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Abstract. The present study aims to perform computer simulations of
two-dimensional hemodynamics of blood flow through an overlapping
stenosed artery considering the non-Newtonian Casson fluid model to
simulate the arterial region’s hemorheological properties and hematocrit-
dependent viscosity to mimic the realistic behavior of blood with a uni-
form magnetic field applied in the radial direction of the blood flow,
motivated by magneto-hemodynamics effects. This study is influenced
by drug delivery applications and proposes a mathematical model for
unsteady blood flow using hybrid biocompatible nanoparticles (Gold and
Copper). The Crank-Nicolson method solves the transformed governing
equations with accompanying boundary conditions. For a given criti-
cal height of the stenosis, key hemodynamic variables such as velocity,
wall shear stress, temperature, and flow rate are computed. The velocity
and temperature profiles show enhancement as the Casson fluid param-
eter (β) increases. The velocity, wall shear stress, and flow rate of the
fluid (blood) decline with an increment in the hematocrit parameter
(hm). A comparative study with published work is done to validate
the current model, which is in good accord with the previous work.
The findings may act as a benchmark for formulating the best regi-
mens for the targeted treatment of atherosclerosis, obstructed hemo-
dynamics, nano-hemodynamics, nano-pharmacology, blood purification
systems, and treatment of hemodynamic ailments.

Keywords: Hematocrit-dependent viscosity · Overlapping stenosis ·
Au-Cu/Blood hybrid nanofluid · Pulsatile blood flow

1 Introduction

Nanofluids have gained popularity as a significant development in biomedical
engineering in recent years. Theoretical and practical studies on the possible
applications of nanoparticles in blood flow issues have significantly influenced
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Nomenclature

r∗
1 Radial direction d location of stenosis

z∗
1 Axial direction L0 length of stenosis

t∗
1 Time M2 Magnetic Number

u∗
1 Velocity component in radial direction Re Reynold’s Number

w∗
1 Velocity component in axial direction Gr Grashof Number

U0 Reference velocity Pr Prandtl Number

R Radius of artery in stenotic region Q1 Flow Rate

R0 Radius of artery in non-stenotic region Greek Letters

g Acceleration by virtue of gravity δ Stenosis depth

h(r∗
1) volume fraction of RBCs β Casson Fluid Parameter

hm maximum hematocrit at artery’s center σ Electrical conductivity

T̃ ∗ Temperature of the base fluid θ̃ Non-dimensional temperature

T̃ ∗
1 Reference temperature ρ Density

T̃ ∗
w Temperature at the wall φ1 Volume fraction of Au-NPs

B0 Uniform Magnetic Field φ2 Volume fraction of Cu-NPs

C̃∗
p Specific heat at constant pressure γ Thermal expansion coefficient

kf Thermal conductivity τw Shear stress at the wall

p∗
1 Pressure μ0 coefficient of viscosity of plasma

ws Wall slip velocity μf Blood’s viscosity

current bio-science literature. Many nanoparticle applications include gene ther-
apy, MRI, tracking agents, and surgical tools for treating hyperthermia. Gold
nanoparticles transport and unload drugs using their unique physical and chemi-
cal properties. Ghosh et al. [1] investigated the role of gold nanoparticles in drug
administration. Gentile et al. [2] investigated the effects of vascular permeability
on blood transport with nanoparticle suspension via blood vessels. The impact
of the slip condition on blood flow through a tapering stenosed artery in the
presence of nanoparticles was examined by Nadeem and Ijaz [3]. Using nanopar-
ticles, Bahrami et al. [4] studied cancer therapy through targeted drug delivery.
They found that nanoparticles have proven to be a successful technique that can
lessen the side effects of current anti-cancer drugs. Gupta et al. [5] examined
the MHD 2D-flow of Williamson-type nanofluid using nonlinear thermal radia-
tion, Cattaneo-Christov heat and mass flux models. Under the influence of the
magnetic field, Umadevi et al. [6] examined the blood flow suspended with Cu-
nanoparticles via an inclined artery having overlapping stenosis. Gandhi et al.
[7] constructed a mathematical model for drug delivery using Au-Al2O3/Blood
hybrid nanoparticles via a bell-shaped stenosed artery. Gandhi and Sharma [8]
studied the influence of hybrid nanoparticles on two-dimensional pulsatile blood
flow through a vertical artery with irregular stenosis with an inclined exter-
nal magnetic field. Using Au and GO nanoparticles, Khanduri and Sharma [9]
investigated the influence of Hall and ion slips on MHD blood flow through a
catheterized multi-stenosis artery with thrombosis.
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A frequent cause of cardiovascular disease in coronary arteries is the buildup
of fatty substances inside the artery wall lumen. This mechanism limits the
amount of oxygenated blood that may leave the heart and travel to the rest
of the body by decreasing the radius of blood arteries while raising blood flow
resistance. The hemodynamical study in stenosed arteries is a crucial field of
research because of its vital applications in cardiovascular illnesses like angina,
heart attacks, atherosclerosis, and aneurysms, which are among the world’s top
causes of death. Numerous theoretical and practical research efforts have been
conducted to gain a deeper understanding of the factors contributing to steno-
sis formation and its effects on blood flow dynamics. Several researchers [10–13]
have mathematically explored the blood flow via arteries with overlapping steno-
sis. Sharma et al. [14] utilized blood as biomagnetic fluid to explore Soret and
Dufour’s effects via a stenosed artery having tapering effects. Under the impact
of a uniform magnetic field, Das et al. [15] investigated the physical repercussions
of suspension of hybrid nanoparticles in blood moving via porous artery with
inclination having minor stenosis. Using a two-phase mixing approach, Zhang et
al. [16] studied the impacts of nanoparticle volume fraction on plaque disintegra-
tion during transit. Basha et al. [17] investigated the fluid transport behavior of
Au-Cu/Blood hybrid nanofluid via an artery having the inclination and irregular
stenosis. Gandhi et al. [18] performed entropy generation analysis for blood flow
through an irregular stenosed artery utilizing hybrid nanoparticles of different
shapes. Using hematocrit-dependent viscosity, Sharma et al. [19] examined the
effects of heat transfer and body acceleration on unsteady MHD blood flow in a
curved artery in the presence of stenosis and aneurysm.

