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Abstract. In this paper, the eighth order boundary value problems
(BVPs) are solved by utilizing the Vieta-Lucas polynomials based
scheme. The operational matrix of derivative of shifted Vieta-Lucas poly-
nomials is used. The corresponding algebraic equations are handled by
taking the roots of Vieta-Lucas polynomials as collocation points. The
illustrative examples provide the favorable comparison with other exist-
ing methods that demonstrates the efficiency and accuracy of the scheme.
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1 Introduction

Higher-order BVPs have a variety of usage in engineering and sciences [1]. These
kind of equations can be found in fluid dynamics, hydrodynamics, astrophysics,
beam theory, astronomy, induction motors, and other fields [2]. The physics of
various hydrodynamic stability issues are governed by eighth-order differential
equations [3]. In this paper, we offer a strategy based on Vieta-Lucas poly-
nomials for solving eighth order boundary value problems. Numerous scholars
have worked on eighth order BVPs using diverse approaches. Using finite differ-
ence methods Boutayeb and Twizell [4] solved these kind of problems, Wazwaz
[5] proposed a numerical technique that employed the Adomian decomposition
method as well as a modified Adomian decomposition approach. Siddiqi and
Twizell [6] introduced differential quadrature and generalised differential quadra-
ture rules, Nonic spline and nonpolynomial nonic spline methods were utilised
by Siddiqi and Akram [7], variational iteration decomposition was suggested by
Noor and Mohyud-Din [8], and homotopy perturbation was employed by Gol-
babai and Javidi [9]. Costabile and Napoli [10] employed collocation techniques
and particular classes of polynomials to solve ninth order BVPs, whereas Akram
and Rehman [11] used the reproducing kernel space approach. Xu et al. [12]
introduced a collocation approach based on second kind Chebyshev wavelets.
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Elahi et al. [13] employed the Legendre Galerkin approach to solve eighth order
boundary value problems, whereas Islam et al. [14] used the Galerkin method.
Agarwal [1] investigated the existence and uniqueness of these equations.

Different kinds of differential equations are handled analytically [15–19] how-
ever it is not always possible to find the analytical solutions, thus the researchers
are interested in the development of new numerical schemes that provide better
approximations such as the operational matrix approach [20–24] has been widely
used for the approximation purposes. Vieta-Lucas polynomials (VLPs) and their
shifted forms have recently become popular for numerically solving several types
of differential equations [25,26]. In this paper, we solved eighth order boundary
value problems using a Vieta-Lucas polynomials based scheme.

This work is organised as follows: In Sect. 2, we discuss the necessary back-
ground and terminologies. Section 3 describes the mathematical model and
the proposed method. Section 4 gives the estimates for convergence and error.
Section 5 includes various illustrated examples to demonstrate the proposed app-
roach’s simplicity and applicability. In Sect. 6, the obtained results are com-
pared to the approximate solutions of other known techniques. A reliable excel-
lent degree of accuracy is achieved in all of the circumstances tested. The final
remarks are found in Sect. 7.

2 Preliminaries

In this part, we will go through some of the fundamental definitions and prop-
erties of Vieta-Lucas polynomials, which are used in this study.

Definition 2.1. The Vieta-Lucas polynomials VLn(ζ) of degree n (n ∈ N ∪ {0})
can be defined as [27]:

VLn(ζ) = 2 cos(nδ), (1)

where δ = arccos ( ζ
2 ) and | ζ |∈ [−2, 2], δ ∈ [0, π].

