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Abstract. In this chapter, Koeller’s original idea on polynomial frac-
tional operators with singular (Riesz) kernels and solutions to a few
viscoelasticity relaxation issues is highlighted. Now, we show how this
concept can be directly related to how relaxation relationships are pre-
sented using fractional operators with non-singular kernels. Additionally,
it shows that viscoelastic interactions that defy singular (power-law)
behavior may be described by polynomial operators with non-singular
memory.
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1 Introduction

The main idea of this study is to demonstrate the applicability of the so-called
polynomial fractional operators which in general can be presented as

Pc (t) =
N∑

0

anDαn
t [f (t)] (1)

where Dαn
t [f (t)] are fractional derivatives with any type of memory kernels rel-

evant to modeled relaxation process. The concept of these polynomial fractional
operators (PFOs) was inspired by research done by Bagley and Torvik [1] on the
use of fractional calculus in viscoelastic models, although it is based on the work
of Koeller [2] (see also [3,4], and [5]). The Bagley-Torvik equation will be cov-
ered in this chapter, but for now, to better understand the rationale behind how
polynomial fractional operators are created, we had want to go over some key
fractional calculus principles. The chapter addresses a new modelling philosophy
allowing relaxation functions (memory kernels) to be expressed as finite sums
(polynomial operators) of elementary kernels, either of singular (power-law) or
non-singular (exponential) kernels. This gives an advantages in modelling when
single kernel fractional operators are not applicable for modeling of real-world
phenomena such as viscoelasticity and diffusions.
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1.1 The Koeller Main Idea and Its Background

Now, following Koeller [2] we present step-by step his idea (in the original nota-
tions which to some extent may differ from the contemporary expressions in the
literature).

N-Fold Iterated Integral and Its Consequences. The n-fold iterated inte-
gral can be presented as single integrals as [2]

D−nx (t) =

t∫

0

tn−1∫

0

. . .

t1∫

0

x (t0)dt0dt1 . . . dtn−2dtn−1

=

t∫

0

(t − τ)n−1

(n − 1)!
, n = 0, 1, 2 . . . , N

(2)

where x (t) is a Heaviside function of class HN if

x (t) =

{
x (t) = 0, t ∈ (−∞, 0]

x (t) ∈ CN , t ∈ (0,∞)
(3)

where CN is the class of all N time continuously differentiable functions on the
open interval (0,∞) and N is appositive integer. The integral of fractional order
n between the limits 0 and t is commonly defined by replacing the factorials by
the Gamma function, that is [2]

D−nx (t) =

t∫

0

(t − τ)n−1

Γ (n)
x (t) dτ, n ∈ [0,∞) (4)

This is the well-known as the Riemann-Liouville (RL) fractional integral [6].
The differentiation for n = α ∈ [0, 1] is defined as (in the original Koeller’s

notations) [2]

Dαx (t) = DDα−1 [x (t)] = D

t∫

0

(t − τ)−α

Γ (1 − α)
, D =

d

dt
(5)

The Riesz Distribution. In linear viscoelasticity of the creep compliance is
taken as

Rn (t) =
tn

Γ (n + 1)
(6)

Then we have the so-called Riesz distribution [7] Rn (t) is valid for all values of
n, that is

Rn (t) = 0, t ∈ (−∞, 0) (7)
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and for Rn (t) ≡ t−n we have

Rn (t) =
t−n

Γ (1 − n)
, t ∈ (0,∞) (8)

The integration of the Riesz distribution in order to obtain the Stieltjes integral
representation of the fractional integral we may integrate the Riemann-Liouville
integral (4) by parts. Then, for α ≥ 0 we get [2]

D−αx (t) =

t∫

0

(t − τ)α

Γ (1 + α)
dx (τ) + x (0)

tα

Γ (1 + α)
(9)

In terms of Riesz distribution we may present this result as [2]

D−αx (t) =

t∫

0

R(−α) (t − τ) dx (τ) + x (0) R(−α) (t)

=
(
R(−α) ∗ dx

)
(t) + x (0) R(−α) (t) , α ∈ [0, 1]

(10)

where
(
R(−α) ∗ dx

)
(t) is a Stieltjes convolution. In a similar way, applying the

Leibniz rule to the definition of the RL fractional derivative [6] we get [2]

Dαx (t) =

t∫

0

(t − τ)−α

Γ (1 − α)
dx (τ) + x (0)

t−α

Γ (1 − α)

=

t∫

0

R(α) (t − τ) dx (τ) + x (0)

t∫

0

R(α) (t)

=

t∫

0

(
R(α) ∗ dx

)
(t) + x (0) R(α) (t) , α ∈ [0, 1]

(11)

Further, since Dλ1Dλ2 = Dλ1+λ2 then it follows that R(−λ) is Stieltjes inverse
of R(λ), that is

