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Preface

This volume contains papers presented at the 2023 Workshop on Design and Architec-
tures for Signal and Image Processing (DASIP 2023) – 16th edition, which was held
jointly with the 18th HiPEAC Conference, January 16–18, 2023 in Toulouse, France.
DASIP provides an inspiring international forum for the latest innovations and develop-
ments in the field of leading signal, image and video processing and machine learning
in custom embedded, edge and cloud computing architectures and systems.

For this edition of the workshop, we received 17 paper submissions from 6 countries
around the world, and 9 high-quality papers were accepted as oral presentations. Each
contributed paper underwent a rigorous double-blind peer-review process during which
it was reviewed by at least three reviewers who were drawn from a large pool of the
Technical Program Committee members.

The success of DASIP depends on the contributions of many individuals and orga-
nizations. With that in mind, we thank all authors who submitted their work to the
conference. We also wish to offer our sincere thanks to the members of the Technical
Program Committee for their very detailed reviews, and to the members of the Steering
Committee.

Wewould also like to address special thanks toTomaszKryjak, fromAGHUniversity
of Science and Technology (Poland), for presenting a deeply inspiring keynote during
the event.

February 2023 Miguel Chavarrías
Alfonso Rodríguez
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Methods and Applications



SCAPE: HW-Aware Clustering
of Dataflow Actors for Tunable

Scheduling Complexity

Ophélie Renaud1(B), Dylan Gageot2, Karol Desnos1 ,
and Jean-François Nezan1

1 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France
{ophelie.renaud,karol.desnos,jean-francois.nezan}@insa-rennes.fr

2 Yubik, Rennes, France
dgageot@yubik.io

Abstract. This paper introduces a fast method to generate high per-
formance parallelized code from a dataflow specification of an applica-
tion. Dataflow Models of Computation (MoCs) are efficient program-
ming paradigms for expressing the parallelism of an application. Tra-
ditionally, mapping and scheduling methods for dataflow MoCs rely on
complex graph’s transformations to explicit their parallelism which can
result in complex graph for embarrassingly parallel applications. For such
applications, state-of-the-art mapping and scheduling techniques are pro-
hibitively complex, while the exposed parallelism often exceeds the paral-
lel processing capabilities of the target architecture. We propose SCAPE,
an automated method to control the complexity of the pre-scheduling
graph transformation by using information from the architecture and
application models. By decreasing the complexity of the graph, the map-
ping scheduling task is accelerated at the potential expense of the pro-
duced schedule. Our method offers a limited and controlled decrease of
the schedule quality while enabling mapping and scheduling execution
time between 1 and 2 orders of magnitude faster than state-of-the-art
techniques.

Keywords: Dataflow model · Hierarchy · Granularity · Clustering

1 Introduction

Digital signal processing technology emerged in the 1960 s s and has grown
rapidly, becoming more complex over the years, particularly with the arrival
of machine learning applications a decade ago. To meet the ever-increasing need
for computing power and speed of execution of these applications, developers
first sought to increase the frequency of individual Processing Elements (PEs)
and then turned to heterogeneous multicore embedded systems.

This work was supported by DARK-ERA (ANR-20-CE46-0001-01).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chavarŕıas and A. Rodŕıguez (Eds.): DASIP 2023, LNCS 13879, pp. 3–14, 2023.
https://doi.org/10.1007/978-3-031-29970-4_1
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Exploiting in an optimized way the maximum parallelism of such multicore tar-
get architectures is very challenging. The development of parallel code is tedious
and is not adapted to manage hardware and software upgrades during the exploita-
tion phase of the project. Tools such as Simulink [6] and Xilinx AI Engine Technol-
ogy [1] are then investigated to automate the rapid deployment of new algorithms
on the computing system. Both tools are based on the dataflow approach consist-
ing in the modeling of the algorithms by a graph in which nodes, called actors, rep-
resent the calculations and directed arcs, called First In First Out queue (FIFO)
buffers, represent the data, called tokens, exchanges between nodes.

The automated generation of parallel code from such dataflow models requires
solving several NP-Complete problems, especially for resource allocation. Calcula-
tions are distributed on the PEs of the target architecture and will read and write,
during the execution of an application, on FIFO buffers assigned to a range of
memory addresses. The resource allocation choices can be made at compile time or
at runtime. The allocation at runtime leads to performance overhead and unpre-
dictable application behavior. For these reasons, this paper investigates methods
that allocate resources at compile time, during software synthesis. The software
synthesis process is responsible for translating a dataflow model into a prototype.

Classic resource allocation methods involve three phases: The mapping con-
sists in distributing actors on the PEs of the target. The Scheduling consists
in ordering the execution of actors on the PEs. The Timing associates to each
actor a start time and an end time, useful to calculate the long time average
throughput, also called latency, of the application. The time required for the
mapping and scheduling process grows exponentially with the number of PEs
and the number of nodes and edges of the dataflow graph [7].

The Scaling up of Clusters of Actors on Processing Element (SCAPE) method
is introduced in this paper which is a hierarchy-based clustering method that
transforms an application to match its degree of parallelism to the parallel com-
putation capabilities of the targeted architecture. The method offers as many
clustering configurations as there are hierarchy levels in the Synchronous Dataow
(SDF) input graph which gives the user the possibility to choose the required
granularity for a reduced software synthesis time.

Section 2 presents dataflow MoCs, the traditional mapping and scheduling
method and the state-of-the-art clustering heuristics. Section 3 describes the pro-
posed SCAPE method and the backbone of the resulting code. Section 4 outlines
experimental results on several granularity clustering configurations showing a
tradeoff between design space exploration time and produced schedule latency.
Finally, Section 5 concludes this paper.

2 Context and Related Work

2.1 SDF Based Dataow MoCs

The most studied dataflow MoC is the SDF [8] illustrated in the Fig. 1, in which
the integer numbers on the input and output ports of actors are the rate of tokens
respectively consumed and produced by actors at each execution of the actors.
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Fig. 1. SDF MoC semantics

An SDF graph is usually transformed into an equivalent Single rate Directed
Acyclic Graphs (SrDAG) [12] to map and compute a periodic deadlock-free
schedule iterated infinitely. A repetition of a periodic schedule is called a graph
iteration. The single rate transformation consists in duplicating the actors by
the number of firings specified by the schedule, and in adding special actors to
distribute or gather tokens, so that the production and the consumption rates
on each FIFO are equals. Then, DAG transformation consists in breaking cyclic
data-paths. To be consistent, all cyclic data paths must contain at least one
initial data token also called delays. Therefore, breaking a cycles means replacing
FIFOs with delays by a pair of special actors which backup delayed tokens and
read the backed up tokens.

An extension of the SDF model is the Parameterized and Interfaced SDF
(PiSDF) model [4]. In this paper, the feature of interest of the PiSDF model is
its support for hierarchy. The hierarchy feature allows the internal behavior of
actors to be specified by a subgraph instead of C code. The PiSDF MoC defines
interfaces of a subgraph as input and output data ports of the parent hierarchi-
cal actor. Interfaces allow the transmission of tokens between hierarchical levels.
The hierarchy is used to represent different levels of granularity of the computa-
tions that compose an application, the lower levels of hierarchy being the finer
granularity.

These SDF based models have two main advantages justifying their interest.
The first one is to express the three types of parallelism [13], two of which are
used in this paper: task and data parallelism (pipeline being the third).

– Task parallelism is expressed by two actors belonging to parallel data-paths
like actors A and B in the Fig. 1. As there is no data-path between these
actors, they can be fired at the same time.

– Data parallelism is expressed when several firings of a single actor are indepen-
dent from each other. If enough data tokens are present in the input FIFOs,
then several firings can be executed concurrently. An example is the actor C
in the Fig. 1 which can be executed 2 times when A and B are executed 1
time.

The second advantage is that the model is independent of the target architec-
ture. An application is represented once and executed on all types of architecture
(single cores, multicores with shared or distributed memories, FPGA, etc.).
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2.2 Classic Flattening Method

This paper focuses on tools that have chosen to allocate resources at compile
time, also called static allocation. Software synthesis can be modeled by a work-
flow. The typical static scheduling workflow is composed of four main tasks:
flattening, SrDAG transformation, mapping and scheduling, then code genera-
tion.

The flattening task of the workflow consists in putting all the actors of a
graph at the same level which means all hierarchical actors are replaced by their
subgraph. To keep the functionality of the application in Fig. 2, token rates
consumed and produced in the initial subgraph are scaled up on upper levels.
Tools usually flatten the whole graph to execute the rest of the process which
brings the finer level of granularity to the top-level graph.

The SrDAG transformation task is used to reveal parallelism on flattened
graph Fig. 2. It highlights the minimal number of firings of each actor to return
the graph back to its original state given by the calculation of the Repetition
Vector (RV) q. Here, actor B is fired 4 times per graph iteration, so q(B) = 4.
It also emphasizes the interdependencies between the actors, which is useful
to calculate the execution order of the actors, allowing them to be iterated
infinitely without generating a deadlock. In the figure, the named nodes are the
actor instances and the unnamed nodes are the special actors responsible for
distributing or gathering the data tokens.

Fig. 2. Classic flattening process: 3 SDF actors turn into 10 SrDAG actors

The excessive complexity of the SrDAG increases the mapping opportunities
which results in a better distribution of the computations on the different PEs
and reduces the latency of the application on the target. Since the mapping
opportunities are limited to the number of PEs in the architecture, exposing more
parallelism than the number of PEs is unnecessary and time consuming. [10].
This is why reducing the exposed parallelism to the number of PE will most
likely be sufficient to fully exploit the architecture parallelism, while being much
simpler to map and schedule.

Example 1. Considering a machine learning application: Squeezenet neural net-
work whose SDF model is composed of 70 actors, its SrDAG transformation
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results in 5452 actors. Mapping this application on an architecture composed of
8 PEs with a greedy algorithms requires considering and evaluating 8 mapping
choices. Here the degree of parallelism is up to 1000 which is an needlessly fine
granularity.

2.3 Cluster of SDF Actors

A way to reduce the complexity of mapping and scheduling algorithms is to
reduce the number of actors to map in the srDAG, without altering behavior
of the application. This reduction can be achieved using clustering techniques,
wich transform the input graph by grouping actors with a particular behavior.
Since grouping two or more actors into a single equivalent hierarchical actor
may change the behavior of the application, or even create deadlocks, clustering
rules have been introduced in [10]. These rules are illustrated in Fig. 3 where SDF
graphs are represented with rectangular actors and the corresponding precedence
graphs with round actors. A cluster must respect the execution order of the actors
defined by the precedence rules (a), the initial tokens must be considered (b) and
there must be no simple path from a node of the precedence graph to another
one that contains more that one arc(c). A simple path is the one which does not
visit any node along the path more than once.

Fig. 3. (a) illustrate the violation of the first precedence shift condition, (b) illustrate
the violation of the hidden delay condition, and (c) illustrate the violation of the cycle
introduction condition

A method to cluster SDF actors is presented in [2] which introduced the
Pairwise Grouping of Adjacent Nodes for Acyclic graph (APGAN) algorithm.
Considering an acyclic SDF graph G = 〈A,F 〉 where A is a set of stateless
actors and F is a set of FIFO, the algorithm can be summarized as follows: A
cluster hierarchy is constructed by clustering exactly two adjacent vertices at
each step. At each clusterization step, the chosen pair of adjacent actors have
the maximum repetition count value ρ see Definition definition 1, associated to
their inter-connected edge.

Definition 1. If Z is a subset of actors in a connected, consistent SDF graph:
ρ(Z) ≡ gcd({q(A) |A ∈ Z})

APGAN candidates should respect the clustering rules that can be verified by
applying a reachability matrix [3]. Then repeat the process until the end of
the opportunities. Execution of hierarchical actor resulting from a clustering
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operation is assumed to be atomic and is thus mapped and scheduled as a whole
on a single core. In order to execute such cluster actor, it is thus necessary to
compute a sequential schedule of all actor firings that belong to the cluster.
APGAN algorithm also provides special clustering schedules that are nested
looped schedules whose specificity is to make sequential the behavior of a cluster.
APGAN clustering technique focuses on single-core optimization.

Four clustering techniques are presented in [9]. The first one empowers the
user to select improper groups of actors, manual methods are tedious and may
introduce deadlocks. The second one consists in clustering SDF subgraphs as
long as possible. The third one is the Unique Repetition Count (URC) cluster-
ing technique developed in Sect. 3.1. The last one is an adaptation of Sarkar’s
multiprocessor DAG scheduling heuristic [11] based on macro dataflow model
in which the program is partitioned into tasks at compile time and the tasks
are scheduled on processors at run time. All of these methods focus on the effi-
cient reduction of the complexity of a graph without considering parallelism. The
method introduced in this paper involves automatically generated architecture-
adaptive parallel cluster instances.

3 SCAPE Method

The objective of the SCAPE method is to apply graph transformation to the
SDF graph of an application, prior to its mapping and scheduling. To do so,
clustering of actors within the input hierarchical SDF graph aims at reducing
the complexity of the derived SrDAG used during mapping and scheduling. The
SCAPE method aims at preserving the parallelism of the application so that it
matches the parallel computing capabilities of the target architecture.

3.1 Design Space Exploration Optimisation

The SCAPE method is composed of three steps: configuration of the granularity,
identification of particular patterns that will be the subject of clustering, and
scaling up of the last clusters on the target architecture.

Configuration of the Granularity. The SCAPE method takes as input the PiSDF
graph of n hierarchy levels that models the application and an integer value
corresponding to the number nc of hierarchy levels that the user wants to group
coarsely. The output of the new method is a transformed graph with the RV q
associated with the actors located in the subgraphs on n − nc level reduced to
the number of PE that compose the architecture. A graph on n levels will have
n+ 2 possible configurations of n − nc levels.

– Level 0 configuration: it is the state-of-the-art configuration where the entire
graph is flattened before producing the SrDAG for scheduling.

– level n+ 1 clustering configuration: it is grouping the entire graph into a single
actor, thus resulting in a mono-core schedule.
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– level 1 clustering configuration: it corresponds to generate groups on the bot-
tom levels and reduce the RV q associated with the actors located in the
subgraphs on this level to the number of PE.

– level l | l ∈ [2, n+1[ clustering configuration: it corresponds to coarsely group-
ing bottom levels, generate groups on the just upper levels and reduce the
RV q of actors on this level to the number of PE Fig. 4.

Fig. 4. Configuration based on clustering levels

Identification of Particular Patterns that will be the Subject of Clustering. The
SCAPE method considers two patterns:

URC pattern: It’s a sequence of at least two sequential actors with the same
repetition count value ρ see Definition definition 1 without internal state. Such a
pattern can be the object of a cluster if the consistency of the graph is preserved
that can be verify by applying a reachability matrix.

Example 2. Considering the graph G shown in Fig. 5 which contains a sequence
of actors B, C, D, and each FIFO connecting these actors presents the same
repetition count value ρ, ρ(A,B) = gcd(1, 4) = 1 and ρ(Ω,C) = gcd(1, 2) = 1.
The method transforms the graph G by replacing this identified group with
a hierarchical actor whose behavior is specified by a subgraph containing the
identified group. This way the newly created hierarchical actor executes once
per iteration and the elements it contains keep their initial execution number.
Thus the SrDAG transformation of this piece of graph which would have resulted
in 3 × 8 = 24 actors is presently 1 actor.

Single Repetition Vector (SRV) pattern: It’s a single actor that does not
belong to an URC candidate, with a RV q greater than or equal to the number
of PEs of the target architecture.

Example 3. We consider the graph G shown in Fig. 5 which contains an actor E
with a RV q equal to 16 and a target architecture which contains 4 cores. The
method transforms the graph G by replacing this identified actor by a hierar-
chical actor whose behavior is specified by a subgraph containing the identified
actor. This way the hierarchical actor executes once per iteration and the element
it contains keeps its native execution number. Thus the SrDAG transformation
of this piece of graph which would have resulted in 16 actors is presently 1 actor.

These two identified patterns will drastically reduce the size of the SrDAG and
consequently make the application intrinsically sequential.
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Scaling up of Cluster. The final step, called the scaling, consists of creating
clusters of actors with a RV q matching the target architecture. The scaling is
done on the hierarchical actors located on the subgraphs at the level nc input
integer value. Level 0 and n+2 clustering are not subject to scaling. According
to [8] to preserve the consistency of a graph G, on each FIFO f the rates of
consumed and produced tokens cons and prod and the RV q of the source and
sink actors src and snk are linked by the equation:

q(src(f)) × prod(f) = q(snk(f)) × cons(f) (1)

To calculate the scaling, the RV of the hierarchical actor q(ha) shall be equal to
the greatest common divisor of the RVs of the actors of the subgraph C flattened
just above the number of PE nPE .

q(ha) = gcd(q(a ∈ C) |q(ha) ≥ nPE (2)

In case the hierarchical actor contains a FIFO with a number of delay D, special
care must be taken when scaling the actor. In particular, if the hierarchical
actor is directly connected to a delayed FIFO or indirectly via a special actor
or an interface connected to a delayed FIFO. If one condition holds true then
the calculation of the scaling is indexed on the delay value such as the rates of
consumed tokens on the delayed FIFO cons(fhad

) has to be less than or equal
to the delay value D.

q(ha) = gcd(q(a ∈ C)) | cons(fhad
) ≤ D (3)

In order to keep the consistency of the graph, the rates of tokens consumed and
produced on the input and output ports by the hierarchical actor in(ha) and
out(ha), f for final and i for the initial value, are scaled as follow:

{
in(ha)f = in(ha)i × q(ha)i/q(ha)f
out(ha)f = out(ha)i × q(ha)i/q(ha)f

(4)

Thus the actors from the subgraph are executed q(a ∈ C)/q(ha) times.

Example 4. We consider the graph G shown in Fig. 5 and a target architecture
with 4 PEs. As the RV q of the URC cluster is q(a ∈ URC) = 8, then the
scaling will be gcd(8, 4) = 4. Thus, the hierarchical actor URC executes 4 times
and the subgraph elements twice per iteration. Respectively as the RV q of
the SRV cluster is q(a ∈ SRV ) = 16, then the scaling will be gcd(16, 4) = 4.
Thus, the hierarchical actor SRV executes 4 times and the subgraph elements
4 times per iteration. From the input graph, the classic “flattening” approach
obtains a size of the SrDAG of 50 actors, the “SCAPE” approach obtains a
size of the SrDAG of 10 actors. The method reduces both the number of actors
related to calculations and the number of special actors related to data transfers
on the different instances. The complexity of the graph has been divided by 5,
which considerably reduces the mapping and scheduling time of the tool without
compromising the parallelism.
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Fig. 5. SCAPE method

3.2 Code Generation

The code generated by the classic flattening approach in our tool [5] takes the
form of a specific C file for each target PE. Every file contains first of all a part
dedicated to the initialization of the application which includes the definition
of the allocated buffers, actors and FIFOs initialization functions such as delay
initialization. The second part of these files is a loop representing the thread
containing the scheduled firing of actors. It is a function call implementing the
behavior of the actor. Up until now, the tool did not support code generation for
optimized actor groups. A plugin has been created to answer this new constraint.
Thanks to this plugin, a cluster of actors is translated by nested function calls
depending on whether the group contains other groups and the firing instances
of the group elements are translated by “for” loops Fig. 6.

Fig. 6. Considering the graph from Fig. 4 and a two-core architecture (a) illustrates
the code generation on clustering configuration with level 0, and (b) illustrates the
code generation on clustering configuration on 2 levels

4 Experiments

The purpose of this section is to show that the proposed method offers a trade-
off between reducing mapping and scheduling time, also called analysis time,
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while preserving the latency of applications in comparison to the classic flat-
tening method. The proposed method has been implemented in open source
projects into Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) rapid prototyping framework. Compared to other mapping and
scheduling frameworks, the absolute analysis time may seem high for DAGs with
a few thousand actors. This time is due to the language used, Java, and heavy-
weight implementation choices made by PREESM. Nevertheless, the comparison
of the evolution of analysis times, which relates to their complexity, would remain
valid with faster implementations of both the state-of-the-art corresponding to
“Level 0” and the proposed technique. The experiments are performed on a
desktop computer with an 8-core Intel i7-8665U processor and 31,2 GB of RAM.

4.1 Experimental Setup

Figure 7 presents the “analysis” and latency measured for the stereo application.
The application has 2 levels of hierarchy, so there are 4 possible clustering config-
urations as explained in the section Sect. 3.1. Three image processing application
use-cases such as Stereo, Stabilization and Squeezenet were used to conduct the
experiments on architectures with a 1, 2, 4, 8 or 16 of homogeneous cores summa-
rized in the Table 1. These models were chosen because they do not contain too
many delays, which impends the scaling opportunities of the SCAPE method.
These applications have between 2 and 3 levels of hierarchy. For each number of
cores, only the result giving the best latency was kept, among all levels of the
SCAPE method.

4.2 Analysis Time Evaluation

The experimental results depicted in Fig. 7 compare in red the state-of-the-art
configuration and the different shades of blue for the different levels of clustering
configuration up to 0. The analysis time curves are shown on the left side of
Fig. 7. The curves representing the clustering configuration on different levels
are between two extremes. The highest curve named “Level 0” represents the
more complex graph with a time that increases with the number of cores due
to the time that the mapping and scheduling algorithm takes to map, schedule
and allocate memory to each of the elements of the SrDAG. The lowest curve:
the fully cluster configuration remains constant and fast whatever the number
of cores but no parallelism.

4.3 Latency Evaluation

The latency curves are shown on the right side of figure Fig. 7. There are still two
extreme curves: the “level 0” curve whose complexity allows to distribute the
actors on the different cores. That’s why the latency decreases with the number
of cores. The level 3 clustering configuration, because it is sequential, has the
longest latency and is architecture-independent. Thus the different clustering
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Fig. 7. Comparison of analysis time and latency between the classical flattening app-
roach and three configurations of SCAPE method on Stereo application on several
architectures (Color figure online)

configurations offer graphs of different levels of granularity and provide a tradeoff
between the analysis time and the latency of an application.

Results depicted in Table 1 correspond to the ratio between the times
obtained on the state-of-the-art configuration, “level 0”, and those obtained on
the clustering configuration that offers the best compromise between analysis
time and latency. A value greater than 1 is a speedup. The values obtained on
the Squeezenet application on level 0 configuration are estimated with an expo-
nential function. The process exceeded the RAM memory capacity of the used
machine, due to the large number of actors in the SrDAG on the state-of-the-art
configuration, and was unable to complete after 48 h. Hence the relevance of
the method that allows to provide analysis and executable code even on very
complex applications.

Table 1. Comparison of analysis time and latency between the classic flattening app-
roach and best configurations of SCAPE method on three use-cases

Application SDF Level SrDAG Relative time Number of PEs

1 2 4 8 16

Stereo 28 2 187 analysis 5.3 1.2 1.4 1.7 1.6

execution 1.0 0.9 0.9 0.8 0.8

Stabilization 22 3 98 analysis 1.5 0.5 0.5 0.6 0.7

execution 1.0 1.0 0.7 0.7 0.8

Squeezenet 98 3 5452 analysis∗ 203.5k 100.5 94.5 84.2 68.8

execution∗ 1.0 1.0 1.0 1.0 1.0
∗Estimated values

5 Conclusion

This paper presents a new method to reduce mapping and scheduling time while
preserving the parallelism of SDF graphs. It consists in reducing the size of the
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graph by clustering actors reproducing particular patterns and then reducing the
firing instances of these clusters on the target architecture. The method allows
the user to choose the potential expense of the produced schedule and reduce
the analysis time accordingly. Experimental results show that for a significantly
improved analysis time we obtain a slightly deteriorated latency of the generated
code. In addition, the methods enable mapping and scheduling massively parallel
applications which were too complex for state-of-the-art approaches. Potential
directions for future work include identifying and clustering more complex pat-
terns and automating the search for the optimal level of clustering, without
needing to try all configurations.
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Abstract. Hyperspectral imaging approaches have proven its effective-
ness in the medical field for characterizing brain tissues. Furthermore,
these techniques in conjunction with machine learning (ML) algorithms
has shown to be a useful tool for tumor detection in order to assist
neurosurgeons in operations. In this report, it is proposed a novel deep
recurrent neural network (DRNN) performing spectral recurrence with
the hyperspectral bands to increase precision in tissue classification. In
addition, this research present a comparison between the optimized mod-
els of the followings ML algorithms: support vector machine, random
forest (RF) and the DRNN. All of them were trained by following an
hyperparameter optimization process. As a result, DRNN improve brain
tissue predictions in terms of the area under the receiver operating char-
acteristic objective test metric (by 1.39% over SVM and 1.91% over RF)
whereas RF classification maps illustrate truthfully the distribution of
different tissue regions.

Keywords: HSI · RNN · hyperparameter · optimization · brain tumor

1 Introduction

The use of different imaging-based diagnosis techniques in medicine is nowadays
widespread and provides an important support in almost all areas of healthcare
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practice. The treatment of brain tumors, far from being an exception, represents
a challenge where techniques such as computed tomography, positive emission
tomography or magnetic resonance imaging (MRI) are daily used [1]. Moreover,
these technologies may be combined with machine learning (ML) algorithms to
extract from images hidden information and better supporting technicians in
diagnosis and medical practice. Recently, Hyperspectral (HS) imaging (HSI) is
gaining presence in medical field due to its non-invasive and non-ionizing fea-
tures. This emerging technique is related to spectroscopy [2] and allows to obtain
the spectral features of a captured material. The spectral information is organ-
ised in three-dimensional cubes containing the spatial and spectral information
of the region of interest. However, due to the inherent complexity of living tis-
sue, ML techniques need to be applied to draw conclusions from the volume of
data generated by hyperspectral cameras. In this sense, some works have been
carried out involving different ML algorithms such as support vector machine
(SVM) and random forest (RF) based classifiers. Both algorithms are compared
for brain tissue classification using HS images in [3].

