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Abstract. In 1981, Stone conjectured that a fully semimonotone Q0

matrix is contained in P0. In 1995, Murthy proved that for n = 5, if
A ∈ R

n×n ∩ Ef
0 ∩ Q0 and aii > 0, then A ∈ P0. Here, we show that for

matrices with some specific sign patterns this conjecture is true. Murthy
showed that fully semimonotone Z-matrices are P0, that is E

f
0 ∩Z ⊆ P0.

Here, we show that semimonotone Z-matrices are contained in P0, that
is, we exempt the condition of fully semimonotone with semimonotone.
Further, we show the equivalency of E0-matrices and Ef

0 -matrices for Z-
matrices. Precisely, we are characterizing the matrices in P0 ∩Q0. These
classes have been found to be interesting in view of the fact that these
are processable by Lemke’s algorithm.

Keywords: Q0-matrices · E0-matrices · Two-person finite game ·
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1 Introduction

Given a matrix A ∈ R
n×n. Let q ∈ R

n be a vector. The linear complementarity
problem, LCP (q,A) can be described as follows:

We want to find x ∈ R
n such that

x ≥ 0, (1)
Ax + q = w ≥ 0, (2)

xtw = 0. (3)

If such a vector exists, we call this x as a solution to the LCP (q,A). For a
given q ∈ R

n, if some vector x ∈ R
n satisfies (1) and (2), we call it as a feasible

solution for LCP (q,A). We call a matrix Q0 if for all q, whenever LCP (q,A)
has a feasible solution, it also has a solution satisfying (1), (2), and (3). We call
A to be a Q-matrix if LCP (q,A) has a solution for every q. We call A to be an
R0-matrix, if LCP (0, A) has a unique solution. If all the principal minors of a
matrix A are positive (nonnegative), then we call A to be a P (P0)-matrix. We
call A to be a Z-matrix, if aij ≤ 0 for i �= j. We denote the classes of matrices
in each of the above cases by Q, Q0, R0, P , P0, and Z respectively. For further
references, the reader may refer to [3,5,10] and the results therein.
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Characterizing the number of solutions to an LCP has been found to be
interesting among the researchers. LCP associated to a P -matrix has a unique
solution for every vector q. In 1983, Cottle and Stone introduced a new class
U known as the class of U -matrices. We say a matrix U if LCP (q,A) has a
unique solution whenever q is in the interior of the union of complementary
cones. Further, the class is expanded for the unique solution of LCP (q,A) for q
in the interior of any non-degenerate complementary cone. This class is known
as the class of fully semimonotone matrices, denoted by Ef

0 . The class of Ef
0 was

introduced by Stone. For further results refer to [9].
In [4], Cottle and Stone proved P ⊆ U ⊆ Ef

0 . In [13], Stone proved that
U ∩Q0 ⊆ P0. Further, he raised the conjecture Ef

0 ∩Q0 ⊆ P0. For matrices with
some specific sign patterns, we show that this conjecture is true. In particular,
we show that semimonotone Z-matrices are contained in P0. In addition, we also
prove that fully semimonotone matrices having specific sign patterns are P0.

In proving some of our results we use the concept from the Completely mixed
matrix games. A two person zero-sum game may be described as following:

Let Player 1 and player 2 choose integers i ∈ m̄ and j ∈ n̄ respectively. Then
Player 2 receives an amount aij from Player 1. This amount aij may be negative,
positive, or zero. A mixed strategy for Player 1 and 2 are the probability vectors
x = (x1, x2, ..., xm)t, and y = (y1, y2, ..., yn)t, respectively, where xi ≥ 0 for all
i and

∑m
i=1 xi = 1 and yj ≥ 0 for all j and

∑n
i=1 yj = 1. We call (x∗, y∗) to

be the optimal strategies for Player 1 and Player 2 respectively, if the following
conditions hold

∑

i

x∗
i aij ≤ v for j = 1, 2, .., n, (4)

∑

j

y∗
j aij ≥ v for i = 1, 2, ..,m. (5)

