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5Sleep-Disordered Breathing: Diagnosis

Daniel Álvarez, Andrea Crespo, Leila Kheirandish-Gozal, 
David Gozal, and Félix del Campo

5.1	� Diagnostic Procedures

�History and Physical Examination

The diagnosis of OSA starts with a sleep history, which commonly gathers data 
from three complementary approaches: (1) evaluation of OSA-related symptoms, 
(2) sleep habit evaluation, and (3) comprehensive evaluation of high-risk patients 
due to potential negative consequences. OSA is a complex disease and thus patients 
can manifest a large spectrum of different symptoms. Commonly, adult patients 
with OSA report loud snoring, witnessed apneas, awakenings with choking sensa-
tion, and excessive daytime sleepiness, the latter usually assessed by the Epworth 
Sleepiness Scale (ESS) [1]. Other common symptoms are nonrefreshing sleep, 
tiredness, morning headaches, and neurobehavioral problems [2]. On the other 
hand, a less common phenotype includes insomnia and fatigue as predominant 
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symptoms, which is more particularly encountered in women. It is important to 
highlight that, due to subjectivity, there is a great variability among patients con-
cerning the prevalence of symptoms, particularly sleepiness [3]. In children, the 
emergence of symptoms is much more subtle, even if younger patients are more 
susceptible to develop morbid consequences. As such, snoring may be the only 
symptom that parents may report, or snoring may be apparent along with snorting 
or gasping episodes, restless sleep, bedtime wetting, frequent nightmares or night 
terrors, bruxism, morning headaches, grumpy awakenings, tiredness, falling asleep 
in school or in the car, and problematic progression in academic performance at 
school. A particular feature of children who are at risk for sleep-disordered breath-
ing is the presence of inattention with or without hyperactivity, the latter being 
much more frequent among non-obese children. As such, the concept of different 
phenotypes based on clinical presentation has been proposed to include type I (non-
obese, hyperactive) and type II (obesity and excessive daytime sleepiness with inat-
tention). Furthermore, social withdrawal and aggressive or oppositional defiant 
behaviors are also common.

Besides symptoms, major indicators of OSA include hereditary factors (family 
history of the disease) and known anthropometric factors linked with increased risk 
for upper airway obstruction, such as oropharyngeal and nasal abnormalities, large 
neck circumference, increased body mass index (BMI), or additional markers of 
obesity [2, 4]. In addition, cardiorespiratory, cerebrovascular, and metabolic comor-
bidities potentially linked with OSA should be investigated [5]. Table 5.1 summa-
rizes sleep assessment procedure, whereas Table  5.2 shows criteria for OSA 
diagnosis according to the American Academy of Sleep Medicine (AASM) [6].

Table 5.1  Sleep evaluation in the diagnosis of OSA [4]

High-risk patients – Obesity (BMI >35)
– Congestive heart failure
– Atrial fibrillation
– Treatment refractory hypertension
– Type 2 diabetes
– Stroke
– Nocturnal dysrhythmias
– Pulmonary hypertension
– High-risk driving populations
– Preoperative for bariatric surgery

Symptoms of OSA – Snoring
– Witnessed apneas
– Gasping/choking episodes at night
– Excessive sleepiness not explained by other factors
– Nonrefreshing sleep
– Nocturia
– Morning headaches
– Sleep fragmentation/sleep maintenance insomnia
– Decreased concentration and memory
– Decreased libido
– Irritability
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Suggested features of 
OSA

– �Increased neck circumference (>17 inches in men, >16 inches in 
women)

– BMI ≥ 30 kg/m2

– A modified Mallampati score of 3 or 4
– Retrognathia
– Lateral peritonsillar narrowing
– Macroglossia
– Tonsillar hypertrophy
– Elongated/enlarged uvula
– High arched/narrow hard palate
– �Nasal abnormalities (polyps, deviation, valve abnormalities, 

turbinate hypertrophy)
– Overjet
– Musculoskeletal abnormalities

BMI body mass index, OSA obstructive sleep apnea

Table 5.1  (continued)

Table 5.2  Criteria for OSA diagnosis [6]

Diagnosis of 
OSA Parameters
A + B 
criteria

A Presence of ≥1 symptoms or diseases
 �� – Sleepiness
 �� – �Nonrestorative 

sleep
 �� – Fatigue
 �� – Insomnia

 �� – �Breath 
holding

 �� – Gasping
 �� – Choking

 �� – �Snoring
and/or
 �� – �Breathing 

interruptions

 �� – Hypertension
 �� – Mood disorder
 �� – �Cognitive 

dysfunction
 �� – �Coronary artery 

disease
 �� – Stroke
 �� – �Congestive 

heart failure
 �� – �Atrial 

fibrillation
 �� – �Type 2 diabetes 

mellitus
B Polysomnography or home sleep apnea testing

 �� – ≥5 predominantly obstructive respiratory events per hour
C criteria Polysomnography or home sleep apnea testing

 �� – ≥15 predominantly obstructive respiratory events per hour

OSA obstructive sleep apnea

For children, it is important to follow the guidelines as formulated by various 
professional societies [7–9]. More generally, adoption of the concept of habitual 
snoring (defined as snoring recognized by caretakers at least 3 nights per weak, 
particularly if loud) that also exhibits an additional problematic symptom is an 
excellent rule of the thumb to make the decision to evaluate further with some 
objective diagnostic testing.
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�OSA Screening Questionnaires

Major advantages of questionnaires are readiness and negligible cost. However, 
clinical questionnaires are not recommended as single tools for OSA diagnosis due 
to their limited accuracy. Nevertheless, despite their low specificity (large number 
of false-positive cases) [10, 11], standardized questionnaires show overall high sen-
sitivity, and thus they can be useful for screening purposes. Accordingly, question-
naires can be easily performed in clinical practice to identify patients with higher 
risk for OSA both in primary care and in specialized care. Some authors suggest 
their usefulness in low-income countries where PSG is not available [12].

