
Generalized Solitary Wave Approximate
Analytical and Numerical Solutions
for Generalized Damped Forced KdV

and Generalized Damped Forced MKdV
Equations

Shruti Tomar1(B), Naresh M. Chadha1, and Santanu Raut2

1 Department of Mathematics, School of Physical Sciences, DIT University,
Dehradun 248009, Uttarakhand, India

tomer05shruti@gmail.com
2 Department of Mathematics, Mathabhanga College, Coochbehar 736146, India

Abstract. In this article, we study the non-linear partial differential
equation given by ut+Pukux+Quxxx+Su = f(t), where P , Q, S denote
non-linear coefficient, dispersion coefficient, and damping coefficient,
respectively; f(t) denotes external hyperbolic forcing term, f0cosh(ωt).
The parameter ‘k’ denotes the non-linear exponent. For k = n, where
n ∈ N , the equation represents the Generalized Damped Forced KdV
(GDFKdV) equation, and for k = n/2, it can be referred to as the
Generalized Modified Damped Forced KdV (GMDFKdV) equation. Ini-
tially, analytical solution of the Generalized KdV (GKdV) equation and
the Generalized modified KdV (GMKdV) equation are derived employ-
ing sine-cosine method. Further, we obtain the solitary wave analytical
solutions to the GDFKdV and GMDFKdV equations by using the direct
assumption technique. We construct the generalized forms of the solu-
tions, which involve two new parameters, ‘a’ and ‘b’. In the first instance,
the solutions to GDFKdV, and GMDFKdV may look very similar. How-
ever, in this article, it has been shown that the nature of solitons and
their topological structures emerging from these two equations are very
different. Using the method of dynamical systems, we analyse the bifur-
cation and nature of the solutions. Finally, the pseudo-spectral method,
which we employed to approximate the solutions, is proven to be ineffec-
tive concerning time and the increasing value of exponent power n. Our
theoretical results are supported by our numerical experiments.

Keywords: GDFKdV · GDFMKdV · the sine-cosine method ·
Bifurcation analysis · the basic Pseudo-spectral method

1 Introduction

Nonlinear evolution equations (NLEEs) can be used to represent a wide range of
complicated physical processes and have applications in many areas of research,
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including physics, chemistry, biology, astronomy, and others [1,3,8,10,15,20].
Several researchers have suggested different approaches to find its analytical solu-
tions, e.g., the Hirota bilinear method [22], the generalized exponential rational
function technique [6], the local fractional natural homotopy analysis method
[4], the semi analytical method [19], the simple equation method [9], the Exp
(–φ(ξ)) expansion method [11,12], the sine-cosine method [21] to name a few.
Finding approximate analytical solutions to NLEEs may present some difficulties
if a highly nonlinear term appears in these equations. For example, the scenario
may become more complicated if damping or forcing terms are present [13,17].

Recently, enormous interest began to investigate the NLEEs under a local-
ized disturbance in the dynamic system [14,16]. Actually, some excellent obser-
vations in the astronomical space plasma environment motivated the researchers
for examining the NLEES under the influence of external forces [2,18]. Again,
damping is a common phenomenon that exists in all real physical systems. Thus,
the non-autonomous system containing damping and forcing terms is much more
realistic than its autonomous counterpart.

In this paper, we take into account a highly nonlinear evolution equation and
use the direct assumption method to generate approximate analytical solutions
that contain both damping and forcing terms, and we study the bifurcation
analysis while considering the forcing and the damping terms equal to zero.
For this generalized setting, it exhibits different-different topological structures
for a range of values of the parameters which are supported by the numeri-
cal technique, the Pseudo-spectral method [5]. The spectral approach can be
used to approximately correlate the numerical results to the analytical results.
Accuracy is provided using spectral approaches with an exponential convergence
rate. With this approach, the partial differential equation can be represented as
a linear combination of basis functions, with the coefficient chosen so that the
resulting linear combination closely approximates the solution. This approach
has a number of constraints, including boundary conditions. To support our
theoretical findings in this study, we are using the fundamental Pseudo-spectral
approach.

