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Abstract. The present paper addresses the rheological perspective of
blood flow with the suspension of Au/GO nanoparticles through the
curved artery with multiple stenosis and thrombosis. The influences of
hematocrit-dependent viscosity and Hall effects are taken into account.
The flow is subjected to a strong radial magnetic field. Using the mild
stenosis and axi-directional flow assumptions, the governing equations
are simplified and then the reduced equations are discretize using the
Crank-Nicholson technique to get the tridiagonal systems of equations
which are further solved by employing the Tri-diagonal Matrix Algo-
rithm (TDMA) at each time step. The flow patterns are also shown by
plotting velocity contours. It has been observed that raising the Hall
parameter induces an increase in fluid velocity owing to an increase in
collision time or electron frequency, hence assisting fluid flow. Further,
Au-GO/blood hybrid nanoparticles have a higher velocity profile than
pure blood and unitary nanoparticles. Current findings may have appli-
cations in the biomedical field, particularly in imaging techniques like
magnetic resonance angiography (MRA), which analyses an image of an
artery to detect problems. The current findings are consistent with recent
findings in earlier blood flow research studies.
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1 Introduction

Among the various cardiovascular diseases, arteriosclerosis/stenosis is the major
cause of morbidity and mortality worldwide [1]. Arteriosclerosis is a condition
in which plaque gets deposited at the arterial wall and constricts the blood
flow. The plaque is the composition of fats/lipids, cholesterol, greasy substances,
and other cellular wastes. The constriction may trigger thrombosis (blood clot)
upon rupture and lead to a heart attack. Doffin et al. [2] experimented with
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studying the oscillatory flow between the clot and stenosis model. The oscillation
is produced by the two pistons moving in the oscillate phase. They determined
the velocity and streamlined pattern by visualising the suspended aluminium
particles in water glycerol fluid. Strony et al. [3] investigated the high shear
stress effect and hemodynamic factors for the thrombus deposition in the stenotic
region. According to their study, the shear stress would be higher in the stenotic
region, which causes the platelets to get aggregated at the vessel wall damage
and from the occlusive thrombosis. Elnaqeeb et al. [4] explored the copper blood
model due to its application in biomedicine. They also discovered the blood
tapering phenomenon in catheterised stenosis arteries. The time-variant stenosis
with an aneurysm was numerically explored by Sultan et al. [5]. They considered
the non-Newtonian Eyring Powell fluid model and curvilinear coordinate system
to study the blood flow through the curved artery. Akthar et al. [6] developed
a mathematical model to simulate the blood flow through multiple thromboses
with the Peristaltic wall.

In the magnetic field, moving conducting fluids experience a resistive force
known as Lorentz force. When the moving fluid is ionised gas, or the strong mag-
netic field is applied, the conductivity normal to the magnetic field is reduced.
This reduction is due to the free spinning of the electrons. Thus, it induces the
electric current normal to the magnetic and electric field. This phenomenon is
known as Hall current. Mekheimer et al. [7] studied the Hall effect with viscous
dissipation on the micropolar fluid through the stenosis artery. Mishra et al.
[8] experimented to understand the Hall and magnetic field effect on the MHD
flow through the rotating channel. Das et al. [9] conducted theoretical research
to investigate peristaltic blood pumping. They examined the Hall and ion slip
effects by using Casson fluid to mimic the rheological properties of blood.

