors go beyond linearity by consid-
ering unrestricted type qualifiers [48,73] or manifest sharing [8].

8 Conclusion and future work

This paper introduces an extension of system F which includes equirecursion,
lambda abstractions, and context-free session types. We present type equivalence
algorithms, and a term language and its metatheory. Although we have defined a
rather general system, it turns out that for practical purposes one must restrict
recursion to µ∗, that is, to type-level monomorphic recursion. In any case, the
main system Fµ∗;

ω is a non-trivial extension of (the contractive fragment of) Fµ∗
ω

(studied by Cai et al. [14]) as well as Fµ; (studied by Almeida et al. [19]).

We have only considered polymorphic types of a functional nature: type
∀α : κ. T must always be of kind t. It is worth investigating polymorphism
over session types, as it would allow further additional behaviour. For exam-
ple, we could be interested in streaming values of heterogeneous nature, as in
type µα : s.&{Done : Skip,More : ∀β : t. ?β;α}. It is however unclear whether
this extension would still allow a translation into a simple grammar.

We proved that the type equivalence problem for systems Fµω , Fµ·ω , Fµ;ω is at
least as hard as a non-efficiently-decidable problem. We conjecture that these
systems have the same power as deterministic pushdown automata (and hence,
admit decidable type equivalence), but we do not have a construction to prove
this result. In any case, our proof that the type equivalence problem is at least as
hard as the bisimilarity of deterministic pushdown automata is enough to justify
focus on the significant fragment with restricted recursion.

We study either full recursion (for theoretical results) or recursion limited
to kind ∗ (for algorithmic results). It would be interesting to study in-between
kinds of recursion; the next natural example is µ∗⇒∗. What model of computation
would we arrive at if we consider types written with this recursion operator? We
conjecture that types Fµω and Fµ·ω , when restricted to recursion of kind ∗ ⇒ ∗,
would still be expressible as simple grammars, whereas such a restriction in
the more powerful Fµ;ω would take us beyond this model, but perhaps without
reaching the expressivity of deterministic pushdown automata.

D. Poças et al.416

References

1. Abel, A.: Type-based termination: a polymorphic lambda-calculus with sized
higher-order types. Ph.D. thesis, Ludwig Maximilians University Munich (2007),
https://d-nb.info/984765581

2. Almeida, B., Mordido, A., Thiemann, P., Vasconcelos, V.T.: Polymorphic lambda
calculus with context-free session types. Inf. Comput. 289(Part), 104948 (2022).
https://doi.org/10.1016/j.ic.2022.104948

3. Almeida, B., Mordido, A., Vasconcelos, V.T.: FreeST: Context-free session types
in a functional language. In: PLACES. EPTCS, vol. 291, pp. 12–23 (2019). https:
//doi.org/10.4204/EPTCS.291.2

4. Almeida, B., Mordido, A., Vasconcelos, V.T.: Deciding the bisimilarity of context-
free session types. In: TACAS. LNCS, vol. 12079, pp. 39–56. Springer (2020). https:
//doi.org/10.1007/978-3-030-45237-7 3

5. Amadio, R.M., Cardelli, L.: Subtyping recursive types. In: POPL. pp. 104–118.
ACM Press (1991). https://doi.org/10.1145/99583.99600

6. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equiva-
lence for processes generating context-free languages. In: PARLE. LNCS, vol. 259,
pp. 94–111. Springer (1987). https://doi.org/10.1007/3-540-17945-3 5

7. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equiv-
alence for processes generating context-free languages. J. ACM 40(3), 653–682
(1993). https://doi.org/10.1145/174130.174141

8. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP), 37:1–37:29 (2017). https://doi.org/10.1145/3110281

9. Barendregt, H.P.: The lambda calculus - its syntax and semantics, Studies in logic
and the foundations of mathematics, vol. 103. North-Holland (1985)

10. Barendregt, H.P.: The type free lambda calculus. In: Studies in Logic and the
Foundations of Mathematics, vol. 90, pp. 1091–1132. Elsevier (1977)

11. Brandt, M., Henglein, F.: Coinductive axiomatization of recursive type equality
and subtyping. Fundam. Informaticae 33(4), 309–338 (1998). https://doi.org/10.
3233/FI-1998-33401

12. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. In:
TACS. LNCS, vol. 1281, pp. 415–438. Springer (1997). https://doi.org/10.1007/
BFb0014561

13. Burkart, O., Caucal, D., Steffen, B.: An elementary bisimulation decision proce-
dure for arbitrary context-free processes. In: MFCS. LNCS, vol. 969, pp. 423–433.
Springer (1995). https://doi.org/10.1007/3-540-60246-1 148

14. Cai, Y., Giarrusso, P.G., Ostermann, K.: System F-omega with equirecursive types
for datatype-generic programming. In: POPL. pp. 30–43. ACM (2016). https://doi.
org/10.1145/2837614.2837660

15. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: ESOP. LNCS, vol. 7792, pp.
330–349. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6 19

16. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17(4), 471–522 (1985). https://doi.org/10.1145/6041.
6042

17. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. Inf. Comput. 121(2), 143–148 (1995). https://doi.org/
10.1006/inco.1995.1129

System Fµω with Context-free Session Types 417

https://d-nb.info/984765581
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1145/99583.99600
https://doi.org/10.1145/99583.99600
https://doi.org/10.1007/3-540-17945-3_5
https://doi.org/10.1007/3-540-17945-3_5
https://doi.org/10.1145/174130.174141
https://doi.org/10.1145/174130.174141
https://doi.org/10.1145/3110281
https://doi.org/10.1145/3110281
https://doi.org/10.3233/FI-1998-33401
https://doi.org/10.3233/FI-1998-33401
https://doi.org/10.3233/FI-1998-33401
https://doi.org/10.3233/FI-1998-33401
https://doi.org/10.1007/BFb0014561
https://doi.org/10.1007/BFb0014561
https://doi.org/10.1007/BFb0014561
https://doi.org/10.1007/BFb0014561
https://doi.org/10.1007/3-540-60246-1_148
https://doi.org/10.1007/3-540-60246-1_148
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1006/inco.1995.1129

18. Colazzo, D., Ghelli, G.: Subtyping recursive types in kernel Fun. In: LICS. pp. 137–
146. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.782605

19. Costa, D., Mordido, A., Poças, D., Vasconcelos, V.T.: Higher-order context-free
session types in system F. In: PLACES. EPTCS, vol. 356, pp. 24–35 (2022). https:
//doi.org/10.4204/EPTCS.356.3

20. Costa, D., Mordido, A., Poças, D., Vasconcelos, V.T.: System Fµω with context-free
session types. CoRR abs/2301.08659 (2023), http://arxiv.org/abs/2301.08659

21. Curry, H.H., Feys, R., Craig, W. (eds.): Combinatory Logic, Volume I. North-
Holland (1958)

22. Dardha, O.: Recursive session types revisited. In: BEAT. EPTCS, vol. 162, pp.
27–34 (2014). https://doi.org/10.4204/EPTCS.162.4

23. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. Inf. Comput. 256,
253–286 (2017). https://doi.org/10.1016/j.ic.2017.06.002

24. Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Nested session types. In:
ESOP. LNCS, vol. 12648, pp. 178–206. Springer (2021). https://doi.org/10.1007/
978-3-030-72019-3 7

25. Das, A., DeYoung, H., Mordido, A., Pfenning, F.: Nested session types. ACM
Trans. Program. Lang. Syst. 44(3), 19:1–19:45 (2022). https://doi.org/10.1145/
3539656

26. Das, A., Pfenning, F.: Rast: A language for resource-aware session types. Log.
Methods Comput. Sci. 18(1) (2022). https://doi.org/10.46298/lmcs-18(1:9)2022

27. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
In: Indagationes Mathematicae. vol. 75, pp. 381–392. Elsevier (1972). https://doi.
org/10.1016/1385-7258(72)90034-0

28. The FreeST programming language. https://freest-lang.github.io/ (2019)
29. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed: functional

pearl. In: ICFP. pp. 221–231. ACM (2000). https://doi.org/10.1145/351240.351261
30. Gauthier, N., Pottier, F.: Numbering matters: first-order canonical forms for

second-order recursive types. In: ICFP. pp. 150–161. ACM (2004). https://doi.
org/10.1145/1016850.1016872

31. Gay, S.J.: Bounded polymorphism in session types. MSCS 18(5), 895–930 (2008).
https://doi.org/10.1017/S0960129508006944

32. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2-3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

33. Gay, S.J., Poças, D., Vasconcelos, V.T.: The different shades of infinite session
types. In: FoSSaCS. LNCS, vol. 13242, pp. 347–367. Springer (2022). https://doi.
org/10.1007/978-3-030-99253-8 18

34. Gay, S.J., Thiemann, P., Vasconcelos, V.T.: Duality of session types: The final
cut. In: PLACES. EPTCS, vol. 314, pp. 23–33 (2020). https://doi.org/10.4204/
EPTCS.314.3

35. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010). https://doi.org/10.1017/S0956796809990268

36. Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Éditeur inconnu (1972)

37. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

38. Glew, N.: A theory of second-order trees. In: ESOP. LNCS, vol. 2305, pp. 147–161.
Springer (2002). https://doi.org/10.1007/3-540-45927-8 11

39. Griffith, D.E.: Polarized substructural session types. Ph.D. thesis, University of
Illinois at Urbana-Champaign (2016). https://doi.org/10.2172/1562827

D. Poças et al.418

https://doi.org/10.1109/LICS.1999.782605
https://doi.org/10.1109/LICS.1999.782605
https://doi.org/10.4204/EPTCS.356.3
https://doi.org/10.4204/EPTCS.356.3
https://doi.org/10.4204/EPTCS.356.3
https://doi.org/10.4204/EPTCS.356.3
http://arxiv.org/abs/2301.08659
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1145/3539656
https://doi.org/10.1145/3539656
https://doi.org/10.1145/3539656
https://doi.org/10.1145/3539656
https://doi.org/10.46298/lmcs-18(1:9)2022
https://doi.org/10.46298/lmcs-18(1:9)2022
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://freest-lang.github.io/
https://doi.org/10.1145/351240.351261
https://doi.org/10.1145/351240.351261
https://doi.org/10.1145/1016850.1016872
https://doi.org/10.1145/1016850.1016872
https://doi.org/10.1145/1016850.1016872
https://doi.org/10.1145/1016850.1016872
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/3-540-45927-8_11
https://doi.org/10.1007/3-540-45927-8_11
https://doi.org/10.2172/1562827
https://doi.org/10.2172/1562827

40. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and Lambda-Calculus.
Cambridge University Press (1986)

41. Hinze, R.: Polytypic values possess polykinded types. Sci. Comput. Program. 43(2-
3), 129–159 (2002). https://doi.org/10.1016/S0167-6423(02)00025-4

42. Honda, K.: Types for dyadic interaction. In: CONCUR. LNCS, vol. 715, pp. 509–
523. Springer (1993). https://doi.org/10.1007/3-540-57208-2 35

43. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 122–138. Springer (1998). https://doi.org/10.1007/BFb0053567

44. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Tech. rep., Cornell University (1971)

45. Im, H., Nakata, K., Park, S.: Contractive signatures with recursive types, type
parameters, and abstract types. In: ICALP. LNCS, vol. 7966, pp. 299–311. Springer
(2013). https://doi.org/10.1007/978-3-642-39212-2 28

46. Jančar, P.: Short decidability proof for DPDA language equivalence via 1st order
grammar bisimilarity. CoRR abs/1010.4760 (2010), http://arxiv.org/abs/1010.
4760

47. Jančar, P.: Bisimilarity on basic process algebra is in 2-ExpTime (an explicit proof).
Log. Methods Comput. Sci. 9(1) (2012). https://doi.org/10.2168/LMCS-9(1:10)
2013

48. Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: A coalgebraic view on
session types and communication protocols. In: ESOP. LNCS, vol. 12648, pp. 375–
403. Springer (2021). https://doi.org/10.1007/978-3-030-72019-3 14

49. Kiefer, S.: BPA bisimilarity is EXPTIME-hard. Inf. Process. Lett. 113(4), 101–106
(2013). https://doi.org/10.1016/j.ipl.2012.12.004

50. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999). https://doi.org/10.1145/
330249.330251

51. Korenjak, A.J., Hopcroft, J.E.: Simple deterministic languages. In: SWAT. pp.
36–46. IEEE Computer Society (1966). https://doi.org/10.1109/SWAT.1966.22

52. Kozen, D., Silva, A.: Practical coinduction. Math. Struct. Comput. Sci. 27(7),
1132–1152 (2017). https://doi.org/10.1017/S0960129515000493

53. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: TACAS.
LNCS, vol. 9636, pp. 833–850. Springer (2016). https://doi.org/10.1007/
978-3-662-49674-9 52

54. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP. pp. 434–447. ACM (2016). https://doi.org/10.1145/2951913.2951921

55. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992). https://doi.org/10.1017/S0960129500001407

56. Padovani, L.: Context-free session type inference. ACM Trans. Program. Lang.
Syst. 41(2), 9:1–9:37 (2019). https://doi.org/10.1145/3229062

57. Pierce, B.C.: Types and programming languages. MIT Press (2002)
58. Puntigam, F.: Non-regular process types. In: Euro-Par. LNCS, vol. 1685, pp. 1334–

1343. Springer (1999). https://doi.org/10.1007/3-540-48311-X 189
59. Ravara, A., Vasconcelos, V.T.: Behavioural types for a calculus of concurrent

objects. In: Euro-Par. LNCS, vol. 1300, pp. 554–561. Springer (1997). https:
//doi.org/10.1007/BFb0002782

60. Reynolds, J.C.: Towards a theory of type structure. In: Programming Sym-
posium. LNCS, vol. 19, pp. 408–423. Springer (1974). https://doi.org/10.1007/
3-540-06859-7 148

System Fµω with Context-free Session Types 419

https://doi.org/10.1016/S0167-6423(02)00025-4
https://doi.org/10.1016/S0167-6423(02)00025-4
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-39212-2_28
https://doi.org/10.1007/978-3-642-39212-2_28
http://arxiv.org/abs/1010.4760
http://arxiv.org/abs/1010.4760
https://doi.org/10.2168/LMCS-9(1:10)2013
https://doi.org/10.2168/LMCS-9(1:10)2013
https://doi.org/10.2168/LMCS-9(1:10)2013
https://doi.org/10.2168/LMCS-9(1:10)2013
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1016/j.ipl.2012.12.004
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/330249.330251
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1145/3229062
https://doi.org/10.1145/3229062
https://doi.org/10.1007/3-540-48311-X_189
https://doi.org/10.1007/3-540-48311-X_189
https://doi.org/10.1007/BFb0002782
https://doi.org/10.1007/BFb0002782
https://doi.org/10.1007/BFb0002782
https://doi.org/10.1007/BFb0002782
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148

61. Sénizergues, G.: The equivalence problem for deterministic pushdown automata
is decidable. In: ICALP. LNCS, vol. 1256, pp. 671–681. Springer (1997). https:
//doi.org/10.1007/3-540-63165-8 221

62. Sénizergues, G.: L(A) = L(B)? decidability results from complete formal systems.
In: ICALP. LNCS, vol. 2380, p. 37. Springer (2002). https://doi.org/10.1007/
3-540-45465-9 4

63. Solomon, M.H.: Type definitions with parameters. In: POPL. pp. 31–38. ACM
Press (1978). https://doi.org/10.1145/512760.512765

64. Stirling, C.: Decidability of DPDA equivalence. Theor. Comput. Sci. 255(1-2),
1–31 (2001). https://doi.org/10.1016/S0304-3975(00)00389-3

65. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: ICALP. Lecture
Notes in Computer Science, vol. 2380, pp. 821–832. Springer (2002). https://doi.
org/10.1007/3-540-45465-9 70

66. Südholt, M.: A model of components with non-regular protocols. In: SC. LNCS,
vol. 3628, pp. 99–113. Springer (2005). https://doi.org/10.1007/11550679 8

67. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. LNCS, vol. 817, pp. 398–413. Springer (1994). https://doi.
org/10.1007/3-540-58184-7 118

68. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: ICFP. pp. 462–
475. ACM (2016). https://doi.org/10.1145/2951913.2951926

69. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP. pp. 161–172. ACM (2011). https://doi.org/10.1145/
2003476.2003499

70. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: A monadic integration. In: ESOP. LNCS, vol. 7792, pp. 350–369. Springer
(2013). https://doi.org/10.1007/978-3-642-37036-6 20

71. Toninho, B., Yoshida, N.: On polymorphic sessions and functions: A tale of two
(fully abstract) encodings. ACM Trans. Program. Lang. Syst. 43(2), 7:1–7:55
(2021). https://doi.org/10.1145/3457884

72. Tov, J.A.: Practical programming with substructural types. Ph.D. thesis, North-
eastern University (2012)

73. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/j.ic.2012.05.002

74. Walker, D.: Advanced Topics in Types and Programming Languages, chap. Sub-
structural Type Systems, pp. 3–44. The MIT Press (2005)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

D. Poças et al.420

https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-63165-8_221
https://doi.org/10.1007/3-540-45465-9_4
https://doi.org/10.1007/3-540-45465-9_4
https://doi.org/10.1007/3-540-45465-9_4
https://doi.org/10.1007/3-540-45465-9_4
https://doi.org/10.1145/512760.512765
https://doi.org/10.1145/512760.512765
https://doi.org/10.1016/S0304-3975(00)00389-3
https://doi.org/10.1016/S0304-3975(00)00389-3
https://doi.org/10.1007/3-540-45465-9_70
https://doi.org/10.1007/3-540-45465-9_70
https://doi.org/10.1007/3-540-45465-9_70
https://doi.org/10.1007/3-540-45465-9_70
https://doi.org/10.1007/11550679_8
https://doi.org/10.1007/11550679_8
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1145/3457884
https://doi.org/10.1145/3457884
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1016/j.ic.2012.05.002
http://creativecommons.org/licenses/by/4.0/

Safe Session-Based Concurrency
with Shared Linear State

Pedro Rocha(B) and Lúıs Caires

NOVA LINCS, NOVA University of Lisbon, Portugal
pms.rocha@campus.fct.unl.pt lcaires@fct.unl.pt

We introduce CLASS, a session-typed, higher-order, core language that sup-
ports concurrent computation with shared linear state. We believe that CLASS
is the first proposal for a foundational language able to flexibly express realistic
concurrent programming idioms, with a type system ensuring all the following
three key properties: CLASS programs never misuse or leak stateful resources
or memory, they never deadlock, and they always terminate. CLASS owes these
strong properties to a propositions-as-types foundation based on Linear Logic,
which we conservatively extend with logically motivated constructs for share-
able affine state. We illustrate CLASS expressiveness with several examples
involving memory-efficient linked data structures, sharing of resources with
linear usage protocols, and sophisticated thread synchronisation, which may
be type-checked with a perhaps surprisingly light type annotation burden.

1 Introduction

Stateful programming involving concurrency and shared state plays a prominent
role in modern software development, but, in practice, getting concurrent code
right is still quite hard for common developers. Typical sources of “bugs” include
resource leaks (forgetting to release unused memory or close a socket), violation
of resource state preconditions (writing to a closed file or sending out-of-order
messages), races (data invariant breaking, erratic sharing of resources), dead-
locks (indefinite wait for lock release or incoming messages), livelocks, and even
general non-termination. Fifty years ago Hoare noted [40]: “Parallel programs
are particularly prone to time-dependent errors, which either cannot be detected
by program testing nor by run-time checks. It is therefore very important that
a high-level language designed for this purpose should provide complete secu-
rity against time-dependent errors by means of a compile-time check”. It does
not come as a surprise that finding ways to approximate such certainly very
ambitious goal is still today the object of exciting intense research.

In this paper, we approach this challenge by leveraging the propositions-
as-types (PaT) paradigm towards the realm of concurrency and shared state.
PaT is known to offer a unifying framework connecting logic, computation, and
programming languages. Since the seminal work of Curry and Howard [42], it
is a prolific structuring concept for designing and reasoning about programming
languages (see [82]). Remarkably, languages derived within PaT intrinsically
satisfy crucial properties: type preservation (since reduction corresponds to cut-
reduction), confluence (since computation corresponds to proof simplification),

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp.
https://doi.org/10.1007/978-3-031-30044-8 16

421–450, 2023.

mailto:pms.rocha@campus.fct.unl.pt
mailto:lcaires@fct.unl.pt
https://doi.org/10.1007/978-3-031-30044-8_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_16&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

P. Rocha and L. Caires

deadlock freedom (as a consequence of cut-elimination) and livelock freedom /
termination (as a consequence of strong normalisation).

Although PaT has a traditional focus on functional computation, the emer-
gence of linear logic has progressively motivated interpretations of stateful/re-
sourceful computation [78,1,14,2,12], eventually leading to the discovery of tight
correspondences between session types and linear logic [22,27,81]. These systems
already capture aspects of state change, namely in the sequential execution of
session protocols, thus raising the question of whether such approaches could
be extended to express notions of shared mutable state, subject to interference,
as found in typical imperative and concurrent programs. Recently, such chal-
lenge was addressed by several works [9,64,67]. In particular, [67] developed a
first basic shared state model enjoying all the aforementioned strong properties
of PaT. However, although [67] supports higher-order shareable store for pure
values of replicated type, it forbids linear objects, such as stateful processes or
data structures with update in-place, to be stored and shared as in languages
like Java, Rust, and in the CLASS core language we introduce herein.

In this work, we develop a novel, more fundamental approach to shared state
and PaT, and introduce CLASS, a typed, higher-order, session based core lan-
guage that supports general concurrent computation with dynamically allocated
shared linear (more precisely, affine) state. We believe that CLASS is the first
proposal for a foundational language. able to flexibly express realistic concur-
rent programming idioms, while ensuring all the following three key properties
by static typing: CLASS programs never misuse or leak stateful resources or
memory, they never deadlock, and they always terminate.

Despite the strength of its type system, CLASS expressiveness and effec-
tiveness substantially overcomes limitations of related works, as we show with
compelling program examples that can be algorithmically typed for memory
safety, dead- and live-lock freedom with a perhaps surprisingly light type anno-
tation burden. CLASS owes these strong properties to is PaT foundation based
on Second-Order Linear Logic, already known to capture the polymorphic ses-
sion calculus and the linear System F [74], but which we conservatively extend
with novel logically motivated constructs for shareable affine state, also based on
DiLL co-exponentials [35,67], but to which we give here a different, more general
and fundamental interpretation.

1.1 Overview

A main novelty and source of CLASS’s expressiveness, flexibility and strong
meta-theoretical properties resides in its mechanism for shared state compo-
sition. It is interesting to overview such mechanism in the context of the basic
composition and interaction principles of the fundamental linear logic interpre-
tations [22,27,81]. Our computational model is structured around processes that
interact via binary sessions, the basic composition rules being mix and cut.

P ⊢ ∆1;Γ Q ⊢ ∆2;Γ

P || Q ⊢ ∆1, ∆2;Γ
[Tmix]

P ⊢ ∆1, x : A;Γ Q ⊢ ∆2, x : A;Γ

P |x| Q ⊢ ∆1, ∆2;Γ
[Tcut]

422

Safe Session-Based Concurrency with Shared Linear State

The mix rule types the independent composition of processes P and Q, which
do not share any free names and run side-by-side without interacting. This is
captured by the implicit disjointness of their linear typing contexts ∆1 and
∆2, declaring the types of their interaction channels. Interactive composition is
expressed by the cut rule, which connects exactly two processes P and Q through
a single linear session x with dual typed endpoints (x : A and x : A), following
Abramsky’s idea of “cut as interactive composition” [1].

Intuitively, duality of endpoint (session) types ensures that all interactions
between P and Q on x always matches: when P sends, Q receives; when Q offers,
P chooses; and likewise for all types. Notice that sharing a single channel x be-
tween the threads P and Q is important to ensure acyclicity of proof structures,
and cut-elimination/deadlock absence. But P,Q may use an arbitrary number
of linear channels, in ∆1, ∆2, to also compose with other processes.

Shared composition in session types is available for replicated “server” objects
!x(y);P , typed by the linear logic exponential type bang !A. Contraction of the
dual exponential type why-not ?A allows an unbounded number of usages of
such replicated server object to be introduced in client processes. In the dyadic
presentation of linear logic (cf. [5,11]), contraction is expressed by moving ?-
typed names into the unrestricted context Γ , with the [T?] rule.

!x(y);P ⊢ x :!A;Γ

Q ⊢ ∆;Γ, x : A
[T?]

?x;Q ⊢ ∆,x :?A;Γ

!x(y);P |x| ?x;Q ⊢ ∆;Γ

...

R ⊢ ∆, y : A;Γ, x:A
[Tcall]

call x(y);R ⊢ ∆;Γ, x:A

Names in Γ may be used unrestrictedly; each call (typed by [Tcall]) spawns a
fresh copy of the server body at type y : A, to be used by the client at type
y : A, in a linear binary session. By the typing rule for !A (promotion) such copy
does not depend on linear resources. Thus, interaction with replicated objects
as captured by the exponentials !A and ?A implements a copy semantics where
each call obtains a new private stateless copy of the same object.

In this work, we introduce a third composition mechanism, allowing processes
to concurrently share mutex memory cells, storing linear state. Mutex memory
cells and their usages are typed respectively by a pair of dual modalities S•A and
U•A, whose logical rules are motivated by Differential Linear Logic (DiLL) [35],
in particular cocontraction, expressed by the type rule [Tsh].

P ⊢ ∆,x : U•A;Γ Q ⊢ ∆′, x : U•A;Γ
[Tsh]

share x {P || Q} ⊢ ∆,∆′, x : U•A;Γ

While sharing of replicated objects corresponds to contraction of ?A types,
shared usage of mutex cells corresponds to cocontraction of U•A types. Apart
from the explicit use of [Tsh], the type system ensures that memory cells are
always used linearly. The shared usage x : U•A is free in the conclusion of the
typing rule, therefore a memory cell may be shared by an arbitrary number of
processes, by nested iterated use of cocontraction.

423

Moreover, cocontraction also ensures that concurrent processes may share a
single mutex cell (just like [Tcut] w.r.t. binary sessions). This constraint comes
from the linear logic discipline, and it is important to ensure deadlock freedom.
As discussed in Concluding Remarks, this does not hinder CLASS expressiveness
- e.g., a single mutex cell may act as a gateway to further bundles of shared
state, organised in resource hierarchies, as our examples illustrate - and even
suggests convenient concurrent programming structuring techniques.

To access a mutex memory cell in its (unlocked) full state, typed by U•A, the
client uses a take operation. Take waits for acquiring the cell lock and reads its
contents. The cell then transitions to the (locked) empty state, typed by U◦A.
The taking client becomes the sole responsible for filling back the cell contents,
using a put operation. This will restore the cell to the full state, releasing its
lock, and making it accessible to other concurrent threads waiting to take it.
Our mutex memory cell object is thus akin to a behaviourally typed incarnation
of Concurrent Haskell MVars [45] or Rust std::sync::Mutex objects [46].

To ensure safe releasing of a memory cell, its contents are required to be of
affine type ∧A. Affine objects are well-behaved disposable values, that when dis-
carded, safely dispose all resources they hereditarily refer to, this being ensured
by the linear logic typing.

We illustrate the introduced concepts with a simple example, where two
concurrent threads compete to set on an initially off flag, but only one may
win. The flag iteratively announces its state to the client with either #Off or
#On. If the state is off, the client must select #turnOn, if the state is on, it will
remain on. Process flag(f) implements the flag (at name f) in the off state, and
process on(f) in the on state, defined thus

flag(f) = #Off f ; case f{ | #turnOn : affine f ; on(f) }
on(f) = #On f ; affine f ; on(f)

The flag object is typed with the (linear) usage protocol defined by the coinduc-
tive type Flag below, such that flag(f) ⊢ f : Flag and on(f) ⊢ f : Flag

type corec Flag = ⊕{ |#Off : N{ |#turnOn : ∧Flag}, |#On : ∧Flag}

We now consider a scenario where a flag object is shared via a mutex memory
cell c initially storing a off flag of type ∧Flag among two concurrent clients.

client(c, id) ⊢ c : U•Flag; id : int
client(c, id) =

take c(f);
case f {
|#Off : println id+ “: wins.’;

#turnOn f ;
put c(f); release c

|#On : println id+ “: loses.’;
put c(f); release c

}

main() ⊢ ∅
main() =
cut { cell c(f.affine f ; flag(f))

|c : U•Flag|
share c {

client(c, 1)
||
client(c, 2)

}
}

P. Rocha and L. Caires424

When running main() exactly one of the threads (executing the same code, just
with a different id) will turn the flag on and win, the other will loose. Notice
that all threads drop usage of the memory cell c using release, which corresponds
to DiLL coweakening ([35]).

When considering a new language, in particular with a static typing disci-
pline, it is necessary to argue about its expressiveness, and aim for a better per-
ception of how natural programs get past its typing rules, and of how types help
in structuring programs. In this paper, we approach these concerns by showcas-
ing many interesting examples that challenge the expressiveness of the CLASS
language and type system on realistic concurrent programming scenarios. We
have developed many more examples, distributed with our implementation [68],
combining imperative, higher-order functional, and session-based programming
styles. For all these programs, strong guarantees of memory safety, deadlock-
freedom, termination, and absence of “dynamic bugs”, even in the presence of
blocking primitives and higher-order state, are compositionally certified by our
lightweight type discipline based on Propositions-as-Types and Linear Logic.

1.2 Outline and Contributions

We believe that CLASS is the first proposal for a foundational language able to
flexibly express realistic concurrent programming idioms while ensuring by typ-
ing three key properties: CLASS programs never misuse or leak stateful resources
or memory, they never deadlock, and they always terminate.

In Section 2 we formally present the core language CLASS, its type system and
operational semantics. Our model builds on the propositions-as-types approach
to session-based concurrency [22,27,80], extending Second-Order Classical Linear
Logic with inductive/coinductive types, affine types, and novel primitives for
shareable first-class mutex reference cells for linear state.

In Section 3 we state and prove type preservation (Theorem 1), progress
(Theorem 2) which implies deadlock-freedom, and strong normalisation (Theo-
rem 3), which also implies livelock absence. Our proof uses a logical relations
argument, extended with an interesting technique to handle shared state inter-
ference, which we believe is exploited here for the first time.

Given the strong properties of its type system, it is of course very important
to substantiate our claims about CLASS expressiveness. In Section 4 we illustrate
the expressiveness of CLASS language and type system by going through a series
of compelling examples. Namely, we discuss a general technique for sharing linear
protocols, a shareable linked list with update in-place, a shareable buffered chan-
nel, using a linked list with pointers to tail and head nodes, and executing send
and receive operations in O(1) time; the dining philosophers, illustrating tech-
niques that rely on our type structure to encode resource acquisition hierarchies;
a generic barrier for n threads; and a Hoare style monitor with await/notify con-
ditions, where our implementation of the condition’s process queue is supported
by a dynamic linked data structure, as in real systems code.

Safe Session-Based Concurrency with Shared Linear State 425

Section 5 discusses related work. Section 6 offers concluding remarks and
suggests further research. Complete definitions and detailed proofs to all results
are provided in [65].

2 The Core Language and its Type System

We present the core language, type system, and operational semantics of CLASS.
The language is based on a PaT correspondence with Linear Logic, so terms of
the language correspond to proof rules. We start by types and duality.

Definition 1 (Types). Types A,B of CLASS are defined by

A,B ::= X | 1 | ⊥ | A N B | A⊕B | A O B | A⊗B
| !A | ?A | ∃X.A | | ∀X.A | µX. A | νX. A
| ∧A | ∨A | S•A | S◦A | U•A | U◦A

Types in the first two rows correspond to Second-Order Classical Linear Logic,
extended with inductive/coinductive types (µ, ν). Types comprise variables (X),
units (1, ⊥), multiplicatives (⊗, O), additives (⊕, N), exponentials (!, ?) and
quantifiers (∃, ∀). The third row extends basic types with affine (∧,∨) and new
modalities (S•,U•, S◦,U◦) to type shared affine state. Duality is the involution
operation A 7→ A on types, corresponding to Linear Logic negation, defined by

1 = ⊥ A⊗B = A O B A⊕B = A N B

!A = ?B ∃X.A = ∀X.A µX. A = νX. {X/X}(A)

∧A = ∨A S•A = U•A S◦A = U◦A

Duality captures symmetry in process interaction, as manifest in the cut rule.
In our system, typing judgements have the form P ⊢η ∆;Γ . The typing context
∆;Γ is dyadic [4,15,63,22], where ∆ is handled linearly and Γ is unrestricted;
both ∆ and Γ assign types to names. The index η is a finite map that holds
coinduction hypothesis to type corecursive processes, as detailed later.

Definition 2. The typing rules of CLASS are presented in Figs. 1 to 5.

The type system corresponds, via propositions-as-types [22,27,80], to Second-
Order Classical Linear Logic (Fig. 1) with inductive/coinductive types (Fig. 2),
affinity (Fig. 3) and extended with constructs for shared mutable state (Figs. 4
- 5). The basic composition rules are [Tmix] and [Tcut], which correspond to
mix and cut of Linear Logic, respectively. [Tmix] types a parallel composition
P || Q, where P and Q run in parallel without interfering. On the other hand,
[Tcut] types linear interactive composition P |x : A| Q: processes P and Q
run concurrently and communicate through a private linear session x, session
endpoints being typed by dual types A/A. When the cut type annotation does
not play any role, we may omit it and write P |x| Q. In examples, for readability,
we use cut {P |x| Q} and par {P || Q} instead of P |x| Q and P || Q, respectively.

For the basic process constructs [22,27,80,19], ⊗/O type send and receive,
⊕/N type choice and offer (in examples we use labelled choice) , !/? type

P. Rocha and L. Caires426

[T0]
0 ⊢η ∅;Γ

P ⊢η ∆′;Γ Q ⊢η ∆;Γ
[Tmix]

P || Q ⊢η ∆′, ∆;Γ

[Tfwd]
fwd x y ⊢η x : A, y : A;Γ

P ⊢η ∆′, x : A;Γ Q ⊢η ∆,x : A;Γ

P |x : A| Q ⊢η ∆′, ∆;Γ
[Tcut]

[T1]
close x ⊢η x : 1;Γ

Q ⊢η ∆;Γ
[T⊥]

wait x;Q ⊢η ∆,x : ⊥;Γ

P1 ⊢η ∆,x : A;Γ P2 ⊢η ∆,x : B;Γ
[TN]

case x {|inl : P1, |inr : P2} ⊢η ∆,x : A N B;Γ

Q1 ⊢η ∆′, x : A;Γ
[T⊕l]

x.inl;Q1 ⊢η ∆′, x : A⊕B;Γ

Q2 ⊢η ∆′, x : B;Γ
[T⊕r]

x.inr;Q2 ⊢η ∆′, x : A⊕B;Γ

P1 ⊢η ∆1, y : A;Γ P2 ⊢η ∆2, x : B;Γ
[T⊗]

send x(y.P1);P2 ⊢η ∆1, ∆2, x : A⊗B;Γ

Q ⊢η ∆, z : A, x : B;Γ
[TO]

recv x(z);Q ⊢η ∆,x : A O B;Γ

P ⊢η y : A;Γ
[T!]

!x(y);P ⊢η x :!A;Γ

Q ⊢η ∆;Γ, x : A
[T?]

?x;Q ⊢η ∆,x :?A;Γ

P ⊢η y : A;Γ Q ⊢η ∆;Γ, x : A
[Tcut!]

y.P |!x : A| Q ⊢η ∆;Γ

Q ⊢η ∆, z : A;Γ, x : A
[Tcall]

call x(z);Q ⊢η ∆;Γ, x : A

P ⊢η ∆,x : {B/X}A;Γ
[T∃]

sendty x(B);P ⊢η ∆,x : ∃X.A;Γ

Q ⊢η ∆,x : A;Γ
[T∀]

recvty x(X);Q ⊢η ∆,x : ∀X.A;Γ

Fig. 1: Typing Rules I: Second-Order CLL.

P ⊢η′ ∆, z : A;Γ η′ = η,X(z,w) 7→ ∆, z : Y ;Γ
[Tcorec]

corec X(z,w);P [x,y] ⊢η {y/w}∆,x : νY. A; {y/w}Γ

η = η′, X(x,y) 7→ ∆,x : Y ;Γ
[Tvar]

X(z,w) ⊢η {w/y}∆, z : Y ; {w/y}Γ

P ⊢η ∆,x : {µX. A/X}A;Γ
[Tµ]

unfoldµ x;P ⊢η ∆,x : µX. A;Γ

P ⊢η ∆,x : {νX. A/X}A;Γ
[Tν]

unfoldν x;P ⊢η ∆,x : νX. A;Γ

Fig. 2: Typing Rules II: Induction and Coinduction.

Safe Session-Based Concurrency with Shared Linear State 427

P ⊢η a : A, b : ∨B, c : U•C;Γ
[Taffine]

affineb,c a;P ⊢η a : ∧A, b : ∨B, c : U•C;Γ

[Tdiscard]
discard a ⊢η a : ∨A;Γ

Q ⊢η ∆, a : A;Γ
[Tuse]

use a;Q ⊢η ∆, a : ∨A;Γ

Fig. 3: Typing Rules III: Affinity.

replicated servers and their invocation, ∀/∃ type receive and send of types, im-
plementing polymorphic processes.

Coinductive types are introduced by rule [Tcorec]. It types corecursive pro-
cesses corec X(z,w);P [x,y], with parameters z,w bound in P , that are instan-
tiated with the arguments x,y (free in the process term). By convention, the
coinductive behaviour, of type νY. A, of a corecursive process is always offered
in the first argument z. According to [Tcorec], to type the body P of a core-
cursive process, the map η is extended with a coinductive hypothesis binding
the process variable X to the typing context ∆, z : Y ;Γ , so that when typing
the body P of the corecursion we can appeal to X, which intuitively stands for
P itself, and recover its typing invariant. Crucially, the type variable Y is free
only in z : A. This causes corecursive calls to be always applied to names z′ that
hereditarily descend from the initial corecursive argument z, a necessary con-
dition for strong normalisation (Theorem 3), and morally corresponds to only
allowing corecursive calls on “smaller” argument sessions (of inductive type).

Rule [Tvar] types a corecursive call X(z,w) by looking up in η for the corre-
sponding binding and renaming the parameters with the arguments of the call.
Inductive and coinductive types are explicitly unfolded with [Tµ] and [Tν].

To simplify the presentation in program examples, we omit explicit unfolding
actions, and write inductive and coinductive type definitions with equations of
the form rec A = f(A) and corec B = f(B) instead of A = µX. f(X) and
B = νX. f(X), respectively. Similarly, we write corecursive process definitions
as Q(x,y) = f(Q(−)) instead of Q(x,y) = corec X(z,w); f(X(−)) [x,y], while
of course respecting the constraints imposed by typing rules [Tvar] and [Tcorec].

Affinity Affinity is important to model discardable linear resources, and plays
an important role in CLASS. An affine session can either be used as a linear
session or discarded. The typing rules for the affine modalities are in Fig. 3.
Affine sessions are introduced by rule [Taffine] that promotes a linear a : A to
an affine session a : ∧A. It types affineb,c a;P , which provides an affine session
at a and continues as P , and follows the structure of a standard promotion rule.

A session a may be promoted to affine if it only depends on resources that
can be disposed, i.e. resources that satisfy some form of weakening capability,
namely: coaffine sessions bi of type ∨Bi, that can be discarded; full cell usages
ci of type with U•Ci, that can be released; and unrestricted sessions in Γ , which
are implicitly ?-typed. The dependencies of an affine object on coaffine or full

P. Rocha and L. Caires428

P ⊢η ∆, a : ∧A;Γ
[Tcell]

cell c(a.P) ⊢η ∆, c : S•A;Γ

[Trelease]
release c ⊢η c : U•A;Γ

[Tempty]
empty c ⊢η c : S◦A;Γ

Q ⊢η ∆, a : ∨A, c : U◦A;Γ
[Ttake]

take c(a);Q ⊢η ∆, c : U•A;Γ

Q1 ⊢η ∆1, a : ∧A;Γ Q2 ⊢η ∆2, c : U•A;Γ
[Tput]

put c(a.Q1);Q2 ⊢η ∆1, ∆2, c : U◦A;Γ

Fig. 4: Typing Rules IV: Reference Cells.

cell objects are explicitly annotated as b, c in the process term, to instrument
the operational semantics, but we often omit them and simply write affine a;P .

The coaffine endpoint ∨A of an affine session, dual of ∧A, has two operations:
use and discard. Rule [Tuse] types a process use a;Q that uses a coaffine session a
and continues as Q, it is a dereliction rule. [Tdiscard] types the process discard a
that discards a coaffine session a, it is a weakening rule.

Shared Mutable State Shared state is introduced in CLASS by typed con-
structs that model mutex memory cells, and associated cell operations allowing
its use by client code, defined by the tying rules in Fig. 4.

At any moment a cell may be either full or empty, akin to the MVars of
Concurrent Haskell [45]. A full cell on c, written cell c(a.P), is typed S•A by
rule [Tcell]. Such cell stores an affine session of type ∧A, implemented at a by
P . All objects stored in cells are required to be affine, so that memory cells may
always be safely disposed without causing memory leaks. An empty cell on c, of
type S◦A, and written empty c, is typed by rule [Tempty].

Client processes manipulate cells via take, put and release operations. These
operations apply to names of cell usage types - U•A (full cell usage) and U◦A
(empty cell usage) - which are dual types of S•A and S◦A, respectively. At any
given moment, a client thread owning a U•A-typed usage to a cell may execute
a take operation, typed by rule [Ttake]. The take operation take c(a);Q waits
to acquire the cell mutex c, and reads its contents into parameter a, the linear
(actually coaffine, of type ∨A) usage for the object stored in the cell; the cell
becomes empty, and execution continues as Q.

It is responsibility of the taking thread to put some value back in the empty
cell, thus releasing the lock, causing the cell to transition to the full state. The put
operation put c(a.Q1);Q2 is typed by [Tput], the stored object a, implemented
by Q1, is required to be affine, as specified in the premise a : ∧A.

Hence a cell flips from full to empty and back; [Ttake] uses the cell c at U•A
type, and its continuation (in the premise) at U◦A type, symmetrically [Tput]
uses the cell c at U◦A type, and its continuation (in the premise) at U•A type.

The release c operation allows a thread to manifestly drop its cell usage c.
Release is typed by [Trelease] (cf. coweakening [35]); a usage may only be released

Safe Session-Based Concurrency with Shared Linear State 429

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U•A;Γ
[Tsh]

share c {P || Q} ⊢η ∆′, ∆, c : U•A;Γ

P ⊢η ∆′, c : U◦A;Γ Q ⊢η ∆, c : U•A;Γ
[TshL]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U◦A;Γ
[TshR]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

Fig. 5: Typing Rules V: State Sharing.

in the unlocked state U•A. When, for some cell c, all the owning threads release
their usages, which eventually happens in well-typed programs, the cell c gets
disposed, and its (affine) contents safely discarded.

Our memory cells cells are linear objects, with a linear mutable payload,
which are never duplicated by reduction or conversion rules. However, in CLASS,
multiple cell usages may be shared between concurrent threads, which compete
to take and use it in interleaved critical sections. Such aliased usages be passed
around and duplicated dynamically, changing the sharing topology at runtime.

Sharing of cell usages is logically expressed in our system by the typing rules
in Fig. 5. Co-contraction, introduced in Differential Linear Logic DiLL [35], al-
lows finite multisets of linear resources to safely interact in cut-reduction, resolv-
ing concurrent sharing into nondeterminism, as required here to soundly model
memory cells and their linear concurrent usages. Rule [Tsh] interprets cocon-
traction with the construct share c {P || Q}, and types sharing of the cell usage
c : U•A between the concurrent threads P and Q.

Contrary to cut, share c {P || Q} is not a binding operator for c. The shared
usage c : U•A is free in the conclusion of the typing rule, permitting c to be
shared among an arbitrary number of threads, by nested iterated use of [Tsh].
In [Tsh], P and Q only share the single mutex cell c, since the linear context is
split multiplicatively, just like [Tcut] wrt. binary sessions. This condition comes
from the DiLL typing discipline, and is important to ensure deadlock freedom.

While [Tsh] types sharing of a full (unlocked) cell usage of type U•A, the
symmetric rules [TshR] and [TshR] type sharing of an empty (locked) cell usage
of type U◦A. We may verify that for every cell c in a well-typed process, at
most one unguarded operation to c may be using type U◦A, all the remaining
unguarded operations to cmust be using type U•A. This implies that, at runtime,
only one thread may own the lock for a given (necessarily empty) cell, and
execute a put to it, which will bring the cell back to full and release its lock,
other threads must be either attempting to take, or release the reference.

Working together, the sharing typing rules ensure that in any well-typed cell
sharing tree, at most one single thread at any time may be actively using a cell
(in the locked empty state) and put to it, thus guaranteeing mutual exclusion,

P. Rocha and L. Caires430

while satisfying Progress (Theorem 2) which in turn ensures deadlock absence,
even in the presence of the crucially blocking behaviour of the take operation.

2.1 Operational Semantics

We now define CLASS operational semantics, which is given by a structural
precongruence relation ≤ that captures static relations on processes, essentially
rearranging them, and a reduction relation → that captures process interaction.

Definition 3 (P ≡ Q and P ≤ Q). Structural congruence ≡ is the least congru-
ence on processes closed under α-conversion and the ≡-rules in Fig. 6. Structural
precongruence ≤ is the least precongruence on processes including ≡ and closed
under α-conversion and the ≤-rules in Fig. 6.

The basic rules of ≡ essentially reflect the expected static laws, along the lines
of the structural congruences / conversions in [22,80]. The binary operators for-
warder, cut and share are commutative ([comm]). The set of processes modulo
≡ is a commutative monoid with binary operation given by parallel composition
and identity given by inaction 0 ([par]). Any two static constructs commute,
as expressed by the laws [CM]-[ShC!]. Furthermore, we can distribute the unre-
stricted cut over all the static constructs as expressed by law [D-C!X], where ∗
stands for either a mix, linear or unrestricted cut or a share.

The commuting conversions [ShTake] and [ShPut] allows take and put op-
erations on cell usages to commute with a share construct. Rule [ShTake] picks
the take that occurs on the left argument, however since share is commuta-
tive, a right-biased version of [ShTake] is admissible. Using [ShTake], any of the
two possible interleavings for two concurrent takes may be nondeterministically
picked via ≤. Indeed, we express ≤ as a precongruence because it introduces non-
determinism, and does not express a behavioural equivalence as ≡ does. N.B.:
Although one could easily formulate a confluent version of CLASS semantics,
using explicit sums as in [13,66,35,65], we prefer in this paper to focus on the
expressiveness of CLASS as a programming language and on its deadlock and
livelock absence properties, adopting a nondeterministic reduction relation.

In [ShPut] only a put, in the U◦A-typed premise of [TshL], may be propagated
up and eventually update the cell, causing it to transit back to the full state.
Hence, take operations originating the U•A typed premise of [TshR] will be
blocked, waiting until such (unique) put propagation occurs. Algebraically, rule
[ShRel] expresses that the release operation is the identity for share composition,
we orient it as a precongruence, to ensure type preservation.

Definition 4 (Reduction →). Reduction → is defined by the rules of Fig. 7.

We let
∗−→ stand for the reflexive-transitive closure of →. Reduction includes

the set of principal cut conversions, i.e. the redexes for each pair of interacting
constructs. It is closed by structural precongruence ([≤]) and in rule [cong] we
consider that C is a static context, i.e. a process context in which the hole is
covered only by the static constructs mix, cut and share.