There are several standardized questionnaires aimed at assisting physicians in 
the detection of OSA. The Berlin questionnaire (BQ) [13], OSA50 [14], and STOP-
BANG [15] are probably the most popular, while No-apnea, GOAL, NoSAS, and 
Obstructive Airway Adult Test (OAAT) [16] have been also widely assessed [17–
26]. There are few studies comparing the diagnostic ability of these questionnaires 
with each other, and some inconsistencies have been reported [12, 27]. Table 5.3 
shows the most widely used questionnaires.

Table 5.3  Main questionnaires used for identifying patients with a high pretest probability of 
OSA [10]

Questionnaire
Initially 
developed Parameters Level of OSA risk

Diagnostic 
accuracy (AHI 
> 15 events/h)

Berlin 
Questionnaire

Primary care 10 questions 
pertaining to the 
following 3 categories
– Snoring
– Daytime sleepiness
– Hypertension

• �High: ≥2 
categories with 
positive score

• �Low: 1 or no 
categories with 
positive score

• �Sensitivity: 
0.77 
(0.73–0.81)

• �Specificity: 
0.44 
(0.38–0.51)

Assessed in 
[12]

STOP-BANG 
Questionnaire

Surgical 
patients at 
preoperative 
clinics

4 questions (yes/no) 
regarding the 
following signs/
symptoms
– Snoring
– Tiredness
– �Observed apneas or 

choking
– �High blood pressure
Plus 4 clinical 
attributes (yes/no)
– �Obesity (BMI >35 

kg/m2)
– Age (>50 years)
– �Neck circumference 

(>40 cm)
– Male gender

• �High: score of 
5–8

• �Intermediate: 
score of 3–4

• �Low: score of 
0–2

• �Sensitivity: 
0.90 
(0.86–0.93)

• �Specificity: 
0.36 
(0.29–0.44)

Assessed in 
[12]
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Questionnaire
Initially 
developed Parameters Level of OSA risk

Diagnostic 
accuracy (AHI 
> 15 events/h)

OSA50 Primary care Four components 
(yes/no)
– �Age ≥ 50: yes 2 

points
– �Snoring: yes 3 

points
– �Witnessed apneas: 

yes 2 points
– �Waist circumference 

(>102 cm male; 
>88 cm female): yes 
3 points

High risk ≥5 
points

Sensitivity: 
0.94
Specificity: 
0.31
• �Assessed in 

[14]

AHI apnea-hypopnea index, BMI body mass index, OSA obstructive sleep apnea

Table 5.3  (continued)

In children, a large number of questionnaires have also been developed over 
the years with overall remarkable similarity in their performance even if some 
are better than others. These questionnaires for the most part exhibit excellent 
sensitivity but relatively lower specificity, making them robust tools for screen-
ing purposes but not accurate enough to be used as an alternative to a diagnostic 
test [28–33].

More complex multivariate predictive models for OSA have been proposed, 
including a variety of additional symptoms (infections, high blood pressure, atten-
tion deficits) and measures (palatal height, maxillary, and mandibular intermolar 
distances). Despite these models demonstrated higher ability to discriminate OSA, 
particularly for higher diagnostic thresholds for the disease, they still show a great 
imbalance between sensitivity and specificity, leading to a marginal use in clinical 
practice [23].

�Comprehensive Sleep Studies

History and questionnaires provide physicians with relevant information on 
the presence or absence of the disease. Nevertheless, definitive diagnosis of 
OSA must be confirmed using appropriate devices for comprehensive sleep 
testing [10]. Table 5.4 summarizes the four traditional categories of devices 
for sleep analysis according to the complexity (number of physiological sig-
nals involved) and the setting (supervised vs. unattended) [34]. These 
approaches are applicable to both adults and children with some caveats that 
will be addressed below.
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Table 5.4  Main characteristics of equipment used in the different approaches for adult OSA diag-
nosis according to AASM [10, 34]

Category Site Channels Advantage Disadvantage Recommendation
Type I or 
PSG

Attended, 
inside sleep 
laboratory

≥7 data 
(EEG, EOG, 
EMG, ECG 
and 
respiratory 
channels) 
(typically 
≥16)

Sleep 
parameters

– High cost
– Complex
– �Limited 

availability
– �Patient 

inconvenience
– �Disturb sleep 

quality
– Intrusive
– Time-
consuming

– �Moderate-to-high 
probability of 
OSA without 
comorbidity 
(strong)

– �Low-to-moderate 
probability of 
OSA

– �Patients with 
significant 
diseases, 
suspected CSA, 
or 
hypoventilation 
(strong)

– �Suspected other 
sleep disorders 
than OSA

– �Nondiagnostic 
HSAT and 
suspected OSA 
(strong)

– �Initial PSG 
negative and 
suspected OSA 
(weak)

Type II 
or Home 
PSG

Unattended, 
outside sleep 
laboratory

≥7 data 
(EEG, EOG, 
EMG, ECG, 
and 
respiratory 
channels) 
(typically ≥ 
16)

