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Abstract. In this article we study the degree of approximation of
multivariate pointwise and uniform convergences in the g-mean to
the Fuzzy-Random unit operator of multivariate Fuzzy-Random Quasi-
Interpolation arctangent, algebraic, Gudermannian and generalized sym-
metric activation functions based neural network operators. These mul-
tivariate Fuzzy-Random operators arise in a natural way among mul-
tivariate Fuzzy-Random neural networks. The rates are given through
multivariate Probabilistic-Jackson type inequalities involving the multi-
variate Fuzzy-Random modulus of continuity of the engaged multivariate
Fuzzy-Random function. The plain stochastic extreme analog of this the-
ory is also met in detail for the stochastic analogs of the operators: the
stochastic full quasi-interpolation operators, the stochastic Kantorovich
type operators and the stochastic quadrature type operators.

Keywords: Fuzzy-Random analysis - Fuzzy-Random neural networks
and operators + Fuzzy-Random modulus of continuity + Fuzzy-Random
functions - Stochastic processes - Jackson type fuzzy and probabilistic
inequalities

1 Fuzzy-Random Functions and Stochastic Processes
Background

See also [18], Ch. 22, pp. 497-501.
We start with

Definition 1 (see [35]). Let o : R — [0, 1] with the following properties:

(i) is normal, i.e., 3 xg € R : i (xp) = 1.
(i) p(Az+ (1= A)y) > min{p(z),n(y)}, V 2,y €R, VA€ [0,1] (uis called
a conver fuzzy subset).
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(i43) w is upper semicontinuous on R, i.e., ¥V 29 € R and V € > 0, 3 neighborhood
Vi(xo): p(x) <p(zo)+e, VaeV(x).
(iv) the set supp () is compact in R (where supp(p) := {x € R; u (x) > 0}).

We call i a fuzzy real number. Denote the set of all u with Rx.

E.g., X{zo) € RF, for any xo € R, where X (..} is the characteristic function
at xg.

For 0 <r <1 and u € Ry define [u)" := {z € R: p(z) > r} and [1])° :=
{zr €R:pu(zx) >0}

Then it is well known that for each r € [0,1], [¢]" is a closed and bounded
interval of R. For u,v € Rr and A € R, we define uniquely the sum u & v and
the product A ® u by

[uev]” =[u"+v]", Nou" =Au|", Vrel0,1],

where [u]” + [v]” means the usual addition of two intervals (as subsets of R) and
A[u]” means the usual product between a scalar and a subset of R (see, e.g., [35]).
Notice l @u=w and it holdsu®v=v®u, A\Qu=uOANIf0<r  <ry <1
then [u]™ C [u]™. Actually [u]” = [u(f),u(p}, where u'") < u(l), u(j"),u(f) eR,
vV rel0,1].
Define
DZRfXRf—)R+U{O}

by

D (u,v) := sup max{’u(j) — ")
rel0,1]

”“Y) _ )

b

where [v]" = {v(_r),vgf)] ; u,v € Ry, We have that D is a metric on Rz. Then

(Rz, D) is a complete metric space, see [35], with the properties

D(u®dw,vdw)=D(u,v), Vuv,weRg,
D(kou,kov)=|klDu,v),¥YuveRs,VkeR, (1)
Duev,wde) <Du,w)+D(v,e),VuvweecRg.

Let (M, d) metric space and f,g: M — Rz be fuzzy real number valued func-
tions. The distance between f, g is defined by

D*(f,g) = sup D (f ()9 (2)).
xeM
On Rz we define a partial order by “<”: u,v € Rp, u < v iff u(_r) < v(_T) and
ug) < v_(:), Vrelol].
> denotes the fuzzy summation, 0 := x{o} € Rz the neutral element with

respect to . For more see also [36,37].
We need
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Definition 2 (see also [30], Definition 13.16, p. 654). Let (X, B, P) be a prob-
ability space. A fuzzy-random variable is a B-measurable mapping g : X — R
(i.e., for any open set U C Rg, in the topology of Rr generated by the metric
D, we have

g (U)={s€X;g(s) €U} € B). (2)
The set of all fuzzy-random wvariables is denoted by Lr (X,B,P). Let gn,g €
Lr(X,B,P),neNand0 < q < +oo. We say gy (s) q_ﬁj_an g(s)if
lim [ D(gn(s),9(s))" P(ds) =0. 3)
n—-—+:0oo X