On the basis of neural networks (NN), recurrent neural network (RNN) archi-
tecture is useful for extracting temporal data dependencies (i.e. RNN is used to
extract features from MRI sequences for brain tumors detection [4]). In this
work, it is proposed to use a RNN performing spectral recurrence in order to
profit on correlation between HS frequency bands when classifying brain tumor
tissues during neurosurgical procedures. To this end, a new deep recurrent neural
network (DRNN) architecture has been i) tailored using as reference the state
of the art of RNN in remote sensing [5], and ii) optimised using a hyperparam-
eter optimization method. In addition, SVM and RF models from [6] have been
re-trained following the same optimization methodology that the DRNN model.
All in all, the obtained results show the behaviour of each model performing
brain tissue classification task.

According to what the authors know, there is previous research assessing a
RNN architecture in tumor analysis (head and neck regions) by medical HSI [7].
However, this work evaluates an optimized RNN model in brain tissues classifi-
cation from HS images by performing recurrence between spectral information.

2 Background

2.1 Hyperspectral Imaging

HS images consist of hundreds (typically between 100 and 250) narrow wave-
lengths bands (around 3–10 nm bandwidth) that collect a range of continuous
information from the electromagnetic spectrum energy reflected for each pixel
of a capture. This information is called spectral signature and is used to dif-
ference between materials on the image. Currently, HS images are applied in
several fields such as food quality evaluation (i.e. minced meat classification [8])
or cancer detection in medicine (i.e. gastric cancer diagnosis [9]).
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2.2 Machine Learning Algorithms

ML is a branch of artificial intelligence field that aims to emulate human intelli-
gence capacity in computer systems by learning through experience. ML trained
models are capable to detect patterns and make predictions in an analytical and
autonomous way without being explicitly programmed to do so.

There are four sub-types of ML algorithms depending on the learning method:
supervised learning, unsupervised learning, semi-supervised learning and rein-
forcement learning. Also, within the supervised learning algorithms there are
classification and regression models according to the task to perform. In this
work, it is compared three different ML models trained on a supervised way for
a classification problem:

– SVM [10] works by finding the optimal hyperplane in a n-dimensional space
to separate labelled data points of the training set into different classes. The
number of space dimensions refers n data features.

– RF [11] consist of a parallel set of individual decision trees that operates as
an ensemble to obtain an outcome based on the majority prediction of them.
Input training data set is statistically split as bootstrap samples for each
decision tree.

– RNN is another type of NN based on a feed-forward NN [12] but with recur-
rent neurons on hidden layers that feedback themselves sequentially. It shares
orderly the training weights information between sequence steps or time steps
allowing giving a memory mechanisms to the NN. There are three different
recurrent units for the neurons: vanilla recurrent unit, long short-term mem-
ory (LSTM), and gated recurrent unit (GRU). While the vanilla unit is the
oldest and simplest model, LSTM and GRU are sophisticated units that avoid
vanish and exploding gradient [13].

2.3 Hyperparameter Optimization

ML models have neuron weights (also called parameters) that are updated dur-
ing training process depending on the input data. However, ML hyperparameters
are the ones that can be configured before the training process and theirs values
influence the weights setting during training. Typically, hyperparameters values
are configured manually, but it is tedious to establish them on larger hyperparam-
eter sets and complex ML algorithms. Also, it does not ensures a high ML model
performance. Alternatively, there is an automatic method for hyperparameters
assignation. This method requires a search space with hyperparameters sets, an
objective score function with a direction to achieve (minimize or maximize) and
an algorithm to select the specific set of values for the next configuration trial.
The aim of hyperparameter optimization in ML is to find a configuration of
them that reaches the best performance of the model on a validation dataset
in terms of the objective metric established (function and direction). There are
different algorithms such as grid search (GS) or random search (RS) to per-
form the hyperparameter selection. The basis of this work is related to Bayesian
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optimization (BO) algorithm. Unlike GS and RS, BO evaluates the selection by
mapping hyperparameters to a probability of a score based on previous results
of the function specified. This model is called surrogate, and works iterative
approaching on the most promising hyperparameters values by paying attention
to past evaluations in order to keep searching around this regions. Specifically,
the sequential model-based optimization (SMBO) with tree-structured Parzen
estimators (TPE) surrogate model [14] have been used in this work. This algo-
rithm consist on running hyperparameter selection trials sequentially, employing
Bayesian reasoning to update the surrogate model in order to select better hyper-
parameters each time. According to TPE surrogate function, Bayes rule is the
methodology to compose the surrogate model in SMBO. A similar approach was
used by Mart́ın-Pérez et al. for the optimization of ML models (SVM and RF)
for brain tissue classification, [6] comparing GS, RS and BO methods.

3 Methodology

In this paper, it is proposed a DRNN model tailored to the specific data described
in Sect. 3.1 in order to improve previous results of brain tissue classification
[3]. Concretely, the network architecture is presented in Sect. 3.2. Then, it is
explained the training process with the hyperparameters optimization method-
ology in Sect. 3.3. In addition, SVM and RF algorithms described in [6] are
used for the experiments suggested in Sect. 4 to compare the performance of the
different ML models (DRNN, SVM and RF) in brain tissue classification.

3.1 Input Data

DRNN, SVM and RF models have been trained to classify brain tissue pixels
between 4 types (healthy, tumor, blood and meninges) by using data previously
labeled by neurosurgeons. These data are a collection of human brain HS images
pre-processed from different patients and operations. Specifically, HS images
captured are acquired in in-vivo surgical interventions by employing the cam-
era Ximea Snapshot MQ022HG-IM-SM5X5-NIR 1st generation which consist
of information with 25 spectral bands captured in the 665–960 nm range. The
description of these images and the pre-process methods are detailed in [3]. For
each pre-processed HS brain tissue image there is a ground truth (GT) map that
contains labeled pixels corresponding to neurosurgeons observations (see left side
of the Fig. 1). Thus, this GT map is used to check the network output comparing
the outcome labels with the real ones during training. Specifically, these labels
correspond to the 4 types of tissues mentioned, taking into account that 1) blood
tissue type involves veins and arteries and 2) that meninges consist of three dif-
ferent membranes that cover and protect the brain. In this work, data is handled
as in [15] to extract patches from a HS image. As it is illustrated in Fig. 1 the pro-
cess consist on: 1) to generate spatial squares (patch size × patch size) around
each labeled pixel on the GT map, and 2) to create patches extracting the val-
ues of the 25 frequency bands from the HS image taking into account previous
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squares as a spatial reference. Finally, patches are reshaped on a single-spatial
dimension element (vPatch: vector patch) with the values of the 25 frequency
bands on the spectral dimension (λ1, λ2, ..., λ24, and λ25). Thus, as it is illus-
trated in Fig. 2, spatial dimensions of the patch are stretched to obtain vectors
(patch size×patch size) for each frequency band in order to work with a RNN.

Fig. 1. Diagram of patches extraction from a HS image. On the right side of the dashed
line there are a GT map and the HS image of one patient. On the other side 1) squares
selection and 2) patch extraction are represented.
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Fig. 2. Diagram with the generation of the network input vector and the target out-
put label. The vPatch composition is represented on the right side of the dashed line
whereas the patch class target is illustrated on the other side.

3.2 Deep Recurrent Neural Network Architecture

On the basis of RNN, proposed network architecture use the time steps depen-
dence in order to take advantage of the frequency bands correlation on HS
images. This frequency bands are considered as a sequence being used on time
steps one by one in order to perform a band-by-band processing [5]. Therefore,
DRNN is implemented with 25 time steps to process 25-frequency-bands data.
It also include a symmetric transfer of learning weights information between
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bands by sharing hidden states bidirectionally from the first hyperspectral
band to the last one (h0, h1, ..., h24, h25) and the other way around (from
h′
0 to h′

25). The architecture of the network is outlined on Fig. 3 and con-
sist on two recurrent hidden layers composed by 208 LSTM recurrent cells to
learn deeply about data features and avoid learning problems such as vanish-
ing or exploding gradient. Also, a dropout rate of 0.6 is used in each hidden
layer to reduce over-fitting during training. In addition, any recurrent cell use
an hyperbolic tangent as activation function. Then, as a many-to-many (n-
to-n, n = 25) RNN topology, DRNN architecture obtain an outcome vector
[nb hyperspectral bands, nb rnn cells · 2(bidirectional)] = [25, 208 · 2] gathering
every time step output. Finally, a fully-connected layer with 4 neurons and a soft-
max activation function performs the multi-class classification with the previous
resulting vector. This layer obtains a single [4,1] vector with the probabilities of
a vPatch for being each brain tissue type: healthy, tumor, blood and meninges.
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Fig. 3. Diagram of the DRNN architecture.

The input of the network is the HS vector (vPatch) composed by a certain
number of pixels (patch size × patch size = 7 × 7 = 49) and the information
about the 25 spectral bands. Concretely, patch size = 7 is selected based on
experiments in [3] to employ an enough amount of neighbouring pixels that
improve classification results without decreasing classification map resolution.
On top of Fig. 3 it is represented the input of the network, where each vector
(with the values of one specific spectral band λi, i = 1, 2, 3, ..., 24, 25) goes into
one time step. Then, at the output of the DRNN there is a last layer vector [4,1] of
outcome scores (before the softmax activation function) whose major probability
type is compared with the labeled tissue type for the input vPatch. Specifically,
cross-entropy loss function is used to compare the outcome predicted label with
the reference in order to train the network parameters (weights) by minimizing
this loss result on each training step (epoch). Related with the training process of
the ML model, 15 HS images which have hundreds of labeled pixels are involved.
For this reason there is a large amount of patches to be handled. Thus, batches
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are used to distribute data on the training process in order to control the power
consumption and memory resources. In particular, a batch size of 40 is applied
so each iteration of the training process involves 40 patches through the network.

3.3 Training Process

The training process of the DRNN model consist on performing hyperparam-
eter optimization applying SMBO with TPE algorithm. Thus, the optimal set
of hyperparameters values could be obtained according to the classification task
performance. Additionally, this technique is combined with a cross validation
(CV) procedure to reinforce the accuracy of the hyperparameter set results from
the data variability. In more detail, the training process configuration is based
on the methodology presented in [6]. Accordingly, it is implemented in this work
by replacing the StratifiedShuffleSplit function for a Kfold CV (with K = 5 folds
as in [3]) in order not to repeat data in different splits. Also, this work involves
alternative implementations for stratifying and randomly shuffling data sam-
ples (patches). Specifically, it works by stacking different data samples by type
and randomly shuffling them with a particular seed. According to the hyperpa-
rameters involved in the optimization process, there are some of them related to
training hyperparameters (the number of epochs, the learning rate, the optimizer
and the size of each batch), whereas others are part of the RNN architecture
(the type of the recurrent cells and the number of recurrent neurons/cells for
each layer). The distributions of values for each hyperparameter evaluated are
presented in Table 1. Following the presented methodology, the proposed solu-
tion performs a 100-trials optimization minimizing the average cross-entropy
loss function of the five partial results from the 5-fold CV. Furthermore, data
sampled used in this training process (with the hyperparameter optimization)
consist of the 80% randomised-stratified labeled patches from 15 HS images.
Then, the other 20% of the labeled samples is used with the trained DRNN
model in order to test/validate its classification results. Finally, as a result of
the hyperparameter optimization, best values selected for the hyperparameters
are expressed in the Result column of the Table 1.

Table 1. Distribution values arrangement for the hyperparameter optimization study
and its corresponding results.

Hyperparameter Distribution Result

Epochs [160, 320] in integer steps of 10 290

Learning rate [1e-5, 1e-2] in log steps 5.975e-4

Batch size [32, 128] in integer steps of 8 40

Optimizer name [Adam, Adagrad, AdamW] AdamW

Hidden size [64, 256] in integer steps of 12 208

RNN model type [Basic RNN (vanilla), LSTM, GRU] LSTM
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4 Experiments and Results

Experiments accomplished in this work consist on performing training process
based on hyperparameter optimization with data from a specific test bench of
16 patients, as it is detailed in Sect. 4.1. SVM, RF (from [6]) and DRNN trained
model are evaluated on brain tissue classification task. Specifically, models are
compared with each other according to the area under the receiver operating
characteristic curve (ROCAUC) metric presented in Sect. 4.2. Finally, the anal-
ysis of the experiments results takes place in Sect. 4.3.

4.1 Test Bench

As it is described in Sect. 3.1, data from real brain surgery captures are used for
training and testing the ML models. Also, these data are employed to perform
classification predictions with trained models in order to evaluate its perfor-
mance. Concretely, it is selected a set of 16 captures of patients who suffer from
glioblastoma with non-mutated IDH gene. Here below, the identifiers and also
the pixel distribution of these captures are presented in Table 2. These captures
are divided into two groups: group A and group B. The first one includes the
15 captures used in training process whereas the second one only include one
capture used to perform a new patient classification process with the trained
model. In fact, group A pixels are divided into two data splits. The first one
is composed by 80% labeled pixels whereas the other set only has the remain-
ing 20%. Both groups have been composed by stratifying and randomizing the
distribution of the labeled pixels data samples due to the unbalanced classes
arrangement. Then, as it is described in Sect. 3.3, the 80% dataset is employed
for training the different models (SVM, RF, DRNN) with pairs of patch-label.
After that, the other split is applied for testing models. Finally, each individual
capture is used to perform a classification of all its pixels with the trained model.
Some labeled pixels on Group A captures take part into the training process.
Thus, ID71C02 capture has been separated in order to classify a capture whose
pixels are new to the trained model. This second type of experiment (B) rep-
resents the behaviour of a trained model on a real classification as it could be
working on a in-vivo brain surgery with a new patient.

4.2 Metrics Evaluated

In order to compare different results on brain tissue HS images classification it is
employed the ROCAUC, that is a threshold-invariant and scale-invariant metric
used to obtain a reliable global measurement of model performance. So it could
be useful in a objectively comparison between different ML models. Here below,
it is included receiver operating characteristic (ROC) expression in Eq. 1 and
ROCAUC value formula in Eq. 2. Additionally, there are two expressions added
for partial values of the ROC equation: true positive rate (TPR) in Eq. 3, and
false positive rate (FPR) in Eq. 4. It is also notable to mention that TP, TN, FP
and FN values of this expressions are respectively: true positives, true negatives,
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false positives and false negatives predicted values obtained after classifying with
a ML model.

Table 2. Total number of labeled pixels by patient capture and its distribution into
the different types of brain tissues evaluated: healthy, tumor, blood and meninges.

Patient ID healthy tumor blood meninges Total

Group A

ID18C09 648 1587 93 369 2697

ID25C02 801 206 105 94 1206

ID29C02 3752 64 109 1599 5524

ID30C02 2587 2737 868 1366 7558

ID34C02 1186 1464 357 780 3787

ID38C02 1740 487 304 825 3356

ID47C02 174 160 112 567 1013

ID47C08 715 182 162 129 1188

ID50C05 410 1282 759 628 3079

ID65C01 1759 1039 111 1426 4335

ID67C01 2651 579 388 422 4040

ID70C02 1486 769 190 551 2996

ID72C02 512 760 148 1430 2850

ID75C05 1588 400 407 - 2395

ID84C02 1898 837 - 671 3406

Group B

ID71C02 3044 174 2144 1763 7125

ROC =
{(

FPR(t), TPR(t)
)}1

t=0
(1) ROCAUC =

∫ 1

t=0

ROC(t)dt (2)

TPR =
TP

TP + FN
(3) FPR =

FP

FP + TN
(4)

4.3 Analysis

In this work it is presented a comparison between evaluated ML optimized mod-
els (SVM, RF, DRNN) in terms of: 1) ROCAUC metrics on validation process
(with the test samples of the 20% split) and ROCAUC metric on a real classi-
fication process (with labeled pixels from capture ID71C02), both expressed in
Table 3, 2) classification maps for the ID67C01 capture that are shown in Fig. 4
and 3) classification maps for the ID71C02 capture presented in Fig. 5.
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According to ROCAUC metrics in Table 3 calculated for the 20% test split,
DRNN optimized model demonstrate a higher yield than the other ones in terms
of classification. Concretely, DRNN improves ROCAUC test metric averaging
all classes by 1.39% over SVM and 1.91% over RF. In addition, DRNN increase
ROCAUC metric results of the ID71C02 labeled pixels classification for the
healthy, blood and meninges tissue types. Specifically, as it is shown in the
column “ID71C02 labeled pixels” of the Table 3, DRNN has an improvement
rate of: 1) 2.22% and 0.18% for healthy pixels classification compared to SVM
and RF models respectively, 2) 10.71% and 3.91% for blood pixels classification
compared to SVM and RF models respectively, and 3) 8.36% and 7.39% for
meninges pixels classification compared to SVM and RF models respectively.
However, RF ROCAUC value for tumor classification improves by 6.59% the
value of the DRNN model.

Table 3. ROCAUC % outcomes obtained for each ML model (SVM, RF, and DRNN)
with: the (20%) test samples dataset, and labeled pixels from capture ID71C02.

20% Test dataset ID71C02 labeled pixels

Class SVM RF DRNN SVM RF DRNN

Healthy 99.01 98.43 99.96 97.16 99.20 99.38

Tumor 98.01 97.07 99.96 62.22 85.95 79.36

Blood 98.19 98.02 99.96 82.18 88.98 92.89

Meninges 99.08 98.71 99.99 88.88 89.85 97.24

Regarding graphical analysis, there are classification maps from one capture
involved in training process (ID67C01) and a capture which is not involved
(ID71C02) presented in this work. For the outcomes of the first experiment, it is
illustrate in Fig. 4 that SVM and RF optimized models segment properly blood
tissue regions concerning to the GT. However, DRNN model classification fits
better according to the tumor detection due to the pixels noise in SVM and RF
model outcomes. This noise is the result of incorrectly predicted tumor pixels.

Then, results from second experiment (see Fig. 5) expose that DRNN model
classification is capable to properly detect different regions according to GT.
However, tumor tissue predictions include some small areas incorrectly predicted
close to the real tumor region.

It is also impressive to mention that despite pixels noise in RF classification
map, this optimized model accurately detect the main tumor region concerning
to the GT. Thus, an adequate representation regarding the GT could be obtained
by applying some filters to this classification map. Therefore, it is possible tumor
segmentation with this RF optimized model.
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Fig. 4. ID67C01 patient capture where (a) is the pseudo RGB of the HS capture, (b) is
the ground-truth map and (c) to (e) are the probability classification maps using SVM,
RF and the proposed DRNN model respectively. Healthy, tumor, blood and meninges
colors are green, red, blue and pink, respectively. (Color figure online)

Fig. 5. ID71C02 patient capture where (a) is the pseudo RGB of the HS capture, (b) is
the ground-truth map and (c) to (e) are the probability classification maps using SVM,
RF and the proposed DRNN model respectively. Healthy, tumor, blood and meninges
colors are green, red, blue and pink, respectively. (Color figure online)

5 Conclusions and Future Work

In this work, it is presented a new DRNN architecture that is potentially useful in
HSI classification for brain tissues. It increase the real-case classification perfor-
mance (capture ID71C02) regarding SVM or RF. Specifically, DRNN improves
ROCAUC metric by 0.18%, 3.91% and 7.39% over RF for healthy, blood and
meninges classes respectively. However, it is impressive to take into account that
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this classification task requires not only objective metrics, but also graphics rep-
resentations in order to resemble outcomes to their real use case. That is why it
could be interesting to consider RF optimized model as a positive candidate to
perform the real classification by applying some filters to its classification map.

Finally, as a possible future working lines it is suggested: 1) to employ this
DRNN architecture combined with convolutional neural networks in order to
extract spatial-spectral features. Thus, it could be obtained a ML model capable
to increase previous classification results. And 2) to create a ML model based
on RF optimized and arrange a digital filtering pipeline in order to reduce pixel
noise and obtain a classification map similar to the GT. In both lines, it could be
interesting to use additional patient captures to provide extra data for training
the ML model.
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6. Mart́ın-Pérez, A., et al.: Hyperparameter optimization for brain tumor classifica-
tion with hyperspectral images. In: 2022 25th Euromicro Conference on Digital
System Design (DSD) (2022). https://doi.org/10.1109/DSD57027.2022.00117

7. Bengs, M., et al.: Spectral-spatial recurrent-convolutional networks for In-Vivo
hyperspectral tumor type classification. In: Martel, A.L., et al. (eds.) MICCAI
2020. LNCS, vol. 12263, pp. 690–699. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59716-0 66

8. Ayaz, H., et al.: Hyperspectral imaging for minced meat classification using nonlin-
ear deep features. Appl. Sci. 10, 7783 (2020). https://doi.org/10.3390/app10217783

9. Knospe, L., et al.: New intraoperative imaging tools and image-guided surgery
in gastric cancer surgery. Diagnostics 12, 507 (2022). https://doi.org/10.3390/
diagnostics12020507

10. Wang, L.: Support Vector Machines: Theory and Applications. Springer Science &
Business Media, Auckland, vol. 177 (2005)

11. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.
1023/A:1010933404324

https://doi.org/10.1002/(SICI)1522-712X(1995)1:6<300::AID-IGS2>3.0.CO;2-E
https://doi.org/10.1016/B978-0-12-374753-2.10001-2
https://doi.org/10.3390/s21113827
https://doi.org/10.1007/978-3-030-11723-8_21
https://doi.org/10.1109/TGRS.2016.2636241
https://doi.org/10.1109/TGRS.2016.2636241
https://doi.org/10.1109/DSD57027.2022.00117
https://doi.org/10.1007/978-3-030-59716-0_66
https://doi.org/10.1007/978-3-030-59716-0_66
https://doi.org/10.3390/app10217783
https://doi.org/10.3390/diagnostics12020507
https://doi.org/10.3390/diagnostics12020507
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


DRNN on HS Images for Brain Tissue Classification 27

12. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward
neural networks. Chemometri. Intell. Lab. Syst. 39(1), 43–62 (1997). https://doi.
org/10.1016/S0169-7439(97)00061-0

13. Pascanu, R., et al.: On the difficulty of training recurrent neural networks. Proceed-
ings of the 30th International Conference on Machine Learning, in Proceedings of
Machine Learning Research, vol. 28, no. 3, pp. 1310–1318 (2013). https://doi.org/
10.48550/arXiv.1211.5063. https://proceedings.mlr.press/v28/pascanu13.html

14. Bergstra, J., et al.: Algorithms for hyperparameter optimization. In: Advances
in Neural Information Processing Systems, vol. 24 (2011). https://proceedings.
neurips.cc/paper files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-
Paper.pdf

15. Xu, Y., et al.: Hyperspectral image classification via a random patches network.
ISPRS J. Photogrammetry Remote Sens. 142, 344–357 (2018). https://doi.org/
10.1016/j.isprsjprs.2018.05.014

https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.48550/arXiv.1211.5063
https://doi.org/10.48550/arXiv.1211.5063
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1016/j.isprsjprs.2018.05.014
https://doi.org/10.1016/j.isprsjprs.2018.05.014


Brain Blood Vessel Segmentation
in Hyperspectral Images Through Linear

Operators

Guillermo Vazquez1 , Manuel Villa1 , Alberto Mart́ın-Pérez1 ,
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Abstract. Tissue classification tasks that rely on multidimensional
data, such as spectral information, sometimes face issues related to the
nature of their own characteristics when different biological components
share similar spectrum. In a situation of in-vivo brain tumor location
during a surgical operation, especially when applying machine learning
techniques, relying solely on the spectral information of each sample
may not be enough to provide a correct identification of all the tissues
involved. In order to overcome this problem, in this work we propose to
reduce conflicting classification pixels, i.e. vascular versus tumor tissues.
To do so, morphological operators can supply support to a pixel-wise
classification by exploiting the spatial characteristics present in vascular
tissue. Hence, we have evaluated the suitability of linear operators for
brain vessels segmentation in a context of hyperspectral video classifica-
tion. The parameters of the operator along with the selection of the most
suitable spectral band to process were chosen via optimization of the
amount of vascular pixels detected and error metrics. The segmentation
algorithm was implemented for both CPU and GPU platforms achieving
a performance compatible with real-time classification purposes on the
last one. Objective results show an average segmentation of the 68% of
the vein and arteries present in the ground truth with less than a 10% of
error selecting pixels from other tissues of interest such as healthy brain
and tumor.
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1 Introduction

Non-invasive diagnosis through different digital imaging methods have accumu-
lated a long history in which their integration into medicine has made the detec-
tion and treatment of certain diseases easier. In this field, hyperspectral imaging
(HSI) has proven its usefulness in the optical characterization of the tissues [1,2].
Through the spectral sampling of the reflectance captured from the scene, each
biological component can provide what is called their spectral signature: a par-
ticular way each tissue disperses the incident light across the spectrum. This
source of information, when combined with machine learning algorithms, can
serve as a classification tool for certain pathologies such as tumor formations
[3]. The problem comes when the spectral signatures are very similar between
tissues, causing the classifier to mistake them. The consequence of this issue can
be observed in [3], where the classification maps show a tendency to mark certain
regions of the veins and the arteries on the surface of the brain as tumor despite
their morphology being completely different. The ultimate goal of this classifier
is to assist the surgeon performing the resection of the tumor by indicating its
limits through a classification map. Therefore, any source of tumor false positives
must be suppressed.