Safe Session-Based Concurrency with Shared Linear State 431

fwd x y ≡ fwd y x P |x| Q ≡ Q |x| P
share x {P || Q} ≡ share x {Q || P} [comm]

P || 0 ≡ P P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R [par]

P |x| (Q || R) ≡ (P |x| Q) || R [CM]

P |x| (Q |y| R) ≡ (P |x| Q) |y| R [CC]

P |x| share y {Q || R} ≡ share y {P |x| Q || R} [CSh]

P |z| (y.Q |!x| R) ≡ y.Q |!x| (P |z| R) [CC!]

y.Q |!x| (P || R) ≡ P || (y.Q |!x| R) [C!M]

y.P |!x : A| (w.Q |!z : B| R) ≡ w.Q |!z : B| (y.P |!x : A| R) [C!C!]

share x {P || (Q || R)} ≡ share x {P || Q} || R [ShM]

share x {P || share y {Q || R}} ≡ share y {share x {P || Q} || R} [ShSh]

share z {P || y.Q |!x| R} ≡ y.Q |!x| share z {P || R} [ShC!]

y.P |!x : A| (Q ∗R) ≡ (y.P |!x : A| Q) ∗ (y.P |!x : A| R) [D-C!X]

share x {release x || P} ≤ P [ShRel]

share x {put x(y.P);Q || R} ≤ put x(y.P); share x {Q || R} [ShPut]

share x {take x(y1);P1 || take x(y2);P2}
≤ take x(y1); share x {P1 || take x(y2);P2} [ShTake]

Provisos: in [CM] and [ShM], x ∈ fn(Q); in [CC], [CSh] and [ShSh], x, y ∈ fn(Q); in

[CC!], [C!M] and [ShC!], x /∈ fn(P); in [C!C!], x /∈ fn(Q) and z /∈ fn(P).

Fig. 6: Structural congruence P ≡ Q and precongruence P ≤ Q.

Operationally, the forwarding behaviour is implemented by name substitu-
tion [23] ([fwd]). All the other conversions apply to a principal cut between two
dual actions. Reduction rules for the basic session constructs that interpret Sec-
ond Order Linear Logic and recursion are the expected ones [22,27,81], along
predictable lines. For readability, we omit the type declarations in the cuts, as
they do not actually play any role in reduction.

We comment the rules concerning affinity. The interaction between an affine
session and an use operation is defined by reduction rule [∧∨u], where a cut on
a : ∧A between affineb,c a;P and use a;Q reduces to a cut on a : A between the
continuations P and Q. The reduction between an affine session and a discard
operation is defined by [∧∨d]. A cut between affineb,c a;P and discard a reduces
to a mix-composition of discards (for the coaffine sessions b) and releases (for
the cell usages c) cf. [6,20]). In the corner case where c and a are empty, the
left-hand side of [∧∨d] simply degenerates to inaction 0 (the identity of mix).

The reductions for the mutable state operations are fairly self-explanatory. In
rule [S•U•r], a cut between a full mutex cell cell and a release operation reduces
to a process that discards the affine cell contents, cf. rule [∧∨d]. In rule [S•U•t], a
cut on c : S•A between a full cell and a take operation reduces to a process with

P. Rocha and L. Caires432

fwd x y |y| P → {x/y}P [fwd]

close x |x| wait x;P → P [1⊥]

send x(y.P);Q |x| recv x(z);R → Q |x| (P |y| {y/z}R) [⊗O]

case x {|inl : P, |inr : Q} |x| x.inl;R → P |x| R [N⊕l]

case x {|inl : P, |inr : Q} |x| x.inr;R → Q |x| R [N⊕r]

!x(y);P |x| ?x;Q → y.P |!x| Q [!?]

y.P |!x| call x(z);Q → {z/y}P |z| (y.P |!x| Q) [call]

sendty x(A);P |x| recvty x(X);Q → P |x| {A/X}Q [∃∀]
unfoldµ x;P |x| unfoldν x;Q → P |x| Q [µν]

unfoldµ x;P |x| corec Y (z,w);Q [x,y]
→ P |x| {x/z}{y/w}{corec Y (z,w);Q/Y }Q [corec]

affineb,c a;P |a| use a;Q → P |a| Q [∧∨u]
affineb,c a;P |a| discard a → discard b || release c [∧∨d]
cell c(a.P) |c| release c → P |a| discard a [S•U•r]

cell c(a.P) |c| take c(a′);Q → P |a| (empty c |c| {a/a′}Q) [S•U•t]

empty c |c| put c(a.P);Q → cell c(a.P) |c| Q [S◦U◦]

P ≤ P ′ and P ′ → Q′ and Q′ ≤ Q ⊃ P → Q [≤]

P → Q ⊃ C[P] → C[Q] [cong]

Fig. 7: Reduction P → Q.

two cuts, both composed with the continuation {a/a′}Q of the take. The outer
cut on a : ∧A composes with the stored affine session, which was successfully
acquired by the take operation. The inner cut on c : S◦A composes with the
reference cell c, which has became empty in the reductum. Finally, in rule [S◦U◦],
a cut on session c : S◦A between an empty cell and a put operation reduces to
a cut on session c : S•A between a full cell, that now stores the session that was
put, and the continuation of the put process. Notice that the locking/unlocking
behaviour of cells is simply modelled by rewriting of the process terms, from cell
to empty and back, as typical in process calculi.

3 Type Safety and Strong Normalisation

In this section we state and give proof sketches for our main results of type safety
and strong normalisation. Full proofs may be found in [65].

Type Preservation The semantics of CLASS is defined by a set of precongru-
ence ≤ and reduction → rules on process terms. Theorem 1 shows that these
relations preserve typing, and gives substance to our PaT approach, showing that
every ≤ and → rule corresponds to a conversion on type derivations/proofs.

Safe Session-Based Concurrency with Shared Linear State 433

Theorem 1 (Type Preservation). Suppose P ⊢η ∆;Γ . (1) If P ≤ Q, then
Q ⊢η ∆;Γ . (2) If P → Q, then Q ⊢η ∆;Γ .

Proof. By induction on derivations for P ≤ Q (resp. P → Q), we verify that all
the rules of ≤ (Def. 3) (resp. → (Def. 4)) are type preserving.

Progress We prove the progress property for well-typed CLASS processes. The
following notion of live process becomes useful. A process P is live if and only
if P = C[Q], for some static context C (the hole lies within the scope of static
constructs mix, cut and share) and Q is an active process (a process with a
topmost action prefix, such as a receive or a take, or a forwarder). We first
show that a live well-typed process either reduces or offers an interaction with
its environment on a free name. The following observability predicate (cf. [70])
characterises the interactions of a process with its environment

Definition 5 (P ↓x). The predicate P ↓x is defined by rules of Fig. 8.

The predicate P ↓x holds if P offers an immediate interaction (unguarded action)
on free name x. We can observe the subject of an action (rule [act]) and x, y
of a forwarder fwd x y. The definition of P ↓x is closed by ≤ and propagates
observations over the various static operators. Cut bound names are not free,
hence cannot be observed. Share share y {P || Q} propagates all the observations
x for which x ̸= y and by applying ≤ rules [ShTake], [ShRel] or [ShPut] via [≤],
an interaction on x may be observed. We have

Lemma 1 (Liveness). Let P ⊢∅ ∆;Γ be live. Either P ↓x or P reduces.

Proof. (Sketch) By induction on a derivation for P ⊢∅ ∆;Γ , along the lines
of [27]. To handle case [Tcut] P = P1 |y| P2: both P1 and P2 are live, since both
type with a nonempty linear typing context, hence we can apply the induction
hypothesis (i.h.) to both premises of [Tcut]: either (i) one of P1 and P2 reduces
or (ii) both P1 ↓x1

and P2 ↓x2
. If (i), then P reduces. Case (ii) follows because,

crucially, P1 and P2 synchronise through a single private session y, then either
x1 ̸= y or x2 ̸= y, in which case we can observe either x1 or x2; or x1 = x2 = y,
in which case we can trigger a reduction, by applying ≤ rules to P in order to
exhibit a principal cut. For case [Tsh] P = share y {P1 || P2}: since P1 and P2

are live, we apply i.h. to both premises. The interesting case occurs when P1 ↓x1

and P2 ↓x2
. Co-contraction implies that P1 and P2 share the single usage y, so

if x1 ̸= y or x2 ̸= y, we have either P1 ↓x1 or P1 ↓x2 . If both x1 = x2 = y,
then we derive P ↓y: the observation corresponds to either a take or a release
operation on y, which we commute up with [ShTake] or [ShRel]. For [TshL]
P = share y {P1 || P2}, we apply the i.h. to the premise P1, which types with
an empty usage on y. If P1 ↓y, then P ↓y, the observation corresponding a put
operation on y, which we commute up with [ShPut]. Symmetrically for [TshR].

Theorem 2 (Progress). Let P ⊢∅ ∅; ∅ be a live process. Then, P reduces.

Proof. Follows from Lemma 1 since fn(P) = ∅.

P. Rocha and L. Caires434

[fwd]
fwd x y ↓x

s(A) = x
[A]

A ↓x

P ≤ Q Q ↓x
[≤]

P ↓x

P ↓x
[mix]

(P || Q) ↓x
P ↓x x ̸= y

[cut]
(P |y| Q) ↓x

Q ↓x x ̸= y
[cut!]

(z.P |!y| Q) ↓x

P ↓x x ̸= y
[share]

(share y {P || Q}) ↓x

Fig. 8: Observability Predicate P ↓x.

Remarkably, our proof of Theorem 2 leverages deep properties of Linear Logic,
in particular the structure of the linear cut and co-contraction, allowing us to
prove deadlock absence, even in a language with primitives exhibiting blocking
behaviour, avoiding the use of extra mechanisms [47,33,48,10,25,76,31].

Strong Normalisation Establishing strong normalisation (SN) for concur-
rent process calculi is usually fairly challenging, particularly in the presence
of name passing, recursion and higher-order shared state [32,16,83,49,69]. For
example, with reference cells one may express general recursion with Landin’s
knot, and, in general, circular chains of references that may lead to divergence.
However, our linear type system uses primitive recursion and corecursion, and
excludes cyclic dependencies through state or session based interaction, allowing
strong normalisation, and therefore livelock absence, to hold. Our proof relies
on defining suitable linear logical relations, cf. [62,21,72], adapted to Classical
Linear Logic [38,1,8], and crucially relying on a notion of reducibility up to in-
terference that imposes stronger properties on the interpretation of the state
modalities, and which allows the inductive proof of the Fundamental Lemma 2
to go through in the usual way. To this end, we extend our basic language with
auxiliary constructs cell c(a.S) and empty c(a.S), which denote memory cells
subject to interference from concurrent writers, allowed to take terms from the
set S ⊆ {P | P ⊢η a : ∧A}. The intuition is that a take on the cell may always
read any object from S, due to interference. We also consider the additional
reduction (nondeterministic) rules (1)-(3), where in 1 and 2 we assume P ∈ S.

cell c(a.S) |c| release c → P |a| discard a, (1)
cell c(a.S) |c| take c(a′);Q → empty c(a.S) |c| (P |a| {a/a′}Q) (2)
empty c(a.S) |c| put c(a.P);Q → cell c(a.S) |c| Q (3)

In this section, we thus consider reduction of P → Q to be the relation defined
in Fig 7, extended with these rules. When a take or a release interacts with
cell c(a.S), an arbitrary element P from the set S may be picked (rules (1) and
(2)). In (3), a put put c(a.P);Q interacts with empty c(a.S) causing empty c(a.S)
to evolve to cell c(a.S) (3). The following notion is also useful. A process P is
S-preserving on x if P ⊢η x : U•A or P ⊢η x : U◦A, and

– if P
∗−→≈ take x(y);P ′ and Q ∈ S, then Q |y| P ′ is S-preserving on x.

– if P
∗−→≈ put x(y.P1);P2, then P1 ∈ S and P2 is S-preserving on x.

Safe Session-Based Concurrency with Shared Linear State 435

A set of processes T is S-preserving on x if and only for all P ∈ T , P is S-
preserving on x. Intuitively a process P that uses a cell x is S-preserving on x
if it only puts values from S on cell x. The notion of S-preservation, parametric
on any S, brings explicit the conditions needed for safe interaction with a mem-
ory cell, subject to interference, while ensuring a state invariant S on the cell
contents. We now introduce the logical predicate.

Definition 6 (Logical Predicate Jx : AKσ). By induction on the type A, we
define the sets Jx : AKσ an shown in Fig. 9, such that Jx : U•AKσ and Jx : U◦AKσ
are J− : ∧AK-preserving on x.The definition is direct for the positive types A,
for negative types B is given by orthogonality.

The definition relies on Girard’s notion of orthogonality S⊥ ≜ {P | ∀Q ∈
S. P |x| Q is SN} [37]. Duality promotes succinctness in our definition: for neg-
ative types A, Jx : AKσ is defined as the orthogonal of the predicate for its dual
A (positive) type. To handle polymorphic and inductive types, the logical pred-
icate is indexed by a map σ that assigns reducibility candidates R[x : A] to type
variables. A reducibility candidate R[x : A] is any set S of processes P ⊢∅ x : A
such that P is SN and S = S⊥⊥. We let R[− : A] be the set of all reducibil-
ity candidates R[x : A] for some name x. The definition relies on a congruence
relation ≈ extending ≤ with a complete set of commuting conversions, along
standard lines [22,27,80]. It essentially plays the role of the labelled transition
system in the proof of strong normalisation given in [62].

We extend the logical predicate to typing judgements P ⊢η ∆;Γ by universal
closure over the typing context and σ.

Definition 7 (Extended Logical Predicate LJ⊢η ∆;Γ Kσ). We define LJ⊢η

∆;Γ Kσ inductively on ∆,Γ and η as the set of processes P ⊢η ∆;Γ s.t.

P ∈ LJ⊢∅ ∅; ∅Kσ iff P is SN.
P ∈ LJ⊢∅ ∆,x : A;Γ Kσ iff ∀Q ∈ Jx : AKσ. Q |x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢∅ ∆;Γ, x : AKσ iff ∀Q ∈ Jy : AKσ. y.Q |!x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢η,X(x,y) 7→∆′,x:Y ;Γ ∆;Γ Kσ iff ∀Q ∈ σ(Y). {Q/X}P ∈ LJ⊢η ∆;Γ Kσ.

We now state the Fundamental Lemma (2) from which Theorem 3 follows.

Lemma 2 (Fundamental Lemma). If P ⊢η ∆;Γ , then P ∈ LJ⊢η ∆;Γ Kσ.

Proof. (Sketch) By induction on P ⊢η ∆;Γ . For cases [Tcell] and [Tempty], we
show that cell c(a.S) and empty c(a.S) respectively simulate cell c(a.P) (where
P ∈ S) and empty c, when composed with any S-preserving on c usages. To
handle one of the most challenging cases, [Tsh] we prove, for all S, and all S-
preserving on x processes P1 and P2, that cell c(a.S) |c| share c {P1 || P2} (1)
is simulated by (cell c(a.S) |c| P1) || (cell c(a.S) |c| P2) (2). This allows us to
infer that if (2) is SN, then so it is (1). When S = Ja : ∧AKσ, the i.h. yields
(cell c(a.S) |c| Pi) SN, hence we conclude (2) SN. Similarly for [TshL], [TshR].

Theorem 3 (Strong Normalisation). If P ⊢∅ ∅; ∅, then P is SN.

P. Rocha and L. Caires436

Jx : XKσ ≜ σ(X)[x]

Jx : 1Kσ ≜ {P | P ≈ close x and P is SN}⊥⊥

Jx : A⊗BKσ ≜ {P | ∃P1, P2. P ≈ send x(y.P1);P2 and
P1 ∈ Jy : AKσ and P2 ∈ Jx : BKσ}⊥⊥

Jx : A⊕BKσ ≜ {P | ∃Q. P ≈ x.inl;Q and Q ∈ Jx : AKσ or
P ≈ x.inr;Q and Q ∈ Jx : BKσ}⊥⊥

Jx :!AKσ ≜ {P | ∃Q. P ≈ !x(y);Q and Q ∈ Jy : AKσ}⊥⊥

Jx : ∃X.AKσ ≜ {P | ∃Q,S ∈ R[− : B]. P ≈ sendty x(B);Q and
Q ∈ Jx : AKσ[X 7→S]}⊥⊥

Jx : µX. AKσ ≜ (
⋂
{S ∈ R[− : µX.A] | unfoldµ x; Jx : AKσ[X 7→S] ⊆ S})⊥⊥

Jx : ∧AKσ ≜ {P | ∃Q. P ≈ affine x;Q and Q ∈ Jx : AKσ}⊥⊥

Jx : S•AKσ ≜ {P | P ≈ cell x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : S◦AKσ ≜ {P | P ≈ empty x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : BKσ ≜ Jx : BK⊥σ (B negative type)

Fig. 9: Logical Predicate Jx : AKσ.

4 Typeful Concurrent Programming in CLASS

In this section, we discuss the expressiveness of CLASS’s type system, going
through a sequence of illustrative realistic concurrent programming idioms.

Sharing a Linear Session. Our first example illustrates how objects subject
to a linear usage protocol and satisfying an invariant may be shared among
multiple concurrent clients by serialising linear usages using a mutex cell, al-
ternating ownership from the cell to clients and back at the invariant state, a
commonly used discipline to implement and reason about resource sharing (see,
e.g., [39,17,9]). We illustrate with a basic toggle switch with two states - On and
Off - the resource invariant is the state Off, and two operations #turnOn and
#turnOff that must be executed in strict linear sequence (Fig. 10). The toggle
protocol, defined by type Off, offers the single option #turnOn, after which it
evolves to On. Conversely, type On offers the single option #turnOff, after which
it evolves to an affine Off. The toggle process at t is defined by two mutually
corecursive processes on(t) and off(t), which define the expected behaviour, and
comply with types On and Off.

Process main() introduces a mutex cell c storing an affine toggle object at the
invariant type ∧Off. It then shares it with two concurrent clients, each acquires
the toggle in the invariant type and uses the linear protocol independently. After
their linear interaction, they put back the toggle, the type system ensures that
this can only happen when the invariant (given by the cell type) holds. When
they are done, both clients release their respective usages of c, which ultimately
leads to the cell being deallocated and the (affine) toggle to be discarded.

Safe Session-Based Concurrency with Shared Linear State 437

type corec Off = N{|#turnOn : On}
type corec On = N{|#turnOff : ∧Off}
off(t) ⊢ t : Off
off(t) = case t {|#turnOn : on(t)}
on(t) ⊢ t : On
on(t) = case t {|#turnOff :

affine t; off(t)}
client1(c) ⊢ c : S•Off
client1(c) = take c(t);

#turnOn t; #turnOff t;
put c(t); release c

client2(c) ⊢ c : S•Off
client2(c) = take c(t);

#turnOn t; #turnOff t;
#turnOn t; #turnOff t;
put c(t); release c

main() ⊢ ∅
main() = cut {cell c(t.affine t; off(t))

|c|
share c {

client1(c) ||
client2(c) }}

Fig. 10: Sharing a Linear Toggle Switch

type rec SList(A) = S•List(A)
type rec List(A) = ⊕{

|#Null : 1,
|#Next : ∧A⊗ SList(A)}

nil(l) ⊢ l : ∧List(A)
nil(l) = affine l; #Null l; close l

cnext(a, c, l) ⊢ a: ∨A, c:SList(A), l: ∧ List(A)
cnext(a, c, l) = affine l;

#Next l;
send l(a);
fwd l c

append(c, l′, c′) =
take c(l);
case l {
|#Null :
wait l; put c(l′); fwd c c′

|#Next :
recv l(a);
cut {
append(l, l′, x)
|x|
put c(y.cnext(a, x, y));
fwd c c′ }}

Fig. 11: A Linked List with an Append In-Place Operation.

We have also developed CLASS code for a generic (polymorphic) wrapper
factory that, for any affine corecursive protocol, generates a wrapper to a general
invariant-based sharing interface.

Linked Lists, Update In-Place. In this example, we show how inductive/-
coinductive types combine harmoniously with CLASS state modalities to type
linked data structures with memory-efficient updates in-place. Specifically, we
show how to code a linked list, parametric on the type A of its affine values,
with update in-place append (Fig. 11). An object of type SList(A) is a (full) cell
storing a List(A) object. An object of type List(A) is a session that either selects
#Null (the list is empty), in which case it closes; or selects #Next, in which case
it sends an affine session ∧A representing the head element and continues as the
tail SList(A). Process nil(l) - defines an empty list at l - and process cnext(a, c, l)
- constructs a nonempty list l with head a and tail c. For example, a list with

P. Rocha and L. Caires438

elements a, b stored at c1 : S•List(A) is represented

cut{ cell c1(l1.cnext(a, c2, l1)) |c2| cell c2(l2.cnext(b, cs, l2)) |cs| cell cs(l0.nil(l0))}

Process append(c, l′, c′) ⊢ c : SList(A), l′ : List(A), c′ : SList(A) produces on c′

the result of appending l (in place) to c. It takes the list l stored in c, and then
performs case analysis on l. If l selects #Null, it simply replaces the previous null
node of c by l′ and forwards the updated cell c to the output c′. This corresponds
to the recursion base case in which the list l is empty.

If l selects #Next, in which case l has at least one element, one receives at l
the node element a : ∨A, and corecursively call append l′ to the tail l : SList(A)
and puts back in c element a and tail x “returned” by the call. Notice that
x is exactly x (by forwarding), which was passed along linearly. Remarkably,
the append(c, l′, c′) operation just defined may be safely applied concurrently
to the same shared linked list, with the final result being the correct one (some
serialisation of the appends), without deadlocks or livelocks. It is also interesting
to see how the type system forbids a list to be appended to itself.

We have also developed many other in-place operations on linked data struc-
tures, such as insertion sort, and other kinds of linked structures such as queues
and binary search trees. In the next examples we discuss a shared queue ADT
with a fine-grained locking discipline and O(1) enqueue and dequeue operations.

A Concurrent Shareable Buffered Channel. We illustrate increased de-
grees of sharing in a mutable data structure with various references pointing to
different parts of it, how the CLASS type system may express interfaces that
talk about different client views for using a stateful object, and the use of poly-
morphism to implement information hiding ensuring that client code will never
break the representation invariants of stateful ADTs, particularly challenging
when aliasing and sharing are involved.

More concretely, we consider a shareable buffered channel (Fig. 12), and
provide a realistic and efficient implementation [56] based on a message queue
represented by a linked list with update-in-place (cf. Section 4 above) and two
independent pointers: one to the head of the list, used for receiving, and another
to the tail, used for sending. The operations are executed in O(1) time. Moreover
we provide a typing with two separate send and receive views, which may be
used by an arbitrary number of concurrent clients. In particular, when the list
is nonempty, both send and receive run in true concurrency (asynchronously),
without blocking each other, thanks to fine-grained locking.

The buffered channel type BChan(M), where M is the type of messages,
offers two views: SendT(M) and RecvT(M), interfaces for sender and receiver
endpoint clients. These views are exposed with a par (O), since they share an
underlying resourceful structure. In fact, they could not be exported using a ten-
sor (⊗); it is interesting to notice how the type system imposes these constraints,
important to ensure deadlock freedom. The representation type of both views is
Rep = S•SList(M) (see Section 4), hidden behind the SV and RV existential
types [29,58]; sending clients use a cell storing a reference to the tail node of

Safe Session-Based Concurrency with Shared Linear State 439

type BChan(M) = SendT(M) O RecvT(M)
type SendT(M) = ∃SV.!MenuS(M,SV)⊗ SV
type RecvT(M) = ∃RV.!MenuR(M,RV)⊗RV

type MenuS(M,SV) = N {
|#Send : SV ⊸ ∧M ⊸ SV,
|#Share : SV ⊸ (SV O SV),
|#Free : SV ⊸ 1 },

type MenuR(M,RV) = N {
|#Recv : RV ⊸ (Maybe(∧M)⊗RV),
|#Share : RV ⊸ (RV O RV),
|#Free : RV ⊸ 1 }

Rep = SV = RV = S•SList(M)

msend(me) =
recv me(tailptr);
recv me(a);
take tailptr(c);
take c(l);
cut {

cell c′(l)
|c′|
share c′ {
put c(l′.cnext(a, c′, l′));
release c′

||
put tailptr(c′);
send me(tailptr);
close me}}

Fig. 12: A Concurrent Shareable Buffered Channel.

the queue; receiving clients use a cell storing a reference to the head node of the
queue.

Clients use the buffer through references of abstract type SV and RV and
replicated menus !MenuS(M,SV) and !MenuR(M,RV). Both menus export the
options #Share and #Free to allow sharing and release of the views. To send, a
client selects #Send, sends his handle (of opaque type SV), the message to send
and receives the (linear) handle back. In this implementation, receive is non-
blocking, so operation #Recv returns a Maybe(∧M) value: the client receives
either #Nothing (if the buffer is empty) or #Just followed by a message a, oth-
erwise. In 4 we discuss the implementation, in CLASS, of (Hoare style) monitors
with conditions, which would allow a blocking receive to be implemented.

Process msend(me) implements the #Send “method”. It first receives the
sending view handle (of concrete type Rep), which is a cell with the tailptr , and
the message a to be sent. Then, a new cell c′ with nil (l) is created, the current
tail of the list c is updated with a new node storing a and pointing to c′. Finally,
the tailptr cell is updated to point to the new tail node c′ of the linked list.

Dining Philosophers. A resource hierarchy solution for the dining philoso-
phers problem [34] requires forks to be acquired in a defined order. We “encode”
such order in CLASS with an explicit (necessarily) acyclic structure, which in-
forms the type system about the code safety. This allows us to define a correct
implementation that satisfies deadlock freedom by pure linear logic typing. More
concretely, we organise the forks in a linked chain defined by the inductive types
rec Fork = S•Node and rec Node = ⊕{#Null : 1,#Next : Fork}.

Any fork in the chain may be shared by an arbitrary number of philosophers,
cocontraction ensures that philosophers cannot communicate between them-
selves via any other channel, all synchronisation must happen via the chained

P. Rocha and L. Caires440

putNull(f, f ′) ⊢ f : U◦Node, f
′ : Fork

putNull(f, f ′) ≜ put f(n.null(n)); fwd f f ′

eat(f, f ′) ⊢ f : Fork, f ′ : Fork

eat(f, f ′) ≜
take f(n);
case n {
|#Null :
wait n; putNull(f, f ′)
|#Next :
take n(m);
put n(m); put f(n′.next(n, n′));
fwd f f ′}

eat2(f, f ′) ⊢ f : Fork, f ′ : Fork

eat2(f, f ′) ≜
take f(n);
case n {

|#Null :
wait n; putNull(f, f ′)
|#Next :
cut {
takeLast(n, x)
|x|
recv x(m);wait x;
put f(n′.next(m,n′));
fwd f f ′}

Fig. 13: The Dining Philosophers.

forks. Furthermore, the chain can be resized and grow unboundedly to accommo-
date an arbitrary number of philosophers. If a philosopher successfully takes a
fork fi, he can then take any fork fj , with i < j; crucially, he must follow the path
dictated by the chain, hence cannot acquire forks fj with j < i. In Fig. 13 we
define the eat operation, which allows each philosopher Pi, with 0 ≤ i < k−1 to
eat: it acquires two consecutive forks in the chain. And eat2, which is the specific
eating operation for the symmetry breaker Pk−1: it acquires the first fork, and
traverses the chain to acquire the last with takeLast(n, x) ⊢ n : Fork, x : Fork⊗1.

A Barrier for N threads. We describe in Fig. 14 a CLASS implementation
of a simple barrier, parametric on the number N of threads to synchronise. We
find it interesting to model the “real” code shown in the Rust reference page for
std::sync::Mutex [46]. The code uses if-then-else and primitive integers, as offered
in our implementation, that could be defined as idioms in CLASS. We represent
a barrier by a mutex cell storing a pair consisting of an integer n, holding the
number of threads that have not yet reached the barrier, and a stack s of waiting
threads, each represented by a session of affine type ∧⊥ (so they will be safely
aborted if at least one thread fails to reach the barrier).

The type Barrier of the barrier is S•BState, where BState ≜ Int⊗∧List(∧⊥).
Initially the barrier is initialised with n = N threads and an empty stack, so that
the invariant n+depth(s) = N holds during execution. Each thread(c; i) acquires
the barrier c and checks if it is the last thread to reach the barrier (if n == 1): in
this case, it awakes all the waiting threads (awakeAll(ws)) and resets the barrier.
Otherwise, it updates the barrier by decrementing n and pushing its continuation
into the stack (the continuation for thread i just prints “finished”). The following
process main() ⊢ ∅ creates a new barrier c and spawns N threads, each labelled

Safe Session-Based Concurrency with Shared Linear State 441

init(ws) ⊢ ws : ∧BState
init(ws) ≜

affine ws; send ws(N); affine ws; nil(ws)

awakeAll(ws : List(∧⊥))

awakeAll(ws) ≜
case ws {
#Nil : wait ws; 0
#Cons :
recv ws(w);
par {close w || awakeAll(ws)}

spawnAll(c; i, n) ⊢ c : Barrier; i : Int, n : Int

spawnAll(c; i, n) ≜
if (n == 0) { release c}
{ share c {

thread(c; i)
||
spawnall(c; i+ 1, n− 1)}}

thread(c; i) ⊢ c : Barrier; i : Int
thread(c; i) =

println i+ “: waiting.”;
take c(ws); recv ws(n);
if (n == 1) {
par {

println i+ “: finished.”;
awakeAll(ws)
||
put c(w′

s.init(w
′
s));

release c}}
{ cut {

affine w;wait w;
println i+ “: finished.”; 0
|w| put c(w′

s.affine w′
s;

send w′
s(n− 1);

affine w′
s;

cons(w,ws, w
′
s));

release c}}

Fig. 14: A Barrier for N Threads

by a unique id i: main() ≜ cut { cell c(ws.init(ws)) |c| spawnAll(c; 0, N) }. Again,
our type system statically ensures that the code does not deadlock or livelock.

A Hoare Style Monitor. A Hoare style monitor is a well-know powerful
programming abstraction [39], allowing concurrent operations on shared data to
be coordinated in a sound way, so that it always satisfy a correctness invariant.
The key essential idea is that concurrent client threads use the monitor lock to
access the protected state in mutual exclusion, but may also wait (via a await
primitive) inside the monitor until the state satisfies specific (pre-)conditions,
while transferring state ownership to other threads potentially responsible for
establishing such conditions and announcing it (via a notify primitive).

We discuss a CLASS implementation of a monitor, sketching the main com-
ponents and how they are typed (Fig. 15). We consider a counter with value n,
with increment #Inc and decrement #Dec operations, and subject to the invari-
ant n ≥ 0. The type of the counter CounterI exposes two separate, coinductively
defined, client interfaces DecI and IncI for decrementing and incrementing.

While the #Inc operation is synchronous, the #Dec operation is always called
asynchronously by passing a continuation (of type ContDec). This allows decre-
menters to wait inside the monitor for condition NZ (n > 0) when n = 0. The
condition NZ is represented by a wait queue of type WaitQ. The representation
type of the monitor (Rep) holds the counter value and the wait queue. Each node
in the wait queue stores information, of type ContDecW, for the waiting thread.

P. Rocha and L. Caires442

type corec IncI ≜ N{|#Inc : IncI, |#End : ⊥}
type corec DecI ≜
∨ N {|#Dec : ∨(ContDec ⊸ ⊥),#End : ⊥}

type corec ContDec ≜ ∨(DecI⊗ 1)

type CounterI ≜ DecI O IncI

type rec Rep ≜ (!Int)⊗WaitQ

type rec WaitQ ≜ ∧ ⊕ {|#Null : 1, |#Next : NodeQ}
type rec NodeQ ≜ S•(ContDecW ⊗WaitQ)

type rec ContDecW ≜ ∧(∧Rep ⊸ ∧Rep⊗ DecI ⊸ ⊥)

awaitNZ ⊢ m : U◦Rep,
n : !Int, w : WaitQ, cc : ContDecW

notifyNZ ⊢ m : U◦Rep, s : Rep,m
′ : S•Rep

incloop ⊢ iv : IncI,m : U•Rep

awaitNZ(m,n,w, cc) ≜
put m(w′.affine v;

send w′(n);
consWQ(cc, w,w′));
release m

incloop(iv,m) ≜
case iv {
#Inc : take m(r);

recv r(n);
cut {
send s(n+ 1); fwd s r
|s| notifyNZ(m, s,m′)
|m′| incloop(iv,m′) }
#End : wait iv;

release m}

Fig. 15: Implementing a Counter Monitor with Await / Notify.

Every such ContDecW objects stores (1) the pending action on the internal mon-
itor state (of type ∧Rep ⊸ ∧Rep), to be executed after await returns, and (2) a
callback to the continuation provided by the external client in the asynchronous
call (of type DecI ⊸ ⊥).

The awaitNZ(m,n,w, cc) process implements the monitor wait operation,
used in the #Dec operation. It receives the (empty) cell usage m to the mon-
itor state, the integer value n (where n = 0), a reference w to the wait queue,
and the continuation cc, it pushes a new node in the queue and puts the moni-
tor state back, unlocking the cell m, and releases m. The incloop(iv,m) process
implements the counter IncI interface. The call to notifyNZ(m, s,m′) after incre-
menting n will cause a waiting DecI thread to be awaken (if any), and continue
by applying the pending action to the Rep state s in which n > 0 holds, before
passing the updated state m′ to the incloop recursive call. Affinity plays a key
role, allowing all data structures, including waiting continuations to be safely
discarded, at the end of any computation. We have only shown here some code
snippets, the complete code is available in the CLASS distribution.

Our examples illustrate how our system types non-trivial concurrent code,
akin to real system-level code, involving higher-order state, rich sharing and own-
ership transfer patterns, while ensuring deadlock, livelock freedom and memory
safety. Our typing of sharing imposes that only a single bundle of linear resources
may be shared by two independent threads. As our examples show, code can of-
ten be structured in that way, so that bundles of many linear resources may be
safely shared by monitor-like structures, exposing informative typed interfaces.

The feasibility of CLASS is corroborated by our implementation [68] of a fully-
fledged type checker and interpreter, developed in Java (∼15k), and packaged

Safe Session-Based Concurrency with Shared Linear State 443

with an extensive CLASS library of code and test suites (∼10k), including all the
examples in this paper. Type checking is decidable in polynomial time, using a
minimal type annotation, only on cut-bound names and function parameters,
the multiplicative rules are handled by lazy context splitting (cf. [41]). The
type checker ensures that corecursive calls are done on a session hereditarily
descendent from the corecursion parameter, a condition motivated by our SN
result (Theorem 3). But we also support an unsafe corecursion mode, in which
this check is turned off, to type programs defined by general corecursion.

The type checker supports useful type inference and reconstruction abilities.
The interpreter uses java.util.concurrent.* package [53], using primitives such as
fine-grained locks and condition variables to emulate the synchronous interac-
tions of CLASS sessions and a cached thread pool to manage the life cycle of
short-lived threads. Cell deallocation is implemented by reference counting, in-
cremented on each share and decremented on each release. Forwarding redirects
the clients of a shared cell through a chain of forwarding pointers (cf. [9]).

5 Related Work

Many resource-aware logics and type systems to tame shared state and interfer-
ence have been proposed [3,18,57,77,44,17,60,61,24]. These systems adopt some
form of linearity and/or affinity to resourceful programming [75,30] and to model
failures/exceptions [28,59,20,36,52]. In CLASS, linearity allows us to control state
sharing, whereas affinity is useful to ensure memory safety and to represent
safely finalizable or abortable computations. The hereditary session-discarding
behaviour of affine sessions, modelled by rule [∧∨d], is also present in other
works, e.g. [6,59,20].

CLASS builds on top of the PaT correspondence with Linear Logic [22,27,80],
the logical principles for the state modalities being inspired by DiLL [35]. Recent
works [43,9,10,7,50,64,67] also address the problem of sharing and nondetermin-
ism in the setting of session-based PaT. In [67], reference cells may only store
replicated sessions (of type !A), thus cannot refer to linear entities such as other
cells or linear sessions, hence cannot represent many realistic programming id-
ioms that CLASS does (see Section 4). Accommodating linear state in a pure
PaT approach is thus addressed in this work with a novel, more fundamental
approach. Furthermore, in [67], recursion is obtained via a system-F style encod-
ing [79], which cannot model inductive stateful structures with updates in-place
as we do with CLASS native inductive/coinductive types.

The take/put operations of CLASS relate with Concurrent Haskell MVars [45]
and the acquire/release operations of the manifest sharing session-typed lan-
guage SILLS [9,10]. Sharing in SILLS is based on shift modalities to move from
shared to linear mode and back, and contraction principles to alias shared ses-
sions. In CLASS we explore DiLL modalities and cocontraction principles [35]
to express sharing of linear state and put / take protocols of mutex memory
cells of invariant type. The work [10] ensures deadlock-freedom by relying on
programmer provided partial orders on events [55,33,26], whereas in CLASS
deadlock-freedom follows the same simple and general inductive argument of

P. Rocha and L. Caires444

the corresponding result in e.g. [22], thanks to the logical character of the new
proof rules (DiLL cocontraction, that enjoys cut-elimination). The work [64] in-
troduces the language CSLL, by extending linear logic with coexponentials that
support a notion of shared state, with a quite different approach than ours. CSLL
does not claim the ability to naturally express shared linked data structures with
update in-place and fine-grained locking, as CLASS does. Nevertheless, it is nat-
ural to define in CLASS sessions exporting weakening, sharing and dereliction
capabilities for linear behaviours, as in our shared buffer example.

Recently, the work [43] develops λlock, a substructural-typed λ-calculus with
higher-order locks, which enjoys deadlock-freedom by imposing a set of high-level
principles that guarantee acyclicity of the lock-sharing topologies, and which fol-
low in CLASS as a consequence of its logical-motivated type system and DiLL’s
cocontraction. This work also extends λlocks with partial orders in which a re-
source can shared by more than two concurrent threads. None of the models
in [43,9,10,64] addresses livelock absence or memory safety, as CLASS does.

As far as we are aware, CLASS is a first proposal integrating shared state
and recursion in a language based on PaT and Linear Logic, while guaranteeing
strong normalisation. Least/greatest fixed points in Linear Logic were studied
in [8], which inspired the development of recursion in [54,73], our treatment
of recursion draws inspiration on [73]. Several works exploit the technique of
logical relations to establish strong normalisation for concurrent process cal-
culi [1,83,69,16,62]. The work [16] proves strong normalisation for a language
with higher-order store with a type and effect system that stratifies memory
into regions so as to preclude circularities. Interestingly, in CLASS such stratifi-
cation is implicitly guaranteed by the acyclicity inherent to Linear Logic. Linear
logical relations were studied in [62,21,72,74]. In this work we recast and ex-
tend the technique to Classical Linear Logic, exploring orthogonality [38,8,1],
and demonstrate, using a specially devised technique of interference-sensitive
reducibility, how logical relations scale to accommodate shared state.

6 Concluding Remarks

We have introduced CLASS, a session-based language founded on a propositions-
as-types interpretation of Second-Order Classical Linear Logic, extended with
recursion, affine types, first-class mutex cells and shared linear state. We believe
that CLASS is the first proposal of a language of its kind to provide the follow-
ing three strong properties by static typing: well-typed CLASS programs enjoy
progress, hence never deadlock, do not leak memory and always terminate.

CLASS metatheoretical properties are obtained in a compositional and mod-
ular way, by leveraging the key features of propositions-as-types, from which
the operational semantics and type system also emerges. In CLASS, types and
process have a consistent proof-theoretical behaviour: typed program constructs
correspond exactly to proof rules, with a proper compositional semantics via log-
ical relations (Section 3). Programs are composed by plugging basic constructs
with the cut rule, and all interaction principles are captured by principal cut
reductions that act locally in proofs/type derivations (Def. 4). We also obtain

Safe Session-Based Concurrency with Shared Linear State 445

an algebraic system based on proof simplification to reason about program (ob-
servational) equivalence, due to confluence (cf. [65]).

Besides the foundational relevance of our work, we also argued how CLASS
can cleanly express realistic concurrent higher-order programming idioms, with
many compelling examples. Any type system introduces conservative restric-
tions on its language, but we believe that CLASS offers an interesting balance
between the strong properties it ensures by typing and its expressiveness. In
fact, we find CLASS type system helpful to guide the development of safe con-
current idioms, with a fairly light type annotation burden. As future work, we
would like to investigate several possible refinements of the CLASS type disci-
pline, namely, allowing finer-grained resource-access policies to be expressed, and
exploring the integration of dependent and refinement types [71,51], enhancing
the logical expressiveness of the basic type system.

References

1. Abramsky, S.: Computational Interpretations of Linear Logic. Theoret. Comput.
Sci. 111(1–2), 3–57 (1993)

2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations
of typed concurrent programming. In: NATO ASI DPD. pp. 35–113 (1996)

3. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam.
Inf. 77(4), 397–449 (Dec 2007)

4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 197–347 (1992)

5. Andreoli, J.M.: Logic Programming with Focusing Proofs in Linear Logic. J. Log.
Comput. 2(3), 297–347 (1992)

6. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Com-
putational Logic (TOCL) 3(1), 137–175 (2002)

7. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: A List of
Successes That Can Change the World: Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, pp. 32–55. Springer (2016)

8. Baelde, D.: Least and greatest fixed points in linear logic. TOCL 13(1) (Jan 2012)

9. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.
Lang. 1(ICFP) (Aug 2017)

10. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) Programming Languages and Systems. pp. 611–639.
Springer International Publishing, Cham (2019)

11. Barber, A.: Dual Intuitionistic Linear Logic. Tech. Rep. LFCS-96-347, Univ. of
Edinburgh (1996)

12. Beffara, E.: A Concurrent Model for Linear Logic. ENTCS 155, 147–168 (2006)

13. Beffara, E.: An algebraic process calculus. In: Proceedings of the 2008 23rd Annual
IEEE Symposium on Logic in Computer Science. p. 130–141. LICS ’08, IEEE
Computer Society, USA (2008)

14. Bellin, G., Scott, P.: On the π-calculus and linear logic. Theoret. Comput. Sci.
135(1), 11–65 (1994)

15. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:
International Workshop on Computer Science Logic. pp. 121–135. Springer (1994)

P. Rocha and L. Caires446

16. Boudol, G.: Typing termination in a higher-order concurrent imperative language.
Information and Computation 208(6), 716–736 (2010)

17. Brookes, S., O’Hearn, P.W.: Concurrent Separation Logic. ACM SIGLOG News
3(3), 47–65 (2016)

18. Caires, L.: Logical Semantics of Types for Concurrency. In: International Con-
ference on Algebra and Coalgebra in Computer Science. pp. 16–35. CALCO’07,
Springer LNCS 4624 (2007)

19. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Relational parametricity for
polymorphic session types. Tech. Rep. CMU-CS-12-108, Carnegie Mellon Univ.
(2012)

20. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Proceed-
ings of the 26th European Symposium on Programming Languages and Systems -
Volume 10201. p. 229–259. Springer-Verlag, Berlin, Heidelberg (2017)

21. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Proceedings of the 22nd Euro-
pean Conference on Programming Languages and Systems. p. 330–349. ESOP’13,
Springer-Verlag, Berlin, Heidelberg (2013)

22. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory. pp. 222–
236. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

23. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Pro-
ceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation. p. 1–12. TLDI ’12, Association for Computing Machinery, New
York, NY, USA (2012)

24. Caires, L., Seco, J.a.C.: The type discipline of behavioral separation. In: Proceed-
ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 275–286. POPL ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013)

25. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) Programming
Languages and Systems. pp. 285–300. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2009)

26. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52),
4399–4440 (2010)

27. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26(3), 367–423 (2016)

28. Carbone, M., Honda, K., Yoshida, N.: Structured Interactional Exceptions in Ses-
sion Types. In: CONCUR 2008. LNCS, vol. 5201, pp. 402–417. Springer (2008)

29. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys (CSUR) 17(4), 471–523 (1985)

30. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protec-
tion. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. p. 48–64. OOPSLA ’98, As-
sociation for Computing Machinery, New York, NY, USA (1998)

31. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) Foundations of Software Science and Computation
Structures. pp. 91–109. Springer International Publishing, Cham (2018)

32. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Mobile processes and termination.
In: Semantics and Algebraic Specification, pp. 250–273. Springer (2009)

33. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) Trustworthy Global Computing.
pp. 257–275. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Safe Session-Based Concurrency with Shared Linear State 447

34. Dijkstra, E.W.: Hierarchical ordering of sequential processes. In: The origin of
concurrent programming, pp. 198–227. Springer (1971)

35. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and
antiderivatives. Mathematical Structures in Computer Science 28(7), 995–1060
(2018)

36. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous ses-
sion types: session types without tiers. Proceedings of the ACM on Programming
Languages 3(POPL), 1–29 (2019)

37. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)
38. Girard, J.Y.: Linear logic. Theoretical computer science 50(1), 1–101 (1987)
39. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun.

ACM 17(10), 549–557 (1974)
40. Hoare, C.A.R.: Towards a theory of parallel programming. In: The origin of con-

current programming, pp. 231–244. Springer (1972)
41. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear

logic. Information and computation 110(2), 327–365 (1994)
42. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-

ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pp. 479–490. Academic Press (1980)

43. Jacobs, J., Balzer, S.: Higher-order leak and deadlock free locks. Proceedings of
the ACM on Programming Languages 7(POPL), 1027–1057 (2023)

44. Jacobs, J., Balzer, S., Krebbers, R.: Connectivity graphs: a method for proving
deadlock freedom based on separation logic. Proc. ACM Program. Lang. 6(POPL),
1–33 (2022)

45. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: POPL. vol. 96, pp.
295–308. Citeseer (1996)

46. Klabnik, S., Nichols, C.: The Rust Programming Language (2021)
47. Kobayashi, N.: A type system for lock-free processes. Information and Computation

177(2), 122–159 (2002)
48. Kobayashi, N.: A new type system for deadlock-free processes. In: International

Conference on Concurrency Theory. pp. 233–247. Springer (2006)
49. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile

processes. ACM Transactions on Programming Languages and Systems (TOPLAS)
32(5), 1–49 (2008)

50. Kokke, W., Morris, J.G., Wadler, P.: Towards races in linear logic. In: Riis Nielson,
H., Tuosto, E. (eds.) Coordination Models and Languages. pp. 37–53. Springer
International Publishing, Cham (2019)

51. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent
types. ACM SIGPLAN Notices 50(1), 17–30 (2015)

52. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: Affine rust pro-
gramming with multiparty session types. arXiv preprint arXiv:2204.13464 (2022)

53. Lea, D.: Concurrent programming in Java: design principles and patterns. Addison-
Wesley Professional (2000)

54. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types. In:
Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016. pp. 434–447. ACM (2016)

55. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: Pro-
ceedings of the Twelfth Annual ACM Symposium on Theory of Computing. p.
70–81. STOC ’80, Association for Computing Machinery, New York, NY, USA
(1980)

P. Rocha and L. Caires448

56. Marlow, S.: Parallel and concurrent programming in Haskell: Techniques for mul-
ticore and multithreaded programming. ” O’Reilly Media, Inc.” (2013)

57. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate. In:
Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs.
pp. 1–7 (2010)

58. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 10(3), 470–502 (1988)

59. Mostrous, D., Vasconcelos, V.T.: Affine Sessions. In: Proc. of COORDINATION
2014. LNCS, vol. 8459, pp. 115–130. Springer (2014)

60. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism and
separation. J. Funct. Program. 18(5-6), 865–911 (2008)

61. O’Hearn, P.W., Reynolds, J.C.: From Algol to polymorphic linear lambda-calculus.
J. ACM 47(1), 167–223 (2000)

62. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and obser-
vational equivalences for session-based concurrency. Information and Computation
239, 254–302 (2014)

63. Pfenning, F.: Structural cut elimination. In: Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science. p. 156. LICS ’95, IEEE Computer
Society, USA (1995)

64. Qian, Z., Kavvos, G., Birkedal, L.: Client-server sessions in linear logic. Proceedings
of the ACM on Programming Languages 5(ICFP), 1–31 (2021)

65. Rocha, P.: A Logical Foundation for Session-Based Concurrent Computation.
Ph.D. thesis, NOVA School of Science and Technology (July 2022)

66. Rocha, P., Caires, L.: A Propositions-as-Types System for Shared State. Tech. rep.,
NOVA Laboratory for Computer Science and Informatics (06 2021)

67. Rocha, P., Caires, L.: Propositions-as-types and shared state. Proceedings of the
ACM on Programming Languages 5(ICFP), 1–30 (2021)

68. Rocha, P., Caires, L.: Safe ssession-based concurrency with shared linear state
(artifact) (January 2023). https://doi.org/10.5281/zenodo.7506064

69. Sangiorgi, D.: Termination of processes. Math. Struct. in Comp. Sci. 16(1), 1–39
(2006)

70. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge
University Press, USA (2001)

71. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionis-
tic linear type theory. In: Proceedings of the 13th International ACM SIGPLAN
Symposium on Principles and Practices of Declarative Programming. p. 161–172.
PPDP ’11, Association for Computing Machinery, New York, NY, USA (2011)

72. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. Lecture Notes in
Computer Science, vol. 8902, pp. 159–175. Springer (2014)

73. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: International Symposium on Trustworthy Global Computing.
pp. 159–175. Springer (2014)

74. Toninho, B., Yoshida, N.: On polymorphic sessions and functions: A tale of two
(fully abstract) encodings. ACM Trans. Program. Lang. Syst. 43(2) (Jun 2021)

75. Tov, J.A., Pucella, R.: Practical Affine Types. In: POPL 2011. pp. 447–458 (2011)

76. Vieira, H.T., Vasconcelos, V.T.: Typing progress in communication-centred sys-
tems. In: International Conference on Coordination Languages and Models. pp.
236–250. Springer (2013)

Safe Session-Based Concurrency with Shared Linear State 449

https://doi.org/10.5281/zenodo.7506064
https://doi.org/10.5281/zenodo.7506064

77. Voinea, A.L., Dardha, O., Gay, S.J.: Resource sharing via capability-based multi-
party session types. In: International Conference on Integrated Formal Methods.
pp. 437–455. Springer (2019)

78. Wadler, P.: Linear types can change the world! In: Broy, M. (ed.) Proceedings of
the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts
and Methods, 1990. p. 561. North-Holland (1990)

79. Wadler, P.: Recursive types for free (1990)
80. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN

International Conference on Functional Programming. p. 273–286. ICFP ’12, As-
sociation for Computing Machinery, New York, NY, USA (2012)

81. Wadler, P.: Propositions as Sessions. Journal of Functional Programming 24(2-3),
384–418 (2014)

82. Wadler, P.: Propositions as types. Communications of the ACM 58(12), 75–84
(2015)

83. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Infor-
mation and Computation 191(2), 145–202 (2004)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

P. Rocha and L. Caires450

http://creativecommons.org/licenses/by/4.0/

Bunched Fuzz: Sensitivity for Vector Metrics

june wunder1(�) , Arthur Azevedo de Amorim3, Patrick Baillot2, and
Marco Gaboardi1

1 Boston University, Boston, USA
jwunder@bu.edu

2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR9189 CRIStAL, F-59000 Lille, France
3 Rochester Institute of Technology, Rochester, USA

Abstract. Program sensitivity measures the distance between the out-
puts of a program when run on two related inputs. This notion, which
plays a key role in areas such as data privacy and optimization, has been
the focus of several program analysis techniques introduced in recent
years. Among the most successful ones, we can highlight type systems
inspired by linear logic, as pioneered by Reed and Pierce in the Fuzz
programming language. In Fuzz, each type is equipped with its own dis-
tance, and sensitivity analysis boils down to type checking. In particular,
Fuzz features two product types, corresponding to two different notions
of distance: the tensor product combines the distances of each component
by adding them, while the with product takes their maximum.
In this work, we show that these products can be generalized to arbi-
trary Lp distances, metrics that are often used in privacy and optimiza-
tion. The original Fuzz products, tensor and with, correspond to the
special cases L1 and L∞. To ease the handling of such products, we
extend the Fuzz type system with bunches—as in the logic of bunched
implications—where the distances of different groups of variables can be
combined using different Lp distances. We show that our extension can be
used to reason about quantitative properties of probabilistic programs.

