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Abstract. In this article, the temperature in a rectangular moving
porous fin with a longitudinal profile has been studied, which involves
internal heat generation, variable thermal conductivity, and heat transfer
coefficient. In real life, we know that these parameters change with tem-
perature, so in this study, we considered these parameters as temperature
function. Darcy’s model has been used to form the equation. The heat
transfer coefficient is taken as power-law form. A new contribution to
this study is adding a porous medium to fin and taking thermal conduc-
tivity into four different cases: a constant, a linear, a quadratic, and an
exponential form of temperature. The solution to the problem has been
carried out by three methods, namely LWCM, LSM, and MM. A com-
parison of the results obtained by the above-mentioned methods and the
exact results has been presented to demonstrate the novelty of the cur-
rent study. The entire article has been carried out in a non-dimensional
form.

Keywords: Darcy model · heat transfer · moving fin · porous
medium · numerical methods · temperature · thermal conductivity

Nomenclature

T : temperature distribution (K)
Ta : ambient temperature (K)
Tb : temperature at fin base (K)

h(T ) : heat transfer coefficient (Wm−2K−1)
K(T ) : thermal conductivity (Wm−1K−1)

L : fin length (m)
P : fin periphery (m)
ṁ : mass flow rate of fluid (kgs−1)
ka : thermal conductivity at ambient temperature (Wm−1K−1)
hb : heat transfer coefficient at the fin base (Wm−2K−1)
g : gravitational acceleration (ms−2)
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R : permeability (m2)
Y : thermal expansion coefficient (K−1)

Ac : cross-section area (m2)
U : speed of moving fin (ms−1)
q∗ : heat generation (Wm−3)
W : fin width (m)
x : spatial variable
n : constant

Greek symbols

β : thermal conductivity gradient (Wm−1K−1)
σ : Stefan-Boltzmann constant (Wm−2K−4)
v : kinematic viscosity (m2s−1)
ρ : density of material (kgm−3)

νw : velocity of fluid (ms−1)
c : specific heat (JK−1kg−1)

Dimensionless parameters

θ : temperature
θa : ambient temperature
X : spatial variable
k : thermal conductivity

M : thermo-geometric
Nr : radiation-conduction
Np : porosity parameter
εG : heat generation gradient

ε : emissivity
Pe : Peclet number

Abbreviation

ADM : Adomian decomposition method
DTM : Differential transformation method
FDM : Finite difference method
HAM : Homotopy analysis method
LSM : Least square method

LSSCM : Least square spectral collocation method
LWCM : Legendre wavelet collocation method

LVI : Laplace-variational iterative
MM : Moment method
R-K : Runge-Kutta

WCM : Wavelet collocation method
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1 Introduction