– �Sleep 
parameters

– �Lower cost 
than Type I

– �Improved 
sleep quality

– �Preferred by 
the patient

– Intrusive
– Time-
consuming
– �Relative lack 

of portable 
devices

– �Predominantly 
for research 
purposes

– �Further studies 
are needed

Type III 
or RP

Unattended, 
outside sleep 
laboratory

3 ≤ channels 
< 7 (airflow, 
snoring, 
respiratory 
excursion, 
body 
position, 
heart rate, 
oxygen 
saturation)

– �More 
accessibility

– �Lower cost 
and workload 
than types I 
and II

– �More 
comfortable 
and 
convenient 
for patients

– �Not sleep 
parameters

– �Relative lack 
of portable 
devices

– �Moderate-to-high 
probability of 
OSA without 
comorbidity 
(strong)

– �Unable to 
perform PSG 
because of 
immobility or 
infirmity

– �Confirm 
treatment efficacy

(continued)
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Table 5.4  (continued)

Category Site Channels Advantage Disadvantage Recommendation
Type IV Unattended, 

outside sleep 
laboratory

<3 (oxygen 
saturation and 
heart rate, or 
just air flow)

– �Easy 
interpretation

– �More 
accessibility 
than type III

– �Lower cost 
than type III

Lack of 
information 
about many 
sleep and 
respiratory 
parameters

Screening OSA in 
moderate-to-high 
probability

ECG electrocardiogram, EEG electroencephalogram, EMG electromyogram, EOG electrooculo-
gram, HSAT home sleep apnea testing, OSA obstructive sleep apnea, PSG polysomnography, RP 
respiratory polygraphy

�Polysomnography
In-laboratory polysomnography (PSG) is the gold standard method for OSA diag-
nosis. PSG provides essential information on the duration and quality of sleep, sleep 
stages, and transient events (electroencephalographic, muscular, cardiac, and respi-
ratory events) during sleep. Current AASM guidelines [35] delineate scoring and 
interpretation rules as well as technical aspects concerning PSG performance and 
analysis based on cumulative published evidence.

Electroencephalographic channels and associated recordings (electrooculogram 
and electromyogram) are an essential part of a PSG. EEG, EOG, and EMG signals 
are used to analyze the macro- (sleep stages) and micro- (electroencephalographic 
events) structure of sleep. Table 5.5 summarizes the main characteristics of sleep 
stages and common electroencephalographic events [35].

Cardiorespiratory recordings involving airflow, respiratory movements, electro-
cardiogram, pulse oximetry, and body position compose the second main part of a 
PSG, aimed at characterizing and quantifying respiratory events. Monitoring snor-
ing and hypoventilation are optional in adults but is required in children, particu-
larly assessment of alveolar hypoventilation since many children may manifest 
sleep-disordered breathing almost exclusively by developing extended periods of 
elevated carbon dioxide levels during sleep. Table 5.6 shows the types and definition 
of polysomnographic respiratory events involved in the diagnosis of sleep-disordered 
breathing in adults [35]. Additional physiological recordings have been proposed to 
be included in the PSG, such as the divided nasal cannula [36]. However, no 
improvement was found in terms of the accuracy of AHI.

In order to obtain reliable and confident diagnosis, the AASM recommends a 
minimum of 4 h of total sleep time (6 h for children) for high-risk patients undergo-
ing PSG, while this limit increases to 6 h (and >16% of total sleep time REM sleep 
in children) in clinical trials in order to account for a potentially broader spectrum 
of OSA severity [3].

OSA severity is categorized according to the AHI, which accounts for the com-
bined number of apneas and hypopneas per hour of sleep. Although the most appro-
priate diagnostic threshold for positive OSA has been under great discussion for 
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Table 5.5  Main characteristics of states and electroencephalographic events during sleep [35]

Scoring Definitions
W 1. �Alpha rhythm (posterior dominant rhythm); occipital region with eye 

closure, attenuating with eye opening
2. Eye blinks: vertical eye movements at 0.5–2 Hz
3. Reading eye movements: slow phase followed by rapid phase
4. REM: irregular; lasting <500 ms
5. SEM: more regular; lasting >500 ms

N1 1. SEM: more regular; lasting >500 ms
2. LAMF: 4–7 Hz (theta)
3. V waves: 0.5 s in Central region
4. Sleep onset: first epoch of any stage other than W, usual N1

N2 1. �K complex: well-delineated, negative sharp wave immediately followed by 
a positive component standing out from the background EEG; duration 
>0.5 s; maximal in the frontal region

2. �Sleep spindle: train of distinct sinusoidal waves 11–16 Hz and duration 
>0.5 s; maximal in the central region

N3 1. Slow wave activity (0.5–2 Hz) and >75 uV; frontal region
REM 1. �REM: irregular; lasting <500 ms

2. �Low chin EMG tone: baseline no higher than any other sleep stage and 
usually lowest level of the entire recording

3. �Saw-tooth waves: trains of sharply contoured or triangular, often serrated, 
2–6 Hz waves; maximal over central region; may precede a burst of REM

4. �Transient muscle activity: short, irregular burst of EMG <0.25 s; 
superimposed on low EMG chin or leg tone

Major body 
movements

1. �Movement or muscle artifact obscuring the EEG for more than half an 
epoch to the extent that the sleep stage cannot be determined

2. If alpha rhythm is present, even <15 s, score Wake
3. �If no alpha rhythm is discernable, but the epochs before or after is scored as 

