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Abstract. This research aims to analyse the complex blood flow pat-
tern in the 2D model of the human carotid artery. The steady blood
flow in a 2D bifurcation model of the human carotid artery is described
through the computer software ANSYS 19.1 and numerically simulated
using the finite volume method on a staggered grid using the control
volume method. This structural model in two dimensions is obtained to
investigate the behaviour of hemodynamic parameters like blood velocity,
considering blood as Newtonian, and incompressible. The incompressible
2D Navier-Stokes equation is used as the governing equation to deter-
mine the blood flow pattern. The blood flow in this model is examined
by separating the flow analysis into two distinct patterns. Because of the
regular design, laminar flow was obtained before the artery bifurcation.
However, turbulent flow or reverse flow was achieved following the artery
bifurcation because an irregular flow pattern is generated by a change in
shape.

Keywords: 2D modeling · ANSYS 19.1 · Finite volume method ·
Navier-Stokes equation

1 Introduction

Cardiovascular diseases are undergoing a rapid increase in the death of humans
all over the world, according to the WHO updated risk chart, an estimated 17.9
million people died from CVDs (due to some risk factors such as diabetes, hyper-
tension, blockage, thinning, and dilations of the blood cells) [1]. According to
hematology, the blood vessels, including arteries, capillaries, and arterioles, exe-
cute some biotic functions such as supplying oxygen, waste products, and some
essential nutrients to all the parts of the body and removing catabolic products
[2–4]. Hence, the research works in the numerical simulation of blood rheology
growing continuously for diagnosis, prevention, and the cure of cardiovascular
diseases with the increase of computational power, for deeper study of the com-
plexity of hemodynamic of blood and geometric parameters effect of CVDs [5–9].
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The motivation behind this is to exert more and more effort in the development
of these physiological methods and blood flow simulations because a compu-
tational tool could enable the development of alternative methods for clinical
doctors to obtain some detection of cardiovascular disease in a non-invasive way.

The function of the carotid artery is to supply blood as well as other nutrients
to the brain, face, and neck of the human body. The carotid arteries are located
on both sides of the neck. Internal carotid artery (ICA) and external carotid
artery (ECA) are the two divisions that may be used to categorize carotid artery
[10–13]. Figure 1 shows that the internal carotid artery is larger in diameter than
the external carotid artery. The internal carotid artery supplies blood to the
brain, whereas the external carotid artery supplies blood to the face and neck.

When predicting the flow pattern within an artery and monitoring the onset
and evolution of plaque on the arterial wall, a computational fluid dynamics
(CFD) model is a useful tool [14–16]. The application of CFD to 2-D artery
geometries with plaque forms offers a priceless simulation of complicated geom-
etry. The results produced by computational approaches are more accurate and
cost-effective, and they are simple to mimic. In this current study, we use the
methods that necessitated the foundations for the development of convoluted
mathematics and physics. Consequently, the cardiovascular system modelling is
limited to the parameters and boundary conditions that are available. So the
computationally finite volume method for this system is prohibitive, and hence
we used the coupled parameters to compromise. Therefore, this research simpli-
fied the area of interest for the 2D cardiovascular system model. Although only
a few researchers have conducted a comprehensive study of hemodynamics on
the 2D cardiovascular system model, [17–19].

In this study, we analyse the velocity of fluid in the constructed carotid artery
by using the Navier-Stokes equation (NSE) as the governing equation of the
motion of the fluid. The Navier-Stokes equation is a sequence of continuity and
momentum equations that describe the flow in the large vascular domain and is
coupled with the structural equation for simulation with the multi-dimensional
structure. The objective of this research is to develop a simple simulation imple-
mentation that realistically describes the hemodynamics 2D constructed geom-
etry of the vascular system using the axisymmetric Navier-Stokes equation.