Many engineering devices or machines generate heat during their processes,
which results in heat being released into the environment. If this generated heat is
not released quickly to its surrounding environment, it may cause a temperature
rise in system devices, leading to their failure. To prevent this, fins or extended
heat surfaces are used. Dongonchi and Ganji [1] evaluated heat transmission in
a rectangular moving fin with a heat transfer coefficient, heat generation and
thermal conductivity which depends on temperature using DTM. Kraus [2] pro-
vided a detailed review of extended surfaces or fins in his book. Gorla and Bakier
[3]investigated the influence of convection and radiation in a rectangular porous
fin. The performance is investigated in various fins, including the long fin with
an insulated tip and the finite-length fin with an exposed tip. Kiwan et al. [4]
investigated heat transfer in porous moving fins. A thermal performance study
compares porous and solid fins. The effects of parameters and different profiles
were studied in detail. Ndlovu and Moitsheki [5] performed the thermal anal-
ysis of rectangular and hyperbolic moving fins. DTM was applied to find the
solution to the heat transmission equation. Khalaf et al. [6] gave a review on
how fins, porous medium and nanofluid materials improve heat transmission in
devices. They explained how the world has developed an interest in modern
electronics and their applications in science and engineering, which also have a
great impact on aspects of life such as optical devices, refrigeration devices, X-
rays, etc. Gupta et al. [7] investigated the Cu and Al2O3 water-based nanofluid
three-dimensional magnetohydrodynamic flow. In the presence of thermal radi-
ation and convective mass and heat transmission boundary conditions, effects of
nanoparticles as well as mass and heat transmission were carried out. Ndlovu et
al. [8] found the fin efficiency and temperature in a rectangular moving fin with
a porous medium using VIM. Unal et al. [9] investigated the temperature distri-
bution in straight and rectangular fins in one dimension. Shateri and Salashour
[10] found the heat performance and distribution of temperature in longitudinal
fin with porous media using LSM. Fin efficiency and heat flux were also com-
puted for the comparison of fins. Hatami et al. [11] used LSM, CM, and DTM
to analyze the energy transfer and distribution of temperature in porous fin.
Razzaghi and Yousefi [12] provided a Legendre wavelet-based operational inte-
gration P matrix. Singh et al. [13] studied heat transmission in moving fin with
heat transfer coefficient, surface emissivity, and thermal conductivity, which is
quadratic and linear function of temperature. Sobamowo et al. [14] discussed
the performance of convective moving porous fin with different properties of the
material and used the LVI method to find an analytical solution. Sobamowo [15]
studied a porous moving fin with internal energy generation and thermal conduc-
tivity which are temperature function using the finite element method. Singh et
al. [16] considered temperature variant parameters and several cases of thermal
conductivity to solve heat problem. Fin efficiency was also calculated for the fin.
Bhanja et al. [17] used ADM to find fin efficiency and temperature distribution
in radiation-convection porous moving fins. LSSCM was used by Chen et al. [18]
to predict efficiency and temperature in radiation-convection moving porous fins
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under combined convective-radiative and constant temperature boundary con-
ditions. Singh et al. [19] solved a non-linear fin problem whose thermal conduc-
tivity is a variable function of temperature by using WCM. Moradi et al. [20]
used HAM to find heat transmission in moving porous fin with two boundary
conditions. Heat transfer and the impact of parameters on temperature are also
discussed. Singh et al. [21] discussed non-Fourier and Fourier energy conduction
applying boundary conditions which are periodic in nature. An analytical solu-
tion was found using the Laplace transform and its inversion. Wang et al. [22]
tested DTM with the Pade approximant as one of the analytical approaches to
resolve the ordinary system of heat transport, which is non-linear. For the radi-
ation heat exchange, the Rosseland approximation was taken into consideration.
Singh et al. [23] introduced the homotopy analysis transform method, a power-
ful hybrid computational methodology for analysing Jeffery-Hamel flow. Singh
et al. [24] used a method called the homotopy perturbation Elzakie transform to
find a solution to the boundary value problem of the non-linear type. With the
help of Chebyshev polynomials, Singh et al. [25] solved the fractional version of
Bratu’s equation, which plays a major role in the vibration-electrospinning and
electrospinning processes.

In this present study, the impact of various parameters on temperature of
fin is discussed. To find the better method for the study, a percentage error
has been computed and a method with the minimum error has been applied for
further computation. The formulation of the model is described in Sect. 2. The
methodology of the applied methods is provided in Sect. 3. The exact solution
is presented in Sect. 4. Section 5 contains a discussion of the findings. Lastly, the
conclusion is provided in Sect. 6.

2 Problem Description

We consider a porous moving fin of longitudinal profile in one dimension along
with its cross-section area Ac, length L and periphery P which horizontally
moves with velocity U which is constant, presented in Fig. 1. The surface of
the fin is exposed to a Ta and Tb radiative and convective environment. The
radiation role can be more reasonable if the convection force is absent, occurs
naturally, or is weak.