1 Introduction

When developing a data-driven application, we often need to analyze its sensi-
tivity, or robustness, a measure of how its outputs can be affected by varying
its inputs. For example, to analyze the privacy guarantees of a program, we
might consider what happens when we include the data of one individual in its
inputs [11]. When analyzing the stability of a machine-learning algorithm, we
might consider what happens when we modify one sample in the training set [7].

Such applications have spurred the development of several techniques to rea-
son about program sensitivity [23,9]. One successful approach is based on linear-
like [14] type systems, as pioneered in Reed and Pierce’s Fuzz language [23].

The basic idea behind Fuzz is to use typing judgments to track the sensitivity
of a program with respect to each variable. Each type comes equipped with a
notion of distance, and the typing rules explain how to update variable sensi-
tivities for each operation. Because different distances yield different sensitivity
analyses, it is often useful to endow a set of values with different distances, which

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 451–478, 2023.
https://doi.org/10.1007/978-3-031-30044-8 17

http://orcid.org/0000-0002-3280-9731
mailto:jwunder@bu.edu
https://doi.org/10.1007/978-3-031-30044-8_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_17&domain=pdf

j. wunder et al.

leads to different Fuzz types. For example, like linear logic, Fuzz has two notions
of products: the tensor product ⊗ and the Cartesian product & (with). The first
one is equipped with the L1 (or Manhattan) distance, where the distance be-
tween two pairs is computed by adding the distances between the corresponding
components. The second one is equipped with the L∞ (or Chebyshev) distance,
where the component distances are combined by taking their maximum.

The reason for focusing on these two product types is that they play a key
role in differential privacy [11], a rigorous notion of privacy that was the motivat-
ing application behind the original Fuzz design. However, we could also consider
equipping pairs with more general Lp distances, which interpolate between the
L1 and L∞ and are extensively used in convex optimization [8], information the-
ory [10] and statistics [15]. Indeed, other type systems for differential privacy in-
spired by Fuzz [20] include types for vectors and matrices under the L2 distance,
which are required to use the Gaussian mechanism, one of the popular building
blocks of differential privacy. Supporting more general Lp metrics would allow
us to capture even more such building blocks [17,1], which would enable further
exploration of the tradeoffs between differential privacy and accuracy.

In this paper, we extend these approaches and show that Fuzz can be enriched
with a family of tensor products ⊗p, for 1 ≤ p ≤ ∞. These tensor products are
equipped with the Lp distance, the original Fuzz products ⊗ and & corresponding
to the special cases ⊗1 and ⊗∞. Moreover, each connective ⊗p is equipped with
a corresponding “linear implication” ⊸p, unlike previous related systems where
such an implication only exists for p = 1. Following prior work [4,3], we give to
our extension a semantics in terms of non-expansive functions, except that the
presence of the implications ⊸p forces us to equip input and output spaces with
more general distances where the triangle inequality need not hold.

A novelty of our approach is that, to support the handling of such prod-
ucts, we generalize Fuzz environments to bunches, where each Lp distance comes
with its own context former. Thus, we call our type system Bunched Fuzz. This
system, inspired by languages derived from the logic of Bunched Implications
(BI) [22] (e.g. [21]), highlights differences between the original Fuzz design and
linear logic—for example, products distribute over sums in Fuzz and BI, but
not in linear logic. While similar indexed products and function spaces have also
appeared in the literature, particularly in works on categorical grammars [19],
here they are employed to reason about vector distances and function sensitivity.

While designing Bunched Fuzz, one of our goals was to use sensitivity to rea-
son about randomized algorithms. In the original Fuzz, probability distributions
are equipped with the max divergence distance, which can be used to state dif-
ferential privacy as a sensitivity property [23]. Subsequent work has shown how
Fuzz can also accommodate other distances over probability distributions [3].
However, such additions required variants of graded monads, which express the
distance between distributions using indices (i.e. grades) on the monadic type of
distributions over their results, as opposed to sensitivity indices on their inputs,
as it was done in the original Fuzz. In particular, this makes it more difficult to
reason about distances separately with respect to each input. Thanks to bunches,

452

Bunched Fuzz: Sensitivity for Vector Metrics

however, we can incorporate these composition principles more naturally. For ex-
ample, Bunched Fuzz can reason about the Hellinger distance on distributions
without the need for output grading, as was done in prior systems [3].

We will also see that, by allowing arbitrary Lp norms, we can generalize prior
case studies that were verified in Fuzz and obtain more general methods for rea-
soning about differential privacy (Section 5). Consider the Lp mechanism [1,17],
which adds noise to the result of a query whose sensitivity is measured in the
Lp norm. Since Fuzz does not have the means to analyze such a sensitivity mea-
sure, it cannot implement the Lp mechanism; Bunched Fuzz, however, can ana-
lyze such a measure, and thus allows for a simple implementation in terms of the
exponential mechanism. Such a mechanism, in turn, can be used to implement a
variant of a gradient descent algorithm that works under the Lp norm, general-
izing an earlier version that was biased towards the L1 norm [25]. Summarizing,
our contributions are:

– We introduce Bunched Fuzz, an extension of Fuzz with types for general Lp

distances: we add type constructors of the form ⊗p (for 1 ≤ p ≤ ∞) for
pairs under the Lp distance along with constructors of the form ⊸p for their
corresponding function spaces. To support the handling of such types, we
generalize Fuzz typing contexts to bunches of variable assignments.

– We give a denotational semantics for Bunched Fuzz by interpreting programs
as non-expansive functions over spaces built on Lp distances.

– We show that Bunched Fuzz can support types for probability distributions
for which the sampling primitive, which enables the composition of proba-
bilistic programs, is compatible with Lp distances.

– We show a range of examples of programs that can be written in Bunched
Fuzz. Notably, we show that Bunched Fuzz can support reasoning about the
Hellinger distance without the need for grading, and we show generalizations
of several examples from the differential privacy literature.

Check the full version of this paper for more technical details [26].

2 Background

2.1 Metrics and Sensitivity

To discuss sensitivity, we first need a notion of distance. We call extended pseu-
dosemimetric space a pair X = (|X|, dX) consisting of a carrier set |X| and an
extended pseudosemimetric dX : |X|2 → R≥0

∞ , which is a function satisfying, for
all x, y ∈ |X|, dX(x, x) = 0 and dX(x, y) = dX(y, x). This relaxes the standard
notion of metric space in a few respects. First, the distance between two points
can be infinite, hence the extended. Second, different points can be at distance
zero, hence the pseudo. Finally, we do not require the triangular inequality :

dX(x, y) ≤ dX(x, z) + dX(z, y), (1)

453

hence the semi. We focus on extended pseudosemimetrics because they support
constructions that true metrics do not. In particular, they make it possible to
scale the distance of a space by ∞ and enable more general function spaces.
However, to simplify the terminology, we will drop the “extended pseudosemi”
prefix in the rest of the paper, and speak solely of metric spaces. In some occa-
sions, we might speak of a proper metric space, by which we mean a space where
the triangle inequality does hold (but not necessarily the other two requirements
that are missing compared to the traditional definition of metric space).

Given a function f : X → Y on metric spaces, we say that it is s-sensitive, for
s in R≥0

∞ , if we have, for all x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ s · dX(x1, x2), where
we extend addition and multiplication to R≥0

∞ by setting ∞ · s = s · ∞ = ∞.
We also say that f is s-Lipschitz continuous, though the traditional definition of
Lipschitz continuity assumes s ̸= ∞. If a function is s-sensitive, then it is also
s′-sensitive for every s′ ≥ s. Every function of type X → Y is ∞-sensitive. If a
function is 1-sensitive, we also say that f is non-expansive. We use X ⊸ Y to
denote the set of such non-expansive functions. The identity function is always
non-expansive, and non-expansive functions are closed under composition. Thus,
metric spaces and non-expansive functions form a category, denoted Met.

2.2 Distances for Differential Privacy

Among many applications, sensitivity is a useful notion because it provides a con-
venient language for analyzing the privacy guarantees of algorithms—specifically,
in the framework of differential privacy [11]. Differential privacy is a technique
for protecting the privacy of individuals in a database by blurring the results of
a query to the database with random noise. The noise is calibrated so that each
individual has a small influence on the probability of observing each outcome
(while ideally guaranteeing that the result of the query is still useful).

Formally, suppose that we have some set of databases db equipped with a met-
ric. This metric roughly measures how many rows differ between two databases,
though the exact definition can vary. Let f : db → DX be a randomized database
query, which maps a database to a discrete probability distribution over the set
of outcomes X. We say that f is ϵ-differentially private if it is an ϵ-sensitive
function from db to DX, where the set of distributions DX is equipped with
the following distance, sometimes known as the max divergence:

MDX(µ1, µ2) =
∑
x∈X

ln

∣∣∣∣µ1(x)

µ2(x)

∣∣∣∣ . (2)

(Here, we stipulate that ln |0/0| = 0 and ln |p/0| = ln |0/p| = ∞ for p ̸= 0.)
To understand this definition, suppose that D1 and D2 are two databases at

distance 1—for instance, because they differ with respect to the data of a single
individual. If f is ϵ-differentially private, the above definition implies that f(D1)
and f(D2) are at most ϵ apart. When ϵ is large, the probabilities of each outcome
in the result distributions can vary widely. This means that, by simply observing
one output of f , we might be able to guess with good confidence which of the

j. wunder et al.454

databases D1 or D2 was used to produce that output. Conversely, if ϵ is small,
it is hard to tell which database was used because the output probabilities will
be close. For this reason, it is common to view ϵ as a privacy loss—the larger it
is, the more privacy we are giving up to reveal the output of f .

Besides providing a strong privacy guarantee, this formulation of closeness
for distributions provides two important properties. First, we can compose dif-
ferentially private algorithms without ruining their privacy guarantee. Note that
DX forms a monad, where the return and bind operations are given as follows:

η(x) = y 7→
{
1 if x = y

0 otherwise
(3)

f†(µ) = y 7→
∑
x∈X

µ(x) · f(x)(y). (4)

Intuitively, the return operation produces a deterministic distribution, whereas
bind samples an element x from µ and computes f(x). When composing differ-
entially private algorithms, their privacy loss can be soundly added together:

Theorem 1. Suppose that f : db → DX is ϵ1-differentially private and that g :
db → X → DY is such that the mapping δ → g(δ)(x) is ϵ2-differentially private
for every x. Then the composite h : db → DY defined as h(δ) = g(δ)†(f(δ)) is
(ϵ1 + ϵ2)-differentially private.

The other reason why the privacy metric is useful is that it supports many
building blocks for differential privacy. Of particular interest is the Laplace mech-
anism, which blurs a numeric result with noise drawn from the two-sided Laplace
distribution. If x ∈ R, let L(x) be the distribution with density4 y 7→ 1

2e
−|x−y|.

Theorem 2. The mechanism L is a non-expansive function of type R → DR.5

Thus, to define an ϵ-differentially private numeric query on a database, it suffices
to define an ϵ-sensitive, deterministic numeric query, and then blur its result
with Laplace noise. Differential privacy follows from the composition principles
for sensitivity. This reasoning is justified by the fact that the Laplace mechanism
adds noise proportional to the sensitivity of the numeric query in L1 distance.

2.3 Sensitivity as a Resource

Because differential privacy is a sensitivity property, techniques for analyzing
the sensitivity of programs can also be used to analyze their privacy guarantees.
One particularly successful approach in this space is rooted in type systems in-
spired by linear logic, as pioneered by Reed and Pierce in the Fuzz programming
language [16,23]. At its core, Fuzz is just a type system for tracking sensitivity.

4 We use here a Laplace distribution with scale 1.
5 The definitions do not quite match up our setting, since L is a continuous, and
not discrete distribution. The result can be put on firm footing by working with a
discretized version of the Laplace distribution [12].

Bunched Fuzz: Sensitivity for Vector Metrics 455

Typing judgments are similar to common functional programming languages,
but variable declarations are of the form xi :ri τi: x1 :r1 τ1, . . . , xn :rn τn ⊢ e : σ.
The annotations ri ∈ R≥0

∞ are sensitivity indices, whose purpose is to track the
effect that changes to the program input can have on its output: if we have two
substitutions γ and γ′ for the variables xi, then the metric preservation property
of the Fuzz type system guarantees that

d(e[γ/x⃗], e[γ′/x⃗]) ≤
∑
i

ri · d(γ(xi), γ
′(xi)), (5)

where the metrics d are computed based on the type of each expression and
value. This means that we can bound the distance on the results of the two
runs of e by adding up the distances of the inputs scaled by their corresponding
sensitivities. When this bound is finite, the definition of the metrics guarantees
that the two runs have the same termination behavior. When ri = ∞, the above
inequality provides no guarantees if the value of xi varies.

Fuzz includes data types commonly found in functional programming lan-
guages, such as numbers, products, tagged unions, recursive types and functions.
The typing rules of the language explain how the sensitivities of each variable
must be updated to compute each operation. The simplest typing rule says that,
in order to use a variable, its declared sensitivity must be greater than 1:

r ≥ 1

Γ, x :r τ,∆ ⊢ x : τ

As a more interesting example, to construct a pair (e1, e2), the following rule
says that we need to add the sensitivities of the corresponding contexts:

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 + Γ2 ⊢ (e1, e2) : τ1 ⊗ τ2
.

This behavior is a result of the distance of the tensor type ⊗: the distance
between two pairs in τ1 ⊗ τ2 is the result of adding the distances between the
first and second components; therefore, the sensitivity of each variable for the
entire expression is the sum of the sensitivities for each component. In this sense,
sensitivities in Fuzz behave like a resource that must be distributed across all
variable uses in a program. For the sake of analogy, we might compare this
treatment to how fractional permissions work in separation logic: the predicate
l 7→q x indicates that we own a fraction q ∈ [0, 1] of a resource stating that l
points to x. If q = q1 + q2, we can split this predicate as l 7→q1 x ∗ l 7→q2 x,
allowing us to distribute this resource between different threads.

The distance on ⊗ corresponds to the sum in the upper bound in the state-
ment of metric preservation (Equation (5)). This distance is useful because it is
the one that yields good composition principles for differential privacy. This can
be seen in the typing rule for sampling from a probabilistic distribution:

Γ ⊢ e1 : ⃝τ ∆, x :r τ ⊢ e2 : ⃝σ

Γ +∆ ⊢ mlet x = e1 in e2 : ⃝σ

j. wunder et al.456

Here, ⃝τ denotes the type of probability distributions over values of type τ .
This operation samples a value x from the distribution e1 and uses this value
to compute the distribution e2. We can justify the soundness of this rule by
reducing it to Theorem 1: the addition on contexts corresponds to the fact that
the privacy loss of a program degrades linearly under composition.

Besides the tensor product ⊗, Fuzz also features a with product &, where
the distances between components are combined by taking their maximum. This
leads to a different typing rule for & pairs, which does not add up the sensitivities:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 & τ2

If we compare these rules for pairs, we see a clear analogy with linear logic: ⊗
requires us to combine contexts, whereas & allows us to share them. Fuzz’s elim-
ination rules for products continue to borrow from linear logic: deconstructing a
tensor gives both elements but deconstructing a with product returns only one.

Γ ⊢ e : τ1 ⊗ τ2 ∆,x :r τ1, y :r τ2 ⊢ e′ : τ ′

∆+ rΓ ⊢ let (x, y) = e in e′ : τ ′
Γ ⊢ e : τ1 & τ2

Γ ⊢ πi e : τi

This partly explains why the connectives’ distances involve addition and max-
imum. When using a tensor product, both elements can affect how much the
output can vary, so both elements must be considered. (Note that Fuzz is an
affine type system: we are free to ignore one of the product’s components, and
thus we can write projection functions out of a tensor product.) When projecting
out of a with product, only one of the elements will affect the program’s output,
so we only need to consider the component that yields the maximum distance.

Fuzz uses the !s type for managing sensitivities. Intuitively, !sτ behaves like τ ,
but with the distances scaled by s; when s = ∞, this means that different points
are infinitely apart. The introduction rule scales the sensitivities of variables in
the environment. This can be used in conjunction with the elimination rule to
propagate the sensitivity out of the type and into the environment.

Γ ⊢ e : τ

sΓ ⊢ !e : !sτ

Γ ⊢ e : !sτ ∆, x :rs τ ⊢ e′ : τ ′

∆+ rΓ ⊢ let !x = e in e′ : τ ′

Finally, the rules for the linear implication ⊸ are similar to the ones from
linear logic, but adjusted to account for sensitivities.

Γ , x :1 τ ⊢ e : σ

Γ ⊢ λx.e : τ ⊸ σ

Γ ⊢ e : τ ⊸ σ ∆ ⊢ e′ : τ

Γ +∆ ⊢ e e′ : σ

To introduce the linear implication ⊸, the bound variable needs to have sensi-
tivity 1. When eliminating ⊸, the environments need to be added. In categorical
language, addition, which is also present in the metric for ⊗, is connected to the
fact that there is an adjunction between the functors X ⊗ (−) and X ⊸ (−).

Bunched Fuzz: Sensitivity for Vector Metrics 457

2.4 Lp distances

The L1 and L∞ distances are instances of a more general family of Lp distances
(for p ∈ R≥1

∞).6 Given a sequence of distances x⃗ = (x1, . . . , xn) ∈ (R≥0
∞)n, we

first define the Lp pseudonorm7 as follows: ||x⃗||p = (Σn
i=1x

p
i)

1/p. This definition
makes sense whenever the distances xi and p are finite. When p = ∞, we define
the right-hand side as the limit maxni=1 xi. When xi = ∞ for some i, we define
the right-hand side as ∞. We have the following classical properties:

Proposition 1 (Hölder inequality). For all p, q ≥ 1 such that 1
p + 1

q = 1,

and for all x⃗, y⃗ ∈ (R≥0
∞)n, we have: Σn

i=1xiyi ≤ ||x⃗||p||y⃗||q.
For p = 2, q = 2, this is the Cauchy-Schwarz inequality: Σn

i=1xiyi ≤ ||x⃗||2||y⃗||2.

Proposition 2. For 1 ≤ p ≤ q we have, for x⃗ ∈ (R≥0
∞)n:

||x⃗||q ≤ ||x⃗||p (6)

||x⃗||p ≤ n
1
p−

1
q ||x⃗||q (7)

||x⃗||2 ≤ ||x⃗||1 ≤ √
n ||x⃗||2 (8)

The Lp pseudonorms yield distances on tuples. More precisely, suppose that
(Xi)1≤i≤n are metric spaces. The following defines a metric on X = X1×· · ·×Xn:

dp(x⃗, x⃗
′) = ||(dX1

(x1, x
′
1), . . . , dXn

(xn, x
′
n))||p

Proposition 3. For 1 ≤ p ≤ q we have, for x⃗, x⃗′ ∈ X1 × · · · ×Xn:

dq(x⃗, x⃗′) ≤ dp(x⃗, x⃗′) ≤ n
1
p−

1
q dq(x⃗, x⃗′) (9)

d2(x⃗, x⃗′) ≤ d1(x⃗, x⃗′) ≤ √
n d2(x⃗, x⃗′) (10)

3 Bunched Fuzz: Programming with Lp Distances

As we discussed earlier, the L1 distance is not the only distance on products
with useful applications. In the context of differential privacy, for example, the
L2 distance is used to measure the sensitivity of queries when employing the
Gaussian mechanism, a method for private data release that sanitizes data by
adding Gaussian noise instead of Laplacian noise.8

It is possible to extend a Fuzz-like analysis with L2 distances by adding
primitive types and combinators for vectors. This was done, for instance, in

6 The Lp distances can be defined with p ≥ 0 but for simplicity of our treatment we
will only consider p ≥ 1.

7 “pseudo-” because it can be infinite.
8 Technically, the Gaussian mechanism is used to achieve a relaxation of differential
privacy known as approximate, or (ϵ, δ)-differential privacy. Though this notion can-
not be analyzed directly by classical verification techniques for differential privacy,
it can be handled by recent extensions of Fuzz [3,20].

j. wunder et al.458

the Duet language [20], which provides the Gaussian mechanism as one of the
primitives for differential privacy. Such an extension can help verify a wide class
of algorithms that manipulate vectors in a homogeneous fashion, but it makes
it awkward to express programs that require finer grained access to vectors.

To illustrate this point, suppose that we have a non-expansive function f :
R2 → R, where the domain carries the L2 metric. Consider the mapping

g(x, y) = f(2x, y) + f(2y, x).

How would we analyze the sensitivity of g? We cannot translate such a program
directly into a system like Duet, since it does not allow us to manipulate L2

vectors at the level of individual components. However, we could rewrite the
definition of g to use matrix operations, which could be easily incorporated in a
variant of Duet. Specifically, consider the following definition:

g(x⃗) = f

([
2 0

0 1

]
x⃗

)
+ f

([
0 2

1 0

]
x⃗

)
.

The L2 sensitivity of a linear transformation x⃗ 7→ Mx⃗ can be easily computed
if we know the coefficients of the matrix M . Note that

d(Mx⃗,My⃗) = ||Mx⃗−My⃗||2 = ||M(x⃗− y⃗)||2 =
||M(x⃗− y⃗)||2
||x⃗− y⃗||2

||x⃗− y⃗||2

≤
(
sup
z⃗

||Mz⃗||2
||z⃗||2

)
d(x⃗, y⃗).

The quantity supz⃗ ||Mz⃗||2/||z⃗||2, known as the operator norm of M , gives the
precise sensitivity of the above operation, and can be computed by standard
algorithms from linear algebra. In the case of g, both matrices have a norm of 2.
This means that we can analyze the sensitivity of g compositionally, as in Fuzz:
addition is 1-sensitive in each variable, so we just have to sum the sensitivi-
ties of x⃗ in each argument, yielding a combined sensitivity of 4. Unfortunately,
this method of combining the sensitivities of each argument is too coarse when
reasoning with Lp distances, which leads to an imprecise analysis. To obtain a

better bound, we can reason informally as follows. First, take M =

[
2 0 0 1

0 1 2 0

]T
.

We can compute the operator norm of M directly:

||M || = sup
x,y

√
22x2 + y2 + 22y2 + x2√

x2 + y2
= sup

x,y

√
5(x2 + y2)√
x2 + y2

=
√
5,

which implies that M is a
√
5-sensitive function of type R2 → R4 ∼= R2 × R2.

Moreover, thanks to Proposition 3, we can view addition (+) as a
√
2-sensitive

operator of type R2 → R, since

dR(x1 + x2, y1 + y2) ≤ dR(x1 − y1) + dR(x2 − y2) = d1(x⃗, y⃗) ≤
√
2d2(x⃗, y⃗).

Bunched Fuzz: Sensitivity for Vector Metrics 459

τ, σ, ρ ::= 1 | R | !sτ | ⃝P τ | ⃝Hτ | τ ⊸p σ | τ ⊗p σ | τ ⊕ σ (p ∈ R≥1
∞ , s ∈ R≥0

∞)

e ::= x | r ∈ R | () | λx.e | e e | (e, e) | let (x, y) = e in e

| injie | (case e of x. e | y. e) | !e | let !x = e in e

| mlet x = e in e | return e | · · ·

Fig. 1. Types and terms in Bunched Fuzz

Thus, by rewriting the definition of g as (+) ◦ (f × f) ◦M , where f × f : R4 ∼=
R2 × R2 → R× R denotes the application of f in parallel, we can compute the
sensitivity of g by multiplying the sensitivity of each stage, as

√
2 × 1 ×

√
5 =√

10 ≈ 3.16, which is strictly better than the previous bound.
Naturally, we could further extend Fuzz or Duet with primitives for internal-

izing this reasoning, but it would be preferable to use the original definition of g
and automate the low-level reasoning about distances. In this section, we demon-
strate how this can be done via Bunched Fuzz, a language that refines Fuzz by
incorporating more general distances in its typing environments. Rather assum-
ing that input distances are always combined by addition, or the L1 distance,
Bunched Fuzz allows them to be combined with arbitrary Lp distances. This
refinement allows us to analyze different components of a vector as individual
variables, but also to split the sensitivity of these variables while accounting for
their corresponding vector distances. In the remaining of this section, we present
the syntax and type system of Bunched Fuzz, highlighting the main differences
with respect to the original Fuzz design. Later, in Section 4, we will give a
semantics to this language in terms of metric spaces, following prior work [3].

Types and Terms Figure 1 presents the grammar of types and the main term
formers of Bunched Fuzz. They are similar to their Fuzz counterparts; in par-
ticular, there are types for real numbers, products, sums, functions, and a unit
type. The main novelty is in the product type τ⊗pσ, which combines the metrics
of each component using the Lp distance (cf. Section 2.4). The types τ ⊗1 σ and
τ ⊗∞ σ subsume the types τ ⊗ σ and τ & σ in the original Fuzz language. Note
that there is no term constructor or destructor for the Fuzz type &, since it is
subsumed by ⊗∞. The type τ ⊸p σ represents non-expansive functions endowed
with a metric that is compatible with the Lp metric, in that currying works (cf.
Section 5). We will sometimes write ⊗ for ⊗1 and ⊸ for ⊸1.

Another novelty with respect to Fuzz is that there are two constructors for
probability distributions, ⃝P and ⃝H . The first one carries the original Fuzz
privacy metric, while the second one carries the Hellinger distance. As we will see
shortly, the composition principle for the Hellinger distance uses a contraction
operator for the L2 distance, which was not available in the original Fuzz design.
Both distribution types feature term constructors mlet and return for sampling
from a distribution and for injecting values into distributions. To simplify the
notation, we do not use separate versions of these term formers for each type.

j. wunder et al.460

Bunches Before describing its type system, we need to talk about how typing
environments are handled in Bunched Fuzz. In the spirit of bunched logics,
environments are bunches defined with the following grammar:

Γ,∆ ::= · | [x : τ]s | Γ ,p ∆

The empty environment is denoted as ·. The form [x : τ]s states that the variable
x has type τ and sensitivity s. The form Γ ,p ∆ denotes the concatenation of Γ
and ∆, which is only defined when the two bind disjoint sets of variables. As
we will see in Section 4, bunches will be interpreted as metric spaces, and the p
index denote which Lp metric we will use to combine the metrics of Γ and ∆.

The type system features several operations and relations on bunches, which
are summarized in Figure 2. We write Γ ↭ Γ ′ to indicate that we can obtain Γ ′

by rearranging commas up to associativity and commutativity, and by treating
the empty environment as an identity element; Figure 2 has a precise definition.
Observe that associativity only holds for equal values of p. This operation will
be used to state a permutation rule for the type system of Bunched Fuzz.

Like in Fuzz, environments have a scaling operation sΓ which scales all sen-
sitivities in the bunch by s. For example,

s([x : τ]r1 ,p [y : σ]r2) = ([x : τ]s·r1 ,p [y : σ]s·r2).

The exact definition of scaling in such graded languages is subtle, since minor
variations can quickly lead to unsoundness. The definition we are using (∞· 0 =
0 · ∞ = ∞), which goes back to prior work [3], is sound, but imprecise, since
it leads to too many variables being marked as ∞-sensitive. It would also be
possible to have a more precise variant that uses a non-commutative definition of
multiplication on distances [4], but we keep the current formulation for simplicity.
(For a more thorough discussion on these choices and their tradeoffs, see the
“Zero and Infinity” example in Appendix B of the full version [26] of this paper.)

In the original Fuzz type system, rules with several premises usually have
their environments combined by adding sensitivities pointwise, which corre-
sponds to a use of the L1 metric. In Bunched Fuzz, we have instead a family of
contraction operations Contr(p, Γ,∆) for combining environments, one for each
Lp metric. Contraction only makes sense if Γ and ∆ differ only in sensitivities
and variable names, but have the same structure otherwise. We write this rela-
tion as Γ ≈ ∆. When contracting two leaves, sensitivities are combined using
the Lp norm, while keeping variable names from the left bunch.

Unlike Fuzz, where contraction is implicit in rules with multiple premises,
Bunched Fuzz has a separate, explicit contraction typing rule. The rule will be
stated using the vars function, which lists all variables in a bunch.

Type System Our type system is similar to the one of Fuzz, but adapted to use
bunched environments. The typing rules are displayed on Figure 3. For example,
in the ⊗I rule, notice that the p on the tensor type is carried over to the bunch in
the resulting environment. Similarly, in the ⊸I rule, the value of p that annotates
the bunch in the premise is carried over to the ⊸p in the conclusion.

Bunched Fuzz: Sensitivity for Vector Metrics 461

vars(·) = []

vars([x : τ]s) = [x]

vars((Γ1,p Γ2)) = vars(Γ1) ++ vars(Γ2)

· ≈ ·
[x : τ]s ≈ [y : σ]r if τ = σ

Γ1 ,p Γ2 ≈ ∆1,q ∆2 if p = q ∧ Γi ≈ ∆i

Γ ↭ ∆ if Γ = ∆

Γ ↭ ·,p ∆ if Γ ↭ ∆

Γ ↭ ∆,p · if Γ ↭ ∆

Γ1,p Γ2 ↭ ∆1,p ∆2 if Γi ↭ ∆i

Γ1,p Γ2 ↭ ∆2,p ∆1 if Γi ↭ ∆i

Γ1,p (Γ2,p Γ3) ↭ (∆1,p ∆2),p ∆3 if Γi ↭ ∆i

Γ2 ↭ Γ1 if Γ1 ↭ Γ2

s · = ·
s [τ]r = [τ]s·r

s (Γ ,p ∆) = sΓ ,p s∆

c(p, q) =

{
1 if p = ∞

2

∣∣∣ 1q − 1
p

∣∣∣
otherwise

Contr(p, ·, ·) = ·
Contr(p, [x : τ]s, [y : τ]r) = [x : τ] p√sp+rp

Contr(p, (Γ1,q Γ2), (∆1,q ∆2)) = c(p, q)(Contr(p, Γ1,∆1),q Contr(p, Γ2,∆2)).

Fig. 2. Bunch Operations

Like in Fuzz, the !E rule propagates the scaling factor, but using the bunch
structure. Rather than adding the two environments, we splice one into the
other: the notation Γ (∆) denotes a compound bunch where we plug in the
bunch ∆ into another bunch Γ (⋆) that has a single, distinguished hole ⋆. As
we mentioned earlier, Bunched Fuzz has an explicit typing rule for contraction,
whereas contraction in Fuzz is implicit in rules with multiple premises. Note
also that we have unrestricted weakening. Finally, we have the rules for typing
the return and bind primitives of the probabilistic types ⃝H and ⃝P . Those
for ⃝P are adapted from Fuzz, by using contraction instead of adding up the
environments. The ones for ⃝H are similar, but use L2 contraction instead, since
that is the metric that enables composition for the Hellinger distance.

Let us now explain in which sense ⊗∞ corresponds to the & connective of
Fuzz. We will need the following lemma:

Lemma 1 (Renaming). Assume that there is a type derivation of Γ ⊢ e : τ
and that Γ ≈ Γ ′. Then there exists a derivation of Γ ′ ⊢ e[vars(Γ ′)/vars(Γ)] : τ .

Now, the & connective in Fuzz supports two operations, projections and pairing.
The connective ⊗∞ of Bunched Fuzz also supports these operations, but as
derived forms. First, projections can be encoded by defining πi(e) for i = 1, 2
as let (x1, x2) = e in xi. Second, for pairing assume we have two derivations
of Γ ⊢ ei : σi for i = 1, 2, and let Γ ′ be an environment obtained from Γ by

j. wunder et al.462

s ≥ 1

[x : τ]s ⊢ x : τ
Axiom

· ⊢ r : R
RI

· ⊢ () : 1
1I

Γ ,p [x : τ]1 ⊢ e : σ

Γ ⊢ λx.e : τ ⊸p σ
⊸I

Γ ⊢ f : τ ⊸p σ ∆ ⊢ e : τ

Γ,p ∆ ⊢ f e : σ
⊸E

Γ ⊢ e1 : τ ∆ ⊢ e2 : σ

Γ ,p ∆ ⊢ (e1, e2) : τ ⊗p σ
⊗I

∆ ⊢ e1 : τ ⊗p σ Γ ([x : τ]s ,p [y : σ]s) ⊢ e2 : ρ

Γ (s∆) ⊢ let (x, y) = e1 in e2 : ρ
⊗E

Γ ⊢ e : τ

Γ ⊢ inj1e : τ ⊕ σ
⊕1I

Γ ⊢ e : σ

Γ ⊢ inj2e : τ ⊕ σ
⊕2I

Γ ⊢ e1 : τ ⊕ σ ∆([x : τ]s) ⊢ e2 : ρ ∆([y : σ]s) ⊢ e3 : ρ

∆(sΓ) ⊢ case e1 of x. e2 | y. e3 : ρ
⊕E

Γ ⊢ e : τ

sΓ ⊢ !e : !sτ
!I

Γ ⊢ e1 : !rτ ∆([x : τ]rs) ⊢ e2 : σ

∆(sΓ) ⊢ let !x = e1 in e2 : σ
!E

Γ (∆ ,p ∆
′) ⊢ e : τ ∆ ≈ ∆′

Γ (Contr(p,∆,∆′)) ⊢ e[vars(∆′)/vars(∆)] : τ
Contr

Γ (·) ⊢ e : τ

Γ (∆) ⊢ e : τ
Weak

Γ ⊢ e : τ Γ ↭ Γ ′

Γ ′ ⊢ e : τ
Exch

Γ ≈ ∆
Γ ⊢ e1 : ⃝P τ ∆,p [x : τ]s ⊢ e2 : ⃝Pσ

Contr(1, Γ,∆) ⊢ mlet x = e1 in e2 : ⃝Pσ
Bind-P

Γ ⊢ e : τ

∞Γ ⊢ return e : ⃝P τ
Return-P

Γ ≈ ∆
Γ ⊢ e1 : ⃝Hτ ∆,p [x : τ]s ⊢ e2 : ⃝Hσ

Contr(2, Γ,∆) ⊢ mlet x = e1 in e2 : ⃝Hσ
Bind-H

Γ ⊢ e : τ

∞Γ ⊢ return e : ⃝Hτ
Return-H

Fig. 3. Bunched Fuzz typing rules

Bunched Fuzz: Sensitivity for Vector Metrics 463

renaming all variables to fresh ones. Then we have Γ ≈ Γ ′ and thus

Γ ⊢ e1 : σ1

Γ ⊢ e2 : σ2 Γ ≈ Γ ′

Γ ′ ⊢ e2[vars(Γ
′)/vars(Γ)] : σ2

Lemma 1

Γ ,∞ Γ ′ ⊢ (e1, e2[vars(Γ
′)/vars(Γ)]) : σ1 ⊗∞ σ2

⊗I

Contr(∞, Γ, Γ ′) ⊢ (e1, e2) : σ1 ⊗∞ σ2

Contr

Note that we have defined ∞
√
x∞ + y∞ = max(x, y) by taking the limit of

p
√
xp + yp when p goes to infinity, and thus we have Contr(∞, Γ, Γ ′) = Γ . There-

fore the pairing rule of & is derivable for ⊗∞.

4 Semantics

Having defined the syntax of Bunched Fuzz and its type system, we are ready
to present its semantics. We opt for a denotational formulation, where types τ
and bunches Γ are interpreted as metric spaces JτK and JΓ K, and a derivation
π of Γ ⊢ e : τ is interpreted as a non-expansive function JπK : JΓ K → JτK. For
space reasons, we do not provide an operational semantics for the language, but
we foresee no major difficulties in doing so, since the term language is mostly
inherited from Fuzz, which does have a denotational semantics proved sound
with respect to an operational semantics [4].

Types Each type τ is interpreted as a metric space JτK in a compositional fashion,
by mapping each type constructor to the corresponding operation on metric
spaces defined in Figure 4. We now explain these definitions.

The operations of the first four lines of Figure 4 come from prior work on
Fuzz [4,3]. The definition of ⊗p uses as carrier set the cartesian product, just as
⊗ in previous works, but endows it with the Lp distance, defined in Section 2.4.
In the particular case of p = 1, ⊗1 is the same as ⊗.

As for ⊸p, we want to define it in such a way that currying and uncurrying
work with respect to ⊗p, which will allow us to justify the introduction and
elimination forms for that connective. For that we first choose as carrier set the
set A ⊸ B of non-expansive functions from A to B. This set carries the metric

dA⊸pB(f, g)

= inf{r ∈ R≥0
∞ | ∀x, y ∈ A, dB(f(x), g(y)) ≤ p

√
rp + dA(x, y)p}

(11)

This metric is dictated by the type of the application operator in the Lp norm:
(A ⊸p B)⊗pA ⊸ B. Intuitively, if f and g are at distance r, and we want appli-

cation to be non-expansive, we need to satisfy dB(f(x), g(y)) ≤ p
√
rp + dA(x, y)p

for every x, y ∈ A. The above definition says that we pick the distance to be the
smallest possible r that makes this work. Note that this choice is forced upon us:
in category-theoretic jargon, the operations of currying and uncurrying, which
are intimately tied to the application operator, correspond to an adjunction be-
tween two functors, which implies that any other metric space that yields a

j. wunder et al.464

similar adjunction with respect to ⊗p must be isomorphic to ⊸p. In particular,
this implies that its metric will be the same as the one of ⊸p.

For ⃝PA and ⃝HA the carrier set is the set DA of discrete distributions
over A. As to the metric on the carrier set, the interpretation of ⃝P uses the
max divergence, used in the definition of differential privacy (see Sect. 2.2). The
interpretation of ⃝H uses instead the Hellinger distance (see e.g. [3]):

HDA(µ, ν) ≜

√
1

2

∑
x∈A

|
√
µ(x)−

√
ν(x)|2 (12)

Space X |X| dX(x, y)

1 {∗} 0

R R |x− y|
s · dA(x, y) if s ̸= ∞
∞ if s = ∞, x ̸= y ∈ A

0 if s = ∞, x = y ∈ A

!sA |A|

dA(x, y) if x, y ∈ A

dB(x, y) if x, y ∈ B

else ∞
A⊕B |A|+ |B|

A⊗p B |A| × |B| p
√

dA(π1(x), π1(y))p + dB(π2(x), π2(y))p

A ⊸p B A ⊸ B cf. Equation (11)

⃝PA DA MDA(x, y); cf. Equation (2)

⃝HA DA HDA(x, y); cf. Equation (12)

Fig. 4. Operations on metric spaces for interpreting types

Bunches The interpretation of bunches is similar to that of types. Variables
correspond to scaled metric spaces, whereas ,p corresponds to ⊗p:

J·K = 1 J[x : τ]sK = !sJτK JΓ1 ,p Γ2K = JΓ1K ⊗p JΓ2K.

One complication compared to prior designs is the use of an explicit exchange
rule, which is required to handle the richer structure of contexts. Semantically,
each use of exchange induces an isomorphism of metric spaces:

Theorem 3. Each derivation of Γ ↭ ∆ corresponds to an isomorphism of
metric spaces JΓ K ∼= J∆K.

Before stating the interpretation of typing derivations, we give an overview
of important properties of the above constructions that will help us prove the
soundness of the interpretation.

Bunched Fuzz: Sensitivity for Vector Metrics 465

Scaling Much like in prior work [4,3], we can check the following equations:

Proposition 4.

!s1 !s2A = !s1·s2A !s(A⊕B) = !sA⊕ !sB !s(A⊗p B) = !sA⊗p !sB.

Moreover, an s-sensitive function from A to B is the same thing as a non-
expansive function of type !sA ⊸ B.

Proposition 5. For every bunch Γ , we have JsΓ K = !sJΓ K.

Tensors The properties on Lp distances allow us to relate product types with
different values of p.

Proposition 6. [Subtyping of tensors]

1. Let A, B be two metric spaces and p, q ∈ R≥1
∞ with p ≤ q. Then the identity

map on pairs belongs to the two following spaces:

A⊗p B ⊸ A⊗q B !21/p−1/q (A⊗q B) ⊸ A⊗p B.

2. In particular, when p = 1 and q = 2, the identity map belongs to:

A⊗1 B ⊸ A⊗2 B !√2(A⊗2 B) ⊸ A⊗1 B.

Proof. For (1), the fact that the identity belongs to the first space follows from
the fact that dq(x, y) ≤ dp(x, y), by Proposition 3 (Equation (9)). The second
claim is derived from Proposition 3 (Equation (9)) in the case n = 2.

Remark 1. Proposition 6 allows us to relate different spaces of functions with
multiple arguments. For example,

(A⊗2 B ⊸ C) ⊆ (A⊗1 B ⊸ C) (A⊗1 B ⊸ C) ⊆ (!√2(A⊗2 B) ⊸ C).

Bunched Fuzz does not currently exploit these inclusions in any significant way,
but we could envision extending the system with a notion of subtyping to further
simplify the use of multiple product metrics in a single program.

We also have the following result, which is instrumental to prove the sound-
ness of the contraction rule.

Proposition 7. Let X,Y, Z,W be metric spaces, and p, q ∈ R≥1
∞ with p ̸= ∞.

The canonical isomorphism of sets (X × Y)× (Z ×W) ∼= (X × Z)× (Y ×W),
which swaps the second and third components, is a non-expansive function of
type !c(p,q)((X ⊗q Y) ⊗p (Z ⊗q W)) → (X ⊗p Z) ⊗q (Y ⊗p W), where c(p, q) is
defined as in Figure 2.

j. wunder et al.466

Proof. First, suppose that p ≤ q. Then we can write the isomorphism as a
composite of the following non-expansive functions:

!c(p,q)((X ⊗q Y)⊗p (Z ⊗q W)

→ !c(p,q)((X ⊗q Y)⊗q (Z ⊗q W)) Proposition 6
∼= !c(p,q)((X ⊗q Z)⊗q (Y ⊗q W)) assoc., comm. of ⊗q

= !c(p,q)(X ⊗q Z)⊗q !c(p,q)(Y ⊗q W) Proposition 4

= (X ⊗p Z)⊗q (Y ⊗p W) Proposition 6.

Otherwise, p > q, and we reason as follows.

!c(p,q)((X ⊗q Y)⊗p (Z ⊗q W)

→ !c(p,q)((X ⊗p Y)⊗q (Z ⊗p W)) Proposition 6
∼= !c(p,q)((X ⊗p Z)⊗p (Y ⊗p W)) assoc., comm. of ⊗p

= (X ⊗p Z)⊗q (Y ⊗p W) Proposition 6.

One can then prove the following property:

Proposition 8. Suppose that we have two bunches Γ ≈ ∆. The carrier sets of
JΓ K and J∆K are the same. Moreover, for any p, the diagonal function δ(x) =
(x, x) is a non-expansive function of type JContr(p, Γ,∆)K → JΓ K ⊗p J∆K.

Function Types The metric on ⊸p can be justified by the following result:

Proposition 9. For every metric space X and every p ∈ R≥1
∞ , there is an ad-

junction of type (−)⊗pX ⊣ X ⊸p (−) in Met given by currying and uncurrying.
(Both constructions on metric spaces are extended to endofunctors on Met in the
obvious way.)

Because right adjoints are unique up to isomorphism, this definition is a direct
generalization of the metric on functions used in Fuzz [23,4,3], which corresponds
to ⊸1.

Theorem 4. Suppose that A and B are proper metric spaces, and let f, g : A →
B be non-expansive. Then dA⊸1B(f, g) = supx dB(f(x), g(x)).

We conclude with another subtyping result involving function spaces.

Theorem 5. For all non-expansive functions f, g ∈ A → B and p ≥ 1, we
have dA⊸1B(f, g) ≤ dA⊸pB(f, g). In particular, the identity function is a non-
expansive function of type (A ⊸p B) → (A ⊸1 B).

Probability Distributions Prior work [3] proves that the return and bind opera-
tions on probability distributions can be seen as non-expansive functions:

η : !∞A → ⃝PA

(−)†(−) : (!∞A ⊸1 ⃝PB)⊗1 ⃝PA → ⃝PB.

These properties ensure the soundness of the typing rules for ⃝P in Fuzz, and
also in Bunched Fuzz. For ⃝H , we can use the following composition principle.

Bunched Fuzz: Sensitivity for Vector Metrics 467

Theorem 6. The following types are sound for the monadic operations on dis-
tributions, seen as non-expansive operations, for any p ≥ 1:

η : !∞A → ⃝HA

(−)†(−) : (!∞A ⊸p ⃝HB)⊗2 ⃝HA → ⃝HB.

Derivations Finally, a derivation tree builds a function from the context’s space
to the subject’s space. In the following definition, we use the metavariables γ
and δ to denote variable assignments—that is, mappings from the variables of
environments Γ and ∆ to elements of the corresponding metric spaces. We use
γ(δ) to represent an assignment in JΓ (∆)K that is decomposed into two assign-
ments γ(⋆) and δ corresponding to the Γ (⋆) and ∆ portions. Finally, we use the
λ-calculus notation f x to denote a function f being applied to the value x.