We consider the non-linear evolution equation

ut + Pukux + Quxxx + Su = f(t), (1.1)

where f(t) stands for the external hyperbolic forcing term and P , Q, and S stand
for the non-linear coefficients, dispersion coefficient, and damping coefficient,
respectively. The non-linear exponent is denoted by the parameter k, for which
if k = n, it represents the GDFKdV equation and if k = n/2, it is the GMDFKdV
equation, where n ∈ N . equal to zero.

In this paper, Sect. 2 represents the analytical solutions for k = n, and
k = n/2 which are obtained by the sine-cosine method for the simplified case
i.e. ut + Pukux + Quxxx = 0. It appears that there is no significant difference
in the solution profile except for varied values of P. However, when this equa-
tion is transformed into a dynamical system, it becomes clear that the solutions
of GKdV and GMKdV behave very differently near their equilibrium points
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for the same value of the parameters, which is investigated by the standard
tools of the bifurcation analysis in Sect. 3. By using the direct assumption tech-
nique, an approximative analytical solution for a generalized situation Eq. (1.1)
is obtained. It can be seen that the parameters have a dramatically different
effect on the solutions of GDFKdV and GMDFKdV, which are displayed using
contour plots and three-dimensional surface graphs. This is the subject matter
of Sect. 4. In Sect. 5, we extend the study by introducing two new parameters, a
and b in the solution of Eq. (1.1), which is referred to as the generalized solution
of the GDFKdV and the GMDFKdV here. It is observed that for the different
values of these parameters, one can obtain multiple types of solitons which may
depict Gaussian-type pulses, multiple humps, and twisted curved sheet-like topo-
logical structures. These results are supported by the Pseudo-spectral method,
described in Sect. 6. The conclusion of this study is summarized in Sect. 7.

2 Approximate Analytical Solutions of GKdV
and GMKdV Equations

Consider the case of a general non-linear partial differential equation with an
unknown u = u(x, t) as,

N (u, ut, ux, uxx, utx, uxxx, ...) = 0. (2.1)

Now introducing a new stretching variable ζ by combining the real variables x
and t such that,

u(x, t) = V (ζ), ζ = ω0(x − ct). (2.2)

Eq. (2.1) is converted into an ordinary differential equation (ODE) with the help
of the above transformation,

M(V, V ′, V ′′, V ′′′, · · · ) = 0, (2.3)

where (′) signifies a derivative with respect to ζ and M is a polynomial in terms
of V and its derivatives.

The sine-cosine approach suggests that the solutions could take the following
form of

V = λ0sin
γ(ζ), (2.4)

or in the form
V = λ0cos

γ(ζ). (2.5)

where λ0, γ and ζ are included parameters to be determined. Substituting
Eq.(2.4) or Eq.(2.5) into Eq.(2.3), and solving the system of equations to obtain
all possible values of the parameters λ0, γ, and ζ. Put the values into Eq.(2.4)
or Eq.(2.5), will present a new solutions of Eq.(2.3).

We employ sine-cosine method to find the analytical solutions of GKdV and
GMKdV equation. Here, a suitable transform is chosen to reduced the partial
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differential equation into an ordinary differential equation (ODE). We consider
a generalized form of KdV equation given by

ut + Pukux + Quxxx = 0. (2.6)

Using the wave transformation u(x, t) = V (ζ), ζ = w0(x − ct), and taking inte-
gration, we find

− cV ′ +
PV k+1

k + 1
+ Qw2

0V
′′ = 0. (2.7)

According to the sine-cosine method the solutions of Eq. (2.7) can be expressed
in the form

V = λ0cos
γ(ζ). (2.8)

By substituting Eq.(2.8) into Eq.(2.7) gives the system of algebraic equations

γ − 2 = γ(k + 1), (2.9)
Qw2γ2λ0(k + 1) − cλ0(k + 1) = 0,
Qw2

0λ0γ
2k − Qw2

0λ0γn − Qw2
0λ0γ + Qw2

0λ0γ
2 + Pλk+1

0 = 0.