Most of the research described above examined the connection between artery
stenosis and blood flow dynamics while treating blood as a Newtonian fluid.
The blood behaves in the larger-diameter arteries with an assertive Newtonian
behavior when shear rates are greater than 100 s−1. However, because blood
is a suspension of cells, it is widely known that arteries with smaller diame-
ters and lower shear rates exhibit greater non-Newtonian blood behavior. The
Casson fluid flow model has acquired popularity recently due to its fascinating
application in human life. In today’s science, the Casson fluid flow model has
significant demand. Casson fluid demonstrates yield stress features. When the
yield stress is high enough, the Casson fluid transforms into the Newtonian fluid.
Sarifuddin et al. [20] explored the effect of two-dimensional blood flow, consid-
ering blood to be Casson fluid via an irregular stenosed artery employing the
Marker and Cell approach for solving the equations numerically. Debnath et al.
[21] studied the influence of a 1st-order homogeneous-heterogeneous chemical
reaction in an annular pipe, using the Casson model to characterize the liquid’s
non-Newtonian viscosity. Ali et al. [22] used Darcy’s law to investigate the flow
behavior of Casson fluid via a 2-D porous channel employing a vorticity-stream
function approach. Tassaddiq et al. [23] examined the Newtonian heating effects
for the generalized Casson fluid flow utilizing a Mittag-Leffler fractional oper-
ator. Using the Elzaki transform method and Elzaki decomposition approach,
Sushila et al. [24] studied the thin film flow of a third-grade fluid down an inclined
plane. Das et al. [25] investigated solute dispersion through a stenotic tube with
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an absorptive wall, and Casson fluid describes the rheology of blood. Padma et
al. [26] aimed to investigate how yield stress affected the EMHD motion of Cas-
son fluid and nanoparticles as they flow via a mildly blocked inclined tapering
artery.

The present research is inspired by the potential for nanoparticles to serve
as efficient drug delivery and transport systems, given their capacity to hold
significant quantities of therapeutic substances. Since blood is considered a non-
Newtonian fluid, small-sized nanoparticles are becoming increasingly common in
biomedical applications. Therefore, nanoparticles can either stimulate or inhibit
blood vessel formation. Although some medications can increase or decrease
blood-capillary expansion in some conditions, they only work for a short dura-
tion. Recently, researchers found that using these nanoparticles might resolve
previously identified medication administration problems. Based on the litera-
ture survey performed above, no effort has been yet made to study the two-
dimensional pulsatile hybrid nanofluid flow through an overlapping stenosed
artery incorporating gold and copper nanoparticles considering blood as non-
Newtonian Casson fluid with variable viscosity dependent on hematocrit under
the influence of radiation and magnetic field effects. The present study seeks
to perform computer simulations of two-dimensional hemodynamics of blood
flow through an overlapping stenosed artery using the non-Newtonian Casson
fluid model to simulate the arterial region’s hemorheological properties and
hematocrit-dependent viscosity to mimic the realistic behavior of blood with
a uniform magnetic field applied in the radial direction of the blood flow. The
pulsatile pressure gradient effects portray actual blood flow in unsteady flow
situations. The novelty of the mathematical model formulated in the present
analysis is as follows:

– To evaluate the impact of hybrid nanoparticles (Au + Cu) through an over-
lapping stenotic artery influenced by an external magnetic field and radiation,
considering wall slip effects.

– Utilizing the Casson fluid model to address the non-Newtonian features of
blood along with the hematocrit-dependent viscosity model to analyze the
variable viscosity.

