
Leslie Pérez Cáceres
Thomas Stützle (Eds.)

LN
CS

 1
39

87

Evolutionary Computation
in Combinatorial Optimization
23rd European Conference, EvoCOP 2023
Held as Part of EvoStar 2023
Brno, Czech Republic, April 12–14, 2023, Proceedings

Lecture Notes in Computer Science 13987
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Leslie Pérez Cáceres · Thomas Stützle
Editors

Evolutionary Computation
in Combinatorial Optimization
23rd European Conference, EvoCOP 2023
Held as Part of EvoStar 2023
Brno, Czech Republic, April 12–14, 2023
Proceedings

Editors
Leslie Pérez Cáceres
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

Thomas Stützle
Université libre de Bruxelles
Bruxelles, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30034-9 ISBN 978-3-031-30035-6 (eBook)
https://doi.org/10.1007/978-3-031-30035-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5553-6150
https://orcid.org/0000-0002-5820-0473
https://doi.org/10.1007/978-3-031-30035-6

Preface

Metaheuristics and, in particular, evolutionary computation have a history of half a
century in which they have provided effective tools for solving complex computational
problems. These techniques are essential and fundamental tools to approach problems for
which traditional optimization methods face difficulties providing good solutions within
reasonable time. These techniques are general-purpose and highly adaptable tools which
are commonly inspired by processes observed in the natural world, like natural selection
and evolution. The active research in the field is constantly broadening its applications,
improving search processes, and extending the techniques’ power by combining them
with other techniques like machine learning. The research work in these fields is crucial
to approach increasingly complex optimization problems that our industrial and scien-
tific development constantly generates. Such complex problems are often combinatorial
in nature and describe massive solution spaces, for which finding good solutions chal-
lenges the limits of our technology. Combinatorial optimization problems are central
to improving systems and processes; consequently, they have and will continue to play
a relevant role in industrial and technological development. Metaheuristics and evolu-
tionary computation techniques are currently state of the art techniques when dealing
with the most challenging combinatorial optimization problems, and thus the research
carried out in these fields has a wide spectrum of applications. The articles in this volume
showcase recent theoretical and experimental advances in combinatorial optimization,
evolutionary algorithms, metaheuristics, and related research fields.

This volume contains the proceedings of EvoCOP 2023, the 23rd European Confer-
ence on Evolutionary Computation in Combinatorial Optimisation. The conference was
held in the lovely city of Brno, Czech Republic during April 12–14, 2023. The EvoCOP
conference series started in 2001, with the first workshop specifically devoted to evolu-
tionary computation in combinatorial optimization, and it became an annual conference
in 2004. EvoCOP 2023 was organized together with EuroGP (the 26th European Con-
ference on Genetic Programming), EvoMUSART (the 12th International Conference
on Artificial Intelligence in Music, Sound, Art and Design), and EvoApplications (the
26th European Conference on the Applications of Evolutionary Computation, formerly
known as EvoWorkshops), in a joint event collectively known as EvoStar 2023. Previous
EvoCOP proceedings were published by Springer in the Lecture Notes in Computer Sci-
ence series (LNCSvolumes2037, 2279, 2611, 3004, 3448, 3906, 4446, 4972, 5482, 6022,
6622, 7245, 7832, 8600, 9026, 9595, 10197, 10782, 11452, 12102, 12692 and 13222).
The table on the next page reports the statistics for each of the previous conferences.

This year, 15 out of 32 papers were accepted after a rigorous double-blind pro-
cess, resulting in a 46% acceptance rate. We would like to acknowledge the quality and
timeliness of our high-quality and diverse Program Committee members’ work. Each
year the members give freely of their time and expertise, in order to maintain the high
standards in EvoCOP and provide constructive feedback to help authors improve their
papers.Decisions considered both the reviewers’ report and the evaluation of the program

vi Preface

chairs. The 15 accepted papers cover a variety of topics, ranging from the foundations
of evolutionary computation algorithms and other search heuristics, to their accurate
design and application to both single- and multi-objective combinatorial optimization
problems. Fundamental andmethodological aspects dealwith runtime analysis, the struc-
tural properties of fitness landscapes, the study of metaheuristics core components, the
clever design of their search principles, and their careful selection and configuration by
means of hyper-heuristics. Applications cover problem domains such as routing, permu-
tation problems and general graph problems. We believe that the range of topics covered
in this volume reflects the current state of research in the fields of metaheuristics and
combinatorial optimization.

EvoCOP LNCS vol. Submitted Accepted Acceptance (%)

2023 13987 32 15 46.8

2022 13222 28 13 46.4

2021 12692 42 14 33.3

2020 12102 37 14 37.8

2019 11452 37 14 37.8

2018 10782 37 12 32.4

2017 10197 39 16 41.0

2016 9595 44 17 38.6

2015 9026 46 19 41.3

2014 8600 42 20 47.6

2013 7832 50 23 46.0

2012 7245 48 22 45.8

2011 6622 42 22 52.4

2010 6022 69 24 34.8

2009 5482 53 21 39.6

2008 4972 69 24 34.8

2007 4446 81 21 25.9

2006 3906 77 24 31.2

2005 3448 66 24 36.4

2004 3004 86 23 26.7

2003 2611 39 19 48.7

2002 2279 32 18 56.3

2001 2037 31 23 74.2

We would like to express our appreciation to the various persons and institutions
who made EvoCOP 2023 a successful event. Firstly, we thank the local organization
team, led by Jiri Jaros and Lukas Sekanina from the Brno University of Technology

Preface vii

in the Czech Republic. Our acknowledgments also go to SPECIES, the Society for the
Promotion of Evolutionary Computation in Europe and its Surroundings. We extend our
acknowledgments to Nuno Lourenço from the University of Coimbra, Portugal, for his
dedicated work with the submission and registration system, to João Correia from the
University of Coimbra, Portugal, for the EvoStar publicity and social media service,
to Francisco Chicano from the University of Málaga, Spain, for managing the EvoStar
website, and to Sérgio Rebelo and Tiago Martins from the University of Coimbra, Por-
tugal, for their important graphic design work. We wish to thank our prominent keynote
speakers, Marek Vácha and Evelyne Lutton. Finally, we express our appreciation to
Anna I. Esparcia-Alcázar from SPECIES, Europe, whose considerable efforts in man-
aging and coordinating EvoStar helped towards building a unique, vibrant and friendly
atmosphere.

Special thanks also to Christian Blum, Francisco Chicano, Carlos Cotta, Peter Cowl-
ing, Jens Gottlieb, Jin-Kao Hao, Jano van Hemert, Bin Hu, Arnaud Liefooghe, Manuel
Lopéz-Ibáñez, Peter Merz, Martin Middendorf, Gabriela Ochoa, Luís Paquete, Günther
R. Raidl, Sébestien Verel and Christine Zarges for their hard work and dedication at past
editions of EvoCOP,making this one of the reference international events in evolutionary
computation and metaheuristics.

April 2023 Leslie Pérez Cáceres
Thomas Stützle

Organization

EvoCOP 2023 was organized as a part of EvoStar 2023, jointly with EuroGP 2023,
EvoMUSART 2023, and EvoApplications 2023.

Organizing Committee

Conference Chairs

Leslie Pérez Cáceres Pontificia Universidad Católica de Valparaíso,
Valparaíso, Chile

Thomas Stützle Université libre de Bruxelles, Brussels, Belgium

Local Organization

Jiri Jaros Brno University of Technology, Czech Republic
Lukas Sekanina Brno University of Technology, Czech Republic

Publicity Chair

João Correia University of Coimbra, Portugal

EvoStar Coordinator

Anna Esparcia-Alcázar Universitat Politècnica de València, Spain

EvoCOP Steering Committee

Christian Blum Artificial Intelligence Research Institute
(IIIA-CSIC), Spain

Francisco Chicano University of Málaga, Spain
Peter Cowling Queen Mary University of London, UK
Jens Gottlieb SAP AG, Germany
Jin-Kao Hao University of Angers, France
Bin Hu AIT Austrian Institute of Technology, Austria
Arnaud Liefooghe University of Lille, France
Manuel Lopéz-Ibáñez University of Manchester, UK

x Organization

Martin Middendorf University of Leipzig, Germany
Gabriela Ochoa University of Stirling, UK
Luís Paquete University of Coimbra, Portugal
Günther Raidl Vienna University of Technology, Austria
Jano van Hemert Optos, UK
Sébastien Verel Université du Littoral Cote d’Opale, France
Christine Zarges Aberystwyth University, UK

Society for the Promotion of Evolutionary Computation in Europe
and Its Surroundings (SPECIES)

Penousal Machado (President)
Mario Giacobini (Secretary)
Francisco Chicano (Treasurer)

Program Committee

Richard Allmendinger University of Manchester, UK
Matthieu Basseur Université du Littoral Côte d’Opale, France
Christian Blum Artificial Intelligence Research Institute

(IIIA-CSIC), Spain
Alexander Brownlee University of Stirling, UK
Maxim Buzdalov ITMO University, Russia
Arina Buzdalova ITMO University, Russia
Christian Camacho-Villalón Université libre de Bruxelles, Belgium
Josu Ceberio University of the Basque Country, Spain
Marco Chiarandini University of Southern Denmark, Denmark
Francisco Chicano University of Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Carlos Cotta Universidad de Málaga, Spain
Nguyen Dang University of St Andrews, UK
Bilel Derbel University of Lille, France
Marcos Diez García Fujitsu Research of Europe Limited, UK
Karl Doerner University of Vienna, Austria
Benjamin Doerr Ecole Polytechnique, France
Carola Doerr CNRS and Sorbonne University, France
Talbi El-Ghazali University of Lille, France
Jonathan Fieldsend University of Exeter, UK
Carlos M. Fonseca University of Coimbra, Portugal
Alberto Franzin Université libre de Bruxelles, Belgium

Organization xi

Bernd Freisleben Philipps-Universität Marburg, Germany
Carlos Garcia-Martinez University of Córdoba, Spain
Adrien Goeffon University of Angers, France
Andreia Guerreiro University of Lisbon, Portugal
Jin-Kao Hao University of Angers, France
Geir Hasle SINTEF Digital, Norway
Mario Inostroza-Ponta Universidad de Santiago de Chile, Chile
Ekhine Irurozki Telecom Paris, France
Thomas Jansen Aberystwyth University, UK
Andrzej Jaszkiewicz Poznan University of Technology, Poland
Marie-Eleonore Kessaci Université de Lille, France
Ahmed Kheiri Lancaster University, UK
Frederic Lardeux University of Angers, France
Rhydian Lewis Cardiff University, UK
Arnaud Liefooghe University of Lille, France
Manuel López-Ibáñez University of Manchester, UK
Jose A. Lozano University of the Basque Country, Spain
Gabriel Luque University of Málaga, Spain
Krzysztof Michalak Wroclaw University of Economics and Business,

Poland
Elizabeth Montero Universidad Nacional Andrés Bello, Chile
Nysret Musliu Vienna University of Technology, Austria
Gabriela Ochoa University of Stirling, UK
Pietro Oliveto University of Sheffield, UK
Beatrice Ombuki-Berman Brock University, Canada
Luís Paquete University of Coimbra, Portugal
Mario Pavone University of Catania, Italy
Paola Pellegrini French Institute of Science and Technology for

Transport, France
Francisco B. Pereira Polytechnic Institute of Coimbra, Portugal
Pedro Pinacho Universidad de Concepción, Chile
Daniel Porumbel Conservatoire National des Arts et Métiers,

France
Jakob Puchinger EM Normandie Business School, France
Abraham Punnen Simon Fraser University, Canada
Günther Raidl Vienna University of Technology, Austria
María Cristina Riff Universidad Técnica Federico Santa María, Chile
Marcus Ritt Universidade Federal do Rio Grande do Sul,

Brazil
Eduardo Rodriguez-Tello CINVESTAV – Tamaulipas, Mexico
Andrea Roli Universitá di Bologna, Italy
Hana Rudová Masaryk University, Czech Republic

xii Organization

Valentino Santucci University of Perugia, Italy
Frederic Saubion University of Angers, France
Kevin Sim Edinburgh Napier University, UK
Jim Smith University of the West of England, UK
Dirk Sudholt University of Passau, Germany
Sara Tari Université du Littoral Côte d’Opale, France
Renato Tinós University of São Paulo, Brazil
Nadarajen Veerapen University of Lille, France
Sébastien Verel Université du Littoral Cote d’Opale, France
Markus Wagner University of Adelaide, Australia
Carsten Witt Technical University of Denmark, Denmark
Christine Zarges Aberystwyth University, UK
Fangfang Zhang University of Wellington, New Zealand

Contents

Fairer Comparisons for Travelling Salesman Problem Solutions Using
Hash Functions . 1

Mehdi El Krari, Rym Nesrine Guibadj, John Woodward,
and Denis Robilliard

Application of Adapt-CMSA to the Two-Echelon Electric Vehicle Routing
Problem with Simultaneous Pickup and Deliveries . 16

Mehmet Anıl Akbay, Can Berk Kalayci, and Christian Blum

Real-World Vehicle Routing Using Adaptive Large Neighborhood Search 34
Vojtěch Sassmann, Hana Rudová, Michal Gabonnay, and Václav Sobotka

A Multilevel Optimization Approach for Large Scale Battery Exchange
Station Location Planning . 50

Thomas Jatschka, Tobias Rodemann, and Günther R. Raidl

A Memetic Algorithm for Deinterleaving Pulse Trains . 66
Jean Pinsolle, Olivier Goudet, Cyrille Enderli, and Jin-Kao Hao

Application of Negative Learning Ant Colony Optimization to the Far
from Most String Problem . 82

Christian Blum and Pedro Pinacho-Davidson

Monte Carlo Tree Search with Adaptive Simulation: A Case Study
on Weighted Vertex Coloring . 98

Cyril Grelier, Olivier Goudet, and Jin-Kao Hao

Evolutionary Strategies for the Design of Binary Linear Codes 114
Claude Carlet, Luca Mariot, Luca Manzoni, and Stjepan Picek

A Policy-Based Learning Beam Search for Combinatorial Optimization 130
Rupert Ettrich, Marc Huber, and Günther R. Raidl

Cooperative Coevolutionary Genetic Programming Hyper-Heuristic
for Budget Constrained Dynamic Multi-workflow Scheduling in Cloud
Computing . 146

Kirita-Rose Escott, Hui Ma, and Gang Chen

OneMax Is Not the Easiest Function for Fitness Improvements 162
Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou

xiv Contents

The Cost of Randomness in Evolutionary Algorithms: Crossover can Save
Random Bits . 179

Carlo Kneissl and Dirk Sudholt

Multi-objectivization Relaxes Multi-funnel Structures in Single-objective
NK-landscapes . 195

Shoichiro Tanaka, Keiki Takadama, and Hiroyuki Sato

Decision/Objective Space Trajectory Networks for Multi-objective
Combinatorial Optimisation . 211

Gabriela Ochoa, Arnaud Liefooghe, Yuri Lavinas, and Claus Aranha

On the Effect of Solution Representation and Neighborhood Definition
in AutoML Fitness Landscapes . 227

Matheus C. Teixeira and Gisele L. Pappa

Author Index . 245

Fairer Comparisons for Travelling
Salesman Problem Solutions Using Hash

Functions

Mehdi El Krari1(B) , Rym Nesrine Guibadj2 , John Woodward3 ,
and Denis Robilliard2

1 Computational Optimisation and Learning Lab, School of Computer Science,
University of Nottingham, Nottingham, UK

mehdi@elkrari.com
2 Université du Littoral Côte d’Opale, EA 4491 - LISIC, Calais, France

{rym.guibadj,denis.robilliard}@univ-littoral.fr
3 Operational Research Group, School of Electronic Engineering and Computer

Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
j.woodward@qmul.ac.uk

Abstract. Fitness functions fail to differentiate between different solu-
tions with the same fitness, and this lack of ability to distinguish between
solutions can have a detrimental effect on the search process. We inves-
tigate, for the Travelling Salesman Problem (TSP), the impact of using
a hash function to differentiate solutions during the search process.
Whereas this work is not intended to improve the state-of-the-art of
the TSP solvers, it nevertheless reveals a positive effect when the hash
function is used.

Keywords: Hash functions · Combinatorial Problems · Travelling
Salesman Problem · Local Search · Genetic Algorithms · Memetic
Algorithms

1 Introduction

The way a solution of a Combinatorial Optimisation Problem (COP) can be
represented is a key issue to design an efficient search algorithm to solve it. A
representation associates an encoding, that can be easily evaluated during the
search algorithm. For example, if we consider the Travelling Salesman Problem
(TSP), a solution to this problem is a tour in which all the cities are listed in the
order they are visited, and each city is visited only once. This solution can be
represented using different encodings [8,16]: binary, graphs, permutations etc.
In the permutation representation of the TSP, this is interpreted as a sequence
of cities in which the first and the last elements are connected. The cost of a
sequence depends on the order of the cities in the permutation.

The permutation is used as a solution encoding in many other COPs. They
can be found in various application areas such as assignment problems [11,14,17],
scheduling problems [2], routing problems [17], etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-30035-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_1&domain=pdf
http://orcid.org/0000-0001-7936-9430
http://orcid.org/0000-0003-3448-3912
http://orcid.org/0000-0002-2093-8990
http://orcid.org/0000-0003-1836-6679
https://doi.org/10.1007/978-3-031-30035-6_1

2 M. El. Krari et al.

An evaluation function, that associates a fitness measure to each solution,
should be defined in order to (i) distinguish two solutions based on their quality
and (ii) guide the search process. Often these two purposes are expected to be
met by a single function [1].

The mapping from solutions space to fitness values may belong to one of the
following cases:

– 1-to-1 mapping: each fitness value is associated to only one solution
– n-to-1 mapping: several different solutions have the same fitness value

While a canonical form was proposed in genetic programming by Woodward
[21], it still not evident to find it for many COPs. It is common for a fitness
function to map different solutions to the same fitness value. This means the
metaheuristic cannot distinguish solutions based solely on their fitness values,
and this loss of information may impede the search ability of the metaheuritics.

When the search space, i.e. the set of all the feasible solutions for a given
instance, has many solutions with the same fitness value, this often results in
large regions containing plateaus. A metaheuristic may repeatedly return to
recently visited solutions as it wanders around the plateau as the fitness function
does not provide any helpful information. We say a cycle occurs when the search
process returns to an already visited solution again. This term is mentioned in
the literature [3,9] to describe the same phenomena. The problem of cycling may
lead the metaheuristic to be confined to a particular area of the search space.

Another issue arising with population-based search techniques, such as Genetic
Algorithms, is the premature convergence of the metaheuristic when different solu-
tions have the same fitness in the last generations. Indeed, convergence measures
are mainly based on population diversity to terminate the evolution. Usually, the
diversity of the population is measured by assessing the similarity among solutions
based on their fitness. One of the definitions of convergence in an evolutionary pro-
cess is when a certain percentage of the population has the same fitness, thus indi-
cating that the evolutionary process has stagnated [12].

Differentiating solutions by the mean of their respective fitness values is moti-
vated by the low complexity induced by the comparison. It can even be constant
(O(1)) for some COPs, such as the TSP. On the other hand, differentiating solu-
tions by their respective encoding (permutations, binary strings, etc.) is entirely
accurate but more expensive. Comparing two permutations, for example, is lin-
ear (O(n)), which can likely increase the complexity of the whole metaheuristic
from O(nk) to O(nk+1).

We introduced in a previous short paper [5] a new hash function for the
TSP. In this study, we show its positive effect to provide relevant information
during the search process. Experiments are conducted on the TSP but point to
possible use on other COPs. Three metaheuristics are analysed: Iterated Local
Search (ILS), Genetic Algorithms (GAs) and Memetic Algorithms (MAs). In
this paper, we refer to solutions comparison as the differentiation mechanism to
distinguish between two solutions.

The remainder of this paper is organised as follows. A formal definition of
TSP is provided in the next section, with an analysis of the fitness values distri-

Fairer Comparisons for TSP Solutions Using Hash Functions 3

bution of some TSP instances over the search space. Section 3 introduces a new
hash function designed for TSP permutations and gives a comparative study
based on the number of collisions. Computational results are then presented in
Sect. 4 to show the effect of the hash function on three metaheuristics. Finally,
Sect. 5 presents our conclusions and our plans for future work.

2 Collision Analysis of the Fitness Function on the TSP

The TSP is frequently used as a test-bed for designing effective methods to solve
general sequencing permutation problems. The problem is modelled with a graph
G = (V,A) where V = {v1, ..., vn} is the vertex set, and A = {(vi, vj)|vi, vj ∈
V, i �= j} is the edge set. A non-negative cost (or distance) matrix C = (cij) is
associated with A. This paper focuses on the most widely studied form of the
problem in which costs are assumed to be symmetric cij = cji and satisfy the
triangle inequality (cij + cjk > cik). A feasible TSP solution is a sequence of
nodes/cities arranged in a permutation π of size n. Its cost is the sum of the
distances of each couple of adjacent cities in the permutation. We define a fitness
function to evaluate a TSP permutation π as follows:

ffit(π) =
n−1∑

i=1

cπiπi+1 + cπnπ1 (1)

It is common practice in evolutionary computation to use the fitness function,
ffit, to compare solutions. It is well-known that many solutions may map to the
same fitness value, but, to the best of our knowledge, no prior work sheds light
on how much the fitness values are repeated over a search space nor how they
are distributed over its solutions. To do so, we chose 39 instances from the TSP
benchmark TSPLIB [18] (sizes n range from 51 to 575). We then explore the
search space in two different ways. Firstly, a set SLO is composed of n2 local
optima obtained with an ILS framework to get as many neighbouring solutions
as possible. Secondly, a set Srand is built, containing 10 × n2 random solutions.
These samples were generated in such a way that all the solutions are distinct.
This means that they do not contain two identical permutations. We compute
in the first part of this section the number of collisions occurring in each sample
for each instance.

We say that we have a collision between two solution s1, s2 if f(s1) = f(s2),
where the function f outputs a numeric value. We then examine how these
collisions are distributed over the fitness values in Sect. 3.2. As an exam-
ple, if 4 solutions s1, s2, s3, s4 map to the same value, we count 4 repetitions
(f(s1) = f(s2) = f(s3) = f(s4)), and 6 collisions ((s1, s2), (s1, s3), (s1, s4)
, (s2, s3), (s2, s4), (s3, s4)). Thus the number of collisions may exceed the sam-
ple size.

4 M. El. Krari et al.

2.1 Too Many Collisions for the Fitness Function

To determine if the fitness function as a comparison tool can affect a metaheuris-
tic, we measure the collisions over the above-mentioned samples and list them in
Table 1. For each instance, we expose the sample size, |SLO| and |Srand|, and the
number of collisions, CLO and Crand, computed by comparing all the solution
pairs (these values are rounded at 1E3—precise values are displayed in Table
2); then the number of the different fitness values, FitLO and Fitrand, retrieved
in each sample.

Getting collisions from large samples of solutions is not surprising, especially
when it comes to local optima that share common edges between them. But the
number of collisions we have in Table 1 exceeds our expectations. Indeed, a very
high number of collisions is observed in almost all samples, with up to millions
of collisions for the smallest ones. Moreover, according to FitLO and Fitrand, we
notice very small sets of fitness values to whom the solutions of SLO and Srand

are mapping. In other words, the large set of solutions is distributed over a small
set of fitness values, making some fitness values very repetitive.

Table 1. Collision analysis of the fitness function on the TSP

Instance |SLO| 1E3 CLO 1E3 FitLO |Srand| 1E3 Crand 1E3 Fitrand Instance |SLO| 1E3 CLO 1E3 FitLO |Srand| 1E3 Crand 1E3 Fitrand

eil51 3 127 53 26 1,069 577 pr144 21 59 5,889 207 200 98,182

berlin52 3 5 799 27 65 6,833 ch150 23 478 893 225 3,921 10,792

st70 5 230 99 49 1,877 1,170 kroA150 23 129 2,807 225 707 46,224

eil76 6 456 72 58 4,140 766 kroB150 23 136 2,708 225 680 47,674

pr76 6 3 3,788 58 18 43,331 pr152 23 73 4,750 231 197 117,041

gr96 9 11 3,872 92 71 49,124 u159 25 71 5,647 253 530 70,958

rat99 10 457 189 98 3,317 2,613 rat195 38 4,736 310 380 25,839 5,329

kroA100 10 31 2,163 100 170 32,619 d198 39 1,338 1,047 392 3,001 38,231

kroB100 10 33 2,028 100 173 32,317 gr202 41 405 3,256 408 3,439 36,831

kroC100 10 30 2,168 100 169 32,881 ts225 51 128 12,854 506 825 170,884

kroD100 10 31 2,034 100 186 30,723 gr229 52 178 10,401 524 922 167,730

kroE100 10 34 1,970 100 168 33,161 gil262 69 16,165 308 686 96,690 4,930

rd100 10 71 1,025 100 599 12,060 a280 79 14,369 414 784 90,807 6,746

eil101 10 1,376 80 102 10,622 975 lin318 101 2,219 3,951 1,011 10,188 78,223

lin105 11 59 1,443 110 289 26,055 rd400 160 18,439 1,398 1,600 81,554 29,261

pr107 11 41 2,549 114 58 73,334 fl417 174 28,258 1,424 1,739 31,432 80,618

pr124 15 37 4,028 154 116 82,802 gr431 186 2,027 15,233 1,954 34,979 91,416

bier127 16 18 7,199 161 187 68,143 pcb442 196 7,548 4,649 1,858 7,753 303,216

ch130 17 351 734 169 2,419 9,609 rat575 331 234,671 592 3,306 676,190 16,898

gr137 19 37 5,593 188 179 89,176

Fairer Comparisons for TSP Solutions Using Hash Functions 5

2.2 Distribution of Collisions over Fitness Values

We count for each fitness value in each sample SLO how many times it appears.
We observed from the different gathered data a high similarity of distribution
of repetitions between the different instances. For a better observation of these
distributions, we draw for each instance a scatter plot with ascendant and linear
scale axes, where each dot depicts the number of repetitions (Y-axis) of one
fitness value (X-axis). The latter is illustrated by its gap (δ) from the optimal
solution’s fitness, calculated with the formula 2.

δ =
ffit(solution) − ffit(optimal)

ffit(optimal)
× 100(%) (2)

As expected, the similarity of distributions induces similarly shaped plots. It
allowed us to classify them into two main distributions, represented in Fig. 1.
Below each exposed plot in the figure, we provide (i) the instance name; (ii) the
maximal value of the abscissa axis, i.e. the gap between the highest fitness value
existing in SLO and the optimal solution (xmax); (iii) the maximal value of the
ordinate axis, which is the most important repetition observed in SLO (ymax).

In 19 instances (from the 39 studied), we observed the distribution of repeti-
tions with a bell curve. The first row of plots in Fig. 1 shows 3 examples of these
instances where we can notice a distribution close to normality. While the differ-
ent xmax values are in a fairly narrow range and don’t depend on the collisions
caused by ffit, there is a strong correlation between the density of the plots and
their respective ymax value: the larger the value of ymax, the smaller the thick-
ness of the curve will be and vice versa. To illustrate this correlation better, we
put in our examples a pair of instances with approximately equal sizes (rat195
and gr202), where the scatter plot becomes more sparse when ymax decreases.

For instances with a low ymax (which doesn’t mean a low number of colli-
sions), the repetitions become more sparse on the plot until we move away from
the normal distribution. The second row of the figure exposes 3 examples of the
17 instances where the repetitions form an area with a shape close to a bell.
Unlike the first class of instances, the number of distinct fitness values is more
important but each one appears in the sample less frequently.

Inspecting the collisions occurring in large samples of solutions reveals a
high number of repetitions of the fitness values. This can mislead metaheuristics
when the fitness function is used for comparing solutions. The analysis of the
distribution of fitness repetitions unveils two major classes of distribution. A first
one where instances have a few (distinct) fitness values but with high repetition.
Then a second one with a reversed tendency. Such information can be exploited
to predict how a trajectory-based metaheuristic can be influenced. For example,
in a tabu search context, a high number of repetitions of fitness values may lead
to short cycles when the algorithm considers each visited solution by its fitness
value. These hypotheses are verified and validated in Sect. 4.

6 M. El. Krari et al.

(a) rat195; xmax=18%; ymax=399 (b) gr202; xmax=14%; ymax=46

(c) rat575; xmax=14%; ymax=2,138 (d) pr124; xmax=16%; ymax=15

(e) kroC100; xmax=17%; ymax=19 (f) gr229; xmax=18%; ymax=22

Fig. 1. Distribution of fitness repetitions and their gaps from the optimal solution

3 Hash Functions for a Reliable Comparison

The analysis shown in the previous section is a strong motivation to search for
an efficient alternative to the objective-based fitness function to compare solu-
tions. Hash functions for COPs (specifically permutation-based ones) have been
proposed to yield a lower number of collisions than the given fitness function.

Fairer Comparisons for TSP Solutions Using Hash Functions 7

3.1 Existing Hash Functions

Woodruff and Zemel introduced three hash functions in [20] . The first function,
h1, is based on multiplying pseudo-random integers ρi with each element of
the solution vector πi. The maximum integer value MAXINT is used to avoid
overflow. The second function, h2, makes use of a matrix P of a pre-computed
random weight, while the last function, h3, replaces an entry P (i, j) with P (i)×
P (j) which is equivalent to replacing the matrix P with a long vector of pre-
computed random weights. Since the authors claimed h3 is better than h2, the
latter will not appear in our comparative study.

h1 = (
n∑

i=1

ρiπi)%(MAXINT + 1) (3)

h2 =
n∑

i=1

P (πi, πi+1) (4)

h3 = (
n∑

i=1

P (πi)P (πi+1))%(MAXINT + 1) (5)

The three hash functions were designed taking into account the following
properties:

1. Computation and update of the hash value should be as fast as possible,
and in any case as fast as the fitness function. The hash value update after
applying a move on a candidate solution should preferably be computed in
O(1) time.

2. The hash values should be in a range that results in reasonable storage
requirements and comparison effort.

3. The function should guarantee a low collision probability to minimise the risk
of two permutations having identical hashes.

Toffolo et al. [19] employed the two hash functions defined in Eq. 6 and Eq. 7
to rapidly evaluate a newly explored route of the CVRP. The function hp is
a multiplicative hash which depends on the visited permutation. The second
function, hs, is an additive hash that depends on the set of visited customers.
These hash functions were used with two different values of ρ. It is set to the
prime number 31, or to the smallest prime number greater than the number of
customers. To prevent overflow during multiplication, the values ρi were bounded
taking the rest of the integer division by a large number. While a solution in a
CVRP instance uses a subset of customers, it is not the case for the TSP. Using
all the customers/nodes for any solution of the latter makes hs have the same
value for a given instance and thus cannot be used as a hash function for the
TSP.

hp(π) =
n∑

i=1

ρiπi (6)

8 M. El. Krari et al.

hs(π) =
n∑

i=1

ρπi (7)

3.2 The Proposed Function

In addition to the three properties (previously mentioned in Sect. 3.1) that a
hash function should acquire, we propose in this paper to implement a hash
function with an added characteristic.

While the existing functions are based on vectors of large random values, we
want to design our hash function (η) with only the solution and the instance
data already stored by the heuristic. This is more challenging since random
values help to reduce the number of collisions considerably. Conversely, solution
data can increase collisions due to the correlation and similarities we may observe
between a pair of solutions. The fitness function, based on the distance matrix,
is a concrete example.

To make sure η obeys the property n◦ 1, we define a (sub-)hash function
ηe for one edge of the permutation. η can be formulated then as described in
formula 8. It also ensures to get the same hash value when a permutation is
shifted since the solution stays the same in the TSP case.

η = ηe(1, n) +
n−1∑

i=1

ηe(i, i + 1) (8)

The operands we chose for our hash function are the distance matrix and the
set of node identifiers which are n distinct integers in the range [1;n]. In addition
to the mathematical operators, we define a new operator mod in Formula 9. This
definition is an adjustment of the classical modulo operator to ensure having
the same hash value when the permutation is symmetrical and prevent the ηe

function from returning a zero value ((a < b) ⇒ (a%b = 0)).

mod(a, b) = max(a, b)%min(a, b) (9)

To lower the number of collisions, we favoured multiplication over addition
since it gives more diverse values. The division is dismissed to avoid dealing with
precision issues. We decided to involve more the node identifiers rather than the
distance matrix. Values of the latter are larger and will quickly lead to memory
overflows.

Following all the guidelines mentioned above, we designed the function ηe as
shown in formula 10. πi is the identifier of the ith node in the permutation π.
C = (cij) is the distance matrix of the studied instance. Formula 11 defines our
hash function η.

ηe(i, j) = mod(πi, πj) × (πi + πj) × (πi × πj) × cπi,πj
(10)

Fairer Comparisons for TSP Solutions Using Hash Functions 9

η = ηe(1, n) +
n−1∑

i=1

ηe(i, i + 1)

= mod(π1, πn) × (π1 + πn) × (π1 × πn) × cπ1,πn
+

n−1∑

i=1

mod(πi, πi+1) × (πi + πi+1) × (πi × πi+1) × cπi,πi+1

(11)

3.3 Comparative Study

Table 2 below compares the fitness function ffit and the hash functions η and h3

(which was chosen as the best of the functions in Sect. 3.1 after a preliminary
comparison 1).

For each instance sample (SLO and Srand), the number of collisions resulting
from each function is printed on the table.

The first remark is the significant reduction of collisions made between ffit
and the hash functions, which can’t be with no effect on the search process.
The second observation is the excellent results obtained by η compared with h3,
especially for large instances. Our designed hash function succeeded in getting
zero collisions on 36 (resp. 32) instances for SLO (resp. Srand), against only 29
(resp. 10) instances for h3. The overall average for η is less than one collision in
each set of samples, while it is much higher for h3 in Srand.

This shows that it is possible to design a hash function with fewer collisions
than those proposed in the literature.

η can then be embedded in a metaheuristic, with a constant time cost, as
a reasonable alternative to fitness evaluation in order to compare solutions. In
addition to the three properties listed in Sect. 3.1, this hash function only uses
solution data and does not need large vectors of random values, thus reducing
its memory footprint. Note that we did not encounter any overflow with our
proposed hash function on our set of instances and samples. Nonetheless, in the
event of overflow, one could use standard strategies, such as clipping values with
a modulo operator (see also [19]).

The following section shows the multiple effects of using the hash functions.

4 Revisiting Some Metaheuristics with Hash Functions

Let’s consider fcomp the comparison function to check the equality between a pair
of solutions. The results of each test/run performed in this section are obtained
with fcomp = ffit, then fcomp = η. We provide the same input in each case. Fifty
runs are assigned to each instance/test.

1 The comparison between all the functions is available at https://elkrari.com/
hashfunctions/.

https://elkrari.com/hashfunctions/
https://elkrari.com/hashfunctions/

10 M. El. Krari et al.

Table 2. A comparison of the number of collisions between ffit, h3 and η obtaines on
the samples Srand and SLO

Instance SLO Srand Instance SLO Srand

ffit η h3 ffit η h3 ffit η h3 ffit η h3

eil51 126,875 0 0 1,068,752 2 0 pr144 59,098 0 0 199,699 0 0

berlin52 5,495 0 0 64,662 0 0 ch150 477,971 0 0 3,921,003 0 4

st70 229,647 0 0 1,876,506 0 0 kroA150 128,766 0 0 707,170 0 4

eil76 456,422 1 0 4,140,456 2 1 kroB150 135,785 0 1 680,086 0 3

pr76 2,838 0 0 18,107 0 0 pr152 72,564 0 0 196,547 0 1

gr96 10,633 0 0 71,134 1 0 u159 70,763 0 0 529,831 0 2

rat99 457,303 0 0 3,317,137 2 0 rat195 4,736,380 0 0 25,838,895 1 5

kroA100 30,902 0 0 170,251 1 0 d198 1,337,616 0 0 3,001,233 0 10

kroB100 32,978 0 1 172,655 0 1 gr202 404,695 0 0 3,439,300 0 13

kroC100 30,277 0 0 169,127 0 1 ts225 128,149 0 0 824,742 0 19

kroD100 30,805 0 0 185,716 0 2 gr229 177,592 0 1 921,695 0 15

kroE100 33,600 0 0 167,732 0 1 gil262 16,165,285 0 0 96,690,038 0 26

rd100 71,443 0 0 598,845 0 1 a280 14,368,564 0 2 90,806,864 0 31

eil101 1,376,150 0 0 10,621,646 1 0 lin318 2,219,290 0 1 10,188,376 0 45

lin105 59,275 0 0 288,911 0 1 rd400 18,439,021 0 2 81,553,529 0 99

pr107 41,307 0 0 58,422 0 1 fl417 28,258,436 1 3 31,432,278 0 97

pr124 36,773 0 0 116,389 0 0 gr431 2,026,980 0 2 34,978,940 0 127

bier127 17,641 7 0 187,417 0 5 pcb442 7,548,302 0 3 34,978,940 0 138

ch130 350,821 0 1 2,419,326 0 4 rat575 234,671,318 0 4 676,190,119 0 382

gr137 37,181 0 0 179,311 0 3 average 8,586,280.54 0.23 0.54 28,794,148.38 0.26 26.72

This section doesn’t aim to improve the state-of-the-art. The objective is to
provide a comparison of the two scenarios of fcomp in the same environment.
For each metaheuristic, we implement a basic version with known operators and
strategies.

4.1 Cycling Analysis

One of the limitations of ILS is cycling. A cycle occurs when the search returns
to an already visited local optimum, which means the algorithm is stuck in a
limited region of the search space. To inspect the effect of using hash functions
to identify cyclings, we ran an ILS with a stochastic local search [10] by the 2-
Opt neighbourhood function [4,7] and a perturbation of n 2-Opt random moves.
Each run stops when the first cycle occurs or when the algorithm reaches 50×n
iterations.

Table 3 shows the average number of visited solutions before a cycle arises.
For each instance, we note the maximum number of iterations (Maxiter), which
is also the maximum number of local optima we can visit in each run. For each
case of fcomp, we record how many times a cycle happened (C), and the average
number of visited local optima before ILS stops (or the history size |H|). We
note zero when no cycle appears during the 50 runs. The last column of the
table compares the two cases of fcomp with the Mann Whitney U Test (also

Fairer Comparisons for TSP Solutions Using Hash Functions 11

called Wilcoxon Rank Sum Test) [6,15] The test measures the separation level
between the number of iterations made in each case with a p−value.

Table 3. Cycling analysis of the ILS framework when using η then ffit to differentiate
solutions.

Instance Maxiter fcomp = η fcomp = ffit p−value Instance Maxiter fcomp = η fcomp = ffit p−value

C |H| C |H| C |H| C |H|
eil51 2550 22 1463.18 50 7.78 6.86E-18 pr144 7200 50 608.22 50 100.1 2.77E-16

berlin52 2600 50 401.8 50 39.96 6.86E-18 ch150 7500 0 50 35.54 6.86E-18

st70 3500 10 1946.5 50 11.98 6.86E-18 kroA150 7500 0 50 56.74 6.86E-18

eil76 3800 1 3733 50 8.32 6.86E-18 kroB150 7500 0 50 58.72 6.86E-18

pr76 3800 41 1990.22 50 110.32 6.86E-18 pr152 7600 4 6042.25 50 106.12 6.86E-18

gr96 4800 0 50 97.72 6.86E-18 u159 7950 0 50 95.2 6.86E-18

rat99 4950 2 3054.5 50 11.56 6.86E-18 rat195 9750 0 50 15.6 6.86E-18

kroA100 5000 14 3115.64 50 58.24 6.86E-18 d198 9900 0 50 35.74 6.86E-18

kroB100 5000 0 50 57.1 6.86E-18 gr202 10100 0 50 63.26 6.86E-18

kroC100 5000 12 2866 50 65.74 6.86E-18 ts225 11250 0 50 136.72 6.86E-18

kroD100 5000 0 50 66.94 6.86E-18 gr229 11450 0 50 143.68 6.86E-18

kroE100 5000 0 50 60.4 6.86E-18 gil262 13100 0 50 16.98 6.86E-18

rd100 5000 0 50 39.88 6.86E-18 a280 14000 0 50 19.8 6.86E-18

eil101 5050 1 4093 50 7.64 6.86E-18 lin318 15900 0 50 69.88 6.86E-18

lin105 5250 20 3209.9 50 50.9 6.86E-18 rd400 20000 0 50 41.54 6.86E-18

pr107 5350 0 50 85.18 6.86E-18 fl417 20850 0 50 38.26 6.86E-18

pr124 6200 50 521.26 50 95.34 1.15E-14 gr431 21550 0 50 152.64 6.86E-18

bier127 6350 0 50 141 6.86E-18 pcb442 22100 0 50 70.88 6.86E-18

ch130 6500 1 1624 50 33.3 6.86E-18 rat575 28750 0 28 20.54 6.86E-18

gr137 6850 0 50 91.02 6.86E-18

At first sight of Table 3, the difference between the two scenarios seems to
be broad. ILS cycles prematurely when comparing solutions with their fitness
values, with only a few visited local optima. On the other hand, the hash function
enables the algorithm to explore extensively, having to make a decision (restart,
strong perturbation,...) when the cycle arises. With a p−value almost equal to
zero, the Mann Whitney U Test confirms that the ILS algorithm always detects
cycles earlier with the fitness function.

4.2 Convergence Speed

Population-based algorithms can also be exposed to misleading information pro-
vided by the fitness function. One of the stopping criteria in these metaheuristics
is the convergence rate [12], i.e. the similarity of solutions within a population.
We now analyse the convergence speed of two population-based algorithms.

The first one is a GA [13] implemented with a tournament selection, one-
point crossover and an elitist replacement strategy. The second one is a memetic

12 M. El. Krari et al.

algorithm with the same genetic operators and the steepest descent applied to
each new individual with 2-Opt.

For each scenario of fcomp, Fig. 2a (resp. 2b) displays the average (of the 39
studied instances) evolution of the convergence rate in the 5×n first generations
for our genetic (resp. memetic) algorithm. The evolution is represented with
dashed curves for fcomp = ffit and solid ones for fcomp = η.

(a) Genetic Algorithm

(b) Memetic

Fig. 2. Evolution of the convergence rate for population-based metaheuristics during
5 × n generations

The two figures reveal the incorrect information given by the fitness func-
tion regarding the convergence rates. The difference is tight between the two
cases of fcomp for the GA. In contrast, the memetic shows a wider gap between
the two curves. This means population-based metaheuristics can run for more
generations to explore new solutions and regions of the search space.

Fairer Comparisons for TSP Solutions Using Hash Functions 13

4.3 Applying Hash Function on Metaheuristics

The previous results of this section warn us of the misguided analysis caused by
the fitness function as a comparison function. A hash function can then be more
effective in providing the algorithm with better results. Table 4 lists the results of
three metaheuristics using η and ffit, respectively, and implemented as follows:
(i) An ILS with the steepest descent and perturbations with different strengths
depending on the state of the search, run with 10 × n iterations. (ii) A genetic,
and (iii) memetic algorithms run with the same operators used earlier, with a
stopping criterion of 90% on the convergence rate and a strictly equal number
of evaluations for each variant of fcomp. The table shows the average gap from
the optimal solution (formula 2) to the best solution found in each scenario of
fcomp.

Table 4. Iterated Local Search, Genetic and Memetic Algorithms run with η, then ffit
as a differentiating function.

Instance ILS GA Memetic Instance ILS GA Memetic

η ffit η ffit η ffit η ffit η ffit η ffit

eil51 0.81 0.58 187.76 190.95 0.53 0.70 pr144 0.01 0.01 920.35 929.78 0.00 0.01

berlin52 0.00 0.00 193.64 192.26 0.00 0.00 ch150 1.88 1.74 522.68 527.60 0.37 0.47

st70 0.29 0.21 296.54 296.98 0.09 0.18 kroA150 1.56 1.54 604.99 612.51 0.28 0.33

eil76 2.19 2.23 246.20 253.87 0.38 0.85 kroB150 1.28 1.26 601.41 614.83 0.19 0.25

pr76 0.09 0.13 291.06 297.99 0.04 0.05 pr152 0.21 0.22 942.39 949.39 0.11 0.10

gr96 0.64 0.58 389.74 391.14 0.22 0.23 u159 0.99 1.02 674.87 681.97 0.05 0.01

rat99 1.59 1.76 393.90 399.59 0.27 0.34 rat195 3.99 4.51 619.70 622.17 0.83 1.09

kroA100 0.25 0.26 473.64 476.42 0.04 0.06 d198 1.03 1.07 729.34 732.31 0.16 0.18

kroB100 0.56 0.57 442.16 444.14 0.14 0.11 gr202 2.34 2.43 421.79 426.32 0.29 0.30

kroC100 0.32 0.32 482.51 490.31 0.07 0.08 ts225 0.35 0.35 871.65 873.22 0.01 0.03

kroD100 0.77 0.70 444.51 450.29 0.15 0.24 gr229 2.26 2.31 658.88 673.00 0.34 0.39

kroE100 0.66 0.75 461.56 464.54 0.21 0.19 gil262 3.01 3.22 765.70 775.37 0.25 0.64

rd100 0.65 0.62 423.15 424.12 0.20 0.25 a280 2.94 3.69 890.03 897.99 0.26 0.71

eil101 2.91 2.98 303.01 311.78 0.48 1.34 lin318 2.53 2.65 979.80 991.38 0.36 0.41

lin105 0.18 0.13 508.88 516.17 0.02 0.03 rd400 3.91 4.37 983.71 994.41 0.57 0.66

pr107 0.34 0.29 761.09 772.48 0.09 0.11 fl417 0.88 1.05 2,897 2,927 0.22 0.45

pr124 0.03 0.01 745.45 749.41 0.02 0.01 gr431 3.02 3.12 965.36 971.80 0.54 0.60

bier127 0.86 0.92 313.17 320.58 0.20 0.19 pcb442 3.59 3.99 1,095 1,102 0.64 0.71

ch130 1.31 1.30 471.45 478.66 0.31 0.40 rat575 5.44 6.52 1,204 1,205 0.89 1.92

gr137 1.18 1.04 559.23 564.66 0.13 0.16 average 1.46 1.55 659.97 666.57 0.25 0.38

The exposed results confirm the positive effect of using a hash function in dif-
ferent metaheuristic classes, especially for large instances. These improvements
are achieved by non-biased runs of the above-mentioned algorithms. While the
fitness function led to wrong cycles and premature convergence, the hash func-
tion allows the algorithm to make fairer differentiations and then make the right
decisions at the right moments.

14 M. El. Krari et al.

5 Discussion and Conclusion

Using the fitness function to compare solutions can be harmful to many meta-
heuristics. This is due to the high number of collisions caused by the fitness
function and the significant repetitions in its values. This paper proposes a new
effective hash function with respect to the existing ones in the literature. The
number of collisions caused by our function η is zero on almost all the generated
samples and can be improved by comparing the pair (ffit, η) of values. An anal-
ysis of different state-of-the-art heuristics unveiled the positive effect of using
a hash function as a comparison tool. While the fitness function misleads the
search process to short cycles, we observed longer explorations when using a hash
function. A similar effect was noticed on population-based algorithms where the
convergence rate increases more slowly with hash values. These improvements
were reflected on their respective metaheuristics by reaching better solutions.

While this paper tackled the TSP as one of the most used COP, others can
also take advantage of the proposed hash function or by designing new ones. We
envisage then for our future works to explore new problems with different solu-
tion representations (permutations or binary strings). Genetic programming can
be used to produce unbiased, and possibly problem-independent, hash functions.

References

1. Brownlee, A.E., Woodward, J.R., Swan, J.: Metaheuristic design pattern: surrogate
fitness functions. In: Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 1261–1264 (2015)

2. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-69516-5

3. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696
(2011)

4. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6),
791–812 (1958)

5. El Krari, M., Guibadj, R.N., Woodward, J., Robilliard, D.: Introducing a hash
function for the travelling salesman problem for differentiating solutions. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 123–124. GECCO 2021, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3449726.3459580

6. Fay, M.P., Proschan, M.A.: Wilcoxon-Mann-Whitney or t-test? on assumptions for
hypothesis tests and multiple interpretations of decision rules. Statist. Surv. 4, 1
(2010)

7. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)
8. Hartung, E., Hoang, H.P., Mütze, T., Williams, A.: Combinatorial generation via

permutation languages. In: Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1214–1225. SIAM (2020)

9. Hifi, M., Michrafy, M., Sbihi, A.: A reactive local search-based algorithm for the
multiple-choice multi-dimensional knapsack problem. Comput. Optim. Appl. 33(2–
3), 271–285 (2006)

https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1145/3449726.3459580

Fairer Comparisons for TSP Solutions Using Hash Functions 15

10. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations and applications.
Elsevier (2004)

11. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957)

12. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer Science
& Business Media, Cham (2013). https://doi.org/10.1007/978-3-662-04726-2

13. Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the travelling salesman problem: A review of representations and operators.
Artif. Intell. Rev. Int. Surv. Tutor. J. 13(2), 129–170 (1999)

14. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A
survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690
(2007)

15. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Statist. 50–60 (1947)

16. Michalewicz, Z., Fogel, D.B.: How To Solve It: Modern Heuristics. Springer Science
& Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-662-07807-5

17. Pierskalla, W.: The tri-substitution method for the three-dimensional assignment
problem. Can. Oper. Res. Soc. J. 5(2), 71 (1967)

18. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991)

19. Túlio A.M., T., Thibaut, V., Tony, W.: Heuristics for vehicle routing problems
Sequence or set optimization? Comput. Oper. Res. 105, 118–131 (2019)

20. Woodruff, D.L., Zemel, E.: Hashing vectors for Tabu search. Ann. Oper. Res. 41,
123–137 (1993)

21. Woodward, J.R., Bai, R.: Canonical representation genetic programming. In: Pro-
ceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Compu-
tation, pp. 585–592. GEC 2009, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1543834.1543914

https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1007/978-3-662-07807-5
https://doi.org/10.1145/1543834.1543914

Application of Adapt-CMSA
to the Two-Echelon Electric Vehicle
Routing Problem with Simultaneous

Pickup and Deliveries

Mehmet Anıl Akbay1(B) , Can Berk Kalayci2 , and Christian Blum1

1 Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB,
Bellaterra, Spain

makbay@iiia.csic.es
2 Department of Industrial Engineering, Pamukkale University, Denizli, Turkey

cbkalayci@pau.edu.tr

Abstract. This study addresses the two-echelon electric vehicle rout-
ing problem with simultaneous pickup and deliveries. In a two-echelon
distribution network, large vehicles transport goods from central ware-
houses to satellites, while smaller and environmentally friendly vehicles
distribute goods from these satellites to final customers. The considered
problem also includes simultaneous pickup and delivery constraints that
usually arise as a reverse logistics practice. A MILP model is developed
and solved for small-sized problem instances using CPLEX. Since the
tackled problem becomes rather complex because of the multi-tier struc-
ture and constraints, solving even small-sized instances using CPLEX
requires very long computation times. Therefore, the application of a self-
adaptive variant of the hybrid metaheuristic Construct, Merge, Solve &
Adapt is proposed. In the context of problem instances too large for the
application of CPLEX, our algorithm is compared to probabilistic ver-
sions of two well-known constructive heuristics. The numerical results
show that our algorithm outperforms CPLEX in the context of rather
small problem instances. Moreover, it is shown to outperform the heuris-
tic algorithms when larger problem instances are concerned.

Keywords: two-echelon · EVRP · simultaneous pickup and delivery

1 Introduction

Route planning of vehicles used in freight distribution has been one of the pri-
mary objectives of logistics for many years. Researchers and practitioners have
been developing models and solution methods to find the best routes for a fleet of
vehicles transporting products from supply points to demand points. Danzig et
al. [13] addressed this problem as a truck dispatching problem for the first time
in the literature. After this pioneering work, many variations of the addressed
problem have been introduced under the title of vehicle routing problems [16].

Rising concerns about the environment and issues such as noise, traffic
congestion, and population growth, especially in large cities, require objectives
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 16–33, 2023.
https://doi.org/10.1007/978-3-031-30035-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_2&domain=pdf
http://orcid.org/0000-0001-7376-7008
http://orcid.org/0000-0003-2355-7015
http://orcid.org/0000-0002-1736-3559
https://doi.org/10.1007/978-3-031-30035-6_2

Application of Adapt-CMSA to the 2E-EVRP SPD 17

considering not only the economy but also social and environmental issues in
the design of logistics systems. In this line, one of the more recent approaches in
logistics is to operate freight distribution using multi-echelon distribution struc-
tures [11]. In such a framework, goods are transported from central warehouses to
final customers through transshipment facilities, also called satellites. In this way,
vehicles with large loading capacities and, generally, higher exhaust emissions are
kept out of the city centres. Moreover, goods are distributed from the satellites
to customers with vehicles more suitable for their operation in densely populated
areas, i.e., vehicles with low carbon emissions and smaller loading capacities.

An additional approach for reducing the environmental impact of logistics
activities and, therefore, for preserving the environment and increasing the qual-
ity of city life is to utilize environmentally-friendly vehicles for freight distribu-
tion. Lately, there has been a remarkable increase in the number of logistics and
e-commerce companies using electric vehicles for distribution in urban areas [20].
However, despite the advantages of using electric vehicles in logistics, deriving
optimal routing plans for these vehicles is rather complex because of a limited
driving range and an en-route charging necessity.

Our Contribution. This study is the first one to address the two-echelon elec-
tric vehicle routing problem with simultaneous pickup and delivery (2E-EVRP-
SPD). In this problem, we consider that large trucks with internal combustion
engines transport products from central warehouses to satellites in the surround-
ings of cities. Subsequently, smaller electric vehicles distribute goods from these
satellites to customers located in the cities. Moreover, as the name of the prob-
lem already indicates, it also considers simultaneous pickup and delivery (SPD)
constraints for the delivery of goods to customers. When SPD constraints are con-
sidered, each customer may have two different demands: (1) the goods to be deliv-
ered to the demand point (delivery demand), and (2) the goods to be collected
from the demand point (pickup demand). So, once a vehicle visits a certain cus-
tomer, both demands must be met simultaneously. This approach usually arises as
a reverse logistics practice [14]. However, despite the importance of reverse logis-
tics in terms of sustainability, the number of publications on EVRP-SPD vari-
ants is rather limited. Only [1,28] considered SPD constraints within the scope
of EVRPs. However, to the best of our knowledge, SPD constraints have yet to be
considered within the scope of two-echelon electric vehicle routing problems [18].
Our contributions are as follows. First, the addressed problem is formulated as a
mixed integer linear program (MILP). Any general-purpose MILP solver, such as
CPLEX1 or Gurobi2, may be used to solve this model. However, due to the multi-
tier structure of the distribution network, the limited driving range of electric vehi-
cles, and the SPD constraints, the 2E-EVRP-SPD problem is rather complex. In
fact, our computational experiments show that CPLEX struggled to solve even
small-sized problems to optimality. In fact, in most cases, CPLEX was only able to
derive valid solutions with large optimality gaps. Therefore, a recent self-adaptive
variant of the hybrid metaheuristic “Construct Merge Solve & Adapt” (CMSA)
[6]—called Adapt-CMSA—is developed for being able to solve large-sized
1 https://www.ibm.com/analytics/cplex-optimizer.
2 http://www.gurobi.com/.

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/

18 M. A. Akbay et al.

Table 1. Sets and notations

nd, ns , nr , nc : Number of central warehouses, satellites, charging stations and customers, respectively

ND : Set of central warehouses, ND = {nd1 , ..., ndnd
}

N
′
D : Set of dummy central warehouses corresponding to ND, N

′
D = {n

′
d1 , ..., n

′
dnd

}
NS : Set of satellites, NS = {ns1 , ..., nsns

}
N

′
S : Set of dummy satellites corresponding to NS , N

′
S = {n

′
s1 , ..., s

′
sns

}
NR : Set of charging stations, NS = {nr1 , ..., nrnr

}
NC : Set of customers, NS = {nc1 , ..., ncnc

}
NDS : Set of central warehouses and satellites, NDS = ND ∪ NS

NSD : Set of satellites and dummy central warehouses, NDS = NS ∪ N
′
D

NDSD : Set of complete nodes in the first echelon, NDSD = ND ∪ NS ∪ N
′
D

NRC : Set of charging stations and customers, NRC = NR ∪ NC

NSRC : Set of satellites, charging stations and customers, NSRC = NS ∪ NR ∪ NC

NRCS : Set charging stations, customers and dummy satellites, NRCS = NR ∪ NC ∪ N
′
S

NSRCS : Set of complete nodes in the second echelon, NSRCS = NS ∪ NR ∪ NC ∪ N
′
S

problem instances. CMSA algorithms are based on applying an exact solver iter-
atively to sub-instances of the original problem instance. In other words, the
search space is reduced before the exact solver is applied. Search space reduc-
tion is achieved in a bottom-up manner by, first, probabilistically generating valid
solutions to the tackled problem and, second, by merging these solutions in order
to obtain a sub-instance. Adapt-CMSA [3], on the other hand, was developed to
reduce the parameter sensitivity of the standard version of CMSA. Examples of
applications of CMSA can be found in [1,4,15].

Related Literature. The two-echelon electric vehicle problem is regarded as
a combination of two initially independent research lines: the one on electric
vehicle routing problems (EVRPs) and the one on two-echelon vehicle rout-
ing problems (2E-VRPs); see [10] and [12]. Works on EVRPS include [5,19],
while [24] is a recent example for work on 2E-VRPs. On the other hand, there
is still a dearth of literature on two-echelon electric vehicle routing problems
(2E-EVRPs). Jie et al. [17] were among the first to propose a 2E-EVRP with
battery-swapping stations (BSS). A hybrid algorithm that combines column gen-
eration and LNS is proposed to solve the addressed problem. Breunig et al. [7]
proposed a metaheuristic approach based on LNS and an exact mathematical
programming algorithm that employs decomposition and pricing techniques to
solve 2E-EVRP. Moreover, Cao et al. [8] investigated the design of a two-echelon
reverse logistics network to collect recyclable waste utilizing a mixed fleet of elec-
tric and conventional vehicles. Instead of a single integrated mathematical model,
the authors formulated the addressed problem as two distinct models, one for
each echelon. Furthermore, Wu and Zhang [26] developed a branch and price
algorithm to solve a 2E-EVRP. They tested the proposed solution approach on
small and medium-sized instances containing up to 20 customers and two charg-
ing stations. Recently, Wang and Zhou [25] introduced a 2E-EVRP with time
windows and battery-swapping stations. They developed a MILP model that
minimizes transportation, handling, and fixed costs for the vehicles used in the
first and second echelons, in addition to battery-swapping costs. However, the
time spent on battery swapping is not considered. A variable neighbourhood
search (VNS) algorithm was proposed to solve large-sized problem instances.

Application of Adapt-CMSA to the 2E-EVRP SPD 19

Finally, Akbay et al. [2] developed a three-index node-based MILP model for
2E-EVRP with time windows and proposed a VNS algorithm to solve large-
sized problem instances. In addition to classical VNS neighbourhood operators,
they employed destroy and repair operators in the shaking step of the algorithm.

2 Problem Description

In the following, we provide a technical description together with a MILP model
of the 2E-EVRP-SPD. For this purpose, the sets and notations from the Table 1
are required. The 2E-EVRP-SPD can be defined on a complete, directed graph
G(N,A) that is formed by the following subsets of nodes: the set of central
warehouses (also called depots) (ND), the set of satellites (NS), the set of charg-
ing stations (NR), and the set of customers (NC). Note that NS and NR also
include multiple copies of each satellite and charging station to allow multi-
ple visits to any of the satellites and charging stations. The set of arcs on the
other hand (A) includes (1) arcs that connect central warehouses and satellites
A1 = {(i, j) | i �= j and i, j ∈ NDSD} and (2) arcs that connect satellites, cus-
tomers and charging stations A2 = {(l,m) | l �= m and l,m ∈ NSRCS}. Each
arc (i, j) ∈ A1 is associated with a distance d1ij and each arc (l,m) ∈ A2 is
associated with a distance d2lm.

Two different fleets of vehicles, each one homogeneous in itself, serve in the first
and second echelons in order to meet customer demands. A fleet of large trucks
with internal combustion engines are located in a central warehouse and transfer
products between the central warehouses and the satellites, while a fleet of electric
vehicles is present at the satellites and transfer products between satellites and
customers (demand points). In the first echelon, a truck with a loading capacity
of Q1 starts its tour from a central warehouse, visits one or more satellites, and
returns to the central warehouse from which the tour started. Not all satellites have
to be visited by large trucks unless there is a demand for pickup and/or delivery.
Furthermore, a satellite can be visited by multiple large vehicles if the delivery or
pickup demand of the satellite exceeds the vehicle capacity. In the second echelon,
on the other hand, each customer with a delivery demand D2

i > 0 or a pickup
demand P 2

i > 0 (or both) must be served by an electric vehicle with a loading
capacity of Q2. An electric vehicle starts its tour with a fully charged battery (B)
and the vehicle’s battery is consumed in proportion to the distance travelled. The
constant h represents the battery consumption rate of an electric vehicle per unit
distance travelled. If a charging station is visited, the electric vehicle’s battery is
fully charged up to level B with a constant charging rate of g > 0.

Our MILP model contains the following binary decision variables. A deci-
sion variable xij takes value 1 if arc (i, j) ∈ A1 is traversed, and 0 otherwise.
Moreover, a decision variable yij takes value 1 if arc (i, j) ∈ A2 is traversed,
and 0 otherwise. Next, decision variables BSCai and BSCdi record the battery
state of charge on arrival, respectively departure, at (from) vertex i ∈ NSRCS .
Furthermore, for each arc (i, j) ∈ A1, variable u1

ij denotes the remaining cargo
to be delivered to satellites of the route, while v1

ij denotes the amount of cargo
already collected (picked up) at already visited satellites. Similarly, for each arc

20 M. A. Akbay et al.

(i, j) ∈ A2, variable u2
ij denotes the remaining cargo for the route, while v2

ij
denotes the amount of cargo already collected at visited customers. Since the
demand of each satellite depends on the customers serviced through it, decision
variables D1

i and P 1
i are introduced to calculate, respectively, the delivery and

pickup demands of satellites. Finally, variable zij takes value 1 if customer (i) is
serviced from satellite (j), and 0 otherwise. The MILP model can then be stated
as follows.

Min
∑

i∈NDS

∑

j∈NDSD

d1
ij ∗ xij +

∑

l∈NSRC

∑

m∈NSRCS

d2
lm ∗ ylm +

∑

j∈NDSD

x0j ∗ clv

+
∑

i∈NS

∑

j∈NSRCS

yij ∗ cev (1)

∑

j∈NSD

xij ≤ 1 ∀i ∈ NS (2)

∑

i∈NDS ,i�=j

xij −
∑

i∈NSD,i�=j

xji = 0 ∀j ∈ NS (3)

∑

i∈NDS ,i�=j

u1
ij −

∑

i∈NSD,i�=j

u1
ji = D1

j ∀j ∈ NS (4)

∑

i∈NDS ,i�=j

v1
ij −

∑

i∈NSD,i�=j

v1
ji = P 1

j ∀j ∈ NS (5)

0 ≤ u1
ij ≤ Q1 ∀i ∈ ND, j ∈ NDS (6)

v1
ij = 0 ∀i ∈ ND, j ∈ NSD (7)

u1
ij + v1

ij ≤ Q1 ∗ xij ∀i ∈ ND, j ∈ NDS , i �= j (8)
∑

l∈NC

zli ∗ D2
l = D1

i ∀i ∈ NS (9)

∑

l∈NC

zli ∗ P 2
l = P 1

i ∀i ∈ NS (10)

∑

j∈NRCS ,i�=j

yij = 1 ∀i ∈ NC (11)

∑

j∈NRCS ,i�=j

yij ≤ 1 ∀i ∈ NR (12)

∑

i∈NSRC ,i�=j

yij −
∑

i∈NRCS ,i�=j

yji = 0 ∀j ∈ NRC (13)

∑

i∈NS

zli = 1 ∀l ∈ NRC (14)

yli ≤ zli ∀i ∈ NS , l ∈ NRC (15)
yil ≤ zli ∀i ∈ NS , l ∈ NRC (16)

ylm + zli +
∑

s∈NS ,i�=s

zms ≤ 2 ∀l, m ∈ NRC , l �= m, ∀i ∈ NS (17)

∑

i∈NSRC ,i�=j

u2
ij −

∑

i∈NRCS ,i�=j

u2
ji = D2

j ∀j ∈ NRC (18)

Application of Adapt-CMSA to the 2E-EVRP SPD 21

∑

i∈NSRC ,i�=j

v2
ji −

∑

i∈NRCS ,i�=j

v2
ij = D2

j ∀j ∈ NRC

(19)

0 ≤ u2
ij ≤ Q2 ∀i ∈ NS , j ∈ NRCS

(20)

v2
ij = 0 ∀i ∈ NS , j ∈ NRCS

(21)

u2
ij + v2

ij ≤ Q2 ∗ yij ∀i ∈ NRCS , j ∈ NSRC

(22)
0 ≤ BSCaj ≤ BSCai − (hdij)yij + B(1 − yij) ∀i ∈ NC , ∀j ∈ NRCS , i �= j

(23)
0 ≤ BSCaj ≤ BSCdi − (hdij)yij + B(1 − yij) ∀i ∈ NSR, ∀j ∈ NRCS , i �= j

(24)
BSCai ≤ BSCdi ≤ B ∀i ∈ NSR

(25)
xij ∈ 0, 1 ∀i ∈ NSRC , j ∈ NRCS , l �= m

(26)
ylm ∈ 0, 1 ∀l ∈ NSRC , m ∈ NRCS , l �= m

(27)

In this study, solutions using fewer vehicles—that is, with fewer routes—are
preferred over others, even if the total distance travelled is higher than in other
routes. Therefore, the objective function does not only consider the travelled
distance but adds also an extra cost clv for each large vehicle used in the first
echelon and cev for each electric vehicle used in the second echelon. Note, in
this context, that the number of large vehicles used in a solution is equal to the
number of variables on outgoing arcs of a central warehouse with a value of 1.
Moreover, the number of electric vehicles used in a solution is equal to the number
of variables on outgoing arcs of satellites that have a value of 1. In this way, the
objective function (1) minimizes the sum of the total distance travelled and the
vehicle costs. Constraints (2) control the connectivity of satellites and constraints
(3) guarantee the balance of flow in the first echelon nodes. Constraints (4)-
(8) guarantee that the delivery and pickup demands of satellites are satisfied
simultaneously by the large vehicles serving in the first echelon. Constraints
(9) and (10) determine each satellite’s delivery and pickup demand to be the
total delivery and pickup demands of those customers served by the relevant
satellite. Constraints (11) and (12) control the connectivity of customers and
charging stations. Constraints (13) ensure the balance of flow for the second
echelon nodes. Constraints (14) guarantee that a customer receives service from
only one satellite. Constraints (15)-(17) ensure that a tour started from a satellite
ends at the same satellite. Constraints (18)-(22) guarantee that the delivery and
pickup demands of customers are satisfied simultaneously by the electric vehicles
serving in the second echelon. Finally, constraints (23)-(25) are battery state
constraints.

22 M. A. Akbay et al.

3 Adapt-CMSA for the 2E-EVRP-SPD

In this section, we will describe the Adapt-CMSA algorithm that we designed for
the application to the 2E-EVRP-SPD. However, before describing the algorithm
we first explain the solution representation.

Solution Representation. Any solution S = (R1, R2) produced by the algo-
rithm consists of two sets of routes, R1 and R2, where R1 contains the routes of
large vehicles in the first echelon and R2 contains the routes of the electric vehi-
cles in the second echelon. Each route t1 ∈ R1 starts from a central warehouse,
visits one or more satellites and returns to the same central warehouse. Each
route t2 ∈ R2 starts from a satellite, visits a number of locations v ∈ NRC and
returns to the same satellite. As an example, let vector I contain the complete
set of node indexes of an example problem instance with one central warehouse,
two satellites, three charging stations and five customers.

I = (0,
︸︷︷︸

central warehouse

1, 2,
︸ ︷︷ ︸

satellites

3, 4, 5,
︸ ︷︷ ︸

charging stations

6, 7, 8, 9, 10,
︸ ︷︷ ︸

customers

)

A solution S that contains one route in the first echelon (t11) and two routes in
the second echelon (t21 and t22) is represented as follows:

S = (R1, R2) where

{ }

R1 = t11 = {0 → 1 → 2 → 0}
{ }

R2 =
t21 = {1 → 7 → 3 → 6 → 1}

t22 = {2 → 9 → 8 → 5 → 10 → 2}

Set Covering Based Model. As described in Sect. 4.1, any solution produced
by the algorithm is kept in the form of two sets of routes. Similarly, a sub-
instance C = (C1, C2) in the context of our Adapt-CMSA algorithm consist of
two sets, C1 and C2, containing those routes that were previously generated by
the probabilistic application of solution construction heuristics. For solving such
a sub-instance, in this study, we make use of the following set-covering-based
MILP model. Note that the other option would have been to use the MILP
model outlined in the previous section, with those arc variables fixed to zero
whose corresponding arcs do not form part of any of the solutions that were
merged into the sub-instance.

Given a sub-instance C = (C1, C2), each route rk ∈ Ck is associated with a
distance, resp. cost, value dkr . Moreover, ld2sr and lp2sr represent the total delivery
and pickup loads of the route r ∈ C2 serving from satellite s ∈ NS . As described
in Sect. 2, D1

s and P 1
s refer to delivery and pickup demands of the respective

satellite. Parameter a1
sr is set to value one if satellite s is traversed by route r,

and 0 otherwise. Moreover, parameter a2
ir is set to value one if customer i is

Application of Adapt-CMSA to the 2E-EVRP SPD 23

visited by route r, and 0 otherwise. The binary decision variable xk
r takes value

one if the route in the k-th echelon is selected, value zero otherwise. Moreover,
dpsr and ppsr refer to the amount of goods delivered to the satellite s by the
route r. The set-covering-based model can then be stated as follows.

Min
∑

r∈C1

d1
r ∗ x1

r +
∑

r∈C2

d2
r ∗ x2

r +
∑

r∈C1

clv ∗ x1
r +

∑

r∈C2

cev ∗ x2
r (28)

s.t.
∑

r∈C2

ld2
sr = D1

s ∀s ∈ Ns (29)

∑

r∈C2

lp2
sr = P 1

s ∀s ∈ Ns (30)

∑

r∈C1

pdsr ∗ a1
sr = D1

s ∀s ∈ Ns (31)

∑

r∈C1

ppsr ∗ a1
sr = P 1

s ∀s ∈ Ns (32)

∑

s∈NS

pdsr ≤ Q1 ∗ x1
r ∀r ∈ C1 (33)

∑

r∈C1

ppsr ≤ Q1 ∗ x1
r ∀r ∈ C1 (34)

∑

r∈C2

a2
ir ∗ x2

r >= 1 ∀i ∈ V (35)

x1
r1 , x2

r2 ∈ 0, 1 ∀r1 ∈ C1, r2 ∈ C2, k ∈ {1, 2} (36)

pdsr, ppsr ≥ 0 ∀s ∈ NS , r ∈ C1 (37)

The objective function minimizes the sum of the total distance travelled and
vehicle costs. Constraints (29) and (30) determine each satellite’s delivery and
pickup demands. Constraints (31) and (32) ensure that partial deliveries are
allowed in the first echelon in case the delivery or pickup demand of the relevant
satellite exceeds the capacity of a large vehicle. Constraints (33) and (34) guar-
antee that the total delivery and pickup load in large vehicles can not exceed
the vehicle capacity. Constraint (35) ensures that each customer must be visited
at least once. Finally, constraints (36) and (37) control variable domains.

The Adapt-CMSA Algorithm. Algorithm 1 shows the pseudo-code of our
Adapt-CMSA algorithm for the 2E-EVRP-SPD. First, the best-so-far solution
Sbsf is initialized as an empty solution. Then, parameters αbsf , na and lsize are
initialized in lines 4 and 5. The handling of these parameters will be described
in detail below.

At each iteration, Adapt-CMSA builds a sub-instance C of the original prob-
lem instance as follows. First, C is initialized to the best-so-far solution Sbsf .
Then, a number of na solutions are probabilistically constructed in lines 8–12.
The function for the construction of a solution, ProbabilisticSolutionConstruc-
tion(Sbsf , αbsf , lsize), receives—apart from the best-so-far-solution Sbsf—two

24 M. A. Akbay et al.

Algorithm 1. Adapt-CMSA for the 2E-EVRP-SPD
1: input 1: values for CMSA parameters tprop, tILP

2: input 2: values for solution construction parameters αLB, αUB, αred

3: Sbsf := ∅
4: αbsf := αUB

5: Initialize(na, lsize)
6: while CPU time limit not reached do
7: C := Sbsf

8: for i := 1, . . . , na do
9: S := ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize)

10: LocalSearch1(S)
11: C := Merge(C, S)
12: end for
13: (Scplex, tsolve) := SolveSubinstance(C, tILP) {This function returns two objects:

(1) the obtained solution (Scplex), (2) the required computation time (tsolve)}
14: RemoveDuplicates(Scplex)
15: LocalSearch2(Scplex)
16: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if
17: if f(Scplex) < f(Sbsf) then
18: Sbsf := Scplex

19: Initialize(na, lsize)
20: else
21: if f(Scplex) > f(Sbsf) then
22: if na = ninit then αbsf := min{αbsf + αred

10
, αUB} else Initialize(na, lsize)

end if
23: else
24: Increment(na, lsize)
25: end if
26: end if
27: end while
28: output: Sbsf

parameters as input. Here, parameter αbsf (where 0 ≤ αbsf < 1) is used to
bias the construction of new solutions towards the best-so-far solution Sbsf .
More specifically, the similarity between the constructed solutions and Sbsf will
increase with a growing value of αbsf . Parameter lsize controls the number of
considered options at each solution construction step. A higher value of lsize
results in more diverse solutions which, in turn, leads to a larger sub-instance.
After the construction of a solution S (line 9), a local search is applied to each
route t2 ∈ R2, see line 10. Well-known intra-route operators such as, relocation,
swap and two opt are sequentially utilized to improve each route. Each opera-
tor uses the best-improvement strategy. The relocation operator removes each
customer from its current position and inserts it into a different position in the
same route. The swap neighbourhood considers changing the positions of two
selected nodes of the same route. Finally, the two opt neighbourhood considers
all possibilities of selecting two non-consecutive nodes in the same route and
reversing the node sequence between the two selected nodes.

Application of Adapt-CMSA to the 2E-EVRP SPD 25

After the application of local search, the so-called merge step is performed
in function Merge(C,S). In particular, every route from S1 is added to C1 and
every route from S2 is added to C2. After probabilistically constructing na solu-
tions and merging them to form the sub-instance C, the sub-instance is solved
with CPLEX, which is precisely done in function SolveSubinstance(C, tILP); see
line 13. Hereby, tILP is the CPU time limit for the application of CPLEX, which
is applied to the set-covering model from Sect. 3. Note that the output Scplex of
function SolveSubinstance(C, tILP) is—due to the computation time limit—not
necessarily an optimal solution to the sub-instance. Since the set-covering-based
model potentially allows customers to be visited more than once, Scplex may con-
tain some of the customers in multiple routes. In that case, redundant customers
are removed using function RemoveDuplicates(Scplex), see line 14. This function
first determines all redundant customers and calculates the distance between the
respective customer and the two adjacent nodes. Then, it removes all redundant
customers starting from the one with the highest distance value until all cus-
tomers only appear in exactly one route. Subsequently, a local search procedure
is applied to Scplex using inter-route neighbourhood operators exchange (1,1)
and shift (1,0). The exchange (1,1) neighbourhood considers all exchanges of
two customers not in the same route. The shift (1,0) neighbourhood looks at
all possibilities of removing a customer from its current route and inserting it
at any position in the other routes. Both operators are applied based on the
best-improvement strategy.

The self-adaptive aspect of Adapt-CMSA is to be found in the dynamic
change of parameters αbsf , na and lsize. In the first place, we will describe the
adaptation of parameter αbsf . First of all, Adapt-CMSA requires a lower bound
αLB and an upper bound αUB for the value of αbsf as input. In addition, the
step size αred for the reduction of αbsf must also be given as input. Adapt-
CMSA starts by setting αbsf to the highest possible value αUB; see line 4.3 In
case the resulting MILP can be solved in a computation time tsolve which is
below a proportion tprop of the maximally possible computation time tILP, the
value of αbsf is reduced by αred; see line 22. The rationale behind this step
is as follows. In case the resulting MILP can easily be solved to optimality,
the search space is too small, caused by a rather low number of routes in C1

and C2. In order to increase the size of the MILP, the solutions constructed
in ProbabilisticSolutionConstruction(Sbsf , αbsf , lsize, drate, hrate) should be more
different to Sbsf , which can be achieved by reducing the value of αbsf .

