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Abstract. In thismanuscript, an approximate analytical solution of theHelmholtz
and coupled Helmholtz equations of fractional order is obtained using local frac-
tional Sumudu decomposition method (LFSDM). The Helmholtz equations play
an important role in the study of various physical problems such as seismol-
ogy, tsunamis, optics, acoustics, medical imaging, electrostatics and quantum
mechanics. To validate the efficiency and reliability of the employed scheme, the
Helmholtz and coupled Helmholtz equations are considered. The results obtained
with this scheme are in a good agreement with previous works. Moreover, the
graphical presentations for obtained solutions are also illustrated for distinct values
of order of a partial derivative.
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1 Introduction

In last decades, fractional calculus has been applied very frequently in the field of applied
sciences and technology. Actually, the area of fractional calculus is concerned with
integral andderivatives of real order and it significantly handles scientific and engineering
problems by formulating them in the form of fractional differential equations such as
the diffusion equations [1], the gas dynamic equation [2], telegraph equation [3], wave
equation [4–7], Fokker-Planck equation [8, 9], Laplace equation [10], Klein-Gordon
equations [11], Helmholtz equation [12], and Burger’s equations [13].
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Various local fractional schemes have been used to solve the local fractional PDEs
(LFPDEs) such as the local fractional decomposition method [13–15], local fractional
variational iteration method [16–22], local fractional differential transform method [23,
24], local fractional series expansion method [25, 26], local fractional Sumudu decom-
position method [27], local fractional reduce differential transform method [28], local
fractional Laplace variational iteration method [29], local fractional Laplace decompo-
sition method [30], and local fractional Laplace homotopy perturbation method [31, 32].
This paper presents the copulation of LFST and LFADM, which is called as LFSDM,
to solve the local fractional Helmholtz and coupled Helmholtz equations.

The paper is arranged in the following way: The basic definitions for calculus and
fractional integration are presented in Sect. 2, the method used are analyzed in Sect. 3,
illustrative examples are given that explain the effectiveness of the method proposed in
Sect. 4, the numerical results and discussion are described in the Sect. 5 and finally, the
conclusion is provided in Sect. 6.

2 Mathematical Fundamentals

Definition 2.1. The LF derivative of ϕ(μ) of order ε at μ0 is [14–16]:

ϕ(ε)(μ0) = lim
μ→μ0

�(1 + ε)[ϕ(μ) − ϕ(μ0)]

(μ − μ0)
ε , 0 < ε ≤ 1 (1)

Definition 2.2. The Mittage-Leffler function is defined by [14]:

Eε

(
με

) =
∞∑

k=0

μkε

�(1 + kε)
, μ ∈ R, 0 < ε ≤ 1 (2)

Definition 2.3. The LFST of ϕ(μ) given by [26]

STε{ϕ(μ)} = 1

�(1 + ε)

∞∫

0

Eε

(−wεμε
)ϕ(μ)

wε
(dμ)ε. (3)

Following (4), its inverse formula is defined by

ST−1
ε (STε{ϕ(μ)}) = ϕ(μ), 0 < ε ≤ 1. (4)

The properties for LFST are:

1. STε

{
με

�(1+ε)

}
= wε.

2. STε

{
∂mεϕ(μ,τ)

∂μmε

}
= 1

wmε

[
STε{ϕ(μ, τ)} − ∑m−1

k=0 wkε ∂kεϕ(0,τ )

∂τ kε

]
.
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3 Analysis of LFSDM

Let us consider the PDE with LFDOs:

Lεϕ(μ, τ ) + Rεϕ(μ, τ ) = g(μ, τ ), 0 < ε ≤ 1 (5)

where Lεϕ(μ, τ ) = ∂mε

∂μmε ϕ(μ, τ ), Rε denotes linear LFDO, and g(μ, τ ) is the non-
differentiable source term.

Applying the LFST on Eq. (5), and using the property of the LFST, we get

STε{ϕ(μ, τ)} =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε
+wmεSTε{g(μ, τ )} − wmεSTε{Rεϕ(μ, τ )}. (6)

Taking the inverse of LFST on Eq. (6), we have

ϕ(μ, τ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

− ST−1
ε

[
wmεSTε{Rεϕ(μ, τ)}]. (7)

Now, procedure of ADM suggests the decomposition of the unknown function
ϕ(μ, τ) as an infinite series in the following way

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ). (8)

By making use of the Eq. (8) in Eq. (7), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

− ST−1
ε

[

wmεSTε

{

Rε

∞∑

n=0

ϕn(μ, τ )

}]

. (9)

Matching both sides of (9) provides

ϕ0(μ, τ ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

ϕ1(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ0(μ, τ )]}],

ϕ2(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ1(μ, τ )]}],

ϕ3(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ2(μ, τ )]}],

... (10)

