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Abstract. Recently, Vyas et al. have developed an alternative way of proof for the
Gasper’s discrete analogue of an Erdélyi integral and inspired from this new type
of derivation they resolved the problem of finding the discrete extensions of all
the Erdélyi type integrals in the form of several new hypergeometric expansions
for certain q+1Fq. Motivated from the above-mentioned work, here in this paper,
our objective is to resolve the problem of finding the discrete extensions of the
Erdélyi type q-integrals in the form of several new q-hypergeometric expansions
for certain r+1�r . The motivation behind this work is the fact that the q-series
and basic q-polynomials, specifically the q-gamma and basic q- hypergeometric
functions and basic q-hypergeometric polynomials, are applicable particularly in
several diverse areas of science and engineering, viz. Statistics, number theory,
combinatorial analysis, nonlinear electric circuit theory, combinatorial generating
functions, quantum mechanics, mechanical engineering, lie theory, theory of heat
conduction, particle physics and cosmology.
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1 Introduction

Heine [7, 8] first developed the idea of basic analogue or q–analogue of the Gauss
hypergeometric function 2F1 as an infinite series.

The q–shifted factorials are described in the literature for arbitrary (real or complex)
q, a and |q| < 1 as:

(α; q)n =
{

1, n = 0
(1 − α)(1 − αq)(1 − αq2) . . . (1 − αqn−1), n ∈ N

. (1.1)
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Using this notation, we can write the Heine’s series analogous to the notation for
Gauss’ series as:

2�1(α, β ; γ ; q, z) ≡ 2�1

[
α, β;

γ ; q, z

]
=

∞∑
k=0

(α; q)k(β; q)kzk
(γ ; q)k(q; q)k . (1.2)

A generalized q-hypergeometric series [24, p. 347], see also [2] and [5] with ν

numerator parameters α1, α2, · · · , αv and u denominator parameters β1, β2, · · · , β u is
defined by

v�u(α1, · · · , αv; β1, · · · , βu; q, z) ≡

v�u

[
α1, · · · , αv;
β1, · · · , βu; q, z

]
=

∞∑
k=0

(α1; q)k · · · (αv; q)k zk
(β1; q)k · · · (βu; q)k (q; q)k

⎡
⎢⎢⎣(−1)kq

(
k
2

)⎤
⎥⎥⎦
1+u−v

(1.3)

where

(
k
2

)
= k(k − 1)/2 .

For the convergence conditions of the above hypergeometric series, please see [5].
A complete list of important properties and formulas for q-shifted factorial, to be used
frequently while deriving the q-hypergeometric expansion of Sect. 3, can be found in
[5, Appendix 1, pp. 351–352].

The Euler’s integral representation of Gauss hypergeometric function is given in [19,
p. 47, Theorem 16] and its Thomae’s q-analogue is mentioned in [5].

In 1939, Erdélyi [1] used fractional calculus method to develop three integrals [4,
Eqs. (1.3)–(1.5)], known as “Erdélyi integrals” in the literature, which extend Euler’s
integral for 2F1(z) [19, p. 47, Theorem 16] and Bateman’s integral [4, Eq. (1.2)]. Gasper
[3] derived the discrete extension of one of the Erdélyi integrals [4, Eq. (1.6)] as stated
below [6, Eq. (26)]:

3F2

(
α, β, −n;

γ, δ; 1

)
=

n∑
k=0

(
n
k

)
(μ)k(λ + δ − α − β)k(γ − μ)n−k

(γ )n(δ)k

× 3F2

(
λ − α, λ − β, −k;
μ, λ + δ − α − β; 1

)
3F2

(
α + β − λ, λ − μ, k − n;

γ − μ, δ + k; 1

)
. (1.4)

Gasper [3] proved (1.4) by following the steps analogous to Erdélyi’s fractional
calculus proof of [4, Eq. (1.3)].