R(λ) ∗ dR(−λ) = R(−λ) ∗ dR(λ) = h (12)

In accordance with Koeller [2] both the fractional derivative (Riemann-Liouville)
and fractional integral can be expressed as Stieltjes convolution in the form

Dλ = R(λ) ∗ dx, λ ∈ (−∞,∞) (13)

D−λ = R−λ ∗ dx, λ ∈ (−∞,∞) (14)
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1.2 The Koeller’s Polynomial Operators

The examples developed by Koeller are from the area of linear viscoelasticity
(following the works of Bagley ad Torvik [1]) where the general form of the
constitutive equations is

P (D) σ = Q (D) ε (15)

where P (D) and Q (D) are polynomial operators defined as

P (D) =
N∑

n=0

pnDαn , Q (D) =
N∑

n=0

qnDβn (16)

with fractional (memory) parameters (orders) αn and βn.

Note: When αn and βn are positive integers, then (15) is the standard differ-
ential operator constitutive law .

Further, when σ (t) and ε (t) are specified, then (15) is a fractional differential
equation without jump initial conditions. Hence, the solutions of (15) for any
action as input shear stress (or input shear strain) requires knowledge of the
entire history of the shear stress (shear strain). The general formulation (15)
can be developed as a linear hereditary law if we consider the properties of the
Stieltjes convolution and the Riesz distribution [2], namely

N∑

n=0

pnR(αn) ∗ dσ =
N∑

n=0

qnR(βn) ∗ dε (17)

Then, we may define fractional polynomials B (t) and D (t) [2]

B (t) =
N∑

n=0

pnR(αn) (t) =
N∑

n=0

pn
t−αn

Γ (1 − αn)
(18)

D (t) =
N∑

n=0

qnR(βn) (t) =
N∑

n=0

qn
t−βn

Γ (1 − αn)
(19)

and the constitutive law (15) can be presented in two forms [2]

B ∗ dσ = D ∗ dε (20)

t∫

−∞
B (t − τ)dσ (τ) =

t∫

−∞
D (t − τ)dε (τ) (21)

If B−1 and D−1 are defined as Stieltjes inverse of B and D, then applying the
associative property of the Stieltjes convolution we have

σ = G ∗ dε, ε = J ∗ dσ (22)

where G = B−1 ∗ D and J = D−1 ∗ B are the relaxation modulus and the creep
compliance, respectively.
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1.3 Koeller Example of a Polynomial Operator

The Koeller example developed in [2] selects only one memory parameter β
(which actually is violation of the causality principle [8], since the input and
output should have different time delays). Anyway, the following expansion was
considered (three component Kelvin-Voigt model)

(
p0 + p1D

β + p2D
2β

)
σ =

(
q0 + q1D

β + q2D
2β

)
ε (23)

which possesses symmetry, that is no preference is given to the stress or strain.
The solution of (23) is [2] by Laplace transforms yields

J (t) =
1

E0
+

1
E1

{
1 − Eβ

[
−

(
t

t1

)β
]}

+
1

E2

{
1 − Eβ

[
−

(
t

t2

)β
]}

(24)

G (t) = E0 − E0R1

{
1 − Eβ

[
−

(
t

t1

)β
]}

− E0R2

{
1 − Eβ

[
−

(
t

t2

)β
]}

(25)

where E0, E1 and E2 are the moduli of the springs and t1,t2 are relaxation times,
and

Eβ (x) =
∞∑

n=0

(−1)n xn

Γ (1 + βn)
, t > 0, 0 < β ≤ 1 (26)

is the Mittag-Leffler function; When βn = 0, 1, ....N classical results are recov-
ered.

After this example Koeller clearly stated [2] “The final determination of
whether fractional calculus is a valuable tool in the study of viscoelastic materials
could be answered if specific data were taken over long periods of time and it
(they) were fitted to one of these functions”.

To complete this section let us turn on the formulation of the polynomial
fractional operator. From the definitions (18) and (19) we may see that the
memory functions can be presented as sums of Riesz distributions, namely

MB =
∞∑

0

pn
t−αn

Γ (1 − αn)
, MD =

∞∑

0

qn
t−βn

Γ (1 − βn)
(27)

Therefore, the relaxation functions, the shear stress modulus and the shear
strain compliance are decomposed as sums of elementary kernels (Riesz dis-
tributions).

1.4 Outcomes of the Koeller’s Approach and Beyond

The findings of (27) provide a useful framework for decomposing response (relax-
ation) functions into sums of basic functions acting as memory kernels in relevant
fractional operators. For instance, two possibilities are offered in the context of
the fractional operators with the non-singular kernels, namely:
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• A sums of exponential (Maxwell or Debay) memories which be easily obtained
by applying the Prony’s decomposition approach of experimental data [9] (see
also [10] and [11]). That is

Bβ (t) ≡
N∑

0

bn exp
(

− t

τn

)
(28)

where τn are discrete relaxation times.