Solving this system, we have

γ = − 2
n

, w0 =
k

2

√
− c

Q
, λ0 =

(
c(k + 1)(k + 2)

2P

) 1
k

. (2.10)

From Eq. (2.10),the analytical solution of Eq.(2.6) is obtained and given by

V (ζ) = u(x, t) =
[
c(k + 1)(k + 2)

2P
sech2

(
k

2

√
c

Q
(x − ct)

)] 1
k

. (2.11)

Now, we have two cases: for (a) k = n, and k = n/2; they correspond to GKdV
and GMKdV equations, respectively. Their solutions are as follows

– Case 1 k = n (GKdV equation), the solution is

u(x, t) =
[
c(n + 1)(n + 2)

2P
sech2

(
n

2

√
c

Q
(x − ct)

)] 1
n

. (2.12)

– Case 2 k = n/2 (mGKdV equation), the solution is

u(x, t) =
[
c
(n + 2)(n + 4)

8P
sech2

(
n

4

√
c

Q
(x − ct)

)] 2
n

. (2.13)

These solutions are plotted in Fig. 1 for the parameters P = 0.5, Q = 2.5, t =
0.5, c = 0.5. For Fig. 1 (a), (e), n is varied and rest of the figures n = 3 is
kept fixed and P , and Q are varied. From the comparison of these figures, it
seems there is no significant difference in the analytical behaviour of the solitons
obtained for both GKdV and GMKdV except for the parameter P . In the next
section, we employ certain tools such as eigenvalues and phase portraits from
bifurcation analysis to investigate the impact of the parameters on the solution
profiles.
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a b c d

e f g h

Fig. 1. The solutions of GKdV and Modified KdV are compared. The parameters used
are: P = 0.5, Q = 2.5, t = 0.5, c = 0.5, and n = 3 is fixed except for the figure where n
is varied.

3 Bifurcation Analysis of GKdV Equation and GMKdV
Equation

By following the [7], the dynamical system corresponding to Eq.(2.7) is as follows

u′ = v, v′ =
1

Qw2
0

(
cu − P

uk+1

k + 1

)
. (3.1)

The determinant of Jacobian matrix is |J | = − 1
Qw2

0

(
c − Puk

)
, we have two

equilibrium points for this system: (0, 0) and
((

(k+1)c
P

)1/k

, 0
)

, n ∈ N . The

corresponding eigenvalues are

λ1,2 = ±
√

c − Puk

Qw2
0

. (3.2)

In the dynamical system given by Eq. (3.1), we have a exponent k, different
values of k = n or n/2 will produce different sets of equilibrium points. In this
study, we are considering n = [1, 3, 5].
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a b c

d e f

Fig. 2. Behaviour of Dynamical system (3.1) for GKdV and GMKdV equation. For
odd values of n = [1, 3, 5] and other parameter are c = 1; P = 0.4; Q = 0.35; w0 = 1.

Let us consider two cases:

– For k = n, the dynamical system corresponds to GKdV equation. The phase
portraits corresponding to n = [1, 3, 5] are shown in Fig. 2 a, b, c for fixed value
of the parameters P = 0.4, Q = 0.35, c0 = 1, and w0 = 1. For n = 1, the
system will have two equilibrium points (0, 0) and

(
2c
P , 0

)
. There is a center in

the vicinity of point
(
2c
P , 0

)
, and trajectories show periodic behaviour around

this center. These trajectories move away from each other when they move
further towards (0, 0) which implies that the system becomes unstable in
the neighborhood of (0, 0) and enters into unbounded open orbits. For fixed
values of the parameters, the system will always remain unstable in this orbit.
Similar conclusions can be drawn for n = 3, 5.

– For k = n
2 , the dynamical system will correspond to the GMKdV equation.

For n = [1, 3, 5], we will have a fractional exponent. The phase portraits are
shown in Fig. 2 d, e, f corresponding to these values of n, considering the same
values of the parameters used to plot phase portraits Fig. 2 a, b, c. This system

will have one saddle point at (0, 0) and one centre point at
((

(n
2 +1)c

P

)2/n

, 0
)

.

In the neighborhood of the center point, these trajectories show periodic
behaviour. Proceeding further, the system becomes unstable near the saddle
point, and trajectories stop moving forward at this unstable point. For the
higher value of n i.e., n = [3, 5], these trajectories are showing compressive
behaviour and moving towards an unstable point.
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For GKdV and GMKdV, the equilibrium point, corresponding eigenvalues, and
expected topological properties are summarized in Table 1 and Table 2. Complex
equilibrium points are omitted here as they may not be very useful for practical
purposes.

