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Abstract. In this study, we analyze the effects of velocity slips and con-
vective boundary conditions in the flow and heat transfer of Maxwell
nanofluid across a stretching sheet considering magnetic field, ther-
mal radiation, chemical reaction, and activation energy. The influence
of Brownian diffusion and thermophoresis are considered using Buon-
giorno’s nanofluid model. By applying suitable similarity variables, the
governing Maxwell nanofluid flow equations, which include the momen-
tum, energy, and nanoparticle volume fraction are simplified to nonlinear
differential equations. MATLAB’s bvp4c finite difference tool is used to
solve the nondimensionalized differential equations. In order to illustrate
the influence of physical factors on velocity, temperature, and nanopar-
ticle volume fraction, the numerical solutions are shown graphically. In
addition, the skin friction, rate of heat transmission, and mass transfer
are all given physical interpretations. The current analysis demonstrates
that the velocity slip and suction parameters significantly reduce the
velocity. Increased thermal radiation and Biot number for temperature
raise the temperature profile. Further, the activation energy and ther-
mophoresis factors lead to a decrease in the mass transfer rate, while the
Lewis number and Biot number due to concentration contribute to an
increase.
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Nomenclature

T Temperature K1 Chemical reaction parameter

c Velocity ratio parameter h2 Convective mass transfer coefficient

u, v, w Velocity components k2
r Chemical reaction coefficient

M Magnetic parameter B0 Constant magnetic field

x, y, z Space coordinates DT Coefficient of thermal diffusion

K Deborah number Bi1 Biot number for temperature

n Fitted rate constant Bi2 Biot number for concentration

Le Lewis number w0 Suction velocity

uw, vw Stretching velocities Greek Symbols

E Dimensionless activation energy α1 Velocity slip parameter

k Thermal conductivity μ Dynamic viscosity

k∗ Mean absorption coefficient θw Temperature ratio parameter

T∞, C∞ Ambient temperature and concentration κ Boltzmann constant

S Suction parameter ρ Density

Rd Thermal radiation parameter θ Dimensionless temperature

Pr Prandtl number λ Fluid relaxation time

cp Specific heat α Thermal diffusivity

C Concentration ν Kinematic viscosity

Nt Thermophoresis parameter φ Dimensionless concentration

Tw, Cw Surface temperature and concentration σ∗ Stefan-Boltzmann constant

Nb Brownian motion parameter β Slip coefficient

Ea Activation energy σ Electrical conductivity

DB Mass diffusivity τ Ratio between effective heat capacity

h1 Convective heat transfer coefficient of nanoparticles and base fluid

1 Introduction

In the petroleum industry and engineering applications, non-Newtonian fluid
flow coupled with heat and mass transfer is of significant interest. Desalination,
refrigeration and air conditioning, compact heat exchangers, chemical process-
ing equipment, solid matrix heat exchangers, solar power collectors, and other
applications [1,2] are examples. The Laplace and Hankel transforms were used
to calculate the velocity field and shear stress field of a generalised Maxwell
fluid that flows between two infinite coaxial circular cylinders [3]. By employing
the multi-step differential transform approach, Keimanesh et al. [4] investigated
third grade non-Newtonian fluid flow between two parallel plates. Nadeem et
al. [5] presented a model of a two-dimensional Williamson fluid past a stretched
sheet that they had developed. Seyedi et al. [6] investigated effect of natural con-
vection on non-Newtonian fluid flow between two vertical plates using Galerkin
interpolation scaling functions.
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Thermal radiation effects on nanofluid flow and heat transfer are becom-
ing increasingly popular because nanofluids have a variety of characteristics. In
addition, the influence of radiative heat transfer has increased dramatically in
the design of modern energy conversion systems [7], plasma studies, agricul-
ture, and petroleum industries [8,9]. Numerous research have been conducted
in this area to investigate the impacts of heat radiation in various areas. A
two-dimensional MHD mixed convection viscoelastic fluid flow across a porous
wedge with heat radiation was investigated by Rashidi et al. [10], who sought
an analytical solution. Daniel and Daniel [11] did research on the theoretical
impact of buoyancy and heat radiation on MHD flow past a stretched porous
sheet. Pal and Mandal [12] discussed the influence of thermal radiation, non-
uniform heat source/sink and suction on MHD micropolar nanofluid flow across
a stretched sheet. MHD viscous fluid was flowed over a horizontally rotating disc,
and Shah et al. [13] explored the effect of non-linear thermal radiations on the
unsteady flow of the fluid. Effect of thermal radiation on MHD stagnation-point
flow over a nonlinearly moving sheet was described by Jamaludin et al. [14] with
mathematical solutions. Tarakaramu et al. [15] investigated the impact of non-
linear thermal radiation and Joule heating on the flow of a three-dimensional
viscoelastic nanofluid via a stretched surface.