The recurrence relation for Vieta-Lucas polynomials VLn(ζ) is given by [27]:

VLn(ζ) = ζVLn−1(ζ) − VLn−2(ζ), m ≥ 2, (2)

with VL0(ζ) = 2 and VL1(ζ) = ζ.
The first few Vieta-Lucas polynomials are given as:

VL0(ζ) = 2,
VL1(ζ) = ζ,

VL2(ζ) = ζ2 − 2,

VL3(ζ) = ζ3 − 3ζ,

VL4(ζ) = ζ4 − 4ζ2 + 2,

VL5(ζ) = ζ5 − 5ζ3 + 5ζ,

VL6(ζ) = ζ6 − 6ζ4 + 9ζ2 − 2.
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In terms of power series expansion, the Vieta-Lucas polynomials are
expressed as [27]:

VLn(ζ) =
�n/2�∑

j=0

(−1)j
n(n − j − 1)!
j!(n − 2j)!

ζn−2j, n ≥ 1. (3)

The Vieta-Lucas polynomials VLn(ζ) and VLm(ζ) are orthogonal over [−2, 2]
with respect to weight function w(ζ) = 1√

4−ζ2
and satisfy the following condition

[25]:

〈VLn(ζ),VLm(ζ)〉w(ζ) =
∫ 2

−2

VLn(ζ)VLm(ζ)w(ζ) dζ =

⎧
⎪⎨

⎪⎩

4π, n = m = 0,

2π, n = m �= 0,

0, n �= m.

(4)

Proposition 2.1. The basic properties of Vieta-Lucas polynomials are given
as:

(i) VLn(ζ)(VLm(ζ)) = VLnm(ζ).
(ii) VLn(ζ) VLm(ζ) = VLn+m(ζ) + VL|n−m|(ζ).
(iii) ζVLn(ζ) = VLn+1(ζ) + VLn−1(ζ).
(iv) (4 − ζ2)VLn(ζ) = −VLn+2(ζ) + 2VLn(ζ) − VLn−2(ζ).

Proof. Omitted 	


2.1 Shifted Vieta-Lucas Polynomials and Its Operational Matrix
of Differentiation

Definition 2.2. The shifted VLPs VL∗
n(ζ) over [0, 1] with degree n ∈ N ∪ {0}

can be defined as [25]:
VL∗

n(ζ) = VLn(4ζ − 2). (5)

The recurrence relation of shifted VLPs is [25]:

VL∗
n(ζ) = (4ζ − 2)VL∗

n−1(ζ) − VL∗
n−2(ζ), (6)

provided VL∗
0(ζ) = 2 and VL∗

1(ζ) = 4ζ − 2.
The power series expansion of shifted VLPs are [25]:

VL∗
n(ζ) = 2n

n∑

j=0

(−1)j
4n−j(2n − j − 1)!

j!(2n − 2j)!
ζn−j, n ≥ 1. (7)

The shifted VLPs satisfy the following orthogonality property [25]:

〈VL∗
n(ζ),VL∗

m(ζ)〉w∗(ζ) =
∫ 1

0

VL∗
n(ζ)VL∗

m(ζ)w∗(ζ) dζ =

⎧
⎪⎨

⎪⎩

4π, n = m = 0,

2π, n = m �= 0,

0, n �= m,

(8)
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where w∗(ζ) = 1√
ζ−ζ2

is the weight function of shifted Vieta-Lucas polynomi-

als. Assume y(ζ) defined on the interval [0,1] be a Lebesgue square integrable
function. So it can be written in terms of shifted VLPs as

y(ζ) =
∞∑

j=0

cjVL∗
j (ζ), (9)

where cj are unknown coefficients and can be obtained by following expressions

cj =
1

αjπ

∫ 1

0

y(ζ)VL∗
j (ζ)

√
ζ − ζ2

dζ, (10)

where

αj =

{
4, j = 0,

2, j ≥ 1.

Now, the truncated series can be written as

yN (ζ) =
N∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ),

where

CT = [c0, c1, c2, . . . , cN], Φ(ζ) = [VL∗
0(ζ),VL∗

1(ζ),VL∗
2(ζ), . . . ,VL∗

N(ζ)].