2 Material and Methods

2.1 Elastic Model

Blood is a suspension of cells-red blood cells, white blood cells, platelets, and
plasma-in a liquid solution, which consists of about 7% of protein and 90% of
water. The elastic properties of the red blood cell membrane are responsible
for the viscoelastic fluid behaviour of blood. The nature of the flow of blood
determines whether the blood is Newtonian or non-Newtonian [20,21]. Usually,
the flow of blood is considered Newtonian in the large blood vessels. In this
study, Blood is considered as the Newtonian fluid with the blood properties
density and dynamic viscosity of 1060 kg/m3 and 0.04 Pa.s respectively. [22].
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This section of the study dealt with the spatial discretization of the Navier-
Stokes equations for incompressible Newtonian fluids as the governing equations.
The two-dimensional Navier-Stokes equations for incompressible Newtonian flu-
ids consist of the momentum equation and the continuity equation with Ω as
the reference domain and the τ as the boundary of the domain. The Cartesian
form of the 2D Navier-stokes equation is given as follows [1,11,22,23];
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Where ρ is the density of fluid, u and v are velocity components along the
x-axis and y-axis respectively with the pressure p and µ is the dynamic viscosity
[24]. Taking into account the fluid velocity and pressure, Eq. (1) and (2) 2D the
Navier-Stokes equations are discretized with the explicit method, as stated by
the following equation:
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2.2 Spatial Discretization

On the staggered grid space, the spatial discretization is performed with the
velocity u on the horizontal cell interfaces, velocity v placed on the vertical cell
interfaces, and the pressure p in the cell midpoint. For the staggered grid taking,
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and
μ
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= γ, and

p
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= P (7)
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Using the Eq. (6), and (7), discrete form of Navier-stokes Eq. (4), and (5) are
generalized to,
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In vector notation to the velocity correction equation read as,
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The spatial discretize form of continuity Eq. (3) as,
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Write Eq. (14) as one vector equation for constraint on velocity,
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Evaluating Un+1
i,j from Eq. (17) with the advection and the diffusion terms.
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From Eq. (15) the right-hand side of (19) become vanish and the pressure
needed to enforce the velocity becomes incompressible. Hence, it is obtained by
solving the linear system.
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Update the velocity field by adding the pressure
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2.3 Boundary Conditions for the Tangential Velocity

Wall velocity is,
Uw = 0 (22)

i.e. have no slip condition. Then, interpolate the Uw velocity linearly by adding
the ghost ui,2,
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2
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If Uw = 0, then Eq. (24) becomes,

ui,1 = −ui,2 (25)

This represents the reflection technique.
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2.4 Solve for the Pressure

Here, the pressure at the boundary of the domain is obtained through solving the
continuity Eq. (14) and Eq. (21), then using the presented method, rearranging
for pressure, obtain a numerical scheme for boundary condition exactly in the
form presented in [23].
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where, for the boundary nodes except corner (Table 1),
i = 2; i = nx; and j = 2; i = ny;

Table 1. Array dimension

Field quantity Interior nodes Boundary nodes

Velocity U (nx− 2) × (ny) (nx) × (ny + 1)

Velocity V (nx) × (ny − 2) (nx + 1) × (ny)

Pressure P (nx− 1) × (ny − 1) (nx + 1) × (ny + 1)

3 Result and Discussions

In this section, we discussed the numerical results of the regular and irregular
flow patterns of fluid in a constructed carotid artery and bifurcation area. Fluid
was incompressible, Newtonian, laminar flow having the blood properties density
and dynamic viscosity 1060 kg/m3 and 0.04 Pa. s respectively. An analysis of
the result, the time impedance was considered t = 0. At the inlet, the initial
time-averaged reference velocity, v0, was assumed to be 0.3m/s. At the carotid
bifurcation area, where there is a narrowing of the artery, the fluid velocities
were found to be relatively high. In the tubular area before the bifurcation, the
flow pattern of blood is regular, while after the bifurcation, with the change in
dimensions near the sinus from dilation, the blood flow pattern is irregular.

The anatomical pathologies of the carotid artery shown in Fig. 1 are highly
receptive due to bifurcation, high turbulence, or reverse flow. Because anatom-
ical pathologies can affect blood flow, they contribute to the development of
atherosclerosis. The spline and center-line geometry descriptions of the standard
carotid artery are shown in Table 2 and is created using the outline listed in the
literature [5,6,24,25].



Mathematical Modelling of an Incompressible Flow for the Carotid Artery 265

The meshing of the carotid artery is shown in Fig. 3 and the number of nodes
and elements is given in Table 2, the size of elements being 0.2m/s (Fig. 2),

Table 2. Meshing details

Number of node 24431

Number of element 23809

Size of element 0.2 m/s

The blood velocity was found to be lower in the enlargement area while
reaching a maximum velocity field of 0.4556m/s in the narrowing area. The flow
pattern of continuity was obtained alternately between the internal and external
carotid artery models. The wall and boundaries where the velocity was found to
be at its maximum indicate the deformation of the wall of the reference geometry
(Figs. 4 and 5).