In various physical scenarios involving suspensions, foams and polymer solu-
tions [16], the assumption of slip flow boundary condition is necessary. The no-
slip boundary condition is involved in the research listed above. With the Soret
and Dufoue effect, Babu and Sandeep [17] investigated multiple slip effects on the
magnetohydrodynamic Williamson fluid flow past a variable thickness stretch-
ing sheet. Using a non-isothermal radiate wedge submerged in ferrofluid, Rashad
[18] analysed the impact of partial slip and thermal radiation on MHD boundary
layer flow in his research. With entropy analysis, Ellahi et al. [19] looked at the
combined impact of MHD and slip on a flat moving plate over a wide range of
physical factors. Das et al. [20] examined multiple slips as well as nonlinearly
changing thermal radiation on a 3D MHD nonlinear convective tangent hyper-
bolic nanofluid flow generated by a bidirectional stretching surface with Soret
and Dufour impacts.

In the investigation of a number of physical phenomena, including engineering
and oil storage, activation energy is often taken into consideration. A few the-
oretical studies that discuss the function of activation energy in fluid dynamics
are currently available. Numerous uses of Arrhenius activation energy, as well as
chemical reactions, have made fluid dynamics an appealing area for researchers.
The least amount of energy required to stimulate the particles or molecules in
which physical transit occurs is known as activation energy. This is due to the
fact that different chemical processes need some amount of energy merely to
begin. Other uses of activation energy include atomic processes, the discovery of
compounds, and thermal lubricant recovery [21–23]. Fayyadh et al. [24] investi-
gated the magneto-flow and heat transfer of the Carreau nanofluids model in the
presence of Arrhenius activation energy and chemical reaction toward a stretch-
ing/shrinking surface. Akbar et al. [25] studied the effects of gyrotactic motile
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microorganisms and Arrhenius activation on the bioconvection peristaltic trans-
port of nanofluid. They also considered variable viscosity, Brownian diffusion,
porous medium, mixed convection, nonuniform heat absorption/generation, vis-
cous dissipation, and thermophoresis diffusion. Shoaib et al. [26] examined the
significance of activation energy during chemical reactions, temperature gradi-
ent, and thermal radiations of 3-D steady magnetite Casson nanofluid flow over
an oscillating disk.

Convective heating is very common in engineering practises such as nuclear
reactors, gas turbines and thermal energy storage [27,28]. These activities gen-
erate a high temperature, which is transferred to the flow via the convective
boundary condition. To better understand the impact of convective boundary
conditions on the MHD flow of nanofluids near a stretching rotaing disc with
partial slip effects, Mustafa and Khan [29] carried out a numerical study. On
mixed convection MHD micropolar fluid with non-linear stretched sheet, Patel
and Singh [30] investigated the impacts of convective heat boundary condition,
viscous dissipation and Joule heating, among other things. MHD Casson fluid
flow across an exponentially extending curved sheet was studied by Kumar et al.
[31] and shown to be affected by convective heating, thermal radiation and Joule
heating. Das et al. [32] explored effects of convective heating, velocity slips, and
activation energy on unsteady MHD 3D Carreau nanofluid flow over a stretch-
ing sheet. Mandal et al. [33] examined the convective heat transfer and entropy
generation of magnetohydrodynamic Maxwell nanofluid flow including gyrotac-
tic microorganisms along a stretching cylinder with heat source and chemical
reaction.