The shifted VLPs operation matrix is defined as

dyN

dζ
= CT D(1)Φ(ζ), (11)

where D(1) is the operation matrix of differentiation of shifted VLPs of order
(N + 1) × (N + 1) are given as:

D(1) = dij =

⎧
⎪⎨

⎪⎩

4i
αj

, j = i − h

{
h = 1, 3, · · · , N if N even,

h = 1, 3, · · · , N − 1 if N odd,

0, otherwise.

(12)

where α0 = 2 and αk = 1(k ≥ 1).
For any n ∈ N, it can be generalized as:

dnΦ(ζ)
dζn

= (D(1))nΦ(ζ) = D(n)Φ(ζ), where n ∈ N. (13)

For example: for N = 6, we get

D(1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 0 0 0 0 0
0 8 0 0 0 0
6 0 12 0 0 0
0 16 0 16 0 0
10 0 20 0 20 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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3 Mathematical Model and Numerical Scheme

This section includes the mathematical description of the model followed by the
numerical scheme that describes the utility of differentiation matrix of shifted
Vieta-Lucas polynomial to solve the eighth order BVPs. The eight order differ-
ential equation is formulated as

d8y

dζ8
+

7∑

j=0

aj
djy

dζj
= f(ζ), ζ ∈ [0, 1], (14)

where f(ζ) and aj are the continuous functions on the interval [0, 1]. Subject to
supplementary conditions

diy

dζi
|ζ=0= ui,

diy

dζi
|ζ=1= vi, i = 0, 1, 2, 3. (15)

Let yN (ζ) be the shifted Vieta-Lucas polynomials approximation given as

yN (ζ) =
N∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ), (16)

where the unknowns are C = [c0, c1, c2, . . . , cN ]T .
Using shifted Vieta-Lucas polynomial operational matrix of derivative,

Eq. (14) can be expressed as

CT D(8)Φ(ζ) +
7∑

j=0

ajC
T D(j)Φ(ζ) = f(ζ). (17)

Thus, the residual term can be written as

RN (ζ) = CT D(8)Φ(ζ) +
7∑

j=0

ajC
T D(j)Φ(ζ) − f(ζ). (18)

Now, by using collocation method, we get

RN (ζi) = 0, i = 0, 1, 2, . . . , N − 8. (19)

where collocation points are taken as

ζi =
1 + cos ( (2i+1)π

2(N−8) )

2
, i = 0, 1, . . . , N − 8. (20)

The corresponding boundary conditions gives

diy

dζi
|ζ=0= CT Φ(0) = ui,

diy

dζi
|ζ=1= CT Φ(1) = vi, i = 0, 1, 2, 3. (21)

This yields N nonlinear equations. This nonlinear system can be solved to deter-
mine the values of coefficients of vector C. By substituting the value of C, we
obtain the numerical solution yN (ζ).
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4 Convergence and Error Analysis

Theorem 4.1 [25]. Let y(ζ) ∈ L2
ω[0, 1] and d2y

dζ2 ≤ H, where H is arbitrary
constant. Then y(ζ) can be expressed as

y(ζ) =
∞∑

j=0

cjVL∗
j (ζ), (22)

and yN (ζ) is defined in (16). Furthermore, this numerical solution uniformly
converges to y(ζ)(yN (ζ) → y(ζ) as N → ∞). Also, the coefficients ci are
bounded, i.e.,

|ci| ≤ H

4i(i2 − 1)
. (23)

Lemma 4.2 [28]. Let f(ζ) be a function such that f(k) = ck and assume the
following:

1. f(ζ) is a continuous, decreasing, positive function for ζ ≥ N .
2.

∑
cN is convergent, and RN =

∑∞
k=N+1 ck.

Then
RN ≤

∫ ∞

N

f(ζ)dζ. (24)

Theorem 4.3 [25]. If Theorem (4.1) is satisfied by the function y(ζ), and
yN (ζ) =

∑n
i=0 ciV L∗

i (ζ), then the estimated error(in L
2[0, 1] norm) can be given

as:
||y(ζ) − yN (ζ)|| <

H

12N
3
2
. (25)

5 Numerical Examples

We provide the following test examples in this section to validate the accuracy
and efficiency of the proposed method.