The mapping of the brain blood vessels through non-invasive techniques sup-
poses a useful mechanism for the diagnosis of vascular pathologies and also assis-
tance in surgical interventions. Normally, this mapping process is performed out
from magnetic resonance images (MRI) or time of flight magnetic resonance
angiography (ToF-MRA) where a series of images from transversal sections con-
forms a volumetric representation of the head. The MRI and MRA images are
capable of providing high spatial resolution of the internal structures of the brain.
The existing literature that deals with the blood vessel segmentation matter from
this kind of imaging is abundant: whereas deep learning-based techniques have
gained popularity [4] in the last decade due to its prominent results [5], more
traditional approaches based on morphological operations [6] are still capable of
providing sufficient accuracy compared to nowadays standards. However, in situ-
ations where it is required to perform a segmentation of the cortical blood vessels
of the brain through an open craniotomy, the images provided by an MRI scan
become harder to exploit. This is because of the shifts the brain suffers during
the surgical procedure causing the MRI to be difficult to match with the image
from an external camera capturing the brain cortex. The set of techniques that
relies only on external camera captures for the segmentation of vascular tissue
is more scarce than those using the MRI and MRA imaging. Most of the lit-
erature focuses on ophthalmology applications for identifying the blood vessel
structures [7] but when it comes to a brain surgery context, one of the few exam-
ples can be found in Wu et al. [8] where deep learning techniques are used to
carry on the segmentation of the vessels of the mouse cerebral cortex. Also, in
Fabelo et al. [9] this problem is addressed by classifying brain vascular tissue as
a stage of a brain tumour detector. The use of neural networks for segmenta-
tion, such as the U-Net [10], has a particular aspect related to the training of
the net: it requires a dense ground truth that has all the vascular elements to
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be segmented labeled. If only a sparse ground truth is available, reconstruction
processes like [11] can provide adequate training of the network, but they are
only effective when there are certain gaps in the ground truth.

Some of the latest camera models equipped with snapshot sensors can capture
hyperspectral video (HSV) bringing the opportunity and the challenge of per-
forming a real-time classification over the captured sequence [12]. In this work we
propose an efficient implementation of morphological operators based on GPU
platforms. The goal is to perform a real-time segmentation of the brain vascular
structures captured in a hyperspectral video from an in-vivo surgical interven-
tion. This segmentation is intended to refine a classification map obtained from a
classifier based on support vector machines (SVM) trained to detect brain tumor
tissue. Hence, the importance of the efficiency of this correcting stage.

2 Background

The work described in this paper rests on two main basis:

1. Line operators: the work introduced by E. Ricci and R. Perfetti in [7] can
be considered as the core of the proposed algorithm. Along with [6], it serves
as an example of the suitability of this kind of operator for detecting blood
vessels in an RGB image. Although in this paper the work material consists
on hyperspectral images, they are processed as if they were regular captures.
In [7], through a series of linear filters oriented by a constant increasing angle
of 15◦, the detector processed the inverted green channel of a non-mydriatic
retinal image obtained from the DRIVE [13] and STARE datasets [14]. The
aim of the detector is to capture those vessels aligned with any of the linear
filters to mark them in the output image. This linear detection is combined
with an SVM to perform a binary classification. According to the results
presented in the tables III and IV of the section IV in [7], the simple linear
operator only performs a 0,8% less in the area under the curve of the ROC
curve worse than the linear detector and SVM combined, at worst over the
STARE dataset.

2. GPU data processing: medical image processing has experienced an impor-
tant step forward thanks to the usage of GPU acceleration [15], either to
shorten the computing time while processing heavy inputs such as MRI scans
or to make real-time assistance possible. Particularly, filtering algorithms can
greatly benefit from the parallelization the GPU architecture offers, outper-
forming substantially its homologous CPU implementations [16].

3 Algorithm and Implementation

As it was described in the previous section, the algorithm proposed in this work
is based on the linear detector introduced in [7], with the difference that instead
of processing RGB images, the proposed algorithm receives as input a single
hyperspectral frame provided by a first generation Ximea MQ022HG-IM-SM5X5
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snapshot camera. This camera can stream up to 170 FPS with a resolution of
2045 × 1085 pixels capturing 25 different spectral bands that go from 968.93 nm
up to 693.74 nm. The 25 filters employed to extract each band are arranged in
a mosaic pattern of 5 × 5, conforming the information of a single pixel. This
pattern is replicated across the entire sensor, therefore, the hyperspectral cube
formed from each frame has a shape of 409 × 217 pixels for its spatial resolution
and 25 bands for each one of them.

Once the hyperspectral cube is built from the raw frame it needs to be
black/white calibrated and spectral corrected. This process can also be acceler-
ated in a GPU platform as it is shown in the work presented by M. Villa et al.
[12]. The algorithm proposed is designed to work with gray scale images so, once
the calibration and the spectral correction are performed, a single band from
the cube is selected and its luma is inverted so the dark contours corresponding
to the vessels are marked with high brightness values. As it will be described
in Subsect. 3.1, the decision on which band is to be taken is based on an opti-
mization process to analyze which one is the most suitable for the segmentation
task.

The next step is to apply the linear operators to the selected band. The
operator as such, is composed by 12 different kernels, each of them defined as a
zero matrix with a straight line running across the center of the matrix composed
by ones, as exemplified in Fig. 1. Each one of these 12 lines is therefore intended
to cover 12 possible orientations a contour could take in the image. The angular
stride between each linear operator is fixed at 15◦.

Fig. 1. Examples of different kernels at: (a) 0◦, (b) 15◦, (c) 30◦ and (d) 45◦

Due to the wide range of width brain blood vessels present, one single window
filter size cannot cover all its variety. To overcome this issue, two different squred
window sizes are applied independently: a smaller window within the range of
11 to 15 of pixels size for detecting the capillaries and thin vessels, and a bigger
window for the arteries and thick veins that covers the 15 to 31 size range. As
well as the spectral band to be used, the window size of both operators is selected
via optimization.

For performing the detection of any delineation that can be part of a blood
vessel, every single kernel of the linear operator multiplies element-wise an
aligned region of the same window size from the gray scale image. Through
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this, each kernel registers the gray level that falls into its line for all the 12 pos-
sible orientations defined. Then, for evaluating which orientation is more likely
to have captured an actual vessel, the average brightness of the region of the gray
scale image under the position of the operator is subtracted from each average
gray level captured by the kernels. In [7], the resulting value is denoted as the
line strength of the kernel. The kernel with the highest strength is selected and
its value is accumulated in an output image across the length and orientation
of its line. This process is repeated across the entire image moving the operator
as a sliding window with stride 1. Because of the summation of the strengths
delivered by the operator on the output image, the sharpest contours will reach
values that exceed the maximum gray level that can be represented with the bit
resolution of the gray scale image. Figure 2 illustrates the process of applying
one operator to the selected spectral band for obtaining the accumulated image
that conforms the segmented mask.

Fig. 2. Block diagram of the proposed algorithm for a single operator.

To reduce the noise introduced by the linear operator caused by partial con-
tours, a threshold is applied to the output image by a minimum level of gray.
This threshold is also fixed by the optimization process.

Since thin vessels can result in much lower strength values than thick veins
or arteries, the rescaling of the output image to a range of values that can be
represented with an unsigned integer, cannot be performed linearly. Given the
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approximate exponential decay shape the output image histogram has, a linear
rescale would cause the weaker values to be truncated to zero. Therefore, to
avoid this issue, the following logarithmic correction is proposed:

I =
ln(S + 1) · (2n − 1)

ln(|maxS| + 1)
(1)

where it is described the operations performed pixel-wise to the output image
S to obtain the final image I where n is the resolution in bits.

3.1 Optimization

As described in Sect. 3, the value of certain parameters of the algorithm, such
as the window size of the linear operator or the band to be processed and the
thresholds of gray level for both operators, have a big impact on the output
image. To ensure and accelerate the search for the best combination of parame-
ters, their choice was made through an optimization process using the framework
Optuna [17]. As it can be seen in [18] and in [19] Optuna is commonly used for
optimizing hyperparameters in ML based systems for improving the training
process.

The Optuna framework examines possible combinations of a set of parameters
given a range to explore in a certain number of trials. For that process, it needs at
least one output variable computed by the function that uses the parameters that
are to be optimized so its outcome can be whether maximized or minimized. In
this paper, Optuna is employed to maximize the number of vascular pixels that
fall under the segmented region. Because of the particular use case addressed in
this work, it is also decided to use Optuna to simultaneously minimize the tumor
pixels selected. The optimization is carried out using a set of 10 hyperspectral
images captured from 10 different brain tumor surgeries at Hospital Universitario
12 de Octubre in Madrid (Spain). The study was conducted according to the
guidelines of the Declaration of Helsinki, and approved by the Research Ethics
Committee of Hospital Universitario 12 de Octubre, Madrid, Spain (protocol
code 19/158, 28 May 2019). Each hyperspectral image has its corresponding
ground-truth map where not every sample but a certain amount of pixels from
healthy and tumor tissue, blood vessels and dura mater are labeled. Despite the
sparse content of the ground-truth, it can be calculated the average percentage
of vascular and tumor ground-truth samples that have been included in the
segmented area by using certain combinations of spectral band, window sizes
and gray thresholds. This process is carried out through 90 trials.

Once the optimization is finished, Optuna provides the combination of
parameters that delivers the highest value for the maximized metric and the set
of parameters that offers the lower value for the minimized metric. Since none of
these two cases are the most desired, it is necessary to analyze the trade-offs in
the Pareto front that is formed with the results of the rest of the trials. Among all
of the 90 calculated results, the selection is made around 3 combinations whose
parameters can be seen in Table 1. Here, the 3 combinations of parameters cho-
sen, denoted with the letters A, B and C are shown. Each combination consists
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of the spectral band selected to be processed, the window size and the threshold
for the gray level filtering for each operator, and the metrics obtained over the
optimization set of images. In this case, the two bands selected, 15 and 16, have
a wavelength of 891.79 nm and 900.40 nm respectively. As it can be seen, these
3 points are selected because they offer the best balance between high numbers
of blood vessel samples segmented with low tumor error.

Table 1. Combination of parameters for the 3 selected points with their corresponding
percentage of selected tissue.

Comb. Band Window 1 Thresh 1 Window 2 Thresh 2 Avg. Vessel Avg. Tumor

A 16 11 266 23 274 0.81 0.08

B 15 13 120 29 348 0.85 0.11

C 16 11 266 31 274 0.90 0.15

3.2 Acceleration

One of the requirements of the algorithm is to be able to perform the segmenta-
tion at a sufficient speed that allows its integration on a real-time classification
chain. Therefore, its acceleration is a central matter that conditions its use-
fulness. This process was carried on using a GPU programmed in the CUDA
language.

The efficient parallelization of the algorithm described in 3 has certain hur-
dles to overcome. The usage of different kernels to each individual pixel in the
image is the most resource-intensive stage of blood vessel segmentation. These
kernels are considered as windows that surround each pixel. Implementing this
component in a GPU is challenging due to the serial nature of this operation,
which causes an overlap between the windows of various pixels. To perform this
procedure in parallel, each thread is responsible for applying the filters per pixel
and computing the element-wise multiplication between the filters and the win-
dow created around each pixel, followed by the computation of the strength as
specified in 3. The different kernels are accessed several times during the applica-
tion of the filters to the pixels of the image. The values are then stored in shared
memory at the start of the process to reduce the impact of the massive memory
access pattern. In this manner, the global memory access is reduced, improv-
ing memory throughput. Finally, in order to prevent race circumstances, the
strength between various threads has been added in an atomic fashion, obtain-
ing the strength accumulation per pixel at the conclusion of this process. Figure 3
depicts the differences existing between the serial implementation, where there
only exists one overlapping area each iteration, and the parallel implementa-
tion, in which the calculation of these overlapping areas is performed in separate
threads. Therefore, to ensure the proper accumulation, it must be necessarily
atomic.
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Fig. 3. Comparison between the serial implementation and the parallelization in the
GPU

Thanks to there is no data-dependencies in the processing of the pixels,
the other components of the segmentation process do not require any specific
implementation. Instead, grid-stride loops are used in the GPU kernels in this
scenario for maximum GPU performance.

4 Experiments and Results

To evaluate the linear operator under the set of selected parameters, a list of 5
hyperspectral images, different from the ones used during the optimization 3.1,
were chosen. These five images also were taken during brain tumor operations
at the same healthcare center than the former ones. The experiments performed
are aimed 1) to prove the suitability of the linear operator as part of a classi-
fication chain that is intended to work with hyperspectral video. Therefore, 2)
the accelerated algorithm must be able to achieve real-time performance not to
introduce a bottleneck into the processing chain.

The experiments were conducted on two platforms: The first one, a CPU
based platform consisting of a 10th generation Intel core i5-10400F working at
its regular frequency of 2.9 GHz with 32 GB of DDR4 RAM. On this platform the
algorithm was executed on its Python implementation with no parallelization.
The second platform is a GPU (Nvidia RTX 3080) with 12GB of GDDR6X
memory, 8960 CUDA cores, 384 bits of memory bus and Ampere architecture.
In this case, the code executed was accelerated according to the Sect. 3.2.

4.1 Objective Results

The results presented on Table 2 show the mean percentage of vascular and
tumor samples from the ground-truth detected in the segmented area and the
average time in milliseconds the operator took on both platforms to generate
the segmentation mask. All the results were averaged for the 5 hyperspectral
images testing the 3 sets of parameters detailed in Table 1. Each one of the
combinations offers a trade-off between a gain in the percentage of blood vessel
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samples segmented and an increase of the tumor pixels included in the segmented
mask. The line detector proposed by Ricci et al. is only implemented on CPU
with a window size set to 15, as described in [7]. Band 16 is selected and the
chosen gray level threshold is 266. The band and the gray threshold are taken
from the set of parameters A because, as it will be seen in Subsect. 4.2, it is the
combination that yields the best results. To fully evaluate the implications of
the percentages shown in Table 2, its interpretation must be supported by the
corresponding subjective results depicted in Fig. 5.

Figure 4 shows the synthetic RGB image extracted from a hyperspectral cube,
an example of a segmented mask processed from that image and the sparse
ground-truth from which the metrics of Table 2 are calculated. In the ground-
truth image, black pixels refer to unlabeled samples, the green samples corre-
spond to healthy tissue, the pink ones indicate the dura mater samples and the
red and the blue pixels are used for tumor and vascular samples, respectively.
The number of vein and artery samples labeled is remarkably low, especially for
training any of the supervised ML algorithms mentioned in Sect. 1. Since none of
them is designed to work with such sparse and scant ground truth, the inclusion
of their results would make an unfair comparison with the proposed algorithm.

Table 2. Percentage of selected tissue by each combination of parameters and their
computation time.

Method Avg. Vessel Avg. Tumor Avg. CPU (ms) Avg. GPU (ms)

Ricci et al. 0.47 0.02 2.00·103 –

A 0.68 0.07 4.94·103 5.44

B 0.72 0.18 4.39·103 8.38

C 0.75 0.19 4.95·103 8.83

Fig. 4. (a) RGB image extracted from the hyperspectral cube, (b) Example of the
strength levels in the segmentation mask for the set of parameters B, (c) Ground-truth
image

The numerical results show an average speed up of 664 times of the GPU
implementation over the CPU execution. Thus, achieving a performance, for the
worst case, over 200 frames per second, which guarantees a real-time classifica-
tion.
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4.2 Subjective Results

Figure 5 shows the comparison between the original classification map and the
result of overlapping on it the colorized segmented mask obtained for each one
of the 3 parameters tested. Since the segmented mask is not binary, those pixels
where its values are not at their maximum, are proportionally combined with
the color information of the classification map.

Fig. 5. (a) Original classification map, (b) masked classification map with linear detec-
tor from Ricci et al., (c) masked classification map with set of parameters A, (d) masked
classification map with set of parameters B and (e) masked classification map with set
of parameters C. (Color figure online)

In Fig. 5 it can be seen how the linear operator [7] improves the original
classification map, but it is the method that leaves the most tumor false positives
uncovered. The set of parameters A, despite having the lowest percentage of
vessel samples segmented 2 among the three combinations tested, is able to mark
the contours of most of the arteries and veins in a very similar way as the rest
of the sets. Parameters B and C provide thicker contours around the majority
of arteries and veins but do not increase the sensitivity for thinner vessels. This
characteristic may imply that vessels surrounding tumor tissue are more prone
to extend its limits inside the tumor area, increasing the false negative rate when
detecting the tumor. Therefore, set of parameters A has proven to be the most
suitable for the improvement of the classification maps, showing the robustness
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acquired through the optimized selection of parameters and the use of different
window sizes.

5 Conclusions and Future Work

In this work, a brain blood vessel segmentation algorithm for hyperspectral
images captured during in-vivo tumor resection surgeries based on linear opera-
tors has been presented. Its capability to detect blood vessels without including
samples from other kinds of tissues has been measured through objective met-
rics. These very metrics played a fundamental role on the parameter setting
by serving as variables to be optimized. Through this optimization process it
was possible to explore different candidate combinations to end up selecting the
most convenient set according to the subjective observations when overlapping
the segmented mask on the classification map. The combination of the algorithm
with the map proved to be helpful in correcting the tumor false positives issue
the classification suffers from, particularly on the contours of the blood vessels.
Moreover, the proposed solution has been optimized in terms of computing per-
formance by porting the source code to a GPU architecture. Thanks to this
extent, the processing chain remains into the real-time processing constraint,
i.e. 200 frames per second.

In the future, it will be explored refinement techniques for achieving smoother
and better connected contours on the segmented mask. Also, current results leave
room for improvement in the detection of thinner vessels and lighter contours
that will be studied through filtering techniques that make use of the GPU
acceleration.
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Abstract. With the generalization of digital Television (TV), keeping
the channel change delay as low as possible gradually became a diffi-
cult requisite in what concerns the resulting user’s Quality-of-Experience
(QoE). Frequently, this latency may be higher than 2 s. While many
state-of-the-art Set-top-Boxes (STBs) already include a shadow tuner to
anticipate the tuning of the next channel, they strive to predict which
channel should be pre-tuned, generally opting for one of the adjacent
channels. The presented research proposes the use of a predictive system
to assist the STB in the forecast of the channel(s) the user will select
next. The implemented predictor is based on a Recurrent Neural Net-
work (RNN) and makes use of STB log data concerning the user’s channel
changes history to train (and adjust) the model every week. To attain
this objective, the most convenient hyperparameter combination that not
only fulfilled the aimed prediction accuracy but also suited the rather
limited computational constraints of most current STBs had to be iden-
tified. The obtained experimental results, validated using four embed-
ded processor families commonly equipping commercial STBs, showed a
prediction accuracy of 50.2% for a single-channel prediction and 67.7%
when five channels were simultaneously predicted. When combined with
the existing dual-tuning system of current STBs, the proposed predic-
tor can save as much as 1000 s per month in TV channel change delays,
greatly improving the resulting user’s QoE.
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1 Introduction

Digital Video Broadcasting (DVB) systems, either DVB-C, DVB-T or
DVBIPTV, typically suffer from a high channel change (zapping) time. This
results from the inherent limitations of transmitting the data at a constant
bitrate, on a broadcast method (in which there is no ability to request additional
data) and having only specific points in time where decoding can start (due to
the video compression techniques). Such limitations make the total zapping time
range from a couple of seconds to tenths of seconds, which significantly reduces
the user’s Quality-of-Experience (QoE) when zapping through the channels.

Operators that control their delivery networks, typically those that have
DVB-C and DVB-IPTV networks, commonly rely on custom built specialized
hardware devices installed in the customers premises, denoted as Set-top-Boxes
(STBs), to deliver their services. Operators may decide to include in these devices
additional features that allow to reduce the channel change time. Nevertheless,
due to cost reasons, such embedded devices are commonly restricted both in
terms of these additional features as well as in their computational capabilities.

Various methods have been devised to reduce the channel change time [3,5,8].
However, all of them have an additional cost to the operator, either because it
requires additional hardware resources or additional bandwidth in the network.
Since these resources are limited, the best QoE is achieved when the user actually
changes to the channel(s) for which the system was previously optimized.

Using prediction systems based on Neural Networks (NNs) [6] has now
become more feasible, which allows to more accurately predict the channels that
the user will watch next. With this additional information it becomes possible
to dynamically configure the STB in order to achieve the previous goal (i.e.,
provide the smallest possible delay to change to the desired channel), by con-
figuring the local system resources to preemptively get the data needed to start
playback of a new channel. Furthermore, it is preferable to have the prediction
system using only the already available computational resources of the STB, as
opposed to having a centralized solution, due to the smaller cost. However, this
means that the computational load of the predictor should be light enough so
that it is compatible with the limited computational resources that exist in the
STB.

This paper presents a method that predicts the channel change behavior of
a given user based on a Recurrent Neural Network (RNN) that suggests a list
of channels that the user will most probably watch at any given moment. Such
RNN can be trained and executed entirely in the computationally restricted
environment of a STB. In Sect. 2, an overview of the related work is provided
while Sect. 3 presents the proposed solution to predict the user’s channel change
behavior. Section 4 presents the assessment of the proposed model both in terms
of its prediction accuracy and of the computational requirements on various typi-
cal embedded platforms, similar to those used in STBs. Finally, some conclusions
are drawn in Sect. 5.
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2 Related Work

The channel change time is the result of the sum of various delays that can
be divided into: i) distribution network access delay, i.e., the carrier frequency
tuning time, for DVB-C or DVB-T, or the typical multicast group join time of
DVB-IPTV; ii) synchronization delay, i.e., the time it takes until a random access
point in the transport stream is received; iii) video buffering delay, i.e., the time
it takes to fill the buffers with the data broadcasted at a constant bitrate to a
level at which playback can start; and iv) device processing delays, i.e., key press
event handling and internal processing - typically quite small when compared
to the other delays. The sum of these delays may vary from a couple of seconds
to tenths of seconds, with the synchronization and buffering delays being the
largest contributors.

Some STBs possess dedicated hardware to assist in reducing the channel
change time, e.g., by having the ability to simultaneously capture multiple
streams, demultiplex various channels and even the ability to decode more than
one video stream. The channel change time when using all of these capabilities,
including simultaneous video decoding, allows the channel change time to be as
low as 20 ms. However, since these capabilities come at a cost, the actual number
of channels that can be simultaneously processed is quite limited.

Besides the use of additional dedicated hardware, it is also possible to reduce
the channel change time by having additional companion streams or an addi-
tional medium to fetch the required data to fill in the video buffers in a faster
way. This additional medium is most commonly a network connection, which is
nowadays a common feature even on the STBs of the DVB-C operators.

Regardless of the technique used to reduce the channel change time, the
amount of resources is always limited and thus requires the system to select
which channel (or channels, depending on the available resources) it should pre-
pare to change to. Ideally, the system would always be prepared to change to the
channel that the user will watch next. Furthermore, when looking at solutions
that require additional bandwidth to support a faster channel change (e.g., addi-
tional dedicated streams or a network connection), it is important to note that
these also impose an increased cost to the operator and should be minimized.

Furthermore, whether the distribution network is DVB-C, DVB-T or
DVBIPTV, the use of prediction systems to determine the next watched channel
significantly helps in making a better use of the available resources to reduce the
channel change time [1,5,8,12], either by configuring the local system resources
(e.g., demuxer or video decoder) [4] or by preemptively getting the data from
the network to provide the streams with optimal delay [3].

3 Proposed Solution

3.1 RNN Model

NNs [6,9] present several advantages also for the development of channel change
prediction systems. Firstly, the inference procedure in NNs is very fast, which
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is quite important to minimize the delay when choosing the next channel to be
displayed in a channel change event. Secondly, NNs provide high tolerance to
failure even if some input data is incomplete. This feature is quite relevant for
STB-oriented prediction systems, since the input data (i.e., the users’ channel
changes history) is stored in logs that might not always contain all the required
data due to unexpected events, such as log corruption or lack of disk space.
The capability of a NN to adapt its behavior dynamically is another important
aspect, since it is a crucial feature when dealing with data collected in real-time.
For the channel change prediction problem, it is well known that users quite often
change not only their favorite channels list but also their viewing schedules. A
NN model can easily adapt to such changes simply by retraining the network,
i.e., adjusting the neurons weights. This makes it possible to retrain the model
periodically with some new data (e.g., weekly), without having to discard the
existing model and recreate a new one from scratch. Finally, RNNs allow having
the model output depending on sequential data, which is quite advantageous to
significantly improve the accuracy of the prediction in time series problems [9],
like the channel switching sequences of a user.

For the aforementioned reasons, the channel change prediction method herein
proposed is based on a RNN model with a many-to-one configuration, where the
channel prediction model takes into consideration not only the current date,
time and Television (TV) channel the user is watching for channel change events
but also a set of channels previously displayed to significantly improve the accu-
racy of the prediction. Although other existing models consider additional user
data [2,5,8,10], such as the user preferred TV genres, favourite programs, surfing
behaviour, demographic information, etc., we choose to adopt a simpler model
tailored for implementations on STBs, due to the tight computational perfor-
mance, Random Access Memory (RAM) and persistent storage constraints of
these platforms.

The architecture of the proposed RNN model is shown in Fig. 1, where ‘Day
of the year’, ‘Time of the Day’ and ‘Week Day i ’ correspond to the instant the
channel change event occurred, ‘Previous channel j ’ are the most recent j chan-
nels watched by the user at such instant, and ‘Output Channel k ’ is an ordered
list of k channels that the user is most likely to switch into, arranged from the
highest to the lowest probability. To reduce the propagation of errors, the ‘Day of
the year’ and ‘Time of the Day’ values are normalized to year days and seconds,
respectively. Conversely, the ‘Week Day i ’, ‘Previous channel j ’, and ‘Output
Channel k ’ values are treated as classes and one-hot encoded. Consequently, the
model has 9+C input nodes and C output nodes, where C is the number of
recent channels watched by the user that are considered for the prediction. The
number of nodes in each hidden layer is also C, as shown in Fig. 1. The proposed
RNN model considers a maximum of 50 channels (C = 50), since recent studies
show that most users do not watch more than 50 different channels [12].

The amount of hidden layers, the number of nodes in each hidden layer, the
type of neurons, and the unroll length (i.e., the length of the input sequence
containing the history of the last channels watched by the user) are the model
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Fig. 1. Architecture of the proposed RNN.

hyperparameters influencing the RNN architecture, as discussed in Sect. 4.2. The
remaining model hyperparameters are the learning rate, the dropout rate, the
number of weeks and epochs used to train the network.

