
NIPG Method on Shishkin Mesh
for Singularly Perturbed

Convection-Diffusion Problem
with Discontinuous Convection

Coefficient

Kumar Rajeev Ranjan and S. Gowrisankar(B)

Department of Mathematics, National Institute of Technology Patna,
Patna 800005, India

kumarr.phd18.ma@nitp.ac.in, s.gowri@nitp.ac.in

Abstract. In this paper, we investigate the convergence of discontinu-
ous Galerkin finite element method (DGFEM) for singularly perturbed
convection-diffusion problem with discontinuous convection coefficient.
Due to the discontinuity in the convection coefficient, the problem typ-
ically shows a weak interior layer. We develop a kind of DGFEM, the
non-symmetric discontinuous Galerkin finite element method with inte-
rior penalties (NIPG) to handle the layer setbacks. With the use of a
typical Shishkin mesh, the domain is discretized and uniform error esti-
mate is obtained and theoretically we have obtained the convergence
of order O(N−1 ln N). The numerical outcome backs up our theoretical
conclusions.
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1 Introduction

In this article we consider a singularly perturbed convection-diffusion problem
of the type{

Lu(x) := −εu′′ + b(x)u′(x) + c(x)u(x) = f(x), in x ∈ Ω = (0, 1),
u(0) = u(1) = 0,

(1)

where, ε is the perturbation parameter satisfies 0 < ε � 1 and b(x) has jump
discontinuity at x = d ∈ Ω. We define Ω1 = (0, d) and Ω2 = (d, 1) where d is
a point of discontinuity of b(x). Let us assume b, c and f belong to the class
C2(Ω1 ∪ Ω2) and the function satisfy

c(x) − 1
2
b′(x) ≥ γ2 > 0. on Ω1 ∪ Ω2 (2)
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Here, γ is some fixed positive constant. Moreover the following conditions hold
good,

β�
1 > b(x) > β1 > 0, x < d, −β�

2 < b(x) < −β2 < 0, x > d, c(x) ≥ 0 x ∈ Ω,

and
|[b](d)| ≤ C, |[c](d)| ≤ C, |[f ](d)| ≤ C, (3)

where, β1, β�
1 , β2 and β�

2 are positive constants. In the close vicinity of x = d in
the solution u(x) of problem (1), exhibits layer of width O(ε ln(1/ε)). We refer
the layer as an interior layer.

There is a large number of papers in the literature dealing with a singular
perturbation problem with continuous coefficients and source terms, see [10,12]
for a survey. Problem of type (1) with discontinuous right hand side are consid-
ered in [1,12], whereas problem with discontinuous coefficient is considered in
[3,20]. In these articles, authors have proved second order and first order conver-
gence, respectively. In [8] authors have proved first order ε-uniform convergence
on Shishkin mesh of finite difference scheme for reaction-diffusion problem with
discontinuous source term.

Except these literature review some of these are [16] in which, Singh et.al.
presented an algorithms for approximate solution of nonlinear Lane-Emden type
equations. Convergence analysis and stability result are also provided. Also Singh
has applied Chebyshev’s spectral collocation method for Bratu’s type, Troesch’s
and nonlocal elliptic boundary value problems in [14]. Moreover, Majid et.al. has
established the convergence result for solution of nonlinear Lane-Emden type
equations. Pandey et. al. has established the convergence of Bratu’s equation by
means of Chebyshev polynomials [15]. Some other equations and physical models
are investigated numerically in [4–6]. In these articles authors established the
existence using Banach fixed point theory and convergence of numerical schemes
are also investigated.

The idea to use non-symmetric Galerkin method with interior penalty
(NIPG) method is not new in the literature. The interest in the non-symmetric
Galerkin method with interior penalty (NIPG) method and singular perturba-
tion problem is beneficial due to the presence of penalty terms which fulfill the
requirement of additional stabilization. The non-symmetric Galerkin method
with interior penalty (NIPG) method has the advantage to be very flexible
in the sense of adaptivity; moreover it can be applied for the case ε = 0 if
the solution is not smooth. In [10,21] authors have proved first order conver-
gence for convection-diffusion problem with turning point and continuous coef-
ficients, respectively. This method is preferred like streamline diffusion finite
element method (SDFEM) [17] over the classical finite element methods because
of their potential in approximating globally rough solutions, their possible defi-
nition (additionally jump and penalization parameter) on unstructured meshes,
their potential for error control and mesh adaptation, etc. There are other vari-
ants of DGFEM like symmetric interior penalty Galerkin (SIPG) method and
incomplete interior penalty Galerkin (IIPG) method in which, we have to choose
penalty parameters so that the method could be stable and convergent, besides