Definition 1. Given a derivation π proving Γ ⊢ e : τ , its interpretation JπK ∈
JΓ K → JτK is given by structural induction on π as follows:

JAxiomK ≜ λx. x JRIK ≜ λ(). r ∈ R
J⊸ I πK ≜ λγ. λx. JπK (γ, x) J⊸ E π1 π2K ≜ λ(γ, δ). Jπ2K γ (Jπ1K δ)
J1IK ≜ λ(). () J⊗I π1 π2K ≜ λ(γ, δ). (Jπ1K γ), (Jπ2K δ)

J⊗E π1 π2K ≜ λγ(δ). Jπ2K γ(Jπ1Kδ)
J⊕iI πK ≜ λγ. injiJπK γ J⊕E π1 π2K ≜ λδ(γ). [Jπ2K, Jπ3K](δ(Jπ1Kγ))
J!I πK ≜ JπK J!E π1 π2K ≜ λ δ(γ). Jπ2K δ(Jπ1K γ)
JContr πK ≜ λγ(δ). JπK γ(δ, δ) JWeak πK ≜ λγ(δ). JπK γ(())
JExch πK ≜ λγ′.JπKϕγ′/γ(γ

′) JBind-P π1 π2K ≜ λγ′. (Jπ2Kγ′)
†
(Jπ1Kγ′)

JReturn-P πK ≜ λγ. η(JπK γ)
where in JExch πK, the map ϕΓ ′/Γ is the isomorphism defined by Theorem 3.

and for the two last cases see definitions in equations (3) and (4) (Bind-H and
Return-H are defined in the same way).

Theorem 7 (Soundness). Given a derivation π proving Γ ⊢ e : τ , then JπK
is a non-expansive function from the space JΓ K to the space JτK.

5 Examples

We now look at examples of programs that illustrate the use of Lp metrics.

Currying and Uncurrying Let us illustrate the use of higher-order functions with
combinators for currying and uncurrying.

curry : ((τ ⊗p σ) ⊸p ρ) ⊸ (τ ⊸p σ ⊸p ρ)

curry f x y = f(x, y)

uncurry : (τ ⊸p σ ⊸p ρ) ⊸ ((τ ⊗p σ) ⊸p ρ).

uncurry f z = let (x, y) = z in f x y

j. wunder et al.468

Note that the indices on ⊗ and ⊸ need to be the same. The reason can be traced
back to the ⊸ E rule (cf. Figure 3), which uses the ,p connective to eliminate
⊸p (cf. the currying and uncurrying derivation in the appendix of the full paper
for a detailed derivation). If the indices do not agree, currying is not possible; in
other words, we cannot in general soundly curry a function of type τ ⊗p σ ⊸q ρ
to obtain something of type τ ⊸p σ ⊸q ρ. However, if q ≤ p, note that it would
be possible to soundly view τ⊗qσ as a subtype of τ⊗pσ, thanks to Proposition 6.
In this case, we could then convert from τ ⊗p σ ⊸q ρ to τ ⊗q σ ⊸q ρ (note the
variance), and then curry to obtain a function of type τ ⊸q σ ⊸q ρ.

Precise sensitivity for functions with multiple arguments Another useful feature
of Bunched Fuzz is that its contraction rule allows us to split sensitivities more
accurately than if we used the contraction rule that is derivable in the original
Fuzz. Concretely, suppose that we have a program λp.let (x, y) = p in f(x, y)+
g(x, y), where f and g have types f : (!2R)⊗2 R ⊸ R and g : R⊗2 (!2R) ⊸ R,
and where we have elided the wrapping and unwrapping of ! types, for simplicity.

Let us sketch how this program is typed in Bunched Fuzz. Addition belongs to
R⊗1R ⊸ R, so by Proposition 6 it can also be given the type !√2(R⊗2R) ⊸ R.
Thus, we can build the following derivation for the body of the program:

Contr
Γ ⊢ f(x1, y1) + g(x2, y2) : R

[x : R]√10 ,2 [y : R]√10 ⊢ f(x, y) + g(x, y) : R
==

where Γ = ([x1 : R]2√2,2 [y1 : R]√2),2 ([x2 : R]√2,2 [y2 : R]2√2), and where

we used contraction twice to merge the xs and ys. Note that ||(2
√
2,
√
2)||2 =√

8 + 2 =
√
10, which is why the final sensitivities have this form. By contrast,

consider how we might attempt to type this program directly in the original
Fuzz. Let us assume that we are working in an extension of Fuzz with types for
expressing the domains of f and g, similarly to the L2 vector types of Duet [20].
Moreover, let us assume that we have coercion functions that allow us to cast
from (!2R)⊗2 (!2R) to (!2R)⊗2R and R⊗2 (!2R). If we have a pair p :!2((!2R)⊗2

(!2R)), we can split its sensitivity to call f and g and then combine their results
with addition. However, this type is equivalent to !4(R⊗2 R), which means that
the program was given a worse sensitivity (since

√
10 < 4). Of course, it would

also have been possible to extend Fuzz with a series of primitives that implement
precisely the management of sensitivities performed by bunches. However, here
this low-level reasoning is handled directly by the type system.

Programming with matrices The Duet language [20] provides several matrix
types with the L1, L2, or L∞ metrics, along with primitive functions for manip-
ulating them. In Bunched Fuzz, these types can be defined directly as follows:
Mp[m,n] = ⊗m

1 ⊗n
p R. Following Duet, we use the L1 distance to combine the

rows and the Lp distance to combine the columns. One advantage of having
types for matrices defined in terms of more basic constructs is that we can pro-
gram functions for manipulating them directly, without resorting to separate

Bunched Fuzz: Sensitivity for Vector Metrics 469

primitives. For example, we can define the following terms in the language:

addrow : Mp[1, n]⊗1 Mp[m,n] ⊸ Mp[m+ 1, n]

addcolumn : M1[1,m]⊗1 M1[m,n] ⊸ M1[m,n+ 1]

addition : M1[m,n]⊗1 M1[m,n] ⊸ M1[m,n].

The first program, addrow, appends a vector, represented as a 1× n matrix, to
the first row of a m × n matrix. The second program, addcolumn, is similar,
but appends the vector as a column rather than a row. Because of that, it is
restricted to L1 matrices. Finally, the last program, addition, adds the elements
of two matrices pointwise.

Vector addition over sets Let us now show an example of a Fuzz term for which
using Lp metrics allows to obtain a finer sensitivity analysis. We consider sets
of vectors in Rd and the function vectorSum which, given such a set, returns
the vectorial sum of its elements. In Fuzz, this function can be defined via a
summation primitive sum : !∞(!∞τ ⊸ R) ⊸ set τ ⊸ R, which adds up the
results of applying a function to each element of a set [23]. The definition is:

vectorSum : !d set(⊗d
1R) ⊸1 ⊗d

1R
vectorSum s = (sum π1 s, . . . , sum πd s).

Here, πi : ⊗d
1R ⊸ R denotes the i-th projection, which can be defined by

destructing a product. Set types in Fuzz are equipped with the Hamming metric
[23], where the distance between two sets is the number of elements by which
they differ. Note that, to ensure that sum has bounded sensitivity, we need to
clip the results of its function argument to the interval [−1, 1]. Fuzz infers a
sensitivity of d for this function because its argument is used with sensitivity
1 in each component of the tuple. In Bunched Fuzz, we can define the same
function as above, but we also have the option of using a different Lp distance
to define vectorSum, which leads to the type !d1/p set(⊗d

pR) ⊸ ⊗d
pR, with a

sensitivity of d1/p. For the sake of readability, we’ll show how this term is typed
in the case d = 2. By typing each term (sum πi zi) and applying (⊗I) we get:

[z1 : set(R⊗p R)]1 ,p [z2 : set(R⊗p R)]1 ⊢ (sum π1 z1, sum π2 z2) : R⊗p R.

By applying contraction we get: [z : set(R ⊗p R)]21/p ⊢ (sum π1 z, sum π2 z) :
R⊗p R. The claimed type is finally obtained by (!E) and (⊸ I).

Computing distances Suppose that the type X denotes a proper metric space
(that is, where the triangle inequality holds). Then we can incorporate its dis-
tance function in Bunched Fuzz with the type X ⊗1 X ⊸ R. Indeed, let x, x′,
y and y′ be arbitrary elements of X. Then

dX(x, y)− dX(x′, y′) ≤ dX(x, x′) + dX(x′, y′) + dX(y′, y)− dX(x′, y′)

= dX(x, x′) + dX(y, y′) = d1((x, y), (x
′, y′)).

j. wunder et al.470

By symmetry, we also know that dX(x′, y′)−dX(x, y) ≤ d1((x, y), (x
′, y′)). Com-

bined, these two facts show

dR(dX(x, y), dX(x′, y′)) = |dX(x, y)− dX(x′, y′)| ≤ d1((x, y), (x
′, y′)),

which proves that dX is indeed a non-expansive function.

Calibrating noise to Lpdistance Hardt and Talwar [17] have proposed a gener-
alization of the Laplace mechanism, called the K-norm mechanism, to create a
differentially private variant of a database query f : db → Rd. The difference is
that the amount of noise added is calibrated to the sensitivity of f measured with
the K norm, as opposed to the L1 distance used in the original Laplace mecha-
nism. When K corresponds to the Lp norm, we will call this the Lp-mechanism,
following Awan and Slavkovich [1].

Definition 2. Given f : db → Rd with Lp sensitivity s and ϵ > 0, the Lp-
mechanism is a mechanism that, given a database D ∈ db, returns a probability
distribution over y ∈ Rd with density given by:

exp(
−ϵ||f(D)−y||p

2s)∫
exp(

−ϵ||f(D)−y||p
2s)dy

This mechanism returns with high probability (which depends on ϵ and on the
sensitivity s) a vector y ∈ Rd which is close to f(D) in Lp distance. Such a
mechanism can be easily integrated in Bunched Fuzz through a primitive:

LpMech : !∞(!sdB ⊸ ⊗d
pR) ⊸ !ϵdB ⊸ ⃝P (⊗d

pR)

(Strictly speaking, we would need some discretized version of the above distribu-
tion to incorporate the mechanism in Bunched Fuzz, but we’ll ignore this issue
in what follows.) The fact that LpMech satisfies ϵ-differential privacy follows from
the fact that this mechanism is an instance of the exponential mechanism [18], a
basic building block of differential privacy. It is based on a scoring function as-
signing a score to every pair consisting of a database and a potential output, and
it attempts to return an output with approximately maximal score, given the
input database. As shown by Gaboardi et al. [13], the exponential mechanism
can be added as a primitive to Fuzz with type:

expmech : !∞ set(O) ⊸ !∞(!∞O ⊸!sdB ⊸ R) ⊸!ϵdB ⊸ ⃝PO,

where O is the type of outputs. The function LpMech is an instance of the
exponential mechanism where O is ⊗d

pR and the score is λyλD.||f(D)− y||p.
To define the Lp mechanism with this recipe, we need to reason about the

sensitivity of this scoring function. In Fuzz, this would not be possible, since the
language does not support reasoning about the sensitivity of f measured in the
Lp distance. In Bunched Fuzz, however, this can be done easily. Below, we will
see an example (Gradient descent) of how the Lp mechanism can lead to a finer
privacy guarantee.

Bunched Fuzz: Sensitivity for Vector Metrics 471

Gradient descent Let us now give an example where we use the Lp mechanism.
An example of differentially private gradient descent example with linear model
in Fuzz was given in [25] (see Sect. 4.1, 4.2 and Fig. 6 p. 16, Fig. 8 p.19). This
algorithm proceeds by iteration. Actually it was given for an extended language
called Adaptative Fuzz, but the code already gives an algorithm in (plain) Fuzz.
We refer the reader to this reference for the description of all functions, and here
we will only describe how one can adapt the algorithm to Bunched Fuzz.

Given a set of n records xi ∈ Rd, each with a label yi ∈ R, the goal is to find
a parameter vector θ ∈ Rd that minimizes the difference between the labels and
their estimates, where the estimate of a label yi is the inner product ⟨xi, θ⟩. That
is, the goal is to minimize the loss function L(θ, (x, y)) = 1

n ·Σn
i=1(⟨xi, θ⟩ − yi)

2.
The algorithm starts with an initial parameter vector (0, . . . , 0) and it iteratively
produces successive θ vectors until a termination condition is reached.

The Fuzz program uses the data-type bag τ representing bags or multisets
over τ . A bagmap primitive is given for it. The type I is the unit interval [0, 1].
The main function is called updateParameter and updates one component of
the model θ; it is computed in the following way:

– with the function calcGrad : db → R, compute a component (∇L(θ, (x, y)))j
of the Rd vector ∇L(θ, (x, y)) 9.

– then Laplacian noise is postcomposed with calcGrad in the updateParameter
function. This uses a privacy budget of 2ϵ. It has to be done for each one of
the d components of ∇L(θ, (x, y)), thus on the whole, for one step, a privacy
budget of 2dϵ.

– The iterative procedure of gradient descent is given by the function gradient
in Fig. 8 p. 19 of [25]. We forget here about the adaptative aspect and just
consider iteration with a given number n of steps. In this case by applying
n times updateParameter one gets a privacy budget of 2dnϵ.

We modify the program as follows to check it in Bunched Fuzz and use the
Lp-mechanism. Instead of computing over R we want to compute over ⊗d

pR for

a given p ≥ 1, so Rd equipped with Lp distance. The records xi are in ⊗d
pI and

the labels yi in I. The database type is dB = bag (I ⊗p (⊗d
pI)). The distance

between two bags in dB is the number of elements by which they differ.
We assume a primitive bagV ectorSum with type !d1/pbag (⊗d

pI) ⊸ ⊗d
pR (it

could be defined as the vectorSum defined above for sets, using a sum primitive
for bags). Given a bag m, (bagV ectorSum m) returns the vectorial sum of all
elements of m. We can check that the sensitivity of bagV ectorSum is indeed
d1/p because given two bags m and m′ that are at distance 1, if we denote by u
the vector by which they differ, we have:

d(⊗d
pR)(bagV ectorSum(m), bagV ectorSum(m′)) = ||u||p ≤ (Σd

j=11)
1/p = d1/p

By adapting the calcGrad Fuzz term of [25] using bagV ectorSum we obtain
a term V ectcalcGrad with the Bunched Fuzz type !∞ ⊗d

p R ⊸!d1/pdb ⊸ ⊗d
pR.

9 Actually calcGrad computes (∇L(θ, (x, y)))j up to a multiplicative constant, 2/n,
which is mutliplied afterwards in the updateParameter function.

j. wunder et al.472

Given a vector θ and a database (y, x), V ectcalcGrad computes the updated vec-
tor θ′. Finally we define the term updateV ector by adding noise to V ectcalcGrad
using the the Lp-mechanism. Recall the type of LpMech: !∞(!sdb ⊸ ⊗d

pR) ⊸
!ϵdb ⊸ ⃝P (⊗d

pR). We define updateV ector and obtain its type as follows:

updateV ector = λθ.(LpMech (V ectcalcGrad θ)) : !∞ ⊗d
p R ⊸!ϵdb ⊸ ⃝P (⊗d

pR)

By iterating updateV ector n times one obtains a privacy budget of nϵ.

6 Implementation

To experiment with the Bunched Fuzz design, we implemented a prototype for
a fragment of the system based on DFuzz [13,2].10 The type-checker generates
a set of numeric constraints that serve as verification conditions to guarantee a
valid typing. The implementation required adapting some of the current rules
to an algorithmic formulation (found in the full version). In addition to the
modifications introduced in the DFuzz type checker compared to its original
version [13,2], we also made the following changes and simplifications:

– We did not include explicit contraction and weakening rules. Instead, the
rules are combined with those for checking other syntactic constructs. To
do away with an explicit contraction rule, in rules that have multiple an-
tecedents, such as the ⊗I rule, we used the Contr operator to combine the
antecedents’ environments, rather than using the p-concatenation operator
for bunches.

– We did not include the rules for checking probabilistic programs with the
Hellinger distance.

– Bound variables are always added at the top of the current environment,
as in the ⊸I rule of the original rules; it is not possible to introduce new
variables arbitrarily deep in the environment.

While, strictly speaking, the resulting system is incomplete with respect to the
rules presented here, it is powerful enough to check an implementation of K-
means that generalizes a previous version implemented for Fuzz [23]. On the
other hand, because our implementation is based on the one of DFuzz, which
features dependent types, we allow functions that are polymorphic on types, sizes
and p parameters, which allows us to infer sensitivity information that depends
on run-time sizes.

7 Related Work

Bunched Fuzz is inspired by BI, the logic of bunched implications [22], which
has two connectives for combining contexts. Categorically, one of these connec-
tives corresponds to a Cartesian product, whereas the other corresponds to a

10 https://github.com/junewunder/bunched-fuzz

Bunched Fuzz: Sensitivity for Vector Metrics 473

https://github.com/junewunder/bunched-fuzz

monoidal, or tensor product. While related to linear logic, the presence of the
two context connectives allows BI to derive some properties that are not valid
in linear logic. For example, the cartesian product does not distribute over sums
in linear logic but it does distribute over sums in BI.

We have shown how the rules for such type systems are reminiscent of the
ones used in type systems for the calcuclus of bunched implications [21], and
for reasoning about categorical grammars [19]. Specifically, O’Hearn introduces
a type system with two products and two arrows [21]. Typing environments are
bunches of variable assignments with two constructors, corresponding to the two
products. Our work can be seen as a generalization of O’Hearn’s work to handle
multiple products and to reason about program sensitivity.

Moot and Retoré [19, Chapter 5] introduce the multimodal Lambek calculus,
which extends the non-associative Lambek calculus, a classical tool for describing
categorical grammars. This generalization uses an indexed family of connectives
and trees to represent environments. The main differences with our work are:
our indexed products are associative and commutative, while theirs are not;
our type system is affine; our type system includes a monad for probabilities
which does not have a correspondent construction in their logic; our type system
also possesses the graded comonad !s corresponding to the ! modality of linear
logic, the interaction between this comonad and the bunches is non-trivial and
it requires us to explicitly define a notion of contraction. Besides the fact that
the main properties we study, metric interpretation and program sensitivity, are
very different from the ones studied by the above authors, there are some striking
similarities between the two systems.

A recent work by Bao et al. [5] introduced a novel bunched logic with indexed
products and magic wands with a preorder between the indices. This logic is used
as the assertion logic of a separation logic introduced to reason about negative
dependence between random variables. The connectives studied in this work
share some similarities with the ones we study here and it would be interesting to
investigate further the similarities, especially from a model-theoretic perspective.

Because contexts in the original Fuzz type system are biased towards the L1

distance, it is not obvious how Fuzz could express the composition principles of
the Hellinger distance. Recent work showed how this could be amended via a path
construction that recasts relational program properties as sensitivity proper-
ties [3]. Roughly speaking, instead of working directly with the Hellinger distance
dH , the authors consider a family of relations Rα = {(µ1, µ2) | dH(µ1, µ2) ≤ α}.
Such a relation induces another metric on distributions, dα,H , where the distance
between two distributions is the length of the shortest path connecting them in
the graph corresponding to Rα. This allows them to express the composition
principles of the Hellinger distance directly in the Fuzz type system, albeit at a
cost: the type constructor for probability distributions is graded by the distance
bound α. Thus, the sensitivity information of a randomized algorithm with re-
spect to the Hellinger distance must also be encoded in the codomain of the
function, as opposed to using just its domain, as done for the original privacy
metric of Fuzz. By contrast, Bunched Fuzz does not require the grading α be-

j. wunder et al.474

cause it can express the composition principle of the Hellinger distance directly,
thanks to the use of the L2 distance on bunches.

Duet [20] can be seen as an extension of Fuzz to deal with more general
privacy distances. It consists of a two-layer language: a sensitivity language and
a privacy language. The sensitivity language is very similar to Fuzz. However, it
also contains some basic primitives to manage vectors and matrices. As in Fuzz,
the vector types come with multiple distances but differently from Fuzz, Duet
also uses the L2 distance. The main reason for this is that Duet also supports
the Gaussian mechanism which calibrates the noise to the L2 sensitivity of the
function. Our work is inspired by this aspect of Duet, but it goes beyond it by
giving a logical foundation to Lp vector distances. Another language inspired by
Fuzz is the recently proposed Jazz [24]. Like Duet, this language has two prod-
ucts and primitives tailored to the L2 sensitivity of functions for the Gaussian
mechanism. Interestingly, this language uses contextual information to achieve
more precise bounds on the sensitivities. The semantics of Jazz is different from
the metric semantics we study here; however, it would be interesting to explore
whether a similar contextual approach could be also used in a metric setting.

8 Conclusion and Future work

In this work we have introduced Bunched Fuzz, a type system for reasoning
about program sensitivity in the style of Fuzz [23]. Bunched Fuzz extends the
type theory of Fuzz by considering new type constructors for Lp distances and
bunches to manage different products in typing environments. We have shown
how this type system supports reasoning about both deterministic and proba-
bilistic programs.

There are at least two directions that we would like to explore in future works.
On the one hand, we would like to understand if the typing rules we introduced
here could be of more general use in the setting of probabilistic programs. We
have already discussed the usefulness for other directions in the deterministic
case [19]. One way to approach this problem could be by looking at the family
of products recently identified in [5]. These products give a model for a logic to
reason about negative dependence between probabilistic variables. It would be
interesting to see if the properties of these products match the one we have here.

On the other hand, we would like to understand if Bunched Fuzz can be used
to reason about more general examples in differential privacy. One way to ap-
proach this problem could be to consider examples based on the use of Hellinger
distance that have been studied in the literature on probabilistic inference [6].

Acknowledgements This material is based upon work supported by the NSF
under Grant No. 1845803 and 2040249. The third author was partially supported
by the french Program “Investissements d’avenir” (I-ULNE SITE / ANR-16-
IDEX-0004 ULNE) managed by the National Research Agency.

Bunched Fuzz: Sensitivity for Vector Metrics 475

References

1. Awan, J., Slavkovic, A.: Structure and sensitivity in differential privacy: Com-
paring k-norm mechanisms. Journal of the American Statistical Association
(2020). https://doi.org/10.1080/01621459.2020.1773831, https://par.nsf.

gov/biblio/10183971

2. Azevedo de Amorim, A., Gaboardi, M., Arias, E.J.G., Hsu, J.: Really natural
linear indexed type checking. In: Tobin-Hochstadt, S. (ed.) Proceedings of the 26th
2014 International Symposium on Implementation and Application of Functional
Languages, IFL ’14, Boston, MA, USA, October 1-3, 2014. pp. 5:1–5:12. ACM
(2014). https://doi.org/10.1145/2746325.2746335

3. Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S.: Probabilistic re-
lational reasoning via metrics. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–19. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785715

4. Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A
semantic account of metric preservation. In: POPL 2017. ACM (2017), http://
dl.acm.org/citation.cfm?id=3009890

5. Bao, J., Gaboardi, M., Hsu, J., Tassarotti, J.: A separation logic for negative
dependence. Proc. ACM Program. Lang. 6(POPL) (jan 2022). https://doi.org/
10.1145/3498719

6. Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub,
P.: Differentially private bayesian programming. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016. pp. 68–79. ACM (2016). https://doi.org/10.1145/
2976749.2978371

7. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2,
499–526 (2002), http://jmlr.org/papers/v2/bousquet02a.html

8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(March 2004)

9. Chaudhuri, S., Gulwani, S., Lublinerman, R., NavidPour, S.: Proving programs
robust. In: Gyimóthy, T., Zeller, A. (eds.) SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,
Hungary, September 5-9, 2011. pp. 102–112. ACM (2011). https://doi.org/10.
1145/2025113.2025131

10. Csiszár, I., Shields, P.: Information theory and statistics: A tutorial. Foun-
dations and Trends® in Communications and Information Theory 1(4),
417–528 (2004). https://doi.org/10.1561/0100000004, http://dx.doi.org/10.
1561/0100000004

11. Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to sensitivity
in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3876, pp. 265–284.
Springer (2006). https://doi.org/10.1007/11681878_14

12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014). https://doi.org/10.1561/
0400000042

j. wunder et al.476

https://doi.org/10.1080/01621459.2020.1773831
https://doi.org/10.1080/01621459.2020.1773831
https://par.nsf.gov/biblio/10183971
https://par.nsf.gov/biblio/10183971
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1109/LICS.2019.8785715
https://doi.org/10.1109/LICS.2019.8785715
http://dl.acm.org/citation.cfm?id=3009890
http://dl.acm.org/citation.cfm?id=3009890
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
http://jmlr.org/papers/v2/bousquet02a.html
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1561/0100000004
https://doi.org/10.1561/0100000004
http://dx.doi.org/10.1561/0100000004
http://dx.doi.org/10.1561/0100000004
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042

13. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: POPL ’13. ACM (2013). https://doi.org/10.
1145/2429069.2429113

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

15. Gonin, R., Money, A.H.: Nonlinear Lp-Norm Estimation. Marcel Dekker, Inc., USA
(1989)

16. Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In:
20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings. USENIX Association (2011), http://static.usenix.org/events/

sec11/tech/full_papers/Haeberlen.pdf

17. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Schulman, L.J.
(ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010. pp. 705–714. ACM (2010).
https://doi.org/10.1145/1806689.1806786

18. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Octo-
ber 20-23, 2007, Providence, RI, USA, Proceedings. pp. 94–103. IEEE Computer
Society (2007). https://doi.org/10.1109/FOCS.2007.41

19. Moot, R., Retoré, C.: The Logic of Categorial Grammars - A Deductive Account
of Natural Language Syntax and Semantics, Lecture Notes in Computer Science,
vol. 6850. Springer (2012). https://doi.org/10.1007/978-3-642-31555-8

20. Near, J.P., Darais, D., Abuah, C., Stevens, T., Gaddamadugu, P., Wang, L.,
Somani, N., Zhang, M., Sharma, N., Shan, A., Song, D.: Duet: an expressive
higher-order language and linear type system for statically enforcing differential
privacy. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.
1145/3360598

21. O’Hearn, P.W.: On bunched typing. J. Funct. Program. 13(4), 747–796 (2003).
https://doi.org/10.1017/S0956796802004495

22. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log.
5(2) (1999). https://doi.org/10.2307/421090

23. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differ-
ential privacy. In: ICFP 2010. ACM (2010). https://doi.org/10.1145/1863543.
1863568

24. Toro, M., Darais, D., Abuah, C., Near, J., Olmedo, F., Tanter, É.: Contex-
tual linear types for differential privacy. CoRR abs/2010.11342 (2020), https:
//arxiv.org/abs/2010.11342

25. Winograd-Cort, D., Haeberlen, A., Roth, A., Pierce, B.C.: A framework for adap-
tive differential privacy. Proc. ACM Program. Lang. 1(ICFP), 10:1–10:29 (2017).
https://doi.org/10.1145/3110254

26. june wunder, Azevedo de Amorim, A., Baillot, P., Gaboardi, M.: Bunched fuzz:
Sensitivity for vector metrics. CoRR abs/2202.01901 (2022), https://arxiv.
org/abs/2202.01901

Bunched Fuzz: Sensitivity for Vector Metrics 477

https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
https://doi.org/10.1145/1806689.1806786
https://doi.org/10.1145/1806689.1806786
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://arxiv.org/abs/2010.11342
https://arxiv.org/abs/2010.11342
https://doi.org/10.1145/3110254
https://doi.org/10.1145/3110254
https://arxiv.org/abs/2202.01901
https://arxiv.org/abs/2202.01901

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

j. wunder et al.478

http://creativecommons.org/licenses/by/4.0/

Fast and Correct Gradient-Based Optimisation
for Probabilistic Programming via Smoothing

Basim Khajwal1, C.-H. Luke Ong1,2 , and Dominik Wagner1(�)

1 University of Oxford, Oxford, UK
dominik.wagner@cs.ox.ac.uk
2 NTU, Singapore, Singapore

Abstract. We study the foundations of variational inference, which
frames posterior inference as an optimisation problem, for probabilis-
tic programming. The dominant approach for optimisation in practice is
stochastic gradient descent. In particular, a variant using the so-called
reparameterisation gradient estimator exhibits fast convergence in a tra-
ditional statistics setting. Unfortunately, discontinuities, which are read-
ily expressible in programming languages, can compromise the correct-
ness of this approach. We consider a simple (higher-order, probabilistic)
programming language with conditionals, and we endow our language
with both a measurable and a smoothed (approximate) value semantics.
We present type systems which establish technical pre-conditions. Thus
we can prove stochastic gradient descent with the reparameterisation
gradient estimator to be correct when applied to the smoothed problem.
Besides, we can solve the original problem up to any error tolerance by
choosing an accuracy coefficient suitably. Empirically we demonstrate
that our approach has a similar convergence as a key competitor, but
is simpler, faster, and attains orders of magnitude reduction in work-
normalised variance.

Keywords: probabilistic programming · variational inference · reparam-
eterisation gradient · value semantics · type systems.

1 Introduction

Probabilistic programming is a programming paradigm which has the vision
to make statistical methods, in particular Bayesian inference, accessible to a
wide audience. This is achieved by a separation of concerns: the domain experts
wishing to gain statistical insights focus on modelling, whilst the inference is per-
formed automatically. (In some recent systems [4,9] users can improve efficiency
by writing their own inference code.)

In essence, probabilistic programming languages extend more traditional pro-
gramming languages with constructs such as score or observe (as well as
sample) to define the prior p(z) and likelihood p(x | z). The task of infer-
ence is to derive the posterior p(z | x), which is in principle governed by Bayes’
law yet usually intractable.

Whilst the paradigm was originally conceived in the context of statistics
and Bayesian machine learning, probabilistic programming has in recent years

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 479–506, 2023.
https://doi.org/10.1007/978-3-031-30044-8_18

http://orcid.org/0000-0001-7509-680X
http://orcid.org/0000-0002-2807-8462
https://doi.org/10.1007/978-3-031-30044-8_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_18&domain=pdf

B. Khajwal et al.

proven to be a very fruitful subject for the programming language community.
Researchers have made significant theoretical contributions such as underpinning
languages with rigorous (categorical) semantics [35,34,15,37,12,10] and investi-
gating the correctness of inference algorithms [16,7,22]. The latter were mostly
designed in the context of “traditional” statistics and features such as condition-
als, which are ubiquitous in programming, pose a major challenge for correctness.

Inference algorithms broadly fall into two categories: Markov chain Monte
Carlo (MCMC), which yields a sequence of samples asymptotically approaching
the true posterior, and variational inference.

Variational Inference. In the variational inference approach to Bayesian statis-
tics [40,30,5,6], the problem of approximating difficult-to-compute posterior prob-
ability distributions is transformed to an optimisation problem. The idea is to
approximate the posterior probability p(z | x) using a family of “simpler” den-
sities qθ(z) over the latent variables z, parameterised by θ. The optimisation
problem is then to find the parameter θ∗ such that qθ∗(z) is “closest” to the
true posterior p(z | x). Since the variational family may not contain the true
posterior, qθ∗ is an approximation in general. In practice, variational inference
has proven to yield good approximations much faster than MCMC.

Formally, the idea is captured by minimising the KL-divergence [30,5] be-
tween the variational approximation and the true posterior. This is equivalent
to maximising the ELBO function, which only depends on the joint distribution
p(x, z) and not the posterior, which we seek to infer after all:

ELBOθ := Ez∼qθ(z)[log p(x, z)− log qθ(z)] (1)

Gradient Based Optimisation. In practice, variants of Stochastic Gradi-
ent Descent (SGD) are frequently employed to solve optimisation problems of
the following form: argminθ Es∼q(s)[f(θ, s)]. In its simplest version, SGD follows
Monte Carlo estimates of the gradient in each step:

θk+1 := θk − γk ·
1

N

N∑
i=1

∇θf
(
θk, s

(i)
k

)
︸ ︷︷ ︸

gradient estimator

where s
(i)
k ∼ q

(
s
(i)
k

)
and γk is the step size.

For the correctness of SGD it is crucial that the estimation of the gradient
is unbiased, i.e. correct in expectation:

Es(1),...,s(N)∼q

[
1

N

N∑
i=1

∇θf
(
θ, s(i)

)]
= ∇θEs∼q(s)[f(θ, s)]

This property, which is about commuting differentiation and integration, can be
established by the dominated convergence theorem [21, Theorem 6.28].

480

Fast and Correct Optimisation for Probabilistic Programming via Smoothing

Note that we cannot directly estimate the gradient of the ELBO in Eq. (1)
with Monte Carlo because the distribution w.r.t. which the expectation is taken
also depends on the parameters. However, the so-called log-derivative trick can
be used to derive an unbiased estimate, which is known as the Score or REIN-
FORCE estimator [31,38,27,28].

Reparameterisation Gradient. Whilst the score estimator has the virtue of
being very widely applicable, it unfortunately suffers from high variance, which
can cause SGD to yield very poor results3.

The reparameterisation gradient estimator—the dominant approach in varia-
tional inference—reparameterises the latent variable z in terms of a base random
variable s (viewed as the entropy source) via a diffeomorphic transformation φθ,
such as a location-scale transformation or cumulative distribution function. For
example, if the distribution of the latent variable z is a Gaussian N (z | µ, σ2)
with parameters θ = {µ, σ} then the location-scale transformation using the
standard normal as the base distribution gives rise to the reparameterisation

z ∼ N (z | µ, σ2) ⇐⇒ z = φµ,σ(s), s ∼ N (0, 1). (2)

where φµ,σ(s) := s · σ + µ. The key advantage of this setup (often called “repa-
rameterisation trick” [20,36,32]) is that we have removed the dependency on θ
from the distribution w.r.t. which the expectation is taken. Therefore, we can
now differentiate (by backpropagation) with respect to the parameters θ of the
variational distributions using Monte Carlo simulation with draws from the base
distribution s. Thus, succinctly, we have

∇θ Ez∼qθ(z)[f(θ, z)] = ∇θ Es∼q(s)[f(θ,φθ(s))] = Es∼q(s)[∇θ f(θ,φθ(s))]

The main benefit of the reparameterisation gradient estimator is that it has
a significantly lower variance than the score estimator, resulting in faster con-
vergence.

Bias of the Reparameterisation Gradient. Unfortunately, the reparame-
terisation gradient estimator is biased for non-differentiable models [23], which
are readily expressible in programming languages with conditionals:

Example 1. The counterexample in [23, Proposition 2], where the objective func-
tion is the ELBO for a non-differentiable model, can be simplified to

f(θ, s) = −0.5 · θ2 +

{
0 if s+ θ < 0

1 otherwise

Observe that (see Fig. 1a):

∇θ Es∼N (0,1) [f(θ, s)] = −θ +N (−θ | 0, 1) 6= −θ = Es∼N (0,1) [∇θf(θ, s)]

3 see e.g. Fig. 5a or [28]

481

−1 −0.5 0.5 1

−1

−0.5

0.5

1

θ

(a) Dashed red: biased estima-
tor Es∼N (0,1) [∇θf(θ, s)], solid green:
true gradient ∇θ Es∼N (0,1) [f(θ, s)].

(b) ELBO trajectories (higher means bet-
ter) obtained with our implementation
(cf. Section 7)

Fig. 1: Bias of the reparameterisation gradient estimator for Example 1.

Crucially this may compromise convergence to critical points or maximisers :
even if we can find a point where the gradient estimator vanishes, it may not
be a critical point (let alone optimum) of the original optimisation problem
(cf. Fig. 1b)

Informal Approach

As our starting point we take a variant of the simply typed lambda calculus
with reals, conditionals and a sampling construct. We abstract the optimisation
of the ELBO to the following generic optimisation problem

argminθ Es∼D[JMK(θ, s)] (3)

where JMK is the value function [7,26] of a program M and D is independent
of the parameters θ and it is determined by the distributions from which M
samples. Owing to the presence of conditionals, the function JMK may not be
continuous, let alone differentiable.

−1 −0.5 0.5 1

0.5

1

Fig. 2: (Logistic) sigmoid
function ση (dotted: η =
1
3 , dashed: η = 1

15) and
the Heaviside step function
(red, solid).

Example 1 can be expressed as

(λz.−0.5 · θ2 + (if z < 0 then 0 else 1)) (sampleN + θ)

Our approach is based on a denotational se-
mantics J(−)Kη (for accuracy coefficient η > 0) of
programs in the (new) cartesian closed category
VectFr, which generalises smooth manifolds and
extends Frölicher spaces (see e.g. [13,33]) with a
vector space structure.

Intuitively, we replace the Heaviside step-
function usually arising in the interpretation of
conditionals by smooth approximations. In partic-
ular, we interpret the conditional of Example 1 as

Jif s+ θ < 0 then 0 else 1Kη(θ, s) := ση(s+ θ)

B. Khajwal et al.482

where ση is a smooth function. For instance we can choose ση(x) := σ(xη) where
σ(x) := 1

1+exp(−x) is the (logistic) sigmoid function (cf. Fig. 2). Thus, the pro-
gram M is interpreted by a smooth function JMKη, for which the reparameter-
isation gradient may be estimated unbiasedly. Therefore, we apply stochastic
gradient descent on the smoothed program.

Contributions

The high-level contribution of this paper is laying a theoretical foundation for
correct yet efficient (variational) inference for probabilistic programming. We
employ a smoothed interpretation of programs to obtain unbiased (reparame-
terisation) gradient estimators and establish technical pre-conditions by type
systems. In more detail:

1. We present a simple (higher-order) programming language with conditionals.
We employ trace types to capture precisely the samples drawn in a fully eager
call-by-value evaluation strategy.

2. We endow our language with both a (measurable) denotational value seman-
tics and a smoothed (hence approximate) value semantics. For the latter we
furnish a categorical model based on Frölicher spaces.

3. We develop type systems enforcing vital technical pre-conditions: unbiased-
ness of the reparameterisation gradient estimator and the correctness of
stochastic gradient descent, as well as the uniform convergence of the smooth-
ing to the original problem. Thus, our smoothing approach in principle yields
correct solutions up to arbitrary error tolerances.

4. We conduct an empirical evaluation demonstrating that our approach ex-
hibits a similar convergence to an unbiased correction of the reparameterised
gradient estimator by [23] – our main baseline. However our estimator is sim-
pler and more efficient: it is faster and attains orders of magnitude reduction
in work-normalised variance.

Outline. In the next section we introduce a simple higher-order probabilistic pro-
gramming language, its denotational value semantics and operational semantics;
Optimisation Problem 1 is then stated. Section 3 is devoted to a smoothed deno-
tational value semantics, and we state the Smooth Optimisation Problem 2. In
Sections 4 and 5 we develop annotation based type systems enforcing the correct-
ness of SGD and the convergence of the smoothing, respectively. Related work
is briefly discussed in Section 6 before we present the results of our empirical
evaluation in Section 7. We conclude in Section 8 and discuss future directions.

Notation. We use the following conventions: bold font for vectors and lists, ++
for concatenation of lists, ∇θ for gradients (w.r.t. θ),[φ] for the Iverson bracket of
a predicate φ and calligraphic font for distributions, in particular N for normal
distributions. Besides, we highlight noteworthy items using red.

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 483

2 A Simple Programming Language

In this section, we introduce our programming language, which is the simply-
typed lambda calculus with reals, augmented with conditionals and sampling
from continuous distributions.

2.1 Syntax

The raw terms of the programming language are defined by the grammar:

M ::= x | θi | r | + | · | − | −1 | exp | log
| ifM < 0 thenM elseM | sampleD | λx.M |MM

where x and θi respectively range over (denumerable collections of) variables and
parameters, r ∈ R, and D is a probability distribution over R (potentially with a
support which is a strict subset of R). As is customary we use infix, postfix and
prefix notation: M +N (addition), M ·N (multiplication), M−1 (inverse), and
−M (numeric negation). We frequently omit the underline to reduce clutter.

Example 2 (Encoding the ELBO for Variational Inference). We consider the
example used by [23] in their Prop. 2 to prove the biasedness of the reparam-
eterisation gradient. (In Example 1 we discussed a simplified version thereof.)
The density is

p(z) := N (z | 0, 1) ·

{
N (0 | −2, 1) if z < 0

N (0 | 5, 1) otherwise

and they use a variational family with density qθ(z) := N (z | θ, 1), which is
reparameterised using a standard normal noise distribution and transformation
s 7→ s+ θ.

First, we define an auxiliary term for the pdf of normals with mean m and
standard derivation s:

N ≡ λx,m, s.
(√

2π · s
)−1 · exp(−0.5 · ((x+ (−m)) · s−1

)2)
Then, we can define

M ≡
(
λz. log (N z 0 1) + (if z < 0 then log (N 0 (−2) 1) else log (N 0 5 1))︸ ︷︷ ︸

log p

−

log (N z θ 1)︸ ︷︷ ︸
log qθ

) (
sampleN + θ

)

2.2 A Basic Trace-Based Type System

Types are generated from base types (R and R>0, the reals and positive reals)
and trace types (typically Σ, which is a finite list of probability distributions)

B. Khajwal et al.484

as well as by a trace-based function space constructor of the form τ • Σ → τ ′.
Formally types are defined by the following grammar:

trace types Σ ::= [D1, . . . ,Dn] n ≥ 0

base types ι ::= R | R>0

safe types σ ::= ι | σ • []→ σ

types τ ::= ι | τ •Σ → τ

where Di are probability distributions. Intuitively a trace type is a description
of the space of execution traces of a probabilistic program. Using trace types, a
distinctive feature of our type system is that a program’s type precisely charac-
terises the space of its possible execution traces [24]. We use list concatenation
notation ++ for trace types, and the shorthand τ1 → τ2 for function types of the
form τ1 • []→ τ2. Intuitively, a term has type τ •Σ → τ ′ if, when given a value
of type τ , it reduces to a value of type τ ′ using all the samples in Σ.

Dual context typing judgements of the form, Γ | Σ ` M : τ , are defined
in Fig. 3b, where Γ = x1 : τ1, · · · , xn : τn, θ1 : τ ′1, · · · , θm : τ ′m is a finite map
describing a set of variable-type and parameter-type bindings; and the trace type
Σ precisely captures the distributions from which samples are drawn in a (fully
eager) call-by-value evaluation of the term M .

The subtyping of types, as defined in Fig. 3a, is essentially standard; for
contexts, we define Γ v Γ ′ if for every x : τ in Γ there exists x : τ ′ in Γ ′ such
that τ ′ v τ .

Trace types are unique [18]:

Lemma 1. If Γ | Σ `M : τ and Γ | Σ′ `M : τ ′ then Σ = Σ′.

A term has safe type σ if it does not contain sampleD or σ is a base type.
Thus, perhaps slightly confusingly, we have | [D] ` sampleD : R, and R
is considered a safe type. Note that we use the metavariable σ to denote safe
types.

Conditionals. The branches of conditionals must have a safe type. Otherwise it
would not be clear how to type terms such as

M ≡ if x < 0 then (λx. sampleN) else (λx. sample E + sample E)

N ≡ (λf. f (f sampleN))M

because the branches draw a different number of samples from different distribu-
tions, and have types R• [N]→ R and R• [E , E]→ R, respectively. However, for
M ′ ≡ if x < 0 then sampleN else sample E + sample E we can (safely) type

x : R | [N , E , E] `M ′ : R
| [] ` λx.M ′ : R • [N , E , E]→ R

| [N ,N , E , E ,N , E , E] ` (λf. f (f sampleN)) (λx.M
′) : R

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 485

ι v ι R>0 v R
τ ′1 v τ1 τ2 v τ ′2

(τ1 •Σ → τ2) v (τ ′1 •Σ → τ ′2)

(a) Subtyping

Γ | Σ `M : τ

Γ ′ | Σ `M : τ ′
Γ v Γ ′, τ v τ ′

x : τ | [] ` x : τ

| [] ` r : R r ∈ R | [] ` r : R>0
r ∈ R>0

| [] ` ◦ : R→ R→ R
◦ ∈ {+, ·}

| [] ` ◦ : R>0 → R>0 → R>0

◦ ∈ {+, ·}

| [] ` − : R→ R | [] ` −1 : R>0 → R>0

| [] ` exp : R→ R>0 | [] ` log : R>0 → R

Γ | Σ ` L : R Γ | Σ′ `M : σ Γ | Σ′′ ` N : σ

Γ | Σ ++Σ′ ++Σ′′ ` if L < 0 thenM elseN : σ | [D] ` sampleD : R

Γ, y : τ1 | Σ `M : τ2

Γ | [] ` λy.M : τ1 •Σ → τ2

Γ | Σ1 `M : τ1 •Σ3 → τ2 Γ | Σ2 ` N : τ1

Γ | Σ1 ++Σ2 ++Σ3 `M N : τ2

(b) Typing judgments

Fig. 3: A Basic Trace-based Type System

Example 3. Consider the following terms:

L ≡ λx. sampleN + sampleN

M ≡ if x < 0 then (λy. y + y) sampleN else (sampleN + sampleN)

We can derive the following typing judgements:

| [] ` L : R>0 • [N ,N]→ R

x : R>0 | [N ,N ,N] `M : R

| [] ` λx.M : R>0 • [N ,N ,N]→ R

| [N ,N ,N ,N] ` (λx.M) sampleN : R

| [N ,N] ` (λf. f (f 0)) (λx. sampleN) : R

Note that if x < 0 then (λx. sampleN) else (λx. x) is not typable.

2.3 Denotational Value Semantics

Next, we endow our language with a (measurable) value semantics. It is well-
known that the category of measurable spaces and measurable functions is not
cartesian-closed [1], which means that there is no interpretation of the lambda

B. Khajwal et al.486

calculus as measurable functions. These difficulties led [14] to develop the cat-
egory QBS of quasi-Borel spaces. Notably, morphisms can be combined piece-
wisely, which we need for conditionals.

We interpret our programming language in the category QBS of quasi-Borel
spaces. Types are interpreted as follows:

JRK := (R,MR) JR>0K := (R>0,MR>0
) J[D1, . . . ,Dn]K := (R,MR)

n

Jτ1 •Σ → τ2K := Jτ1K× JΣK⇒ Jτ2K

where MR is the set of measurable functions R→ R; similarly for MR>0 . (As for
trace types, we use list notation (and list concatenation) for traces.)

We first define a handy helper function for interpreting application. For f :
JΓ K× Rn1 ⇒ Jτ1 •Σ3 → τ2K and g : JΓ K× Rn2 ⇒ Jτ1K define

f @ g : JΓ K× Rn1+n2+|Σ3| ⇒ Jτ2K

(γ, s1 ++ s2 ++ s3) 7→ f(γ, s1)(g(γ, s2), s3) s1 ∈ Rn1 , s2 ∈ Rn2 , s3 ∈ R|Σ3|

We interpret terms-in-context, JΓ | Σ `M : τK : JΓ K×JΣK→ JτK, as follows:

JΓ | [D] ` sampleD : RK(γ, [s]) := s

JΓ | [] ` λy.M : τ1 •Σ → τ2K(γ, []) :=
(v, s) ∈ Jτ1K× JΣK 7→ JΓ, x : τ1 | Σ `M : τ2K((γ, v), s)

JΓ | Σ1 ++Σ2 ++Σ3 `M N : τK :=
JΓ | Σ1 `M : τ1 •Σ3 → τ2K @ JΓ | Σ2 ` N : τ1K

JΓ | Σ1 ++Σ2 ++Σ3 ` if L < 0 thenM elseN : τK(γ, s1 ++ s2 ++ s3)) :={
JΓ | Σ2 `M : τK(γ, s2) if JΓ | Σ1 ` L : RK(γ, s1) < 0

JΓ | Σ3 ` N : τK(γ, s3) otherwise

It is not difficult to see that this interpretation of terms-in-context is well-
defined and total. For the conditional clause, we may assume that the trace type
and the trace are presented as partitions Σ1 ++ Σ2 ++ Σ3 and s1 ++ s2 ++ s3
respectively. This is justified because it follows from the judgement Γ | Σ1 ++
Σ2 ++ Σ3 ` if L < 0 thenM elseN : τ that Γ | Σ1 ` L : R, Γ | Σ2 ` M : σ
and Γ | Σ3 ` N : σ are provable; and we know that each of Σ1, Σ2 and Σ3 is
unique, thanks to Lemma 1; their respective lengths then determine the partition
s1 ++ s2 ++ s3. Similarly for the application clause, the components Σ1 and Σ2

are determined by Lemma 1, and Σ3 by the type of M .

2.4 Relation to Operational Semantics

We can also endow our language with a big-step CBV sampling-based semantics
similar to [7,26], as defined in [18, Fig. 6]. We write M ⇓sw V to mean that
M reduces to value V , which is a real constant or an abstraction, using the
execution trace s and accumulating weight w.