For any material, thermal conductivity changes linearly with temperature.
Some assumptions have been made about the problem, which are discussed as
follows: Darcy’s model is used for the interplay in the fluid and porous medium;
the porous part is considered to be homogeneous, saturated, and isotropic with
single-phase liquids, and the physical properties of the fluid and solid walls
depend on temperature. From these assumptions, the equation for moving fin in
a porous medium is expressed as:

d

dx

(
K(T )

dT

dx

)
− P

Ac
h(T )(T − Ta) − ṁc

Acdx
(T − Ta) − εσP

Ac
(T 4 − T 4

a ) − ρcU
dT

dx
+ q∗ = 0

(1)
0 ≤ x ≤ L
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Fig. 1. Schematic diagram of a moving porous fin.

where K(T ) is the equivalent thermal conductivity of porous fin, which includes
thermal conductivity of the solid part as well as the gas part present in the
porous, h(T ) is heat transfer coefficient, (ṁ) is mass flow of fluid and q∗ is energy
generation which depends on temperature x is space variable, T is temperature
distribution, σ is Boltzmann constant, ε is emissivity, c is specific heat and ρ
is density of material. In addition to conduction, convection, and radiative heat
flux, Eq. 1 includes terms for internal heat generation and advection. One end
of the fin is insulated with a base temperature, while the boundary conditions
are specified by [2].

T (L) = Tb,
dT

dx

∣
∣
∣
x=0

= 0. (2)

If heat generation change with temperature [1], then we get

q∗ = q∗
a(1 + εg(T − Ta)) (3)

where q∗
a is internal heat generation at ambient temperature.

Mass flow rate of fluid which passes through porous media is [3]

ṁ = ρνwWΔX

Darcy’s model gave the fluid velocity which passes through porous media [4],

νw =
gRY

v
(T − Ta)

Heat transfer coefficient is power law form of the temperature given by [5],

h(T ) = hb

(
T − Ta

Tb − Ta

)n

To simplify these equations, introduce non-dimensional parameters as follows
[1,8]:

X =
x

L
, θ =

T

Tb
, θa =

Ta

Tb
, k =

K

ka
, h =

h(T )
hb

, Nr =
εσPL2T 3

b

Acka
, M2 =

PhbL
2

Acka
,

Np =
ρcgRY WL2Tb

vkaAc
, G =

q∗
aAc

hbPTb
, P e =

ULρc

ka
, εG = εgTb (4)
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On applying these parameters, Eq. (1) becomes

d
dX

(

k(θ) dθ
dX

)

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ4 − θ4a) − Np(θ − θa)2 − Pe dθ

dX

+M2G(1 + εG(θ − θa)) = 0,
0 ≤ X ≤ 1.

(5)

and the boundary conditions becomes

θ(1) = 1,
dθ

dX

∣
∣
∣
X=0

= 0 (6)

where X is dimensionless space variable, θ is dimensionless temperature, M is
thermo-geometric, Nr is radiation-conduction, and Pe is Peclet number (speed
of fin), when Pe = 0 means fin is stationary. In non-dimensional form, heat
transfer coefficient is

h(T ) = hb

(
θ − θa

1 − θa

)n

The constant n can range between –6.6 and 5. However, in various practical
cases, it lies in –3 and 3 [9]. The exponent n describes laminar film boiling at
n = 1

4 , laminar natural convection at n = 3, and radiation at n = 3 [9].