The adaptation of parameters na and lsize is done in a similar way and
with a similar purpose. These parameters are set to their initial values, that
is, na := ninit and lsize := linitsize in function Initialize(na, lsize), which is called at
three different occasions: (1) at the start of the algorithm (line 5), (2) whenever
solution Scplex is strictly better than Sbsf (line 19), and (3) whenever solution
Scplex is strictly worse than Sbsf and, at the same time, na > ninit (line 22). On
the other side, in those cases in which Scplex and Sbsf are of the same quality,

3 Remember that solutions constructed with a high value of αbsf will be rather similar
to Sbsf .

26 M. A. Akbay et al.

the algorithm can afford to generate larger sub-instances and therefore, the val-
ues of the two parameters are incremented in function Increment(na, lsize). More
specifically, na is incremented by ninc and lsize is incremented by lincsize.

Solution Construction. When function ProbabilisticSolutionConstruction(Sbsf ,
αbsf , lsize) is called, one of two heuristics is randomly selected for solution con-
struction. The first one is our version of the C&W savings algorithm [9], while
the second one is our insertion algorithm. In the following, both construction
algorithms are described in detail.

1. Probabilistic Clark & Wright (C&W) Savings Algorithm. Our proba-
bilistic version of the C&W savings algorithm starts by assigning each customer
either to the nearest satellite or to the satellite to which is assigned in Sbsf . After
the assignment, set Ns

C ⊆ NC contains all customers assigned to satellite s, for
all s ∈ NS . Then, the following C&W savings procedure is applied concerning
each satellite s ∈ NS . First, a set of direct routes R2 = {(s − i − s) | i ∈ Ns

C}
is created. Subsequently, a savings list L that contains all possible pairs (i, j) of
nodes (customers and charging stations) together with their respective savings
value σij is generated. Hereby, σij is calculated as follows:

σij := d2si + d2sj − λd2ij + μ|d2si − d2sj | (38)

The so-called route shape parameter λ adjusts the selection priority based on
the distance between nodes i and j [27], while μ is used to scale the asymmetry
between nodes i and j [22]. Note that well-working values for these parameters
are obtained by parameter tuning which is presented in Sect. 5. Note also that the
savings list L contains, at all times, only those entries (i, j) such that (1) node i
and node j belong to different routes, and (2) both i and j are directly connected
to the satellite of their route. For executing the C&W savings algorithm, the
following list of steps is iterated until the savings list L is empty.

1. First, based on the current savings values of the entries in L, a new value qij
is calculated for each entry (i, j) ∈ L as follows:

qij :=

{

(σij + 1) · αbsf if Sbsf
ij = 1

(σij + 1) · (1 − αbsf) otherwise
(39)

Here, Sbsf
ij = 1 if node i and node j are successively visited in at least one

route of Sbsf , and 0 otherwise. The savings list L is then sorted according to
non-increasing values of qij . Finally, a reduced saving list Lr that contains
the first (maximally) lsize elements of the whole savings list is created.

2. Next, an entry (i, j) is chosen from Lr with respect to the following proba-
bilities:

p(ij) :=
qij

∑

(i′,j′) ∈Lr
qi′j′

∀ (i, j) ∈ Lr (40)

Note that, the higher the value of parameter αbsf ∈ [0, 1], the stronger is
the bias towards choosing arcs—that is, transitions from a customer i to a
customer j—that appear in the best-so-far solution Sbsf .

Application of Adapt-CMSA to the 2E-EVRP SPD 27

3. Then, the two routes corresponding to nodes i and j are merged. The four
possible cases for merging two routes are as follows:

Case1: t21 :< s-i-...-s > t22 :< s-j-...-s > rev(t21) − t22 t2m :< s-...-i-j...-s >
Case2: t21 :< s-i-...-s > t22 :< s-...-j-s > rev(t21) − rev(t22) tm :< s-...-i-j...-s >
Case3: t21 :< s-...-i-s > t22 :< s-j-...-s > t21 − t22 t2m :< s-...-i-j...-s >
Case4: t21 :< s-...-i-s > t22 :< s-...-j-s > t21 − rev(t22) t2m :< s-...-i-j...-s >

Based on the way in which nodes i and j are directly connected to a satellite,
one or both of the routes must be reversed in order to be able to connect nodes
i and j. In this context, note that the reversed version of a route t21 is denoted
by rev(t21). If the merged route t2m is infeasible in terms of vehicle capacity,
the merged route is eliminated and the respective pair of nodes is removed
from the savings list. A new candidate is selected following the procedure in
the previous step. If the merged route is battery infeasible, a charging station
is inserted into the infeasible route. The corresponding procedure determines
the first customer in the route at which the vehicle arrives with a negative
battery level and inserts the charging station between this customer and the
previous customer. For this purpose, the charging station that least increases
the route distance is selected and inserted between the respective nodes. If
this insertion is not feasible, the previous arcs are considered instead in the
same manner. In those cases in which the route is still infeasible after charg-
ing station insertion, it is eliminated, and the respective pair of nodes are
removed from the savings list. A new candidate is selected following the pro-
cedure described in the previous step. This procedure is repeated while the
savings list is not empty. After merging, some of the charging stations that
were previously added to the routes may become redundant. Those charging
stations are removed from the merged route.

4. The savings list L must be updated as described above.

After constructing the routes in the second echelon, the same procedure is
applied to construct routes for the large vehicles in the first echelon. The first
difference in the procedure for first echelon routes is that all aspects related to
batteries and charging stations are not considered. Second, a satellite is allowed
to be visited by multiple large vehicles in case the demand exceeds the vehicle’s
loading capacity.

2. Probabilistic Insertion Algorithm. This heuristic constructs a solution
by sequentially inserting each customer into the available routes until no unvis-
ited customer remains. Similar to the C&W savings algorithm, the algorithm
first constructs the routes for the second echelon. The first route is initialized
by inserting a randomly chosen customer between the satellite that is nearest to
this customer. Then, a cost list L formed by all unvisited customers and all pos-
sible insertion positions together with their respective cost values is generated.
The insertion cost of customer i between nodes j and k is calculated using the
following equation: c(j, i, k) = d2ji + d2ik − d2jk. Then, qij is calculated for each

28 M. A. Akbay et al.

entry (j, i, k) ∈ L as follows:

qjik :=

⎧

⎪
⎨

⎪
⎩

(c(j, i, k) + 1) · (1 − αbsf)(1 − αbsf) if Sbsf
ji = 1 and Sbsf

ik = 1
(c(j, i, k) + 1) · αbsf if Sbsf

ji = 0 and Sbsf
ik = 0

(c(j, i, k) + 1) · αbsf(1 − αbsf) otherwise
(41)

Next, an entry (j, i, k) is chosen from Lr with respect to the probabilities
calculated using Eq. (40). The customer is inserted into the respective position
if the vehicle capacity allows for this. Moreover, in case of battery infeasibil-
ity, a charging station is inserted into the route as explained above during the
description of the C&W savings algorithm. If the insertion leads to infeasibility
in terms of vehicle load capacity, a new tour is initialized with the respective
customer and the nearest satellite.

4 Experimental Evaluation

All experiments were performed on a cluster of machines with Intel R© Xeon R©

5670 CPUs with 12 cores of 2.933 GHz and a minimum of 32 GB RAM. CPLEX
version 20.1 was used in one-threaded mode within Adapt-CMSA for solving the
respective sub-instances and in standalone mode for solving the MILP models
representing the complete problem instances.

Problem Instances. A subset of the 2E-EVRP problem instances introduced
by [7] were used to test the performance of the proposed algorithm. In partic-
ular, from each category (small, medium, large) we chose one set of instances,
henceforth called Set1, Set2 and Set3. Instance characteristics are presented in
the first three columns of each result table. Since the original problem instances
only come with delivery demands, we had to modify them by adding pickup
demands. For this purpose, the delivery demand of each customer was separated
into delivery and pickup demands using the approach from [23]. The resulting
instances are provided at https://github.com/manilakbay/2E-EVRP-SPD.

Parameter Tuning. In order to find well-working parameter values for Adapt-
CMSA we utilized the scientific tuning software irace [21]. Instances 100-5-1,
100-5- 2b, 100-10-1, 100-10-2b, 200-10-1, and 200-10-2b were used for the
tuning process. Note that in the case of numerical parameters, the precision of
irace was fixed to two positions behind the comma. irace was applied with a
budget of 2000 algorithm applications. The time limit for each problem instance
was set to 900 CPU seconds. A summary of the parameters, their domains, and
values selected for the final experiments are provided in Table 2.

Computational Results. In the context of small problem instances, we
compare the performance of Adapt-CMSA with the standalone application of
CPLEX. As CPLEX is not applicable in a standalone manner to the large-
size problem instances, we compare Adapt-CMSA with our probabilistic C&W
savings algorithm (pC&W) and our probabilistic sequential insertion algorithm

https://github.com/manilakbay/2E-EVRP-SPD

Application of Adapt-CMSA to the 2E-EVRP SPD 29

Table 2. Parameters, their domains, and the chosen values as determined by irace.

Parameter Domain Value Description

λ [1, 2] 1.67 Route shape parameter (C&W algorithm)

μ [0, 1] 0.32 Asymmetry scaling (C&W algorithm)

linitsize {3, 5, 10, 15, 20} 15 Initial list size value

lincsize {1, 3, 5, 10, 20} 20 List size increment

ninit {100, 200, 300, 500, 1000} 1000 Initial nr. of constructed solutions

ninc {50, 100, 200, 300, 400, 500} 100 Increment for the nr. of constructed solutions

tILP {5, 10, 15, 20, 25} 20 CPLEX time limit (seconds)

αLB [0.6, 0.99] 0.77 Lower bound for αbsf

αUB [0.6, 0.99] 0.8 Upper bound for αbsf

αred [0.01, 0.1] 0.02 Step size reduction for αbsf

tprop [0.1, 0.8] 0.79 Control parameter for bias reduction

(pSI). The parameters of both algorithms were set in the same way as for their
application within Adapt-CMSA. Moreover, the same computation time limit
was used as for Adapt-CMSA, that is, both algorithms were repeatedly applied
until a computation time limit of 150 CPU seconds (small problem instances),
respectively 900 CPU seconds (large problem instances), was reached. Moreover,
Adapt-CMSA, pC&W and pSI were applied 10 times to each problem instance.
In order to make a fair comparison, after each application of pC&W and pSI,
LocalSearch1() and LocalSearch2() are sequentially applied in order to improve
the generated solutions. Finally, note that we fixed the cost of each large vehicle
used in a solution to 1500 and the cost of each electric vehicle used in a solution
to 1000.

The structure of the result tables is as follows. Instance names are given in
the first column. The subsequent block of three columns indicates the number of
satellites, the number of charging stations and the number of customers. Columns
‘nlv’ and ‘nev’ provide the number of large, respectively electric, vehicles utilized
by the respective solutions. In the case of Adapt-CMSA, pC&W and pSI these
numbers refer to the best solution found within 10 independent runs. In the case
of Adapt-CMSA, pC&W, and pSI, columns ‘best’ show the distance values of
the best solutions found in 10 runs, while additional columns with the heading
‘avg.’ provide the average distance values of the best solutions of each of the
10 runs. Next, columns with the heading ’time’ show the computation time (in
seconds) of CPLEX and the average computation times of Adapt-CMSA to find
the best solutions in each run. Note that the time limit for CPLEX was set
to 12 h. Finally, columns ‘gap(%)’ provide the gap (in percentage) between the
best-found solutions and the best lower bounds found by CPLEX. Note that, in
case the gap value is zero, CPLEX has found an optimal solution.

30 M. A. Akbay et al.

The following observations can be made. First, CPLEX was only able to
provide feasible solutions for nine out of 12 small and medium-sized problem
instances, without being able to prove optimality within the computation time
of 12 h; see Tables 3 and 4. For the remaining three small and medium-sized
instances, CPLEX could not even find a feasible solution. Adapt-CMSA could
find the same results provided by CPLEX for seven of these instances. In the case
of five instances, Adapt-CMSA was even able to improve the solutions obtained
by CPLEX, respectively was able to provide a solution in those cases in which
CPLEX failed to provide one. Moreover, the average computation time required
for Adapt-CMSA to find the best solution in each run is considerably lower than
the time required for CPLEX. More specifically, while CPLEX found its best
solutions on average in almost 12 h, Adapt-CMSA was able to do on average in
approx. 10 s for the small-sized instances. Concerning the large-sized instances,
see Table 5, Adapt-CMSA significantly outperforms both pC&W and pSI, both
in terms of best performance and average performance. Note that, even though
pC&W provides better distance value than Adapt-CMSA, this could be achieved
using more electric vehicles than the solution found by Adapt-CMSA.

Table 3. Computational results for small-sized instances - Set1.

Instances Characteristics CPLEX Adapt-CMSA

name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n22-k4-s6-17 2 4 21 2 3 5174 43076.7 12.8 2 3 5174 5174.0 2.1

n22-k4-s8-14 2 4 21 2 3 4870 7465.1 15.4 2 3 4870 4870.0 1.9

n22-k4-s9-19 2 4 21 2 3 4750 43070.1 8.2 2 3 4750 4750.0 3.1

n22-k4-s10-14 2 4 21 2 3 5442 43075.3 19.9 2 3 5442 5442.0 5.9

n22-k4-s11-12 2 4 21 2 3 5357 43019.9 34.8 2 3 5290 5318.8 9.9

n22-k4-s12-16 2 4 21 2 3 3691 43074.0 8.4 2 3 3691 3695.7 3.4

average - - - 2 3 4880.7 37130.2 16.6 2 3 4869.5 4875.1 4.4

Table 4. Computational results for medium-sized instances - Set2.

Instances Characteristics CPLEX Adapt-CMSA

name ns nr nc nlv nev best time gap(%) nlv nev best avg. time

n33-k4-s1-9 2 4 21 2 3 7506 19749.5 10.2 2 3 7479 7499.7 76.5

n33-k4-s2-13 2 4 21 2 3 7358 43058.1 12.2 2 3 7358 7365.9 68.7

n33-k4-s3-17 2 4 21 - - - - - 2 3 7538 7567.8 42.4

n33-k4-s4-5 2 4 21 - - - - - 2 3 7947 8122.5 14.9

n33-k4-s7-25 2 4 21 2 3 7880 43054.2 9.3 2 3 7880 7887.8 15.2

n33-k4-s14-22 2 4 21 - - - - - 2 3 8173 8173.0 17.7

average - - - - - - - - 2 3 7729.2 7769.5 39.2

Application of Adapt-CMSA to the 2E-EVRP SPD 31

Table 5. Computational results for large-sized instances - Set3.

Instances Characteristics pC&W pIns Adapt-CMSA

name ns nr nc nlv nev best avg. time nlv nev best avg. time nlv nev best avg. time

100-5-1 5 10 100 2 15 13402 13742.7 375.2 2 20 13895 14482.2 552.6 2 13 12428 13050.5 446.5

100-5-1b 5 10 100 2 8 10083 10592.4 534.6 2 9 10278 11024.3 472.2 2 6 9419 9727.6 336.8

100-5-2 5 10 100 2 17 8277 8663.4 582.2 2 20 8729 9153.4 426.5 2 16 7982 8161.3 639.1

100-5-2b 5 10 100 2 8 7173 7352.9 612.1 2 9 7076 7425.2 360.4 2 7 6689 7198.1 494.7

100-5-3 5 10 100 3 15 9480 9610.0 601.7 2 19 9422 10227.3 390.1 2 13 8487 9018.3 674.4

100-5-3b 5 10 100 2 15 8901 9607.7 419.3 2 20 9385 9942.1 367.5 2 13 8581 8984.0 512.1

100-10-1 10 11 100 2 20 9936 10038.1 632.6 2 22 10188 10631.0 421.8 2 16 9767 10176.8 364.4

100-10-1b 10 11 100 2 9 9268 9344.9 456.0 2 10 9252 9593.9 547.9 2 7 8745 9013.6 502.9

100-10-2 10 11 100 2 18 8491 8610.5 560.5 2 20 9218 9380.2 461.3 2 15 8036 8450.4 476.0

100-10-2b 10 11 100 2 9 7769 8000.9 587.6 2 9 7907 8365.5 419.4 2 7 7106 7335.7 377.7

100-10-3 10 11 100 2 18 8620 8734.0 641.3 2 19 9163 9419.2 269.7 2 13 8803 9038.8 354.1

100-10-3b 10 11 100 2 11 7821 7828.6 276.3 2 8 8189 8433.4 661.6 2 7 7501 7713.9 559.0

200-10-1 10 20 200 2 36 13674 14020.8 612.2 2 46 14458 14902.1 396.3 2 31 13622 14013.9 771.8

200-10-1b 10 20 200 2 18 11356 11699.2 354.8 2 21 11661 12086.5 485.1 2 14 10977 11529.5 777.2

200-10-2 10 20 200 2 34 10718 11037.1 625.9 2 48 12151 12296.5 316.8 2 31 10816 11452.6 698.0

200-10-2b 10 20 200 2 17 8773 8922.9 683.6 2 22 9574 9992.5 478.0 2 15 9110 9501.6 745.9

200-10-3 10 20 200 2 33 14494 14689.4 441.2 2 46 15357 15836.1 299.7 2 29 13869 14247.3 840.9

200-10-3b 10 20 200 2 18 10922 11170.3 472.1 2 22 11357 11785.8 479.5 2 13 9943 10301.8 770.0

average - - - 2.1 17.7 9953.2 10203.7 526.1 2.0 21.7 10403.3 10832.1 433.7 2.0 14.8 9548.9 9939.8 574.5

5 Conclusion and Outlook

This study described the application of a self-adaptive version of the hybrid
metaheuristic Adapt-CMSA to the two-echelon electric vehicle routing problem
with simultaneous pickup and deliveries. At each iteration, the algorithm first
creates a sub-instance of the considered problem instance by merging the best-
so-far solution with a number of solutions probabilistically generated using two
different solution construction mechanisms, a C&W savings heuristic, and an
insertion heuristic. The resulting sub-instance is then solved by the application
of the MILP solver CPLEX. Preliminary computational experiments showed that
making use of the classical MILP model for the purpose of solving sub-instances
was not feasible. Therefore, a set-covering-based model was used and solved
with CPLEX. Computational experiments were performed on 12 small- and
medium-sized problem instances and on 18 large-sized instances. The proposed
approach was evaluated and compared to CPLEX in the context of the small-
and medium-sized problem instances, and to probabilistic versions of the C&W
savings heuristic and the insertion heuristic for large-sized instances. Numerical
results indicated that Adapt-CMSA exhibits superior performance for problem
instances of all size ranges. In the future, we aim to deepen the analysis of the
algorithm on a wider set of instances.

Acknowledgements. This paper was supported by grants TED2021-129319B-I00
and PID2019-104156GB-I00 funded by MCIN/AEI/10.13039/501100011033. Moreover,
M.A. Akbay and C.B. Kalayci received support from the Technological Research Coun-
cil of Turkey (TUBITAK) under grant number 119M236. The corresponding author
was funded by the Ministry of National Education, Turkey (Scholarship Prog.: YLYS-
2019).

32 M. A. Akbay et al.

References

1. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of cmsa to the electric vehicle
routing problem with time windows, simultaneous pickup and deliveries, and par-
tial vehicle charging. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds.)
Metaheuristics. MIC 2022. LNCS, vol. 13838, pp. 1–16. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-26504-4 1

2. Akbay, M.A., Kalayci, C.B., Blum, C., Polat, O.: Variable neighborhood search
for the two-echelon electric vehicle routing problem with time windows. Appl. Sci.
12(3), 1014 (2022)

3. Akbay, M.A., López Serrano, A., Blum, C.: A self-adaptive variant of CMSA:
application to the minimum positive influence dominating set problem. Int. J.
Comput. Intell. Syst. 15(1), 1–13 (2022)

4. Arora, D., Maini, P., Pinacho-Davidson, P., Blum, C.: Route planning for coop-
erative air-ground robots with fuel constraints: an approach based on CMSA. In:
Proceedings of GECCO 2019 - Genetic and Evolutionary Computation Conference,
pp. 207–214. Association for Computing Machinery, New York, NY, USA (2019)

5. Asghari, M., Al-e Hashem, S.M.J.M.: Green vehicle routing problem: a state-of-
the-art review. Int. J. Prod. Econ. 231, 107899 (2021)

6. Blum, C., Pinacho Davidson, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge,
solve & adapt: a new general algorithm for combinatorial optimization. Comput.
Oper. Res. 68, 75–88 (2016)

7. Breunig, U., Baldacci, R., Hartl, R.F., Vidal, T.: The electric two-echelon vehicle
routing problem. Comput. Oper. Res. 103, 198–210 (2019)

8. Cao, S., Liao, W., Huang, Y.: Heterogeneous fleet recyclables collection routing
optimization in a two-echelon collaborative reverse logistics network from circular
economic and environmental perspective. Sci. Total Environ. 758, 144062 (2021)

9. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964)

10. Conrad, R.G., Figliozzi, M.A.: The recharging vehicle routing problem. In: Pro-
ceedings of the 2011 Industrial Engineering Research Conference, p. 8. IISE Nor-
cross, GA (2011)

11. Crainic, T.G., Ricciardi, N., Storchi, G.: Advanced freight transportation systems
for congested urban areas. Transp. Res. Part C Emerg. Technol. 12(2), 119–137
(2004)

12. Crainic, T.G., Ricciardi, N., Storchi, G.: Models for evaluating and planning city
logistics systems. Transp. Sci. 43(4), 432–454 (2009)

13. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1),
80–91 (1959)

14. Dethloff, J.: Vehicle routing and reverse logistics: the vehicle routing problem with
simultaneous delivery and pick-up. OR-Spektrum 23(1), 79–96 (2001)

15. Dupin, N., Talbi, E.G.: Matheuristics to optimize refueling and maintenance plan-
ning of nuclear power plants. Journal of Heuristics 27(1), 63–105 (2021)

16. Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic
review. Comput. Indus. Eng. 57(4), 1472–1483 (2009)

17. Jie, W., Yang, J., Zhang, M., Huang, Y.: The two-echelon capacitated electric
vehicle routing problem with battery swapping stations: formulation and efficient
methodology. Eur. J. Oper. Res. 272(3), 879–904 (2019)

18. Koç, Ç., Laporte, G., Tükenmez, İ: A review of vehicle routing with simultaneous
pickup and delivery. Comput. Oper. Res. 122, 104987 (2020)

https://doi.org/10.1007/978-3-031-26504-4_1

Application of Adapt-CMSA to the 2E-EVRP SPD 33

19. Kucukoglu, I., Dewil, R., Cattrysse, D.: The electric vehicle routing problem and
its variations: a literature review. Comput. Indus. Eng. 161, 107650 (2021)

20. Lellis, C.: These 21 companies are switching to electric vehicle fleets (2021).
https://www.perillon.com/blog/21-companies-switching-to-electric-vehicle-fleets

21. López-Ibánez, M., et al.: The irace package: iterated racing for automatic algorithm
configuration. Oper. Res. Perspect. 3, 43–58 (2016)

22. Paessens, H.: The savings algorithm for the vehicle routing problem. Eur. J. Oper.
Res. 34(3), 336–344 (1988)

23. Salhi, S., Nagy, G.: A cluster insertion heuristic for single and multiple depot
vehicle routing problems with backhauling. J. Oper. Res. Soc 50(10), 1034–1042
(1999)

24. Sluijk, N., Florio, A.M., Kinable, J., Dellaert, N., Van Woensel, T.: Two-echelon
vehicle routing problems: a literature review. Eur. J. Oper. Res. (2022)

25. Wang, D., Zhou, H.: A two-echelon electric vehicle routing problem with time
windows and battery swapping stations. Appl. Sci. 11(22), 10779 (2021)

26. Wu, Z., Zhang, J.: A branch-and-price algorithm for two-echelon electric vehicle
routing problem. Complex Intell. Syst. 1–16 (2021)

27. Yellow, P.: A computational modification to the savings method of vehicle schedul-
ing. J. Oper. Res. Soc. 21(2), 281–283 (1970)

28. Yilmaz, Y., Kalayci, C.B.: Variable neighborhood search algorithms to solve the
electric vehicle routing problem with simultaneous pickup and delivery. Mathemat-
ics 10(17), 3108 (2022)

https://www.perillon.com/blog/21-companies-switching-to-electric-vehicle-fleets

Real-World Vehicle Routing Using
Adaptive Large Neighborhood Search

Vojtěch Sassmann1, Hana Rudová1(B) , Michal Gabonnay2,
and Václav Sobotka1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
hanka@fi.muni.cz

2 Wereldo.com, Brno, Czech Republic

Abstract. Our work addresses a real-world freight transportation prob-
lem with a broad set of characteristics. We build upon the classical work
of Ropke and Pisinger [10] and propose an effective realization of the
adaptive large neighborhood search (ALNS) with constant time com-
plexity for a large portion of frequent steps in insertion and removal
heuristics at the cost of additional pre-calculations. Our minimization
process handles different objectives with cost models of heterogeneous
vehicles. We demonstrate the generic applicability of the proposed solver
on various vehicle routing problems. With the help of the standard Li
& Lim benchmarks [6] for pickup and delivery with time windows, we
show its capabilities compared to the best-found solutions and the origi-
nal ALNS. Experiments on real-world delivery routing problems provide
a comparison with the original implementation by the company Wereldo
in OR-Tools [8], where we achieve significant cost savings, faster runtime,
and memory savings by order of magnitude. Performance on large-scale
real-world instances with more than 300 vehicles and 1,200 pickup and
delivery requests is also presented, achieving less than an hour runtimes.

Keywords: Vehicle routing problem · Pickup and delivery with time
windows · Adaptive large neighborhood search · Freight transportation

1 Introduction

With today’s scale, freight transportation presents a broad field of study for
research [13]. The vehicle routing problem (VRP) and its numerous variants can
be used to formalize real-world transportation problems. State-of-the-art clas-
sification and taxonomic review of VRP can be found in [1,3,11]. The specific
reviews [4,9] classifies VRP and its variants based on the used metaheuristics.
Among them, the adaptive large neighborhood search (ALNS) [10] belongs to
common metaheuristics applied to routing problems. Even though its adaptive-
ness was not found to be crucial for the improvement [12], we will demonstrate
its generic application on complex and large-scale routing problems, which can
have very different characteristics.

The problems we consider have heterogeneous fleets as it is the case for
many other works reviewed in [5]. We will work with pickup and delivery with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 34–49, 2023.
https://doi.org/10.1007/978-3-031-30035-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_3&domain=pdf
http://orcid.org/0000-0002-6410-4250
http://orcid.org/0000-0001-5078-4040
https://doi.org/10.1007/978-3-031-30035-6_3

Real-World Vehicle Routing Using ALNS 35

time windows (PDPTW), where each request includes the service of pickup and
delivery locations, which may have multiple time windows. As usual, requests
have their capacities, and we need to consider both volume in the number of
pallets and weight. Time constraints are also represented by the necessary service
time at each physical location and the maximal route duration constraint. The
maximal number of physical locations per route is constrained as well. Finally,
we have multiple depots available [7]. Altogether, our problems combine multiple
constraints, as is common in rich VRPs [2].

Let us now summarize the specific contributions of this work.

– We describe the formal model of our problem as an extension of [10] with a
unique combination of real-world constraints and objectives.

– We extend ALNS to handle minimization with real-world objectives and pro-
pose an efficient realization of its insertion and removal heuristics. It allows
for a constant time complexity for many frequent operations instead of the
linear one wrt. to the length of the route. To achieve that, we have identified
crucial information to store and pre-calculate.

– We verify our implementation on the standard Li & Lim [6] benchmarks to
compare it with the best so-found results and with the original ALNS.

– We compare our solver with implementation in OR-Tools [8] provided by the
company Wereldo and demonstrate significant improvement in the solution’s
costs, faster computation, and memory savings by order of magnitude.

– We demonstrate the efficiency of our solver on a large scale real-world problem
with more than 300 vehicles and 1,200 pickup and delivery requests, where
results were computed within less than an hour.

Overall, we have proposed and implemented a generic algorithm capable of solv-
ing a broad family of routing problems. We are glad to see that the Wereldo
company nowadays uses the described solver for their everyday operation and
specific case studies.

2 Mathematical Model

In this section, we describe the formal mathematical model of the PDPTW
variant as an extension of the model described by Ropke and Pisinger [10].

We consider n requests and m vehicles. We denote the pickup nodes by P ,
where P = {1, ..., n} and the delivery nodes by D, where D = {n + 1, ..., 2n}.
Request i is represented by a pickup node i and a delivery node i+n, i.e., there are
2n tasks to be serviced. We denote the set of all vehicles by K, where |K| = m.
We also denote the set of all pickup and delivery nodes by N (N = P ∪D). This
set represents all locations that have to be visited. For each vehicle k (k ∈ K)
we consider its starting terminal τk (τk = 2n + k) and its ending terminal τ ′

k

(τ ′
k = 2n+m+k). In practice, the ending and starting terminals can represent the

same location. In our model, we define them separately to distinguish between
the start and end of vehicles. For each pickup or delivery node i (i ∈ N), we
consider a service time si needed at each location to load or unload the goods.

36 V. Sassmann et al.

Each vehicle can have different pricing. For each vehicle k, we define its
minimum price Cmin

k , the price per kilometer when the vehicle is empty Cempty
k ,

and the price per kilometer when the vehicle is fully loaded Cfull
k . If the vehicle is

partially loaded, the price per kilometer is calculated from the Cempty
k and Cfull

k

values based on the vehicle’s current load. For each vehicle k, we also define its
maximum route duration Fk and the maximum number of trips Wk (different
physical locations on the route), where Wk ≥ 3, so each vehicle can carry at
least one of the requests. There can be at most three trips for a vehicle with a
single request: start-pickup, pickup-delivery, and delivery-end.

Each pickup and delivery can have a different number of possible time win-
dows. We define ρi (ρi > 0) for each node i as the number of its time windows.
Then we define the time windows TWi for each location where TWi = {[air, bir] |
r ∈ {1, ..., ρi}}. air and bir are the earliest and latest possible times, respectively.

For each request, we consider its weight and volume. Therefore, for each
location i, we define the differences of weight li and the volume hi after serving
the location i. These amounts must be positive numbers for all pickup locations
and negative for all delivery locations. For each pickup i and its delivery i + n
it has to be true that li = −li+n and hi = −hi+n. This ensures that the amount
of loaded goods equals the amount of unloaded goods. Each vehicle k ∈ K has
its weight limit Qk and a volume limit Uk.

We define a graph with all locations by G = (V,A). Where V = N ∪
{τ1, ..., τm} ∪ {τ ′

1, ..., τ
′
m} and A = V × V . This graph represents all locations

from our problem, the pickup and delivery locations, and the starting and end-
ing terminals. For each vehicle k, we define a subgraph Gk = (Vk, Ak) where
Vk = N ∪ {τk} ∪ {τ ′

k} and Ak = Vk × Vk. Each subgraph Gk contains only the
depot of the vehicle k (G contains all depots). For each arc (i, j) ∈ A we consider
its distance dij (dij ≥ 0) and its travel time tij (tij ≥ 0).

We use five decision variables. A binary variable xijk where i, j ∈ V and
k ∈ K. This variable has a value one if the arc (i, j) is used by a vehicle k
and zero otherwise. Sik (i ∈ V, k ∈ K) is a variable that indicates when the
vehicle k arrives at the location i. Lik (i ∈ V, k ∈ K) is a non-negative integer
that indicates the total weight of the goods loaded on the vehicle k after servicing
the node i. Hik (i ∈ V, k ∈ K) is a non-negative integer that indicates the total
volume of the goods loaded on the vehicle k after servicing the node i. Sik,
Lik, and Hik are only well-defined when the vehicle k visits the location i. zi

(i ∈ P) is a binary variable that indicates if request i is placed in the request
bank. The variable is one if the request is placed in the bank and zero otherwise.
The request bank is used during the solution process to handle requests not yet
assigned to any vehicle.

The total price Ck of vehicle k is defined as

Ck = max(Cmin
k ,

∑

(i,j)∈A

xijkdij(C
empty
k + (Cfull

k − Cempty
k)

Lik

Qk
) . (1)

The objective function minimizes the weighted sum of the prices of all used
vehicles and the number of requests that are not scheduled, i.e., they are kept

Real-World Vehicle Routing Using ALNS 37

in the request bank. Parameters α and β are used to adjust these weights.

α
∑

k∈K

Ck + β
∑

i∈P

zi . (2)

To ensure that each request is either delivered by a single vehicle or that it
is placed in the request bank, we define a constraint

∑

k∈K

∑

j∈N

xijk + zi = 1 ∀i ∈ P . (3)

If a request is not placed in the bank, its pickup i and delivery n+ i have to
be performed by the same vehicle k. This constraint is defined as

∑

j∈Vk

xijk −
∑

j∈Vk

xj,n+i,k = 0 ∀k ∈ K,∀i ∈ P . (4)

Constraints (5)–(7) together ensures that a correct path from τk to τ ′
k is con-

structed for each vehicle k. Each vehicle k has to start its route in its starting
location τk (5). Also, each vehicle k has to end its route in its ending loca-
tion τ ′

k (6). If a vehicle k visits some location j, except for a depot, the vehicle
must also leave this location (7).

∑

j∈P∪{τ ′
k}

xτk,j,k = 1 ∀k ∈ K , (5)

∑

i∈D∪{τk}
xi,τ ′

k,k = 1 ∀k ∈ K , (6)

∑

i∈Vk

xijk −
∑

i∈Vk

xjik = 0 ∀k ∈ K,∀j ∈ N . (7)

If a vehicle k arrives at a location i at Sik, it has to have enough time to load
or unload the goods and travel to the next location j before Sjk. However, we
want to consider the service time only if the vehicle had to take a trip from i to
j. The physical locations of i and j might be the same. In this case, the service
time is not needed between i and j. This is ensured by

xijk = 1 =⇒ Sik + si · sgn(dij) + tij ≤ Sjk ∀k ∈ K,∀(i, j) ∈ Ak (8)

where sgn function is used to include/exclude values from the sum when the
distance is (non)zero.

The time windows must be kept. For each vehicle k and each of its visited
locations i, the time of arrival Sik has to be from one of its intervals [air, bir].

air ≤ Sik ≤ bir ∀k ∈ K,∀i ∈ Vk,∃r ∈ {1, ..., ρi} . (9)

For each pickup i, its corresponding delivery n+ i has to be performed after
the pickup. This is ensured by

Sik ≤ Sn+i,k ∀k ∈ K,∀i ∈ P . (10)

38 V. Sassmann et al.

The volume and weight load variables Lik and Hik are set by constraints (11)
and (12). The vehicle’s weight and volume limits Qk and Uk are obeyed using
the constraints (13) and (14).

xijk = 1 =⇒ Hik + hj ≤ Hjk ∀k ∈ K,∀(i, j) ∈ Ak , (11)
xijk = 1 =⇒ Lik + lj ≤ Ljk ∀k ∈ K,∀(i, j) ∈ Ak , (12)

Lik ≤ Qk ∀k ∈ K,∀i ∈ Vk , (13)
Hik ≤ Uk ∀k ∈ K,∀i ∈ Vk . (14)

We have to ensure that each vehicle k starts and ends empty.

Lτkk = Lτ ′
kk = 0 ∀k ∈ K . (15)

We must ensure that all of the maximum route duration constraints Fk and
the maximum number of trips Wk are obeyed (sgn function again allows to
include/exclude values when the distance is (non)zero).

Sτ ′
k,k − Sτk,k ≤ Fk ∀k ∈ K , (16)

∑

i∈N∪{τk}

∑

j∈N∪{τ ′
k}

xij · sgn(dij) ≤ Wk ∀k ∈ K . (17)

Finally, we have to set the domains of the used decision variables.

xijk ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ Ak , (18)
zi ∈ {0, 1} ∀i ∈ P , (19)

Sik ≥ 0 ∀k ∈ K,∀i ∈ Vk , (20)
Qk ≥ Lik ≥ 0 ∀k ∈ K,∀i ∈ Vk , (21)
Uk ≥ Hik ≥ 0 ∀k ∈ K,∀i ∈ Vk . (22)

3 Our Approach
Our approach uses the adaptive large neighborhood search (ALNS) algorithm
based on Ropke and Pisinger [10] (see page 6). In the beginning, we generate an
initial solution formerSolution, or it can be a solution obtained in an earlier run
(Line 2). The current solution s′ is iteratively modified by rearranging requests.
We decide which neighborhood to search by selecting one removal (Line 6) and
one insertion heuristics (Line 7) using a standard adaptive heuristic selection
mechanism. The worst removal, Shaw removal, and random removal are com-
plemented by the greedy insertion and regret insertions heuristics [10]. In each
iteration, a random number of q requests to remove (Line 8) is generated as
in [10]. If it is impossible to insert some of the removed requests (Line 9), these
requests are stored in a request bank in the new solution s′. In the reinsertion
process, requests from the request bank are also reinserted, if possible. At the
end of each iteration, we check if we have found a new best solution (Line 10).
Acceptance of the new modified solution (Line 12) is decided by the simulated
annealing combined with the heuristics with noisy objective function from [10].

Real-World Vehicle Routing Using ALNS 39

1 function ALNS(formerSolution):
2 s ← formerSolution
3 sbest ← formerSolution
4 while not reached max iteration do
5 s′ ← s
6 hr ← choose removal heuristic
7 hi ← choose insertion heuristic
8 remove q requests from s′ using hr

9 reinsert unassigned requests to s′ using hi

10 if f(s′) < f(sbest) then
11 sbest ← s′

12 if accept(s′, s) then
13 s ← s′

14 end
15 return sbest

3.1 Two-Stage Minimization

To minimize the total vehicle price, we run the ALNS in two stages. In the first
stage, we set all of the vehicle’s minimum prices Cmin

k to zero. This encourages
the ALNS to put some of the requests into the larger, more expensive vehicles.
For each vehicle, we also set its Cfull

k = Cempty
k . This is again to achieve greater

diversification during the first stage. We take the best solution from the first
stage and use it as a former solution in the second stage. In this stage, we use all
prices with their original values. Note that for problems without the minimum
price Cmin

k component, running the ALNS in one stage is sufficient.
This approach was inspired by a similar two-stage approach from [10]. We

keep the same approach when solving problems with the standard lexicographic
objective aiming to minimize the number of vehicles first and the distances next.
In the first stage, the whole fleet is available for the ALNS initially. The search
terminates as soon as it finds a feasible solution. In the next ALNS run, one of
the used vehicles is removed, and the search is repeated. We repeat the ALNS
until a feasible solution with the given number of vehicles is not found (within
the iteration limit for the whole first stage). In the second stage of the algorithm,
we run the regular ALNS where the former solution is the best feasible solution
with the minimum number of vehicles used.

3.2 Insertion Optimization

To build upon the work [10], we propose various methods which allow processing
insertions (this section) and removals (next section) effectively. The most time-
consuming operation during insertions is finding the best position for a request
in a route. Also, this operation is the most time-consuming for the whole solver.

When trying to find the best request position for each route, we must find the
best position for the pickup and delivery in the route’s actions. A series of actions

40 V. Sassmann et al.

represent each route. Each action represents one location i ∈ N . No two actions
can represent the same location since each location should be served by exactly
one vehicle (however, they can represent the same physical location). Suppose
we have a route with y actions. After adding the new request, the number of
actions will increase by two. This new request is represented by a new pickup
action ηp and a new delivery action ηd. The possible positions κp for the pickup
action ηp can be from the interval [0, y]. With such selected pickup position κp,
the possible delivery action ηd has a position κd from interval [κp +1, y+1]. An
example of such a new route with positions from 0 to 7 is (η0, ηp, η1, η2, ηd, η3,
η4, η5) where κp = 1 and κd = 4. Actions η0, ..., η5 are already present in the
route. ηp and ηd are the new pickup and delivery actions.

With these possible combinations of κp and κd, we have to verify that such
route satisfies all of the constraints defined in Sect. 2. We also need to calculate
the price of the extended route such that we can compute the insertion cost. This
is performed in this given order: (1) validation of capacities (weight + volume),
(2) validation of the maximum number of trips, (3) validation of time constraints,
and (4) calculation of the cost. If any of these validation fails, the following
operations are skipped. This order is essential as the first two validations are
the fastest, and the cost should be calculated only for valid routes. The process
of validations 1–3 is described next. The cost of the solution is computed by
iterating over the whole route since it was not identified as a crucial bottleneck.

Validation of Capacities. In Eqn. 11 and 12, we have defined constraints for
vehicles’ weight and volume capacities. Both constraints can be handled using
the same validation mechanism which we demonstrate on the weight. When we
add a new request at positions κp and κd, we have to check that the vehicle’s
capacity is not overreached. We have to check this at the κp position and all other
positions between κp and κd. Actions before κp and after κd are not affected in
terms of capacity and do not need to be checked.

The number of actions that need to be checked is linear in terms of the route’s
length. However, with some pre-calculation, it can be done in a constant time.
We keep several values for all actions ηe, where e ∈ {0, ..., y − 1} and y is the
route’s length) for all routes. First, we calculate for each action ηe its weight
reserve Δq

e. This value represents the difference in the vehicle’s weight capacity
and the weight of loaded goods after performing the given action. An example
of a route with its weight reserves is shown in Table 1 (left).

Then, for each action ηe, we keep a list of values νe,j where j ∈ {e, ..., y − 1}.
This list represents the minimum weight reserve of actions from interval 〈e, j〉,
i.e., νe,j = min{Δq

e, . . . ,Δ
q
j}. Note that for each action ηe, we keep a different

number of the νe,j values. The action at the start of the route has the maximum
number of such values equal to the route’s length. The last action has only one
value for itself. An example of these calculated values is shown in Table 1 (right)
for the route on the left. The best way to calculate these values is to start with
j set to its maximum value j = y − 1 and decrease it. This way, we can reuse

Real-World Vehicle Routing Using ALNS 41

Table 1. Example of a route with weight reserves for a vehicle capacity 200.

action η0 η1 η2 η3 η4 η5

weight change +20 +70 +50 -50 -20 -70
current load 20 90 140 90 70 0
weight reserve Δq

e 180 110 60 110 130 200

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

e = 0 180 110 60 110 130 200
e = 1 110 60 60 110 130
e = 2 60 60 60 110
e = 3 60 60 60
e = 4 60 60
e = 5 60

the previously calculated values. To calculate value νe,j we can use

νe,j =
{

Δq
j , for e = 0

min (Δq
j , νe−1,j+1), for e > 0

}
. (23)

When we try to assign a new request at positions κp and κd, we only need to
check if the request’s weight is lower or equal to the value νκp−1,κd−2. The value
κp − 1 represents a position of the action right before the pickup position κp.
The value κd − 2 represents the position of the action right before the delivery
position κd. For insertion optimization example on page 7, we get action η0 for
κp − 1 and we get action η2 for κd − 2.

This mechanism does not work when we try to place the new pickup at the
beginning of a route (κp = 0) or when the route is empty. In the first case, we
compare the request’s weight with the value νκp,κd−2. In the second case, when
the route is empty, we compare the request’s weight with the vehicle’s capacity.

If the capacity check fails, we can also perform one more optimization; we can
skip the next possible delivery positions, which are higher than the current κd.
If the capacity check fails for κd, it will always fail for any other higher values.

This pre-calculation has a quadratic time complexity relative to the route
length. It seems inefficient to do such pre-calculation. The important thing is
that this pre-calculation is run only when a route is truly modified. When we
calculate cost increases for all of the unassigned requests, we can reuse these
values for all of them. When we finally insert one request, we must recalculate
only the route where the request was just inserted.

Validation of Maximum Number of Trips. In Eq. 17, we limit each vehicle’s
maximum number of trips. A trip can happen between two actions. If the distance
between the locations of these actions is non-zero, the vehicle must perform a
trip. When assigning a new request to a route, the check of the overall number of
trips has linear time complexity relative to the route’s length. We again propose
a constant time validation.

It is insufficient to compare the number of actions in the route since this
does not correspond to the number of trips due to the possibly same physical
locations. There can be a sequence of actions representing the same real-world
location, for example, pickups of multiple requests at the same location. Between
such actions, there are no trips. We keep information about the number of trips
on each route. This value is recalculated whenever we remove or reinsert some
requests (with a linear time complexity relative to the length of the route). When

42 V. Sassmann et al.

we try to assign a new request at positions κp and κd, we check if we have added
some new trips.

For this new request, we define ip as the pickup location of this request. The
ip is a location from the set of all pickup locations P . We find the location ip−1

where the vehicle was previously. If κp = 0 holds, the previous location is the
vehicle’s starting location τk. If κp > 0, we get the previous location from the
action on position κp − 1. We also need to find the next location ip+1, where the
vehicle goes from ip. If κp = κd−1, the next location is the new request’s delivery
location. Otherwise, the next location is taken from the action on position κp+1.

We define tripsp as the number of new trips caused by the new pickup being
added; initially, we set it to zero. If the distance between ip−1 and ip is not equal
to zero, we increase the tripsp by one. If the distance between ip and ip+1 is not
equal to zero, we increase the tripsp by one. Before adding the new pickup, we
also need to check if there was already a trip between ip−1 and ip+1. If so, we
decrease the tripsp by one. This gives us the number of new trips caused by the
new pickup. Similarly, we can calculate tripsd, which represents the number of
new trips caused by the new request’s delivery. We also need to check if we did
not add the same trip twice in cases where the new delivery is right after the
new pickup (κp = κd − 1). If so, we decrease the tripsd by one.

We add up tripsp and tripsd with the previous number of trips, which has
been pre-calculated, to get the total number of trips tripstotal. Finally, we can
check that the tripstotal ≤ Wk.

Validation of Time Constraints. Constraints specified in Eqs. 8–9 define
valid arrival times for all vehicles. They ensure that all vehicles arrive at their
locations in corresponding time windows. To check all these constraints, we iter-
ate over the whole route and calculate arrival times. We assume that each vehicle
takes the first time window, which is possible to use.

In Eqn. 16, we have also defined a maximum route time. When checking the
time windows, we must calculate arrival times for all actions. This allows us to
check the maximum duration time without additional calculation.

Same Locations Optimizations. In our model, we have mentioned that some
locations can represent the same physical locations. Among a route’s actions,
there can be a sequence of actions representing the same physical location. The
order in which these actions are processed in the location cannot affect the route’s
price because we consider the service time only for the last of them, and also, in
the company instances, the service times are all equal. This allows us to optimize
the best positions of ηp and ηd. If we detect such a sequence of actions, and the
action ηp represents the same real-world location, we try to assign the action ηp

only at the beginning of this sequence. We also do the same when finding the
best position of ηd.

This optimization is critical to solving problems with many same physical
locations efficiently. Notably, it allows the efficient application to problems where
many or even all requests are delivery-only.

Real-World Vehicle Routing Using ALNS 43

3.3 Removal Optimization

The removal heuristics are not as much time-consuming as the insertion heuris-
tics. Still, their efficient implementation is worth consideration.

In the worst removal heuristic, we try to find requests, which increases the
most the cost of the solution. Let Δ(s, r) denotes the difference in costs of solu-
tion s when the request r is scheduled and when it is removed from the solution.
When we remove a request r, some of the Δ(s, r) values must be recomputed.

The time complexity of calculating such values has a linear time complexity
relative to the route’s length. For very long routes, it makes sense to propose
constant time recalculation. Suppose we have a route with a length equal to y.
This route has actions ζe where e ∈ {0, ..., y − 1}. For all these actions, we keep
information about the distance the vehicle traveled from its starting node to
the location represented by this action. Also, we keep the information about the
vehicle’s load after performing it for each action. Finally, we keep information
about the price of the whole route.

Suppose we have a request for which we want to calculate the value Δ(s, r).
To do so, we only need to calculate the price changes in the route. This request
must have a pickup and a delivery action on this route. We denote these actions
by ζp and ζd, where p, d ∈ {0, ..., y − 1} and d > p hold. Let Δp and Δd denote
the price decreases caused by differences in distances caused by removing the
pickup and delivery locations from the route. We have Δp = price(ζp−1, ζp) +
price(ζp, ζp+1) − price(ζp−1, ζp+1). The price() is a function that returns the
price of traveling from the first action’s location to the second. We have to use
the vehicle’s current load when calculating these prices. When computing the
price(ζp, ζp+1), we have to consider a higher price per kilometer because the
vehicle had a bigger load. ζp−1 represents the action previous to ζp and ζp+1

represents the following action. We have Δd = price(ζd−1, ζd)+price(ζd, ζd+1)−
price(ζd−1, ζd+1). In this case, the price per kilometer in price(ζd−1, ζd) is higher
than in the other two because the vehicle was more loaded.

When we remove the request, we also affect the price of the path from action
ζp+1 to ζd−1 since the vehicle has a lower load. We can calculate the price decrease
caused by this load change from the precalculated information. We denote the
price decrease Δload. We take the distance traveled from the starting node to the
action ζd−1 and subtract it from a distance traveled to action ζp+1. This way,
we can get the distance from ζp+1 to ζd−1. Using this distance and the weight of
the removed request, we can calculate the Δload. To get the total price, we use
newPrice = oldPrice − Δp − Δd − Δload.

If the route remains empty after removing the request r, we do not need
to calculate anything. In this case, the new price would equal zero, and we can
return the old price as the cost difference. Furthermore, if the pickup and delivery
actions are right behind each other (ζp = ζd−1), we need to make sure we do
not calculate the same price differences twice in Δp and Δd. If the pickup action
is the first in the route, we use the vehicle’s starting location to calculate Δp.
Similarly, if the delivery action is the last in the route, we use the vehicle’s ending
location to calculate Δd.

44 V. Sassmann et al.

4 Experimental Evaluation

Our solver was implemented in the programming language Go version go1.15.15
linux/amd64. We used the same values for parameters as described in the original
work [10]. For the ALNS running in two stages, we set the number of iterations
to 25,000 for each stage. For one-stage ALNS (problems without minimum price
only), 25,000 iterations were sufficient.

4.1 Li and Lim Benchmark Instances

For initial experiments, we use Li & Lim [6] benchmark instances1 generated
for the capacitated pickup and delivery with time windows. These data sets are
for 50 to 500 requests. Instances are divided into three categories based on the
placement of locations, and they are clustered (LC), random (LR), and combined
random-clustered (LRC). Instances LC1, LR1, and LRC1 have short scheduling
horizons, while LC2, LR2, and LRC2 have longer horizons.

The first set of our experiments aimed to demonstrate the influence of the
algorithmic optimizations from Sects. 3.2 and 3.3. We benchmarked six instances
(one of each category) for data sets with 100, 400, and 1,000 tasks. The average
improvement in runtime was 34.4%, 42.6%, and 51.1%, respectively. We have
obtained even more significant improvement for the real-world data (see their
description in Sect. 4.2) with 84.9%, 78.3%, and 84.2% runtime improvement
for 40, 90, and 140 tasks, respectively, since the existence of the same physical
locations allows for additional improvement.

We have selected three instances from each category for further experiments
in this section. Experiments on all instances were run 100 times. We have exe-
cuted our experiments using a grid service provided by MetaCentrum2. Each
run was limited to 1CPU core and 1GB of RAM. In this grid environment, our
processes were sharing CPUs with other processes running at the same time.
Because of that, the runtimes could vary depending on the current workload.

Comparison to Best Found Solutions. Table 2 (left) shows an overview of
how many best solutions we could find depending on the instance size. We can
see that for the smallest instances, we were able to find the best solutions for
16 of 18 instances. With the increasing instance size, we could find fewer best
solutions. However, it is worth noting that the best solutions published on the
Sintef web page were achieved by many runs of various solvers. Therefore, the
quality of these solutions is very high. We expect that with more runs of our
solver, we will find some of more best solutions. Furthermore, for the instances
in which we did not find the best solution, our quality is very close to the best
solutions.

Figure 1 (left) shows the difference in the number of vehicles used in our
best-found solutions and the best so far found solutions. We have vertically

1 https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/.
2 https://metavo.metacentrum.cz/en/.

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://metavo.metacentrum.cz/en/

Real-World Vehicle Routing Using ALNS 45

Table 2. The number of instances where we were able to find the best so far found solu-
tions (left) and comparison of our best solutions to the original ALNS’s best solutions
(right) for 18 instances.

instances size 100 200 400 600 800 1,000
best found 16 13 8 4 3 3

instances size 100 200 400 600 800 1,000
better best 0 9 13 14 15 13
equal best 17 9 4 3 3 4
worse best 1 0 1 1 0 1

Fig. 1. The differences for vehicles (left) and distances (right) between our best solu-
tions and the best so far found solutions.

categorized the results by the instance category and horizontally by the sizes of
the instances (1 to 10 corresponds to 100 to 1,000 tasks). We have also separated
them by the length of the schedule horizon (1 represents the shorter horizon, and
2 represents the longer horizon).

We can see in the results that our solver has performed better in the clustered
instances than in the random and random clustered. In the clustered instances,
the search space is more constrained by the time windows. Also, the number
of vehicles used usually corresponds to the number of clusters in these data
instances. Therefore, it is easier for the solver to find a solution with the min-
imum number of vehicles. Not surprisingly, we can see that our solution has
performed worse with the increasing size of instances. Our solver has also per-
formed worse for instances with longer schedule horizons (type 2). Because of
the longer schedule horizon, it is possible to construct longer routes with fewer
vehicles. These solutions are for our solver more challenging to find because they
usually require a longer distance.

Figure 1 (right) shows the difference in distances in best solutions obtained
by our solver against the best so far found solutions. Our solutions had a lower
total distance traveled for the instances with a longer schedule horizon (type 2).
This is because our solutions used a higher number of vehicles. Therefore, the
solutions could have a lower total distance. It is worth noting that despite the

46 V. Sassmann et al.

Fig. 2. The differences for vehicles (left) and distances (right) between our best solu-
tions and the original ALNS.

lower distances, our solutions were not better than the best solutions since the
goal is to minimize the number of used vehicles, not the total distance.

Comparison to the Original ALNS. Ropke and Pisinger [10] have also
performed experiments on the Li & Lim [6] datasets. For instances with 400 tasks
and lower, they performed 10 runs. For the other instances, they have performed
only 5 runs. They have presented their data about their best solutions, average
solutions, and average runtimes.

Table 2 (right) compares our best-found solutions and the best solutions
found by the original ALNS implementation. We can see that we have managed
to find a better solution in most of the instances. However, this is also because
we have performed much more runs than Ropke and Pisinger [10]. Figure 2 com-
pares the quality of our best solutions and the best solutions presented in the
original work. We can see that we have very similar results. In many instances,
we have managed to find a solution with a lower number of vehicles. Of course,
in most cases, this results in a higher total distance.

4.2 Real-World Instances

Comparison with OR-Tools. We have received 12 problem instances with
40–140 requests from company Wereldo. These requests have one or two time
windows for pickup and delivery. In each of these instances, all requests have the
same real-world pickup location. These instances usually have up to 10 different
vehicle models. Each model had different prices per kilometer and capacity. For
each of these instances, we have also received results of 10 runs performed by the
Wereldo’s original solver, which was implemented using OR-Tools [8]. They have
a two-stage approach as well. In the first stage, they also ignore the minimum
vehicle prices and use the minimum prices per kilometer, ignoring the vehicle’s

Real-World Vehicle Routing Using ALNS 47

Fig. 3. Comparison of costs (left) and average times (right) of best solutions achieved
by our solver and company’s solver in OR-tools.

current load. In these results, we received the costs of the best solutions found
in both stages and the times when they were found. However, the OR-Tools
did not improve the previous solution in the second stage in any of the runs.
Therefore, we will use only the results from the first stage for comparison. We
have also received information about the peak memory usage obtained during
both stages. The company runs these experiments on the Amazon Web Services3
(AWS). With our solver, we also performed 10 runs for each of these instances
on a regular laptop with the Intel Core i7-8550U CPU (1.80GHz).

Figure 3 (left) compares the costs of our best and the company’s solutions. We
have found a better solution in 10 out of 12 instances with 5–14% improvement.
In one instance, the best solutions were equal, and in the last one, the best
company’s solution was slightly better. In this instance, we have noticed that
the company’s solver had managed to find a solution with one less vehicle, which
led to a solution with a lower cost. Our solver could not find a solution with this
lower number of vehicles in any of its runs. In Fig. 3 (right), a comparison of
averages of times of the last improvements is provided. The experiments were
not executed in the same environment. Still, it is notable that our solver running
on a regular laptop was faster. The average memory peak usage provided by the
company was 480–570MB for the first stage and 2.9–4.1GB in the second stage.
Our overall peak memory usage was 100–120MB in both stages, which is a
significant improvement. Note that the high memory usage in the second stage
is caused by the fact that the relative vehicle’s price per kilometer is not well
optimized in the OR-Tools. It is not even recommended to be used, and the
developers have practically abandoned this feature.

Large-Scale Problems. These experiments ran on CentOS8, Intel Xeon Sky-
lake 2.3GHz, 8CPUs and 16GB RAM, and each run was limited to 1 CPU.
The Wereldo company provided data with characteristics listed in Fig. 4 (left).
Data were separated into 5 single-day instances. While the earlier real-world
data sets were delivery-only, now we have requests with pickup and deliveries

3 https://aws.amazon.com/.

https://aws.amazon.com/

48 V. Sassmann et al.

Fig. 4. Characteristics of the dataset and costs of solutions for single day instances.

(85% of requests being delivery-only). In addition, the vehicle’s minimum prices
are not considered, and one-stage ALNS is run only. The vehicle fleet is hetero-
geneous both in capacities as well as in operational costs. Regarding capacities,
a significant portion of the fleet (68.1%) is composed of large trucks capable
of accommodating 66 or 72 pallets and up to 24 tons of load. The remaining 6
vehicle types are very different, with capacities from 4 to 25 pallets. There are
8 cost models of vehicles where 71.8% of them have cost X per kilometer with
others ranging between 0.4X and 3.1X. In Fig. 4, we can see the resulting costs
for 10 runs of single-day instances. We achieved average runtimes 52.7±1.7min.

5 Conclusion

This work considers real-world freight transportation problems with many char-
acteristics. We provided a formal model for a unique combination of constraints
and objectives which were necessary for the representation of our problems. We
proposed a solver based on the adaptive large neighborhood search, which allows
us to solve a wide variety of routing problems efficiently. To achieve that, we have
concentrated on the complexity of insertion and removal heuristics which consti-
tutes the heart of the search procedure. We have identified frequent validation
steps for insertion heuristics, which can be processed in constant instead of lin-
ear time relative to the route length. To achieve that, we have identified crucial
information to store and precompute. Similarly, constant time recalculation is
also proposed to compute differences between the costs of solutions for removal
heuristics. The minimization process is enhanced to handle real-world objectives
for heterogeneous vehicles where the minimum vehicle’s prices necessitate two
stages of the ALNS.

In the paper, we demonstrate the generic application of the solver on prob-
lems with different characteristics. First, we verify results on the standard Li &
Lim benchmarks by comparison with the best-found solutions and the original
ALNS solver. These benchmarks represent base pickup and delivery problems
with time windows. Further real-world problems from the company with 40–
140 requests have the same pickup location, time windows for both pickup and
location, and contain all features described in our formal model, including the
minimum price. Experimental results show better solution quality, faster com-
putation, and significant memory saving compared with the company’s solver in
OR-Tools. The last type of problem contains about 85% delivery-only requests,
and its vehicles do not need to consider minimum vehicle prices. Including this

Real-World Vehicle Routing Using ALNS 49

data set allows us to demonstrate less than one-hour runs on large-scale problems
with 1,200 requests and more than 300 heterogeneous vehicles. To conclude, the
solver is used by company Wereldo in everyday operations, and they have also
applied it to various case studies for different customers.

Acknowledgements. Computational resources were supplied by the project “e-
Infrastruktura CZ” (e-INFRA LM2018140) provided within the program Projects of
Large Research, Development and Innovations Infrastructures.

References

1. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem:
state of the art classification and review. Comput. Indus. Eng. 99, 300–313 (2016)

2. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.: Rich vehicle
routing problem: survey. ACM Comput. Surv. 47(2), 1–28 (2014)

3. Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic
review. Comput. Indus. Eng. 57(4), 1472–1483 (2009)

4. Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving
the vehicle routing problem and its variants. Comput. Indus. Eng. 140, 106242
(2020)

5. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: Thirty years of heterogeneous vehicle
routing. Eur. J. Oper. Res. 249(1), 1–21 (2016)

6. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time win-
dows. In: Proceedings 13th IEEE International Conference on Tools with Artificial
Intelligence. ICTAI 2001, pp. 160–167 (2001)

7. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N.:
A literature review on the vehicle routing problem with multiple depots. Comput.
Indus. Eng. 79, 115–129 (2015)

8. Perron, L., Furnon, V.: OR-Tools. https://developers.google.com/optimization/
9. Potvin, J.Y.: State-of-the art review – evolutionary algorithms for vehicle routing.

INFORMS J. Comput. 21(4), 518–548 (2009)
10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transp. Sci. 40, 455–472 (2006)
11. Toth, P., Vigo, D.: Vehicle routing: Problems, methods, and applications. Society

for Industrial and Applied Mathematics (2014)
12. Turkeš, R., Sörensen, K., Hvattum, L.M.: Meta-analysis of metaheuristics: quan-

tifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J.
Oper. Res. 292(2), 423–442 (2021)

13. Vidal, T., Laporte, G., Matl, P.: A concise guide to existing and emerging vehicle
routing problem variants. Eur. J. Oper. Res. 286(2), 401–416 (2020)

https://developers.google.com/optimization/

A Multilevel Optimization Approach for
Large Scale Battery Exchange Station

Location Planning

Thomas Jatschka1(B), Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Vienna, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Offenbach, Germany
tobias.rodemann@honda-ri.de

Abstract. We propose a multilevel optimization algorithm (MLO) for
solving large scale instances of the Multi-Period Battery Swapping Sta-
tion Location Problem (MBSSLP), i.e., a problem for deciding the place-
ment of battery swapping stations in an urban area. MLO generates a
solution to an MBSSLP instance in three steps. First the problem size is
iteratively reduced by coarsening. Then, a solution to the coarsest prob-
lem instance is determined, and finally the obtained solution is projected
to more fine grained problem instances in reverse order until a solution
to the original problem instance is obtained. We test our approach on
benchmark instances with up to 10000 areas for placing stations and
100000 user trips. We compare MLO to solving a mixed integer linear
program (MILP) in a direct way as well as solving the instances with a
construction heuristic (CH). Results show that MLO scales substantially
better for such large instances than the MILP or the CH.

Keywords: multilevel optimization · mixed integer linear
programming · E-mobility

1 Introduction

Electric vehicles (EVs) are becoming an increasingly popular way of transporta-
tion for the general public. However, a major inconvenience for the owners of
an EV is the long time it takes to recharge a vehicle’s battery. For smaller vehi-
cles, such as electric scooters, a promising way to overcome this problem is to
exchange a vehicle’s battery instead of recharging it. Batteries of electric scoot-
ers are compact enough such that users can exchange their depleted batteries for
fully charged ones at dedicated battery exchange stations within a short time
and without assistance. At such stations batteries are recharged, and can later
be provided to customers again.

We consider the Multi-Period Battery Swapping Station Location Problem
(MBSSLP) as introduced in [3], where the setup costs for stations should be

T. Jatschka—Acknowledges the financial support from the Honda Research Institute
Europe.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 50–65, 2023.
https://doi.org/10.1007/978-3-031-30035-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_4

A Multilevel Optimization Approach for Large Scale Battery 51

minimized while a certain amount of customer demand needs to be satisfied.
Each of the swapping stations is assumed to have a configurable number of slots
at which batteries are charged and can be exchanged. Moreover, it is assumed
that customers who want to change batteries specify their trip data (origin,
destination, approximate time) online and are automatically assigned by the
system to an appropriate station for the exchange (if one exists). As not every
customer is willing to travel to a suggested station, e.g., if the detour is too long,
the MBSSLP also considers a customer dropout which scales exponentially with
the length of the detour induced by traveling to the assigned station.

In [3] a large neighborhood search (LNS) was presented for solving MBSSLP
instances with up to roughly 2000 potential locations at which battery swapping
stations can be placed and 8000 origin-destination (O/D) pairs that describe
the customer trips. However, for real world applications especially the number of
O/D-pairs can be magnitudes higher. The LNS proposed in [3] applies a destroy-
and-repair scheme and uses a mixed integer linear programming based heuristic
for repairing solutions. Unfortunately, this technique does not scale well to much
larger instances. Finding good solutions for huge instances is in general a difficult
task, even for metaheuristics, and one often resorts to clustering, refinement, or
partitioning approaches that reduce the problem size or decompose the problem
into smaller subproblems.

In this work we propose a multilevel optimization (MLO) approach for
addressing large MBSSLP instances with tens of thousands of potential sta-
tion areas and up to one hundred thousand user trips at which users need to
swap batteries. The presented MLO is based on the algorithmic framework pro-
posed by Walshaw [15], which has already been adapted to various mobility
applications such as the traveling salesman problems [14], bike sharing station
planning [7], and vehicle routing [10]. The basic idea of this approach is to
generate a sequence of coarsened problem instances – referred to as multilevel
coarsening – in which the problem sizes become successively smaller. After the
coarsening process, a solution to the coarsest problem instance is generated. This
solution is then iteratively projected to the problem instances of the multilevel
coarsening in reverse order. Hence, after the final projection a solution to the
original problem is obtained.

The underlying problem structure of the MBSSLP is given by a bipartite
graph with one set representing the areas in which stations can be built and
the other set representing the O/D-pairs. An MBSSLP instance is coarsened
by first partitioning the nodes of the underlying graph and then deriving a
coarsened graph by contracting the nodes in each partition. For solving the
coarsest problem instances and for iteratively projecting solutions we make use of
mixed integer linear programs (MILPs). Hereby, the MILP projecting a solution
to a more detailed problem instance can be decomposed into subproblems, with
each subproblem being responsible for projecting a single node of the underlying
graph.

Our approach is experimentally evaluated on artificial benchmark scenarios
generated as in [3]. To get a grasp of the quality of the solutions found by MLO

52 T. Jatschka et al.

we compare the solutions to solutions generated by a MILP solver as well as
solutions obtained from a construction heuristic for instances with up to tens
of thousands potential station areas and up to one hundred thousand O/D-
pairs. Results show that MLO scales substantially better than the MILP or the
construction heuristic, generating reasonably good results in a short amount of
time.

In the next Section we discuss related work. Section 3 provides a formal def-
inition of the MBSSLP. Afterwards, in Sect. 4, we detail our MLO approach.
Section 5 describes the benchmark instances and presents and discusses experi-
mental results. Section 6 concludes this work with including outlook on promising
future work.

2 Related Work
The MBSSLP, originally proposed in [3], is a capacitated multiple allocation
facility location problem [8] and is loosely based on the capacitated deviation-
flow refueling location model introduced in [2]. The MBSSLP also takes into
account that not every customer is willing to travel to a predestined station
when the detour is too long. Such customer satisfaction factors are modeled via
a decay function as also done in, e.g., [6,13]. To the best of our knowledge, no
multilevel optimization approach has yet been proposed for problems regarding
the distribution of battery swapping stations or vehicle charging stations. In [5]
a survey of charging station locations problems is provided. This review provides
an overview of the size of instances which were considered in related work. From
the approaches that also consider capacities of stations, a simulated annealing
approach is described [16] to generate solutions for instances with up to 1400
potential station locations and about 15000Ω/D-pairs. The instances for the
MBSSLP in [3] contained up to 2000 potential locations and 8000 Ω O/D-pairs.

The MLO framework for optimization problems was originally proposed by
Walshaw [15] and has been applied to various applications, such as bike shar-
ing [7], vehicle routing [10], or traveling salesman problems [14]. In [11] Valejo
et al. give on overview of MLO approaches for complex networks.

3 The Multi-period Battery Swapping Station Location
Problem

The Multi-Period Battery Swapping Station Location Problem (MBSSLP) was
originally proposed in [3]. We slightly modify the original MBSSLP formulation
from [3] in certain aspects. First, we now consider a cyclic time horizon instead
of a non-cyclic one as this appears to be more relevant in practice. More specif-
ically, we assume a time horizon of one day that is discretized into equally long
consecutive time intervals, for example hours. These intervals are indexed by
T = {0, . . . , tmax − 1}. As we consider the planning horizon to be cyclic the
predecessor of the first interval is assumed to be the last one and the successor
of the last one the first interval. Second, we generalize the problem in the sense

A Multilevel Optimization Approach for Large Scale Battery 53

that instead of speaking of specific potential locations for service stations, we
consider areas that may have more than one station. This extension is done in
foresight of our MLO approach.

We assume battery swapping stations can be set up in any of n different areas
referred to as set the L. Each area l ∈ L has associated a maximum number of
possible stations rl ∈ N>0, a maximum number of possible battery charging slots
sl > 0 at each of these stations, fixed setup costs cl ≥ 0 for setting up one station
in this area, and building costs per slot bl ≥ 0.

In contrast to some other work [1] that uses detailed multi-agent simulations
to optimize system parameters, we model customers in an aggregated way as
estimated travel demands in the form of a set of origin-destination (O/D) pairs
(i.e., trips) Q and corresponding numbers dqt > 0 of how often the need of
swapping batteries is expected to arise within each time interval t ∈ T for each
O/D-pair q ∈ Q. Let m = |Q| be the number of O/D-pairs. As trips in an urban
environment, as we consider it, are usually rather short, we assume for simplicity
that trips start and end in the same time interval and can be completed with
swapping batteries at most once.

Similarly to [6], we consider the satisfaction of users in dependence of detour
lengths. Users will tend to avoid swapping batteries at trips for which detours
to a swapping station are longer or for some other reason less convenient. To
this end we associate each tuple (q, l) with q ∈ Q, l ∈ L for each time interval
t ∈ T with a value gqlt ∈ [0, 1] representing the satisfaction of customers. We
make this factor also dependent on time as, e.g., in peak hours users are likely
more hesitant to make a certain detour than in hours with not much traffic,
respectively.

Let us now define the bipartite undirected graph G = (Q,L,E), where the
node sets Q and L correspond to the O/D-pairs and the areas for building
swapping stations, respectively, Edge set E ⊆ Q × L shall include an edge (q, l)
for each O/D-pair q ∈ Q and area l ∈ L whenever a swapping station with l
could potentially satisfy (part of) the demand dqt, i.e., gqlt > 0 for at least one
t ∈ T . By N(q) ⊆ L, for q ∈ Q, we denote the set of adjacent nodes of node q,
which corresponds to the subset of areas that are able to service O/D-pair Q.
Vice versa, N(l) ⊂ Q, for any l ∈ L, denotes the adjacent nodes of the area node
l, and thus, the O/D-pairs area l may service.

The number of time intervals required for completely recharging a battery is
referred to as tc. We make here the simplifying assumption that charging any
battery always takes the same time and only completely recharged batteries are
provided to customers again. We denote the set of time intervals in which a
battery is not yet fully charged when returned to a station at time t ∈ T as
T ch(t) which is defined as T ch(t) = {((t + i) mod tmax) | i = 0, . . . , tc}.

In the original MBSSLP formulation a solution is feasible if a minimum
amount of total customer demand dmin is satisfied. In foresight of our MLO
approach we relax this condition in cases where dmin exceeds the total amount
of demand that can be satisfied in any solution to G, referred to as dmax(G), and
define a solution to be feasible if at least min(dmin, dmax(G)) demand is satisfied.

54 T. Jatschka et al.

For the development of MLO, we also store for each edge (q, l) ∈ E(G)
the maximum demand d̂qlt that can be assigned from q to l in each time
interval t ∈ T , which is calculated by d̂qlt = min

(
d̄l

gqlt
, dqt

)
where d̄l refers

to the maximal necessary capacity of the stations in an area l ∈ L, i.e.,
d̄l = min

(
rlsl, maxt∈T

∑
t′∈T ch(t)

∑
q∈N(l) gqlt′dqt′

)
.

A solution to the MBSSLP is primarily given by a pair of vectors x = (xl)l∈L

with xl ∈ {0, . . . , rl} and y = (yl)l∈L with yl ∈ {0, . . . ,
⌈
d̄l

⌉
}, where xl indicates

the number of swapping stations to be established in area l and yl represents the
respective total number of battery slots at these stations. Moreover, a solution
also has to specify which demand is fulfilled where. This is done by variables aqlt

that denote the part of dqt, q ∈ Q, which is assigned to an area l ∈ N(q) in time
interval t ∈ T . Customer satisfaction is considered by multiplying this assigned
demand aqlt with the factor gqlt in order to obtain the actually fulfilled demand
āqlt = gqltaqlt of O/D-pair q in area l in time interval t.

Based on the variables x, y, a, and ā the MBSSLP can be expressed as the
following MILP:

min
∑
l∈L

(clxl + blyl) (1)

xl · sl ≥ yl l ∈ L (2)
āqlt = gqlt · aqlt t ∈ T , q ∈ Q, l ∈ N(q) (3)∑
l∈N(q)

aqlt ≤ dqt t ∈ T , q ∈ Q (4)

∑
t′∈T ch(t)

∑
q∈N(l)

āqlt′ ≤ yl t ∈ T , l ∈ L (5)

∑
t∈T

∑
q∈Q

∑
l∈N(q)

āqlt ≥ min(dmin, dmax(G)) (6)

xl ∈ {0, . . . , rl} l ∈ L (7)

yl ∈ {0, . . . ,
⌈
d̄l

⌉
} l ∈ L (8)

0 ≤ aqlt ≤ d̂qlt t ∈ T , q ∈ Q, l ∈ N(q) (9)

0 ≤ āqlt ≤ gqltd̂qlt t ∈ T , q ∈ Q, l ∈ N(q) (10)

The goal of the objective function (1) is to find a feasible solution that mini-
mizes the setup costs for stations and their battery slots. Inequalities (2) ensure
that battery slots can only be allocated to an area l ∈ L if a sufficient num-
ber of stations is opened there. Equalities (3) calculate fulfilled demands āqlt

by applying the customer satisfaction factors gqlt to the assigned demands aqlt.
Constraints (4) enforce that the total demand assigned from an O/D-pair q to
areas does not exceed dqt for all t ∈ T . Inequalities (5) ensure that the capac-
ity yl is not exceeded at all areas over all time intervals. Note that by using
āqlt instead of aqlt in (5), we “overbook” areas to consider the expected case,
similarly as in [9]. Inequalities (5) also model that swapped batteries cannot be

A Multilevel Optimization Approach for Large Scale Battery 55

reused for the next tc time intervals in which they are being charged again. The
minimal satisfied demand to be fulfilled over all time intervals is expressed by
inequality (6). Finally, the domains of the variables are given in (7)–(10). Note
that dmax(G) can be calculated by replacing the objective function (1) with

max
∑
t∈T

∑
q∈QK

∑
l∈N(q)

gqlt · aqlt (11)

and removing Constraint (6).

4 Multilevel Refinement Algorithm
Our multilevel optimization approach (MLO) follows the basic scheme proposed
by [15] and consists of three steps: iteratively coarsening the problem instance
by partitioning and contraction, solving the coarsest instance, and iteratively
uncoarsening by projection and possible refinement. During the coarsening step
the problem complexity is iteratively reduced by merging areas for setting up
stations and O/D-pairs until the size of the problem instance falls below a certain
threshold. Then, a solution to the coarsest instance is generated. Afterwards, this
solution is successively extended by projecting it to the less coarsened instances
and refining it, eventually resulting in a feasible solution to the original instance.

We define a multilevel coarsening for the MBSSLP by the graph sequence
{G0, . . . , GK} of G with Gi = (Qi, Li, Ei), for i = 0, . . . , K. The graph on the
lowest level corresponds to the original graph G, i.e., G0 = G. As the original
problem graph G, each graph Gi also have respective associated values rl, sl, cl,
bl, and d̄l for the nodes l ∈ Li, values dqt for nodes q ∈ Qi, and values gqlt and
d̂qlt for the edges (q, l) ∈ Ei and t ∈ T . A graph Gi+1 with i ∈ {0, . . . , K − 1}
is derived from Gi by partitioning Qi and Li and merging all nodes within
each partition. The vertices q ∈ Qi+1 and l ∈ Li+1 are associated with a non-
empty subset of Qi and Li, denoted as Qi

q and Li
l, referring to the respective

partitions of Gi. Hence, it must hold that Qi
q ∩ Qi

q′ = ∅ and Li
l ∩ Li

l′ = ∅ for any
q, q′ ∈ Qi, q 	= q′ and l, l′ ∈ Li, l 	= l′, and i = 1, . . . , K. Finally, (q, l) is an edge
in Ei+1 if there is at least one edge between the nodes Qi

q and Li
l in Gi.