The general form of above obtained local fractional recursive relations is

ϕ0(μ, τ ) =
m−1∑

k=0
wkε ∂kεϕ(0,τ )

∂τ kε
μkε

�(1+kε) + ST−1
ε

[
wmεSTε{g(μ, τ )}],

ϕn(μ, τ ) = −ST−1
ε

[
wmεSTε

{
Rε

[
ϕn−1(μ, τ )

]}]
, n ≥ 1, 0 < ε ≤ 1

(11)
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4 Application of LFSDM

Example 4.1. Consider the Helmholtz equation with LFDO:

∂2εϕ(μ, τ )

∂μ2ε + ∂2εϕ(μ, τ)

∂τ 2ε
+ ϕ(μ, τ) = με

�(1 + ε)

τ ε

�(1 + ε)
, (12)

with

ϕ(0, τ ) = 0, ϕ(ε)(0, τ ) = τ ε

�(1 + ε)
. (13)

Taking LFST of (12), we get

STε{ϕ(μ, τ)} =
1∑

k=0

wkε ∂kεϕ(0, τ )

∂μkε
+ w2εSTε

{
με

�(1 + ε)

τ ε

�(1 + ε)

}

− w2εSTε

{
∂2εϕ(μ, τ )

∂τ 2ε
+ ϕ(μ, τ)

}

= wε τ ε

�(1 + ε)
+ w3ε τ ε

�(1 + ε)
− w2εSTε

{
∂2εϕ(μ, τ)

∂τ 2ε
+ ϕ(μ, τ)

}
.

The inversion of LFST implies that

ϕ(μ, τ) = με

�(1 + ε)

τ ε

�(1 + ε)
+ μ3ε

�(1 + 3ε)

τ ε

�(1 + ε)

− ST−1
ε

[
w2εSTε

{
∂2εϕ(μ, τ )

∂τ 2ε
+ ϕ(μ, τ)

}]
. (14)

Now, procedure of ADM suggests the decomposition of the unknown function
ϕ(μ, τ) as an infinite series in the following way

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ). (15)

Substituting (15) in (14), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)

τ ε

�(1 + ε)
+ μ3ε

�(1 + 3ε)

τ ε

�(1 + ε)

− ST−1
ε

[

w2εSTε

{
∂2ε

∂τ 2ε

∞∑

n=0

ϕn(μ, τ ) +
∞∑

n=0

ϕn(μ, τ )

}]

. (16)

On comparing both sides of (16), we have:
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Therefore, the approximate solution ϕ(μ, τ) of Eq. (12) is expressed by

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)

τ ε

�(1 + ε)
. (17)

The result is the same as the one which is obtained by the LFLADM [12] and
LFLHPM [31].

Example 4.2. Now we examine the coupled Helmholtz equations with LFDOs:

∂2εϕ(μ, τ )

∂μ2ε + ∂2εψ(μ, τ)

∂τ 2ε
− ϕ(μ, τ) = 0,

∂2δψ(μ, τ)

∂μ2δ + ∂2δϕ(μ, τ )

∂τ 2δ
− ψ(μ, τ) = 0, (18)

with

ϕ(0, τ ) = 0, ϕ(ε)(0, τ ) = Eε

(
τ ε

)
,

ψ(0, τ ) = 0, iψ(ε)(0, τ ) = Eε

(
τ ε

)
. (19)
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Taking LFLT of (18), we obtain

STε{ϕ(μ, τ)} = wεEε

(
τ ε

) + w2εSTε

{
ϕ(μ, τ) − ∂2εψ(μ, τ)

∂τ 2ε

}
,

STε{Ψ (μ, τ)} = −wεEε

(
τ ε

) + w2εSTε

{
ψ(μ, τ) − ∂2εϕ(μ, τ )

∂τ 2ε

}
, (20)

The inversion of LFST implies that

ϕ(μ, τ) = με

�(1 + ε)
Eε

(
τ ε

) + ST−1
ε

[
w2εSTε

{
ϕ(μ, τ) − ∂2εψ(μ, τ)

∂τ 2ε

}]
,

ψ(μ, τ) = − με

�(1 + ε)
Eε

(
τ ε

) + ST−1
ε

[
w2εSTε

{
ψ(μ, τ) − ∂2εϕ(μ, τ )

∂τ 2ε

}]
. (21)

Now, we compose the unknown functions ϕ(μ, τ) andψ(μ, τ) in the form of infinite
series as

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ),

ψ(μ, τ) =
∞∑

n=0

ψn(μ, τ ). (22)

On making use of (22) in (21), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)
Eε

(
τ ε

)

+ ST−1
ε

[

w2δSTε

{ ∞∑

n=0

ϕn(μ, τ ) − ∂2ε

∂τ 2ε

( ∞∑

n=0

ψn(μ, τ )

)}]

,

∞∑

n=0

ψn(μ, τ ) = − με

�(1 + ε)
Eε

(
τ ε

)

+ ST−1
ε

[

w2εLTε

{ ∞∑

n=0

ψn(μ, τ ) − ∂2ε

∂τ 2ε

( ∞∑

n=0

ϕn(μ, τ )

)}]

. (23)

Now, comparison of both sides of (23) yields
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Hence, the solutions are expressed as

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ) = Eε

(
τ ε

) sinhε

(√
2με

)

√
2

.