It is known that such a v exists and is unique. We denote v = val(A) and call it
the value of the matrix game A = (aij). In describing (4) and (5), we assumed
Player 1 to be the minimizer where Player 2 to be the maximizer. If each entry
of the vector x = (x1, x2, ..., xm)t is positive, then we call such a vector x as
a completely mixed strategy for player 1. Similarly, if each entry of the vector
y = (y1, y2, ..., yn)t is positive, then we call such a vector y as a completely mixed
strategy for player 2. If each of the optimal pair (x∗, y∗) is completely mixed for
a game associated with A, then we call it a completely mixed game.

Kaplansky [7] has characterized a completely mixed (c.m.) matrix game. He
showed the following:

Consider a game associated with matrix A ∈ R
m×n and suppose val(A) = 0,

then the game associated with matrix A is c.m. if and only if m = n, r(A) = n−1,
and each of the cofactor of A is nonzero and have same sign.

The organisation of this manuscript is as following: In Sect. 2, we present a
few basic results that are used in further sections. In Sect. 3, we provide our main
theorem regarding the Z-matrices. Section 4 contains some more results related
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to Ef
0 . In Sect. 5, we provide some open problem for future work and conclude

the paper.

2 Preliminaries

Notation: In this manuscript, we used signs at many places instead of a fix
value. The meaning for these signs is as following: + implies positive, � means
nonpositive, − denotes negative, ⊕ means nonnegative, and ∗ denotes any real
value.

A ∈ R
m×n = (aij); i = 1, 2, ...,m and j = 1, 2, ..., n denotes a matrix. n̄

denotes the set {1, 2, ..., n}. Let α, β ⊆ n̄ and the complements are ᾱ = n̄\α
and β̄ = n̄\β. If we delete rows of A corresponding to ᾱ and columns of A
corresponding to β̄, then the resulting matrix is a submatrix of A, denoted
by Aαβ . We call Aαβ to be a principal submatrix of A if α = β. |α| denotes
the cardinality of the set α. The determinant of the matrix A is denoted as
|A| = det(A). We say a vector x ≥ 0 (x > 0), if every coordinate of x is
nonnegative (positive). Similarly, we say a matrix A ≥ 0 (A > 0), if each entry
of A is nonnegative (positive).r(A) denotes the rank of matrix A.

This section contains some basic definitions and results from the literature.
These results are used in the next sections.

A.W. Tucker introduced the concept of PPTs. PPTs (principal pivot trans-
forms) play a crucial role in the consideration of LCP. A detailed treatment of
PPT was given by Tsatsomeros [14].

Let A ∈ R
n×n and α ⊆ n̄.

A =
(

Aαα Aαᾱ

Aᾱα Aᾱᾱ

)

If A−1
αα exists, then for such an α, the PPT is defined. We denote such a PPT of

A as ppt(A,α).

ppt(A,α) =
(

A−1
αα −A−1

ααAαᾱ

AᾱαA−1
αα A/Aαα

)

,

where A/Aαα = Aᾱᾱ − AᾱαA−1
ααAαᾱ is known as the Schur complement. For

any α, if Aαα is invertible, then PPT exists for the corresponding α. We call all
those PPTs as legitimate PPTs.

Semimonotone matrices were first initiated by Eaves [5], and initially these
are denoted by L1. Later, in [3], this class was denoted by E0. The name “semi-
monotone” was initiated by Karamardian. It is known that P0 ⊆ E0.

Definition 1. We call A ∈ R
n×n to be a semimonotone matrix if, for any

nonzero nonnegative vector x, there is some k in such a manner that xk is
positive and (Ax)k is nonnegative. We call A as a fully semimonotone matrix,
denoted by Ef

0 , if A and all its legitimate principal pivot transforms are in E0.