2 Mathematical Formulation

An unsteady, laminar, incompressible, viscous electrically conducting MHD
blood flow through an inclined artery with overlapping stenosis is considered. A
cylindrical coordinate system (r∗

1 , θ̃, z∗
1) is employed with r∗

1 and z∗
1 as radial

and axial directions respectively. The axial symmetry of the artery corresponds
to the independence of flow in the azimuthal (θ̃) direction. The blood behavior
is assumed non-Newtonian and is represented using Casson fluid model. The
variable viscosity which is dependent on hematocrit is employed. A uniform
magnetic field B0 is applied to the blood flow in the radial direction. The mag-
netic Reynold’s number is assumed very small (Re � 1); therefore, the induced
magnetic field is neglected compared to the applied magnetic field.
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Fig. 1. The overlapping stenotic artery doped with hybrid nanoparticles

The geometry of the overlapping stenosis is assumed as [13]:

R(z∗
1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R0

[

1 − 64
10η1

(
11
32L3

0(z
∗
1 − d) + 47

48L2
0(z

∗
1 − d)2 − L0(z∗

1 − d)3

+ 1
3 (z∗

1 − d)4
)]

, d ≤ z∗
1 ≤ d + 3L0/2,

R0, otherwise.
(1)

The parameter η1 is defined as:

η1 =
4δ

R0L4
0

where δ is the critical height of the stenosis occuring at two different
positions, i.e.,

z∗
1 = d +

8L0

25
, and z∗

1 = d +
61L0

50
The blood viscosity is affected by several parameters, including plasma viscos-
ity, protein level, red blood cell concentration, strain rate and temperature. The
concentration of red blood cells or hematocrit is one of these factors that sig-
nificantly impact blood viscosity. Blood viscosity at a distance of r∗

1 from an
artery’s axis can be described as
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μf = μ0[1 + β1h(r∗
1)], (2)

and the expression for the hematocrit, h(r∗
1) is given as -

h(r∗
1) = hm

[

1 −
(

r∗
1

R0

)m]

(3)

where β1 has value 2.5 for blood and m is the control parameter for the shape
of the blood velocity profile (m ≥ 2).

2.1 Governing Equations

The blood flow through an inclined overlapping stenosed artery (Fig. 1) is
assumed to be bidirectional. Therefore, the velocity and temperature fields are
represented as:

Ṽ ∗ = Ṽ ∗[u∗
1(r

∗
1 , z

∗
1 , t∗1), 0, w∗

1(r
∗
1 , z

∗
1 , t∗1)] , T̃ ∗ = T̃ ∗(r∗

1 , z
∗
1 , t∗1)

The Casson fluid model’s rheological equation of state for an incompressible flow
is as follows:

τ∗
ij =

⎧
⎪⎪⎨

⎪⎪⎩

2
(

μ∗
b + p∗

y√
2π∗

)

e∗
ij , π∗ > π∗

c

2
(

μ∗
b + p∗

y√
2π∗

c

)

e∗
ij , π∗ ≤ π∗

c

(4)

where π∗ = e∗
ij .e

∗
ij is the product of deformation rate with itself, π∗

c is a critical
value based on the non-Newtonian model, μ∗

b is the plastic dynamic viscosity of
the non-Newtonian fluid, and p∗

y is the yield stress of the fluid.
When π∗ ≤ π∗

c , Eq. (4) can be expressed as:

τ∗
ij = 2μ∗

b

(

1 +
1
β

)

e∗
ij (5)

where β =
μ∗

b

√
2π∗

c

p∗
y

is the Casson fluid parameter.
Under the above assumptions and invoking the Boussinesq approximation,

the continuity equation, momentum equation and energy equation are repre-
sented as:
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Continuity Equation:

∂u∗
1

∂r∗
1

+
u∗
1

r∗
1

+
∂w∗

1

∂z∗
1

= 0, (6)

Momentum Equation:

r-direction:

ρhnf

[
∂u∗

1

∂t∗1
+ u∗

1

∂u∗
1

∂r∗
1

+ w∗
1

∂u∗
1

∂z∗
1

]
= −∂p∗

1

∂r∗
1

+
1

r∗
1

∂

∂r∗
1

[
μhnf

(
1 +

1

β

)
r∗
1

∂u∗
1

∂r∗
1

]

+
1

2

∂

∂z∗
1

[
μhnf

(
1 +

1

β

)(
∂w∗

1

∂r∗
1

+
∂u∗

1

∂z∗
1

)]
− μhnf

(
1 +

1

β

)
u∗
1

r∗2
1

, (7)

z-direction:

ρhnf

[
∂w∗

1

∂t∗1
+ u∗

1

∂w∗
1

∂r∗
1

+ w∗
1

∂w∗
1

∂z∗
1

]
= −∂p∗

1

∂z∗
1

+
1

2

1

r∗
1

∂

∂r∗
1

[
μhnf

(
1 +

1

β

)
r∗
1

(
∂u∗

1

∂z∗
1

+
∂w∗

1

∂r∗
1

)]

+
∂

∂z∗
1

[
μhnf

(
1 +

1

β

)
∂w∗

1

∂z∗
1

]
+ (ργ)hnf g(T̃ ∗ − T̃ ∗

1 )− σhnf B2
0w∗

1 , (8)

Energy Equation:

(ρCp)hnf

[
∂T̃ ∗

∂t∗1
+ u∗

1

∂T̃ ∗

∂r∗
1

+ w∗
1

∂T̃ ∗

∂z∗
1

]