Nanotechnology advancements and designing techniques help researchers
probe into the nanoscale particles’ properties and features. In the biomedical field,
the advancement of nanotechnology helps design nanomedicine to diagnose and
treat diseases. Nanoparticles are small tiny particles, and with the suspension in
the base fluid, they enhance the characteristics and properties of the base fluid. In
this study, we have considered the hybrid nanofluid by the suspension of Graphene
Oxide and Gold nanoparticles in the base fluid (blood). Elnaqeeb et al. [10] studied
the gold nanoparticle’s blood flow through the tapered artery and did a compar-
ative study for gold, Cu, and TiO2 nanoparticles. They looked at temperature-
dependent viscosity and observed that the velocity of gold nanoparticles in a
stenosed blood artery is greater than the other two nanoparticles. Thus, explain-
ing the enhancement in the hemodynamic performance of blood in the diseased
artery. Changdar et al. developed a single and discrete phase model to observe
the effect of gold, Cu, and silver nanoparticles as drug carriers. They have con-
sidered multiple stenoses and spherical-shaped nanoparticles. According to their
findings, cylindrical nanoparticles are more effective than spherical nanoparticles
in drug delivery. Mekheimer et al. [11] examined the gold nanoparticles in the peri-
staltic flow between the two coaxial tubes. They contemplated the gold nanopar-
ticles due to their application in treating cancerous cells. Seo Kyung et al. [12]
formed the hybrid sheet of Au-GO nanoparticles to enhance the photothermic
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effect helpful in cancer therapy. Further, Liu et al. [13] studied graphene-based
nanoparticles in their work. They considered graphene nanoparticles due to their
photothermal effect beneficial in cancer treatment. Khazayinejad et al. [14] ana-
lytically solved the mathematical model portraying graphene nanoparticles’ sus-
pension in a tube with wavy walls. Through the use of particle shape factor, slip,
and convective regime, Sindhu et al. [15] analysed the flow of a hybrid nanoliq-
uid in a microchannel. Rishu et al. [16] considered the bell-shaped artery with
temperature-dependent viscosity to explore the effect of hybrid nanoparticles (Au-
Al2O3) on blood flow. Furthermore, they [17] investigated the entropy analysis of
the MHD slip flow with tapered multiple-stenosis artery.

Blood flow is greatly influenced by pressure, viscosity, and other external
and internal elements in the human circulatory system. Blood’s hemodynamic
properties are constantly changing due to its shear-thinning feature. As a result,
blood viscosity cannot be assumed to be constant. Singh et al. [18] explored the
Jeffery-Hamel flow in the non-parallel walls by adopting the hybrid computa-
tional approach. By employing a hybrid analytical approach, Sushila et al. [19]
examined the thin film flow issue. Bhavya et al. [20] studied the inclination and
hematocrit dependent viscosity effect on the MHD blood flow. Further, Chandan
et al. [21] developed the model by considering the two phase blood flow. Their
findings show that radial curvature increases the risk of atherosclerosis whereas
heat radiation decreases it. Khanduri and Sharma [22] investigated the entropy
generation on the MHD flow by considering the variable viscosity and thermal
conductivity. Several other researchers [23–29] developed a mathematical model
to illustrate the effect of variable viscosity on MHD flow.

From a bioengineering perspective, it is crucial to research the behaviour of
hybrid nanoparticles (Au-GO) suspended by streaming blood flow on the curved
stenosed artery in the presence of a strong radial magnetic field; however, no
such study has yet been published. The multiple stenosis and thrombosis at
the catheter walls hinder the hemodynamic flow. The curvilinear coordinate is
customised to simulate blood flow. The current study may be beneficial in radi-
ological examinations such as magnetic resonance angiography (MRA) to detect
vascular abnormalities. The hybrid nanoparticles Au-GO/blood have been stud-
ied due to their potential applicability in nanomedicine and biomedicine. The
inert nature, stability, and anti-bacterial capabilities makes the Au nanoparti-
cles to have the wide range of applications. As a result, the current study sheds
light on the treatment of stenosis and other anomalies without surgery while also
reducing post-surgical problems. In the future work, the researchers can explored
the effect of nanoparticle shapes with the permeable arterial walls along with
the different shapes of stenosis (example, triangular and elliptical shapes) with
tapering effects can be explored.

The novelty of the present work includes:

– The influence of (Au-GO/blood) hybrid nanoparticles on diseased segments
characterized by multiple stenosis and thrombosis.

– To analyze the hematocrit-dependent viscosity model with the combined
effect of Hall and body acceleration in the porous medium.