Algorithm 1 shows our MLO approach in pseudo-code. Note that in our
approach it cannot be guaranteed that a solution obtained for a graph Gi+1

can be projected to Gi such that the projected solution satisfies at least the
same amount of demand as the previous solution. Therefore, after projecting a
solution to a graph Gi, we refine it to increase the amount of satisfied demand
until the solution becomes feasible w.r.t. Gi.

In the following we describe the concrete steps of our MLO approach in more
detail.

Partitioning. A graph Gi+1 is derived from Gi by first partitioning the node
sets of Gi and then contracting the nodes within each partition. For deriving
the partitioning of our bipartite graphs we use the same approach as proposed
by Valejo et al. [12]. We first generate two unipartite graphs for each vertex set

56 T. Jatschka et al.

Algorithm 1: MLO
Input : an MBSSLP instance, the number of coarsening steps K
Output: a solution (x, y, a)

1: i ← 0;
2: Gi ← G;
3: while i < K do
4: Gi+1 ← coarsen(Gi);
5: i ← i + 1;
6: end while
7: (x, y, a) ← solve problem w.r.t. Gi; // coarsest problem instance
8: while i > 0 do
9: (x, y, a) ← project solution (x, y, a) for Gi to a solution for Gi−1;

10: (x, y, a) ← refine solution (x, y, a);
11: i ← i − 1;
12: end while
13: return (x, y, a);

Li, Qi of Gi via one-mode projection, i.e., the vertices of these unipartite graphs
are given by the vertices of the corresponding vertex set of Gi with two vertices
being adjacent if they have common neighbors in Gi. For calculating weights
between two nodes of u, v of Li or Qi, respectively, we use the Jaccard similarity
measure

χ(u, v) =
|N(u) ∩ N(v)|
|N(u) ∪ N(v)| . (12)

Afterwards, each unipartite graph is partitioned independently via greedy
heavy-edge-matching (GHEM) [11]. GHEM is a variation of heavy-edge match-
ing [4]. The GHEM heuristic iterates over all edges of a graph in descending
order and in every iteration partitions the incident nodes of the current edge
and removes them from the graph.

Contracting. Recall that we denote a partition of nodes of Gi−1 as Qi−1
q and

Li−1
l , respectively, with q ∈ Qi, l ∈ Li, for i = 1, . . . , K.

When contracting nodes, one has to also aggregate the associated node and
edge properties in meaningful ways. To facilitate the later projection of solutions,
we split the coarsening of Gi−1 into two steps, first deriving from Gi−1 an inter-
mediate graph G̃i, in which only the partitions on Li−1 are merged, and then
from G̃i the actual Gi in which also the partitions on Qi−1 are merged. In the
following we denote the node and edge sets of G̃i as well as all associated values
correspondingly with a tilde, i.e., G̃i = (Q̃i, L̃i, Ẽi). Moreover, Ñ i(·) refers to
adjacent nodes of nodes in G̃i, whereas N i(·) refers only to neighbors of nodes
in Gi.

To obtain G̃i, we thus directly adopt Q̃i = Qi−1 together with the properties
associated with these nodes, i.e., the respective demands. The partitions on Li−1

on the other hand are merged to obtain the new area node set L̃i.

A Multilevel Optimization Approach for Large Scale Battery 57

Maximum allowed demand assignments for (q, l) ∈ Ẽi pairs are now calcu-
lated as

d̂qlt = min

⎛
⎝ ∑

l′∈Li−1
l

d̂ql′t, dqt

⎞
⎠ , (13)

and the customer satisfaction factors are determined as weighted average

gqlt =

∑
l′∈Li−1

l
d̂ql′t · gql′t∑

l′∈Li−1
l

d̂ql′t
. (14)

The maximum demand that can be fulfilled by the stations in an area l ∈ L̃i

in any time interval is determined by

d̄l = min

⎛
⎝ ∑

l′∈Li−1
l

d̄l′ , max
t∈T

∑
t′∈T ch(t)

∑

q∈Ñi(l)

gqlt′ d̂qlt′

⎞
⎠ . (15)

For each l ∈ L̃i, sl, cl, and bl are averaged in a weighted manner:

sl =

⌈∑
l′∈Li−1

l′
d̄l′sl′∑

l′∈Li−1
l

d̄l′

⌉
, cl =

∑
l′∈Li−1

l
d̄l′cl′∑

l′∈Li−1
l

d̄l′
, bl =

∑
l′∈Li−1

l
d̄l′bl′∑

l′∈Li−1
l

d̄l′
. (16)

Finally, maximum station numbers are derived by

rl =
⌈

d̄l

sl

⌉
. (17)

To finally obtain Gi from the intermediate G̃i, we directly adopt Li = L̃i

together with all the properties associated with these nodes, while merging the
partitions on Q̃i obtaining the new O/D-pair node set Qi.

Customer satisfaction factors are aggregated again by taking the weighted
average

gqlt =

∑
q′∈Q̃i−1

q
d̂q′lt · gq′lt∑

q′∈Q̃i
q
d̂q′lt

. (18)

For each edge (q, l) ∈ Ẽi and each t ∈ T , the maximum assignable demand
is calculated by

d̂qlt = min

⎛
⎜⎝

∑

q′∈Q̃i
q

d̂q′lt,
d̄l

gqlt

⎞
⎟⎠ . (19)

The demands of these O/D-pairs are aggregated by taking the respective
sums for all q ∈ Q̃i and t ∈ T while also considering the maximal amount of
demand dqlt that can be assigned to stations at all adjacent areas l ∈ N i(q) :

dqt = min

⎛
⎜⎝

∑

q′∈Q̃i
q

dq′t,
∑

l∈Ni(q)

d̂qlt

⎞
⎟⎠ . (20)

58 T. Jatschka et al.

Note that due to the aggregation of the customer satisfaction factors g, it can-
not be guaranteed that dmax(Gi) ≥ dmin. Therefore, as previously discussed we
have relaxed the original feasibility criterion of the MBSSLP such that a solution
to a graph Gi is feasible if at least min(dmin, dmax(Gi)) demand is satisfied.

Solving the Coarsest Graph. The MILP (1)–(10) is used to generate a solu-
tion to the coarsest graph GK .

Projecting. A solution to a graph Gi is projected to the graph Gi−1 in two
steps. First the solution is projected to G̃i and then further projected to Gi−1.

Let x, y, and a be defined as described in Sect. 3. Projecting a solution from
Gi to G̃i is done by solving a linear program (LP) for each q ∈ Qi:

max
∑

q′∈Qi
q

∑

l∈Ñi(q)

∑
t∈T

gq′ltaq′lt

bl
(21)

∑

l∈Ñi(q′)

aq′lt ≤ dq′t t ∈ T , q′ ∈ Qi−1
q (22)

∑

q′∈Ñi(l)∩Qi
q

gq′lt · aq′lt ≤ gqlt · aqlt t ∈ T , l ∈ N i(q) (23)

0 ≤ aq′lt ≤ d̂q′lt t ∈ T , q′ ∈ Qi
q, l ∈ Ñ i(q′) (24)

Recall that variables aqlt denote the part of dqt w.r.t. q ∈ Q, which is assigned
to an area l ∈ N(q) in time interval t ∈ T . The objective function of this LP
maximizes the ratio of assigned demand to costs for building modules at the
respective areas. Constraints (22) ensure that assigned demand does not exceed
an O/D-pair’s available demand. Constraints (23) ensure that the total demand
assigned from all q′ ∈ Qi−1

q to some l ∈ L̃i does not exceed the demand assigned
from q to l. Hence, the total number of battery slots required in an area does not
increase when projecting the solution to G̃i. Note that the sub-problems induced
by q ∈ Qi can be solved independently of each other. However, the total satisfied
demand for the obtained solution might be smaller than the satisfied demand in
the solution to Gi.

When the solution is projected from G̃i to Gi−1, we again have one sub-
problem for each l ∈ L̃i. In this step we also aim to compensate for satisfied
demand lost in previous solution projections. Let dmissing denote the difference
between dmin and the amount of demand satisfied in a solution and let δmin(l) =∑

q∈Ñi(l) gqlt · aqlt + dmissing for l ∈ L̃i. Then, when projecting the solution
w.r.t. l, the minimal amount of demand to be satisfied by the areas in Li

l is
min(δmin(l), dmax(Li−1

l)) where dmax(Li−1
l) is the maximal amount of demand

that can be satisfied by the areas in Li−1
l . Moreover, when projecting the solution

w.r.t. L̃i we not only consider the demand allocated at the areas in the solution
but also take into account the so far unassigned demand of all O/D-pairs in Q̃i.
Hence, a sub-problem for l ∈ L̃i induces a sub-instance with the areas Li−1

l ,

A Multilevel Optimization Approach for Large Scale Battery 59

Algorithm 2: Project Solution from G̃i to Gi

Input : a solution (x, y, a) to G̃i

Output: a solution to Gi−1

1: Λ ← {l ∈ L̃i | xl > 0}; //areas to be extended

2: ρ ←
(∑

q∈Ñi(l) gqlt·aqlt

xl·cl+yl·bl

)
l∈Λ

;

3: δmin ← dmin − ∑
t∈T ,l∈Λ,q∈Ñi(l) aqlt;

4: δ ←
(
dqt − ∑

l∈Ñi(q) aqlt

)
q∈Q̃i,t∈T

; //unassigned demand

5: while |Λ| > 0 do
6: if δmin > 0 then
7: l ← argmaxl∈Λ{ρl};
8: else
9: l ← argminl∈Λ{ρl};

10: end if
11: Λ ← Λ \ {l};

12: δmin ← δmin +
∑

q∈Ñi(l) gqlt · aqlt;
13: δqt ← δqt + aqlt ∀q ∈ Ñ i(l), t ∈ T ;

14: (x′, y′, a′) ← solve(Li−1
l , Ñ i(l), δmin, δ); //apply MILP (1)–(10)

15: for l′ ∈ Li−1
l do

16: xl′ ← x′
l′ , yl′ ← y′

l′ ;
17: for q ∈ N i−1(l′), t ∈ T do
18: aql′t ← a′

ql′t;
19: δmin ← δmin − gql′t · aql′t;
20: δqt ← δqt − aql′t;
21: end for
22: end for
23: end while
24: return (x, y, a);

the O/D-pairs q ∈ Ñ i(l) with available demands δqt for t ∈ T , and a minimal
amount of demand to be satisfied δmin(l). This sub-instance can then be solved
by the MILP (1)–(10). Algorithm 2 gives a detailed description of how δ and
δmin(l) are calculated for each sub-problem. Note that these sub-problems are
no longer independent of each other. Therefore, the order in which they are
solved impacts the quality of the projected solution. To keep the setup costs of
the projected solution as low as possible, Algorithm 2 chooses the sub-problem
induced by the most cost efficient area l ∈ L̃i if dmissing is greater than zero
as the next one. Otherwise, if the current solution satisfies dmin demand, the
sub-problem induced by the least cost efficient area is solved next.

60 T. Jatschka et al.

Algorithm 3: Refine Solution
Input : a solution (x, y, a) to Gi

Output: a refined solution to Gi

1: Λ ← Li;
2: ρ ← (

(rl − xl) · cl + (�d̄l� − yl) · bl

)
l∈Λ

;
3: δmin ← dmin − ∑

t∈T ,l∈Λ,q∈Ni(l) aqlt;

4: δ ←
(
dqt − ∑

l∈N(q) aqlt

)
q∈Q̃i,t∈T

; //unassigned demand

5: while δmin > 0 do
6: l ← argminl∈Λ{ρl};
7: Λ ← Λ \ l;
8: δmin ← δmin +

∑
q∈Ni(l) gqlt · aqlt;

9: δqt ← δqt + aqlt ∀q ∈ N i(l), t ∈ T ;

10: (x′, y′, a′) ← solve(l, N i(l), δmin, δ); //apply MILP (1)–(10)

11: xl ← x′
l, yl ← y′

l;
12: for q ∈ N(l′), t ∈ T do
13: aqlt ← a′

qlt;
14: δmin ← δmin − gqlt · aqlt;
15: δqt ← δqt − aqlt;
16: end for
17: end while
18: return (x, y, a);

Refine Solution. After projecting a solution from G̃i+1 to Gi via Algorithm 2,
the obtained solution may be infeasible as it cannot be guaranteed that a solution
to a sub-problem w.r.t. l ∈ L̃i can actually satisfy δmin(l) demand. Therefore, it
may be necessary to further refine the obtained solution, i.e., to open additional
modules or areas and assign demand to them. Our refinement procedure is shown
in Algorithm 3. Similar to Algorithm 2 for each l ∈ Li that is not yet fully utilized
we define a sub-instance with area l, O/D-pairs q ∈ N i(l) with available demands
δqt for t ∈ T , and a minimal amount of demand to be satisfied δmin(l). Again,
this sub-instance can be solved by the MILP (1)–(10). As long as the solution is
infeasible, the sub-instance induced by the cheapest area is chosen and solved.
Note that we use Algorithm 3 also as standalone construction heuristic (CH)
and will compare the performance of MLO to the performance of CH.

5 Computational Results
We test our approach on artificial instances generated as described in [3]. A total
of eight groups of instances identified by their number of station areas n and
number of O/D pairs m as (n,m) is created. Each group contains 30 instances.
Note that the instances contain some station areas that have no O/D pairs in
the vicinity and vice versa. These unconnected nodes are deleted during pre-
processing. Table 1 gives an overview over all instance groups. Columns npp and

A Multilevel Optimization Approach for Large Scale Battery 61

Table 1. Test instance groups and the average numbers of nodes after preprocessing.

n m npp mpp

5000 5000 2354 4936
12500 3086 12410
25000 3663 24821
50000 4194 49634

n m npp mpp

10000 10000 4658 9457
25000 6130 24845
50000 7300 49714

100000 8394 99407

Table 2. Results obtained by solving the MILP with Gurobi (runtime limit two hours).

n m γLB[%] nfeasible τ [s]

5000 5000 3.47 30 7200
12500 12.01 30 7200
25000 6.40 25 7200
50000 4.41 7 7202

10000 10000 21.79 30 7200
25000 13.77 24 7201
50000 – 0 –

100000 – 0 –

mpp list the average numbers of station areas and O/D pairs, respectively after
preprocessing. Note that the number of actually usable station areas strongly
depends on the number of O/D pairs, i.e., the more O/D pairs a graph with
a fixed number of station areas has, the more station areas are adjacent to an
O/D pair.

MLO was implemented in Julia1 1.8.1 using Gurobi2 9.1 as the underlying
MILP solver. All test runs have been executed on an AMD EPYC 7402, 2.80GHz
machine in single-threaded mode with a global memory limit of 100GB. When
solving MILPs during MLO we have set a time limit of ten minutes and termi-
nated the solving earlier when an optimality gap of ≤ 0.5% was reached.

First, Table 2 shows the results for generating solutions to the benchmark
instances by solving the MILP (1)–(10) with Gurobi with a runtime limit of
two hours. Column γLB shows average gaps between the best found solutions
and the respective lower bounds. Additionally, column nfeasible shows for how
many instances in a group the solver was able to find a feasible solution. Finally,
column τ shows median computation times. We can see that the MILP solver
was not able to consistently find a feasible solution within the given time limit
for a large part of the instances. In general, the larger the instances, the fewer
solutions were found by the MILP solver. However, there are three groups for
which the MILP solver was able to find a feasible solution to all instances:
(5000, 5000), (5000, 12500), and (10000, 10000). Looking at these groups we can
1 https://julialang.org/.
2 https://www.gurobi.com/.

https://julialang.org/
https://www.gurobi.com/

62 T. Jatschka et al.

Fig. 1. Comparison of results obtained by a MILP solver to results obtained by MLO
with different values for K. Each boxplot covers a single instance group and each
instance was evaluated once for each configuration.

also see that the gaps to the best known lower bounds are strongly increasing
as the instances become larger. Moreover, for the two largest instance groups
the MILP solver was not able to find any feasible solution at all within the time
limit.

Next, in Fig. 1 we compare different variants of MLO to the pure MILP app-
roach. MLO was able to find feasible solutions for all instances, however, for this
comparison we only consider instances to which MLO as well as the MILP solver
were able to find solutions. To compare the two approaches we use the best found
lowest bound for each instance reported by Gurobi to calculate gaps for the MLO
results. We test MLO with different numbers of coarsening levels K ∈ {3, 4, 5}.
The figure shows that for the reported instances, MLO achieves gaps between 6%
to 18%. For the instance groups (5000, 12500), and (10000, 10000), for which the
MILP solver found solutions to all instances and the group (10000, 25000), MLO
is able to achieve better results than the MILP. Otherwise, the MILP solutions
are usually better than the MLO solutions. However, one has to consider, that
the MILP solver was not able find solutions to a large part of the instances at
all. Additionally, the MILP solver terminated after two hours, while MLO was
much faster.

To get a better impression of how well MLO performs, Tables 3, 4, 5 give more
detailed results for MLO. As previously mentioned the construction heuristic
used for refining solutions after projection can also be used as a standalone
construction heuristic (CH). We compare the results obtained by MLO to the
results achieved with this construction heuristic as MLO itself is comparable to
a construction heuristic in the sense that a complete solution is only obtained at
the end of the algorithm. Moreover, as CH generates solutions to all instances
within the time limit, we are able to get a better impression of how well MLO
performs w.r.t. different values of K and different instance sizes. Columns γCH

show the average gap between the MLO results and the CH results for each
instance group. More specifically, let fMLO refer to the objective value of a

A Multilevel Optimization Approach for Large Scale Battery 63

Table 3. MLO results for K = 3.

n m γCH[%] nproj τc[s] τcp[s] τ [s]
5000 5000 −37.38 5279 6 36 103

12500 −48.54 13032 12 123 265
25000 −36.84 24688 28 96 385
50000 −22.09 47304 77 81 663

10000 10000 −37.62 10156 10 132 241
25000 −48.93 26035 24 457 747
50000 −36.88 49348 58 358 954

100000 −22.09 94635 173 292 1624

Table 4. MLO results for K = 4.

n m γCH[%] nproj τc[s] τcp[s] τ [s]
5000 5000 −34.30 5950 6 20 86

12500 −46.85 14275 11 14 154
25000 −35.68 26764 26 12 277
50000 −21.63 51073 71 17 552

10000 10000 −34.32 11466 9 39 149
25000 −47.21 28480 22 50 325
50000 −35.59 53482 54 41 603

100000 −21.46 102171 160 60 1301

Table 5. MLO results for K = 5.

n m γCH[%] nproj τc[s] τcp[s] τ [s]

5000 5000 −33.50 6276 6 3 68
12500 −46.12 14920 11 2 139
25000 −34.71 27870 25 3 271
50000 −21.44 53064 70 5 543

10000 10000 −33.67 12113 9 8 117
25000 −46.75 29759 21 6 281
50000 −34.76 55703 51 9 576

100000 −21.42 106172 155 15 1255

solution obtained with MLO and let fCH refer to the objective value of a solution
(to the same instance) generated by CH. Then, γCH = fCH−fMLO

fCH
· 100. Hence,

if γCH is negative, MLO achieved better results, otherwise the better result was
achieved by CH. Additionally, the tables also show the average number of sub-
problems nproj solved when projecting the solution, the average time τc needed
for generating all coarsened graphs, the average time τcp for generating a solution
to the coarsest graph, as well as the average total computation time τ . Results
indicated that MLO clearly outperforms CH w.r.t. the obtained solution quality,
yielding solutions that are up to ≈ 49% better on average. Note that the gaps
generally decrease as m increases. Due to a higher number of O/D pairs, a
larger number of opened stations is required. Hence, the difference between the
worst solution (the solution in which all stations are opened with a maximum
number of modules) and an optimal solution becomes smaller. Therefore, one can
also expect to achieve “better” results more easily as m increases. As expected,
one can also observe that the number of sub-problems that need to be solved
during the projection phase increases proportionally to K. However, in general
the number of sub-problems solved is roughly equal to m. As the number of
sub-problems increases, the total computation times actually decrease as the
coarsest problem instance can be solved significantly faster for larger values of
K. In general, it seems that the computation times grow proportional to n and
m. For the largest instance group MLO needed up to 27min on average to
generate solutions. Moreover, coarsening of the graphs contributes only a small
part of the total computation time. Finally, we can also observe that the solution

64 T. Jatschka et al.

quality slightly deteriorates as K increases. This behavior is not surprising as the
coarsest instance becomes a less accurate representation of the original instance
the more often it was coarsened.

6 Conclusion and Future Work
We presented a Multilevel Optimization (MLO) approach for solving huge
instances of the Multi-Period Battery Swapping Station Location Problem
(MBSSLP) proposed in [3]. MLO first generates series of coarsened graphs with
each new graph becoming smaller in size. Afterwards, a solution to the coarsest
graph is generated and iteratively projected to the coarsened graphs in reverse
order until and refined a solution to the original problem graph is obtained.

The approach was tested on artificial benchmark instances with up to 10000
areas for placing stations and 100000 origin-destination (O/D) pairs describing
the trips of users. Evaluating our approach on these benchmark instances shows
that MLO is able to generate reasonably good solutions within at most half an
hour. On the other hand, when formulating and solving the problem as a mixed
integer linear program (MILP), the MILP solver struggles to consistently find
even feasible solutions to many of the instances. As the size of the instances
increases, MLO clearly outperform the MILP solver w.r.t. the achieved solution
quality. When confronted with such huge instances, classical metaheuristics often
struggle as well to obtain good results as corresponding neighborhood structures
are too large to be searched efficiently. Therefore, we instead compared MLO to
the construction heuristic (CH) that was used within MLO for refining solutions.
Our results show that MLO significantly outperforms CH w.r.t. all instances.

Still, there are multiple ways in which MLO can possibly be improved, espe-
cially w.r.t. deriving the coarsened graphs. Using greedy heavy-edge matching
we obtain a graph partitioning that contains at most two nodes in each partition.
However, it seems promising to adapt this approach such that partitions of larger
size can be generated if, for example, one can identify large similarities between
multiple nodes. In order to identify similar nodes more reliably it seems also
necessary to derive a more problem specific similarity criterion. A possible way
to achieve this is to use machine learning for learning the similarity between two
nodes, e.g., by training a machine learning model on a smaller set of instances
in which only two nodes are coarsened at a time.

A particular issue for MLO is that the amount of satisfied demand can
decrease when projecting a solution. A potential way to alleviate this prob-
lem is to derive constraints that restrict the possibilities in how a node can be
projected.

In this contribution we have explicitly specified how often a graph should be
coarsened. Additionally, in each iteration both the set of station areas as well as
the set of O/D-pairs is coarsened. In future work we aim to adapt MLO such
that a graph is coarsened until both of its vertex sets have in some sense ideal
sizes.

Finally, in the real world a solution obtained by MLO is in general not build
at once but gradually over time. Therefore, an interesting further problem is to

A Multilevel Optimization Approach for Large Scale Battery 65

also optimize the schedule by which the stations should be built when realizing
the obtained solution.

References

1. Brulin, S., Bujny, M., Puphal, T., Menzel, S.: Data-driven evolutionary optimiza-
tion of eVTOL design concepts based on multi-agent simulations. In: Proceedings of
the American Institute of Aeronautics and Astronautics SciTech Forum (to appear)

2. Hosseini, M., MirHassani, S., Hooshmand, F.: Deviation-flow refueling location
problem with capacitated facilities: model and algorithm. Transp. Res. Part D:
Transp. Environ. 54, 269–281 (2017)

3. Jatschka, T., Oberweger, F.F., Rodemann, T., Raidl, G.R.: Distributing battery
swapping stations for electric scooters in an urban area. In: Olenev, N., Evtushenko,
Y., Khachay, M., Malkova, V. (eds.) OPTIMA 2020. LNCS, vol. 12422, pp. 150–
165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62867-3_12

4. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

5. Kchaou-Boujelben, M.: Charging station location problem: a comprehensive review
on models and solution approaches. Transp. Res. Part C: Emerg. Technol. 132,
103376 (2021)

6. Kim, J.G., Kuby, M.: The deviation-flow refueling location model for optimizing a
network of refueling stations. Int. J. Hydrogen Energy 37(6), 5406–5420 (2012)

7. Kloimüllner, C., Raidl, G.R.: Hierarchical clustering and multilevel refinement for
the bike-sharing station planning problem. In: Battiti, R., Kvasov, D.E., Sergeyev,
Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 150–165. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69404-7_11

8. Laporte, G., Nickel, S., da Gama, F.S.: Location Science. Springer, Cham (2015)
9. Murali, P., Ordóñez, F., Dessouky, M.M.: Facility location under demand uncer-

tainty: response to a large-scale bio-terror attack. Soc.-Econ. Plann. Sci. 46(1),
78–87 (2012). special Issue: Disaster Planning and Logistics: Part 1

10. Pirkwieser, S., Raidl, G.R.: Multilevel variable neighborhood search for periodic
routing problems. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol.
6022, pp. 226–238. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12139-5_20

11. Valejo, A., Ferreira, V., Fabbri, R., Oliveira, M.C.F.D., Lopes, A.D.A.: A critical
survey of the multilevel method in complex networks. ACM Comput. Surv. 53(2),
1–35 (2020)

12. Valejo, A., Ferreira, V., de Oliveira, M.C.F., de Andrade Lopes, A.: Community
Detection in bipartite network: a modified coarsening approach. In: Lossio-Ventura,
J.A., Alatrista-Salas, H. (eds.) SIMBig 2017. CCIS, vol. 795, pp. 123–136. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-90596-9_9

13. Verter, V., Lapierre, S.D.: Location of preventive health care facilities. Ann. Oper.
Res. 110(1), 123–132 (2002)

14. Walshaw, C.: A multilevel approach to the travelling salesman problem. Oper. Res.
50(5), 862–877 (2002)

15. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

16. Zockaie, A., Aashtiani, H.Z., Ghamami, M., Nie, Y.: Solving detour-based fuel
stations location problems. Comput.-Aided Civ. Infrastruct. Eng. 31(2), 132–144
(2016)

https://doi.org/10.1007/978-3-030-62867-3_12
https://doi.org/10.1007/978-3-319-69404-7_11
https://doi.org/10.1007/978-3-642-12139-5_20
https://doi.org/10.1007/978-3-642-12139-5_20
https://doi.org/10.1007/978-3-319-90596-9_9

A Memetic Algorithm for Deinterleaving
Pulse Trains

Jean Pinsolle1,2, Olivier Goudet2 , Cyrille Enderli1, and Jin-Kao Hao2(B)

1 Thales DMS France SAS, 2 avenue Gay Lussac, 78852 Elancourt cedex, France
jean.pinsolle@fr.thalesgroup.com

2 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
{olivier.goudet,jin-kao.hao}@univ-angers.fr

Abstract. This paper deals with the problem of deinterleaving a
sequence of signals received from different emitters at different time steps.
It is assumed that this pulse sequence can be modeled by a collection of
processes over disjoint finite sub-alphabets, which have been randomly
interleaved by a switch process. A known method to solve this problem
is to maximize the likelihood of the model which involves a partitioning
problem of the whole alphabet. This work presents a new memetic algo-
rithm using a dedicated likelihood-based crossover to efficiently explore
the space of possible partitions. The algorithm is first evaluated on syn-
thetic data generated with Markov processes, then its performance is
assessed on electronic warfare datasets.

Keywords: Memetic algorithm · Markov process · partitioning
problem · deinterleaving pulse trains · electronic warfare

1 Introduction

This paper presents an optimization algorithm for deinterleaving data streams
that can be described by interleaved Markov processes. Even though such a
method can be applied to many fields, the original motivation of this paper is
related to radar warning receivers, which are passive sensors performing among
other tasks the deinterleaving of pulse trains received from multiple emitters
over a common channel.

In this context, pulses are emitted by different radars present in the environ-
ment and are intercepted by a single receiver. Each pulse is described by several
characteristics called Pulse Description Words (PDW). Some of these features
are called primary because they are measured in the early stages of the radio
frequency signal reception chain, such as time of arrival (ToA), carrier frequency
(CF), pulse duration (PD), signal amplitude or angle of arrival (AoA), while
others are called secondary, such as the time interval between two consecutive
pulses (Pulse Repetition Interval, PRI) because they characterize a pulse train.
In the case of conventional radars with simple interpulse modulation, basic PRI
clustering methods may be sufficient to solve the problem [10,11,13]. For more
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 66–81, 2023.
https://doi.org/10.1007/978-3-031-30035-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_5&domain=pdf
http://orcid.org/0000-0001-7040-5052
http://orcid.org/0000-0001-8813-4377
https://doi.org/10.1007/978-3-031-30035-6_5

A Memetic Algorithm for Deinterleaving Pulse Trains 67

complex data, multivariate methods such as [3], leveraging on different pulse
features (CF, AoA, and PD), have been proposed.

However, modern radars can create much more complex patterns, which may
result in a loss of performance of basic clustering methods, and produce errors
in the deinterleaving process such as transmitter track proliferation or radar
misses. To overcome these limitations, new methods based on inferring mixtures
of Markov chains [1] have been proposed in the radar pulse train deinterleaving
literature [5]. These methods aim to address complex scenarios by reducing the
surplus of clusters found by classical methods. In these interleaved Markov pro-
cess (IMP) methods, a clustering algorithm is first applied to group the different
pulses into different clusters (or letters). Then, in a second step, a partition of
these letters into different groups is performed in order to identify the different
emitters which could have generated the observed sequence of symbols. This
partition of the different symbols is typically done by maximizing a penalized
likelihood score, which has been proven consistent under mild conditions on the
switch and component processes [14].

In general, such methods for deinterleaving finite memory processes via penal-
ized maximum likelihood raise a challenging combinatorial problem, because
finding the optimal partition may require evaluating all the possible partitions
of the observed symbols into different groups. Since this search space of all parti-
tions grows exponentially with the number of symbols, an exhaustive search is in
general not feasible in a reasonable amount of time. Therefore, heuristics based
on greedy criteria have been proposed in [5,14] to provide an approximate solu-
tion to this problem in a limited amount of time. However, such greedy searches
are prone to easily get stuck in local optima, especially when the search space
becomes huge.

In this paper, we propose a new heuristic to solve this deinterleaving partition
problem (DPP), by noticing that this problem can be seen as a particular group-
ing problem. The main contribution of this work is a new memetic algorithm for
alphabet partitioning called MAAP, inspired by the memetic framework HEAD
[12], which obtains state-of-the-art results for another grouping problem namely
the graph coloring problem. The MAAP algorithm takes into account specific
features related to penalized entropy estimates in order to speed up the search
in the space of all partitions. In addition, it introduces a new likelihood-based
crossover capable of sharing low entropy sub-alphabets that will be transmitted
to the next generations.

The rest of the paper is organized as follows: Sect. 2 presents the formal
background for the deinterleaving of Markov processes. Section 3 presents the
settings of the optimization problem. Section 4 describes the proposed memetic
algorithm. Section 5 reports the results on synthetic datasets generated with
Markov processes, while Sect. 6 provides illustrative examples of radar intercep-
tions in a realistic context. Section 7 discusses the contribution and presents
some perspectives for future work.

68 J. Pinsolle et al.

2 Deinterleaving Markov Processes: Formal Background

In this section, we summarize the formal background of deinterleaving a set of
finite memory processes on disjoint subsets and the penalized maximum likeli-
hood method introduced in [14] to solve this problem.

2.1 Interleaved Markov Generative Process

Let zn = z1, . . . , zn be an observed sequence of n symbols ordered by their time
of arrival. Each symbol is drawn from a finite set A (alphabet).

The underlying generative model of this sequence is assumed to be an inter-
leaved Markov process P = IΠ(P1, . . . , Pm;Pw), where m > 0 is the number of
different emitters, Pi is an independent component random process for emitter
i, generating symbols in the sub-alphabet Ai ⊂ A, Pw is a random switch pro-
cess over the emitters, and Π = {A1, . . . , Am} is the partition of A into the
sub-alphabets Ai, for i = 1, . . . , m, which are assumed to be non-empty and
disjoint.

It is further assumed that all Markov processes are time-homogeneous, inde-
pendent, ergodic, and with finite memory. Let ki be the order of Pi, and
k = (k1, . . . , km; kw) denote the vector containing the orders of the corresponding
processes (P1, ..., Pm;Pw). All states are assumed to be reachable and recurrent,
and it is assumed that all symbols a ∈ A occur infinitely and their stationary
marginal probabilities are positive. There is no assumption on the initial state
of the processes.

According to this IMP P , at each time step, t = 1, . . . , n and given the prefix
zt−1 = z1, . . . , zt−1 of the sequence already generated at time t − 1, a process
Pi is selected by the switch process Pw, then Pi selects a letter zt from Ai and
adds it to the prefix sequence zt−1 to form the sequence zt.

Formally, this generative process can be written as

P (zt|zt−1) = Pw(i|σΠ(zt−1))Pi(zt|zt−1[Ai]), (1)

where σΠ(zt−1) is the sequence of integers i ∈ {1, ...,m} derived from the switch
selection of the processes Pi to generate the sequence zt−1 and zt−1[Ai] is the
sub-string of the sequence zt−1 obtained by deleting all symbols not in Ai, note
that we do not write a sum on i since Pi(zt|zt−1[Ai]) is null for another alphabet
than Ai.

By recursive application of Eq. (1), the probability of occurrence of a sequence
zt is then (with a slight abuse of notation)

P (zt) = Pw(σΠ(zt))
m∏

i=1

Pi(zt[Ai]). (2)

A Memetic Algorithm for Deinterleaving Pulse Trains 69

2.2 Penalized Maximum Likelihood Score

For a Markov process P of order k which generates a sequence ut of letters drawn
from A, the maximum likelihood (ML) of ut is given by

PML
k (ut) =

∏

ak+1∈ut

P (ak+1|ak) =
∏

ak+1∈ut

(
Nut(ak+1)
Nut−1(ak)

)Nut (a
k+1), (3)

with ak a pattern of k letters in ut of length k, P (ak+1|ak) the transition prob-
ability from ak to ak+1 and Nut(ak+1) the number of patterns ak+1 in ut. We
denote Ĥk(ut) = − log PML

k (ut) the corresponding ML entropy.
Knowing that the processes are independent and according to Eq. (2), the

global ML entropy ĤΠ,k(zn) of a sequence zn under an IMP model induced
by the partition Π and the vector order k is given by the addition of the ML
entropy of each process:

ĤΠ,k(zn) =
m∑

i=1

Ĥki
(zn[Ai]) + Ĥkw

(σΠ(zn)). (4)

A global penalized entropy is further defined by adding a penalty term:

C(Π,k)(zn) = ĤΠ,k(zn) + βκ log n, (5)

with β a constant and κ the number of free parameters in the model, which
corresponds to the number of free parameters in the different processes:

κ =
m∑

i=1

|Ai|ki(|Ai| − 1) + mkw(m − 1). (6)

Finally, the IMP estimate, i.e., the deinterleaving scheme, is given by mini-
mizing the previous cost function:

(Π̂, k̂) = argmin
(Π,k)

C(Π,k)(zn). (7)

It is known that the scheme almost surely converges to an equivalent IMP
representation as the sequence n approaches infinity [14].

3 Problem Settings and Motivation for this Work

Given an observed sequence zn of length n, assumed to have been generated from
an IMP P defined in the previous section, with unknown number of emitters m
and unknown processes Pw and Pi for i = 1, . . . , m, the problem that we address
in this paper is to retrieve the partition Π = {A1, ..., Am}. This deinterleaving
process problem is denoted as DPP in the following. Note that we do not address
the problem of retrieving exactly the processes Pw and Pi, which is a more
difficult estimation problem.

70 J. Pinsolle et al.

We assume in this work that each process has a maximum order kmax. There-
fore, we search for the couple of order vector k̂ ∈ Ωkmax

and partition Π̂ ∈ ΩΠ

minimizing the global ML entropy CΠ̂,k̂ given by Eq. (5) with Ωkmax
the set of

possible order vectors given by

Ωkmax
= {(k1, . . . , km; kw), 1 ≤ ki ≤ kmax, i = 1, . . . , m, w}, (8)

and ΩΠ the search space of the alphabet partitions given by

ΩΠ = {{A1, . . . , Am},A =
m⋃

i=1

Ai, Ai ∩ Aj = ∅, 1 ≤ i, j ≤ m, 1 ≤ m ≤ |A|}. (9)

Therefore, solving the DPP is a double problem combining an estimation
problem consisting in finding the optimal order vector k for each evaluated par-
tition Π and a combinatorial optimization problem on the space of all partitions
Π of the symbol alphabet A.

3.1 Decomposable Score for Estimating Processes Optimal Order

Given a candidate partition Π̂ = ∪m
i=1Âi and order vector k̂ = (k̂1, . . . , k̂m; k̂w),

we first observe that Eq. (5) can be rewritten as

CΠ̂,k̂(zn) =
m∑

i=1

Ĥk̂i
(zn[Âi]) + Ĥk̂w

(σΠ̂(zn)) (10)

+ β log n

m∑

i=1

|Âi|k̂i(|Âi| − 1) + β log n mk̂w(m − 1) (11)

=
m∑

i=1

CÂi,k̂i
(zn) + CσΠ̂ ,k̂w

(zn), (12)

with CÂi,k̂i
(zn) = Ĥk̂i

(zn[Âi]) + β log n |Âi|k̂i(|Âi| − 1), the penalized entropy
of the estimated process P̂i of order k̂i generating sub-alphabet Âi, and
CσΠ̂ ,k̂w

(zn) = Ĥk̂w
(σΠ̂(zn)) + β log n mk̂w(m − 1), the penalized entropy of

the switch process related to partition Π̂.
With this decomposition, we observe that given an estimated sub-alphabet

Âi, finding the optimal order ki of the process of each penalized entropy term
CÂi,k̂i

(zn) can be done independently of the global partition Π̂ being evalu-
ated. We denote as CÂi,k∗

i
(zn), the optimal penalized entropy obtained for the

observed sequence zn and the optimal order 1 ≤ k∗
i ≤ kmax.

A Memetic Algorithm for Deinterleaving Pulse Trains 71

3.2 A Combinatorial Problem in the Space of Partitions

Since the space search grows exponentially with the number of letters, an exhaus-
tive search is in general not feasible in a reasonable amount of time for the DPP.
Greedy searches have recently been proposed by [5,14] to solve this combinato-
rial problem. However, such greedy local searches are prone to get stuck in local
optima.

In this paper, we propose an improved heuristic to find the best partition Π̂
in the huge search space ΩΠ , by noticing that the studied problem is a particular
grouping problem [15]. Given a set S of elements, a grouping problem involves
partitioning set S into a number of disjoint groups Si optimizing a given objective
function and possibly satisfying some given constraints.

In the DPP, the alphabet A corresponds to the set of elements S, and each
sub-alphabet Ai corresponds to a group Si. The task is to find a partition Π̂ ∈
ΩΠ such that the global score f(Π̂) = CΠ̂,k∗(zn) is minimized (with CΠ̂,k∗(zn)
the penalized entropy evaluated for the observed sequence zn, the partition Π̂
and the optimal order vector k∗ ∈ Ωkmax

associated).

4 A Memetic Algorithm for Alphabet Partitioning

In this section, we present a new memetic algorithm for alphabet partitioning
called MAAP to solve the DPP seen as a grouping problem. Following the main
ideas of the HEAD algorithm [12], the proposed algorithm relies on a reduced
population of only two individuals and uses a dedicated crossover operator. For
local optimization, it employs a tabu search procedure.

4.1 General Framework

The general algorithm architecture of the proposed MAAP algorithm is described
in Algorithm 1.

The population is initialized with two random partitions in ΩΠ (see Sect. 4.2).
Then at each generation, the algorithm alternates two steps:

1. an intensification phase, where the two individuals of the population Π1,
Π2 are improved by a tabu search procedure (called TabuAP) during nbiter

iterations (see Sect. 4.3). This step produces two individuals Π ′
1, Π ′

2.
2. a diversification procedure, where two different children Π1, Π2 are gener-

ated from the two best partitions Π ′
1, Π ′

2 obtained from the tabuAP local
search procedure. The crossover used to generate the two offspring partitions
is a dedicated likelihood score-based crossover for the DPP (called GLPX)
inspired by the well-known GPX crossover [6] for the graph coloring problem,
it is explained in detail in Sect. 4.4.

The following subsections describe each step of the MAAP algorithm.

72 J. Pinsolle et al.

Algorithm 1. MAAP - Memetic algorithm for alphabet partitioning
1: Input: Observed sequence zn of n letters drawn from the alphabet A.
2: Output: The best partition Πbest found so far
3: Π1, Π2, Πbest ←− random initialization � Section 4.2
4: while stop condition is not met do
5: Π ′

1 ← TabuAP (Π1, z
n) � Local tabu searches (see Section 4.3)

6: Π ′
2 ← TabuAP (Π2, z

n)
7: if f(Π ′

1) < f(Πbest) then
8: Πbest ← Π ′

1

9: end if
10: if f(Π ′

2) < f(Πbest) then
11: Πbest ← Π ′

2

12: end if
13: Π1 ← GLPX(Π ′

1, Π
′
2, z

n) � Crossover operators (see Section 4.4)
14: Π2 ← GLPX(Π ′

2, Π
′
1, z

n)
15: end while
16: return Πbest

4.2 Initialisation

During the initialization procedure, the partitions Π1, Π2, Πbest ∈ ΩΠ are ran-
domly built. In order to build a random partition, the letters in A are considered
in alphabetical order. Then at each step, if the partition being constructed has
already m groups, the incoming letter a has a probability equal to 1

m+1 to be
placed in each existing group of letters Ai with i = 1, . . . , m, and a probability

1
m+1 to be placed in a new group Am+1. This process is repeated until all let-
ters are assigned to a sub-alphabet Ai. This procedure allows the creation of a
partition randomly and uniformly in the search space ΩΠ .

In order to ensure that the two individuals Π1 and Π2 are different in the
population at the beginning, this initialization procedure is repeated until the
set-theoretic partition distance between Π1 and Π2 is greater than 0. The set-
theoretic partition distance between two partitions Π1 = ∪m

i=1Ai and Π2 =
∪l

j=1Bj is defined as the minimum number of one-move steps needed to transform
Π1 into Π2 (up to a group permutation). This distance can be computed by
solving a maximum weight bipartite matching problem if we consider each sub-
alphabet Ai of Π1 and Bj of Π2 as nodes of a bipartite graph connected by edges
eij = {Ai, Bj}. Each edge eij has a weight wij corresponding to the number of
letters shared by the two corresponding sub-alphabets Ai and Bj . This matching
problem can be solved by the Hungarian algorithm [8] with a time complexity
of O(p3) with p = max(m, l). It produces a matching of maximum cardinality
0 ≤ q ≤ |A| and the set-theoretic partition distance D(Π1,Π2) is then defined
as |A| − q. Note that this distance will also be useful for the experiments. It
is indeed a relevant scoring metric that can be used to evaluate the quality of
an alphabet partition with respect to a known ground truth when working with
simulated data (see Sects. 5.2 and 5.3).

A Memetic Algorithm for Deinterleaving Pulse Trains 73

4.3 Tabu Search Procedure

The tabu search procedure for alphabet partitioning (called TabuAP) used dur-
ing the intensification phase is inspired from the popular TabuCol algorithm for
the graph coloring problem [7]. Some adjustments are made to adapt this tabu
search to our partitioning problem.

Neighborhood of a Partition. TabuAP explores the search space ΩΠ of all
possible partitions that can be formed with the alphabet A, by making transi-
tions from the current solution to one neighboring solution.

A neighboring solution is generated by using the one-move operator. For a
partition Π = ∪m

i=1Ai ∈ ΩΠ , the one-move operator displaces a letter a ∈ Ai

to a different sub-alphabet Aj , j �= i. Let Π ⊕ < a,Ai, Aj > be the resulting
neighboring partition. We then define the one-move neighborhood by

N(Π) = {Π ⊕ < a,Ai, Aj >: a ∈ Ai, 1 ≤ i ≤ m, 1 ≤ j ≤ m + 1,m + 1 ≤ |A|}.
(13)

Notice that with this neighborhood, a letter a ∈ Ai, i �= m is allowed to be
transferred to an existing group Aj for j = 1, . . . , m, with j �= i, or to be placed
in a new group Am+1, which increases the total number of groups by one.

Tabu Search. The tabu search procedure iteratively replaces the current solu-
tion Π by a neighboring solution Π ′ taken from the one-move neighborhood
N(Π) until it reaches a maximum of nbiter iterations of tabu search or the
cutoff time for the MAAP algorithm is reached.

At each iteration, TabuAP examines the neighborhood and selects the best
admissible neighboring solution Π ′ to replace Π. A neighboring solution Π ⊕ <
a,Ai, Aj > built from Π is said to be admissible if the associated one-move
< a,Ai, Aj > was not registered in a tabu list. Each time such one-move is
performed, it is added to the tabu list and forbidden during the t = r(3) + α|A|
next iterations (tabu tenure) where r is a random number uniformly drawn in
1, ..., 3 and α is a hyperparameter of the algorithm set to the value of 0.6.

In order to compute the best admissible partition in the neighborhood, all
the differences of global penalized entropy scores Δa,j , associated with each
admissible one-move < a,Ai, Aj > are computed and the move corresponding
to the lowest value of Δa,j is applied (because it is a minimization problem).

For a move < a,Ai, Aj > applied to the current partition Π and resulting
in a new partition Π ′ = Π ⊕ < a,Ai, Aj >, only the penalized entropy of the
changing groups and the switch process need to be reevaluated. Indeed, according
to Eq. 10,

Δa,j = CΠ′,k’∗ − CΠ,k∗ (14)
= CA′

i,k̂
′∗
i

− CAi,k̂∗
i

+ CA′
j ,k̂′∗

j
− CAj ,k̂∗

j
+ CσΠ′ ,k̂′∗

w
− CσΠ ,k̂∗

w
, (15)

74 J. Pinsolle et al.

where CA′
i,k̂

′∗
i

and CA′
j ,k̂′∗

j
are respectively the optimal penalized entropy of the

new sub-alphabet A′
i = Ai\a and A′

j = Aj ∪ a (after moving the letter a from

Ai to Aj) with optimal order k̂′∗
i and k̂′∗

j ; CσΠ ,k̂∗
w

and CσΠ′ ,k̂′∗
w

are respectively
the optimal entropy of the switch process of the partitions Π and Π ′.

Since |A| letters can be displaced to at most |A| − 1 sub-alphabets, the size
of this neighborhood is bounded by O(|A|2). Evaluating a transition toward a
neighbor with the one-move operator required to evaluate new penalized entropy,
whose time complexity is in O(n × kmax × |A|kmax+1) (n the length of the
sequence). Therefore, the overall complexity of this tabu search procedure is
O(nbiter × n × kmax × |A|kmax+3).

4.4 Greedy Likelihood-Based Crossover Operator

The popular greedy partition crossover (GPX) [6] has proven to be very effective
for graph coloring [9,12]. The two main principles of GPX are: 1) a solution
is a partition of vertices (letters) into color classes (sub-alphabet) and not an
assignment of colors to vertices, and 2) large color classes are transmitted to the
offspring.

For the DDP, we introduce a new greedy likelihood-based partition crossover
called GLPX. GLPX relies on the main principles of the GPX crossover with
specific adaptations to our problem. Instead of only prioritizing large groups of
letters, which does not make much sense for our problem, we prioritize groups
as large as possible, but with as low entropy as possible, because our problem
is to minimize the global entropy of the partition over the whole alphabet. A
GLPX score for a group Ai is introduced as

{
ĈAi

(zn) =
CAi,k∗

i
(zn)

|Ai|−1 if |Ai| > 1,

ĈAi
(zn) = +∞ if |Ai| = 1.

(16)

Given two parent partitions Π1 and Π2, the GLPX procedure alternates two
steps. First, it transmits to the child the sub-alphabet Ā with the lowest score
ĈĀ. After having withdrawn the letters of this sub-alphabet in both parents and
having recomputed all scores, it transmits to the child the sub-alphabet B̄ with
the lowest score ĈB̄ of the second parent. This procedure is repeated until all
the letters of the alphabet A are assigned to the child. For a given parent, if two
or more processes have the same lowest score, one of them is selected at random.
Note that singletons have infinite scores, and then are randomly selected at the
end of the process, when no more groups of at least two letters remain. The
GLPX procedure is described in Algorithm 2.

This crossover is asymmetrical like the GPX crossover. As noticed in [12],
starting the crossover with parent 1 or parent 2 can produce different offspring
solutions. Therefore when used in the MAAP algorithm to generate two new
offspring solutions Π1 = GLPX(Π ′

1,Π
′
2, z

n) and Π2 = GLPX(Π ′
2,Π

′
1, z

n), the
two children Π1 and Π2 can be very different (in the sense of the set-theoretic
partition distance defined in Sect. 4.2).

A Memetic Algorithm for Deinterleaving Pulse Trains 75

Algorithm 2. GLPX crossover procedure
1: Input: parents partitions Π1 = ∪m

i=0Ai, Π2 = ∪q
i=0Bi and observed

sequence zn.
2: Output: Child partition Πc

3: Πc ← ∅
4: while Π1 or Π2 are not empty do
5: for i = 1, 2 do
6: Ā ← argmin

A∈Πi

̂CA(zn)

7: Πc ← Πc ∪ Ā
8: for a ∈ Ā do
9: Π1 ← Π1\a
10: Π2 ← Π2\a
11: end for
12: end for
13: end while
14: return Πc

5 Experiments and Computational Results

This section is dedicated to the computational assessment of the proposed algo-
rithm on both synthetic datasets and realistic datasets. Before showing the com-
putational results, we first present the experimental condition.

5.1 Experimental Condition and Reference Algorithm

Parameter Settings. For the TabuAP procedure, the tabu tenure parameter
α is set to the value of 0.6 according to [6,12]. The maximal number of iterations
for each TabuAP run is set to 50. The penalization parameter β in Eq. (5) is set
to 1

2 , which is a common value used in the literature [2], allowing to retrieve the
Bayesian Information Criterion (BIC). The maximum order kmax for entropy
estimation is set to the value of kmax = 1. Table 1 summarizes the parameter
setting for the MAAP algorithm which can be considered the default and was
used for all our experiments.

Table 1. Parameter setting in MAAP

Parameter Description Value

nbiter Number of iterations of the TabuAP local search 50

α Tabu tenure parameter 0.6

β Penalization parameter entering in Eq. 5 1
2

kmax Maximum order for entropy estimation 1

76 J. Pinsolle et al.

Reference Algorithm. Our MAAP algorithm is compared to the iterated
greedy algorithm (iteratedGreedy) for alphabet deinterleaving pulse trains (see
Algorithm 1 in [5]). For this iteratedGreedy algorithm, the radius of jump r is set
to the value of 2 and the neighborhood radius is set to 1 like in [5]. The maximum
number of jumps N is not limited. For this iteratedGreedy algorithm, the entropy
evaluation is done with the same function used in the MAAP algorithm, and with
the same parameters (β = 1

2 and kmax = 1). The only difference between MAAP
and iteratedGreedy is thus the search heuristic in the space of partition ΩΠ . Both
MAAP and iteratedGreedy are coded in Python with the Numpy library and
are launched on a computer equipped with Intel Xeon ES 2630, 2.66 GHz CPU.

Evaluation Metric and Stopping Condition. To assess the quality of the
best partition Πbest found by an algorithm, we compute the set-theoretic parti-
tion distance between Πbest and the ground truth partition Πtruth. The stopping
condition for each experiment (on synthetic data and electronic warfare data) is
indicated in the corresponding section.

5.2 Experiments on Synthetic Datasets

This section is dedicated to a first computational assessment of the proposed
memetic algorithm for the DPP. The data are simulated with an interleaved
Markov process P = IΠ(P1, ..., Pm;Pw) over disjoint sub-alphabets, in the ideal
framework presented in Sect. 2: independent time-homogeneous, ergodic and
finite memory component processes Pw and Pi for i = 1, . . . , m.

Synthetic Dataset Generation. The datasets are based on synthetic
sequences of size n with different numbers of letters |A| and maximal order
equal to 1 to limit the computation time required for entropy estimation.

The following parameters are randomly set up to generate a sequence zn with
an IMP P = IΠ(P1, ..., Pm;Pw) according to Eq. (1):

– from an alphabet A of size |A|, a ground truth partition Πtruth = ∪m
i=1Ai is

generated with the random initialization procedure as described in Sect. 4.2.
m is the number of emitters (groups) associated with this partition;

– for each emitter i (i = 1, . . . , m), a probabilistic transition matrix Qi associ-
ated with the stochastic process Pi of size |Ai| × |Ai| is randomly drawn;

– for the switch process, a probabilistic transition matrix Qw of size m × m is
drawn;

– initial state (letter) of each process Pi is randomly drawn in its correspondent
sub alphabet Ai;

– the first emitter is randomly drawn in the set of m emitters;

We consider 4 different configurations (|A|, n) with |A| = {20, 50} and n =
{10000, 50000}. For each configuration, 10 different datasets (zn,Πtruth) are
generated. So a total of 40 datasets are obtained. These datasets will be made
publicly available.

A Memetic Algorithm for Deinterleaving Pulse Trains 77

Table 2. Comparison of MAAP and iteratedGreedy on synthetic datasets generated
with interleaved Markov processes. Dominating results (lower scores) are indicated in
boldface. Significantly better values are underlined (t-test with p-value of 0.05).

Config iteratedGreedy MAAP Config iteratedGreedy MAAP

|A| n D̄ C̄ time D̄ C̄ time |A| n D̄ C̄ time D̄ C̄ time (s)

1 20 10000 0 24612 110 0 24612 101 50 10000 2.4 34606 2253 1.4 34593 1771

2 20 10000 0 26155 208 0.06 26161 358 50 10000 7.8 34063 1631 6.57 34051 2240

3 20 10000 0 24381 92 0 24381 121 50 10000 2.1 34968 2909 1.26 34958 2173

4 20 10000 0 26240 96 0 26240 99 50 10000 4.23 33398 1132 3.57 33391 2055

5 20 10000 0 24386 77 0 24386 80 50 10000 0.43 34626 1834 0 34621 1901

6 20 10000 0 26843 66 0 26843 58 50 10000 11.46 33881 5339 10 33859 4426

7 20 10000 0 24100 449 0 24100 103 50 10000 1.56 37051 3041 0.13 37027 3119

8 20 10000 0 26763 70 0 26763 69 50 10000 5.56 34698 1691 6.1 34682 3544

9 20 10000 0 24821 82 0 24821 98 50 10000 2.33 33758 3218 1.63 33741 3605

10 20 10000 0 26588 82 0 26588 75 50 10000 5.87 36155 9090 4 36134 3250

1 20 50000 0 128191 324 0 128191 324 50 50000 0 175904 5216 0 175904 4690

2 20 50000 0.73 119944 298 0 119533 383 50 50000 0 163835 8388 0 163835 8350

3 20 50000 1.3 124721 630 0 124461 682 50 50000 0 166655 7287 0 166655 7184

4 20 50000 0.87 127508 507 0 127165 413 50 50000 0 177233 5979 0 177233 5669

5 20 50000 1.86 132787 388 0 132272 449 50 50000 0 167299 7288 0 167299 6534

6 20 50000 0.5 124718 425 0 124559 382 50 50000 0 180056 4943 0 180056 5006

7 20 50000 0.37 128701 360 0 128701 366 50 50000 0 166328 7619 0 166328 7238

8 20 50000 0.4 120087 583 0.4 128516 493 50 50000 0 166755 7514 0 166755 7450

9 20 50000 0.87 127186 379 0 126900 417 50 50000 0 173295 5828 0 173295 6045

10 20 50000 0 127150 552 0 127150 396 50 50000 0 173497 5980 0 173497 5952

Results on Synthetic Data. For each dataset, given the stochastic nature of
both algorithms, 30 independent runs are launched. The time limit in seconds
for each run is Tlimit = 200 ∗ |A| when n = 10000 and Tlimit = 500 ∗ |A|
when n = 50000. Once the algorithm reaches this time limit, it returns the best
partition Πbest found so far with its associated minimum penalized entropy score
CΠbest

(zn).
Table 2 displays the results obtained by the algorithms MAAP and iterat-

edGreedy on the 40 different datasets generated with 4 different configurations.
Columns D̄ indicate the average distance relative to the ground truth partition.
Columns C̄ show the average lowest penalized global entropy obtained by an
algorithm and columns time correspond to the average time in seconds required
by the algorithm to reach its best result. Values in bold mean the algorithm has
a better score than the other one. Underlined values mean that the average score
obtained for a given algorithm is significantly better than the average score of
the other algorithm according to a t-test with p-value of 0.05.

Table 2 shows that both algorithms work efficiently since the distance to
the truth partition is often close to zero which validates the relevance of the
likelihood-based method used in this context. The comparison between the two
algorithms reveals that MAAP obtains significantly better results for several
configurations, due to more effective exploration of the search space of all possible
partitions.

78 J. Pinsolle et al.

5.3 Experiments on Electronic Warfare Datasets

In this section we present results on datasets coming from an Electronic Warfare
data generator which simulates realistic situations with mobile radar warning
receivers. One configuration corresponds to a random draw in a list of known
radars and a draw in their relative phasing. We cannot share the content of the
generator. For each simulation, a dataset D consisting in a sequence of pulses
with their corresponding frequency (CF) and time of arrival (ToA) is generated.
The ground truth Πtruth (i.e. the association of each pulse to each emitter) is
known. The objective is then to retrieve Πtruth from the data.

Preprocessing of the Data. A preprocessing step is first performed to obtain
the alphabet A from the dataset D. It consists of clustering pulses with the
DBSCAN algorithm [4] based on their frequency. Then, each obtained cluster
is associated with a letter in A. The sequence zn is then obtained by ordering
these letters by increasing order of time of arrival (ToA). Since we only use
the frequency, the ε-neighborhood parameter of DBSCAN corresponds to our
precision parameter and is a fixed number of the order of the MHz not specified
here.

Illustrated Example. Figure 1a shows an example of a pulse train measured
with the frequency and the time of arrival of the different signals. The scales
are hidden on purpose. Pulses regrouped in the same cluster after the first pre-
processing phase have the same color and are associated with the same letter
(from a to l). Figure 1b corresponds to the known ground truth for this scenario
(4 emitters):
{{a,b,c},{h},{d,e,f,g},{i,j,k,l}}. Pulses generated by the same emitter have the
same color.

We ran the MAAP algorithm on this dataset with default parameters (see
Table 1) and Fig. 2 shows the evolution over time of the distance to the ground
truth (blue) and the best penalized entropy (red) reached during the search
(average, minimum and maximum over 10 runs). The two curves, distance and
entropy, have similar variations, meaning that in this case, minimizing the penal-
ized global entropy allows to get closer to the target partition. We observe that
in some experiments, MAAP reaches the best target partition (distance of 0)
within a few seconds, while in others, it never reaches it in the allotted time
with a distance of 4. This highlights that finding a good partition in a limited
amount of time is not always easy for these realistic datasets and may depend a
lot on the random initiating solution from which the search starts.

Results on Electronic Warfare Data. 10 different scenarios with 5 emitters
are generated by the Eletronic Warfare data simulator. The number of observed
pulses varies from 10000 to 100000 for these scenarios (the scenarios were cut
if the number of points exceeded 100000 and couldn’t contain less than 10000
points). We launched the MAAP and iteratedGreedy algorithm [5] with the

A Memetic Algorithm for Deinterleaving Pulse Trains 79

Fig. 1. Illustrated example of radar pulses deinterleaving

Fig. 2. Evolution over time (seconds) of the distance between the ground truth par-
tition and the current best solution (in blue and left scale), and the corresponding
penalized global entropy (in red and right scale), during the search process of the
MAAP algorithm. (Color figure online)

same configuration and parameters as presented in Sect. 5.2. Each algorithm is
launched 30 times (independent runs) on each dataset with a time limit of three
hours.

Table 3 reports the result of these experiments, with the measures of the
best distance (D∗) and the average distance (D̄) to the known ground truth, the
average best penalized global score (C̄) obtained over the different runs and the
time in seconds required to obtain the best scores.

We first observe in this table that for some scenarios, both algorithms are
able to recover or come close to the target partition, but for others, such as

80 J. Pinsolle et al.

Table 3. Comparison of MAAP and iteratedGreedy on 10 electronic warfare datasets
generated with 5 emitters. Dominating results (lower scores) are indicated in boldface.
Significant better values are underlined (t-test with p-value 0.05).

sc Config iteratedGreedy MAAP

|A| n D∗ D̄ C̄ time D∗ D̄ C̄ time

1 13 13302 2 2.0 3354 34 2 2.0 3354 45

2 28 10000 0 7.5 31445 8122 0 5.5 31237 6047

3 11 69342 3 3.0 18895 78 3 3.0 18895 114

4 11 68571 3 3.0 18872 106 3 3.0 18872 123

5 19 78783 4 7.9 26443 265 6 7.6 26548 733

6 24 90891 2 4.9 19550 4711 2 4.2 19271 3086

7 23 100000 1 7.7 25575 3253 1 5.6 25195 4470

8 13 100000 5 5.0 88414 683 4 6.0 88725 871

9 21 100000 8 8.0 107021 2573 8 8.0 107021 3151

10 27 100000 1 6.2 56363 2431 1 3 54717 4263

scenario 9, they remain far from it. This is because the IMP representation used
in this work is not always completely valid for some of these scenarios, as some
assumptions are violated. In particular for some scenarios, a certain number of
emitters are only active for a short period of time over the whole time frame,
which violates the time-homogeneous assumption (see Sect. 1). Therefore, for
these datasets, minimizing the global penalized entropy score does not always
allow to identify the target partition.

We observe that for three scenarios (2, 7 and 10), MAAP is significantly
better than iteratedGreedy [5], but less good on scenario 8; this still highlights
the value of improving the search heuristic for solving the DPP in this realistic
setting.

6 Conclusions

A memetic algorithm for alphabet partitioning was presented in this work. It is
used for the problem of deinterleaving pulse trains generated by multiple emitters
and described by interleaved Markov processes.

The results show that the proposed heuristic almost always finds the best
partitions for synthetic datasets generated with Markov processes and obtains
good results for electronic warfare datasets generated under realistic conditions.
For some datasets, it can obtain significantly better results than the recent iter-
ated greedy algorithm [5].

A future work could be to take into account the time delay between dif-
ferent signals to improve the estimation of the different component and switch
processes.

A Memetic Algorithm for Deinterleaving Pulse Trains 81

Acknowledgments. This work was partially supported by the French Ministry for
Research and Education through a CIFRE grant (number N◦2022/0062). We are grate-
ful to the reviewers for their valuable comments and suggestions which helped us to
improve the paper.

References

1. Batu, T., Guha, S., Kannan, S.: Inferring mixtures of Markov chains. In: Shawe-
Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 186–199.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27819-1 13

2. Csiszar, I., Shields, P.: The consistency of the BIC Markov order estimator. In: 2000
IEEE International Symposium on Information Theory (Cat. No.00CH37060), p.
26. IEEE (2000)

3. Davies, C.L., Hollands, P.: Automatic processing for ESM (1982)
4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad,
U.M. (eds.) Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, Oregon, USA, pp. 226–231. AAAI
Press (1996)

5. Ford, G., Foster, B.J., Braun, S.A.: Deinterleaving pulse trains via interleaved
Markov process estimation. In: 2020 IEEE Radar Conference (RadarConf20), pp.
1–6. IEEE (2020)

6. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3(4), 379–397 (1999)

7. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

8. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

9. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res.
203(1), 241–250 (2010)

10. Mardia, H.: New techniques for the deinterleaving of repetitive sequences. IEE
Proc. F (Radar Signal Process.) 136(4), 149–154 (1989)

11. Milojević, D., Popović, B.: Improved algorithm for the deinterleaving of radar
pulses. IEE Proc. F (Radar Signal Process.) 139(1), 98–104 (1992)

12. Moalic, L., Gondran, A.: Variations on memetic algorithms for graph coloring
problems. J. Heuristics 24(1), 1–24 (2018)

13. Moore, J., Krishnamurthy, V.: Deinterleaving pulse trains using discrete-time
stochastic dynamic-linear models. IEEE Trans. Signal Process. 42(11), 3092–3103
(1994)

14. Seroussi, G., Szpankowski, W., Weinberger, M.J.: Deinterleaving finite memory
processes via penalized maximum likelihood. IEEE Trans. Inf. Theory 58(12),
7094–7109 (2012)

15. Zhou, Y., Hao, J., Duval, B.: Reinforcement learning based local search for grouping
problems: a case study on graph coloring. Exp. Syst. Appl. 64, 412–422 (2016)

https://doi.org/10.1007/978-3-540-27819-1_13

Application of Negative Learning Ant
Colony Optimization to the Far

from Most String Problem

Christian Blum1(B) and Pedro Pinacho-Davidson2

1 Artificial Intelligence Research Institute (IIIA-CSIC) Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es
2 Department of Computer Science, Faculty of Engineering, Universidad de

Concepción, Concepción, Chile

ppinacho@udec.cl

Abstract. We propose the application of a recently introduced version
of ant colony optimization—negative learning ant colony optimization—
to the far from most string problem. This problem is a notoriously
difficult combinatorial optimization problem from the group of string
selection problems. The proposed algorithm makes use of negative learn-
ing in addition to the standard positive learning mechanism in order to
achieve better guidance for the exploration of the search space. In addi-
tion, we compare different versions of our algorithm characterized by the
use of different objective functions. The obtained results show that our
algorithm is especially successful for instances with specific characteris-
tics. Moreover, it becomes clear that none of the existing state-of-the-art
methods is best for all problem instances.

Keywords: ant colony optimization · negative learning ·
combinatorial optimization · far from most string problem

1 Introduction

The family of sequence (or string) consensus problems [8] has found important
applications, for example, in studying molecular evolution, protein structures,
and drug target design. This family of problems includes well known combinato-
rial optimization problems such as the closest string problem (CSP) [10] and the
farthest string problem (FSP) [19]. In the case of the CSP, the goal is to find a
solution—that is, a string—whose total distance to the strings from a given set
of input strings is minimal. On the contrary, in the case of the FSP, a solution
is sought whose total distance to the input strings is maximal.

The combinatorial optimization problem tackled in this paper—known as the
far from most string problem (FFMSP) [9]—is also a member of the family of

This paper was supported by grant PID2019-104156GB-I00 funded by
MCIN/AEI/10.13039/501100011033.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 82–97, 2023.
https://doi.org/10.1007/978-3-031-30035-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_6&domain=pdf
http://orcid.org/0000-0002-1736-3559
http://orcid.org/0000-0001-9324-284X
https://doi.org/10.1007/978-3-031-30035-6_6

Application of Negative Learning ACO to the FFMSP 83

string consensus problems. However, this problem variant has been less studied
so far in the literature. In this work, we propose the application of a recent
variant of ant colony optimization (ACO), the negative learning ACO variant
from [15,16]. This algorithm utilizes negative learning in addition to the standard
positive learning mechanism. It was shown to improve significantly over standard
ACO variants on a range of hard combinatorial optimization problems such as
the multi-dimensional knapsack problem, the minimum dominating set problem,
and MaxSAT. One of the main challenges that the FFMSP problem poses to any
algorithmic solution is that the objective function has only a rather small range
of possible values, which leads to a search space characterized by many large
plateaus. In order to deal with this issue, alternative objective functions were
designed in [2] and in [14]. In this work, we test a simplified variant of the one
from [2], and subsequently, we compare the different alternative objective func-
tions in our negative learning ACO approach. Our results show, first, that none
of the proposed objective functions is best for all problem instances. Moreover,
the performance of different state-of-the-art methods strongly depends on the
problem instance characteristics. In comparison to the state-of-the-art GRASP
methods from [4], for example, our algorithm is clearly better for threshold values
of 0.8 m (where m is the length of the input strings), while it starts to lose effi-
ciency with growing problem size for threshold values of 0.85 m. Additionally, we
are able to show that our algorithm gains an advantage over the GRASP-based
memetic algorithm from [7] with growing problem instance size, independently
of the threshold value.

1.1 Organization of the Paper

The rest of this paper is organized as follows. The considered optimization prob-
lem is technically described—together with related work—in Sect. 2. Next, the
developed algorithm is comprehensively described in Sect. 3. Finally, an experi-
mental evaluation and a comparison to competing approaches from the literature
is provided in Sect. 5, while conclusions and an outlook to future work can be
found in Sect. 6.

2 Far from Most String Problem

A problem instance of the FFMSP is denoted by (Ω, t) where Ω = {s1, . . . , sn}
is a set of n input strings over a finite alphabet Σ. Hereby, each of the input
strings si is of length m, that is, |si| = m for all si ∈ Ω. Furthermore, 0 < t < m
is a fixed threshold value. Henceforth, the j-th character of a string si is denoted
by si[j]. Remember also that the Hamming distance between two equal-length
strings si �= sj ∈ Ω (denoted by dH(si, sj)) is defined as the number of positions
at which the corresponding characters in the two strings are different. In technical
terms:

dH(si, sj) = |{k ∈ {1, . . . , m} | si[k] �= sj [k]}| (1)

84 C. Blum and P. Pinacho-Davidson

A valid solution to the FFMSP problem is any string s of length m over alphabet
Σ. The objective function value forig(s) of any such string s is defined as follows:

forig(s) := |{si ∈ Ω | dH(s, si) ≥ t}| (2)

In other words, the objective function value of a solution/string s is defined as
the number of input strings whose Hamming distance with s is greater or equal
to the threshold value t.

2.1 Integer Linear Programming Model

As the algorithm proposed in the work makes internal use of a mixed-integer
linear programming (MILP) solver for solving sub-instances of the tackled prob-
lem instance, a MILP model for the FFMSP is required. In the following, we,
therefore, describe the MILP model originally introduced in [2]. There are two
sets of binary variables involved in this model. The first set consists of a variable
xj,c for each combination of a position j = 1, . . . ,m of a possible solution and
for each character c ∈ Σ. The second set consists of a binary variable yi for
each input string si ∈ Ω (i = 1, . . . , n). The MILP model can then be stated as
follows.

max
n∑

i=1

yi

subject to:
∑

c∈Σ

xj,c = 1 for j = 1, . . . ,m

m∑

j=1

xj,si[j] ≤ (m − t) · yi for i = 1, . . . , n

xj,c, yi ∈ {0, 1}

(3)

(4)

(5)

Note that constraints (4) ensure that exactly one character from Σ is chosen
for each position j of a solution string. Moreover, constraints (5) ensure that a
variable yi can only have value one if and only if the Hamming distance between
input string si ∈ Ω and a solution string (as defined by the setting of the
variables xj,c) is greater or equal than the threshold value t.

2.2 Computational Complexity and Previous Work

Among the sequence consensus problems, the FFMSP is one of the computa-
tionally hardest. In fact, compared to the other consensus problems, it is much
harder to approximate, due to the approximation preserving reduction to the
FFMSP from the independent set problem, which is a classical and computation-
ally intractable combinatorial optimization problem. In 2003, Lanctot et al. [9]

Application of Negative Learning ACO to the FFMSP 85

proved that for sequences over an alphabet Σ with |Σ| ≥ 3, approximating the
FFMSP within a polynomial factor is NP-hard.

Due to the inherent difficulty of solving the FFMSP problem, the research
community has mainly focused on heuristic and metaheuristic approaches. The
first approach from [12] consists in the construction of a solution by means of
a greedy heuristic and the subsequent application of local search. Approaches
based on greedy randomized adaptive search procedures (GRASP) were pre-
sented in [3–6,14]. The last one from [4] is a hybrid technique that combines
GRASP with variable neighbourhood search and with path relinking strategies.
Apart from these proposals, the FFMSP was also tackled by means of evolu-
tionary algorithms (EAs). The first one of these was proposed in [6]. The main
feature of this algorithm consists in a mechanism for the preservation of diver-
sity in the population. The second EA was presented in [7]. In particular, the
proposed EA belongs to the class of memetic algorithms, as it makes use of
local search for improving the generated solutions. Moreover, the construction
of solutions in this memetic algorithm is based on GRASP. The ACO app-
roach presented in [2] combines a standard ACO algorithm with the subsequent
application of CPLEX, warm-started with the best solution found by the ACO
approach. Finally, an algorithm based on beam search and the subsequent appli-
cation of local search was described in [13]. As the GRASP approaches from [4]
and the memetic algorithm from [7] were developed independently from each
other at approximately the same time, it is currently not clear which one of
both is currently state of the art.

As mentioned already before, one of the aspects that causes the FFMSP to be
a very challenging problem for metaheuristics—that is, for algorithms based on
exploring the search space—is the fact that the set of different objective function
values is very small; in particular, the set of possible values for an instance
with n input strings is {0, . . . , n}. This leads to a search space with many large
plateaus, that is, similar solutions will often have exactly the same objective
function value. The problem for metaheuristics is that such search spaces do
not offer any guidance on where (or in which direction) better solutions than
the already found ones might be discovered. As a consequence, metaheuristics
do often get stuck on plateaus. In order to alleviate this problem, two previous
works [2,14] have made use of an extended objective function developed with
the aim of providing better search guidance than the original objective function.

3 The Proposed Algorithm

In this section, we present the application of negative learning ACO to the
FFSMP. The main framework of the algorithm is, as in all other existing appli-
cations of negative learning ACO [15,16], a MAX −MIN Ant System (MMAS)
implemented in the Hypercube Framework (HCF) [1].

The pseudo-code of our algorithm, which is henceforth called Aco+
neg, is

presented in Algorithm 1. Before we start to describe the algorithm, remember
that any string s of length m over alphabet Σ is a valid solution to the problem.

86 C. Blum and P. Pinacho-Davidson

Algorithm 1. Negative learning ACO (Aco+
neg) for the FFMSP

1: input: a problem instance (Ω, t)
2: cf := 0, bs upd := false
3: InitializePheromoneValues(T , T neg)
4: sbsf := RunCplex(tinit)
5: srb := sbsf

6: while termination conditions not met do
7: S iter := ∅
8: for k = 1, . . . , na do
9: sk := Construct Solution(T , T neg)

10: S iter := S iter ∪ {sk}
11: end for
12: sib := argmax{f(s) | s ∈ S iter}
13: UpdateSolution(sib, srb, sbsf)
14: if bs upd = true then S iter := S iter ∪ {sbsf} else S iter := S iter ∪ {srb} end if
15: ssub := SolveSubInstance(S iter, T neg, tsub)
16: UpdateSolution(ssub, srb, sbsf)
17: ApplyPheromoneUpdate(T , cf, bs upd, sib,srb,sbsf)
18: cf := ComputeConvergenceFactor(T)
19: if cf > 0.999 then
20: if bs upd = true then
21: srb := null, and bs upd := false
22: InitializePheromoneValues(T , T neg)
23: else
24: bs upd := true
25: end if
26: end if
27: end while
28: output: sbsf , the best solution found by the algorithm

The three main actions of our algorithm concern (1) the construction of na

solutions at each iteration (lines 7–11), (2) solving sub-instances of the tackled
problem instances with the ILP solver CPLEX (line 15), and the update of
the pheromone values (remaining parts of the algorithm). In the following, we
will outline these three aspects in detail. Note also that our algorithm keeps
three solutions at all times: (1) the iteration-best solution sib, the restart-best
solution srb, and the best-so-far solution sbsf . Hereby, sib is the best solution
generated in lines 8–11 at the current iteration, srb is the best solution found by
the algorithm since the last (re-)initialization of the pheromone values, and sbsf

is the best solution found by the algorithm since the start.

3.1 Construction of a Solution

A solution s (of length m) is constructed by choosing for each position j
(j = 1, . . . ,m) exactly one character Σ. This is done on the basis of greedy
information and pheromone information. As greedy information, the algorithm

Application of Negative Learning ACO to the FFMSP 87

uses the inverse of the frequency values of the letters for each position of the
input strings. In particular, the frequency value fa,j of a letter a ∈ Σ for a
position 1 ≤ j ≤ m is calculated as follows:

fa,j :=
|{si ∈ Ω | si[j] = a}|

n
∀ a ∈ Σ and 1 ≤ j ≤ m (6)

In addition to the inverse of the frequency values, the algorithm also makes use
of a pheromone model T that contains a standard pheromone value τa,j (where
τmin ≤ τa,j ≤ τmax) for each a ∈ Σ and 1 ≤ j ≤ m. Hereby, τmin := 0.001
and τmax := 0.999, as usual for a MMAS algorithm implemented in the HCF.
Moreover, the algorithm also utilizes an additional pheromone model T neg that
contains the so-called negative pheromone values τmin ≤ τneg

a,j ≤ τmax for each
a ∈ Σ and 1 ≤ j ≤ m. In particular, the probability p(a | j) for choosing a
character a ∈ Σ for a position j ∈ {1, . . . , m} is defined as follows:

p(a | j) :=
f−1

a,j · τa,j · (1 − τneg
a,j)

∑
b∈Σ f−1

b,j · τb,j · (1 − τneg
b,j)

(7)

In other words, the chance of a letter a ∈ Σ to be selected is rather high if (1) its
frequency at position j of the input strings is rather low, (2) its pheromone value
for position j is rather high, and (3) its negative pheromone value for position
j is rather low. Based on these probabilities a letter is chosen as follows. First,
a random value r ∈ [0, 1] is drawn uniformly at random. If r ≤ drate (where 0 ≤
drate < 1 is a parameter of the algorithm), the letter with the highest probability
is chosen in a deterministic way. Otherwise, a letter is chosen randomly (roulette
wheel selection) based on the letter probabilities. Note that the construction of
a solution is performed in function Construct Solution(T , T neg) of Algorithm 1
(see line 9).