W with major body movements, score as stage W
4. Otherwise, score the epoch as the same stage as the epoch that follows it

Arousal 1. �Abrupt shift of EEG frequency including alpha, theta and/or frequencies 
above 16 Hz

2. At least 3 s long
3. Must have 10 s of stable sleep preceding the change
4. �During REM requires a concurrent increase in submental EMG for at least 

1 s

EEG electroencephalogram, EMG electromyogram, LAMF low-amplitude mixed frequency, REM 
rapid eye movements, SEM slow eye movement, V waves vertex sharp waves

years, currently, the following severity degrees are widely accepted in adults [10]: 
mild OSA, 5 ≤ AHI < 15 events/h; moderate OSA, 15 ≤ AHI < 30 events/h; and 
severe OSA AHI ≥ 30 events/h. Because the collapsibility of the upper airway is 
lower in children than in adults, the number of respiratory events in healthy children 
is <0.5 events/h of sleep. Accordingly, the criteria for OSA severity have tradition-
ally been adopted as follows: >1–5 events/h corresponds to mild OSA; >5 to 10 
events/h represent moderate OSA and >10 events/h is viewed as severe OSA in the 
pediatric age. However, for children older than 14 years of age, application of adult 
or pediatric OSA severity criteria is at the discretion of the physician.

D. Álvarez et al.
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Table 5.6  Scoring criteria for respiratory events in adults [35]

Event Definitions
Apnea >90% drop from baseline; for at least 10 s

Obstructive Continued or increased inspiratory effort throughout event
Central Absent inspiratory effort throughout event
Mixed Absent of inspiratory effort for first part of event followed by 

resumption of inspiratory effort in the second portion of event
Hypopnea All criteria are needed

– >30% drop from baseline; for at least 10 s
– >3% desaturation from pre-event baseline or arousal; >4% 
desaturation from pre-event baseline

Obstructive 
(optional)

All criteria are needed: snoring, increased inspiratory flattening, 
paradox appears

Central 
(optional)

None of the criteria appears: snoring, increased inspiratory 
flattening, paradox appears

RERA (optional) Sequence of breath lasting at least 10 s lead an arousal that shows
– Increased respiratory effort
– Flattening of the inspiratory portion of signal
Must not qualify for apnea of hypopnea

Hypoventilation (optional) Either of the next occur
– Increase in arterial PCO2 to a value >55 mmHg for >10 min
– >10 mmHg increase in arterial PCO2 during sleep and exceeds 
50 mmHg for >10 min

Cheyne-Stokes Both of the next criteria occur
– Episodes of >3 consecutive central apnea or central hypopnea 
separated by a crescendo and decrescendo change in breathing 
amplitude within a cycle of >40 s
– Episodes of >5 central apnea or central hypopnea per hour of 
sleep associated with crescendo/decrescendo breathing pattern 
recorded for over 2 h of monitoring

AHI Number of apneas and hypopneas per hour of total sleep time
RDI AHI with the addition of RERAs per hour of sleep during 

polysomnography
REI Number of apneas and hypopneas per hour of total recording time 

on home monitoring devices for sleep apnea

AHI apnea-hypopnea index, RDI respiratory disturbance index, REI respiratory event index, RERA 
respiratory effort-related arousal

Despite been the standard index to diagnose OSA, the AHI does not completely 
reflect the complex heterogeneity of the disease. Its main drawback is related to its 
inability to differentiate among the clinical phenotypes of OSA [3] or predict all 
negative consequences of the disease [2]. Similarly, it has been found that different 
measures of hypoxia are better predictors of outcomes and adverse events than the 
AHI [37]. However, notwithstanding the limitations of AHI regarding more precise 
patient phenotyping, severity-dependent associations between AHI and some of the 
common morbid consequences of OSA have been detected despite the marked het-
erogeneity of morbid phenotype [38], whereby other morbidities do not exhibit sig-
nificant associations with AHI [39].

In the same regard, PSG has widely known limitations. It is complex, time-
consuming, and intrusive for patients. In addition, regarding equipment and 
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specialized staff, PSG is costly leading to limited accessibility and availability. 
Therefore, due to the high prevalence of the disease worldwide, it is not a cost-
effective approach to evaluate all patients suspected of suffering from the disease. 
Accordingly, simplified alternatives are being sought, particularly to conduct por-
table sleep studies at home and under the lead assumption that such transition to 
home will not curtail the accuracy and reliability of the alternative tests.

�Home Sleep Apnea Testing
In recent years, abbreviated and portable at-home sleep apnea testing (HSAT) has 
emerged as an alternative or complementary diagnostic tool for OSA. There is a 
great number of commercial devices currently available. In 2007, the AASM stab-
lished the characteristics and minimum requirements of HSAT devices [40]. Their 
use as an alternative to standard PSG was subsequently accepted only in uncompli-
cated patients showing high pretest probability for the disease [18, 40].

Concerning the physiological signals recorded by abbreviated HSAT devices, 
three signals are considered relevant and widely recommended: blood oxygen satu-
ration from oximetry, respiration from nasal pressure or alternatively respiratory 
bands, and heart rate from ECG or from the pulse oximetry signal.