124 U. Khanduri and B. K. Sharma

2 Mathematical Formulation

Considered the unsteady, laminar, incompressible, two-dimensional blood flow
with suspension of Au/GO nanoparticles through the two coaxial tube forming
the constriction due to the thromosis and stenosis. The blood flow is assumed to
be Newtonian and axisymmetric. The (r1, θ1, z1) curvilinear coordinate is chosen
to mimic the blood flow through a diseased artery. The r and z represent the
radial and axial direction respectively. Figure 1 represent the pictorial represen-
tation of diseased artery in which the outer tube has the multiple stenosis with
radius η and the inner tube has the clot on the catheter with radius ψ.

Fig. 1. Diseased artery segment

The mathematical representation of diseased segment [17]:
Stenosis:

η(z∗
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R0 − 2 δ
λ (z∗

1 − d), d ≤ z∗
1 ≤ d + λ

2

R0 + 2 δ
λ (z∗

1 − d − λ), d + λ
2 ≤ z∗

1 ≤ d + λ

R0 + δ
λSin(π(z∗

1 − d)), d + λ ≤ z∗
1 ≤ d + 2λ

R0 otherwise.

(1)
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Clot:

ε(z∗
1) =

{
R0(c + σ exp(−π2

λ (z∗
1 − z∗

d − 0.5λ)2)), d < z∗
1 < d + 3λ

2 ,

cR0, otherwise.
(2)

where, σ is the maximum height of the clot at the axial position z∗
d , cR0 is the

radius of the inner tube with c << 1. In Eq. (1), δ represents the maximum
height of the stenosis, d is the location of diseased segment.

Blood is assumed to be the suspension of red blood cells(RBCs), platelets,
white blood cells, and plasma, etc. The migration of RBCs towards the center of
the tube due to fluid shear resulted in the variation of viscosity and increase the
fluid velocity towards the center resulting in more variation of RBCs distribution
in the tube. To account for this variation of the blood viscosity due to spatial
variation of RBCs, we proposed the hematocrit-dependent viscosity model:

μf = μ0[1 + γ1h(r∗
1)], (3)

where, h(r∗
1) = hm[1− ( r∗

1
R0

)m], hm represent the maximum hematocrit at center
with γ1 as constant and m ≥ 2 represent the exact shape of velocity profile.

2.1 Governing Equations

A uniform radial magnetic field B is applied on the diseased segment. The
induced magnetic field is assumed to be negligible as it is very small as compared
to the applied magnetic field. Subject to the above mention assumption with the
MHD flow interaction, the resultant governing equations becomes [30]:

Continuity
∂u∗

1

∂r∗
1

+
u∗
1

r∗
1 + R∗ +

R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

= 0. (4)

Momentum (in r∗
1-direction)

ρhnf

[
∂u∗

1

∂t∗
1

+ u
∗
1

∂u∗
1

∂r∗
1

+
w∗

1R∗

r∗
1 + R∗

∂u∗
1

∂z∗
1

− w∗
1
2

r∗
1 + R∗

]
= − ∂p

∂r∗
1

+ μhnf

(
∂2u∗

1

∂r∗
1
2

+
1

r∗
1 + R∗

∂u∗
1

∂r∗
1

+

(
R∗

r∗
1 + R∗

)2 ∂2u∗
1

∂z2
− u∗

1

(r∗
1 + R∗)2

− 2R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

)
− σhnfB0(−u∗

1 + βew∗
1 )

(1 + β2
e)

(
R∗

r∗
1 + R∗

)2

+

(
4

3

∂u∗
1

∂r∗
1

− 2

3

(
R∗

R∗ + r∗
1

∂w∗
1

∂z∗
1

+
u∗
1

R∗ + r∗
1

))
∂μhnf

∂r∗
1

. (5)
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Momentum (in z∗
1 -direction)

ρhnf

[
∂w∗

1

∂t∗1
+ u∗

1

∂w∗
1

∂r∗
1

+
R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

+
u∗
1w∗

1

r∗
1 + R∗

]
= −

(
R∗

r∗
1 + R∗

)
∂p

∂z∗
1

+ μhnf

(
∂2w∗

1

∂r∗
1
2

+
1

r∗
1 + R∗

∂w∗
1

∂r∗
1

+

(
R∗

r∗
1 + R∗

)2 ∂2w∗
1

∂z∗
1
2

− w∗
1

(r∗
1 + R∗)2

+
2R∗

r∗
1 + R∗

∂u∗
1

∂z∗
1

)