3.2 Solving Sub-instances

After the construction of na solutions—that are then stored in set S iter—the
algorithm first determines the iteration-best solution (line 12) before updat-
ing solutions srb and sbsf (if necessary) with solution sib (function UpdateSolu-
tion(sib, srb, sbsf) in line 13). Subsequently, either the restart-best solution or the
best-so-far solution are added to S iter, depending on the value of the Boolean
control variable bs upd, whose function will be explained further down.

Then, based on set S iter, a sub-instance is generated. First, the following sets
are defined:

Σ−
j := {a ∈ Σ | � s ∈ S iter s.t. s[j] = a}, j = 1, . . . ,m (8)

In words, Σ−
j contains all letters from Σ that do not appear at position j in

any of the solutions from S iter. With these sets, the ILP model from Sect. 2 is
restricted by adding the following set of constraints:

xa,j = 0 ∀ j = 1, . . . ,m and a ∈ Σ−
j (9)

88 C. Blum and P. Pinacho-Davidson

This restricted ILP model is then solved by the application of the ILP solver
CPLEX in function SolveSubInstance(S iter, T neg, tsub); see line 15. The time
limit for CPLEX is set to tsub CPU seconds, which is a parameter of the Aco+

neg

algorithm. Moreover, note that CPLEX is warm-started with the best solution
from S iter and the value of the CPLEX parameter MIPEmphasis is set to 5,
which means that CPLEX will prioritize solution quality over proving optimality.
Upon the termination of CPLEX, this function returns the best solution found
by CPLEX (ssub) within tsub seconds. Finally, this function also updates the
negative pheromone values based on ssub and S iter. This will be explained further
down.

3.3 Update of the Pheromone Values

The update of the standard pheromone values from model T is governed by
the value of a Boolean variable called bs upd and by the value (cf) of the so-
called convergence factor. The way in which the value of bs upd is initialized
(line 2) and changed during the search process of the algorithm (see lines 19–26)
is standard for any MMAS algorithm implemented in the HCF. Moreover, the
value cf of the convergence factor indicates the current state of convergence of
the algorithm. It is calculated by function ComputeConvergenceFactor(T), see
line 18, in the following way:

cf := 2

⎛

⎜⎝

⎛

⎜⎝

∑
τa,j∈T

max{τmax − τa,j , τa,j − τmin}

|T | · (τmax − τmin)

⎞

⎟⎠ − 0.5

⎞

⎟⎠ (10)

The standard pheromone values are then updated in function ApplyPheromone-
Update(T , cf, bs upd, sib,srb,sbsf), see line 17, in the following way:

τa,j := τa,j + ρ · (ψa,j − τa,j) j ∈ {1, . . . , m}, a ∈ Σ (11)

where ψa,j := Δ(sib, a, j) · wib + Δ(srb, a, j) · wrb + Δ(sbsf , a, j) · wbsf and ρ is a
parameter of the algorithm called learning rate. Hereby, Δ(s, a, j) is a function
that evaluates to 1 in case s[j] = a, and to zero otherwise. Moreover, the values
of the weights wib, wrb and wbsf are determined depending on bs upd and cf as in
any other MMAS algorithm implemented in the HCF as shown in Table 1. Note
that it always holds that wib + wrb + wbsf = 1. These three weights determine
the influence of each of the three solutions (sib, srb and sbsf) on the update of
the standard pheromone values from T .

Finally, the update of the negative pheromone values from T neg is performed
as a last action in function SolveSubInstance(S iter, T neg, tsub), see line 15, as
already mentioned before. In particular, only those pheromone values τneg

a,j are
updated that CPLEX was able to choose in the sub-instance, that is, all τneg

a,j

with j ∈ {1, . . . , m} and a ∈ Σ \ Σ−
j . The formula for the update is then as

follows.

τneg
a,j := τneg

a,j + ρneg · (ψneg
a,j − τneg

a,j) j ∈ {1, . . . ,m}, a ∈ Σ \ Σ−
j , (12)

Application of Negative Learning ACO to the FFMSP 89

Table 1. Values for weights wib, wrb, and wbsf with respect to the convergence factor
value cf and the value of the control variable bs upd.

bs upd false true

cf < 0.4 [0.4, 0.6) [0.6, 0.8) ≥ 0.8

wib 1 2/3 1/3 0 0

wrb 0 1/3 2/3 1 0

wbsf 0 0 0 0 1

where ψneg
a,j = 0 in case ssub[j] = a, and ψneg

a,j = 1 otherwise. In other words,
all those assignments of a letter a to a position j that formed part of the sub-
instance, but which were not chosen for ssub, get their corresponding negative
pheromone value increased, while the opposite is the case for the assignments
found in ssub.

4 Different Objective Functions

For the reasons outlined before, we tested four different objective functions as a
replacement for the original objective function. However, note that these func-
tions can only be used for all comparisons of solutions that arise within the
Aco+

neg algorithm. CPLEX, for solving the sub-instance at each iteration, still
makes use of the original objective function.

The first alternative objective function was proposed by Mousavi et al. in [14].
This function, henceforth called fmou(), was designed with the aim of obtaining a
search landscape with less plateaus and with a reduced number of local optima.
It evaluates a solution taking into account its likelihood to lead to better solutions
with a rather small number of local search moves. Note that whenever forig(s) >
forig(s′) for two valid solutions s and s′, it also holds that fmou(s) > fmou(s′).
Therefore, fmou() can be used in a standalone manner. As fmou() is difficult
to describe in a reduced space, we refer the interested reader to the original
publication [14] or to [7], where the authors made use of fmou() within the
memetic algorithm presented in this work.

A second alternative objective function was presented by Blum and Festa
in [2]. This function, henceforth called fblu(), is a lexicographic objective function
that—as a first criterion—makes use of the original objective function. For the
second criterion it uses the following function:

h(s) :=
∑

{si∈Ω|dH(s,si)≥t}
dH(s,s i) + max

{si∈Ω|dH(s,si)<t}
{dH(s, si)} (13)

In words, h(s) takes the sum of the Hamming distances of s with those input
strings si ∈ Ω such that the Hamming distance is at least t. Moreover, to this
sum it adds the maximum Hamming distance of s with those input strings si ∈ Ω

90 C. Blum and P. Pinacho-Davidson

such that the Hamming distance is smaller than t. The original objective function
and h() are then combined in the following lexicographic way:

fblu(s) > fblu(s′) iffforig(s) > forig(s′) or
(forig(s) = forig(s′) and h(s) > h(s′)) (14)

where s and s′ are valid solutions to the problem. The intuition behind h() is
the following one. The larger the value of h(s), the lower is the probability that
small changes in s lead to a decrease in the original objective function.

Apart from the two functions above, we also test a simplified version of fblu(),
which makes use of function h′() instead of h():

h′(s) := max
{si∈Ω|dH(s,si)<t}

{dH(s, si)} (15)

Note that h′(s), in contrast to h(s), only gives importance to the maximum
Hamming distance of s with those input strings si ∈ Ω such that the Ham-
ming distance is smaller than t. The resulting simplified lexicographic function
is henceforth called fsim().

Finally, we also consider a lexicographic function fcom() that uses h′() as a
second criterion and fmou() as a third criterion:

fcom(s) > fcom(s′)iff
forig(s) > forig(s′)or
(forig(s) = forig(s′)andh′(s) > h′(s′))or
(forig(s) = forig(s′)andh′(s) = h′(s′)andfmou(s) > fmou(s′))

(16)

5 Experimental Evaluation

Aco+
neg was implemented in C++ using GCC 10.2.0 for compilation. The exper-

imental evaluation was performed—in single-threaded mode—on a cluster of
computers with “Intel R© Xeon R© CPU 5670” CPUs of 12 nuclei of 2933 MHz
MHz and (in total) 32 Gigabytes of RAM. Moreover, all ILPs were solved with
IBM ILOG CPLEX V22.1, which is currently the newest version. In the follow-
ing, we first describe the utilized benchmark sets. Subsequently, the parameter
tuning procedure employed for finding well-working parameter values is outlined.
Finally, the numerical results are presented and analysed.

5.1 Benchmark Sets

Several related works on the FFMSP introduced sets of benchmark instances.
The ones used in this work are the following ones. Ferone et al. [4] made use of
a set of instances containing 100 problem instances with random input strings
over Σ = {A, C, T, G} for each combination of n ∈ {100, 200, 300, 400} and m ∈
{200, 600, 800}. This set—which contains 1200 problem instances in total—is
henceforth called Ferone. Note that all instances were solved in previous works

Application of Negative Learning ACO to the FFMSP 91

with thresholds t ∈ {0.75m, 0.8m, 0.85m}. A subset of these instances—that is,
those with n ∈ {100, 200}—was already used in earlier publications [2,3].

Gallardo and Cotta [7] introduced a set of problem instances with similar
specifications as the ones by Ferone et al. [4]. However, instead of 100 ran-
dom instances per combination of n and m, their set contains only five random
instances per combination. Moreover, it is restricted to n ∈ {100, 200}. Their set
of random instances is henceforth called Gallardo.

Note that in this work we will solve all described problem instances for t ∈
{0.8m, 0.85m}. The threshold t = 0.75 m was not considered because we noticed
(similar to previous works) that the resulting problems are very easily solved to
optimality.

5.2 Algorithm Tuning

We used the scientific tuning tool irace [11] for finding well-working parameter
values. During preliminary testing, we noticed significant changes in algorithm
behaviour and requirements between thresholds t = 0.8 m and t = 0.85 m. More-
over, we also noticed that different algorithm settings were required for instances
with n ∈ {100, 200} in comparison to instances with n ∈ {300, 400}. Therefore,
we applied four different runs of irace:

– Tuning1: for instances with n ∈ {100, 200} solved with t = 0.8 m.
– Tuning2: for instances with n ∈ {300, 400} solved with t = 0.8 m.
– Tuning3: for instances with n ∈ {100, 200} solved with t = 0.85 m.
– Tuning4: for instances with n ∈ {300, 400} solved with t = 0.85 m.

As tuning instances for each of these runs, we used the first instance (out of 100
instances) for each combination of n and m from the Ferone set, which makes
a total of six tuning instances for each of the four tuning runs. The algorithm
parameters and the considered domains are shown in Table 2. Moreover, irace
was given a budget of 3000 algorithm runs, with a time limit of 600 s per run.
The obtained results are shown in Table 3. In particular, for each of the four
tuning runs, we provide the four best-ranked parameter settings as delivered by
irace.

The following observations can be made. First, there is a clear difference
between the parameter settings for t = 0.8 m (Tuning1 and Tuning2) and the
parameter settings for t = 0.85 m (Tuning3 and Tuning4). This concerns, for
example, the use of CPLEX. While for t = 0.8 m the use of CPLEX is rather
reduced (below 10 s for deriving the initial solution, and 0.92 s, respectively
3.69 s, for the application to sub-instances), CPLEX is rather heavily used for
t = 0.85 m. This is already the first indication that the algorithm, most prob-
ably, will work better for t = 0.8 m than for t = 0.85 m. Second, the simplified
version of fblu (which is used in fsim and fcom) seems to be prefered as an
objective function when t = 0.85 m, while fblu seems to be better for t = 0.8 m.
The objective function introduced by Mousavi et al. [14] also contributes as
a third criterion in function fcom which is best in the context of Tuning4.

92 C. Blum and P. Pinacho-Davidson

Table 2. Algorithm parameters and their domains considered for the tuning process
with irace.

Parameter Considered domain

na {3, . . . , 50}
drate [0.0, 0.99]

ρ [0.01, 0.5]

ρneg [0.01, 0.5]

tsub [0.5, 20]

tinit {1, . . . , 50}
Obj. func {forig, fmou, fblu, fsim, fcom}

Table 3. Parameter settings generated by irace

Tuning run Rank na drate ρ ρneg tsub tinit Obj. func

Tuning1 1 24 0.86 0.12 0.27 0.92 7 fblu

2 21 0.89 0.09 0.28 1.04 7 fsim

3 25 0.88 0.13 0.27 0.54 11 fsim

4 24 0.93 0.14 0.30 1.21 10 fblu

Tuning2 1 9 0.76 0.27 0.49 3.69 9 fblu

2 9 0.77 0.28 0.50 3.61 9 fblu

3 8 0.72 0.22 0.35 2.93 7 fblu

4 5 0.69 0.20 0.33 3.49 13 fblu

Tuning3 1 45 0.29 0.10 0.11 7.28 37 fsim

2 29 0.13 0.15 0.16 10.91 27 fsim

3 49 0.35 0.10 0.36 15.37 14 fcom

4 46 0.29 0.12 0.10 7.24 38 fsim

Tuning4 1 33 0.59 0.21 0.03 18.69 50 fcom

2 32 0.58 0.19 0.04 18.21 50 fcom

3 31 0.57 0.20 0.04 17.71 50 fcom

4 31 0.62 0.23 0.03 17.01 50 fcom

However, fmou is never used in any of the best-ranked parameter settings in
any of the four tuning runs. We used the first-ranked parameter settings in the
respective four cases for the final experimental evaluation.

5.3 Results

Aco+
neg was applied exactly once to each of the 1200 problem instances from the

Ferone set and 10 times to each of the 60 problem instances from the Gallardo
set. A time limit of 600 CPU seconds was used for each run. The results are shown
in Tables 4 and 5 in terms of the original objective function values, averaged over
all instances of the same combination of n and m, and averaged over all runs
in the case of the Gallardo instances. That is, each row in Table 4 (Ferone

Application of Negative Learning ACO to the FFMSP 93

Table 4. Numerical results for the Ferone instances

n m t Cplex HyAco Grasp Aco+
neg Impr (%)

300 0.8 m = 240 70.62 77.84 76.26 84.07 8.00

100 600 0.8 m = 480 71.82 72.97 77.53 88.12 13.66

800 0.8 m = 640 71.81 70.94 82.17 89.23 8.59

300 0.8 m = 240 86.71 104.17 94.71 107.41 3.11

200 600 0.8 m = 480 79.56 85.02 80.94 102.42 20.47

800 0.8 m = 640 75.01 77.95 85.71 97.67 13.95

300 0.8 m = 240 88.81 n.a. 112.83 120.16 6.50

300 600 0.8 m = 480 67.71 n.a. 83.12 104.95 26.26

800 0.8 m = 640 65.87 n.a. 90.26 92.88 2.90

300 0.8 m = 240 92.00 n.a. 119.32 129.29 8.36

400 600 0.8 m = 480 48.94 n.a. 85.99 103.86 20.78

800 0.8 m = 640 47.18 n.a. 92.86 89.05 −4.10

300 0.85 m = 255 25.11 28.30 29.54 30.53 3.35

100 600 0.85 m = 510 23.66 22.82 27.47 27.53 0.22

800 0.85 m = 680 23.93 21.66 26.54 26.61 0.26

300 0.85 m = 255 22.99 28.59 30.37 32.32 6.42

200 600 0.85 m = 510 22.05 21.90 26.35 27.31 3.64

800 0.85 m = 680 22.05 20.40 24.42 25.83 5.77

300 0.85 m = 255 20.81 n.a. 31.83 31.33 −1.57

300 600 0.85 m = 510 21.77 n.a. 24.95 24.68 −1.08

800 0.85 m = 680 22.41 n.a. 23.53 20.68 −12.11

300 0.85 m = 255 20.93 n.a. 32.78 31.55 −3.75

400 600 0.85 m = 510 19.46 n.a. 24.56 24.80 0.98

800 0.85 m = 680 20.38 n.a. 22.82 15.86 −30.50

instances) shows averages over 100 problem instances, while each row in Table 5
presents averages over five problem instances and 10 runs of each algorithm. Note
that the final column of each table presents the percentage improvement of the
results obtained by Aco+

neg over the current state-of-the-art results. Obviously,
in case such a percentage is a negative number, Aco+

neg does not reach the
state-of-the-art result in this case.

In the case of the Ferone instances, the results of Aco+
neg are compared to

the ones of CPLEX (used in standalone mode and with the same computation
time limit as Aco+

neg), the hybrid ACO approach called HyAco from [2], and the
best one of the GRASP approaches from [4]. In other words, each result shown
in the column with heading Grasp is the best one obtained from six different
GRASP variants. Note that the GRASP variants from [4] were applied with

94 C. Blum and P. Pinacho-Davidson

Table 5. Numerical results, random Gallardo instances

n m t Cplex Ma Graspfer Graspmou Aco+
neg Impr (%)

300 0.8 m = 240 69.80 84.82 80.78 70.99 83.14 −1.98

100 600 0.8 m = 480 71.80 87.08 79.12 70.83 86.90 −0.21

800 0.8 m = 640 72.20 89.90 79.52 71.08 89.80 −0.11

300 0.8 m = 240 87.80 109.58 105.85 83.04 106.00 −3.27

200 600 0.8 m = 480 78.40 101.23 88.95 80.90 102.48 1.23

800 0.8 m = 640 73.60 93.92 80.09 79.77 97.40 3.71

300 0.85 m = 255 24.60 32.58 18.41 30.10 30.50 −6.38

100 600 0.85 m = 510 23.20 28.76 4.89 25.36 27.38 −4.80

800 0.85 m = 680 22.80 27.96 2.58 24.33 26.74 −4.36

300 0.85 m = 255 24.20 34.49 14.85 32.69 32.32 −6.29

200 600 0.85 m = 510 22.40 26.17 2.26 25.54 27.10 3.55

800 0.85 m = 680 22.20 25.61 0.60 23.71 26.00 1.52

a computation time limit of 30 CPU seconds per run. As Aco+
neg was allowed

600 CPU seconds per run, this might seem unfair. However, the computation
time limit of 30 CPU seconds was chosen in [4] because their algorithms did
not profit much from longer running times. The results allow us to make the
following observations:

– In the case of a threshold value of t = 0.8 m, Aco+
neg is clearly the new

state-of-the-art approach. It outperforms Cplex, HyAco and the GRASP
approaches in all cases, with the exception of the largest case (n = 400,
m = 800) where the best GRASP approach is still better than Aco+

neg. The
improvement of Aco+

neg over the currently best-known result is maximally
26.26% (in case n = 300, m = 600). On average the improvement is 10.71%.

– In contrast, for the cases with a threshold of t = 0.85 m, Aco+
neg improves

only slightly over the state of the art in the context of the smaller problem
instances (n ∈ {100, 200}), while it generally does not reach the state-of-the-
art results for the larger problem instances (n ∈ {300, 400}). This becomes
especially clear in the cases (n = 300,m = 800) and (n = 400,m = 800).

As already suspected after the tuning experiments, these results show that
Aco+

neg seems generally to work better for threshold values of t = 0.8 m in con-
trast to threshold values of 0.85 m. In order to show that the characteristics of
the FFMSP strongly depend on the threshold value, we display the evolution
of the objective function values of the best-found solutions over time in Fig. 1.
Each of the four graphics in Fig. 1 shows the evolution of Aco+

neg for the first 10
(out of 100) problem instances of the chosen case. The cases with threshold value
0.8 m (Figs. 1a and 1b) indicate that the values of the initial solutions provided
by CPLEX are much worse than those of the final solutions identified by Aco+

neg.
Moreover, Aco+

neg is generally able to find improving solutions frequently dur-
ing the run-time of the algorithm. In contrast, the evolution of Aco+

neg is very

Application of Negative Learning ACO to the FFMSP 95

Fig. 1. Evolution of the objective function values (original objective function)

different in the cases with threshold value 0.85 m (see Figs. 1c and 1d). First, the
values of the initial solutions provided by CPLEX are much closer to the final
values. Moreover, most improving solutions identified by Aco+

neg over the run-
time concern the secondary function (in fsim, respectively fcom). These results,
therefore, allow concluding that there is room for improvement of Aco+

neg in the
case of threshold values 0.85 m.

The comparison to the second state-of-the-art approach—that is, the Ma
algorithm from [7]—is done in the context of the random instances from the
same paper, as already described in Sect. 5.1. Note that this benchmark set
only contains rather small problem instances with n ∈ {100, 200} for which
Aco+

neg worked very well in comparison to the GRASP approaches. Apart from
the results of Ma and Aco+

neg, Table 5 also contains the results of the GRASP
approach from [3] and the GRASP approach from [14], both re-implemented by
the authors of Ma. Note that all techniques were applied with a computation

96 C. Blum and P. Pinacho-Davidson

time limit of 600 CPU seconds to each problem instance. The main observations
are the following ones. First, both Ma and Aco+

neg clearly outperform the two
GRASP approaches. Second, while Ma seems to perform better than Aco+

neg in
the case of the smaller problem instances, that is, n = 100 and (n = 200,m =
300), Aco+

neg seems to outperform Ma with growing problem instance size. This
observation holds for both considered threshold values.

6 Conclusions and Outlook

In this work we have described our application of negative learning ant colony
optimization to a notoriously difficult combinatorial optimization problem from
bioinformatics: the so-called far from most string problem. Our algorithm utilizes
negative learning which is based on the results obtained from the MILP solver
CPLEX when solving sub-instances of the tackled problem instances at each
iteration. In comparison to the state-of-the-art GRASP approaches from [4] we
were able to show that our algorithm can considerably improve over the results
for instances when solved with a threshold value of t = 0.8 m. On the other
side, our algorithm seems to work less well for a threshold value of t = 0.85 m,
especially in the context of large problem instances. In comparison to the state-
of-the-art memetic algorithm from [7], we were able to show that, although our
algorithm has slight disadvantages for smaller problem instances, it is able to
outperform the memetic algorithm with growing problem instance size. This last
finding is independent of the considered threshold value.

In the future, we plan to re-implement both the GRASP approaches and
the memetic algorithm from the literature in order to perform a comprehensive
comparison on a large and diverse set of problem instances. One of the current
shortcomings is, for example, that all considered problem instances are based
on an alphabet of size four. However, this is very limiting. Therefore, we plan
to generate problem instances over a whole range of different alphabet sizes.
Moreover, we will consider a wider range of threshold values in order to study,
for each alphabet size, the range of threshold values that make the problem
complicated to be solved.

Another line for future research consists in testing different ant colony opti-
mization approaches from the literature that include some type of negative learn-
ing; see, for example, [17,18].

References

1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Trans. Man Syst. Cybern. Part B 34(2), 1161–1172 (2004)

2. Blum, C., Festa, P.: A hybrid ant colony optimization algorithm for the far from
most string problem. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol.
8600, pp. 1–12. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44320-0 1

https://doi.org/10.1007/978-3-662-44320-0_1
https://doi.org/10.1007/978-3-662-44320-0_1

Application of Negative Learning ACO to the FFMSP 97

3. Ferone, D., Festa, P., Resende, M.G.C.: Hybrid metaheuristics for the far from most
string problem. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 174–188. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38516-2 14

4. Ferone, D., Festa, P., Resende, M.G.: Hybridizations of grasp with path relinking
for the far from most string problem. Int. Trans. Oper. Res. 23(3), 481–506 (2016)

5. Festa, P.: On some optimization problems in mulecolar biology. Math. Biosci.
207(2), 219–234 (2007)

6. Festa, P., Pardalos, P.: Efficient solutions for the far from most string problem.
Ann. Oper. Res. 196(1), 663–682 (2012)

7. Gallardo, J.E., Cotta, C.: A GRASP-based memetic algorithm with path relinking
for the far from most string problem. Eng. Appl. Artif. Intell. 41, 183–194 (2015)

8. Kennelly, P.J., Krebs, E.G.: Consensus sequences as substrate specificity deter-
minants for protein kinases and protein phosphatases. J. Biol. Chem. 266(24),
15555–15558 (1991)

9. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inf. Comput. 185(1), 41–55 (2003)

10. Liu, X., Liu, S., Hao, Z., Mauch, H.: Exact algorithm and heuristic for the closest
string problem. Comput. Oper. Res. 38(11), 1513–1520 (2011)

11. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

12. Meneses, C.N., Oliveira, C.A., Pardalos, P.M.: Optimization techniques for string
selection and comparison problems in genomics. IEEE Eng. Med. Biol. Mag. 24(3),
81–87 (2005)

13. Mousavi, S.R.: A hybridization of constructive beam search with local search for
far from most strings problem. Int. J. Comput. Inf. Eng. 4(8), 1200–1208 (2010)

14. Mousavi, S., Babaie, M., Montazerian, M.: An improved heuristic for the far from
most strings problem. J. Heuristics 18, 239–262 (2012)

15. Nurcahyadi, T., Blum, C.: Adding negative learning to ant colony optimization: a
comprehensive study. Mathematics 9(4), 361 (2021)

16. Nurcahyadi, T., Blum, C., Manyà, F.: Negative learning ant colony optimization
for maxsat. Int. J. Comput. Intell. Syst. 15(1), 1–19 (2022)

17. Rojas-Morales, N., Riff, M.C., Montero, E.: Opposition-inspired synergy in sub-
colonies of ants: the case of focused ant solver. Knowl.-Based Syst. 229, 107341
(2021)

18. Ye, K., Zhang, C., Ning, J., Liu, X.: Ant-colony algorithm with a strengthened
negative-feedback mechanism for constraint-satisfaction problems. Inf. Sci. 406–
407, 29–41 (2017)

19. Zörnig, P.: Reduced-size integer linear programming models for string selection
problems: application to the farthest string problem. J. Comput. Biol. 22(8), 729–
742 (2015)

https://doi.org/10.1007/978-3-642-38516-2_14
https://doi.org/10.1007/978-3-642-38516-2_14

Monte Carlo Tree Search with Adaptive
Simulation: A Case Study on Weighted

Vertex Coloring

Cyril Grelier , Olivier Goudet , and Jin-Kao Hao(B)

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
{cyril.grelier,olivier.goudet,jin-kao.hao}@univ-angers.fr

Abstract. This work presents a hyper-heuristic approach to online
learning, which combines Monte Carlo Tree Search with multiple local
search operators selected on the fly during the search. The impacts of
different operator policies, including proportional bias, one-armed ban-
dit, and neural network, are investigated. Experiments on well-known
benchmarks of the Weighted Vertex Coloring Problem are conducted
to highlight the advantages and limitations of each dynamic selection
strategy.

Keywords: Monte Carlo Tree Search · Local Search ·
Hyper-heuristic · Weighted Vertex Coloring · Learning-driven
optimization

1 Introduction

Given a graph G = (V,E,w) with vertex set V , edge set E, and a weight
function w : V → R

+, assigning a positive weight w(v) to each node in V , the
goal of the Weighted Vertex Coloring Problem (WVCP) is to find a partition
S = {V1, . . . , Vk} of the vertex set V , into k non-empty independent subsets
Vi (also called color classes or groups, k is not fixed) such that the function
f(S) =

∑k
i=1 max

v∈Vi

w(v) is minimized.

A set Vi is an independent set if and only if ∀u, v ∈ Vi, {u, v} /∈ E.
The WVCP generalizes the popular NP-hard graph coloring problem, which

corresponds to solving this problem when all weights w(v) are equal for v ∈ V ,
and is therefore itself NP-hard. The WVCP belongs to the larger family of group-
ing problems whose main task is to partition a set of elements into mutually
disjoint subsets such that additional constraints and/or optimization objectives
are satisfied. The WVCP has many practical applications such as matrix decom-
position [19] and batch job scheduling in a multiprocessor environment [18].

In addition to the exact methods for the WVCP, such as [5,16], dedicated
heuristics have been proposed in the literature recently, including local search
algorithms [17,19,22,24], and memetic algorithms [10]. These heuristics can pro-
vide approximate solutions of good quality for medium and large instances, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 98–113, 2023.
https://doi.org/10.1007/978-3-031-30035-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_7&domain=pdf
http://orcid.org/0000-0002-6234-8278
http://orcid.org/0000-0001-7040-5052
http://orcid.org/0000-0001-8813-4377
https://doi.org/10.1007/978-3-031-30035-6_7

MCTS with Adaptive Simulation Strategy for WVCP 99

cannot be solved in a reasonable time by exact methods. However, given the
difficulty of the WVCP, no simple heuristic is able to obtain the best-known
results for all instances of the literature. This can be explained by the fact that
these instances have different characteristics (average degree, degree distribu-
tion, weight distribution). Even by fine-tuning the hyperparameters or using an
adaptive selection of these parameters (e.g. the algorithm AFISA [22]), it is dif-
ficult for a single heuristic to provide enough flexibility to solve all instances
successfully.

One possible way to overcome this difficulty is to find on the fly the best
heuristic to use during the search for a given instance, hyper-heuristics have been
proposed in the literature for this purpose. Hyper-heuristics are search methods
that explore the space formed by low-level heuristics, instead of the space of
direct solutions [3]. We refer the reader to [3,7] for an overview of existing hyper-
heuristics proposed in the literature to solve various combinatorial optimization
problems. Specifically, hyper-heuristics have already been used to solve grouping
problems, with applications to scheduling and graph coloring [8,20], but never
to the WVCP to our knowledge.

Most hyper-heuristics used for grouping problems are single-point hyper-
heuristics in the sense that they apply a chosen low-level heuristic to the current
solution at each step of the search before deciding to accept or reject the newly
created solution [8]. However, these iterative hyper-heuristics are prone to get
stuck in local optima, especially when tackling graph coloring problems that are
generally characterized by a rough fitness landscape [2]. This occurs when the
hyper-heuristic does not incorporate efficient low-level components that can be
chosen to diversify the search into another area of the search space. Moreover,
most of the hyper-heuristics proposed in the literature use a high-level strategy
taking into account the gain in fitness obtained by the different low-level compo-
nents (e.g. [9]) but do not take into account the current state of the iteratively
improved solution.

To overcome these two limitations, we propose a hyper-heuristic approach
with online learning, which combines the Monte Carlo tree search (MCTS)
framework proposed in [11] and a high-level learning heuristic selector that
takes into account the raw state of the current solution to be improved dur-
ing the simulation phase of MCTS. This MCTS framework can continuously
learn new promising starting points for a local search heuristic, which could help
an iterative hyper-heuristic to avoid local minima traps.

Note that two previous works [1,21] have also used an MCTS in a hyper-
heuristic for combinatorial optimization problems. In [21], the search space of
low-level heuristics is explored by an MCTS, which searches for the best sequence
of low-level heuristics to apply to a given solution, but without guarantee of
optimality. Unlike this approach, the MCTS used in this work is directly con-
structed to explore the tree of legal solutions. Therefore, it has the property
of being able to provide a theoretical guarantee that an optimal solution can
be found if enough time is given to the algorithm. In [1], an MCTS was used
to create initial sequences, which are improved in a separate second step by a

100 C. Grelier et al.

hyper-heuristic using a wide variety of local moves, selected by a high-level strat-
egy. In this work, we aim to push further the coupling between the selection by
the MCTS and the choice of the low-level heuristic.

We summarize the contributions of the present paper as follows. First, we
propose an integration between the MCTS, which is used to discover new start-
ing points and the high-level operator selection strategy, which takes as input
this starting point to make its choice. The score obtained by a given low-level
heuristic is used to update both the MCTS learning strategy and the operator
selector. Secondly, we investigate the impact of different online learning strate-
gies, including a neural network taking into account not only the past scores
of the low-level components as in [6], but also the raw state of the initiating
solution to be improved by a local search heuristic. This neural network is made
invariant by permuting the color groups by taking inspiration from the deep-set
architecture [25], which is a desirable property for handling the WVCP.

2 Related Works on the WVCP

Most of the best heuristics for the WVCP are local search based algorithms and
constructive algorithms. This section presents a review of these methods.

2.1 Local Search Algorithms

We described the four most effective local search based algorithms for the
WVCP: TW [11], AFISA [22], RedLS [24] and ILS-TS [17]. These four heuris-
tics will constitute the set of low-level heuristics that we will manipulate in the
hyper-heuristic proposed in this paper.

Legal Tabu Search. TabuWeight (TW) [11] is inspired by the classical TabuCol
algorithm for the GCP [12]. TW explores the space of legal colorings. It uses
the one-move operator (which displaces a vertex from its color group to another
color group) without creating conflicts. The best move not forbidden by the tabu
list is applied at each iteration. The move is then added to the tabu list and is
forbidden for the next tt iterations, tt being a parameter called tabu tenure.

Adaptive Feasible and Infeasible Tabu Search. AFISA [22] is a tabu search algo-
rithm using the one-move operator and explores both the legal and illegal search
spaces.1 AFISA uses an adaptive coefficient to oscillate between legal and illegal
solutions during the search.

Local Search with Selection Rules. RedLS [24] explores both the illegal and legal
search spaces. It uses the configuration checking strategy [4] to avoid cycling in
neighborhoods solutions with the one-move operator. When the solution is legal,
RedLS moves all the heaviest vertices from a color group to other colors to lower
the WVCP score. Then it resolves the conflicts with different selection rules.
1 A solution is said illegal if two adjacent vertices share the same color.

MCTS with Adaptive Simulation Strategy for WVCP 101

Iterated Local Search with Tabu Search. ILSTS [17] explores both the legal and
partial search spaces. From a complete solution, ILSTS iteratively performs two
steps: (i) it removes the heaviest vertices from the several color groups and places
them in the set of uncolored vertices; (ii) it minimizes the score f(S) by applying
different variants of the one-move operator and a grenade operator2 until the
set of uncolored vertices becomes empty.

2.2 Constructive Heuristics

Two constructive heuristics have been proposed for the WVCP. These heuristics
start with an empty or a partial solution and then color the nodes one by one
until a complete legal solution is obtained. They have been used in combination
with local search heuristics.

Reactive Greedy Randomized Adaptive Search Procedure. RGRASP [19] is an
algorithm that iterates over two steps. First, it initializes a solution with a greedy
algorithm. Secondly, it improves the solution with a local search procedure. At
each iteration, it randomly removes the color of a part of the vertices and starts
again at the first step. The choice of the vertices to recolor is managed by an
adaptive parameter that evolves according to the quality of the solution.

Monte Carlo Tree Search Algorithm. The MCTS algorithm proposed in [11] is
a constructive heuristic for the WVCP, where a search tree is built to explore
the partial and legal search space. The search tree is built incrementally and
asymmetrically. For each iteration of the MCTS, a selection strategy balancing
exploration and exploitation is used to construct a partial solution that is further
completed and improved by a simulation strategy. To build this partial solution,
the vertices of the graph are considered in a predefined order (they are sorted
by decreasing order of their weight, then by degree) and each uncolored vertex
u ∈ U is assigned a particular color i. Such a move is denoted as < u,U, Vi > and
applying this move to a partial solution S being constructed gives a new solution
S ⊕ < u,U, Vi >. After the simulation phase, a legal solution is obtained and
the search tree is updated with the WVCP score of this solution. In [11], the
authors investigated the impact of various local search procedures used during
this simulation phase of this MCTS algorithm, instead of the classical random
simulation which performs badly for this problem. It appears from this study
that the choice of the local search procedure has an important impact which
depends on the type of instance considered.

To make the algorithm more robust to each specific instance, we propose
to use this same MCTS framework, but to select dynamically the local search
procedure during the search in a set O = {o1, . . . , od} of d different local search
heuristics. In the proposed framework, the choice of the local search strategy

2 The grenade operator consists in moving a vertex u to a new group (or color) Vi,
but first, each adjacent vertex of u in Vi is relocated to another color group or to a
set of unassigned vertices to keep a legal solution.

102 C. Grelier et al.

may depend on the raw state of the initiating solution built by the MCTS at
each iteration of the algorithm.

3 MCTS with Adaptive Simulation Strategy

This section presents the general framework of the adaptive selection of local
search operators combined with the MCTS algorithm presented in [11].

3.1 Main Scheme

The proposed hyper-heuristic approach is detailed in Algorithm 1. It takes as
input a weighted graph G = (V,E,w), a set of local search operators O =
{o1, . . . , od} and a high-level selection strategy πθ : Ω → O taking as input a
complete and legal solution S and giving in output a local search operator o ∈ O
to apply to S.

The selection strategy πθ is parametrized by a vector of parameters θ ini-
tialized at random at the beginning of the search. Then the algorithm repeats
a loop (iteration) until a cutoff time limit is met. Each iteration of the MCTS
involves the execution of five steps:3

1. Selection: starting from the root node of the tree, the most promising chil-
dren nodes are iteratively selected until a leaf node is reached (a node without
all children opened). The selection of a child node at each level corresponds
to the choice of color for the next vertex of the graph4. The most promising
node is selected based on an exploitation/exploration trade-off UCT (Upper
Confidence bounds for Trees).

2. Expansion: the MCTS tree grows by adding a new child node to the leaf
node reached during the selection phase.

3. Adaptive Simulation: the current partial solution is completed with greedy
legal moves to obtain a complete solution S. Then the selected operator o =
πθ(S) is applied to the current solution S to improve it for a fixed time.
This leads to a new solution S′ and a new learning example (S, o, r), and the
reward r = −f(S′) is stored in a database D. For every nb iterations, the
selection strategy is learned online on this database D.

4. Update: after the simulation, the average score and the number of visits of
each node on the explored branch are updated.

5. Pruning: if a new best score is found, some branches of the MCTS tree may
be pruned if it is not possible to improve the best current score with it.

The fact that symmetries are cut in the search tree by restricting the set
of legal moves considered during each step 1 and 2, and that pruning rules are

3 One notices that compared to the MCTS method from [11], only the simulation
phase (step 3) changes.

4 The vertices are considered in the decreasing order of their weight then of their
degree.

MCTS with Adaptive Simulation Strategy for WVCP 103

applied in step 5, allows the whole tree to be explored in a reasonable time for
small instances. This characteristic of the algorithm allows to provide proof of
optimality for such instances. We refer the reader to [11] for more details on

Algorithm 1. MCTS with adaptive simulation strategy
1: Input: Weighted graph G = (V, E, w), O a set of local search operators and πθ a

selection strategy.
2: Output: The best legal coloring S∗ found
3: S∗ = ∅ and f(S∗) = MaxInt
4: D = ∅.
5:
6: while stop condition is not met do
7: C ← R � Current node corresponding to the root node of the tree
8: S ← {V1, U} with V1 = {v1} and U = V \V1 � first vertex in first color group
9:

10: /* Step 1 - Selection */
11: while C is not a leaf do
12: C ← select best child(C) with legal move < u, U, Vi >
13: S ← S ⊕ < u, U, Vi >
14: end while
15:
16: /* Step 2 - Expansion */
17: if C has a potential child, not yet open then
18: C ← open first child not open(C) with legal move < u, U, Vi >
19: S ← S ⊕ < u, U, Vi >
20: end if
21:
22: /* Step 3 - Adaptive simulation strategy */
23: S ← greedy(S) � Complete current solution with a greedy algorithm
24: o = πθ(S) � Select a local search operator
25: S′ ← o(S) � Improve the solution with the selected operator.
26: D ← D ∪ (S, o, −f(S′)) � Store a learning example in the database.
27: θ ← learning(D, θ) � Online learning of the adaptive selection strategy
28:
29: /* Step 4 - Update */
30: while C �= R do
31: update(C,f(S’))
32: C ← parent(C)
33: end while
34: if f(S′) < f(S∗) then
35: S∗ ← S′

36: end if
37:
38: /* Step 5 - Pruning */
39: apply pruning rules
40:
41: end while
42: return S∗

104 C. Grelier et al.

the different steps 1, 2, 4, and 5 of this algorithm. In what follows, only step
3, with the adaptive simulation strategy written in bold in Algorithm 1, will be
described in detail.

3.2 Adaptive Simulation Strategy Framework

As shown in [11], no simulation strategy dominates the others for the WVCP,
and some operators are more successful for some types of instances than others.

Dynamic Operator Selection. To choose the best possible local search operator
during the search, a high-level strategy πθ automatically selects an operator
o = πθ(S) in O to be applied to the current solution S. Note that the choice of
this operator may depend on the solution S to be improved. The set O of low-
level heuristic components considered for the simulation strategy are the four
local search procedures presented in Sect. 2.1, namely TW, AFISA, RedLS, and
ILS-TS. The different high-level strategies πθ used in this work will be presented
in Sect. 4.

Collecting Learning Examples. Even if some of these local search operators o
make transitions between different search spaces, it always returns the best legal
solution (with the smallest WVCP score) encountered during the search denoted
as S′ = o(S). According to this new solution found, a new learning example
(S, o, r), associated with the reward r = −f(S′), is stored in a database D.
The reward r is negative because the WVCP is a minimization problem. One
notices that in the literature on hyper-heuristics, the reward of a given operator
is often proportional to f(S) − f(S′) (for a minimization problem), namely the
difference between the score before and after the search (see for example [9] and
[6]). However, in our algorithm, we experimentally found that is better that this
reward does not depend on the score of the solution S from which the local
search starts as it may introduce some noise in the learning process. Indeed, the
MCTS can produce solutions of different quality at each iteration and if the score
of the solution S from which the local search starts is taken into account in the
evaluation of the reward, operators starting from an already good solution (low
f(S) value) will be at a disadvantage compared to those starting from a bad
solution (high f(S) value), as it is comparatively easier to improve a solution of
poor quality than a solution that is already of good quality.

Online Learning of the High Level Operator Selector. Every nb iterations of the
MCTS, the policy πθ is trained on the database D and the set of its parameters
θ is updated. The database D is modeled as a queue of size N corresponding to
the last N examples obtained during the past iterations. This queue of limited
size allows to better adapt to the potential variations of the operators’ results,
in case some operators are better at the beginning of the search than at the end.

MCTS with Adaptive Simulation Strategy for WVCP 105

4 Operator Selectors

We investigate the impact of five different operator selection policies πθ of dif-
ferent level of complexity: a neural network, three fitness-based criteria and one
baseline random selector, where each operator has 1

|O| chance to be selected.

4.1 Neural Network Selector

In this case, the function πθ : Ω → O, is modeled by a neural network,
parametrized by a vector θ (initialized at random at the beginning).

This neural network πθ takes as input a coloring S as a set of k binary vectors
vj of size n, S = {v1, . . . ,vk}, where each vj indicates the vertices belonging to
the color group j. From such an entry the neural network outputs a vector with
|O| values in R corresponding to the expected reward of each operator o ∈ O.
Then, with a 90% chance, the operator associated with the maximum expected
reward is selected. We still keep a 10% chance to select an operator at random,
to ensure a minimum of diversity in the operator selection (exploration).

Using the deep set architecture [10,15,25], the output of this neural network
is made invariant by the permutation of the color groups in S, so that the neural
network selector will take the same decision for two input colors S and Sσ which
are equivalent up to color group permutation σ. Specifically, for any permutation
σ of the input color groups we have

πθ(vσ(1), . . . ,vσ(k)) = πθ(v1, . . . ,vk). (1)

For a coloring S = {v1, . . . ,vk}, the color group invariant network πθ is
defined as

πθ(S) =
1
k

k∑

i=1

(φθP
◦ φθP−1 ◦ · · · ◦ φθ0(S))i, (2)

where each φθj
is a permutation invariant function from R

k×lj−1 to R
k×lj with

lj being the layer sizes. Note that we have lj−1 = |V | for the first layer and
lj−1 = |V | and lj = |O| for the last layer. See [15] for more details on the
permutation invariant function φθj

.
In this work, we use a neural network with two hidden layers of size h1 =

|V | and h2 = |V |+|O|
2 , and a non-linear activation function defined as μ(x) =

max(0.2 × x, x) (LeakyReLU).
During this training phase, each learning example (S, o, r) of the database D

is converted into a supervised learning example (X, y), with X an input matrix
of size k × |V | corresponding to the set of k vectors S = {v1, . . . ,vk}, and
y is a real vector of size |O| (number of candidate operators), such that y is
initialized to the value πθ(X) for each operator and then its value y[o] for the
chosen operator o is replaced by the expected reward r: y[o] = r.

Every nb = 10 iterations, this neural network is trained with the average
mean square error loss on the |O| outputs (supervised learning) on the dataset
D during 15 epochs with Adam optimizer [14] and learning rate 0.001.

106 C. Grelier et al.

4.2 Classic Fitness-Based Selectors

We compare the neural network selector above with three basic selectors, which
do not take as input the raw solution to make their choice. These three selectors
are two criteria based on a proportional bias (roulette wheel and pursuit) and
one criterion based on the one-arm bandit method. These three criteria have
extensively been used in the literature of hyperheuristics (e.g. [9,13,23]).

For these three operators, the reward r of each training example (S, o, r) is
normalized between 0 and 1 over the sliding window consisting of the last N
examples stored in the database D, 0 being the worst value obtained during the
N last iterations (corresponding to the highest value of the fitness f(S′)) and 1
being the best value. This normalized average reward computed on this sliding
window and associated to an operator o is written ro. no denotes the number of
times the operator o have been selected during the last N iterations.

Adaptive Roulette Wheel and Pursuit. For these two probability based
strategies inspired from [9], πθ is a random procedure driven by a vector of |O|
parameters θ = [p1, . . . , p|O|], such that pi corresponds to the probability that
the operator i is chosen this turn. We have

∑|O|
i=1 pi = 1. In the beginning, all

the probabilities are set to equal value. Therefore, pi = 1
|O| , for i = 1, . . . , |O|.

The more an operator o achieves good rewards ro, the more its associated
probability pi increases and the more it is chosen in the following iterations.

Adaptive Roulette Wheel. In this strategy, the probabilities po for o = 1, . . . , |O|
are updated at each iteration according to the formula

po = pmin + (1 − |O| ∗ pmin) ∗ ro
∑|O|

o′ ro′
,

where pmin is the minimum selection probability for each operator (which is set
to a strictly positive value to ensure a minimum level of exploration). It is a
hyperparameter of the methods set to the value of 1

5×|O| in this work.

Pursuit. In this strategy, the probabilities are updated during the learning pro-
cess as

{
po∗ = po∗ + β(pmax − po∗)
po = po + β(pmin − po),

(3)

where o∗ is the index of the best operator on the sliding window, pmin = 1
5×|O| ,

pmax = 1 − (|O| − 1) ∗ pmin and β = 0.7 is a coefficient introduced to control
this winner-take-all strategy.

Note that unlike the adaptive roulette strategy, which gives more balanced
chances to all low-level operators, the Pursuit strategy is more elitist as it gives
more chances to the best strategy applied in the previous iterations.

MCTS with Adaptive Simulation Strategy for WVCP 107

One-Arm Bandit. This policy πθ is based on the one-arm bandit method. At
each iteration, according to the UCB (Upper Confidence Bound) formula, the

operator with the highest score so = ro + c ∗
√

2∗log |D|
no+1 is selected, where c is a

hyperparameter set to the value of 1.

5 Experimentation

This section presents experiments to assess the different adaptive simulation
strategies.

5.1 Experimental Settings and Benchmark Instances

We consider the 188 WVCP benchmark instances in the literature. These
instances come from various problems, 35 pxx instances and 30 rxx instances
from matrix decomposition [19] and 123 from DIMACS/COLOR competitions
[22].

Among these instances, 124 have a known optimal score. Therefore, when
evaluating a given method on such an instance, we stop it when the optimal
score is reached. We perform 20 independent runs of each method to solve each
instance on a computer equipped with Intel Xeon ES 2630, 2,66 GHz CPU.
The time limit for each local search algorithm was one hour. For the combined
methods, MCTS with local search, with and without adaptive selection, a time
limit of one hour was set for local search, in order to compare all methods with
the same overall time spent in the local search solvers. At each iteration of
the MCTS algorithm, the time allowed in a local search (during the simulation
phase) is set to |V | ∗ 0.02 s.

The algorithm is coded in C++5, compiled, and optimized with a g++ 12.1
compiler.

In the following, when a method is said to be better than another on a given
instance, it means that the difference between the average scores computed over
20 runs is in favor of the first method and that this difference is significant (a
non-parametric Wilcoxon signed-rank test with a p-value ≤ 0.001).

5.2 Adaptive Operator Selection During the Search

Figure 1 shows the mean of the cumulative selection of each operator with error
bars during the 20 runs on four difficult instances for each criterion: Random,
Roulette wheel, Pursuit, One-armed Bandit (UCB), and Neural network. The
four local search algorithms that can be selected at each iteration of the MCTS
(see Sect. 2.1) are TW (dash-dotted line in light blue), ILST-TS (solid line in
red), RedLS (dashed line in green) and AFISA (dotted line in purple).

5 The source code is available at https://github.com/Cyril-Grelier/gc wvcp adaptive
mcts.

https://github.com/Cyril-Grelier/gc_wvcp_adaptive_mcts
https://github.com/Cyril-Grelier/gc_wvcp_adaptive_mcts

108 C. Grelier et al.

Fig. 1. Each plot represents the mean of the cumulative selection of operators for one
criterion based on the 20 runs on one instance, with error bar. One line per instance
(4 different instances), one column per adaptive method.

We first observe that during the first 20 iterations of the algorithm, the
choices made by the various high-level strategies are almost random. It corre-
sponds to the time spent collecting enough examples to learn.

Figure 1 shows that it is not always the same strategy that is favored for the
different instances. For example, the method TW is preferred for the instance
C2000.5, RedLS for DSJC1000.5 and ILSTS for le450 25b. The small error bars
show that the selection is generally consistent over the different runs, except for
wap08a for which the different strategies oscillate a lot between the ReldLS and
ILSTS methods (which are the two best performing methods for this instance
[17,24]) and thus for this instance the cumulative selection can vary a lot from
one run to another. These curves highlight that the different operator selectors
(except the Random selector) are in general able to identify the best performing
method for each given instance.

MCTS with Adaptive Simulation Strategy for WVCP 109

One can observe different trends in the selection of operators depending on
the policy. First, the random selection proceeds as expected and we observe that
the average cumulative selection numbers are almost equal for all operators at
different time steps. Roulette Wheel still keeps a lot of diversity in the selection
of the different operators but learns a bias toward the best methods during the
search. The UCB strategy behaves much like the Roulette wheel strategy. Note
that a lower exploration vs. exploitation coefficient would reduce the number of
times the worst operators are selected. The Pursuit and Neural network strate-
gies have similar behaviors: in general the best operators for a given instance are
selected in priority, the other ones are picked randomly. These two criteria are
more elitists than the others.

5.3 Performance Comparisons on the Different Benchmark
Instances

Table 1 displays performance comparisons between each pair of methods on the
188 benchmark instances considered in this work. The different types of meth-
ods are (i) the four standalone local search solvers AFISA, TW, RedLS, and
ILSTS; (ii) the MCTS versions with a fixed local search solver used for simula-
tion: MCTS+AFISA, MCTS+TW, MCTS+RedLS, and MCTS+ILSTS; (iii) the
MCTS versions with adaptive simulation strategies: Random, Roulette Wheel,
Pursuit, UCB, and Neural network.

The MCTS combined with a local search solver improves the results of the
local search alone except for ILSTS. Among the different MCTS+LS versions,
MCTS+RedLS is the most efficient.

Looking at the adaptive selection strategy, we observe that the random strat-
egy always performed the worst compared to the other adaptive strategies. This
highlights the relevance of dynamically learning the best strategy for each given
instance during the search.

When comparing the different adaptive strategies, it appears that the meth-
ods Roulette wheel and UCB obtained almost the same results, and are signif-
icantly better than the random strategy. The best-performing strategies among
all the compared strategies are Pursuit and Neural network. These methods are
the most elitist. This indicates that it is beneficial to identify rapidly which
method is efficient for each given instance and thus favor more intensification in
the choice of the low-level heuristics to use at each iteration of the algorithm.

In general, although adaptive selection with the neural network performs
well, comparative advantage over the more basic Pursuit method does not appear
in these experiments. There seems to be no obvious advantage to choosing an
operator depending on the raw state of the solution from which the search begins.
A simple fitness-based selection strategy can be just as effective as with more
information in this context.

Table 2 displays more detailed results for several methods tested in this work.
Column 1 indicates the name of the instance. Due to space limitation, we show
here the results for a set of 20 instances (over 188) of different types: size of the
graph |V | ranging from 125 (instance DSJC125.5gb) to 2000 (instance C2000.5),

110 C. Grelier et al.

Table 1. Comparison of all local search solvers and MCTS variants with and with-
out adaptive selection. Each value corresponds to the number of instances where the
row method is significantly better than the column method over the 188 benchmark
instances considered (Wilcoxon signed-rank test with a p-value ≤ 0.001). A number is
written in bold if the number of instances is higher for the method in the row.

AFISA MCTS+AFISA TW MCTS+TW RedLS MCTS+RedLS ILSTS MCTS+ILSTS Random Roulette Wheel Pursuit UCB Neural network

AFISA – 35 48 16 56 0 9 13 0 0 0 0 0

MCTS+AFISA 40 – 72 10 86 0 1 1 0 0 0 0 0

TabuWeight 39 38 – 26 47 2 16 23 2 2 2 2 2

MCTS+TabuWeight 68 71 78 – 99 5 8 17 0 0 0 0 0

RedLS 44 38 47 29 – 13 23 25 15 15 15 15 14

MCTS+RedLS 102 79 105 68 102 – 42 43 21 7 6 4 4

ILSTS 87 80 86 56 83 13 – 25 8 5 1 2 4

MCTS+ILSTS 82 78 83 48 81 11 0 – 5 2 0 1 2

Random 103 81 103 72 98 12 34 39 – 0 0 0 1

Roulette Wheel 103 81 104 73 100 13 35 40 4 – 1 0 1

Pursuit 103 81 105 75 101 14 35 40 11 0 – 1 2

UCB 103 81 104 75 100 13 36 40 4 0 1 – 1

NN 103 81 104 75 101 13 35 41 9 2 0 0 –

degree ranging from 0.1 (instance DSJC250.1) to 0.9 (instance DSJC250.9), as
well as different weight and degree distributions. Column 2 shows the best-
known score (BKS) for each given instance reported in the literature. A score in
bold in this column indicates that the score has been proven optimal. Note that
some of these best-known scores have been obtained under specific and relaxed
conditions (computation time of more than one day and parallel computation on
GPU device), while the results reported here are reached on a single CPU and
with a time limit of one hour of local search. Column 3–26 display the results
for one part of the different methods compared in this work. For the sake of
space, the results of the versions AFISA, TW, MCTS+AFISA, MCTS+TW,
and MCTS+ILSTS are not reported here. For each method are displayed the
best and the average scores obtained over 20 runs, and the time spent in seconds
to obtain the best scores.

The detailed results for all the 188 instances reached by the compared meth-
ods are available at the GitHub site given in footnote 5. The last lines of this
Table 2 summarize the results obtained by all methods for all the 188 instances:
(1) “# BKS” is the number of times a method finds the best know score of the
literature on each given instance, (2) “# best average” is the number of times
the method gets the best average score compared to the other methods. We first
observe that the two best local search solvers RedLS and ILSTS perform well
but not for the same type of instance. More specifically, the RedLS algorithm

MCTS with Adaptive Simulation Strategy for WVCP 111

Table 2. Part of the table reporting detailed results of the different methods for each
instance of the benchmarks. For the sake of space, the results of the methods AFISA,
TW, MCTS+AFISA, MCTS+TabuWeight, and MCTS+ILSTS are not reported here,
and only the results for 20 instances over 188 are shown.

instance BKS RedLS MCTS+RedLS ILSTS Random Roulette Wheel Pursuit UCB NN

best avg time best avg time best avg time best avg time best avg time best avg time best avg time best avg time

C2000.5 2144 2175 2196 1624 2494 2508 2665 2459 2501 3365 2456 2463 1640 2439 2453 3567 2439 2453 1148 2438 2450 574 2441 2452 4529

DSJC125.5gb 240 245 260 0 241 241 906 240 241 1160 240 240 2477 240 240 2042 240 240 2073 240 240 1666 240 240 2120

DSJC250.1 127 130 131 4 127 127 2187 130 131 1361 127 128 1494 127 128 2154 127 128 1830 127 128 1598 127 127 2418

DSJC250.5 392 398 401 248 396 398 1980 398 408 3591 398 400 2046 397 399 4050 397 399 894 396 399 822 397 398 1238

DSJC250.9 934 934 935 1039 935 936 144 936 944 3214 937 938 2988 935 937 3234 936 937 822 937 937 1932 936 937 2728

DSJC500.1 184 187 202 1448 188 188 777 199 202 2174 189 189 1133 187 188 3124 188 188 1727 187 189 539 188 188 2672

DSJR500.1 169 171 184 0 169 169 222 169 169 0 169 169 19 169 169 18 169 169 13 169 169 21 169 169 15

GEOM120 72 72 75 0 72 72 12 72 72 0 72 72 5 72 72 4 72 72 4 72 72 4 72 72 3

le450 15a 212 214 236 604 213 214 2578 222 225 967 214 214 1188 213 214 126 213 214 1278 213 214 2043 213 214 1095

le450 15b 216 218 225 105 217 217 2700 225 227 2341 218 218 967 217 217 1395 217 217 2106 217 217 1953 217 217 1743

le450 25a 306 306 307 223 306 306 220 306 307 1743 306 306 771 306 306 663 306 306 590 306 306 710 306 306 1012

le450 25b 307 307 313 130 307 307 235 307 307 1444 307 307 688 307 307 610 307 307 609 307 307 988 307 307 771

queen15 15 223 227 229 1110 225 226 460 233 237 2493 225 227 480 226 226 2241 225 226 2196 226 227 1812 226 226 2203

wap07a 555 729 745 0 574 644 175 627 636 1942 574 629 1575 640 644 3290 637 643 1435 584 640 490 578 639 1129

wap08a 529 537 614 2257 549 551 2376 600 614 2563 551 554 432 551 553 1332 551 556 756 551 553 2124 551 553 3956

p42 2466 2466 2522 0 2466 2466 109 2466 2466 16 2466 2466 111 2466 2466 76 2466 2466 62 2466 2466 55 2466 2466 63

r28 9407 9410 9563 126 9407 9427 1917 9407 9407 55 9407 9407 172 9407 9407 155 9407 9407 101 9407 9407 133 9407 9407 223

r29 8693 8696 8817 2 8693 8693 972 8693 8693 206 8693 8693 585 8693 8693 714 8693 8693 403 8693 8693 459 8693 8693 590

r30 9816 9836 9988 4 9816 9823 2827 9816 9816 20 9816 9816 79 9816 9816 78 9816 9816 82 9816 9816 90 9816 9816 112

BKS 112/188 153/188 151/188 154/188 155/188 156/188 156/188 157/188

best avg 46/188 144/188 141/188 139/188 142/188 155/188 146/188 152/188

is better for large instances such as DSJC1000.5 and C2000.5, while ILSTS is
better for smaller instances (DSJC250.1, DSJC250.5, and rxx instances). This
shows that these methods can be complementary and that it may be beneficial
to choose the right one on the fly for a given instance.

Secondly, we observe that the combination of the MCTS framework with
e.g. the RedLS method (MCTS + RedLS version) improves the average results
comparison to the RedLS solver alone for many instances, but not for the largest
ones like DSJC1000.5 and C2000.5. This can be explained by the fact that the
search space is very large for these two instances, and in this case it seems more
advantageous to favor intensification in a limited area of the search space to get
good results, rather than favoring more diversity with multiple restarts but with
less time spent in different areas of the search space.

Thirdly, it appears that the two MCTS versions with adaptive simulation,
such as Pursuit and Neural network, reach the largest number of BKS over the
whole set of 188 instances, with good results for a wide variety of instances (such
as DSJC250 X, DSJC500 X, le450 xx, and rxx instances).

6 Conclusions

A Monte Carlo Tree Search framework with adaptive simulation strategy was
presented and tested on the Weighted Graph Coloring Problem. Different high-
level operator selectors have been introduced in this work.

The results show that the MCTS versions with adaptive operator selection
reach the highest number of best-known scores for the set of 188 benchmark
instances of the literature compared to the state-of-the-art methods in one hour
of computation time on a CPU (except compared to the DLMCOL algorithm
[10] which uses a GPU and was run with an extended computation time).

112 C. Grelier et al.

Analysis of the operator selections during the search for each particular
instance shows that, in general, the choice of operators does not change dur-
ing the search. In fact, once the best solver for each instance has been identified,
it is usually still chosen for the rest of the search. This lack of variation during
the search may be explained by the fact that for a given instance, there is usu-
ally a dominant solver and we do not observe complementarity in the use of the
different operators during the search for this problem. This may explain why the
neural network selector taking into account the raw state of the current solution
does not bring better results than a more basic fitness-based selector such as the
Pursuit strategy.

A future work would be to introduce this new neural network operator selec-
tion strategy into a memetic algorithm for graph coloring problems where the
different operators selected can be more complementary during the search (e.g.
local search and crossover operators).

Acknowledgment. We would like to thank Dr. Wen Sun [22], Dr. Yiyuan Wang, [24]
and Pr. Bruno Nogueira [17] for sharing their codes. This work was granted access to
the HPC resources of IDRIS (Grant No. 2020-A0090611887, 2022-A0130611887) from
GENCI and the Centre Régional de Calcul Intensif des Pays de la Loire (CCIPL). We
are grateful to the reviewers for their comments.

Contribution Statement. C. Grelier developed the code and performed the tests.

O. Goudet and J.K. Hao planned and supervised the work. All the authors contributed

to the analysis and the writing of the article.

References

1. Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., Parkes, A.J.: Combining Monte-
Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-
project scheduling problem. Inf. Sci. 373, 476–498 (2016)

2. Bouziri, H., Mellouli, K., Talbi, E.G.: The k-coloring fitness landscape. J. Comb.
Optim. 21(3), 306–329 (2011)

3. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

4. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artif. Intell. 175(9), 1672–1696
(2011)

5. Cornaz, D., Furini, F., Malaguti, E.: Solving vertex coloring problems as maximum
weight stable set problems. Discret. Appl. Math. 217, 151–162 (2017)

6. Dantas, A., Rego, A.F.d., Pozo, A.: Using deep Q-network for selection hyper-
heuristics. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pp. 1488–1492 (2021)

7. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection hyper-
heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020)

8. Elhag, A., Özcan, E.: A grouping hyper-heuristic framework: application on graph
colouring. Expert Syst. Appl. 42(13), 5491–5507 (2015)

9. Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in
search algorithms. Appl. Soft Comput. 38, 257–268 (2016)

MCTS with Adaptive Simulation Strategy for WVCP 113

10. Goudet, O., Grelier, C., Hao, J.K.: A deep learning guided memetic framework for
graph coloring problems. Knowl.-Based Syst. 258, 109986 (2022)

11. Grelier, C., Goudet, O., Hao, J.-K.: On Monte Carlo tree search for weighted vertex
coloring. In: Pérez Cáceres, L., Verel, S. (eds.) EvoCOP 2022. LNCS, vol. 13222,
pp. 1–16. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04148-8 1

12. Hertz, A., Werra, D.: Using tabu search techniques for graph Coloring. Computing
39, 345–351 (1987)

13. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 3

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Lucas, T., Tallec, C., Ollivier, Y., Verbeek, J.: Mixed batches and symmetric dis-
criminators for GAN training. In: International Conference on Machine Learning,
pp. 2844–2853 (2018)

16. Malaguti, E., Monaci, M., Toth, P.: Models and heuristic algorithms for a weighted
vertex coloring problem. J. Heuristics 15(5), 503–526 (2009)

17. Nogueira, B., Tavares, E., Maciel, P.: Iterated local search with tabu search for the
weighted vertex coloring problem. Comput. Oper. Res. 125, 105087 (2021)

18. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring
problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005).
https://doi.org/10.1007/11523468 86

19. Prais, M., Ribeiro, C.C.: Reactive GRASP: an application to a matrix decomposi-
tion problem in TDMA traffic assignment. INFORMS J. Comput. 12(3), 164–176
(2000)

20. Sabar, N.R., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-
heuristic for examination timetabling problems. Appl. Intell. 37(1), 1–11 (2012)

21. Sabar, N.R., Kendall, G.: Population based Monte Carlo tree search hyper-heuristic
for combinatorial optimization problems. Inf. Sci. 314, 225–239 (2015)

22. Sun, W., Hao, J.K., Lai, X., Wu, Q.: Adaptive feasible and infeasible tabu search
for weighted vertex coloring. Inf. Sci. 466, 203–219 (2018)

23. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1539–1546 (2005)

24. Wang, Y., Cai, S., Pan, S., Li, X., Yin, M.: Reduction and local search for weighted
graph coloring Problem. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 0303, pp. 2433–2441 (2020)

25. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30
(2017)

https://doi.org/10.1007/978-3-031-04148-8_1
https://doi.org/10.1007/978-3-642-21434-9_3
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/11523468_86

Evolutionary Strategies for the Design
of Binary Linear Codes

Claude Carlet1,2, Luca Mariot3(B), Luca Manzoni4, and Stjepan Picek5

1 Department of Mathematics, Université Paris 8, 2 Rue de la Liberté,
93526 Saint-Denis Cedex, France

2 University of Bergen, Bergen, Norway
3 Semantics, Cybersecurity & Services Group, University of Twente, Drienerlolaan 5,

7522, NB Enschede, The Netherlands
l.mariot@utwente.nl

4 Department of Mathematics and Geosciences, University of Trieste,
Via Valerio 12/1, Trieste, Italy

lmanzoni@units.it
5 Digital Security Group, Radboud University, PO Box 9010, Nijmegen,

The Netherlands
stjepan.picek@ru.nl

Abstract. The design of binary error-correcting codes is a challenging
optimization problem with several applications in telecommunications
and storage, which has been addressed with metaheuristic techniques
such as evolutionary algorithms. Still, all these efforts are focused on
optimizing the minimum distance of unrestricted binary codes, i.e., with
no constraints on their linearity, which is a desirable property for efficient
implementations. In this paper, we present an Evolutionary Strategy
(ES) algorithm that explores only the subset of linear codes of a fixed
length and dimension. We represent the candidate solutions as binary
matrices and devise variation operators that preserve their ranks. Our
experiments show that up to length n = 14, our ES always converges
to an optimal solution with a full success rate, and the evolved codes
are all inequivalent to the Best-Known Linear Code (BKLC) given by
MAGMA. On the other hand, for larger lengths, both the success rate
of the ES as well as the diversity of the codes start to drop, with the
extreme case of (16, 8, 5) codes which all turn out to be equivalent to
MAGMA’s BKLC.

Keywords: Error-correcting codes · Boolean functions · Algebraic
normal form · Evolutionary strategies · Variation operators

1 Introduction

A central problem in information theory is the transmission of messages over
noisy channels. To this end, error-correcting codes are usually employed to add
redundancy to a message before sending it over a channel. A common setting is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 114–129, 2023.
https://doi.org/10.1007/978-3-031-30035-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_8

Evolutionary Strategies for the Design of Binary Linear Codes 115

to consider messages over the binary alphabet F2 = {0, 1}, under the hypothesis
of a binary symmetric channel [1]. To be useful in practice, a binary code must
have the following properties: (a) a high minimum Hamming distance, (b) a high
number of codewords, and (c) an efficient decoding algorithm. While (a) and (b)
induce a direct trade-off, property (c) is usually addressed by requiring that the
code is linear, i.e., that it forms a k-dimensional subspace of Fn

2 .
The design of a good binary code is a combinatorial optimization problem

where the objective is to maximize the minimum distance of a set of codewords,
and it is equivalent to finding a maximum clique in a graph [2]. Several optimiza-
tion algorithms have been applied to solve this problem, including evolutionary
algorithms [3–6] and other metaheuristics [5,7–10]. Most of these works target
the construction of unrestricted binary codes, without any linearity requirement.
The only exception is [4], where genetic algorithms are used to evolve the gen-
erator matrices of linear codes, but without preserving their ranks; thus, the
dimension of the evolved codes can vary.

In this paper, we propose for the first time an Evolutionary Strategy (ES) algo-
rithm for the design of binary linear codes with the best possible minimum distance
d for a given combination of length n and dimension k. We adopt a combinatorial
representation that allows the ES to explore only the set of k-dimensional sub-
spaces of Fn

2 . The ES encodes a candidate solution as a k × n binary generator
matrix of full rank k. On account of a recent result proved in [11], the fitness of a
matrix is evaluated as the number of monomials of degree less than d in the Alge-
braic Normal Form (ANF) of the indicator Boolean function of the linear code.
Next, for the variation operators, we consider both a classical ES using only muta-
tion and a variant combining mutation and crossover. Both types of operators are
designed so that the rank of the offspring matrices is preserved.

We evaluate experimentally our approach over five different instances of linear
codes for lengths ranging from n = 12 to n = 16 and dimension set to k = �n

2 �,
seeking to reach the bounds on the minimum distance reported in [12]. We
test four different versions of our ES algorithm, depending on the replacement
strategy (either (μ, λ) or (μ+λ)) and whether the crossover is applied or not. All
variants achieve a full success rate up to length n = 14. Somewhat surprisingly,
for the larger instances n = 15 and n = 16, the simple (μ, λ) without crossover
scores the best performance. Indeed, we observe that the average fitness and
distance of the population in the (μ + λ) variants quickly converge to a highly
fit, low-diversity area of the search space.

Finally, we investigate the diversity of the codes evolved by our ES algo-
rithm up to isomorphism. In particular, we test how many of our codes are
inequivalent to the Best-Known Linear Code (BKLC) constructed through the
MAGMA computer algebra system, and we group them into equivalence classes.
Interestingly, for lengths up to n = 14, all codes turn out to be inequivalent
to MAGMA’s BKLC, and they belong to a high number of equivalence classes.
The situation is, however, reversed for the larger instances: while for n = 15,
there is still a good proportion of inequivalent codes, for n = 16, all codes are
equivalent to MAGMA’s BKLC. Therefore, our ES essentially converges to the
same solution.

116 C. Carlet et al.

2 Background

In this section, we cover all background information related to binary linear codes
and Boolean functions that we will use in the paper. The treatment is far from
exhaustive, and we refer the reader to [1,13] and [14] for a more complete survey
of the main results on error-correcting codes and Boolean functions, respectively.

2.1 Binary Linear Codes

Let F2 = {0, 1} denote the finite field with two elements. For any n ∈ N, the
n-dimensional vector space over F2 is denoted by F

n
2 , where the sum of two

vectors x, y ∈ F
n
2 corresponds to their bitwise XOR, while the multiplication of

x by a scalar a ∈ F2 is defined as the logical AND of a with each coordinate
of x. The Hamming distance dH(x, y) of two vectors x, y ∈ F

n
2 is the number of

coordinates where x and y disagree. Given x ∈ F
n
2 , the Hamming weight of x

is the number of its nonzero coordinates, or equivalently the Hamming distance
dH(x, 0) between x and the null vector 0.

A binary code of length n is any subset C of Fn
2 . The elements of C are also

called codewords, and the size of C is usually denoted by M . The minimum
distance d of C is the minimum Hamming distance between any two codewords
x, y ∈ C. One of the main problems in coding theory is to determine what
is the maximum number of codewords A(n, d) that a code C of length n and
minimum distance d can have. Several theoretical bounds exist on A(n, d). For
example, the Gilbert-Varshamov bound, and the Singleton bound, respectively,
give a lower and an upper bound on A(n, d) as follows:

2n

∑d−1
i=0

(
n
i

) ≤ A(n, d) ≤ 2n−d+1 . (1)

More refined bounds exist, such as the Hamming bound, for which we refer the
reader to [13]. A slightly different but equivalent problem is to fix the length
n and size M of a code and then maximize the resulting minimum distance d
according to an analogous upper bound.

A binary code C ⊆ F
n
2 is called linear if it forms a vector subspace of F

n
2 .

In this case, the size of the code can be compactly described by the dimension
k ≤ n of the subspace. Indeed, the encoding process amounts to multiplying a
k-bit vector m ∈ F

k
2 by a k × n generator matrix GC which spans the code C

(and, therefore, Gc has rank k). The resulting n-bit vector c = mGC ∈ C will be
the codeword corresponding to the message m. Thus, the size of C is M = 2k. A
linear code of length n, dimension k, and minimum distance d is also denoted as
an (n, k, d) code. Some of the bounds mentioned above can be simplified if one
is dealing with a linear code. For example, the Singleton bound for a (n, k, d)
linear code becomes

k ≤ n − d + 1 , (2)

which also gives an upper bound on the minimum distance d as d ≤ n − k + 1.

Evolutionary Strategies for the Design of Binary Linear Codes 117

2.2 Boolean Functions

A Boolean function of n ∈ N variables is a mapping f : Fn
2 → F2, i.e., a function

associating to each n-bit input vector a single output bit. The support of f is
defined as supp(f) = {x ∈ F

n
2 : f(x) �= 0}, i.e., the set of all input vectors that

map to 1 under f . The most common way to represent a Boolean function is
by means of its truth table: assuming that a total order is fixed on F

n
2 (e.g., the

lexicographic order), then the truth table of f is the 2n-bit vector specifying for
each input vector x ∈ F

n
2 the corresponding output value f(x) ∈ F2.

A second representation method for Boolean functions commonly used in
cryptography and coding theory is the Algebraic Normal Form (ANF). Given
f : Fn

2 → F2, the ANF of f is the multivariate polynomial in the quotient ring
F2[x1, . . . , xn]/(x1 ⊕ x2

1, . . . , xn ⊕ x2
n) defined as follows:

Pf (x) =
⊕

I∈2[n]

aI

(
∏

i∈I

xi

)

, (3)

with 2[n] being the power set of [n] = {1, · · · , n}, and I being any element of
2[n]. The coefficients aI ∈ F

n
2 of the ANF can be computed from the truth table

of f via the Möbius transform:

aI =
⊕

x∈F
n
2 :supp(x)⊆I

f(x) , (4)

where supp(x) = {i ∈ [n] : xi �= 0} denotes the support of x, or equivalently the
set of nonzero coordinates of x.

The degree of a coefficient aI corresponds to the size of I (that is, to the
number of variables in the corresponding monomials). Then, the algebraic degree
of f is defined as the largest monomial occurring in the ANF of f , or equivalently
as the cardinality of the largest I ∈ 2[n] such that aI �= 0.

The algebraic normal form of Boolean functions can be used to characterize
the minimum distance of binary linear codes, as shown by C. Carlet [11]:

Proposition 1. Let C ⊆ F
n
2 be a (n, k, d) binary linear code, and define the

indicator of C as the Boolean function 1C : Fn
2 → F2 whose support coincides

with the code, i.e., supp(1C) = C. Then,

d = min{|I| ∈ 2[n] : aI = 0} , (5)

where aI denotes the coefficients of the ANF of 1C .

In other words, one can check if a binary linear code of length n and dimension
k has minimum distance d by verifying that all monomials of degree strictly
less than d appear in the ANF of the indicator function 1C , while the smallest
non-occurring monomial has degree d. This observation will be used in the next
sections to define a fitness function for our optimization problem of interest.

118 C. Carlet et al.

3 Related Works

El Gamal et al. [7] were the first to investigate the design of unrestricted codes by
simulated annealing (SA). Their results showed that SA was capable of finding
many new constant-weight and spherical codes, in some cases improving on the
known bounds for A(n, d). The first application of Genetic Algorithms (GAs) to
evolve error-correcting codes with maximal distance was proposed by Dontas and
De Jong [3]. The authors encoded a candidate solution as a bitstring of length
n · M , representing the concatenation of M codewords of length n, and maxi-
mized two fitness functions based on the pairwise Hamming distance between
codewords. Using the same encoding and fitness, Chen et al. [5] developed a
hybrid algorithm combining GA and SA to design error-correcting codes.

McGuire and Sabin [4] employed a GA to search for linear codes. To enforce
the linearity of the evolved codes, the genotype of the candidate solutions were
k·n bitstrings, which represented the concatenation of the rows of k×n generator
matrices. However, the authors used crossover and mutation operators that do
not preserve the ranks of the resulting matrices. Therefore, the dimension of the
codes evolved by their GA is not fixed, contrary to what is claimed in the paper.

Alba and Chicano [8] designed a so-called Repulsion Algorithm (RA) for the
error-correcting codes problem that takes inspiration from electrostatic phenom-
ena. In particular, the codewords are represented as particles obeying Coulomb
law, and their next position on the Hamming cube is determined by computing
the resultant force vectors. Cotta [9] experimented with several combinations of
Scatter Search (SS) and Memetic Algorithms (MAs) to evolve codes of length
up to n = 20 and M = 40 codewords. The results indicated that both SS and
MAs could outperform other metaheuristics on this problem.