3.2 Model Implementation

The proposed RNN model was implemented using the KANN framework [7],
which is an open-source standalone and lightweight deep learning library devel-
oped using the C programming language. When compared to other state-of-the-
art frameworks, KANN is as efficient as most of them for small NN, like the RNN
model herein proposed. Nonetheless, KANN presents important advantages for
implementations on constrained embedded platforms, such as STBs. In partic-
ular, the computational efficiency of this framework is very high, due to being
implemented using a low-level programming language. For the same reason, its
RAM and persistent storage requirements are quite modest. For example, the
framework contains only four files that occupy 132 KB in the filesystem of an
embedded platform. Furthermore, KANN has no software dependencies (except
for the C standard library), which makes it highly portable and suitable for
implementations in most Unix-based computational systems, such as STBs.

Using the KANN framework, the proposed RNN model was implemented
with a specially developed C function based on the following API func-
tions: kann_layer_inputs(), to receive the model inputs; kann_layer_rnn(),
kann_layer_lstm(), and kann_layer_gru(), to implement the hidden
layer(s); kann_layer_dropout(), to perform the dropout regularization; and
kann_layer_cost(), to select the output(s). The inputs to such functions are
the RNN model hyperparameters, i.e., the number of inputs, outputs, and hid-
den layers, the amount of neurons per hidden layer, the neurons’ types, and the
dropout rate.

To train the proposed RNN model another custom C function was developed,
since the KANN API only provides a training function for simple Feedforward
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Neural Networks (FNNs). Such training procedure encompasses two parts: setup
and action. In the setup part, all the information necessary to conduct the train-
ing procedure is obtained, i.e., the amount of inputs, outputs, and trainable
variables of the model. Then, a new NN model is created by unrolling the initial
RNN model through time and turning it into an equivalent FNN. The training
is conducted using this FNN model and the Backpropagation Through Time
(BPTT) algorithm [11] and the resulting parameter values are used to config-
ure the original RNN model. Finally, in the action part, the model weights are
updated as a result of the training procedure.

4 Experimental Evaluation

4.1 Considered Datasets

The datasets used in this work, from which the inputs to the model were
obtained, consist of channel change events, considering the day of the week and
the time at which those events occured. Such events are directly obtainable in
the STBs from the users’ channel change actions (e.g., channel up button press).

For the analysis presented in this paper, two main datasets were considered:
i) a synthetic dataset, mainly used to make an initial assessment of the model
and its performance; and ii) a real user dataset, which represents the actual
behaviour of a set of STB users. From the real user dataset, a subset of 30 users
was also used to determine the hyperparameters of the model.

The synthetic dataset was synthesized to represent an artificial user that has
a mostly consistent and predictable zapping pattern (i.e., a user that repeatedly
watches the same channel on various days at the same time - e.g., to watch the
prime time news program that airs every night at 8 p.m.) that repeats every
week. To achieve this goal, two types of channel change events were added to
this dataset: i) recurrent channel change events and ii) random channel change
events. The recurrent channel change events are those that occur when the user is
starting to watch his routine events (e.g., the news). These occur at similar hours
and happen every week (with slight variations on the actual channel change time,
e.g., +/-30 minutes). The random channel events represent the other channels
that the user watches. For this dataset, the channel changes for a period of two
months were synthesized, which made a total of 227 events. Due to the random
channel events, the prediction accuracy when using this synthesized dataset is
not 100% but is still quite high (85%), as shown in Table 2.

The real user dataset is comprised of the actual channel change events of 300
distinct STB users throughout a two months period. This dataset was split into
two subsets: one that is used to determine the best hyperparameter values for the
RNN, which is composed of the data pertaining to 30 users, and a second that
is used to assess the performance of the proposed solution, which is composed
of the data pertaining the remaining 270 users.

The 30 users subset, which is used to determine the hyperparameters of the
RNN, is comprised of specifically selected users whose behaviour causes the RNN
to have a higher accuracy (denoted as best 30 users dataset). The selection of the
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users to be included in this dataset is based on a random and iterative process.
This process starts by creating 100 distinct RNN models by randomly varying
the hyperparameters. Then, each user from the real users dataset is randomly
assigned to one RNN model and its accuracy is determined. Afterwards, the 5
users with the lowest accuracy are discarded. This process is repeated until 30
users are left, which will comprise the best 30 users dataset.

The approach to use only a subset of the users to determine the hyperparam-
eters was preferred since not only it reduces the effort to find a good combination
of hyperparameters but also contributes to exclude users that have no clear pat-
tern from affecting the RNN model. Moreover, given the available dataset, it
allows testing how a model generalises to other users.

4.2 Network Parameterization

Based on the defined model and using the best 30 users dataset, the RNN hyper-
parameters that are best suited to generate models to predict the next channels
were determined. For each hyperparameter, various RNNs were generated (one
for each possible value of a given hyperparameter). Each of these RNNs were
then used to predict the next channels for each user in the best 30 users dataset
and its accuracy was determined. It is relevant to note that a given hyperparam-
eter may result in a higher accuracy for only a specific user. Hence, besides the
average accuracy of the 30 users for a given hyperparameter value, the number
of users that present a better accuracy for that hyperparameter value was also
taken into account when deciding which hyperparameter to adopt. As part of the
criteria to choose the best value for each of the hyperparameters, the training
time and the model complexity (measured as the number of trainable parame-
ters) were also considered, due to the fact that these are of particular relevance
when considering that the training phase is executed in a device with limited
computational capabilities, as is the case of a STB.

The evaluated hyperparameters were the following: dropout rate, mminimum
Root Mean Square Error (RMSE), network type, number of hidden layers, unroll
length, and number of weeks used in the training. The dropout rate is respon-
sible for freezing some neurons (a percentage equivalent to the dropout rate)
during the training phase, which counteracts the over-fitting of the RNN. The
minimum RMSE is used as one of the two stop conditions of the chosen RNN
(the other being a maximum of 1500 epochs per train); it represents the risk
level of the RNN - if it is low, then the RNN may perform worst with the test
dataset. The network type (identified by its neuron type) has a significant effect
on the training time and the number of overall parameters, with the Long Short
Term Memory (LSTM) being the most complex cell and the vanilla RNN being
the least complex cell. The number of hidden layers used in the model linearly
increases the number of parameters that require training. A higher number of
hidden layers has the consequence of increasing the training time as well as
the memory requirements of such model. Hence, it is advantageous to keep this
value to the minimum possible. The unroll length determines the length of the
sequence of inputs that will influence the output. In this case, it defines the
number of channel changes that will influence the next channel to be watched



Neural Network Predictor for Fast Channel Change on DVB Set-Top-Boxes 47

Table 1. Hyperparameters - assessed values and chosen values (depicted in bold and
underline): # parameters - the amount of parameters to train in the model (×103);
Train time - the time it takes to train 100 samples (in seconds); Accuracy - the average
accuracy of the 30 users (in %); # users - the amount of users of the 30 user dataset
that obtain better results with the given hyperparameter value

Dropout rate
value

Minimum RMSE Neuron type Weeks used to train

0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 LSTM GRU
Vanilla
RNN

1 2 3 4 5

# parameters 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 10.9 4.5 14.1 14.1 14.1 14.1 14.1
Train time (s) 145 142 148 149 278 272 245 234 235 159 204 82 17 62 106 131 153
Accuracy (%) 60.2 59.4 58.7 54.1 61.8 61.5 61.8 62.1 61.9 60.3 56.2 53.6 44.4 51.5 55.6 59.0 60.4

# users 14 4 9 1 4 7 4 7 8 22 6 2 0 0 0 7 23

Unroll length Learning rate Number of layers
2 3 4 5 6 7 8 0.01 0.03 0.05 0.07 0.09 0.11 1 2 3 4

# parameters 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 10.9 4.5 14.1 14.1 26.5 3.9 51.2
Train time (s) 161 147 152 204 255 304 373 159 212 228 253 273 314 159 623 935 963
Accuracy (%) 59.6 60.6 60.1 59.7 59.7 59.4 58.0 60.3 60.4 60.8 60.0 59.2 59.1 60.3 55.6 48.6 44.1

# users 6 7 6 4 3 3 1 6 5 8 2 3 6 24 5 1 0

by a given user. The learning rate value affects how fast the model can change
and, consequently, it influences how fast the model converges and whether or
not it reaches the minimum RMSE risk or not. For this hyperparameter, it was
preferred to reduce the training so that it can be better fitted to the restrictions
of the embedded system for which it is targeted. The number of weeks used for
training does not influence the RNN model, its training mechanism or its hyper-
parameters. However, it has a critical role in defining the training dataset, since
it is not viable to store all channel change history in the STB from its initial set
up and use it all to train the RNN.

To determine the best value for each of the RNN hyperparameters, a set with
an initial random value for each hyperparameter was created. From this base set,
other sets with different values for the hyperparameter under assessment were
created. Subsequently, for each of those sets, the corresponding model was cre-
ated and evaluated for each user in the best 30 user dataset. The hyperparameter
value that provided the best performance was selected and the process continued
with the next hyperparameter under assessment.

Table 1 shows a summary of the various hyperparameters, the used values in
the assessment phase and the ones chosen as the model’s hyperparameter values.

4.3 Accuracy Results

After having settled the RNN hyperparameters, the proposed solution was
assessed using both the synthetic dataset - used to determine if the model
behaves as expected - and the real user dataset. For the later analysis, the 270
real users dataset was used as well as the complete 300 users dataset. For each
user, the accuracy is calculated on a per-week basis. Initially, only the first week
of data is considered in the training and for the second week, the accuracy of
the prediction is obtained. Subsequently, in the third week, the data from the
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Table 2. Accuracy and memory usage results for the model’s execution on the used
datasets: Artif - the artificial user dataset; Real users - the dataset which contains the
events for 300 real users; 270 u - the subset containing 270 users of the real users dataset;
30 u - the subset of the best 30 real users used in the hyperparamter parameterization;
all - all of the real users dataset (300); best - the user with the highest accuracy in the
real users dataset; worst - the user with the lowest accuracy in the real users dataset

#Channels Accuracy Max mem (MB)
Artif Real users Artif Real users

270 30 best All Best Worst

1 83.5 49.3 57.3 50.2 81.6 10.7 0.5 2.4
2 88.3 55.3 69.0 56.9 83.7 17.0
3 93.1 59.8 75.5 61.4 86.8 21.9
4 94.9 63.0 80.2 64.8 88.3 25.5
5 95.2 65.7 83.8 67.7 90.2 29.0

previous two weeks is used to train and the accuracy is obtained for the events
in the third week. This process repeats itself until the full two months of data
is considered. At the end, the average accuracy for each user is gathered and an
average of the accuracy of all the users is presented.

Besides the average accuracy of the artificial user and of the real users, the
accuracies for the worst user and the best user are also presented. In this situa-
tion, the worst user is the one for which the proposed solution does not improve
much the channel change time, whereas the best user shows the model’s perfor-
mance with the highest prediction accuracy.

Table 2 shows the accuracy for the various datasets as well as the maximum
amount of used RAM. It is possible to observe that the proposed model achieves
a significantly high prediction success for the 270 real users dataset. It is also pos-
sible to observe that for the 300 real user dataset, the accuracy is slightly higher,
however this dataset includes the users that were initially chosen to determine
the model’s hyperparameters, which inherently have a higher accuracy.

As expected, the artificial user dataset presents the highest accuracy values
for the various channel configurations due to the way that this user was syn-
thesized to have a regular and predictable behaviour. For the real users, it is
worth noting that the model was able to have an average accuracy of 49.3%
when considering the prediction of just one channel for the 270 users dataset
(the most significant user group) and of 65.7% when considering a prediction
of five channels. When considering the whole 300 real user dataset, the average
accuracy is 50.2% for one channel (ranging from 81.6% to 10.7%) up to 67.7%
for five channels (ranging from 90.2% to 29.0%).

4.4 Execution Performance and Required Resources

To validate and evaluate the viability of the proposed prediction mechanism, the
developed model was executed in four different off-the-shelf embedded platforms,
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Table 3. Embedded platforms considered in the conducted performance evaluation.

ARM1176JZF-S Cortex-A9 Cortex-A53 Cortex-A72

Frequency 700 MHz 866MHz 1.2GHz 1.5 GHz
# Cores 1 2 4 4
DRAM 512 MB 497 MB 1 GB 8 GB

Table 4. Average training times (in seconds) in the considered embedded platforms.

ARM1176JZF-S Cortex-A9 Cortex-A53 Cortex-A72

Artificial user 0.91 0.30 0.19 0.20
Best user 303 133 72 14
Best 30 users 1614 546 506 310
Worst user 4608 4501 4281 1705
All users 3888 2758 1465 627

equipped with ARM processors commonly adopted by commercial STBs. Table 3
presents the characteristics of each considered embedded platform.

The executable binary and required libraries occupy 401 KBytes, which can
be easily accommodated in the filesystem of any of these platforms. Since the
training data is obtained directly from the existing log files and related data
structures of the STB, it does not require any relevant added storage space. In
what concerns the system memory (DRAM), it was observed that all conducted
experiments did not require more than 2.4 MB. This value represents the amount
of memory needed to allocate the RNN and the training dataset. As it can be
also observed in Table 3, this (peak) memory requirement is easily satisfied by
the considered embedded platforms and for most current STBs. It should be
noted that this value is independent of the number of channels being predicted
because the model runs only once and returns an ordered list of channels from
which it is chosen the number of channels to consider.

Table 4 presents the observed training times for each of the considered embed-
ded platforms. As it would be expected, the obtained performance is highly
dependent on the processor family and on the corresponding operating frequency.

To ensure the best user’s QoE, the considered setup assumed that the training
procedure is executed weekly (thus conforming with the contents periodicity that
is usually adopted by most TV broadcasting networks) and it was scheduled to
a period of the day when the STB is less likely to be used for TV playback (i.e.,
5 a.m.). Naturally, such scheduling can be easily tuned to each particular user
profile based on the observation of its routine. Furthermore, and to avoid any
possible perturbation to the user’s QoE, a maximum timeframe was considered
for the whole training procedure (i.e., 90min). As it can be observed, all the
considered models (apart from the rather unrealistic worst user scenario) do not
saturate at this stop condition - even when executing in the most restricted
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Table 5. Comparison of the proposed model with other models referred in the literature
in what concerns the obtained average accuracy [%].

#Channels Up&Down[3] J48 Default[1] Ada Boost[1] CL[12] SL[12] Proposed

1 12.2 37.4 37.4 19.3 22.2 50.2
2 23.5 – – – – 56.9
3 31.2 – – 23.8 48.0 61.4
4 – – – – – 64.8
5 – – – 54.8 63.6 67.7

computing platform, presenting an execution time that rarely exceeds an entire
hour (3600 s). In particular, it was observed that 10 to 30min is more than
enough to run this training procedure for the most regular users. Therefore,
the traning parameters and the resulting accuracy validate the feasibility of this
model in these embedded platforms and opens space to define other system-
optimized criteria to balance between the desired accuracy, the resulting saved
time upon a channel change, and the cost of fetching the required number of
channels.

4.5 Comparison with Other Approaches

Table 5 compares the proposed model with other state-of-the-art models. For the
models presented in [1] and [12], the accuracy was calculated using the datasets
considered in the respective papers. Nevertheless, such results are expected to
be very similar to those that would be obtained if the dataset used in the pro-
posed model was used. For the Up&Down model [3], the presented results are
a summary of the results reported by the authors but only considering the best
combination of one, two, or three channels to be predicted. This last accuracy
was obtained using the same dataset as the one used to train the proposed model.

As it can be observed, the proposed RNN model, specifically implemented for
execution environments with low computational resources, clearly outperformed
both the Up&Down model and the other tree-based models. Also, the accuracy of
the proposed model is significantly higher than the one presented in [12] for one
single channel prediction, although it is very similar to a five channels prediction.
This is primarily due to the similarity of these two models, since both are LSTM
based. Furthermore, it also shows that the proposed low-resource implementation
for embedded environments based on the Kann framework [7] does not impact
the resulting accuracy, since slight improvements could even be achieved when
compared with the model trained without performance restrictions.

5 Conclusions

A new predictive system based on a RNN model was proposed to assist the tuning
mechanism of current STBs in the forecast of the channel(s) a user will select
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next, in order to reduce the involved channel change delay. The implemented
predictor makes use of log data concerning the user’s channel changes history to
train (and adjust) the model. Considering the tight computational constraints
of most current STBs, the most convenient hyperparameter combination that
still fulfills the aimed prediction accuracy had to be identified. The obtained
results, validated using four embedded processor families commonly equipping
commercial STBs, showed a prediction accuracy of 50.2% for a single-channel
prediction and 67.7% when five channels were simultaneously predicted. When
combined with the existing dual-tuning system of current STBs, the proposed
predictor can save as much as 1000 s per month in what concerns the TV channel
change delay, greatly improving the resulting user’s QoE.
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Abstract. Data exchanges can be significant in the Deep Neural
Network (DNN) algorithms. The interconnection between computing
resources can quickly have a substantial impact on the overall perfor-
mance of the architecture and its energy efficiency. Similarly, access to
the different memories of the system, with potentially high data sharing,
is a critical point. To overcome these problems, in this paper, we propose
a new interconnect network, called AINoC, for future DNN accelerators,
which require more flexibility and less power consumption to facilitate
their integration into artificial intelligence (AI) edge systems. AINoC is
based on (1) parallel routing that ensures communication/computation
overlap to improve performance and (2) data reuse (filters, image inputs,
and partial sums) to reduce multiple memory accesses. In the experiment
section, AINoC can speedup LeNet5 convolution layers by up to 71.74×
in latency performance w.r.t. a RISC-V-based CPU and also speedup
MobileNetV2 convolution layers by up to 2.35× in latency performance
w.r.t. a dataflow architecture featuring row-stationary execution style.
AINoC provides any-to-any data exchange with wide interfaces (up to
51.2 GB/s) to support long bursts (up to 384 flits/cycle with packed data,
i.e., 3 * 8-bit data in a 32-bit wide datapath) while executing LeNet5 and
MobileNetV2. AINoC supports flexible communication with many mul-
ticast/broadcast requests with non-blocking transfers. Parallel commu-
nication in AINoC can provide up to 128× more throughput (flits/cycle)
and bandwidth (GB/s), using parallel routing with respect to single-path
routing while executing convolution layers of LeNet5 and MobiletNetV2.

Keywords: On-Chip Interconnect · Network-on-Chip · DNN · CNN ·
dataflow execution · parallel processing

1 Introduction

Deep Neural Network (DNN) algorithms and, in particular, Convolutional Neu-
ral Network (CNN) algorithms [1] have become good candidates for Machine
Learning (ML) and Artificial Intelligence (AI) research. Recent CNNs are com-
posed of multiple layers with billions of parameters [2] and complex computa-
tional algorithms. This requires consequent memory and computation resources
to be performed efficiently on existing hardware architectures that are limited
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in terms of resources & energy, and also suffer from low flexibility & scalabil-
ity. These hardware accelerators are mainly based on many Processing Elements
(PEs) involving optimised operators for Multiplication-ACcumulation (MAC)
execution and local buffers for storing data, which are frequently reused as filter
parameters or intermediate data [3].

When designing a CNN accelerator, communications between the PEs them-
selves, and between the PEs and the memory are essential to consider. There-
fore, the on-chip communication device must be carefully designed to exploit
many PEs and the peculiarities of CNN algorithms, which allow for both per-
formance and energy efficiency improvements. Furthermore, this communication
device must provide robust any-to-any data exchange with large interfaces to
support long data bursts. It must also support parallel, flexible and energy-
efficient communications to accommodate multiple simultaneous communication
requests (multicast/broadcast) without blocking transfer(s).

To achieve an efficient and scalable algorithm-architecture matching, we pro-
pose in this paper a novel interconnect network AINoC for the future CNN
accelerators. This network consists of a set of routers optimised for parallel
dataflow processing with minimal data transfer cost to achieve energy-efficient
CNN processing without compromising accuracy and application performance.
AINoC is designed to (i) provide parallel communications of different types of
shared data (weights, Input feature maps and Partial sums) in CNNs, (ii) reduce
the cost of data exchange so as not to degrade performance, and finally (iii) facil-
itate the processing of different CNNs and different layers of the same network
(Convolution, Fully Connected, Point-Wise, Depth-Wise, Residual, etc.).

The remainder of this article is as follows. Section 2 describes the state-of-the-
art interconnect networks in CNN accelerators. Section 3 presents the architec-
ture of the AINoC network and its features. Section 4 introduces the evaluation
environment and presents the experimental results. Finally, Sect. 5 concludes the
paper.

2 Related Work

Using an interconnect network in dataflow CNN architectures becomes essen-
tial to efficiently manage data transfers in the PE grid and memory accesses.
These interconnect networks must ensure parallelism, data reuse and flexibil-
ity/scalability. Several works have proposed different communication solutions
in many neural network accelerators. The work [3] proposes a Row Stationary
dataflow model that minimises energy consumption and data movement. The
Eyeriss architecture allows fully exploiting spatial parallelism and data reuse
in CNNs. This is achieved through two communication networks. The first one
is based on a bus to ensure multicasting of weights and input feature maps
(ifmaps). The second one is based on neighbourhood connections to facilitate
the accumulation of partial sums. However, the solution proposed in this work
cannot support all CNN layers (only the CONV layers). This non-flexibility of
the architecture makes it challenging to implement algorithmic innovations and
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strongly reduces the scalability of the architecture. The DianNao family [4],
with its different versions ShiDianNao [5] and DaDianNao [6], proposes neu-
ral architectures composed of Neural Functional Units (NFUs), which process
the CNN layers by organising the dataflow through the NFUs. DaDianNao uses
two types of interconnect networks: a mesh network and an H-Tree network to
connect its neural processing units. Besides, DaDianNao implements a memory
on-chip called eDRAM (or embedded DRAM) to reduce memory access latency.
ShiDianNao exploits the principle of data reuse by using the Output Stationary
dataflow model that reduces the energy consumption necessary to read/write
partial sums by accumulating these sums locally at the PEs level. Despite the
diversity of communication devices in these architectures, data transfers in Dian-
Nao remain expensive and inefficient, DaDianNao ignores data reuse, and ShiDi-
anNao is optimised for small CNNs, which reduces its configurability and makes
it less scalable. Neu-NoC [7] implements a hybrid topology between mesh and
ring. It consists of local rings and a global mesh that interconnects all these
rings. Neu-NoC consists of two types of routers based on wormhole flow control:
a ring router connected to each PE in each ring and a mesh router connected
to each local ring. These routers support multicast transmission. The two issues
with the Neu-NoC architecture are the latency and limited bandwidth of the
ring topology. MAERI [8] is a DNN accelerator built with a set of modular and
configurable blocks that can easily support different DNN implementations. A
fat-tree topology is used for data distribution as it is most suitable for multicast
transfers. MAERI can be seen as a design methodology rather than a fixed archi-
tecture. The architecture can be adapted for specific DNN applications. MAERI
offers greater flexibility, but the implementation of such architecture is complex
and silicon area consuming.

The presented solutions use different approaches for their interconnect net-
works to support efficient data communications. These approaches attempt to
optimise data transfers to improve performance and reduce power consumption.
There is a clear trade-off between these optimisations and the flexibility required
in terms of scalability and the ability to efficiently handle the data transfers
resulting from the new DNN algorithms. Indeed, most of the studied architec-
tures are designed to accelerate 2D convolutions of standard dimensions such as
3 × 3 or 5 × 5. These architectures tend to connect these elements through a
mesh network (Mesh) to take advantage of spatial parallelism and employ differ-
ent dataflow models to exploit the notion of data reuse, which directly impacts
the energy efficiency of the whole system.

A study of the on-chip communication properties in DNN accelerators has
been done in [9]. In this study, different architectural configurations are evaluated
to highlight features to be included in future on-chip communication architec-
tures for DNN accelerators. The results show that the dataflow architectures
have to: (i) guarantee sufficient bandwidth not to compromise computation, (ii)
be flexible and scalable to fit the variability of DNNs, and (iii) limit access
to external memories to reduce power consumption. Based on these charac-
teristics, we propose the AINoC network that provides multiple data access
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(broadcast/multicast) and high bandwidth to support parallel processing in
DNN accelerators. AINoC provides data reuse to reduce memory access and
power consumption. It has a configurable architecture to facilitate the mapping
of different CNN layers of varying sizes, allowing the required adaptability on
the dataflow and scalability to a large number of PEs.

3 AINoC architecture

AINoC, as shown in Fig. 1, is composed of a set of homogeneous routering
devices interconnected through their four ports to form a 2D interconnect net-
work grid providing communication in the different directions: North, East, West
and South. Each router is connected via a local port to a processing node (N)
through a network interface. Each router has a couple of addresses (i,j), repre-
senting its position in the AINoC network with respect to a row X and a column
Y.

This section will present the architecture of the routing devices and the fea-
tures of AINoC designed to support flexible communication with many non-
blocking multicast/broadcast data transfers. The AINoC execution model based
on data reuse and communication/ computation overlap will also be detailed.