Later, Gasper [4] motivated from the proof of the above-mentioned discrete ana-
logue, developed three expansions identities for the terminating balanced 4�3 series and
obtained the q-analogues of Erdélyi’s integrals [4, Eqs. (1.8), (1.9), (1.13) and (1.14)]
and corresponding discrete analogues and discrete q-extensions, see [3, Eqs. (1.6), (1.7),
(2.9), (3.4), (1.11) and (1.12)].
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The discrete extensions of the q-analogue of Erdélyi’s integrals [4, Eq. (1.8)] or
q-analogue of (1.4), developed by [4] is as given below:

3�2

(
α, β, q−n ;

γ, δ ; q, q

)
=

n∑
k=0

(
n
k

)
q

(μ; q)k
(

λδ
αβ

; q
)
k

(
γ
μ
; q

)
n−k

μn
(

αβ
λμ

)k
(γ ; q)n(δ; q)k

× 3�2

(
λ
α
, λ

β
, q−k;

μ, λδ
αβ

; q, q

)
3�2

(
αβ
λ

, λ
μ
, qk−n;

γ
μ
, δqk; q, q

)
. (1.5)

The two expansions [4, Eqs. (2.8) and (2.9)] were further applied to obtain expan-
sion formulas for the orthogonal polynomials like Racah polynomials, Askey-Wilson
polynomials and their q-analogues. The application of q-Erdélyi integral [4, Eq. (1.12)]
in driving the q-analogue of a Kampé de Fériet summation; conjectured by Joris Ven der
Jeugt in his work on the evaluation of the 9 − j recoupling coefficients appearing in the
quantum theory of angular momentum, are also discussed in [4].

The recent research papers [22, 23] and many others, cited therein, are examples
of ongoing trend and interest in the field of q-analysis and q-calculus. Srivastava [22]
presents an excellent set of discussion and comments on the study of post-quantum
or (p, q)-version of the classical q-analysis.. In a review article by Srivastava [23], the
overview and recent developments in the theory of several extensively studied higher
transcendental functions along with their applications in widely investigated areas of
various sciences have been nicely presented. For some recent developments in the field
of special functions, we refer to the following research paper [14, 15, 20, 21, 27] and
[28]. Further, the inspiration to work on q-hypergeometric functions and basic q- hyper-
geometric polynomials, is because of their vast applicability in several diverse areas of
science and engineering (see, for details, [29, p. 235]). The above-mentioned analysis
and observations motivate us to study q-discrete expansions of Erdélyi’s type integrals
investigated by [26].

2 Motivation and Objective

Several researchers, for example, [6, 17, 18, 26] and [30] have studied and investigated the
expansions which involve integrals and represent the hypergeometric functions because
of the several applications of such integrals (see, for example, [4, 5]). In this context,
Joshi and Vyas [9] gave an alternative way to prove Erdélyi’s integrals by utilizing the
classical series rearrangement techniques [19, 25] and some classical hypergeometric
summation theorems. This kind of proof motivated them to establish seven Erdélyi type
integrals including a generalization and unification of Erdélyi integrals [9, Eqs. (3.1) to
(3.7) and Eq. (4.1)] for certain q+1Fq(z). Taking this work forward, Joshi and Vyas [11]
investigated two different classes of the q-integrals in the form of basic q-extensions of
all Erdélyi type integrals due to [9], along with various special cases and applications.
Further, following [4], Joshi and Vyas [12] obtained two q-hypergeometric expansions
for 12�11(q) and r�s(q). As applications, these expansion formulaswere set to give some
10�9(q) expansions applicable to the top class 10�9(q) biorthogonal rational functions
which on specialization lead us to the gasper’s 4�3(q) expansion formulas.
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Recently, Vyas et al. [26] investigated the discrete analogues of the Erdélyi type
integrals due to [9] andLuo andRaina [16], along the lines of a triple seriesmanipulation-
based derivation of the Erdélyi’s integrals due to [9]. A careful investigation of the
papers [10–13, 16] and [26] depicts that classical series rearrangement technique is a
versatile technique which helps in deriving the higher order hypergeometric identities
and q-hypergeometric expansions which are not available in the literature.