NIPG Method for Problem with Discontinuous Convection Coefficient 197

these properties establishment of coercivity property is not an easy task. In addi-
tion to the aforementioned privilege to non-symmetric interior penalty Galerkin
(NIPG) method. Drawbacks of this method is its much larger number of degree
of freedom as compared to standard Galerkin finite element method. Another
disadvantage of the method is adjoint consistency which is better in SIPG tech-
nique that appears in sketching optimal L2 error or to apply duel weighted
residual (DWR) technique.

In this paper, we adopt to the non-symmetric Galerkin method with inte-
rior penalty (NIPG) method for problem (1). As a result of discontinuity in
convection coefficient, interior layer is present in the solution. Interior layer usu-
ally present due to turning point or discontinuity in the coefficients. In [11],
authors have established the first order convergence up to logarithmic factor for
non-symmetric interior penalty Galerkin (NIPG) method for one dimensional
singular perturbation problem with discontinuous source term. We have shown
the uniform convergence of the method on usual Shishkin mesh. Simplifying our
analysis and using piecewise linear element on Ω, in Theorem 4 we prove that
the finite element method (FEM) leads to the convergence result O(N−1 ln N)
and finally we get the result of same order in Theorem 5.

The article is arranged in the following way: Sect. 2 describes the existence,
stability properties of the solution, opportunistically we have included decompo-
sition of the solution in this section too. In Sect. 3, we have discussed the Shishkin
mesh, the non-symmetric Galerkin method with interior penalty (NIPG) method
and existence of solution. Section 4 dealt with the error analysis on the given
mesh. Uniform convergence of the given FEM is described in Sect. 5 and the
last Sect. 6 provides the numerical result that supports our theoretical findings.
Section 7 is all about the summary of the article and last but not the least the
original contribution in this article is described in Sect. 8.

2 Stability and Solution Decomposition

We propose some necessary notations. For any function v(x), the jump at d
is denoted by [v](d) and defined by [v](d) = v(d+) − v(d−). C is a generic
constant (sometimes subscripted) is free from perturbation parameter ε and
mesh parameter N . An arbitrary subinterval [xj−1, xj ] is represented by Ij with
interval height hj = xj − xj−1.

Now the theorem given below guarantees the existence of solution to the
problem (1).

Theorem 1. Let u(x) is the solution of (1) that belongs to the class of function
C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2).

Proof. The detailed proof can be similar as in [20]. �

Lemma 1. Suppose the problem (1) has a solution u(x) that belongs to the class
of functions C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2), which satisfies the bound

‖u(x)‖L∞(Ω) ≤ 1
λ

‖f(x)‖L∞(Ω) ,



198 K. R. Ranjan and S. Gowrisankar

where λ = min{β1/d, β2/(1 − d)}.

Proof. Put ψ(x) = −x‖f(x)‖L∞(Ω)

λd +u(x), x < d and ψ(x) = − (1−x)‖f(x)‖L∞(Ω)

λ(1−d) +
u(x), x > d.
Therefore, we have ψ(x) ∈ C0(Ω) and ψ(0) ≤ 0, ψ(1) ≤ 0.
For each x ∈ Ω1 ∪ Ω2,

Lψ(x) ≥ 0.

Furthermore, since u(x) ∈ C1(Ω)

[ψ](d) = [u](d) = 0 and [ψ′](d) =
‖f‖L∞(Ω)

λd
+

‖f‖L∞(Ω)

λ(1 − d)
≥ 0.

Hence, following comparison principle in Lemma 2 [7] that ψ(x) ≤ 0 for all
x ∈ Ω. Which determines the desired bound for the solution u(x).