• Approximations as Mittag-Leffler functions [6]

Bβ (t) ≡ Eβ

(−tβ
)

=
∞∑

n=0

(−1)n x−βn

Γ (1 + βn)
= 1 − x−β

Γ (1 + β)
+

x−2β

Γ (1 + 2β)
. . .

(29)
which actually resembles the idea of Koeller to present the operators as sums
of Riesz distributions.

According to Koeller’s remark above, the appropriate approximations of the
experimental data by these sums have a significant impact on the choice of
decomposition (approximation). We will now investigate how models, particu-
larly the constitutive equations in the linear viscoelasticity, can be represented
using polynomial fractional operators.

2 Fractional Calculus in Viscoelasticity

2.1 Stress-Strain Viscoelasticity Response and Hereditary Integral
Construction

The superposition of the material’s single-step reactions enables the creation of
functional relationships between stress and strain while taking into account the
fact that there is a temporal lag in both G (t) and J (t) following the application
of the stress or strain. Convolution integrals, such as the stress integral (30), and
creep integral (31), are effective in representing these interactions [12–14]

σ (t) =

t∫

0

G (t − s)dε (s) (30)

ε (t) =

t∫

0

J (t − s)dσ (s) (31)

In the convolution integrals the lower limit is at t = 0 since both σ (t) a and
ε (t) are causal functions. Now, consider the application of the fading memory
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concept applicable to stress and strain relationships which can be presented as
[12,14]

σ (t) = G∞ +

t∫

0

G (t − s)
dε

ds
ds (32)

ε (t) = J∞ +

t∫

0

J (t − s)dσ (s) (33)

The values of G∞ and J∞ are the instantaneous responses or in other words, the
equilibrium values established for long time when the effects of the second terms
in (32) and (33) disappear, that is when G (t − s) and J (t − s) will approach
zero.

The relationships (32) and (33) contain Stieltjes integrals [12,14] because

σ (t) = G∞ +

0∫

−∞
G (t − s)dk (s) +

t∫

0

G (t − s)dk (s) (34)

However, due the causality of G (t) [8], i.e. G(t) > 0 for 0 < t < ∞ and G(t) = 0
for −∞ < t < 0, the first integral is zero.

The appropriate viscoelastic kernel G (t) should be able to account for short-
and long-term strains to the applied stress and must satisfy the conditions for
complete monotonicity following the general constraints set on the relaxation
function.

(−1)n ∂n

∂tn
G (t) ≥ 0, n = 1, 2, ... (35)

2.2 Discrete Spectra as Sums of Exponents

An exponential series (formerly cited as Prony’s series) can be used to depict a
non-linear monotonous response [9]

G (t) = G∞ +
N∑

i=0

Gi exp
(

− t

τi

)
(36)

The amount of molecular freedom in a material is measured by the number
of independent relaxation periods, which may reach exceptionally high values
for high polymers. When there are a lot of terms in (36), the total can be
approximated by an integral that contains the distribution function Me (x) [15–
17], namely

G (t) = G∞ +

∞∫

0

exp (−xt)Me (x) dx, Me (x) ≥ 0 (37)
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Prony’s Series Decompositions: Discrete Relaxation Spectra. Through
a decomposition into a Prony series, the viscoelastic relaxation function may be
described as a discrete relaxation spectrum φP (t) with Nφ with rate constants
βi [15–17], namely

φP (t) = φ∞ +
Nφ∑

i=1

φie
−βit = φ∞ +

Nφ∑

i=1

φie
− t

τi , βi =
1
τi

≥ 0 (38)

Alternatively using weighted averages (amplitudes or normalized relaxation
moduli) λi as

λ (t) =
φP (t)
φ∞

= 1 +
Nφ∑

i=1

λi

(
e−βit − 1

)
, λi =

φi

φ∞
(39)

In (38) and (39) the parameters φ∞ and φi are equilibrium (at large times) and
relaxation moduli (stiffness), respectively, constrained according to [16,17],

φ∞ +
Nφ∑

1

φi = 1 (40)

The generalized Maxwell viscoelastic body, also known as the Maxwell-
Wiechert model [16,17,20], is analogous to this popular Prony series expression.
It consists of Nφ parallel spring-dashpot components, with a final parallel spring
determining the equilibrium behavior. This formula takes into consideration dis-
sipative effects, which appear as creep and stress relaxations that are load-rate
dependent. Through its time-dependent shear and bulk moduli, the Prony series
representation provides a crude method for representing any viscoelastic model
[15–17,20].