Table 1. Behaviour of equilibrium points and corresponding eigenvalues with respect
to values of n = [1, 3, 5] for GKdV.

k Equilibrium points Eigenvalues Nature Topological property

1 (0, 0), ( 2c
P

, 0) λ1,2 = ±i
√

c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

3 (0, 0), ( 3
√

4c
P

, 0) λ1,2 = ±i
√

3c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

5 (0, 0), ( 5
√

6c
P

, 0) λ1,2 = ±i
√

5c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

Table 2. Behaviour of equilibrium points and corresponding eigenvalues with respect
to values of n = [1, 3, 5] for GMKdV equations.

k Equilibrium points Eigenvalues Nature Topological property
1
2

(0, 0), (
(
3c
P

)2
, 0) λ1,2 = ±i

√
c

2Qw2
0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

3
2

(0, 0), ( 2/3
√

5c
2P

, 0) λ1,2 = ±i
√

3c
2Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

5
2

(0, 0), ( 2/5
√

7c
2P

, 0) λ1,2 = ±i
√

5c
2Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

4 Approximate Analytical Solutions of GDFKDV
and GMDFKDV Equations

In this section, we shall derive approximate analytical solutions of GDFKDV
and GMDFKDV equations by using direct assumption technique. Recall, a gen-
eralized form of equation as

ut + Pukux + Quxxx + Su = f(t), (4.1)

where S is damping coefficient, and f(t) denotes the forcing term. We take the
solution for the above equation as

u =

[
c(t)(k + 1)(k + 2)

2P
sech2

(
k

2

√
c(t)
Q

(x − c(t)t)

)] 1
k

. (4.2)

We know that I =
∫ ∞

−∞ u2dx is conserved. Thus, we have

I =
∫ ∞

−∞
u(x, t)2dx =

2
4
k+1c(t)

2
k − 1

2 β
(
2
k , 2

k

) (
k

√
(k+1)(k+2)

2P

)2

k
√

1
Q

. (4.3)
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Differentiating the Eq. (4.3) with respect to t and taking Eq. (4.1) and Eq. (4.3)
together with differential value as,

dI

dt
= 2

∫ ∞
−∞

u(x, t)
∂u

∂t
dx = −2

∫ ∞
−∞

u
(

P u
k

ux + Quxxx + Su − f(t)
)

dx

= −2S

2
4
k

+1
c(t)

2
k

− 1
2 β

(
2
k

, 2
k

) (
k
√

(k+1)(k+2)
2P

)2

k

√
1
Q

+ 2f(t)

[
c(t)

1
k

− 1
2

(
k
√

(k+1)(k+2)
2P

)
2
2
k

+1
β

(
1
k

, 1
k

)]

k

√
1
Q

.

(4.4)

(Since
∫ ∞

−∞ ukuuxdx = 0 and
∫ ∞

−∞ uuxxxdx = 0 both holds true.)
By simplifying the Eq. (4.4), we obtain following differential equation for c(t) as

1
k

c(t)
1
k −1 dc(t)

dt
+

4S

(4 − k)
c(t)

1
k =

4β( 1
k , 1

k )

(4 − k)
(

k

√
(k+1)(k+2)

2P

)
2

2
k β( 2

k , 2
k )

f(t). (4.5)

For the forcing term f(t) = f0 cosh(ωt), the solution is

u(x, t) =

[
c(t)(n + 1)(n + 2)

2P
sech2

(
n

2

√
c(t)
Q

(x − c(t)t)

)] 1
n

, (4.6)

where

c(t)
1
k =

2β
(
1
k
, 1
k

)
f0

2
2
k β

(
2
k
, 2
k

)
k
√

(k+1)(k+2)
2P

[
8Scosh(ωt)− 2ω(4− k)sinh(ωt)

16S2 − ω2(4− k)2

]
+ c1e

− 4S
(4−k) t,

and the constant

c1 = c
1/k
0 − 2β

(
1
k , 1

k

)
f0

2
2
k β

(
2
k , 2

k

)
k

√
(k+1)(k+2)

2P

8S

16S2 − ω2(4 − k)2
.