Let us consider the decomposition u = v + w into smooth component v and
interior layer component w. We take two discontinuous function v0 and v1 such
that

bv′
0 = f, x ∈ Ω1 ∪ Ω2

vo(0) = u(0), v0(1) = u(1),
bv′

1 = −v′′
0 ,

v1(0) = 0, v1(1) = 0.

Now we define smooth component of the solution v such that

Lv = f, x ∈ Ω1 ∪ Ω2 (4a)

v(0) = u(0), v(d−) = v0(d−) + εv1(d−), (4b)

v(d+) = v0(d+) + εv1(d+), v(1) = u(1). (4c)

Note that it is discontinuous function. Further, we have layer part of the solution
w which is also discontinuous and given by the set of following equation

Lw = 0, x ∈ Ω1 ∪ Ω2 (5a)
w(0) = w(1) = 0, [w](d) = −[v](d), [w′](d) = −[v′](d). (5b)

Hence, we get w(d−) = u(d−)−v(d−) and w(d+) = u(d+)−v(d+). We note that
the solution u = v + w is unique to the problem (1). It is merited consideration
that v and w are discontinuous at x = d, but their sum u is in C1(Ω) by (5b).
It is called stability property for the exact solution of (1). �

It is crucial to deduce the bounds for different components of the solution in
order to obtain the convergence result in the finite element method. The same
is addressed in the below mentioned theorem.
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Theorem 2. Let (3) holds true. Assume that b, c, f ∈ C2(Ω1 ∪ Ω2), we have

‖bm(x)‖L∞(Ω1∪Ω2)
≤ C, ‖cm(x)‖L∞(Ω1∪Ω2)

≤ C, ‖fm(x)‖L∞(Ω1∪Ω2)
≤ C,

m = 0, 1, 2 and we are able to derive the decomposition of solution to the problem
(1) and in this way we find the smooth part S and layer part E satisfy LS = f
and LE = 0, respectively and their bound could be∥∥Si(x)

∥∥
L∞(Ω1∪Ω2)

≤ C, |[S](d)| ≤ C, |[S′](d)| ≤ C.

|Ei(x)| ≤
{

Cε−ie(x−d)β1/ε, x ∈ Ω1,

Cε−ie−(x−d)β2/ε, x ∈ Ω2.
(6)

i = 0, 1, 2.

Proof. The proof is same as it has been done in [20], so we omit the proof here.
�

3 Piecewise Equidistant Mesh and NIPG Method

3.1 Shishkin Mesh

For the domain discretization, a most practicable Shishkin mesh is considered.
Let N ∈ N, where N ≥ 4 and N is a multiple of 4. Layer in the vicinity of d has
been considered and any possibility of layer at the boundary is completely ruled
out. Therefore the mesh can be generated in the following way: Following [19],
we take transition points λ1 = d − ρε

β1
ln N and λ2 = d + ρε

β2
ln N where ρ ≥ 2,

with the help of these two transition points we make the division of Ω into four
subintervals

Ω = [0, λ1] ∪ [λ1, d] ∪ [d, λ2] ∪ [λ2, 1]

such that d − λ1 ≤ d/2 and λ2 − d ≤ (1 − d)/2. Furthermore we assume that
each subintervals are distributed into N/4 intervals, where grid points satisfy
xN/4 = λ1, xN/2 = d and x3N/4 = λ2.

Remark 1. Throughout our analysis we take ε ≤ CN−1, which is reasonable in
practice.

3.2 The NIPG Method: Procedure and Properties

The Shishkin mesh defined in Subsect. 3.1 partitioning the domain Ω into subin-
tervals Ij = [xj−1, xj ], j = 1, 2, ..., N . Denote these collections by TN . We intro-
duce with some essential notations: For every Ij ∈ TN , define broken Sobolev
space of order k

Hk(Ω, TN ) =
{
v ∈ L2(Ω) : v

∣∣
Ij

∈ Hk(Ij), ∀Ij ∈ TN

}
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and corresponding broken Sobolev norm and seminorm defined by

‖v‖s,TN
=

( N∑
j=1

‖v‖2s,Ij

)1/2

, |v|s,TN
=

( N∑
j=1

|v|2s,Ij

)1/2

,

respectively. Define V N as a finite element space related to the collection TN of
Shishkin meshes

V N =
{
v ∈ L2(Ω) : v

∣∣
Ij

∈ P 1(Ij), ∀Ij ∈ TN

}
,

where P 1(Ij) denotes the space of polynomial of degree at most one in each Ij .
Moreover, the functions in V N are completely discontinuous on the boundaries
of the subintervals in TN . That is we are considering the non-confirming finite
element.