+

(
R∗

R∗ + r∗
1

∂u∗
1

∂z∗
1

+
∂w∗

1

∂r∗
1

− w∗
1

R∗ + r∗
1

)
∂μhnf

∂r∗
1

+ G(t∗1)−
μhnf

K
w∗

1

− σhnf B2
0(βeu∗

1 + w∗
1)

(1 + β2
e )

(
R∗

r∗
1 + R∗

)2

. (6)

where, the velocity (u,w) represent the velocity along the radial and axial direc-
tion respecively. The flow is independent in θ∗

1 direction due to axi-symmetry
blood flow in the artery. R∗ represent the radius of curvature, t∗1 represent the
time, βe represent the Hall parameter, and K represent the permeability.

The associate dimensional boundary conditions are:
{

w∗
1 = 0 at t∗1 = 0,

w∗
1 = 0 at r∗

1 = η(z∗
1) and r∗

1 = ε(z∗
1).

(7)

The arterial hemodynamic involves the analysis of pressure and waveform
that are continuously changing due to the propogation of blood flow from central
to peripheral arteries. The expression for axial pressure gradient is represented
as [30]:

− ∂p

∂z∗
1

= A0 + A1cos(2πωpt
∗
1), t > 0. (8)

where, ωpt
∗
1 = 2πfp with frequency fp, A0 and A1 represents the mean and

pulsatile component of pressure gradient, respectively. The extrinsic periodic
body acceleration applied on the axial direction is given as [30]:

G(t∗1) = B0cos(ωqt
∗
1 + ψ), (9)

where, ψ is the phase angle, ωqt
∗
1 = 2πfq with fq as frequency and B0 as the

amplitude for body acceleration, respectively. Table 1 represents the thermophys-
ical parameters for nanofluid and hybrid nanofluid.

2.2 Non-dimensionalization of Governing Equations

Apply the non-dimensional variables into Eqs. 1–2, one can obtain non-
dimensionalize form of diseased artery:

Stenosis region:

η(z∗
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 2δ∗(z∗
1 − d), d ≤ z∗

1 ≤ d + 1
2

1 + 2δ∗(z∗
1 − d − 1), d + 1

2 ≤ z∗
1 ≤ d + 1

1 + δ∗Sin(π(z∗
1 − d)), d + 1 ≤ z∗

1 ≤ d + 2
1 otherwise.

(10)
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Clot region:

ε(z∗
1) =

{
c + σ exp(−π2(z∗

1 − z∗
d − 0.5)2), d < z∗

1 < d + 3/2,

c, otherwise,
(11)

Table 1. Properties & Mathematical expression for nanofluid and hybrid nanofluid

Viscosity μnf =
μf

(1−φ1)2.5

μhnf =
μnf

(1−φ1)2.5(1−φ2)2.5

Density ρnf = (1 − φ1)ρf + φ1ρs1

ρhnf = [(1 − φ2){(1 − φ1)ρf + φ1ρs1}] + φ2ρs2

Electrical Conductivity
σnf

σf
=

σs1+(m−1)σf−(m−1)φ1(σf−σs1 )

σs1+(m−1)σf+φ1(σf−σs1 )

σhnf

σnf
=

σs2+(m−1)σf−(m−1)φ2(σf−σs2 )

σs2+(m−1)σf+φ2(σf−σs2 )

Table 2. Non-dimensional parameters

r̄∗
1 =

r∗
1

R0
z̄∗
1 =

z∗
1
λ

ū∗
1 =

λu∗
1

δ∗U0
w̄∗

1 =
w∗

1
U0

δ = δ∗
R0

t̄∗
1 =

U0t∗
1

R0
R̄c = Rc

R0
p̄ =

R2
0p

μ0U0λ

Re =
U0ρfR0

μf
M2 =

σfB2
0R2

0
μ0

Z = K
R2

0
βe = ωeτe

Again, use the non-dimensionalize parameters into Eqs. 4–6, neglecting the
bar, and assuming the assumption of fully developed flow, mild stenosis (δ∗ <<
1) with O(1) = α = R0