The implementation of HSAT procedures differs among countries. In Europe, 
simplified portable monitoring has been widely accepted, firstly supervised in the 
hospital setting and then unattended at home [41]. Similarly, up to 40% of total 
patients are referred to HSAT in Canada [42]. In contrast, routine HSAT use in the 
patient’s home in the USA has been slower to be adopted due to some regional limi-
tations related to reimbursement and personnel structure. As no EEG is recorded, 
abbreviated HSAT devices do not provide information about sleep, nor do these 
recordings provide sleep time or arousals, which limits their ability for ruling out 
the disease [10]. Therefore, the numerator of events does not include arousals and 
the denominator is larger since it denotes total recording time (TRT), while PSG 
actually includes total sleep time (TST; obviously TRT > TST), such that unless the 
disease is more severe, there can be clear underestimations or mis-estimations in 
any given patient. Indeed, a remarkable overall underestimation (high false-negative 
rate) has been consistently reported [43–45]. Accordingly, in-lab PSG or further 
follow-up should be considered when HSAT results are negative. Therefore, the cost 
associated with repeated test due to false-negative results (17%) [40] and technical 
failures (18%) [46] must be taken into account [47]. The main limitations of HSAT 
are summarized in Tables 5.7 and 5.8. These limitations of HSAT are further magni-
fied in pediatric settings, because the severity criteria are much more stringent and 
the numerator to calculate the AHI is much smaller [50].

Conversely, the main advantages include less cost and less intrusiveness for 
patients. Particularly, higher cost-effectiveness ratio of HSAT compared to in-lab 
PSG has been reported in appropriately selected patients [51–55]. In regard to 
patient’s comfort, contradictory data have been recently reported [56, 57]. “Real-
world” studies are needed to prospectively assess preferences and satisfaction of 
patients with HSAT.  Additionally, reduced workload in sleep laboratories and 
reduced waiting times for diagnosis and treatment are commonly reported benefits 
for both specialists and patients. Finally, HSAT enables multiple-night assessment 
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Table 5.7  Limitations of HSAT leading to OSA underestimation [48]

Limitations of HSAT
RDI is calculated using TRT instead of TST: TRT is higher than TST, leading to 
underestimation
No measure of REM sleep: OSA underestimation in patients with REM-predominant OSA
No measure EEG arousals: OSA underestimation if hypopneas associated only with arousal
Less supine time sleep at home compared with sleep lab setting: OSA underestimation in 
patients with supine-predominant OSA
Self-placement of sensors can be cumbersome and confusing, leading to poor-quality 
recordings
The home environment may be less conducive to sleep than the sleep lab if there are 
environmental disturbances to sleep

EEG electroencephalogram, OSA obstructive sleep apnea, RDI respiratory disturbance index, REM 
rapid eye movement, TRT total recording time, TST total sleep time

Table 5.8  Factors affecting suitability of HSAT [49]

Patient-related 
factors

1. Neuropsychological
2. Severe physical disability with inadequate care attendance
3. Unsuitable home environment
4. Discretionary

Sleep 
disorder-
related factors

1. �Consideration of other sleep disorders: central sleep apnea, hypoventilation, 
heart failure, neurological disorders, sleep-related movement disorder, 
parasomnia or seizure disorder, unexplained hypersomnolence

2. �Video confirmation of body positional, rotational aspects or other associated 
movements

at a reasonable cost, minimizing the confounding effect of the widely known night-
to-night variability of OSA [3].

Concerning the different types of HSAT approaches (Table  5.4), comparable 
clinical (BMI, ESS, blood pressure) and treatment (CPAP adherence) outcomes 
have been reported in OSA patients diagnosed using ambulatory PSG (type II) com-
pared to in-hospital standard diagnosis [58]. Despite more limited cardiopulmonary 
data, respiratory polygraphy (RP) (type III) is able to expedite diagnosis [53]. 
Similarly, it has been found useful to increase availability of both diagnosis and 
treatment resources in patients with mobility issues and major illness [10]. A major 
meta-analysis on the effectiveness of type III monitors reported good diagnostic 
performance (AUC ranging from 0.85 to 0.99) for the common OSA severity cut-
offs and no significant differences in clinical management parameters between 
patients diagnosed using either PSG or type III monitoring [53]. In the context of 
children, the jury is still out and the consensus at this stage pending additional large-
scale studies is still in favor of minimizing the use of HSAT and preferably conduct-
ing PSG unless the regional circumstances and resources lead to substantial delays 
in diagnosis [59–61].

Accurateness and reliability of more simplified devices (type IV) are still under 
debate, particularly single-channel blood oxygen saturation (SpO2) from oximetry. 
Respiratory disturbance index (RDI) from RP and oxygen desaturation index (ODI) 
from oximetry have been found to provide similar predictions of actual AHI, show-
ing small differences compared to the known night-to-night variability [62]. 
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Nevertheless, the AASM demands further evidence on the efficiency of unattended 
oximetry and similar single-channel approaches as reliable tools for OSA diagnosis 
(currently recommended only for screening purposes), particularly in mild or 
asymptomatic patients and in the presence of other sleep disorders (central sleep 
apnea) or significant concomitant diseases [10]. Concerning cardiorespiratory 
comorbidities, several studies have assessed the usefulness of simplified screening 
tests for OSA in patients with hypertension [63], heart failure [64], and stroke [65]; 
in the presence of COPD [66, 67] or morbid obesity [68]; in patients remitted for 
surgery [69]; and in hospitalized elders [70].

The interest on oximetry recently increased due to its ability to characterize 
intermittent hypoxia. Several studies reported that hypoxia level correlates with 
mortality, cardiovascular outcomes, and cancer incidence better than the standard 
AHI [3, 71–73]. In this regard, novel oximetric indices have been proposed to 
parameterize intermittent hypoxia linked with OSA, such as the hypoxic burden 
[73], the hypoxia load [71], or the desaturation severity parameter [74].