Some of the useful properties of semimonotone matrices from [3,10] are stated
below.
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Theorem 1. If A ∈ R
n×n ∩ E0, then we can conclude the following:

1. Aαα ∈ E0 for all α ⊆ n̄.
2. At ∈ E0.
3. aii are nonnegative for all i = 1, 2, ..., n.
4. For any vector q > 0, there is a unique solution for LCP (q,A), that is x = 0.
5. val(A) ≥ 0.

Tsatsomeros and Wendler [15] provided the following result:

Theorem 2. Let A ∈ R
2×2 and aii > 0. Then A ∈ E0 if and only if either

A ≥ 0 or det(A) ≥ 0.

Definition 2. We call A ∈ R
n×n to be a copositive matrix if for any nonnegative

vector x, xtAx ≥ 0. We denote the class of such matrices by C0. A matrix A
is called fully copositive matrix, denoted by Cf

0 , if A and each of its legitimate
PPTs is in C0.

The class Ef
0 includes the class Cf

0 . In [8], Murthy and Parthasarathy provide
a result for Cf

0 .

Theorem 3. Let A ∈ Cf
0 ∩ Q0 ∩ R

n×n. Then A ∈ P0.

Next we state a few known results for fully semimonotone Q0 matrices from
[11].

Theorem 4. Let A ∈ Ef
0 ∩ Q0 ∩ R

n×n. Further, assume det(Aαα) ≥ 0 for all
|α| = n − 1. Then A ∈ P0.

Theorem 5. Let A ∈ R
n×n ∩ Ef

0 ∩ R0 . Then A is a P0-matrix.

The following corollary is proved already. Here we provide another proof.

Corollary 1. Let A ∈ R
n×n ∩ Ef

0 ∩ Q0. Further, suppose that Aαα ∈ P for
|α| ≤ (n − 2). Then A ∈ P0.

Proof. Let B = Aαα where |α| = n − 1. We claim that det(B) ≥ 0.
Suppose det(B) < 0. Since Aαα ∈ P for |α| ≤ (n − 2), that is each proper

principal submatrix of B is also a P -matrix. Hence, the diagonal entries of B−1

are negative.
Since A ∈ Ef

0 , observe that B ∈ E0 and B−1 ∈ E0. It is not possible for
E0-matrix to have negative diagonal entry. Hence, det(B) ≥ 0. Therefore, using
Theorem 4, A ∈ P0. ��
Remark 1. We have used the fact that if A ∈ Ef

0 , then any proper principal
submatrix is E0. If some proper principal submatrix (say B) is non-singular,
then B−1 ∈ E0.

The result given below is the Theorem 4.1.2 in [3]. This result is useful in
proving next theorem.
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Theorem 6. [3] Let M = ppt(A,α). Then for any submatrix Mββ of M

det(Mββ) = det(Aγγ)
det(Aαα)

where γ = α  β.

We need the following result.

Theorem 7. Let A be a P0-matrix. Then any PPT of A is also a P0-matrix.

Proof. Let A ∈ R
n×n ∩ P0 and α ⊆ n̄ such that det(Aαα) �= 0. Therefore,

ppt(A,α) exists. Let us call it M . Now for any β ⊆ {1, 2, ..., n}, using Theorem
6, we have

det(Mββ) =
det(Aγγ)
det(Aαα)

(6)

where γ = α  β. Observe that Aαα and Aγγ are principal submatrices of A.
Since A ∈ P0. Hence, det(Aαα) > 0, det(Aγγ) ≥ 0. Therefore, on putting these
in 6, we have det(Mββ) ≥ 0. Since β was arbitrary, hence M ∈ P0. Therefore,
ppt of a P0-matrix is also a P0-matrix. ��
Remark 2 [3]. It is known that P ⊆ P0 ⊆ Ef

0 ⊆ E0. In the next section we show
that for the Z-matrices, P0, E

f
0 and E0 are equal.

The following two results of game theory are used in proving our results.

Theorem 8 [2]. Let A ∈ R
n×n ∩Z. Consider a game is associated with matrix

A. Suppose val(A) > 0. Then A has to be a P -matrix.

Theorem 9 [7]. Consider a game associated with matrix A ∈ R
m×n and

val(A) = 0. Then A is c.m. if and only if m = n, r(A) = n − 1, and each
of the cofactor of A is nonzero and have same sign.