ψ(μ, τ) =
∞∑

n=0

ψn(μ, τ ) = −Eε

(
τ ε

) sinhε

(√
2με

)

√
2

. (24)

The result (24) is the same as the one which is obtained by the LFADM [12] and
LFHPM [31].

5 Numerical Results and Discussion

In this segment, the numerical simulations for solution of Helmholtz and coupled
Helmholtz equations obtained via LFSDM are presented. The numerical investigation of
Helmholtz and coupled Helmholtz equations considers different values of ε = 1, log 2

log 3 .
Here, the Matlab software is utilized to draw all the 3D plots. Figures 1 & 2 show the
3D surface plot for solution ϕ(μ, τ) for Example 1 for ε = 1.0 and ε = log 2

log 3 , respec-
tively. Figure 2 represents the variation of ϕ(μ, τ) in fractal dimension. Similarly, the
3D surface plots for solution ϕ(μ, τ) for Example 2 are depicted in Figs. 3 and 4 for
ε = 1.0 and ε = log 2

log 3 , respectively. Figures 5 & 6 represent the 3D variation for solution

Fig. 1. 3D behaviour of ϕ(μ, τ) for Example 1 w.r.t. μ and τ for ε = 1.0
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ψ(μ, τ) for Example 2 for ε = 1, log 2
log 3 , respectively. Figure 6 represents the variation

of ϕ(μ, τ) on Cantor set.

Fig. 2. 3D behaviour of ϕ(μ, τ) for Example 1 w.r.t. μ and τ for ε = log 2
log 3

Fig. 3. 3D variation of ϕ(μ, τ) for Example 2 w.r.t. μ and τ for ε = 1.0
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Fig. 4. 3D variation of ϕ(μ, τ) for Example 2 w.r.t. μ and τ for ε = log 2
log 3

Fig. 5. 3D behaviour of ψ(μ, τ) for Example 2 w.r.t. μ and τ for ε = 1.0



296 D. Kumar et al.

Fig. 6. 3D behaviour of ψ(μ, τ) for Example 2 w.r.t. μ and τ for ε = log 2
log 3

6 Conclusions

In this work, the LFSDM is conveniently employed to obtain the approximate solution
of Helmholtz and coupled Helmholtz equations within LFDOs. The proposed algorithm
provides a solution in a series form that converges rapidly to an exact solution if it exists.
From the obtained results, it is clear that the FSDM yields very accurate solutions using
only a few iterates. The method is very powerful and efficient in finding semi-analytical
solutions for wide classes of LFPDEs.

References

1. Jafari, H., Jassim, H.K., Vahidi, J.: Reduced differential transform and variational iteration
methods for 3D diffusion model in fractal heat transfer within local fractional operators.
Therm. Sci. 22, S301–S307 (2018)

2. Baleanu, D., Jassim, H.K.: A modification fractional variational iteration method for solv-
ing nonlinear gas dynamic and coupled KdV equations involving local fractional operators.
Therm. Sci. 22, S165–S175 (2018)

3. Jafari, H., Jassim, H.K.: Application of the local fractional adomian decomposition and series
expansion methods for solving telegraph equation on cantor sets involving local fractional
derivative operators. J. ZankoySulaimani-Part A 17, 15–22 (2015)

4. Jassim, H.K., Ünlü, C., Moshokoa, S.P., KhaliqueC.M.: Local fractional Laplace variational
iterationmethod for solving diffusion andwave equations on cantor setswithin local fractional
operators. Math. Probl. Eng. 2015, 1–9 (2015)



A Computational Study of Local Fractional Helmholtz 297

5. Baleanu, D., Jassim, H.K.: Approximate solutions of the damped wave equation and
dissipative wave equation in fractal strings. Fractal Fract. 3(26), 1–12 (2019)

6. Jassim, H.K.: The approximate solutions of three-dimensional diffusion and wave equations
within local fractional derivative operator. Abstr. Appl. Anal. 2016, 1–5 (2016)

7. Wang, S.Q., Yang, Y.J., Jassim, H.K.: Local fractional function decomposition method for
solving inhomogeneous wave equations with local fractional derivative. Abstr. Appl. Anal.
2014, 1–7 (2014)

8. Yang, X.J., et al.: Local fractional variational iteration method for Fokker-Planck equation on
a Cantor set. Acta Universitaria 23, 3–8 (2013)