2.1 Particular Cases

The following cases arise when dimensionless thermal conductivity is taken as a
different function of temperature as shown below:

Case I
If linear thermal conductivity, k(θ) = 1 + βθ

(1 + βθ) d2θ
dX2 + β

(
dθ
dX

)2

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ

4 − θ4
a) − Np(θ − θa)2 − Pe dθ

dX

+ M2G(1 + εG(θ − θa)) = 0,
(7)

Case II
If constant thermal conductivity, k(θ) = 1

d2θ

dX2
−M2 (θ − θa)n+1

(1 − θa)n
−Nr(θ

4−θ4
a)−Np(θ−θa)2−Pe

dθ

dX
+M2G(1+εG(θ−θa)) = 0,

(8)

Case III
If thermal conductivity is an exponential function of temperature, k(θ) = eβθ

eβθ d2θ
dX2 + βeβθ

(
dθ
dX

)2

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ

4 − θ4
a) − Np(θ − θa)2 − Pe dθ

dX

+ M2G(1 + εG(θ − θa)) = 0,
(9)
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Case IV
If thermal conductivity is quadratic function of temperature, k(θ) = 1 + βθ2

(1 + βθ2) d2θ
dX2 + 2βθ

(
dθ
dX

)2 − M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ4 − θ4a) − Np(θ − θa)2 − Pe dθ

dX

+M2G(1 + εG(θ − θa)) = 0,
(10)

3 Computational Methods

3.1 Legendre Wavelet Collocation Method

Let
θ′′(X) = cT ψ(X) (11)

here

cT ψ(X) =
2s−1
∑

m=1

n−1∑

n=0

cm,nψm,n(X)

and

cm,n =
∫ 1

0

f(X)ψm,n(X)

The matrices c and ψ(X) are M × 1, expressed as

c =
[
c1,0, c1,1, ..., c1,M−1, c2,0, c2,1, ..., c2,M−1,

c2s−1,0, c2s−1,1, ..., c2s−1,M−1

]T

and

ψ(X) =

⎡

⎣

ψ1,0(X), ψ1,1(X), ..., ψ1,M−1(X), ψ2,0(X),
ψ2,1(X), ..., ψ2,M−1(X), ψ2s−1,0(X),

ψ2s−1,1(X), ..., ψ2s−1,M−1(X)

⎤

⎦

T

The Legendre wavelet is defined as ψm,n(X) = ψ(s, m̂, n,X), where s is a
positive integer, m = 1, 2, ..., 2s−1, m̂ = 2m − 1, the order of the Legendre poly-
nomial is n, and in the interval [0, 1], X is defined as:

ψm,n(X) =

{√

(n + 1/2)2s/2Pn(2sX − n̂), m̂−1
2s ≤ X ≤ m̂+1

2s

0, otherwise
(12)

where m = 1, 2, ..., 2s−1 and n = 0, 1, ...,M − 1. Pn(X) is Legendre polynomial
of n order as given by [13].

P0(X) = 1, P1(X) = X,Pn+1(X) =
2n + 1
n + 1

(X)Pn(X)

− n

n + 1
(X)Pn−1(X), n = 1, 2, 3, ...,M − 1 (13)

Now, integrating with respect to X from 0 to X of Eq. (11), we get

θ′(X) = θ′(0) + cT Pψ(X), (14)
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where P is the integration operational matrix, which is 2s−1M × 2s−1M, s = 1,
given by [12].
Substitute X = 1 in Eq. (14), we get

θ′(0) = θ′(1) − cT Pψ(1)

⇒ θ′(0) = −cT Pψ(1)

From the Eq. (14), we have

θ′(X) = −cT Pψ(1) + cT Pψ(X), (15)

Again, integrating with respect to X from 0 to X of the Eq. (15), we obtain

θ(X) = 1 − cT Pψ(1)d′Pψ(X) + cT P 2ψ(X), (16)

Substituting the values of θ(X), θ′(X) and θ′′(X) in Eq. 7 to 10. θ(X)
is the approximate solution to these equations. Finding the residual
R(X, c1, c2, c3, ..., cn) for n collocation points Xr, r = 1, 2, 3, ..., n. There must be
equality between the coefficients and collocation points. As a result, the residuals
will be obtained.

3.2 Least Square Method

This method is based on residual weighting and minimises the residual of the
test function, which is used to solve a non linear differential equation given by
[10]. The meaning of this method is to get the minimum continuous summation
of squared residuals [11].