The next two results are known for Q and R0 matrices.

Theorem 10 [1]. Let A ∈ R
n×n ∩ P0. Then A ∈ Q if and only if A ∈ R0.

Theorem 11 [6]. Let A ∈ R0 ∩ R
n×n and LCP (q,A) has a unique solution,

for some q > 0. Then A ∈ Q.

3 Main Results

Murthy and Parthasarathy [9] showed that Ef
0 ∩ Z ⊆ P0. In this section, we

show that the condition of fully semimonotone is not necessary. In particular,
we show that the semimonotone, Z-matrices are P0.

Theorem 12. Let A ∈ R
n×n ∩ E0 ∩ Z, then A ∈ P0.
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Proof. This proof is done using the mathematical induction. For n = 1, it is
obvious.

For n = 2, the sign pattern would be
(⊕ �

� ⊕
)

.

Since the diagonal entries are nonnegative, both proper principal minors are
nonnegative. If any of the off-diagonal entry is zero, then the determinant would
be nonnegative. Hence, A ∈ P0. If both the off-diagonal entries are negative,
then using Theorem 2, the determinant of the matrix A is nonnegative. Hence,
A ∈ P0.

Now for n = 3. Since A ∈ E0, using Theorem 1, each of its principal sub-
matrix is E0 and the diagonal entries are nonnegative. From Theorem 2, either
Aαα ≥ 0 for |α| = 2 or det(A) ≥ 0. That means Aαα ∈ P0 for all |α| = 2.
Consider x ≥ 0 be an optimal for A, so Ax ≥ 0,

⎛

⎝
⊕ � �
� ⊕ �
� � ⊕

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ ≥
⎛

⎝
0
0
0

⎞

⎠

a) If exactly one coordinate of x is non-zero (say x1), then A ∈ E0 implies that
A must be of the type

A =

⎛

⎝
⊕ � �
0 ⊕ �
0 � ⊕

⎞

⎠ .

Here, det(A) ≥ 0. Hence, A ∈ P0.
b) If exactly two coordinates of x are non-zero (say x1, x2), then A ∈ E0 implies

that A must be of the type

A =

⎛

⎝
⊕ � �
� ⊕ �
0 0 ⊕

⎞

⎠ .

Since, A ∈ E0, using 1, the submatrix B of A, on omitting last row and last
column, is also E0. Using the Theorem 2, either B ≥ 0 or det(B) ≥ 0. Hence,
det(A) ≥ 0. Therefore, A ∈ P0.

c) Let x > 0. Then the game associated with A is c.m. We have the hypothesis
that A is a semimonotone matrix, hence using Theorem 1, val(A) ≥ 0. Now,
we will check for both the cases when the value is zero or the value is positive.
If val(A) > 0, then by Theorem 8, A ∈ P . Therefore, A ∈ P0.
Now for val(A) = 0, from Theorem 9, rank(A) = n − 1. That means one
of the row is linear combination of others. Hence det(A) = 0 and therefore
A ∈ P0.

Hence, it is true for n = 3. Now for the induction hypothesis, let it is true
up to any n − 1 order. Now we will show that it is true for n.
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a) Let all the coordinates of x be positive, that is, the game is completely mixed.
Since A ∈ E0, hence val(A) ≥ 0. If val(A) > 0, then by Theorem 8, A ∈ P .
Therefore, A ∈ P0. If val(A) = 0, then using Theorem 9, rank(A) = n − 1.
That means one of the row is linear combination of others. Hence det(A) = 0
and therefore A ∈ P0.

b) Let x has k non-zero coordinates such that k ≤ n − 1. We can partition our
given matrix as

A =
(

C B
0 D

)

where C ∈ R
k×k, B ∈ R

k×n−k,D ∈ R
n−k×n−k and 0 is null matrix of order

n − k × k. From partitioned matrix properties, we know that det(A) =
det(C).det(D). Since from induction we know that for any k ≤ n − 1,
det(C) ≥ 0, det(D) ≥ 0. Hence, det(A) ≥ 0. Therefore, A ∈ P0.