To the best of the authors’ knowledge, no studies have reported the impacts of
velocity slip, activation energy, and convective heating on Maxwell nanofluid to
this day. Hence, the purpose of this study is to investigate the effects of velocity
slip, activation energy, and convective heating on MHD Maxwell nanofluid flow
via a permeable stretching surface when thermal radiation is present. The prob-
lem of non Newtonian nanofluid flow across a stretched surface is extremely help-
ful in gas turbines, aerodynamic heating, food processes, biomedicines, polymer
processing, and other fields. In order to convert the dimensional governing equa-
tions into their dimensionless counterparts, proper similarity transformations
have been used. The bvp4c solver in MATLAB is applied to simulate reduced
highly nonlinear ordinary differential equations. The effects of significant factors
on the momentum, temperature, concentration, and skin friction coefficients, as
well as the Nusselt and Sherwood numbers, are graphically depicted.
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2 Mathematical Modelling

Fig. 1. Geometry of the flow problem

Consider a 3D Maxwell nanofluid flow across a stretched surface in the xy-plane,
with the fluid at z ≥ 0. In the x-direction, the sheet is stretched with a linear
velocities of uw = ax and vw = by (a and b being positive constants). We’ll
call these two values Tw and Cw, the surface temperatures and concentrations.
T∞ and C∞, on the other hand, represent the temperature and concentration
far away from the surface, as illustrated in Fig. 1. The stretched surface is sub-
jected to a magnetic force of strength B0, which is applied normal to the sur-
face. Thermal radiation and activation energy are considered to study the fluid
flow. Another consideration is that the flow field does not have any polarization
of charges since no external electric field is applied, which corresponds to the
condition when no energy is injected or withdrawn from the fluid by electrical
methods. Furthermore, a fluid with a low magnetic Reynolds number is thought
to be a metallic liquid or partly ionized. So fluid motion’s effect on the induced
magnetic field is minuscule in compared to the applied magnetic field. The gov-
erning equations may be reconstructed on the basis of the aforementioned flow
assumptions [34,35]:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)



Maxwell Nanofluid 143

u
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u2 ∂2u

∂x2
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∂y2
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)
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∂v

∂y
+ w

∂v
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(
u2 ∂2v

∂x2
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)
, (3)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2 T

∂z2
+ τ

{
DB

∂T

∂z

∂C

∂z
+

DT

T∞

(
∂T

∂z

)2
}

− 1
(ρcp)f

∂qr

∂z
,

(4)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= DB

∂2 C

∂z2
+

DT

T∞
∂2 T

∂z2
− k2

r (C − C∞)
(

T

T∞

)n

e(
−Ea
κT ).

(5)
The following are the physical boundary conditions for the present problem
[36–38]:

u − ax + λ

(
u

∂u

∂x
− au + v

∂u

∂y
+ w

∂u

∂z

)
= β

∂u

∂z
, v − by + λ

(
u

∂v

∂x
− bv + v

∂v

∂y
+ w

∂v

∂z

)
= β

∂v

∂z
, w = w0,

− k
∂T

∂z
= h1 (Tw − T ) , − DB

∂C

∂z
= h2 (Cw − C) , at z = 0,

u → 0, v → 0, T → T∞, C → C∞ as z → ∞.

⎫⎪⎬
⎪⎭

(6)
The following Rosseland’s estimate for an optically thick fluid is used to approx-
imate the radiative heat flux qr [39]:

qr = −16σ∗T 3

3k∗
∂T

∂z
. (7)

The energy equation has the following form when expression (7) is applied to
Eq. (4):

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2 T

∂z2
+ τ

{
DB

∂T

∂z

∂C

∂z
+

DT

T∞

(
∂T

∂z

)2
}

+
16σ∗T2

(
3ρcp

)
f

k∗

{
T

∂2 T

∂Z2
+ 3

(
∂T

∂Z

)2
}

.