3.1 Parallel Routing Device

The parallel routing is ensured, as shown in Fig. 1, at the level of the different
functions of the router device: buffering, control, arbitration and switching, to
guarantee a large bandwidth and flexible communication. Indeed, through sev-
eral buffering modules (e.g. FIFO, First-In-First-Out), different communication
requests received in parallel can be stored without any loss. These requests are
then processed simultaneously in several control modules. These modules ensure
a deterministic control of the data transfer according to a static X-Y (X-direction
priority) routing algorithm and management of different communications (uni-
cast, multicast and broadcast). Parallel arbitration of the processing order of
incoming data packets, according to the Round-Robin Arbitration (RRA) [10]
based on scheduled access, provides better collision management, i.e., a request
that has just been granted will have the lowest priority on the next arbitration
cycle. Parallel switching comes next to simultaneously route data to the right
outputs according to the Wormhole switching [11], i.e., the connection between
one of the inputs and one of the outputs of a router is maintained until all the
elementary data of a message packet are sent and this in a simultaneous way
through the different switching modules.
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Fig. 1. AINoC architecture

Fig. 2. Packet format for (a) unicast, (b) multicast/broadcast and (c) memory access,
and (d) binary encoding of the flit types

The data packet format is shown in Fig. 2. The package is of variable size and
is composed of two flits: a control flit and a payload flit. The packet flit consists
of a header (flit code) followed by a data flit. The size of the flit depends on the
size of the interconnect network since as the number of routing devices increases,
more bits are needed to encode the addresses of the receivers or senders. Simi-
larly, the flit size varies with the size of the payloads (filter weights, activation
inputs or partial sums) to be passed through the network. In this paper, we have
chosen to set the flit size to 32-bit to unify the configuration of the AINoC archi-
tecture. The value of the header determines the communication to be provided
by the router. There are 4 possible types of communication: unicast, multicast
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(horizontal, vertical, and diagonal), broadcast and memory access. The routing
device first receives the control flit containing the type of communication and the
source or destination address. The routing device decodes this control word and
then allocates the communication path to transmit the payload flit that arrives
at the cycle following the control flit. Once the payload packet is transmitted,
the allocated path will be released for further transfers.

3.2 AINoC Features

A dedicated interconnect network must meet certain characteristics to be inte-
grated into a CNN accelerator, such as (i) the capacity to deliver a massive
amount of data (bandwidth) at low latency, (ii) the possibility to be flexible and
scalable enough to adapt to the different shapes of the CNN layers, as well as
(iii) the ability to limit the accesses to external memories to reduce the power
consumption. The AINoC architecture is equipped with hardware features to
guarantee a high-performance data exchange in a CNN accelerator to ensure
these characteristics.

Multicast/Broadcast Without Retransfer. This mechanism is triggered
during multicast and broadcast communications to avoid transfer re-looping
and better control the data transmission delay throughout the network. Indeed,
during a broadcast, packets coming from one or more directions will be trans-
mitted to the other directions while the source direction(s) will be inhibited.
This makes the maximum broadcast delay in a network of size N ∗ M equal to
[(N − 1) + (M − 1)].

Independent Communication Management. To guarantee and facilitate
the overlap of communication with computation, a communication controller
separate from the computation controller is used in AINoC (Fig. 1). Indeed, the
computation controller controls the multiplication and accumulation operations
and the read and write operations of the local memories (e.g. register file). In
contrast, the communication controller manages the data transfers between the
global memory and the local memories, and the inter-computation node data
transfers. Synchronisation points between the two controllers are set up to pre-
vent data overwriting or loss. With this communication control mechanism inde-
pendent of the computation mechanism, we can ensure the transfer of weights
in parallel with the transfer of ifmaps and the execution of communication oper-
ations in parallel with the computation. Thus, we can cover the communication
by the computation and a communication by another communication.

3.3 Dataflow Model

An execution model of interconnect network must define the general organi-
zation of data exchanges between routers, processors and memories, without
compromising the performance of the CNN accelerator.
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Data Reuse Traffic. During the computation of the CNNs, several MAC oper-
ations are implemented, requiring multiple accesses to the same data. Since usu-
ally this data is stored in a separate memory (e.g. external DRAM or SRAM
global buffer), repeated loading of this data is required, thus inducing excessive
memory accesses. As a result, the power consumption due to memory accesses
can be much higher than logical computations (e.g. MAC operation). To address
this problem, reducing the number of memory accesses, e.g. by exploiting data
reuse, can significantly reduce the power consumption of CNN accelerators.

AINoC supports several types of communication (unicast, vertical multicast,
horizontal multicast, diagonal multicast and broadcast). This flexibility in the
choice of the data transfer direction allows the reuse of all types of data in
different directions. In this paper, we focus on the Row Stationary (RS) Dataflow
model [3] which allows the reuse of three types of data: weights, input-feature-
maps (ifmaps) and partial sums (psums).

To ensure better reuse of its data, an optimisation strategy has been defined
to select the correct set of PEs to use among the available PEs of the hardware
architecture. The dimensions of the set of PEs (and thus the target PEs) to be
exploited are determined by the size of the filter and the output data (output-
feature-maps, ofmaps) of a given layer. The use of this principle allows better
management of energy consumption by reducing the cost of data transfer since
it is optimised by the reuse of these data between the processing elements.

Fig. 3. Data reuse traffic

Figure 3 shows how data is reused in the network. For simplicity, we present
the AINoC node as PE. Indeed, the rows of a single filter are reused horizon-
tally across the PEs (a multicast of the filter weights Fig. 3(a)), the rows of
input are reused diagonally across the PEs (a multicast of the input- image or
ifmaps Fig. 3(b)), and the partial sums are accumulated vertically across the PEs
(a unicast of the Psum Fig. 3(c)). AINoC can also perform parallel data-reuse of
both filter weights and input-image/ifmaps, as shown in Fig. 3(d).
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Fig. 4. Communication/computation overlap

Communication/Computation Overlap. It is a strategy for reducing the
cost of data transfer to improve the execution time of parallel programs to reduce
the effective contribution of the time dedicated to data transfer to the execu-
tion time of the entire application. The idea is to decouple computation and
communication so that the computational units perform computational work
while the communication infrastructure performs data transfer. This allows hid-
ing partially or all of the communication overhead, knowing that the recovery
can only be perfect if the computation time exceeds the communication time
and the hardware allows to support this paradigm. To ensure a total or at least
partial overlap, the communication control has been separated from the compu-
tation control while keeping synchronisation points between the two processes
to facilitate their simultaneous execution.

Figure 4 shows how the recovery of communications is ensured by the compu-
tation and the realisation of different communications in parallel (the multicast
of filter weights in parallel to the multicast of input data).

4 Experiment Results

This section is dedicated to obtaining and analysing the mapping results of dif-
ferent data flows generated by the different state-of-the-art CNN algorithms onto
different hardware configurations of the AINoC-based dataflow architecture. The
objective of these experiments is to evaluate the performance and characterise
the AINoC network with respect to the number of routers and the interconnect
bandwidth.
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4.1 Evaluation Methodology

Fig. 5. AINoC configuration with filter size 4 × 4 and ifmap size 7 × 7. IMB =
Input Memory Buffer , OMB = Output Memory Buffer, R = Router, PE = Processing
Element, LM = Local Memory

In this work, different CNN algorithms from state-of-the-art were used as case
studies. They have different sizes and include different types of layers and shapes.
LeNet5 [1] and MobileNetV2 [12] were chosen to have a collection of data result-
ing from a range of small to large CNN and using a set of layers including
classical 2D convolution (CONV2D) and fully connected layers (FC) but also
point-wise (PW) and depth-wise (DW) convolution layers in MobileNetV2. In
our experimental study, we chose to test the key convolution layers that empha-
sise different filter sizes and ifmaps and the fully connected layers that require
a linear spatial representation of the AINoC architecture. However, row width
for FC layer (i.e., 1000) of MobileNetV2 is too big for AINoC-based dataflow
architecture, so this layer has been excluded from our experiments because it
does not fit on the target FPGA. We also note that an AINoC configuration
must be generated according to the Eq. (1) for each evaluated layer to respect
the RS dataflow execution mode, as shown in Table 1.

ofmaps_height = (((ifmaps_height − (filter_height

+ padding_start+ padding_end))/stride) + 1)
(1)

Figure 5 shows an example of arrangement of AINoC of dimension 4 ×
4. Ofmap (stored in OMBs) size of 7 × 7 is determined from Eq. (1). Input
data (filters and ifmaps) in each IMB is arranged by placing control words and
payload words, where each control word is followed by a payload word. Prior to
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execution, each payload word is stored in their respective LMs by routing them
across the AINoC with the help of control words.

DROP acronym is used to represent the AINoC features, particularly, (1)
Data Reuse, (2) Overlap, and (3) Parallel communication.

Table 1. CNN layers type. CH = CHannel, R = Row, C = Column

CNNs Layer Type ifmap size
CH× R× C

filter shape
CH× R× C

AINoC config.
R× C

LeNet5 conv_1 1 × 32 × 32 1 × 5 × 5 5 × 28
conv_2 6 × 14 × 14 6 × 5 × 5 5 × 10
conv_3 16 × 5 × 5 16 × 1 × 1 1 × 5
fc_1 1 × 1 × 120 1 × 120 × 84 1 × 84
fc_2 1 × 1 × 84 1 × 84 × 10 1 × 10

MobileNetV2 conv_1 1 × 128 × 128 8 × 3 × 3 × 3 3 × 126
conv_2 8 × 64 × 64 8 × 3 × 3 3 × 62
conv_3 24 × 64 × 64 24 × 3 × 3 3 × 62
conv_4 36 × 32 × 32 36 × 3 × 3 3 × 30
conv_5 48 × 16 × 16 48 × 3 × 3 3 × 14
conv_6 96 × 8 × 8 96 × 3 × 3 3 × 6
conv_7 144 × 8 × 8 144 × 3 × 3 3 × 6
conv_8 240 × 4 × 4 240 × 3 × 3 3 × 2
conv_9 80 × 4 × 4 256 × 1 × 1 1 × 4

4.2 FPGA Implementation Results

The evaluation platform used for all tests is the Versal ACAP VCK190 kit [13]
featuring an “XCVC1902-2VSVA2197” FPGA partition containing 899,840 pro-
grammable LUTs, 899,840 Flip-Flops, 1,968 DSP58, and 158 Mb of URAM and
BRAM. The software tools used to implement and test the different AINoC
configurations are:

– QuestaSim or Questa Advanced Simulator (version 2021.4) from Mentor
Graphic is provided to simulate and test the programming and debugging
of FPGA chips.

– Vivado Design Suite (version 2021.2) is a software suite produced by Xilinx to
place-and-route and analyse hardware description language (HDL) designs.
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Fig. 6. Synthesis results of different AINoC configurations based on the CNN layer
shapes

Area. To ensure the processing of different convolution and fully connected lay-
ers of the LeNet5 and MobileNetV2 networks, a CNN dataflow accelerator must
be able to adapt its configuration according to the executed layer to optimise
the consumption of the available hardware resources of the target FPGA. The
AINoC interconnect network must also adapt its configuration to facilitate the
scalability and flexibility of the accelerator.

Based on Table 1, which represents the different configurations of AINoC
according to the shape of the layers of the chosen CNNs, we show the synthesis
results of these different configurations in Fig. 6.

We note that larger size of the ifmaps results in larger size of the AINoC
network. This is expected since the width of the network will depend on the
lines of the ifmaps that will be stored in the memories connected to the routers
of the last line of the network design (as shown in Fig. 5).

Throughput and Bandwidth Requirement. Figure 7 shows the through-
put, bandwidth, and latency of AINoC while executing different layers of LeNet5
and MobileNetV2. These communications can be grouped into two, i.e., (1) par-
allel communication where data is being communicated from two sides of the
AINoC and (2) single path routing where data is sent from only one side of
the AINoC. Each group is then sub-grouped into four different communication
types, i.e., (1) unicast, (2) vertical multicast, (3) horizontal multicast, and (4)
broadcast. It can be observed that AINoC can provide a maximum throughput
of 384 flits/cycle with packed data, i.e., 3 * 8-bit data in a 32-bit wide datapath
and a maximum bandwidth of 51.2 GB/s for the conv_1 layer of MobileNetV2
because AINoC is connected to 128 input memory buffers in this configuration
and providing maximum parallel access to memory buffers.
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Latency. Figure 8 shows the latency performance of AINoC-based dataflow
architecture while executing different layers of LeNet5 and MobileNetV2. It can
be observed that AINoC can provide a gain of up to 71.74× (conv_1 of LeNet5)
using the data reuse feature with respect to a single RISC-V CPU [14]. For
latency comparison of AINoC-based dataflow architecture with RISC-V CPU,
time required for access L2 to load data into IMBs (L1) is also considered for
fair comparison.

Fig. 7. Throughtput (flits/cycle) vs. Bandwidth (GB/s) vs. Latency (ns) of different
AINoC configurations based on the CNN layer shapes

Fig. 8. Breakdown of latency (ns) results of AINoC-based dataflow architecture featur-
ing with and without DROP for routing input data of convolution and fully-connected
layers of LeNet5 and MobileNetV2
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Overall speedup of MobileNetV2 convolution layers is up to 2.35× w.r.t. Eye-
riss v2 [3]. Here, Eyeriss v2 is executing all layers of MobileNetV2 while AINoC-
based dataflow architecture is executing convolution layers only (Table 1).

In AINoC, the dimension and type of data routing significantly impact the
latency performance of executing convolution layers. For LeNet5, the filter size
for conv_1 and conv_2 is 5 × 5, so during horizontal multicast, data routing
is much better than the data routing of filters for layers of MobileNetV2, where
filter size is 3 × 3. Contrarily, conv_3 (LeNet5), conv_9 (MobileNetV2), and
fully connected layers feature single row configurations of AINoC, and all routers
are directly connected to the input buffers. It can be observed that AINoC-based
dataflow architecture accelerates by up to 10.5× (fc_1, LeNet5) using the DROP
features with respect to a configuration of AINoC-based dataflow architecture
without support for DROP because in such configuration, all routers in AINoC
fetches the input data simultaneously, and there is no need for data reuse. This
peculiarity of AINoC influences its energy consumption, and energy consumption
section discusses such trade-off.

Fig. 9. Breakdown of energy consumption (µJ) of AINoC-based dataflow architecture
featuring with and without DROP for routing input data of convolution and fully-
connected layers of LeNet5 and MobileNetV2

Energy Consumption. The energy consumption of AINoC is different dur-
ing memory access and data reuse. As mentioned in latency section, the AINoC
configuration and type of data routing scheme influence its performance in exe-
cuting convolution layers. Notably, during horizontal multicast of filter data, the
number of parallel memory accesses is limited to the number of memory buffers
directly connected to the first column of AINoC (as shown in Fig. 5). There is
a trade-off between latency and energy consumption for routing filter data in
AINoC, i.e., in the case of horizontal multicast, less number of parallel memory
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accesses provide more room for data reuse and such execution period can be
exploited to overlap the computation part of the convolution layer to better the
energy efficiency of AINoC.

Figure 9 shows the energy consumption of AINoC-based dataflow architecture
while executing different layers of LeNet5 and MobileNetV2. It can be observed
that AINoC-based dataflow architecture reduces energy consumption by up to
10.9× (fc_1, LeNet5) using the DROP features with respect to a configuration
of AINoC-based dataflow architecture without support for DROP.

Due to different design flows i.e., Eyeriss v2 [3] is ASIC and AINoC-based
dataflow architecture is FPGA, it is not a fair comparison between two architec-
tures, and also due unavailability of design flow scripts for RISC-V CPU [14], we
concluded to exclude the energy consumption comparisons for both architectures
with AINoC-based dataflow architecture.

5 Conclusion

We presented a new interconnect network called AINoC, which is flexible to be
configured for each CNN layer and consumes less energy to facilitate its inte-
gration into AI edge systems. We evaluated AINoC results using LeNet5 and
MobileNetV2 to show their adaptability to a wide range of systems. AINoC
is implemented (place and route) onto Versal ACAP VCK190 kit featuring
XCVC1902-2VSVA2197 FPGA partition. While executing real world appli-
cations, AINoC can provide a maximum throughput of 384 flits/cycle with
packed data and a maximum bandwidth of 51.2 GB/s for the conv_1 layer
of MobileNetV2. AINoC by using DROP can speed up LeNet5 convolution lay-
ers by up to 71.74× in latency performance w.r.t. a RISCV-based CPU and
also speedup MobileNetV2 convolution layers by up to 2.35× in latency perfor-
mance w.r.t. Eyeriss v2. We plan, in the future, to optimise its performance and
make the most of AINoC for accelerating complete Convolution Neural Networks
execution.
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gram ECSEL-Innovation Actions-2018 (ECSEL-IA) for research project CPS4EU (ID-
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Abstract. In this paper, we propose a real-time FPGA implementa-
tion of the Semi-Global Matching (SGM) stereo vision algorithm. The
designed module supports a 4K/Ultra HD (3840 × 2160 pixels @ 30
frames per second) video stream in a 4 pixel per clock (ppc) format
and a 64-pixel disparity range. The baseline SGM implementation had
to be modified to process pixels in the 4ppc format and meet the tim-
ing constrains, however, our version provides results comparable to the
original design. The solution has been positively evaluated on the Xilinx
VC707 development board with a Virtex-7 FPGA device.

Keywords: SGM · FPGA · 4K · Ultra HD · real-time processing ·
stereo vision

1 Introduction

Information on the 3D structure (depth) of a scene is very important in
many robotic systems, including self-driving cars and unmanned aerial vehicles
(UAVs), as it is used in object detection and navigation modules. The depth map
can be estimated using several different approaches, active: LiDAR (Light Detec-
tion and Ranging), Time of Flight (ToF) cameras, stereo vision with structured
lighting; and passive: stereo vision. Stereo vision uses two or more cameras that
acquire the same scene, but from slightly different points in space. A detailed
discussion of the advantages and disadvantages of different sensors can be found
in the work of Jamwal, Jindal, and Singh [1].

Stereo vision, in its passive variant, is an often used solution in embedded
systems due to the low price of the equipment, its small size and weight (no
need for a laser light source, rotating elements or projectors). The accuracy
of the results obtained with this technology strictly depends on the algorithm
used to process the acquired images. The methods used can be divided into two
groups: local and global [2]. In both cases, the key element is to find the same
pixels in the image captured by the left (usually considered as the base) and
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right camera (reference). Their offset expressed in pixels is referred to as the
disparity. This value can be easily converted to the distance from the sensors
using the vision system parameters.

Global methods introduce appropriate discontinuity penalties in order to
smooth the disparity map. Their aim is to optimise the energy function defined
over the whole image. By means of global algorithms, much more reliable
and accurate disparity maps are determined, but the smoothing task is NP-
hard and algorithms are very computationally demanding, and for this reason
they are not suitable for implementation in real-time systems.

It should be also noted that the current dominant trend is depth estimation
using deep neural networks [3]. However, due to the high computational com-
plexity, especially for high-resolution video streams, this topic remains outside
the focus of our present work.

The SGM (Semi-Global Matching) algorithm was introduced by Hirshmüller
in 2005 [4] and 2008 [5]. It is based on two components: (1) matching at a single
pixel level with the use of mutual information and (2) approximation of a global,
two-dimensional smoothness constraint (obtained by combining multiple 1D con-
straints). The SGM algorithm is an example of an intermediate method between
local and global approaches for determining disparity maps and is a compromise
between accuracy and computational complexity. However, using SGM for high-
resolution images is still challenging. For example, for a resolution of 1920×1080
pixels at 30 frames per second, an execution of about 2 TOPS (Tera Operations
Per Second) with memory bandwidth of 39 Tb/s is required to process all pixels
(2 million) [6].

In this paper we present an architecture of a stereo vision system with a mod-
ified SGM algorithm to process a 4K/Ultra HD (3840× 2160 pixels @ 30 frames
per second) video stream in 4ppc (pixel per clock) format and its implemen-
tation in an FPGA (Field Programmable Gate Array) device. The proposed
modification solves the data dependency problem while not affecting the algo-
rithm’s accuracy. To the authors’ knowledge, this is the only verified hardware
implementation of the SGM method for 4K/Ultra HD resolution.

The reminder of this paper is organised as follows. In Sect. 2 we present
basic information about the SGM algorithm. In Sect. 3 we review the previous
work on SGM implementation on FPGAs. We describe the proposed method
and architecture, as well as the evaluation of the algorithm and the hardware
implementation in Sect. 4. The paper ends with conclusions and future research
directions.

2 The SGM Algorithm

As mentioned in the introduction, the SGM algorithm is an intermediate app-
roach between local and global methods for determining disparity maps. Further-
more, it is possible to implement it in an FPGA, in a pipelined vision system.

The input to the algorithm is a pair of rectified images. It consists of
the following steps: calculation of the matching cost, aggregation of the cost
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Fig. 1. Matching cost calculation with the Census transform and the Hamming distance
metric, with example values.

(calculation of the smoothness constraint) and determination of the final dispar-
ity map.

Determining the correspondence between pixels using only the matching cost
alone can lead to ambiguous and incorrect results. Therefore, an additional global
condition is proposed in the SGM algorithm, which adds a “penalty” for changing
the disparity value (i.e., supports the smoothness of the image), by aggregating
the costs along independent paths.

In this work, the cost of matching C(p, d) between a pixel p = [px, py]T

from the base image Ib, and the potentially corresponding pixel (shifted by the
disparity d in a horizontal line) in the reference image Im, is calculated using
the Census transform and the Hamming distance measure, as shown in Fig. 1.

Let Lr denote the path in the direction r. The path cost Lr(p, d) is defined
recursively as:

Lr(p, d) = C(p, d) + min[Lr(p− r, d),
Lr(p− r, d − 1) + P1,

Lr(p− r, d + 1) + P1, (1)
min
i

Lr(p− r, i) + P2]

−min
k

Lr(p− r, k)

where: C(p, d) is the matching cost, and the second part of the equation is
the minimum path cost for the previous pixel p − r on the path, taking into
account the corresponding discontinuity penalty. Two penalties were applied in
the algorithm, P1 for a 1-level change in disparity and P2 for a larger change.

Finally, the matching cost is given as:

S(p, d) =
∑

r

Lr(p, d) (2)

The author of SGM recommend aggregation along at least 8 paths, i.e, ver-
tically, horizontally and diagonally in both directions (cf. Fig. 3), although he
suggests that good results are achieved for the number 16. The disparity map
Db corresponding to the base image Ib is obtained by selecting for each value p
the disparity d that corresponds to the minimum cost i.e, mindS(p, d). Optional
element of the algorithm is the final post-processing: median filtering and map
consistency check (so called left-right consistency check).
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Due to the reasonable trade-off between computational complexity and the
quality of the resulting disparity map, the SGM algorithm has become very
popular. It is a basic method in the popular OpenCV library and the Computer
Vision Toolbox of the Matlab software. It also provides an attractive solution
for hardware implementations in FPGAs.

3 Previous Work

The topic of implementing stereo correspondence using FPGAs is very extensive,
and hence this review is narrowed only to selected articles describing the SGM
algorithm. Interested readers are referred to the review [7].

The paper written by Gehrig, Eberli, and Meye in 2009 [8] described an
SGM architecture for processing images with a resolution of 750 × 480 pixels
(effectively 340 × 200) @ 27 fps at 64 levels of disparity. It is worth noting that
this was the first implementation of the SGM method in an FPGA.

The paper of Hofmann, Korinth, and Koch from 2016 [9] also proposes a hard-
ware implementation of the SGM algorithm. The architecture features scalability
and combines coarse-grain and fine-grain parallelisation capabilities. The authors
performed tests for different configurations and resolutions. For 1920×1080 pix-
els @ 30 fps and 128 disparity levels, real-time processing was achieved at a clock
of 130 MHz (VC709 board with Virtex-7 FPGA device).

In the paper of Zhao et al. from 2020 [10], the authors presented the FP-
Stereo library, which uses the HLS language and allows the creation of SGM
disparity calculation modules. The module has been designed in the form of
an accelerator interfacing with a DMA controller, rather than directly with the
video stream. For a 300 MHz clock, a resolution of 1242 × 374 pixels and 128
disparity range, 161 fps were achieved on the ZCU 102 board with the Xilinx
Zynq UltraScale+ MPSoC device.

In the latest publications by Shrivastava et al. in 2020 [11] and Lee with Kim
in 2021 [6], the support for parallel pixel processing has been added to increase
throughput. In this approach, the main challenge is the presence of an inherent
data dependency. In the paper from 2020 [11], it is addressed by dependency
relaxation, i.e, the aggregation is performed on the basis of the pixel k earlier,
where k is the number of pixels processed simultaneously. The author points out
that such a solution represents a trade-off between accuracy and throughput.

In the work from 2021 [6], on the other hand, a different approach is pre-
sented, in which operations involving the inherent data dependency are per-
formed not on a single pixel, but on a vector of pixels. This allows the genera-
tion of disparity maps with very close accuracy to the original SGM algorithm.
In both solutions, the matching costs are determined based on the Census trans-
form. In the first publication [11], for images at a resolution of 1280 × 960 pix-
els and disparity range of 64, 322 fps, and in the second [6] for a resolution of
1920 × 1080 pixels and disparity range of 128, 103 fps were obtained.

We also propose a solution to the inherent data dependency problem. Our
architecture is based on estimating the previous pixel aggregation cost on a path
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Fig. 2. A general scheme of the proposed SGM disparity estimation system.

with minimal additional logic needed. That allows us to process images with a 4K
resolution and also to obtain comparable results to the original SGM algorithm
without parallelism.

4 The Proposed Hardware Implementation

The aim of our work was to implement a hardware architecture capable of pro-
cessing a video stream with a resolution of 3840× 2160 pixels in real-time (i.e pro-
cessing 30 frames per second with no pixel dropping). That stream transmitted
in a 1 pixel per clock format requires a pixel clock frequency of approximately
250 MHz. Adding to this value i.e, the vertical and horizontal blanking fields,
the required clock equals about 300 MHz, which is too high for the rather com-
plicated SGM algorithm. At the bottleneck, cost aggregation calculations take
more than 10 ns on our platform. So, in order to process the data in the desired
resolution, it is necessary to introduce parallelisation. In this work, a 4ppc (pixel
per clock) format is used, in which 4 pixels are processed in parallel. This allows
the pixel clock to be lowered to approximately 75 MHz. However, the use of such
format has significant implications on the implementation of the SGM algorithm,
due to the inherent data dependency.