A similar evolutionary trend has occurred in the context of pediatric settings. The 
Oxygen Desaturation (≥3%) Index (ODI3) and McGill Oximetry Score (MOS) are 
widely used as predictors of moderate-to-severe OSA (apnea-hypopnea index-AHI 
>5 episodes/h), an indication for adenotonsillectomy [75, 76]. In a recent study, we 
have shown that the optimal cutoff values for the ODI3 and MOS were ≥4.3 
episodes/h and ≥2, respectively. Nevertheless, the ODI3 emerged as the better per-
forming index for detecting moderate-to-severe OSA in habitually snoring children 
when PSG is not available [77].

�Blood Biomarkers
Sleep apnea is known to trigger mechanisms leading to metabolic and endocrine dys-
functions, such as inflammation, hypoxemia, and oxidative stress, which can be readily 
detected by blood tests. Accordingly, blood biomarkers have been proposed to enhance 
the diagnosis of OSA [10, 78]. Common biomarkers are glycated hemoglobin (HbA1c), 
C-reactive protein (CRP), erythropoietin (EPO), interleukin-6 (IL-6), and uric acid 
[78]. Similar efforts in children have yielded remarkable accuracy under specific cir-
cumstances in the detection of disease, in the identification of residual OSA after treat-
ment, or in the evaluation of comorbidities associated with OSA [79–85].

Some biomarker combinations have been found to correlate with sleep apnea 
severity, emerging as potential user-friendly and low-cost tools for OSA screening 
in high-probability patients [86–90]. Nevertheless, further research is encouraged in 
this topic to obtain successful diagnosis and treatment strategies, mainly by means 
of big data and machine learning techniques [3, 91].

5.2	� Diagnostic Strategy

As mentioned above, attended in-lab overnight PSG is the gold standard tool for 
OSA diagnosis. Nevertheless, due to the widely known drawbacks of PSG and the 
increased frequency of visits linked with suspected sleep apnea, the aforementioned 
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Fig. 5.1  Flowchart summarizing the diagnostic strategy for OSA detection involving primary 
care, HSAT and in-laboratory PSG

simplified methods have been implemented within the diagnostic protocols in order 
to conduct sleep studies at home, reduce costs and waiting lists, and expedite both 
diagnosis and treatment. Figure 5.1 shows a flowchart with the diagnostic strategy 
for OSA detection according to the current evidence and recommendations.
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The main recommendations to conduct standard PSG in a sleep laboratory are:

•	 Patients with significant comorbidities (such as severe pulmonary disease, con-
gestive heart failure, or neuromuscular weakness)

•	 Patients with risk of central or mixed sleep apnea or other sleep disorders
•	 Patients with low probability of OSA
•	 Pediatric patients except for resource-constrained settings

Currently, according to the AASM, HSAT is a suitable alternative to in-lab PSG 
for the diagnosis of OSA in patients showing moderate-to-high pretest probability 
without certain comorbidities [10]. Positive OSA is diagnosed in patients showing 
symptoms and AHI/RDI/REI ≥5 events/h from PSG or HSAT or, alternatively, AHI/
RDI/REI ≥15 events/h regardless of symptoms (Table 5.2).

The scarcity of sleep specialists and sleep units forces primary care to increase its 
role in the detection of OSA [92]. In this framework, general practitioners have two 
possible pathways to manage patients in order to speed up diagnosis and treatment. 
Patients scoring positive using a validated screening questionnaire (either BQ posi-
tive, OSA50 ≥5, or a STOP-BANG cutoff of ≥4) and showing ESS ≥8 are assigned 
moderate-to-high risk for OSA and referred directly for in-lab PSG (complex patients) 
or HSAT (uncomplicated patients) [93]. It is important to point out that patients with 
negative scores in the proposed questionnaires should not be definitively excluded for 
OSA [93]. In this situation referring patients to a sleep unit will be required.

Alternatively, other authors proposed a two-step screening strategy involving 
questionnaires and simplified HSAT in primary care. In a first stage, a battery of 
sleep questionnaires is applied. Then, abbreviated HSAT approaches can be used in 
the second stage, e.g., single-channel nasal airflow or pulse oximetry. This two-step 
approach seems to increase specificity becoming very useful to rule out OSA in 
primary care while not overstretching sleep units [94, 95].

Application of similar strategies with specific caveats that are exclusively appli-
cable to children are being developed and will hopefully become incorporated into 
consensus guidelines in the few years to come.

�Impact of COVID-19 Pandemic on Diagnostic Strategy for OSA

The coronavirus disease 2019 (COVID-19) significantly affected healthcare sys-
tems worldwide [96, 97]. Social distancing, confinement of population, and addi-
tional countermeasures aimed at minimizing virus spread have changed protocols of 
all medicine disciplines, including sleep laboratories. Particularly, face-to-face in-
hospital visits for PSG involved an increased risk for both patients and sleep-related 
professionals. Moreover, domiciliary approaches also carry infection risk.