= khnf

[
∂2T̃ ∗

∂r∗2
1

+
1
r∗
1

∂T̃ ∗

∂r∗
1

+
∂2T̃ ∗

∂z∗2
1

]

− ∂q∗
r

∂r∗
1

,

(9)
where

q∗
r = −4σe

3ke

∂T 4

∂r∗
1

, (10)

It is assumed that there are minimal temperature changes within the blood flow.
Therefore, T̃ 4 in Eq. (10) is linearized by disregarding higher-order terms and is
expanded using Taylor series around T̃ ∗

1 :

T̃ ∗4 = 4T̃ ∗3
1 T̃ − 3T̃ ∗4

1 ,

Hence, Eq. (10) becomes

q∗
r = −16T̃ ∗3

1 σe

3kekf

∂T̃

∂r∗
1

.

The boundary conditions are:

∂w∗
1

∂r∗
1

= 0,
∂T̃ ∗

∂r∗
1

= 0 at r∗
1 = 0, (11)

w∗
1 = ws, T̃

∗ = T̃ ∗
w at r∗

1 = −R,R, (12)

The initial assumptions regarding velocity and temperature are considered as:

w∗
1 = 0, T̃ ∗ = 0 at t∗1 = 0. (13)
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Table 1. Thermophysical parameters of nanofluid and hybrid nanofluid [18,27]

Properties Mathematical expression for nanofluid and hybrid nanofluid

Viscosity μhnf =
μnf

(1−φ1)2.5(1−φ2)2.5

Density ρhnf = [(1 − φ2){(1 − φ1)ρf + φ1ρs1}] + φ2ρs2
Heat Capacity (ρCp)hnf = [(1 − φ2){(1 − φ1)(ρCp)f + φ1(ρCp)s1}]

Thermal Conductivity
khnf
kbf

=
ks2+(m−1)kf −(m−1)φ2(kf −ks2 )

ks2+(m−1)kf +φ2(kf −ks2 )

where
kbf
kf

=
ks1+(m−1)kf −(m−1)φ1(kf −ks1 )

ks1+(m−1)kf +φ1(kf −ks1 )

Electrical Conductivity
σhnf
σbf

=
σs2+(m−1)σf −(m−1)φ2(σf −σs2 )

σs2+(m−1)σf +φ2(σf −σs2 )

where
σbf
σf

=
σs1+(m−1)σf −(m−1)φ1(σf −σs1 )

σs1+(m−1)σf +φ1(σf −σs1 )

Thermal Expansion Coefficient γhnf = [(1 − φ2){(1 − φ1)γf + φ1γs1}] + φ2γs2

Table 2. Default Values of emerging parameters

Parameters φ1 φ2 d B1 c1 e δ β ws β1 hm

Value 0.03 0.03 1 1.41 1 0.2 0.1 2 0.1 2.5 0.5

Table 3. Thermophysical properties of nanoparticles

Thermophysical Properties Blood Gold Copper

Density [ρ(kg/m3)] 1063 19320 8933

Thermal Conductivity [K(W/mK)] 0.492 314 400

Electrical Conductivity [σ(S/m)] 0.667 4.10 ×107 5.96 ×107

Thermal Expansion Coefficient [γ × 10−5(K−1)] 0.18 1.4 1.67

Heat Capacitance [Cp(J/kgK)] 3594 129 385

2.2 Non-dimensionalization

The governing equations given by (6)–(9) need to be transformed into dimen-
sionless form so that a numerical solution for these equations can be obtained.
The following dimensionless variables are introduced:

r̄∗
1 =

r∗
1

R0
, w̄∗

1 =
w∗

1

U0
, ū∗

1 =
L0u

∗
1

δ∗U0
, t̄∗

1 =
U0t

∗
1

R0
, z̄∗

1 =
z∗
1

L0
, p̄∗

1 =
R2

0p
∗
1

U0L0μf
, θ̃ =

T̃ ∗ − T̃ ∗
1

T̃ ∗
w − T̃ ∗

1

,

R̄ =
R

R0
, α =

α∗L0

R0
, d̄ =

d

L0
, w̄s =

ws

U0
, Re =

U0ρfR0

μf
, M2 =

σfB2
0R2

0

μf
,

Gr =
ρfR2

0 gγf (T̃ ∗
w − T̃ ∗

1 )

μfU0
, P r =

μfCp

kf
, Nr =

16σeT̃
∗3
1

3kfke
. (14)

The insertion of the above non-dimensional parameters mentioned in (14),
disregarding the bars and using the mild stenotic hypotheses that the maximal
stenosis height is less than the artery’s radius, i.e., δ(= δ∗/R0) << 1, and
the artery’s radius and the stenotic region’s length are proportionate, i.e., ε(=
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R0/L0) = O(1) leads to the modified form of governing Eqs. (6)–(9), which are
as follows:

Continuity Equation:
∂w∗

1

∂z∗
1

= 0, (15)

Momentum Equation:
r-direction:

∂p∗
1

∂r∗
1

= 0, (16)

z-direction:

Re
ρhnf

ρf

∂w∗
1

∂t∗
1

= −∂p∗
1

∂z∗
1

+
1

2r∗
1

∂

∂r∗
1

[
μhnf

μf

(
1 +

1

β

)
r∗
1
∂w∗

1

∂r∗
1

]
+

(ργ)hnf

(ργ)f
Grθ̃ − σhnf

σf
M2w∗

1 ,

(17)

Energy Equation:

(ρCp)hnf

(ρCp)f

∂θ̃

∂t∗1
=

1
RePr

khnf

kf

[
∂2θ̃

∂r∗2
1

+
1
r∗
1

∂θ̃

∂r∗
1

]

+
Nr

RePr

∂2θ̃

∂r∗2
1

. (18)

The geometry of stenosis in the dimensionless form can be described as:

R(z∗
1) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 64
10η1

(
11
32 (z∗

1 − d) + 47
48 (z∗

1 − d)2 − (z∗
1 − d)3 + 1

3 (z∗
1 − d)4

)

,

d ≤ z∗
1 ≤ d + 3/2,

1, otherwise.
(19)

where
η1 = 4δ, δ =

δ∗

R0
.

Blood flows through the cardiovascular system due to the heart’s pumping
motion, causing a pressure gradient across the vascular network. The pressure
gradient is separated into two parts: non-fluctuating (continuous) and fluctuat-
ing (pulsatile) [28] as given below:

− ∂p∗
1

∂z∗
1

= A0 + A1cos(wpt
∗
1), t

∗
1 > 0, (20)

where, A0 and A1 signify the amplitudes of the steady-state and pulsatile pres-
sure gradient components, respectively, and wp = 2πfp, fp depicts the heart
pulse frequency.

On the substitution of dimensionless variables given in (14), the modified
equation for the pressure gradient becomes:

− ∂p∗
1

∂z∗
1

= B1[1 + ecos(c1t∗1)], (21)
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where

e =
A1

A0
, B1 =

A0R
2
0

μ0U0
, c1 =

2πR0fp

U0
. (22)

Using Eq. (21) in Eq. (17), we have:

Re
ρhnf

ρf

∂w∗
1

∂t∗1
= B1[1 + ecos(c1t∗1)] − 1

2

(

1 +
1
β

)
mβ1hm(r∗

1)
m−1

(1 − φ1)2.5(1 − φ2)2.5

∂w∗
1

∂r∗
1

+
1
2

μhnf

μf

(

1 +
1
β

)
1
r∗
1

∂

∂r∗
1

(

r∗
1

∂w∗
1

∂r∗
1

)

+
(ργ)hnf

(ργ)f
Grθ̃ − σhnf

σf
M2w∗

1 . (23)

2.3 Radial Coordinate Transformation

The physical geometry taken into account in the formulated problem is cylindri-
cal, i.e., a cylindrical coordinate system is considered. However, in order to use
the computational approach, the considered geometry needs to be transformed

into a rectangular domain by employing the transformation
(

x∗
1 = r∗

1
R(z∗

1 )

)

. On

applying this transformation, the Eqs. (23) and (18) become:

Re
ρhnf

ρf

∂w∗
1

∂t∗1
= B1[1 + ecos(c1t∗1)] − 1

2

(

1 +
1
β

)
mβ1hmRm−2(x∗

1)
m−1

(1 − φ1)2.5(1 − φ2)2.5

∂w∗
1

∂x∗
1

+
1
2

1 + β1hm[1 − Rm(x∗
1)

m]
(1 − φ1)2.5(1 − φ2)2.5

(

1 +
1
β

)(
1

R2

)[
∂2w̃∗

1

∂x∗2
1

+
1
x∗
1

∂w̃∗
1

∂x∗
1

]

+
(ργ)hnf

(ργ)f
Grθ̃

− σhnf

σf
M2w∗

1 ,

(24)

(ρCp)hnf

(ρCp)f

∂θ̃

∂t∗1
=

1
RePr

khnf

kf

(
1

R2

)[
∂2θ̃

∂x∗2
1

+
1
x∗
1

∂θ̃

∂x∗
1

]

+
(

1
R2

)
Nr

RePr

∂2θ̃

∂x∗2
1

. (25)

The boundary conditions mentioned in Eq. (11) and (12) are reduced as follows:

∂w∗
1

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0, w∗
1 |x∗

1=−1,1 = ws,
∂θ̃

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0, θ̃|x∗
1=−1,1 = 1. (26)

The wall shear stress (WSS) and volumetric flow rate are expressed as:

τw = − 1
R

(

1 +
1
β

)(
∂w∗

1

∂x∗
1

)

x∗
1=1

(27)

Q1 = 2πR2

∫ 1

0

w∗
1x

∗
1dx∗

1, (28)
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3 Solution Process

The partial differential Eqs. (24) and (25) are coupled differential equations;
therefore, obtaining an analytic solution is too difficult. On the other hand,
numerical approaches can yield a highly accurate solution. An unconditionally
stable implicit finite difference (Crank-Nicolson) approach is used in this case.
The subscripts and superscripts in Eqs. (24) and (25) are ignored for discretiza-
tion.