λ , the governing equations become:

dp

dr∗
1

= 0, (12)

ρhnf

ρf
Re

∂w∗
1

∂t∗1
= − Rc

Rc + r∗
1

∂p

∂z∗
1

+
μhnf

μ0

(
∂2w∗

1

∂r∗
1
2 +

1
r∗
1 + Rc

∂w∗
1

∂r∗
1

− w∗
1

(r∗
1 + Rc)2

)

−
(

∂w∗
1

∂r∗
1

+
∂w

Rc + r∗
1

)
mβ1hmr∗

1
m−1

(1 − φ1)2.5(1 − φ2)2.5

+ G(t∗1) − μhnf

μ0

w∗
1

Z
− σhnf

σf

(
Rc

r∗
1 + Rc

)2 (
1

1 + β2
e

)

M2w∗
1 , (13)
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The associate boundary conditions are:
{

w∗
1 = 0 at t∗1 = 0,

w∗
1 = 0, at r∗

1 = η(z∗
1) and r∗

1 = ε(z∗
1).

(14)

The non-dimensionalize formed for pressure gradient and body acceleration are
given as follows:

∂p
∂z∗

1
= B1(1 + e cos c1t

∗
1), G(t∗1) = B2 cos(c2t∗1 + χ), where B1 = A0R2

0
μ0U0

, e =
A1
A0

, B2 = Ā0R2
0

μ0U0
, c2 = ω̄2R0

U0
.

In hemodynamic flow, the progression of arterial diseases can easily be under-
stood by studying the basic hemodynamic factors like flow rate, impedance and
wall shear stress. The mathematical expression for important hemodynamical
factors such as wall shear stress, flow rate and resistive impedance are illus-
trated as [17,21]:

τw∗
1

=
(

∂w∗
1

∂r∗
1

)

r∗
1=η

, (15)

Q =
∫ η

ε

w∗
1r

∗
1dr∗

1 , (16)

λ =
L( ∂p

∂z∗
1
)

Q
. (17)

3 Solution Process

The governing equations are highly non-linear and coupled, so a robust tech-
nique is used to solve these equations. To solve these equations, we employed
the Crank-Nicholson method, which is unconditionally stable and second-order
convergent in space and time. The partial and spatial derivatives are given as:

∂w

∂r
=

wk
i+1 − wk

i−1

2Δr
,
∂2w

∂2r
=

wk
i+1 − 2wk

i + wk
i−1

(Δx)2
,
∂w

∂t
=

wk+1
i − wk

i

Δt
. (18)

The flow chart of the schematic representation of the work plan is depicted in
Fig. 2. The domain is divided into N + 1 × M + 1 grid points, where N denotes
the grid point in the spatial direction and M denotes the grid point in the time
direction. The subscript i and j-designate for the nodal point in spatial and
time direction, respectively. The value of w at initial time t = 0 is known due to
the given condition. Every nodal point in the ith level constitutes the tridiagonal
system, which is solved using the Tri-diagonal Matrix Algorithm (TDMA). Thus,
the value of w is known for each (j+1)th time level. Default values of parameters
and thermodynamical properties of nanoparticles used in the present study are
depicted in Table 3 and the Table 4 respectively.
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Fig. 2. Flow chart