Motivated from the above-mentioned work and an analysis of the method of proof
discussed in [26], here, in this research paper we establish new q-hypergeometric expan-
sions as q-discrete analogues of the Erdélyi type integrals. Inline to [11], we obtain two
types of q-analogues of Erdélyi type of integrals. It may be noted from [11] that all Erdé-
lyi type of integrals possesses first type of q-analogues (having t−1 in the numerator),
while some possess the second type of q-analogue (do not have t−1 in the numerator). To
derive these q-expansion formulas, we express the right side of each of the q-expansion
formulas as a triple series and then apply the double series manipulation lemma [21,
p. 57, Lemma 10] or [24, p. 100, Eq. (2)]:

∞∑
n2=0

n2∑
n1=0

	(n1, n2) =
∞∑

n2=0

∞∑
n1=0

	(n1, n2 + n1), (2.1)

and 3�2 transformation formula [5, p. 212, Eq. (III.12)]

3�2

[−n, b, c
d , e

; q, q
]

=
( e
c , q

)
n

(e, q)n
cn3�2

[
q−n, c, d

b
d , c

e q
1−n ; q, qb

e

]
. (2.2)

At the end, the application of triple series manipulation lemma [9, p. 128]:

∞∑
n3=0

∞∑
n2=0

∞∑
n1=0

	(n3, n2, n1) =
∞∑

n3=0

n3∑
n2=0

n3−n2∑
n1=0

	(n3 − n2 − n1, n2, n1), (2.3)

and use of two appropriate q-classical summation theorems to solve the involved inner
series, lead us to the desired discrete q-extensions.

In Sect. 3, we state all of the investigated new q-hypergeometric expansions. All the
q-hypergeometric expansions stated in Sect. 3 include terminating series only, hence the
question of convergence doesn’t arise because terminating series are always convergent.
Further, to convert the results of Sect. 3 into their corresponding Erdélyi type q-integrals,
the procedure mentioned in [26, p. 2 and p. 5 (Remark 2)] can be applied in a straight
forward manner. In Sects. 4 and 5, we give the brief outline of the derivations of the
new q-hypergeometric expansions, to illustrate the difference between the derivations
of the discrete extensions or the new q-hypergeometric expansions corresponding to
the Erdélyi type q-integrals with and without the presence t−1 as one of the numerator
parameters in one of the involved hypergeometric functions.

3 Discrete Extensions of Erdélyi Type q-Integrals or New
q-Hypergeometric Expansions

The results from (3.1) to (3.11) provide thebasic (orq-) expansion formulas or the discrete
analogue of the Erdélyi type q-integrals given [11, Eqs. (1.2) to (1.12)], respectively. The
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usual condition for the convergence of q-hypergeometric series that is the denominator
parameters are non negative integers. This condition is applied to all the following
q-hypergeometric expansions:

4�3

[
−N , v, ξ, λ;

ε, γ, δ; q; q
]
. =

(
qγ−μ; q)N
(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qμ; q)k (qε−v−ξ+δ; q)k
(qε; q)k (q1+μ−γ−N ; q)k (q; q)k

(q1+v+ξ−δ−γ )kqμN

3�2

[
vξ
δ

, λ
μ
, q−N+k ;

γ
μ
, qε+k; q; q

]
4�3

[
δ
ξ
, δ

v , λ, q−k ;
εδ
vξ , μ, δ; q; q

]
(3.1)

4�3

[
−N , v, ξ, λ;

ε, γ, δ; q; qμ

λ

]
=

(
qγ−μ; q)N
(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qμ; q)k (qε−v−ξ+δ; q)kqμN