Blum et al. [10] investigated an Iterated Local Search (ILS) technique and
combined it with a constructive heuristic to design error-correcting codes, show-
ing that it achieved state-of-the-art performances. McCarney et al. [6] considered
GAs and Genetic Programming (GP) to evolve binary codes, where the chro-
mosome’s genes represent the entire codeword rather than a single symbol, as
in most other approaches. The results on codes of length n = 12, 13, and 17 and
minimum distance 6 suggested that GP can outperform GA on this problem.

A few works address the construction of combinatorial designs that are anal-
ogous to error-correcting codes through evolutionary algorithms. For example,
Mariot et al. [15] employed GA and GP to evolve binary orthogonal arrays,
which are equivalent to binary codes. Knezevic et al. [16] considered using Esti-
mation of Distribution Algorithms (EDAs) to design disjunct matrices, which
can be seen as superimposed codes. More recently, Mariot et al. [17] proposed an
evolutionary algorithm for the incremental construction of a permutation code,
where the codewords are permutations instead of binary vectors.

Although in this paper we use Boolean functions to compute the fitness, we
note that their construction via metaheuristics is also a solid research thread,
especially concerning the optimization of their cryptographic properties. We refer
the reader to [18] for a survey of the main results in this area.

Evolutionary Strategies for the Design of Binary Linear Codes 119

4 Evolutionary Strategy Algorithm

In this section, we describe the main components of our Evolutionary Strategy
(ES) algorithm used to evolve binary linear codes. As a reference for later, we
formally state the optimization problem that we are interested in as follows:

Problem 1. Let n, k ∈ N with k ≤ n. Find a (n, k, d) binary linear code C ⊆ F
n
2

reaching the highest possible minimum distance d.

Remark that the upper and lower bounds on the highest minimum distance
mentioned in Sect. 2.1 are not tight in general. However, for binary codes of
length up to n = 256, one can use the tables provided by Grassl [12] to determine
the best-known values. In particular, for the combinations of n and k that we
will consider in our experiments in Sect. 5, the lower and upper bounds on d
coincide. So, Problem 1 is well-defined for all instances considered in our tests.

4.1 Solutions Encoding and Search Space

As we discussed in Sect. 3, most of the works addressing the design of error-
correcting codes via metaheuristic algorithms usually target generic codes with-
out any constraint on their linearity. The only exception seems to be the paper
by McGuire and Sabin [4] where a GA evolves a generator matrix, but there is
no control on the dimension k of the corresponding code. As a matter of fact,
if one applies unrestricted variation operators on a matrix of rank k (such as
one-point crossover or bit-flip mutation), then the vectors in the resulting matrix
might not be linearly independent, and thus the associated code could have a
lower dimension. This might, in turn, pose issues because the optimal value of
the fitness function (which is related to the best-known minimum distance for a
given combination of n and k) can change during the evolution process.

In our approach, we consider the genotype of a candidate solution S as a
k × n binary matrix G of full rank k. Accordingly, the phenotype corresponding
to G is the code C which is the image of the linear map defined by G. Formally,
we can define the phenotype code as:

C = {c ∈ F
n
2 : c = x · G, x ∈ F

k
2} . (6)

Therefore, the search space Sn,k for a given combination of code length n and
dimension k is the set of all k × n binary matrices of rank k, or equivalently the
set of all k-dimensional subspaces of Fn

2 , also called the Grassmannian Gr(Fn
2 , k)

of F
n
2 . It is known that the size of this space equals the Gaussian binomial

coefficient
(
n
k

)
2
, defined as [19]:

(
n

k

)

2

=
(2n − 1)(2n−1 − 1) · · · (2n−k+1 − 1)
(2k − 1)(2k−1 − 1) · · · (2k−(k−2) − 1)

. (7)

It is clear from the expression above that the size of the Grassmannian grows
very quickly, and thus exhaustive search in this space becomes unfeasible already

120 C. Carlet et al.

for small values of n and k. For example, setting n = 12 and k = 6, the corre-
sponding Grassmannian is composed of about 2.3 · 1011 (230 billion) subspaces.
This observation provides a basic argument motivating the use of heuristic opti-
mization algorithms to solve Problem 1.

In what follows, we will endow the Grassmannian Gr(Fn
2 , k) with a distance,

turning it into a metric space. This will be useful to study the diversity of the
population evolved by the ES. In particular, let A,B ⊆ F

n
2 be two k-dimensional

subspaces of Fn
2 . Then, the distance between A and B equals:

d(A,B) = dim(A) + dim(B) − 2dim(A ∩ B) = 2(k − dim(A ∩ B)) . (8)

This distance was introduced by Kötter and Kschischang in [20] to study error-
correction in the setting of random network linear coding, where the transmitted
codewords are not vectors of symbols, but rather vector subspaces themselves.
Hence, the problem becomes to find a set of subspaces in the projective space
of F

n
2 (that is, the set of all subspaces of F

n
2), which are far apart from each

other under the distance defined in Eq. (8). In particular, this distance is the
length of a geodesic path joining the two subspaces A and B when seen as
points on the poset (partially ordered set) of the projective space of Fn

2 , where
the elements are ordered with respect to subset inclusion. In our case, the search
space Sn,k = Gr(Fn

2 , k) corresponds to the antichain of this poset that includes
all k-dimensional subspaces of Fn

2 .

4.2 Fitness Function

Many of the works surveyed in Sect. 3 optimize binary codes by maximizing a fit-
ness function that directly measures the pairwise Hamming distance between the
codewords. In this work, on the other hand, we define a new fitness function that is
based on the characterization of the minimum distance in terms of the ANF of the
indicator function proved in [11]. In particular, we use the fitness function to count
the number of coefficients of degree strictly less than d that occur in the ANF of the
indicator, with the objective of maximizing it. Formally, given a code C of length
n and dimension k, and denoting by aI the monomial in the ANF of the indicator
function 1C for I ∈ 2[n], the fitness of C is defined as:

fit(C) = {I ∈ 2[n] : |I| < d, aI �= 0}| . (9)

By Proposition 1, C is a (n, k, d) linear code if and only if all coefficients of degree
less than d are in the ANF of its indicator, and the optimal value for fit is:

fit∗n,d =
d−1∑

i=0

(
n

i

)

. (10)

To summarize, the fitness value of a solution G ∈ Sn,k is computed as follows:

1. Generate the linear code C as the subspace spanned by the matrix G.
2. Write the truth table of the indicator function 1C : F

n
2 → F2 by setting

f(x) = 1 if x ∈ C, and zero otherwise.

Evolutionary Strategies for the Design of Binary Linear Codes 121

3. Compute the ANF of 1C using the Fast Möbius Transform algorithm.
4. Compute fit(C) using Eq. (9).

Although the Fast Möbius Transform yields a significant improvement in the
time complexity required to compute the ANF over the naive procedure, it is
still computationally cumbersome to compute it for Boolean functions with a
relatively high number of variables. For this reason, in our experiments, we limit
ourselves to linear codes of length up to n = 16.

4.3 Rank-Preserving Mutation and Crossover

We now describe the variation operators that we employed to generate new can-
didate solutions from a population of k-dimensional subspaces of Fn

2 , represented
by their generator matrices.

For mutation, we adopt the same operator proposed in [21]: there, the authors
were interested in evolving an invertible binary matrix that was used to define an
affine transformation for a bent Boolean function. The operator can be straight-
forwardly adapted to our problem, even though we are not dealing with invertible
matrices. Indeed, the basic principle of [21] is to preserve the invertibility of a
square n × n binary matrix by keeping its rank equal to n. In our case, we use
the same idea to maintain the rank of a rectangular matrix. Specifically, given
a k × n binary matrix G of full rank k and a row i ∈ [k], the mutation operator
samples a random number r ∈ (0, 1) and checks whether it is smaller than the
mutation probability pmut. If this is the case, G is mutated as follows:

1. Remove the i-th row of G, obtaining a (k − 1) × n matrix G′ of rank k − 1.
2. Generate the subspace spanned by G′, denoted as span(G′), and compute the

complement C = F
n
2 \ span(G′).

3. Pick a random vector v ∈ C and insert it in G′ as a row in position i, obtaining
the mutated k × n matrix H.

By construction, the random vector v sampled in step 3 is linearly independent
with all vectors in the span of G′. Therefore, the mutated matrix H has the same
rank k as the original matrix G. The process is then repeated for all rows i ∈ [k].
One can notice that the two matrices G and H are at distance 2 under the metric
of Eq. (8), which is the minimum possible for distinct points in the Grassmannian
Gr(Fn

2 , k) [20]. Therefore, this operator effectively perturbs a candidate solution
by transforming it into one of its closest neighbors.

Given two k × n parent matrices G1, G2 of rank k, our crossover operator
generates an offspring matrix H in the following way:

1. Concatenate the rows of G1 and G2, thus obtaining a 2k × n matrix J .
2. Perform a random shuffle of the rows in J .
3. Generate H by selecting a subset of k linearly independent vectors from J .

Step 3 is performed incrementally: the offspring matrix H is filled by adding the
rows of J from top to bottom, checking if the current row is linearly independent

122 C. Carlet et al.

with all previously added ones. If it is not, then the row is discarded, and the
next one is attempted. Notice that it is always possible to find a set of k linearly
independent vectors in J to construct H since both G1 and G2 have rank k.
Thus, the worst case arises when all rows of one of the parents are in the span
of the other (i.e., G1 and G2 generate the same subspace). In this situation, the
offspring will also end up spanning the same subspace, although the generator
matrix might look different from the parents. From a linear algebraic point of
view, this eventuality corresponds to a change of basis on the same subspace.
By the above argument, it follows that also the crossover operator preserves the
rank k of the parents in the offspring.

5 Experiments

5.1 Experimental Setting

Evolutionary strategies are specified by two main parameters, the population size
λ and the reproduction pool size μ [22]. At each generation, the μ best parents in
the population are selected for reproduction (truncation selection). Then, in the
(μ, λ)-ES variant each selected individual generates μ/λ offspring individuals,
and their fitness is evaluated. In this case, the new offspring entirely replaces
the old population, and the process is then iterated. The (μ + λ)-ES variant
differs from the fact that the μ parents from the old population are brought into
the new population. To keep the population size fixed to λ in the (μ + λ)-ES
variant in our experiments, we generate (λ/μ) − 1 offspring individuals for each
selected parent. In classical ES, the parents usually create the offspring only by
applying a mutation operator. We also considered a variant of ES augmented
with crossover, which works as follows: each parent generates an offspring matrix
by first performing crossover with a random mate selected from the reproduction
pool of the μ best individuals. Then, mutation is applied as usual. Therefore, in
our experiments we considered four variants of ES, depending on the replacement
mechanism ((μ, λ) or (μ + λ)), and whether crossover (χ) is applied or not.

Concerning the combinations of length n, dimension k, and minimum dis-
tance d of the codes, we experimented over five problem instances: (12, 6, 4),
(13, 6, 4), (14, 7, 4), (15, 7, 5), and (16, 8, 5). In particular, we always set k = �n/2�
since this gives the largest search space possible for a given n. Starting from
n = 12 yields the smallest instance that is not amenable to exhaustive search.
The corresponding minimum distance d (that represents the optimization objec-
tive) has been taken from the tables reported in [12]. In all these cases, the lower
and upper bounds on d coincide, so these are the best minimum distances one
can get for these combinations of n and k. For the ES parameters, we set the
population size λ equal to the length n, and μ = �n/3�. The mutation proba-
bility was set to pmut = 1/n. These are the same parameters settings adopted
for the ES in [21] to evolve invertible binary matrices, and after a preliminary
tuning phase we noticed that they also worked well on Problem 1. The fitness
budget was set to 20 000 generations of the ES algorithm, since we remarked
that the best fitness seldom improved after this threshold. Finally, we repeated
each experiment over 100 independent runs to get statistically sound results.

Evolutionary Strategies for the Design of Binary Linear Codes 123

Table 1. Summary of the parameter settings, search space size, and best fitness value
for each problem instance.

(n, k, d) #Sn,k fit∗
n,d λ μ pmut

(12, 6, 4) 2.31 · 1011 299 12 4 0.083

(13, 6, 4) 1.49 · 1013 378 13 4 0.077

(14, 7, 4) 1.92 · 1015 470 14 4 0.071

(15, 7, 5) 2.47 · 1017 1941 15 5 0.067

(16, 8, 5) 6.34 · 1019 2517 16 5 0.063

Table 1 summarizes our experimental design with all relevant parameters,
along with the size of the corresponding search space Sn,k and the best fitness
value for each considered problem instance.

5.2 Results

Table 2 reports the success rates of the four ES variants over 100 independent
runs for the five considered problem instances, that is, how many times they con-
verged to an optimal linear code. We denote a crossover-augmented ES variant
by appending +χ to it.

Table 2. Success rates (over 100 runs) of the four considered ES variants.

(n, k, d) (μ, λ)-ES (μ, λ)+χ-ES (μ + λ)-ES (μ + λ)+χ-ES

(12, 6, 4) 100 100 100 100

(13, 6, 4) 100 100 100 100

(14, 7, 4) 100 100 100 100

(15, 7, 5) 100 100 77 81

(16, 8, 5) 92 76 18 17

The first interesting remark is that all ES variants always converge to an opti-
mal solution up to length n = 14, seemingly indicating that Problem 1 is rather
easy on these problem instances, independently of the replacement mechanism
and the use of crossover. For (15, 7, 5), the (μ, λ) variants still converge in all
runs, while the (μ+λ)-ES achieve a lower success rate, although still quite high.
The biggest difference can be seen on the largest problem instance (16, 8, 5). In
this case, the only variant reaching a very high success rate of 92% is the (μ, λ)-
ES. Somewhat surprisingly, adding crossover to this variant actually worsens the
performance. On the other hand, the (μ+λ)-ES variants reach a very low success
rate on this instance, independently of crossover. Therefore, in general the main
factor influencing the performance is the replacement mechanism, rather than
crossover. Apparently, letting the parents directly compete with their children
as in the (μ+λ) variant is detrimental for this particular optimization problem.

To investigate more in detail the effects of the replacement mechanism and
the crossover operator, we plotted the distributions of the number of fitness
evaluations in Fig. 1.

In general, one can see that the number of fitness evaluations necessary to con-
verge to an optimal solution is not directly correlated with the length of the code,

124 C. Carlet et al.

Fig. 1. Fitness evaluation distributions for the four considered ES variants.

and consequently with the size of the search space. As a matter of fact, the median
number of evaluations of (12, 6, 4) is always higher than that required for (13, 6, 4)
and (14, 7, 4). Indeed, the most evident correlation is with the minimum distance,
since for the two largest instances with d = 5 the number of fitness evaluations is
significantly higher. This is reasonable, since as reported in Table 1, the optimal
fitness values for d = 5 are consistently greater than for d = 4.

As expected, for the larger instances (15, 7, 5) and (16, 8, 5), a clear difference
emerges between the two replacement mechanisms, as already indicated by the
success rates. The (μ, λ) variants converge to an optimal solution more quickly
than the (μ+λ) ones. On the other hand, up to (14, 7, 4) it is not possible to dis-
tinguish the performances of the four evolutionary strategies by just looking at
the respective boxplots. For this reason, we used the Mann-Whitney-Wilcoxon
statistical test to compare two ES variants, with the alternative hypothesis that
the corresponding distributions are not equal, and setting the significance value
to α = 0.05. The obtained p-values show that the (μ, λ)-ES variants give an
advantage over the (μ+λ)-ES without crossover for (12, 6, 4), while for (13, 6, 4),
only (μ, λ)+χ-ES is significantly better than (μ+λ)-ES (p = 0.007). For (14, 7, 4),
there is no significant difference between any two combinations of ES. Another
interesting insight from the statistical test concerns the effect of the crossover
operator. While for the instances up to (14, 7, 4) there is no significant differ-
ence whether the ES is augmented with crossover or not (with the exception
of (13, 6, 4) where (μ + λ) + χ is better than its counterpart without crossover,
p = 0.031), the situation is different with (15, 7, 5) and (16, 8, 5) for the (μ, λ)
variants. In these cases, using crossover actually worsens the convergence speed
of the ES algorithm. This is somewhat surprising, as one would expect that
crossover allows to exploit the local search space more efficiently. Overall, our
results show that the simplest (μ, λ)-ES variants without crossover is the best
performing one over this optimization problem.

Evolutionary Strategies for the Design of Binary Linear Codes 125

Fig. 2. Average population fitness for (16, 8, 5).

5.3 Solutions Diversity

To analyze more deeply the influence of the replacement mechanism and the
crossover operator on the performances of the ES algorithm, we ran again the
experiments for 30 independent repetitions on the (16, 8, 5) instance, where the
effects are more evident. We set the stopping criterion to 20 000 generations,
independently of the fact that an optimal solution might be found before. In
each run, we recorded every 40 generations the average fitness of the popula-
tion and the average pairwise distance between individuals, using Eq. (8). The
corresponding lineplots are displayed in Figs. 2 and 3, respectively.

Fig. 3. Average pairwise distance distributions for (16, 8, 5).

126 C. Carlet et al.

It is possible to observe that the behavior of the population stabilizes almost
immediately for all four ES variants. In particular, after the random initializa-
tion of the population where the fitness is relatively low and the solutions are
substantially different from each other, the situation is immediately reversed
in a few generations. Random perturbations continue to happen over the two
measured quantities (likely due to the effect of mutation, which is used in all
variants), but no huge deviation occur throughout the rest of the optimization
process. In general, the population of the ES quickly converge to a highly fit area
of the search space and with low diversity. This phenomenon is, however, more
evident for the two (μ+λ) variants, which achieve the highest average fitness in
the population and the lowest pairwise distance among individuals. The (μ, λ)
variant combined with crossover is instead characterized by a slightly larger dis-
tance and lower fitness in the population, but is still very close to the (μ + λ)
variants. On the other hand, the simple (μ, λ)-ES is the combination reaching
both the highest distance and the lowest average fitness, which is consistent with
our earlier observation that this variant is the best performing one. In particular,
having a higher diversity might hamper the average fitness in the population,
but at the same time can help the population to escape local optima. The low
diversity observed in the (μ + λ) variants indicates that the convex hull defined
by the population under the distance of Eq. (8) shrinks very quickly, and does
not grow anymore throughout the evolutionary process. Thus, if this convex hull
represents a highly fit area of the search space, which however does not contain a
global optimum, chances are that the population will remain stuck in that area.
Likely, this effect is further strengthened by the use of crossover.

As a final analysis, we investigated the diversity of the optimal codes pro-
duced by the four ES variants in terms of code isomorphism. Two codes
C,D ⊆ F

n
2 are called isomorphic if there exists a sequence of permutations on

the coordinates of the codewords and on the symbols set that transforms C into
D [13]. We used the computer algebra system MAGMA since it has two built-
in functions useful for our purpose: the function IsIsomorphic takes as input
the generator matrices of two (n, k, d) linear codes and checks whether they
are equivalent up to isomorphism or not. The function BKLC, instead, returns
the generator matrix of the best known linear code for a specific combination
of length n and dimension k. In particular, all such codes reach the bound on
the minimum distance reported in Grassl’s table [12], which we used as a ref-
erence to select the problem instances for our experiments. Therefore, we first
used these two functions to check whether the codes produced by our ES vari-
ants are isomorphic to the best known linear codes. Further, we compared the
codes obtained by the ES algorithm among themselves, to check how many iso-
morphism classes they belong to. Table 3 summarizes this analysis by reporting
the number of codes that are not isomorphic to the BKLC and the number of
isomorphism classes, for each combination of problem instance (n, k, d) and ES
variant.

The first remarkable finding that can be drawn from the table is that all four
ES variants always discover codes that are inequivalent to the BKLC for the

Evolutionary Strategies for the Design of Binary Linear Codes 127

Table 3. Number of non-isomorphic codes to the BKLC (#non-iso) and equivalence
classes (#eq) found by the four considered ES variants.

(n, k, d) (μ, λ)-ES (μ, λ)+χ-ES (μ + λ)-ES (μ + λ)+χ-ES

#non-iso #eq #non-iso #eq #non-iso #eq #non-iso #eq

(12, 6, 4) 100 23 100 22 100 22 100 22

(13, 6, 4) 100 85 100 81 100 78 100 79

(14, 7, 4) 100 89 100 94 100 95 100 93

(15, 7, 5) 72 5 63 6 51 5 44 5

(16, 8, 5) 0 1 0 1 0 1 0 1

smaller instances with minimum distance d = 4. Moreover, such codes belong
to a high number of equivalence classes, so they are also quite diverse among
themselves. From this point of view, there is also no particular difference between
different ES variants. For (15, 7, 5) one can remark a lower diversity since more
codes turn out to be equivalent to the BKLC. Moreover, there is a noticeable
difference between the (μ, λ) and the (μ + λ) variants, with the former scoring
a higher number of codes inequivalent to the BKLC than the latter. Further,
in general, the number of isomorphism classes drops substantially, with only 5
or 6 classes grouping all evolved codes. This phenomenon is even more extreme
for the (16, 8, 5) instance: in this case, all discovered codes are equivalent to the
BKLC provided by MAGMA, and thus they all belong to the same equivalence
class. This fact is independent of the underlying ES variant.

6 Conclusions and Future Work

To conclude, we summarize our experimental findings and discuss their relevance
concerning the design of binary linear codes using evolutionary algorithms:

– The proposed ES algorithm easily converges to an optimal solution for the
smaller problem instances of (12, 6, 4), (13, 6, 4), and (14, 7, 4), with no sig-
nificant differences among the four tested variants. On the other hand, there
is a huge increase in the difficulty of the problem for the larger instances
of (15, 7, 5) and (16, 8, 5), although the simple (μ, λ)-ES variant is able to
maintain a very high success rate.

– Contrary to our initial expectation, the crossover operator that we augmented
our ES with either does not make any difference on the performances of
the algorithm, or it even deteriorates them over the harder instances. We
speculate that this is due to the small variability offered by the crossover,
since it is based on the direct selection of the vectors from the parents, rather
than on the vectors spanned by their generator matrices.

– The optimal codes obtained by the ES are quite interesting from a theoretical
point of view, as most of them for small instances are not equivalent to the
best-known linear code produced by MAGMA, and moreover they belong to a
high number of isomorphism classes. The fact that all codes instead turn out
to be equivalent to the BKLC for (16, 8, 5) is curious, and we hypothesize that

128 C. Carlet et al.

this is related to the specific structure of the search space for this instance,
where the global optima might be very sparse.

Overall, our results suggest that ES represent an interesting tool to discover
potentially new linear codes, and prompt us to multiple ideas for future research.
One obvious direction is to apply the ES algorithm over larger instances. How-
ever, the computation of the fitness function could become a significant bottle-
neck in this case. Indeed, our Java implementation of the ES algorithm takes
around 20 min to perform 20 000 generations on a Linux machine with an AMD
Ryzen 7 processor, running at 3.6 GHz. Therefore, it makes sense to explore
also with other fitness functions, maybe without relying on the characterization
through the ANF of the indicator function. A second interesting direction for
future research concerns the study of the variation operators proposed in this
paper, especially with respect to their topological properties. In particular, we
believe that both operators can be proved to be geometric in the sense intro-
duced by Moraglio and Poli [23]. This might in turn give us some insights related
to the structure of the Grassmannian metric space under the distance defined in
Eq. (8), and thus help us in designing better crossover operators for this problem.
One idea, for instance, could be to follow an approach similar to those adopted
for fixed-weight binary strings in [24].

References

1. McEliece, R.J.: The Theory of Information and Coding. Number 86. Cambridge
University Press (2004)

2. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher,
J.W., eds.: Proceedings of a symposium on the Complexity of Computer Compu-
tations, held March 20–22, 1972, pp. 85–103. The IBM Research Symposia Series,
Plenum Press, New York (1972)

3. Dontas, K., Jong, K.A.D.: Discovery of maximal distance codes using genetic algo-
rithms. In: Proceedings of IEEE TAI 1990, pp. 805–811. IEEE Computer Society
(1990)

4. McGuire, K.M., Sabin, R.E.: Using a genetic algorithm to find good linear error-
correcting codes. In George, K.M., Lamont, G.B., eds. Proceedings of the 1998
ACM symposium on Applied Computing, SAC 1998, Atlanta, GA, USA, February
27 - March 1, 1998, pp. 332–337. ACM (1998)

5. Chen, H., Flann, N.S., Watson, D.W.: Parallel genetic simulated annealing: a mas-
sively parallel SIMD algorithm. IEEE Trans. Parallel Distrib. Syst. 9(2), 126–136
(1998)

6. McCarney, D.E., Houghten, S.K., Ross, B.J.: Evolutionary approaches to the gener-
ation of optimal error correcting codes. In Soule, T., Moore, J.H., eds. Proceedings
of GECCO 2012, pp. 1135–1142. ACM (2012)

7. Gamal, A.A.E., Hemachandra, L.A., Shperling, I., Wei, V.K.: Using simulated
annealing to design good codes. IEEE Trans. Inf. Theory 33(1), 116–123 (1987)

8. Alba, E., Chicano, J.F.: Solving the error correcting code problem with parallel
hybrid heuristics. In: Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M.,
(eds.) Proceedings of SAC 2004), pp. 985–989. ACM (2004)

Evolutionary Strategies for the Design of Binary Linear Codes 129

9. Cotta, C.: Scatter search and memetic approaches to the error correcting code
problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp.
51–61. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24652-7 6

10. Blum, C., Blesa, M.J., Roli, A.: Combining ILS with an effective constructive
heuristic for the application to error correcting code design. In: Metaheuristics
International Conference (MIC-2005), Vienna, Austria, pp. 114–119 (2005)

11. Carlet, C.: Expressing the minimum distance, weight distribution and covering
radius of codes by means of the algebraic and numerical normal forms of their
indicators. In: Advances in Mathematics of Communications (2022)

12. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes
(2007). http://www.codetables.de. Accessed 13 Nov 2022

13. Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge
University Press (2010)

14. Carlet, C.: Boolean functions for cryptography and coding theory (2021)
15. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary

orthogonal arrays. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 121–133.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2 10

16. Knezevic, K., Picek, S., Mariot, L., Jakobovic, D., Leporati, A.: The design of
(Almost) disjunct matrices by evolutionary algorithms. In: Fagan, D., Mart́ın-Vide,
C., O’Neill, M., Vega-Rodŕıguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp.
152–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04070-3 12

17. Mariot, L., Picek, S., Jakobovic, D., Djurasevic, M., Leporati, A.: On the difficulty
of evolving permutation codes. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba,
K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 141–156. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-02462-7 10

18. Mariot, L., Jakobovic, D., Bäck, T., Hernandez-Castro, J.: Artificial intelligence
for the design of symmetric cryptographic primitives. In: Security and Artificial
Intelligence, pp. 3–24 (2022)

19. Mullen, G.L., Panario, D. (eds.): Handbook of Finite Fields, Discrete Mathematics
and its Applications. CRC Press (2013)

20. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network
coding. In: IEEE International Symposium on Information Theory, ISIT 2007,
Nice, France, June 24–29, 2007, pp. 791–795. IEEE (2007)

21. Mariot, L., Saletta, M., Leporati, A., Manzoni, L.: Heuristic search of (semi-)bent
functions based on cellular automata. Nat. Comput. 21(3), 377–391 (2022)

22. Luke, S.: Essentials of Metaheuristics. 2nd edn. Lulu (2015)
23. Moraglio, A., Poli, R.: Topological crossover for the permutation representation.

In: Rothlauf, F., ed. Genetic and Evolutionary Computation Conference, GECCO
2005, Workshop Proceedings, Washington DC, USA, June 25–26, 2005, pp. 332–
338. ACM (2005) ACM (2005)

24. Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algo-
rithms. Swarm Evol. Comput. 54, 100646 (2020)

https://doi.org/10.1007/978-3-540-24652-7_6
http://www.codetables.de
https://doi.org/10.1007/978-3-319-99253-2_10
https://doi.org/10.1007/978-3-030-04070-3_12
https://doi.org/10.1007/978-3-031-02462-7_10

A Policy-Based Learning Beam Search
for Combinatorial Optimization

Rupert Ettrich, Marc Huber(B), and Günther R. Raidl

Algorithms and Complexity Group, Institute of Logic and Computation, Wien, TU,
Austria

{mhuber,raidl}@ac.tuwien.ac.at

Abstract. Beam search (BS) is a popular incomplete breadth-first
search widely used to find near-optimal solutions to hard combinato-
rial optimization problems in limited time. Its central component is an
evaluation function that estimates the quality of nodes encountered on
each level of the search tree. While this function is usually manually
crafted for a problem at hand, we propose a Policy-Based Learning Beam
Search (P-LBS) that learns a policy to select the most promising nodes
at each level offline on representative random problem instances in a
reinforcement learning manner. In contrast to an earlier learning beam
search, the policy function is realized by a neural network (NN) that is
applied to all the expanded nodes at a current level together and does
not rely on the prediction of actual node values. Different loss functions
suggested for beam-aware training in an earlier work, but there only
theoretically analyzed, are considered and evaluated in practice on the
well-studied Longest Common Subsequence (LCS) problem. To keep P-
LBS scalable to larger problem instances, a bootstrapping approach is
further proposed for training. Results on established sets of LCS bench-
mark instances show that P-LBS with loss functions “upper bound” and
“cost-sensitive margin beam” is able to learn suitable policies for BS such
that results highly competitive to the state-of-the-art can be obtained.

Keywords: Beam Search · Machine Learning · Reinforcement
Learning · Longest Common Subsequence Problem

1 Introduction

Beam search (BS) is a prominent incomplete, i.e., heuristic, graph search algo-
rithm widely used to tackle hard planning and discrete optimization problems
in limited time. Starting from a root node r, BS traverses a state graph in a
breadth-first search manner but restricts the search by selecting at each level
only up to β most promising nodes to pursue further and discards the others.
The subset of selected nodes at the current level is referred to as the beam, and

This project is partially funded by the Doctoral Program “Vienna Graduate School
on Computational Optimization”, Austrian Science Foundation (FWF), grant W1260-
N35.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 130–145, 2023.
https://doi.org/10.1007/978-3-031-30035-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_9

Policy-Based Learning Beam Search 131

parameter β as beam width. To select the β most promising nodes at each level,
every node v from this level is typically evaluated by an evaluation function
f(v) = g(v) + h(v), where g(v) represents the cost of the path from the root
node r to the current node v and h(v), called heuristic function, is an estimate
for the cost of a best path from the current node v to a goal node. The β nodes
with the best values according to this evaluation then form the beam.

Clearly, the quality of the solution BS obtains depends in general fundamen-
tally on the evaluation function f . This function is usually developed manually
for a specific problem, and its effectiveness relies on a good understanding and
careful exploitation of the problem structure and possibly properties of expected
instances. In practice, it is sometimes difficult to come up with an effective eval-
uation function that strikes the right balance between good BS guidance and
reasonable computational effort.

The main contribution of this work is the investigation of a Policy-Based
Learning Beam Search (P-LBS) that learns a policy for BS to select the β most
promising nodes at each level of a BS, replacing the traditional approach of
evaluating each node independently with the hand-crafted evaluation function
f and afterwards selecting the nodes remaining on the beam based on their f -
values. It builds upon our earlier Learning Beam Search (LBS) [11] framework,
in which a machine learning model is used as heuristic function h as part of
f and trained offline in a reinforcement learning manner on a large number of
representative randomly generated problem instances to approximate specifically
the expected cost-to-go from a node to a goal node. By learning a policy that
is applied to all the nodes at a current level together in order to do the node
selection and not insisting on approximating the actual cost-to-go, we allow now
for greater flexibility and alternative modeling and training approaches.

In earlier work, Negrinho et al. [16] already described the learning of beam
search policies for structured prediction problems by imitation learning and ana-
lyzed different variants from a purely theoretical perspective. In their approach,
an abstract scoring function replaces the classical evaluation function f , which is
not expected to approximate real solution costs anymore but shall just express
how promising a node is in relation to the others at the current level. These
scores thus induce a policy over the nodes, nodes are ranked accordingly, and the
best-ranked nodes are accepted for the beam—just as in classical BS. Imitation
learning is done on representative problem instances for which exact solutions,
i.e., optimal paths, are assumed to be known. While Negrinho et al. [16] sug-
gested and studied different loss functions for training with respect to theoretical
convergence, no practical experiments were done.

Building on LBS, P-LBS again relies on reinforcement learning and does not
need problem instances with known optimal solutions for training. We iteratively
apply a BS with an initially randomly initialized neural network (NN) model as
scoring function on many randomly generated representative problem instances.
In each BS iteration, a subset of the BS tree levels is selected for generating training
data. A training sample consists of all nodes encountered on a selected BS level.
Twodifferent approaches, beam-unaware and beam-aware, are investigated to label

132 R. Ettrich et al.

training data. In beam-unaware training, the node in a training sample that lies
on the path from the root node to the finally best solution node obtained by BS is
labeled with one and all other nodes with zero. In beam-aware training, we perform
a nested beam search (NBS) on each subinstance induced by each node of a train-
ing sample in order to approximate values for the true cost-to-go. Based on these
values, we rank the nodes of a sample accordingly, and consider this ranking as the
training target. Following Negrinho et al. [16], we consider different surrogate loss
functions for the actual training.

To achieve reasonable scalability to larger problem instances, we stop the
NBS executions when they reach a maximum level d ∈ N in their search trees,
and evaluate the returned nodes by the so far trained NN to obtain suitable
training targets for the new training data. This approach resembles a form of
bootstrapping as known in reinforcement learning [22]. Produced training sam-
ples are stored in a FIFO replay buffer and used to continuously train the NN,
intertwined with the P-LBS’s further training data production.

While the general principle of P-LBS is quite generic, we test its effectiveness
on the well-known NP-hard Longest Common Subsequence (LCS) problem [6].
Experiments show that policies trained by P-LBS are able to guide BS on estab-
lished LCS benchmark instances well such that results being competitive to the
state-of-the-art can be obtained.

Section 2 reviews related work. In Sect. 3 we present the general P-LBS frame-
work, different loss functions, and the bootstrapping approach for speeding up
the training data generation. The general NN architecture used as scoring func-
tion in P-LBS is described in Sect. 4. Section 5 introduces the LCS problem, its
specific state graph, and the features used for the NN. Results of computational
experiments are discussed in Sect. 6. Finally, we conclude in Sect. 7, where we
also outline promising future work.

2 Related Work

In recent years there has been a growing interest at leveraging machine learn-
ing (ML) techniques to better solve discrete optimization problems. Under the
umbrella term learning to search much work has been done in different direc-
tions for improving classical tree search [3]. We focus here particularly on beam
search, which is a conceptually simple and classical incomplete search strategy for
obtaining a heuristic solution in controlled time. It was originally introduced in
the context of speech recognition [14], but since then has been widely applied to
many combinatorial problems including scheduling, packing, and various string
problems from bioinformatics such as the LCS problem, for which it frequently
yields state-of-the-art results [6].

In the context of prediction tasks and sequence to sequence learning, BS
is frequently used to derive better or feasible solutions than just by applying
a simple greedy solution construction, see, e.g., [8,21]. These approaches rely
on ML models that are trained independently of the BS beforehand on the
basis of given labeled data, imitation learning, or occasionally reinforcement

Policy-Based Learning Beam Search 133

learning. The BS is then applied as a decoder in the actual application (test
time). Typically, such approaches suffer from ignoring the existence of the beam
during training.

In contrast, beam-aware learning algorithms use BS at both, training and
application/test time. A first approach by Collins and Roark [4] is perceptron-
based and updates the parameters when the best node does not score first in the
beam. On the other hand, Daumé et al. [5] described an approach that updates
the parameters only when the best node falls out of the beam.

While further work on beam-aware algorithms exists in the context of pre-
diction tasks and sequence to sequence learning, see, e.g., [23], most approaches
do not expose the learned model to its own consecutive mistakes at train time:
when a transition leads to a beam where the assumed best node is excluded,
the algorithms either stop or reset to a beam with the best node included. To
our knowledge, only Negrinho et al. [16] described an approach to learn beam
search policies that addresses this issue. They formulate the task as learning a
policy to traverse the combinatorial search space of beams. A scoring function
is learned to match the ranking induced by given oracle costs from an assumed
expert strategy. The authors proposed and analyzed several loss functions and
data collection strategies that consider the beam also at train time and proved
novel no-regret guarantees for learning BS policies.

In the context of classical combinatorial optimization, we are only aware of
our LBS [11] sketched already in the introduction as a method where a guidance
function is learned and used within a BS. This approach also exposes its learned
model to its own mistakes by using the model in the BS for further training data
generation and performing training in an interleaved way. However, it cannot be
considered an actual beam-aware approach, as the model is specifically trained to
approximate the cost to go, and the respective labels are obtained by independent
NBS calls. In [12], we refined the original LBS specifically for the LCS problem
by making the model independent of the number of strings and relying on a
relative value function in which a cut-off is applied to the values of nodes at the
same level.

LBS as well as the new P-LBS are both based on principles inspired by Alp-
haZero [20], although AlphaZero relies on Monte Carlo Tree Search (MCTS) and
not BS. AlphaZero has proven to be very successful in the board games Go, chess,
and shogi, with its predecessor AlphaGo being the first computer program that
was able to beat a human Go champion. In the MCTS a neural network is used
to evaluate game states and to provide a policy over possible moves. Training
data is continuously produced by self-play in a reinforcement learning manner
and stored in a replay buffer for training. AlphaZero has also been adapted to
solve various combinatorial optimization problems like 3D packing problems [13],
minimum vertex cover and maximum cut [1], or graph coloring [10].

134 R. Ettrich et al.

3 Policy-Based Learning Beam Search

Solving a combinatorial optimization problem can be formulated as search in
a state graph G = (V,A) with nodes V and arcs A. Each node v ∈ V repre-
sents a problem-specific state, e.g., a partial assignment of values to the decision
variables. Nodes u, v ∈ V are connected by an arc (u, v) ∈ A if there is a valid
problem-specific action that can be performed to transform state u into state
v, for example, the assignment of a specific value to a so far unassigned deci-
sion variable of state u. Let label τ(u, v) denote this action transforming state
u into state v. We assume each arc (u, v) ∈ A has associated cost ca(u, v) that
are induced by the action w.r.t. the objective function of the problem. State
graph G has a dedicated root node r ∈ V representing the initial state, in which
typically all decision variables are unassigned. Moreover, there are one or more
goal nodes T ⊂ V , which have no outgoing arcs and represent valid final states,
e.g., in which all decision variables have feasible values. A complete solution is
represented by a path from r to a goal node t ∈ T , referred to as r–t path, and
we assume that the arc costs are defined in such a way that the objective value
of the solution corresponds to the sum of the path’s arc costs.

As already pointed out in the introduction, classical BS explores such a state
space in an incomplete breadth-first search manner to find one or more heuristic
solutions. Nodes are considered level by level, and at each level only up to β nodes
are selected as beam to continue with. Now, let Vext be the set of all nodes that
have been derived as successors of the current beam. Moreover, let fs : (V, 2V) →
R be a scoring function so that fs(v, Vext) assigns each node v ∈ V a real-valued
score in relation to all the other nodes in Vext. Thus, the score of a node is not
determined independently for each node but under consideration of Vext. The
score obtained by evaluating fs(v, Vext) for each v ∈ Vext induces a policy over
the nodes in Vext, where higher values shall indicate a higher probability of a
node leading to a best goal node. In P-LBS this scoring function fs replaces the
classical node-individual evaluation function f of BS and is realized in the form
of a neural network that will be described in Sect. 4.

The core idea of P-LBS is to train function fs via “self-play” similarly as
in AlphaZero [20] by iterated application on many random instances generated
according to the properties of the instances expected in the future application.
A pseudocode of the P-LBS framework is shown in Algorithm 1. It starts with
a randomly initialized NN as scoring function fs, and an initially empty replay
buffer R which will contain the training data. The buffer is realized as first-
in-first-out (FIFO) queue of maximum size ρ. The idea hereby is to remove
older, outdated training samples when the scoring function has already been
improved. After initialization, a certain number z of iterations is performed. In
each iteration, a new independent random problem instance I with root node
r is created and a BS with the current scoring function fs is applied. This BS
returns a best goal node t, and also the set L of node sets Vext encountered at
each level during the search. Next, from each set Vext ∈ L a training sample is
derived with probability α/L, where parameter α controls the expected number
of samples produced per instance.

Policy-Based Learning Beam Search 135

Algorithm 1. Policy-Based Learning Beam Search (P-LBS)
1: Input: nr. of iterations z, beam width β, NBS beam width β′, replay buffer size

ρ, min. buffer size for training γ, nr. of training samples per instance α
2: Output: trained scoring function fs
3: fs ← scoring function (randomly initialized NN)
4: R ← ∅ // replay buffer: FIFO of max. size ρ
5: for z iterations do
6: I, r ← create representative random problem instance with root node r
7: t, L ← BeamSearch(I, β, fs) // best found goal node t,
8: // set L of node sets Vext encountered at each level
9: for Vext ∈ L do

10: if rand() < α/|L| then // generate training sample
11: for v ∈ Vext do
12: if beam-unaware then

13: cv ←
{

1, if node v lies on r–t path

0, otherwise

14: else if beam-aware then
15: t′

v ← BeamSearch(I(v), β′, fs) // NBS call → best goal node
16: cv ← g(t′

v)
17: end if
18: end for
19: add training sample (Vext, {cv}v∈Vext) to R
20: end if
21: end for
22: if |R| ≥ γ then
23: train fs with batches of randomly sampled data from R
24: end if
25: end for
26: return fs

For beam-unaware training, target values for the nodes in Vext are derived by
mapping a node v ∈ Vext to cv = 1 if node v lies on the best solution path r–t
(ties are broken randomly in case there are multiple such paths with equal cost)
and to cv = 0 otherwise. For beam-aware training, each node v ∈ Vext is mapped
to a target value (i.e., approximate oracle cost) cv obtained by performing an
independent nested beam search (NBS) with beam width β′ and scoring function
fs on the problem subinstance I(v) induced by node v. However, as each NBS
call is in general computationally expensive, we apply a bootstrapping approach
(details below) to keep P-LBS scalable. All training samples derived are added
to the replay buffer R.

At the end of each P-LBS iteration, if the replay buffer has reached a mini-
mum fill level of γ, the scoring function fs is incrementally trained with batches
of data sampled uniformly at random from R using one of the following loss
functions.

136 R. Ettrich et al.

3.1 Loss Functions

Let c = (cv)v∈Vext be the vector of all target values of the nodes in Vext. Moreover,
given a training sample (Vext, c), let sv = fs(v, Vext) be the score obtained by
evaluating our learnable scoring function fs for each v ∈ Vext and s = (sv)v∈Vext .
Moreover, let σ̂ be a permutation of Vext that sorts the scores in s in descending
order such that sσ̂(1) ≥ sσ̂(2) ≥ . . . ≥ sσ̂(|Vext|), and let σ∗ be a permutation
of Vext that sorts the target values in c in descending order such that cσ∗(1) ≥
cσ∗(2) ≥ . . . ≥ cσ∗(|Vext|). We consider the following loss functions originally
proposed by Negrinho et al. [16], as well as one introduced by ourselves called
cost-sensitive marginal beam (cmb)

perceptron first (pf): �(s, c) = max(0, sσ̂(1) − sσ∗(1))

This loss is positive if the node with the highest target value does not corre-
spond to the highest score node.

perceptron last (pl): �(s, c) = max(0, sσ̂(β) − sσ∗(1))
The loss is positive if the node with the highest target value falls out of
the beam.

margin last (ml): �(s, c) = max(0, 1 + sσ̂(β) − sσ∗(1))
A penalty is given if the highest target value node is not among the β best
nodes in s, but also a smaller penalty may be given if the highest target value
node is placed low in the beam.

cost-sensitive margin last (cml):

�(s, c) = (cσ∗(1) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(1))

The previous ml loss is here weighted by the difference between the highest
target value and the target value of the node at place β in the beam according
to σ̂.

cost-sensitive margin beam (cmb):

�(s, c) =
β−1∑

i=1

max(0, cσ∗(i) − cσ̂(β))max(0, 1 + sσ̂(β) − sσ∗(i))

We suggest this additional variant of cml, in which the sum of the weighted
ml losses for the first (β − 1) elements in the beam is calculated. A penalty
is given if any of the (β − 1) first nodes in the beam according to c falls out
of the beam according to s. This penalty is weighted as in the cml loss for
each of the (β − 1) first nodes in the beam.

log loss neighbors (lln): �(s, c) = −sσ∗(1) + log

(
∑|Vext|

i=1 exp(si)

)

Here we normalizes over all elements in Vext. A higher penalty is given if
there are nodes with higher scores than the score of the highest target value
node.

Policy-Based Learning Beam Search 137

log loss beam (llb): �(s, c) = −sσ∗(1) + log

(
∑

i∈I exp(si)

)

Here, I denotes the index set that contains the index of the highest target
value node and the indices of the β elements with the highest scores in s.
This loss function is similar to the lln loss, but normalization is done only
over the nodes in the beam according to the scores.

upper bound (ub): �(s, c) = max(0, δβ+1, . . . , δ|Vext|)
Here, δj = (cσ∗(1) − cσ∗(j))(sσ∗(j) − sσ∗(1)) for j = β + 1, . . . , |Vext|.
Negrinho et al. [16] showed that this loss function is a convex upper bound
for the expected beam transition cost.

Preliminary tests indicated that it is beneficial to use for the loss calculation
not necessarily the beam width for which BS is intended to be finally applied,
but an independent value proportional to |Vext|. Therefore, the beam width con-
sidered in the loss functions is �|Vext| ·ξ�, where ξ ∈ (0, 1] is a control parameter.

3.2 Bootstrapping

In beam-aware training, a training sample for a node set Vext is obtained by exe-
cuting NBS on each subinstance I(v) induced by a node v ∈ Vext. Depending on
the beam width and the specific instance to be solved, these NBS executions can
become computationally expensive. To keep beam-aware training scalable and
reduce the computational effort, NBS executions are stopped when they reach a
maximum level d ∈ N. For simplicity, we assume in the following maximization
and that goal nodes deeper in the search tree are always better, as it is the case
in our benchmark, the LCS problem. An extension to the general case needs
to consider the g-values of nodes but is otherwise straight-forward. Each depth-
limited NBS call returns then either a set of nodes if level d is reached and the
execution stopped or a best goal node otherwise. To determine the target costs
for the nodes in Vext, let M ⊆ Vext be the set of nodes for which the respective
NBS calls finish with a goal node before or at level d, and let N ⊆ Vext be the set
of nodes for which the NBS calls are stopped prematurely at level d. Moreover,
let NBS(I(v)) be the set of nodes that is returned from level d for v ∈ N . Three
cases are now distinguished:

1. M = Vext, N = ∅. In this case no early stopping occurred, and the target
value of node v ∈ M is set to cv = g(NBS(I(v))).

2. M = ∅, N = Vext. Let V ′
ext = {argmaxu∈NBS(I(v)) fs(u,NBS(I(v))) | v ∈ N}

be the set of nodes with highest fs-values from each node set returned by
NBS(I(v)). Moreover, let v′ ∈ V ′

ext be the node that corresponds to v ∈ Vext,
i.e., the node v′ = argmaxu∈NBS(I(v)) fs(u,NBS(I(v))) . The target values are
then set to cv = fs(v′, V ′

ext).
3. M
= ∅, N
= ∅. Let M ′ be the set of goal nodes that represent the solutions

returned by the NBS calls executed on subinstances I(v) for v ∈ M . Set V ′
ext

is derived analogously to the previous case as the node set representing the

138 R. Ettrich et al.

most promising partial solutions for the nodes in N . The target value for a
node v ∈ Vext is then determined as cv = fs(v′, V ′

ext ∪ M ′
v), where

v′ =

{
NBS(I(v)) if v ∈ M

argmaxu∈NBS(I(v)) fs(u,NBS(I(v))) if v ∈ N
.

Additional post-processing may help in problem-specific scenarios. For exam-
ple, in case of uniform arc costs as in our LCS benchmark problem, the nodes
in N should always be ranked higher than the nodes in M , because the respec-
tive NBS calls on the subinstances induced by nodes in M finish at an earlier
level than the NBS calls on subinstances induced by nodes in N . The oracle
cost corresponding to nodes in N can then simply all be increased by the
same value in order to be ranked above all nodes in M while still maintaining
their relative positioning among the nodes in N .

4 Neural Network Architecture

The NN used as scoring function fs in P-LBS must fulfill an important property:
It must be able to deal with inputs of variable size as |Vext| in general varies and
we aim at scoring each node in dependence of all nodes in Vext.

Let the input to the NN be a vector of vectors (xv)v∈Vext , where xv is a
problem-specific feature vector representing the state associated with node v.
Moreover, also g(v), the cost from the r–v path, are appended as an additional
feature in xv. Figure 1 illustrates the NN architecture realizing fs. The NN is a
feedforward network with layers j = 0, . . . , 3 described in the following. Hereby,
A(j) denotes a weight matrix and b(j) a bias vector for each layer j. Weights and
biases are shared within each layer among the components for the individual
nodes’ feature vectors.

Layer 0: The inputs xv are first embedded by a linear transformation

h(0)
v = A(0)xv + b(0) ∀v ∈ Vext.

Layer 1: The embeddings h
(0)
v of the individual nodes are then pooled to obtain a

constant-size global embedding for Vext. We do this simply by averaging, i.e.,

h(1) =
1

|Vext|
∑

v∈Vext

h(0)
v .

Layer 2: Now, the node-individual embeddings from layer 0 are combined with
the the global embedding from layer 1 by concatenation and used subse-
quently as inputs for a per-node linear transformation followed by a ReLU
activation:

h(2)
v = ReLU(A(2)(h(0)

v || h(1)) + b(2)) ∀v ∈ Vext.

Layer 3: A final linear transformation is used to compute the scores sv in the
form of logits

sv = h(3)
v = A(3)h(2)

v + b(3) ∀v ∈ Vext.

Policy-Based Learning Beam Search 139

Fig. 1. Four-layer feedforward NN architecture for P-LBS.

5 Case Study: Longest Common Subsequence Problem

A string is a finite sequence of symbols taken from an alphabet Σ. A subsequence
of a string is a string that is obtained by deleting zero or more symbols. A
common subsequence of a set of strings S = {S1, . . . , Sm} is a string that is
a subsequence of every string in S. The longest common subsequence (LCS)
problem aims at finding a common subsequence of maximum length for S. For
example, the LCS of strings AGACT, GTAAC, and GTACT is GAC. The LCS problem
is well-studied and has many applications, in particular in bioinformatics [18],
database query optimization [17], and image processing [2]. For a fixed number m
of strings the LCS problem is polynomially solvable by dynamic programming in
time O(nm) [9], where n denotes the length of the longest input string, while for
general m it is NP-hard [15]. The current state-of-the-art heuristic approaches
for large m and n are based on BS with a theoretically derived function EX that
approximates the expected length of the result of random strings from a partial
solution [6] and also on our LBS [11].

Notations. We denote the length of a string S by |S|, and the maximum length
of all input strings in S by n. The j-th letter of a string shall be S[j]. By S[j, j′]
we denote the substring of S starting with S[j] and ending with S[j′] if j ≤ j′

or the empty string ε otherwise. As in previous works [6,11], the following data
structure is prepared in preprocessing to enable an efficient “forward stepping”
in the strings. For each i = 1, . . . ,m, j = 1, . . . , |Si|, and a ∈ Σ, succ[i, j, a]
stores the minimal position j′ such that j′ ≥ j ∧ Si[j′] = a or 0 if letter a does
not occur in Si from position j onward.

State Graph for the LCS Problem. In the state graph G = (V,A) for
the LCS problem, a node v ∈ V represents a state by a position vector pv =
(pv

i)i=1,...,m with pv
i ∈ 1, . . . , |Si|+1, indicating the remaining relevant substrings

Si[pv
i , |Si|] for i = 1, . . . , m. These substrings form the LCS subproblem instance

I(v) = Si[pv
i , |Si|], for i = 1, . . . ,m induced by node v. The root node r ∈ V

has position vector pv
i = (1, . . . , 1). Hence, I(v) corresponds to the original LCS

140 R. Ettrich et al.

instance. An arc (u, v) ∈ A refers to transitioning from state u to state v by
adding a valid letter a ∈ Σ to a partial solution, and consequently, arc (u, v)
is labeled by this letter, i.e., τ(u, v) = a. Extending a partial solution at state
u by letter a ∈ Σ is only valid, if succ[i, pu

i , a] > 0 for i = 1, . . . ,m and yields
state v with pv

i = succ[i, pu
i , a] + 1 for i = 1, . . . ,m. States that allow no feasible

extension are represented by a single goal node t ∈ V with pt
i = |Si| + 1 for

i = 1, . . . ,m that has no outgoing arcs. As with each arc always exactly one
letter is appended to a partial solution, the cost of each arc (u, v) ∈ A is one.
As the objective of the LCS problem is to find a maximum length string, g(v)
corresponds to the number of arcs of the longest identified r–v path.

Node Features and Training. As features to represent a state we only use the
remaining string lengths |Si| − pv

i + 1, i = 1, . . . ,m, on which also the heuristic
from [6] is based. To prevent possible difficulties in learning symmetries, the
remaining string lengths are always sorted according to non-decreasing values
before providing them as feature vector xv. In the NN, the hidden vectors h

(j)
v

for j = 0, 1, have size ten, whereas the hidden vectors h
(2)
v have size 20, and the

weight matrices and bias vectors were dimensioned accordingly.
As in previous work [11], the ADAM optimizer with step size 0.001 and

exponential momentum decay rates 0.9 and 0.999 is applied for training. In each
P-LBS iteration, two mini-batches of eight random samples are selected from
the replay buffer R and used for learning. The loss of a single sample is obtained
by one of the loss functions from Sect. 3.1, and the loss of a batch is determined
by the mean loss of the individual batches.

6 Experimental Evaluation

We implemented P-LBS in Julia 1.7 using Flux for the NN. All experiments were
executed on an Intel Xeon E5-2640 processor with 2.40 GHz and a memory limit
of 20 GB. Two in the literature commonly used benchmark sets for the LCS
problem are considered to empirically analyze and evaluate P-LBS. The first
set referred to as rat was introduced in [19], and consists of 20 single instances
composed of sequences from rat genomes. Each of these instances differs in the
combination of the alphabet size |Σ| ∈ {4, 20}, number of input strings m ∈
{10, 15, 20, 25, 40, 60, 80, 100, 150, 200}. The length of the strings is n = 600.
The second benchmark set denoted as ES is from [7] and consists of 50 random
instances for each combination of |Σ| ∈ {2, 10, 25}, m ∈ {10, 50, 100}, where
n = 1000 for instances with |Σ| ∈ {2, 10}, and n = 2500 for instances with
|Σ| = 25. Preliminary tests led to the following P-LBS configuration that turned
out to be suitable for all our benchmark sets unless stated otherwise: nr. of P-
LBS iterations z = 2000, P-LBS and NBS beam widths β = β′ = 50, NBS depth
limit d = 5, beam width parameter for loss calculation ξ = 0.1, max. buffer size
ρ = 500, min. buffer size for learning γ = 250, nr. of training samples generated
per instance α = 5, ten restarts with randomly initialized NN weights and final
adoption of the NN yielding the best result on 30 independent random instances.

Policy-Based Learning Beam Search 141

Fig. 2. Impact of the loss function in P-LBS on the solution lengths of BS on rat and
ES instances.

Loss Functions. One of our main goals is to analyze the impact of the different
loss functions from Sect. 3.1 in practice, as they were so far only theoretically
considered in [16]. For this purpose, ten P-LBS runs were performed for (|Σ| = 4,
m = 100, n = 600) and (|Σ| = 10, m = 10, n = 1000), and the learned scoring
functions were used in BS to solve the respective rat and ES instances. Figure 2
shows the obtained solution lengths for each loss function pf, lln, pl, ml, cml, llb,
ub, and cmb as box plots. Loss functions pf and lln were used in the conjunction
with beam-unaware training, whereas all other loss functions were used with
beam-aware training. We can clearly see that loss functions pf, pl, ml, and llb
perform significantly worse than cml, cmb, lln, and ub. Therefore, we use only
loss functions cml, cmb, lln, and ub in the further experiments.

NBS Depth Limit. The choice of depth limit d in the NBS calls has a consid-
erable impact on the runtime of P-LBS. Thus, we want to use a depth limit in
the NBS calls that is as small as possible, but at the same time, large enough to
produce robust models leading to high-quality predictions. In order to examine
this aspect, we performed ten P-LBS runs each for different depth limits d in the
NBS calls. Figure 3 shows exemplary box plots for final LCS lengths and training
times on a representative rat instance, obtained by BS with scoring functions
trained via P-LBS using the different depth limits. As one may expect, higher
values for d lead to a more stable convergence of the NN, reflected by the smaller
standard deviation and generally larger solution lengths seen in the left subfig-
ure. The right subfigure shows the runtimes of P-LBS with z = 2000 iterations.
We can see that our bootstrapping approach works well already for quite mod-
erate depth limits d ≥ 5 and can save much time. We therefore apply d = 5 in
the remaining experiments.

Evaluation on Benchmark Instances. Finally, we evaluate our approach
with each of the remaining loss function alternatives on all instances from bench-
mark sets rat and ES and also compare it to state-of-the-art methods from the
literature. For this purpose, NNs were trained for each combination of |Σ|, m,
and n occurring in the benchmark instances on random instances using P-LBS
with each loss function. All training with P-LBS was done using beam width

142 R. Ettrich et al.

Fig. 3. Impact of depth limit d in NBS calls on the solution length of BS on a rat

instance.

β = β′ = 50, except for rat instances with |Σ| = 20, for which β = β′ = 20
and z = 1000 were used due to computational budget limitations. Concerning
the final testing, we followed [6] and applied BS on all benchmark instances
using β = 50 to aim at low (computation) time and β = 600 to aim at high-
quality solutions, respectively. Table 1 shows the obtained results. Columns |glln|,
|gcml|, |gub|, and |gcmb| list the average solution lengths obtained by BS with the
NNs trained by P-LBS with loss functions lln, cml, ub, and cmb, respectively.
Additionally, respective average solution qualities of LBS from [12] are shown
in columns |gLBS|. So far best-known average solution lengths reported in [6]
are listed in columns |glit-best|. Average runtimes of the BS with the trained
NNs (with loss function cmb) and corresponding ones from LBS are provided in
columns tcmb[s] and tLBS[s].

The results show that BS with the trained NNs with loss function ub yields
for both, low time and high-quality experiments, in six out of nine instance
groups on benchmark set ES higher average solution lengths than lln, cml and
cmb, while BS with the trained NNs with loss functions ub and cmb achieves
on many instance groups on benchmark set rat higher average solution lengths
than lln and cml. This coincides with our previous loss function analysis, where
loss functions ub and cmb yielded higher solution lengths than lln and cml.
Furthermore, the high variance in the results obtained by BS with the trained
NNs with loss functions lln and cml on benchmark set rat indicates that these
loss functions produce less robust models than ub and cmb. We conclude that
loss functions ub and cmb are most suitable for training NNs to guide BS on the
LCS problem. While BS with the trained NNs with loss function ub yields in six
out of nine instance groups for low time and in seven out of nine for high-quality
experiments higher average solution lengths compared to LBS on benchmark set
ES, loss functions ub and cmb perform slightly worse than LBS on benchmark
set rat.

Comparing BS with the trained NNs with loss functions ub and cmb to
the so far best-known solutions, ub and cmb yield results being competitive on
benchmark set ES but perform slightly worse on benchmark set rat. In total, BS
with the trained NNs with loss functions lln, cml, ub and cmb could achieve in
five out of 29 instance groups new best solutions for low time and in two out of
29 for high-quality. Concerning runtimes, we can conclude that they are lower
than those of LBS, as more node features were used in LBS.

Policy-Based Learning Beam Search 143

T
a
b
le

1
.
L
C

S
re

su
lt

s
o
n

b
en

ch
m

a
rk

se
ts

r
a
t

a
n
d
E
S

o
b
ta

in
ed

b
y

B
S

w
it

h
N

N
s

tr
a
in

ed
b
y

P
-L

B
S

(w
it

h
lo

ss
fu

n
ct

io
n
s

ll
n
,
cm

l,
u
b
,
a
n
d

cm
b
),

a
n
d

L
B

S
[1

2
].

R
es

p
ec

ti
v
e

so
fa

r
b
es

t-
k
n
ow

n
av

er
a
g
e

so
lu

ti
o
n

le
n
g
th

s
re

p
o
rt

ed
in

[6
]
a
re

li
st

ed
in

co
lu

m
n
s

|g l
it
-b

e
st

|.

lo
w

ti
m

e
(β

=
5
0
)

h
ig

h
q
u
a
li
ty

(β
=

6
0
0
)

S
et

|Σ
|

m
n

|g l
ln

|
|g c

m
l|

|g u
b
|

|g c
m
b
|

t c
m
b
[s

]
|g L

B
S
|

t L
B
S
[s

]
|g l

it
-b

e
st

|
|g l

ln
|

|g c
m

l|
|g u

b
|

|g c
m
b
|

t c
m
b
[s

]
|g L

B
S
|

t L
B
S
[s

]
|g l

it
-b

e
st

|
r
a
t

4
1
0

6
0
0

1
9
8
.0

1
9
9
.0

1
9
9
.0

1
9
9
.0

0
.2

8
0

1
9
9
.0

0
.5

5
0

2
0
1
.0

2
0
5
.0

2
0
1
.0

2
0
4
.0

2
0
3
.0

7
.5

4
2

2
0
5
.0

8
.5

9
1

2
0
5
.0

r
a
t

4
1
5

6
0
0

*
1
8
6
.0

1
7
8
.0

1
8
2
.0

1
8
2
.0

0
.3

1
8

1
8
4
.0

0
.6

6
0

1
8
4
.0

1
8
3
.0

1
8
2
.0

1
8
4
.0

1
8
4
.0

7
.4

8
5

1
8
5
.0

9
.0

9
7

1
8
5
.0

r
a
t

4
2
0

6
0
0

1
6
2
.0

1
5
9
.0

*
1
7
0
.0

1
6
7
.0

0
.2

9
8

1
6
9
.0

0
.6

2
0

1
6
9
.0

1
7
3
.0

1
6
7
.0

1
7
2
.0

1
7
1
.0

7
.3

8
8

1
7
3
.0

8
.0

8
2

1
7
3
.0

r
a
t

4
2
5

6
0
0

*
1
6
9
.0

1
6
7
.0

1
6
6
.0

1
6
6
.0

0
.3

4
4

1
6
6
.0

0
.7

6
6

1
6
7
.0

1
6
9
.0

1
6
7
.0

1
7
0
.0

1
7
0
.0

8
.3

9
2

1
7
1
.0

9
.2

9
5

1
7
1
.0

r
a
t

4
4
0

6
0
0

1
4
7
.0

1
4
3
.0

1
5
2
.0

1
5
0
.0

0
.2

0
4

1
5
2
.0

0
.8

4
4

1
5
2
.0

1
4
5
.0

1
5
0
.0

1
5
3
.0

1
5
3
.0

8
.6

4
9

1
5
6
.0

1
0
.0

6
4

1
5
6
.0

r
a
t

4
6
0

6
0
0

1
4
5
.0

1
4
4
.0

1
4
7
.0

1
4
9
.0

0
.2

8
4

1
4
9
.0

0
.8

6
8

1
5
0
.0

1
5
0
.0

1
4
9
.0

1
5
1
.0

1
4
9
.0

9
.0

2
7

1
5
2
.0

1
2
.1

2
9

1
5
2
.0

r
a
t

4
8
0

6
0
0

1
1
0
.0

1
3
4
.0

1
3
2
.0

1
3
2
.0

0
.3

0
4

1
3
8
.0

1
.0

5
6

1
3
8
.0

1
3
2
.0

1
3
7
.0

1
4
0
.0

1
3
8
.0

9
.4

5
1

1
4
0
.0

1
2
.5

6
4

1
4
2
.0

r
a
t

4
1
0
0

6
0
0

1
2
2
.0

1
1
9
.0

1
2
9
.0

1
3
4
.0

0
.5

0
8

1
3
5
.0

0
.4

8
3

1
3
5
.0

1
2
8
.0

1
3
4
.0

1
3
8
.0

1
3
1
.0

9
.5

2
1

1
3
7
.0

1
3
.6

5
0

1
3
8
.0

r
a
t

4
1
5
0

6
0
0

1
0
1
.0

1
1
7
.0

1
2
3
.0

1
2
6
.0

0
.7

4
6

1
2
7
.0

1
.1

7
6

1
2
7
.0

1
1
7
.0

1
2
2
.0

1
1
4
.0

1
2
8
.0

1
0
.1

5
9

1
3
0
.0

1
1
.6

2
5

1
3
0
.0

r
a
t

4
2
0
0

6
0
0

1
0
5
.0

1
0
4
.0

1
1
5
.0

1
1
5
.0

1
.4

3
8

1
2
1
.0

1
.5

7
2

1
2
3
.0

1
1
1
.0

1
1
5
.0

1
2
4
.0

1
1
8
.0

1
0
.5

2
9

1
2
3
.0

1
4
.1

1
7

1
2
3
.0

r
a
t

2
0

1
0

6
0
0

7
0
.0

*
7
1
.0

7
0
.0

7
0
.0

1
.4

2
0

7
0
.0

1
.1

0
8

7
0
.0

7
1
.0

7
1
.0

7
1
.0

7
1
.0

1
1
.7

7
4

7
1
.0

1
0
.1

0
4

7
1
.0

r
a
t

2
0

1
5

6
0
0

6
2
.0

6
1
.0

6
2
.0

6
0
.0

1
.7

8
8

6
2
.0

1
.1

1
7

6
2
.0

6
2
.0

6
2
.0

6
3
.0

6
2
.0

1
2
.4

5
7

6
3
.0

1
2
.0

4
8

6
3
.0

r
a
t

2
0

2
0

6
0
0

5
3
.0

5
2
.0

5
2
.0

5
2
.0

1
.1

8
4

5
4
.0

1
.0

5
9

5
4
.0

*
5
5
.0

5
4
.0

5
4
.0

*
5
5
.0

1
1
.5

5
7

5
4
.0

1
3
.7

0
4

5
4
.0

r
a
t

2
0

2
5

6
0
0

5
0
.0

5
0
.0

5
1
.0

5
0
.0

0
.9

8
3

5
1
.0

1
.1

5
2

5
1
.0

5
2
.0

5
2
.0

5
2
.0

5
1
.0

7
.6

6
2

5
2
.0

1
3
.0

7
3

5
2
.0

r
a
t

2
0

4
0

6
0
0

4
3
.0

4
3
.0

4
4
.0

4
5
.0

1
.2

0
6

4
9
.0

0
.5

2
9

4
9
.0

4
7
.0

4
7
.0

4
7
.0

4
7
.0

1
0
.3

6
8

4
9
.0

1
6
.0

0
5

4
9
.0

r
a
t

2
0

6
0

6
0
0

4
3
.0

4
3
.0

4
3
.0

4
5
.0

1
.9

4
8

4
6
.0

1
.9

4
5

4
6
.0

4
6
.0

4
5
.0

4
5
.0

4
6
.0

1
6
.6

9
8

4
7
.0

1
9
.7

3
4

4
7
.0

r
a
t

2
0

8
0

6
0
0

4
0
.0

3
8
.0

3
9
.0

3
8
.0

1
.8

5
8

4
2
.0

1
.9

5
3

4
3
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

1
6
.9

8
6

4
3
.0

2
4
.7

4
1

4
4
.0

r
a
t

2
0

1
0
0

6
0
0

3
7
.0

3
7
.0

3
6
.0

3
8
.0

1
.7

1
1

3
8
.0

2
.0

0
7

3
8
.0

3
8
.0

3
9
.0

3
8
.0

3
9
.0

1
3
.7

4
6

3
9
.0

2
4
.4

4
1

4
0
.0

r
a
t

2
0

1
5
0

6
0
0

3
4
.0

3
4
.0

3
5
.0

3
7
.0

1
.8

2
8

3
7
.0

2
.4

5
7

3
7
.0

3
7
.0

3
7
.0

3
7
.0

3
7
.0

1
5
.4

0
8

3
7
.0

2
8
.7

1
9

3
7
.0

r
a
t

2
0

2
0
0

6
0
0

3
3
.0

3
3
.0

3
3
.0

3
3
.0

1
.9

5
6

3
4
.0

2
.0

4
8

3
4
.0

3
4
.0

3
4
.0

3
4
.0

3
4
.0

1
8
.5

8
2

3
4
.0

3
2
.1

1
8

3
4
.0

E
S

2
1
0

1
0
0
0

6
0
8
.7

4
6
0
5
.0

6
6
0
8
.8

4
6
0
4
.6

2
0
.4

1
6
0
6
.8

0
0
.7

1
6
0
9
.8
0

6
1
4
.4

2
6
1
2
.1

8
6
1
4
.6

8
6
1
1
.6

4
8
.1

0
7

6
1
3
.3

5
1
1
.2

4
8

6
1
5
.0
6

E
S

2
5
0

1
0
0
0

5
1
8
.5

4
5
2
9
.2

4
5
3
1
.4

6
5
2
9
.3

0
0
.6

7
5
2
9
.7

6
1
.0

2
5
3
5
.0
2

5
2
3
.3

8
5
3
2
.9

6
5
3
5
.7

6
5
3
3
.2

4
1
3
.0

4
6

5
3
4
.2

9
1
6
.6

8
4

5
3
8
.2
4

E
S

2
1
0
0

1
0
0
0

5
0
3
.6

4
5
0
8
.4

0
5
1
1
.3

6
5
0
8
.5

4
1
.0

9
5
1
4
.6

2
1
.7

2
5
1
7
.3
8

5
0
7
.9

6
5
1
2
.3

4
5
1
3
.9

4
5
1
2
.3

2
1
7
.7

7
7

5
1
6
.8

5
2
2
.1

0
3

5
1
9
.8
4

E
S

1
0

1
0

1
0
0
0

1
9
8
.7

0
1
9
8
.5

6
1
9
8
.8

0
1
9
9
.0

0
0
.9

4
1
9
8
.9

4
1
.1

7
1
9
9
.3
8

2
0
2
.6

0
2
0
2
.4

2
2
0
2
.4

2
2
0
2
.6

0
1
8
.0

8
1

2
0
2
.1

0
2
3
.2

4
9

2
0
3
.1
0

E
S

1
0

5
0

1
0
0
0

1
3
4
.6

0
1
3
3
.8

0
1
3
4
.2

2
1
3
3
.6

4
1
.1

5
1
3
4
.0

2
1
.8

9
1
3
4
.7
4

1
3
6
.2

8
1
3
5
.6

4
1
3
6
.1

2
1
3
5
.5

8
1
6
.0

8
0

1
3
5
.5

6
1
9
.7

2
0

1
3
6
.3
2

E
S

1
0

1
0
0

1
0
0
0

1
1
9
.4

6
1
2
0
.8

2
1
2
0
.9

4
1
2
0
.8

8
1
.3

9
1
2
1
.2

0
1
.2

0
1
2
2
.1
0

1
2
1
.2

6
1
2
2
.1

2
1
2
2
.3

8
1
2
2
.1

4
1
7
.2

5
8

1
2
2
.6

7
2
4
.3

4
9

1
2
3
.3
2

E
S

2
5

1
0

2
5
0
0

*
2
3
0
.9
0

2
3
0
.4

9
2
3
0
.4

9
2
3
0
.7

6
4
.6

2
2
2
9
.3

9
5
.1

5
2
3
0
.2

8
2
3
5
.3

8
2
3
5
.2

8
2
3
5
.6

9
*
2
3
5
.6
9

7
6
.8

2
0

2
3
5
.2

0
7
7
.5

5
0

2
3
5
.2

2

E
S

2
5

5
0

2
5
0
0

1
3
6
.6

2
1
3
6
.8

4
1
3
7
.1

8
1
3
6
.8

4
8
.0

9
1
3
3
.8

8
7
.8

2
1
3
7
.9

1
3
8
.5

6
1
3
8
.9

2
1
3
9
.0

4
1
3
8
.6

6
7
4
.9

0
2

1
3
7
.4

4
1
0
5
.9

5
6

1
3
9
.5

E
S

2
5

1
0
0

2
5
0
0

1
1
9
.7

6
1
2
0
.5

6
1
2
0
.6

4
1
2
0
.4

6
1
0
.3

3
1
1
9
.7

0
1
6
.7

4
1
2
1
.7
4

1
2
1
.2

2
1
2
1
.9

2
1
2
2
.1

2
1
2
1
.9

4
1
1
6
.7

2
8

1
2
1
.7

1
1
5
9
.8

4
3

1
2
2
.8
8

144 R. Ettrich et al.

7 Conclusions and Future Work

We proposed a general Policy-Based Learning Beam Search (P-LBS) framework
for learning BS policies to solve combinatorial optimization problems. Instead
of the traditional approach of evaluating each node independently with a hand-
crafted evaluation function in BS, we learn a policy for selecting the nodes to
continue with in the next BS level. Learning is performed by utilizing concepts
from reinforcement learning, in particular the self-play of AlphaZero: P-LBS
generates training data on its own by executing BS with the so far trained policy
on many representative randomly generated problem instances. While different
loss functions for learning a BS policy have been suggested but only studied from
a theoretical point of view in the literature, we compare and evaluate them in the
practical scenario of solving the prominent LCS problem. Reasonable scalability
to larger problem instances could be achieved by utilizing bootstrapping. Our
case study on the LCS demonstrates that P-LBS with loss functions ub and cmb
is able to learn BS policies such that highly competitive results can be obtained.

One weakness we recognized in P-LBS using beam-unaware training is that
the BS in our implementation returns exactly one best goal node and r–t path
disregarding the fact that multiple best goal nodes with equal objective values
and different r–t paths may exist. As a result, nodes in a training sample are
labeled with zeroes, although these nodes possibly lie on a path of another best
goal node. In future work, it would be promising to adapting the BS so that
all found equally good goal nodes and corresponding r–t paths are considered.
General improvement potential of P-LBS lies in using a more advanced graph
neural network as policy to get rid of the dependency of specific instance sizes.
Finally, we are interested in applying P-LBS to further problems of different
nature to investigate the full potential of P-LBS.