A general scheme for the proposed vision system is shown in Fig. 2. The mod-
ule accepts a synchronised video stream of rectified images, the base IB(p) and
the reference IM (p) one. Further processing consists of several steps: determi-
nation of the matching cost C(p, d) using the Census transform based matching
method, calculation of the cost aggregation Lr(p, d), summation of the aggrega-
tion costs from all directions S(p, d) and disparity determination D(p).

4.1 Determination of the Matching Cost

The 4ppc format does not introduce major complications into the hardware
architecture of the matching cost determination module, but only increases
the hardware resource requirements. First, 5 × 5 contexts are created for both
images. For the base image, in a given cycle, 4 contexts are created (as implied
by the 4ppc format [12]), and for the reference image this number is increased by
the disparity range (4 + disp range− 1), so that it is possible to simultaneously
compare each of the 4 contexts of the base image with all the contexts in the
disparity range of the reference image. A Census transform is performed on the
generated contexts, and the contexts are then compared accordingly using the
Hamming distance metric. The output consists of matching cost vectors.
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Fig. 3. Cost aggregation paths in SGM.

4.2 Cost Aggregation

In the next step, a quasi-global optimisation is performed by aggregating the
costs for the whole image according to the SGM algorithm. In the current version
of the module, this is implemented on four paths in the directions 0◦, 45◦, 90◦,
135◦, as shown in Fig. 3, which can be processed directly (without additional
video stream buffering).

Theoretically, it is also possible to realise the other four directions (180◦,
225◦, 270◦, 315◦), but this would require storing the entire image in external
RAM, using additional resources of the FPGA device, complex control logic and
introducing additional latency in image processing.

In order to calculate the aggregation cost for a given pixel, it is necessary to
know the value of the aggregation cost for the previous pixel on the path (cf. Eqs.
(1) and (2)). For the 45◦, 90◦, 135◦ paths, the aggregation costs for the pixels
in a given line are stored in Block RAM and read out accordingly during the
processing of the next image line to calculate the costs for the subsequent pixels
on these paths. The hardware architecture of this computation is shown in Fig. 4
and follows Eq. (1). The grey part is replicated for the entire range of disparities
(disp range) and performs in parallel and one block of finding the minimum value
of aggregation costs of the previous pixel on the path minLr(p− r) is exploited
to calculate the aggregation cost for the current pixel for each disparity value in
the range.

For the 4ppc format, the difficulty arises for the 0◦ path. Using the aggrega-
tion cost of the previous pixel Lr(p − r, d), which for this path lies in the same
image line and potentially in the same 4ppc format data vector, results in the
need to process four pixels in the same clock cycle. In the worst case, for the
last pixel in the vector, in one clock cycle the data would have to propagate
through four serially connected aggregation cost calculation units, as in Fig. 4.
The critical path would contain 4 minimum modules of size disp range, four
minimum modules of size 4 and 12 adders/subtractors. For this reason, the cost
aggregation based on a baseline architecture (i.e., as proposed by the authors of
SGM) for the 0◦ path is not feasible for the considered 4K resolution, without
violating timing constraints.

It is therefore necessary to propose a new solution for the calculation of the
aggregation cost for the 0◦ path. Time constraints require that the new architec-
ture does not introduce significant additional propagation time and maintains
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Fig. 4. Hardware architecture of the aggregation cost calculation unit for path r, pixel
p and disparity d.

the approximation assumption of the global smoothness constraint of the SGM
algorithm.

In our work, we designed and implemented an architecture with a proposed
estimation of the aggregation cost value for consecutive pixels based on the
calculated aggregation cost for the last pixel of the previous 4ppc vector (the
pixel processed in the previous clock cycle) and the matching costs of the previous
pixels in the same 4ppc vector.

For the first pixel in the 4ppc vector, the aggregation cost of the previous
pixel is available during the calculation (it was calculated for the previous 4ppc
vector), i.e:

Lr(p1 − r, d) = Lr(plast, d) (3)

where: Lr(p1 − r, d) is the aggregation cost of the previous pixel relative to the
first pixel in the 4ppc vector (p1− r), and Lr(plast− r, d) is the aggregation cost
of the last pixel in the previous 4ppc vector.

For the consecutive pixels, we propose an estimation, which is performed
according to the following Equations:

L′
r(p2 − r, d) = Lr(plast, d) +

1
λ

(C(p1, d) − Lr(plast, d))

L′
r(p3 − r, d) = Lr(plast, d) +

1
λ

(
C(p1, d) + C(p2, d)

2
− Lr(plast, d))

L′
r(p4 − r, d) = Lr(plast, d) +

1
λ

(

C(p1, d) + C(p2, d)
2

+ C(p3, d)

2
− Lr(plast, d))

(4)

where: L′
r(p−r, d) is the estimated aggregation cost for the previous pixel relative

to the pixel p, C(p, d) is the matching cost for a given pixel, and the coefficient



Real-Time FPGA Implementation of the SGM Stereo Vision in 4K 77

Fig. 5. The architecture for estimating the aggregation cost of the previous pixel for
each pixel in the 4ppc vector.

λ may take a value which is a power of two (1, 2, 4, 8, 16, ...). The architecture of
this solution is shown in Fig. 5.

The algorithm is based on the difference of the matching cost values of the
previous pixels in a given 4ppc vector with the aggregation cost for the last pixel
of the previous vector. The aggregation cost estimation architecture consists of
basic components and introduces an additional delay only by the propagation
time of the 3 adders/subtractors (critical path for Lr(p4−r, d). Note: multiplica-
tion/division by a number that is a power of two is only a bit shift and requires
no delay in the hardware implementation.

The solution takes into account the matching cost values of all previous pixels
with the possibility to adjust the impact of the matching cost of previous pixels
in a given vector by a factor of λ.

The estimated aggregation costs are then used to calculate the aggregation
costs according to the architecture in Fig. 4. In the work of Shrivastava et al.
[11] the estimation has been omitted and in the work of Lee and Kim [6] it has
been solved by the cluster-wise cost aggregation.

The aggregation costs from all paths are then summed and the disparity is
calculated. This involves finding the minimum matching cost.

4.3 Evaluation of the Proposed Method

The accuracy evaluation of the proposed algorithm was performed on a set of
stereo images from the Middlebury 2014 [13] dataset. We skipped the final post-
processing to better highlight the differences between the base SGM algorithm
and the modified version proposed in this paper (SGM 4ppc). The accuracy was
measured by the ratio of pixels with incorrect disparity value to all pixels of the
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Fig. 6. Comparison of output disparity maps for the Motorcycle image in Middlebury
2014 dataset: (a) the left input image, (b) the ground truth disparity map, (c), (d),
(e), (f) estimated disparity maps (on the top) and the error maps (on the bottom).

image (all) and also to the non-occluded (noc) pixels (occluded pixels should be
filled with the Left/Right Check post-processing).

We compared the proposed method (SGM 4ppc) with the conventional local
block matching based on the Census transform and the SGM algorithm (also
based on the Census transform) with 3 and 4 aggregation paths. Figure 6 shows
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Table 1. Comparison of error rates for the Middlebury 2014 dataset, based on all (all)
and non-occluded (noc) pixels.

all noc

Local based on CT 68.21% 63,36%

SGM 3 paths 38.01% 28.79%

SGM 4 paths 36.27% 26.88%

SGM 8 paths 33.31% 23.11%

SGM 4ppc 36.64% 27.32%

sample evaluation results on the Motorcycle images from the Middlebury 2014
dataset. Table 1 shows the average evaluation results for the entire dataset.

The accuracy of the proposed method is comparable to the original SGM
algorithm with 4 paths. The difference between error rates is about 0.4%.

4.4 Hardware Implementation

We implemented the proposed stereo vision system on a VC707 evaluation board
with Xilinx’s Virtex-7 XC7VX485T-2FFG1761C device. We set up a test envi-
ronment to evaluate the system, with test images sent directly from a PC do the
board and later displayed on a 4K monitor.

We compared our solution with previous FPGA implementations of the SGM
algorithm in Table 2. We used the following metrics: Frames per Second (FPS),
Million Disparity Estimates per second (MDE/s) and MDE/s per Kilo LUTs
(Look-Up Tables) (MDE/s/KLUT). First of all, our solution is the only one ver-
ified in hardware for a 4K/ Ultra HD resolution. We also would like to point out
that the lower performance in FPS and MDE/s relative to previous work from
2020 [11] and 2021 [6] is due to the use of an FPGA chip with fewer resources. For
this work, it was necessary to select a suitable platform to enable image acquisi-
tion in 4K resolution (i.e., having two high-bandwidth FMCs (FPGA Mezzanine
Connectors) to which TB-FMCH-HDMI4K modules were attached).

It is also worth mentioning that the used FPGA technology differs not only
in the number of resources but also in the performance. To compare: the critical
path propagation time for the technology used in this paper after synthesis
is 12.967 ns, but for the Xilinx Virtex UltraScale+ XCVU9P-L2FLGA2104E
FPGA with the same parameters, it is 8.240 ns (36.45% faster).



80 M. Grabowski and T. Kryjak

Table 2. Comparison with previous FPGA implementations of the SGM algorithm.

Image
resolution

Disparity
range

Platform FPGA resources Throughput

LUT FF BRAM FPS MDE/s MDE/s/KLUT

[9] 1920 × 1080 128 Virtex-7 195k 217k 368 30 7 963 40.84

[14] 1600 × 1200 128 Stratix-V 222k 149k N/A 43 10 472 47.2

[11] 1280 × 960 64 Virtex-7 690T 211k N/A 641 322 25 056 118.6

[6] 1920 × 1080 128 Zynq US+ 222k 135k 252 103 27 297 123.0

New 3840 × 2160 64 Virtex-7 485T 138k 65k 197 30 15 925 116.2

5 Conclusion

In this paper, we presented a hardware architecture for an SGM algorithm to
process a 4K/Ultra HD video stream in real-time. We proposed a solution to
the inherent data dependency problem. It allowed us to maintain high accuracy
of the depth map estimation, while making it possible to take advantage of the
4ppc vector format. We implemented the module on a Virtex-7 FPGA platform
achieving 30 frames per second for a resolution of 3840 × 2160 pixels with 64
disparity levels.

In future work, we plan to add more aggregation paths to the algorithm. With
that, it will be possible to get more accurate results, but at the cost of latency and
resource usage. We also plan to implement a video stream rectification module.
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Abstract. Fuzz testing, which repeatedly executes a given program
with auto-generated random inputs, and records its dynamic control
flow, aims to discover sources of unexpected program behavior impact-
ing security, which can then be fixed easier by directed developer effort.
When targeting IoT devices, fuzzing faces the problem that the small IoT
processors often lack the observability required for fuzzing, e.g., a high-
performance trace port, while software-emulation on a faster host CPU is
often slow, and compilation of the IoT application to a different ISA for
faster native execution on the host introduces inaccuracies in the fuzzing
process. To overcome all three of these drawbacks for RISC-V-based
IoT processors, which are expected to dominate future IoT applications
with their lack of ISA licensing costs, we modify an open-source RISC-
V core for use in an FPGA-based hardware-accelerated fuzzing system.
Our fuzzer has demonstrated up to four times the performance of the
state-of-the-art QEMU-based fuzzing tool AFL++, even when running
on very fast x86 host processors clocked at 4.95 GHz.

Keywords: Security · Fuzzing · LibAFL · TaPaSCo · RISC-V ·
Coverage

1 Introduction

With the global number of IoT devices continually rising, a single security vul-
nerability may result in thousands of affected devices at once [4]. To prevent
attackers from quickly accumulating large nets of devices under their control,
software security is key. Testing the device firmware for issues can help in detect-
ing many potential weaknesses, but also increases development costs and is too
often deemed infeasible. Automatically generating test cases by using a fuzzer
framework is one way to effectively search for vulnerabilities in the firmware of
such devices. A fuzzer can find vulnerabilities in a target program by repeatedly
executing it using inputs from a generated corpus of inputs. The fuzzer traces
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the Control Flow (CF) of the running program, detecting invalid program states
(such as crashes, timeouts or memory leaks) in the process.

Fuzzing the firmware of a RISC-V IoT device on x86 hardware, however,
comes with drawbacks, which are addressed in this work by modifying an existing
RISC-V core to support fuzzing in hardware on FPGA:

Precision: Due to ISA differences, cross-compiled RISC-V program binaries
differ from their x86 pendants. These differences originate for example from
different instruction mappings, potentially changing addressing, word width, and
compiler backend optimizations. Fuzzing a program in the host computer’s native
ISA yields a chance of finding program bugs that would not actually apply to
the RISC-V version. On the other hand, it might miss bugs that would occur
only in the RISC-V ISA. Fuzzing the original RISC-V program binary thus has
a better chance of precisely finding the relevant bugs.

Emulation Overhead: Emulating an ISA results in a huge runtime overhead.
The AFL++ documentation estimates x2 to x5. We measured x20 overheads,
and assume the difference to be due to the lack of advanced AFL++ features
such as persistent mode on the RISC-V platform [2]. In contrast, native execution
carries no emulation overhead.

Monitoring Overhead: Graybox software fuzzing frameworks implement their
CF monitoring by patching additional function calls into the program to be
tested (target), causing interrupts and overheads at runtime. As an alternative,
monitoring can be implemented in hardware running in parallel to the actual
software execution, ideally with no additional runtime overhead.

Our main contributions are

– Seamless integration of the FPGA accelerator into an existing software fuzzer
framework. Its usage becomes as easy as using a plain ISA-emulating fuzzer.

– Compared to prior work, we rely on hardware extensions instead of software
patches, allowing to fuzz the original program in real time. We contribute a
new hardware unit, which is being attached to a RISC-V processor core for
monitoring and compressing the target program’s CF events.

– An AXI wrapper for legalizing aborted AXI transfers, which would otherwise
hang due to random partial design resets occurring between fuzzer job runs.
As the wrapper operates solely on the AXI and reset interfaces, it is portable
across RISC-V core microarchitectures and different AXI components.

– We contribute microarchitecture fixes to the CVA5 RISC-V core, allowing it
to fully reset its caches and branch predictors between fuzzer runs.

– We reach up to 4.5x wall clock speedups over the traditional emulation-based
methods in job launch rate, and an improvement of five additionally detected
CF edges over one hour.

Sections 2 and 3 give background information and related work. Section 4
contains the implementation. Sections 5 and 6 evaluate and conclude.
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2 Fundamentals

Fuzz-Testing is a well-established research area, this section can thus only cover
fundamentals. For an overview of the current research, we recommend [11].

Definition - Fuzzing: A fuzzer is an application, which iteratively executes
a test program with varying inputs. In literature, the program that is being
tested is called a target. A fuzzer’s generation of new target inputs can be either
generation- or mutation-based. The set of known input test cases is called corpus.
For mutation-based fuzzers, new inputs mutate from initial seeds, which define
the starting configuration. Both generation and mutation based fuzzers can be
aware of the input’s legal structure, e.g., a JSON file, which is provided to the
target. In addition to program inputs, awareness of the target’s internal structure
and state helps in increasing the coverage. Beyond job execution rate, the rate
of coverage growth is also influenced by the search strategy. Finally, fuzzers are
categorized into black-, white-, and graybox fuzzers:

Black-, White-, and Graybox Fuzzers: Lacking a feedback loop for program-
internal state, blackbox fuzzers are unaware of the target’s internal structure.
They monitor external behavior such as crashes to evaluate the target’s state.

Whitebox fuzzers use static code analysis to direct a target’s CF towards
higher coverage, or to focus on user-defined critical program regions.

In contrast to whitebox fuzzers, graybox fuzzers collect CF information via
a feedback loop during target runtime. Typically, this is implemented by instru-
menting (patching) the target, which causes significant memory and runtime
overheads and may also alter the program’s behavior.

The Graybox Fuzzer Result Aggregation (FRA) may include different
coverage information. First, basic block coverage provides information about
which basic block (BB) has been executed. Additionally, the number of BB
executions can be counted and visualized in a BB histogram. As an alternative,
CF edge coverage tracks information on the actually taken CF edges.

Other coverage approaches are possible, but their benefit depends on the
individual fuzzing target. For example, hash digests identifying entire CF paths
guide towards high path coverage, which can be reached by mutating just one
loop limit. It can find a new path per run, but miss other relevant CF edges.

3 Related Work

Quick EMUlator (QEMU) is a generic machine emulator and virtualizer
[3]. QEMU executes non-native Instruction Set Architecture (ISA) programs by
software emulation, exploiting dynamic translation to improve performance. For
fuzzing, this enables us to fuzz-test software targeting IoT devices in their native
ISA, rather than fuzz-testing in x86. All frameworks discussed in this section rely
on QEMU to provide the capability of non-native ISA fuzzing.

American fuzzy lop (AFL) is a no-longer maintained open-source fuzzing
framework developed by Michal Zalewski and later Google [16]. It contains tools
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and fuzzing operation modes, and supports genetic algorithms for input muta-
tion. AFL uses LLVM and GCC for target instrumentation and alternatively
allows binary-only instrumentation. To fuzz non-instrumented targets, AFL will
fall back onto a blackbox mode, and rely on crash and hang detection (timeout)
for feedback. Additionally, AFL provides a QEMU mode to fuzz non-native ISA
targets. The authors generally approximate QEMU mode’s runtime overhead
between factors of 2x to 5x [2]. Beyond its powerful mutation algorithms, AFL
is easy to use. To fuzz a target, a user provides the target and a dataset of one
or more sample legal inputs. To optimize the re-spawning processes for fuzzer
runs, AFL uses faster or a reduced number of fork system calls.

AFL++ is a community fork of AFL with a newer codebase and features [8].
AFL++ exposes a custom mutator API to enable researchers to implement
plugins to combine new ideas with existing fuzzing technologies.

LibFuzzer is a fuzzing framework related to the LLVM project [14]. It is inte-
grated into the target binary. The user provides an entry point to the target,
from which libFuzzer spawns parallel threads to run with varying inputs. As
limitations, the target may not modify global state or provide its own reset.

Real-Time: Some fuzzing techniques, e.g., used by AFL++ and libFuzzer,
employ compiler transformations to make the application easier to fuzz. This
ranges from instrumenting special tracing instructions to CF altering transfor-
mations. E.g., CF edges with complex conditions are hard to fuzz, because a
specific edge is taken only when all partial conditions are met simultaneously.
By splitting the condition over multiple basic blocks, the fuzzer receives more
runtime feedback to find inputs that meet all partial conditions. As this trans-
formation affects the runtime of the application, it may be inappropriate for
real-time IoT targets.

4 Hardware/Software Co-designed Fuzzer

This section discusses our hardware/software co-designed fuzzer for RISC-V IoT
firmware, and details hard- (Sect. 4.1) and software (Sect. 4.5) components.

Hardware: Our hardware component executes the IoT firmware program, cap-
tures the execution’s edge coverage map, and finally, together with the target’s
return value, returns it back to the host software.

Software: In an iterative search, the host’s fuzzer software creates target inputs,
launches the actual fuzzer runs, which traditionally would be executed in a RISC-
V emulator, on the FPGA accelerator hardware instead, and finally evaluates
the program execution to create the next iteration’s inputs.

4.1 Hardware - Interconnects (PE Ports)

For a seamless hardware/software integration, we employ the freely available
Task Parallel System Composer (TaPaSCo) FPGA abstraction framework [9].
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Fig. 1. Simplified layout of the Fuzzer TaPaSCo PE (based on [9,10]). The * marks
different memory configurations.

TaPaSCo allows composing SoCs consisting of heterogeneous processing elements
onto a wide spectrum of FPGA platforms. The tool also provides the drivers and
middleware to communicate between soft- and hardware components.

As can be seen in Fig. 1, the TaPaFuzz Fuzzer Processing Element (PE),
which contains the actual RISC-V core and FRA logic, has two AXI slave ports.
One AXI port enables PE control, e.g., for reset and restart, and upon request,
also provides status information. The second AXI slave port provides access to
the PE’s memories, which are instruction, data, and the fuzzing result memory.

The PE has an optional AXI master port, which, when being connected to
an AXI-DRAM controller, replaces or extends the BRAM-based instruction and
data memories that are needed for larger, possibly non-IoT, targets.

Finally, a single-bit interrupt (IRQ) signals a finished (or broken) target
execution to the host software. Next, we discuss the PE’s internals.

4.2 Hardware - Processor Core

A fuzzer PE consists of the CVA5 RISC-V processor [12,13], a job controller,
and FRA hardware.

The PEs rely on CVA5 soft-core processors, which achieve a better perfor-
mance than many other RISC-V cores when used on FPGA. Instead of a single
execute stage, the CVA5 single-issue processor core has multiple independent
functional units. This allows it to perform higher latency operations, such as
memory loads/stores and divisions, without stalling, assuming that the immedi-
ately following instructions do not depend on their writeback results and can be
handled by other currently idle functional units [13]. Furthermore, as an alter-
native to memory bus designs, CVA5’s optional BRAM instruction and data
scratchpad interfaces considerably reduce memory access latency.

4.3 Hardware - Fuzzer Result Aggregation

General Mechanism. For reporting the fuzzing coverage, we implemented an
edge coverage FRA (Sect. 2), which outputs a histogram of the taken CF edge
transitions (the fuzzer result map or coverage map). In hardware, it is stored in
a BRAM memory of configurable size, containing an 8-bit counter per edge.



RISC-V Fuzzing Hardware 87

While the RISC-V core runs the target software to be fuzzed (here: IoT
firmware), the FRA hardware block receives the CF events. Branch and jump
instructions in flight are detected by their instruction encoding. A hash from
the instruction’s source and target Program Counters (PCs) is then generated
and trimmed to an index into the coverage map, where the 8-bit counter cor-
responding to that control edge is then incremented. On the end of execution,
the hardware signals an interrupt to the host, which in turn fetches the coverage
map, exception status, and time (in cycles) to generate the next fuzzer run’s
inputs.

Hashed Indexing of Control Flow Edge Counters. The FRA hardware is
attached to the CVA5 core via the core’s built-in tracing interface, which provides
dedicated PC and instruction word outputs. Based on each CF edge’s start and
target addresses, the hash algorithm creates pseudo-random indices within the
coverage map, whose values count each edge’s occurrences. The hash algorithm
implementation needs to enable a high throughput, low risk of collisions, and
low hardware overhead, while cryptographic security is not a requirement.

As SHA and similar hash algorithms do have massive hardware overheads and
potentially a limited throughput, we decided on a suitable lightweight algorithm
from the hash prospector repository [15]. It is not cryptographically secure, but
runs with only 8 cycles of latency and guarantees a throughput of 1 item per
cycle, thus does not limit the CF throughput. We feed the 32-bit hash algorithm
with the edge’s source PC, add the destination PC to an intermediate value of
the algorithm to avoid collisions with nearby CF, and trim the result’s bit-length
depending on the chosen coverage map size to form a valid index.

Due to arbitration between PE-external and internal access, and due to the
additional latency from the AXI BRAM controller, the overall jump and branch
throughput is limited by the read-and-write round trip time to the result mem-
ory. A direct stall signal into the processor is triggered if required to not miss
CFs.

4.4 Hardware Modifications for More Effective Fuzzing

The fuzzing use-case examined here has somewhat unusual requirements on the
acceleration hardware due to the many resets that may occur when fuzzing
discovers anomalous behavior, which is the goal of the entire fuzzing process.
Thus, we need to enable the hardware to efficiently and reliably deal with these
many resets. This requires extensions to the internal bus interfaces and, for the
CVA5 core, to the cache and branch predictor.

Legalizing AXI Bursts in the Context of Partial Design Resets. When
a RISC-V core is reset to prepare the next program execution, its internal bus
component drops any ongoing transactions, while the external memory bus must
remain active and is generally not able to deal with the abruptly aborted trans-
fers.
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Between individual executions, while the results are downloaded by the host
and the program data memory is refreshed to its original state for the next
fuzzing iteration, the fuzzing controller asserts the processor’s reset line to return
it to a consistent state. As an alternative, it would be possible to keep the
core active after a successful execution in a similar fashion to the persistent
mode of AFL++. However, exceptions and especially timeouts would require an
external control sequence to actually restart the program for the next iteration.
That sequence would depend on the current processor state and the concrete
application. This can be avoided by resetting the softcore processor subsystem.

With the BRAM resources being handled inside the PE, the core can be reset
regardless of timing, as the BRAM interface does not have any handshakes or
request sequences that need to be finished. However, the AXI4 specification [5]
does not include any mechanism to safely abort its handshakes and transactions.
As a consequence, for the fuzzer variant allowing access to external memories
via an AXI bus, an arbitrary reset could lock up the entire design.

As a solution to this problem, we devise a wrapper module placed in-between
the core and the downstream AXI4 memory bus to complete the remaining
transactions even when the core resets, as shown in Fig. 1. While the core is
operating normally, the wrapper combinationally passes through the AXI signals,
but keeps a registered copy of each handshake from the core. In addition, it also
maintains counters for in-flight requests and the remaining number of beats in
a write transaction. The wrapper would only stall write handshakes in case the
burst length FIFO or an in-flight access counter would overflow. Note that for
the CVA5, no such stalling will occur in practice, as that core sends all write
beats before starting the next burst.

On a synchronous local core reset, the wrapper module takes over the bus
lines from the resetting core. First, pending handshake requests from the core
are stabilized using the registered copies until accepted by the bus, if required,
to match the AXI specification. Second, for each outstanding write burst, write
beats with all bytes disabled (wstrb ← 0) are sent matching the burst length.
Finally, the shim waits until all response handshakes (final read beats and write
responses) arrive from the bus before notifying the fuzzing controller that the
bus is now stable and the core reset can be released.

The shim module is intended to be portable across different cores or other
AXI components by making only few assumptions beyond the AXI standard.
These assumptions are that the core never issues handshakes for write beats
(data) before the write burst request (address, length), and that no more than
a configurable number of in-flight read requests (default 15) are sent by the core
and accepted by the downstream bus.