(qε; q)k (q1+μ−γ−N ; q)k (q; q)k
(q1+v+ξ−δ−γ )k

3�2

[
λ
μ
,
vξ
δ

, q−N+k ;
γ
μ
, qε+k ; q; q

λ

]
4�3

[
δ
ξ
, δ

v , λ, q−k ;
εδ
vξ , μ, δ; q; qμ

λ

]
(3.2)

6�5

[
−N , qα,

√
γ
β

, −
√

γ
β

,
√

qγ
β

, −
√

qγ
β

;
ε,

√
γ − √

γ ,
√
qγ , −√

qγ ;
q,

qβ

α

]
=

(
qα+β ; q

)
N

(qγ ; q)N

∞∑
k=0

(q−N ; q)k (q γ−α−β ; q)k (qε−β ; q)k
(qε; q)k (q1−α−β−N ; q)k (q; q)k

(q 1+β−γ )k3�2

[
α
β

,
γ
β

, q−k ;
γ
αβ

, ε
β

; q,
q

α

]

8�7

[
α,

√
β,−√

β,
√

βq,−√
βq, qβ

εm ,
αq−N+k

β
, q−N+k

√
αβ,−√

αβ,
√

αβq,−√
αβq, qβ

εk , γ qN , qε+k
; q, q

]
(3.3)

4�3

[ −N , α , β,
qγ
λμ ;

ε ,
qγ
λ

,
qγ
μ ; q,

qμ

α

]
= (q 1+γ−β ; q)N

(q 1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (q ε−μ; q)kqβN

(qε; q)k (qβ−γ−N ; q)k (q; q)k
(qμ−γ )k

4�3

⎡
⎣ α

μ , βqk , εqk
μ , q−N+k ;

εqk , ε
μ ,

βq−N+k

γ ;
q,

qμ

αγ

⎤
⎦

8�8

⎡
⎣ γ, q

√
γ ,−q

√
γ , μ, λ, α,

qγ qN

βqk
, q−k ;

√
γ ,−√

γ ,
qγ
β

,
qγ
λ

,
qγ
μ

,
μq1−k

ε
, γ q1−k , 0;

q,
qλ

εαγ

⎤
⎦ (3.4)

4�3

[ −N , α, β,
qγ
λμ ;

ε,
qγ
λ ,

qγ
μ ; q, q

]
= (q1+γ−β ; q)N

(q1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)kqβN

(qε; q)k (qβ−γ−N ; q)k (q; q)k
(qμ−γ )k

4�3

⎡
⎣ α

μ , q−N+k , βqk , εqk
μ ;

ε
μ , qε+k ,

βqk

γ qN
;

q,
q

γ

⎤
⎦

8�8

⎡
⎣ γ, q

√
γ ,−q

√
γ , μ, λ, α,

γ q1−k+N

β
, q−k ;

√
γ ,−√

γ ,
qγ
μ

,
qγ
λ

,
qγ
β

, γ q1−N ,
μq1−k

ε
, 0; q,

qλ

εμ

⎤
⎦ (3.5)
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4�3

[ −N , α, β,
qγ
λμ ;

ε,
qγ
λ ,

qγ
μ ; q, q

]
= (q1+γ−β ; q)N

(q1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)k
(qε; q)k (qβ−γ−N ; q)k (q; q)k

(qμ−γ )kqβN

3�2

[
α
μ
,

εqk

μ
, q−N+k ;
ε
μ
, εqk ; q, q

]
9�7

[
α,μ, γ, λ, q−k , βqk , q

√
γ ,−q

√
γ , 0;

qγ
μ

,
qγ
λ

,
qγ
β

,
qγ
N , qε+k ,

√
γ ,−√

γ ; q,
q1+Nγ

λμβ

]

(3.6)

7�6

⎡
⎣ −N , α, β,

√
γ
μ ,−

√
γ
μ ,

√
qγ
μ , −

√
qγ
μ ;