The NIPG formulation [10] of (1) reads as: Find uN ∈ V N such that

B(uN , vN ) = L(vN ), for all vN ∈ V N (7)

where

B(u, v) = B1(u, v) + B2(u, v), (8a)

B1(u, v) =
N∑

j=1

∫
Ij

εu′v′dx +
N∑

j=0

ε

(
[u(xj)]{v′(xj)} − [v(xj)]{u′(xj)}

)
(8b)

+
N∑

j=0

σj [u(xj)][v(xj)],

B2(u, v) =
N∑

j=1

∫
Ij

(bu′ + cu)vdx +
N−1∑
j=0

b(xj)[u(xj)]v(x+
j ), (8c)

L(v) =
N∑

j=1

∫
Ij

fvdx. (8d)

Here σj(j = 0, 1, · · · , N) are the discontinuous-penalization parameters that are
closely related to each nodes xj . These are user-defined parameters, in the sequel,
we will provide the exact choice of these parameters. The construction of bilinear
form inspired us to introduce the DG norm as follows: For any v ∈ H2(Ω, TN ),

‖v‖2DG =
N∑

j=1

(
ε ‖v′‖2L2(Ij)

+ ‖γv‖2L2(Ij)

)
+

N∑
j=0

(1
2
b(xj) + σj

)
[v(xj)]2. (9)

Lemma 2. Let u and uN are the exact solution to the problem (1) and dis-
cretized solution to the weak formulation (7), respectively. Then the bilinear form
provided by (7) satisfies,

B(u − uN , vN ) = 0 for all vN ∈ V N , (Galerkin orthogonality) (10a)

B(vN , vN ) = ‖vN‖2DG for all vN ∈ V N , (coercivity) (10b)
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Proof. Both the properties in (10a) and (10b) in the above Lemma 2 can be
followed from [10] in Lemma 3.1 and equation (3.5). �

4 Error Estimations: Sharp Bound on Shishkin Mesh

In this section, we present piecewise linear interpolation uI of the exact solution
u and their properties. There are numerous results on interpolation error in the
literature (see [2]). We introduce an estimation on interpolation error which is
useful in the derivation of error estimation.

Lemma 3. [18]: The special interpolant has the following properties:

|u − uI |m,N ≤ Chj+1−m
N |u|j+1,N , m = 0, 1, · · · , j + 1, ∀ u ∈ Hj+1(N ),

(11a)

‖u‖L∞(N ) ≤ Chj+1
N |u|j+1,∞,N , ∀u ∈ W j+1,∞(N ), (11b)

where N is an element in the partition TN of the domain Ω and hN is the length
of element N .

4.1 Interpolation Error

Lemma 4. On the Shishkin mesh, we have the following properties:∥∥S − SI
∥∥

L2[0,λ1]
+

∥∥u − uI
∥∥

L2[0,λ1]
≤ CN−2, (12a)∥∥E − EI

∥∥
L2[λ1,d]

+
∥∥u − uI

∥∥
L2[λ1,d]

≤ Cε1/2(N−1 ln N)2, (12b)∥∥(E − EI)′∥∥
L2[0,d]

+
∥∥(u − uI)′∥∥

L2[0,d]
≤ Cε−1/2N−1 ln N. (12c)

Proof. To estimate
∥∥S − SI

∥∥
L2[0,λ1]

, we use classical interpolation theory given
by (11a) with m = 0 and j = 1∥∥S − SI

∥∥
L2(Ij)

≤ Ch2
N ‖S′′‖L2(Ij)

≤ CN−2.

Now ∥∥E − EI
∥∥

L2(Ij)
≤ C ‖E‖L2(Ij)

+
∥∥EI

∥∥
L2(Ij)

≤ CN−2.

combining the above two estimates, we get (12a). For (12b), we use the interpo-
lation result from (11a).
Now we will estimate (12c)∥∥(E − EI)′∥∥

L2[0,λ1]
≤ ‖E′‖L2[0,λ1]

+
∥∥(EI)′∥∥

L2[0,λ1]
,

≤ ‖E′‖L2[0,λ1]
+ CN

∥∥(EI)
∥∥

L2[0,λ1]
. (13)

Here we have used inverse inequality and stability property for interpolant (see
Lemma 3.3, [21]).