References

1. Abe, K., Xu, Z., Sato, I., Sugiyama, M.: Solving NP-hard problems on graphs with
extended alphago zero. arXiv:1905.11623 [cs, stat] (2020)

2. Bezerra, F.: A longest common subsequence approach to detect cut and wipe video
transitions. In: Proceedings of the 17th Brazilian Symposium on Computer Graph-
ics and Image Processing, pp. 154–160. IEEE Press (2004)

3. Chang, K.W., Krishnamurthy, A., Agarwal, A., Daumé, H., Langford, J.: Learn-
ing to search better than your teacher. In: Proceedings of the 32nd International
Conference on Machine Learning, vol. 37, pp. 2058–2066 (2015)

4. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In:
Proceedings of the 42nd Annual Meeting on Association for Computational Lin-
guistics, pp. 111-es (2004)

5. Daumé, H., Marcu, D.: Learning as search optimization: approximate large mar-
gin methods for structured prediction. In: Proceedings of the 22nd International
Conference on Machine Learning, pp. 169–176. ACM Press (2005)

6. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation.
In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD
2019. LNCS, vol. 11943, pp. 154–167. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-37599-7 14

http://arxiv.org/abs/1905.11623
https://doi.org/10.1007/978-3-030-37599-7_14
https://doi.org/10.1007/978-3-030-37599-7_14

Policy-Based Learning Beam Search 145

7. Easton, T., Singireddy, A.: A large neighborhood search heuristic for the longest
common subsequence problem. J. Heuristics 14(3), 271–283 (2008)

8. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neu-
ral networks. In: Proceedings of the 31st International Conference on Machine
Learning, pp. 1764–1772. PMLR (2014)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

10. Huang, L., et al.: Linearfold: linear-time approximate RNA folding by 5’-to-3’
dynamic programming and beam search. Bioinformatics 35(14), i295–i304 (2019)

11. Huber, M., Raidl, G.R.: Learning beam search: utilizing machine learning to guide
beam search for solving combinatorial optimization problems. In: Nicosia, G., et al.
(eds.) Machine Learning, Optimization, and Data Science. LNCS, vol. 13164, pp.
283–298. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95470-3 22

12. Huber, M., Raidl, G.R.: A relative value function based learning beam search
for the longest common subsequence problem. In: Moreno-Dı́az, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) EUROCAST 2022. LNCS, vol. 13789, pp. 87–95.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25312-6 10

13. Laterre, A., et al.: Ranked reward: enabling self-play reinforcement learning for
combinatorial optimization. In: AAAI 2019 Workshop on Reinforcement Learning
on Games. AAAI Press (2018)

14. Lowerre, B.T.: The harpy speech recognition system. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA (1976)

15. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

16. Negrinho, R., Gormley, M., Gordon, G.J.: Learning beam search policies via imi-
tation learning. In: Bengio, S., et al. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 31, pp. 10652–10661. Curran Associates, Inc. (2018)

17. Ning, K., Ng, H.K., Leong, H.W.: Analysis of the relationships among longest com-
mon subsequences, shortest common supersequences and patterns and its applica-
tion on pattern discovery in biological sequences. Int. J. Data Min. Bioinf. 5(6),
611–625 (2011)

18. Ossman, M., Hussein, L.F.: Fast longest common subsequences for bioinformatics
dynamic programming. Int. J. Comput. Appl. 975, 8887 (2012)

19. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91
(2009)

20. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

21. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, vol. 27. Curran
Associates, Inc. (2014)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

23. Xu, Y., Fern, A.: On learning linear ranking functions for beam search. In: Pro-
ceedings of the 24th International Conference on Machine Learning, pp. 1047–1054.
ACM Press (2007)

https://doi.org/10.1007/978-3-030-95470-3_22
https://doi.org/10.1007/978-3-031-25312-6_10

Cooperative Coevolutionary Genetic
Programming Hyper-Heuristic for Budget

Constrained Dynamic Multi-workflow
Scheduling in Cloud Computing

Kirita-Rose Escott(B) , Hui Ma , and Gang Chen

Victoria University of Wellington, Wellington 6012, New Zealand
{kirita-rose.escott,hui.ma,aaron.chen}@ecs.vuw.ac.nz

Abstract. Dynamic Multi-workflow Scheduling (DMWS) in cloud com-
puting is a well-known combinatorial optimisation problem. It is a
great challenge to tackle this problem by scheduling multiple workflows
submitted at different times and meet user-defined quality of service
objectives. Scheduling with user-defined budget constraints is becom-
ing increasingly important due to cloud dynamics associated with on-
demand provisioning, instance types, and pricing. To address the Budget-
Constrained Dynamic Multi-workflow Scheduling (BC-DMWS) problem,
a novel Cooperative Coevolution Genetic Programming (CCGP) app-
roach is proposed. Two heuristic rules, namely VM Selection/Creation
Rule (VMR) and Budget Alert Rule (BAR), are learned automatically
by CCGP. VMR is used to allocate ready tasks to either existing or
newly rented VM instances, while BAR makes decisions to downgrade
VM instances so as to meet the budget constraint. Experiments show sig-
nificant performance and success rate improvement compared to state-
of-the-art algorithms.

Keywords: Cloud computing · Dynamic workflow scheduling ·
Genetic programming · Hyper heuristic · Cooperative coevolution ·
Budget constraint

1 Introduction

Workflow scheduling aims to allocate workflow tasks to cloud resources so as
to minimise the average response time involved in executing dynamically arriv-
ing tasks in workflows. Such a workflow scheduling problem is widely known as
NP-Hard [14]. Dynamic Multi-workflow Scheduling (DMWS) brings new chal-
lenges of scheduling multiple workflows arriving dynamically over time. Dynamic
resource provisioning enables new VMs to be provisioned when there are no suit-
able available VMs. Therefore, VM provisioning is sometimes considered during
VM selection to help meet budget constraints [1,12,24]. However, the introduc-
tion of VM provisioning and additional features, such as VM speed, VM cost,
and budget used, significantly increases the problem complexity. In the Bud-
get Constrained Dynamic Multi-workflow Scheduling (BC-DMWS) problem, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 146–161, 2023.
https://doi.org/10.1007/978-3-031-30035-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_10&domain=pdf
http://orcid.org/0000-0001-5574-1023
http://orcid.org/0000-0002-6232-4436
http://orcid.org/0000-0002-9597-497X
https://doi.org/10.1007/978-3-031-30035-6_10

CCGP for Budget Constrained DMWS 147

objective is to allocate a set of workflows to VMs for execution, in order to
minimise the makespan within a user-defined budget.

Current works that address budget constrains are mostly for Static Workflow
Scheduling problems and are often inapplicable for DMWS [12,23,24]. This is
due to the inability of static approaches to make scheduling decisions at runtime;
instead decisions must be made a priori. Furthermore, many existing works rely
on simple, man-made heuristics that do not consider many problem-centric fea-
tures, such as workflow pattern, VM cost and VM speed, which are important
for effective scheduling [3,5]. In [9–11], the limitations of the above works are
addressed by proposing a Genetic Programming Hyper-Heuristic (GPHH) app-
roach for dynamic workflow scheduling. However, previous GPHH studies aim
to evolve a single heuristic rule to minimise makespan and ignore budget con-
straints. Since most real-world scientific applications are data or computation
intensive, scientists are more interested in minimising the makespan and prefer
to set budget limits for the whole workflow execution [18]. In view of this, it
is vital to design scheduling approaches that are capable of satisfying budget
constraints.

In this work, we propose a novel Cooperative Coevolution Genetic Program-
ming (CCGP)-based approach that jointly evolves a Budget Alert Rule (BAR)
as well as a VM selection/creation rule (VMR). Several reasons motivate us
to propose this CCGP approach. Firstly, the new requirement for VM creation
increases the complexity of the scheduling decision. Therefore, we need to evolve
two rules by following a divide-and-conquer strategy. Secondly, VMs are rented
on an hourly basis. It is important to maximise VM utilisation during its rent-
ing period. Therefore, we require a second indicator to identify potential risk of
breaking the budget constraint. Finally, it is difficult to meet user-defined bud-
get and minimise makespan simultaneously. Therefore, we introduce a budget
alert indicator to achieve a desirable trade-off between performance and budget
constraint by downgrading expensive VMs.

The overall goal of this paper is to propose a CCGP-based approach to jointly
design both BAR and VMR to effectively tackle the BC-DMWS problem. To
achieve this goal, we have the following objectives:

1. Propose a new Budget Constrained Cooperative Coevolutionary Genetic Pro-
gramming (BC-CCGP) approach that can evolve BAR and VMR simultane-
ously for DMWS in consideration of the budget constraint.

2. Design a new terminal set with budget-centric features for the BC-CCGP
approach. To the best of our knowledge, this is the first study in the literature
on CCGP to generate heuristic rules to address budget constraint.

3. In order to evaluate the effectiveness of the CCGP approach we experimen-
tally compare with human-designed heuristic rules and an existing GPHH
algorithm [9] on multiple benchmark datasets.

148 K.-R. Escott et al.

2 Background and Related Work

2.1 Background

Hyper-heuristics are defined as automated methods for selecting or generat-
ing heuristics to solve hard computational problems [6]. In other words, hyper-
heuristics aim to search the heuristic space to find the best heuristic for a sit-
uation, rather than trying to solve the problem directly. Hyper-Heuristic algo-
rithms can be categorised as: selective and generative [6] methods. Selective
hyper-heuristics rely on existing heuristics, whereas generative hyper-heuristics
generate new heuristics based on experts’ domain knowledge. In our problem,
the applicability and effectiveness of existing heuristics is limited, therefore we
focus on generative hyper-heuristics.

Recently, Genetic Programming (GP) has become a popular approach for
generative hyper-heuristics, known as GP Hyper-Heuristic (GPHH) [17], which
has been shown to have strong ability to represent and evolve complex heuristics
[29–31]. The aim of GPHH is to evolve a heuristic that performs well on user-
defined tasks.

Coevolution creates an effective evolutionary process that enables mutual
adaption of two or more sub-populations [20]. Cooperative Coevolutionary
Genetic Programming (CCGP) is an approach that combines GP with a coop-
erative coevolutionary framework such that multiple heuristics can be evolved
to jointly solve a problem [22]. CCGP maintains N > 0 sub-populations for
generating N heuristics respectively. GPHH and CCGP have been successfully
applied to a variety of combinatorial optimisation problems such as Job Shop
Scheduling (JSS) [31], Uncertain Capacitated Arc Routing (UCARP) [21], and
Resource Allocation [26].

2.2 Related Work

Due to the dynamic nature of DMWS, heuristic rules are employed to allocate
tasks to VMs at runtime. In more complex scheduling environments, there may
be a number of interrelated problems that have to be resolved, i.e., the alloca-
tion of tasks to VMs in environments while satisfying budget constraints. This
raises the question of how to best deal with such complex scenarios. The most
straightforward approach is to design a set of heuristics, one for each decision [4].
However, it is challenging to design effective rules capable of meeting user-defined
budget constraints. To satisfy budget constraints, some existing works attempt
to improve an initial schedule. Wu et al. [27] proposed a budget-constrained
workflow mapping for Minimum End-to-End Delay in IaaS Multi-Cloud environ-
ments (BCMED-MC). Gao et al. [13] proposed a Workflow Mapping algorithm
for Financial Cost Optimisation. The limitation of these approaches is that they
are designed to solve static problems and may be too time consuming to handle
dynamic problems.

Existing approaches for dynamic resource provisioning, such as Greedy
Resource Provisioning HEFT (GRP-HEFT) [12] and Just-in-time Algorithm
(JIT-C) [24], rely on prior knowledge such as the sequence of workflows, the

CCGP for Budget Constrained DMWS 149

workflow arrival time and available VMs, in order to make VM provision deci-
sions. During the execution, the schedule is adjusted to dynamically acquire and
release VMs. However, for DMWS, such information is not known in advance.

GPHH and CCGP have recently been successfully applied to Workflow
Scheduling problems [11,29,30]. In these research works, rules evolved by GPHH
and CCGP can outperform human-designed rules. The automatic learning pro-
cess substantially reduces the complexity of the heuristic design, allowing GPHH
to design effective heuristics. Yu et al. [30] proposed a Multi-Objective Schedul-
ing Genetic Programming (MOSGP) that employs GP to evolve a set of non-
dominated heuristics to schedule workflows with different preferences over con-
flicting objectives, i.e., minimising makespan and minimising cost. MOSGP
focuses on the static workflow scheduling problem and did not consider the
arrival of multiple workflows over time, making the approach inapplicable for
DMWS. Yang et al. [29] proposed a GPHH approach called DWSGP to evolves
an optimal heuristic with the objective of minimising SLA penalties and VM
rental fees (cost) for dynamic workflow scheduling problems. However, DWSGP
does not aim to minimise makespan.

Xiao et al. [28] proposed a CCGP approach to minimise makespan for static
workflow scheduling. However, constraints are not considered and a single work-
flow is scheduled one at a time in this work. The addition of constraints further
complicates the already complex DMWS problem. For example, continuously
launching VMs can lead to low VM utilisation, high scheduling overhead and
inefficient resource provisioning policies that waste user budget [7]. Furthermore,
constraints can be described as soft or hard constraint. Since it is difficult to meet
hard budget constraints, it is advantageous to design an approach that is able to
adapt to complex scheduling environments and improve the chance for budget
satisfaction. CCGP is suitable for solving the BC-DMWS problem as it is able
to design multiple cooperative rules and these rules are able to adapt to the
changing workload patterns.

3 Problem Model

In the BC-DMWS problem, a sequence of workflows W = {w1, ..., wm} arrives
to the cloud at a constant rate per minute to be allocated i.e., each workflow
wi arrives at rate ar. A sequence of workflows W needs to be processed within
a user defined budget Wb. Each workflow wi is depicted as a directed acyclic
graph DAG(N,E), where N is a set of nodes representing n dependent tasks, E
indicates the data flow dependencies between tasks. Each workflow has a task
with no predecessors named entry task and a task with no successors named exit
task. There is a set of VM types Γ = {τ1, ..., τm} that can be selected to exe-
cute the workflow tasks. Each VM type τj has Compute Units πcu(τj) and hourly
price πprice(τj). When a VM vk is provisioned, it is assigned a VM type τj which
determines the speed mk and hourly cost ck. Furthermore, VMs are leased on an
hourly basis and charged for the full hour, whether or not the VM is utilised for
the entirety of that hour [2]. Therefore, in order to meet budget constraints, it is
for the best of interest of users to maximise utilisation of the provisioned VMs

150 K.-R. Escott et al.

and/or remove under-performing VMs. In the BC-DMWS problem it is neces-
sary to directly handle the dynamic nature of the cloud computing environment
through provisioning and de-provisioning VMs.

In line with the above, the BC-DMWS problem is formulated as follows:

Minimise: Makespan(W), (1a)
Subject to: TotalCost(W) ≤ Budget(Wb), (1b)

The execution time of task ti on virtual machine vk is obtained by dividing the
task size si by the speed mk of virtual machine vk below.

ETik =
si
mk

(2)

A task ti of wi becomes ready for execution whenever all of its parents
aParent(ti) have completed processing. The remaining lease time RLTk of a
virtual machine vk is the time until the end of the current lease. All leases
are an hour long and can be renewed. The execution cost of task ti on virtual
machine vk is given by Equation (3). ECik is obtained by determining if the
execution time ETik is less than the remaining lease time RLTk. If so, there is
no extra cost. Otherwise, the cost ck for a new lease of vk is charged. If the ETik

exceeds the hour lease period, the expected multiples of ck are charged to reflect
the cost.

ECik =
{

0, ifETik < RLTk

ck otherwise
(3)

The expected completion time ECTi of task ti is the total execution time of ti
and its children aChild(ti) on virtual machine vk, and is given by Equation (4).

ECTi = totalc∈aChild(ti)ETik (4)

The current accumulated cost is determined by summing the accumulated cost
ACk of all N virtual machines. The remaining budget RB is obtained by sub-
tracting the current accumulated cost from the given budget Wb below.

RB = Wb −
N∑
k=1

ACk (5)

4 Methodology

The Budget Constrained Dynamic Multi-workflow Scheduling (BC-DMWS)
problem consists of four decision-making procedures: (1) Task selection, (2)
VM selection/creation, (3) Budget alert, and (4) VM downgrade. Task selec-
tion chooses the next ready task to be allocated to a VM. VM selection/creation
determines which VM (either existing or newly leased VM) is the most appropri-
ate to allocate the selected task to. VMs can be of different types, sizes and costs,

CCGP for Budget Constrained DMWS 151

according to cloud providers’ decisions. VMs are leased on an hourly basis. The
price for an hourly lease is fixed for the hour whether or not the VM is utilised
the entire time [2]. The budget alert process determines whether it is necessary
to downgrade VMs to meet the user-defined budget constraint [25].

4.1 Budget Constrained Cooperative Coevolution Genetic
Programming Hyper-Heuristic

This subsection introduces the proposed Budget Constrained Cooperative Coevo-
lutionary Genetic Programming Hyper-Heuristic (BC-CCGP) approach for the
BC-DMWS problem. We first give an overview of our proposed BC-CCGP app-
roach, then introduce the representation, terminal sets and fitness function.
Finally, we describe the algorithm in detail.

Overview. We propose BC-CCGP, a CCGP based approach, to automatically
generate two rules. In BC-CCGP, the first sub-population of CCGP is used
to evolve the VM selection/creation Rule (VMR), which can be used to select
appropriate VMs to execute the next ready task. The second sub-population of
CCGP is used to evolve the Budget Alert Rule (BAR), which can be used to
determine whether or not a rented VM should be deprovisioned at the end of its
current lease.

Our proposed BC-CCGP approach is designed to evolve two rules simul-
taneously. Figure 1 presents an overview of the training process of BC-CCGP.
BC-CCGP initialises two sub-populations of rules randomly. The rules are then
cooperatively evolved by applying genetic operators, including parent selection,
crossover and mutation. Upon completion of the training process, the generated
rules are then used to solve unseen BC-DMWS problem instances during testing.

Representation, Terminal Set, and Function Set. In GP, a feasible solu-
tion is represented by a tree that consists of both function and terminal nodes
[19]. In this paper, we design a new terminal set Tset containing budget-centric
features of the BC-DMWS problem. As two rules are being evolved cooperatively,
we design two separate terminal sets summarized in Table 1. The function set
Fset contains a combination of arithmetic operators and mathematical functions.
The terminal and function sets are summarized in Table 1.

Fitness Function. The objective of BC-DMWS is to minimise the makespan
subject to a budget constraint with respect to a sequence of workflows arriving
dynamically over time. A training instance tii consists of a sequence of Workflows
W with different arrival rates. To evaluate a pair of VMR and BAR, the rules are
applied to a set of T training instances tii with different arrival rates, to evaluate
the generality of the evolved rules. This evaluation is completed through a series
of simulations using the Workflowsim simulator [8].

Inspired by [25], we propose a cost-fitness function to evaluate the rules’
effectiveness of controlling budgets. Specifically, whenever the cost of a candidate
rule pair exceeds the given budget, their fitness is penalised. Ftii defined in
Equation (8) hence encourages BC-CCGP to meet the budget constraint.

152 K.-R. Escott et al.

Fig. 1. Overview of the training process of BC-CCGP

The cost-fitness Fcosttii
of a training instance defined in (6) is obtained by

dividing the cost of training instance tii by the overall budget B.

Fcosttii
=

costtii
B

(6)

For any training instance tii, the time-fitness Ftimetii
is computed by dividing

the makespan of tii by maxTime, which is defined as the largest makespan
obtained by the current population. Thus, the fitness depends on the individuals
in the population as well as the solution being evaluated. Defined in (7), this
encourages the solutions towards minimising the makespan.

Ftimetii
=

makespantii

maxTime
(7)

The fitness Ftii of a pair of rules on a training instance is determined by consid-
ering both Fcosttii

and Ftimetii
, according to Equation (8):

Ftii =
{

Fcosttii
+ 1, if Fcosttii

> 1
Ftimetii

otherwise (8)

The sum of the fitness of an individual on the training instances F̃ is divided by
the number of training instances T to calculate the overall fitness of a pair of
VMR and BAR, as defined in Equation (9).

F =
F̃

T
(9)

CCGP for Budget Constrained DMWS 153

Table 1. The Terminal and Function Sets for the Proposed BC-CCGP Approach

Symbol Description

Attributes for VM selection

TS The total size of a task ti

VS The speed of a virtual machine vj

ET Execution time of a task ti on vm vj

EC Execution cost of a task ti on vm vj

ECT Expected completion time of a task ti

Attributes for budget alert

RB Remaining budget sb

PB Percentage of budget this allocation uses

RT Remaining time on the current lease of vj

MC Maximum cost of vm vj to execute task ti

Function set +, -, ×, protected %, min, max

Algorithm. The proposed BC-CCGP approach is described in Algorithm 1.
It starts with the initialisation of two sub-populations. Each sub-population
consists of N randomly generated heuristic rules. The ramped Half-and Half
[16] initialisation method is applied to ensure diversity in each sub-population.

The coevolution process begins on line 4, and repeats until a predefined
maximum number of generations maxGen is reached. Each iteration is counted

Algorithm 1: BC-CCGP for the BC-DMWS problem
Input: A set of training instance T , Terminal sets and function sets
Output: The best VM selection/creation rule, The best Budget alert rule

1 Initialise population Pr with two sub-populations Pr = {Pvmr, Pbar};
2 Pr ← {pr1, pr2, ..., prN};
3 gen ← 0;
4 while maxGen is not reached do
5 for r = vmr → bar do
6 for i = 1 → N do

7 F ← apply pri and pr
′

rep on the training instance sgen where r �= r′

(see Algorithm 2);

8 calculate ˜F ;

9 pri ← ˜F
N

;

10 end

11 end
12 for r = vmr → bar do

13 pselectedr ← TournamentSelection(Pr);

14 pr ← genetic operators(pselectedr);

15 end
16 gen ← gen + 1

17 end

154 K.-R. Escott et al.

by gen. The rules are evaluated in turns (line 5 to line 11). At the beginning,
each heuristic rule pri from Pvmr is paired with a representative pr

′
rep from Pbar

(line 6 to line 11). In the first generation, a random heuristic rule from Pbar

is selected as the representative of its sub-population. The pair of rules is then
evaluated on line 7.

In the evaluation, the pair VMR and BAR are applied to schedule a sequence
of workflows on to a set of virtual machines for execution. The detailed scheduling
process is given in Algorithm 2. The scheduling returns the cost and time of
a training instance. The values are then normalised (line 8) by Eq. (6) and (7),
before calculating the fitness of a training instance Eq. (8). A training instance
sgen is comprised of a sequence of workflows, an arrival rate and a budget factor.
The set of workflows in each generation is switched to improve generalisation of
the evolved rule pairs. Additionally, in each evaluation the application of different
arrival rates is considered. The sum of the fitness of the training instances F̃ is
then used to determine the fitness of the given pair of rules by Eq. (9) on line 9.

After the rules have been evaluated, the tournament selection and genetic
operators are applied on the two sub-populations [26]. Tournament selection
guides the evolutionary process [16]. Crossover and mutation generate new solu-
tions from the selected rules. Crossover randomly selects branches of two rules to
switch and mutation randomly selects a branch to be replaced with a randomly
generated branch [26]. This crossover method is called one-point crossover, and
this mutation method is called uniform mutation. After tournament selection
and genetic operators are applied, new heuristics rules are added to the new
population and the next iteration begins.

Algorithm 2: The procedure of scheduling workflow tasks to VMs
Input: VM selection rule vmr, Budget alert rule bar
Output: cost of training instance cost, makespan of scenario time

1 for a training instance in S do
2 cost = 0;
3 time = 0;
4 Order tasks by number of children;
5 for each ready task r in RT do
6 vm = vmSelectionCreation(r, vmr);
7 if budgetAlert(bar) then
8 vmDowngrade = findVMToDowngrade();
9 flagVMToDowngrade(vmDowngrade);

10 end
11 schedule(r, vm);

12 end
13 cost += calculateCost();
14 time += calculateMakespan();

15 end
16 return time and cost;

CCGP for Budget Constrained DMWS 155

Algorithm 2 describes the scheduling process using the heuristics generated
by BC-CCGP. At the beginning, the simulator initialises a data center with no
currently available virtual machines. Then, workflows arrive with an arrival rate
based on a Poisson distribution [1]. The sequence of workflows need to be processed
with a user-defined budget. In this work different budget factors with values rang-
ing from tight (i.e., 1) to relaxed (i.e., 20) are considered, similar to [23]. As the
workflows arrive, ready tasks are ordered by the number of child tasks they have
(line 4). A ready task with a higher number of children is given a higher priority.
This is the mechanism for task selection. TheVM selection/creation rule VMR are
used to select an existing VM or create a new VM on line 6. The idea of the VM
selection/creation rule is to include a new VM (one of each type) into the candi-
date VM list which is only provisioned if selected. Then, theBudget alert rule BAR
determines if the current allocation of task to VM is likely to result in the viola-
tion of the budget constraint (line 7). In the case where it is, a man-made heuristic
(line 8) based on the Less Time-Consuming Task List (LTCTL) step of the Fair
Budget-Constrained Workflow Scheduling algorithm (FBCWS) [23] is employed,
to select a VM to be turned off at the end of its current lease period. On (line 9)
the VM downgrade occurs, such that the selected VM will not be renewed at the
end of the lease. As VMs are charged for the full hour it makes sense to keep the
VM on until the end of the lease to increase the utilisation. Any new ready tasks
can still be scheduled to such VMs for execution, unless the execution time exceeds
the remainder of the lease. The training process outputs the cost and makespan,
which are then used to determine the fitness.

5 Experiments

To evaluate the performance of our proposedBC-CCGP approach for BC-DMWS,
we conduct experiments using five benchmark scientific workflows and compare
with two state-of-the-art methods. Benchmark workflows obtained from real-
world applications are commonly used in literature [15,29,30]. These benchmark
workflows are summarised in able 4. This section first describes the experiment
design, including competing methods, datasets, and test instances, before present-
ing the full results.

5.1 Experiment Design

To experimentally compare our BC-CCGP and other methods, we evaluate the
performance of our BC-CCGP algorithm on a variety of training instances with
different complexities, involving 6 VM types, 15 workflow applications, 3 arrival
rates, and 5 budget factors. We perform this evaluation using the WorkflowSim
simulator [8] to simulate a real cloud environment and execute a series of het-
erogeneous workflows using heuristic rules evolved by BC-CCGP.

Competing Algorithms. We compared our BC-CCGP approach with two
state-of-the-art scheduling algorithms summarized below:

156 K.-R. Escott et al.

– BCGP [9] is an existing GPHH for dynamic workflow scheduling, with mod-
ification to the fitness function to explicitly consider the budget constraint
as well as makespan as the optimisation objective. BCGP generates a single
heuristic to select the best VM for the current ready task.

– GRP-HEFT [12] is a modified version of HEFT that is designed to tackle the
budget constraint while always selecting the fastest available virtual machine
to execute a task.

Dataset. We design 15 test instances for the experiments (see Table 2) which
are divided into five groups, according to the budget factor. A larger budget
factor indicates a larger budget. Each test instance has distinct arrival rates
ranging from 1.5 to 10. We have extended the simulator to include dynamic
workflow arrival and dynamic VM provisioning. Each test instance contains a
set of 10 scientific workflows of different sizes and patterns.

Table 2. Test Instances

Test instance Budget factor Arrival rate

1 1 1.5
2 1 5
3 1 10

4 5 1.5
5 5 5
6 5 10

7 10 1.5
8 10 5
9 10 10

10 15 1.5
11 15 5
12 15 10

13 20 1.5
14 20 5
15 20 10

Table 3. VM Types Based on Ama-
zon EC2

Type of VM vCPU ECU Price ($/h)
m5.large 2 10 0.096
m5.xlarge 4 16 0.192
m5.2xlarge 8 37 0.384
m5.4xlarge 16 70 0.768
m5.8xlarge 32 128 1.536
m5.12xlarge 48 168 2.304

To create all the instances, we use five well-known real world scientific work-
flow patterns: CyberShake, Epigenomics, Inspiral, Montage and Sipht [15,29,30].
We consider small, medium and large workflows that consist of 24-30, 46-60 and
100 tasks, respectively. Each time a simulation is performed, 10 workflows are
randomly sampled from the 15 workflows shown in Table 4.

Table 4. Number of Tasks in Workflow Applications

Application Size CyberShake Epigenomics Inspiral Montage SIPHT

Small 30 24 30 25 30

Medium 50 46 50 50 60

Large 100 100 100 100 100

CCGP for Budget Constrained DMWS 157

Cloud service providers typically offer various types of VMs with varying
configurations. This paper considers a data centre equipped with 6 different VM
types. Table 3 presents the VM configurations of EC2 that have been studied
previously in [29]. As evidenced in the table, large vCPUs correspond to fast
processing speed and high hourly rental price.

Parameter Settings. In this work we follow the standard parameter settings
that are used commonly in literature [26]. In our experiments we set the popula-
tion size to 512, and the number of generations to 100. The crossover, mutation
and reproduction rates are set to 85%, 10% and 5%. The tournament size for
tournament selection is 5 and the maximum depth of a tree is set to 10. Tour-
nament selection is used to encourage the survival of effective heuristics in the
population. We run the experiments 30 times to verify our results.

Performance Metrics. We use the following performance metrics in the exper-
iments: Makespan (M), Cost (C) and Success Rate (SR). M and C measure the
average cost and makespan achieved by an algorithm over 30 independent runs.
The Success Rate (SR) of each algorithm is calculated in Equation (10) as the
ratio between the number of simulation runs that were able to meet the budget
nWbk

and the total number of simulations ntotal, multiplied by 100.

SR =
nWbk

ntotal
× 100; (10)

5.2 Experiment Results

This subsection first reports the cost, makespan and success rate achieved by
BC-CCGP, BCGP [9] and GRP-HEFT [12]. Subsequently, we investigate the
scheduling processes of these methods to identify potential causes of the observed
performance differences among all the competing methods.

Overall Results. The comparison of cost, makespan and success rate of the
three methods are shown in Table 5. The bold entries in the table indicate the
best performance and the entries that are in red indicate the worst performance.
The standard deviation is presented for makespan and cost. Although in parts
the standard deviation is high, statistically it is clear that rules generated by BC-
CCGP have the advantage over BCGP and GRP-HEFT for minimising cost and
maximising the success rate in all test instances. BCGP is able to achieve slightly
shorter makespan than BC-CCGP, at the expense of a substantially higher cost.
Meanwhile, the success rate of BCGP suffers. GRP-HEFT consistently performs
the worst across makespan and cost and is unable to meet the budget in any of
the test instances.

Detailed Results. As detailed in Table 2, the budget factor increases over the
test instances. Table 5 shows that the cost also increases over the test instances
across all methods. Thus, in the cases of BC-CCGP and BCGP, an increase
in success rate over the test instances as the budget factor increases can be
observed.

158 K.-R. Escott et al.

Table 5. Overall Results of Test Instances

Makespan (x104sec) Cost ($) Success Rate (%)

Test

Instance
BC-CCGP BCGP [9] GRPHEFT [12] BC-CCGP BCGP [9] GRPHEFT [12] BC-CCGP BCGP [9] GRP

HEFT [12]

1 1.96± 1.21 1.95±1.21 13.33±11.5 15.08±5.09 71.73±45.60 67.69±51.01 20.00 0.00 0.00

2 1.93±1.22 1.92±1.22 13.5±11.66 15.48±5.11 74.43±49.48 65.81±47.36 13.33 0.00 0.00

3 1.92±1.22 1.92±1.22 13.4±11.6 16.39±4.65 82.34±53.14 65.26±46.70 10.00 0.00 0.00

4 1.95± 1.21 1.95±1.21 4.90±2.93 24.98±22.09 73.21±47.14 105.03±74.85 60.00 6.67 0.00

5 1.92±1.22 1.92±1.22 4.81±2.80 25.22±24.42 81.05±54.64 105.58±74.59 60.00 3.33 0.00

6 1.92±1.22 1.92±1.22 4.95±2.91 27.70±27.26 89.97±59.43 104.67±75.64 60.00 3.33 0.00

7 1.96± 1.21 1.95±1.21 3.40±1.41 30.66±36.56 80.16±67.52 171.10±120.41 86.67 50.00 0.00

8 1.93±1.22 1.92±1.22 3.37±1.45 34.29±43.81 83.75±69.14 174.26±120.51 83.33 53.33 0.00

9 1.93±1.22 1.92±1.22 3.34±1.40 34.75±41.21 91.24±71.22 169.96±116.04 70.00 43.33 0.00

10 1.96±1.21 1.95±1.21 2.66±0.79 47.51±49.73 74.96±45.40 332.23±348.04 93.33 83.33 0.00

11 1.93±1.22 1.92±1.22 2.63±0.78 49.47±48.09 77.98±49.75 333.81±363.72 96.67 86.67 0.00

12 1.93±1.22 1.92±1.22 2.62±0.77 52.14±49.97 89.11±58.47 299.53±339.81 96.67 80.00 0.00

13 1.95±1.21 1.95±1.21 2.78±0.94 44.37±48.74 176.21±271.48 665.30±679.48 93.33 73.33 0.00

14 1.93±1.22 1.92±1.22 2.78±0.96 45.66±48.05 176.53±267.08 675.20±727.29 96.67 76.67 0.00

15 1.92±1.22 1.92±1.22 2.76±0.98 51.38±54.82 191.44±273.57 555.98±614.46 93.33 70.00 0.00

GRP-HEFT, however, is unsuccessful in meeting the budget constraint across
all test instances. This is due to the fact that GRP-HEFT is a fundamentally
static method that only partially supports dynamic resource provisioning. First,
GRP-HEFT greedily provisions a set of VMs according to the budget, starting
from the most expensive VM type. Then, the modified HEFT allocates tasks
onto VMs, removing unused VMs during the process. This is time consuming
and often loses effectiveness for real-time scheduling.

In BC-DMWS, scheduling decisions must be made in real time. This is likely
the cause of the inability for GRP-HEFT to meet the budget constraint in any
test instance. Furthermore, in test instances 1-3, GRP-HEFT achieves a much
larger makespan. Due to the tight budget, GRP-HEFT is unable to provision
many VMs. This can lead to a bottleneck of waiting tasks, ultimately increasing
the makespan.

It is not surprising that BCGP is able to achieve competitive makespan, com-
parable to previous findings [9]. The fitness function is the same as BC-CCGP,
however, BCGP does not perform as well on cost or success rate. In fact BCGP
achieves the highest cost for test instances 1-3 where there is a tight budget. This
is like due to the fact that the allocation of tasks to VMs, as well as VM creation
rely on a singular rule. Moreover, the single rule does not consider budget factors
such as remaining budget and maximum cost. Furthermore as a single rule does
the allocation, no adjustments are made to improve the probability of meeting
the budget constraint after allocation.

During the scheduling process, an initial rule generated by BC-CCGP (VMR)
is employed to create or select a VM to execute a ready task. A secondary
rule (BAR) is then able to determine whether an adjustment needs to be made
to improve the probability of meeting the budget constraint. The VM that is
selected to be downgraded will be turned off at the end of its current lease. This
allows the VM to be considered for scheduling during its entire lease period,
improving the utilisation of every leased VM. As a result, BC-CCGP is able

CCGP for Budget Constrained DMWS 159

to achieve a competitive makespan across different arrival rates and budgets
consistently, outperforming the other methods in both cost and success rate.

5.3 Analysis

Our BC-CCGP approach uses a set of features to evolve rules, including vari-
ous properties of workflows and VMs as summarised in Table 1. Based on the
best rules evolved by BC-CCGP and BCGP, the frequency of different fea-
tures/terminals utilised by these rules are summarized in Table 6.

Table 6. Frequency of Each Terminal for Virtual Machine Selection/Creation (VMR)
and Budget Alert Rule (BAR)

Rules VM Selection/Creation Rule (VMR) Budget Alert Rule (BAR)

Terminal EC ECT ET RLT TS VS MC PB RB RT

BC-CCGP 42.1 7.1 8.1 15.3 11.8 15.6 21.7 22.0 27.1 29.1

BCGP 14.9 13.2 14.4 21.5 15.3 20.6

Comparing VMRs evolved by BC-CCGP and BCGP, we see that the termi-
nals have different frequency in different approaches. In BC-CCGP, the Execu-
tion Cost (EC) is apparently the most frequently occurring terminal. In com-
parison, in BCGP the frequency of terminals is more evenly distributed with
Remaining Lease Time (RLT) and VM Speed (V S) being the most frequently
occurring.

Similarly, we can see that the frequency of terminals is relatively evenly dis-
tributed for BAR. The most frequently occurring terminals are the Remaining
Time on Current Lease (RT) and Remaining Budget (RB). We can hence con-
clude that Execution Cost (EC), Remaining Time on Current Lease (RT) and
Remaining Budget (RB) are among the most important features to consider in
the BC-DMWS problem. EC was the fourth commonly occurring terminal in
BCGP. As EC was among the most important features for BC-DMWS, the fact
that it was less prevalent in the rules generated by BCGP may attribute to the
poor performance of BCGP.

6 Conclusions

In this paper, we present a new CCGP approach, BC-CCGP, for Budget Con-
strained Dynamic Workflow Scheduling (BC-DWS). The novelty of our app-
roach is that our approach is capable of coevolving multiple scheduling heuris-
tics, one for VM selection/creation and one for budget alert, to effectively solve
the budget-constraint dynamic multi-workflow scheduling problem. The experi-
mental evaluations demonstrate that our approach is able to make adjustments
during scheduling to improve the probability of meeting budget constraints. The
results show that the rules generated by our approach are able to consistently
minimise cost and achieve the best success rate without sacrificing the perfor-
mance for makespan. In the future, our proposed approach can be extended
to coevolve rules for other scheduling decisions such as task selection and VM
downgrade to further improve the performance.

160 K.-R. Escott et al.

References

1. Arabnejad, V., Bubendorfer, K., Ng, B.: Dynamic multi-workflow scheduling: a
deadline and cost-aware approach for commercial clouds. Future Gener. Comput.
Syst. 100, 98–108 (2019)

2. AWS: Amazon EC2 on demand pricing (2022). https://aws.amazon.com/ec2/
pricing/on-demand/

3. Blythe, J., Jain, S., et al.: Task scheduling strategies for workflow-based applica-
tions in grids. In: CCGrid 2005. IEEE International Symposium on Cluster Com-
puting and the Grid, 2005, vol. 2, pp. 759–767. IEEE (2005)

4. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2015)

5. Braun, T.D., Siegel, H.J., et al.: A comparison of eleven static heuristics for map-
ping a class of independent tasks onto heterogeneous distributed computing sys-
tems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)

6. Burke, E.K., et al.: A classification of hyper-heuristic approaches. In: Gendreau, M.,
Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol. 146, pp. 449–468. Springer, Boston, MA
(2010). https://doi.org/10.1007/978-1-4419-1665-5 15

7. Chakravarthi, K.K., Neelakantan, P., Shyamala, L., Vaidehi, V.: Reliable budget
aware workflow scheduling strategy on multi-cloud environment. Cluster Comput.
25(2), 1189–1205 (2022)

8. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows
in distributed environments. In: 2012 IEEE 8th International Conference on E-
Science, pp. 1–8. IEEE (2012)

9. Escott, K.-R., Ma, H., Chen, G.: Genetic programming based hyper heuristic app-
roach for dynamic workflow scheduling in the cloud. In: Hartmann, S., Küng, J.,
Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392, pp. 76–90.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2 6

10. Escott, K.R., Ma, H., Chen, G.: A genetic programming hyper-heuristic approach
to design high-level heuristics for dynamic workflow scheduling in cloud. In: 2020
IEEE Symposium Series on Computational Intelligence (SSCI), pp. 3141–3148.
IEEE (2020)

11. Escott, K.-R., Ma, H., Chen, G.: Transfer learning assisted GPHH for dynamic
multi-workflow scheduling in cloud computing. In: Long, G., Yu, X., Wang, S.
(eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 440–451. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-97546-3 36

12. Faragardi, H.R., Sedghpour, M.R.S., Fazliahmadi, S., Fahringer, T., Rasouli,
N.: GRP-HEFT: a budget-constrained resource provisioning scheme for workflow
scheduling in IaaS clouds. IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254
(2019)

13. Gao, T., Wu, C.Q., Hou, A., Wang, Y., Li, R., Xu, M.: Minimizing financial cost
of scientific workflows under deadline constraints in multi-cloud environments. In:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp.
114–121 (2019)

14. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for
multiple machine scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi,
L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 321–330.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1 30

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-3-030-59051-2_6
https://doi.org/10.1007/978-3-030-97546-3_36
https://doi.org/10.1007/978-3-540-71605-1_30

CCGP for Budget Constrained DMWS 161

15. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

16. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Statist. Comput. 4(2), 87–112 (1994)

17. Koza, J.R., Koza, J.R.: Genetic Programming: on the Programming of Computers
by Means of Natural Selection, vol. 1. MIT Press (1992)

18. Li, H., Wang, D., Xu, G., Yuan, Y., Xia, Y.: Improved swarm search algorithm
for scheduling budget-constrained workflows in the cloud. Soft Comput. 26(8),
3809–3824 (2022). https://doi.org/10.1007/s00500-022-06782-w

19. Lin, J., Zhu, L., Gao, K.: A genetic programming hyper-heuristic approach for the
multi-skill resource constrained project scheduling problem. Expert Syst. Appl.
140, 112915 (2020)

20. Liu, L., Zhang, M., Buyya, R., Fan, Q.: Deadline-constrained coevolutionary
genetic algorithm for scientific workflow scheduling in cloud computing. Concurr.
Comput. Pract. Exp. 29(5), e3942 (2017)

21. MacLachlan, J., Mei, Y.: Look-ahead genetic programming for uncertain capaci-
tated arc routing problem. In: 2021 IEEE Congress on Evolutionary Computation
(CEC), pp. 1872–1879. IEEE (2021)

22. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolu-
tion genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2013)

23. Rizvi, N., Ramesh, D.: Fair budget constrained workflow scheduling approach for
heterogeneous clouds. Cluster Comput. 23(4), 3185–3201 (2020). https://doi.org/
10.1007/s10586-020-03079-1

24. Sahni, J., Vidyarthi, D.P.: A cost-effective deadline-constrained dynamic schedul-
ing algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud
Comput. 6(1), 2–18 (2015)

25. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
service deployment for composite applications in multi-cloud environment. IEEE
Trans. Parallel Distrib. Syst. 31(8), 1954–1969 (2020)

26. Tan, B., Ma, H., Mei, Y., Zhang, M.: A cooperative coevolution genetic program-
ming hyper-heuristic approach for on-line resource allocation in container-based
clouds. IEEE Trans. Cloud Comput. (2020)

27. Wu, C.Q., Cao, H.: Optimizing the performance of big data workflows in multi-
cloud environments under budget constraint. In: 2016 IEEE International Confer-
ence on Services Computing (SCC), pp. 138–145. IEEE (2016)

28. Xiao, Q.Z., Zhong, J., Feng, L., Luo, L., Lv, J.: A cooperative coevolution hyper-
heuristic framework for workflow scheduling problem. IEEE Trans. Serv. Comput.
(2019)

29. Yang, Y., Chen, G., Ma, H., Zhang, M., Huang, V.: Budget and SLA aware dynamic
workflow scheduling in cloud computing with heterogeneous resources. In: 2021
IEEE Congress on Evolutionary Computation (CEC), pp. 2141–2148. IEEE (2021)

30. Yu, Y., Ma, H., Chen, G.: Achieving multi-objective scheduling of heterogeneous
workflows in cloud through a genetic programming based approach. In: 2021 IEEE
Congress on Evolutionary Computation (CEC), pp. 1880–1887. IEEE (2021)

31. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Collaborative multifidelity-based sur-
rogate models for genetic programming in dynamic flexible job shop scheduling.
IEEE Trans. Cybern. (2021)

https://doi.org/10.1007/s00500-022-06782-w
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10586-020-03079-1

OneMax Is Not the Easiest Function
for Fitness Improvements

Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
{marc.kaufmann,maxime.larcher,johannes.lengler,xun.zou}@inf.ethz.ch

Abstract. We study the (1 : s + 1) success rule for controlling the
population size of the (1, λ)-EA. It was shown by Hevia Fajardo and
Sudholt that this parameter control mechanism can run into problems
for large s if the fitness landscape is too easy. They conjectured that
this problem is worst for the OneMax benchmark, since in some well-
established sense OneMax is known to be the easiest fitness landscape.

In this paper we disprove this conjecture. We show that there exist
s and ε such that the self-adjusting (1, λ)-EA with the (1 : s + 1)-rule
optimizes OneMax efficiently when started with εn zero-bits, but does
not find the optimum in polynomial time on Dynamic BinVal. Hence,
we show that there are landscapes where the problem of the (1 : s + 1)-
rule for controlling the population size of the (1, λ)-EA is more severe
than for OneMax. The key insight is that, while OneMax is the easiest
function for decreasing the distance to the optimum, it is not the easiest
fitness landscape with respect to finding fitness-improving steps.

Keywords: parameter control · onemax · self-adaptation · (1, λ)-EA ·
one-fifth rule · dynamic environments · evolutionary algorithm

1 Introduction

The OneMax function assigns to a bit string x the number of one-bits in x.
Despite, or rather because of its simplicity, this function remains one of the
most important unimodal benchmarks for theoretical analysis of randomized
optimization heuristics, and specifically of Evolutionary Algorithms (EAs). A
reason for its special role is the result by Doerr, Johannsen and Winzen [13]
that it is the easiest function with a unique optimum for the (1+1)-EA in terms
of expected optimization time. This result was extended to many other EAs [37]
and to stochastic dominance instead of expectations [38]. Easiest and hardest
functions have become research topics of their own [6,16,18].

M. Kaufmann—The author was supported by the Swiss National Science Foundation
[grant number 200021 192079].
X. Zou—The author was supported by the Swiss National Science Foundation [grant
number CR-SII5 173721].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 162–178, 2023.
https://doi.org/10.1007/978-3-031-30035-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_11

OneMax Is Not the Easiest Function for Fitness Improvements 163

Whether a benchmark is easy or hard is crucial for parameter control mecha-
nisms (PCMs) [9,17]. Such mechanisms address the classical problem of setting
the parameters of algorithms. They can be regarded as meta-heuristics which
automatically tune the parameters of the underlying algorithm. The hope is that
(i) optimization is more robust with respect to the meta-parameters of the PCM
than to the parameters of the underlying algorithm, and (ii) PCMs can deal
with situations where different optimization phases require different parameter
settings for optimal performance [3,4,10,12,14].

To this end, PCMs often rely on an (often implicit) measure of how easy
the optimization process currently is. One of the most famous examples is the
(1 : s + 1)-rule for step size adaptation in continuous optimization [7,25,34,36].
It is based on the heuristic that improving steps are easier to find if the step
size is small, but that larger step sizes are better at exploiting improvements, if
improvements are found at all. Thus we have conflicting goals requiring small and
large step sizes, respectively, and we need a compromise between those goals.
The (1 : s + 1)-rule resolves this conflict by defining a target success rate1 of
qs = 1/(s + 1), increasing the step size if the success rate (the fraction of steps
which find an improvement) is above qs, and decreasing the step size otherwise.
Thus it chooses larger step sizes in environments where improvements are easy
to find, and chooses smaller step sizes in more difficult environments.

More recently, the (1 : s+1)-rule has been extended to parameters in discrete
domains, in particular to the mutation rate [11,15] and offspring population
size [19,20] of EAs. For the self-adapting (1, λ)-EA with the (1 : s + 1)-rule, or
SA-(1, λ)-EA for short, Hevia Fajardo and Sudholt showed in [19,20] an interest-
ing collection of results on OneMax. They showed that optimization is highly
efficient if the success ratio s is less than one. In this case, the algorithm achieves
optimal population sizes λ throughout the course of optimization. The optimal λ
ranges from constant at early stages to almost linear (in the problem dimension
n) values of λ for the last steps. On the other hand, the mechanism provably
fails completely if s ≥ 18.2 Then the algorithm does not even manage to obtain
an 85% approximation of the optimum in polynomial time.

Hevia Fajardo and Sudholt also gave some important insights into the reasons
for failure. The problem is that for large values of s, the algorithm implicitly
targets a population size λ∗ with a rather small success rate.3 However, the
(1, λ)-EA is a non-elitist algorithm, i.e., the fitness of its population can decrease
over time. This is particularly likely if λ is small. So for large values of s, the
PCM chooses population sizes that revolve around a rather small target value λ∗.
It is still guaranteed that the algorithm makes progress in successful steps, which
comprise a ≈ 1/(s + 1) fraction of all steps. But due to the small population
size, it loses performance in some of the remaining ≈ s/(s + 1) fraction of steps,
and this loss cannot be compensated by the gain of successful steps.

1 Traditionally the most popular value is s = 4, leading to the famous one-fifth rule [2].
2 Empirically they found the threshold between the two regimes to be around s ≈ 3.4.
3 See [23, Section 2.1] for a detailed discussion of the target population size λ∗.

164 M. Kaufmann et al.

A counter-intuitive aspect of this bad trade-off is that it only happens when
success is too easy. If success is hard, then the target population size λ∗ is also
large. In this case, the losses in unsuccessful steps are limited: most of the time,
the offspring population contains a duplicate of the parent, in which case the
loss is zero. So counter-intuitively, easy fitness landscapes lead to a high runtime.
For OneMax, this means that the problems do not occur close to the optimum,
but only at linear distance from the optimum. This result is implicitly contained
in [19,20] and explicitly in [23]: for every s > 0 there is ε > 0 such that if the
SA-(1, λ)-EA with success ratio s starts within distance at most εn from the
optimum, then it is efficient with high probability, i.e., with probability 1−o(1).

The results by Hevia Fajardo and Sudholt in [19,20] were for OneMax, but
Kaufmann et al. [23,24] showed that this holds for all monotone, even all dyna-
mic monotone functions4. Only the threshold for s changes, but it is a universal
threshold: there exist s1 > s0 > 0 such that for every s < s0, the SA-(1, λ)-EA
is efficient on every (static or dynamic) monotone function, while for s > s1 the
SA-(1, λ)-EA fails for every (static or dynamic) monotone function to find the
optimum in polynomial time. Moreover, for all s > 0 there is ε > 0 such that with
high probability the SA-(1, λ)-EA with parameter s finds the optimum of every
(static or dynamic) monotone function efficiently if it starts at distance εn from
the optimum. Hence, all positive and negative results for OneMax from [19]
generalize to every single function in the class of dynamic monotone functions.
This class falls into more general frameworks of partially ordered functions that
are easy to optimize under certain generic assumptions [5,21].

To summarize, small success rates (large values of s) are problematic, but
only if the fitness landscape is too easy. Based on this insight, and on the afore-
mentioned fact that OneMax is the easiest function for the (1 + 1)-EA, Hevia
Fajardo and Sudholt conjectured that OneMax is the most problematic situ-
ation for the SA-(1, λ)-EA: “given that for large values of s the algorithm gets
stuck on easy parts of the optimisation and that OneMax is the easiest func-
tion with a unique optimum for the (1 + 1)-EA, we conjecture that any s that
is efficient on OneMax would also be a good choice for any other problem.” In
the terminology above, the conjecture says that the threshold s0 below which
the SA-(1, λ)-EA is efficient for all dynamic monotone functions, is the same as
the threshold s′

0 below which the SA-(1, λ)-EA is efficient on OneMax. Note
that the exact value of s′

0 is not known theoretically except for the bounds
1 ≤ s′

0 ≤ 18, but that empirically s′
0 ≈ 3.4 [19]. If the conjecture was true,

then experiments on OneMax could provide parameter control settings for the
SA-(1, λ)-EA that work in much more general settings.

However, in this paper we disprove the conjecture. Moreover, our result makes
it more transparent in which sense OneMax is the easiest benchmark for the
(1 + 1)-EA or the (1, λ)-EA, and in which sense it is not. It is the easiest in the

4 A function f : {0, 1}n → R is monotone if flipping a zero-bit into a one-bit always
improves the fitness. In the dynamic monotone setting, selection may be based on
a different function in each generation, but it must always be a monotone function.
The formal definition is not relevant for this paper, but can be found in [23].

OneMax Is Not the Easiest Function for Fitness Improvements 165

sense that for no other function with a unique global optimum, the distance to
the optimum decreases faster than for OneMax [13,38]. But it is not the easiest
function in the sense that it is the easiest to make a fitness improvement, i.e., to
find a successful step. Rephrased, other functions make it easier to find a fitness
improvement than OneMax. For the problems of the (1 : s + 1)-rule described
above, the latter variant prevails, since the (1 : s+1)-rule adjusts its population
size based on the success probability of finding a fitness improvement.

1.1 Our Result

We are far from being able to determine the precise efficiency threshold s′
0 even

in the simple setting of OneMax, and the upper and lower bound 1 ≤ s′
0 ≤

18 are far apart. Therefore, it is no option to just compute and compare the
thresholds for different functions. Instead, we will identify a setting in which we
can indirectly compare the efficiency thresholds for OneMax and for some other
function, without computing either of the thresholds explicitly. For this reason,
we only study the following, rather specific setting that makes the proof feasible.

We show that there are ε > 0 and s > 0 such that with high probability the
SA-(1, λ)-EA with parameter s (and suitably chosen other parameters), started
at any search point at distance exactly εn from the optimum

– finds the optimum of OneMax in O(n) generations;
– does not find the optimum of Dynamic BinVal in polynomial time.

The definition of the Dynamic BinVal function can be found in Sect. 2.2. The
key ingredient to the proof is showing that at distance εn from the optimum,
Dynamic BinVal makes it easier to find a fitness improvement than OneMax
(Lemma 7). Since easy fitness landscapes translate into poor choices of the pop-
ulation size of the SA-(1, λ)-EA, and thus to large runtimes, we are able to find a
value of s that separates the two functions: for this s and for distance εn from the
optimum, the algorithm will have drift away from the optimum for Dynamic
BinVal (leading to exponential runtime), but drift towards the optimum for
OneMax. Since the fitness landscape for OneMax only gets harder closer to
the optimum, we then show that the drift remains positive all the way to the
optimum for OneMax. A sketch with more detail can be found in Sect. 3.1.

A limitation of our approach is that we start with a search point at distance εn
from the optimum, instead of a uniformly random search point in {0, 1}n. This sim-
plifies the calculations substantially, and it disproves the strong “local” interpre-
tation of the conjecture in [19] that an s that works for OneMax in some specific
part of the search space also works in the same part for all other dynamic monotone
functions. Our choice leaves open whether some weaker version of the conjecture
in [19] might still be true. But since our argument refutes the intuitive foundation
of the conjecture, we do not think that this limitation is severe.

Another limitation is our use of a dynamic monotone function instead of a
static one. We show that OneMax is not the easiest function in the class of
dynamic monotone functions, but it could still be easiest in the smaller class of

166 M. Kaufmann et al.

static monotone functions. We have made this choice for technical simplicity. We
believe that our results for Dynamic BinVal could also be obtained with very
similar arguments for a static HotTopic function as introduced in [28]. How-
ever, Dynamic BinVal is simpler than HotTopic functions, and the dynamic
setting allows us to avoid some technical difficulties. We thus restrict ourselves
to experiments for this hypothesis (Sect. 4), and find that OneMax indeed has a
harder fitness landscape (in terms of improvement probability) than other static
monotone or even linear functions, and consistently (but counter-intuitive) the
SA-(1, λ)-EA chooses a higher population size for OneMax. For some values of
s, this leads to positive drift and efficient runtime on OneMax, while the same
algorithm has negative drift and fails on other functions.

Finally, apart from the success ratio s, the SA-(1, λ)-EA also comes with
other parameters. For the mutation rate we use the standard choice 1/n, and
any c/n for a constant 0 < c < 1 would also work. The update strength F > 1
is the factor by which λ is reduced in case of success, see Sect. 2.1 for details. A
slight mismatch with [19] is that we choose F = 1 + o(1), while [19] focused on
constant F . Again, this simplifies the analysis, but the restriction does not seem
crucial for the conceptual understanding that we gain in this paper.

2 Preliminaries and Definitions

Our search space is always {0, 1}n. Throughout the paper we will assume that
s > 0 is independent of n while n → ∞, but F = 1 + o(1) will depend on n. We
say that an event E = E(n) holds with high probability or whp if Pr[E] → 1 for
n → ∞. We will write x = a ± b as shortcut for x ∈ [a − b, a + b]. Throughout
the paper we will measure drift towards the optimum, so a positive drift always
points towards the optimum, and a negative drift points away from the optimum.

2.1 The Algorithm: SA-(1, λ)-EA

The (1, λ)-EA is the algorithm that generates λ offspring in each generation, and
picks the fittest one as the unique parent for the next generation. All offspring
are generated by standard bit mutation, where each of the n bits of the parent
is flipped independently with probability 1/n. The performance of the (1, λ)-EA
for static population size λ is well-understood [1,35].

We will consider the self-adjusting (1, λ)-EA with (1 : s + 1)-success rule to
control the population size λ, with success rate s and update strength F , and we
denote this algorithm by SA-(1, λ)-EA. It is given by the following pseudocode.
The key difference from the standard (1, λ)-EA is that the population size λ is
updated at each step: whenever a fitness improvement is found, the population
is reduced to λ/F and otherwise the population is increased to λF 1/s. Note
that the parameter λ may take non-integral values during the execution of the
algorithm, and the number of children is the integer �λ	 closest to λ.

One way to think about the SA-(1, λ)-EA is that for each search point x it
implicitly has a target population size λ∗ = λ∗(x) such that, up to rounding,

OneMax Is Not the Easiest Function for Fitness Improvements 167

Algorithm 1. SA-(1, λ)-EA with success rate s, update strength F , mutation
rate c/n, initial start point xinit ∈ {0, 1}n and initial population size λinit = 1
for maximizing a fitness function f : {0, 1}n → R.
Initialization: Set x0 = xinit and λ0 := 1
Optimization: for t = 0, 1, . . . do

Mutation: for j ∈ {1, . . . , �λt�} do
yt,j ← mutate(xt) by flipping each bit of xt independently with prob. 1/n

Selection: Choose yt = arg max{f(yt,1), . . . , f(yt,�λ�)}, breaking ties randomly
Update:
if f(yt) > f(xt) then λt+1 ← max{1, λt/F}; else λt+1 ← F 1/sλt;
xt+1 ← yt;

the probability to have success (the fittest of λ∗ offspring is strictly fitter than
the parent) equals the target success rate s∗ = 1/(s + 1). The (1 : s + 1)-rule
ensures that there is a drift towards λ∗: whenever �λ	 > λ∗, then λ decreases in
expectation, and it increases for �λ	 < λ∗, both on a logarithmic scale. We refer
the reader to [23, Section 2.1] for a more detailed discussion.

For the results of this paper, we will specify s > 0 as a suitable constant,
the initial population size is λinit = 1, the initial search point has exactly εn
zero-bits for a given ε, and the update strength is F = 1 + η for some η ∈
ω(log n/n)∩o(1/ log n). We often omit the index t if it is clear from the context.

2.2 The Benchmarks: OneMax and Dynamic BinVal

The first benchmark, the OneMax function, counts the number of one-bits

Om(x) = OneMax(x) =
∑n

i=1
xi.

of x ∈ {0, 1}n. We also define the ZeroMax function Z(x) := n−Om(x) as the
number of zero-bits in x. Throughout the paper, we will denote Zt := Z(xt),
and we will frequently use the scaling ε = Z/n.

Our other benchmark is a dynamic function [32]. That means that in each
generation t, we choose a different function f t and use f t in the selection update
step of Algorithm 1. We choose Dynamic BinVal or DBv [30,31], which is the
binary value function BinVal, applied to a randomly selected permutation of
the positions of the input string. This function has been used to model dynamic
environments [30,31] and uncertain objectives [27]. In detail, BinVal is the
function that interprets a bit string as an integer representation and returns
its value, so BinVal(x) =

∑n
i=1 2i−1 · xi. For the dynamic version, for each

generation t we draw uniformly at random a permutation πt of the set {1, . . . , n}.
The DBv function for generation t is then defined as

DBvt(x) =
∑n

i=1
2i−1 · xπt(i).

168 M. Kaufmann et al.

2.3 Tools

We will use drift analysis [29] to analyze two random quantities: The distance
Zt = Z(xt) of the current search point from the optimum, and the population
size λt (or rather, log λt). We use the following drift theorems to transfer results
on the drift into expected hitting times. Due to space constraints we refer the
reader to the cited sources for their statements.

Theorem 1 (Tail Bound for Additive Drift [26]).

Theorem 2 (Negative Drift Theorem [26,33]).

To switch between differences and exponentials, we will frequently make use
of the following estimates, taken from Lemma 1.4.2 – Lemma 1.4.8 in [8].

Lemma 3. 1. For all r ≥ 1 and 0 ≤ s ≤ r,

(1 − 1/r)r ≤ 1/e ≤ (1 − 1/r)r−1 and (1 − s/r)r ≤ e−s ≤ (1 − s/r)r−s.

2. For all 0 ≤ x ≤ 1, it holds that: 1 − e−x ≥ x/2.
3. For all 0 ≤ x ≤ 1 and all y ≥ 1, it holds that xy

1+xy ≤ 1 − (1 − x)y ≤ xy.

3 Main Proof

We start this section by defining some helpful notation. Afterwards, we give an
informal sketch of the main ideas, and provide details afterwards.

Definition 4. Consider the SA-(1, λ)-EA optimizing a dynamic function f =
f t, and let Zt = Z(xt). For all times t and all i ∈ Z, we define

pf,t
i := Pr[Zt − Zt+1 = i | xt, λt] and Δf,t

i := i · pf,t
i .

We will often drop the superscripts f and t when the function and the time are
clear from context. We also define p≥i :=

∑∞
j=i pj and Δ≥i :=

∑∞
j=i Δj; both

p≤i and Δ≤i are defined analogously. Finally, we write

Δf,t := E[Zt − Zt+1 | xt, λt] =
∑∞

i=−∞ Δf,t
i .

Note that i > 0 and Δ > 0 corresponds to steps/drift towards the optimum
and i < 0 and Δ < 0 away from the optimum.

Definition 5 (Improvement Probability, Equilibrium Population Size).
Let x ∈ {0, 1}n and f be a strictly monotone function. Let y be obtained from x
by flipping every bit independently with probability 1/n. We define

pf
imp(x) := Pr[f(y) > f(x)] and qf

imp(x, λ) := 1 − (1 − pf
imp(x))λ,

OneMax Is Not the Easiest Function for Fitness Improvements 169

as the probability that respectively a single offspring or any offspring improves
the fitness of x. We also define the equilibrium population size as

λ∗,f (x, s) := log(1−pf
imp(x))

(
s

1+s

)
. (1)

As usual, we drop the superscript when f is clear from context. As the two
functions we consider are symmetric (i.e. all bits play the same role) pimp only
depends on Z(x) = εn so in slight abuse of notation we sometimes write pimp(εn)
instead of pimp(x), and sometimes drop the parameters by writing just pimp when
they are clear from context. Similarly we sometimes write qimp and λ∗.

Remark 6. For all x, s and f , λ∗,f (x, s) is chosen to satisfy qf
imp(x, λ∗,f (x, s)) =

1
s+1 . Note that the equilibrium population size λ∗ need not be an integer, and
rounding λ to the next integer can change the success probability by a constant
factor. Thus we must account for these effects. Fortunately, as we will show, the
effect of changing the function f from OneMax to DBv is much larger.

3.1 Sketch of Proof

We have three quantities that depend on each other: the target population size
λ∗, the target success rate 1/(s + 1) and the distance ε := Z/n of the starting
point from the optimum. Essentially, choosing any two of them determines the
third one. In the proof we will choose λ∗ and s to be large, and ε to be small.
As ε is small, it is very unlikely to flip more than one zero-bit and the positive
contribution to the drift is dominated by the term Δ1 (Lemma 8 (ii)). For
OneMax we are also able to give a tight estimate of Δ≤−1: for λ large enough
we can guarantee that |Δ≤−1| ≈ (1 − e−1)λ (Lemma 8 (iii)).

The key to the proof is that under the above assumptions, the improve-
ment probability pimp for DBv is by a constant factor larger than for OneMax
(Lemma 7). Since it is unlikely to flip more than one zero-bit, the main way to
improve the fitness for OneMax is by flipping a single zero-bit and no one-bits.
Likewise, DBv also improves the fitness in this situation. However, DBv may
also improve the fitness if it flips, for example, exactly one zero-bit and one one-
bit. This improves the fitness if the zero-bit has higher weight, which happens
with probability 1/2. This already makes pDBv

imp by a constant factor larger than
pOm
imp. (There are actually even more ways to improve the fitness for DBv.) As

a consequence, for the same values of s and ε, the target population size λ∗ for
DBv is by a constant factor smaller than for OneMax (Lemma 7 (iii)).

This enables us to (mentally) fix some large λ, choose ε such that the drift
for OneMax at Z = εn is slightly positive (towards the optimum) and choose
the s that satisfies λ∗,Om(εn, s) = λ. Here, ‘slightly positive’ means that Δ1 ≈
4|Δ≤−1|. This may seem like a big difference, but in terms of λ it is not. Changing
λ only affects Δ1 mildly. But adding just a single child (increasing λ by one)
reduces Δ≤−1 by a factor of ≈ 1−1/e, which is the probability that the additional
child is not a copy of the parent. So our choice of λ∗, ε and s ensures positive
drift for OneMax as long as λt ≥ λ∗ − 1, but not for a much wider range.

170 M. Kaufmann et al.

However, as we show, λt stays concentrated in this small range due to our choice
of F = 1 + o(1). This already would yield progress for OneMax in a small
range around Z = εn. To extend this to all values Z ≤ εn, we consider the
potential function Gt = Zt − K logF (λt), and show that this potential function
has drift towards zero (Corollary 12) whenever Z > 0, similar to [19,23]. For
DBv, we show that λt stays below λ∗,DBv(εn, s) + 1, which is much smaller
than λ∗,Om(εn, s), and that these values of λt give drift away from the optimum,
Lemma 13. Hence, the algorithm is not able to cross the region Z = εn for DBv.

3.2 Proof Details

In the remainder of this section we give more detailed sketches of the proof. In
particular, we derive some relations between λ, s, ε to find a suitable such triple.
Those relations only hold if the number of bits n is large enough. For instance,
we wish to start at a distance εn from the optimum, meaning we need εn to be
an integer. We tacitly assume that εn is a positive integer. In particular, this
implies ε ≥ 1/n.5.

The purpose of the next key lemma is twofold. On the one hand it gives useful
bounds and estimates of the probabilities of improvement; on the other hand it
compares those probabilities of improvement for OneMax and Dynamic Bin-
Val. In particular, the success probability for OneMax is substantially smaller
than for Dynamic BinVal, meaning that Dynamic BinVal is easier than
OneMax with respect to fitness improvements.

Lemma 7. Let f be any dynamic monotone function and 1/n ≤ ε ≤ 1. Then
pf
imp(εn) ≤ ε. More specifically for Om and DBv, for all n ≥ 10 we have

pOm
imp(εn) = e−1ε ± 2ε2 and pDBv

imp (εn) = (1 − e−1)ε ± 11ε2.

In particular, there exists c > 0 such that the following holds.

(i) For every δ ≤ 1, λ ∈ N, λ ≤ cδ/ε, and every dynamic monotone function f ,

qf
imp(εn, λ) = (1 ± δ)λpf

imp(εn).

(ii) For every s ≥ 1, every constant 0 < ε ≤ c, and every dynamic monotone
function f there exists a constant ε′ > 0 such that

λ∗,f ((ε − ε′)n, s) − λ∗,f ((ε + ε′)n, s) ≤ 1/4.

(iii) For every 1/n ≤ ε ≤ c and s > 0 we have

0.5λ∗,Om(εn, s) ≤ λ∗,DBv(εn, s) ≤ 0.6λ∗,Om(εn, s).

5 In Lemma 7 ((ii)) and Lemma 13 we consider a constant ε > 0, introduce an ε′ =
ε′(ε) and look at all states in the range (ε ± ε′)n. Again, we implicitly assume that
(ε − ε′)n and (ε + ε′)n are integers, since we use those in the calculations.

OneMax Is Not the Easiest Function for Fitness Improvements 171

Proof. (Sketch) Any monotone f needs to flip a zero-bit to improve, so pf
imp(εn) ≤

ε. For OneMax this is only an improvement if no one-bit flips, which happens
in an 1

e -fraction of these cases. For Dynamic BinVal, given a single zero-bit flip
we improve despite any number of flipped one-bits if they all have lower weight
than the zero-bit, the latter occurring with probability 1

(1−ε)n+1

∑(1−ε)n+1
i=1 (1 −

1/n)i−1 ≈ 1− e−1. Flipping at least two zero-bits, which may or may not improve
the fitness forOneMax orDynamic BinVal, has probability at most ε2

2 . Now (i)
follows from the definition and Lemma 3, (ii) from the definition and the observa-
tion that, since pf

imp ≤ ε, we can set log(1 − pf
imp) = −(1 ± Cε)pf

imp for some C
possibly large but absolute constant. This gives the result for small changes of ε.
The ratio λ∗,DBv(εn,s)

λ∗,Om(εn,s)
tends to ≈ 0.58 as ε → 0, yielding (iii).

Next are estimates of the drift of Z. In particular, the first statement is one
way of stating that OneMax is the easiest function with respect to minimizing
the distance from the optimum. We only apply it to f = DBv, but believe the
result is interesting enough to be mentioned.

Lemma 8. There exists a constant c > 0 such that the following holds for every
dynamic monotone function f . Let δ > 0, there exists λ0 such that the following
holds.

(i) For all λ ≥ 1, all x ∈ {0, 1}n and all i ∈ Z
+ we have

Δf
≥i(x, λ) ≤ ΔOm

≥i (x, λ) and |Δf
≤−i(x, λ)| ≥ |ΔOm

≤−i(x, λ)|.
(ii) For every integer λ ≥ λ0 and all 1/n ≤ ε ≤ cδ/λ we have

Δf
≥2(εn, λ) ≤ δΔOm

1 (εn, λ).

(iii) For every integer λ ≥ λ0 and all 1/n ≤ ε ≤ cδ/λ we have

|ΔOm
≤−1(εn, λ)| = (1 ± δ)(1 − e−1)λ.

Note in the right hand side of (ii), the drift is with respect to OneMax, not f .

Proof. (Sketch) For OneMax, Zt+1 ≥ Zt − j only occurs if Z(y) ≥ Z(x) − j
holds for all offspring y of x, in which case the selected offspring also satisfies
this for any other f . This guarantees pOm

≤j ≤ pf
≤j and pOm

≥j ≥ pf
≥j for all j ∈ Z.

Since the probability of flipping at least i zero-bits is at most εi

i! , implying pOm
≥i ≤

λεi/i!, so thatΔ≥2 ≤ 2λε2. A single offspring flipping exactly a zero-bit and no
one-bit implies that Zt decreases, so Δ1 = p1 ≥ ε(1−1/n)n−1 ≥ e−1ε. Choosing
c = 1/(2e) ensures that Δ≥2 ≤ δΔ1, and the corresponding bound for ΔDBv

≥2

follows from (i). For (iii), note if every child flips at least a one-bit and no zero-
bit, then Zt must increase: |Δ≤−1| ≥ (

(1 − (1 − 1/n)(1−ε)n) · (1 − 1/n)εn
)λ ≥

(1 − δ)(1 − e−1)λ, for c small and ε < cδ/λ. On the other hand, we can upper-
bound |Δ≤−1| = p≤−1 +

∑∞
i=2 p≤−i term-wise: p≤−1 ≤ (1 − e−1)λ, and p≤−i ≤((

(1−ε)n
i

)
n−i

)λ

≤ (i!)−λ ≤ 2(1−i)λ. As p≤−i is the faster decaying term, the
statement follows for large enough λ0.

172 M. Kaufmann et al.

Repeated applications of Lemma 7 and 8 allow us to derive the core lemma
of our proof — finding a suitable triple (λ∗, ε, s) (proof omitted):

Lemma 9. For every δ > 0 there exists λ0 ≥ 1 such that the following holds.
For every integer λ ≥ λ0, there exist constants ε̃, s̃ depending only on λ such
that λ = λ∗,Om(ε̃n, s̃) and

ΔOm
≥1 (ε̃n, λ) = (4 ± δ)|ΔOm

≤−1(ε̃n, λ)| = (1 ± δ)/(s̃ + 1).

Additionally ε̃(λ) = oλ(1/λ) and s̃(λ) = ωλ(1).6 In particular, for every δ > 0,
a sufficiently large λ0 guarantees that one may apply Lemmas 7 and 8.

Naturally, the lemma above implies that for parameters λ, s̃ and at distance
ε̃n from the optimum, the drift of Z for OneMax is roughly ΔOm = ΔOm

≥1 +
ΔOm

≤−1 ≈ 3
4ΔOm

≥1 > 0. Moreover, we want to show that the SA-(1, λ)-EA not only
passes this point, but continues all the way to the optimum. To this end, we
define a more general potential function already used in [19] and [23].

Definition 10. We define h(λ) := −K logF λ, with K = 1/2. We also define
g(x, λ) := Z(x) + h(λ).

Similarly to Zt = Z(xt), we write Ht = h(λt) and Gt = Zt + Ht = g(xt, λt).

Lemma 11. Let f = Om. At all times t such that λt ≥ F we have

E
[
Ht − Ht+1 | xt, λt

]
= K

s (1 − (s + 1)qimp(xt, �λt)).
We omit the proof, which is a straightforward calculation. With these choices,

the drift of Gt is positive for all ε ≤ ε̃ and λt ≥ λ − 1. The next corollary and
Lemma (proofs omitted) follow by assembling the estimates from Lemma 7 (ii),
Lemma 11, Lemma 8 (iii) and Lemma 9.

Corollary 12. Let f = Om. There exists λ0 ≥ 1 such that the following holds
for all λ ≥ λ0. Let s = s̃ = s̃(λ), ε = ε̃ = ε̃(λ) be as in Lemma 9. There exist
ρ(λ), ε′(λ) such that if 1 ≤ Zt ≤ (ε + ε′)n and λt ≥ λ − 1, then

E[Gt − Gt+1 | Zt, λt] ≥ ρ.

We have just shown that when within distance at most ε̃n from the optimum,
OneMax has drift towards the optimum. We now turn to Dynamic BinVal:
the following lemma states that at distance ε̃n from the optimum, Dynamic
BinVal has drift away from the optimum.

Lemma 13. Let f = DBv. There exists λ0 ≥ 1 such that for all λ ≥ λ0 there
are ν, ε′ > 0 such that the following holds. Let s̃ = s̃(λ), ε̃ = ε̃(λ) as in Lemma 9.
If Zt = (ε̃ ± ε′)n and λt ≤ λ∗,DBv(ε̃n, s̃) + 1 we have

E[Zt − Zt+1 | xt, λt] ≤ −ν.

6 The subscript indicates dependency on λ, i.e., for all c, C > 0 there exists λ0 such
that for all λ ≥ λ0 we have ε̃(λ) ≤ c/λ and s̃(λ) ≥ C.

OneMax Is Not the Easiest Function for Fitness Improvements 173

Corollary 12 and Lemma 13 respectively give drift towards the optimum for
OneMax and away from the optimum for Dynamic BinVal.

Lemma 14. Consider the SA-(1, λ)-EA on OneMax or Dynamic BinVal.
With probability 1 − n−ω(1), either the optimum is found or λt ≤ n2 holds for
super-polynomially many steps, and in all of these steps |Zt − Zt+1| ≤ log n.

Proof. (Sketch) Only a non-improving step at λt ≥ n2/F 1/s would yield λ > n2.
Even one step away from the optimum, a fixed offspring finds an improvement
with probability at least 1/n · (1 − 1/n)n−1 ≥ 1/(en), so a non-improving gener-
ation occurs with probability at most (1 − 1/(en))λt ≤ e−(λt−1)/(en) = e−Ω(n).
The bound of e−Ω(n) holds even after a union-bound over superpoly-nomially
many steps. Note that |Zt −Zt+1| is at most the maximal number of bits flipped
by any offspring. The probability of flipping at least k ≥ 1 bits is at most 2/(k!).
The statement then follows from k = log n and a union bound.

Now we are ready to state the main result of this paper.

Theorem 15. Let F = 1 + η for some η = ω(log n/n) ∩ o(1/ log n). There exist
constants s, ε such that with high probability the SA-(1, λ)-EA with success
ratio s, update strength F and mutation rate 1/n starting with Z0 = εn,

a) finds the optimum of OneMax in O(n) generations;
b) does not find the optimum of Dynamic BinVal in a polynomial number of

generations.

Proof (Sketch). We start by choosing λ large and take ε = ε̃(λ) and s = s̃(λ).
For a), we can show that λt quickly reaches a value of at least λ − 7/8 and then
stays above λ − 1. Afterwards, the potential Gt, which is O(n), has a constant
drift towards zero, so Zt = 0 after O(n) steps by Theorem 1. For b) the potential
Zt has a constant drift away from the optimum, so by Theorem 2, it stays above
(ε − ε′)n for a superpolynomial number of steps. Details omitted.

4 Simulations

This section aims to provide empirical support to our theoretical results. Namely,
we show that there exist parameters s and F such that OneMax is optimized
efficiently by the SA-(1, λ)-EA, while Dynamic BinVal is not. Moreover, in
the simulations we find that the claim also extends to non-dynamic functions,
such as BinVal and Binary7. In all experiments, we set n = 1000, the update
strength F = 1.5, and the mutation rate to be 1/n. Then we start the SA-(1, λ)-
EA with the zero string and an initial offspring size of λinit = 1. The algorithm
terminates when the optimum is found or after 500n generations. The code for
the simulations can be found at https://github.com/zuxu/OneLambdaEA.

7 Defined as BinVal(x) =
∑n

i=1 2i−1xi and Binary(x) =
∑�n/2�

i=1 xin+
∑n

i=�n/2�+1 xi.

https://github.com/zuxu/OneLambdaEA

174 M. Kaufmann et al.

Fig. 1. The probability of fitness improve-
ment with a single offspring for search
points with different OneMax values. Each
data point in the figure is estimated by
first sampling 1000 search points of the
corresponding OneMax value, then sam-
pling 100 offspring for each of the sampled
search points, and calculating the frequency
of an offspring fitter than its parent. The
parameters of HotTopic [28] are L = 100,
α = 0.25, β = 0.05, and ε = 0.05. (Same
for Fig. 2.)

We first show that the improve-
ment probability pimp of OneMax
is the lowest among all considered
monotone functions (Fig. 1), while
it is highest for Dynamic BinVal
and Binary (partly covered by the
violet line). Hence the fitness land-
scape looks hardest for OneMax
with respect to fitness improvements.
Therefore, to maintain a target suc-
cess probability of 1/(1+s), more off-
spring are needed for OneMax, and
the SA-(1, λ)-EA chooses a slightly
higher λ (first panel of Figs. 2, partly
covered by the green line). This con-
tributes positively to the drift towards
the optimum, so that the drift for
OneMax is higher than for the other
functions (second panel).