Example 5.1. Let us consider the eighth order differential equation as

d8y

dζ8
+ ζy = −(48 + 15ζ + ζ3)eζ , ζ ∈ [0, 1]. (26)

with

y |ζ=0= 0,
dy

dζ
|ζ=0= 1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= −3,

y |ζ=1= 0,
dy

dζ
|ζ=1= −e,

d2y

dζ2
|ζ=1= −4e,

d3y

dζ3
|ζ=1= −9e.
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Apply our proposed method as follows

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (27)

Now using operational matrix of derivative approach

d8yN

dζ8
= CT D(8)Φ(ζ), (28)

where

D(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0
6 0 12 0 0 0 0 0 0
0 16 0 16 0 0 0 0 0
10 0 20 0 20 0 0 0 0
0 24 0 24 0 24 0 0 0
14 0 28 0 28 0 28 0 0
0 32 0 32 0 32 0 32 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D(8) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1321205760 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Φ(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

4ζ − 2

2 − 16ζ + 16ζ2

−2 + 36ζ − 96ζ2 + 64ζ3

2 − 64ζ + 320ζ2 − 512ζ3 + 256ζ4

−2 + 100ζ − 800ζ2 + 2240ζ3 − 2560ζ4 + 1024ζ5

2 − 144ζ + 1680ζ2 − 7168ζ3 + 13824ζ4 − 12288ζ5 + 4096ζ6

−2 + 196ζ − 3136ζ2 + 18816ζ3 − 53760ζ4 + 78848ζ5 − 57344ζ6 + 16384ζ7

2 − 256ζ + 5376ζ2 − 43008ζ3 + 168960ζ4 − 360448ζ5 + 425984ζ6 − 262144ζ7 + 65536ζ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting these values in Eq. (26), we get residual function as:

RN (ζ) = CT D(8)Φ(ζ) + ζ(CT Φ(ζ)) + (48 + 15ζ + ζ3)eζ . (29)

Now using the collocation method, we get

c0 − c2 + c4 − c6 + 2642411521c8 +
445

√
e

8
= 0. (30)
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and from the boundary conditions, we have

CT Φ(0) = 0, CTD(1)Φ(0) = 1, CTD(2)Φ(0) = 0, CTD(3)Φ(0) = −3, (31)

CT Φ(1) = 0, CTD(1)Φ(1) = −e, CTD(2)Φ(1) = −4e, CTD(3)Φ(1) = −9e.
(32)

On solving Eqs. (30) together with (31) and (32), we get the values of unknown
coefficients and which leads to the required solution as

yN (ζ) = 4.20 × 10−17 + ζ + 8.32 × 10−17ζ2 − 0.49ζ3 + · · · − 0.002ζ8. (33)

Example 5.2. Consider the following eighth order differential equation

d8y

dζ8
+

d7y

dζ7
+2

d6y

dζ6
+ 2

d5y

dζ5
+ 2

d4y

dζ4
+ 2ζ

d3y

dζ3
+ 2

d2y

dζ2
+ ζ2 dy

dζ
+ ζy(ζ)

= − (ζ4 − 2ζ3 + 14ζ − 27) cos ζ − (3ζ3 − 13ζ2 + 11ζ + 17) sin ζ, ζ ∈ [0, 1].

with

y |ζ=0= 0,
dy

dζ
|ζ=0= −1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= 7,

y |ζ=1= 0,
dy

dζ
|ζ=1= 2 sin 1,

d2y

dζ2
|ζ=1= 4 cos 1 + 2 sin 1,

d3y

dζ3
|ζ=1= 6 cos 1 − 6 sin 1.