S =
∫

x

R(x)R(x)dx =
∫

x

R2(x)dx (17)

The derivative of the above function with respect to all unfamiliar constants has
to be zero in order to obtain the minimum scalar function [11], i.e.

δS

δci
= 2

∫

x

R(x)
δR

δci
dx = 0 (18)

here weight function is

Wi = 2
δR

δci
(19)

the coefficient ‘2’ from this equation can be expelled. Then the weight function
of this method will be just derivative of residual with respect to unfamiliar
constants i.e.

Wi =
δR

δci
(20)



464 P. Kaur and S. Singh

3.3 Moment Method

For this method, the weight function is selected from family of polynomials,
expressed as

Wi(x) = xi, i = 0, 1, 2, ..., n (21)

With the residual it is expressed as
∫

x

Wi(x)R(x)dx = 0, i = 0, 1, 2, ..., n (22)

Using (21), Eq. (22) becomes
∫

x

xiR(x)dx = 0, i = 0, 1, 2, ..., n (23)

Now by using this, residual will be obtained.

4 Exact Solution

To calculate exact solution, we consider β = 0, n = 0, Nr = 0 and porosity
parameter Np = 0 in Eq. (4), then equation reduced in following form i.e.

d2θ

dx2
− M2(θ − θa) − Pe

dθ

dx
+ M2G(1 + εG(θ − θa)) = 0 (24)

The boundary conditions are

θ(1) = 1,
dθ

dx

∣
∣
∣
x=0

= 0

After applying boundary conditions to Eq. (24), we get

θ = c1e
m1x + c2e

m2x +
M2G

Q
(25)

where c1 = − m2(1−M2G
Q )

m1em2−m2em1 , c2 =
m1(1−M2G

Q )

m1em2−m2em1 and Q = M2 − M2GεG.

5 Results and Discussion

We investigate heat transfer in a porous moving fin. Impact of different
parameters namely thermal conductivity (β), thermo-geometric (M), radiation-
conduction (Nr), Peclet number (Pe), parameter G, heat generation (εG),
dimensionless ambient temperature (θa), porosity parameter (Np) on temper-
ature distribution is investigated. Thermal conductivity is taken as a variable
functions of temperature to study the distribution of temperature in fin. The four
different cases for thermal conductivity are (i) linear function of temperature, (ii)
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Table 1. Comparison between Exact result, LWCM, LSM and MM

X Exact result LWCM LSM MM

0.0 0.60736577 0.60736561 0.60736577 0.60736577

0.1 0.60996007 0.60995991 0.60996050 0.60996053

0.2 0.61813073 0.61813058 0.61813085 0.61813089

0.3 0.63254936 0.63254923 0.63254871 0.63254872

0.4 0.65402333 0.65402322 0.65402256 0.65402252

0.5 0.68351841 0.68351832 0.68351836 0.68351831

0.6 0.72218556 0.72218548 0.72218629 0.72218626

0.7 0.77139233 0.77139227 0.77139303 0.77139305

0.8 0.83275995 0.83275990 0.83275985 0.83275991

0.9 0.90820686 0.90820684 0.90820638 0.90820642

1.0 1.000000000 1.0000000 1.00000000 1.00000000

constant, (iii) exponential function of temperature, and (iv) quadratic form of
temperature, and heat transfer coefficient is taken as a power-law type. We find
the analytic solution to the problem using LWCM, LSM, and MM. A comparison
of the exact, LWCM, LSM, and MM is shown in Table 1 to validate the results
obtained by these methods when compared to exact results. We can see from the
table that the results of these methods are very close to the exact results, which
shows the novelty of present work. To determine which method has the highest
accuracy, we compute error analysis, as shown in Fig. 2. It has been observed
that the error in LWCM is the lowest as compared to LSM and MM. So for fur-
ther computation, we used LWCM. Reference values for parameters are taken
as β = 1,M = 1, P e = 1, G = 0.1, εG = 0.1, Nr = 1, n = 1, θa = 0.1, Np = 0.1.