(8)
The following similarity variables are included in order to achieve similar solu-
tions for Eqs. (2), (3), (8), and (5), subject to the boundary constraints (6):

u = axf
′
(η), v = ayg(η), w = −√

aν(f(η) + g(η)), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C − C∞
Cw − C∞

, η = z

√
a

ν
.

(9)
The following ordinary differential equations result from substituting the afore-
mentioned similarity variables in Eqs. (2), (3), (8), and (5):

f ′′′ − f ′2 + (MK + 1)(f + g)f ′′ + K(2f ′(f + g)f ′′ − (f + g)2f ′′′) − Mf ′ = 0,
(10)

g′′′ − g′2 + (MK + 1)(f + g)g′′ + K(2g′(f + g)g′′ − (f + g)2g′′′) − Mg′ = 0,
(11)
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θ
′′

+ Pr(f + g)θ
′
+ PrNbθ

′
φ

′
+ PrNt

(
θ

′)2
+

4

3
Rd {1 + θ (θw − 1)}2

[
3

(
θ

′)2
(θw − 1)

+ {1 + θ (θw − 1)} θ
′′]

= 0, (12)

φ′′ + PrLe(f + g)φ′ +
Nt

Nb
θ′′ − PrLeK1(1 + (θw − 1)θ)ne(− E

1+(θw−1)θ )φ = 0.

(13)
The dimensionless boundary conditions are written as follows:

f
′
(0) = 1 − K

{
f

′2 − f
′ − (f + g)f

′′}
+ α1f

′′
, g

′
(0) = c − K

{
g

′2 − cg
′ − (f + g)g

′′}
+ α1g

′′
,

f(0) = S, g(0) = 0, θ
′
(0) = −Bi1 (1 − θ(0)) , φ

′
(0) = −Bi2 (1 − φ(0)) ,

f
′
(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)
where

K = λa, Pr =
ν

α
, M =

σB2
0

aρf
, Nb =

τDB (Cw − C∞)
ν

, Nt =

τDT (Tw − T∞)
νT∞

, α1 = β

√
a

ν
, S = − w0√

aν
, K1 =

k2
r

a
, θw =

Tw

T∞
, E =

Ea

κT∞
,

Bi1 =
h1

k

√
ν

a
, Rd =

4σ∗T 3
∞

k∗k
, c =

b

a
, Le =

α

DB
, Bi2 =

h2

DB

√
ν

a
.

3 Local Skin-Friction Coefficients, Nusselt Number
and Sherwood Number

In this fluid flow problem, the local skin-friction coefficients (Cfx, Cfy), Nusselt
number (Nux), and Sherwood number (Shx) are the relevant physical quantities,
and their expressions are as follows:

Cfx =
ν

u2
w

[
(1 + K)

∂u

∂z

]
z=0

, (15)

Cfy =
ν

v2
w

[
(1 + K)

∂v

∂z

]
z=0

, (16)

Nux = − x

k (Tw − T∞)

[(
k +

16σ∗T 3

3k∗

)
∂T

∂z

]
z=0

, (17)

Shx = − xDB

DB (Cw − C∞)

(
∂C

∂z

)
z=0

. (18)

Using the dimensionless variables provided in (9), the aforementioned physical
quantities may be stated in non-dimensional form

Cfx

√
Rex = (1 + K)f ′′(0), (19)

Cfy

√
Rey = (c)− 3

2 (1 + K)g′′(0), (20)

Nux√
Rex

= −
[
1 +

4
3
Rd {1 + (θw − 1) θ(0)}3

]
θ′(0), (21)
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Shx√
Rex

= −φ′(0), (22)

where Rex =
uwx

ν
and Rey =

vwy

ν
are the local Reynolds numbers.

4 Implementation of Numerical Technique

4.1 Solution Procedure

MATLAB’s bvp4c code is used to solve the nonlinear ordinary differential equa-
tions (ODE) that govern flow Eqs. (10–13) with boundary conditions 14. Other
researchers have extensively implemented this code to tackle the boundary value
issue. The MATLAB routine is a representation of a finite difference algorithm
that achieves fourth-order precision. For the solver to work, the equations need
to be rewritten as a system of equivalent first-order differential equations.