3.1 Discretization

On employing the values of thermophysical parameters of hybrid nanofluid from
Table 1 and discretizing the governing Eqs. (24) and (25) using the Crank-
Nicolson scheme, the desired form of equations is:

[

(1 − φ2)
[

(1 − φ1) + φ1
ρs1
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]

+ φ2
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]
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[
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The Crank-Nicolson scheme employed in the current analysis is, however, sta-
ble for all values for dt and dx still, a minimal value is considered with great
precision as dt = 10−4 and dx = 10−4. It is noticed that no further change
occurs in the values of hemodynamical parameters studied in the research with
decreasing values of dt and dx. A total of N +1 grid points have been considered
in the spatial direction, with x = 1/N + 1 being the step size, whereas M + 1
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grid points are considered temporal. The value at any time instant tk is given
as tk = (k − 1)dt, dt being a small increment in time. As the scheme employed
is an implicit one; therefore a system of equations is obtained, and it is in the
form of a tri-diagonal system which can be solved with the Tri-diagonal Matrix
Algorithm (TDMA) [29].

The tri-diagonal system corresponding to Eq. (29) is given by
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i + Ck
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The tri-diagonal system corresponding to Eq. (30) is given by
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4 Results and Graphical Analysis

The effect of various flow-related parametric parameters, including the hemat-
ocrit parameter (hm), wall slip velocity (ws), Casson fluid parameter (β), volume
fractions of both nanoparticles (φ1, φ2), radiation parameter (Nr), and Prandtl
number (Pr), on non-dimensional velocity, non-dimensional temperature, wall
shear stress, and flow rate, are covered in this section. Au-Blood, a unitary
nanofluid, and Au-Cu/Blood, a hybrid nanofluid, have been compared. The val-
ues of the emergent parameters employed in the analysis are shown in Table 2.
Table 3 lists the values for the thermophysical characteristics of the blood, Au,
and Cu nanoparticles.

To validate the study conducted, the numerical scheme (Crank-Nicolson)
used must be verified. In the absence of a few physical parameters, the current
model reduces the ones published in the literature. As the Casson fluid parameter
in the current work approaches infinity (β → ∞), the current model approaches
the Newtonian model in [27]. The hematocrit parameter (hm) in the present
analysis and viscosity parameter (β0) in [27] have been neglected to verify the
results. The numerical scheme has also been validated for Au-nanoparticles used
in both research works. The effect of inclination of the magnetic field, Joule
heating, and viscous dissipation in [27] has been ignored. Figure 2a & 2b have
been plotted for verification. The findings of comparison with existing literature
results [27] indicate good agreement, which supports the validity of the current
solutions.
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Fig. 2. Comparative study (a) velocity profile (M2 = 1), (b) temperature profile (Ec
= 0.2).

The effect of various flow parameters such as hematocrit parameter (hm),
wall slip velocity (ws), Casson fluid parameter (β), and volume fractions of both
the nanoparticles (φ1, φ2) on non-dimensional velocity profiles is portrayed in
Fig. 3. A comparative analysis has been performed between unitary nanofluid
(Au-Blood) and hybrid nanofluid (Au-Cu/Blood). Blood velocity distribution
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for various hm values is shown in a radial direction in Fig. 3a. Blood viscosity is
significantly influenced by the hematocrit measure (hm). Both the hematocrit-
dependent (hm �= 0) and constant (hm = 0) scenarios have been studied. The
hybrid blood velocity is larger when hm = 0 and falls as hm increases, according
to Fig. 3a. With an increase in hm levels, the viscosity of the blood increases,
which impedes blood flow; a drop in velocity profiles is examined with hm.
Additionally, greater magnitudes of the hybrid nanofluid (Au-Cu/Blood) have
been observed than those of the unitary nanofluid (Au-Blood). The velocity is at
its peak near the artery’s centerline, gradually decreasing until it approaches the
vessel wall, reaching the wall slip velocity (ws). Figure 3b depicts the effect of
ws on non-dimensional velocity profiles. With an increase in the slip parameter
ws, the axial flow accelerates significantly as the hydrodynamic wall slip effect
increases. No-slip velocity is typically considered at the artery wall, which has
the least significance. As a result, the wall slip has been introduced at the arterial
wall in the current investigation using boundary conditions. The artery’s core
region exhibits the highest flow velocity, which decreases as it gets closer to the
arterial wall. Figure 3c shows how β affects the non-dimensional velocity profile.
The velocity field rises as the β expands since the velocity field’s boundary layer
thickness decreases. It is so because HNF becomes more viscous, and its elasticity
increases as the value of β rise. Figure 3d displays the non-dimensional velocity
profiles for various values of φ1, φ2. The volume fraction of both Au- and Cu-
nanoparticles rises along with the velocity profiles. When φ1 = 0.01, φ2 = 0.01,
the velocity value is the lowest, and when φ1 = 0.05, φ2 = 0.05, the velocity
value is the highest.