Polynomial Fractional Operators with the Caputo-Fabrizio Derivative.
Applying the Prony approximation of the relaxation curve and substituting in
the convolution integral the following approximation is obtained [16,17]

σ =

t∫

0

Ei exp
(

− t − s

τi

)
dε

ds
ds (41)

Since σ (t) is assumed as a finite sum of elements it is possible to invert the
summation and the integral that leads to the expression [16,17]

σ (t) =

t∫

0

N∑

i=0

Eie
− (t−s)

τi
dε

ds
ds =

N∑

i=0

Ei

⎡

⎣
t∫

0

e
− (t−s)

τi
dε

ds
ds

⎤

⎦ (42)

This makes it simple to include the memory effect from the convolution integral
in each term of the Prony series. This result’s obvious physical meaning is that
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the strain εi (t) at a given time t is described as a convolution integral with an
exponential kernel.

Through the relation α = 1/(1 − τ/t0 ), the fractional parameter α is related
to the dimensionless relaxation time τ/t0, where t0 is the whole duration of the
experiment. With a spectrum of relaxation times then we get [15–17]

αi =
1

1 − τi/t0
(43)

This allows to present εi (t) in way close to the basic construction of the Caputo-
Fabrizio operator [18], namely [15–17]

εi (t) = (1 − αi)

t∫

0

e
− α1

1−αi
(t̄−s̄) dε

ds̄
ds̄ = (1 − αi) Dαi

t ε (t) (44)

Thus, the constitutive equation can be presented as [16,17]

σ (t) =
N∑

i=0

Ei (1 − αi)Dαi
t ε (t) (45)

In the context of the initial definition of a polynomial fractional operators we
may write

σ (t) = Bαn
t [ε (t)] , Bαn

t =
N∑

i=0

Ei (1 − αi) Dαi
t (46)

and

ε (t) = P βn

t [σ (t)] , P βn

t =
N∑

i=0

Ei (1 − βi) Dβi

t (47)

2.3 Viscoelastic Polynomial Fractional Model in Terms
of Atangana-Baleanu Derivative

The Atangana-Baleanu derivative of Caputo sense (ABC) [19] can be rewritten
(assuming for convenience of the explanations with B (α) = 1) as

ABCDα
a+f (t) =

1
1 − α

z∫

0

df (s̄)
ds̄

Eα

[
−

(
t̄ − s̄

τ̄

)α]
ds̄ (48)

where 1−α
α =

(
τ
t0

)α

= (τ̄)α
, t̄ = t

t0
.

That is through a nondimesionalization of the times [16,17] we get

ABCDα
a+f (t) =

1
1 − α

z∫

0

df (s̄)
ds̄

⎧
⎨

⎩

∞∑

j=0

1
Γ (αj + 1)

[
−

(
t̄ − s̄

τ̄

)α]j
⎫
⎬

⎭ds̄ (49)
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were the argument of the Mittag-Leffler kernel Eα (−z) is z = [α/(1 − α) ]
(t − s)α and the following relationship exists [16,17]

(
1 − α

α

)j

=
(

τ

t0

)j

⇒ α =
1

1 + (τ/t0 )
(50)

which is the same as that established for the Caputo-Fabrizio operator.
Since the data fitting process practically requires a finite number in the series

defining the Mittag-Leffler function, we obtain a discrete spectrum that approxi-
mates the relaxation (compliance) function made up of power-law terms (t/τ )αj .
Further, with f (ε) = ε (t), we have [16,17]

ABCDα
a+ε (t) =

1
1 − α

z∫

0

Eα

[
−

(
t̄ − z̄

τ̄

)α]
dε (s̄)

ds̄
ds̄ (51)

As a result, the stress-strain convolution integral has the following form [16,17]

σ (t) =
N∑

k=1

Ek (t)

t∫

0

Gk (t − s)
d

ds
ε (s)

=
N∑

k=1

Ek (t) (1 − αk)

⎡

⎣ 1
1 − αk

z∫

0

Eαk

[
−

(
t̄ − s̄

τ̄

)αk
]
dε (s̄)

ds̄
ds̄

⎤

⎦

(52)

As commented above the values of N in the sum of relaxation kernels and J
(the number of terms of Eα depends on the approximation approach accepted
in data fitting. Hence, in a more compact form (52) can be expressed as

σ (t) =
N∑

k=1

Ek (t)
[
(1 − αk) ABCDαk

a+ε (t)
]

(53)

because the, the relaxation spectrum is a sum of weighted ABC derivatives of
ε (t) [16,17], namely

1 − αk

αk
= τ̄k =

τ

t0
⇒ αk =

1
1 + τk/t0

(54)

If only one term in the right-hand side of (52) is enough (that is N = 1 to
approximate the stress relaxation function, then (53) takes the form

σ (t) = E (t)
[
(1 − α) ABCDα

t ε (t)
]