‖E′‖L2[0,λ1]
≤ Cε−1/2N−2,

∥∥EI
∥∥

L2[0,λ1]
≤ Cε1/2N−2. (14)
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(11a) give us ∥∥(E − EI)′∥∥
L2[λ1,d]

≤ Cε−1/2N−1 ln N (15)

and finally ∥∥(S − SI)′∥∥
L2[0,d]

≤ CεN−1 ln N. (16)

Combining (13)–(16), we get (12c). �

Remark 2. Bound for the estimations in Lemma 4 on the interval [d, 1] can be
achieved easily. Hence, we have∥∥S − SI

∥∥
L2[λ2,1]

+
∥∥u − uI

∥∥
L2[λ2,1]

≤ CN−2,∥∥E − EI
∥∥

L2[d,λ2]
+

∥∥u − uI
∥∥

L2[d,λ2]
≤ Cε1/2(N−1 ln N)2,∥∥(E − EI)′∥∥

L2[d,1]
+

∥∥(u − uI)′∥∥
L2[d,1]

≤ Cε−1/2N−1 ln N.

To cover error analysis we need multiplicative trace inequality which is
referred as

Lemma 5. [9]. For w ∈ H1(Ij)

|w(xs)|2 ≤ 2
(
h−1

j ‖w‖2L2(Ij)
+ ‖w‖L2(Ij)

‖w′‖L2(Ij)

)
, s ∈ {j − 1, j}. (17)

Proof. For any w ∈ H1(0, 1), we set v(t) = w2(t)(t − 1/4). Now we just verify
the inequality in (17) for t = 3/4 and proof at another point will be similar,

v′(t) = w2(t) + 2w(t)w′(t)(t − 1/4).

Using the definition of v(t) we see that v(3/4) =
∫ 3/4

1/4
v′(t)dt.

|v(3/4)| ≤
∫ 3/4

1/4

|v′(t)|dt,

≤
∫ 3/4

1/4

|w2(t)|dt +
∫ 3/4

1/4

|2w(t)w′(t)(t − 1/4)|dt.

Therefore,

|v(3/4)| ≤
∫ 3/4

0

|w2(t)|dt +
∫ 3/4

0

|2w(t)w′(t)(t − 1/4)|dt,

≤ ‖w(t)‖2L2[0,3/4] + 2 max
t∈[0,3/4]

|t − 1/4| ‖w(t)‖L2[0,3/4] ‖w′(t)‖L2[0,3/4] ,

≤ ‖w(t)‖2L2[0,3/4] + ‖w(t)‖L2[0,3/4] ‖w′(t)‖L2[0,3/4] .

Hence for all the points it can be shown similarly by changing in the definition
of v(t). So, scaling argument tells us the consequences leads to the validation of
the result given in the Lemma 5. �
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Lemma 6. On the Shishkin mesh given in Subsect. 3.1, take ρ = 2 and η =
u − uI , we have the following bounds for {η′}

{η
′
(xj)}2 ≤

{
Cε−2(N−1 lnN)2 j = N/4 + 1, · · · , N/2 and j = 3N/4 + 1, · · · , N,

Cε−2N−3 j = 0, · · · , N/4 and j = N/2 + 1, · · · , 3N/4.
(18)

Proof. The proof of this lemma is quite similar as the Lemma 3.6 has been
proved in [21]. So we leave the steps of the proof. �

Theorem 3. Let the assumption in Remark 1 holds, then the following result
on Interpolation error holds true∥∥u − uI

∥∥
DG

≤ CN−1 ln N (19)

Proof. Recall that η is continuous on interelement boundaries we have,
[η(xj)] = 0. Using coercivity property in Lemma 2, we have

‖η‖2DG =
N∑

j=1

(
ε ‖η′‖2L2(Ij)

+ γ2 ‖η‖2L2(Ij)

)

Now bounds can be obtained from the estimations in Lemma 3 and
Remark 2. �

5 Uniform Convergence

In this section, we deduce bound for error u−uN , which will be free from ε. The
obtained bound in this section relies on a priori estimate of the exact solution u
and an special interpolant first introduced in [18].