Figure 4 illustrates the impact of several flow parameters, including the radi-
ation parameter (Nr), Prandtl number (Pr), Casson fluid parameter (β), and
volume fractions of both the nanoparticles (φ1, φ2) on non-dimensional tem-
perature profiles. The effect of Nr on non-dimensional temperature profiles is
depicted in Fig. 4a. With rising values of Nr, there is an increase in temperature
profiles. Additionally, Au-Cu/Blood hybrid nanofluid reaches higher magnitudes
than Au-Blood nanofluid. The system emits the most heat due to the inverse
effect of Nr on thermal conductivity. Radiation serves as a heat source within
the bloodstream. Hence an increase in radiation exposure elevates body temper-
ature. When light with the proper wavelength interacts with nanoparticles, the
free electrons within the nanoparticles vibrate. These oscillations generate heat
that kills malignant cells by spreading over the surrounding environment. This
discovery has extensive thermal therapeutic applications. Figure 4b highlights
how Pr affects the non-dimensional temperature profile. An increase in Pr val-
ues accompanies the declination of the temperature profiles since the thermal
boundary layer thickness decreases with Pr. The viscosity and thermal diffu-
sivity of the fluid determine Pr. The momentum transport is linked to heat
transport through this dimensionless quantity. The Prandtl number tells us how
heat diffuses faster, i.e., whether heat conduction or convection is more promi-
nent in a fluid. The physical importance of the Prandtl number is that when it
is smaller than 1, conductive heat transfer becomes the more prominent process,
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Fig. 3. Effect of (a) hematocrit parameter (hm), (b) wall slip velocity (ws), (c) Cas-
son fluid parameter (β), (d) volume fractions of both nanoparticles (φ1, φ2) on non-
dimensional velocity at z∗

1 = 1.31 and t∗
1 = 1.2

i.e., conduction transfers a higher proportion of heat than convection. Convec-
tive heat transfer is more significant than conduction when the Prandtl value is
greater than 1. The effect of β on the temperature profile is illustrated in Fig.
4c. The fluid’s temperature increases with an increase in β because the thick-
ness of the thermal boundary layer increases with an increment in values of β.
Figure 4d shows the impact of φ1, φ2 on non-dimensional temperature profiles.
When the volume percentage of both nanoparticles increases, the temperature
profiles also show enhancement. The temperature demonstrates minimal value
for φ1 = 0.01, φ2 = 0.01, and a maximum value for φ1 = 0.05, φ2 = 0.05, high-
lighting the importance of both nanoparticles in regulating the temperature.

The time series plots for wall shear stress (WSS) and volumetric flow rate
at the stenosis region are shown in Fig. 5. These graphs depict the oscillating
character of blood flow in the stenotic zone as time passes. The graphs demon-
strate that the magnitude initially declines before exhibiting an ascending trend
sustained throughout time after a crucial point in time. The influence of ws

on WSS and flow rate is represented in Fig. 5a and 5b. Figure 5a depicts that
WSS decreases dramatically with increment in ws values, with minor backflow.
As a result, as ws rises, the beginning value of WSS profiles lowers by a cer-
tain amount. Figure 5b illustrates that raising the wall slip parameter causes a



170 R. Gandhi and B. K. Sharma

-1 -0.5 0 0.5 1
Non-dimensional radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
No

n-
dim

en
sio

na
l te

m
pe

ra
tu

re

Nr(Au-Blood)=0.5
Nr(Au-Blood)=1
Nr(Au-Blood)=2
Nr(Au-Cu/Blood)=0.5
Nr(Au-Cu/Blood)=1
Nr(Au-Cu/Blood)=2

(a)

-1 -0.5 0 0.5 1
Non-dimensional radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
n-

dim
en

sio
na

l te
m

pe
ra

tu
re

Pr(Au-Blood)=14
Pr(Au-Blood)=21
Pr(Au-Blood)=25
Pr(Au-Cu/Blood)=14
Pr(Au-Cu/Blood)=21
Pr(Au-Cu/Blood)=25

(b)

-1 -0.5 0 0.5 1
Non-dimensional radius

0

0.2

0.4

0.6

0.8

1

1.2

No
n-

dim
en

sio
na

l te
m

pe
ra

tu
re

(Au-Blood)=0.5
(Au-Blood)=1
(Au-Blood)=2
(Au-Cu/Blood)=0.5
(Au-Cu/Blood)=1
(Au-Cu/Blood)=2

(c)

-1 -0.5 0 0.5 1
Non-dimensional radius

0

0.2

0.4

0.6

0.8

1

1.2

No
n-

dim
en

sio
na

l te
m

pe
ra

tu
re

1=0.01, 2=0.01

1=0.01, 2=0.03

1=0.01, 2=0.05

1=0.03, 2=0.01

1=0.03, 2=0.03

1=0.03, 2=0.05

1=0.05, 2=0.01

1=0.05, 2=0.03

1=0.05, 2=0.05

(d)

Fig. 4. Effect of (a) Radiation parameter (Nr), (b) Prandtl number (Pr), (c) Cas-
son fluid parameter (β), (d) different concentrations of both nanoparticles (φ1, φ2) on
temperature profiles at z∗