Similarly, using the approximation

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (34)

which gives the required solution as

yN (ζ) = 3.95 × 10−18 − ζ − 5.50 × 10−17ζ2 + 1.16ζ3 + · · · − 0.0006ζ8. (35)

Example 5.3. The eighth order differential equation is considered as

d8y

dζ8
+

d7y

dζ7
+ 2

d6y

dζ6
+ 2

d5y

dζ5
+ 2

d4y

dζ4
+ 2ζ

d3y

dζ3
+ 2

d2y

dζ2
+

dy

dζ
+ y(ζ)

= 14 cos ζ − 16 sin ζ − 4ζ sin ζ, ζ ∈ [0, 1].

with conditions

y |ζ=0= 0,
dy

dζ
|ζ=0= −1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= 7,

y |ζ=1= 0,
dy

dζ
|ζ=1= 2 sin 1,

d2y

dζ2
|ζ=1= 4 cos 1 + 2 sin 1,

d3y

dζ3
|ζ=1= 6 cos 1 − 6 sin 1.

For

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (36)

Hence, the required solution are obtained as

yN (ζ) = 1.73 × 10−18 − ζ − 1.94 × 10−16ζ2 + 1.16ζ3 + · · · − 0.00082ζ8. (37)
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Example 5.4. Assume the nonlinear eighth order differential equation as

d8y

dζ8
= e−ζy2(ζ), ζ ∈ [0, 1].
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Fig. 1. Solution curves for (a) Example 5.1, (b) Example 5.2, (c) Example 5.3 and (d)
Example 5.4.

with supplementary conditions

y |ζ=0= 1,
dy

dζ
|ζ=0= 1,

d2y

dζ2
|ζ=0= 1,

d3y

dζ3
|ζ=0= 1,

y |ζ=1= e,
dy

dζ
|ζ=1= e,

d2y

dζ2
|ζ=1= e,

d3y

dζ3
|ζ=1= e.

Let

yN (ζ) =
11∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (38)

Which leads to the desired solution as

yN (ζ) = 5.58×10−17 −0.99ζ −1.14×10−16ζ2 −0.49ζ3 + · · ·−0.000041ζ8. (39)
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6 Results and Discussions

Figure 1a, 1b, 1c and 1d demonstrates the solution plots of the exact solution
and approximate solution (yN (ζ)) obtained from the proposed numerical scheme
for Example 5.1, 5.2, 5.3 and 5.4 respectively. It is observed from the figure that
the approximate solution is in good agreement with the exact solution. Which
signifies that the proposed numerical scheme is capable to solve the problem
effectively.
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Fig. 2. Absolute error plots for (a) Example 5.1, (b) Example 5.2, (c) Example 5.3
and (d) Example 5.4.

Figure 2a, 2b, 2c and 2d depicts the absolute error plots on the interval [0, 1]
for Example 5.1, 5.2, 5.3 and 5.4 respectively. Which shows that the order of
error is less and the error is bounded in the interval [0, 1] that clearly represents
the reliability of the proposed numerical scheme.

Table 1 compares the absolute errors obtained by the proposed method and
from the other existing methods. From Table 1, it is observed that the proposed
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Table 1. Absolute error comparisons for Example 5.1, Example 5.2, Example 5.3 and
Example 5.4.

Example 5.1

ζ Exact Solution Viswanadham [29] Elahi et al. [13] | y(ζ) − yN(ζ) |
0.1 0.09946 5.21 × 10−8 1.44 × 10−7 5.55 × 10−9