(55)

and α follows from α = 1/(1 + τ/t0 ) Now, (55) defines a polynomial fractional
operator with ABC derivatives, namely

σ (t) = ABCBα
t [ε (t)] , ABCBα

t = E (t)
[
(1 − α) ABCDα

t

]
(56)

If the simple case (55) (with N = 1 in the right-hand side of (52)) is not enough to
fit the stress relaxation function, then a weighted sum of polynomials (truncated
series of Mittag-Leffler function) should be used. Obviously, in this case the
parameter estimation should need specific data.
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3 Some Comments on the Bagley-Torvik Equation

3.1 The Initial Formulation and Assumed Approximations

Bagley and Torvik began their investigation using Rouse’s idea [21] concerning
the effective dynamic shear modulus of rarefied coiled polymers [1]. The sum of
exponential decay modes (57) served as the Rouse model’s representation [21] of
the stress relaxation with decay times τi.

G (t) =
N∑

i=1

G0e
− t

τi (57)

It is simple to spot the Prony series decomposition in the context of the
current investigation. However, if the distribution of τi is proportional to t−α−1,
then we get (58) defining a fractional derivative (with singular kernel) from ε of
order α (in the original notations of [1])

σα =

t∫

a

G (t − s)
d

ds
ε (s) ds (58)

Hence, the total stress σα in the generalized Maxwell model, for instance, can

be expressed as σα =
N∑

i=1

σi where σi is the stress in the ith Maxwell element,

namely

σi = ki (ε − εi) = ηi
dεi

dt
⇒ dσi

dt
+

1
τi

σ =
d (kiε)

dt
, i = 1, ...N (59)

As a result, if the material relaxes in a power-law fashion, a fractional deriva-
tive model may be developed within the framework of weakly singular kernels, that
is t−α, which leads to

σα (t) = μADα
a 	kε (t)
 , σα = limN→∞

N∑

i=1

σi, σα = limN→∞
N∑

i=1

ki (60)

where μA is a positive constant.
After this simple explanation let us see the original construction of Bagley

and Torvik represented as [17]

σ (t) +
N∑

m=1

bmDβmσ = E0ε (t) +
N∑

n=1

EnDαmε (t) (61)

In (61) the fractional derivatives are Riemann-Liouville derivatives (originally
used by Bagley and Torvik) and in case of N = 1 this relationship reduces to a
simple expression (see comments below)
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σ (t) + bDβσ (t) = E0ε (t) + E1D
αε (t) (62)

containing two fractional derivatives with different orders.
Now, if the retardation spectrum corresponds to Riesz distribution and

σ(t) = G1D
αε(t) then the stress relaxation modulus G(t) and the creep compli-

ance J(t) are

G(t) =
G1

Γ (1 − α)
t−α, J(t) =

1
G1

1
Γ (1 − α)

tα (63)

Therefore, with a power-law relaxation we get α = β in (62) thus making it a
single-fractional order equation.

According to arguments made by Bagley and Torvik, the condition alpha =
beta, which naturally results from the power-law stress relaxation kernel and the
interconversion, is occasionally taken for granted as a norm. When the stress and
strain relaxations in the model (60) are each represented by a single fractional
derivative, correspondingly, we obtain a single-order equation in this instance,
which is an exception when only one power-law term models the entire stress
relaxation. This reduces the model to (61).

3.2 Bagley-Torvik Equation in Terms of Polynomial Caputo-Fabrizio
Operators

It is normal to have concerns about properly simulating dynamic processes in
non-power law media. Now, we could create a constitutive relationship in the
manner of Bagley and Torvik and demonstrate how to reduce the relaxation
(57) to (61), which naturally results in the application of the Caputo-Fabrizio
operator [17].

σ (t) = E0ε (t) + E1D
μ
t [ε (t)] , 0 < μ < 1 (64)

In (64) the fractional operator Dμ
t [ε (t)] is based on a memory kernel different

from the power-law, in this specific case we use exponential memory [17].

σ (t) +
N∑

i=1

bi

[
CF Dβiσ

]
= E0ε (t) +

N∑

i=1

Ei

[
CF Dαiε (t)

]
(65)

The Prony decomposition’s fundamental principle is the source of the fractional
order series, which has an equal number of terms on both sides of the equation.
Moreover, the retardation times λi and the relaxation times τi obey the condi-
tions [17,20]

τ1 < λ1 < .... < τi < λi < ...τN < λN (66)

In light of the connections between the relaxation (retardation) times and the
fractional orders αi = 1/(1 + τi/t0 ) and βi = 1/(1 + λi/t0 ) we have the
following requirement:

0 < β1 < α1 < ... < βi < αi < ... < βN < αN < 1 (67)