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 487

Based on this, we can define the value- and weight-functions:

valueM (s) :=

{
V if M ⇓sw V
undef otherwise

weightM (s) :=

{
w if M ⇓sw V
0 otherwise

Our semantics is a bit non-standard in that for conditionals we evaluate
both branches eagerly. The technical advantage is that for every (closed) term-
in-context, | [D1, · · · ,Dn] `M : ι, M reduces to a (unique) value using exactly
the traces of the length encoded in the typing, i.e., n.

So in this sense, the operational semantics is “total”: there is no divergence.
Notice that there is no partiality caused by partial primitives such as 1/x, thanks
to the typing.

Moreover there is a simple connection to our denotational value semantics:

Proposition 1. Let | [D1, . . . ,Dn] `M : ι. Then

1. dom(valueM) = Rn
2. JMK = valueM
3. weightM (s) =

∏n
j=1 pdfDj (sj)

2.5 Problem Statement

We are finally ready to formally state our optimisation problem:

Problem 1. Optimisation

Given: term-in-context, θ1 : ι1, · · · , θm : ιm | [D1, . . . ,Dn] `M : R

Find: argminθ Es1∼D1,...,sn∼Dn [JMK(θ, s)]

3 Smoothed Denotational Value Semantics

Now we turn to our smoothed denotational value semantics, which we use to
avoid the bias in the reparameterisation gradient estimator. It is parameterised
by a family of smooth functions ση : R → [0, 1]. Intuitively, we replace the
Heaviside step-function arising in the interpretation of conditionals by smooth
approximations (cf. Fig. 2). In particular, conditionals if z < 0 then 0 else 1 are
interpreted as z 7→ ση(z) rather than [z ≥ 0] (using Iverson brackets).

Our primary example is ση(x) := σ(xη), where σ is the (logistic) sigmoid
σ(x) := 1

1+exp(−x) , see Fig. 2. Whilst at this stage no further properties other
than smoothness are required, we will later need to restrict ση to have good
properties, in particular to convergence to the Heaviside step function.

As a categorical model we propose vector Frölicher spaces VectFr, which (to
our knowledge) is a new construction, affording a simple and direct interpretation
of the smoothed conditionals.

B. Khajwal et al.488

3.1 Frölicher Spaces

We recall the definition of Frölicher spaces, which generalise smooth spaces4: A
Frölicher space is a triple (X, CX ,FX) where X is a set, CX ⊆ Set(R, X) is a
set of curves and FX ⊆ Set(X,R) is a set of functionals. satisfying

1. if c ∈ CX and f ∈ FX then f ◦ c ∈ C∞(R,R)
2. if c : R→ X such that for all f ∈ FX , f ◦ c ∈ C∞(R,R) then c ∈ CX
3. if f : X → R such that for all c ∈ CX , f ◦ c ∈ C∞(R,R) then f ∈ FX .

A morphism between Frölicher spaces (X, CX ,FX) and (Y, CY ,FY) is a map
φ : X → Y satisfying f ◦ φ ◦ c ∈ C∞(R,R) for all f ∈ FY and c ∈ CX .

Frölicher spaces and their morphisms constitute a category Fr, which is well-
known to be cartesian closed [13,33].

3.2 Vector Frölicher Spaces

To interpret our programming language smoothly we would like to interpret
conditionals as ση-weighted convex combinations of its branches:

Jif L < 0 thenM elseNKη(γ, s1 ++ s2 ++ s3) :=

ση(−JLKη(γ, s1)) · JMKη(γ, s2) + ση(JLKη(γ, s1)) · JNKη(γ, s3) (4)

By what we have discussed so far, this only makes sense if the branches have
ground type because Frölicher spaces are not equipped with a vector space
structure but we take weighted combinations of morphisms. In particular if
φ1, φ2 : X → Y and α : X → R are morphisms then αφ1 + φ2 ought to be
a morphism too. Therefore, we enrich Frölicher spaces with an additional vector
space structure:

Definition 1. An R-vector Frölicher space is a Frölicher space (X, CX ,FX)
such that X is an R-vector space and whenever c, c′ ∈ CX and α ∈ C∞(R,R)
then α c+ c′ ∈ CX (defined pointwise).

A morphism between R-vector Frölicher spaces is a morphism between
Frölicher spaces, i.e. φ : (X, CX ,FX) → (Y, CY ,FY) is a morphism if for all
c ∈ CX and f ∈ FY , f ◦ φ ◦ c ∈ C∞(R,R).

R-vector Frölicher space and their morphisms constitute a category VectFr.
There is an evident forgetful functor fully faithfully embedding VectFr in Fr.
Note that the above restriction is a bit stronger than requiring that CX is also a
vector space. (α is not necessarily a constant.) The main benefit is the following,
which is crucial for the interpretation of conditionals as in Eq. (4):

Lemma 2. If φ1, φ2 ∈ VectFr(X,Y) and α ∈ VectFr(X,R) then αφ1 + φ2 ∈
VectFr(X,Y) (defined pointwisely).

Proof. Suppose c ∈ CX and f ∈ FY . Then (α1 φ1 + φ2) ◦ c = (α ◦ c) · (φ1 ◦ c) +
(φ2 ◦ c) ∈ CY (defined pointwisely) and the claim follows.
4 C∞(R,R) is the set of smooth functions R→ R

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 489

Similarly as for Frölicher spaces, if X is an R-vector space then any C ⊆
Set(X,R) generates a R-vector Frölicher space (X, CX ,FX), where

FX := {f : X → R | ∀c ∈ C. f ◦ c ∈ C∞(R,R)}

C̃X := {c : R→ X | ∀f ∈ FX . f ◦ c ∈ C∞(R,R)}

CX :=

{
n∑
i=1

αi ci | n ∈ N, ∀i ≤ n. αi ∈ C∞(R,R), ci ∈ C̃X

}

Having modified the notion of Frölicher spaces generated by a set of curves, the
proof for cartesian closure carries over [18] and we conclude:

Proposition 2. VectFr is cartesian closed.

3.3 Smoothed Interpretation

We have now discussed all ingredients to interpret our language (smoothly) in
the cartesian closed category VectFr. We call JMKη the η-smoothing of JMK (or
of M , by abuse of language). The interpretation is mostly standard and follows
Section 2.3, except for the case for conditionals. The latter is given by Eq. (4),
for which the additional vector space structure is required.

Finally, we can phrase a smoothed version of our Optimisation Problem 1:

Problem 2. η-Smoothed Optimisation

Given: term-in-context, θ1 : ι1, · · · , θm : ιm | [D1, . . . ,Dn] ` M : R, and
accuracy coefficient η > 0

Find: argminθ Es1∼D1,...,sn∼Dn [JMKη(θ, s)]

4 Correctness of SGD for Smoothed Problem and
Unbiasedness of the Reparameterisation Gradient

Next, we apply stochastic gradient descent (SGD) with the reparameterisation
gradient estimator to the smoothed problem (for the batch size N = 1):

θk+1 := θk − γk · ∇θJMKη (θk, sk) sk ∼ D (5)

where θ | [s ∼ D] `M : R (slightly abusing notation in the trace type).
A classical choice for the step-size sequence is γk ∈ Θ(1/k), which satisfies

the so-called Robbins-Monro criterion:∑
k∈N

γk =∞
∑
k∈N

γ2k <∞ (6)

In this section we wish to establish the correctness of the SGD procedure
applied to the smoothing Eq. (5).

B. Khajwal et al.490

4.1 Desiderata

First, we ought to take a step back and observe that the optimisation problems
we are trying to solve can be ill-defined due to a failure of integrability: take
M ≡ (λx. exp (x · x)) sampleN : we have Ez∼N [JMK(z)] =∞, independently of
parameters. Therefore, we aim to guarantee:

(SGD0) The optimisation problems (both smoothed and unsmoothed) are
well-defined.

Since E[JMKη(θ, s)] (and E[JMK(θ, s)]) may not be a convex function in the
parameters θ, we cannot hope to always find global optima. We seek instead
stationary points, where the gradient w.r.t. the parameters θ vanishes. The fol-
lowing results (whose proof is standard) provide sufficient conditions for the
convergence of SGD to stationary points (see e.g. [3] or [2, Chapter 2]):

Proposition 3 (Convergence). Suppose (γk)k∈N satisfies the Robbins-Monro
criterion Eq. (6) and g(θ) := Es[f(θ, s)] is well-defined. If Θ ⊆ Rm satisfies

(SGD1) Unbiasedness: ∇θg(θ) = Es[∇θf(θ, s)] for all θ ∈ Θ
(SGD2) g is L-Lipschitz smooth on Θ for some L > 0:

‖∇θg(θ)−∇θg(θ
′)‖ ≤ L · ‖θ − θ′‖ for all θ,θ′ ∈ Θ

(SGD3) Bounded Variance: supθ∈Θ Es[‖∇θf(θ, s)‖2] <∞

then infi∈N E[‖∇g(θi)‖2] = 0 or θi 6∈ Θ for some i ∈ N.

Unbiasedness (SGD1) requires commuting differentiation and integration.
The validity of this operation can be established by the dominated convergence
theorem [21, Theorem 6.28], see [18]. To be applicable the partial derivatives of f
w.r.t. the parameters need to be dominated uniformly by an integrable function.
Formally:

Definition 2. Let f : Θ × Rn → R and g : Rn → R. We say that g uniformly
dominates f if for all (θ, s) ∈ Θ × Rn, |f(θ, s)| ≤ g(s).

Also note that for Lipschitz smoothness (SGD2) it suffices to uniformly bound
the second-order partial derivatives.

In the remainder of this section we present two type systems which restrict
the language to guarantee properties (SGD0) to (SGD3).

4.2 Piecewise Polynomials and Distributions with Finite Moments

As a first illustrative step we consider a type system `poly, which restricts terms
to (piecewise) polynomials, and distributions with finite moments. Recall that a
distribution D has (all) finite moments if for all p ∈ N, Es∼D[|s|p] <∞. Distri-
butions with finite moments include the following commonly used distributions:
normal, exponential, logistic and gamma distributions. A non-example is the
Cauchy distribution, which famously does not even have an expectation.

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 491

Definition 3. For a distribution D with finite moments, f : Rn → R has (all)
finite moments if for all p ∈ N, Es∼D[|f(s)|p] <∞.

Functions with finite moments have good closure properties:

Lemma 3. If f, g : Rn → R have (all) finite moments so do −f, f + g, f · g.

In particular, if a distribution has finite moments then polynomials do, too.
Consequently, intuitively, it is sufficient to simply (the details are explicitly
spelled out in [18]):

1. require that the distributions D in the sample rule have finite moments:

| [D] `poly sampleD : R
D has finite moments

2. remove the rules for −1, exp and log from the type system `poly.

Type Soundness I: Well-Definedness. Henceforth, we fix parameters θ1 :
ι1, . . . , θm : ιm. Intuitively, it is pretty obvious that JMK is a piecewise polynomial
whenever θ | Σ `poly M : ι. Nonetheless, we prove the property formally to
illustrate our proof technique, a variant of logical relations, employed throughout
the rest of the paper.

We define a slightly stronger logical predicate P(n)
τ on Θ×Rn → JτK, which

allows us to obtain a uniform upper bound:

1. f ∈ P(n)
ι if f is uniformly dominated by a function with finite moments

2. f ∈ P(n)
τ1•Σ3→τ2 if for all n2 ∈ N and g ∈ P(n+n2)

τ1 , f � g ∈ P(n+n2+|Σ3|)
τ2

where for f : Θ × Rn1 → Jτ1 •Σ3 → τ2K and g : Θ × Rn1+n2 → Jτ1K we define

f � g : Θ × Rn1+n2+|Σ3| → τ2

(θ, s1 ++ s2 ++ s3) 7→ f(θ, s1)(g(θ, s1 ++ s2), s3)

Intuitively, g may depend on the samples in s2 (in addition to s1) and the function
application may consume further samples s3 (as determined by the trace type
Σ3). By induction on safe types we prove the following result, which is important
for conditionals:

Lemma 4. If f ∈ P(n)
ι and g, h ∈ P(n)

σ then [f(−) < 0]·g+[f(−) ≥ 0]·h ∈ P(n)
σ .

Proof. For base types it follows from Lemma 3. Hence, suppose σ has the form
σ1• []→ σ2. Let n2 ∈ N and x ∈ Pn+n2

σ1
. By definition, (g�x), (h�x) ∈ P(n+n2)

σ2 .
Let f̂ be the extension (ignoring the additional samples) of f to Θ×Rn+n2 → R.
It is easy to see that also f̂ ∈ P(n+n2)

ι By the inductive hypothesis,

[f̂(−) < 0] · (g � x) + [f̂(−) ≥ 0] · (h� x) ∈ P(n+n2)
σ2

Finally, by definition,

([f(−) < 0] · g + [f(−) ≥ 0] · h)� x = [f̂(−) < 0] · (g � x) + [f̂(−) ≥ 0] · (h� x)

B. Khajwal et al.492

Assumption 1 We assume that Θ ⊆ Jι1K× · · · × JιmK is compact.

Lemma 5 (Fundamental). If θ, x1 : τ1, . . . , x` : τ` | Σ `poly M : τ , n ∈ N,
ξ1 ∈ P(n)

τ1 , . . . , ξ` ∈ P(n)
τ` then JMK ∗ 〈ξ1, . . . , ξ`〉 ∈ P(n+|Σ|)

τ , where

JMK ∗ 〈ξ1, . . . , ξ`〉 : Θ × Rn+|Σ| → JτK
(θ, s++ s′) 7→ JMK((θ, ξ1(θ, s), . . . , ξ`(θ, s)), s′)

It is worth noting that, in contrast to more standard fundamental lemmas, here
we need to capture the dependency of the free variables on some number n of
further samples. E.g. in the context of (λx. x) sampleN the subterm x depends
on a sample although this is not apparent if we consider x in isolation.

Lemma 5 is proven by structural induction [18]. The most interesting cases in-
clude: parameters, primitive operations and conditionals. In the case for param-
eters we exploit the compactness of Θ (Assumption 1). For primitive operations
we note that as a consequence of Lemma 3 each P(n)

ι is closed under negation5,
addition and multiplication. Finally, for conditionals we exploit Lemma 3.

Type Soundness II: Correctness of SGD. Next, we address the integrability
for the smoothed problem as well as (SGD1) to (SGD3). We establish that not
only JMKη but also its partial derivatives up to order 2 are uniformly dominated
by functions with finite moments. For this to possibly hold we require:

Assumption 2 For every η > 0,

sup
x∈R
|ση(x)| <∞ sup

x∈R
|σ′η(x)| <∞ sup

x∈R
|σ′′η (x)| <∞

Note that, for example, the logistic sigmoid satisfies Assumption 2.
We can then prove a fundamental lemma similar to Lemma 5, mutatis mu-

tandis, using a logical predicate in VectFr. We stipulate f ∈ Q(n)
ι if its partial

derivatives up to order 2 are uniformly dominated by a function with finite mo-
ments. In addition to Lemma 3 we exploit standard rules for differentiation (such
as the sum, product and chain rule) as well as Assumption 2. We conclude:

Proposition 4. If θ | Σ `poly M : R then the partial derivatives up to order 2
of JMKη are uniformly dominated by a function with all finite moments.

Consequently, the Smoothed Optimisation Problem 2 is not only well-defined
but, by the dominated convergence theorem [21, Theorem 6.28], the reparame-
terisation gradient estimator is unbiased. Furthermore, (SGD1) to (SGD3) are
satisfied and SGD is correct.

Discussion. The type system `poly is simple yet guarantees correctness of SGD.
However, it is somewhat restrictive; in particular, it does not allow the expression
of many ELBOs arising in variational inference directly as they often have the
form of logarithms of exponential terms (cf. Example 2).
5 for ι = R

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 493

4.3 A Generic Type System with Annotations

Next, we present a generic type system with annotations. In Section 4.4 we give
an instantiation to make `poly more permissible and in Section 5 we turn towards
a different property: the uniform convergence of the smoothings.

Typing judgements have the form Γ | Σ `? M : τ , where “?” indicates
the property we aim to establish, and we annotate base types. Thus, types are
generated from

trace types Σ ::= [s1 ∼ D1, . . . , sn ∼ Dn]
base types ι ::= R | R>0

safe types σ ::= ιβ | σ • []→ σ

types τ ::= ια | τ •Σ → τ

Annotations are drawn from a set and may possibly restricted for safe types.
Secondly, the trace types are now annotated with variables, typically Σ = [s1 ∼
D1, . . . , sn ∼ Dn] where the variables sj are pairwise distinct.

For the subtyping relation we can constrain the annotations at the base type
level [18]; the extension to higher types is accomplished as before.

The typing rules have the same form but they are extended with the annota-
tions on base types and side conditions possibly constraining them. For example,
the rules for addition, exponentiation and sampling are modified as follows:

| [] `? + : ια1 → ια2 → ια
(cond. Add)

| [] `? exp : Rα → Rα
′

>0

(cond. Exp)

| [sj ∼ D] `? sampleD : Rα
(cond. Sample)

The rules for subtyping, variables, abstractions and applications do not need to
be changed at all but they use annotated types instead of the types of Section 2.2.

Γ | Σ `? M : τ

Γ ′ | Σ `? M : τ ′
Γ v? Γ

′, τ v? τ
′

x : τ | [] `? x : τ

Γ, y : τ1 | Σ `? M : τ2

Γ | [] `? λy.M : τ1 •Σ → τ2

Γ | Σ2 `? M : τ1 •Σ3 → τ2 Γ | Σ1 `? N : τ1

Γ | Σ1 ++Σ2 ++Σ3 `? M N : τ2

The full type system is presented in [18].
`poly can be considered a special case of `? whereby we use the singleton ∗

as annotations, a contradictory side condition (such as false) for the undesired
primitives −1, exp and log, and use the side condition “D has finite moments”
for sample as above.

Table 1 provides an overview of the type systems of this paper and their
purpose. `? and its instantiations refine the basic type system of Section 2.2 in
the sense that if a term-in-context is provable in the annotated type system,
then its erasure (i.e. erasure of the annotations of base types and distributions)
is provable in the basic type system. This is straightforward to check.

B. Khajwal et al.494

Table 1: Overview of type systems in this paper.

property Section judgement annotation

totality Section 2.2 ` –

correctness SGD
Section 4.2 `poly none/∗

Section 4.4 `SGD 0/1

uniform convergence Section 5.1 `unif (f ,∆)/(t,∆)

| [] `SGD exp : R(0) → R
(1)
>0 | [] `SGD log : R

(e)
>0 → R(0)

| [] `SGD + : ι(0) → ι(0) → ι(0) | [] `SGD · : ι(e) → ι(e) → ι(e)

| [] `SGD − : R(0) → R(0) | [] `SGD
−1 : R

(e)
>0 → R

(e)
>0

Γ | Σ `SGD L : ι(0) Γ | Σ′ `SGD M : σ Γ | Σ′′ `SGD N : σ

Γ | Σ ++Σ′ ++Σ′′ `SGD if L < 0 thenM elseN : σ

| [sj ∼ D] `SGD sampleD : R(0)
D has finite moments

Fig. 4: Excerpt of the typing rules (cf. [18]) for the correctness of SGD.

4.4 A More Permissible Type System

In this section we discuss another instantiation, `SGD, of the generic type system
system to guarantee (SGD0) to (SGD3), which is more permissible than `poly.
In particular, we would like to support Example 2, which uses logarithms and
densities involving exponentials. Intuitively, we need to ensure that subterms
involving exp are “neutralised” by a corresponding log. To achieve this we an-
notate base types with 0 or 1, ordered discretely. 0 is the only annotation for
safe base types and can be thought of as “integrable”; 1 denotes “needs to be
passed through log”. More precisely, we constrain the typing rules such that if
θ | Σ `SGD M : ι(e) then6 loge ◦JMK and the partial derivatives of loge ◦JMKη
up to order 2 are uniformly dominated by a function with finite moments.

We subtype base types as follows: ι(e1)1 vSGD ι
(e2)
2 if ι1 v ι2 (as defined in

Fig. 3a) and e1 = e2, or ι1 = R>0 = ι2 and e1 ≤ e2. The second disjunct may
come as a surprise but we ensure that terms of type R(0)

>0 cannot depend on
samples at all.

In Fig. 4 we list the most important rules; we relegate the full type system to
[18]. exp and log increase and decrease the annotation respectively. The rules for
the primitive operations and conditionals are motivated by the closure properties

6 using the convention log0 is the identity

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 495

of Lemma 3 and the elementary fact that log ◦(f · g) = (log ◦f) + (log ◦g) and
log ◦(f−1) = − log ◦f for f, g : Θ × Rn → R.

Example 4. θ : R(0)
>0 | [N ,N] `SGD log (θ−1 · exp (sampleN))+ sampleN : R(0)

Note that the branches of conditionals need to have safe type, which rules out
branches with type R(1). This is because logarithms do not behave nicely when
composed with addition as used in the smoothed interpretation of conditionals.

Besides, observe that in the rules for logarithm and inverses e = 0 is allowed,
which may come as a surprise7. This is e.g. necessary for the typability of the
variational inference Example 2:

Example 5 (Typing for Variational Inference). It holds | [] ` N : R(0) → R(0) →
R

(0)
>0 → R

(1)
>0 and θ : R(0) | [s1 ∼ N] `M : R(0).

Type Soundness. To formally establish type soundness, we can use a logical
predicate, which is very similar to the one in Section 4.2 (N.B. the additional
Item 2): in particular f ∈ Q(n)

ι(e)
if

1. partial derivatives of loge ◦f up to order 2 are uniformly dominated by a
function with finite moments

2. if ι(e) is R(0)
>0 then f is dominated by a positive constant function

Using this and a similar logical predicate for J(−)K we can show:

Proposition 5. If θ1 : ι(0), . . . , θm : ι
(0)
m | Σ `SGD M : ι(0) then

1. all distributions in Σ have finite moments
2. JMK and for each η > 0 the partial derivatives up to order 2 of JMKη are

uniformly dominated by a function with finite moments.

Consequently, again the Smoothed Optimisation Problem 2 is not only well-
defined but by the dominated convergence theorem, the reparameterisation gra-
dient estimator is unbiased. Furthermore, (SGD1) to (SGD3) are satisfied and
SGD is correct.

5 Uniform Convergence

In the preceding section we have shown that SGD with the reparameterisation
gradient can be employed to correctly (in the sense of Proposition 3) solve the
Smoothed Optimisation Problem 2 for any fixed accuracy coefficient. However,
a priori, it is not clear how a solution of the Smoothed Problem 2 can help to
solve the original Problem 1.

The following illustrates the potential for significant discrepancies:

7 Recall that terms of type R(0)
>0 cannot depend on samples.

B. Khajwal et al.496

Example 6. Consider M ≡ if 0 < 0 then θ ·θ+1 else (θ−1) · (θ−1). Notice that
the global minimum and the only stationary point of JMKη is at θ = 1

2 regardless
of η > 0, where JMKη(12) =

3
4 . On the other hand JMK(12) =

1
4 and the global

minimum of JMK is at θ = 1.

In this section we investigate under which conditions the smoothed objective
function converges to the original objective function uniformly in θ ∈ Θ:

(Unif) Es∼D [JMKη(θ, s)]
unif.−−−→ Es∼D [JMK(θ, s)] as η ↘ 0 for θ ∈ Θ

We design a type system guaranteeing this.
The practical significance of uniform convergence is that before running SGD,

for every error tolerance ε > 0 we can find an accuracy coefficient η > 0 such
that the difference between the smoothed and original objective function does
not exceed ε, in particular for θ∗ delivered by the SGD run for the η-smoothed
problem.

Discussion of Restrictions. To rule out the pathology of Example 6 we require
that guards are non-0 almost everywhere.

Furthermore, as a consequence of the uniform limit theorem [29], (Unif)
can only possibly hold if the expectation Es∼D [JMK(θ, s)] is continuous (as
a function of the parameters θ). For a straightforward counterexample take
M ≡ if θ < 0 then 0 else 1, we have Es[JMK(θ)] = [θ ≥ 0] which is discontin-
uous, let alone differentiable, at θ = 0. Our approach is to require that guards
do not depend directly on parameters but they may do so, indirectly, via a dif-
feomorphic8 reparameterisation transform; see Example 8. We call such guards
safe.

In summary, our aim, intuitively, is to ensure that guards are the composition
of a diffeomorphic transformation of the random samples (potentially depending
on parameters) and a function which does not vanish almost everywhere.

5.1 Type System for Guard Safety

In order to enforce this requirement and to make the transformation more ex-
plicit, we introduce syntactic sugar, transformsampleD by T , for applications
of the form T sampleD.

Example 7. As expressed in Eq. (2), we can obtain samples from N (µ, σ2) via
transformsampleN by (λs. s · σ + µ), which is syntactic sugar for the term
(λs. s · σ + µ) sampleN .

We propose another instance of the generic type system of Section 4.3, `unif ,
where we annotate base types by α = (g,∆), where g ∈ {f , t} denotes whether
we seek to establish guard safety and ∆ is a finite set of sj capturing possible
dependencies on samples. We subtype base types as follows: ι(g1,∆1)

1 vunif ι
(g2,∆2)
2

8 [18, Example 12] illustrates why it is not sufficient to restrict the reparameterisation
transform to bijections (rather, we require it to be a diffeomorphism).

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 497

if ι1 v ι2 (as defined in Fig. 3a), ∆1 ⊆ ∆2 and g1 � g2, where t � f . This is
motivated by the intuition that we can always drop9 guard safety and add more
dependencies.

The rule for conditionals ensures that only safe guards are used. The unary
operations preserve variable dependencies and guard safety. Parameters and con-
stants are not guard safe and depend on no samples (see [18] for the full type
system):

Γ | Σ `unif L : ι(t,∆) Γ | Σ′ `unif M : σ Γ | Σ′′ `unif N : σ

Γ | Σ ++Σ′ ++Σ′′ `unif if L < 0 thenM elseN : σ

| [] `unif − : R(g,∆) → R(g,∆)

θi : ι
(f ,∅) | [] `unif θi : ι(f ,∅) | [] `unif r : ι(f ,∅)

r ∈ JιK

θ | [] `unif T : Rα → Rα

θ | [sj ∼ D] `unif transformsampleD by T : R(t,{sj})
T diffeomorphic

A term θ | [] `unif T : Rα → Rα is diffeomorphic if JT K(θ, []) = JT Kη(θ, []) :
R→ R is a diffeomorphism for each θ ∈ Θ, i.e. differentiable and bijective with
differentiable inverse.

First, we can express affine transformations, in particular, the location-scale
transformations as in Example 7:

Example 8 (Location-Scale Transformation). The term-in-context

σ : R
(f ,∅)
>0 , µ : R(f ,∅) | [] ` λs. σ · s+ µ : R(f ,{s1}) → R(f ,{s1})

is diffeomorphic. (However for σ : R(f ,∅) it is not because it admits σ = 0.)
Hence, the reparameterisation transform

G ≡ σ : R
(f ,∅)
>0 , µ : R(f ,∅) | [s1 : D]`transformsampleD by (λs.s·σ+µ) : R(t,{s1})

which has g-flag t, is admissible as a guard term. Notice that G depends on the
parameters, σ and µ, indirectly through a diffeomorphism, which is permitted
by the type system.

If guard safety is sought to be established for the binary operations, we
require that operands do not share dependencies on samples:

| [] `unif ◦ : ι(f ,∆) → ι(f ,∆) → ι(f ,∆)
◦ ∈ {+, ·}

| [] `unif ◦ : ι(t,∆1) → ι(t,∆2) → ι(t,∆1∪∆2)
◦ ∈ {+, ·}, ∆1 ∩∆2 = ∅

This is designed to address:

9 as long as it is not used in guards

B. Khajwal et al.498

Example 9 (Non-Constant Guards). We have | [] ` (λx.x+ (−x)) : R(f ,{s1}) →
R(f ,{s1}), noting that we must use g = f for the+ rule; and because R(t,{sj}) vunif

R(f ,{sj}), we have

| [] ` (λx.x+ (−x)) : R(t,{s1}) → R(f ,{s1}).

Now transformsampleD by (λy.y) has type R(t,{s1}) with the g-flag necessar-
ily set to t; and so the term

M ≡
(
λx.x+ (−x)

)
transformsampleD by (λy.y)

which denotes 0, has type R(f ,{s1}), but not R(t,{s1}). It follows that M cannot
be used in guards (notice the side condition of the rule for conditional), which
is as desired: recall Example 6. Similarly consider the term

N ≡
(
λx.(λy z.if y + (−z) < 0 thenM1 elseM2)xx

)
(transformsampleD by (λy.y)) (7)

When evaluated, the term y + (−z) in the guard has denotation 0. For the same
reason as above, the term N is not refinement typable.

The type system is however incomplete, in the sense that there are terms-in-
context that satisfy the property (Unif) but which are not typable.

Example 10 (Incompleteness). The following term-in-context denotes the “iden-
tity”:

| [] ` (λx.(2 · x) + (−x)) : R(t,{s1}) → R(f ,{s1})

but it does not have type R(t,{s1}) → R(t,{s1}). Then, using the same reasoning
as Example 9, the term

G ≡ (λx.(2 · x) + (−x)) (transformsampleD by (λy.y))

has type R(f ,{s1}), but not R(t,{s1}), and so if G < 0 then 0 else 1 is not typable,
even though G can safely be used in guards.

5.2 Type Soundness

Henceforth, we fix parameters θ1 : ι
(f ,∅)
1 , . . . , θm : ι

(f ,∅)
m .

Now, we address how to show property (Unif), i.e. that for θ | Σ `unif M :
ι(g,∆), the η-smoothed E[JMKη(θ, s)] converges uniformly for θ ∈ Θ as η ↘ 0. For
this to hold we clearly need to require that ση has good (uniform) convergence
properties (as far as the unavoidable discontinuity at 0 allows for):

Assumption 3 For every δ > 0, ση
unif.−−−→ [(−) > 0] on (−∞,−δ) ∪ (δ,∞).

Observe that in general even if M is typable JMKη does not converge uniformly
in both θ and s because JMK may still be discontinuous in s:

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 499

Example 11. ForM ≡ if (transformsampleN by (λs. s+θ)) < 0 then 0 else 1,
JMK(θ, s) = [s+ θ ≥ 0], which is discontinuous, and JMKη(θ, s) = ση(s+ θ).

However, if θ | Σ ` M : ι(g,∆) then JMKη does converge to JMK uniformly
almost uniformly, i.e., uniformly in θ ∈ Θ and almost uniformly in s ∈ Rn.
Formally, we define:

Definition 4. Let f, fη : Θ × Rn → R, µ be a measure on Rn. We say that fη
converges uniformly almost uniformly to f (notation: fη

u.a.u.−−−−→ f) if there exist
sequences (δk)k∈N, (εk)k∈N and (ηk)k∈N such that limk→∞ δk = 0 = limk→∞ εk;
and for every k ∈ N and θ ∈ Θ there exists U ⊆ Rn such that

1. µ(U) < δk and
2. for every 0 < η < ηk and s ∈ Rn \ U , |fη(θ, s)− f(θ, s)| < εk.

If f, fη are independent of θ this notion coincides with standard almost uniform
convergence. For M from Example 11 JMKη

u.a.u.−−−→ JMK holds although uniform
convergence fails.

However, uniform almost uniform convergence entails uniform convergence
of expectations :

Lemma 6. Let f, fη : Θ × Rn → R have finite moments.

If fη
u.a.u.−−−−→ f then Es∼D[fη(θ, s)]

unif.−−−→ Es∼D[f(θ, s)].

As a consequence, it suffices to establish JMKη
u.a.u.−−−→ JMK. We achieve this by

positing an infinitary logical relation between sequences of morphisms in VectFr
(corresponding to the smoothings) and morphisms in QBS (corresponding to the
measurable standard semantics). We then prove a fundamental lemma (details
are in [18]). Not surprisingly the case for conditionals is most interesting. This
makes use of Assumption 3 and exploits that guards, for which the typing rules
assert the guard safety flag to be t, can only be 0 at sets of measure 0. We
conclude:

Theorem 1. If θ1 : ι
(f ,∅)
1 , . . . , θm : ι

(f ,∅)
m | Σ `unif M : R(g,∆) then JMKη

u.a.u.−−−−→
JMK. In particular, if JMKη and JMK also have finite moments then

Es∼D[JMKη(θ, s)]
unif.−−−→ Es∼D[JMK(θ, s)] as η ↘ 0 for θ ∈ Θ

We finally note that `unif can be made more permissible by adding syntactic
sugar for a-fold (for a ∈ N>0) addition a ·M ≡M + · · ·+M and multiplication
Ma ≡M · · · · ·M . This admits more terms as guards, but safely [18].

6 Related Work

[23] is both the starting point for our work and the most natural source for
comparison. They correct the (biased) reparameterisation gradient estimator for
non-differentiable models by additional non-trivial boundary terms. They present

B. Khajwal et al.500

an efficient method for affine guards only. Besides, they are not concerned with
the convergence of gradient-based optimisation procedures; nor do they discuss
how assumptions they make may be manifested in a programming language.

In the context of the reparameterisation gradient, [25] and [17] relax discrete
random variables in a continuous way, effectively dealing with a specific class of
discontinuous models. [39] use a similar smoothing for discontinuous optimisation
but they do not consider a full programming language.

Motivated by guaranteeing absolute continuity (which is a necessary but not
sufficient criterion for the correctness of e.g. variational inference), [24] use an
approach similar to our trace types to track the samples which are drawn. They
do not support standard conditionals but their “work-around” is also eager in the
sense of combining the traces of both branches. Besides, they do not support a
full higher-order language, in which higher-order terms can draw samples. Thus,
they do not need to consider function types tracking the samples drawn during
evaluation.

7 Empirical Evaluation

We evaluate our smoothed gradient estimator (Smooth) against the biased repa-
rameterisation estimator (Reparam), the unbiased correction of it (LYY18)
due to [23], and the unbiased (Score) estimator [31,38,27]. The experimental
setup is based on that of [23]. The implementation is written in Python, using
automatic differentiation (provided by the jax library) to implement each of
the above estimators for an arbitrary probabilistic program. For each estima-
tor and model, we used the Adam [19] optimiser for 10, 000 iterations using a
learning rate of 0.001, with the exception of xornet for which we used 0.01.
The initial model parameters θ0 were fixed for each model across all runs. In
each iteration, we used N = 16 Monte Carlo samples from the gradient esti-
mator. For the Lyy18 estimator, a single subsample for the boundary term was
used in each estimate. For our smoothed estimator we use accuracy coefficients
η ∈ {0.1, 0.15, 0.2}. Further details are discussed in [18, Appendix E.1].

Compilation for First-Order Programs. All our benchmarks are first-order. We
compile a potentially discontinuous program to a smooth program (parame-
terised by ση) using the compatible closure of

if L < 0 thenM elseN (λw. ση(−w) ·M + ση(w) ·N)L

Note that the size only increases linearly and that we avoid of an exponential
blow-up by using abstractions rather than duplicating the guard L.

Models. We include the models from [23], an example from differential privacy
[11] and a neural network for which our main competitor, the estimator of [23],
is not applicable (see [18, Appendix E.2] for more details).

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 501

(a) temperature (b) textmsg

(c) influenza (d) cheating

(e) xornet

Fig. 5: ELBO trajectories for each model. A single colour is used for each esti-
mator and the accuracy coefficient η = 0.1, 0.15, 0.2 for Smooth is represented
by dashed, solid and dotted lines respectively.

Analysis of Results

We plot the ELBO trajectories in Fig. 5 and include data on the computational
cost and work-normalised variance [8] in [18, Table 2]. (Variances can be im-
proved in a routine fashion by e.g. taking more samples.)

The ELBO graph for the temperature model in Fig. 5a and the cheating
model in Fig. 5d shows that the Reparam estimator is biased, converging to
suboptimal values when compared to the Smooth and Lyy18 estimators. For

B. Khajwal et al.502

temperature we can also see from the graph and the data in [18, Table 2a] that
the Score estimator exhibits extremely high variance, and does not converge.

Finally, the xornet model shows the difficulty of training step-function based
neural nets. The Lyy18 estimator is not applicable here since there are non-affine
conditionals. In Fig. 5e, the Reparam estimator makes no progress while other
estimators manage to converge to close to 0 ELBO, showing that they learn a
network that correctly classifies all points. In particular, the Smooth estimator
converges the quickest.

Summa summarum, the results reveal where the Reparam estimator is bi-
ased and that the Smooth estimator does not have the same limitation. Where
the Lyy18 estimator is defined, they converge to roughly the same objective
value. Our smoothing approach is generalisable to more complex models such as
neural networks with non-linear boundaries, as well as simpler and cheaper (there
is no need to compute a correction term). Besides, our estimator has consistently
significantly lower work-normalised variance, up to 3 orders of magnitude.

8 Conclusion and Future Directions

We have discussed a simple probabilistic programming language to formalise
an optimisation problem arising e.g. in variational inference for probabilistic
programming. We have endowed our language with a denotational (measurable)
value semantics and a smoothed approximation of potentially discontinuous pro-
grams, which is parameterised by an accuracy coefficient. We have proposed
type systems to guarantee pleasing properties in the context of the optimisation
problem: For a fixed accuracy coefficient, stochastic gradient descent converges
to stationary points even with the reparameterisation gradient (which is unbi-
ased). Besides, the smoothed objective function converges uniformly to the true
objective as the accuracy is improved.

Our type systems can be used to independently check these two properties
to obtain partial theoretical guarantees even if one of the systems suffers from
incompleteness. We also stress that SGD and the smoothed unbiased gradient
estimator can even be applied to programs which are not typable.

Experiments with our prototype implementation confirm the benefits of re-
duced variance and unbiasedness. Compared to the unbiased correction of the
reparameterised gradient estimator due to [23], our estimator has a similar con-
vergence, but is simpler, faster, and attains orders of magnitude (2 to 3,000 x)
reduction in work-normalised variance.

Future Directions. A natural avenue for future research is to make the language
and type systems more complete, i.e. to support more well-behaved programs,
in particular programs involving recursion.

Furthermore, the choice of accuracy coefficients leaves room for further in-
vestigations. We anticipate it could be fruitful not to fix an accuracy coefficient
upfront but to gradually enhance it during the optimisation either via a pre-
determined schedule (dependent on structural properties of the program), or
adaptively.

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 503

References

1. Aumann, R.J.: Borel structures for function spaces. Illinois Journal of Mathematics
5 (1961)

2. Bertsekas, D.: Convex optimization algorithms. Athena Scientific (2015)
3. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with

errors. SIAM J. Optim. 10(3), 627–642 (2000)
4. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos,

T., Singh, R., Szerlip, P.A., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. J. Mach. Learn. Res. 20, 28:1–28:6 (2019)

5. Bishop, C.M.: Pattern recognition and machine learning, 5th Edition. Information
science and statistics, Springer (2007)

6. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: A review for
statisticians. Journal of the American Statistical Association 112(518), 859–877
(2017)

7. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016. pp. 33–46 (2016)

8. Botev, Z., Ridder, A.: Variance Reduction. In: Wiley StatsRef: Statistics Reference
Online, pp. 1–6 (2017)

9. Cusumano-Towner, M.F., Saad, F.A., Lew, A.K., Mansinghka, V.K.: Gen: a
general-purpose probabilistic programming system with programmable inference.
In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019. pp. 221–236. ACM (2019)

10. Dahlqvist, F., Kozen, D.: Semantics of higher-order probabilistic programs with
conditioning. Proc. ACM Program. Lang. 4(POPL), 57:1–57:29 (2020)

11. Davidson-Pilon, C.: Bayesian Methods for Hackers: Probabilistic Programming and
Bayesian Inference. Addison-Wesley Professional (2015)

12. Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully ab-
stract for probabilistic PCF. In: The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. pp. 309–320 (2014)

13. Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory. Interscience, J.
Wiley and Son, New York (1988)

14. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. Proc. Symposium Logic in Computer Science (2017)

15. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. In: 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12
(2017)

16. Hur, C., Nori, A.V., Rajamani, S.K., Samuel, S.: A provably correct sampler for
probabilistic programs. In: 35th IARCS Annual Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2015, December
16-18, 2015, Bangalore, India. pp. 475–488 (2015)

17. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings (2017)

B. Khajwal et al.504

18. Khajwal, B., Ong, C.L., Wagner, D.: Fast and correct gradient-based optimisa-
tion for probabilistic programming via smoothing (2023), https://arxiv.org/
abs/2301.03415

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

20. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., Le-
Cun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014)

21. Klenke, A.: Probability Theory: A Comprehensive Course. Universitext, Springer
London (2014)

22. Lee, W., Yu, H., Rival, X., Yang, H.: Towards verified stochastic variational infer-
ence for probabilistic programs. PACMPL 4(POPL) (2020)

23. Lee, W., Yu, H., Yang, H.: Reparameterization gradient for non-differentiable mod-
els. In: Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada. pp. 5558–5568 (2018)

24. Lew, A.K., Cusumano-Towner, M.F., Sherman, B., Carbin, M., Mansinghka, V.K.:
Trace types and denotational semantics for sound programmable inference in prob-
abilistic languages. Proc. ACM Program. Lang. 4(POPL), 19:1–19:32 (2020)

25. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous re-
laxation of discrete random variables. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings (2017)

26. Mak, C., Ong, C.L., Paquet, H., Wagner, D.: Densities of almost surely terminating
probabilistic programs are differentiable almost everywhere. In: Yoshida, N. (ed.)
Programming Languages and Systems - 30th European Symposium on Program-
ming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12648, pp.
432–461. Springer (2021)

27. Minh, A., Gregor, K.: Neural variational inference and learning in belief networks.
In: Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014. JMLR Workshop and Conference Proceed-
ings, vol. 32, pp. 1791–1799. JMLR.org (2014)

28. Mohamed, S., Rosca, M., Figurnov, M., Mnih, A.: Monte carlo gradient estimation
in machine learning. J. Mach. Learn. Res. 21, 132:1–132:62 (2020)

29. Munkres, J.R.: Topology. Prentice Hall, New Delhi„ 2nd. edn. (1999)
30. Murphy, K.P.: Machine Learning: A Probabilististic Perspective. MIT Press (2012)
31. Ranganath, R., Gerrish, S., Blei, D.M.: Black box variational inference. In: Pro-

ceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014. pp. 814–822
(2014)

32. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. In: Proceedings of the 31th In-
ternational Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014. JMLR Workshop and Conference Proceedings, vol. 32, pp. 1278–1286.
JMLR.org (2014)

33. Stacey, A.: Comparative smootheology. Theory and Applications of Categories
25(4), 64–117 (2011)

Fast and Correct Optimisation for Probabilistic Programming via Smoothing 505

https://arxiv.org/abs/2301.03415
https://arxiv.org/abs/2301.03415

34. Staton, S.: Commutative semantics for probabilistic programming. In: Program-
ming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. pp. 855–
879 (2017)

35. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. pp. 525–534
(2016)

36. Titsias, M.K., Lázaro-Gredilla, M.: Doubly stochastic variational bayes for non-
conjugate inference. In: Proceedings of the 31th International Conference on Ma-
chine Learning, ICML 2014, Beijing, China, 21-26 June 2014. pp. 1971–1979 (2014)

37. Vákár, M., Kammar, O., Staton, S.: A domain theory for statistical probabilistic
programming. PACMPL 3(POPL), 36:1–36:29 (2019)

38. Wingate, D., Weber, T.: Automated variational inference in probabilistic program-
ming. CoRR abs/1301.1299 (2013)

39. Zang, I.: Discontinuous optimization by smoothing. Mathematics of Operations
Research 6(1), 140–152 (1981)

40. Zhang, C., Butepage, J., Kjellstrom, H., Mandt, S.: Advances in Variational Infer-
ence. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 2008–2026 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

B. Khajwal et al.506

http://creativecommons.org/licenses/by/4.0/

Type-safe Quantum Programming in Idris

Liliane-Joy Dandy1,2,3, Emmanuel Jeandel3, and Vladimir Zamdzhiev3,4(�)

1 EPFL, Lausanne, Switzerland
liliane-joy.dandy@epfl.ch

2 École polytechnique, Palaiseau, France
3 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

emmanuel.jeandel@loria.fr
4 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, 91190,

Gif-sur-Yvette, France
vladimir.zamdzhiev@inria.fr

Abstract. Variational Quantum Algorithms are hybrid classical-quantum
algorithms where classical and quantum computation work in tandem to
solve computational problems. These algorithms create interesting chal-
lenges for the design of suitable programming languages. In this paper
we introduce Qimaera, which is a set of libraries for the Idris 2 pro-
gramming language that enable the programmer to implement hybrid
classical-quantum algorithms where the full power of the elegant Idris
language works in synchrony with quantum programming primitives. The
two key ingredients of Idris that make this possible are (1) dependent
types which allow us to implement unitary quantum operations; and (2)
linearity which allows us to enforce fine-grained control over the exe-
cution of quantum operations so that we may detect and reject many
physically inadmissible programs. We also show that Qimaera is suitable
for variational quantum programming by providing implementations of
two prominent variational quantum algorithms – QAOA and VQE.

1 Introduction

Variational Quantum Algorithms [30,25,13] present a computational paradigm
where hybrid classical-quantum algorithms work in tandem to solve computa-
tional problems. The classical part of the algorithm is performed by a classical
processor and the quantum part of the algorithm is executed on a quantum
device. During the computation process, intermediary results produced by the
quantum device are passed onto the classical device which performs further com-
putation on them that is used to tune the parameters of the quantum part of the
algorithm, which therefore has an effect on the quantum dynamics. The hybrid
classical-quantum back and forth process repeats until a desired termination
condition is satisfied.

This hybrid classical-quantum computational paradigm opens up interesting
and important challenges for the design of suitable programming languages. It
is clear that if we wish to program within such computational scenarios, we

Source code for Qimaera [1] and a full version of the paper [12] are available.

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 507–534, 2023.
https://doi.org/10.1007/978-3-031-30044-8 19

mailto:liliane-joy.dandy@epfl.ch
mailto:emmanuel.jeandel@loria.fr
mailto:vladimir.zamdzhiev@inria.fr
https://doi.org/10.1007/978-3-031-30044-8_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_19&domain=pdf

L.-J. Dandy et al.

need to develop a language that correctly models the manipulation of quan-
tum resources. In particular, quantum measurements give rise to probabilistic
computational effects that are inherited by the classical side of the language.
Another issue is that quantum information behaves very differently compared
to classical information. As an example, quantum information cannot be copied
in a uniform way [36], unlike classical information, which may be freely copied
without restriction. Therefore, if we wish to avoid runtime errors, the quantum
fragment of the language needs to be equipped with features for fine-grained con-
trol, such as for example, having a substructural typing discipline [16,8,7,24,6]
where contraction (i.e., copying) is restricted. On the other hand, when doing
classical computation, such restrictions are unnecessary and often inconvenient.
One solution to this problem is to design a language with a classical (non-linear)
fragment together with a quantum (linear) one, both of which interact nicely
with each other. In fact, this can be achieved within an existing language that
has a sufficiently advanced type system, as we show in this paper.

In this paper, we describe Qimaera (named after the hybrid creature Chi-
maera from Greek mythology), which is a set of libraries for the Idris 2 lan-
guage [10] that allow the programmer to implement hybrid quantum-classical
algorithms in a type-safe way. Idris 2 is an elegant functional programming lan-
guage that is equipped with an advanced type system based on Quantitative
Type Theory [24,6] that brings many useful features to the programmer, most
notably dependent types and linearity. These two features of Idris are crucial
for the development of Qimaera and, in fact, are the reason we chose Idris in
the first place. Dependent types are used throughout our entire development in
order to correctly represent and formalise the compositional nature of quantum
operations. Linearity is used in order to enforce the proper consumption of quan-
tum resources (during execution) in a way that is admissible with respect to the
laws of quantum mechanics. The combination of dependent types and linearity
allows us to statically detect and reject erroneous quantum programs and this
ensures the type safety of our approach to variational quantum programming.

In our intended computational scenario, we have access to both a classical
computer and a quantum computer. Since we cannot directly observe quantum
information, we directly interact with the classical computer which sends instruc-
tions to, and receives data from, the quantum device via a suitable interface that
makes use of the IO monad. In our view, this is a representation of a (perhaps
simple) computational environment for hybrid quantum-classical programming.
We design a suitable (abstract) interface that allows us to model this situation
accurately and which makes use of the IO monad. However, since the authors
do not personally have any quantum hardware, we provide only one concrete
implementation of our interface that simulates the relevant quantum operations
on our classical computers by using the proper linear-algebraic formalism, but
while still using the IO monad as prescribed by the abstract interface. From
a high-level programming perspective, the abstract interface addresses the pro-
gramming challenges induced by the classical-quantum device scenario, but it
ignores lower-level considerations (e.g., error correction).