Table 3. Dimensionless parameters

Parameter φ1 φ2 δ hm Re M Rc βe e B1 B2 Z

Value 0.02 0.02 0.1 1 2 1 3 0.5 0.2 0.25 5 3

Table 4. Thermophysical Properties

Thermophysical Properties Blood Gold Graphene

Density [ρ(Kg/m3)] 1063 19320 1800

Electrical Conductivity [σ(S/m)] 6.67×10−1 4.52×107 6.3×107

4 Result and Discussion

The current study is validated using the published work of Elnaqeeb et al. [4], as
shown in Fig. 3. To validate the result of present study with [4], we have reduced
our model by considering striaght artery assumption Rc = 0. The Copper blood
flow model is considered instead of (Au-GO). We ignore the multiple stenosis
and used the stenosis model for n = 2 used by [4]. The velocity profile is drawn
by assuming the same set of values as in [4]. There is a good agreement between
velocity trend in our research work and trend of velocity profile in ref. [4]. In the
present model, we have considered the curved artery as in more generalized cases,
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the artery is not straight. Furthermore, we have included hematocrit dependent
viscosity model on which very researchers published their work. It is one of the
most essential parameter as its depict the picture of the spatial distribution of
RBCs. The influence of hematocrit parameter on the velocity profile is depicted
in the Fig. 4.
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Fig. 3. Velocity profile for stensois shape
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4.1 Velocity Profile

Blood undergoes a significant electromotive force when an external magnetic
field is present. Haemoglobin contains magnetic iron ions, which significantly
react to the surrounding magnetic field and affect blood flow. Red blood cells
(RBCs) are magnetically repelled due to their inherent paramagnetic compo-
sition. From Fig. 4, we can inferred that the velocity profile decreases as the
hematocrit parameter hm enhances. The reduction in velocity profile is due to
the increase in the blood viscosity. Figure 5 depicts the relationship between
velocity profiles and magnetic field parameter M for clot and stenotic regions.
The graph shows that the velocity profile in both cases will be higher in the
absence of a magnetic field. As the value of the M increases from 0 to 4, the
fluid velocity decreases as it experiences a resistive force known as Lorentz force.
Figure 6 illustrates the effect of Hall parameter βe on the velocity profile. The
hall currents are induced due to the collision of the electrons under the action
of a strong magnetic field that generates electromagnetic forces resulting in the
modifying nature of the current density. It is observed from the figure that the
velocity increases with an increase in the Hall parameter. This has happened
because an upsurge in the Hall parameter signifies escalation in collision time or
electron frequency, thus, assisting in the fluid velocity.
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4.2 Flow Rate, Wall Shear Stress and Impedance

Figure 7 depicts the increment in flow rate with an upsurge in the radius of
curvature parameter Rc. This increase may be explained by the fact that when
the parameter Rc increases, the curved channel shrinks to a straight tube. The
higher the value of Rc, the less obstruction comes in the fluid path, resulting
in an upsurge in velocity profile with an increase in Rc. This study is helpful
as its show that for smaller value of Rc, there is a significant growth in fear of
deposition of plaque (lipid). A very less study has been conducted to show the
radius of curvature effect, as in more generalised cases the artery is not always
straight. Thus, it is essential to consider this effect into the model. It is noted
from the Fig. 8 that the flow rate decreases as the magnetic field parameter M
increases from 0 to 4. The non-dimensional velocity profile for M follows the
same pattern as that of [28,29]. The flow rate is constant till z = 2; afterwards,
the flow rate varies due to clot and stenosis, and it again attains its constant
values after z = 4.
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The existence of haemoglobin and magnetic iron oxide particles makes the
blood to be profoundly impacted by a magnetic field. When a magnetic field
is applied to an artery carrying blood, a strong electromotive field is generated
known as the Lorentz force that results in the slowing down of the blood’s flow.
Thus, the fluid experiences the retarding force with an increment in parameter
M, which resists the fluid flow, as observed in Fig. 8. The effect of the perme-
ability parameter Z on the Impedance profile is demonstrated in Fig. 9. The
ratio of the empty space to the total volume of the fluid medium is the porosity
of the material [31]. Due to the dispersion of artery-clogging fatty cholesterol,
blood clots, and plaques in the arterial lumen, blood is thought of as a porous
medium. Increases in porosity result in more empty space, which in turn leads to
less resistance to flow and increased blood velocity. As a result, the fluid velocity
increases with the rise in the permeability parameter due to the less obstruc-
tion in its path. Thus, the impedance profile shows the declining nature as the
permeability parameter Z increases. Figure 10 is plotted to see the variation of
impedance profile with hematocrit dependent viscosity hm. From these plots, it
can be inferred that the impedance profile also increases with an increase in hm.
This has happened due to increases in fluid viscosity that resist the fluid motion
and amplify the impedance profile. In arterial blood flow, the term “wall shear
stress” refers to the force exerted per unit area on the fluid by the arterial wall
(and vice versa) in a direction that is parallel to the local tangent plane. It is
generally known that regions of arteries with either low or fluctuating wall shear
stress seem more susceptible to atherosclerosis. The influence of the pressure
gradient parameter B1 on the WSS profile is seen in Fig. 11. The figure demon-
strates the periodic nature and enhances with an increment in the B1 parameter.
The role of WSS with body acceleration parameter B2 is depicted in Fig. 12. It
is observed that the WSS profile varies periodically with time. As the magnitude
of B2 increases, the fluid velocity also increases, which leads to an enhancement
in the amplitude of B2.
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4.3 Velocity Contour