Hence, for any n, A ∈ R
n×n ∩ E0 ∩ Z implies A ∈ P0. ��

In the above theorem, both the conditions of A being E0 and Z are necessary.
We can see this by the following two examples.

Example 1. Let

A =
(

1 −2
−1 0

)

.

It can be seen that A ∈ Z and A is not an E0-matrix (since Ax < 0 for some
vector x = (1, 1)t). Notice that det(A) = −2. Therefore, it is not a P0-matrix. ��
Example 2. Let

A =
(

1 2
1 1

)

Since A is a nonnegative matrix, it can be easily verified that A ∈ E0. Since
off-diagonal entries are positive, A �∈ Z. But the determinant of A is negative,
hence A is not a P0-matrix. ��
Remark 3. It is known that P0 ⊆ E0. From Theorem 12, we can conclude that
within Z-matrices, P0 is equivalent to E0. From Example 2, it can be seen that
the Z-property is necessary for the equivalence to hold. From this result, we can
conclude the next two theorems.

In [12], Parthasarathy, Ravindran and Sunil showed that within the class of
E0, R0-matrices and Q-matrices are equivalent for matrices up to order 3. They
provided counter examples of matrices which are E0 ∩ Q but not R0 for order
4 and above. But here we prove the equivalence with the additional assumption
of Z for any order of matrices.

Theorem 13. Let A ∈ R
n×n ∩ E0 ∩ Z. Then A ∈ Q iff A ∈ R0.

Proof. Let A ∈ R
n×n ∩ E0 ∩ Z. Using Theorem 12, A ∈ P0. Then Theorem 10

states that within P0, Q is equivalent to R0. Hence, A ∈ Q if and only if A ∈ R0.
Therefore, within the class of E0 and Z-matrices, R0 is equivalent to Q ��
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Theorem 14. Let A ∈ R
n×n ∩ Z. Then A ∈ E0 if and only if A ∈ Ef

0 .

Proof. Whenever A ∈ Ef
0 , it is obvious A is an E0-matrix. Now for the converse

part let us assume A ∈ E0. Since A ∈ Z, by Theorem 12, A ∈ P0. Using remark
2, it is known that P0 ⊆ Ef

0 . Therefore, A ∈ Ef
0 .

Hence, within the class of Z-matrices, E0 is equivalent to Ef
0 . ��

In general, E0-matrix are not equivalent to Ef
0 . Hence, in the above theorem,

the condition of matrix being a Z-matrix is necessary. It can be seen by the
example below.

Example 3. Let

A =

⎛

⎝
1 2 0
1 1 1
1 0 0

⎞

⎠ .

Since A is a nonnegative matrix, it can be easily verified that A ∈ E0. Let
α = {1, 2}. Consider ppt(A,α).

ppt(A,α) =

⎛

⎝
−1 2 −2
1 −1 1

−1 2 −2

⎞

⎠ .

Observe that the diagonal entries of the ppt corresponding to the above α
are negative. Using Theorem 1, ppt(A,α) is not an E0-matrix. Therefore,
A �∈ Ef

0 . ��

4 Results for Matrices with Specific Sign Patterns

In this section, we consider matrices with some specific sign patterns and show
some properties of such matrices.

Theorem 15. Let A ∈ R
n×n and aii > 0. Further suppose that all the entries

below the diagonal are nonnegative. Then A ∈ Q.

Proof. First we show that A ∈ R0 for the given sign pattern of A. On the
contrary, suppose A �∈ R0. That is, there is a non-zero vector x ≥ 0 such that
Ax = w ≥ 0 and xtw = 0.

Ax =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

+ ∗ ∗ . . . ∗
⊕ + ∗ . . . ∗
⊕ ⊕ + . . . ∗
...

...
...

. . .
...