4.2 Results Validation

To validate the employed technique, we got −f ′′(0) and −g′′(0) values and com-
pared them to earlier reported results by Hayat and Awais [40] and Kumar et
al. [8] in Tables 1 and 2 where M = K = α1 = S = 0.0 for a variety of c values.
It is recognized that the comparison is realistic, which provides assurance of the
accuracy of the numerical results presented in this study.

Table 1. Comparison of −f ′′(0)’s numerical findings with previously published data

−f ′′(0)

c Hayat and Awais [40] Kumar et al. [8] Present result

0 1 1.000003 1

0.2 1.039495 1.039498 1.039498

0.4 1.075788 1.075789 1.075789

0.6 1.109946 1.109948 1.109947

0.8 1.142488 1.142490 1.142488

1.0 1.173720 1.173722 1.173720

Table 2. Comparison of −g′′(0)’s numerical findings with previously published data

−g′′(0)

c Hayat and Awais [40] Kumar et al. [8] Present result

0 0 0 0

0.2 0.148736 0.148738 0.148738

0.4 0.349208 0.349209 0.349210

0.6 0.590528 0.590526 0.590529

0.8 0.866682 0.866679 0.866683

1.0 1.173720 1.173717 1.173720
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5 Results and Discussion

Many important factors have been looked at in this section. They have an effect
on velocities, temperature, concentration, skin friction, rate of heat transfer, and
rate of mass transfer. To do the calculations, we chose K = 0.1, Pr = S = 2.0,
Nt = n = 0.5, M = 1, Rd = K1 = 0.2, Nb = α1 = 0.4, Le = 1, θw = 1.3,
Bi1 = Bi2 = 0.3, E = 0.6 and c = 0.7.

Figures 2 and 3 demonstrate the non-dimensional velocities f ′(η) and g′(η)
for different magnetic field parameter values M . The velocities f ′(η) and g′(η)
decrease as the magnetic parameter M increases. The physical explanation for
this behavior is that increasing the magnetic parameter operating transverse
to the flow enhances the Lorentz force, which tends to resist the fluid motion.
The velocity slip parameter α1 has a significant impact on fluid flow, as seen
in Figs. 4 and 5. By raising the velocity parameter α1, the velocities f ′(η) and
g′(η) decrease. The slip between the fluid and the sheet surface increases as the
velocity slip parameters rise. As a result, a partial slip velocity is transferred to
the flow-field that tends to minimize fluid velocities. Figures 6 and 7 express that
enhanced values of S imply the decreasing nature of flow velocities. Suction is
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utilized to regulate the nanofluid flow physically, with the purpose of reducing
velocities by minimizing drag on nanoparticles in an external flow.

Figure 8 illustrates the effect of the thermal radiation parameter Rd on the
temperature distribution. The graphic clearly shows that with increasing Rd
values, θ(η) is upsurged. In general, increasing radiative characteristics promote



148 B. Kumbhakar et al.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

(
)

Nt = 0.5, 1.5, 2.5

Fig. 12. Impact of Nt on θ(η)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(
)

Nt = 0.5, 1.5, 2.5

Fig. 13. Impact of Nt on φ(η)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(
)

Bi
2
 = 0.1, 0.3, 0.5

Fig. 14. Impact of Bi2 on φ(η)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

(
)

Le = 1, 2, 3

Fig. 15. Impact of Le on φ(η)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

(
)

0.4 0.42 0.44 0.46 0.48
0.05

0.052

0.054

0.056

0.058

0.06

K
1
 = 0.2, 0.5, 0.9

Fig. 16. Impact of K1 on φ(η)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

(
)