Clearing CVA5 Cache Tags. If a different program is to be uploaded, or the
data memory is to be restored to its original state, consistency with caches inside
the core needs to be maintained. For the CVA5, the tag memories for the instruc-
tion and data caches, as well as the branch predictor, persist through a reset.
Since reestablishing consistency after a program upload involves invalidating a
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Fig. 2. Simplified layout of the fuzzer software, based on LibAFL’s StdFuzzer imple-
mentation [7]. Blue color denotes custom or customised components. (Color figure
online)

significant portion of the set addresses in the processor’s caches, we implemented
hardware support for accelerated invalidations. This allows to invalidate tags at
the rate of one set per clock cycle, regardless of cache associativity.

4.5 Fuzzer Software Architecture

The software portion of our work uses LibAFL [6], an existing library for fuzzer
development. Its main authors, Fioraldi and Maier, have also worked on the
AFL++ [8] fuzzing engine. While being an independent project, LibAFL uses
similar concepts and techniques to AFL++ and AFL, such as a forkserver for
target execution and a variety of mutators [6,8].

As a key difference, LibAFL provides abstract components for fuzzers but
leaves open their concrete composition into an application. Aside from select-
ing fuzzer stages or mutators, the modular and abstract design of LibAFL also
enables fuzzer developers to implement new components and, for instance, use
alternative input data structures for target programs with existing modules. It
is designed to minimize the need for library code forks in custom fuzzer devel-
opment.

Fuzzer Components. A typical LibAFL fuzzer is constructed by instantiating
interdependent modules (see Fig. 2), loading the initial corpus from disk and
calling the fuzzer loop. The fuzzer loop, in turn, runs a fuzzer strategy consisting
of one or several stages that, invoked with a testcase (program input previously
deemed interesting) chosen by a scheduler, implement strategies to mutate inputs
and running evaluations through an executor module.

This executor, which is the key contribution in our software, runs the program
with given input data, captures runtime information such as the coverage map,
and differentiates between normal runs, crashes and timeouts. Captured informa-
tion is passed on via observers to a feedback function to determine whether the
program inputs should be stored for future iterations. For instance, inputs that
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uncover a previously unseen CF edge, or other notable coverage and program run
time results, would ideally be detected as such and added to the testcase corpus.

The objective function is defined to detect erroneous behavior, including pro-
gram crashes and excessive run time (timeouts), and determines whether the
corresponding program input should be stored for manual analysis.

Execution Offloading Mechanism. For job execution on the FPGA PE, the
libtapasco runtime library serves as a means to interact with the hardware.

The first step is to retrieve the PE object for the required Fuzzer PE. To do
this, libtapasco internally queries a status core added during design composition,
describing all available PEs and the composition details. The program and fuzzer
result memory configuration for job dispatching is determined based on the PE
type, as it differs between BRAM- and DRAM-based fuzzer configurations.

Our hardware-accelerated executor is, as are the existing executor modules
in LibAFL, interfaced to by a single method call. Instead of locally running
the program with inputs provided by the caller, it selects the PE, prepares and
launches a job on it, waits for job completion, and retrieves the results.

Job preparation involves uploading the initial program data memory with
inputs from the fuzzer engine, and also the program instruction memory on
the first launch of the PE. For a PE using caches to speed up DRAM access, an
explicit invalidation is requested for the data cache and, on the initial instruction
memory upload, additional invalidations for the instruction and branch predictor
caches. The PE controller is passed arguments via its Memory Mapped Input
Output (MMIO) space, including the program input address range, the size of
the fuzzer result map to create, the timeout cycle count, and the PE’s program
memory DRAM address section.

On completion, the result and execution cycle count (i.e. execution time)
fields are retrieved. The fuzzer result map is downloaded from the device. The
executor returns a success, timeout, or crash status depending on the PE result,
and passes the map and elapsed time on to the Observer objects in software.

5 Evaluation

In this section, we evaluate hardware overheads and full system wall clock execu-
tion time performance. Performance is compared to AFL++. Our FPGA designs
are composed with TaPaSCo 2022.1 and Xilinx Vivado 2021.2 [9].

5.1 FPGA Design Resources

As shown in Table 1, compared to a plain CVA5 RISC-V core PE, the BRAM
variant of this work uses 54%–66% additional LUTs and registers, respectively at
a 10 MHz lower frequency. The alternative DRAM version of the fuzzer backed
by DDR4 memory requires 2%–5% more registers and LUTs over the BRAM
variant, but reduces the device BRAM resource footprint by 80 KiB, reflecting
its tradeoff with additional cache and branch prediction logic enabled in the
RISC-V processor, but elimination of scratchpad BRAM.
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Table 1. FPGA utilisation (compared to total available) for the different PEs excluding
auxiliary components, and clock frequency on the Alveo U280 device

Variant BRAM, No Fuzzer HW BRAM DRAM via AXI4

LUT 4521 (0.35%) 6978 (0.54%) 7323 (0.56%)

Register 3467 (0.13%) 5745 (0.22%) 5877 (0.23%)

DSP 4 (0.04%) 10 (0.11%) 10 (0.11%)

BRAM 128 KiB (1.59%) 136 KiB (1.69%) 56 KiB (0.69%)

fmax 400MHz 390 MHz 360 MHz

5.2 Fuzzing Performance

We evaluated single-thread execution performance on the following systems:

FPGA system: Xilinx Alveo U280, PCIe 3.0 x16, AMD EPYC 7443P
(4.0 GHz)
AFL++ evaluation system: AMD Ryzen 5900X (4.95 GHz)

We examine two target programs for this work. The first program, minimal,
consists solely of the fuzzer-specific entry point calling an empty function; this
serves as a peak execution rate benchmark. The second program, which we refer
to as ArduinoJson, is a typical part of IoT applications that deserializes the input
data using the ArduinoJson C++ library [1] into a dynamic memory buffer. It
also makes limited use of floating-point arithmetic for number parsing.

The programs are compiled in -Os mode, 1) for our RISC-V hardware fuzzer
environment (gcc), 2) for a RISC-V Linux environment for AFL++ QEMU
evaluation (gcc), and 3) with AFL++ native x86 instrumentation (afl-clang-
fast). Note that the native x86 variant employs an AFL++ persistent mode
harness to significantly reduce the number of fork() system calls, whereas the
RISC-V Linux build uses a forkserver harness for the same purpose, since the
faster AFL++ QEMU persistent mode is not supported for RISC-V targets [2].

Comparing the raw program execution rates in Fig. 3a, AFL++ in native
persistent mode is significantly faster than both AFL++ QEMU forkserver
mode and our work. But this approach carries the accuracy penalties discussed
in Sect. 1. When performing the more accurate fuzzing on the actual RISC-V
code, our work is 4.6x/31% faster compared to AFL++ QEMU when fuzzing
the minimal and ArduinoJson programs, respectively. As we expected, runtime
is increased when fuzzing the more complex ArduinoJson target. This is also
because we chose larger coverage maps (2 KiB) that have to be transferred back
to the host via PCIe, which impacts our speedup relative to AFL++ QEMU.
The result for ArduinoJson without fuzzer hardware shows the impact.

Figure 3b and 3c show the absolute edge coverage attained after one hour of
fuzzing. Notably, most edges are found within the first minute, indicating that
the last edges are harder to find; the total number of reachable edges cannot be
predicted. Since the FRA in our work includes all observed CFs, fuzzer guidance



92 F. Meisel et al.

Fig. 3. Results: Fuzzer job execution rate and number of detected CF edges

also optimizes the library code coverage in contrast to AFL++. Overall, our
BRAM fuzzer variant achieves the highest coverage both including and excluding
library address ranges for libc and software floating point. The DRAM variant
has the lowest result, which we attribute to lower execution rates from slower
memory connectivity, due to which the fuzzer prefers inputs with simpler CF.

5.3 Hash Collisions

Since the coverage edges are hashed and then reduced to lower bit widths, col-
lisions appear, such that two or more edges are assigned the same index in the
map. Figure 4 quantifies this for the ArduinoJson example. If the overall cover-

Fig. 4. Number of collisions for different fuzzer result map sizes, obtained via our
hashing algorithm (Sect. 4.3) on the ArduinoJson corpus after 1 h of fuzzing.
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age maps for inputs that reach certain colliding edges are similar, the fuzzer may
store only one of the inputs in its corpus, leading to a suboptimal coverage. The
probability of collisions drops with higher map sizes, which on the other hand
increase the data transfer and processing overhead.

6 Conclusion and Future Work

In this work, we developed multiple enhancements for the CVA5 RISC-V core to
make it more suitable for hardware accelerated fuzzing. The resulting solution is
competitive when compared to an existing SoA fuzzer with software emulation,
even when the latter employs a very fast desktop CPU as base for emulation.

For future work, we intend to scale the number of fuzzer units on the FPGA
and optimize the DRAM fuzzer unit in order to compete with multithreaded
fuzzing in software. Since the transfers of large coverage maps over PCIe cur-
rently limit performance, we will also explore approaches to reduce their required
sizes.
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Abstract. Automatic Modulation Classification (AMC) is key to the
efficient use of the radio frequency spectrum in modern applications,
like 5G-based IoT. Optimizing AMC is crucial to achieving the latency,
throughput, and energy levels expected by the final user. State-of-the-art
solutions to the AMC problem are based on Deep Learning methods (e.g.,
Deep Neural Networks - DNNs). However, these methods require heavy
processing and high energy consumption up to the point that accelerators
(e.g., FPGA) are used to carry out such computations. Based on the
observation that the classification becomes computationally harder or
easier depending on the amount of noise the signal is subjected (i.e.,
Signal-to-Noise Ratio - SNR), this work proposes a fully adaptive FPGA-
based inference system that selects the most appropriate DNN according
to the current signal quality (SNR level). Compared to the state-of-the-
art static approach, the framework reduces energy consumption by up
to 43% while delivering 8.9× more inferences per second.

Keywords: 5G Modulation · FPGA · Adaptive Inference · CNN

1 Introduction

Wireless networks, especially 5G, are the main enablers of the Internet of Things
(IoT) revolution. However, researchers are challenged by the increase in the num-
ber of devices, data volume, and the complexity of these new 5G tasks. Even at
the physical interface of 5G radio frequency (RF), heavy-load tasks (i.e., Deep
Neural Networks - DNNs) are required to provide high-quality communication
[12,13]. In this context, the issue rises in aligning such computationally demand-
ing tasks with the 5G user requirements of extremely low latency levels, high
throughput, and, especially for the IoT, high energy efficiency.

In this work, we tackle an essential task on the 5G infrastructure: automatic
modulation classification. Constant classification of the signal modulation is at
the critical path of the RF interface of every 5G device. The modulation method
is not defined by the communicating devices beforehand and, thus, must be clas-
sified, or detected, automatically and continuously [11]. One important aspect of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chavarŕıas and A. Rodŕıguez (Eds.): DASIP 2023, LNCS 13879, pp. 95–106, 2023.
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this task is the signal-to-noise ratio (SNR) to which the signal is subjected [19].
Higher noise situations make the classification task harder, requiring more com-
plex (and costly) classifiers (e.g., deeper DNNs). On the other hand, a “cleaner”
signal with high SNR makes the task easier, allowing for less complex classifiers.
5G, however, is highly dynamic with different environments and signal strengths
that cannot be predicted at design-time. This creates room to optimize the mod-
ulation classification with respect to the current environment characteristics to
improve latency, throughput, and energy aspects for the final user.

Therefore, to alleviate the high computational cost and efficiently demodu-
late signals, these DNNs can be offloaded to FPGA accelerators that will exe-
cute faster and at a better performance-energy trade-off than traditional CPU
and GPU platforms in 5G base stations, Edge gateways, or even IoT devices
[8]. FPGAs have been used with great success thanks to their reconfigurability,
energy efficiency, and the emergence of High-Level Synthesis (or HLS) for easy
FPGA programmability with high-level languages (e.g., C++).

In this scenario, we propose AIR-5G, a two-step framework for FPGA-based
Adaptive DNN InfeRence for the modulation classification of 5G signals. First,
at design-time, AIR-5G exploits the DNN hyper-parameters to generate multi-
ple versions of DNNs and accelerators with different accuracy, performance and
energy profiles. These versions are stored in a library for supporting the second,
runtime, step. AIR-5G’s second step employs a selection algorithm to pick the
most appropriate DNN/accelerator version from the library, taking into account
current SNR level, a pre-defined optimization goal, and a minimum classifica-
tion quality level (i.e., an accuracy threshold). With the right DNN/accelerator
selected, AIR-5G can reconfigure the FPGA, adapting the inference process-
ing to improve performance or reduce energy. In summary, the work makes the
following contributions:

– It sets new frontiers in the design space of Deep Neural Network-based mod-
ulation classifiers on FPGA by exploring the accuracy-energy-performance
trade-off;

– With the design space just created, and stored in the form of a library, AIR-5G
adapts the inference processing at runtime according to current environmental
conditions;

– Considering a 5G application scenario, our approach reduces energy consump-
tion by up to 43%, while increasing inferences per second in up to 8.9×, when
compared to a state-of-the-art solution.

2 Background and Related Work

2.1 Deep Learning for Radio Signal Classification

Traditionally, the problem of classifying RF signal modulation was addressed
with specialized algorithms. For example, in [5] a likelihood approach is taken.
Recently, Deep Learning (DL) and, in particular, Deep Neural Networks (DNN)
have achieved state-of-the-art results in the automatic modulation classification
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Fig. 1. Traditional approach for DL-based AMC.

(AMC) [12,13]. In AMC, the classifier’s input is the sampled signal converted to
the digital domain so that the carrier frequency is approximately aligned with
the carrier of interest.

This paper discusses the use of Convolutional Neural Networks (CNNs) for
AMC. The authors, O’Shea et al., have developed a state-of-the-art model based
on the VGG-10 CNN (Fig. 1(a)), which is a widely used for image recognition.
The model consists of seven convolutional layers (CONV of kernel size k and ch
channels) with max-pooling and three fully connected (FC) layers of n neurons,
and is trained to classify radio signals into one of 24 modulation classes. In
[8], the authors propose a quantized version of this CNN, which reduces the
model’s memory footprint and simplifies arithmetic operations, making it useful
for constrained environments like 5G-based Internet of Things (IoT) systems [9,
10]. This quantized model uses 4-bit quantization for the weights and activations
of all layers.

Figure 1(b) summarizes the traditional, non-adaptive, approach for AMC [2,
7,12,13,17,18]. This approach uses a single DL model that has been previously
trained at design time considering a wide variation of SNR in the input signal.
At runtime, the trained model runs on a CPU or dedicated accelerator to process
(i.e., infer) new inputs.

2.2 FPGAs and Deep Neural Network Accelerators

The use of FPGAs as DNN accelerators has been mainly popularized by FPGA
easy programmability (with frameworks for automatic mapping of DNNs), in
addition to its reconfiguration capabilities. We highlight the FINN framework
from Xilinx [1] that has been widely used in industry and academia and will be
used in this work. FINN is an open-source tool that enables the construction of
FPGA accelerators quickly and flexibly.

FINN is a tool that maps DNNs like the one in Fig. 1(a) into predefined High-
Level Synthesis (HLS) modules. FINN allows for the adjustment of throughput
(parallelism) and resource usage in each layer of the neural network through the
mapping of the network and the parameterization of HLS modules. Parallelism
is adjusted by setting the accelerator folding, which is defined by Processing
Element (PE) and Single Instruction Multiple Data (SIMD) values for each
module/layer through a JSON file.
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Fig. 2. (a) Overview of the AIR-5G framework and (b) its functioning explained.

3 System Overview

AIR-5G is a framework for FPGA-based adaptive inference for 5G AMC. Adapt-
ing the AMC for different SNRs makes it possible to obtain a better balance
between energy, performance, and computational cost. Figure 2(a) illustrates
our proposal. The solution is separated into two main steps: design-time and
runtime. The targeted platform is a Xilinx ZCU104 MPSoC with FPGA (where
the DNN inferences are executed) and a co-processor (where the runtime model
selection runs). The remainder of the section details these steps.

3.1 Design-Time

Initially, at design-time, AIR-5G trains the multiple DNN models. Next, FPGA
accelerator(s) synthesis of the trained models is carried out, generating a Library
containing the multiple model/accelerator versions. At this phase, AIR-5G
exploits the models hyper-parameters to create multiple versions, offering differ-
ent computational costs, performance, and power profiles.

Training. In this step, AIR-5G performs the versioning, training and evalua-
tion of the DNN models (DNN Training in Fig. 2(a)). For that, AIR-5G uses
internally the PyTorch [15] and Brevitas [14] frameworks.

Training and evaluation start by reading the provided DNNs, such as the
quantized version of the VGG-10 model described in Sect. 2.1. AIR-5G, then,
progressively explores the DNN hyperparameters to create multiple versions from
the same original model. The hyperparameters are the model quantization (bits
for activation and weights), the number of channels in the convolutional lay-
ers, and the number of neurons in the fully-connected layers. By ranging the
hyperparameters at fixed steps, model versions are generated and can be further
trained on the provided dataset, evaluated, and exported as an Open Neural
Network Exchange (ONNX) file to be further synthesized.

FPGA Synthesis. After training, the next step is synthesizing the FPGA
accelerators for each model version (FPGA Syn. in Fig. 2(a)). All the model vari-
ants are synthesized with the same design parameters like clock period, timing
constraints, and FINN configuration. Besides the FPGA synthesized bitstreams,
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Table 1. Hyper-parameters used to generate the library.

Model Quantization Convolutional Channels Fully-Connected Neurons

M1 2-bits 16 32

M2 2-bits 32 64

M3 2-bits 48 96

M4 2-bits 64 128

M5 4-bits 16 32

M6 4-bits 32 64

M7 4-bits 48 96

M8 (baseline) 4-bits 64 128

AIR-5G runs RTL simulations on the accelerators to assess performance metrics
on each model. For synthesis and simulation, AIR-5G uses the FINN framework
internally.

Finally, all generated accelerators are organized into a library supporting the
runtime adaptability. The library is created with a table containing the accuracy
of each model for all SNR values (obtained when evaluating the models in the
DNN training step) and the design characteristics of the accelerators (e.g., power,
throughput, resource utilization) gathered during the synthesis step.

3.2 Runtime

At runtime, the previously created library is used to adapt the inference pro-
cessing according to the current SNR. To that end, the current SNR level is sent
to the model selection module, running on the co-processor, which may recon-
figure the FPGA with a new model/accelerator that best fits the current signal
condition. The search happens at every new sampled SNR level.

Model Selection Module. The model selection algorithm runs on the embed-
ded co-processor. It considers the current SNR value1, the library produced at
design-time, and two adjustable parameters defined prior deployment by the
user: accuracy threshold and optimization criterion.

The accuracy threshold aims to adjust the maximum accuracy loss (w.r.t.
the accuracy of the original model). The optimization criterion defines the model
design characteristic that the algorithm must consider for selection. In this work,
power and throughput criteria are used. However, we note that the algorithm
can easily cover other metrics, such as latency or FPGA resource utilization.

Upon receiving the current SNR from the input sample, the model selection
algorithm analyzes the accuracy under that particular SNR for the models in
the library. It then filters out the models in which the drop in accuracy does
not exceed the defined threshold. Thus, a subset of candidate models is formed.
1 The SNR level can be safely profiled with, for instance, moment-based methods [4].
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Fig. 3. SNR variation over the 468-second evaluation path.

Considering this subset, the decision for the most suitable model is made accord-
ing to the optimization criterion. The algorithm analyzes the design data of the
accelerators (e.g., power or throughput) and chooses the model that maximizes
the defined criterion. For example, when defining the criterion for power opti-
mization, the selected model will be the one with the lowest power dissipation
among the subset of models with an accuracy loss below the threshold. Whenever
the newly selected model diverges from the one currently loaded in the FPGA,
the FPGA is reconfigured with the new model.

Figure 2(b) illustrates AIR-5G functioning. In that simple example, the
changes in the SNR level (orange curve) caused two model switches, requir-
ing two FPGA reconfigurations. At the first switch, we can see that, due to a
poor SNR, AIR-5G loaded a simpler model (i.e., with fewer neurons) from its
library to save energy (and also improve performance - not depicted) at the cost
of some accuracy loss (which stays above the maximum allowed, accuracy thresh-
old - red curve). As will be further detailed in Sect. 5, AIR-5G gains come from
the fact that if no adaptation was done, the larger model, previously configured,
would stay running on the FPGA - even though it would not keep its high accu-
racy because of the poor SNR level. In summary, AIR-5G leverages situations
were high accuracy is unachievable to switch to simpler models, improving both
energy and throughput aspects.

4 Methodology

Our 5G application case study is based on two publicly available datasets. The
RadioML 2018.01A [13] dataset available at [3] was used to train and evaluate
the CNN models. This dataset contains 2 million frames (2× 1024 each), and are
split as 90% for training and 10% for testing. The dataset offers SNR levels that
can vary from −20 dB to +30 dB and must be classified among 24 modulation
classes. Second, the 4G/LTE Bandwidth Logs dataset [6] provides us with the
measured quality of LTE connections recorded along different routes in a city
while downloading a large file over HTTP (the connection quality is sampled at
intervals from 700 to 1000 ms). The path chosen for evaluation was recorded on
a moving vehicle and lasted 468 s. We used the Shannon-Hartley [16] theorem to
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Fig. 4. Accuracy of the Library models w.r.t. SNR.

map the recorded signal quality to SNR values. Figure 3 shows the SNR variation
over the 468-second path. Throughout the vehicle’s course, the SNR levels ranged
from −20 to 28 dB (with a mean of 7.5 dB and mode of 10 db).

To create the Library, AIR-5G receives the baseline CNN [8], and reduces the
number of convolutional channels and FC neurons at steps of 25% and quanti-
zation (for both activation and weights) of 2 and 4 bits. All models were trained
for 20 epochs [8] with a batch size of 768 and a learning rate of 0.01. Then,
the library models were synthesized within the FINN and Vivado tools from
Xilinx at a frequency of 250 MHz targeting a ZCU104 board (xczu7ev). The
FPGA power and resource utilization results were generated from Vivado and
performance from RTL simulations with PyVerilator.

5 Results

We have split this section into two: first, we address how the heterogeneity
created by multiple models and their synthesized accelerators translates into
optimization opportunities. Later, at runtime, we show that AIR-5G can adapt
the inference processing to the current SNR level.

5.1 AIR-5G at Design-time

Initially, AIR-5G created a library of eight distinct models, Table 1 presents each
model version (from M1 to M8) hyperparameters. Figure 4 gives the accuracy
(y-axis) of the models in the library over SNR values ranging from -20 to 30 dB
(x-axis). Initially, we can verify that all models share a similar accuracy behavior
of achieving better results as the signal quality improves. Moreover, that impact
on accuracy is more significant in regions of SNR above 0 dB for all models in
the library.

Now, let us detail the effects on the accuracy of quantization and model size
(i.e., the number of CONV channels and FC neurons). For instance, take the
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Table 2. Power and Performance and Resource Utilization for the Library Accelerators.

Model Power (W) Infer./s Latency (cycles) LUTs (%) FFs (%) BRAMs (%)

M1 0.716 238790 1688 07.10 04.72 00.32

M2 0.841 53753 15498 14.07 08.91 03.21

M3 0.891 35167 30545 14.75 09.66 07.21

M4 0.948 26141 52569 15.26 10.36 12.5

M5 0.876 238755 1676 19.86 09.00 00.66

M6 1.059 53752 15499 36.78 15.53 07.05

M7 1.245 35167 30546 37.03 16.82 11.22

M8 (baseline) 1.416 26141 52570 38.04 17.65 26.6

original model configuration (M8, gray curve) of 4-bit quantization, 64 channels
in CONV layers, and 128 neurons in its FC layers. When comparing M8 to M4
(same size, 2-bit quantization, red curve) and M6 (same quantization, half of the
original size, brown curve), we see that M6 stays closer to the baseline, indicating
that the impact on accuracy is greater when reducing quantization compared to
what is caused when the size (i.e., channels/neurons) is reduced.

More on that, when focusing on the region between +10 and +30 dB SNR,
we can see the formation of two sets of models whose accuracy values have
variation smaller than 10%. Both sets have in common the quantization, being
one set formed by most of the 4-bit models (M6, M7, and M8), and a second set
formed by models M3, M4, and M5 with lower accuracy levels. We can also see
that M5, the smaller 4-bit model, which has 75% less CONV channels and FC
neurons than M8 performs similarly to M4, the largest 2-bit model. It means
that the impact on the accuracy of reducing in 75% the number of channels is
equivalent to cutting in half the precision of weights and activations.

On the other hand, the region between −10 dB and 0 dB SNR shows a
more compact distribution of the accuracy curves. In this case, the difference
in accuracy between all models is at most 10%. When classifying samples at
even lower SNR levels, as they approach –20 dB SNR, all models converge to an
equally poor accuracy value.

Table 2 presents the power, throughput, and latency, as well as the FPGA
resource usage of the accelerators synthesized from the trained models in the
AIR-5G library (Table 1). As expected, resource usage and power increase as
both the model size and the quantization increase. Following a similar analysis,
we can compare pairs of models with the same number of channels/neurons
(e.g., M8-M4, M7-M3) to see that throughput and latency are not impacted by
quantization. This is because quantization does not interfere with the degree
of parallelism of the accelerator: all models have the same topology (number
of CONV layers and FC neurons), and all accelerators have the same pipeline
stages configured in the same way (number of PEs and SIMD). On the other
hand, quantization provides a considerable reduction in power, of approximately
33%, when comparing the baseline (M8) to its 2-bit counterpart (M4). Resource
utilization follows a similar behavior.
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Fig. 5. Energy savings and mean accuracy over the baseline w.r.t. accuracy threshold.

As just discussed, the model versions offer an interesting set of possibilities
to optimize the trade-off between accuracy, performance, and power over the
SNR range. As we see next, such a trade-off can be exploited at runtime.