Figure 13 illustrates the velocity contour for the varying height of stenosis and
clot. It can be noted from the figure that the velocity decreases with an increase
in the clot and stenosis height. There is a difference in the centre area that is
occupied by the clot and the stenosis, despite the fact that the greatest velocity
that can be achieved in each of the three scenarios being the same, which is
16× 10−4. As shown in the figure, the amplitude of the fluid velocity falls as the
height of the clot and stenosis grows, which makes the flow of fluid more difficult
to navigate.
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Fig. 13. Variation in blood flow patterns for diseased artery segment (a) σ∗ = 0.1, δ∗ =
0.2, (b) σ∗ = 0.2, δ∗ = 0.1 (c) σ∗ = 0.2, δ∗ = 0.2.
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Fig. 14. Variation in blood flow patterns for different volume fractions of nanoparticles,
(a) φ1 = 0, φ2 = 0, (b) φ1 = 0.02, φ2 = 0, (c) φ1 = 0.02, φ2 = 0.02.

Figure 14 highlights the effect of nanoparticles concentration φ1 and φ2 on
the velocity contour. Figure 14a signifies the situation of pure blood when no
nanoparticle is added. As we insert the gold nanoparticles into the blood, the
fluid velocity decreases, as depicted in Fig. 14b. Further, the magnitude of the
fluid velocity in the core area of the diseased artery is reduced as a result of the
incorporation of graphene oxide with gold nanoparticles. Therefore, it could be
beneficial for surgeons to manage the flow of blood.

5 Conclusion

A detailed study has been carried out to study the multiple stenotic arteries
with thrombosis. The flow is subjected to the strong radial magnetic field, and
the curvilinear coordinate is adapted to mimic the blood flow. There has been
some thought given to the possibility of using a hybrid nanofluid created by
suspending Au-GO nanoparticles in blood. Because of the extreme non-linearity
of the governing equations, the robust implicit Crank-Nicholson method has been
used. Starting with a discretization of the governing equations, a tridiagonal
system is constructed for each nodal point on the (i + 1)th level, and then the
Tri-diagonal Matrix Algorithm (TDMA) is used to solve it. The velocity w at
each mesh point may be calculated by using this method again for every (j+1)th

time step. The effect of different pertinent parameters on velocity, temperature,
wall shear stress, Impedance and velocity contour is displayed. The significant
outcomes of the study are summarised below:

– The significant decline in flow velocity is observed for an increase in the
stenosis and clot height.

– It has been observed that raising the Hall parameter induces an increase in
fluid velocity owing to an increase in collision time or electron frequency,
hence assisting fluid flow.
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– Au-GO/blood hybrid nanoparticles have a higher velocity profile than pure
blood and unitary nanoparticles.

– Increasing the permeability parameter Z allows the fluid to travel more freely,
aiding the flow and decreasing the impedance profile.

The findings of this research may be useful in diagnostic imaging tech-
niques for identifying vascular anomalies, such as magnetic resonance angiog-
raphy (MRA). The hybrid nanoparticles Au-GO/blood have been studied due
to their potential applicability in nanomedicine and biomedicine. Various steno-
sis forms (such as triangular and elliptical) and their tapering effects may be
investigated in future studies, as can the interaction of nanoparticle shapes with
permeable artery walls.
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