– Case1. k = n, Solitary Wave Solution of GDFKDV For the forcing
term f(t) = f0 cosh(ωt), the solution is

u =

[
c(t)(n + 1)(n + 2)

2P
sech2

(
n

2

√
c(t)
Q

(x − c(t)t)

)] 1
n

, (4.7)

where

c(t)
1
n =

2β
(
1
n

, 1
n

)
f0

2
2
n β

(
2
n

, 2
n

)
n
√

(n+1)(n+2)
2P

[
8Scosh(ωt)− 2ω(4− n)sinh(ωt)

16S2 − ω2(4− n)2

]
+ c1e

− 4S
(4−n) t,

and the constant

c1 = c
1/n
0 − 2β

(
1
n , 1

n

)
f0

2
2
n β

(
2
n , 2

n

)
n

√
(n+1)(n+2)

2P

8S

16S2 − ω2(4 − n)2
.
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– Case2. k = n/2, Solitary Wave Solution of GMDFKDV For the forcing
term f(t) = f0 cosh(ωt), the solution is

u =

[
c(t)(n + 2)(n + 4)

8P
sech2

(
n

4

√
c(t)
Q

(x − c(t)t)

)] 2
n

, (4.8)

where

c(t)
2
n =

4fβ
(
2
n

, 2
n

)

2
4
n β

(
4
n

, 4
n

)
(

n
√

(n+2)(n+4)
8P

)2

[
16Scosh(ωt)− 2ω(8− n)sinh(ωt)

64S2 − ω2(8− n)2

]
+c1e

− 8S
(8−n) t,

and the constant

c1 = c
2/n
0 − 4fβ

(
2
n , 2

n

)

2
4
n β

(
4
n , 4

n

) (
n

√
(n+2)(n+4)

8P

)2

16S

64S2 − ω2(8 − n)2
.

The impact of the damping coefficient on the solutions of GDFKdV and
GMDFKdV is shown in Fig. 3. The damping coefficient is considered for these
discrete values S = [0.1, 0.2, 0.5, 0.8], and the rest of the parameters are kept
fixed as c0 = 0.5, P = 0.5, Q = 2.5, ω = 0.5, n = 3, f = 0.01. It is very
clear from the plots that the profiles corresponding to GDFKdV and GMD-
FKdV are very different. For GDFKdV, with an increase in damping coefficient,
the soliton, which has a Gaussian-pulse type structure, tends to flatten down
from the backside. The impact is clearly visible in the contour plots also. A
similar impact can also be observed for GMDFKdV. The impact of frequency
coefficient ω on the solution profiles of GDFKdV and GMDFKdV is shown in
Fig. 4. The values of ω are ω = [0.05, 2.0, 2.5, 3.0], and rest of the parameters are
c0 = 0.5, P = 0.5, Q = 2.5, f = 0.02, n = 3, S = 0.01. For both GDFKdV and
GMDFKdV, it can be seen that with an increase in frequency coefficient, the
soliton acquires curvature, which is visible in surface plots and corresponding
contour plots.

5 Generalized Solutions of GDFKDV and GMDFKDV
Equations

For our generalized problem

ut + Pukux + Quxxx + Su = f(t), (5.1)

we consider the solution in more generalized form given as follows

u = ca(t)
[
(k + 1)(k + 2)

2P
sech2

((
k

2

√
1
Q

(x − c(t)t)
)

cb(t)
)] 1

k

. (5.2)

For the hyperbolic forcing term of the form, f(t) = f cosh(ωt), the generalized
solution is as follows:
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a b c d

e f g h

i j k l

m n o p

Fig. 3. The solutions of GDFKdV and GMDFKdV are compared for different values
of damping parameter S = [0.1, 0.2, 0.5, 0.8]. Other parameters used are: c0 = 0.5, P =
0.5, Q = 2.5, ω = 0.5, n = 3, f = 0.01.