ε,
γ
μ ,

√
γ , −√

γ ,
√
qγ , −√

qγ ; q, q

⎤
⎦ = (qγ−β ; q)N

(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)kqβN

(qε; q)k (q1+β−γ−N ; q)k (q; q)k
(q1+μ−γ )k

4�3

[
α, μ, βqk , q−N+k ;

γ
β
, γN , qε+k ; q,

γ q1+N

αβ

]
2�1

[
α
μ
, q−k ;

ε
μ
; q,

q

α

]
(3.7)

5�4

[ −N , α, β, γ,
αqμ
βγ ;

ε,
αq
β ,

αq
γ ,

βγ
μ ; q,

qλ

α

]
= (q1+α−μ−λ; q)N

(q1+α−μ; q)N
∞∑
k=0

(q−N ; q)k (qλ; q)k (qε−μ; q)k
(qε; q)k (qμ−α+λ−N ; q)k (q; q)k

(q2μ−α)k

4�3

⎡
⎣ μ, α

λ
,

αq1−k+N

μλ
, q−k ;

qα
λμ ,

qμ
ε ,

q1−k

λ

q,
q2−N

αε

⎤
⎦

12�11

⎡
⎣ α

μ
, q

√
α
μ
,−q

√
α
μ
,

β
μ
,

γ
μ
,
qα
βγ

,
√

α,−√
α,√

α
μ
,−

√
α
μ
,
qα
β

,
αβ
γ

,
βγ
μ

,
√

γ ,−√
γ ,

q
√

α,−q
√

α,
εqk

μ
, q−N+k ;

q
√

λ,−q
√

λ,
q1+Nα

μ
, qε+k ; q,

q1+Nγμ

α

] (3.8)

5�4

[ −N , α, β, γ,
αq
βγ ;

ε,
αq
β ,

αq
γ ,

βγ
μ ; q, q

]
= (q1+α−μ−λ; q)N

(q1+α−λ; q)N
∞∑
k=0

(q−N ; q)k (qλ; q)k (qε−μ; q)k
(qε; q)k (qμ−α+λ−N ; q)k (q; q)k

(q2μ−α)k

4�3

⎡
⎣ μ, α

λ
,

αq1−k+N

μλ
, q−k ;

qα
λμ ,

q1−k

λ ,
μq1−k

ε ;
q,

q2−N

ε

⎤
⎦

13�12

⎡
⎣ α

β
, q

√
α
μ
,−q

√
α
μ
,

β
μ
,

γ
μ
,
qα
βγ

,
√

α,−√
α,√

α
μ
,−

√
α
μ
,
qα
β

,
qα
γ

,
βγ
μ

,
√

λ,−√
λ,

q
√

α,−q
√

α,
εqk

μ
, λqk , q−N+k ;

q
√

λ,−q
√

λ,
μλqk

α
,
q1+Nα

μ
, qε+k ; q,

q1+Nμ

α

⎤
⎦

(3.9)

8�7

[ −N , β, γ,
αq
μλ , q

√
μ,−q

√
μ,

√
qα,−√

qα;
ε ,

αq
λ ,

βγ
μ ,

√
βγ ,−√

βγ ,
√
qβγ , −√

qβγ ; q, q

]
= (q2γ+β−α−1; q)N

(qγ+β ; q)N
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∞∑
k=0

(q−N ; q)k (q1+α−γ ; q)k (qε−γ ; q)k
(qε; q)k (q2+α−2γ−N−β ; q)k (q; q)k

(q1−β)k

4�3

⎡
⎣ 2γβq1+n+N

α ,
βγ
αq , γ, −k;

λq−m

α ,
μγ q1+n

ε ,
2γβq2n−1

α ;
q,

q1−N

ε

⎤
⎦

9�8

[
α, q

√
μ,−q

√
μ, β,μ, λ,

2γβqN−1

α
, γ q2m, q−N+k ;√

α,−√
α,

qα
μ

,
qα
λ

,
2γβ
αq , qε+k ; q,

qε

αμ

]
(3.10)