⊕ ⊕ ⊕ . . . +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1

...
xk

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1

...
wk

...
wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= w

WLOG, let xk > 0 for any 1 ≤ k ≤ n, and xm = 0 for m > k. Then it is easy to
observe that wk is positive. Hence, xkwk �= 0. Hence, xk cannot be positive for
any k. Therefore, A ∈ R0.
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Let d ∈ R
n be any positive vector. Similarly, we can show thatx = 0 is the

only solution for LCP (d,A). Hence, using Theorem 11, it can be concluded that
A ∈ Q. ��
Theorem 16. Let A ∈ R

n×n and aii > 0. Further suppose that all the entries
below the diagonal are nonnegative and all the entries above the diagonal are
non-positive. Then A ∈ P0.

Proof. Since A has all its diagonal entries positive. Hence, for n = 1, A ∈ P0.
Now for n = 2,

A =
(

+ �
⊕ +

)

Here, det(A) > 0 , hence A ∈ P as well as A ∈ P0.
For n = 3, every proper principal submatrix have the same sign pattern.

Since we have seen such a matrix is P0 up to n = 2, that is, proper principal
minor are nonnegative. Hence, from Theorem 4, A ∈ P0.

Assume it is true for the matrices up to order n − 1, that is, every matrix
of the given sign pattern up to order n − 1 is P0. For n, every proper principal
minor is nonnegative. Therefore, using Theorem 4, such a matrix A is always a
P0-matrix. ��
Remark 4. Since we know that P0 ⊆ Ef

0 , the matrices with given sign pattern
in the above theorem are Ef

0 . Therefore, Stone’s conjecture holds for the matri-
ces with all its diagonal entries positive, all the entries below the diagonal are
nonnegative, and all the entries above the diagonal are non-positive.

Next, we show another sign pattern such that the conjecture holds for that
pattern too. This pattern is almost similar to the above. But for the sake of
completeness we are also giving an another way of proving it.

Theorem 17. Let A ∈ R
n×n and aii > 0. Further suppose that all the entries

above the diagonal are nonnegative. Then A ∈ R0.

Proof. For given A, consider LCP (0, A).

Ax =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

+ ⊕ ⊕ . . . ⊕
∗ + ⊕ . . . ⊕
∗ ∗ + . . . ⊕
...

...
...

. . .
...

∗ ∗ ∗ . . . +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

xk

...
xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= w

where ∗ is any real number and w ∈ R
n. Here for least value of k such that xk > 0,

(Ax)k = wk is also positive. It contradicts the condition of complementarity.
Hence, no xk is positive. Therefore, A ∈ R0. ��
Remark 5. In the above theorem, if we further assume that A is fully semimono-
tone, then A ∈ P0.
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Theorem 18. Let A ∈ R
n×n ∩ Ef

0 and aii > 0. Further suppose that all the
entries above the diagonal are nonnegative. Then A ∈ P0.

Proof. Let A ∈ R
n×n and aii > 0. All the entries above the diagonal are non-

negative. Theorem 17 implies that A ∈ R0. Since A ∈ Ef
0 , Theorem 5 implies

that A ∈ P0. ��

5 Conclusions

We have proved that a fully semimonotone and Q0-matrix with specific sign
patterns is a P0-matrix. We also have proved that a matrix that is semimonotone
and Z is contained in the class of P0-matrices. Further, we have shown that for
Z-matrices, the semimonotone matrices are the fully semimonotone matrices.
Observe that these classes are subsets of P0 ∩ Q0, and hence these classes are
processable by Lemke’s algorithm, that is, for each q, either Lemke’s algorithm
gives a solution or terminates in a ray.

Open Problem: Now, we state an open problem. The following conjecture is
due to R.E. Stone.

Let A ∈ R
n×n. Further assume that A is a fully semimonotone Q0-matrix. Can

we say A is a P0-matrix?
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tions and comments. We also thank Professor T. Parthasarathy for making several
valuable suggestions that resulted in improving the presentation of this manuscript.
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