Figure 2 summarizes our main
result. The SA-(1, λ)-EA gets stuck
on all considered monotone functions
except OneMax when s = 3 and
the number of one-bits in the search
point is in (0.55n, 0.65n). Although
the algorithm spends a bit more gen-
erations on OneMax between 0.5n and 0.8n compared to other parts, the opti-
mum is found rather efficiently (not explicit in the figure due to the normaliza-
tion). The reason is, all functions except OneMax have negative drifts within
the interval (0.58n, 0.8n). The drift of OneMax here is also small compared to
the other regions, but remains positive. We note that the optimum is also found
for HotTopic [28] despite its negative drift at 0.7n, probably because the drift
is so weak that it can be overcome by random fluctuations. In [22], we show that
if s is decreased to 2, the optimum is found for all functions.

OneMax Is Not the Easiest Function for Fitness Improvements 175

Fig. 2. Smoothed average of λ, smoothed average drift, average number of generations,
and average number of evaluations of the self-adjusting (1, λ)-EA with s = 3, F = 1.5,
and c = 1 in 100 runs at each OneMax value when optimizing monotone functions
with n = 1000. The average of λ is shown in log scale. The average of λ and the average
drift are smoothed over a window of size 15. The number of generations/evaluations is
normalized such that its sum over all OneMax values is 1.

5 Conclusion

The key insight of our work is that there are two types of “easiness” of a bench-
mark function, which need to be separated carefully8. The first type relates to the
question of how much progress an elitist hillclimber can make on the function.
In this sense, it is well-known that OneMax is indeed the easiest benchmark
among all functions with unique global optimum. However, a second type of eas-
iness is how likely it is that a mutation gives an improving step. Here OneMax
is not the easiest function.

Once those concepts are mentally separated, it is not hard to see OneMax is
not the easiest function of second type. We have shown that Dynamic BinVal
is easier (Lemma 7), but we conjecture this holds for many more functions,
including static ones. This is backed up by experimental data, but we lack more
systematic understanding of which functions are hard or easy in this aspect.

We have also shown that the second type of easiness is relevant. In par-
ticular, the SA-(1, λ)-EA relies on an empirical sample of the second type of
easiness (aka the improvement probability) to choose the population size. Since
the SA-(1, λ)-EA may make bad choices for too easy settings (of second type)
if the parameter s is set too high, it is important to understand how easy a
fitness landscape can get. These easiest fitness landscapes will determine the

8 We note that there are other types of “easiness”, e.g. with respect to a fixed budget.

176 M. Kaufmann et al.

range of s that generally makes the SA-(1, λ)-EA an efficient optimizer. We have
disproved the conjecture from [19,20] that OneMax is the easiest function (of
second type). As an alternative, we conjecture that the easiest function is the
‘adversarial’ Dynamic BinVal, defined similarly to Dynamic BinVal with the
exception that the permutation is not random, but chosen so that any 0-bit is
heavier than all 1-bits. With this fitness function, any mutation in which at least
one 0-bit is flipped gives a fitter child, regardless of the number of 1-bit flips, so
it is intuitively convincing that it should be the easiest function with respect to
fitness improvement.

Acknowledgements. We thank Dirk Sudholt for helpful discussions during the
Dagstuhl seminar 22081 “Theory of Randomized Optimization Heuristics” and Mario
Hevia Fajardo for sharing his simulation code for comparison.

References

1. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring popula-
tion size of the (μ, λ) EA. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 1461–1469 (2019)

2. Auger, A.: Benchmarking the (1+ 1) evolution strategy with one-fifth success rule
on the BBOB-2009 function testbed. In: Genetic and Evolutionary Computation
Conference (GECCO), pp. 2447–2452 (2009)

3. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of paral-
lel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10762-2 88

4. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

5. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760
(2014)

6. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest
functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2),
714–740 (2017)

7. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ.,
West Lafayette, IN (1972)

8. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Theory of Evolutionary Computation. NCS, pp. 1–87. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 1

9. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimiza-
tion: provable performance gains through dynamic parameter choices. In: Theory
of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-29414-4 6

10. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

11. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably opti-
mal success rules. Algorithmica 83(10), 3108–3147 (2021)

https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-030-29414-4_6

OneMax Is Not the Easiest Function for Fitness Improvements 177

12. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theor. Comput. Sci. 801, 1–34 (2020)

13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

14. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates.
Algorithmica 83(4), 1012–1053 (2021)

15. Doerr, C., Wagner, M.: Simple on-the-fly parameter selection mechanisms for two
classical discrete black-box optimization benchmark problems. In: Genetic and
Evolutionary Computation Conference (GECCO), pp. 943–950 (2018)

16. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Nat. Comput. 5(3), 257–283 (2006)

17. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

18. He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions. IEEE Trans.
Evol. Comput. 19(2), 295–305 (2014)

19. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-
elitist evolutionary algorithms: why success rates matter. arXiv preprint
arXiv:2104.05624 (2021)

20. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 1151–1159 (2021)

21. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

22. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Onemax is not the easiest function
for fitness improvements. arXiv preprint arXiv:2204.07017 (2022)

23. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes
for the (1, λ)-EA on monotone functions (2022). https://arxiv.org/abs/2204.00531

24. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for
the (1, λ)-EA on monotone functions. In: Rudolph, G., Kononova, A.V., Aguirre,
H., Kerschke, P., Ochoa, G., Tusar, T. (eds.) Parallel Problem Solving from Nature
(PPSN) XVII. PPSN 2022. Lecture Notes in Computer Science, vol. 13399, pp.
569–585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0 40

25. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms-a com-
parative review. Nat. Comput. 3(1), 77–112 (2004)

26. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75(3), 490–506 (2016)

27. Lehre, P., Qin, X.: More precise runtime analyses of non-elitist evolutionary algo-
rithms in uncertain environments. Algorithmica 1–46 (2022). https://doi.org/10.
1007/s00453-022-01044-5

28. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

29. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp.
89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

30. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 42

31. Lengler, J., Riedi, S.: Runtime analysis of the (μ + 1)-EA on the dynamic BinVal
function. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp.
84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2 6

http://arxiv.org/abs/2104.05624
https://doi.org/10.1007/978-3-540-73482-6_4
http://arxiv.org/abs/2204.07017
https://arxiv.org/abs/2204.00531
https://doi.org/10.1007/978-3-031-14721-0_40
https://doi.org/10.1007/s00453-022-01044-5
https://doi.org/10.1007/s00453-022-01044-5
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-58112-1_42
https://doi.org/10.1007/978-3-030-72904-2_6

178 M. Kaufmann et al.

32. Lengler, J., Schaller, U.: The (1 + 1)-EA on noisy linear functions with random
positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp.
712–719. IEEE (2018)

33. Oliveto, P., Witt, C.: On the analysis of the simple genetic algorithm. Theor.
Comput. Sci. 545, 2–19 (2014)

34. Rechenberg, I.: Evolutionsstrategien. In: Schneider, B., Ranft, U. (eds.) Simulation-
smethoden in der Medizin und Biologie. Medizinische Informatik und Statistik, vol.
8, pp. 83–114. Springer, Berlin (1978). https://doi.org/10.1007/978-3-642-81283-
5 8

35. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

36. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom.
Control 13(3), 270–276 (1968)

37. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2012)

38. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

https://doi.org/10.1007/978-3-642-81283-5_8
https://doi.org/10.1007/978-3-642-81283-5_8

The Cost of Randomness in Evolutionary
Algorithms: Crossover can Save

Random Bits

Carlo Kneissl and Dirk Sudholt(B)

Chair of Algorithms for Intelligent Systems University of Passau, Passau, Germany

dirk.sudholt@uni-passau.de

Abstract. Evolutionary algorithms make countless random decisions
during selection, mutation and crossover operations. These random deci-
sions require a steady stream of random numbers.

We analyze the expected number of random bits used throughout a
run of an evolutionary algorithm and refer to this as the cost of random-
ness. We give general bounds on the cost of randomness for mutation-
based evolutionary algorithms using 1-bit flips or standard mutations
using either a naive or a common, more efficient implementation that
uses Θ(log n) random bits per mutation.

Uniform crossover is a potentially wasteful operator as the number of
random bits used equals the Hamming distance of the two parents, which
can be up to n. However, we show for a (2+1) Genetic Algorithm that
is known to optimize the test function OneMax in roughly (e/2)n ln n
expected evaluations, twice as fast as the fastest mutation-based evolu-
tionary algorithms, that the total cost of randomness during all crossover
operations on OneMax is only Θ(n). Consequently, the use of crossover
can reduce the cost of randomness below that of the fastest evolutionary
algorithms that only use standard mutations.

Keywords: Evolutionary algorithms · crossover · population
diversity · runtime analysis · theory

1 Introduction

Evolutionary algorithms (EAs) are popular metaheuristics inspired by the prin-
ciple of natural evolution that have found countless applications for optimization
and design problems [15]. EAs are popular in practice because they are easy to
use, they can provide solutions of acceptable quality in scenarios where computa-
tionally expensive exact approaches fail, and they can be applied in a black-box
scenario, when the problem is not well understood and evaluating candidate
solutions is the only way of learning about the problem in hand. The black-box
scenario also applies when there is not enough expertise, time or money to design
a problem-specific algorithm.

Despite countless successful applications in practice, the reasons behind the
success of EAs are not well understood. It is often not clear when and why
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 179–194, 2023.
https://doi.org/10.1007/978-3-031-30035-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_12

180 C. Kneissl and D. Sudholt

EAs perform well and when they don’t. The performance of EAs depends cru-
cially, and often unpredictably, on algorithmic design choices like the choice of
operators and the choice of parameters such as the population size or the muta-
tion strength [14]. Over the past 20 years, the runtime analysis of evolutionary
algorithms has emerged as a fruitful research area (see, e. g., [13,14,20,26]) pro-
viding rigorous bounds on the performance of evolutionary algorithms on inter-
esting problems. Problems range from simple pseudo-Boolean test problems like
OneMax(x) :=

∑n
i=1 xi (counting the number of ones in a bit string x) and

LeadingOnes(x) :=
∑n

i=1

∏i
j=1 xi (the length of the longest prefix of ones

in x) to various problems from combinatorial optimization [14,26]. These analy-
ses have led to a better understanding of EAs’ working principles (e. g. the advan-
tages of population diversity [7] and the robustness of populations in stochastic
environments [18,29]) and have inspired novel, probably more effective evolution-
ary and genetic algorithms1 (e. g. choosing mutation rates from a heavy-tailed
distribution to enable large changes [12], changing the order of crossover and
mutation and amplifying the probability of finding an improving mutation [9],
parent selection preferring worse search points [3] or choosing mutation rates
adaptively based on information obtained from the current run [11]).

Existing runtime analyses focus on the expected number of function evalua-
tions until a target (e. g. some global optimum) is reached, also called the opti-
mization time. This performance measure is motivated by the fact that function
evaluations are often expensive and may dominate the execution time of an EA.

We complement this line of research by asking a more specific question: how
many random bits does an evolutionary algorithm consume during the course of
a run? Randomness is crucial for the success of EAs and most operators from
mutation to crossover and selection make heavy use of randomness to promote
exploration of the search space and to create truly novel solutions. A steady
stream of randomness is required to implement these operators. Random num-
bers can be created from physical resources such as atmospheric noise or from
pseudo-random number generators (PRNGs). PRNGs create the illusion of ran-
domness through a deterministic sequence of numbers. Established PRNGs such
as the Mersenne Twister [25] produce sequences of numbers that are hard to
distinguish from perfect randomness and can be produced more efficiently than
hardware-implemented instructions [30].

We consider the expected number of random bits drawn by an EA until
a global optimum is reached, and refer to this as the cost of randomness. By
studying the cost of randomness we aim to provide a new perspective and obtain
a better understanding of the working principles of EAs. As generating random
bits is inexpensive [30], we do not expect random number generation to play
a significant role in the execution time of an EA—unless randomness is used
naively (see Sect. 3 for a discussion and analysis of naive implementations of
mutations). The motivation for our work is to obtain a deeper understanding of
the working principles of EAs and the various resources used throughout a run,

1 We use the term “genetic algorithm” (GA) for EAs that use crossover.

The Cost of Randomness in Evolutionary Algorithms 181

in addition to established performance measures such as the number of function
evaluations.

We show that studying the cost of randomness indeed gives new insights
into search dynamics. We provide a detailed analysis of the cost of randomness
incurred during uniform crossover operations on a run of a (2+1) GA on the test
function OneMax(x) :=

∑n
i=1 xi. It has been shown in [33] that the (2+1) GA

is twice as fast as the fastest evolutionary algorithm using only mutation in
terms of function evaluations (up to small-order terms). Since uniform crossover
is an additional, potentially wasteful operator in terms of random bits, it is not
clear whether the (2+1) GA will retain this advantage when considering the
cost of randomness as performance measure. However, we show in a thorough
analysis of population dynamics that the cumulative population diversity during
the run is so small that all crossover operations only need a total of Θ(n) random
bits throughout the whole run. This means that crossover still provides at least a
factor 2 speedup over all mutation-based EAs when using the cost of randomness
as performance measure.

1.1 Our Contributions

We first review costs for sampling from probability distributions typically found
in EAs in Sect. 2. In Sect. 3 we give general statements on the cost of random-
ness for EAs that only use mutation (and no crossover), including Randomized
Local Search (RLS) and the well-known (1+1) EA, considering a naive and
a more sophisticated implementation of standard mutations (i. e. flip each bit
independently with a mutation rate p ∈ (0, 1)). These analyses are problem-
independent as the cost of randomness is essentially proportional to the expected
number of function evaluations. The additional factor is Θ(log n) for 1-bit flips
and Θ(log(1/p)) for standard mutation with mutation rate p using the more
efficient implementation.

We observe more interesting effects when using crossover as an additional
operator. For a uniform crossover of two search points x and y, we will argue
that the number of random bits used equals the Hamming distance H(x, y) of
x and y. Hence, here the cost of randomness depends on the search dynamics
and captures the cumulative population diversity across all generations applying
crossover. We give a general upper bound for all (μ+λ) Genetic Algorithms in
Sect. 4 and study the aforementioned (2+1) GA on OneMax in more detail in
Sect. 5. We show that, although the first generation already uses Θ(n) random
bits in expectation, the cost of randomness in all crossover operations during the
run is only Θ(n), and hence we obtain a proof that crossover in the (2+1) GA
can reduce the cost of randomness beyond that of mutation-only algorithms.

In this extended abstract, most proofs have been omitted or reduced to proof
sketches due to space restrictions.

182 C. Kneissl and D. Sudholt

1.2 Related Work

Most runtime analyses use the number of function evaluations before a global
optimum is reached as the sole performance measure. Jansen and Zarges [21]
proposed a refined cost model based on empirical data about the computational
cost of individual operators. Additional performance measures include studying
the parallel time (number of generations) in parallel evolutionary algorithms [23]
and the communication effort (number of migrated individuals) in island mod-
els [24].

Doerr, Fouz and Witt [10] studied the effect of partially removing random-
ness in quasi-random EAs. They proposed algorithms in which the number of
flipping bits is chosen randomly, but the choice which bits to flip is made deter-
ministically. One algorithm was shown to be twice as fast on OneMax as the
(1+1) EA, in expectation.

2 Preliminaries and Analysis Tools

We focus on the most common search space {0, 1}n and the aim is to maximize
a pseudo-Boolean fitness function f : {0, 1}n → R. We consider black-box algo-
rithms that query search points based on the quality of search points evaluated
previously. For a black-box algorithm A and a fitness function f we denote by
TA,f the random number of function evaluations until a global optimum of f is
found for the first time (optimization time).

For measuring the cost of randomness, we assume that algorithms have access
to a stream of random bits that each take values 0 and 1 with probability 1/2.
Many PRNGs create a word of random bits, that is, a vector r1r2 . . . rw of
random bits ri for a specified word size w. It is straightforward to convert such a
word to a stream as the stream could simply return r1, r2, . . . , rw in this order as
required and generate a new word of random numbers once all w random bits are
exhausted. The reason for considering a stream of random bits is that it makes
our considerations independent from the word size w, and it prevents wasting
randomness. Consider, for instance, a uniform random selection between two
search points. In most implementations, a word of random numbers is drawn for
a decision that requires just one bit of randomness. This wastes w − 1 random
bits as a stream of random bits would only use one random bit.

Definition 1 (Cost of randomness). We define RA,f as the number of ran-
dom bits used during a run of a black-box algorithm A on a function f .

We first summarize bounds on the minimum (expected) number of random
bits required for typical distributions used in EAs. The first two statements are
quite trivial; the last two follow from adapting results from the full version of [2].

Theorem 1. The minimum expected number of random bits needed to sample
from the following distributions is bounded as follows.

1. Sampling a search point in {0, 1}n from the uniform distribution requires n
random bits, which is optimal.

The Cost of Randomness in Evolutionary Algorithms 183

Algorithm 1. Randomised Local Search (RLS)
Let x be a search point drawn uniformly at random.
repeat

Choose an index i uniformly at random from {1, . . . , n}. Create an offspring y
from x by copying x and flipping bit i.

If f(y) ≥ f(x) then y replaces x.
until false

Algorithm 2. (1+1) EA
Let x be a search point drawn uniformly at random.
repeat

Create an offspring y from x by copying x and flipping each bit independently
with a mutation rate p.

If f(y) ≥ f(x) then y replaces x.
until false

2. The minimum expected number of random bits required for sampling from a
uniform distribution over n elements, TUnif(n), is TUnif(n) = log n if n is a
power of 2, and log n ≤ TUnif(n) ≤ 2�log n� otherwise.

3. The minimum expected number of random bits required for sampling from a
Bernoulli distribution Ber(p) with parameter p is TBer(p) ≤ 2.

4. The minimum expected number of random bits required for sampling from a
geometric distribution Geo(p) with p ∈ (0, 1/2) is TGeo(p) = Θ(log(1/p)).

The following lemma gives an exact formula for the cost of randomness
incurred by some operator, if the number of random bits used is either a deter-
ministic value r(n) or given by a sequence of iid random variables with expec-
tation r(n). The proof for the latter case uses Wald’s equation [16].

Lemma 1. Consider an operator in a black-box algorithm A that uses Xt ran-
dom bits in step t. Assume that the sequence (Xt)t∈N is either deterministic with
Xt = r(n) for all t ∈ N and some function 0 < r(n) < ∞ or a sequence of iid
random variables with 0 < E(Xt) = r(n) < ∞. Then the expected total number
of random bits used by the operator throughout a run of A on a function f is

r(n) · E(TA,f).

3 Cost of Randomness in Mutation-Based EAs

We first give general bounds on the expected number of random bits used by
simple EAs that only use mutation (and no crossover). The possibly simplest
such algorithm is Randomized Local Search (RLS) (Algorithm 1). It creates an
initial search point uniformly at random. In every step, it creates an offspring
by cloning the current search point and flipping one bit chosen uniformly at
random. If the offspring is no worse than the parent, it replaces its parent.

184 C. Kneissl and D. Sudholt

Theorem 2. Consider RLS on an arbitrary fitness function f , then

E(RRLS,f) = n + TUnif(n) · E(TRLS,f).

This is n + log(n) · E(TRLS,f) if n is a power of 2.

Proof. If E(TRLS,f) = ∞, the claim is trivial. For E(TRLS,f) < ∞ the initial-
ization requires n random bits and the uniform random choice of a bit to flip
requires TUnif(n) random bits in every iteration. Then the statement follows
from Lemma 1 and Theorem 1.

Standard mutations flip each bit independently with a mutation rate p,
enabling EAs to escape from local optima. A naive implementation is to perform
n Bernoulli trials with parameter p to decide which bits to flip. Replacing the
mutation operator in RLS by standard mutation yields the well known (1+1) EA
(see Algorithm 2).

Theorem 3. Consider the (1+1) EA with mutation rate p ∈ (0, 1) on an arbi-
trary fitness function f . Using the naive implementation of standard mutations,

E
(
R(1+1)EA,f

)
= n + n · TBer(p) · E

(
T(1+1)EA,f

) ≤ n + 2n · E
(
T(1+1)EA,f

)
.

Proof. The statement follows directly from the cost of n bits for the initialisation
and combining Theorem 1 with Lemma 1.

It is common to use a more sophisticated “geometric” implementation of
standard mutations, see [19,31]. The idea is to determine the position of the
next bit that should be flipped by sampling from a geometric distribution with
parameter p, to flip this bit, and then to iterate this process until the end of
the search point is reached. If the mutation rate p is small, we save on samples
since in total only a few bits will be flipped. The procedure keeps track of a
global variable m that indicates the position of the next bit to be flipped. When
reaching the end of a bit string, m is reduced by n and used in the following
standard mutation in order to fully exploit the available randomness.

Theorem 4. Consider the (1+1) EA with mutation rate p ∈ (0, 1/2) on an
arbitrary fitness function f . Using the geometric implementation of standard
mutations,

E
(
R(1+1) EA,f

)
= n + TGeo(p) · (1 + pn · E(TA,f))
= n + Θ(log(1/p)) · (1 + pn · E(TA,f)) .

Proof. The initialization requires n random bits. After initialization and after
every bit that is flipped, the geometric implementation draws a fresh geometric
random variable. The number of geometric samples drawn at time t equals the
number of flipping bits at time t, denoted as Ft. Then F1, F2, . . . are iid random
variables with expectation pn. By Lemma 1, and including the initial geometric
distribution, the expected number of random variables needed in all mutations
is (1 + pn · E(TA,f)). Multiplying with a factor of TGeo(p) = Θ(log(1/p)) (cf.
Theorem 1) yields the claimed result on the cost of randomness.

The Cost of Randomness in Evolutionary Algorithms 185

Note that the proofs of Theorems 2, 3 and 4 are independent from the popu-
lation model and any selection mechanisms. Hence, they immediately generalize
to much larger classes of algorithms with minor modifications, such as adding
the cost of randomness for probabilistic selection mechanisms.

We briefly discuss some implications to well known results, for the geometric
implementation of standard mutations. It is well known (see, e. g., Theorem 8
in [32]) that the expected number of function evaluations of the (1+1) EA with
mutation rate χ/n, χ > 0 constant on OneMax is at most eχn ln(n)

χ +O(n). The
expected optimization time of the (1+1) EA with mutation rate p on Leading-
Ones was shown in [1] to be 1

2p2 · (
(1 − p)−n+1 − (1 − p)

)
.

Corollary 1. For the expected cost of randomness for the (1+1) EA with muta-
tion rate p = χ/n, χ > 0 constant, we have

E
(
R(1+1) EA,OneMax

) ≤ TGeo(χ/n) · (eχn ln(n) + O(n))
= Θ(log(n/χ)) · (eχn ln(n) + O(n)) and

E
(
R(1+1) EA,LeadingOnes

)
= n + TGeo(p)

(

1 +
n

2p
· ((1 − p)−n+1 − (1 − p))

)

.

For χ → 0 the term eχn ln(n) converges to n ln(n). This makes sense as for very
small mutation rates, the (1+1) EA behaves like RLS in steps in which at least
one bit is flipped, as the conditional probability of flipping more than one bit
is very small. The expected optimization time of RLS on OneMax is at most
n ln(n) + O(n). Likewise, for p → 0 the term n

2p · ((1 − p)−n+1 − (1 − p)) con-
verges to n2/2, which equals the expected optimization time of RLS on Leading-
Ones when starting with a leading zero. Note that every non-idling step of the
(1+1) EA has a cost of randomness of at least TGeo(p) = Θ(log(1/p)), which
diverges to ∞ as p → 0. And, of course, the expected optimization time will
increase due to idle steps when p is chosen very small, leading to a trade-off
between expected optimization times and the cost of randomness.

4 Cost of Randomness with Crossover

Now we turn to genetic algorithms that use crossover and mutation. We focus
on uniform crossover in which every bit in the offspring is chosen from either
parent uniformly at random.

The cost of randomness in one uniform crossover is given by the Hamming
distance between both parents:

Lemma 2. The number of random bits needed to implement a uniform crossover
of x and y equals the Hamming distance H(x, y).

Proof. For bits that agree in x and y, the result is deterministic. All H(x, y)
disagreeing bits are chosen uniformly at random.

Since H(x, y) ≤ n for all x, y ∈ {0, 1}n, we get the following upper bound.

186 C. Kneissl and D. Sudholt

Algorithm 3. (2+1) GA with a diversity-preserving mechanism
Initialize population P by drawing two search points uniformly at random
for t := 1, 2, . . . do

Sample b from Ber(pc)
if b = 1 then

Select parents x1 and x2 from P independently and uniformly at random
y := uniform crossover(x1, x2)

else
Choose y uniformly at random from P .

Let z be the result of a standard mutation applied to y.
Set P to the 2 best individuals from P ∪ {z}; break ties by rejecting z if z ∈ P .

Theorem 5. The expected cost of randomness, excluding the cost for selection,
in a (μ+λ) GA using uniform crossover with crossover probability pc and stan-
dard mutation with mutation rate p on any fitness function f is at most

μn + TGeo(p) + (pn · TGeo(p) + TBer(pc) + pcn) · E
(
T(μ+λ) GA,f

)
.

5 Detailed Analysis for the (2+1) Genetic Algorithm

We take a closer look at the (2+1) GA from [33] as one of the simplest algorithms
that use crossover, see Algorithm 3. With probability pc it picks two parents uni-
formly at random and with replacement, then applies uniform crossover to them
and mutates the result using standard mutation. With the remaining proba-
bility 1 − pc it only chooses one parent uniformly at random and mutates it.
In the replacement selection, the two best search points from parents and the
offspring survive. The algorithm uses a diversity preserving mechanism in the tie-
breaking rule: if there are multiple search points of the same fitness, the offspring
is rejected if it equals one of its parents. This simplifies the original tie-breaking
rule from [33] that computes the number of duplicates. The simplification is
taken from [27] and it does not affect the results from [33].

For the (2+1) GA from [33] on OneMax with any constant crossover prob-
ability pc ∈ (0, 1) and mutation rate χ/n, χ > 0 constant, Theorem 4 in [33]
showed that

E
(
T(2+1) GA,OneMax

) ≤ eχn ln n

χ · (1 + χ)
+ O(n). (1)

Parent selection is a uniform choice of two search points. If crossover is used, two
parents are selected and otherwise one parent is selected, thus at most 2 random
bits are required per generation for parent selection. By Lemma 1, the total cost
of randomness for parent selection is at most 2E

(
T(2+1) GA,OneMax

)
= O(n log n).

By Theorem 5, we get:

Corollary 2. E
(
R(2+1) GA,OneMax

)
= O(n2 log n).

The Cost of Randomness in Evolutionary Algorithms 187

Since the (1+1) EA only requires O(n log2 n) expected random bits by Corol-
lary 1, the upper bound from Corollary 2 is by a factor of order n/ log n larger.
This observation might suggest that crossover operations can be very costly in
terms of randomness. Of course, Corollary 2 only gives an upper bound that
may not be tight. We show that the bound is far from tight by proving that the
cumulative population diversity during a run is typically small. This result may
be of independent interest.

We start with a bit of notation. For a population P = {x1, x2} of size 2 we
abbreviate the Hamming distance between its members as H(P) = H(x1, x2)
and refer to H(P) as the Hamming distance of P . We call a population P with
H(P) = 0 monomorphic as in [28], borrowing a term from population genetics.
For a monomorphic population P we define f(P) as the fitness of its (identical)
members. The diversity mechanism implies that a non-monomorphic popula-
tion with parents of equal fitness cannot become monomorphic, unless the fit-
ness increases. Starting from a monomorphic population, the next monomorphic
population is either identical to the current one or has a better fitness.

Lemma 3. Let Pt1 be a monomorphic population and Pt2 be the next population
reached that is also monomorphic. Then either t2 = t1 + 1 and Pt2 = Pt1 or
t2 > t1 + 1 and f(Pt2) > f(Pt1).

We define a set of non-monomorphic populations and a subset where parents
have different fitness; this is beneficial for reaching monomorphic populations.

Definition 2. Let P be the set of all non-optimal non-monomorphic popula-
tions, that is, all sets {x1, x2} with f(x1) < n and f(x2) < n as well as x1 �= x2.
Let P�= ⊂ P be the set of all populations {x1, x2} ∈ P with f(x1) �= f(x2).

Now we define the expected cost of randomness during crossover through-
out a phase that starts with a non-monomorphic population and ends with a
monomorphic (or optimal) population.

Definition 3. For a population Pt ∈ P, T (Pt) denotes the cost of randomness
during crossover until a monomorphic (or an optimal) population is reached for
the next time:

T (Pt) = inf

⎧
⎨

⎩

t′
∑

i=t+1

H(Pi) | Pt, t
′ > t, Pt′ /∈ P

⎫
⎬

⎭
.

We now define expected costs of randomness, parameterised by a maximum
Hamming distance of k in the initial population.

Definition 4. For 1 ≤ k ≤ n, let T (k) be the maximum expected cost of ran-
domness during crossover before reaching a monomorphic population, starting
from a population with Hamming distance at most k,

T (k) := max{E(T (Pt)) | Pt ∈ P,H(Pt) ≤ k}.

Let T �=(k) denote the same quantity, but restricting the initial population to P�=:

T �=(k) := max{E(T (Pt)) | Pt ∈ P�=,H(Pt) ≤ k}.

188 C. Kneissl and D. Sudholt

Note that, by definition, the following inequalities hold, since the maximum is
taken over larger sets of possible populations Pt.

T (1) ≤ T (2) ≤ · · · ≤ T (n) (2)
T �=(1) ≤ T �=(2) ≤ · · · ≤ T �=(n) (3)

∀k ∈ {1, . . . , n} : T �=(k) ≤ T (k) (4)

The following lemma states that the Hamming distance can only increase by
the number of flipping bits (it cannot increase through uniform crossover).

Lemma 4. Consider a population P with Hamming distance H(P) = k. If F
denotes the random number of bits flipped in the next mutation step, the Ham-
ming distance of the next population is at most k + F .

Next, we identify beneficial events E1 and E2 that, together, create a
monomorphic population of higher fitness.

Lemma 5. Consider one generation of the (2+1) GA with mutation rate χ/n
and current population P ∈ P. Let F be the random number of bits flipped in the
mutation step. There is an event E1 ⊆ (F = 0) for reaching a population from
P�= with Hamming distance at most H(P) in the next generation, with

P(E1) ≥ η1 := pc · 1
8

·
(
1 − χ

n

)n

.

For every current population from P�=, there is an event E2 ⊆ (F = 0) for
reaching a monomorphic population in the next generation, with

P(E2) ≥ η2 :=
1
4

·
(
1 − χ

n

)n

.

Proof (Sketch of proof for Lemma 5). Following [33], for populations with two
different and equally fit search points, E1 can be achieved by a uniform crossover
on different parents (probability pc/2), creating a surplus of ones on the differing
bits (probability 1/4) and not flipping any bits during mutation (prob. (1 −
χ/n)n). Event E2 can be achieved by cloning the fitter search point.

The following lemma is at the heart of our analysis. It gives closed forms for
T (k) and T �=(k) by solving a system of cross-coupled recurrence equations.

Lemma 6. For all k ∈ {1, . . . , n},

T �=(k) ≤ 1 + η1 − η2
η1η2

· k +
(1 − η2)(1 + η1)(1 + χ)

η2
1η

2
2

T (k) ≤ 1 + η1
η1η2

· k +
(1 − η1η2)(1 + η1)(1 + χ)

η2
1η

2
2

Both upper bounds are linear functions in k. If the next population has a
maximum Hamming distance of k = 0, a monomorphic population has been
reached and the remaining time for reaching a monomorphic population is 0.
The following lemma gives a closed form for the expectation of f(X) where f is
a function that is linear for positive arguments and 0 otherwise.

The Cost of Randomness in Evolutionary Algorithms 189

Lemma 7. Let f : N0 → N0 be a function defined as f(k) := a · k + b if k > 0
for a, b ∈ R and f(0) := 0. Let X be a random variable defined on N0, then

E(f(X)) = a · E(X) + P(X > 0) · b.

Proof. The statement follows from the weak linearity of expectation,
E(a · X + b) = a ·E(X)+ b, and the fact that the additive term b is only present
when X > 0.

Now we prove Lemma 6, solving a system of cross-coupled recurrences.

Proof (Proof sketch for Lemma 6). We use induction over decreasing k.
For every population considered in T �=(n), the Hamming distance is at most n,

hence the cost of randomness increases by at most n in the next generation. With
probability at least η2, a monomorphic population is reached and no further costs
are incurred. With the remaining probability 1 − η2, some other population is
reached. We then estimate the remaining costs by T (n) as this expression is max-
imal by Eqs. (2)–(4) and thus it is an upper bound applying to all populations
from P. Thus, we have shown the recurrence:

T �=(n) ≤ n + (1 − η2) · T (n). (5)

For every population considered in T (n), the Hamming distance is at most n.
With probability at least η1 we reach a population from P�= and then the remain-
ing cost is at most T �=(n). With the remaining probability 1 − η1 we reach some
unspecified population and bound the remaining cost by T (n). Hence,

T (n) ≤ n + η1 · T �=(n) + (1 − η1) · T (n).

Plugging in (5),

T (n) ≤ n + η1 · (n + (1 − η2) · T (n)) + (1 − η1) · T (n)
= (1 + η1)n + (1 − η1η2)T (n).

Subtracting (1 − η1η2)T (n) on both sides and dividing by η1η2,

T (n) ≤ 1 + η1
η1η2

· n (6)

which implies the claimed bound for T (n). Plugging (6) into (5),

T�=(n) ≤ n + (1 − η2) · 1 + η1

η1η2
· n =

η1η2 + (1 − η2)(1 + η1)

η1η2
· n =

1 + η1 − η2

η1η2
· n

which implies the claimed bound for T �=(n).
Now assume that the claimed bounds for T (k′) and T �=(k′) hold for all k′ > k.

We first show the claimed bound for T �=(k), setting up an appropriate recurrence
equation. Since the Hamming distance is at most k, the cost of randomness in
the next generation is at most k. Afterwards, a population is reached with a
random Hamming distance that we denote by X. Conditional on X = x, the

190 C. Kneissl and D. Sudholt

remaining cost of randomness is bounded by either T �=(x) or T (x). Since by (4),
for all x, T �=(x) ≤ T (x), we bound these terms for all x using the function T .
This would yield the following recurrence:

T �=(k) ≤ k + E(T (X)).

Assume for a moment that the bound on T (x) from the statement was already
proven for all x ∈ {1, . . . , n}. Note that the bound for T from the statement is a
linear function, that is, we may write T (x) ≤ a · x + b for two constants a, b > 0
for all x ∈ {1, . . . , n}. For x = 0 we have T (0) = 0 as the argument 0 implies a
Hamming distance of 0 and thus a monomorphic population. By Lemma 7, we
would then get E(T (X)) ≤ a · E(X) + P(X > 0) · b.

To avoid a circular argument and to be able to use our induction hypothesis,
we will replace X with a random variable X ′ that stochastically dominates X and
only takes on values in {0, k +1, . . . , n} for which we have proven upper bounds.
The inequalities (2) show that this approach is pessimistic. Then Lemma 7 will
yield an upper bound of k + a · E(X ′) + P(X ′ > 0) · b.

Let F be the random number of flipping bits during the mutation step and
let F≥1 := (F | F ≥ 1) be the number of flipping bits conditional on at least one
bit flipping, then we define X ′ as X ′ := 0 if X = 0 and X ′ := min{k + F≥1, n}
if X > 0. As F≥1 ≥ 1, X ′ only takes on values in {0, k + 1, k + 2, . . . , n} and we
argue that X ′ ≥ X by distinguishing three cases.

Since E2 ⊆ (F = 0) by Lemma 5, E2 is the disjoint union of two events:
(F ≥ 1) and (F = 0) \ E2. The event space can be partitioned into three disjoint
events: E2, (F ≥ 1), and (F = 0) \E2. We show that in all three events, X ′ ≥ X.

Note that (X | E2) = 0 and thus, conditional on E2, X ′ ≥ X = 0. Conditional
on F ≥ 1, the number of flipping bits is F≥1 = (F | F ≥ 1). Then the next
generation’s Hamming distance is bounded by k+F≥1 by Lemma 4 (and bounded
trivially by n), thus it is bounded by X ′. Conditioning on (F = 0) \ E2, no bits
are flipped and by Lemma 4, the Hamming distance cannot increase. Therefore
X ≤ k and X ′ > k ≥ X under this condition. Thus, in all cases X ′ ≥ X.

Using P(X ′ > 0) = P(X > 0) ≤ 1 − η2 and bounding the conditional expec-
tation E(F≥1) = E(F | F ≥ 1) ≤ 1 + E(F) = 1 + χ, where the inequality follows
from Lemma 7.3 in [8], the expectation of X ′ is bounded by

E(X ′) ≤ P(X > 0) · (k + 1 + E(F)) ≤ (1 − η2)(k + 1 + χ).

Along with Lemma 7, this implies

T �=(k) ≤ k + a · E(X ′) + P(X > 0) · b

≤ k + a · (1 − η2)(k + 1 + χ) + (1 − η2)b
= (1 + a(1 − η2)) · k + (1 − η2)(a(1 + χ) + b).

It is easy to verify that the coefficients from this linear function match the ones
from the claimed bound for T �=.

The bound on T (k) is shown in a similar way. The cost incurred by the first
crossover is at most k. With probability at least η1, a population in P�=(k) is

The Cost of Randomness in Evolutionary Algorithms 191

reached, whose Hamming distance is at most k. Hence the remaining expected
cost of randomness is bounded by T �=(k). Otherwise, some other population is
reached with a Hamming distance Y that is stochastically dominated by Y ′ :=
min{k + F≥1, n}. The stochastic domination of Y ′ follows as above for X ′ since
E1 ⊆ (F = 0) and thus the previous arguments apply. Setting up and solving
recurrence equations as for T �= completes the proof.

Theorem 6. The expected cost of randomness during crossover operations in
a run of the (2+1) GA with mutation rate χ/n, χ > 0 constant and crossover
probability pc = Ω(1) is in Θ(n).

Proof. A lower bound of Ω(n) follows as the expected Hamming distance of the
two initial search points is n/2 and with probability at least pc/2−2−n+1 = Ω(1),
a uniform crossover between these is performed in the first generation. The term
−2−n+1 bounds the probability of any initial individual being optimal.

Starting with an arbitrary population, the expected cost of randomness until
a monomorphic population is reached for the first time is at most T (n) = O(n)
by Lemma 6.

Starting from a monomorphic population, denote by Nrun the number of
sampled random bits used for crossover until a monomorphic population of
higher fitness is reached. We claim that E(Nrun) = O(1). If the next pop-
ulation is monomorphic, no costs are incurred. Hence, we consider the first
non-monomorphic population reached. By Lemma 4, a generation creating a
non-monomorphic population from a monomorphic one requires F ≥ 1 flip-
ping bits. Hence, as in the proof of Lemma 6 we are working under the condi-
tion F ≥ 1. The Hamming distance Z of the non-monomorphic population has
an expectation of at most E(Z) ≤ E(F | F ≥ 1) ≤ 1 + χ and using the weak
linearity of expectation, the expected cost of randomness during crossover is
E(T (Z)) ≤ a·E(Z)+b ≤ a·(1+χ)+b = O(1). As by Lemma 3 the next monomor-
phic population has a strictly higher fitness, E(Nrun) = E(T (Z)) = O(1).

Since the fitness strictly increases after an expected cost of E(Nrun) = O(1),
it suffices to repeat the above argument at most n times.

Now we can put everything together to give a refined bound on the cost of
randomness in the (2+1) GA on OneMax.

Theorem 7. For the (2+1) GA on OneMax with pc ∈ (0, 1) and mutation
rate χ/n, χ > 0 constant,

E
(
R(2+1)GA,OneMax

)
= (χ · TGeo(χ/n) + 4) · E

(
T(2+1)GA,OneMax

)
+ O(n)

= TGeo(χ/n) ·
(

eχn ln n

1 + χ
+ O(n)

)

.

Proof. The cost of randomness for initialization, mutation and decisions whether
to apply crossover or not is bounded by

2n + TGeo(χ/n) + (pn · TGeo(χ/n) + 2) · E
(
T(2+1) GA,OneMax

)

192 C. Kneissl and D. Sudholt

as in Theorem 5. The cost of randomness for all crossover operations is O(n)
by Theorem 6. The cost for parent selection is at most 2E

(
T(2+1) GA,OneMax

)

as discussed at the start of this section. Using pn = χ and absorbing 2n +
TGeo(χ/n) in the O(n) term implies the first bound. The second bound follows
from plugging in (1), canceling χ and using 4E

(
T(2+1) GA,OneMax

)
+ O(n) =

Θ(n log n) = TGeo(χ/n) · Θ(n) since TGeo(χ/n) = Θ(log n).

This upper bound strictly increases with χ, and the term eχn lnn
1+χ converges

to n ln n as χ → 0. For the default value χ = 1, the dominant term in the upper
bound is half the dominant term in the cost of randomness for the (1+1) EA
on OneMax from Corollary 1. Hence, the use of crossover decreases the cost of
randomness by a factor of 2 (bar small-order terms). So here we obtain the rather
surprising result that using an additional operator that draws on random bits
and that can be potentially wasteful actually reduces the cost of randomness.

6 Conclusions and Future Work

Studying the cost of randomness in EAs can give new and refined insights into the
performance of EAs and evolutionary operators and deepen our understanding
of the working principles of EAs. For 1-bit flips and standard mutation with the
geometric implementation and mutation rates of n−Θ(1), the cost of randomness
is essentially larger than the expected number of function evaluations by a term
of Θ(log n).

Analyzing uniform crossover is harder as the use of random bits depends on
the Hamming distances between parents. In the (2+1) GA crossover only uses a
total of Θ(n) expected random bits, which is by a Θ(log2 n) factor smaller than
the cost of randomness during mutation. Here the cost of randomness reflects the
cumulative population diversity during a run (in all generations using crossover),
which we believe to be of independent interest.

In the (2+1) GA the cumulative diversity is very small as crossover quickly
generates improvements from any available diversity, and a better monomorphic
population is reached after having used only O(1) expected random bits during
crossover. This implies that the overhead of using crossover is negligible, and
the factor-2 speedup over all mutation-only EAs proven in [33] for the number
of function evaluations carries over to the cost of randomness. We conclude
that here using an additional operator that consumes additional random bits
actually reduces the cost of randomness; in other words, crossover is beneficial
for reducing the number of function evaluations as well as the cost of randomness
on OneMax.

Future work may include studying the cost of randomness in other algorithms
analyzed theoretically such as the standard (2+1) GA with uniform random tie-
breaking [4,5,28], heavy-tailed mutation operators [12], the (1+(λ,λ)) GA [9],
ant colony optimizers, estimation-of-distribution algorithms [17] and artificial
immune systems [6,22].

The Cost of Randomness in Evolutionary Algorithms 193

Acknowledgment. The authors thank participants of Dagstuhl seminar 22081 “The-
ory of Randomized Optimization Heuristics” for fruitful discussions.

References

1. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

2. Bringmann, K., Friedrich, T.: Exact and efficient generation of geometric random
variates and random graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 267–278. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39206-1 23

3. Corus, D., Lissovoi, A., Oliveto, P.S., Witt, C.: On steady-state evolutionary algo-
rithms and selective pressure: why inverse rank-based allocation of reproductive
trials is best. ACM Trans. Evol. Learn. Optim. 1(1), 2:1-2:38 (2021)

4. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hill climb
faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
22(5), 720–732 (2018)

5. Corus, D., Oliveto, P.S.: On the benefits of populations for the exploitation speed of
standard steady-state genetic algorithms. Algorithmica 82(12), 3676–3706 (2020)

6. Corus, D., Oliveto, P.S., Yazdani, D.: Fast immune system-inspired hypermutation
operators for combinatorial optimization. IEEE Trans. Evol. Comput. 25(5), 956–
970 (2021)

7. Dang, D.-C., et al.: Escaping local optima using crossover with emergent diversity.
IEEE Trans. Evol. Comput. 22(3), 484–497 (2018)

8. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Doerr and Neumann [13], pp. 1–87

9. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

10. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions
and variable drift. In: Proceedings of the 13th Annual Genetic and Evolutionary
Computation Conference (GECCO 2011), pp. 2083–2090. ACM Press (2011)

11. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

12. Doerr, B., Phuoc Le, H., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2017), pp. 777–784. ACM (2017)

13. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent
Developments in Discrete Optimization. Natural Computing Series, Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

14. Doerr, B., Neumann, F.: A survey on recent progress in the theory of evolutionary
algorithms for discrete optimization. ACM Trans. Evol. Learn. Optim. 1(4), 1–43
(2021)

15. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn.
Springer, Cham (2015). https://doi.org/10.1007/978-3-662-44874-8

16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2.
Wiley, New York (1971)

https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-662-44874-8

194 C. Kneissl and D. Sudholt

17. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The benefit of recombi-
nation in noisy evolutionary search. In: Elbassioni, K., Makino, K. (eds.) ISAAC
2015. LNCS, vol. 9472, pp. 140–150. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48971-0 13

18. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75(3), 462–489 (2016)

19. Grefenstette, J.: Efficient implementation of algorithms. In: Handbook of Evolu-
tionary Computation, pp. E2.1:1–E2.1:6. IOP Publishing Ltd., 1st edn. (1997)

20. Thomas Jansen. Analyzing Evolutionary Algorithms - The Computer Science Per-
spective. Springer, 2013

21. Jansen, T., Zarges, C.: Analysis of evolutionary algorithms: from computational
complexity analysis to algorithm engineering. In: Proceedings of the 11th Workshop
on Foundations of Genetic Algorithms (FOGA 2011), pp. 1–14. ACM (2011)

22. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic
contiguous hypermutations. Theoret. Comput. Sci. 412(6), 517–533 (2011)

23. Lässig, J., Sudholt, D.: General upper bounds on the running time of parallel
evolutionary algorithms. Evol. Comput. 22(3), 405–437 (2014)

24. Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration
intervals in parallel evolutionary algorithms. Evol. Comput. 23(4), 559–582 (2015)

25. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

26. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization -
Algorithms and Their Computational Complexity. NCS, 1st edn. Springer, Cham
(2010). https://doi.org/10.1007/978-3-642-16544-3

27. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algo-
rithms in multimodal optimisation. Artif. Intell. 287, 103345 (2020)

28. Oliveto, P.S., Sudholt, D., Witt, C.: Tight bounds on the expected runtime of a
standard steady state genetic algorithm. Algorithmica 84(6), 1603–1658 (2022)

29. Qian, C., Bian, C., Yang, Yu., Tang, K., Yao, X.: Analysis of noisy evolutionary
optimization when sampling fails. Algorithmica 83(4), 940–975 (2021)

30. Route, M.: Radio-flaring ultracool dwarf population synthesis. Astrophys. J.
845(1), 66 (2017)

31. Rudolph, G., Ziegenhirt, J.: Computation time of evolutionary operators. In: Hand-
book of Evolutionary Computation, pp. E2.2:1–E2.2:4. IOP Publishing Ltd. 1st
edn. (1997)

32. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2013)

33. Sudholt, D.: How crossover speeds up building-block assembly in genetic algo-
rithms. Evol. Comput. 25(2), 237–274 (2017)

https://doi.org/10.1007/978-3-662-48971-0_13
https://doi.org/10.1007/978-3-662-48971-0_13
https://doi.org/10.1007/978-3-642-16544-3

Multi-objectivization Relaxes
Multi-funnel Structures

in Single-objective NK-landscapes

Shoichiro Tanaka(B), Keiki Takadama, and Hiroyuki Sato

Graduate School of Informatics and Engineering, The University of
Electro-Communications, Tokyo, Japan

{stanaka,h.sato}@uec.ac.jp, keiki@inf.uec.ac.jp

Abstract. This paper investigated the impacts of multi-objectivization
on solving combinatorial single-objective NK-landscape problems with
multiple funnel structures. Multi-objectivization re-formulates a single-
objective target problem into a multi-objective problem with a helper
problem to suppress the difficulty of the target problem. This paper ana-
lyzed the connectivity of two funnels involving global optima in the tar-
get and the helper NK-landscape problems via the Pareto local optimal
solutions in the multi-objectivized problem. Experimental results showed
that multi-objectivization connects the two funnels with global optima
of the target and the helper problems as a single bridging domain con-
sisting of the Pareto local optimal solutions. Also, this paper proposed
an algorithm named the multi-objectivized local search (MOLS) that
searched for the global optimum of the target problem from the global
optimum of an artificially generated helper problem via the Pareto local
optimal solutions. Experimental results showed that the proposed MOLS
achieved a higher success rate of the target single-objective optimization
than iterative local search algorithms on target NK-landscape problems
with multiple funnels.

Keywords: Multi-objectivization · Combinatorial optimization ·
Landscape analysis · Local optima networks · Local search

1 Introduction

The optimization performance of a search algorithm is determined by its behav-
ior on the landscape of the target optimization problem. There are two main
approaches to tackling optimization problems with rugged and complex land-
scapes. One is to develop search algorithms that work robustly on optimization
problems with such landscapes. The other is to transform optimization prob-
lems with such landscapes into problems with simple landscapes. This paper
focuses on the latter and multi-objectivization as one of the approaches [7].
Multi-objectivization re-formulates an objective function (target function) of a
single-objective target optimization problem into a multi-objective one. There
are two types of multi-objectivization methods: those based on decomposition

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 195–210, 2023.
https://doi.org/10.1007/978-3-031-30035-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-30035-6_13

196 S. Tanaka et al.

[7] and those based on additional objectives [5]. We limit the scope of this paper
to the latter one, the multi-objectivization, by adding a new objective function
(helper function) for solving the single-objective target problem. Previous works
have reported that helper functions are effective for solving target problems with
several difficult landscapes such as plateaus [2] and multimodalities [3,5]. Multi-
objectivization impacts the problem’s difficulties since the fundamental change
in the landscape [4].

Among several landscape indicators, it has been known that local optima
cause premature convergence of local search and harm global search methods
such as evolutionary algorithms. On the other hand, recent landscape analysis
research has shown that local optima distribution and connectivity affect the
problem difficulties rather than the number of local optima [13]. A cluster of
local optima densely connected internally and sparsely connected externally is
called funnel and has recently attracted attention as a new indicator of the land-
scape. In an optimization problem with multiple funnels, a search algorithm may
converge to a funnel including no global optimum. Even global search methods
face difficulty in escaping from such a funnel. Indeed, in several optimization
problem classes, funnels have been found to make the problem difficult to solve
[9,10,14]. To the best of our knowledge, the impact of multi-objectivization on
the multi-funnel structure has yet to be studied.

In this paper, we investigate the impact of multi-objectivization on a single-
objective target problem with a multi-funnel structure. We analyze the change
in the landscape caused by the addition of helper problems. Each target and
the helper problem is NK-landscape [6], a combinatorial optimization problem
with adjustable local optima and funnels. For combinations of the target and the
helper NK-landscape problems with different problem parameters, we conduct a
landscape analysis that observes the connectivity of their optima. In addition, we
propose a search algorithm named the multi-objectivized local search (MOLS)
that searches for the target problem from the global optimum of an artificially
generated helper problem. We conduct an algorithm benchmark that compares
the search performances of the proposed MOLS and the conventional iterated
local search (ILS). Contributions of this paper are (1) to reveal how multi-
objectivization relaxes multi-funnel structures in single-objective NK-landscape
problems and (2) the proposal of MOLS that achieves better search performance
on the target problem with multiple funnels than the conventional ILS.

2 Single-objective Landscape

2.1 Single-objective Optimization

Suppose we have a single-objective optimization problem with a pseudo-Boolean
function f : {0, 1}N → IR, which must be maximized. The search space is X =
{0, 1}N , and the variable vector is x ∈ X which is a bit string of bit length
N . The purpose of the single objective optimization is to search for the set of
solutions G := {x ∈ X | �x′ ∈ X; f(x) < f(x′)} with the highest function
value in the search space X. The solutions in G are called global optima. The
problems treated in this paper have only one global optimum g. In the search

Multi-objectivization Relaxes Single-objective NK-landscapes 197

Algorithm 1: Local Search (best-improvement)
Input: initial solution x, objective function f
Procedure LS(x, f):

while x is updated do
x ← arg maxx ′∈N (x) f(x)

return x

space X, local optima often interrupt convergence to a global optimum. Let
Nε(x) = {x′ ∈ X | x′ �= x, d(x,x′) ≤ ε} be the ε-neighborhood of solution x,
where d(x,x′) is the distance between the solutions x and x′. The set of local
optima L of the single objective function f can be defined as

L := {x ∈ X | �x′ ∈ Nε=1(x); f(x) < f(x′)}. (1)

Note that G ⊆ L from the above definitions.

2.2 Basin of Attraction

In this paper, the local search is the method of updating the search point to a
solution with the highest function value among the neighborhoods of the search
point. The pseudo-code of local search is shown in Algorithm 1. The Basin of
attraction can be defined as the set of solutions that converge to the same local
optimum l ∈ L via local search. The convergence from a solution x to a local
optimum l ∈ L by local search is denoted as LS(x) = l. The basin B(l) of the
local optimum l is defined as

B(l) := {x ∈ X | LS(x) = l}. (2)

The search space X can be divided into a finite number of basins B(l) (l ∈ L)
when no plateau exists. For local search, the initial solution needs to exist in the
optimal basin B(g) to converge to a global optimum g ∈ G. It is difficult to find
global optimum g ∈ G by local search in an optimization problem with a tiny
optimal basin B(g).

2.3 Local Optima Networks

The funnel is defined using a local optima networks (LONs) model [11], which
represents the connectivity between local optima based on given search opera-
tors. LON is a weighted directed graph G = (L,A), with the set of local optima
L as nodes and the set of transitions between local optima A as arcs. This paper
refers to directed edges as arcs. In this section, we describe a variant of the LON,
the monotonic LON [12] and its arc, the perturbation arc [15].

– Monotonic LON: Monotonic LON (MLON) is a subgraph of LON. Nodes
are local optima, and arcs are only ameliorate transitions between local
optima by given search operators.

198 S. Tanaka et al.

Algorithm 2: Iterated Local Search
Input: initial solution x, objective function f

1 Procedure ILS(x, f):
2 A ← ∅
3 l ← LS (x)
4 while terminal criteria are not fulfilled do
5 x′ ←Perturbation (l)
6 if x′ /∈ A then
7 l′ ←LS (x′)
8 A ← A ∪ {x′}
9 if f(l′) > f(l) then

10 l ← l′

11 A ← ∅

12 return x

– Perturbation Arcs: The perturbation arc represents the transition based
on the ILS operator. ILS is the trajectory-based algorithm and repeats local
search and perturbation. The perturbation is a random bit-flip up to a fixed
number of bits α for the solution x. The pseudo-code for iterative local search
is shown in Algorithm 2. When a local optimum l ∈ L is updated to a
local optimum l′ ∈ L, l and l′ are connected by an arc a(l, l′). The arc
weight w(l, l′) is the fraction of solutions in the α-bit neighborhood Nα(l)
that converge to l′ by the local search. When the perturbation arc a(l, l′)
satisfies f(l′) > f(l), it is called monotonic.

2.4 Funnel

A monotonic LON with monotonic perturbation arcs has no cycles in the graph.
Nodes in MLON involves a set of sink nodes L̂ = {l ∈ L |

∑
l′ �=l w(l, l′) = 0}

that outgoing degree is zero. That is, each of sink nodes L̂ has no transitions that
improve the function value. When the local optimum l repeats the most probable
transition, it converges to the sink point l̂ ∈ L̂. This sequence of solutions is called
a monotonic sequence [12] and is denoted Path(l) = l̂. A set of local optima that
converges to the same sink point l̂ via transitions is called funnel F (l̂) in this
paper. The funnel F (l̂) is defined as

F (l̂) := {l ∈ L | Path(l) = l̂}. (3)

Compared to Eq. (2), a funnel is a basin of attraction at the level of local optima
[12]. In single objective optimization, it has been reported that the number and
depth of funnels affect the search [9,14].

Multi-objectivization Relaxes Single-objective NK-landscapes 199

3 Multi-objective Landscape

3.1 Multi-objective Optimization

Suppose that we have a multi-objective optimization problem with M pseudo-
Boolean functions fm : [0, 1]N → IR (m = 1, . . . ,M), which must be maximized.
The search space is X = {0, 1}N , and the variable vector is x ∈ X which is a bit
string of bit length N . The purpose of multi-objective optimization is to search for
a set of Pareto optimal solutions with an optimal trade-off relationship of multiple
function values. For two solutions x,x′ ∈ X, x dominates x′ (x � x′) if

∀m ∈ {1, . . . , M}; fm(x) ≥ fm(x′) and ∃m ∈ {1, . . . , M}; fm(x) > fm(x′). (4)

A solution x ∈ X is said to be non-dominated in a solution set S ⊆ X if no
solution dominates x in S. The set of non-dominated solutions between neigh-
borhoods is the Pareto local optimal solution set PL := {x ∈ X | �x′ ∈
Nε=1(x);x′ � x}. The non-dominated solution set to the whole search space
X is the Pareto optimal solution set P := {x ∈ X | �x′ ∈ X;x′ � x}. Note
that P ⊆ PL from the above definitions.

A local optimum l of the m-th objective function fm have higher fm(l) than
its neighbors. Thus, its neighbors do not dominate the l. Let Lm be the local
optima of the function fm, the following relation holds: ∀m ∈ {1, . . . , M};Lm ⊆
PL. This paper defines PL-domain as a sub-domain consisting of a set of
Pareto local optimal solutions in the search space. The search space X can
be divided into one or more PL-domains and non PL-domains. Since the Pareto
optimal solutions and the local optimum of each objective function are Pareto
local optimal solutions, each of them is involved in one of the PL-domains.
For the sake of intuitive understanding, Fig. 1 shows a two-dimensional contin-
uous x1 − x2 search space for a two-objective optimization problem f(x1, x2) =
(f1(x1, x2), f2(x1, x2)). Note that this paper deals with a discrete space, not the
one shown in this figure. The red circles are the local optima for f1, and the blue
circle is the local optimum for f2. The dark gray areas are PL-domains, and the
green area is the Pareto set. We see that both local and Pareto optimal solutions
exist in a PL-domain in this problem.

3.2 Pareto Local Optimal Solutions Networks

The Pareto local optimal solution network (PLOS-net) [8] models the connec-
tivity of Pareto local optimal solutions in combinatorial search space. PLOS-net
is an unweighted undirected graph G = (PL,E) with the Pareto local optimal
solution set PL as nodes and the transitions between the solutions E as edges.
When Pareto local optimal solutions pl,pl′ ∈ PL are adjacent to each other
pl ∈ N (pl′), pl and pl′ are connected by an edge E(pl,pl′). PLOS-net has one
or more components corresponding to PL-domains. This paper focuses on the
NK-landscape problem [6] and the MNK-landscape problem [1].

200 S. Tanaka et al.

Fig. 1. Visual example using a two-dimensional continuous search space for a two-
objective minimization problem. The red circles are the local optima of f1, the blue
one is the global optimum of f2, the green is the Pareto set of f = (f1, f2), and the
gray are PL-domains, sets of the Pareto local optimal solutions. (Color figure online)

4 NK- And MNK-landscape Problems

4.1 NK-landscape Problem

Solution is a bit string x = (x1, x2, . . . , xN) ∈ {0, 1}N of bit length N . The search
space size |X| is 2N . The objective function of the NK-landscape problem that
must be maximized is a pseudo-Boolean function and is defined as

fNK(x) =
1
N

N∑

j=1

gj(xj , xj,1, xj,2, . . . , xj,K), (5)

where gj (j = 1, . . . , N) are the sub-functions, xj,1, xj,2, . . . , xj,K are the ran-
domly selected co-variables for the j-th sub-function gj and K is the number of
co-variables. In this paper, all instances of NK-landscape problems have only
one global optimum g and no plateau. The NK-landscape problem framework
is tunable from a smooth unimodal landscape to a rugged multimodal landscape
as K increases from 0 to N . In general, as K increases, the difficulty increases.
The function value fNK(x) is calculated by variable relationships determined
by co-variables and a random number table. By changing the variable relation-
ships randomly determined by co-variables or the table, we can generate different
instances with the same problem parameters N and K.

Multi-objectivization Relaxes Single-objective NK-landscapes 201

Fig. 2. Change in the landscape with the addition of a unimodal helper objective.
Red circles are the local optima of target objective ftarget, and the blue one is the
global optimum of helper fhelper, green ones are the Pareto set of f = (ftarget, fhelper),
and gray ones are PL-domain, the set of Pareto local optimal solutions. (Color figure
online)

4.2 MNK-landscape Problem

The MNK-landscape problem is an extension of the NK-landscape one and
involves M objective functions with the same solution space X. The objective
functions of the MNK-landscape problem are defined as

fMNK(x) = (fNK
1 (x), . . . , fNK

M (x)), (6)

where

fNK
i (x) =

1
N

N∑

j=1

gi,j(xj , xi,j,1, . . . , xi,j,Ki
) (i = 1, . . . , M). (7)

Each objective function fNK
i is an NK-landscape problem and consists of N

sub-functions gi,j (j = 1, . . . , N), and its each sub-function gi,j takes variable xj

and Ki co-variables. In this paper, NK-landscapes, which constitutes MNK-
landscape, are uncorrelated.

5 Proposed Method: Multi-Objectivized Local Search

5.1 Motivation

As the variable relationships K increase, local optima generally increase. As a
result, the size of the optimal basin B(g) and funnel F (g), including a global
optimum g, becomes small. This is one of the intuitive reasons why optimization
problems become more difficult to solve. In contrast, a study [8] using PLOS-
net suggests that the PL-domain appears as one large domain independent of
variable relationship strength.

Figure 2 shows the change in the landscape when a multimodal instance of
a single objective target NK-landscape ftarget is multi-objectivized with a uni-
modal instance of an additional helper one fhelper. The red, blue, and gray graphs

202 S. Tanaka et al.

Algorithm 3: Proposed Multi-Objectivized Local Search (MOLS)
Input: objective function ftarget, helper function fhelper

1 Procedure MOLS(ftarget, fhelper):
2 x ← a global optimum of fhelper
3 f ← (ftarget, fhelper)
4 A ← {x}
5 while terminal criteria are not fulfilled do
6 N+ ← ∅
7 foreach x′ ∈ Nε=1(x) do
8 if x � x′ ∧ x′ /∈ A then
9 N+ ← N+ ∪ {x′}

10 x ← arg maxx ′∈N+ ftarget(x)
11 A ← A ∪ {x}
12 x ← arg maxx∈A ftarget(x)
13 return x

represent the LON of the target ftarget, the helper fhelper, and the PLOS-net of
f = (ftarget, fhelper), respectively, while the green nodes represent the Pareto
set. From the left side of Fig. 2, we see that the red LON of the target ftarget
has two red components, funnels. From the right side of Fig. 2, the target bi-
funnel structure in red is transformed into a landscape with one huge PL-domain
in gray by adding the helper function fhelper. If the search space has a multi-
funnel structure, search algorithms may converge to a funnel with no global opti-
mum. On the other hand, if the PL-domain can connect the multiple funnels,
the helper function enables transitions between the multiple funnels via Pareto
local optimal solutions. Multi-objectivization aggregates the multiple funnels
into a PL-domain and suppresses the search difficulty due to the multi-funnel
structures.

5.2 Algorithm

In this paper, we propose an algorithm that searches for a global optimum of a
target function ftarget using a multi-objective problem consisting of the target
function ftarget and an additional helper function fhelper.

Algorithm 3 shows the pseudo-code of the proposed search algorithm named
the multi-objectivized local search (MOLS). The input is the target function
ftarget with N variables and a helper function fhelper, which is a randomly gen-
erated unimodal instance of NK-landscape problem with N variables and K = 0
co-variables. It is not always appropriate to choose such a unimodal function that
is independent of the target function for the helper function. However, there are
two reasons for this design. First, in a black-box scenario, providing helper func-
tions that are not independent of the target function, i.e., correlated in some
respect, is not easy. Therefore, we decided to generate independent helper func-
tions as a first step. Second, the reason for using unimodal helper functions
is that it is easy to find a global optimum. This algorithm expects transitions

Multi-objectivization Relaxes Single-objective NK-landscapes 203

between global optima and requires knowledge of the global optimum of the
helper function. At line 2, we set an initial solution x. The proposed MOLS does
not start with a randomly generated initial solution such as conventional search
algorithms. The proposed MOLS starts with the global optimum ghelper of the
helper function fhelper. The computational complexity of searching for the global
solution ghelper of the helper function fhelper is O(N). Since the initial solution
of MOLS is a global optimum ghelper ∈ Ghelper of the helper function fhelper and
a Pareto local optimal solution at the same time, MOLS searches only within
the PL-domain where ghelper exists. At line 4, the initial solution joins to the
archive A, and the repetition started from line 5 searches the neighborhoods of
the current solution x. At line 6, the set of candidate neighborhoods N+ is pre-
pared as the empty set. In the repetition started from line 7, we collect candidate
neighborhoods N+ from the neighborhoods Nε=1(x) of the current solution x.
The neighborhoods Nε=1(x) not dominated by the current solution x and not
in the archive A joins to the candidate neighborhoods N+. In the repetition
started from line 10, we take the best solution in the candidate neighborhoods
N+ in the viewpoint of the target objective function value ftarget as the next
focal solution x. At line 11, we put it to the archive A. We then repeat the above
process.

In this way, the proposed MOLS searches the global optimum gtarget of the
target objective function ftarget from the global optimum ghelper of the helper
objective function fhelper. If global optima of both target and helper functions
exist in the same PL-domain, MOLS can reach the global optimum gtarget of
the target function ftarget in principle.

6 Experimental Setup

We conducted two experiments in this paper. One is (1) the landscape analysis,
and the other is (2) the algorithm benchmarks.

6.1 Landscape Analysis

In the landscape analysis, we quantitatively investigated the landscape changes
caused by multi-objectivization.

We generated independent 10 instances for each NK-landscape problem set-
ting with N = 18,K ∈ {0, 2, 4, 6, 8, 10}, for a total of 60 instances. The 60
instances of NK-landscape problems were quantitatively evaluated using the
metrics shown in Table 1. We obtained the funnel using MLONs with α = 2.

As combinations in the 60 instances of single-objective NK-landscape prob-
lems generated above, we generated

(
60

M=2

)
= 1, 770 instances of MNK-

landscape problem setting with M = 2, N = 18, and K1,K2 ∈ {0, 2, 4, 6, 8, 10}.
The 1, 770 instances of MNK-landscape problems are quantitatively evaluated
using the metrics shown in Table 2. We obtained the PL-domain using the PLOS-
net [8]. Graph features are obtained for the only component corresponding to
the optimal PL-domain.

204 S. Tanaka et al.

Table 1. Metrics for single-objective landscapes

Metrics Description

B The number of the basin of attraction.

F The number of the funnels.

B∗/X The relative size of the optimal basin to the search space |B(g)|/|X|
F∗/L The relative size of the optimal funnel to the search space |F (g)|/|L|

Table 2. Metrics for multi-objective landscapes

Metrics Description

PL/X The ratio of the Pareto local optimal solutions PL to the search space.

D The number of PL-domains.

%D∗ The existence probability of optimal PL-domain D∗.

D∗/X The relative size of D∗ to the search space X.

D∗/PL The relative size of D∗ to PL.

path∗ The length of shortest path path∗ between global optima in D∗.

P/path∗ The fraction of the Pareto optimal solutions in path∗.

deg D∗ The average degree of D∗.

deg path∗ The average degree of path∗.

Table 3. Metrics of search performance

Metrics Description

SR The fraction of trials in which a global optimum was found in 1, 000 trials.

ST The number of function evaluations when the global optimum is found.

CT The number of function evaluations at the end of the search

6.2 Algorithm Benchmarks

In the algorithm benchmark, we quantitatively assessed the optimization per-
formance of the target function.

We compared three search algorithms: the proposed MOLS and the two con-
ventional ILSs with different perturbation strengths α ∈ {2, 3}, which gives
perturbations of more than 2-bits and less than α-bits. We considered that ILS
has converged if the focal solution has not been updated after performing a local
search from all possible solutions obtained by perturbation. ILS terminated when
it either converged or reached the maximum number of function evaluations
FEmax = N2×100. The proposed MOLS terminated if there was no unexplored
Pareto local optimal solution in the neighborhood of the focal solution or reached
the maximum number of function evaluations FEmax = N2 × 100.

We used independent 30 instances for each NK-landscape problem setting
with N = 18,K ∈ {2, 4, 6, 8, 10}, for a total of 150 instances. For each instance,
each search algorithm was executed 1,000 times independently. We used three

Multi-objectivization Relaxes Single-objective NK-landscapes 205

metrics shown in Table 3. Note that ST , the number of function evaluations
until the global solution was found, was the average only among the successful
runs.

7 Experimental Results and Discussions

7.1 Landscape Analysis

The metrics values in Table 2 for the 1, 770 instances of the MNK-landscape
are illustrated in Fig. 3. The average value for all instances corresponding to
each parameter combination K is plotted. In each figure, the vertical axis is the
metric value, the horizontal axis is the number of co-variables K1 of the function
f1, and the six plots are respectively different numbers of co-variables K2. Since
the results for K = (K1,K2) and K = (K2,K1) are identical, the results are
plotted only when K1 ≤ K2.

Figure 3(a) shows that the Pareto local optimal solution set PL increases
in the increase of K2, which is the maximum number of co-variables between
two K values. Figure 3(b) shows how many PL-domains the Pareto local opti-
mal solutions are divided into. As with the number of Pareto local optimal
solutions, PL-domains are affected by K2 but do not increase monotonically.
Figure 3(c) shows the existing probability of the optimal PL-domain D∗ that
contains global optima of both target and helper problems. Except for the com-
bination K = (0, 2), we see the optimal PL-domain exists in more than 85%

of instances. Figures 3(d) and 3(e) respectively show the size of the optimal
PL-domain and the percentage of the Pareto local optimal solutions within the
optimal PL-domain among all Pareto local optimal solutions. The optimal PL-
domain and the number of the Pareto local optimal solutions become larger as
K2 is higher. These results indicate that the higher K1 and K2 are, the more
Pareto local optimal solutions are generated, resulting in more significant opti-
mal PL-domains. Increasing the size of the optimal PL-domain makes reaching
the domain easier from outside. Still, it also makes searching for global optimum
within the domain more challenging.

Since the optimal PL-domain involves two global optima of the target and the
helper problems, the shortest path path∗ between them connecting the Pareto
local optimal solutions exists. Figure 3(f) shows the length of path∗. The higher
K2 is, the longer path∗ is. That is, the number of transition steps between two
global optima of the target and the helper problems via Pareto local optimal
solutions increases with K2 even in the same optimal PL-domain.

Figure 3(g) shows the ratio of Pareto optimal solutions in path∗. The higher
K2 is, the smaller the ratio in the shortest path. That is, the Pareto local optimal
solutions connecting the two global optima is not necessarily the Pareto optimal
solution.

Figurse 3(h) and 3(i) respectively show the average degrees in the optimal
PL-domain D∗ and path∗. As K2 increases, the degree in D∗ decreases, which
means that the connection becomes sparse. The average degree in path∗ tends to
be similar to that in D∗. However, we see the tendency that the average degree

206 S. Tanaka et al.

Fig. 3. The metrics of multi-objective landscapes by combining NK-landscapes with
different difficulties. The color and shape of markers indicate the maximum K of the
NK-landscape in the MNK-landscape.

in path∗ is higher than the one D∗. This result suggests that path∗ is highly
centered in the optimal PL-domain. Graph features would be useful to find the
appropriate trajectory in D∗.

Figure 4 finally compares the number and size of basins, funnels for 60
instances of NK-landscape, and optimal PL-domains for 600 instances of NK-
landscape with K1 = 0. We see the number of basins and PL-domains increase
exponentially with increasing K or K2. This result indicates that a single local
optimum forms a single PL-domain. We see the funnel increase but more slowly
than the number of PL-domain. Local optimum forms a funnel rather than a

Multi-objectivization Relaxes Single-objective NK-landscapes 207

Fig. 4. Comparison of single-objective landscapes and multi-objectivized landscapes
with unimodal helper functions.

completely random distribution. As the number of basins and funnels increases,
the size of the optimal ones becomes relatively small. In contrast, the optimal
PL-domain is slightly affected by K and grows in size as K increases. Small D∗

makes an exploration within D∗ easier, and the larger D∗ makes finding D∗ in
search space easier. While conventional optimization algorithms search the opti-
mal funnel or basin from the search space, the proposed MOLS explores within
the optimal PL-domain from the known global optimum of the helper function.
MOLS is considered most effective in small and dense connected D∗.

7.2 Algorithm Benchmarks

Table 4 and Fig. 5 respectively show the average search performance values and
the boxplots of search performance values with their distribution. From the
results on SR, the success rate of finding global optima, we see that the proposed
MOLS performs better than the conventional ILSs for all K except for K = 2.
This performance deterioration in K = (0, 2) instances is caused by the low
probability of D∗ organized, as shown in Fig. 3(c). This is because the proposed
MOLS is an algorithm that searches within D∗, and if D∗ does not exist, the
search fails to reach the global optimum of the target problem. From Fig. 4, we
see that instances of the NK-landscape with K = 2 have a large funnel of nearly
90% of the search space X. If the optimal funnel can be easily searched, as in
the case of NK-landscape with K = 2, there is a risk that multi-objectivization
makes the target function more difficult.

On the other hand, when K is high, the success rate is only about 30%, even
though D∗ is more than 85% likely to exist. This result indicates that the pro-
posed MOLS cannot explore the entire D∗. One reason the search performance

208 S. Tanaka et al.

Table 4. Average search performance values

Metrics Algorithms K = 2 K = 4 K = 6 K = 8 K = 10

SR Conventional ILS (α = 2) 0.835 0.561 0.289 0.115 0.079

Conventional ILS (α = 3) 0.915 0.772 0.586 0.410 0.265

Proposed MOLS 0.825 0.883 0.771 0.519 0.282

ST Conventional ILS (α = 2) 1.306 × 103 1.408 × 103 0.941 × 103 0.381 × 103 0.260 × 103

Conventional ILS (α = 3) 1.356 × 103 3.247 × 103 4.236 × 103 4.315 × 103 2.722 × 103

Proposed MOLS 2.357 × 103 3.322 × 103 4.904 × 103 4.654 × 103 2.832 × 103

CR Conventional ILS (α = 2) 0.991 × 104 1.074 × 104 1.119 × 104 1.171 × 104 1.207 × 104

Conventional ILS (α = 3) 3.240 × 104 3.240 × 104 3.240 × 104 3.240 × 104 3.240 × 104

Proposed MOLS 2.372 × 104 2.592 × 104 2.354 × 104 1.992 × 104 1.536 × 104

Fig. 5. Search performances on target NK-landscape problems with N = 18, K ∈
{2, 4, 6, 8, 10}.

of the proposed MOLS deteriorates as K increases would be due to the con-
nectivity of D∗. From Fig. 3(h), we can expect that the higher K of the target
function is, the more sparse the D∗ becomes. Due to the nature of the proposed
MOLS, which cannot transition back to a solution once searched, it is likely to
converge on the terminal part of D∗.

Multi-objectivization Relaxes Single-objective NK-landscapes 209

From the results on ST , the number of function evaluations when the global
optimum is found, we see the proposed MOLS shows the highest values for all K.
The range of ST for MOLS was within the range of ST for ILS with α = 3 except
when K = 2, and the proposed MOLS shows smaller variances of ST and more
stable than ILSs. From the results on CT , the number of function evaluations
at the end of the search, ILS with α = 3 shows the highest values for all K.
This is because the number of perturbations required to determine convergence
increases as the ILS parameter α increases. In contrast, the termination condition
of the proposed MOLS is whether or not a new Pareto local optimal solution
exists in the neighborhood. Although it does not directly refer to the objective
function value of the target function, the search can be terminated before the
upper bound of function evaluation. The faster convergence with increasing K
may be due to the sparse connection of D∗. MOLS needs a mechanism that
prevents it from falling into a dead end on a sparsely connected domain.

8 Conclusions

This paper investigated the effect of multi-objectivization on single-objective
NK-landscape problems with multi-funnel structures. First, we used instances
of NK-landscape problems with different K and conducted the landscape anal-
ysis to quantitatively observe the landscape changes of the target problem by
adding helper problems. Experimental results showed that the global optima of
the target and the helper problems exist within one domain consisting of the
Pareto local optimal solutions in many problem cases. The size of the bridging
domain grew as the target function’s global multimodality increased. This trend
contrasted with existing concepts such as basin of attraction and funnels. On
the other hand, the connections within the bridging domain became sparse and
inversely proportional to its size. In addition, we proposed a search algorithm
named MOLS that searched for the global optimum of the target problem from
the global optimum of an artificially generated helper problem via Pareto local
optimal solutions. The proposed MOLS showed a better success rate of finding
the target problem’s global optimum than the conventional ILS in NK-landscape
with multiple funnels. This result suggests that the multi-objectivization relaxed
the problem difficulty of the target function due to the multiple funnel structure.