Theorem 4. We introduce χ = uI − uN . Applying Galerkin orthogonality and
coercivity properties from (10a) and (10b) of Lemma 2, respectively, we have

‖χ‖DG ≤ CN−1 ln N. (20)

Proof. Consider,

‖χ‖2DG = B(χ, χ) = B(η, χ),
= B1(η, χ) + B2(η, χ).

Since η is continuous on Ω which implies that [η]j = 0, for j = 0, 1, · · · , N .
Therefore,

B1(η, χ) =
N∑

j=1

∫
Ij

εη′χ′dx −
N∑

j=0

ε
(
[χ(xj)]{η′(xj)}

)
= I1 + I2,

and

B1(η, χ) =
N∑

j=1

∫
Ij

(bη′ + cη)χdx.
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Making the use of Cauchy-Schwarz inequality, Eq. (12c) and Remark 2, we
obtain,

|I1| ≤
( N∑

j=1

∫
Ij

ε(η′)2dx

)1/2( N∑
j=1

∫
Ij

ε(χ′)2dx

)1/2

≤ CN−1 ln N ‖χ‖DG . (21)

Now we have to make a bound for I2. In this case the path of approach will be
different,

|I2| ≤
( N∑

j=0

ε2

σj
{η′(xj)}2

)1/2( N∑
j=0

σj [χ(xj)]2
)1/2

,

≤
( N/4∑

j=0

ε2

σj
ε−2N−3 +

N/2∑
j=N/4+1

ε2

σj
ε−2N−2 ln2 N

+
3N/4∑

j=N/2+1

ε2

σj
ε−2N−3 +

N∑
j=3N/4+1

ε2

σj
ε−2N−2 ln2 N

)1/2

‖χ‖DG .

In this procedure we take the exact choice of discontinuity-penalization param-
eter,

σj = N for all j = 0, 1, · · · , N

Meanwhile, I2 can be estimated as,

|I2| ≤ CN−1 ln N ‖χ‖DG . (22)

Collecting (21) and (22), we get

B1(η, χ) ≤ CN−1 ln N ‖χ‖DG . (23)

It only remains to bound B2(η, χ) and our purpose will be served. To bound the
estimation one can refer [20] which also gives the bound

|B2(η, χ)| ≤ CN−1 ln N ‖χ‖DG . (24)

Therefore (23) and (24) together gives us (20) in Theorem 4. �

Theorem 5. Let u is the exact solution of (1) and uN is the discretized solution
of the NIPG formulation 7 on the Shishkin mesh introduced in Subsect. 3.1. Then
the discretization error obeys the following bound

‖u − uN‖DG ≤ CN−1 ln N.

Proof. From the estimations obtained in Theorem 3, Theorem 4 followed by
triangular inequality we get the desired result. �
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6 Numerical Result and Implementation

In this section, we present numerical result for a test problem to illustrate the
theoretical results that has been established in Sect. 5.

Example 1.

−εu′′ + b(x)u′(x) + 7u(x) = x,

u(0) = u(1) = 0.

where

b(x) =

{
3x2 + 2 x ≤ d,

0.5x x > d,

and d = 0.7.

The test problem in Example 1 is taken similar to the test problems in Example
7.1 and 7.2 in [11]. Solution of the test problem given in Example 1 exhibits an
interior layer at x = d. The curve of computed solution along with exact solution
is sketched in Fig. 1 with N = 1024 and ε = 10−7 for Example 1. The solution
curve is showing interior layer at x = d where d is a point of discontinuity
of convection coefficient b inside the domain depends on the user choice. The
exact choice of discontinuous-penalization parameters σj ’s has been presented
in Sect. 5.