Figure 3 depicts the impact of thermal conductivity in four cases on temper-
ature. In case III, where thermal conductivity is an exponential form of temper-
ature, a maximum temperature has been observed, whereas in case II, a lower
temperature has been observed. As a result, in cases of constant thermal con-
ductivity, cooling is more effective.

Figure 4 describes the impact of thermal conductivity on temperature for
cases I, III, and IV, while in case II, thermal conductivity is constant. From the
figure, we have noted that by rising the thermal conductivity, fin temperature
also rises. Case III has the maximum temperature distribution as compared to
the other cases. So when fin has a lower thermal conductivity, cooling becomes
more effective in the fin.

Figure 5 depicts the effect of thermo-geometric parameter. It has been noted
that as M increases, the temperature in the fin decreases, implying that the
enhancement of heat in the environment increases. At a constant value of the
heat transfer coefficient, by increasing the fin length, the amount of heat moving
through the fin also increases, resulting in a decrease in temperature. Among
the cases, in case II temperature is minimum.
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Fig. 2. Error analysis of LWCM, LSM and Moment method

Fig. 3. Temperature distribution in fin for thermal conductivity in cases I, II, III and
IV

Figure 6 shows the impact of radiation-conduction. The radiative cooling
happens to be more influential if radiative transport is stronger, resulting in
lesser the fin temperature. This temperature drop causes the system to cool. We
observed that by rising Nr temperature in the fin drops. So case II has a lower
temperature compared to other cases.

Figure 7 shows the impact of the Peclet number. We see that by increasing
the parameter Pe, fin temperature drops. If Pe increases, then the fin will move
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Fig. 4. Effect of β on temperature distribution

Fig. 5. Effect of M on temperature distribution

faster, and consequently, the temperature in the fin will decrease rapidly because
of the increased impact of the adjective on the fin surface. At Pe = 0, the fin
describes a stationary fin, the fin takes longer to cool down which has been
represented by the maximum temperature than a moving fin. The temperature
distribution in fin of Case II is lower means cooling process is more effective in
this case. The impact of the G parameter is depicted in Fig. 8. It has been seen
that by rising the value of G temperature also increases. So case III has a high
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Fig. 6. Effect of Nr on temperature distribution

Fig. 7. Effect of Pe on temperature distribution

temperature, whereas case II has a lower temperature. Heat transfer increases
when a fin has constant thermal conductivity.

The impact of heat generation is shown in Fig. 9. It demonstrated that
increasing the value of the εG parameter raises the fin temperature. Among
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Fig. 8. Effect of G on temperature distribution

Fig. 9. Effect of εG on temperature distribution

the cases, case III has a high temperature, and case II has a lower temperature.
The physical implementation is that as the heat generation parameter increases,
so does the heat transfer in fins.



470 P. Kaur and S. Singh

Fig. 10. Effect of θa on temperature distribution

Fig. 11. Effect of Np on temperature distribution

Figure 10 depicts the impact of ambient temperature. It has been noted that
by rising the value of θa temperature also rises in the fin. Heat transfer is reduced
as the ambient temperature rises. Case III has a high temperature, but Case II
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Fig. 12. Temperature distribution in porous and non-porous fin