Accordingly, during a pandemic, sleep experts strongly recommended to stop 
performing all kinds of sleep studies, except to hospitalized patients showing high 
risk of sleep apnea that could worsen their health status [98]. Table 5.9 summarizes 
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Table 5.9  Recommendations for in-laboratory sleep assessment during a pandemic

Recommendations
To check body temperature
To ask about novo respiratory symptoms or in contact with a case
To use personal protective equipment (facial mask and gloves)
To use full personal protective equipment when dealing with confirmed cases of infection 
(protective gown, gloves, facial mask, goggles, and cover boots)
Hand hygiene on arrival and departure and whenever needed

main recommendations when conducting sleep studies in an epidemic context. 
After the study, the equipment must be disinfected or undergo quarantine if used by 
infected patients [98]. The epidemic also affects treatment management due to the 
risk of viral shedding via mask leakage in CPAP devices [99].

Predicting how this epidemic will finally influence protocols and strategies for 
management of the disease is difficult. Nevertheless, e-health and HSAT approaches 
will probably arise as suitable tools to minimize face-to-face diagnosis and follow-
up visits [100].

5.3	� Decision Support Systems in OSA Diagnosis

Physicians must deal with several data sources to reach a definitive diagnosis of 
OSA, including symptoms, anthropometric and clinical variables, and data from 
biomedical recordings. In this regard, PSG is the main source of information, as it 
allows physicians to score major electrophysiological and cardiorespiratory 
events in order to quantify the AHI.  Nevertheless, many long-term recordings 
compose each PSG and many and complex rules must be taken into account to 
score each type of event. In this context, computer-aided diagnosis systems have 
been developed as valuable tools that are able to assist physicians in the laborious 
diagnosis of the disease. Particularly, artificial intelligence has been found to 
expedite interpretation of physiological signals by decreasing heterogeneity and 
subjectivity in the PSG scoring task, as well as decreasing the high workload for 
sleep experts. In fact, the AASM Foundation identified artificial intelligence as a 
strategic area in which research focused on according to its 2020 Strategic 
Research Award program.

Figure 5.2 shows how artificial intelligence algorithms are usually used to 
assist in OSA diagnosis. Regarding conventional machine learning methods, arti-
ficial neural networks and support vector machines have been predominantly used 
due to its nonlinear architecture and generalization ability, able to model real-
world complex data with fast and effective processing [101]. In the last several 
years, ensemble learning techniques, based on the combination of multiple classi-
fiers in order to increase prediction ability, outperformed previous approaches in 
this context [102].
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Fig. 5.2  Artificial intelligence-based approaches to formulate decision support systems for OSA 
diagnosis

Deep learning is currently replacing conventional machine learning approaches 
in several fields of industry and medicine, including sleep research. Deep learning 
minimizes major shortcomings of classical pattern-recognition algorithms based on 
feature engineering, which could potentially remove relevant information when 
composing the initial feature space of input variables [103]. Deep learning models 
use all the data contained in the signal and compose their own internal features, thus 
maximizing the diagnostic ability of the signal. Deep neural networks, particularly 
convolutional neural networks (CNNs), are the most widely used deep learning 
approach. Similarly, auto-encoders, deep generative models, and recurrent neural 
networks are also deep learning methods able to characterize biomedical sig-
nals [104].

The two main tasks focus the efforts of researchers and developers in the con-
text of decision support systems for OSA management, namely, the development 
of automated algorithms for sleep staging, aimed at analyzing the macro- and 
micro-structure of sleep, and automated analysis of cardiorespiratory recordings, 
in order to obtain simplified and reliable diagnostic tests for OSA. Table 5.10 
shows the main tasks involving artificial intelligence in the context of OSA 
diagnosis.
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Table 5.10  Tasks commonly addressed by means of machine learning and pattern-recognition 
techniques

Physiological 
domain

Classification 
approach Task

Sleep Stage-based Binary: wake vs. sleep
Multi-class: wake vs. N1 to N3 vs. REM

Event-based Arousals, k complexes, spindles
Respiration Subject-based Binary: non-OSA vs. OSA

Multi-class: non-OSA vs. mild OSA vs. moderate 
OSA vs. severe OSA
Regression: AHI/RDI/ODI estimation

Event-based Apneic vs. normal breathing
Apnea vs. hypopnea events
Obstructive vs. central nature

�Automated Sleep Staging from Polysomnography

The interpretation of a PSG is a cumbersome and time-consuming task even for 
trained experts. Artificial intelligence provides reliable and accurate algorithms to 
analyze both the macro-structure (sleep/wake time, sleep stages) and the micro-
structure (transient events, such as arousals and spindles) of sleep. Particularly, 
spectral analysis, nonlinear methods, and patter recognition techniques have been 
found to provide essential information on electroencephalographic dynamics during 
sleep and sleep-related breathing disorders [102, 105]. Commercial software by 
major medical companies in the framework of PSG analysis already implements 
automated tools for sleep staging. Nevertheless, scoring neuromuscular signals is 
really challenging for automated algorithms, and accuracy greatly depends on the 
number of categories (sleep stages) involved in the classification task. Furthermore, 
performance is also influenced by the type and number of biomedical recordings 
used (EEG channels and EOG/EMG).

Concerning pattern recognition, according to exhaustive comparisons, a combi-
nation of complementary signal-processing approaches including wavelet analysis 
together with random forest, which is a kind of ensemble learning classifier, is able 
to reach high efficiency in sleep-staging tasks [106–108]. Recently, a number of 
studies applied deep learning techniques to accomplish sleep-staging both in healthy 
subjects and patients with suspected sleep disorders, reporting accuracies ranging 
from 67.4% to 92.2% [109–117].