5.2 AIR-5G at Runtime

Energy. Figure 5 shows the energy savings (left y-axis) against the baseline (M8
in Table 1, statically deployed) for accuracy thresholds ranging from 0 to 30%,
in increments of 1% (x-axis). Each point represents a different execution under a
threshold on the same 468-second path with dynamic SNR level (see Fig. 3).

The first evaluated threshold is 0%, which is the baseline (i.e., original model,
M8, without model switching). The highest evaluated accuracy threshold, 30%,
grants the highest freedom for optimization, allowing a wider range of models
to be selected (recall AIR-5G basic functioning from Fig. 2). In addition, Fig. 5
right y-axis presents the mean accuracy on each run. For this evaluation, the
optimization criterion was set to power.

We notice that the reduction in energy consumption varies from approxi-
mately 2%, with the accuracy threshold at 1%, to a maximum of 43% with a
threshold of 28%. Even at low threshold values, smaller than 5%, that allow a
relatively small number of models from the library throughout the run, AIR-5G
already has enough freedom to reduce energy consumption. This is because even
models with a small accuracy drop already show some power reduction.

We can also notice a significant jump in energy savings when from 2 to 3%
threshold, reaching 14.5%, while the mean accuracy suffers a reduction of only
2%. The same occurs between the 5% and 6% thresholds. A slight increase in
the threshold at both points enables new models of lower power to be exploited
at runtime. At threshold values above 20%, the gains in energy savings tend to
grow smaller at each threshold increment. In such cases, the algorithm has a
high degree of freedom of choice, tending to choose the least complex models in
the ensemble (i.e. M1 and M2) at more points along the path. As the threshold
approaches 30%, the algorithm tends to make more switches, prioritizing the
model of lowest power dissipation. The preference for these models causes a
steady drop in accuracy. Generally speaking, more flexible thresholds allow for a
larger set of possible models that can, in turn, save more energy. When, however,
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Fig. 6. AIR-5G average throughput (inferences/second) and mean accuracy.

the threshold does not allow new models to be selected (i.e., all models from the
library have an accuracy drop below the threshold), energy savings and accuracy
remain constant.

Performance. Similar to the results for energy, Fig. 6 presents the values of
average throughput (left y-axis) and accuracy (right y-axis), for accuracy thresh-
olds from 0 to 30% (each point evaluated under the same SNR variation - Fig. 3).
For this evaluation, the optimization criterion was set to throughput. As a start-
ing point, at 0% accuracy threshold, no accuracy drop is allowed and, thus, AIR-
5G can only select model M8 (the baseline model) that delivers 26000 inferences
per second (green curve, first marker on the left). Similar to what happens with
energy, with small accuracy thresholds, AIR-5G is already capable of improv-
ing the inference processing. For example, the average throughput increases to
approximately 43000 inferences per second with a threshold of 3%. The increases
in throughput presented between the 13% and 15% thresholds are substantial,
quickly reaching a plateau. From these thresholds onwards, AIR-5G is allowed
to include the M5 and M1 models that are selected in intermediate and low SNR
ranges, delivering the highest throughput levels.

For throughput, AIR-5G reaches a plateau at the 15% accuracy threshold. In
the previous section, we saw that the accelerators throughput remains constant
regarding quantization, where the 4-bit models have throughput values almost
identical to the 2-bit models. At this point, the algorithm is allowed to choose
models M7, M6 and M5, which have throughput values close to models M3, M2
and M1 (within 1% difference). Even with subsequent increments in the thresh-
old, allowing models with 2-bit quantization to be selected, the throughput value
is maintained. However, the accuracy levels keep falling since the system tends
to select smaller models, not considering whether the increase in throughput is
worth compared to their accuracy cost.

It is important to note that there is a slight decrease of 0.8% in the through-
put values when the top thresholds are reached, between 27 and 30%. With
such high thresholds, AIR-5G tends to select only the models with the highest
throughput (M1 and M5) over different SNR values more frequently, causing
more model switches and, consequently, more FPGA reconfigurations (70 in
total, taking 10.15 s).
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Fig. 7. Percentage of the execution time spent on each model version under power (a)
and throughput (b) optimization criteria w.r.t. accuracy thresholds.

Adaptability. Figure 7 details the adaptation performed by AIR-5G. It shows
the percentage of the execution time that each model version was selected during
the full execution for each evaluated accuracy threshold. Upper plot presents
the versions selected when the optimization criterion was set to power, while
the lower plot presents the versions selected under the throughput optimization.
Recall that under 0% threshold no version switch is performed and only the
baseline model (M8) is used. We notice that as the accuracy threshold increases,
different models get selected (i.e., poor accuracy models are only allowed at
higher thresholds). Therefore, as larger accuracy drops are tolerated, the more
costly versions are left unused (e.g., M8 gets selected up to 2% thresholds only).

As an example, let us take the 5% threshold in the upper plot. During this
execution, five models were used (M1, M4-7). For that, 141 switches were per-
formed, accounting for 4.36% of the execution time. Overall, we see that, despite
interruptions due to FPGA reconfigurations, AIR-5G can provide better perfor-
mance and energy efficiency than a statically deployed baseline (Figs. 5 and 6).
Thanks to the models with varied performance, energy, and accuracy profiles in
the AIR-5G library, AIR-5G can adapt the AMC at runtime through a runtime
model selection algorithm according to the current environmental conditions.

6 Conclusion

We have presented an adaptive approach for DNN-based 5 AMC. Our framework
can switch the DNN model (via FPGA reconfigurations) to best match the
inference processing to the current signal quality. When compared to a statically
deployed state-of-the-art accelerator, we achieve up to 43% reduction in energy
and increase throughput up to 8.9×.
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Abstract. Nowadays, power optimization has become a major inter-
est for most digital hardware designers. Some, traditionally, might stick
to offline power estimation especially in early design phases; some oth-
ers resort to the modern and very promising runtime power manage-
ment. Therefore, the Online Power Monitoring (OPM) is considered as
an important feature serving real-time power optimization. OPM favors
both in-situ power estimation and subsequent prediction, and can be
exploited by the Dynamic Voltage and Frequency Scaling (DVFS) mech-
anism. DVFS, a modern technique for digital circuits power optimization,
provides a realtime and adaptive voltage and/or frequency tuning while
securing the systems’ performance and integrity. In this paper, we present
and evaluate an accurate online power monitoring methodology of FPGA
IPs. We estimate power consumption using machine learning techniques,
based on the IP’s most power-influential operating modes and its inputs
activity characteristics. The proposed online monitoring mechanism dras-
tically reduces the communication-derived latency between the monitor
and the DVFS. Experimental results show a mean absolute percentage
error below 1.5% for the estimated power consumption.

Keywords: Data generation and acquisition · power measurement ·
FPGA · power estimation and modeling · machine learning · artificial
neural networks · online power monitor · DVFS

1 Introduction

Today, power consumption is one of the first and main constraints when designing
digital hardware systems such as FPGAs or ASICs. In general, power estimation
is obtained by evaluating the signals’ activity of a given circuit in a scenario
of execution that runs within a certain time frame. In parallel, online power
monitoring is becoming indispensable for controlling the power consumption of
large digital circuit systems at runtime.

Runtime adaptive systems determine dynamically and autonomously
the optimal operating points for power consumption. Such systems take
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application-specific requirements into account and specifically adapt the work-
load. Traditionally, current sensors (either built-in or external) have been used
to periodically, under software control, collect power information to be trans-
ferred to variable voltage regulators and/or configurable Phase-Locked Loops
(PLLs) or simply Voltage-Controlled Oscillators (VCOs). These latter, under the
DVFS mechanism, regularly tune the core supply voltage and/or the input clock
frequency of the device under optimization. Appropriate design of DVFS-based
applications can result in up to 65% improvement in energy consumption [3]. The
main issue to tackle remains in the communication overhead that can have unde-
sirable effects on a running application on FPGAs; notably the latency between
the sensors and the DVFS, and also between the DVFS from one side and the
variable voltage regulators and/or the tunable frequency devices from the other.

In this work, we apply a previously proposed machine-learning automated
data training construction methodology leading to high-level FPGA IP power
estimation [1] in order to create power models supporting the online power mon-
itoring and subsequent management. Here, we should mention that the power
monitor/estimator in context is implemented per FPGA IP thus providing the
ability to monitor individual IPs’ power consumption. Most importantly, the
proposed scenario eliminates the latency effect between the power estimator and
the DVFS. In addition, it accelerates the response between the DVFS from one
side and the variable voltage regulator and/or tunable frequency devices from
the other side when applying the minimal latency path.

This paper is organized as follows: Sect. 2 elaborates on recent related works.
Section 3 presents our proposed power consumption modeling and estimation
methodology as well as the online power monitoring approach. Section 4 reveals
the experimental results where a black-box IP with different scenarios and oper-
ation modes was put under test. Subsequently, the model’s assessment is high-
lighted. Finally, we conclude in Sect. 5.

2 Related Work

With the high demand on fast and complex FPGA-based systems and their
dominance in the digital world (embedded systems, communication linecards,
data centers, cloud computing, etc.), online power consumption monitoring is
no longer a nice-to-have feature but an indispensable requirement.

Some works aim at supporting emerging power management techniques, for
example fine grained DVFS. In [7], a dedicated hardware circuit is proposed to
obtain internal signal activities during runtime while predicting power consump-
tion on-the-fly. The authors claim that dynamic power may be estimated within
an error margin of 1.90% compared with commercial gate-level power estimation
tool. The major limitation though is that the model is trained on simulated data
from the Vivado power analyzer, which does not take into consideration the real
conditions of execution.

At RTL, most recent works that study high-level power modeling of FPGAs
usually rely on linear regression methods. For example, in [10] or [4] the approach
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consists in monitoring influential signals within specific modules. Power consump-
tion is then measured and a linear power model is built and updated online. The
main drawbacks of these previous works is the lack of accuracy of the proposed
models which rely on simple linear mathematical models.

In this work, compared to most related methods and in order to build robust
training data sets for the learning-based estimation, we rely on real power val-
ues obtained from a physical acquisition system, under software control. Subse-
quently, we estimate, in real-time, FPGA IP power consumption, based on the
coupling of the IP’s Most Significant Modes (MSM) of operation and the activity
of its data path inputs. Subsequently, the obtained results show wider adaptivity
and higher accuracy.

3 Methodology

Online power monitoring of a digital circuit is the process of periodically collect-
ing its energy usage for subsequent optimization using well-known mechanisms
such as DVFS. The proposed online power monitoring methodology aims at
estimating a given FPGA IP power consumption in-situ and in real-time. It is
based on machine learning and precisely on supervised Artificial Neural Net-
works (ANN) [5].

Traditionally, power consumption monitors (also known as current sensors),
whether built-in or external, measure the total consumed energy of the FPGA’s
core and cannot differentiate between various co-existing IPs’ consumption. In
general, these sensors operate over the Power Management Bus (PMBus). The
PMBus is a variant of the System Management Bus (SMBus) which is targeted
at digital management of power supplies. It is a relatively low speed, two-wire
serial communication protocol, based on Inter-Integrated Circuit (I2C) [11]. This
also applies to the voltage/frequency controllers (variable/configurable regula-
tors/PLLs/VCOs), also operating over the same PMBus. That said, and as an
undesirable effect, this scenario injects delays in the power monitoring and subse-
quent management system’s response. For instance, a PMBus clocked at 400 KHz
(fast mode) produces, at best, a latency of 300µs per one iteration, assuming
no (embedded) software overhead is present [6].

Figure 1 provides a high-level overview of the proposed power monitoring and
management mechanism. The power monitor in context, considered as our main
concern, is divided into two blocks. The first block extracts: 1) the input activity
of the IP’s data path in terms of the switching rate and the percentage of logic “1”
occurrences and 2) the most energy-significant modes of operation (MSM) that
can be derived from the control signals of the IP’s state machine or even, in some
cases, can be explicitly accessible. The second block is the power estimator itself
having the extracted input activity parameters along with the most significant
modes of operation as inputs. This latter consists of the implementation of an
artificial neural network inside the FPGA. Both the implementation details and
the neural network architecture are discussed in later subsections throughout
the paper (Subsects. 3.2 and 3.3).
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Fig. 1. Power monitoring and management mechanism along with latency options

Figure 1 also reveals the existing latencies at various locations of the proposed
model. The latency between the power estimator and the DVFS mechanism
depends on the number of cycles of the power estimator itself from the moment
it captures the inputs until it generates an output. This work aims at keeping this
specific latency at the very minimum. The latency between the DVFS and the
tunable devices (voltage and/or frequency) is highly dependent on the Manage-
ment Interface (MIF). Standard communication latency is observed when dealing
with PMBus/I2C protocols, and minimal latency is produced when dealing with
fast Digital to Analog Converters (DACs), as data are directly driven from dis-
crete fast outputs. Note that this specific type of latency is out of the scope
of this work. As for the DVFS system itself, it may be decomposed into a set
of comparators acting on pre-defined power consumption threshold values and
dynamically tuning the corresponding parameters within pre-defined operating
limits. That said, the DVFS’ operation does not add significant latencies to the
power monitoring and management loop (power estimator → DVFS → tunable
devices and again.. ←↩). The proposed methodology consists of three sequential
steps:

1. IP characterization using a well-defined high fidelity platform.
2. Build of the training data sets using the collected power information and

subsequently build of the power model.
3. Implementation of the neural network inside the same FPGA target.

3.1 IP Characterization System

FPGA IP characterization reveals the distinctive nature of a given target digital
circuit and highlights its special features such as resources and most importantly
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its power consumption information. Here we should point out that, as shown in
Fig. 2 (right-hand side), an FPGA IP can be decomposed into a Finite State
Machine (FSM) fed by a certain number of Control Signals (CS), and a Data
Path (DP) fed by the actual inputs toggling at specific rates.

The IP’s power consumption, during well-defined Operating Modes (OMs),
is highly affected by its input switching activity mainly the Switching Rate
(SR) and the Percentage Level High (PLH). The SR represents the ratio of
transitions in a given bit sequence, whereas the PLH is the percentage of logic
“1” bits in the same sequence. Operating modes are specific functional behaviors
of a given IP (for ex: idle mode, half-duplex mode, full-duplex mode, loopback
mode, burst mode, etc.), out of which we select the most power-hungry subset
denoted as MSM. These operating modes are in a close correlation with the
control signals feeding the IP’s FSM, or in some other cases, they are explicitly
exposed. In Fig. 2 (right-hand side) the relationship between the control signals
and the operation modes is represented by a decoder (X/Y). In order to collect
precise power information, a reliable measurement platform is required. For that
purpose, we have proposed an FPGA-based Automated and Centralized Data
Generation and hybrid Acquisition System (ACDGAS) combining the features of
three instruments: a sampling oscilloscope with analog inputs, a logic analyzer
and a bit-pattern generator [2]. As shown in Fig. 2, High Speed Digital I/Os
(HSDIO) are feeding the DUT-FPGA (configured for 1 IP only) as 16-bit input
signals and the power consumption measurement is sampled via a high speed
parallel differential Analog to Digital Converter (ADC) through a precision shunt
resistor RS on the FPGA core voltage (1V).

The platform’s main role is to apply stimuli signals at the IP inputs and syn-
chronously collect aligned power consumption samples under software control.
The proposed layered software architecture delivers a fully automated process
for IP characterization. It provides a solid and synchronized interaction between
the various system modules such as: graphical user interface, stimuli construc-
tion, MSM coupling, bit sequence generation, measurement platform interface,
training data construction, power modeling and evaluation.

3.2 Proposed Model

Power or energy system modeling is the process of building abstract models to
perform analysis and subsequently estimate power consumption of digital circuits
according to specific criteria. For many machine learning techniques, especially
the ones related to supervised methods, the construction of the training data
highly affects the quality and accuracy of the derived model [8]. In our case,
the collected data sets are derived from two different sources: the stimuli gener-
ation algorithms and a hardware data acquisition system providing real power
consumption values collected after applying the generated stimuli on a given IP.

Regarding the parametric stimuli generation as shown in Fig. 3, two sets of
PLH and SR of H and S values are respectively used to generate M = H × S
distinct combinations of [PLH, SR] pairs. The aforementioned combinations are
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Fig. 2. Measurement and characterization system hardware setup along with the IP
under test

Fig. 3. Stimuli generation matrices along with the actual FPGA input bits

coupled with N encoding bits for the MSM thus leading to 2N modes of oper-
ation. Each permutation of the MSM bits is appended to I pairs of [PLH, SR],
subsequently generating one stimuli matrix. Each pair of [PLH, SR] generates
1 fixed-length sequence of bits that will be eventually feeding a given IP’s data
path input. The bit sequence generator in context ensures the [PLH, SR] pairs’
compatibility and fulfills the stimuli signal’s requirements while achieving a high
degree of entropy in the generated bits (adequate SR distribution and minimal
bit-clustering). As a direct application, specific values are selected in order to
implement the proposed model: H = 200, S = 300, M = 60, 000, N = 4 bits,
I = 12 bits, D = M ÷I = 5, 000 and IP DP inputs width = 1 Kbit. The resulting
training data set consists of 5, 000 entries of 24 (12×2) inputs representing pairs
of SR and PLH coupled with 4 binary inputs representing the encoding of the
MSM, in addition to the (10-bit) raw output average power.

The proposed neural network architecture is compiled under the Tensor-
Flow/Keras Python library. As shown in Fig. 4 (right-hand side), it consists
of the input layer fed by 4 binary inputs (OMi) resulting in 24 = 16 modes
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Fig. 4. Neural network architecture showing training data, layers, neurons and activa-
tion function (SeLU)

and 12 pairs of SR and PLH, one hidden layer and one output layer represent-
ing the estimated (average) output power. The number of hidden neurons has
been optimized following the FPGA hardware implementation usage presented
and discussed in Subsect. 3.3 and Table 1, providing a trade off between train-
ing/prediction speed and accuracy. The Scaled Exponential Linear Unit (SeLU)
is chosen as the activation function due to its self normalizing nature and its
high learning robustness [9]. As shown in Fig. 4 (left-hand side), the training
set size represents 80% of the total data set corresponding to 4, 000 patterns,
out of which, 3200 (80%) are used for training and 800 (20%) for validation.
The remaining samples are reserved for evaluating the proposed neural network
model, and represent 20% (1, 000 samples) of all available patterns. The network
optimizer is selected to be Adam that is a replacement optimization algorithm for
stochastic gradient descent for training deep learning models [13]. The adopted
training loss metric is the Mean Squared Error (MSE) while the evaluation met-
rics are the Mean Absolute Error (MAE) and the Mean Absolute Percentage
Error (MAPE). The number of training epochs is optimized to be 25 iterations.

The automated power modeling process and data flow are illustrated in Fig. 5.
The procedure encapsulates the following sequential steps:

1. Generation of MSM encoding bits, [PLH, SR] tables and combinations, and
resulting stimuli matrices.

2. Generation of stimuli files, creation of subsequent ACDGAS batch-job and
execution.

3. Collection of power consumption samples (in hardware) and construction of
training data sets.

4. Data normalization, neural network compilation, training and evaluation.
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Fig. 5. Automated work and data flow showing data generation and acquisition on
the left-hand side, acquisition platform in the middle and, ANN training and power
modeling on the right-hand side

3.3 Hardware Implementation

Implementing an artificial neural network (ANN) inside the FPGA can be done
either by software via an embedded processor or by hardware using a dedicated
digital circuit implementation [12]. In order to accelerate the proposed ANN and
subsequently eliminate its prediction latency effect, the hardware implementa-
tion is a must. This latter can be pipelined while processing in parallel and in
real-time. However, a trade off between FPGA logic usage and prediction accu-
racy/speed is inevitable. Table 1 shows the neural network usage and latency (in
cycles) when implemented using 4, 8 and 16 hidden neurons respectively. To pro-
vide additional implementation flexibility, at the input layer, data are scanned
in batches of either 512 or 1024 bits per iteration in order to extract PLH and
SR and subsequently estimate power consumption. Processing at 100 MHz, the
recorded latencies show that the neural network is performing in real-time except
for the 16 (*) hidden neurons version when operating in 512 bits per iteration. In
this case the initial interval cycles surpass the number of bits per iteration. The
recorded power estimator latencies (< 10µs for 512 bits and < 20µs for 1024
bits), compared to most standard communication-based overhead, showed an
improvement of above 90%. The target FPGA used is the AMD/Xilinx Artix-7
(xc7a35tftg256-2) under the High-Level Synthesis (HLS) tool provided by Vitis
HLS 2022.2 using an off-the-shelf neural network IP.
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Table 1. ANN hardware implementation: usage and latency

Bits per iteration Hidden neurons Initial interval (cy) Latency (cy) DSP FF LUT

512 4 512 926 12 6,104 11,936

8 512 978 12 6,389 11,918

16* 850* 1,362 12 6,396 11,926

1024 4 1,024 1,438 12 6,105 11,938

8 1,024 1,559 12 6,218 11,891

16 1,024 2,023 12 6,226 11,899

4 Experimental Results

In order to evaluate the proposed power consumption estimation model, it is
essential to conduct experimental tests. We have applied our methodology on
FPGA circuits and collected power information in order to build the power
model and record the obtained results. An off-the-shelf AMD/Xilinx Artix-7
(xc7a35tftg256-2) FPGA running at 100 MHz was used in this context. Here we
should mention that the total power consumption of an IP is derived from its
dynamic and static power added together. The dynamic one occurs when the
IP signals are toggling while the static one is always present regardless of its
activity. In the following test cases the dynamic power is dominant.

4.1 Test Cases

Since the proposed methodology is not aware of the FPGA IP under monitoring
(functionality, components, interconnections, etc.) and in order to generalize our
real-time power estimator, we have selected a black-box FPGA IP to put under
test. A black-box IP is a digital circuit whose functionality and internal connec-
tions are masked. As stated earlier, the online power estimator relies only on the
extracted switching activity of the IP’s data path inputs while being coupled
with a certain number of operation modes. These latter can be either extracted
from the control signals of the same IP’s state machine or simply provided by
the designer. The black-box IP in context has 12 inputs and 16 modes of opera-
tion encoded over 4 bits. It has been tested under two different power estimation
models, each generated using a specific neural network implementation: one with
4 hidden neurons and one with 8. The 16-neuron alternative has been discarded
due its relatively high latency.

4.2 Model Assessment

Figure 6 represents the training loss and the MAPE of both data training and
model validation for the different power estimators. The 4 hidden neurons ver-
sion is shown in (a) whereas the 8 hidden neurons model is shown in (b). Both
the MSE and MAPE are displayed on the vertical axis of each graph pair respec-
tively. The number of training iterations denoted as Epochs is represented on the
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Fig. 6. Learning curves for each power model showing training loss and MAPE (train-
ing and validation) v/s number of epochs

Table 2. Resources and performance results

Black-box IP

IP utilization LUT 14296

FF 3761

DSP 50

Min. avg. power (mW) 25.00

Max. avg. power (mW) 94.50

Estimation MAE 4 neurons 6.67

8 neurons 6.00

Estimation MAPE 4 neurons 1.55%

8 neurons 1.30%

horizontal axis. As the number of epochs increases, both the prediction loss and
the mean absolute percentage error decrease drastically, proving the efficiency of
the proposed architecture. Beyond 25 epochs, the training loss (MSE) and the
validation (MAPE) values hit a steady state.

Table 2 combines the IP usage (LUTs, FFs and DSPs), the estimated average
power consumption range (minimum and maximum) and the power model eval-
uation metrics (MAE and MAPE) for 4 and 8 hidden neurons respectively. The
MAE values designate the absolute error in raw power levels ranging between 6
and 6.67, out of 1024 total levels (10-bit resolution). The MAPE is the estimation
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Fig. 7. Per-mode measured v/s estimated power consumption

absolute percentage error being less than 1.5% for both cases. With the 8 hidden
neurons model an estimation improvement of 16% is recorder over the 4-neuron
alternative model. As an observation, the proposed power estimation method-
ology is highly efficient on LUT- and DSP-based IP circuits. The experimental
results show fast and very accurate estimation values when applied to black-box
IPs. This proves the robustness as well as the coherence of the presented neural
network’s architecture, and subsequently, the high adaptivity of the presented
online power monitoring technique.

Figure 7 shows multiple unsorted operation modes for the black-box IP along
with their respective measured and estimated power consumption levels in mW.
Each permutation of the OM bits, coupled with the input activity of the data
path, yields to a functioning mode with a specific power level. For instance,
a specific value of the OM bits leads to an operation mode (spread over 128
samples) with variable power levels depending on the data path input activity
(PLH and SR). Subsequently, we may notice different average power values for
the same operation mode. The estimated power is represented by the maximum
and minimum average levels following the ± prediction percentage error. In
Fig. 7(a), two neighboring operating modes are detected with very close power
levels, yet the estimator was able to differentiate and to properly estimate the
corresponding power consumption.

5 Conclusion

Power consumption optimization is indispensable for modern digital hardware
especially with high speed and increasing complexity. Online power monitoring
and subsequent management is becoming a hot topic since it provides on-the-fly
energy optimization. In this work, we leverage the machine learning techniques
to establish an efficient neural-network-based online power monitoring and esti-
mation approach for IPs in FPGAs. We estimate the power consumption in-situ
and in real-time by just providing the most energy-significant modes of operation
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coupled with the input activity defined by the switching rate and the percentage
of logic high bits of individual black-box FPGA IPs. The experimental results
confirm the model’s accuracy with a mean absolute percentage error below 1.5%
and a minimum of 90% latency improvement between the power monitor and the
DVFS controller. Additional optimizations on the ANN implementation inside
the FPGA could also lead to a smaller hardware footprint and thus higher
efficiency.
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early power estimation of FPGA IP based on machine learning. In: 29th IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–4
(2022). https://doi.org/10.1109/ICECS202256217.2022.9970952

2. Richa, M., Prévotet, J.-C., Dardaillon, M., Mroué, M., Samhat, A.E.: An auto-
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