508

Type-safe Quantum Programming in Idris

We emphasise that we can achieve type-safe hybrid quantum-classical pro-
gramming in an existing programming language by implementing suitable li-
braries. This is important for variational quantum programming, because in
most variational quantum algorithms, the classical part of the algorithm is con-
siderably larger, more complicated and more difficult to implement, compared to
the quantum part of the algorithm. Therefore, it is important for the program-
ming language to have first-class support for classical programming features. We
think our chosen language, Idris, is such a language. The advanced type system
of Idris allows us to elegantly mix quantum and classical programming prim-
itives and therefore allows us to achieve our objectives. We demonstrate that
Qimaera is suitable for variational quantum programming by providing imple-
mentations of the two most prominent variational quantum algorithms – QAOA
and VQE. Moreover, our implementation of these algorithms has been achieved
in a type-safe programming framework. By this we mean that common quan-
tum programming errors (copying of qubits, applying a CNOT operation with
the same source and target, etc.) are statically detected and rejected by the
Idris type checker. We also note that being able to combine quantum and clas-
sical programming is important in other scenarios too (for instance in quantum
cryptography).

Quantum Circuits vs Recursive Quantum Programs. We want to stress
that the focus of our paper is not about quantum circuits, but about (recur-
sive) quantum programs and algorithms. While some quantum algorithms may
be seen as quantum circuits, there are algorithms which are more general, for
example, repeat-until-success (see §5.2) and variational quantum algorithms (see
§6). Such algorithms are not quantum circuits in the traditional understanding
of this notion, and for them general recursion, probabilistic effects and classical
computation might be important.

More specifically, general recursion is important, because many existing quan-
tum algorithms are probabilistic and find the correct answer with some proba-
bility. General recursion then allows the programmer to repeatedly run such an
algorithm until the correct solution is found, thereby resulting in an almost-
surely-terminating program, i.e., a program that terminates with probability 1.
However, since there is no upper bound on the number of runs of the algorithm,
general recursion is necessary to express this pattern. For instance, this can be
used to repeatedly run Shor’s algorithm until the algorithm succeeds in finding
a divisor. This might also be useful for variational quantum algorithms, because
it allows us to express more flexible termination conditions, which give us more
than simple iterations.

Safety Properties. We consider type safety in quantum programming to be
important, because it is easy to make mistakes where one can copy qubits or
forget to use a qubit. The former is physically inadmissible due to the no-cloning
theorem of quantum mechanics [36] and the latter usually leads to unexpected
behaviour, because discarding quantum information causes a side effect that

509

may affect the rest of the quantum system. These observations suggest that
we may design our systems and libraries carefully, by utilising linear typing
features, so that these situations can be statically detected and rejected by the
type system, therefore avoiding the problem. Otherwise, such situations could
result in runtime errors (e.g., copying a qubit), which are clearly undesirable. In
fact, in our experience, it is very easy to make such mistakes and this happened
while we were implementing some of the quantum algorithms described in this
paper. Our type-safe approach to quantum programming automatically detects
and rejects these kinds of erroneous programs during type checking. While we
do not have any proof of correctness, we believe that our approach is type-safe
as long as the users do not modify our library files.

Why Idris instead of another language? The features that we require to
achieve our objectives are: general recursion, dependent types and linearity. We
chose Idris 2, because it is an excellent language that has all three of these fea-
tures. Removing general recursion limits the expressivity of the language (as
explained above). The other two features are used to reject erroneous quan-
tum programs. We think that most programming languages that have the three
features mentioned above are suitable for type-safe hybrid quantum-classical
programming. In fact, one of the main points that we wish to demonstrate with
this paper is that it is not necessary to build a standalone programming lan-
guage in order to achieve the desired safety properties. Instead, the same can
be achieved with already existing languages, such as Idris 2. This approach has
some advantages (compared to designing a standalone language), such as: easier
maintenance, larger library support, better integration with the newest develop-
ments in classical programming, etc.

2 Background on Quantum Computation

Readers interested in a detailed introduction to quantum computing may consult
[26]. In this section we summarise the basic notions that are relevant for our
development.

The simplest non-trivial quantum system is the quantum bit, often abbrevi-
ated as qubit. Qubits may be thought of as the quantum counterparts of the bit
from classical computation. A qubit |ψ〉 is represented as a normalised vector

in C2. The computational basis is given by the pair of vectors |0〉 def
=

(
1
0

)
and

|1〉 def
=

(
0
1

)
, which may be seen as representing the classical bits 0 and 1. An

arbitrary qubit is described by |ψ〉 = a |0〉+b |1〉 where a, b ∈ C and |a|2+|b|2 = 1.
A qubit may be in (uncountably) many different states, whereas a classical

bit is either 0 or 1. When the linear combination |ψ〉 = a |0〉+ b |1〉 is non-trivial,
then we say that |ψ〉 is in superposition of |0〉 and |1〉. Superposition is a very
important quantum resource which is used by many quantum algorithms.

L.-J. Dandy et al.510

H P (α)

U

Fig. 1. The Hadamard, Phase Shift, CNOT and CU gates.

The state space that describes a system of n qubits is the Hilbert space C2n .
If |ψ〉 and |φ〉 are two states of n and m qubits respectively, then the composite

n+m qubit state |ψφ〉 def= |ψ〉 ⊗ |φ〉 is described by the Kronecker product ⊗ of
the original states.

A quantum state |ψ〉 ∈ C2n may undergo a unitary evolution described by
a unitary matrix U ∈ C2n×2n in which case the new state of the system is de-
scribed by the vector U |ψ〉 . Unitary operations (and matrices) are closed under
sequential composition (described by matrix multiplication ◦) and under parallel
composition (described by Kronecker product ⊗). Sequential composition of uni-
tary operations is used to describe the temporal evolution of quantum systems,
whereas the parallel composition is used to describe their spatial structure.

The unitary quantum operations are also often called unitary gates. One
typically chooses a universal gate set which is a small set of unitary operations
that suffices to express all other unitary operations via (parallel and sequential)
composition. The universal gate set that we choose for our development is stan-
dard and we specify these unitary operations next by giving their action on the
computational basis (which uniquely determines the operations).

The Hadamard Gate, denoted H, is the 1-qubit unitary map whose action on
the computational basis is given by H |0〉 = 1√

2
(|0〉+|1〉) andH |1〉 = 1√

2
(|0〉−|1〉)

and its primary purpose is to generate superposition. The Phase Shift Gate, de-
noted P (α), for α ∈ R, is a 1-qubit unitary map whose action on the computa-
tional basis is given by: P (α) |0〉 = |0〉 and P (α) |1〉 = eiα |1〉 and its primary pur-
pose is to modify the phase of a quantum state. The family of Phase Shift Gates
is parameterised by the choice of α ∈ R and important special cases include the

unitary gates T
def
= P (π/4) and Z

def
= P (π). The Controlled-Not Gate (CNOT),

is a 2-qubit unitary map whose action on the computational basis is given by
CNOT |00〉 = |00〉 ; CNOT |01〉 = |01〉 ; CNOT |10〉 = |11〉 and CNOT |11〉 = |10〉
and this unitary map may be used to generate quantum entanglement.

Unitary gates admit a diagrammatic representation as quantum circuits. The
atomic unitary gates we described above are shown in Figure 1. Composite uni-
tary gates may also be described as circuits (see Figure 2): sequential composition
amounts to plugging wires of subdiagrams and parallel composition amounts to
juxtaposition.

The CNOT gate is the simplest example of a controlled unitary gate. Given
a unitary gate U : C2n → C2n , the controlled-U unitary gate is the unitary gate
CU : C2n+1 → C2n+1

whose action is determined by the assignments CU(|0〉 ⊗
|ψ〉) = |0〉⊗|ψ〉 and CU(|1〉⊗|ψ〉) = |1〉⊗ (U |ψ〉). Controlled unitary operations
are ubiquitous in quantum computing (see Figure 1 for their circuit depiction).

Type-safe Quantum Programming in Idris 511

H

Fig. 2. A quantum circuit that may be used for the preparation of the Bell state.

Every unitary operation U is reversible with the inverse operation given by
the conjugate transpose, denoted U†, which is again a unitary matrix. Applying
the inverse operation (i.e., the adjoint) of a given unitary map is ubiquitous.

A quantum state |ψ〉 ∈ C2n , with n > 1, is said to be entangled when there
exists no non-trivial decomposition |ψ〉 = |φ〉 ⊗ |τ〉. Quantum entanglement is a
very important resource in quantum computation which is exhibited by many
quantum algorithms. Because of the possibility of entanglement, we cannot, in
general, break down quantum systems into smaller components and we are often
forced to reason about such systems in their entirety. A very important example

of an entangled state is the Bell state given by |Bell〉 def= |00〉+|11〉√
2

.

Preparing a new qubit in state |0〉 is an admissible physical operation. This,
together with application of unitary gates as part of the computation, allows
us to prepare arbitrary quantum states, e.g., the Bell state can be prepared by
taking |Bell〉 = (CNOT ◦ (H ⊗ I)) |00〉 (see Figure 2).

Quantum information cannot be directly observed without affecting the state
of the underlying system. In order to extract information from quantum systems,
we need to perform a quantum measurement on (parts of) our systems. For
example, when performing a quantum measurement on a qubit in the state
|ψ〉 = a |0〉 + b |1〉, there are two possible outcomes: either the quantum system
will collapse to state |0〉 and we obtain the classical bit 0 as evidence of this event,
or, the quantum system will collapse to state |1〉 and we obtain the classical bit 1
as evidence of this event. The first outcome (corresponding to bit 0) occurs with
probability |a|2 and the second outcome (corresponding to bit 1) occurs with
probability 1−|a|2 = |b|2. In general, when we measure n qubits simultaneously,
we obtain a bit string of length n which determines the event that occurred and
the quantum system collapses to a corresponding state with some probability,
both of which are determined via the Born rule of quantum mechanics. Therefore,
quantum measurements induce evolutions which are probabilistic and irreversible
(or destructive), which distinguishes them from unitary evolutions, which are
deterministic and reversible.

Unlike classical information, quantum information cannot be uniformly copied.
This is made precise by the no-cloning theorem [36]. There exists no unitary op-
eration U : C4 → C4, such that for every qubit |ψ〉 : U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉 .
This means that copying of quantum information is a physically inadmissible
operation. Ideally, quantum programming languages should be designed so that
these kinds of errors are detected during type checking.

L.-J. Dandy et al.512

3 Background on the Idris 2 Language

In this section, we give a short overview of the Idris 2 language and its main
features that are relevant for the development of Qimaera. Idris 2 is a functional
language with a syntax influenced by that of Haskell. The features of particular
interest for us are dependent types and linearity, both of which are crucial for
Qimaera. Its type system is based on Quantitative Type Theory [24,6], which
specifies how dependent types and linearity are combined.

Dependent Types. In Idris, types are first-class primitives and they may be
manipulated like other constructs of the language. This allows us to formulate
more expressive types that can depend on values, and hence it enables us to
make some properties and program invariants explicit.

Example 1. The type of vectors is a simple and useful example of a dependent
type. A vector is a list with a fixed length that is part of the type. It can be
defined as follows, where S is the successor function for natural numbers, and a

is a polymorphic type:

data Vect : Nat -> Type -> Type where

Nil : Vect 0 a

(::) : a -> Vect k a -> Vect (S k) a

The type Vect has two constructors (i.e., introduction rules). The first one con-
structs the empty vector, of length zero. The second one is used to introduce
non-empty vectors: a vector with k+1 elements of type a is constructed by com-
bining an element of type a and a vector of size k.

Type dependency allows us to specify useful program properties and type
checking ensures that they hold. For instance, we can define an append function
that concatenates two vectors. Then, the size of the output vector is the sum of
the sizes of the input vectors and this is specified by its type.

append : Vect n a -> Vect m a -> Vect (n + m) a

This information allows the language to detect a larger class of programming
errors. Note that type dependency information is not available for the analogous
function on lists. Type dependency may also be used to express constraints on
the inputs of a function, e.g., we can define a total function, called pop, that
cannot be applied to an empty vector.

pop : Vect (S k) a -> Vect k a

pop (x :: xs) = xs

Writing “pop []” is now an error which is detected statically, rather than dy-
namically, and we note that the same cannot be achieved if we were to replace
vectors with lists.

Type-safe Quantum Programming in Idris 513

Linearity. The type system of Idris 2 is based on Quantitative Type Theory,
where every function argument is associated with a multiplicity that states the
number of times the variable is used at runtime5. This multiplicity can be 0, 1 or
ω. An argument with multiplicity 0 is only used at compile time (to determine
type dependency information) and is erased at runtime. A linear argument has
multiplicity 1 and it is used exactly once at runtime. Finally, ω represents the
unrestricted multiplicity, which is default, where the function argument may be
used any number of times.

Example 2. Consider the pop function which we just discussed. The (implicitly
bound) variables k and a have multiplicity 0, because they are not explicitly
specified as separate arguments, and they are not accessible at runtime in the
function. The variables x and xs, which are explicitly bound, have the default
(unrestricted) multiplicity.

Example 3. An important type which we define in Qimaera is the type of linear
vectors, which we write as LVect. The only difference, compared to the standard
vectors in Idris, is that the (::) constructor for LVect is a linear function in all
of its arguments. Linearity in Idris 2 is specified by writing the multiplicity 1 in
front of each argument.

data LVect : Nat -> Type -> Type where

Nil : LVect 0 a

(::) : (1 _ : a) -> (1 _ : LVect k a) ->

LVect (S k) a

We also use linear pairs that are already defined in Idris 2.

data LPair : Type -> Type -> Type

(#) : (1 _ : a) -> (1 _ : b) -> LPair a b

Linearity allows us to specify and enforce constraints on function arguments,
e.g., it prevents us from duplicating data, so the function definition below leads
to an error:

copy : (1 _ : a) -> LPair a a

copy x = x # x

Error: While processing right hand side of

copy. There are 2 uses of linear name x.

Linearity is prominently used in Qimaera. In particular, when manipulat-
ing quantum data, linearity is enforced in order to properly handle quantum
resources and comply with the laws of quantum mechanics.

Remark 1. We learned only recently that there is a type of linear vectors in the
Idris libraries. In the future we might replace our implementation with the one
provided by the Idris developers.

5 This can be understood similarly to how variables are used in linear λ-calculi.

L.-J. Dandy et al.514

data Unitary : Nat -> Type where

IdGate : Unitary n

H : (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

P : (p : Double) -> (j : Nat) ->

{auto prf : (j < n) = True} ->

Unitary n -> Unitary n

CNOT : (c : Nat) -> (t : Nat) ->

{auto prf1 : (c < n) = True} ->

{auto prf2 : (t < n) = True} ->

{auto prf3 : (c /= t) = True} ->

Unitary n -> Unitary n

Fig. 3. The Unitary data type (file: Unitary.idr).

4 Unitary Operations in Qimaera

We describe our representation of unitary transformations in Qimaera as an
algebraic data type called Unitary. Every value of this type is, by design, an
algebraic decomposition of a unitary operation in terms of the atomic unitary
gates that we selected in §2.

The Unitary data type allows us to adopt a high-level algebraic and scalable
approach towards the reversible fragment of quantum computation. This pro-
vides the programmer with some benefits as we show in this section. However,
using the Unitary data type is actually entirely optional. Users who are inter-
ested in effectful quantum programming do not have to use it (see §5) and they
may still do hybrid classical-quantum programming, but at the cost of losing the
algebraic decomposition of unitary operations. However, there are many useful
functions that are available for manipulating values of type Unitary that are
not available for effectful quantum programs.

4.1 The Unitary Data Type

Quantum unitary operations admit an algebraic representation based on the
atomic gates from the universal gate set we described. Our idea for the repre-
sentation of unitary operations is based on this, or equivalently, on how unitary
operations may be expressed in terms of unitary quantum circuit diagrams. Be-
cause of these reasons, linearity is not required for our formalisation of unitary
operations. The code for the Unitary data type is listed in Figure 3 and we now
describe our representation in greater detail.

Given a natural number n : Nat, the type of unitary operations on n qubits
is given by Unitary n. Note that Unitary is an algebraic data type with a simple
type dependency on the arity of the desired operation. The Unitary type has
four different introduction rules which we describe next.

Type-safe Quantum Programming in Idris 515

The first constructor, IdGate, represents the identity unitary operation on
n qubits. Diagramatically, we can see this as constructing a circuit of n wires,
without applying any other gates on any of the wires. It has a unique argument,
n, which is implicit – it can be omitted when calling the IdGate constructor and
it will often be inferred by Idris.

The second constructor, H, should be understood as applying the Hadamard
gate H to the j-th qubit of some previously constructed unitary circuit which is
specified as the last argument. The first implicit argument, n, is simply the arity
of the resulting unitary operation. The second implicit argument, prf, is a proof
obligation that j is smaller than n. This ensures that the argument j identifies an
existing wire of the previously constructed unitary circuit (last argument) and
therefore the overall definition is algebraically and physically sound. We think
that the implicit argument prf may be removed from our implementation if we
change the type of j to Fin n, the type of natural numbers less than n. However,
in our experience, we found it easier to work with the current implementation
rather than with Fin and for this reason we chose to keep the prf argument.

The third constructor, P, should be viewed as applying the P (p) gate, where
the real number p ∈ R is approximated by the term p : Double.6 The remaining
arguments serve the same purpose as those for H.

The final constructor, CNOT, should be understood as applying the CNOT
gate, where c identifies the wire used for the control (the small black dot in Figure
1), t identifies the wire of the target (the crossed circle in Figure 1) and the last
(unnamed) argument is the previously constructed unitary circuit on which we
are applying CNOT. The remaining arguments are implicit: the argument n is
the arity of the unitary; prf1 and prf2 ensure that c and t identify valid wires
of the unitary circuit; prf3 ensures that the control and target wires are distinct
and therefore the overall application of CNOT is physically and algebraically
admissible.

In our representation of quantum unitary operations, we make use of type
dependency to impose proof obligations on some of our constructors in order to
guarantee that the representation makes sense in physical and algebraic terms.
Indeed, this might sometimes be a burden for the users of the library. However,
Idris can sometimes automatically infer the required proofs without any assis-
tance from the user, e.g., when all arguments are statically known constants (see
Example 4). This is discussed in detail in the next subsection.

4.2 Constructing Unitary Transformations

The four basic introduction rules of the Unitary type allow us to define high-
level functions in Idris that can be used to construct complex unitary circuits
out of simpler ones. We discuss this here and we show that the proof obligations

6 This approximation is not a big limitation – in fault-tolerant quantum computing
one usually replaces the P (p) gate family with a single T = P (π/4) gate and the
resulting gate set suffices to achieve approximation with arbitrary precision. So we
can easily replace P with a T constructor.

L.-J. Dandy et al.516

from Figure 3 can sometimes be ameliorated and sometimes even completely
sidestepped.

First, we point out that auto-implicit arguments may occasionally be inferred
by Idris via suitable search. For example, if all the arguments are known stati-
cally, the required proofs will often be discovered by Idris and then the users do
not have to manually provide them.

Example 4. The unitary circuit from Figure 2 may be constructed in the follow-
ing way:

toBellBasis : Unitary 2

toBellBasis = CNOT 0 1 (H 0 IdGate)

In this example, Idris is able to infer all the implicit arguments and there is no
need to provide any proofs. If we do not satisfy one of the constraints, e.g., if
we write CNOT 1 1 above (which does not make physical sense), then we get the
following error during type checking:

Error : While processing right hand side of

toBellBasis. Can ’t find an implementation for

not (== 1 1) = True.

An error also is reported if we provide a wire number larger than 1. It also is
useful to define standalone unitary gates for the H,P (r) and CNOT gates as
follows:

HGate : Unitary 1

HGate = H 0 IdGate

PGate : Double -> Unitary 1

PGate r = P r 0 IdGate

CNOTGate : Unitary 2

CNOTGate = CNOT 0 1 IdGate

Composing Unitary Circuits. Our libraries provide functions for sequential
composition (compose) and parallel composition (tensor) of unitary operations:

compose : Unitary n -> Unitary n -> Unitary n

tensor : {n : Nat} -> {p : Nat} -> Unitary n

-> Unitary p -> Unitary (n + p)

Notice that both functions do not require proof obligations like the ones from
Figure 3. This means that one of the main algebraic ways for composing unitary
operations may be done without requiring such proofs. The use of these functions
is ubiquitous in practice and we introduce the infix synonyms (.) and (#) for
compose and tensor, respectively.

Example 5. The toBellBasis gate from Example 4 may be equivalently ex-
pressed in the following way:

Type-safe Quantum Programming in Idris 517

toBellBasis : Unitary 2

toBellBasis = CNOTGate . (HGate # IdGate)

Qimaera provides another, more general, form of composition via the function
apply whose type is as follows:

apply : {i : Nat} -> {n : Nat} ->

Unitary i -> Unitary n ->

(v : Vect i Nat) ->

{auto _ : isInjective n v = True} ->

Unitary n

The apply function is used to apply a smaller unitary circuit of size i to a bigger
one of size n, giving the vector v of wire indices on which we wish to apply the
smaller circuit. It needs one auto-implicit proof which enforces the consistency
requirement that all indices of the wires specified by v are pairwise distinct and
smaller than n. In fact, the apply function implements the most general notion
of composition that we support. Both sequential and parallel composition can
be realised as special cases using it. The importance of the vector v is that it
determines how to apply the smaller unitary circuit of arity i to any selection of i
wires of the larger unitary circuit, and moreover, it also allows us to permute the
inputs/outputs of the smaller unitary circuit while doing so. More specifically, if
the k-th entry of the vector v is the natural number p, then the k-th input/output
of the smaller unitary circuit will be applied to the p-th wire of the larger unitary
circuit. This is best understood by example.

Example 6. Consider the following code sample:

U : Unitary 3

U = HGate # IdGate {n = 1} # (PGate pi)

apply_example : Unitary 3

apply_example = apply toBellBasis U v

where v is a vector of length two. Here, toBellBasis is given in Example 4 and
represents the circuit given below left; U represents the circuit given below right:

H

P (π)

H

Table 1 shows what unitary circuit is specified under different values of v. In
these cases, Idris can automatically infer the required proofs and the user does
not have to provide them.

Remark 2. Instead of using apply, there is another possible approach, in the
spirit of symmetric monoidal categories [23, §XI], where we could add one extra
introduction rule to the Unitary type for representing permutations of wires.
However, in our view, this approach is less appealing, because one does not
usually think of permutations (induced by the symmetric monoidal structure)
as physical gates.

L.-J. Dandy et al.518

apply toBellBasis U [0,1]
HH

P (π)

apply toBellBasis U [0,2]
HH

P (π)

apply toBellBasis U [2,0]

HP (π)

H

apply toBellBasis U [2,1]

HP (π)

H

Table 1. Examples illustrating the apply function.

Adjoints of Unitary Circuits. Qimaera also provides a function

adjoint : Unitary n -> Unitary n

which computes the adjoint (i.e., inverse) of a given unitary circuit. One often has
to apply the inverse of a given unitary circuit, so having a method such as this
one is useful. Our implementation uses the standard approach for synthesising
the adjoint. The adjoint may be used, for example, to uncompute the result of
the application of unitary gates on auxiliary qubits.

Controlled Unitary Circuits. We also implement a function

controlled : {n : Nat} -> Unitary n -> Unitary (S n)

which given a unitary circuit U constructs the corresponding controlled unitary
circuit CU . Our implementation uses the standard and simple algorithm for
doing this, but more efficient algorithms may also be implemented in principle.

Analysis of Unitary Circuits. Unitary circuits are represented in a scal-
able way in Qimaera and we can use Idris to optimise them. In particular, the
function:

optimise : Unitary n -> Unitary n

may be used to optimise a given unitary circuit by reducing the number of
gates while keeping the action of the circuit unchanged. So far, this function
provides only very basic optimisations, but more sophisticated and powerful
ones may be added in principle. The point we wish to make is that unitary
circuits in Qimaera may be analysed and manipulated like other algebraic data

Type-safe Quantum Programming in Idris 519

H R2 R3
... Rn−1 Rn

H R2

...

...

...

...

...

H R2

H

Fig. 4. The QFT unitary circuit on n qubits.

type structures using the capabilities of Idris. In fact, the file Unitary.idr also
provides other functions that do this. For example, we provide functions for
calculating the circuit depth, calculating the number of specific atomic gates
used by a circuit, drawing circuits in the terminal and exporting circuits to
Qiskit so that users may then use external analysis tools.

4.3 Example: The Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is an important unitary operator that
is used in Shor’s polynomial-time algorithm for integer factorisation [34]. The
unitary circuit which realises QFT on n qubits is shown in Figure 4, where

Rn
def
= P

(
2π
2n

)
. The Qimaera code which implements this unitary circuit is shown

in Figure 5. Notice that we make use of the controlled function from §4.2 in
the function cRm, so that we can implement the controlled Rn gates that are
required. In this example, we have parameters that are universally quantified,
so we need a few proofs in the code: one for using the apply function and one
for correctly unifying the size of the circuit. These proof obligations appear
when writing the qftRec function and Idris did not infer them automatically,
so we had to provide the proofs. To get some intuition for the code: the qftRec

function computes the recursive pattern that applies a Hadamard gate followed
by the cascade of controlled Rn gates; the qft function then computes the other
recursive pattern which consists in repeatedly using the pattern computed by
qftRec and composing as appropriate.

5 Effectful Quantum Computation

In the previous section we showed how unitary circuits can be represented in
Qimaera. This suffices to capture the pure, deterministic and reversible frag-
ment of quantum computation. However, we need to also consider effectful and
probabilistic quantum processes which may result from quantum measurements,
because this is important for hybrid quantum-classical computation. In this sec-
tion, we show how this can be done in a type-safe way by using monads, linearity
and dependent types.

L.-J. Dandy et al.520

Rm : Nat -> Unitary 1

Rm m = PGate (2 * pi / (pow 2 (cast m)))

cRm : Nat -> Unitary 2

cRm m = controlled (Rm m)

qftRec : (n : Nat) -> Unitary n

qftRec 0 = IdGate

qftRec 1 = HGate

qftRec (S (S k)) =

let t = (qftRec (S k)) # IdGate

in rewrite sym $ lemmaplusOneRight k

in apply (cRm (S (S k))) t [S k,0]

{prf = lemmaInj1 k}

qft : (n : Nat) -> Unitary n

qft 0 = IdGate

qft (S k) =

let g = qftRec (S k)

h = (IdGate {n = 1}) # (qft k)

in h . g

Fig. 5. Qimaera code for QFT (file: QFT.idr).

5.1 Representation of Quantum Effects in Qimaera

We now explain how the quantum program dynamics are represented in Qimaera
in a type-safe way. We are (roughly) inspired by representing the notion of
a quantum configuration as it appears in [32,29,22], which is in turn used to
formally describe the operational semantics of quantum type systems.

Qubits in Qimaera. Because of the possibility of quantum entanglement, we
cannot describe the state of an individual qubit which is part of a larger com-
posite system. On the other hand, we wish to be able to refer to parts of the
whole system by identifying specific qubit positions. In Qimaera, we introduce
the following type declaration:

data Qubit : Type where

MkQubit : (n : Nat) -> Qubit

The argument of type Nat is used as a unique identifier for the constructed qubit.
The constructor MkQubit is private and users of our libraries cannot access it
(outside of the library file). Instead, our libraries provide functions (Figure 7)
that ensure that a term of type Qubit is created with a fresh (i.e., unique)
natural number that serves as its identifier within a monadic environment. This
is handled by our functions through careful manipulation of the available data
within the monadic environment. In fact, these functions are the expected way

Type-safe Quantum Programming in Idris 521

for our users to access or manipulate qubits and, moreover, our users cannot
access the unique identifiers (unless they modify our libraries). This allows us
to formulate a representation where values of type Qubit unambiguously refer
to the relevant parts of larger composite systems. Therefore, a value of type
Qubit should be understood as a pointer, or as a unique identifier, of a 1-qubit
subsystem of some larger quantum state. Terms of type Qubit do not carry any
sort of linear-algebraic information.

Probabilistic Effects. Quantum measurements induce probabilistic computa-
tional effects which are inherited by the classical side of the computation in hy-
brid classical-quantum algorithms. Furthermore, in our intended computational
scenario, the classical computer (on which Idris is running) sends instructions
to, and receives data from, the quantum device. In order to correctly model all
of this, it is clear that we have to use the IO monad in order to encapsulate
these effects. However, when representing quantum program dynamics, we also
need to enforce linearity, but all the functions provided by the IO monad (e.g.,
pure which introduces pure values to monadic types) are not linear in any of
their arguments. This creates a problem which may be solved by using the LIO
library, which extends the IO monad with linearity. For brevity, we define R to
be our linear IO monad:

R : Type -> Type

R = L IO {use = Linear}

Then, by using R we can combine IO effects (and thus also probabilistic effects)
and linearity in a suitable way.

Quantum State Transformer. Quantum computation is effectful, and more-
over, quantum information cannot be observed by the classical computer (on
which Idris is running): it only receives classical information through communi-
cation with the quantum device. Because of this, we adopt a more abstract view
on the hybrid classical-quantum computational process. In order to do this, we
define an (abstract) quantum state transformer by combining several different
concepts: indexed state monads [4]7, linearity and IO (and thus also probabilis-
tic) effects. Our representation of these ideas in Qimaera is shown in Figure 6,
where we omit the function definitions for brevity.

The type QStateT is parameterised by a choice of three (arbitrary) types, so
it is fairly abstract. Soon, we will see that it is very useful for our purposes. The
intended interpretation of this type is the following: any value of type

QStateT initialType finalType returnType

represents a stateful (quantum) computation starting from a (quantum) state
of type initialType and ending in a (quantum) state of type finalType which

7 See [33] for a Haskell implementation of this idea.

L.-J. Dandy et al.522

data QStateT : Type -> Type -> Type -> Type where
MkQST : (1 _ : (1 _ : initialType) ->

R (LPair finalType returnType)) ->
QStateT initialType finalType returnType

runQStateT : (1 _ : initialType) ->
(1 _ : QStateT initialType finalType returnType) ->
R (LPair finalType returnType)

pure : (1 _ : a) -> QStateT t t a

(>>=) : (1 _ : QStateT i m a) ->
(1 _ : ((1 _ : a) -> QStateT m o b)) ->
QStateT i o b

Fig. 6. Quantum state transformer (file: QStateT.idr).

produces a user-accessible result of type returnType during the computation.
For example, a value of type

QStateT (LPair Qubit Qubit) Qubit Bool

should be understood as a quantum process that transforms a two-qubit state
into a single-qubit state and returns a single (classical) value of type Bool to
the user. The functions presented in Figure 6 allow us to adopt a monadic
programming discipline when working with QStateT and we do so henceforth.
We remark that QStateT makes use of the monad R which encapsulates the
IO (and probabilistic) effects and that linearity is enforced when working with
QStateT.

Effectful Quantum Programming. The QStateT monad can be used to
define a suitable abstract interface for quantum programming. In Figure 7, we
present an excerpt of the QuantumOp interface which allows us to write quantum
programs and execute them in a type-safe way. All of the hybrid quantum-
classical algorithms we present are implemented using this interface.

The function newQubits is used to prepare p new qubits in state |0〉 and the
function returns a linear vector of length p with the qubit identifiers of the newly
created qubits. The function applyUnitary is used to apply a unitary operation
of arity i to the qubits specified by the argument LVect (which also determines
the order of application) and the operation returns an LVect which serves the
same purpose – it identifies the qubits which were just modified by the unitary
operator. The file QuantumOp.idr also provides functions applyH, applyP and
applyCNOT which can be seen as special cases of applyUnitary. However, these
three functions do not depend on the Unitary type.

The measure function is used to measure i qubits identified by the LVect

argument and it returns a value of type Vect i Bool that represents the result
of the measurement. After this, the i measured qubits are not reused, as one
can see from the provided type information.

Type-safe Quantum Programming in Idris 523

interface QuantumOp (0 t : Nat -> Type) where
newQubits : (p : Nat) -> QStateT (t n) (t (n+p)) (LVect p Qubit)

newQubit : QStateT (t n) (t (S n)) Qubit

applyUnitary : {n : Nat} -> {i : Nat} -> (1 _ : LVect i Qubit) ->
Unitary i -> QStateT (t n) (t n) (LVect i Qubit)

applyH : {n : Nat} -> (1 _ : Qubit) -> QStateT (t n) (t n) Qubit

applyP : {n : Nat} -> Double -> (1 _ : Qubit) ->
QStateT (t n) (t n) Qubit

applyCNOT : {n : Nat} -> (1 _ : Qubit) -> (1 _ : Qubit) ->
QStateT (t n) (t n) (LPair Qubit Qubit)

measure : {n : Nat} -> {i : Nat} -> (1 _ : LVect i Qubit) ->
QStateT (t (i + n)) (t n) (Vect i Bool)

measureQubit : {n : Nat} -> (1 _ : Qubit) ->
QStateT (t (S n)) (t n) Bool

measureAll : {n : Nat} -> (1 _ : LVect n Qubit) ->
QStateT (t n) (t 0) (Vect n Bool)

run : QStateT (t 0) (t 0) (Vect n Bool) -> IO (Vect n Bool)

Fig. 7. The QuantumOp interface (file: QuantumOp.idr).

Finally, the function run is used to execute quantum algorithms on the quan-
tum device and obtain the classical information returned from it. Notice that
run can be used to execute effectful quantum processes which start from the
trivial quantum state (on zero qubits) and which terminate in the same triv-
ial quantum state, but which also produce some number of classical bits as a
user-accessible return result. This may be used to run quantum algorithms: in
a typical situation, we start with the trivial quantum state (on zero qubits), we
prepare n qubits in state |0〉, we apply some unitary operations on them, and we
finally measure all the qubits, thereby producing n bits of classical information.
This quantum algorithm may then be represented as a value of type QStateT

(t 0) (t 0) (Vect n Bool). Running it, however, produces a classical value
of type IO (Vect n Bool), because the execution is probabilistic and because
our classical computer (on which we are running Idris) has to perform IO actions
to communicate with the quantum device.

In fact, all of the above operations modify the quantum state on the quantum
device and may cause IO effects, because of the need to communicate with the
quantum device. This is indeed reflected by our interface. Observe, that our
interface is defined using the QStateT monad transformer which does incorporate
IO effects (via the R monad we discussed previously).

L.-J. Dandy et al.524

Example 7. A fair coin toss may be implemented using quantum resources. The
process is simple: (1) prepare the state |0〉; (2) apply the H gate to it; (3) measure
the qubit and return this as output. We implement this as follows:

coin : QuantumOp t => IO Bool
coin = do

[b] <- run (do
q <- newQubit {t = t}
q <- applyH q
r <- measure [q]
pure r

)
pure b

The top-level do block simply realises monadic sequencing for the standard
IO monad. The do block within the run environment is more interesting and
crucial for our development. It performs monadic sequencing for the QStateT

monad and it represents the simple three-step algorithm we just described. The
call to the run function executes this algorithm and users obtain the produced
classical information by storing it in the variable b of type Bool. We emphasise
that linearity is enforced within the run environment and this is what brings
safety properties in our approach, e.g., all of the following scenarios are statically
detected and rejected by Idris: passing the qubit q to a non-linear function,
copying the qubit q, forgetting to measure the qubit q. For example, if in the
above code we replace the last two statements in the run environment with
“pure True”, then Idris statically detects this error.

The function coin from Example 7 is implemented using our abstract inter-
face. This means we can use this function in any concrete implementation of
the QuantumOp interface. Since the authors do not have any quantum hardware,
we provide one concrete implementation of this interface, called SimulatedOp,
which performs linear-algebraic simulation of all the required operations. For
example, if we wish to use the coin function, then the code:

testCoin : IO Bool

testCoin = coin {t = SimulatedOp}

defines a new function, called testCoin, which does the same as coin, but it
specifically instructs Idris to use linear-algebraic simulation. We emphasise that
all of our quantum algorithms are written using our abstract interface, so there
is no need to reimplement them for any additional concrete implementations of
the interface.

5.2 Example: Repeat-Until-Success Algorithm

Repeat-until-success (RUS) [27] is an algorithm for implementing quantum uni-
tary operators by using quantum measurements and general unbounded recur-
sion. The main advantage in using RUS over traditional deterministic techniques

Type-safe Quantum Programming in Idris 525

RUS : QuantumOp t => (1 _ : Qubit) ->
(u’ : Unitary 2) -> (e : Unitary 1) ->
QStateT (t 1) (t 1) Qubit

RUS q u’ e = do
q’ <- newQubit
[q’,q] <- applyUnitary [q’,q] u’
b <- measureQubit q’
if b then do

[q] <- applyUnitary [q] (adjoint e)
RUS q u’ e

else pure q

example_u ’ : Unitary 2
example_u ’ = H 0 $ T 0 $ CNOT 0 1 $ H 0 $ CNOT 0 1 $ T 0 $

H 0 IdGate

runRUS : QuantumOp t => IO Bool
runRUS = do

[b] <- run (do
q <- newQubit {t = t}
q <- RUS q example_u ’ IdGate
measure [q]

)
pure b

testRUS : IO Bool
testRUS = runRUS {t = SimulatedOp}

Fig. 8. Repeat-until-success algorithm (file: RUS.idr).

that synthesise unitary operators, is that with RUS the expected number of T
gates (which are expensive in terms of error correction8) can be reduced.

In the simplest case, we wish to realise a fixed single-qubit unitary operator
U : C2 → C2. The RUS algorithm is as follows. Given an input qubit |ψ〉 , then:
(1) prepare a new qubit in state |0〉; (2) apply a two-qubit unitary operator
U ′ (chosen in advance depending on U); (3) measure the first qubit; (4) if the
measurement outcome is 0 (which occurs with probability p > 0), then the
output state is U |ψ〉, as required, and the algorithm terminates; otherwise the
current state is E |ψ〉, where E is some other unitary operator (chosen in advance
depending on U), so we apply E† to this state and we go back to step (1). The
unitary operators U ′ and E are chosen in advance, depending on U , before the
algorithm starts so that the above conditions are satisfied. Note that synthesising
U ′ and E is not part of the algorithm and we do not discuss this here.

Assuming that appropriate U ′ and E are chosen, this process always termi-
nates in state U |ψ〉 (provided p > 0) so RUS indeed implements the unitary
operator U . Note that this is an algorithmic realisation of U , not an algebraic
one, and so we cannot write a program of type Unitary that achieves this. In-
stead, we represent this as a quantum program in Figure 8. There, RUS q u’

8 We do not automatically implement error correction, so it has to be handled either
by the developer or provided by the quantum device on the remote end.

L.-J. Dandy et al.526

e is the quantum state transformer which implements the RUS algorithm as
above. The function runRUS simply executes the RUS algorithm on a qubit in
state |0〉, with the unitary operator chosen from [27, Figure 8], then measures
the qubit and returns the outcome. Both of these functions are written using
our abstract interface. The function testRUS is the same as runRUS, but it also
instructs Idris to use linear-algebraic simulation for the execution. Note that, in
our implementation, we have taken a specific instance of RUS by choosing U ′ to
be the unitary operator described by example u’ as discussed in [27, Figure 8].

Remark 3. The run(-) environment enforces linearity, so if we wish to use the
RUS function within it, then the qubit argument must be linear in RUS.

6 Variational Quantum Programming

In the previous section we saw that Qimaera is suitable for writing recursive and
effectful quantum programs that make use of quantum measurements. Moreover,
Idris 2 is an excellent programming language with an advanced type system
and first-class support for classical programming features. In order to demon-
strate that Qimaera is suitable for hybrid classical-quantum programming, we
also have to show that both classical and quantum programming features may
be elegantly combined. This is the purpose of this section and we achieve this
by implementing the two most prominent variational quantum algorithms: the
Quantum Approximate Optimization Algorithm (QAOA) [13] and the Varia-
tional Quantum Eigensolver (VQE) [30]. In this paper we only describe QAOA.
See the full paper [12] for more information on the implementation of VQE.

The objective of QAOA is to try to find the minimum (or maximum) eigen-
value of a Hamiltonian. A Hamiltonian is a Hermitian (i.e., self-adjoint) matrix
H (we use a calligraphic font to differentiate it from H, the Hadamard matrix).
Its minimum eigenvalue is the minimum (real) value λ such that H |ψ〉 = λ |ψ〉
for some nonzero vector |ψ〉. As H is unitarily diagonalizable, this is equivalent

to the minimum of 〈ψ|H |ψ〉 for all vectors |ψ〉 of norm 1, where 〈ψ| def= |ψ〉†.
QAOA starts with some assumption on what the vector |ψ〉 looks like and

usually |ψ〉 is prepared by a quantum circuit that depends on some real param-
eters α1, . . . , αp. By measuring this state |ψ〉, one obtains some information on
the value of 〈ψ|H |ψ〉. This information can then be fed to a classical optimizer
to change the value of the parameters α1, . . . , αp for subsequent execution.

This classical-quantum back and forth is repeated until some satisfactory
termination condition has been satisfied. For example, we may simply repeat
this process k times, where k ∈ N is some constant, but more sophisticated
termination conditions are also possible. However, there is no guarantee that we
will find the minimum eigenvalue.

Implementation of QAOA. QAOA is a variational algorithm [13] that ap-
proximately solves optimization problems. Let f : {0, 1}n → R be a function for
which we want to find its minimum. We see f as a diagonal Hamiltonian over n

Type-safe Quantum Programming in Idris 527

qubits defined by H |x〉 = f(x) |x〉 for all x ∈ {0, 1}n. We are therefore searching
for the minimum eigenvalue of this Hamiltonian.

In this case, the state |ψ〉 that minimises the Hamiltonian H is often assumed
to be of the form: |ψ〉 = (HP (βp)H)⊗neγpH · · · (HP (β1)H)⊗neγ1HH⊗n |0〉 . The
depth parameter p ∈ N is usually fixed to be small, and we have a guarantee that
the results of our algorithm become better when p becomes larger. To be able
to produce a circuit which computes |ψ〉, the Hamiltonian H may be assumed
to have a special form so that we can make a circuit for eγH. A well-known and
important example is to compute the maximum cut of an undirected graph, i.e.,
to solve the MAXCUT problem.

Our implementation for QAOA on the MAXCUT problem is presented in
the file QAOA.idr and an excerpt is shown in Figure 9. The problem depends
on the graph G for which we want the maximum cut, a depth parameter p, and
some real parameters βi, γi.

In our implementation, we have a function QAOA Unitary, that takes these
parameters as input and produces a unitary circuit that may be used to pre-
pare the state |ψ〉 when applied to the initial state |0〉⊗n. We then measure
this state |ψ〉 and present the result (a cut of the graph in the obvious bi-
nary encoding) to an optimiser. Our optimiser is implemented by the function
classicalOptimisation that uses all observable information from all previous
runs (which amounts to the values of the parameters βi, γi and the value of
the cuts that have been previously obtained through quantum measurements)
to compute the subsequent rotation parameters βi, γi that we will use for the
next iteration. The type of this function indicates that it uses the IO monad:
this is because we wish to allow the function to use probabilistic optimisation
algorithms or even external tools. One of the simplest implementations of this
function chooses the rotation parameters at random.

The interplay between the classical and the quantum part is presented in
Figure 9. The function QAOA takes as input a natural number k representing
how many times the whole routine will be done, the depth p of the circuit, and
the graph G on which to compute the cut. Notice that the call to the quantum
device is isolated inside the run function.

7 Related Work

In this section we compare Qimaera with other existing quantum programming
languages that are implemented in software. We omit comparisons with quantum
type systems that do not have a software implementation. We provide a feature
comparison with some quantum programming languages in Table 2 and we now
clarify the meaning of some of the selected features.

By Type Safety we mean that the language can statically detect (and re-
ject) erroneous programs which duplicate quantum data. General Recursion is
the ability to express recursive (possibly non-terminating) programs and almost-
surely-terminating programs, such as RUS (see §5.2). Measurements is the ability
to use the outcomes of quantum measurements in the control flow of programs.

L.-J. Dandy et al.528

QAOA_Unitary : {n : Nat} -> (betas : Vect p Double)
-> (gammas : Vect p Double)
-> (graph: Graph n) -> Unitary n

classicalOptimisation : {p : Nat}
-> (graph : Graph n)
-> (previous_info : Vect k (Vect p Double ,

Vect p Double , Cut n))
-> IO (Vect p Double , Vect p Double)

QAOA ’ : QuantumOp t =>
{n : Nat} ->
(k : Nat) -> (p : Nat) -> (graph : Graph n) ->
IO (Vect k (Vect p Double , Vect p Double , Cut n))

QAOA ’ 0 p graph = pure []
QAOA ’ (S k) p graph = do

previous_info <- QAOA ’ {t} k p graph
(betas , gammas) <- classicalOptimisation graph previous_info
let circuit = QAOA_Unitary betas gammas graph
cut <- run (do

qs <- newQubits {t} n
qs <- applyUnitary qs circuit
measureAll qs
)

pure $ (betas , gammas , cut) :: previous_info

QAOA : QuantumOp t => {n : Nat} -> (k : Nat) -> (p : Nat) ->
Graph n -> IO (Cut n)

QAOA k p graph = do
res <- QAOA ’ {t} k p graph
let cuts = map (\(_, _, cut) => cut) res
let (cut ,size) = bestCut graph cuts
pure cut

Fig. 9. Qimaera implementation (excerpt) for the QAOA algorithm solving the MAX-
CUT problem.

Type-safe Quantum Programming in Idris 529

Promotion of Measurements is the ability to integrate the outcomes of quan-
tum measurements as a native classical type (e.g., Bool): this essentially allows
us to switch from a quantum mode of operation into a classical one and al-
lows us to use both quantum and classical programming paradigms; it may be
roughly understood as corresponding to the promotion rule of linear logic [16].
For Higher-order Functions we distinguish between purely classical ones and
mixed classical-quantum (in the second column); some languages support both,
but treat the quantum ones non-linearly which may cause loss of type safety. Fi-
nally, by Effects we mean the ability to incorporate probabilistic computational
effects (which are an essential part of the dynamics of hybrid classical-quantum
programs) and also IO (input/output) effects into our programming workflow.

The QWIRE language [28,31] and the SQIR language [20,19] are quantum
circuit languages that are embedded in the Coq proof assistant [11]. Both of these
languages have access to dependent types, courtesy of Coq. The focus of these
languages is mostly on verification, whereas in Qimaera we focus on programming
and Idris 2 has better support for classical, quantum and effectful programming
features compared to Coq. Both QWIRE and SQIR represent quantum primi-
tives through the use of low-level specification languages that are embedded in
Coq: both of these specification languages lack the ability to express quantum
algorithms that require general recursion and both of them lack the ability to
express quantum higher-order functions. Because of the former reason, the RUS
algorithm from §5.2 cannot be expressed in QWIRE or SQIR.

Silq [9] is a standalone quantum programming language which also is type-
safe and whose main notable feature is automatic uncomputation of temporary
values. We currently partially support this feature, because we have clearly iden-
tified and separated the reversible fragment of quantum computation (see the
Unitary type) and we can synthesise the required adjoints by calling the adjoint
function. Compared to Silq, the main advantage of Qimaera is that Idris has bet-
ter support for classical programming features and so we believe that Qimaera
is a better choice for hybrid classical-quantum programming. In addition, Silq
does not support general recursion, so it cannot express quantum algorithms
that rely on this (e.g., RUS §5.2).

Language
Type
Safety

General
Recursion

Dependent
Types

Measure-
ments

Promotion
of Measure-
ments

Higher-order Functions
Effects

Classical Quantum

Quipper 5 X 5 X X X (non-linear) X
Proto-Quipper-D X X X 5 5 X X 5

Proto-Quipper-Dyn X X 5 X X X X X
QWIRE X 5 X X 5 X 5 5

SQIR X 5 X X 5 X 5 5

Silq X 5 (limitted) X X X X 5

Qiskit 5 X 5 X X X (non-linear) X
Q# 5 X 5 X X X (non-linear) X
Cirq 5 X 5 X X X (non-linear) X
Qimaera X X X X X X X X

Table 2. Feature comparison between Qimaera and other languages.