�Automated Diagnosis of Sleep Apnea

Decision support systems in the context of OSA diagnosis focus on two main goals: 
(1) providing a reliable and accurate diagnosis using the least amount of signals, 
promoting the use of simplified portable monitors able to increase availability and 
accessibility to sleep-related diagnostic resources, and (2) providing physicians 

5  Sleep-Disordered Breathing: Diagnosis



86

with automated tools able to decrease the high workload linked with scoring respi-
ratory events.

Regarding abbreviated tests for OSA, the scientific community has focused on 
the analysis of a reduced subset of cardiorespiratory signals, mainly heart rate vari-
ability (HRV) from electrocardiogram (ECG), SpO2 from oximetry, and airflow 
(AF). Two approaches are commonly used to characterize changes in these bio-
medical recordings: time-domain and frequency-domain analyses [118, 119]. In 
addition, as biological systems have major nonlinear interactions, nonlinear analy-
sis has demonstrated to provide additional and complementary information to con-
ventional linear and frequency-domain methods [120–124]. Similarly, wavelet 
transform (time-scale analysis) and bispectrum (high-order spectra) have been pro-
posed as reliable alternatives to conventional Fourier analysis in the context of OSA 
[118, 119, 121].

In order to implement computer-aided diagnosis systems for OSA, binary and 
multiclass classifiers as well as regression models have been developed (Table 5.10). 
Classical statistical methods, such as linear (LDA) and quadratic (QDA) discrimi-
nant analysis and logistic regression (LR), reached remarkable diagnostic perfor-
mance in binary classification tasks, whereas more complex machine learning 
methods including decision trees, neural networks, and support vector machines 
have demonstrated its usefulness in multiclass and regression problems [101, 118, 
119, 125–128]. Recently, ensemble learning and deep learning techniques have 
been found to outperform conventional machine learning techniques in the frame-
work of OSA diagnosis [104, 129–131].

�Digital Health Technologies in the Management of Sleep Apnea

In the last years, e-Health systems and mobile (m)-health applications through 
smartphones raised as reliable tools for unattended portable testing and therapy 
monitoring in the context of OSA management [132, 133]. The increasing recogni-
tion of good sleep quality as synonym of health and the need of periodic follow-up 
in chronic sleep-disordered breathing foster the usefulness of telemedicine in this 
framework. In this regard, the AASM points out the usefulness of telemedicine for 
improving accessibility to and availability of sleep experts and sleep-related health-
care resources [134].

Regarding high-quality medical applications for clinical practice, e-health/m--
health tools mainly focus on long-term therapy tele-monitoring, while remote PSG 
or alternative simplified sleep studies at home are less frequent [135–137]. On the 
other hand, the vast majority of smartphone-based applications focus on wellness 
and lifestyle monitoring for nonspecialized general use, mainly for sleep tracking 
and sleep quality assessment with a lack of appropriate scientific validation [138–
140]. Concerning suitable assessment, the FDA recommends validation against 
PSG since it is currently the gold standard method for OSA diagnosis. In this regard, 
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overall, sleep-related parameters provided by mobile Apps correlate poorly with 
PSG and further improvement is needed [141].

While recent advances focus on simplifying devices to increase portability, 
accessibility, and comfort, experts point out the lack of direct measures of brain 
activity, the need for estimating total amount of sleep, and measuring the duration 
of respiratory events to obtain a reliable and accurate diagnosis of OSA [3].

�Advantages and Limitations of Artificial Intelligence 
in the Management of OSA

Sleep medicine, particularly for sleep-related breathing disorders, can significantly 
benefit from artificial intelligence and big data techniques due to the huge volume 
of data involved in the process of diagnosis, including not only PSG but also data 
from clinical history, anthropometric variables, biomarkers, or genetics, among oth-
ers. In the last decade, conventional machine learning techniques demonstrated their 
usefulness in addressing problems related to automated classification of sleep 
stages, respiratory events, and, overall, sleep apnea severity [142]. In addition, cur-
rent increased computational capabilities have led novel deep learning algorithms to 
outperform stablished limits, reaching correlations above 0.95 in the estimation of 
the AHI [143] and multi-class kappa above 0.80 in sleep staging [113, 144].

Beyond particular sleep staging and respiratory event scoring tools, artificial 
intelligence is expected to enhance therapy management and patient outcomes in 
order to reach the so-called personalized medicine in the context of sleep apnea 
[142, 145]. In this regard, machine learning has been recently proposed to identify 
the most appropriate diagnostic pathway for OSA patients. In the work by Stretch 
et  al. [146], a predictive model is trained to decide which patients are referred 
directly to in-hospital PSG and which ones are more likely to benefit from abbrevi-
ated sleep testing at home. Nevertheless, as pointed out in a recent report by the 
AASM, artificial intelligence is not going to replace sleep experts but to augment 
efficiency and accurateness of sleep laboratories [147].

On the other hand, common drawbacks of machine learning and artificial intel-
ligence are limited generalizability; output variables and performance metrics dif-
ficult to interpret, potentially leading to loss of relevant information; lack of 
transparency of proprietary algorithms, leading to the so-called black boxes; and 
subjectivity of standard rules used to label training samples, as automated learning 
mostly relies on supervised training.

In addition, some major challenges must be still overcome in order to generalize 
the use of expert systems in clinical practice, such as regulatory laws concerning 
software certification and logistics linked with computer support, as well as ethical 
and legal issues [148]. Regarding ethics, it is important to highlight that the clini-
cian is solely responsible for the decisions related to patient diagnosis and 
treatment.
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