The flow pattern of the blood is regular in the tubular areas while irregular
in areas with changes in dimensions, as in the sinus, i.e., turbulent flow. More
recirculation of blood flow is found in the sinus area (Table 3).

Fig. 1. Two-dimensional idealized geometric specification of Carotid artery: CAA, ICA
and ECA
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Fig. 2. Two-dimensional idealized geometric specification of Carotid artery: CAA, ICA
and ECA

Fig. 3. Streamline simulated blood velocity field around the bifurcation of carotid
artery at different time steps at t = 0.2 and t = 0.4
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Fig. 4. Contour velocity field around the bifurcation of carotid artery at different time
steps at t = 0.2 and t = 0.4

Arteries with maximum pressures of 20.88 Pa.s are more widely recirculated
in the region. At the dividing wall of an artery, pressure is higher than at the
non-dividing wall, and at the point of bifurcation, pressure is at its maximum,
due to the force exerted by the blood on the artery.



268 D. Singh and S. Singh

Fig. 5. Pressure Contour around the bifurcation of carotid artery at different time
steps at t = 0.2 and t = 0.4

Table 3. Geometry specification of vessel diameter and the location

GEOMETRY SPECIFICATION DIMENSION (MM)

Length of the CCA 41

Diameter of CCA 8

Length of ICA 36

Diameter of ICA 5.6

Diameter of ECA 4.6

Length of ECA 30

Diameter of ICB 8.9

Wall thickness 0.2

The regular and irregular blood flow patterns were analysed in the rectangu-
lar tube and in vasodilation, respectively, for incompressible fluid in the subparts
of the carotid artery. This regular and irregular have been done to determine
the behaviour of blood flow patterns in the uniform and dilation areas. The den-
sity and the dynamic viscosity of blood were used as 1060 kg/m3 and 0.04 Pa.s
respectively. The inflow boundary condition was considered as parabolic, and the
outlet boundary condition was set to zero external force. Laminar flow occurs
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Fig. 6. Blood velocity profile with regular and irregular flow pattern (6a) Laminar flow
in Tubular domain, (6b) vasodilation

Fig. 7. Parabolic velocity profile at inlet and out of Tubular domain

where there is a uniform flow, as shown in Fig. 6a. The turbulent flow occurs in
the area where there is an irregular flow due to the blockage and constrictions.
The turbulent flow generally produces a non-parabolic velocity profile because,
in turbulent flow, the stream of fluid mixes both types radially and axially. These
flow models were analysed using the same parameters and presented in Fig. 6
(Fig 7).
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4 Conclusion

The objective of this research is to present a simplified model for the cardiovas-
cular system. The analysis of the blood flow profile in 2D using the Navier-Stokes
equation as the governing equations for the incompressible Newtonian fluid. The
blood flow pattern was computed in the idealised geometry of tubular and dila-
tion, which leads to analysis in the carotid artery’s idealised 2D geometry. The
idealised 2D carotid artery geometry parameters were taken from [11,26]. Based
on the results, we concluded that the numerical study of the generalised Newto-
nian 2D model of blood flow can be solved very well. In this model, the blood flow
is determined by dividing the flow analysis into two different patterns, which are
regular and irregular blood flow patterns analysed in the rectangular tube and
in vasodilation, respectively, and the existence of reverse flow in the area of the
internal carotid artery near the non-dividing wall. In the simulation of flow veloc-
ity in a rectangular tube domain, laminar flow was obtained, with a maximum
velocity field of 9.688× 10−4 m/s. In the simulation of vasodilation, we obtained
the irregular flow pattern, and the maximum velocity was found 1.384m/s for
the vasodilation prototype simulation. The blood flow pattern simulation about
the bifurcation in the carotid artery was done at the inlet by using the same
fluid quantities of blood, parabolic velocity profile, and boundary conditions.
There was no external force considered at the outlet of the both external carotid
artery and the internal carotid artery. The determination of the convergence
of the solution was crucial on account of the boundary value problem and the
complexity of the equation. In general, this paper shows quite good qualitative
agreement with the nonlinearity of the problem and the multi-scale modelling
based on the initial point. The modeling around the bifurcation of the carotid
artery was done using ANSYS 19.1 CAD software and numerically solved to
produce a valid simulation of flow. This research work is only the initial point
for the bigger project with the biological parameters and 3D realistic geometry
reconstructed from the patient-specific medical images. We could also work on
the detection of possible multiplaque formation regions by computing the WSS
and the blood flow behaviour.
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