L.-J. Dandy et al.530

Quipper [18] and the Quantum IO monad (QIO) [3] are two domain specific
languages (DSLs) embedded in Haskell. Neither of them are type safe because
they do not utilise linearity and they cannot statically detect quantum programs
that are physically inadmissible. However, thanks to the language similarities
between Haskell and Idris, the programming style in these languages is somewhat
similar to ours (e.g., all three use monads). In our view, both of these papers have
been influential for the design of functional quantum programming languages.

Another recent language includes Proto-Quipper-D [14] which is a type-safe
circuit description language. This language is based on a novel type system which
shows how linearity and dependent types can be combined. A fundamental dif-
ference between Proto-Quipper-D and Qimaera is that linearity is the default
mode of operation in Proto-Quipper-D, whereas in Qimaera the default mode
is non-linear. The focus in Proto-Quipper-D is on circuit description and gen-
eration and the language currently lacks effectful quantum measurements and
probabilistic effects, so it cannot be used for variational quantum programming
at present. Another related language is Proto-Quipper-Dyn [15]. It is similar to
Proto-Quipper-D, but it lacks dependent types (which Qimaera has). On the
other hand, it can handle quantum measurements and has dynamic lifting, i.e.,
the ability to parameterize quantum circuits based on information observed from
quantum measurements. Note that Qimaera also has dynamic lifting.

Other languages, include Google’s Cirq [17] (a set of python libraries), IBM’s
Qiskit [2] (a set of python libraries) and Microsoft’s Q] [35] (standalone). These
languages offer a wide-range of quantum functions and features, however, none
of them are type-safe. Qimaera does not have this problem and this is indeed its
main advantage over them, together with dependent types.

8 Future Work

For future work, it would be interesting to consider methods that would allow
us to reduce some of the proof obligations that are imposed by the Unitary

data type. Going beyond Idris and our library, another natural direction is to
consider whether programming languages that support substructural approaches
other than linearity (e.g., uniqueness types, ownership) can be used to achieve
type-safe quantum programming. It would also be interesting to consider the
relevance of arrows [21,5] in quantum programming. Furthermore, implement-
ing and testing our abstract interface on an actual hybrid quantum-classical
hardware environment would most likely bring additional challenges.

Acknowledgements. We thank Robert Rand for discussions about this paper.
We also thank the anonymous referees for their feedback which lead to multiple
improvements of this paper. EJ is supported by the PEPR integrated project
EPiQ and the European Project NEASQC (Grant Agreement 951821). Most of
the work was done in LORIA/Inria Nancy during an Inria internship of the first
author who was a student at École polytechnique. The first and last authors
have changed affiliations since then.

Type-safe Quantum Programming in Idris 531

References

1. Qimaera github repository. https://github.com/zamdzhiev/Qimaera, accessed:
30.01.2023

2. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y.,
Bucher, D., Cabrera-Hernández, F.J., Carballo-Franquis, J., Chen, A., Chen, C.F.,
Chow, J.M., Córcoles-Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Cul-
ver, C., González, S.D.L.P., Torre, E.D.L., Ding, D., Dumitrescu, E., Duran, I.,
Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta, J., Gago,
B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers,
J., Lukasz Herok, Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A.,
Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques,
M., Mart́ın-Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo,
A., Moll, N., Rodŕıguez, D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan,
L.J., Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice,
J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye, N., Schnabel, C., Schoute, E.,
Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin, J.A., Soeken, M.,
Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish, M.,
Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E.,
Wood, C., Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: An open-
source framework for quantum computing (Jan 2019). https://doi.org/10.5281/
zenodo.2562111, https://doi.org/10.5281/zenodo.2562111

3. Altenkirch, T., Green, A.S.: The quantum IO monad. Semantic Techniques in
Quantum Computation pp. 173–205 (2010)

4. Atkey, R.: Parameterised notions of computation. J. Funct. Program. 19(3-4), 335–
376 (2009). https://doi.org/10.1017/S095679680900728X, https://doi.org/

10.1017/S095679680900728X

5. Atkey, R.: What is a categorical model of arrows? Electron. Notes Theor. Com-
put. Sci. 229(5), 19–37 (2011). https://doi.org/10.1016/j.entcs.2011.02.014,
https://doi.org/10.1016/j.entcs.2011.02.014

6. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A.,
Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp.
56–65. ACM (2018). https://doi.org/10.1145/3209108.3209189, https://doi.
org/10.1145/3209108.3209189

7. Benton, P.N., Wadler, P.: Linear logic, monads and the lambda calculus. In: LICS
1996 (1996)

8. Benton, P.: A mixed linear and non-linear logic: Proofs, terms and models. In:
Computer Science Logic: 8th Workshop, CSL ’94, Selected Papaers (1995). https:
//doi.org/10.1007/BFb0022251, http://dx.doi.org/10.1007/BFb0022251

9. Bichsel, B., Baader, M., Gehr, T., Vechev, M.T.: Silq: a high-level quantum lan-
guage with safe uncomputation and intuitive semantics. In: Donaldson, A.F., Tor-
lak, E. (eds.) Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020. pp. 286–300. ACM (2020). https://doi.org/10.1145/3385412.
3386007, https://doi.org/10.1145/3385412.3386007

10. Brady, E.C.: Idris 2: Quantitative type theory in practice. In: Møller, A.,
Sridharan, M. (eds.) 35th European Conference on Object-Oriented Program-
ming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference).
LIPIcs, vol. 194, pp. 9:1–9:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik

L.-J. Dandy et al.532

https://github.com/zamdzhiev/Qimaera
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1016/j.entcs.2011.02.014
https://doi.org/10.1016/j.entcs.2011.02.014
https://doi.org/10.1016/j.entcs.2011.02.014
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
http://dx.doi.org/10.1007/BFb0022251
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007

(2021). https://doi.org/10.4230/LIPIcs.ECOOP.2021.9, https://doi.org/10.
4230/LIPIcs.ECOOP.2021.9

11. Coq Development Team: The Coq proof assistant reference manual. https://coq.
inria.fr/distrib/current/refman/ (2021), accessed: 19.11.2021

12. Dandy, L.J., Jeandel, E., Zamdzhiev, V.: Type-safe quantum programming in
Idris. https://doi.org/10.48550/ARXIV.2111.10867, https://arxiv.org/abs/

2111.10867

13. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization al-
gorithm (2014)

14. Fu, P., Kishida, K., Ross, N.J., Selinger, P.: A tutorial introduction to quan-
tum circuit programming in dependently typed Proto-Quipper. In: Lanese, I.,
Rawski, M. (eds.) Reversible Computation - 12th International Conference, RC
2020, Oslo, Norway, July 9-10, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12227, pp. 153–168. Springer (2020). https://doi.org/10.1007/

978-3-030-52482-1_9, https://doi.org/10.1007/978-3-030-52482-1_9
15. Fu, P., Kishida, K., Ross, N.J., Selinger, P.: Proto-Quipper with dynamic lifting.

CoRR abs/2204.13041 (2022). https://doi.org/10.48550/arXiv.2204.13041,
https://doi.org/10.48550/arXiv.2204.13041

16. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1 – 101 (1987)
17. Google AI Quantum Team: Cirq. https://quantumai.google/cirq (2021), ac-

cessed: 13.08.2021
18. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a

scalable quantum programming language. In: PLDI. pp. 333–342. ACM (2013)
19. Hietala, K., Rand, R., Hung, S., Li, L., Hicks, M.: Proving quantum programs

correct. In: Cohen, L., Kaliszyk, C. (eds.) 12th International Conference on Inter-
active Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Vir-
tual Conference). LIPIcs, vol. 193, pp. 21:1–21:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.21,
https://doi.org/10.4230/LIPIcs.ITP.2021.21

20. Hietala, K., Rand, R., Hung, S., Wu, X., Hicks, M.: A verified optimizer for
quantum circuits. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021). https:

//doi.org/10.1145/3434318, https://doi.org/10.1145/3434318
21. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–

111 (2000). https://doi.org/10.1016/S0167-6423(99)00023-4, https://doi.

org/10.1016/S0167-6423(99)00023-4

22. Jia, X., Kornell, A., Lindenhovius, B., Mislove, M.W., Zamdzhiev, V.: Semantics
for variational quantum programming. Proc. ACM Program. Lang. 6(POPL), 1–31
(2022). https://doi.org/10.1145/3498687, https://doi.org/10.1145/3498687

23. Mac Lane, S.: Categories for the Working Mathematician (2nd ed.). Springer (1998)
24. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder, P.W.,

Sannella, D. (eds.) A List of Successes That Can Change the World - Essays Dedi-
cated to Philip Wadler on the Occasion of His 60th Birthday. Lecture Notes in Com-
puter Science, vol. 9600, pp. 207–233. Springer (2016). https://doi.org/10.1007/
978-3-319-30936-1_12, https://doi.org/10.1007/978-3-319-30936-1_12

25. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of varia-
tional hybrid quantum-classical algorithms. New Journal of Physics 18(2), 023023
(2016)

26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/
10.1017/CBO9780511976667

Type-safe Quantum Programming in Idris 533

https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.48550/ARXIV.2111.10867
https://doi.org/10.48550/ARXIV.2111.10867
https://arxiv.org/abs/2111.10867
https://arxiv.org/abs/2111.10867
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.48550/arXiv.2204.13041
https://doi.org/10.48550/arXiv.2204.13041
https://doi.org/10.48550/arXiv.2204.13041
https://quantumai.google/cirq
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/3498687
https://doi.org/10.1145/3498687
https://doi.org/10.1145/3498687
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

27. Paetznick, A., Svore, K.M.: Repeat-until-success: Non-deterministic decomposition
of single-qubit unitaries. Quantum Info. Comput. 14(15–16), 1277–1301 (Nov 2014)

28. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: a core language for quantum circuits.
In: POPL. pp. 846–858. ACM (2017)

29. Péchoux, R., Perdrix, S., Rennela, M., Zamdzhiev, V.: Quantum programming
with inductive datatypes: Causality and affine type theory. In: Foundations of
Software Science and Computation Structures, FOSSACS 2020. Lecture Notes in
Computer Science, vol. 12077, pp. 562–581. Springer (2020). https://doi.org/

10.1007/978-3-030-45231-5_29

30. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J.,
Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic
quantum processor. Nature communications 5(1), 1–7 (2014)

31. Rand, R., Paykin, J., Lee, D., Zdancewic, S.: ReQWIRE: Reasoning about re-
versible quantum circuits. In: Selinger, P., Chiribella, G. (eds.) Proceedings 15th
International Conference on Quantum Physics and Logic, QPL 2018, Halifax,
Canada, 3-7th June 2018. EPTCS, vol. 287, pp. 299–312 (2018). https://doi.

org/10.4204/EPTCS.287.17, https://doi.org/10.4204/EPTCS.287.17
32. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical

control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)
33. Seo, K.Y.: Indexed state monad blog post. https://kseo.github.io/posts/

2017-01-12-indexed-monads.html (2017), accessed: 13.08.2021
34. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM Review 41(2), 303–332 (1999). https:

//doi.org/10.1137/S0036144598347011

35. Svore, K., Geller, A., Troyer, M., Azariah, J., Granade, C., Heim, B., Kliuchnikov,
V., Mykhailova, M., Paz, A., Roetteler, M.: Q#: Enabling scalable quantum com-
puting and development with a high-level dsl. In: Proceedings of the Real World
Domain Specific Languages Workshop 2018. RWDSL2018, Association for Comput-
ing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3183895.
3183901, https://doi.org/10.1145/3183895.3183901

36. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

L.-J. Dandy et al.534

https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.1007/978-3-030-45231-5_29
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.287.17
https://kseo.github.io/posts/2017-01-12-indexed-monads.html
https://kseo.github.io/posts/2017-01-12-indexed-monads.html
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
http://creativecommons.org/licenses/by/4.0/

Automatic Alignment in Higher-Order
Probabilistic Programming Languages?

Daniel Lundén1(�) , Gizem Çaylak1 , Fredrik Ronquist2,3 , and
David Broman1

1 EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm,
Sweden, {dlunde,caylak,dbro}@kth.se

2 Department of Bioinformatics and Genetics, Swedish Museum of Natural History,
Stockholm, Sweden, fredrik.ronquist@nrm.se

3 Department of Zoology, Stockholm University, Stockholm, Sweden

Abstract. Probabilistic Programming Languages (PPLs) allow users to
encode statistical inference problems and automatically apply an infer-
ence algorithm to solve them. Popular inference algorithms for PPLs,
such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo
(MCMC), are built around checkpoints—relevant events for the inference
algorithm during the execution of a probabilistic program. Deciding the
location of checkpoints is, in current PPLs, not done optimally. To solve
this problem, we present a static analysis technique that automatically
determines checkpoints in programs, relieving PPL users of this task. The
analysis identifies a set of checkpoints that execute in the same order in
every program run—they are aligned. We formalize alignment, prove the
correctness of the analysis, and implement the analysis as part of the
higher-order functional PPL Miking CorePPL. By utilizing the align-
ment analysis, we design two novel inference algorithm variants: aligned
SMC and aligned lightweight MCMC. We show, through real-world ex-
periments, that they significantly improve inference execution time and
accuracy compared to standard PPL versions of SMC and MCMC.

Keywords: Probabilistic programming · Operational semantics · Static
analysis.

1 Introduction

Probabilistic programming languages (PPLs) are languages used to encode sta-
tistical inference problems, common in research fields such as phylogenetics [39],

? This project is financially supported by the Swedish Foundation for Strategic Re-
search (FFL15-0032 and RIT15-0012), and also partially supported by the Wallen-
berg Al, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation, and the Swedish Research Council (grants 2018-
04620 and 2021-04830). The research has also been carried out as part of the Vinnova
Competence Center for Trustworthy Edge Computing Systems and Applications at
KTH Royal Institute of Technology.

c©
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 535–563, 2023.
https://doi.org/10.1007/978-3-031-30044-8_20

The Author(s) 2023, corrected publication 2023

The original version of this chapter was revised: Theorem 1 has been corrected. The
correctionto this chapter is available at https://doi.org/10.1007/978-3-031-30044-8_21

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-3127-5640
http://orcid.org/0000-0001-9703-6912
http://orcid.org/0000-0002-3929-251X
http://orcid.org/0000-0001-8457-4105
https://doi.org/10.1007/978-3-031-30044-8_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_20&domain=pdf

D. Lundén et al.

computer vision [16], topic modeling [5], data cleaning [23], and cognitive sci-
ence [15]. PPL implementations automatically solve encoded problems by ap-
plying an inference algorithm. In particular, automatic inference allows users
to solve inference problems without having in-depth knowledge of inference al-
gorithms and how to apply them. Some examples of PPLs are WebPPL [14],
Birch [31], Anglican [48], Miking CorePPL [25], Turing [12], and Pyro [3].

Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) are
general-purpose families of inference algorithms often used for PPL implemen-
tations. These algorithms share the concept of checkpoints : relevant execution
events for the inference algorithm. For SMC, the checkpoints are likelihood up-
dates [48,14] and determine the resampling of executions. Alternatively, users
must sometimes manually annotate or write the probabilistic program in a cer-
tain way to make resampling explicit [25,31]. For MCMC, checkpoints are instead
random draws, which allow the inference algorithm to manipulate these draws to
construct a Markov chain over program executions [47,38]. When designing SMC
and MCMC algorithms for universal PPLs4, both the placement and handling
of checkpoints are critical to making the inference both efficient and accurate.

For SMC, a standard inference approach is to resample at all likelihood
updates [14,48]. This approach produces correct results asymptotically [24] but
is highly problematic for certain models [39]. Such models require non-trivial
and SMC-specific manual program rewrites to force good resampling locations
and make SMC tractable. Overall, choosing the likelihood updates at which to
resample significantly affects SMC execution time and accuracy.

For MCMC, a standard approach for inference in universal PPLs is lightweight
MCMC [47], which constructs a Markov chain over random draws in programs.
The key idea is to use an addressing transformation and a runtime database of
random draws. Specifically, the database enables matching and reusing random
draws between executions according to their stack traces, even if the random
draws may or may not occur due to randomness during execution. However, the
dynamic approach of looking up random draws in the database through their
stack traces is expensive and introduces significant runtime overhead.

To overcome the SMC and MCMC problems in universal PPLs, we present
a static analysis technique for higher-order functional PPLs that automatically
determines checkpoints in a probabilistic program that always occur in the same
order in every program execution—they are aligned. We formally define align-
ment, formalize the alignment analysis, and prove the soundness of the analysis
with respect to the alignment definition. The novelty and challenge in developing
the static analysis technique is to capture alignment properties through the iden-
tification of expressions in programs that may evaluate to stochastic values and
expressions that may evaluate due to stochastic branching. Stochastic branching
results from if expressions with stochastic values as conditions or function ap-
plications where the function itself is stochastic. Stochastic values and branches
pose a significant challenge when proving the soundness of the analysis.

4 A term coined by Goodman et al. [13]. Essentially, it means that the types and
numbers of random variables cannot be determined statically.

536

Automatic Alignment in Higher-Order PPLs

We design two new inference algorithms that improve accuracy and execu-
tion time compared to current approaches. Unlike the standard SMC algorithm
for PPLs [48,14], aligned SMC only resamples at aligned likelihood updates. Re-
sampling only at aligned likelihood updates guarantees that each SMC execution
resamples the same number of times, which makes expensive global termination
checks redundant [25]. We evaluate aligned SMC on two diversification models
from Ronquist et al. [39] and a state-space model for aircraft localization, demon-
strating significantly improved inference accuracy and execution time compared
to traditional SMC. Both models—constant rate birth-death (CRBD) and clado-
genetic diversification rate shift (ClaDS)—are used in real-world settings and are
of considerable interest to evolutionary biologists [33,28]. The documentations
of both Anglican [48] and Turing [12] acknowledge the importance of alignment
for SMC and state that all likelihood updates must be aligned. However, Turing
and Anglican neither formalize nor enforce this property—it is up to the users
to manually guarantee it, often requiring non-standard program rewrites [39].

We also design aligned lightweight MCMC, a new version of lightweight
MCMC [47]. Aligned lightweight MCMC constructs a Markov chain over the
program using the aligned random draws as synchronization points to match
and reuse aligned random draws and a subset of unaligned draws between execu-
tions. Aligned lightweight MCMC does not require a runtime database of random
draws and therefore reduces runtime overhead. We evaluate aligned lightweight
MCMC for latent Dirichlet allocation (LDA) [5] and CRBD [39], demonstrat-
ing significantly reduced execution times and no decrease in inference accuracy.
Furthermore, automatic alignment is orthogonal to and easily combines with the
lightweight MCMC optimizations introduced by Ritchie et al. [38].

We implement the analysis, aligned SMC, and aligned lightweight MCMC
in Miking CorePPL [25,7]. In addition to analyzing stochastic if-branching, the
implementation analyzes stochastic branching at a standard pattern-matching
construct. Compared to if expressions, the pattern-matching construct requires
a more sophisticated analysis of the pattern and the value matched against it to
determine if the pattern-matching causes a stochastic branch.

In summary, we make the following contributions.

– We invent and formalize alignment for PPLs. Aligned parts of a program
occur in the same order in every execution (Section 4.1).

– We formalize and prove the soundness of a novel static analysis technique
that determines stochastic value flow and stochastic branching, and in turn
alignment, in higher-order probabilistic programs (Section 4.2).

– We design aligned SMC inference that only resamples at aligned likelihood
updates, improving execution time and inference accuracy (Section 5.1).

– We design aligned lightweight MCMC inference that only reuses aligned
random draws, improving execution time (Section 5.2).

– We implement the analysis and inference algorithms in Miking CorePPL.
The implementation extends the alignment analysis to identify stochastic
branching resulting from pattern matching (Section 6).

537

Section 7 describes the evaluation and discusses its results. The paper also has
an accompanying artifact that supports the evaluation [26]. Section 8 discusses
related work and Section 9 concludes. Next, Section 2 considers a simple mo-
tivating example to illustrate the key ideas. Section 3 introduces syntax and
semantics for the calculus used to formalize the alignment analysis.

An extended version of the paper is also available at arXiv [27]. We use the
symbol † in the text to indicate that more information (e.g., proofs) is available
in the extended version.

2 A Motivating Example

This section presents a motivating example that illustrates the key alignment
ideas in relation to aligned SMC (Section 2.1) and aligned lightweight MCMC
(Section 2.2). We assume basic knowledge of probability theory. Knowledge of
PPLs is helpful, but not a strict requirement. The book by van de Meent et
al. [46] provides a good introduction to PPLs.

Probabilistic programs encode Bayesian statistical inference problems with
two fundamental constructs: assume and weight. The assume construct defines
random variables, which make execution nondeterministic. Intuitively, a proba-
bilistic program then encodes a probability distribution over program executions
(the prior distribution), and it is possible to sample from this distribution by
executing the program with random sampling at assumes. The weight construct
updates the likelihood of individual executions. Updating likelihoods for execu-
tions modifies the probability distribution induced by assumes, and the inference
problem encoded by the program is to determine or approximate this modified
distribution (the posterior distribution). The main purpose of weight in real-
world models is to condition executions on observed data.5

Consider the probabilistic program in Fig. 1a. The program is contrived
and purposefully constructed to compactly illustrate alignment, but the real-
world diversification models in Ronquist et al. [39] that we also consider in
Section 7 inspired the program’s general structure. The program defines (line 1)
and returns (line 18) a Gamma-distributed random variable rate. Figure 1b
illustrates the Gamma distribution. To modify the likelihood for values of rate,
the program executes the iter function (line 10) three times, and the survives
function (line 2) a random number of times n (line 13) within each iter call.

Conceptually, to infer the posterior distribution of the program, we execute
the program infinitely many times. In each execution, we draw samples for the
random variables defined at assume, and accumulate the likelihood at weight.
The return value of the execution, weighted by the accumulated likelihood, rep-
resents one sample from the posterior distribution. Fig. 1c shows a histogram
of such weighted samples of rate resulting from a large number of executions
of Fig. 1a. The fundamental inference algorithm that produces such weighted
samples is called likelihood weighting (a type of importance sampling [32]). We
5 A number of more specialized constructs for likelihood updating are also available
in various PPLs, for example observe [48,14] and condition [14].

D. Lundén et al.538

1 let rate = assume Gamma(2, 2) in
2 let rec survives = λn.
3 if n = 0 then () else
4 if assume Bernoulli(0.9) then
5 weight 0.5;
6 survives (n− 1)
7 else
8 weight 0
9 in

10 let rec iter = λi.
11 if i = 0 then () else
12 weight rate;
13 let n = assume Poisson(rate) in
14 survives n;
15 iter (i− 1)
16 in
17 iter 3;
18 rate

(a) Probabilistic program.

0 5 10 15

(b) Gamma(2, 2).

0 5 10 15

(c) Histogram.

w1 12 12 5 5 5 12 5 5
w2 12 5 5 12 8 12 5
w1 12 12 5 5 5 12 5 5
w2 12 5 5 12 8 12 5

(d) Aligning weight.

s1 1 13 4 13 4 4 4 13
s2 1 13 4 4 13 4 4 13 4
s1 1 13 4 13 4 4 4 13
s2 1 13 4 4 13 4 4 13 4

(e) Aligning assume.

Fig. 1: A simple example illustrating alignment. Fig. (a) gives a probabilis-
tic program using functional-style PPL pseudocode. Fig. (b) illustrates the
Gamma(2, 2) probability density function. Fig. (c) illustrates a histogram over
weighted rate samples produced by running the program in (a) a large num-
ber of times. Fig. (d) shows two line number sequences w1 and w2 of weights
encountered in two program runs (top) and how to align them (bottom). Fig.
(e) shows two line number sequences s1 and s2 of assumes encountered in two
program runs (top) and how to align them (bottom).

see that, compared to the prior distribution for rate in Fig. 1b, the posterior is
more sharply peaked due to the likelihood modifications.

2.1 Aligned SMC

Likelihood weighting can only handle the simplest of programs. In Fig. 1a, a
problem with likelihood weighting is that we assign the weight 0 to many exe-
cutions at line 8. These executions contribute nothing to the final distribution.
SMC solves this by executing many program instances concurrently and occa-
sionally resampling them (with replacement) based on their current likelihoods.
Resampling discards executions with lower weights (in the worst case, 0) and re-
places them with executions with higher weights. The most common approach in
popular PPLs is to resample just after likelihood updates (i.e., calls to weight).

Resampling at all calls to weight in Fig. 1a is suboptimal. The best option is
instead to only resample at line 12. This is because executions encounter lines 5
and 8 a random number of times due to the stochastic branch at line 3, while they
encounter line 12 a fixed number of times. As a result of resampling at lines 5 and
8, executions become unaligned ; in each resampling, executions can have reached
either line 5, line 8, or line 12. On the other hand, if we resample only at line 12,
all executions will always have reached line 12 for the same iteration of iter in
every resampling. Intuitively, this is a sensible approach since, when resampling,

Automatic Alignment in Higher-Order PPLs 539

executions have progressed the same distance through the program. We say that
the weight at line 12 is aligned, and resampling only at aligned weights results
in our new inference approach called aligned SMC. Fig. 1d visualizes the weight
alignment for two sample executions of Fig. 1a.

2.2 Aligned Lightweight MCMC

Another improvement over likelihood weighting is to construct a Markov chain
over program executions. It is beneficial to propose new executions in the Markov
chain by making small, rather than large, modifications to the previous execu-
tion. The lightweight MCMC [47] algorithm does this by redrawing a single
random draw in the previous execution, and then reusing as many other ran-
dom draws as possible. Random draws in the current and previous executions
match through stack traces—the sequences of applications leading up to a ran-
dom draw. Consider the random draw at line 13 in Fig. 1a. It is called exactly
three times in every execution. If we identify applications and assumes by line
numbers, we get the stack traces [17, 13], [17, 15, 13], and [17, 15, 15, 13] for these
three assumes in every execution. Consequently, lightweight MCMC can reuse
these draws by storing them in a database indexed by stack traces.

The stack trace indexing in lightweight MCMC is overly complicated when
reusing aligned random draws. Note that the assumes at lines 1 and 13 in Fig 1a
are aligned, while the assume at line 4 is unaligned. Fig. 1e visualizes the assume
alignment for two sample executions of Fig. 1a. Aligned random draws occur in
the same same order in every execution, and are therefore trivial to match and
reuse between executions through indexing by counting. The appeal with stack
trace indexing is to additionally allow reusing a subset of unaligned draws.

A key insight in this paper is that aligned random draws can also act as
synchronization points in the program to allow reusing unaligned draws without a
stack trace database. After an aligned draw, we reuse unaligned draws occurring
up until the next aligned draw, as long as they syntactically originate at the
same assume as the corresponding unaligned draws in the previous execution.
As soon as an unaligned draw does not originate from the same assume as in
the previous execution, we redraw all remaining unaligned draws up until the
next aligned draw. Instead of a trace-indexed database, this approach requires
storing a list of unaligned draws (tagged with identifiers of the assumes at which
they originated) for each execution segment in between aligned random draws.
For example, for the execution s1 in Fig. 1e, we store lists of unaligned Bernoulli
random draws from line 4 for each execution segment in between the three aligned
random draws at line 13. If a Poisson random draw n at line 13 does not change
or decreases, we can reuse the stored unaligned Bernoulli draws up until the
next Poisson random draw as survives executes n or fewer times. If the drawn n
instead increases to n′, we can again reuse all stored Bernoulli draws, but must
supplement them with new Bernoulli draws to reach n′ draws in total.

As we show in Section 7, using aligned draws as synchronization points works
very well in practice and avoids the runtime overhead of the lightweight MCMC

D. Lundén et al.540

database. However, manually identifying aligned parts of programs and rewrit-
ing them so that inference can make use of alignment is, if even possible, te-
dious, error-prone, and impractical for large programs. This paper presents an
automated approach to identifying aligned parts of programs. Combining static
alignment analysis and using aligned random draws as synchronization points
form the key ideas of the new algorithm that we call aligned lightweight MCMC.

3 Syntax and Semantics

In preparation for the alignment analysis in Section 4, we require an idealized
base calculus capturing the key features of expressive PPLs. This section intro-
duces such a calculus with a formal syntax (Section 3.1) and semantics (Sec-
tion 3.2). We assume a basic understanding of the lambda calculus (see, e.g.,
Pierce [37] for a complete introduction). Section 6 further describes extending
the idealized calculus and the analysis in Section 4 to a full-featured PPL.

3.1 Syntax

We use the untyped lambda calculus as the base for our calculus. We also add
let expressions for convenience, and if expressions to allow intrinsic booleans
to affect control flow. The calculus is a subset of the language used in Fig. 1a.
We inductively define terms t and values v as follows.

Definition 1 (Terms and values).

t ::= x | c | λx. t | t t | let x = t in t v ::= c | 〈λx. t, ρ〉
| if t then t else t | assume t | weight t

x, y ∈ X ρ ∈ P c ∈ C {false, true, ()} ∪ R ∪D ⊆ C.
(1)

X is a countable set of variable names, C a set of intrinsic values and operations,
and D ⊂ C a set of probability distributions. The set P contains all evaluation
environments ρ, that is, partial functions mapping names in X to values v. We
use T and V to denote the set of all terms and values, respectively.

Values v are intrinsics or closures, where closures are abstractions with an en-
vironment binding free variables in the abstraction body. We require that C
include booleans, the unit value (), and real numbers. The reason is that weight
takes real numbers as argument and returns () and that if expression conditions
are booleans. Furthermore, probability distributions are often over booleans and
real numbers. For example, we can include the normal distribution constructor
N ∈ C that takes real numbers as arguments and produces normal distributions
over real numbers. For example, N 0 1 ∈ D, the standard normal distribution.
We often write functions in C in infix position or with standard function appli-
cation syntax for readability. For example, 1 + 2 with + ∈ C means + 1 2, and
N (0, 1) means N 0 1. Additionally, we use the shorthand t1; t2 for let _ = t1
in t2, where _ is the do-not-care symbol. That is, t1; t2 evaluates t1 for side

Automatic Alignment in Higher-Order PPLs 541

1 let rec geometric = λ_.
2 let x = assume Bernoulli(0.5) in
3 if x then
4 weight 1.5;
5 1 + geometric ()
6 else 1
7 in geometric ()

(a) Probabilistic program tgeo .

Standard geometric

1 2 3 4 5 6 7 8 9

Weighted geometric

(b) Probability distributions.

Fig. 2: A probabilistic program tgeo [25], illustrating (1). Fig. (a) gives the pro-
gram, and (b) the corresponding probability distributions. In (b), the y-axis gives
the probability, and the x-axis gives the outcome (the number of coin flips). The
upper part of (b) excludes the shaded weight at line 4 in (a).

effects only before evaluating t2. Finally, the untyped lambda calculus supports
recursion through fixed-point combinators. We encapsulate this in the shorthand
let rec f = λx.t1 in t2 to conveniently define recursive functions.

The assume and weight constructs are PPL-specific. We define random vari-
ables from intrinsic probability distributions with assume (also known as sam-
ple in PPLs with sampling-based inference). For example, the term let x =
assume N (0, 1) in t defines x as a random variable with a standard normal
distribution in t. Boolean random variables combined with if expressions result
in stochastic branching—causing the alignment problem. Lastly, weight (also
known as factor or score) is a standard construct for likelihood updating (see,
e.g., Borgström et al. [6]). Next, we illustrate and formalize a semantics for (1).

3.2 Semantics

Consider the small probabilistic program tgeo ∈ T in Fig. 2a. The program
encodes the standard geometric distribution via a function geometric, which
recursively flips a fair coin (a Bernoulli(0.5) distribution) at line 2 until the
outcome is false (i.e., tails). At that point, the program returns the total number
of coin flips, including the last tails flip. The upper part of Fig. 2b illustrates the
result distribution for an infinite number of program runs with line 4 ignored.

To illustrate the effect of weight, consider tgeo with line 4 included. This
weight modifies the likelihood with a factor 1.5 each time the flip outcome is
true (or, heads). Intuitively, this emphasizes larger return values, illustrated in
the lower part of Fig. 2b. Specifically, the (unnormalized) probability of seeing
n coin flips is 0.5n · 1.5n−1, compared to 0.5n for the unweighted version. The
factor 1.5n−1 is the result of the calls to weight.

We now introduce a big-step operational semantics for single runs of programs
t. Such a semantics is essential to formalize the probability distributions encoded
by probabilistic programs (e.g., Fig. 2b for Fig. 2a) and to prove the correctness
of PPL inference algorithms. For example, Borgström et al. [6] define a PPL
calculus and semantics similar to this paper and formally proves the correctness
of an MCMC algorithm. Another example is Lundén et al. [24], who also define a

D. Lundén et al.542

ρ ` x []⇓1[] ρ(x)
(Var)

ρ ` c []⇓1[] c
(Const)

ρ ` λx.t []⇓1[] 〈λx.t, ρ〉
(Lam)

ρ ` t1 s1⇓w1
l1
〈λx.t, ρ′〉 ρ ` t2 s2⇓w2

l2
v2 ρ′, x 7→ v2 ` t s3⇓w3

l3
v

ρ ` t1 t2 s1‖s2‖s3⇓w1·w2·w3
l1‖l2‖l3 v

(App)

ρ ` t1 s1⇓w1
l1

c1 ρ ` t2 s2⇓w2
l2

c2

ρ ` t1 t2 s1‖s2⇓w1·w2
l1‖l2 δ(c1, c2)

(Const-App)
ρ ` t s⇓wl d w′ = fd(c)

ρ ` assume t s‖[c]⇓w·w
′

l c
(Assume)

ρ ` t1 s1⇓w1
l1

v1 ρ, x 7→ v1 ` t2 s2⇓w2
l2

v

ρ ` let x = t1 in t2 s1‖s2⇓w1·w2
l1‖[x]‖l2 v

(Let)
ρ ` t s⇓wl w′

ρ ` weight t s⇓w·w
′

l ()
(Weight)

ρ ` t1 s1⇓w1
l1

true ρ ` t2 s2⇓w2
l2

v2

ρ ` if t1 then t2 else t3 s1‖s2⇓w1·w2
l1‖l2 v2

(If-True)

ρ ` t1 s1⇓w1
l1

false ρ ` t3 s3⇓w3
l3

v3

ρ ` if t1 then t2 else t3 s1‖s3⇓w1·w3
l1‖l3 v3

(If-False)

Fig. 3: A big-step operational semantics for terms, formalizing single runs of pro-
grams t ∈ T . The operation ρ, x 7→ v produces a new environment extending ρ
with a binding v for x. For each distribution d ∈ D, fd is its probability density
or probability mass function—encoding the relative probability of drawing par-
ticular values from the distribution. For example, fBernoulli(0.3)(true) = 0.3 and
fBernoulli(0.3)(false) = 1− 0.3 = 0.7. We use · to denote multiplication.

similar calculus and semantics and prove the correctness of PPL SMC algorithms.
In particular, the correctness of our aligned SMC algorithm (Section 5.1) follows
from this proof. The purpose of the semantics in this paper is to formalize
alignment and prove the soundness of our analysis in Section 4. We use a big-
step semantics as the finer granularity in a small-step semantics is redundant.
We begin with a definition for intrinsics.

Definition 2 (Intrinsic functions). For every c ∈ C, we attach an arity
|c| ∈ N. We define a partial function δ : C × C → C such that δ(c, c1) = c2 is
defined for |c| > 0. For all c, c1, and c2, such that δ(c, c1) = c2, |c2| = |c| − 1.

Intrinsic functions are curried and produce intrinsic or intrinsic functions of one
arity less through δ. For example, for + ∈ C, we have δ(δ(+, 1), 2) = 3, |+| = 2,
|δ(+, 1)| = 1, and |δ(δ(+, 1), 2)| = 0. Next, randomness in our semantics is
deterministic via a trace of random draws in the style of Kozen [22].

Definition 3 (Traces). The set S of traces is the set such that, for all s ∈ S,
s is a sequence of intrinsics from C with arity 0.

In the following, we use the notation [c1, c2, . . . , cn] for sequences and ‖ for
sequence concatenation. For example, [c1, c2] ‖ [c2, c4] = [c1, c2, c3, c4]. We also
use subscripts to select elements in a sequence, e.g., [c1, c2, c3, c4]2 = c2. In
practice, traces are often sequences of real numbers, e.g., [1.1, 3.2, 8.4] ∈ S.

Automatic Alignment in Higher-Order PPLs 543

Fig. 3 presents the semantics as a relation ρ ` t s⇓wl v over P × T × S ×R×
L× V . L is the set of sequences over X, i.e., sequences of names. For example,
[x, y, z] ∈ L, where x, y, z ∈ X. We use l ∈ L to track the sequence of let-
bindings during evaluation. For example, evaluating let x = 1 in let y = 2
in x + y results in l = [x, y]. In Section 4, we use the sequence of encountered
let-bindings to define alignment. For simplicity, from now on we assume that
bound variables are always unique (i.e., variable shadowing is impossible).

It is helpful to think of ρ, t, and s as the input to ⇓, and l, w and v as the out-
put. In the environment ρ, t, with trace s, evaluates to v, encounters the sequence
of let bindings l, and accumulates the weight w. The trace s is the sequence of
all random draws, and each random draw in (Assume) consumes precisely one
element of s. The rule (Let) tracks the sequence of bindings by adding x at the
correct position in l. The number w is the likelihood of the execution—the prob-
ability density of all draws in the program, registered at (Assume), combined
with direct likelihood modifications, registered at (Weight). The remaining as-
pects of the semantics are standard (see, e.g., Kahn [20]). To give an example of
the semantics, we have ∅ ` tgeo

[true,true,true,false]⇓0.5·1.5·0.5·1.5·0.5·1.5·0.5[geometric,x,x,x,x] 4 for the
particular execution of tgeo making three recursive calls. Next, we formalize and
apply the alignment analysis to (1).

4 Alignment Analysis

This section presents the main contribution of this paper: automatic alignment
in PPLs. Section 4.1 introduces A-normal form and gives a precise definition of
alignment. Section 4.2 formalizes and proves the correctness of the alignment
analysis. Lastly, Section 4.3 discusses a dynamic version of alignment.

4.1 A-Normal Form and Alignment

To reason about all subterms t′ of a program t and to enable the analysis in
Section 4.2, we need to uniquely label all subterms. A straightforward approach
is to use variable names within the program itself as labels (remember that
we assume bound variables are always unique). This leads us to the standard
A-normal form (ANF) representation of programs [11].

Definition 4 (A-normal form).

tANF ::= x | let x = t′ANF in tANF
t′ANF ::= x | c | λx. tANF | x y

| if x then tANF else tANF | assume x | weight x

(2)

We use TANF to denote the set of all terms tANF. Unlike t ∈ T , tANF ∈ TANF
enforces that a variable bound by a let labels each subterm in the program.
Furthermore, we can automatically transform any program in T to a semantically
equivalent TANF program, and TANF ⊂ T . Therefore, we assume in the remainder
of the paper that all terms are in ANF.

D. Lundén et al.544

Given the importance of alignment in universal PPLs, it is somewhat surpris-
ing that there are no previous attempts to give a formal definition of its meaning.
Here, we give a first such formal definition, but before defining alignment, we
require a way to restrict, or filter, sequences.

Definition 5 (Restriction of sequences). For all l ∈ L and Y ⊆ X, l|Y (the
restriction of l to Y) is the subsequence of l with all elements not in Y removed.

For example, [x, y, z, y, x]|{x,z} = [x, z, x]. We now formally define alignment.

Definition 6 (Alignment). For t ∈ TANF, let Xt denote all variables that
occur in t. The sets At ∈ At, At ⊆ Xt, are the largest sets such that, for
arbitrary ∅ ` t s1⇓w1

l1
v1 and ∅ ` t s2⇓w2

l2
v2, l1|At = l2|At .

For a given At, the aligned expressions—expressions bound by a let to a variable
name in At—are those that occur in the same order in every execution, regardless
of random draws. We seek the largest sets, as At = ∅ is always a trivial solution.
Assume we have a program with Xt = {x, y, z} and such that l = [x, y, x, z, x]
and l = [x, y, x, z, x, y] are the only possible sequences of let bindings. Then,
At = {x, z} is the only possibility. It is also possible to have multiple choices for
At. For example, if l = [x, y, z] and l = [x, z, y] are the only possibilities, then
At = {{x, z}, {x, y}}. Next, assume that we transform the programs in Fig. 2a
and Fig. 1a to ANF. The expression labeled by x in Fig. 2a is then clearly not
aligned, as random draws determine how many times it executes (l could be, e.g.,
[x, x] or [x, x, x, x]). Conversely, the expression n (line 13) in Fig. 1a is aligned,
as its number and order of evaluations do not depend on any random draws.

Definition 6 is context insensitive : for a given At, each x is either aligned
or unaligned. One could also consider a context-sensitive definition of alignment
in which x can be aligned in some contexts and unaligned in others. A context
could, for example, be the sequence of function applications (i.e., the call stack)
leading up to an expression. Considering different contexts for x is complicated
and difficult to take full advantage of. We justify the choice of context-insensitive
alignment with the real-world models in Section 7, neither of which requires a
context-sensitive alignment.

With alignment defined, we now move on to the static alignment analysis.

4.2 Alignment Analysis

The basis for the alignment analysis is 0-CFA [34,42]—a static analysis frame-
work for higher-order functional programs. The prefix 0 indicates that 0-CFA is
context insensitive. There is also a set of analyses k-CFA [30] that adds increas-
ing amounts (with k ∈ N) of context sensitivity to 0-CFA. We could use such
analyses with a context-sensitive version of Definition 6. However, the potential
benefit of k-CFA is also offset by the worst-case exponential time complexity,
already at k = 1. In contrast, the time complexity of 0-CFA is polynomial (cu-
bic in the worst-case). The alignment analysis for the models in Section 7 runs
instantaneously, justifying that the time complexity is not a problem in practice.

Automatic Alignment in Higher-Order PPLs 545

1 let n1 = ¬ in let n2 = ¬ in
2 let one = 1 in
3 let half = 0.5 in let c = true in
4 let f1 = λx1. let t1 = weight one in x1 in
5 let f2 = λx2. let t2 = weight one in t2 in
6 let f3 = λx3. let t3 = weight one in t3 in
7 let f4 = λx4. let t4 = weight one in t4 in
8 let bern = Bernoulli in
9 let d1 = bern half in

10 let a1 = assume d1
11 let v1 = f1 one in

12 let v2 = n1 a1 in
13 let v3 = n2 c in
14 let f5 =
15 if a1 then let t5 = f4 one in f2
16 else f3
17 in
18 let v4 = f5 one in
19 let i1 =
20 if c then let t6 = f1 one in t6
21 else one
22 in i1

Fig. 4: A program texample ∈ TANF illustrating the analysis.

The extensions to 0-CFA required to analyze alignment are non-trivial to
design, but the resulting formalization is surprisingly simple. The challenge is
instead to prove that the extensions correctly capture the alignment property
from Definition 6. We extend 0-CFA to analyze stochastic values and alignment
in programs t ∈ TANF. As with most static analyses, our analysis is sound but
conservative (i.e., sound but incomplete)—the analysis may mark aligned expres-
sions of programs as unaligned, but not vice versa. That the analysis is conserva-
tive does not degrade the alignment analysis results for any model in Section 7,
which justifies the approach. We divide the formal analysis into two algorithms.
Algorithm 1 generates constraints for t that a valid analysis solution must satisfy.
This section describes Algorithm 1 and the generated constraints. The second al-
gorithm computes a solution that satisfies the generated constraints. We describe
the algorithm at a high level, but omit a full formalization.†

For soundness of the analysis, we require 〈λx. t, ρ〉 6∈ C (recall that C is
the set of intrinsics). That is, closures are not in C. By Definition 3, this im-
plies that closures are not in the sample space of probability distributions in D
and that evaluating intrinsics never produces closures (this would unnecessarily
complicate the analysis without any benefit).

In addition to standard 0-CFA constraints, Algorithm 1 generates new con-
straints for stochastic values and unalignment. We use the contrived but illus-
trative program in Fig. 4 as an example. Note that, while omitted from Fig. 4
for ease of presentation, the analysis also supports recursion introduced through
let rec. Stochastic values are values in the program affected by random vari-
ables. Stochastic values initially originate at assume and then propagate through
programs via function applications and if expressions. For example, a1 (line 10)
is stochastic because of assume. We subsequently use a1 to define v2 via n1
(line 12), which is then also stochastic. Similarly, a1 is the condition for the if
resulting in f5 (line 14), and the function f5 is therefore also stochastic. When
we apply f5, it results in yet another stochastic value, v4 (line 18). In conclusion,
the stochastic values are a1, v2, f5, and v4.

Consider the flow of unalignment in Fig. 4. We mark expressions that may
execute due to stochastic branching as unaligned. From our analysis of stochastic
values, the program’s only stochastic if condition is at line 15, and we determine

D. Lundén et al.546

that all expressions directly within the branches are unaligned. That is, the
expression labeled by t5 is unaligned. Furthermore, we apply the variable f4
when defining t5. Thus, all expressions in bodies of lambdas that flow to f4 are
unaligned. Here, it implies that t4 is unaligned. Finally, we established that the
function f5 produced at line 15 is stochastic. Due to the application at line 18, all
names bound by lets in bodies of lambdas that flow to f5 are unaligned. Here,
it implies that t2 and t3 are unaligned. In conclusion, the unaligned expressions
are named by t2, t3, t4, and t5. For example, aligned SMC therefore resamples
at the weight at t1, but not at the weights at t2, t3, and t4.

Consider the program in Fig. 1a again, and assume it is transformed to ANF.
The alignment analysis must mark all names bound within the stochastic if at
line 3 as unaligned because a stochastic value flows to its condition. In particular,
the weight expressions at lines 5 and 8 are unaligned (and the weight at line 12
is aligned). Thus, aligned SMC resamples only at line 12.

To formalize the flow of stochastic values, we define abstract values a ::=
λx.y | stoch | const n, where x, y ∈ X and n ∈ N. We use A to denote the set
of all abstract values. The stoch abstract value is new and represents stochastic
values. The λx.y and const n abstract values are standard and represent abstract
closures and intrinsics, respectively. For each variable name x in the program, we
define a set Sx containing abstract values that may occur at x. For example, in
Fig. 4, we have stoch ∈ Sa1 , (λx2.t2) ∈ Sf2 , and (const 1) ∈ Sn1 . The abstract
value λx2.t2 represents all closures originating at λx2, and const 1 represents
intrinsic functions in C of arity 1 (in our example, ¬). The body of the abstract
lambda is the variable name labeling the body, not the body itself. For example,
t2 labels the body let t2 = one in t2 of λx2. Due to ANF, all terms have a
label, which the function name in Algorithm 1 formalizes.