Fractional Polynomial Operators 45

Further, a discrete relaxation spectrum (a series of exponents) with an accumu-
lation point at zero, behaves like a power-law for brief periods of time in the
context of polymer rheology [16,17,22], that is:

∞∑

i=0

exp (−iγξ) → t−
1
γ , t → 0, γ > 1 (68)

Therefore, when for t → 0 we may expect that (65) reduces to (68) and (62). This
response explains how the model (65) reduces to the Bagley-Torvik equation with
power-law-based derivatives and when this occurs: the discrete the relaxation
spectrum asymptotic behaviour for short times. When N = 1, we get [17]

σ(t) + b
[
CF Dβσ(t)

]
= E0ε(t) + E1

[
CF Dασ(t)

]
, 1 > β > α > 0 (69)

Equation (69) contains two fractional derivatives of different orders as in (62)
and this is the generalized Zener type model. Moreover, for α = β = 1, this model
reduces to

σ + τε
dσ

dt
= Mr

(
ε + τσ

dε

dt

)
, τσ/τε < 1 (70)

with a relaxation modulus Mr. In general, τ < λ because this the basic causality
requirement, meaning that the reaction occurs after the cause of it, but not the
other way around, then the ratio τ/λ is always is less than 1.

4 Polynomial-Based Relationships Between Fractional
Operators with Various Kernels

Now, the major goal of this section is to show that there are connections between
popular fractional operators with single-memory kernels and the polynomial
operator under discussion. The option to use various techniques (approxima-
tions) of the system responses (relations function) enables for showing the pri-
mary notion of this chapter because memory kernels in the hereditary integrals
match (or approximate) the relaxation response of the system modelled.

4.1 Riemann-Liouville and Caputo Formulations as Fractional
Caputo-Fabrizio Polynomials

Let us have a look at the Riemann construction for the integral (4) and derivative
(5). The Riesz distributions, which act as memory kernels, (6) or (8), are the
cores of these convolutions, that is, single power-law functions are used to model
the system’s relaxations (responses) based on this idea.

Since there is now a “competition” between the fractional operators with
singular and those with non-singular kernels, the exponential sum approximation
of the power-law function is quite an intriguing topic. The primary findings will
be stated as follows after we quote McLean’s study [23] (see also [24]) next.
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Power-Law Function Approximation by a Sum of Exponentials. We
can think about a convolution operator with a kernel of k (t) [23] and specified
points of time to address the power-law approximation by a sum exponentials
[23,24].

K [u (t)] =

t∫

0

k (t − s) u (s)ds 0 = t0 < t1 < t2 · · · < tNt
= T (71)

Thus, allowing to attain a sufficient accuracy when only a moderate number
of terms (moderate value of L) for a choice of δ that should be smaller than
the time interval (tn − tn−1) between the sampling points. If Δtn ≥ δ it follows
than δ ≤ tn − s ≤ T when 0 ≤ s ≤ tn−1. With k (t) = t−β , β > 0, the following
transform is considered [23,24]

k (t) ≈
L∑

l=1

wl exp (blt) (72)

As a result, it is possible to achieve an acceptable level of accuracy using just
a moderate number of terms (moderate value of L) and a δ value that is chosen
to be less than the time gap (tn − tn−1) between the sample points. If Δtn ≥ δ,
it is evident that δ ≤ tn − s ≤ T occurs when 0 ≤ s ≤ tn−1. The following
transform is said to [23] if k (t) = t−β and β > 0.

t−β =
1

Γ (β)

∞∫

0

e−ptpβ dp

p
, t > 0, β > 0 (73)

By application the trapezoidal rule with a step h > 0 the following approximation
can be obtained [23,24]

t−β ≈ 1
Γ (β)

∞∑

n=−∞
wn exp (−ant) , an = ehn, wn = heβhn (74)

with a relative error [23,24]

ρ̄ (t) = 1 − tβ

Γ (β)

∞∑

n=−∞
wn exp (−ant), 0 < t < ∞ (75)

When t ∈ [δ, t] with δ ∈ (0, T = ∞) and a finite number of terms we get [23,24]

t−β ≈ 1
Γ (β)

N∑

n=−M

wn exp (−ant) , δ ≤ t ≤ T (76)

with a bounded error of approximation. In addition, the terms an = exp (nh)
approach zero when n → −∞.
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If g (t) ≈
N∑

p=1
w̃p exp (−ãpt) , 2N −1 < L, w̃l > 0, ãl > 0 consequently 2N

parameters from 2N conditions have to be determined, such that

g (t) ≈
N∑

p=1

w̃p exp (−ãpt) , 2N − 1 < L, w̃l > 0, ãl > 0 (77)