9. Jassim, H.K.: New approaches for solving fokker planck equation on cantor sets within local
fractional operators. J. Math. 2015, 1–8 (2015)

10. Yan, S.P., Jafari, H., Jassim, H.K.: Local fractional Adomian decomposition and function
decomposition methods for solving Laplace equation within local fractional operators. Adv.
Math. Phys. 2014, 1–7 (2014)

11. Yang, A.M., et al.: Application of local fractional series expansion method to solve Klein-
Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 1–6 (2014)

12. Jassim, H.K.: The approximate solutions of Helmholtz and coupled Helmholtz equations on
cantor sets within local fractional operator. J. Zankoy Sulaimani-Part A 17, 19–25 (2015)

13. Jassim, H.K.: A new approach to find approximate solutions of Burger’s and coupled Burger’s
equations of fractional order. TWMS J. Appl. Eng. Math. 11(2), 415–423 (2021)

14. Baleanu, D., Jassim, H.K.: Approximate analytical solutions of goursat problem within local
fractional operators. J. Nonlinear Sci. Appl. 9, 4829–4837 (2016)

15. Jafari, H., et al.: Local fractional adomian decompositionmethod for solving two dimensional
heat conduction equationswithin local fractional operators. J.Adv.Math.9, 2574–2582 (2014)

16. Jassim, H.K., Khafif, S.A.: SVIM for solving Burger’s and coupled Burger’s equations of
fractional order. Prog. Fract. Differ. Appl. 7(1), 1–6 (2021)

17. Jafari, H., et al.: Local Fractional variational iteration method for nonlinear partial differential
equations within local fractional operators. Appl. Appl. Math. 10, 1055–1065 (2015)

18. Xu, S., Ling, X., Zhao, Y., Jassim, H.K.: A novel schedule for solving the two-dimensional
diffusion in fractal heat transfer. Therm. Sci. 19, S99–S103 (2015)

19. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science
Publisher, New York (2012)

20. Yang, X.J.: Local Fractional Functional Analysis and Its Applications. Asian Academic
Publisher Limited, Hong Kong (2011)

21. Jafari, H, Jassim, H.K., Vahidi V.: Reduced differential transform and variational iteration
methods for 3D diffusion model in fractal heat transfer within local fractional operators.
Therm. Sci. 22, S301–S307 (2018)

22. Jassim, H.K., Shahab, W.A.: Fractional variational iteration method to solve one dimensional
second order hyperbolic telegraph equations. J. Phys. Conf. Ser. 1032(1), 1–9 (2018)

23. Yang, X.J., Machad, J.A., Srivastava, H.M.: A new numerical technique for solving the
local fractional diffusion equation: two-dimensional extendeddifferential transformapproach.
Appl. Math. Comput. 274, 143–151 (2016)

24. Jafari, H., Jassim, H.K., Tchier, F., Baleanu, D.: On the approximate solutions of local
fractional differential equations with local fractional operator. Entropy 18, 1–12 (2016)

25. Jassim, H.K., Baleanu, D.: A novel approach for Korteweg-de Vries equation of fractional
order. J. Appl. Comput. Mech. 5(2), 192–198 (2019)

26. Singh, J., Jassim, H.K., Kumar, D.: An efficient computational technique for local fractional
Fokker-Planck equation. Phys. A 555(124525), 1–8 (2020)

27. Baleanu, D., Jassim, H.K.: Exact solution of two-dimensional fractional partial differential
equations. Fractal Fract. 4(21), 1–9 (2020)



298 D. Kumar et al.

28. Jafari, H., Jassim, H.K., Moshokoa, S.P., Ariyan, V.M., Tchier, F.: Reduced differential trans-
form method for partial differential equations within local fractional derivative operators.
Adv. Mech. Eng. 8, 1–6 (2016)

29. Baleanu, D., Jassim, H.K., Al Qurashi, M.: Solving Helmholtz equation with local fractional
derivative operators. Fractal Fract. 3(43), 1–13 (2019)

30. Jassim, H.K.: Analytical approximate solutions for local fractional wave equations. Math.
Methods Appl. Sci. 43(2), 939–947 (2020)

31. Baleanu, D., Jassim, H.K.: A modification fractional homotopy perturbation method for solv-
ing Helmholtz and coupled Helmholtz equations on cantor sets. Fractal Fract. 3(30), 1–8
(2019)

32. Singh, J., et al.: On the local fractional wave equation in fractal strings. Math. Method Appl.
Sci. 2019, 1–8 (2019)


	A Computational Study of Local Fractional Helmholtz and Coupled Helmholtz Equations in Fractal Media
	1 Introduction
	2 Mathematical Fundamentals
	3 Analysis of LFSDM
	4 Application of LFSDM
	5 Numerical Results and Discussion
	6 Conclusions
	References