9�8

⎡
⎣ −N , ε, β, γ,

qα2

βγμ , q
√

μ,−q
√

μ,
√
qμ, −√

qμ;
ε,

qα
β ,

qα
γ ,

βγμ
α

√
λ, −√

λ,
√
qλ, −√

qλ;
; q, q

⎤
⎦ = (qλ−α; q)N

(qλ; q)N

∞∑
k=0

(q−N ; q)k (qα; q)k (qε−α+μ; q)k
(qε; q)k (q1+α−λ−N ; q)k (q; q)k

(q1+α−λ−μ)k

4�3

[
α
μ
, λ
qμ, αqk , q−N+k ;

λ
α
, λqN , qε+k ; q,

q2μ

α

]
(3.11)

4 Proof of q-Hypergeometric Expansion (3.1) Corresponding
to Erdélyi Type Integrals with t−1 as One of the Numerator
Parameters

Denoting the right hand side of (3.1) by � and replacing the hypergeometric series by
their series form and then using the double series manipulation (2.1), we get

� =
(

γ
μ
; q

)
N
qμN

(γ ; q)N
∞∑
k=0

∞∑
n=0

k∑
m=0

(
q−N ; q)k+m+n(μ; q)k+m

(
εδ
νξ

; q
)
k+m

(
qνξ
δγ

)k+m

(ε : q)k+m+n

(
μq1−N

γ
; q

)
k+m

(q; q)k

×
(

νξ
δ

; q
)
n

(
λ
μ
; q

)
n

(
δ
ξ
; q

)
m

(
δ
ν
; q)m(λ; q)m(−q)mqnq

⎛
⎝m
2

⎞
⎠−m2−mk

(
γ
μ
; q

)
n

(
εδ
γ ξ

; q
)
m
(μ; q)m(δ; q)m(q; q)m(q; q)n

. (4.1)

Taking inner series in above equation, we obtain the following equation:

� =
(

γ
μ
; q

)
N
qμN

(γ ; q)N
∞∑
m=0

∞∑
n=0

(
q−N ; q)m+n(μ; q)m

(
qνξ
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(
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γ
; q

)
m

×
(
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; q
)
n

(
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; q

)
n

(
δ
ξ
; q

)
m

(
δ
ν
; q)m(λ; q)m(−q)mqnq

⎛
⎝m
2

⎞
⎠−m2

(
γ
μ
; q

)
n
(μ; q)m(δ; q)m(q; q)m(q; q)n
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× 3�2

[
q−(N−m−n), μqm, εδ

νξ
qm;

εqm+n,
μq1−N+m

γ
:

qνξq−m

δγ

]
. (4.2)

Now, applying the formula (2.2) (reversed) on the 3�2 of above equation, we can
write

� =
∞∑
k=0

∞∑
m=0

∞∑
n=0

(
q−N ; q)k+m+n(μ; q)k+m

(
νξ
δ

; q
)
n+k

(
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)m
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×
(
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μ
; q

)
n

(
δ
ξ
; q

)
m

(
δ
ν
; q)m(λ; q)mqk+m+nμnqmnγm

(μ; q)m(δ; q)m(q; q)k(q; q)m(q; q)n
. (4.3)

Next, applying the triple series manipulation (2.3) on the above equation and then
taking an inner series in n gives:

� =
∞∑
k=0
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(
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(
νξ
δ

; q
)
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2�1

[
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μ
;

q1−k

μ
; q

]
. (4.4)

Now, applying Chu-Vandermonde summation theorem [5, p. 354, Eq. (II.6)] and
then taking an inner series in m leads us to the following equation:

� =
∞∑
k=0

(
q−N ; q)k

(
νξ
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; q
)
k
qk

(ε : q)k(γ : q)k(q : q)k 3�2
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δ
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ν
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νξ
; q

]
. (4.5)

The application of q-Pfaff-Saalschütz summation theorem [5, p. 355, Eq. (II.12)]
leads to the left side of (3.1).