The approximation (76) is a finite sum with many small exponents an. Now,
the task is to develop more efficient approximations with as much as fewer N

terms and acceptable accuracy, such that g (t) ≈
N∑

p=1
w̃p exp (−ãpt) , 2N − 1 <

L, w̃l > 0, ãl > 0. The test for β = 3/4 (carried out with δ = 10−6 and T = 10)
revealed that with M = 65 and N = 36 the relative error of approximation is
≤ 0.92 × 10−8 (δ ≤ t ≤ T ). The data summarized in Table 1 of [23] indicate
that for L = 65 and N = 6 the maximum relative error is about 1.66e−9. The
same maximum relative error

(
1.66e−9

)
appears when L = 62 and N = 3, as

well as for L = 56 and N = 2 (two exponential terms). In all these cases the
condition 2N − 1 < L is obeyed. Similar analysis was thoroughly performed in
[10]. Further, if the appropriate coefficients in (72) are scaled as [25,26]

bi = b0/qi−1, wl = Cβ (q) kβ(t)
bβ
l

Γ (1 − β)
(78)

such as the inverse relaxation times bl and the constants wl, where q is a scaling
parameters and Cβ (q) is a fitting dimensionless constant.

In this way, the power-law can be approximated over about r = Llog10q − 2
temporal decades, where q is a scaling parameter related to the inverse relaxation
time (rate constants) bl = b0/qi−1, between two limits [25,26]: τl = 1/b0 < t <
τh = τlq

L−1; and these restrictions always apply in physical situations. Hence, as
mentioned by Goychuk [26] this approximation is not only natural but in some
cases desirable (see comments in [27] where effects of fractional kennels on the
type differentiable functions and emerging problems are discussed). As a result,
as indicated by Goychuk in [26] this approximation is not only reasonable in
some circumstances but also does so naturally (see the comments in [27] where
the effects of fractional values on the type differentiable functions and new issues
are examined). According to Goychuk [26], if the scaling parameter q is properly
selected, even a decade scaling with q = 10, approximations with 1% accuracy
can be developed. For instance, Goychuk’s example [26] shows a nice fit of t−0.5

over 14 time decades with a sum of 16 exponential terms.

Riemann-Liouville Operators Approximated by Fractional Caputo-
Fabrizio Polynomials. Therefore, the Riemann-Liouville integral (4) can be
approximated as fractional Caputo-Fabrizio polynomials if the kernel function
t−β , where β = (1 − α) < 1, and therefore α = 1−β, is approximated as a series
(76) or (76)), then we get an approximated Riemann-Liouville integral, namely
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Iαf (t) = D−αf (t) ≈ 1
Γ (α)

t∫

0

g (t) f (t)ds

=
1

Γ (α)

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
f (s)ds

(79)

and an approximated Riemann-Liouville derivative, that is

RLDα
t ≈ 1

Γ (β)
d

dt

t∫

0

g (t) f (t)

=
1

Γ (β)
d

dt

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
f (s)ds, β = 1 − α

(80)

In both approximations, the discrete fractional orders are related to the rate coef-
ficients ãp (having dimensions s−1), which are the dimensionless inverse relax-
ation times, that is ãp = 1/τ̄rp, where τ̄rp = τrp/t0 (t0 is macroscopic time scale)
(see Eq. (43) as an example of this)

ãp =
αp

1 − αp
(81)

Caputo Derivative Approximated by Fractional Caputo-Fabrizio Poly-
nomials. Further, using the same approximation for the Caputo derivative we
get

CDβf(t) ≈ 1
Γ (1 − β)

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
df (s)

ds
ds (82)

where ãp are defined by (81). Changing the order of the integration and sum-
mation in (82) we get (see the same operation in (42))

CDβf (t) ≈ 1
Γ (1 − β)

N∑

p=1

t∫

0

[ω̃p exp (−ãp (t − s))]
df (s)

ds
ds

=
1

Γ (1 − β)

N∑

p=1

CF D
αp

t f (t)

(83)

The essential principle of the fractional polynomial approximation, that we
can approximate derivatives with the power-law kernel as a finite sum of Caputo-
Fabrizio derivatives, is further illustrated by this conclusion. Regarding the
Riemann-Liouville structures, the conclusion is not immediately apparent. It
is straightforward to demonstrate the reasonableness of the polynomial approx-
imations, though, because a simple integration by parts makes it possible to see
the links between the Caputo and Riemann-Liouville derivatives [6].
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Generally speaking, the Caputo construction, which is seen in other fractional
operators with non-singular kernels, enables a more convincing demonstration
of the rationality in approximation by fractional polynomials.