Error and convergence rate are examined for various value of N and ε with
respect to DG-norm, ‖·‖DG. In the present Example (1) do not have exact
solution, so we apply double mesh principle to find out errors in the numeri-
cal solution and their convergence rates. We determine errors for DG-norm by
‖uN − u2N‖DG. The rate of convergence using double mesh principle can be
calculated by the following expression

RN
ε = log2

( ‖uN − u2N‖DG

‖u2N − u4N‖DG

)

The error and rate of convergence calculated in DG-norm for the above example
are provided by Table 1 and Table 2, respectively. It can be easily seen that the
solution converges with desired order, which is free from perturbation parame-
ter ε. It is presented in Table 2, which reflects the first order convergence in ε
weighted norm introduced by the bilinear form (9) that supports our theoreti-
cal findings. Hence, the numerical solution approximates the exact solution very
well. All the calculations have been performed using FENICS library for finite
element method and CPU run time was approximately two minutes.
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Table 1. ‖uN − u2N‖DG errors for Example 1.

Number of Intervals (N)

ε 32 64 128 256 512 1024

10−1 9.844E-03 3.084E-03 9.963E-04 3.344E-04 1.110E-04 3.995E-05

10−2 4.0731E-02 2.0132E-02 8.873E-03 3.571E-03 1.410E-03 5.314E-04

10−3 4.180E-02 2.044E-02 8.844E-03 3.589E-03 1.384E-03 5.383E-04

10−4 4.184E-02 2.0351E-02 8.834E-03 3.587E-03 1.423E-03 5.262E-04

10−5 4.184E-02 2.0351E-02 8.838E-03 3.587E-03 1.408E-03 5.327E-04

10−6 4.184E-02 2.0351E-02 8.838E-03 3.586E-03 1.411E-03 5.328E-04

10−7 4.184E-02 2.035E-02 8.838E-03 3.586E-03 1.411E-03 5.327E-04

Table 2. Convergence rates RN
ε for Example 1.

Number of Intervals (N)

ε 32 64 128 256 512

10−1 1.6742 1.6303 1.5748 1.5901 1.4751

10−2 1.0166 1.1819 1.3128 1.3401 1.4083

10−3 1.0320 1.2089 1.3009 1.3739 1.3630

10−4 1.0397 1.2039 1.3000 1.3333 1.4359

10−5 1.0399 1.2032 1.3008 1.3486 1.4027

10−6 1.0399 1.2032 1.3010 1.3458 1.4050

10−7 1.0399 1.2031 1.3011 1.3454 1.4057

Fig. 1. Computed and Exact solution for Example 1 for N = 1024 and ε = 10−7.

7 Conclusion

The singularly perturbed convection-diffusion problem with discontinuous coeffi-
cient is investigated in this paper. In order to find the numerical approximation
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when the perturbation parameter ε goes to zero, we apply NIPG method on
piecewise uniform Shishkin mesh and convergence result is established. Numer-
ical results are provided to defend our analytical findings. It is a singular per-
turbation problem with single perturbation parameter with discontinuities. We
can extend this work to two parametric perturbation problem with disconti-
nuities caused layer phenomenon at both boundaries points and some of the
interior points as well. Not only this, but these problems can be extended to its
2 − D limitations, in which we can discuss the uniform convergence of contin-
uous/discontinuous Galerkin methods in ε-weighted norm and usual L2-norm.
So many cases can be there, like discontinuous coefficients, problem with two
perturbation parameters and turning point, etc. In these conditions, solution
may have boundary and interior layers simultaneously. Domain discretization
also matter for these problem, for ex; if one discretize the domain by Bakhvalov
mesh or more than that by exponential mesh gives the sharper convergence than
the mesh discretization by Shishkin mesh.

8 Discussion

The literature contains a large number of studies that discuss the continu-
ous/discontinuous Galerkin technique for singular perturbation problem (SPP).
There are several papers in the literature which discussed the convergence of
NIPG method for instance, one can see ([10,11,13,21]). In first three papers
authors deduced the first order convergence, while the last one reflects super-
convergence of the solution. Except [11] all other deals with the discontinuous
Galerkin method for SPP with continuous coefficients and source term but the
former has convergence result for the problem with discontinuous source term.
Furthermore, so many articles in the literature which we have already discussed
in Sect. 1 that have analysis of SPP with discontinuous coefficient or source term.
But there are not a single paper that analyze NIPG method for SPP with dis-
continuous source term ever before. That’s why this paper is elaboration of first
order convergence up to logarithmic factor of NIPG method on usual Shishkin
mesh where discontinuity of jump type occurs in convection coefficient.
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