Table 2. Effect of n on temperature distribution for case I and case II

X Case I Case II

n = −1/4 n = 1/4 n = 3 n = −1/4 n = 1/4 n = 3

0.0 0.69323516 0.71470983 0.77346094 0.54537012 0.59130005 0.69172816

0.1 0.69570138 0.71694526 0.77512536 0.54813997 0.59370248 0.69341971

0.2 0.70331016 0.72384736 0.78027217 0.5568822 0.60129448 0.6987752

0.3 0.71640567 0.73574874 0.78918116 0.57237481 0.61478202 0.70832539

0.4 0.73537067 0.75303577 0.8022051 0.5956056 0.63508233 0.72278761

0.5 0.76062799 0.77615241 0.81978112 0.627819 0.66337503 0.74311413

0.6 0.79264528 0.80560682 0.84244756 0.67059916 0.70119042 0.77058766

0.7 0.83194463 0.84198195 0.87086785 0.7259869 0.75053383 0.80695858

0.8 0.87911928 0.88595224 0.90586468 0.79666439 0.81407852 0.85466678

0.9 0.93486072 0.9383092 0.94847023 0.88627726 0.89549279 0.91723885

1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

has a lower temperature. So in this case, cooling will be effective when fin has
constant thermal conductivity and a lower ambient temperature.

Figure 11 shows the effect of the porosity parameter. From the figure, it
has been seen that as we increased the porosity parameter, the fin temperature
decreases. For porosity, Case III has the maximum temperature distribution as
compared to other cases. Therefore, in Case II, the heat transfer rate increases,
which causes a drop in the fin temperature. Temperature distribution in the
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Table 3. Effect of n on temperature distribution for case III and case IV

X Case III Case IV

n = −1/4 n = 1/4 n = 3 n = −1/4 n = 1/4 n = 3

0 0.74403087 0.75931011 0.80483742 0.67397956 0.69937334 0.76522521

0.1 0.74630373 0.76140001 0.80642881 0.67670894 0.70181414 0.76699524

0.2 0.75326493 0.76780529 0.81131375 0.68515133 0.7093689 0.77247932

0.3 0.76512589 0.7787374 0.81968459 0.69969572 0.72240984 0.78198184

0.4 0.78208927 0.7944145 0.8317691 0.72072724 0.74133192 0.79586672

0.5 0.80434257 0.81505629 0.8478317 0.74860895 0.76653999 0.81455987

0.6 0.83205302 0.84087907 0.8681755 0.78366283 0.79843398 0.83855269

0.7 0.8653644 0.8720917 0.89314549 0.82615455 0.83739441 0.86840696

0.8 0.9043965 0.90889278 0.92313314 0.87628613 0.88377108 0.9047623

0.9 0.94924758 0.95146973 0.95858275 0.9342003 0.93787821 0.9483478

1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

porous and non-porous fin is shown in Fig. 12. The figure explains that if there
is no porous medium, i.e. Np = 0 then the temperature in fin is at its maximum,
but if we add a porous medium to the fin, then temperature decreases. We
observed that fin temperature is higher in non-porous compared to porous fin.
So for higher porosity, heat transfer in the fin also increases, and cooling process
in the fin becomes more effective.

Table 2 represents the impact of n on temperature in cases I and II, respec-
tively, and for cases III and IV, it is represented in Table 3. According to the
tables, as the value of n rises, so does the fin temperature. So when n = −1/4
= 1/4 (i.e., condensation or laminar film boiling), cooling is effective. Case III
has a higher temperature as compared to other cases.

6 Conclusion

We have studied a porous moving fin in one-dimension with heat generation,
temperature-dependent variable thermal conductivity, and a power-law heat
transfer coefficient in this paper. The effect of parameters has been shown using
LWCM because it achieves the minimum error among other applied methods. It
has been determined that increasing thermal conductivity, heat generation, the
parameter G, exponent n, and the ambient temperature raises the temperature in
fins. On the other hand, as the temperature in fin decreases, the enhancement of
heat increases by increasing the thermo-geometric, radiation-conduction, Peclet
number, and porosity parameters. In case III, the fin temperature is high, while
in case II, the fin temperature is low. A comparison of porous and non-porous
fins revealed that the non-porous fin has a high temperature, whereas adding a
porous medium to the fin results in a lower temperature. Because of the porous
medium in the fin, heat transmission increases, making cooling more effective.
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Future studies may focus on the importance of enhancing heat transmission due
to its usefulness in many applications directly affecting human life.
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