0.2 0.19542 2.22 × 10−6 1.45 × 10−6 3.57 × 10−8

0.3 0.28347 7.00 × 10−6 4.38 × 10−6 4.55 × 10−8

0.4 0.35803 1.11 × 10−5 7.59 × 10−6 2.79 × 10−8

0.5 0.41218 1.22 × 10−5 9.06 × 10−6 1.60 × 10−7

0.6 0.43730 8.88 × 10−6 7.81 × 10−6 2.47 × 10−7

0.7 0.42288 2.53 × 10−6 4.64 × 10−6 2.11 × 10−7

0.8 0.35608 1.81 × 10−6 1.58 × 10−6 9.44 × 10−8

0.9 0.22136 2.04 × 10−6 1.61 × 10−7 1.18 × 10−8

Example 5.2

0.1 -0.09883 4.23 × 10−6 5.03 × 10−8 1.08 × 10−8

0.2 -0.19072 9.98 × 10−6 5.14 × 10−7 1.20 × 10−7

0.3 -0.26892 5.09 × 10−6 1.55 × 10−6 3.88 × 10−7

0.4 -0.32711 7.62 × 10−6 2.71 × 10−6 7.18 × 10−7

0.5 -0.35956 1.49 × 10−5 3.26 × 10−6 9.09 × 10−7

0.6 -0.36137 2.28 × 10−5 2.82 × 10−6 8.25 × 10−7

0.7 -0.32855 2.27 × 10−5 1.68 × 10−6 5.14 × 10−7

0.8 -0.25824 1.94 × 10−5 5.77 × 10−7 1.83 × 10−7

0.9 -0.14883 1.32 × 10−5 5.88 × 10−8 1.93 × 10−8

Example 5.3

0.1 -0.09883 3.79 × 10−7 5.03 × 10−8 3.98 × 10−9

0.2 -0.19072 2.14 × 10−6 5.14 × 10−7 2.86 × 10−8

0.3 -0.26892 5.63 × 10−6 1.55 × 10−6 5.22 × 10−8

0.4 -0.32711 9.74 × 10−6 2.71 × 10−6 3.40 × 10−8

0.5 -0.35956 1.13 × 10−5 3.26 × 10−6 2.36 × 10−8

0.6 -0.36137 1.01 × 10−5 2.82 × 10−6 7.32 × 10−8

0.7 -0.32855 7.27 × 10−6 1.68 × 10−6 7.35 × 10−8

0.8 -0.25824 3.87 × 10−6 5.77 × 10−7 3.48 × 10−8

0.9 -0.14883 1.43 × 10−6 5.88 × 10−8 4.48 × 10−9

Example 5.4

ζ Exact Solution Bernstein poly. [14] Legendre poly. [14] | y(ζ) − yN(ζ) |
0.1 1.10517 5.43 × 10−7 8.54 × 10−6 8.57 × 10−11

0.2 1.22140 7.34 × 10−7 1.73 × 10−6 5.75 × 10−10

0.3 1.34986 9.54 × 10−7 1.33 × 10−6 8.60 × 10−10

0.4 1.49182 1.73 × 10−7 2.97 × 10−6 8.45 × 10−12

0.5 1.64872 4.99 × 10−8 9.49 × 10−7 1.78 × 10−9

0.6 1.82212 2.40 × 10−7 1.24 × 10−6 3.05 × 10−9

0.7 2.01375 4.30 × 10−8 9.54 × 10−6 2.70 × 10−9

0.8 2.22554 7.75 × 10−7 7.75 × 10−7 1.22 × 10−9

0.9 2.45960 3.20 × 10−7 2.32 × 10−6 1.55 × 10−10
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numerical method provides less error in comparison to the other existing meth-
ods. Thus, it clearly demonstrates the accuracy and efficiency of the proposed
numerical scheme.

7 Conclusion

In this work, we presented a reliable strategy for solving eighth order boundary
value problems numerically. Based on a class of shifted VLPs, this approach
is developed. The operational matrix of derivative of shifted VLPs are used to
formulate the numerical scheme. From the illustrative examples, it is observed
that the method is efficient for solving linear/nonlinear eighth order BVPs effec-
tively. The resulting findings are also compared to the previous results, which
show good agreement. Which demonstrates the efficiency and reliability of the
proposed approach.
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