4.2 Fractional Operator with a Mittag-Leffler Kernel and Fractional
Caputo-Fabrizio Polynomials

Mittag-Leffler Function Approximation by Exponential Sums. We shall
now briefly discuss the exponential sums approach or the Mittag-Leffler function
approximation method [28]

Eα (−tα) =
∞∑

k=0

(−1)k
tkα

Γ (αk + 1)
, 0 < α < 1, t > 0 (84)

as

Eα (−tα) ≈
N∑

i=1

wi exp (−pit), 0 < α < 1, t > 0 (85)

Following Lam [28] (see more details in [24]) we have

E (−tα) =

∞∫

0

sin (απ)
x2 + 2 cos (απ) x + 1

exp
(
−x1/α

)
dx (86)

Then, expressing the integral in (86) as a sum of sub-integrals [28]

Eα (−tα) =

b−N∫

0

+
N∑

j=1

b−j+1∫

b−j

+
M∑

j=1

bj∫

bj−1

+

∞∫

bM

(87)

allows in each sub-interval- the Gauss-Legendre quadrature to be applied. And,
the result is [28]

Eα (−tα) ≈ S (t) =
N+M∑

j=1

nj∑

i=1

wij exp (−sijt) (88)

with

wij = ω
(nj)
ij

sin c (απ)
x2

ij + 2 cos (απ) xij + 1
, sij =

[
x
(nj)
ij

]1/α

, sin c (x) =
sin (x)

x

(89)
where and ω

(nj)
ij x

(nj)
ij are the Gauss-Legendre quadrature nodes and weights of

order nj of the jth interval
[
bj−N , bj−N+1

]
.
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A Constitutive Equation with Mittag-Leffler Memory Approximated
by Caputo-Fabrizio Polynomials. It is feasible to give a single convolution
constitutive equation using the Mittag-Leffler function as a memory kernel, as
an approximation, using the desired presentation (85) and the result (88), that
is

G (t) = Eα1

[(
− t

τk

)αk
]

≈ Eα (−tα) ≈
N+M∑

j=1

nj∑

i=1

wij exp (−sijt) (90)

where simple relations link αij = 1/(1 + τij/t0 ) terms of relaxation periods
sij = 1/τij to fractional orders αijof the Caputo-Fabrizio operators.

This replacement of the Mittag-Leffler kernel with a Prony’s series in the
convolution integral results in [24]

σ (t) = G∞ +

t∫

0

Eα1

(
t − s

τk

)αk d

ds
ε (s) ds ⇒ σ (t)

≈ G∞ +

t∫

0

⎡

⎣
N+M∑

j=1

nj∑

i=1

wij exp (−sijt)

⎤

⎦ d

ds
ε (s) ds

(91)

As a result of the integration and summation orders being reversed in (91), [24]
we get

σ (t) ≈ G∞ +
N+M∑

j=1

nj∑

i=1

⎡

⎣
t∫

0

wij exp (−sijt)
d

ds
ε (s) ds

⎤

⎦ (92)

Now, we may express (92) in terms of Caputo-Fabrizio operators with fractional
orders αij as [24]

G (t) ≈ G∞ +
N+M∑

j=1

nj∑

i=1

[
(1 − αij) D

αij

t ε (t)
]

(93)

This is comparable to the stress relaxation function that Prony’s series
directly approximates. Such an approach may facilitate the calculation tech-
niques and avoid the problems with slow convergence of the Mittag-Leffler func-
tion. Moreover, from a practical point of view, when high precisions in the
approximations requiring too many terms to be involved in the series (defined
by the condition (89) are not attainable due to the experimental techniques
restrictions, less accuracy in approximation results in less number of Prony’s
series approximating the Mittag-Leffler function. Thus this end, these comments
only draw a perspective that needs thorough investigations. Such a method
might simplify the calculation processes and prevent issues with the Mittag-
Leffler function’s sluggish convergence. Additionally, from a practical standpoint,
reduced accuracy in approximation leads to fewer Prony’s series approximating
the Mittag-Leffler function when high precisions in approximations, indicated
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by the condition (89), are not achievable due to the experimental procedure
limitations. To that aim, these remarks just highlight a viewpoint that requires
in-depth research.

5 Final Remarks

The author’s view on fractional polynomial operators is presented in this chapter.
It starts with Koeller’s theory and is then expanded to include some recent
advancements in fractional calculus, particularly the non-singular kernel opera-
tors. This initial step makes it possible to connect operators with singular and
non-singular kernels, which in some situations with a practical orientation may
ease with computation. However, the primary goal is to demonstrate that all new
operators, like Mittag-Leffler (it is simple to develop this line also for Prabhakar,
Rabotnov, and others functions, albeit they are not provided here), with mem-
ory kernels based on entire functions (of polynomial type converging completely
at the complex plane), are in reality polynomial operators.

With satisfaction, we may mention the following from this vantage point and
at the date and time that such a position is taken: We may occasionally unearth
inspired ideas by looking at what has already been done, even though they were
not acknowledged in the original source. By having the ability to discern the
invisible in previously seen results, science is being pushed into new frontiers.
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