We also define booleans unalignedx that state whether or not the expression
labeled by x is unaligned. For example, we previously reasoned that unalignedx =
true for x ∈ {t2, t3, t4, t5} in Fig. 4. The alignment analysis aims to deter-
mine minimal sets Sx and boolean assignments of unalignedx for every pro-
gram variable x ∈ X. A trivial solution is that all abstract values (there is a
finite number of them in the program) flow to each program variable and that
unalignedx = true for all x ∈ X. This solution is sound but useless. To compute
a more precise solution, we follow the rules given by constraints c ∈ R.†

We present the constraints through the generateConstraints function in
Algorithm 1 and for the example in Fig. 4. There are no constraints for variables
that occur at the end of ANF let sequences (line 2 in Algorithm 1), and the
case for let expressions (lines 3–36) instead produces all constraints. The cases
for aliases (line 6), intrinsics (line 7), assume (line 35), and weight (line 36) are
the most simple. Aliases of the form let x = y in t2 establish Sy ⊆ Sx. That
is, all abstract values at y are also in x. Intrinsic operations results in a const
abstract value. For example, the definition of n1 at line 1 in Fig. 4 results in the
constraint const 1 ∈ Sn1

. Applications of assume are the source of stochastic
values. For example, the definition of a1 at line 10 results in the constraint stoch
∈ Sa1 . Note that assume cannot produce any other abstract values, as we only

Automatic Alignment in Higher-Order PPLs 547

Algorithm 1 Constraint generation function for t ∈ TANF. We denote the power
set of a set E with P(E).
function generateConstraints(t): TANF → P(R) =

1 match t with
2 | x→ ∅
3 | let x = t1 in t2 →
4 generateConstraints(t2) ∪
5 match t1 with
6 | y → {Sy ⊆ Sx}
7 | c→ if |c| > 0 then {const |c| ∈ Sx}
8 else ∅
9 | λy. ty → generateConstraints(ty)

10 ∪ {λy. name(ty) ∈ Sx}
11 ∪ {unalignedy ⇒ unalignedn

12 | n ∈ names(ty)}
13 | lhs rhs → {
14 ∀z∀y λz.y ∈ Slhs

15 ⇒ (Srhs ⊆ Sz) ∧ (Sy ⊆ Sx),
16 ∀n (const n ∈ Slhs) ∧ (n > 1)
17 ⇒ const n− 1 ∈ Sx,
18 stoch ∈ Slhs ⇒ stoch ∈ Sx,
19 const _ ∈ Slhs

20 ⇒ (stoch ∈ Srhs ⇒ stoch ∈ Sx),
21 unalignedx
22 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy),
23 stoch ∈ Slhs

24 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy)

25 }

26 | if y then tt else te →
27 generateConstraints(tt)
28 ∪ generateConstraints(te)
29 ∪ {Sname(tt) ⊆ Sx, Sname(te) ⊆ Sx,

30 stoch ∈ Sy ⇒ stoch ∈ Sx}
31 ∪ {unalignedx ⇒ unalignedn
32 | n ∈ names(tt) ∪ names(te)}
33 ∪ {stoch ∈ Sy ⇒ unalignedn
34 | n ∈ names(tt) ∪ names(te)}
35 | assume _→ {stoch ∈ Sx}
36 | weight _→ ∅
37
38 function name(t): TANF → X =
39 match t with
40 | x→ x
41 | let x = t1 in t2 → name(t2)
42
43 function names(t): TANF → P(X) =
44 match t with
45 | x→ ∅
46 | let x = _ in t2 → {x} ∪ names(t2)
47
48
49
50

allow distributions over intrinsics with arity 0 (see Definition 3). Finally, we use
weight only for its side effect (likelihood updating), and therefore weights do
not produce any abstract values and consequently no constraints.

The cases for abstractions (line 9), applications (line 13), and ifs (line 26)
are more complex. The abstraction at line 4 in Fig. 4 generates (omitting the
recursively generated constraints for the abstraction body ty) the constraints
{λx1.x1 ∈ Sf1} ∪ {unalignedx1

⇒ unaligned t1}. The first constraint is standard:
the abstract lambda λx1.x1 flows to Sf1 . The second constraint states that if the
abstraction is unaligned, all expressions in its body (here, only t1) are unaligned.
We define the sets of expressions within abstraction bodies and if branches
through the names function in Algorithm 1 (line 43).

The application f5 one at line 18 in Fig. 4 generates the constraints

{∀z∀y λz.y ∈ Sf5 ⇒ (Sone ⊆ Sz) ∧ (Sy ⊆ Sv4),
∀n (const n ∈ Sf5) ∧ (n > 1)⇒ const n− 1 ∈ Sv4 ,
stoch ∈ Sf5 ⇒ stoch ∈ Sv4 ,
const _ ∈ Sf5 ⇒ (stoch ∈ Sone ⇒ stoch ∈ Sv4),
unalignedv4 ⇒ (∀y λy._ ∈ Sf5 ⇒ unalignedy),

stoch ∈ Sf5 ⇒ (∀y λy._ ∈ Slhs ⇒ unalignedy)}

(3)

The first constraint is standard: if an abstract value λz.y flows to f5, the abstract
values of one (the right-hand side) flow to z. Furthermore, the result of the appli-
cation, given by the body name y, must flow to the result v4 of the application.

D. Lundén et al.548

The second constraint is also relatively standard: if an intrinsic function of arity
n is applied, it produces a const of arity n − 1. The other constraints are new
and specific for stochastic values and unalignment. The third constraint states
that if the function is stochastic, the result is stochastic. The fourth constraint
states that if we apply an intrinsic function to a stochastic argument, the result is
stochastic. We could also make the analysis of intrinsic applications less conser-
vative through intrinsic-specific constraints. The fifth and sixth constraints state
that if the expression (labeled by v4) is unaligned or the function is stochastic,
all abstract lambdas that flow to the function are unaligned.

The if resulting in f5 at line 14 in Fig. 4 generates (omitting the recursively
generated constraints for the branches tt and te) the constraints

{Sname(f2) ⊆ Sf5 , Sname(f3) ⊆ Sf5 , stoch ∈ Sa1 ⇒ stoch ∈ Sf5}
∪ {unalignedf5 ⇒ unaligned t5} ∪ {stoch ∈ Sa1 ⇒ unaligned t5}

(4)

The first two constraints are standard and state that the result of the branches
flows to the result of the if expression. The remaining constraints are new. The
third constraint states that if the condition is stochastic, the result is stochastic.
The last two constraints state that if the if is unaligned or if the condition is
stochastic, all names in the branches (here, only t5) are unaligned.

Given constraints for a program, we need to compute a solution satisfying all
constraints. We do this by repeatedly iterating through all the constraints and
propagating abstract values accordingly. We terminate when we reach a fixed
point, i.e., when no constraint results in an update of either Sx or unalignedx
for any x in the program. We extend the 0-CFA constraint propagation al-
gorithm to also handle the constraints generated for tracking stochastic val-
ues and unalignment.† Specifically, the algorithm is a function analyzeAlign:
TANF → ((X → P(A))×P(X)) that returns a map associating each variable to
a set of abstract values and a set of unaligned variables. In other words, ana-
lyzeAlign computes a solution to Sx and unalignedx for each x in the analyzed
program. For example, analyzeAlign(texample) results in

Sn1
= {const 1} Sn2

= {const 1} Sf1 = {λx1.x1} Sf2 = {λx2.t2}
Sf3 = {λx3.t3} Sf4 = {λx4.t4} Sa1 = {stoch} Sv2 = {stoch}

Sf5 = {λx2.t2, λx3.t3, stoch} Sv4 = {stoch} Sn = ∅ | other n ∈ X
unalignedn = true | n ∈ {t2, t3, t4, t5} unalignedn = false | other n ∈ X.

(5)

The example confirms our earlier intuition: an intrinsic (¬) flows to n1, stoch
flows to a1, f5 is stochastic and originates at either (λx2.t2) or (λx3.t3), and the
unaligned variables are t2, t3, t4, and t5. We now give soundness results.

Lemma 1 (0-CFA soundness). For every t ∈ TANF, the solution produced by
analyzeAlign(t) satisfies the constraints generateConstraints(t).

Proof. The well-known soundness of 0-CFA extends to the new alignment con-
straints. See, e.g., Nielson et al. [34, Chapter 3] and Shivers [42]. ut

Automatic Alignment in Higher-Order PPLs 549

5.1 Aligned SMC

We saw in Section 2.1 that SMC operates by executing many instances of t
concurrently, and resampling them at calls to weight. Critically, resampling
requires that the inference algorithm can both suspend and resume executions.
Here, we assume that we can create execution instances e of the probabilistic
program t, and that we can arbitrarily suspend and resume the instances. The
technical details of suspension are beyond the scope of this paper. See Goodman
and Stuhlmüller [14], Wood et al. [48], and Lundén et al. [25] for further details.

Algorithm 2 presents all steps for the aligned SMC inference algorithm. Af-
ter running the alignment analysis and setting up the n execution instances,
the algorithm iteratively executes and resamples the instances. Note that the
algorithm resamples only at aligned weights (see Section 2.1).

D. Lundén et al.550

The proof† uses simultaneous structural induction over the derivations ∅ `
t s1⇓w1

l1
v1 and ∅ ` t s2⇓w2

l2
v2. At corresponding stochastic branches or stochas-

tic function applications in the two derivations, a separate structural induction
argument shows that, for the let-sequences l′1 and l′2 of the two stochastic sub-
derivations, l′1|Ât

= l′2|Ât
= []. Combined, the two arguments give the result.

The result Ât ⊆ At (cf. Definition 6) shows that the analysis is conservative.

4.3 Dynamic Alignment

An alternative to static alignment is dynamic alignment, which we explored
in early stages when developing the alignment analysis. Dynamic alignment is
fully context sensitive and amounts to introducing variables in programs that
track (at runtime) when evaluation enters stochastic branching. To identify these
stochastic branches, dynamic alignment also requires a runtime data structure
that keeps track of the stochastic values. Similarly to k-CFA, dynamic alignment
is potentially more precise than the 0-CFA approach. However, we discovered
that dynamic alignment introduces significant runtime overhead. Again, we note
that the models in Section 7 do not require a context-sensitive analysis, justifying
the choice of 0-CFA over dynamic alignment and k-CFA.

5 Aligned SMC and MCMC

This section presents detailed algorithms for aligned SMC (Section 5.1) and
aligned lightweight MCMC (Section 5.2). For a more pedagogical introduction
to the algorithms, see Section 2. We assume a basic understanding of SMC and
Metropolis–Hastings MCMC algorithms (see, e.g., Bishop [4]).

Theorem 1 (Alignment analysis soundness). Assume t ∈ TANF, At from
Definition 6, and an assignment to Sx and unalignedx for x ∈ X according
to analyzeAlign(t). Let Ât = {x | ¬unalignedx} and take arbitrary ∅ ⊢
t s1⇓w1

l1
v1 and ∅ ⊢ t s2⇓w2

l2
v2. Then, l1|Ât

= l2|Ât
and consequently Ât ⊆ At for

at least one At ∈ At.

Algorithm 2 Aligned SMC. The input is a program t ∈ TANF and the number
of execution instances n.
1. Run the alignment analysis on t, resulting in Ât (see Theorem 1).
2. Initiate n execution instances {ei | i ∈ N, 1 ≤ i ≤ n} of t.
3. Execute all ei and suspend execution upon reaching an aligned weight (i.e., let x = weight

w in t and x ∈ Ât) or when the execution terminates naturally. The result is a new set of
execution instances e′i with weights w′i accumulated from unaligned weights and the single final
aligned weight during execution.

4. If all e′i = v′i (i.e., all executions have terminated and returned a value), terminate inference and
return the set of weighted samples (v′i, w

′
i). The samples approximate the posterior probability

distribution encoded by t.
5. Resample the e′i according to their weights w′i. The result is a new set of unweighted execution

instances e′′i . Set ei ← e′′i . Go to 3.

1 if assume Bernoulli(0.5) then
2 weight 1; weight 10; true
3 else
4 weight 10; weight 1; false

(a) Aligned better than unaligned.

1 if assume Bernoulli(0.1) then
2 weight 9;
3 if assume Bernoulli(0.5)
4 then weight 1.5 else weight 0.5;
5 true
6 else (weight 1; false)

(b) Unaligned better than aligned.

Fig. 5: Programs illustrating properties of aligned and unaligned SMC. Fig. (a)
shows a program better suited for aligned SMC. Fig. (b) shows a program better
suited for unaligned SMC.

We conjecture that aligned SMC is preferable over unaligned SMC for all
practically relevant models, as the evaluation in Section 7 justifies. However, it
is possible to construct contrived programs in which unaligned SMC has the
advantage. Consider the programs in Fig. 5, both encoding Bernoulli(0.5) distri-
butions in a contrived way using weights. Fig. 5a takes one of two branches with
equal probability. Unaligned SMC resamples at the first weights in each branch,
while aligned SMC does not because the branch is stochastic. Due to the differ-
ence in likelihood, many more else executions survive resampling compared to
then executions. However, due to the final weights in each branch, the branch
likelihoods even out. That is, resampling at the first weights is detrimental, and
unaligned SMC performs worse than aligned SMC. Fig. 5b also takes one of two
branches, but now with unequal probabilities. However, the two branches still
have equal posterior probability due to the weights. The nested if in the then
branch does not modify the overall branch likelihood, but adds variance. Aligned
SMC does not resample for any weight within the branches, as the branch is
stochastic. Consequently, only 10% of the executions in aligned SMC take the
then branch, while half of the executions take the then branch in unaligned SMC
(after resampling at the first weight). Therefore, unaligned SMC better explores
the then branch and reduces the variance due to the nested if, which results in
overall better inference accuracy. We are not aware of any real model with the
property in Fig. 5b. In practice, it seems best to always resample when using
weight to condition on observed data. Such conditioning is, in practice, always
done outside of stochastic branches, justifying the benefit of aligned SMC.

Automatic Alignment in Higher-Order PPLs 551

Algorithm 3 Aligned lightweight MCMC. The input is a program t ∈ TANF,
the number of steps n, and the global step probability g > 0.
1. Run the alignment analysis on t, resulting in Ât (see Theorem 1).
2. Set i← 0, k ← 1, and l← 1. Call Run.
3. Set i ← i + 1. If i = n, terminate inference and return the samples {vj | j ∈ N, 0 ≤ j < n}.

They approximate the probability distribution encoded by t.
4. Uniformly draw an index 1 ≤ j ≤ |si−1| at random. Set global ← true with probability g, and

global ← false otherwise. Set w′−1 ← 1, w′ ← 1, k ← 1, l← 1, and reuse ← true. Call Run.

5. Compute the Metropolis–Hastings acceptance ratio A = min

(
1,

wi

wi−1

w′

w′−1

)
.

6. With probability A, accept vi and go to 3. Otherwise, set vi ← vi−1, wi ← wi−1, si ← si−1,
pi ← pi−1, s′i ← s′i−1, p

′
i ← p′i−1, and n

′
i ← n′i−1. Go to 3.

function run() = Run t and do the following:
– Record the total weight wi accumulated from calls to weight.
– Record the final value vi.
– At unaligned terms let c = assume d in t (c 6∈ Ât), do the following.

1. If reuse = false, global = true, n′i−1,k,l 6= c, or if s′i−1,k,l does not exist, sample a
value x from d and set reuse ← false. Otherwise, reuse the sample x = s′i−1,k,l and set
w′−1 ← w′−1 · p

′
i−1,k,l and w

′ ← w′ · fd(c).
2. Set s′i,k,l ← x, p′i,k,l ← fd(x), and n′i,k,l ← c.
3. Set l← l + 1. In the program, bind c to the value x and resume execution.

– At aligned terms let c = assume d in t (c ∈ Ât), do the following.
1. If j = k, global = true, or if si−1,k does not exist, sample a value x from d normally.

Otherwise, reuse the sample x = si−1,k. Set w′−1 ← w′−1 · pi−1,k and w′ ← w′ · fd(x).
2. Set si,k ← x and pi,k ← fd(x).
3. Set k ← k+1, l← 1, and reuse ← true. In the program, bind c to the value x and resume

execution.

5.2 Aligned Lightweight MCMC

Aligned lightweight MCMC is a version of lightweight MCMC [47], where the
alignment analysis provides information about how to reuse random draws be-
tween executions. Algorithm 3, a Metropolis–Hastings algorithm in the context
of PPLs, presents the details. Essentially, the algorithm executes the program re-
peatedly using the Run function, and redraws one aligned random draw in each
step, while reusing all other aligned draws and as many unaligned draws as pos-
sible (illustrated in Section 2.2). It is possible to formally derive the Metropolis–
Hastings acceptance ratio in step 5.† A key property in Algorithm 3 due to
alignment (Definition 6) is that the length of si (and pi) is constant, as execut-
ing t always results in the same number of aligned random draws.

In addition to redrawing only one aligned random draw, each step has a
probability g > 0 of being global—meaning that inference redraws every random
draw in the program. Occasional global steps fix problems related to slow mixing
and ergodicity of lightweight MCMC identified by Kiselyov [21]. In a global step,
the Metropolis–Hastings acceptance ratio reduces to A = min

(
1, wi

wi−1

)
.

6 Implementation

We implement the alignment analysis (Section 4), aligned SMC (Section 5.1),
and aligned lightweight MCMC (Section 5.2) for the functional PPL Miking

D. Lundén et al.552

CorePPL [25], implemented as part of the Miking framework [7]. We implement
the alignment analysis as a core component in the Miking CorePPL compiler,
and then use the analysis when compiling to two Miking CorePPL backends:
RootPPL and Miking Core. RootPPL is a low-level PPL with built-in highly
efficient SMC inference [25], and we extend the CorePPL to RootPPL compiler
introduced by Lundén et al. [25] to support aligned SMC inference. Furthermore,
we implement aligned lightweight MCMC inference standalone as a translation
from Miking CorePPL to Miking Core. Miking Core is the general-purpose pro-
gramming language of the Miking framework, currently compiling to OCaml.

The idealized calculus in (1) does not capture all features of Miking CorePPL.
In particular, the alignment analysis implementation must support records, vari-
ants, sequences, and pattern matching over these. Extending 0-CFA to such lan-
guage features is not new, but it does introduce a critical challenge for the align-
ment analysis: identifying all possible stochastic branches. Determining stochas-
tic ifs is straightforward, as we simply check if stoch flows to the condition.
However, complications arise when we add a match construct (and, in general,
any type of branching construct). Consider the extension

t ::= . . . | match t with p then t else t | {k1 = x1, . . ., kn = xn}

p ::= x | true | false | {k1 = p, . . ., kn = p}

x, x1, . . . , xn ∈ X k1, . . . , kn ∈ K n ∈ N
(6)

of (1), adding records and simple pattern matching. K is a set of record keys. As-
sume we also extend the abstract values as a ::= . . . | {k1 = X1, . . . , kn = Xn},
where X1, . . . , Xn ⊆ X. That is, we add an abstract record tracking the names
in the program that flow to its entries. Consider the program match t1 with {
a = x1, b = false } then t2 else t3. This match is, similar to ifs, stochastic
if stoch ∈ St1 . It is also, however, stochastic in other cases. Assume we have
two program variables, x and y, such that stoch ∈ Sx and stoch 6∈ Sy. Now,
the match is stochastic if, e.g., {a = {y}, b = {x}} ∈ St1 , because the random
value flowing from x to the pattern false may not match because of randomness.
However, it is not stochastic if, instead, St1 = {{a = {x}, b = {y}}}. The ran-
domness of x does not influence whether or not the branch is stochastic—the
variable pattern x1 for label a always matches.

Our alignment analysis implementation handles the intricacies of identify-
ing stochastic match cases for nested record, variant, and sequence patterns. In
total, the alignment analysis, aligned SMC, and aligned lightweight MCMC im-
plementations consist of approximately 1000 lines of code directly contributed
as part of this paper. The code is available on GitHub [2].

7 Evaluation

This section evaluates aligned SMC and aligned lightweight MCMC on a set
of models encoded in Miking CorePPL: CRBD [33,39] in Sections 7.1 and 7.5,
ClaDS [28,39] in Section 7.2, state-space aircraft localization in Section 7.3,

Automatic Alignment in Higher-Order PPLs 553

and latent Dirichlet allocation in Section 7.4. CRBD and ClaDS are non-trivial
models of considerable interest in evolutionary biology and phylogenetics [39].
Similarly, LDA is a non-trivial topic model [5]. Running the alignment analysis
took approximately 5 ms–30 ms for all models considered in the experiment,
justifying that the time complexity is not a problem in practice.

We compare aligned SMC with standard unaligned SMC [14], which is identi-
cal to Algorithm 2, except that it resamples at every call to weight.†We carefully
checked that automatic alignment corresponds to previous manual alignments
of each model. For all SMC experiments, we estimate the normalizing constant
produced as a by-product of SMC inference rather than the complete posterior
distributions. The normalizing constant, also known as marginal likelihood or
model evidence, frequently appears in Bayesian inference and gives the proba-
bility of the observed data averaged over the prior. The normalizing constant
is useful for model comparison as it measures how well different probabilistic
models fit the data (a larger normalizing constant indicates a better fit).

We ran aligned and unaligned SMC with Miking CorePPL and the RootPPL
backend configured for a single-core (compiled with GCC 7.5.0). Lundén et
al. [25] shows that the RootPPL backend is significantly more efficient than other
state-of-the-art PPL SMC implementations. We ran aligned and unaligned SMC
inference 300 times (and with 3 warmup runs) for each experiment for 104, 105,
and 106 executions (also known as particles in SMC literature).

We compare aligned lightweight MCMC to lightweight MCMC.† We imple-
ment both versions as compilers from Miking CorePPL to Miking Core, which
in turn compiles to OCaml (version 4.12). The lightweight MCMC databases
are functional-style maps from the OCaml Map library. We set the global step
probability to 0.1 for both aligned lightweight MCMC and lightweight MCMC.
We ran aligned lightweight and lightweight MCMC inference 300 times for each
experiment. We burned 10% of samples in all MCMC runs.

For all experiments, we used an Intel Xeon 656 Gold 6136 CPU (12 cores)
and 64 GB of memory running Ubuntu 18.04.5.

7.1 SMC: Constant Rate Birth-Death (CRBD)

This experiment considers the CRBD diversification model from [39] applied to
the Alcedinidae phylogeny (Kingfisher birds, 54 extant species) [19]. We use fixed
diversification rates to simplify the model, as unaligned SMC inference accuracy
is too poor for the full model with priors over diversification rates. Aligned SMC
is accurate for both the full and simplified models. The source code consists of
130 lines of code.† The total experiment execution time was 16 hours.

Fig. 6 presents the experiment results. Aligned SMC is roughly twice as fast
and produces superior estimates of the normalizing constant. Unaligned SMC
has not yet converged to the correct value −304.75 (available for this particular
model due to the fixing the diversification rates) for 106 particles, while aligned
SMC produces precise estimates already at 104 particles. Excess resampling is a
significant factor in the increase in execution time for unaligned SMC, as each
execution encounters far more resampling checkpoints than in aligned SMC.

D. Lundén et al.554

106105104

57.49

5.410.4

122.53

11.910.82

(a) Execution times.

104 105 106

−315

−330

−304.75

(b) Log normalizing constant estimates.

Fig. 6: SMC experiment results for CRBD. The x-axes give the number of parti-
cles. Fig. (a) shows execution times (in seconds) for aligned (gray) and unaligned
(white) SMC. Error bars show one standard deviation. Fig. (b) shows box plot log
normalizing constant estimates for aligned (gray) and unaligned (white) SMC.
The analytically computed log normalizing constant is −304.75.

106105104

92.41
8.880.6

634.07

59.33.56

(a) Execution times.

104 105 106

−400

−500

−314.35

(b) Log normalizing constant estimates.

Fig. 7: SMC experiment results for ClaDS. The x-axes give the number of parti-
cles. Fig. (a) shows execution times (in seconds) for aligned (gray) and unaligned
(white) SMC. Error bars show one standard deviation. Fig. (b) shows box plot log
normalizing constant estimates for aligned (gray) and unaligned (white) SMC.
The average estimate for aligned SMC with 106 particles is −314.35.

7.2 SMC: Cladogenetic Diversification Rate Shift (ClaDS)

A limitation of CRBD is that the diversification rates are constant. ClaDS [28,39]
is a set of diversification models that allow shifting rates over phylogenies. We
evaluate the ClaDS2 model for the Alcedinidae phylogeny. As in CRBD, we use
fixed (initial) diversification rates to simplify the model on account of unaligned
SMC. The source code consists of 147 lines of code.† Automatic alignment sim-
plifies the ClaDS2 model significantly, as manual alignment requires collecting
and passing weights around in unaligned parts of the program, which are later
consumed by aligned weights. The total experiment execution time was 67 hours.

Fig. 7 presents the experiment results. 12 unaligned runs for 106 particles
and nine runs for 105 particles ran out of the preallocated stack memory for
each particle (10 kB). We omit these runs from Fig. 7. The consequence of not
aligning SMC is more severe than for CRBD. Aligned SMC is now almost seven
times faster than unaligned SMC and the unaligned SMC normalizing constant
estimates are significantly worse compared to the aligned SMC estimates. The
unaligned SMC estimates do not even improve when moving from 104 to 106

particles (we need even more particles to see improvements). Again, aligned
SMC produces precise estimates already at 104 particles.

Automatic Alignment in Higher-Order PPLs 555

106105104

4.22

0.420.05

6.07

0.590.06

(a) Execution times.

104 105 106

−55

−65
−61.26

(b) Log normalizing constant estimates.

Fig. 8: SMC experiment results for the state-space aircraft localization model.
The x-axes give the number of particles. Fig. (a) shows execution times (in
seconds) for aligned (gray) and unaligned (white) SMC. Error bars show one
standard deviation. Fig. (b) shows box plot log normalizing constant estimates on
the y-axis for aligned (gray) and unaligned (white) SMC. The average estimate
for aligned SMC with 106 particles is −61.26.

7.3 SMC: State-Space Aircraft Localization

This experiment considers an artificial but non-trivial state-space model for air-
craft localization. The source code consists of 62 lines of code.† The total exper-
iment execution time was 1 hour.

Fig. 8 presents the experiment results. The execution time difference is not as
significant as for CRBD and ClaDS. However, the unaligned SMC normalizing
constant estimates are again much less precise. Aligned SMC is accurate (cen-
tered at approximately −61.26) already at 104 particles. The model’s straightfor-
ward control flow explains the less dramatic difference in execution time—there
are at most ten unaligned likelihood updates in the aircraft model, while the
number is, in theory, unbounded for CRBD and ClaDS. Therefore, the cost of
extra resampling compared to aligned SMC is not as significant.

7.4 MCMC: Latent Dirichlet Allocation (LDA)

This experiment considers latent Dirichlet allocation (LDA), a topic model used
in the evaluations by Wingate et al. [47] and Ritchie et al. [38]. We use a synthetic
data set, comparable in size to the data set used by Ritchie et al. [38], with a
vocabulary of 100 words, 10 topics, and 25 documents each containing 30 words.
Note that we are not using methods based on collapsed Gibbs sampling [17], and
the inference task is therefore computationally challenging even with a rather
small number of words and documents. The source code consists of 31 lines of
code.† The total experiment execution time was 41 hours.

The LDA model consists of only aligned random draws. As a consequence,
aligned lightweight and lightweight MCMC reduces to the same inference algo-
rithm, and we can compare the algorithms by just considering the execution
times. The experiment also justifies the correctness of both algorithms.†

Fig. 9 presents the experiment results. Aligned lightweight MCMC is al-
most three times faster than lightweight MCMC. To justify the execution times
with our implementations, we also implemented and ran the experiment with

D. Lundén et al.556

105104103

125.24

11.821.17

325.25

32.473.23

Fig. 9: MCMC experiment results for LDA showing execution time (in seconds)
for aligned lightweight MCMC (gray) and lightweight MCMC (white). Error bars
show one standard deviation and the x-axis the number of MCMC iterations.

lightweight MCMC in WebPPL [14] for 105 iterations, repeated 50 times (and
with 3 warmup runs). The mean execution time was 383 s with standard devia-
tion 5 s. We used WebPPL version 0.9.15 and Node version 16.18.0.

7.5 MCMC: Constant Rate Birth-Death (CRBD)

This experiment again considers CRBD. MCMC is not as suitable for CRBD as
SMC, and therefore we use a simple synthetic phylogeny with six leaves and an
age span of 5 age units (Alcedinidae used for the SMC experiment has 54 leaves
and an age span of 35 age units). The source code for the complete model is the
same as in Section 7.1, but we now allow the use of proper prior distributions
for the diversification rates. The total experiment execution time was 7 hours.

Unlike LDA, the CRBD model contains both unaligned and aligned random
draws. Because of this, aligned lightweight MCMC and standard lightweight
MCMC do not reduce to the same algorithm. To judge the difference in infer-
ence accuracy, we consider the mean estimates of the birth diversification rate
produced by the two algorithms, in addition to execution times. The experiment
results shows that the posterior distribution over the birth rate is unimodal†,
which motivates using the posterior mean as a measure of accuracy.

Fig. 10 presents the experiment results. Aligned lightweight MCMC is ap-
proximately 3.5 times faster than lightweight MCMC. There is no obvious dif-
ference in accuracy. To justify the execution times and correctness of our im-
plementations, we also implemented and ran the experiment with lightweight
MCMC in WebPPL [14] for 3 · 106 iterations, repeated 50 times (and with 3
warmup runs). The mean estimates agreed with Fig. 10. The mean execution
time was 37.1 s with standard deviation 0.8 s. The speedup compared to stan-
dard lightweight MCMC in Miking CorePPL is likely explained by the use of
early termination in WebPPL, which benefits CRBD. Early termination easily
combines with alignment but relies on execution suspension, which we do not
currently use in our implementations. Note that aligned lightweight MCMC is
faster than WebPPL even without early termination.

In conclusion, the experiments clearly demonstrate the need for alignment.

Automatic Alignment in Higher-Order PPLs 557

3 · 1063 · 1053 · 104

18.54

1.820.2

63.95

6.210.63

(a) Execution times.

3 · 104 3 · 105 3 · 106

0.4

0.45

0.33

(b) Birth rate mean estimates.

Fig. 10: MCMC experiment results for CRBD. The x-axes give the number of
iterations. Fig. (a) shows execution times (in seconds) for aligned lightweight
MCMC (gray) and lightweight MCMC (white). Error bars show one standard
deviation. Fig. (b) shows box plot posterior mean estimates of the birth rate for
aligned lightweight MCMC (gray) and lightweight MCMC (white). The average
estimate for aligned lightweight MCMC with 3 · 106 iterations is 0.33.

8 Related Work

The approach by Wingate et al. [47] is closely related to ours. A key similarity
with alignment is that executions reaching the same aligned checkpoint also
have matching stack traces according to Wingate et al.’s addressing transform.
However, Wingate et al. do not consider the separation between unaligned and
aligned parts of the program, their approach is not static, and they do not
generalize to other inference algorithms such as SMC.

Ronquist et al. [39], Turing [12], Anglican [48], Paige and Wood [36], and van
de Meent et al. [46] consider the alignment problem. Manual alignment is critical
for the models in Ronquist et al. [39] to make SMC inference tractable, which
strongly motivates the automatic alignment approach. The documentation of
Turing states that: “The observe statements [i.e., likelihood updates] should be
arranged so that every possible run traverses all of them in exactly the same
order. This is equivalent to demanding that they are not placed inside stochastic
control flow” [1]. Turing does not include any automatic checks for this property.
Anglican [48] checks, at runtime (resulting in overhead), that all SMC executions
encounter the same number of likelihood updates, and thus resamples the same
number of times. If not, Anglican reports an error: “some observe directives [i.e.,
likelihood updates] are not global”. This error refers to the alignment problem,
but the documentation does not explain it further. Probabilistic C, introduced by
Paige and Wood [36], similarly assumes that the number of likelihood updates
is the same in all executions. Van de Meent et al. [46] state, in reference to
SMC: “Each breakpoint [i.e., checkpoint] needs to occur at an expression that
is evaluated in every execution of a program”. Again, they do not provide any
formal definition of alignment nor an automatic solution to enforce it.

Lundén et al. [24] briefly mention the general problem of selecting optimal
resampling locations in PPLs for SMC but do not consider the alignment problem
in particular. They also acknowledge the overhead resulting from not all SMC
executions resampling the same number of times, which alignment avoids.

D. Lundén et al.558

The PPLs Birch [31], Pyro [3], and WebPPL [14] support SMC inference.
Birch and Pyro enforce alignment for SMC as part of model construction. Note
that this is only true for SMC in Pyro—other Pyro inference algorithms use
other modeling approaches. The approaches in Birch and Pyro are sound but
demand more of their users compared to the alignment approach. WebPPL does
not consider alignment and resamples at all likelihood updates for SMC.

Ritchie et al. [38] and Nori et al. [35] present MCMC algorithms for proba-
bilistic programs. Ritchie et al. [38] optimize lightweight MCMC by Wingate et
al. [47] through execution suspensions and callsite caching. The optimizations are
independent of and potentially combines well with aligned lightweight MCMC.
Another MCMC optimization which potentially combines well with alignment
is due to Nori et al. [35]. They use static analysis to propagate observations
backwards in programs to improve inference.

Information flow analyses [40] may determine if particular parts of a program
execute as a result of different program inputs. Specifically, if program input is
random, such approaches have clear similarities to the alignment analysis.

Many other PPLs exist, such as Gen [10], Venture [29], Edward [44], Stan [8],
and AugurV2 [18]. Gen, Venture, and Edward focus on simplifying the joint
specification of a model and its inference to give users low-level control, and do
not consider automatic alignment specifically. However, the incremental inference
approach [9] in Gen does use the addressing approach by Wingate et al. [47]. Stan
and AugurV2 have less expressive modeling languages to allow more powerful
inference. Alignment is by construction due to the reduced expressiveness.

Borgström et al. [6], Staton et al. [43], Ścibior et al. [41], and Vákár et al. [45]
treat semantics and correctness for PPLs, but do not consider alignment.

9 Conclusion

This paper gives, for the first time, a formal definition of alignment in PPLs.
Furthermore, we introduce a static analysis technique and use it to align check-
points in PPLs and apply it to SMC and MCMC inference. We formalize the
alignment analysis, prove its correctness, and implement it in Miking CorePPL.
We also implement aligned SMC and aligned lightweight MCMC, and evaluate
the implementations on non-trivial CRBD and ClaDS models from phylogenet-
ics, the LDA topic model, and a state-space model, demonstrating significant
improvements compared to standard SMC and lightweight MCMC.

Acknowledgments We thank Lawrence Murray, Johannes Borgström, and Jan
Kudlicka for early discussions on the alignment idea, and Viktor Senderov for im-
plementing ClaDS in Miking CorePPL. We also thank the anonymous reviewers
at ESOP for their valuable comments.

Automatic Alignment in Higher-Order PPLs 559

References

1. Turing.jl. https://turing.ml/dev/ (2022), accessed: 2022-02-24
2. Miking DPPL. https://github.com/miking-lang/miking-dppl (2023), accessed:

2023-01-02
3. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-

sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research 20(28), 1–6
(2019)

4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag (2006)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

6. Borgström, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-calculus
foundation for universal probabilistic programming. In: Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming. pp. 33–46.
Association for Computing Machinery (2016)

7. Broman, D.: A vision of Miking: Interactive programmatic modeling, sound lan-
guage composition, and self-learning compilation. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering. pp. 55–60.
Association for Computing Machinery (2019)

8. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming
language. Journal of Statistical Software, Articles 76(1), 1–32 (2017)

9. Cusumano-Towner, M., Bichsel, B., Gehr, T., Vechev, M., Mansinghka, V.K.: In-
cremental inference for probabilistic programs. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
571–585. Association for Computing Machinery, New York, NY, USA (2018)

10. Cusumano-Towner, M.F., Saad, F.A., Lew, A.K., Mansinghka, V.K.: Gen: A
general-purpose probabilistic programming system with programmable inference.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 221–236. Association for Computing Machinery
(2019)

11. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. pp. 237–247. Association for
Computing Machinery, New York, NY, USA (1993)

12. Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic in-
ference. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. pp.
1682–1690 (2018)

13. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence. pp. 220–229. AUAI Press
(2008)

14. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org (2014), accessed: 2022-02-24

15. Goodman, N.D., Tenenbaum, J.B., Contributors, T.P.: Probabilistic Models of
Cognition. http://probmods.org/v2 (2016), accessed: 2022-06-10

D. Lundén et al.560

https://turing.ml/dev/
https://github.com/miking-lang/miking-dppl
http://dippl.org
http://probmods.org/v2

16. Gothoskar, N., Cusumano-Towner, M., Zinberg, B., Ghavamizadeh, M., Pollok,
F., Garrett, A., Tenenbaum, J., Gutfreund, D., Mansinghka, V.: 3DP3: 3D scene
perception via probabilistic programming. In: Advances in Neural Information Pro-
cessing Systems. vol. 34, pp. 9600–9612. Curran Associates, Inc. (2021)

17. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
academy of Sciences 101(suppl_1), 5228–5235 (2004)

18. Huang, D., Tristan, J.B., Morrisett, G.: Compiling markov chain monte carlo al-
gorithms for probabilistic modeling. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. p. 111–125.
Association for Computing Machinery, New York, NY, USA (2017)

19. Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O.: The global di-
versity of birds in space and time. Nature 491(7424), 444–448 (2012)

20. Kahn, G.: Natural semantics. In: Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science. pp. 22–39. Springer-Verlag, Berlin, Hei-
delberg (1987)

21. Kiselyov, O.: Problems of the lightweight implementation of probabilistic program-
ming. In: Proceedings of Workshop on Probabilistic Programming Semantics (2016)

22. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981)

23. Lew, A., Agrawal, M., Sontag, D., Mansinghka, V.: PClean: Bayesian data cleaning
at scale with domain-specific probabilistic programming. In: Proceedings of The
24th International Conference on Artificial Intelligence and Statistics. vol. 130, pp.
1927–1935. PMLR (2021)

24. Lundén, D., Borgström, J., Broman, D.: Correctness of sequential monte carlo
inference for probabilistic programming languages. In: Programming Languages
and Systems. pp. 404–431. Springer International Publishing, Cham (2021)

25. Lundén, D., Öhman, J., Kudlicka, J., Senderov, V., Ronquist, F., Broman, D.:
Compiling universal probabilistic programming languages with efficient parallel
sequential monte carlo inference. In: Programming Languages and Systems. pp.
29–56. Springer International Publishing, Cham (2022)

26. Lundén, D., Caylak, G., Ronquist, F., Broman, D.: Artifact: Automatic alignment
in higher-order probabilistic programming languages (Jan 2023). https://doi.
org/10.5281/zenodo.7572555

27. Lundén, D., Caylak, G., Ronquist, F., Broman, D.: Automatic alignment in higher-
order probabilistic programming languages. arXiv e-prints p. arXiv:2301.11664
(2023)

28. Maliet, O., Hartig, F., Morlon, H.: A model with many small shifts for estimating
species-specific diversification rates. Nature Ecology & Evolution 3(7), 1086–1092
(2019)

29. Mansinghka, V.K., Schaechtle, U., Handa, S., Radul, A., Chen, Y., Rinard, M.:
Probabilistic programming with programmable inference. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. p. 603–616. Association for Computing Machinery, New York, NY, USA
(2018)

30. Midtgaard, J.: Control-flow analysis of functional programs. ACM Computing Sur-
veys 44(3) (2012)

31. Murray, L.M., Schön, T.B.: Automated learning with a probabilistic programming
language: Birch. Annual Reviews in Control 46, 29–43 (2018)

32. Naesseth, C., Lindsten, F., Schön, T.: Elements of Sequential Monte Carlo. Foun-
dations and Trends in Machine Learning Series, Now Publishers (2019)

Automatic Alignment in Higher-Order PPLs 561

https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555
https://doi.org/10.5281/zenodo.7572555

33. Nee, S.: Birth-death models in macroevolution. Annual Review of Ecology, Evolu-
tion, and Systematics 37(1), 1–17 (2006)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

35. Nori, A., Hur, C.K., Rajamani, S., Samuel, S.: R2: An efficient MCMC sampler
for probabilistic programs. Proceedings of the AAAI Conference on Artificial In-
telligence 28(1) (2014)

36. Paige, B., Wood, F.: A compilation target for probabilistic programming languages.
In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference
on Machine Learning. vol. 32, pp. 1935–1943. PMLR, Bejing, China (22–24 Jun
2014)

37. Pierce, B.C.: Types and programming languages. MIT press (2002)
38. Ritchie, D., Stuhlmüller, A., Goodman, N.: C3: Lightweight incrementalized

MCMC for probabilistic programs using continuations and callsite caching. In:
Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics. vol. 51, pp. 28–37. PMLR, Cadiz, Spain (2016)

39. Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot, N., Lundén, D.,
Murray, L., Schön, T.B., Broman, D.: Universal probabilistic programming offers a
powerful approach to statistical phylogenetics. Communications Biology 4(1), 244
(2021)

40. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

41. Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K.,
Moss, S.K., Heunen, C., Ghahramani, Z.: Denotational validation of higher-order
Bayesian inference. Proceedings of the ACM on Programming Languages 2(POPL)
(2017)

42. Shivers, O.G.: Control-flow analysis of higher-order languages or taming lambda.
Carnegie Mellon University (1991)

43. Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: Higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 525–534. Association for Computing Machinery (2016)

44. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., Blei, D.M.: Deep
probabilistic programming. In: International Conference on Learning Representa-
tions (2017)

45. Vákár, M., Kammar, O., Staton, S.: A domain theory for statistical probabilis-
tic programming. Proceedings of the ACM on Programming Languages 3(POPL)
(2019)

46. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. arXiv e-prints p. arXiv:1809.10756 (2018)

47. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Pro-
ceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics. vol. 15, pp. 770–778. PMLR (2011)

48. Wood, F., Meent, J.W., Mansinghka, V.: A new approach to probabilistic program-
ming inference. In: Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics. vol. 33, pp. 1024–1032. PMLR (2014)

D. Lundén et al.562

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Automatic Alignment in Higher-Order PPLs 563

http://creativecommons.org/licenses/by/4.0/

Correction to: Programming Languages
and Systems

Thomas Wies

Correction to:
T. Wies (Ed.): Programming Languages and Systems,
LNCS 13990, https://doi.org/10.1007/978-3-031-30044-8

In the originally published version of chapter 12, the order of the author names was not
alphabetical as expected. This has been corrected.

In the originally published version of chapter 20, there was an error in Theorem 1. This
has been corrected.

The updated original version of these chapters can be found at
https://doi.org/10.1007/978-3-031-30044-8_12
https://doi.org/10.1007/978-3-031-30044-8_20

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, p. C1, 2023.
https://doi.org/10.1007/978-3-031-30044-8_21

https://orcid.org/0000-0003-4051-5968
https://doi.org/10.1007/978-3-031-30044-8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30044-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-30044-8_21

Author Index

A
Allais, Guillaume 113
Amorim, Arthur Azevedo de 479
Ascari, Flavio 1

B
Baillot, Patrick 479
Bardin, Sébastien 59
Broman, David 535
Bruni, Roberto 1

C
Caires, Luís 421
Çaylak, Gizem 535
Cirisci, Berk 337
Costa, Diana 392

D
Dandy, Liliane-Joy 507
Dardha, Ornela 363
de Vilhena, Paulo Emílio 225
Derakhshan, Farzaneh 168
Dotzel, Myra 168
Ducousso, Soline 59

E
Enea, Constantin 337
Erhard, Julian 28

G
Gaboardi, Marco 479
Gori, Roberta 1

H
Han, Yo-Sub 90
Hattori, Momoko 197

I
Igarashi, Atsushi 281
Im, Hyeonseung 90

J
Jeandel, Emmanuel 507
Jia, Limin 168

K
Kappé, Tobias 309
Khajwal, Basim 479
Kim, Su-Hyeon 90
Kim, Youngwook 90
Knapp, Alexander 253
Ko, Sang-Ki 90
Kobayashi, Naoki 197

L
Le Brun, Matthew Alan 363
Lundén, Daniel 535

M
Mordido, Andreia 392
Mühlberger, Heribert 253
Murase, Yuito 281
Mutluergil, Suha Orhun 337

N
Nishiwaki, Yuichi 281

O
Oliveira, Bruno C. d. S. 140
Ong, C.-H. Luke 479

P
Poças, Diogo 392
Potet, Marie-Laure 59
Pottier, François 225

© The Editor(s) (if applicable) and The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 565–566, 2023.
https://doi.org/10.1007/978-3-031-30044-8

566 Author Index

R
Reus, Bernhard 253
Rocha, Pedro 421
Ronquist, Fredrik 535

S
Saan, Simmo 28
Sato, Ryosuke 197
Schmid, Todd 309
Schwarz, Michael 28
Seidl, Helmut 28
Silva, Alexandra 309
Surbatovich, Milijana 168

V
Vasconcelos, Vasco T. 392
Vojdani, Vesal 28

W
Wagner, Dominik 479
Wunder, June 479

Y
Ye, Wenjia 140

Z
Zamdzhiev, Vladimir 507

	ETAPS Foreword
	Preface
	Organization
	Contents
	Logics for Extensional, Locally Complete Analysis via Domain Refinements
	1 Introduction
	2 Background
	2.1 Abstract Interpretation
	2.2 Regular Commands.

	3 Local Completeness Logic
	4 Refining Abstract Domain
	4.1 Logical Completeness
	4.2 Derived Refinement Rules
	4.3 Choosing The Refinement

	5 Conclusions
	Appendix A Proofs and Supplementary Material
	A.1 Extensional Soundness (Theorem 2)
	A.2 Soundness and Completeness of (refine-ext)
	A.3 Derived Refinement Rules

	References

	Clustered Relational Thread-ModularAbstract Interpretation with Local Traces
	1 Introduction
	2 Relational Domains
	3 A Local Trace Semantics
	4 Relational Analyses as Abstractions of Local Traces
	5 Refinement via Finite Abstractions of Local Traces
	6 Analysis of Thread Ids and Uniqueness
	7 Exploiting Thread IDs to Improve Relational Analyses
	8 Exploiting Clustered Relational Domains
	9 Experimental Evaluation
	10 Related Work
	11 Conclusion and Future Work
	References

	Adversarial Reachability for Program-level Security Analysis
	1 Introduction
	2 Motivation
	2.1 Fault Injection across Security Fields
	2.2 Motivating Example

	3 Background
	3.1 Software-implemented Fault Injection (SWiFI)
	3.2 Standard Reachability Formalization
	3.3 Symbolic Execution

	4 Adversarial Reachability
	5 Forkless Adversarial Symbolic Execution (FASE)
	5.1 Modelling Faults via Forkless Encoding
	5.2 Building Adversarial Path Predicates
	5.3 Algorithm Properties
	5.4 Optimization via Early Detection of Fault Saturation (FASE-EDS)
	5.5 Optimization via Injection on Demand (FASE-IOD)
	5.6 Optimizations Combination

	6 Implementation
	7 Evaluation
	7.1 Experimental Setting
	7.2 Correctness and Completeness in Practice (RQ1)
	7.3 Scalability (RQ2)
	7.4 Performance Optimization (RQ3)
	7.5 Other Experiments and Fault Models

	8 Case Study: the WooKey Bootloader
	9 Discussion
	10 Related Work
	11 Conclusion

	Automated Grading of Regular Expressions
	Builtin Types Viewed as Inductive Families
	Pragmatic Gradual Polymorphism with References
	Modal Crash Types for Intermittent Computing
	Gradual Tensor Shape Checking
	A Type System for Effect Handlersand Dynamic Labels
	Interpreting Knowledge-based Programs
	Contextual Modal Type Theory with Polymorphic Contexts
	A Complete Inference System for Skip-free Guarded Kleene Algebra with Tests
	1 Introduction
	2 Overview
	3 Introducing Skip-free GKAT
	3.1 Skip-free Semantics
	3.2 Axioms

	4 1-free Star Expressions
	5 Completeness for Skip-free Bisimulation GKAT
	5.1 Transforming skip-free automata to labelled transition systems
	5.2 Translating Syntax

	6 Completeness for Skip-free GKAT
	7 Relation to GKAT
	7.1 Bisimulation semantics
	7.2 Language semantics
	7.3 Equivalences

	8 Related Work
	9 Discussion
	References

	Quorum Tree Abstractions of Consensus Protocols
	MAG: Types for Failure-Prone Communication
	System F-mu-omega with Context-free Session Types
	Safe Session-Based Concurrency with Shared Linear State
	Bunched Fuzz: Sensitivity for Vector Metrics
	Fast and Correct Gradient-Based Optimisationfor Probabilistic Programming via Smoothing
	Type-safe Quantum Programming in Idris
	Automatic Alignment in Higher-Order Probabilistic Programming Languages
	1 Introduction
	2 A Motivating Example
	2.1 Aligned SMC
	2.2 Aligned Lightweight MCMC

	3 Syntax and Semantics
	3.1 Syntax
	3.2 Semantics

	4 Alignment Analysis
	4.1 A-Normal Form and Alignment
	4.2 Alignment Analysis
	4.3 Dynamic Alignment

	5 Aligned SMC and MCMC
	5.1 Aligned SMC
	5.2 Aligned Lightweight MCMC

	6 Implementation
	7 Evaluation
	7.1 SMC: Constant Rate Birth-Death (CRBD)
	7.2 SMC: Cladogenetic Diversification Rate Shift (ClaDS)
	7.3 SMC: State-Space Aircraft Localization
	7.4 MCMC: Latent Dirichlet Allocation (LDA)
	7.5 MCMC: Constant Rate Birth-Death (CRBD)

	8 Related Work
	9 Conclusion
	References

	Correction to: Programming Languages and Systems
	Correction to: T. Wies (Ed.): Programming Languages and Systems, LNCS 13990, https://doi.org/10.1007/978-3-031-30044-8

	Author Index