– Case1. k = n, Solitary Wave Solution of GDFKDV

u = ca(t)
[
(n + 1)(n + 2)

2P
sech2

((
n

2

√
1
Q

(x − c(t)t)
)

cb(t)
)] 1

n

. (5.3a)
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a b c d

e f g h

i j k l
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Fig. 4. The solutions of the GDFKdV and GMDFKdV are compared for different
values of frequency coefficient ω = [0.05, 2.0, 2.5, 3.0]. Other parameters used are: c0 =
0.5, P = 0.5, Q = 2.5, f = 0.02, n = 3, S = 0.01.

where

ca(t) =
aβ

(
1
n

, 1
n

)
f

2
2
n β

(
2
n

, 2
n

) n
√

(n+1)(n+2)
2P

[
4aScosh(ωt)− 2ω(2a − b)sinh(ωt)

4a2S2 − ω2(2a − b)2

]
+ c1e

− 2aS
(2a−b) t,

(5.3b)
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and the constant

c1 = ca
0 − aβ

(
1
n , 1

n

)
f

2
2
n β

(
2
n , 2

n

)
n

√
(n+1)(n+2)

2P

4aS

4a2S2 − ω2(2a − b)2
. (5.3c)

– Case2. k = n/2, Solitary Wave Solution of GMDFKDV

u = ca(t)
[
(n + 2)(n + 4)

8P
sech2

((
n

4

√
1
Q

(x − c(t)t)
)

cb(t)
)] 2

n

. (5.4)

where

c
a
(t) =

aβ
( 2

n , 2
n

)
f

2
4
n β

( 4
n , 4

n

) (
n
√

(n+2)(n+4)
8P

)2

[
4aScosh(ωt) − 2ω(2a − b)sinh(ωt)

4a2S2 − ω2(2a − b)2

]
+ c1e

− 2aS
(2a−b) t

,

and the constant

c1 = ca
0 − aβ

(
2
n , 2

n

)
f

2
4
n β

(
4
n , 4

n

) (
n

√
(n+2)(n+4)

8P

)2

4aS

4a2S2 − ω2(2a − b)2
.

Various topological structures within the framework of solitons corresponding
to various combinations of a, and b are shown in Fig. 5 and Fig. 6. The value
of other parameters are kept fixed as c0 = 0.5, P = 0.5, Q = 2.5, f = 0.01, ω =
0.5, S = 0.05, n = 3 to generate these plots.

6 Analysis of GKdV and GMKdV Equation
with the Help of Pseudo-spectral Method

Consider a Generalized nonlinear evolution equation

ut + Pukux + Quxxx = 0,

u(x, 0) =

(
c(k + 1)(k + 2)

2P
sech

(
k

2

√
c

Q
(x − x0)

)2
)1/n

, u(−L, t) = u(L, t).

(6.1)

To apply Fourier transformation and employ inverse Fourier transformation, let
us consider: x = Xb, and u(x, t) = v(x/b, t) = v(X, t), where b = L1/L Then,
the GKdV equation becomes

vt +
P

b
vkvx +

Q

b3
vxxx = 0. (6.2)

Let the Fourier function is

F(f(a)) = f̂(k) =
∫ ∞

∞
f(a)e−2πikadt. (6.3)
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a b c d

e f g h

Fig. 5. Analytical solution of the Generalized KdV Equation for different combinations
of a and b. Other parameters are: c0 = 0.5, P = 0.5, Q = 2.5, f = 0.01, ω = 0.5, S =
0.05, n = 3.

a b c d

e f g h

Fig. 6. Analytical solution of the Generalized Modified KdV Equation for different
combinations of a and b. Other parameters are: c0 = 0.5, P = 0.5, Q = 2.5, f =
0.01, ω = 0.5, S = 0.05, n = 3.
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a b c

d e f

Fig. 7. Pseudo-spectral method with k = n i.e. the GKdV equation, and k = n/2 i.e.
the GMKdV equation where n = [1, 2, 3] on the Eq. (6.1).