The results in this paper are limited to relatively small-scale NK-landscape
problems. Also, the proposed MOLS is intuitive but consists of simple operators,
and there is room for improvement in the update and termination phases. Exper-
imental results suggested that graph features such as degree would be utilized in
the search. In future work, we will improve the proposed search algorithm and
analyze landscapes with a broad range of problems to examine the effectiveness
of multi-objectivization.

210 S. Tanaka et al.

References

1. Aguirre, H.E., Tanaka, K.: Insights on properties of multiobjective MNK-
landscapes. In: Proceedings of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No. 04TH8753), vol. 1, pp. 196–203. IEEE (2004)

2. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: Do additional objectives make a problem harder? In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, pp. 765–772 (2007)

3. Deb, K., Saha, A.: Finding multiple solutions for multimodal optimization prob-
lems using a multi-objective evolutionary approach. In: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, pp. 447–454 (2010)

4. Garza-Fabre, M., Toscano-Pulido, G., Rodriguez-Tello, E.: Multi-objectivization,
fitness landscape transformation and search performance: a case of study on the HP
model for protein structure prediction. Eur. J. Oper. Res. 243(2), 405–422 (2015)

5. Jensen, M.T.: Helper-objectives: using multi-objective evolutionary algorithms for
single-objective optimisation. J. Math. Modell. Algorithms 3(4), 323–347 (2004)

6. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. J. Theoret. Biol. 128(1), 11–45 (1987)

7. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 19

8. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On
pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço,
N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp.
232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 19

9. McMenemy, P., Veerapen, N., Ochoa, G.: How perturbation strength shapes the
global structure of TSP fitness landscapes. In: Liefooghe, A., López-Ibáñez, M.
(eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 34–49. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77449-7 3

10. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP
fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 20

11. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 555–562 (2008)

12. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transi-
tions with local optima networks: number partitioning as a case study. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 16

13. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with
funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 377–384 (2017)

14. Thomson, S.L., Ochoa, G.: On funnel depths and acceptance criteria in stochas-
tic local search. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 287–295 (2022)

15. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape
edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoe-
nauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35533-2 5

https://doi.org/10.1007/3-540-44719-9_19
https://doi.org/10.1007/978-3-319-99259-4_19
https://doi.org/10.1007/978-3-319-77449-7_3
https://doi.org/10.1007/978-3-319-77449-7_3
https://doi.org/10.1007/978-3-319-99259-4_20
https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-642-35533-2_5

Decision/Objective Space Trajectory
Networks for Multi-objective
Combinatorial Optimisation

Gabriela Ochoa1(B) , Arnaud Liefooghe2 , Yuri Lavinas3 ,
and Claus Aranha3

1 University of Stirling, Stirling FK9 4LA, UK
gabriela.ochoa@stir.ac.uk

2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
arnaud.liefooghe@univ-lille.fr

3 University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
lavinas.yuri.xp@alumni.tsukuba.ac.jp, caranha@cs.tsukuba.ac.jp

Abstract. This paper adapts a graph-based analysis and visualisation
tool, search trajectory networks (STNs) to multi-objective combinato-
rial optimisation. We formally define multi-objective STNs and apply
them to study the dynamics of two state-of-the-art multi-objective evo-
lutionary algorithms: MOEA/D and NSGA2. In terms of benchmark,
we consider two- and three-objective ρmnk-landscapes for constructing
multi-objective multi-modal landscapes with objective correlation. We
find that STN metrics and visualisation offer valuable insights into both
problem structure and algorithm performance. Most previous visual tools
in multi-objective optimisation consider the objective space only. Instead,
our newly proposed tool asses algorithm behaviour in the decision and
objective spaces simultaneously.

Keywords: algorithm analysis · search trajectory networks · STNs ·
combinatorial optimisation · visualisation · multi-objective optimisation

1 Introduction

Understanding the behaviour of search and optimisation algorithms remains a
challenge to which visualisation techniques can contribute. The performance
of multi-objective optimisation algorithms is usually visualised in the objective
space, where the Pareto front (or an approximation of it) for two or three objec-
tives is shown in a standard scatter plot; an idea that has been extended for
more than three objectives using dimensionality reduction [21]. Incorporating
the design space into the visualisation, however, can help to improve our under-
standing. Only a small number of approaches point in this direction, and most of
them are tailored to continuous optimisation, such as cost landscapes [7], gradi-
ent field heatmaps [11], and the plot of landscapes with optimal trade-offs [20]. In
the combinatorial domain, local optima networks [16,19] have been adapted to
multi-objective optimisation [6,14]. These insightful visual approaches, however,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 211–226, 2023.
https://doi.org/10.1007/978-3-031-30035-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_14&domain=pdf
http://orcid.org/0000-0001-7649-5669
http://orcid.org/0000-0003-3283-3122
http://orcid.org/0000-0003-2712-5340
http://orcid.org/0000-0003-1390-7536
https://doi.org/10.1007/978-3-031-30035-6_14

212 G. Ochoa et al.

concentrate on the fitness landscape structure, rather than on the algorithms
dynamic behaviour.

The goal of this article is to adapt search trajectory networks (STNs) to
multi-objective combinatorial optimisation. STNs were originally proposed for
single-objective optimisation [17,18] as a graph-based tool to visualise and anal-
yse the dynamics of any type of metaheuristic: evolutionary, swarm-based or
single-point, on both continuous and discrete search spaces. STNs were later
extended to multi-objective optimisation [12], but so far have been applied to
continuous benchmark problems only. The extension of STNs from single- to
multi-objective optimisation relies on the notion of decomposition [23], where
the multi-objective problem is transformed into multiple single-objective scalar
sub-problems. The idea is then to aggregate the STN of each these sub-problems
to construct the multi-objective STN. One limitation of the approach proposed
in [12] is that it considers a small number of decomposition vectors (5 to be
precise), which restricts the granularity and expressing power of the modelling
tool. In this paper, our contributions can be summarised as follows:

(1) We apply multi-objective STNs to combinatorial benchmarks, where both
the landscape ruggedness and the correlation among objectives can be tuned.

(2) We offer a more formal definition of multi-objective STNs.
(3) We improve the granularity and accuracy of the modelling tool by increasing

the number of decomposition vectors.
(4) We propose a 2D graph layout that conveys the design and objective spaces

simultaneously in a single plot — this applies to two-objective problems
only.

The paper is organised as follows. Section 2 introduces the necessary background
on multi-objective optimisation. Section 3 formally defines the multi-objective
STNs, together with the related metrics and visualisation techniques. Section 4
gives the experimental setup. Section 5 presents the experimental results of our
analysis for both small and large multi-objective landscapes. At last, Sect. 6
concludes the paper and discusses further research.

2 Multi-objective Combinatorial Optimisation

This section provides definitions for multi-objective combinatorial optimisation,
and presents two well-established multi-objective evolutionary algorithms.

2.1 Definitions

We assume an m-dimensional objective function vector f : X �→ Z is to be
maximised, such that every solution from the (discrete) solution space x ∈ X
maps to a vector in the objective space z ∈ Z, with z = f(x) and Z ⊆ IRm.
Given two objective vectors z, z′ ∈ Z, we say that z is dominated by z′ if zi � z′

i

for all i ∈ {1, . . . , m}, and there is a j ∈ {1, . . . ,m} such that zj < z′
j . Similarly,

a solution x ∈ X is dominated by x′ ∈ X if f(x) is dominated by f(x′). An
objective vector z� ∈ Z is non-dominated if there is no z ∈ Z such that z� is

Trajectory Networks for Multi-objective Combinatorial Optimisation 213

dominated by z. A solution x� ∈ X is Pareto optimal if f(x) is non-dominated.
The set of Pareto optimal solutions is the Pareto set (PS), and its mapping
in the objective space is the Pareto front (PF). Evolutionary multi-objective
optimisation (EMO) algorithms aim at identifying a PS approximation that is
to be presented to the decision maker for further consideration [2,4].

2.2 Multi-objective Evolutionary Algorithms

We consider two state-of-the-art EMO algorithms that are described below.

MOEA/D is a decomposition-based EMO algorithm that seek a high-
quality solution in multiple regions of the objective space by decomposing the
original (multi-objective) problem into a number of scalar (single-objective)
sub-problems [23]. Let μ be the population size. A set (λ1, . . . , λi, . . . , λμ)
of uniformly-distributed weighting coefficient vectors defines the scalar sub-
problems, and a population P = (x1, . . . , xi, . . . , xμ) is maintained such that
each solution xi maps to the sub-problem defined by λi. Different scalarising
functions can be used, and the weighted Chebyshev scalarising function [15]
defined in the next section is a well-established example. A neighbourhood B(i)
is additionally defined for each sub-problem i ∈ {1, . . . , μ}, by considering its
T closest weighting coefficient vectors. At each iteration, the population evolves
with respect to a given sub-problem. Two solutions are selected at random from
B(i) and an offspring is produced by means of variation operators. Then, for each
neighbouring sub-problem j ∈ B(i), the offspring is used to replace the current
solution xj if there is an improvement in terms of the scalarising function. The
algorithm iterates over sub-problems until a stopping condition is satisfied.

NSGA2 is an elitist dominance-based EMO algorithm using Pareto dominance
for selection [5]. At a given iteration t, the current population Pt is merged
with its offspring Qt, and is divided into non-dominated fronts {F1, F2, . . . }
based on the non-dominated sorting procedure [9]. The front in which a given
solution belongs to gives its rank within the population. Crowding distance is
also calculated within each front. Selection is based on dominance ranking, and
crowding distance is used as a tie breaker. Survival selection consists in filling
the new population Pt+1 with solutions having the best (smallest) ranks. In case
a front Fi overfills the population size, the required number of solutions from Fi

are chosen based on their crowding distance. Parent selection for reproduction
consists of binary tournaments between randomly-chosen solutions, following the
lexicographic order induced by ranks first, and crowding distance next.

3 Search Trajectory Networks

In order to define a graph-based model, we need to specify its nodes and edges.
We start by giving these definitions for single-objective optimisation before
describing how to construct the models for multiple objectives.

214 G. Ochoa et al.

3.1 Definitions

Nodes are unique candidate solutions to the optimisation problem at each iter-
ation, representing the status of the search process. In population-based algo-
rithms, the best solution from the population (measured by the objective func-
tion) is typically chosen at each iteration as the representative solution. The set
of nodes is denoted by N .

A Search Trajectory is given by a sequence of representative solutions (nodes)
in the order in which they are encountered during the search process.

Edges are directed and connect two consecutive nodes in the search trajectory.
Edges are weighted with the number of times a transition between two given
nodes occurred during the process of sampling and constructing the STN. The
set of edges is denoted by E.

Single-Objective STN Model. An STN is a directed graph STN = G(N,E)
with nodes N and edges E as defined above. For constructing a single-objective
STN, multiple runs of the algorithm under study are performed, and explored
solutions and their transitions are aggregated into a single graph model. Notice
that some solutions and transitions may appear multiple times during the sam-
pling process. However, the graph retains as nodes each unique solution, and as
edges each unique transitions among encountered solutions. Counters are main-
tained as attributes of the graph, indicating the frequency of occurrence of each
(unique) node and edge.

Decomposition-Based STN Sub-model. In multi-objective optimisation
based on decomposition, the problem is decomposed into p scalar (single-
objective) sub-problems that target different regions of the Pareto front [23].
A set of uniformly-generated weight vectors Λ = (λ1, λ2, . . . , λp) represents the
scalar sub-problems defined by decomposition. For a given sub-problem λj ∈ Λ,
the well-established Chebyshev scalarising function [15], to be minimised, is
defined as follows:

g(x | λj) := max
i∈{1,...,m}

λj
i · ∣

∣z�
i − fi(x)

∣
∣ (1)

such that x ∈ X is a solution, λj ∈ IRm is a weighting coefficient vector and
z� ∈ IRm is a reference point. The reference point is set to the best-known value
for each objective.

In order to define the multi-objective STN, nodes are as described above,
and edges separately follow the trajectories of each weight vector λj ∈ Λ,
j ∈ {1, . . . , p}. In other words, for a given sub-problem, the STN follows the
trajectory of the solution with the best (lowest) Chebyshev scalar value for the
corresponding weight vector. The trajectories for all weight vectors are then
aggregated to construct a single graph model. Edges in the multi-objective STN
are labelled by the vector whose transition they represent. The number of weight
vectors p is a parameter of the modelling process. Section 5 reports the setting

Trajectory Networks for Multi-objective Combinatorial Optimisation 215

Table 1. Description of STN metrics.

metric description

nodes number of unique solutions visited

pareto number of solutions in the Pareto set

mean pareto in average incoming degree to Pareto nodes

pareto num path number of paths to Pareto nodes

pareto mean path average shortest path to Pareto nodes

considered in our experiments. We offer below a more formal definition of the
multi-objective STN model.

Multi-objective STN model (STNMO). Assuming we have p = |Λ| single-
objective sub-problems (weight vectors), the multi-objective STN model is
obtained by the graph union of the p single-objective STNs. More formally,
let STNv1 = G(Nv1, Ev1),STNv2 = G(Nv2, Ev2), . . . ,STNvp = G(Nvp, Evp)
be the single-objective STNs for the sub-problems represented by vectors
(λ1, λ2, . . . , λp), respectively. We construct STNMO as the graph union of the
STNvj graphs, j ∈ {1, . . . , p}. Specifically, STNMO = G(Nv1 ∪ Nv2 ∪ . . . ∪
Nvp, Ev1 ∪ Ev2 ∪ . . . ∪ Evp). The union graph contains the nodes and edges that
are traversed for at least one of the weight vectors. Node and edge attributes
indicate which weight vector(s) visited them.

3.2 Network Metrics

We introduce five network metrics to describe the behaviour of the algorithms.
These metrics, summarised in Table 1, were selected as they have been found to
relate to search performance in single-objective problems [18]. The number of
nodes expresses the algorithm exploratory power, the number of Pareto optimal
solutions indicates effectiveness, the mean incoming degree to Pareto nodes is
reflective of how many trajectories were successful, the number of paths as well
as the average shortest path to Pareto nodes are indicative of the algorithm
efficiency in reaching Pareto optimal solutions.

3.3 Network Visualisation

Visualising networks is a powerful and often beautiful way of appreciating their
structure, which can offer insights and even reflect features not easily captured
by network metrics. Node-edge diagrams are the most familiar form of network
visualisation, they assign nodes to points in the two-dimensional Euclidean space
and connect adjacent nodes by straight lines or curves. Nodes and edges can be
decorated with visual properties such as size, colour and shape to highlight
important features.

Our proposed multi-objective STN visualisations (see Fig. 2 for an example
we will analyse later), use node colours and shapes to identify four relevant

216 G. Ochoa et al.

types of nodes: (1) start of trajectories, (2) end of trajectories that do not reach
a Pareto optimal solution, (3) intermediate solutions in the trajectories, and
(4) solutions in the Pareto set. The size of nodes and the thickness of edges are
proportional to their sampling frequency.

A key aspect of network visualisation is the graph-layout, which accounts
for the positions of nodes in the 2D Euclidean space. Graphs are mathemat-
ical objects, they do not have a unique visual representation. Many graph-
layout algorithms have been proposed. Force-directed layout algorithms, such
as Fruchterman-Reignold [8], are based on physical analogies defining attracting
and repelling forces among edges. They strive to satisfy generally accepted aes-
thetic criteria such as an even distribution of nodes on the plane, minimising edge
crossings, and keeping a similar length of edges. We use force-directed layouts for
visualising the multi-objective STNs with two and three objectives (Figs. 2, 3,
7). For two objectives, we additionally introduced a layout that takes advantage
of the objective space. The idea is to use the two objective values as the nodes
x and y coordinates (Figs. 4, 5, and 8). These plots allow us to appreciate the
progression of the search trajectories in the design and objective spaces simul-
taneously. Our graph visualisations were produced using the igraph and ggraph
packages of the R programming language.

4 Experimental Setup

This section describes the experimental setup of our analysis, including the con-
sidered benchmark problems as well as the parameters used for the STNs and
for the algorithms.

4.1 Benchmark Problems

In terms of benchmark, we consider ρmnk-landscapes [22] for constructing multi-
objective multi-modal landscapes with objective correlation. They extend single-
objective nk-landscapes [10] and multi-objective nk-landscapes with independent
objectives [1]. Candidate solutions are binary strings of size n. The objective
function vector f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n �→ [0, 1]m such
that each objective fi is to be maximised. The objective value fi(x) of a solu-
tion x = (x1, . . . , xj , . . . , xn) is an average value of the individual contributions
associated with each variable xj . Given objective fi, i ∈ {1, . . . ,m}, and vari-
able xj , j ∈ {1, . . . , n}, a component function fij : {0, 1}k+1 �→ [0, 1] assigns a
real-valued contribution for every combination of xj and its k variable interac-
tions {xj1 , . . . , xjk}. These fij-values are uniformly distributed in [0, 1]. Thus,
the individual contribution of a variable xj depends on its own value and on the
values of k < n variables other than xj .

The variable interactions, i.e. the k variables that influence the contribution
of xj , are set uniformly at random among the (n − 1) variables other than xj ,
following the random model from [10]. By increasing the number of variable
interactions k, landscapes can be gradually tuned from smooth to rugged. In

Trajectory Networks for Multi-objective Combinatorial Optimisation 217

Table 2. Benchmark parameters for small and large ρmnk-landscapes.

description values

number of variables n = 16 (small), n = 128 (large)

number of interactions k ∈ {1, 4}
number of objectives m ∈ {2, 3}
objective correlation ρ ∈ {−0.4, 0.0, 0.4}

ρmnk-landscapes, fij-values additionally follow a multivariate uniform distribu-
tion of dimension m, defined by an m×m positive-definite symmetric covariance
matrix (cpq) such that cpp = 1 and cpq = ρ for all p, q ∈ {1, . . . , m} with p �= q,
where ρ > −1

m−1 defines the correlation among the objectives; see [22] for details.
The positive (resp. negative) correlation ρ decreases (resp. increases) the degree
of conflict between the objective values.

Interestingly, ρmnk-landscapes exhibit different characteristics and degrees
of difficulty for EMO algorithms [3,13]. The source code of the ρmnk-landscapes
generator is available at the following URL: http://mocobench.sf.net.

4.2 Parameter Setting

We generate 12 small and 12 large ρmnk-landscapes with the parameter settings
listed in Table 2. This allows us to investigate the differences between small and
large instances, two and three objectives, conflicting, independent or correlated
objectives, all this for relatively smooth to relatively rugged landscapes.

In terms of algorithms, we experiment with both MOEA/D and NSGA2
under the parameters from Table 3. Each algorithm is run independently 10 times
on each instance. Algorithm performance is given in terms of hypervolume [24].
More particularly, we measure the relative hypervolume deviation with respect
to the exact PF (for small instances) or best-known PF (for large instances).
Let hv be the hypervolume covered by the population, the relative hypervolume
deviation is (hv� − hv)/hv�, such that hv� is the best-known hypervolume. A
lower value is thus better. The hypervolume reference point is set to the origin.

Table 3. Algorithm parameters for MOEA/D and NSGA2.

description values

population size μ = 101 (m = 2), μ = 231 (m = 3)

neighbourhood size T = 10 (MOEA/D)

variation 1-point crossover, bit-flip mutation with rate 1/n

number of generations g = 20 (n = 16), g = 500 (n = 128)

http://mocobench.sf.net

218 G. Ochoa et al.

mean_pareto_in pareto_num_path pareto_mean_path

hypervolume relative deviation nodes pareto

0 5 10 15 20 0e+00 5e+04 1e+05 0 3 6 9 12

0.000 0.025 0.050 0.075 0 500 1000 1500 2000 0 200 400 600
r=0.4 m=3 n=16 k=4
r=0.0 m=3 n=16 k=4

r=−0.4 m=3 n=16 k=4
r=0.4 m=3 n=16 k=1
r=0.0 m=3 n=16 k=1

r=−0.4 m=3 n=16 k=1
r=0.4 m=2 n=16 k=4
r=0.0 m=2 n=16 k=4

r=−0.4 m=2 n=16 k=4
r=0.4 m=2 n=16 k=1
r=0.0 m=2 n=16 k=1

r=−0.4 m=2 n=16 k=1

r=0.4 m=3 n=16 k=4
r=0.0 m=3 n=16 k=4

r=−0.4 m=3 n=16 k=4
r=0.4 m=3 n=16 k=1
r=0.0 m=3 n=16 k=1

r=−0.4 m=3 n=16 k=1
r=0.4 m=2 n=16 k=4
r=0.0 m=2 n=16 k=4

r=−0.4 m=2 n=16 k=4
r=0.4 m=2 n=16 k=1
r=0.0 m=2 n=16 k=1

r=−0.4 m=2 n=16 k=1

MOEAD
NSGA2

Fig. 1. Algorithm performance and STN metrics for small instances.

4.3 Reproducibility

For reproducibility purposes, relevant data and code are be available at: https://
github.com/gabro8a/STNs-MOCO

5 Results

This section reports and comments the STNs obtained for small instances, and
then for large instances. STN metrics are also discussed and related with algo-
rithm performance.

5.1 Small Instances

We start with results for small instances with n = 16. In this case, the STN
modelling used p = 101 decomposition vectors for instances with two objectives
and p = 231 vectors for instances with three objectives; i.e. the same setting as
the algorithms’ population size. This give us the maximum possible modelling
granularity (one vector per each individual member in the population), while
still producing interpretable images.

Network Metrics. Algorithm performance for the 12 small instances is
reported in Fig. 1 (top left), together with the five network metrics described in
Table 1. For this set of instances, NSGA2 consistently outperforms MOEA/D, as
indicated by the lower hypervolume relative deviation values. The higher STN

https://github.com/gabro8a/STNs-MOCO
https://github.com/gabro8a/STNs-MOCO

Trajectory Networks for Multi-objective Combinatorial Optimisation 219

metric values obtained by NSGA2 for nodes, pareto and pareto num path clearly
support this trend. Another clear trend from the STN metrics is the decrease in
values when we go from conflicting (ρ = −0.4) to positively correlated objectives
(ρ = 0.4), which is observed for both values of k ∈ {1, 4} and m ∈ {2, 3}. Finally,
a salient observation from Fig. 1 is the large metric values observed for instances
with m = 3 and conflicting objectives (ρ = −0.4). The values of nodes, pareto,
pareto num path and pareto mean path are higher for k = 1 than for k = 4. This
is consistent with previous findings: although there are more local optima for
larger k values, the number of global optima (i.e. Pareto optimal solutions) has
the opposite trend and decreases with increasing k [22].

Network Visualisation with a Force-Directed Layout. Figures 2 and 3
provide examples using a force-directed layout for m = 2 and m = 3 objectives,
respectively. They report the multi-objective STN obtained for MOEA/D (top)
and NSGA2 (bottom) for conflicting (left), independent (middle) and correlated
objectives (right). The network visualisations confirm the trends observed in the
metrics. Notably, the number of nodes in the networks consistently decreases
when moving from negatively correlated objectives (ρ = −0.4, left) to positively
correlated objectives (ρ = 0.4, right). We can also visually confirm the much
denser STNs obtained for m = 3 objectives, as reported in Fig. 3.

Network Visualisation with the Objective-Space Layout. Figures 4 and 5
shows our proposed objective-space network layouts applied to the two studied
levels of ruggedness k ∈ {1, 4}, respectively. Notice that this layout is only
applicable for m = 2 objectives if we restrict ourselves to the 2D Euclidean space.
We argue that this layout may be more useful to the multi-objective optimisation
community (as compared to the force-directed layouts shown in Figs. 2 and 3)
as they resemble the familiar Pareto front scatter plots. However, they offer
additional insights, revealing not only the Pareto front when it is reached, but
also the search progress towards it, thus giving indication of unsuccessful runs
as well. Notice that in these plots, an additional graphical layer is shown in the
form of blue diamonds. They correspond to the exact Pareto front and are not
part of the STN nodes. They serve as a tool to appreciate if and when the STN
trajectories reach the Pareto front. The objective-space layout, therefore, might
be more suitable for appreciating the performance difference between algorithms.

With respect to NSGA2 outperforming MOEA/D (as indicated by the per-
formance metric in Fig. 1), this can only be clearly appreciated for k = 4 and
m = 2 (Fig. 5). Looking at the left plots for ρ = −0.4, we can confirm that
the MOEA/D STN (top plot) has a larger number end nodes (orange triangles)
that are also of larger size as those of the NSGA2 STN (bottom plot). Remember
that the size of nodes is proportional to their sampling frequency. Therefore, this
is a visual reflection that MOEA/D has a larger number of unsuccessful runs,
that is, trajectories ending into sub-optimal solutions. The NSGA2 STN (bot-
tom plot) reveals in this case a larger number of red nodes (Pareto solutions),
which are of larger size. Remember that the super-imposed blue diamond scatter

220 G. Ochoa et al.

Fig. 2. STN visualisation with a force-directed layout for small instances with k = 1
and m = 2 objectives.

Fig. 3. STN visualisation with a force-directed layout for small instances with k = 4
and m = 3 objectives.

Trajectory Networks for Multi-objective Combinatorial Optimisation 221

Fig. 4. STN visualisation with the objective-space layout for small instances with k = 1
and m = 2 objectives.

Fig. 5. STN visualisation with the objective-space layout for small instances with k = 4
and m = 2 objectives.

222 G. Ochoa et al.

plot is used to visually locate the exact Pareto front. A careful inspection of the
MOEA/D STN (top plot in Fig. 5) reveals one empty blue diamond, and some
diamonds that are only partially filled with red nodes (Pareto solutions found
by the trajectories).

5.2 Large Instances

We continue our discussion by analysing the results for large instances with
n = 128. The STN modelling used p = 51 decomposition vectors for instances
with two objectives and p = 66 vectors for instances with three objectives. In this
case, we used fewer weight vectors relative to the population size for efficiency
reasons, and for improving both the cosmetic rendering and interpretability of
the STN images. Notice that the larger the number of vectors, the larger the
number of nodes in the STN models. The number of vectors can be seen as a
parameter to adjust the model granularity.

Network Metrics. Algorithm performance and network metrics for large
instances are reported in Fig. 6. For this set of instances, there is less differ-
ence in performance between the two algorithms. Nevertheless, notable excep-
tions appear for m = 3 objectives and conflicting objectives (ρ = −0.4), where
MOEA/D reaches significantly better hypervolume values. This is supported
by the higher STN metric values obtained by MOEA/D for nodes, pareto and
pareto num path on the corresponding instances. Notice that for ρ = 0.4, m = 2,
k = 4 in Fig. 6, NSGA2 does not find Pareto optimal solutions, therefore, some
of the metrics cannot be computed, which explains the absence of the blue bar in
this case. We notice that the NSGA STNs contain much more nodes, which is to
be contrasted by its number of pareto nodes that is often particularly low com-
pared to MOEA/D. This suggests that NSGA2 has a higher rate of discovery,
but that it gets more easily trapped into sub-optimal solutions.

Network Visualisation with a Force-Directed Layout. We report in Fig. 7
examples of multi-objective STNs using a force-directed layout, for m = 3 objec-
tives and k = 4. We observe that the networks are much denser than for small
instances, although we used comparatively fewer decomposition vectors. This is
to be expected given the exponentially larger search space of large instances.
For conflicting objectives (ρ = −0.4, left), MOEA/D significantly outperforms
NSGA2. We observe that MOEA/D identifies significantly more Pareto optimal
solutions, which confirms the trend observed in the STN metrics. For uncor-
related objectives (ρ = 0.0, middle), the NSGA2 STN contains fewer Pareto
optimal solutions than for MOEA/D, but they are identified more frequently,
given the size of pareto nodes (in red). At last, for positively correlated objec-
tives (ρ = 0.4, right), both algorithms identify about the same number of Pareto
optimal solutions, but we still see that NSGA2 identifies them more frequently,
which supports the fact that NSGA2 is slightly better for this instance.

Trajectory Networks for Multi-objective Combinatorial Optimisation 223

mean_pareto_in pareto_num_path pareto_mean_path

hypervolume relative deviation nodes pareto

0 1 2 3 0 500 1000 0 10 20 30 40

0.00 0.05 0.10 0.15 0 5000 10000 0 50 100 150 200
r=0.4 m=3 n=128 k=4
r=0.0 m=3 n=128 k=4

r=−0.4 m=3 n=128 k=4
r=0.4 m=3 n=128 k=1
r=0.0 m=3 n=128 k=1

r=−0.4 m=3 n=128 k=1
r=0.4 m=2 n=128 k=4
r=0.0 m=2 n=128 k=4

r=−0.4 m=2 n=128 k=4
r=0.4 m=2 n=128 k=1
r=0.0 m=2 n=128 k=1

r=−0.4 m=2 n=128 k=1

r=0.4 m=3 n=128 k=4
r=0.0 m=3 n=128 k=4

r=−0.4 m=3 n=128 k=4
r=0.4 m=3 n=128 k=1
r=0.0 m=3 n=128 k=1

r=−0.4 m=3 n=128 k=1
r=0.4 m=2 n=128 k=4
r=0.0 m=2 n=128 k=4

r=−0.4 m=2 n=128 k=4
r=0.4 m=2 n=128 k=1
r=0.0 m=2 n=128 k=1

r=−0.4 m=2 n=128 k=1

MOEAD
NSGA2

Fig. 6. Algorithm performance and STN metrics for large instances.

Fig. 7. STN visualisation with a force-directed layout for large instances with k = 4
and m = 3 objectives.

224 G. Ochoa et al.

Fig. 8. STN visualisation with the objective-space layout for large instances with k = 4
and m = 2 objectives.

Network Visualisation with the Objective-Space Layout. Let us now
analyse the objective-space network layout for large instances with m = 2 objec-
tives. The multi-objective STNs are reported in Fig. 8 for k = 4. The visu-
alisations for k = 1 are not shown due to space constraints, but they show
similar trends. As anticipated by the analysis of STN metrics in Fig. 6, the
multi-objective STNs obtained by the two algorithms are similar for the large
two-objective instance, although solutions seem a bit more spread for NSGA2.
The number of pareto nodes tends to be proportionally higher as we gradually
shift from conflicting (ρ = −0.4) to positively correlated objectives (ρ = 0.4). A
notable difference is for NSGA2 and k = 4, where the STN contains no pareto
nodes for positively correlated objectives (ρ = 0.4). Furthermore, the position of
end nodes (orange triangles) suggests that the trajectories end up in sub-optimal
solutions farther away from the Pareto front for instances with k = 4, for which
there are more local optima. Going back to the comparison between MOEA/D
and NSGA2, the objective-space network layout of the STNs provide visual evi-
dence confirming that, although NSGA2 seems to explore more solutions, it is
attracted to lower quality solutions.

6 Conclusions

We argue that STNs are an accessible tool to analyse and visualise the behaviour
of evolutionary multi-objective optimisation algorithms. Constructing STN mod-

Trajectory Networks for Multi-objective Combinatorial Optimisation 225

els does not require any specific sampling techniques. Instead, data is collected
from a set of runs of the studied algorithms, and then aggregated and processed
to devise the models. Post-processing tools, however might be required to deal
with large models. STNs provide insights into problem structure as well as into
algorithm convergence behaviour and performance differences.

Future work could study additional multi-objective problems and algorithms,
including real-world problems and 4+ objectives. The challenge we foresee here
deals with the larger number of solutions attained by the trajectories. For this,
we could thoroughly investigate coarser models including varying the number
of decomposition vectors in the STN model, and of grouping multiple solutions
within a single node, as has been done for single-objective STN models [17,18].
A number of repositories contain code and data to start with STN modelling
and analysis for both single-objective1 (including a web-based tool2), and multi-
objective combinatorial3 and continuous4 problems. We should provide unified
software tools to improve the usability of STN models.

Acknowledgements. We are deeply grateful to the SPECIES Society for funding a
scholarship for Yuri Lavinas to visit the University of Stirling, Scotland, UK.

References

1. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of
MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

2. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, New York (2007). https://doi.org/
10.1007/978-0-387-36797-2

3. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features
versus algorithm performance on rugged multiobjective combinatorial fitness land-
scapes. Evol. Comput. 25(4), 555–585 (2017)

4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems
using local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO 2019, pp. 1421–1429. Association
for Computing Machinery, New York (2019)

7. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of
stochastic multiobjective optimizers. In: Voigt, H.-M., Ebeling, W., Rechenberg,
I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X 1022

8. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exper. 21(11), 1129–1164 (1991)

1 https://github.com/gabro8a/STNs.
2 http://45.32.184.82.
3 https://github.com/gabro8a/STNs-MOCO.
4 https://github.com/gabro8a/STNs-MOEA.

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/3-540-61723-X_1022
https://github.com/gabro8a/STNs
http://45.32.184.82
https://github.com/gabro8a/STNs-MOCO
https://github.com/gabro8a/STNs-MOEA

226 G. Ochoa et al.

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Boston (1989)

10. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)
11. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimiza-

tion landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp.
329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 23

12. Lavinas, Y., Aranha, C., Ochoa, G.: Search trajectories networks of multiobjec-
tive evolutionary algorithms. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba,
K.O. (eds.) EvoApplications 2022. LNCS, vol. 13224, pp. 223–238. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-02462-7 15

13. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-
aware performance prediction for evolutionary multi-objective optimization. IEEE
Trans. Evol. Comput. 24(6), 1063–1077 (2020)

14. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On
pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço,
N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp.
232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 19

15. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers (1999)

16. Ochoa, G., Tomassini, M., Verel, S., Verel, C.: A study of NK landscapes? Basins
and local optima networks. In: Genetic and Evolutionary Computation Conference.
GECCO, pp. 555–562. ACM Press, New York (2008)

17. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks of population-based
algorithms in continuous spaces. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández
de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 70–85. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-43722-0 5

18. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: a tool for analysing
and visualising the behaviour of metaheuristics. Appl. Soft Comput. 109, 107492
(2021)

19. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transi-
tions with local optima networks: number partitioning as a case study. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 16

20. Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visu-
alization of efficient sets in multi-objective landscapes. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12270, pp. 154–167. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58115-2 11

21. Tušar, T., Filipič, B.: Visualization of Pareto front approximations in evolutionary
multiobjective optimization: a critical review and the prosection method. IEEE
Trans. Evol. Comput. 19(2), 225–245 (2015)

22. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjec-
tive combinatorial search space: MNK-landscapes with correlated objectives. Eur.
J. Oper. Res. 227(2), 331–342 (2013)

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-319-54157-0_23
https://doi.org/10.1007/978-3-031-02462-7_15
https://doi.org/10.1007/978-3-319-99259-4_19
https://doi.org/10.1007/978-3-030-43722-0_5
https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-030-58115-2_11
https://doi.org/10.1007/978-3-030-58115-2_11

On the Effect of Solution Representation
and Neighborhood Definition in AutoML

Fitness Landscapes

Matheus C. Teixeira and Gisele L. Pappa(B)

Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

glpappa@dcc.ufmg.br

Abstract. The interest in AutoML search spaces has given rise to a
plethora of studies conceived to better understand the characteristics of
these spaces. Exploratory landscape analysis is among the most com-
monly investigated techniques. However, in contrast with other classical
optimization problems, in AutoML defining the landscape may be as
tough as characterizing it. This is because the concept of solution neigh-
borhood is not clear, as the spaces have a high number of conditional
hyperparameters and a somehow hierarchical structure. This paper looks
at the impact of different solution representations and distance metrics
on the definition of these spaces, and how they affect exploratory land-
scape analysis metrics. We conclude that these metrics are not able to
deal with structured, complex spaces such as the AutoML ones, and
problem-related metrics might be the way to leverage the landscape com-
plexity.

Keywords: Fitness landscape analysis · Automated Machine
Learning · distance measures

1 Introduction

Exploratory fitness landscape analysis has been an interesting tool used to better
understand the characteristics of the search space of classical optimization algo-
rithms [7]. More recently, some efforts have migrated from traditional optimiza-
tion problems to those that deal with machine learning problems. In this direc-
tion, a few studies have looked at the loss landscape of neural networks, while
others have focused on understanding both the search of Automated Machine
Learning (AutoML) problems focusing on machine learning pipelines [18] and
the architecture spaces of neural networks [9].

When compared to traditional optimization problems, these landscapes are
harder to be defined and analyzed, as they have both categorical, discrete and
continuous parameters, many of them conditional (i.e., one hyperparameter is
only present if another hyperparameter is previously selected). The represen-
tation is somehow hierarchical, as changes in one hyperparameter may acti-
vate others. For example, suppose we consider different types of classification
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, pp. 227–243, 2023.
https://doi.org/10.1007/978-3-031-30035-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30035-6_15&domain=pdf
http://orcid.org/0000-0003-1103-5383
http://orcid.org/0000-0002-0349-4494
https://doi.org/10.1007/978-3-031-30035-6_15

228 M. C. Teixeira and G. L. Pappa

algorithms. Each of them includes different sets of parameters, which will only
become available when that algorithm is selected. From an optimization point of
view, these problems can be defined as a mixed-integer nonlinear optimization
problem [24].

This work focuses on analyzing the landscape of AutoML problems that
generate machine learning pipelines [24]. A pipeline is defined as a sequence
of pre-processing methods, algorithms and their hyperparameters that obtains
accurate results in the target classification task. Many different methods have
been used to solve this problem [3], but not much about the space itself is known.
In these problems, the fitness landscape can be considered hard to define, given
the loose definition that can be given to neighborhood.

A fitness landscape is defined by a tuple (S, f,N), where S is the set of
all possible solutions (i.e. the search space), f : S → R is a function that
attributes a real-valued performance estimation for each solution in S, and N(x)
is a notion of neighborhood between solutions, usually defined as a distance
metric N(x) = {y ∈ S|d(x, y) ≤ ε} for a sufficiently small ε.

Although the concept of neighborhood is clear in most problems, there are
cases where defining neighborhood is a challenge. In AutoML, these challenges
are related to the conditional nature of the search space, and to whether changing
one type of hyperparameter should have a larger impact on the fitness of the
generated solutions than changing others. For example, using a mutation to
change the number of trees of a Random Forest will probably affect less the
fitness than changing the Random Forest by another classifier, say, Naive Bayes.
This needs to be reflected in the distances between solutions and the definition
of neighborhood.

Aiming to increase our understanding of the fitness landscapes of AutoML
problems and the impacts of neighborhood definition, this paper analyses three
different ways of representing the fitness landscapes of AutoML problems and
studies how these definitions affect the shape of the space. For that, we define
a simplified search space of AutoML pipelines that is fully enumerable, where
continuous attributes are discretized. We generate the fitness landscape for 20
different datasets and extract metrics from traditional exploratory fitness land-
scape analysis. We observed that different representations yield different magni-
tudes of distances and change neighborhood, and that for different datasets the
characteristics of the landscape vary drastically. Hence, it might be the case that
the study of these landscapes requires metrics related to the problem domain
and the underlying datasets being tackled by AutoML.

2 Related Work

There are a few studies in the literature that have looked at the landscape of
AutoML problems in general, and they can be divided into two groups: those
where the search space is made of machine learning pipelines and those where
the space refers to neural network architectures. We start by looking at problems

On the Effect of Solution Representation in AutoML 229

where candidate solutions are full pipelines. The authors in [2] were the first to
perform the analysis of AutoML landscapes considering a subspace of TPOT
(Tree-based Pipeline Optimization Tool), using metrics such as slope, roughness
and neutrality. Their results suggest that many regions of high fitness exist in
the space, but these are prone to overfitting. In this same direction, the authors
in [12] looked at fitness landscape metrics to better understand the search space
of a huge space of machine learning pipelines. They looked at Fitness Distance
Correlation (FDC) and metrics of neutrality, and concluded FDC was a poor
metric for performing the analyses.

In a similar fashion, but concerning the landscape of algorithm configuration
problems, the authors in [13] evaluated them in terms of modality and convexity
of parameter responses, and concluded that many of the parameter slices appear
to be uni-modal and convex, both on instance sets and on individual instances. In
a follow-up work [14], they tested the unimodality of the AutoML loss landscape
considering the joint interaction of the hyperparameters and concluded that
most landscapes have this property, but are not convex. They also observed
that hyperparameters interact strongly in regions of configuration space farther
from the optimal solutions. Finally, they empirically demonstrate that FDC has
limitations in characterizing certain spaces.

Turning to analysis of spaces of neural network architectures, the authors in
[9] analyzed the fitness landscape of NAS in the context of graph neural network
architectures. They used FDC together with the dispersion metric, and also
looked at the neutrality of the space. The analysis of neutrality indicated that
the space was not neutral, but the authors highlighted the need to use more
elaborate techniques for estimating neutrality.

Going further, the authors in [19] introduced the concept of fitness landscape
footprint, given by an aggregation of eight general-purpose metrics to synthesize
the landscape of a neural network architecture search problem. They looked
at the classical image classification benchmarks and concluded the technique
was able to characterize the relative difficulty of the problem, and the insights
provided may be used to assess the expected performance of a search strategy
in each dataset.

Note that all the works reviewed so far focus on using standard metrics of
FLA. Lately, there have been a few works looking at these spaces with Local
Optima Networks (LONs). For example, the work of [20] adapted LONs to ana-
lyze the global structure of parameter configuration spaces. For complex scenar-
ios, they found a large number of sub-optimal funnels, while simpler problems
had a single global funnel. With this same objective, the authors in [1] looked at
parameter spaces for Particle Swarm Intelligence (PSO) and found that PSO’s
parameter landscapes are relatively simple at the macro level but a lot more
complex at the micro level, making parameter tuning more difficult than they ini-
tially assumed. The authors in [18] looked at AutoML pipelines using LONs, and
concluded their space was multi-modal and with a high number of local optima.

Finally, a few recent works have looked at the fitness landscapes of NAS
problems from a point of view of both classical metrics of FLA and LONs.

230 M. C. Teixeira and G. L. Pappa

The authors in [17] analyzed the NAS fitness landscape generating a fully enu-
merable space using FDC and LON. The results showed that the search space is
easy and that most local optima are only one perturbation away from the global
optimum. The authors in [10] have also looked at the fitness landscapes of NAS
benchmarks. They concluded that the FL analyzed are multi-modal but have
few local optima, making it not complicated for local search methods to escape
these regions of the search space with simple perturbation operations.

3 AutoML Fitness Landscape

In order to generate different fitness landscapes, we use an AutoML search space
that considers a trade-off between space size and solution effectiveness: the space
has enough components to generate accurate solutions to real problems but it
is simple enough so it can be fully enumerated. Given the hierarchical nature of
the search space, which emerges due to a large number of conditional parame-
ters, we represent the search space by a grammar, and its production rules are
followed to generate feasible solutions. The grammar uses a subset of the origi-
nal space defined in [12], and originally presented in [18]. It has 38 production
rules, 92 terminals and 45 non-terminals1. In terms of preprocessing, it includes
algorithms that deal with feature scaling and dimensionality reduction, such as
Principal Component Analysis (PCA) and Select K-Best. It is also possible for
a pipeline to use no preprocessing algorithms. In terms of classification meth-
ods, there are five possible options: Logistic Regression, Multilayer Perceptron,
K-Nearest Neighbors (KNN), Random Forest, and Ada Boost. The number of
hyperparameters varies from one classification algorithm to another, going from
two (Ada Boost) to 7 (Random Forest). A few continuous parameters are left out
of the grammar and assume their default values as defined in their Scikit-learn
implementation [11].

3.1 Solution Representation and Neighborhood

Given the search space is defined by the grammar, the most intuitive way to rep-
resent the candidate solutions is by using the derivation tree extracted directly
from the grammar. Figure 1 shows two examples of derivations trees (pipelines):
the first performs no preprocessing and runs an Adaboost classifier, while the
second performs feature selection before applying Adaboost. Note that the algo-
rithms and hyperparameters are the leaf nodes of the tree.

Given a representation, we also need to define the concept of solution neigh-
borhood, which is usually given by the distance between pairs of solutions. In the
case of machine learning pipelines, we do not have an inherent distance/similarity
concept that can easily determine how distant they are. For example, given two
ML pipelines with the same preprocessing and different classifiers. Should they
be considered closer, more distant or as distant as two pipelines with different
preprocessing but the same classifier?
1 bit.ly/38F0o3U.

https://bit.ly/38F0o3U

On the Effect of Solution Representation in AutoML 231

Fig. 1. Example of Machine Learning Pipelines.

Given this drawback, the authors in [12] introduced an ad-hoc technique
to define the distance between AutoML pipelines represented by grammar-
derivation trees, where the distance between individuals with different algo-
rithms is greater than that of individuals that differ only in hyperparameters.
[9], in turn, measured the distance between pipelines by first converting them to
a binary representation using one-hot encoding and then calculating the Ham-
ming distance between these binary representations. In addition, the authors also
apply the t-SNE algorithm [21], used for dimensionality reduction, to generate
a dense space and use the Euclidean distance to calculate the distance between
the pipelines in the embedded space.

As the results of FLA metrics are directly influenced by the concept of dis-
tance adopted by the authors, we adopted and compared three different repre-
sentation and distance methods according to previous work. We used: (i) the
method proposed by [12], based on tree representations, from now on referred as
Adhoc, (ii) the methods based on binary representation and iii) the embedded
space generated by t-SNE, both proposed by [9] in the context of understand-
ing fitness landscapes of graph neural networks. Next, we discuss each of these
methods.

ad hoc distance method in tree-based representation: This method assigns
constant values to represent the distance between each type of node present in
the pipeline. 16 types of nodes are defined, and their distances are calculated
according to constant values assigned by specialists [12]. In this case, nodes closer
to the root of the tree tend to be more dissimilar than those at the leaves of the
same subtree.

The final distance between two pipelines is equal to the sum of the distances of
the nodes that make up each one of them. The idea of this method is to consider
that the impact of changing an algorithm is more significant than changing the
value of a hyperparameter and that the presence of an algorithm is greater than
simply changing the algorithm. For example, the distance from the trees in Fig. 1
is 4. If we get tree (b) and replace its classifier with another one, then the distance
increases to 6.

232 M. C. Teixeira and G. L. Pappa

Fig. 2. Dimensionality reduction of the generated space using one-hot encoding. The
one-hot encoded space has 64 dimensions, here represented as two.

Hamming distance in binary representation: The second method to define
the distances between pairs of pipelines first converts the tree into a binary
sequence using one-hot encoding, which is a simple way of transforming struc-
tured or categorical data into a numerical representation. The Hamming distance
is then used to calculate distances between solutions.

The transformation to one-hot encoding is done as follows. Each pipeline P is
represented by a binary sequence SP , where the presence or absence of a terminal
corresponds to 1 or 0, respectively. Each terminal is assigned a specific and fixed
position in the sequence, so all pipelines composed of the same terminal have
1 in the position representing that terminal. For example, if the classification
algorithm X is mapped to the i-th position of the sequence S and a given
pipeline P , then, by this algorithm, the sequence representing that pipeline has
the i-th element equals to 1, i.e., SP

i = 1.
It is important to say that the one-hot encoding process is lexical, i.e., two

different parameters that were allowed the same value in different contexts were
assigned the same position in the vector. For example, the number 5 meaning
trees of a Random Forest or neighbors in a KNN were mapped to the same
place. Hence, instead of having a length of 96 (the number of terminals of the
grammar), the one-hot encoding has a length of 64.

Euclidean distance in 2D embedded representation: The third method
of distance uses the (sparse) representation generated by the one-hot encoding
with high dimensionality and condenses the vector into a two-dimensional space
R

2 using the t-SNE algorithm, run with the default parameters values of its
Sklearn implementation. These values are then compared using the Euclidean
distance between the two representations.

On the Effect of Solution Representation in AutoML 233

Reducing the representation to a R
2 space is interesting because it allows the

visualization of the configuration space, as shown in Fig. 2. In the figure on the
left, the color indicates the classification algorithm used in the pipeline. In the
figure on the right, the color indicates the preprocessing algorithm used. Observe
that the distribution of pipelines using a specific algorithm is not uniform and
this occurs because certain algorithms have more hyperparameters than others.

3.2 Fitness Function

Having the solution space defined, we define the fitness of the solutions as the
weighted average F-measure [23] (Eq. 1):

F-measure =
2 · TP

2 · TP + FP + FN
(1)

which is the harmonic mean of precision and recall. In the equation, TP stands
for the true positives, FP for the false positives, and FN for the false negatives.
As some datasets have several classes, the one-vs-all strategy was employed when
calculating this metric.

When evaluating the fitness, a maximum computational budget (for training
and testing the pipeline) was defined, and solutions that exceeded this limit
received fitness 0. This was the simple way we found to deal with the trade-off
between the computational cost versus the quality of the solutions.

4 Characterization of the Fitness Landscapes

The fitness landscape of a problem depends directly on the data being analyzed.
In this work, the pipelines were evaluated in 20 datasets selected from the UCI
Machine Learning Repository2 and from Kaggle3.

Considering the search space defined in Sect. 3, we generate all the solutions
and evaluated them for each of the 20 datasets, generating 20 different fitness
landscapes. Table 1 presents some features of the datasets used to generate the
fitness landscape. The “Code” column indicates the code used to reference each
dataset, the “Instances” column indicates the number of instances, the “Fea-
tures” column indicates the number of features, the “Classes” column indicates
the number of classes present in the target feature. Following, the “Optimum”
column indicates the fitness of the global optimum (from the space defined by
the grammar) and the “#Optimum” column indicates the number of solutions
that achieve the value of optimal fitness.

Figure 3 shows the boxplots of the fitness distribution of the pipelines gener-
ated for each dataset. Note that, for some datasets, the fitness of the solutions is
predominantly high or low, while for others they are better distributed. Observe
that this distribution does not affect FLA, but gives an insight into the difficulty
of the problem.
2 https://archive.ics.uci.edu/ml/index.php.
3 https://www.kaggle.com/datasets.

234 M. C. Teixeira and G. L. Pappa

Table 1. Characterization of the datasets.

Dataset Code Instances Features Classes Optimun #Optimum

abalone DS01 4177 8 28 0.2842 1

bank DS02 11162 16 2 0.8376 8

car-evaluation DS03 1728 6 4 0.9380 8

diabetes DS04 768 8 2 0.7900 8

dry-bean DS05 13611 16 7 0.9309 32

fire DS06 17442 6 2 0.9539 8

fruit DS07 898 34 7 0.9157 1

heart DS08 303 13 2 0.8216 96

ml-prove DS09 6118 51 6 0.4478 21

mushrooms DS10 8124 22 7 0.6678 10

nursery DS11 12960 8 5 0.9937 1

pistachio-28 DS12 2148 28 2 0.9295 6

pumpkin DS13 2500 12 2 0.8829 3

raisin DS14 900 7 2 0.8810 1

statlog-segment DS15 2310 19 7 0.9685 24

texture DS16 5500 40 11 0.9980 6

vehicle DS17 846 18 4 0.7875 7

water-potability DS18 3276 9 2 0.6643 1

wilt DS19 4839 5 2 0.9888 2

wine-quality-red DS20 1599 11 6 0.6402 16

Finally, Table 2 shows the pairwise distances between the pipelines shown in
Fig. 1 and a third pipeline, referred as 1bMLP – where the AdaBoost classifier is
replaced by an MLP. Note that the distances are consistent among individuals,
with a classifier replacement weighing more than changing a preprocess. The
magnitude of these numbers and their differences, however, differ substantially.

Fig. 3. Boxplot of the fitness of the pipelines in different datasets.

On the Effect of Solution Representation in AutoML 235

Table 2. Pairwise distances between pipelines using different representations. Each
row refers to the pipeline represented by the figure number indicated.

Euclidean Hamming Adhoc

Fig. 1a 1b 1bMLP 1a 1b 1bMLP 1a 1b 1bMLP

1a 0.0 0.27 24.06 0.0 3.0 9.0 0.0 4.0 6.0

1b 0.27 0.0 24.14 3.0 0.0 6.0 4.0 0.0 2.0

1bMLP 24.06 24.14 0.0 9.0 6.0 0.0 6.0 2.0 0.0

5 Exploratory Fitness Landscape Analysis

According to the fitness landscapes built using the 20 datasets and three dif-
ferent types of representations, we calculated the Fitness Distance Correlation
(FDC) [4], the dispersion metric [5] and the neutrality rate considering each of
the landscapes.

Fitness Distance Correlation (FDC)) is a metric widely used in FLA and
was already used in the context of AutoML [9,12,19]. The idea behind this
metric is that landscapes that have a positive correlation between distance and
fitness from a global optimum are proportionately easy to optimize [16]. It was
originally proposed by [4], but had the limitation of depending on the knowledge
of the global optimum, which is often not available. This is not the case here, as
the complete space was enumerated.

Dispersion Metric (DM) measures the average distance between the top p%
solutions from a set of randomly sampled points using a uniform distribution.
The idea is to measure how close or dispersed the solutions with the highest
fitness are in the space, and it is calculated as follows: first, it samples a fixed-
length list of sv solutions from the search space and evaluates their fitness. Then,
it sorts the solutions by fitness value, and the top sb = sv×p% points are selected.
disp is given by the average distance between these solutions.

Neutrality Rate is a metric designed to measure and identify the presence of
regions of the search space with small or no variations in values of fitness, i.e.,
immediate neighbors with equal fitness. Flat regions in the search space can be
a problem for algorithms that are gradient-driven or rely on a local search, such
as Hill-Climbing. By definition, neutrality is the opposite of roughness, but both
metrics are useful since part of the search space can present high roughness while
other regions can present high neutrality.

Neutrality can both make the search space easier to explore [22] or get some
algorithms stuck in regions of the search space with similar (or equal) fitness,
preventing them from exploring areas with possibly better results [6]. Assuming a
discrete representation of the solutions ag and defining a “mutation” as a change
in one of the components of ag that leads to a neighbor solution ai

g ∈ N(ag), We
evaluate the neutrality of our landscape based on neutral walks (as defined by
[15]), which perform a random walk and identify the number of neighbors with
fitness lower than a parameter δ.

236 M. C. Teixeira and G. L. Pappa

Fig. 4. FDC comparison using different distance methods and different random walk
sizes

6 Results and Discussion

This section presents and discusses the results of the metrics previously discussed
in the AutoML fitness landscape defined in Sect. 3. In all experiments, the metrics
were calculated with 30 different samples/walks and the error lines indicate the
95% confidence interval.

6.1 Fitness Distance Correlation

The experiments were performed using random walks with lengths varying from
500 to 3,000 with steps of 500. As several datasets have more than one global
optimum, the distance used was the smallest, that is, the distance from the global
optimum closest to the observed solution. Figure 4 shows the boxplots grouped
by dataset, where the color indicates the length of the walk.

Observe that the FDC metric tends to negative values for most datasets, but
the correlation is not strong for any of the cases, as the |FDC| ≤ −0.6 in all cases.
The fact that it is negative indicates that as the distance from the solution selected
in the random walk to the nearest global optimum increases, the fitness of the solu-
tion also increases. The walk length affects the variance of FDC, as observed from
the largest bar in the boxplots referring to walks of length equal to 500. However,
the difference between the FDC with the largest and the smallest walk length is
not significant. In the case of Euclidean distance, specifically, the distribution of
FDC is more uniform and 11 instances have a mean greater than 0.

On the Effect of Solution Representation in AutoML 237

Another point to be considered is that increasing the neighborhood has no
effect on the result obtained by the metric, although this is a factor that directly
affects the difficulty of the space, as shown in [18]. This happens because, in
all cases, the distance is measured according to the same global optima. More-
over, the distance metrics used only consider the syntactic characteristics of the
pipelines (they do not consider the topological structure of the search space).
Therefore, the result obtained with neighborhoods of size 15, 20 and 25 result
in the same values. However, these results would change if the distance was
measured in relation to a local optimum, which changes when the neighborhood
changes, and is often used when the space cannot be completely enumerated.

An alternative way of analyzing FDC is through a joint plot of the distance
by the fitness of each solution contained in the sampled random walk, as depicted
in Figs. 5a–5c. Each figure represents a different type of distance and the mean
and standard deviation of the distances of each solution contained in the walk
are shown in the lower left corner and the FDC in the lower right corner. The
Adhoc and hamming methods concentrate the distance in a specific range while
the Euclidean distance has a standard deviation of approximately half of the
mean.

(a) ad hoc distance (b) Hamming distance (c) Euclidean distance

Fig. 5. Scatter plot of FDC calculated on DS04 (distance to global optimum).

Although in absolute terms the FDC values are different depending on the
representation and distance, the results are expected to maintain the same rela-
tionship between the datasets, i.e., if the datasets are ordered according to FDC,
the same order should be maintained regardless of the distance adopted.

To compare whether the order is in fact maintained, the datasets are ranked
according to FDC for each distance measure used, and the rankings are com-
pared using the Kendall coefficient τ [8] to measure the correlation between
rankings. This method calculates the number of concordant/discordant pairs
that are present in both rankings.

If the rankings are composed of the same N elements possibly ordered differ-
ently, then there are

(
N
2

)
possible pairs. Considering that C denotes the number

of concordant pairs and D the number of discordant pairs, the coefficient τ

238 M. C. Teixeira and G. L. Pappa

is defined as τ = (C − D)/(C + D). If D = 0, then the expression reduces to
C/C = 1, that is, if all pairs agree, then the coefficient is equal to 1. If C=0,
then the resulting expression is −D/D = −1, that is, if all pairs are discordant,
then τ = −1. Therefore, τ ∈ [−1,+1], and the higher the value, the more similar
the rankings.

The ideal scenario is that the correlation is positive and close to +1, indi-
cating that the results are robust to a metric that is not strongly established,
such as the distance between pipelines. However, the results show, with signifi-
cance α = 0.05, that the correlation between the rankings is low, and hence the
representation and distance significantly affect the FDC results using the global
optimum as a reference, as indicated below:

τ(ad hoc, hamming) = 0.4421 p-value=0.0983

τ(ad hoc, euclidean) = 0.5263 p-value=0.8227

τ(hamming, euclidean) = 0.3263 p-value=0.1126

In conclusion, FDC is highly affected by representation and distance defini-
tions. It is interesting to observe that the lower correlation is from the one-hot
encoding to the t-SNE representation, although one derivate from the other. Also
observe that the ad hoc and Euclidean distances present the highest correlation,
although it is barely above 0.5.

6.2 Dispersion Metric

The DM measure gives an indication of how the solutions with top-N fitness are
distributed in the search space. The experiments were performed using samples
of 1,000 and 5,000 solutions with thresholds of 0.01, 0.05, and 0.1. Figure 6
presents the value of the metric with the largest sample size, i.e., containing
5,000 solutions. Each group is formed by an instance and each bar represents
the result of the metric for a different threshold.

Recall that the value of this metric represents the difference between the
average of the distances between the top-N solutions, S∗

F , with the other solutions
SF in the solution space. A large negative value indicates that the distance
between the solutions in S∗

F are closer (concentrated) in the space than the
others. However, observe that, for some datasets, the results change completely
depending on the distance metric used: the metric goes from a positive to a
negative value only by varying the way the distance is calculated, indicating
that dispersion, as well as FDC, is highly influenced by the adopted solution
representation.

Figure 6 shows the values of DM using the three different types of distances.
Note that, when using the adhoc or Euclidean distances, the values are relatively
distributed between positive and negative. However, when the hamming distance
is applied (Fig. 6b), the metric value is predominantly negative. In all cases the

On the Effect of Solution Representation in AutoML 239

(a) Adhoc distance

(b) Hamming distance

(c) Euclidean distance

Fig. 6. Results of the dispersion metric (DM).

magnitude of the metric varies a lot: the values of the ad hoc distance are in the
range (−2.88, 1.27), while in the hamming distance, the range is (−10.18, 0.065),
and in the Euclidean distance, (−41.71, 24.52).

DS10 presents the highest value in the ad-hoc and Euclidean methods, indi-
cating that at this distance the solutions with the highest fitness are “dispersed”
in the solution space (according to the distance metric). In the case of the ham-
ming distance, DS11 presents the highest value for DM. This indicates that even
receiving the same input data, the results vary completely due to the choice of
distance.

A statistical test (ANOVA) was used to verify the difference between the
means of the three distances used. For each threshold, a test was performed
considering 3 samples, one for each distance calculation method. For example,
for threshold 0.01, 3 samples were tested, each containing 20 values (DM for the
fitness landscape of each dataset). The results show that the p-values obtained in
each test were 0.06226, 1.2723×10−6 and 9.8619×10−6 for thresholds 0.01, 0.05

240 M. C. Teixeira and G. L. Pappa

(a) |N | = 15

(b) |N | = 20

(c) |N | = 25

Fig. 7. Space neutrality measured with different walk lengths.

and 0.10, respectively. Thus, considering a sensitivity of 0.05, the null hypothesis
that the samples have the same mean can be rejected. Therefore, it is possible
to conclude that the results obtained are statistically different due to the choice
of distances and representations.

6.3 Neutrality Rate

Finally, we measured the neutrality rate of the space using random walks con-
taining 100, 200, 300, and 400 solutions. The value of δ, the tolerance for consid-
ering whether a configuration is neutral, was defined as the standard deviation
of the fitness mean of 30 random walks of size 1,000, as used in the experiments
performed by [12].

The results are shown in Fig. 7. Observe that datasets DS16, DS13 and DS05
stand out for having greater neutrality than the others for all walk lengths.

On the Effect of Solution Representation in AutoML 241

However, the dataset with the highest number of repeated fitness, on average,
is DS08 – where each of the 71 non-unique fitness occurs approximately 985
times. Note that the number of repeated fitness values does not directly imply
space neutrality, since the solutions may not be neighbors. From the 3 datasets
with highest values of neutrality, DS16 ranks 14 in terms of repeated solutions.
Another factor that justifies this result is the fact that DS16 has the highest
fitness variance, which affects the tolerance to consider the neutrality of the
neighborhood.

Also notice that increasing the neighborhood size affects the neutrality of
space, as can be seen in Figs. 7b and 7c. This is intuitive, as the more neighbors
the higher the probability that one has a fitness greater than δ. In addition, note
that datasets DS13, DS05, and DS02 are the ones that presented the highest
neutrality according to this metric.

7 Conclusions and Future Work

This paper looked at the impact that different representations and distance
metrics have on fitness landscapes of AutoML problems. We have investigated
the use of three metrics, namely Fitness Distance Correlation, Dispersion Metric,
and Neutrality rate, with various parameter configurations and three different
representation and distance metrics for the search space.

First, we showed that the representation of the space does not necessarily
change the relative distances between solutions but certainly modifies the notion
of neighborhood. We also showed that traditional metrics for exploring fitness
landscapes are not capable of dealing with this complex, structured AutoML
space.

Finally, we believe that new metrics that account for the underlying problem
being solved with AutoML may be necessary to help characterise these search
spaces, as they will primarily depend on the difficulty of the dataset being inves-
tigated and not only the structure of the conditional space determined by the
possible components of a machine learning pipeline.

Acknowledgements. This work was supported by FAPEMIG (through grant no.
CEX-PPM-00098-17), MPMG (through the project Analytical Capabilities), CNPq
(through grant no. 310833/2019-1), and CAPES.

References

1. Cleghorn, C.W., Ochoa, G.: Understanding parameter spaces using local optima
networks. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pp. 1657–1664 (2021)

2. Garciarena, U., Santana, R., Mendiburu, A.: Analysis of the complexity of the
automatic pipeline generation problem. In: IEEE Congress on Evolutionary Com-
putation, pp. 1–8 (2018)

3. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning:
Methods, Systems, Challenges. Springer, Cham (2018). http://automl.org/book

http://automl.org/book

242 M. C. Teixeira and G. L. Pappa

4. Jones, T., Forrest, S., et al.: Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In: ICGA, vol. 95, pp. 184–192 (1995)

5. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strat-
egy. In: Proceedings of the Conference on Genetic and Evolutionary Computation
(2006)

6. Malan, K., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

7. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algo-
rithms 14(2) (2021)

8. Miller, F., Vandome, A., John, M.: Kendall Tau Rank Correlation Coefficient.
VDM Publishing (2010)

9. Nunes, M., Fraga, P.M., Pappa, G.L.: Fitness landscape analysis of graph neural
network architecture search spaces. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 876–884 (2021)

10. Ochoa, G., Veerapen, N.: Neural architecture search: a visual analysis. In: Rudolph,
G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel
Problem Solving from Nature, pp. 603–615. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-14714-2 42

11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

12. Pimenta, C.G., de Sá, A.G.C., Ochoa, G., Pappa, G.L.: Fitness landscape analysis
of automated machine learning search spaces. In: Paquete, L., Zarges, C. (eds.)
EvoCOP 2020. LNCS, vol. 12102, pp. 114–130. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43680-3 8

13. Pushak, Y., Hoos, H.: Algorithm configuration landscapes. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11102, pp. 271–283. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99259-4 22

14. Pushak, Y., Hoos, H.: Automl loss landscapes. ACM Trans. Evol. Learn. Optim.
2(3) (2022)

15. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Appl. Math. Comput.
117(2–3), 321–350 (2001)

16. Richter, H.: Fitness landscapes: from evolutionary biology to evolutionary compu-
tation. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and
Application of Fitness Landscapes. ECC, vol. 6, pp. 3–31. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-41888-4 1

17. Rodrigues, N.M., Malan, K.M., Ochoa, G., Vanneschi, L., Silva, S.: Fitness land-
scape analysis of convolutional neural network architectures for image classifica-
tion. Inf. Sci. 609, 711–726 (2022)

18. Teixeira, M.C., Pappa, G.L.: Understanding AutoML search spaces with local
optima networks. In: Genetic and Evolutionary Computation Conference (2022)

19. Traoré, K.R., Camero, A., Zhu, X.X.: Fitness Landscape Footprint: A Framework
to Compare Neural Architecture Search Problems (2021). http://arxiv.org/abs/
2111.01584

20. Treimun-Costa, G., Montero, E., Ochoa, G., Rojas-Morales, N.: Modelling parame-
ter configuration spaces with local optima networks. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 751–759 (2020)

21. Van Der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2625 (2008)

https://doi.org/10.1007/978-3-031-14714-2_42
https://doi.org/10.1007/978-3-031-14714-2_42
https://doi.org/10.1007/978-3-030-43680-3_8
https://doi.org/10.1007/978-3-030-43680-3_8
https://doi.org/10.1007/978-3-319-99259-4_22
https://doi.org/10.1007/978-3-319-99259-4_22
https://doi.org/10.1007/978-3-642-41888-4_1
http://arxiv.org/abs/2111.01584
http://arxiv.org/abs/2111.01584

On the Effect of Solution Representation in AutoML 243

22. Vanneschi, L., Pirola, Y., Mauri, G., Tomassini, M., Collard, P., Verel, S.: A study
of the neutrality of Boolean function landscapes in genetic programming. Theor.
Comput. Sci. 425, 34–57 (2012)

23. Witten, I.H., Frank, E.: Data Mining - Practical Machine Learning Tools and
Techniques, 2nd edn. The Morgan Kaufmann Series in Data Management Systems
(2005)

24. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning
frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)

Author Index

A
Akbay, Mehmet Anıl 16
Aranha, Claus 211

B
Blum, Christian 16, 82

C
Carlet, Claude 114
Chen, Gang 146

E
El Krari, Mehdi 1
Enderli, Cyrille 66
Escott, Kirita-Rose 146
Ettrich, Rupert 130

G
Gabonnay, Michal 34
Goudet, Olivier 66, 98
Grelier, Cyril 98
Guibadj, Rym Nesrine 1

H
Hao, Jin-Kao 66, 98
Huber, Marc 130

J
Jatschka, Thomas 50

K
Kalayci, Can Berk 16
Kaufmann, Marc 162
Kneissl, Carlo 179

L
Larcher, Maxime 162
Lavinas, Yuri 211

Lengler, Johannes 162
Liefooghe, Arnaud 211

M
Ma, Hui 146
Manzoni, Luca 114
Mariot, Luca 114

O
Ochoa, Gabriela 211

P
Pappa, Gisele L. 227
Picek, Stjepan 114
Pinacho-Davidson, Pedro 82
Pinsolle, Jean 66

R
Raidl, Günther R. 50, 130
Robilliard, Denis 1
Rodemann, Tobias 50
Rudová, Hana 34

S
Sassmann, Vojtěch 34
Sato, Hiroyuki 195
Sobotka, Václav 34
Sudholt, Dirk 179

T
Takadama, Keiki 195
Tanaka, Shoichiro 195
Teixeira, Matheus C. 227

W
Woodward, John 1

Z
Zou, Xun 162

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
L. Pérez Cáceres and T. Stützle (Eds.): EvoCOP 2023, LNCS 13987, p. 245, 2023.
https://doi.org/10.1007/978-3-031-30035-6

https://doi.org/10.1007/978-3-031-30035-6

	 Preface
	 Organization
	 Contents
	Fairer Comparisons for Travelling Salesman Problem Solutions Using Hash Functions
	1 Introduction
	2 Collision Analysis of the Fitness Function on the TSP
	2.1 Too Many Collisions for the Fitness Function
	2.2 Distribution of Collisions over Fitness Values

	3 Hash Functions for a Reliable Comparison
	3.1 Existing Hash Functions
	3.2 The Proposed Function
	3.3 Comparative Study

	4 Revisiting Some Metaheuristics with Hash Functions
	4.1 Cycling Analysis
	4.2 Convergence Speed
	4.3 Applying Hash Function on Metaheuristics

	5 Discussion and Conclusion
	References

	Application of Adapt-CMSA to the Two-Echelon Electric Vehicle Routing Problem with Simultaneous Pickup and Deliveries
	1 Introduction
	2 Problem Description
	3 Adapt-CMSA for the 2E-EVRP-SPD
	4 Experimental Evaluation
	5 Conclusion and Outlook
	References

	Real-World Vehicle Routing Using Adaptive Large Neighborhood Search
	1 Introduction
	2 Mathematical Model
	3 Our Approach
	3.1 Two-Stage Minimization
	3.2 Insertion Optimization
	3.3 Removal Optimization

	4 Experimental Evaluation
	4.1 Li and Lim Benchmark Instances
	4.2 Real-World Instances

	5 Conclusion
	References

	A Multilevel Optimization Approach for Large Scale Battery Exchange Station Location Planning
	1 Introduction
	2 Related Work
	3 The Multi-period Battery Swapping Station Location Problem
	4 Multilevel Refinement Algorithm
	5 Computational Results
	6 Conclusion and Future Work
	References

	A Memetic Algorithm for Deinterleaving Pulse Trains
	1 Introduction
	2 Deinterleaving Markov Processes: Formal Background
	2.1 Interleaved Markov Generative Process
	2.2 Penalized Maximum Likelihood Score

	3 Problem Settings and Motivation for this Work
	3.1 Decomposable Score for Estimating Processes Optimal Order
	3.2 A Combinatorial Problem in the Space of Partitions

	4 A Memetic Algorithm for Alphabet Partitioning
	4.1 General Framework
	4.2 Initialisation
	4.3 Tabu Search Procedure
	4.4 Greedy Likelihood-Based Crossover Operator

	5 Experiments and Computational Results
	5.1 Experimental Condition and Reference Algorithm
	5.2 Experiments on Synthetic Datasets
	5.3 Experiments on Electronic Warfare Datasets

	6 Conclusions
	References

	Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem
	1 Introduction
	1.1 Organization of the Paper

	2 Far from Most String Problem
	2.1 Integer Linear Programming Model
	2.2 Computational Complexity and Previous Work

	3 The Proposed Algorithm
	3.1 Construction of a Solution
	3.2 Solving Sub-instances
	3.3 Update of the Pheromone Values

	4 Different Objective Functions
	5 Experimental Evaluation
	5.1 Benchmark Sets
	5.2 Algorithm Tuning
	5.3 Results

	6 Conclusions and Outlook
	References

	Monte Carlo Tree Search with Adaptive Simulation: A Case Study on Weighted Vertex Coloring
	1 Introduction
	2 Related Works on the WVCP
	2.1 Local Search Algorithms
	2.2 Constructive Heuristics

	3 MCTS with Adaptive Simulation Strategy
	3.1 Main Scheme
	3.2 Adaptive Simulation Strategy Framework

	4 Operator Selectors
	4.1 Neural Network Selector
	4.2 Classic Fitness-Based Selectors

	5 Experimentation
	5.1 Experimental Settings and Benchmark Instances
	5.2 Adaptive Operator Selection During the Search
	5.3 Performance Comparisons on the Different Benchmark Instances

	6 Conclusions
	References

	Evolutionary Strategies for the Design of Binary Linear Codes
	1 Introduction
	2 Background
	2.1 Binary Linear Codes
	2.2 Boolean Functions

	3 Related Works
	4 Evolutionary Strategy Algorithm
	4.1 Solutions Encoding and Search Space
	4.2 Fitness Function
	4.3 Rank-Preserving Mutation and Crossover

	5 Experiments
	5.1 Experimental Setting
	5.2 Results
	5.3 Solutions Diversity

	6 Conclusions and Future Work
	References

	A Policy-Based Learning Beam Search for Combinatorial Optimization
	1 Introduction
	2 Related Work
	3 Policy-Based Learning Beam Search
	3.1 Loss Functions
	3.2 Bootstrapping

	4 Neural Network Architecture
	5 Case Study: Longest Common Subsequence Problem
	6 Experimental Evaluation
	7 Conclusions and Future Work
	References

	Cooperative Coevolutionary Genetic Programming Hyper-Heuristic for Budget Constrained Dynamic Multi-workflow Scheduling in Cloud Computing
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Problem Model
	4 Methodology
	4.1 Budget Constrained Cooperative Coevolution Genetic Programming Hyper-Heuristic

	5 Experiments
	5.1 Experiment Design
	5.2 Experiment Results
	5.3 Analysis

	6 Conclusions
	References

	OneMax Is Not the Easiest Function for Fitness Improvements
	1 Introduction
	1.1 Our Result

	2 Preliminaries and Definitions
	2.1 The Algorithm: SA-(1,)-EA
	2.2 The Benchmarks: OneMax and Dynamic BinVal
	2.3 Tools

	3 Main Proof
	3.1 Sketch of Proof
	3.2 Proof Details

	4 Simulations
	5 Conclusion
	References

	The Cost of Randomness in Evolutionary Algorithms: Crossover can Save Random Bits
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries and Analysis Tools
	3 Cost of Randomness in Mutation-Based EAs
	4 Cost of Randomness with Crossover
	5 Detailed Analysis for the (2+1) GA
	6 Conclusions and Future Work
	References

	Multi-objectivization Relaxes Multi-funnel Structures in Single-objective NK-landscapes
	1 Introduction
	2 Single-objective Landscape
	2.1 Single-objective Optimization
	2.2 Basin of Attraction
	2.3 Local Optima Networks
	2.4 Funnel

	3 Multi-objective Landscape
	3.1 Multi-objective Optimization
	3.2 Pareto Local Optimal Solutions Networks

	4 NK- And MNK-landscape Problems
	4.1 NK-landscape Problem
	4.2 MNK-landscape Problem

	5 Proposed Method: Multi-Objectivized Local Search
	5.1 Motivation
	5.2 Algorithm

	6 Experimental Setup
	6.1 Landscape Analysis
	6.2 Algorithm Benchmarks

	7 Experimental Results and Discussions
	7.1 Landscape Analysis
	7.2 Algorithm Benchmarks

	8 Conclusions
	References

	Decision/Objective Space Trajectory Networks for Multi-objective Combinatorial Optimisation
	1 Introduction
	2 Multi-objective Combinatorial Optimisation
	2.1 Definitions
	2.2 Multi-objective Evolutionary Algorithms

	3 Search Trajectory Networks
	3.1 Definitions
	3.2 Network Metrics
	3.3 Network Visualisation

	4 Experimental Setup
	4.1 Benchmark Problems
	4.2 Parameter Setting
	4.3 Reproducibility

	5 Results
	5.1 Small Instances
	5.2 Large Instances

	6 Conclusions
	References

	On the Effect of Solution Representation and Neighborhood Definition in AutoML Fitness Landscapes
	1 Introduction
	2 Related Work
	3 AutoML Fitness Landscape
	3.1 Solution Representation and Neighborhood
	3.2 Fitness Function

	4 Characterization of the Fitness Landscapes
	5 Exploratory Fitness Landscape Analysis
	6 Results and Discussion
	6.1 Fitness Distance Correlation
	6.2 Dispersion Metric
	6.3 Neutrality Rate

	7 Conclusions and Future Work
	References

	Author Index