0.4 0.41 0.42 0.43 0.44
0.055

0.056

0.057

0.058

0.059

0.06

E = 0.3, 0.6, 0.9

Fig. 17. Impact of E on φ(η)

molecular mobility within the system, resulting in frequent collisions between
particles that convert to heat energy. As a result, the temperature has risen.
The effect of Biot number for temeperature on the temperature field is explored
in Fig. 9. The increase in Bi1 indicates that conduction dominates convection
heat transfer at the surface. Consequently, for higher Bi1 values, temperature
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curves are accelerated. According to Figs. 10 and 11, an increase in Nb results in
an increase in θ(η) and a decrease in φ(η) over the boundary layer area. When
microscopic particles in the flow field come into contact with one other, they
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create thermal energy, raising the fluid temperature. As a result of Brownian
diffusion, the volume fraction of nanoparticles in the boundary layer decreases as
they recede from the sheet’s surface. It is clear from Figs. 12 and 13 that when Nt
grows, θ(η) and φ(η) rise with it. When a nanoparticle in touch with a stretched
sheet is heated by the sheet’s temperature, it exhibits a thermophoretic force that
causes it to push back other nanoparticles in its vicinity. An increase in Nt raises
the thermophoretic force, which drives the nanoparticles from a hot location to
a cool one inside the boundary layer, increasing he temperature of the nanofluid
and the volume fraction of the nanoparticles. Figure 14 shows the influence of
Bi2 on the dispersion of concentration. The graphic demonstrates that there is a
direct relationship between φ(η) and Bi2. As the Brownian diffusivity coefficient
is inversely proportional to the Bi2, this means the velocity-dependent diffusion
of momentum is more powerful than the temperature-dependent diffusion. So,
φ(η) is amplified. Figure 15 depicts the relationship between the Lewis number
Le and the concentration profile. φ(η) decelerates as Le increases throughout
the boundary layer area. The Lewis number is the ratio of heat diffusivity to
mass diffusivity, according to its definition. Increasing the Lewis number means
that there is more thermal diffusion and less mass diffusion, which makes the
concentration boundary layer thinner. The influence of the chemical reaction
parameter K1 on species concentration is depicted in Fig. 16. We can observe
from this graph that as K1 increases, φ(η) falls. This is because there is more
thermal energy available to obtain the activation energy required to compensate
for the breakdown of atoms’ bonds. The activation energy parameter E has
been displayed in Fig. 17 to show how it affects concentration distribution. This
diagram clearly shows that φ(η) and E have a direct relationship. As E increases,
the pace of a chemical reaction physically increases. Hence, φ(η) is heightened.

The differences in the local surface drag coefficients −Cfx

√
Rex and

−Cfy

√
Rey scatterings of Maxwell nanofluid as a function of M , α1, and S

are depicted in Figs. 18, 19, 20 and 21. The figures demonstrate that −Cfx

√
Rex

and −Cfy

√
Rey degrade with increasing α1 values, but M and S exhibit the

opposite pattern. Figures 22 and 23 illustrate the effects of Rd, Bi1, Nt and
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Nb on the local Nusselt number Nux√
Rex

. On the basis of the figures, it can be

concluded that Nux√
Rex

is directly proportional to Rd and Bi1, however an inverse
relationship can be noticed between Nt and Nb. The effects of Nt, Nb, Le, Bi2,
K1, and E on local mass transfer rate Shx√

Rex
scattering are displayed in Figs. 24,

25 and 26. Figures show that Shx√
Rex

is heightened with increasing amounts of Nb,
Le, Bi2, and K1, whereas an inverse association is noticed with Nt and E.

6 Conclusions

The effects of velocity slip, activation energy, and convective heating on MHD
Maxwell nanofluid flow across a permeable stretched surface heated by thermal
radiation are examined computationally in this study using MATLAB’s bvp4c
solver. The following conclusions are made from the findings:

– For increasing levels of the velocity slip and suction parameters, the velocity
decreases in magnitude.

– Increasing the Biot number for temperature and thermal radiation can
enhance temperature profiles.

– Concentration field increases with an elevation in the Biot number for con-
centration and the activation energy parameter.

– Increases in the magnetic field and suction parameter augment the shear
stress function, whilst velocity slip lowers it.

– The combination of radiation absorption, thermal radiation, and convection
heating can all help to boost the heat transmission rate.

– Activation energy can uplift mass transfer rate while chemical reaction slows
it down.
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