1 = 1.31 and t∗
1 = 1.2

significantly more pronounced increase in volumetric flow rate, implying that sig-
nificant growth in flux is driven by increasing wall slip. The impact of the volume
fraction of Au-nanoparticles (φ1) on WSS and volumetric flow rate is depicted
in Fig. 5c and 5d. It is analyzed that there is a decrement in WSS and flow rate
initially up to a certain point of time with increasing values of φ1, but then it
rises over time. Figures 5e and 5f highlight the variations of WSS and flow rate
profiles for various hybrid nanoparticle combinations. The patterns show that
when the nanoparticles’ volume fraction rises simultaneously, the oscillatory wall
shear stress profiles reduce in magnitude up to a certain threshold, increasing
with time. The profiles for flow rate exhibit the same trend as that of WSS, as
presented in Fig. 5f.

The influence of the hematocrit parameter (hm) and stenotic depth (δ) on
wall shear stress and flow rate concerning arterial length is highlighted in Fig. 6.
The WSS profiles for hm are depicted in Fig. 6a. A declination in WSS values is
analyzed with increasing hm values since the fluid’s viscosity is enhanced. More-
over, Fig. 6b manifests that the flow rate profiles also decline with an increment
in hm values since the increased viscosity hinders the flow of the fluid (blood).
Figure 6c depicts the influence of δ on WSS profiles. According to Zhang et al.
[30], the WSS reduces as δ increases, indicating that lower shear stress levels are
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Fig. 5. Effect of (a, b) wall slip velocity (ws), (c, d) volume fraction of Au-nanoparticles
(φ1) (e,f) volume fraction of both nanoparticles (φ1, φ2) on wall shear stress and flow
rate with respect to time

more harmful. The effect of δ on flow rate profiles is presented in Fig. 6d. It is
seen that flow rate profiles decline with an increase in δ values.

This section aims to analyze how the blood flows in the stenotic zone and how
it behaves in other parts of the artery. Also, hybrid nanoparticles are inserted to
boost drug delivery and treat atherosclerosis. The impact of flow parameters such
as hematocrit parameter (hm), Casson fluid parameter (β), and volume fraction
of both the nanoparticles (φ1,φ2) is illustrated via velocity contours in Fig. 7,
8, 9. The effect of hm is highlighted in Fig. 7. Figure 7a depicts the constant
viscosity case (hm=0), and the maximum velocity value is observed in this case.
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Fig. 6. Effect of Effect of (a, b) hematocrit parameter (hm), and (c, d) stenotic depth
(δ) on wall shear stress and flow rate at t∗
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Fig. 7. Velocity contours for (a) hm = 0.0, (b) hm = 0.5, (c) hm = 1.0

The velocity profiles decline with increasing hm values since viscosity enhances
and flow retardation occurs. The velocity contours for β are represented by Fig.
8. As β increases, the boundary layer thickness of the velocity field decreases,
increasing velocity. Figure 9 highlights the velocity contours for different combi-
nations of φ1 and φ2. It is analyzed that the velocity increases with an increase
in the volume fraction of both nanoparticles. Figure 9a shows the contour for the
pure-blood case, i.e., when no nanoparticle is injected into the bloodstream. The
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Fig. 8. Velocity contours for (a) β = 1, (b) β = 2, (c) β → ∞
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Fig. 9. Velocity contours for (a) φ1 = 0.0, φ2 = 0.0, (b) φ1 = 0.01, φ2 = 0.0, (c) φ1 =
0.03, φ2 = 0.0, (d) φ1 = 0.01, φ2 = 0.01, (e) φ1 = 0.03, φ2 = 0.03

formation of the trapped bolus is visible in the stenotic zone when comparing
the pure-blood and nanoparticle cases. Also, the trapped bolus’s size increases
with an increase in the volume fraction of both nanoparticles.
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5 Conclusions

In this study, hybrid nanoparticles (Au+Cu) of various shapes are used to evalu-
ate the impacts of wall slip effects on blood flow through an overlapping stenosed
artery. It is assumed that the blood viscosity varies with hematocrit. Addition-
ally, as blood is thought to be non-Newtonian, it is modeled using the Casson
fluid model, which accurately captures the properties of real blood. The Crank-
Nicolson approach is used to discretize the governing equations before MATLAB
is used to solve them. Graphical representations of the results, including con-
tour plots, are used. According to the findings mentioned above, the following
observations are made:

– The Au-Cu/Blood hybrid nanofluid reaches constantly higher magnitudes
than Au-Blood nanofluid for the velocity and temperature profiles.

– The velocity profile show declination with hm whereas the opposite trend is
noticed for β.

– The WSS profiles elevate with ws while the reverse trend is analyzed for flow
rate profiles.

– WSS and flow rate profiles show elevation with φ1.
– The temperature profiles show enhancement with β and Nr.
– There is an increment in velocity and temperature profile with increase in φ1

and φ2 simultaneously.

Future Work. The current study may be extended to include a permeable bifur-
cated artery with stenosis in the parent and daughter artery while considering
the shape and size of the nanoparticles influenced by external factors such as an
applied electric field, Joule heating, heat source, and viscous dissipation.
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