Taking Fourier transformation on Eq. (6.2), we get

vx = ikF(v); vxxx = −ik3F(v). (6.4)

Taking inverse FFT on Eq. (6.4) and using the RK4 method for the Eq. (6.1)
is given by

un+1 = un +
1
6
(a + 2b + 2c + d),

(6.5)

where a = −dtf(u), b = −dtf(u + 0.5a), c = −dtf(u + 0.5b), d = −dtf(u + c).
In this Sect. 6, with the help of the Pseudo-spectral method, we are comparing

the results between the exact solution, the initial solution, and the computational
solution concerning the time and various included parameters P , Q, and k. For
k = n, and k = n/2, the Eq. (6.1) represents the GKdV and GMKdV equations
respectively. In Fig. 7 for n = [1, 2, 3], P = 0.5, Q = 0.25, c = 0.5, and t = 0.01,
we have seen that solitons of both the equations shows the oscillating behaviour
with respect to the computational scheme and for higher value of n this scheme
will break, Fig. 7 a, b, and c represents for GKdV and d, e, and f represents
for GMKdV equations. The effect of time t and included rest parameters P ,
and Q are also shown in Fig. 8. The soliton will move smoothly with regard to
time up until it reaches t = 0.05, as shown by Fig. 8 a, b, and c. At this time,
oscillations occur in the soliton with respect to the computational scheme and
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a b c

d e f

g h i

Fig. 8. Comparison of the exact solution, the initial solution, and the computational
solution with respect to the time t, and the range of the parameters P and Q of Eq. (6.1)
at fixed time t = 0.01. Parameters values are t = [0.01, 0.05, 0.09], P = [0.1, 0.5, 0.9],
and Q = [0.1, 0.5, 1.5].

breaks down but in case of P , this scheme will move smoothly and the amplitude
of the soliton will decrease while increasing the value of the nonlinear coefficient
P = [0.1, 0.5, 0.9], shown in Fig. 8 d, e, and f . Figure 8 g, h, and i represent the
behaviour of soliton with respect to the dispersion parameter Q and we observed
that for Q = [0.1, 0.5, 1.5], P = 0.5, c = 0.5, n = 1, and t = 0.01, the width of
the soliton will increase, but at Q = 1.5 there exists a small oscillation in the
soliton and for this value this scheme will fail. Hence overall, we have observed
that with respect to time, k, and dispersion parameters this scheme will fail.

Remark 1. We have observed that this pseudo-spectral scheme will fail with
time. To improve the accuracy, we need to move to a better scheme, which may
be the modified exponential time differencing method (mETDRK4). This can
be the further research work with this problem.
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7 Conclusions and Future Work

In this article, to investigate the autonomous GKDV and GMKDV system, the
sine cosine method is employed; further, the analytical solution of the non-
autonomous part of the said system is derived using the direct assumption tech-
nique. Finally, the reliability of the solutions is achieved by numerical investiga-
tion. In this connection, it is important to mention that the analytical techniques
mentioned here, are not able to find more complex solutions such as rouge wave,
breather, etc. Finding such solutions using Hirota’s bi-linear techniques, Dar-
boux transformation remains for a future project. The main outcomes of our
investigation can be stated below:

• We have compared the soliton behaviours of the generalized KDV and gen-
eralized Modified KDV equations.

• In the absence of forcing and damping terms, there is no significant difference
between the behaviours except for the non-linear parameter.

• Visible effects are shown in the behaviour of dynamical systems of GKdV and
GMKdV equations. For k = n, the system will always remain unstable and
move in an unbounded open orbit. Again, for k = n

2 , the system becomes
unstable, but the trajectories do not move into open orbit and exhibit com-
pressive behaviour.

• In the case of GDFKdV and GDFMKdV equations, the Effect of forcing
parameters and damping parameters is shown with the help of surface and
contour plots. The graphs for the damping parameter make it evident that
as the damping coefficient increases, the soliton tends to flatten out from the
back. Similarly for the case of forcing term parameter, the soliton acquires
the curvature.

• A visible effect in the behaviour of generalized solutions of both equations
is shown with the help of two newly introduced parameters, a, and b. This
may represent topological structures such as multiple humps, twisted curved
sheets, and pulses of the Gaussian type.

• With the help of the pseudo-spectral approach, we provide additional support
for all of these findings.

• We have observed that this pseudo-spectral scheme will fail with time and
increasing value of exponent parameter n. To improve the accuracy, we need
to move to a better scheme, which may be the modified exponential time dif-
ferencing method (mETDRK4) [5]. This can be the subject of further research
work on this problem.
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