5 Proof of the New q-hypergeometric Expansion (3.2)
Corresponding to Erdélyi Type Integrals Without t−1 as One
of the Numerator Parameters

Denoting the right hand side of (3.2) by � and replacing the hypergeometric series by
their series form and then using the double series manipulation (2.1), we get
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×
(
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.

(5.1)

Taking inner series in above equation, we obtain the following equation:
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; q

)
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n=0

(
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[
q−(N−m−n), μqm , εδ
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qm;

εqm+n,
μq1−N+m

γ
:

qνξq−m

δγ

]
. (5.2)

Now, applying the formula (2.2) (reversed) on the 3�2 of above equation, we can
obtain

� =
∞∑
k=0

∞∑
m=0

∞∑
n=0

(
q−N ; q)k+m+n(μ; q)k+m

(
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)
n+k

(
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×
(
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μ
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)
n

(
δ
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)
m

(
δ
ν
; q)m(λ; q)mqk+m+nμm+n

(μ; q)m(δ; q)m(q; q)k(q; q)m(q; q)n
. (5.3)

Next, applying the triple series manipulation (2.3) on Eq. (5.3) and then taking an
inner series in n gives:

� =
∞∑
k=0
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m=0

(
q−N ; q)k(μ; q)k

(
νξ
δ

; q
)
k
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×
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μ
;
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λ

]
. (5.4)

Now, applying Chu-Vandermonde summation theorem [5, p. 354, Eq. (II.7)] and
then taking an inner series in m, we can write

� =
∞∑
k=0

(
q−N ; q)k

(
νξ
δ

; q
)
k
(λ; q)kqk

(
μ
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)k
(ε : q)k(γ : q)k(q : q)k 3�2

[
δ
ξ
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ν
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δ,
δq1−k

νξ
; q

]
. (5.5)

The application of q-Pfaff-Saalschütz summation theorem [5, p. 355, Eq. (II.12)]
leads to the left side of (3.1).
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6 Conclusion

In conclusion, this paper shows the superiority of the series manipulation method dis-
cussed by Vyas et al. [26], in deriving the discrete analogues of the Erdélyi type q-
integrals in the form of the new q-hypergeometric expansions. More significantly, the
main results, Eqs. (3.1) to (3.11), provide the generalizations and a set of different q-
analogues (in some cases) and thus lead to many of the ordinary hypergeometric expan-
sions derived in [26], on setting q → 1. The Eqs. (3.1) and (3.2) provide two q-analogues
of the result [26, Theorem2, p.5], theEq. (3.3) is aq-analogue of [26, Theorem5, p. 6], the
Eqs. (3.4) to (3.6) are q-analogues of [26, Theorem 6, p. 6], the Eq. (3.7) is a q-analogue
of [26, Theorem 7, p. 6], the Eqs. (3.8) to (3.9) are q-analogues of [26, Theorem 8, p. 7],
the Eq. (3.10) is a q-analogue of [26, Theorem 9, p. 7] and the Eq. (3.11) is a q-analogue
of [26, Theorem 10, p. 8]. However, the q-analogues of [26, Theorems 1, 3 and 4, p. 5]
can’t be developed until the required q-analogue of the extended Saalschütz theorem
(see [26, Eq. (17), p. 3]) is determined, and hence it remains an open problem. Some
future directions for further research for the q-hypergeometric expansions obtained in
this paper may be to discover the further generalizations of the expansions along the line
of [4, 12] and in addition, these results may also be specialized along the line of [11] to
produce known and new q-hypergeometric transformations, which will form the subject
matter of our subsequent paper in the foreseeable future. Moreover, in [22], the (p; q)-
calculus was exposed to be a rather trivial and inconsequential variation of the classical
q-calculus, the additional parameter p being redundant. This observation by Srivastava
[22] will indeed apply also to any future attempt to produce the rather straightforward
(p; q)-variants of the results of this paper.
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