Remark 1 (see [30], p. 654). If f,g € Lx(X,B,P), let us denote F : X —
Ry U{0} by F(s) =D(f(s),g9(s)), s € X. Here, F is B-measurable, because
F = Go H, where G (u,v) = D (u,v) is continuous on Rg x Rz, and H : X —
Rre xRz, H(s) = (f(s),g9(s)), s € X, is B-measurable. This shows that the
above convergence in ¢ -mean makes sense.

Definition 3 (see [30], p. 654, Definition 15.17). Let (T,T) be a topological
space. A mapping f : T — Lx (X, B, P) will be called fuzzy-random function (or
fuzzy-stochastic process) on T. We denote f (t) (s) = f (t,s),t €T, s € X.

Remark 2 (see [30], p. 655). Any usual fuzzy real function f : T — Rz can be
identified with the degenerate fuzzy-random function f (¢,s) = f(t),Vt € T,
se X.

Remark 3 (see [30], p. 655). Fuzzy-random functions that coincide with proba-
bility one for each t € T will be consider equivalent.

Remark 4 (see [30], p. 655). Let f,g: T — Lz (X,B,P). Then f &g and kO f
are defined pointwise, i.e.,

(feg)ts)=fts)@gl(ts),

kOofHt,s)=kof(ts) ,teT,seX, keR.
Definition 4 (see also Definition 15.18, pp. 655-656, [30]). For a fuzzy-random
function f : W C RN — L (X,B,P), N € N, we define the (first) fuzzy-random

modulus of continuity
].—
Q§ ) (f7 5)Lq =

sup { ([ orrs) sy pias)

0<9d,1<qg< 0.

ix,yGVVa |1'_yoo<5},

Definition 5 [16]. Here1 < q¢ < +o0. Let f : W CRY — L£(X,B,P), N €N,
be a fuzzy random function. We call f a (qg-mean) uniformly continuous fuzzy
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random function over W, iff V.e >0 3 6 > 0 :whenever ||z — y||, <0, z,y € W,
implies that

[ D @) sy (s <=
We denote it as f € C’gj2 (W).

Proposition 1 [16]. Let f € ngR (W), where W C RY is conver.
Then Qf) (f;0)pq <00, any 6 > 0.

Proposition 2 [16]. Let f,g : W C RN — Lz (X,B,P), N € N, be fuzzy
random functions. It holds

(i) Q%F) (f,9) ¢ is nonnegative and nondecreasing in 6 > 0.
(i6) W™ (1,6) s = 217 (1,0), = 0, iff f € Cy (W),
We mention

Definition 6 (see also [6]). Let f (¢, s) be a random function (stochastic process)
from W x (X,B,P), W C R¥ into R, where (X, B, P) is a probability space.
We define the q-mean multivariate first modulus of continuity of f by

) (f> 6)Lq =

sup{(/Xv(ac,s)—f(y,swP(ds))é

6>0,1<¢q< .

cwy €W, [l —yll, §5}7 (4)

The concept of f being (¢g-mean) uniformly continuous random function is
defined the same way as in Definition 5, just replace D by ||, etc. We denote it
as f € Cﬂg (W).

Similar properties as in Propositions 1, 2 are valid for 21 (f,0), -

Also we have

Proposition 3 [3]. Let Y (t,w) be a real valued stochastic process such that'Y
is continuous in t € [a,b]. Then'Y is jointly measurable in (t,w).

According to [28], p. 94 we have the following

Definition 7. Let (Y,7) be a topological space, with its o-algebra of Borel sets
B := B(Y,T) generated by T. If (X,S) is a measurable space, a function f :
X — Y is called measurable iff f~1 (B) € S for all B € B.

By Theorem 4.1.6 of [28], p. 89 f as above is measurable iff
ffC)eSforallCeT.

‘We mention
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Theorem 1 (see [28], p. 95). Let (X,S) be a measurable space and (Y,d) be
a metric space. Let f, be measurable functions from X into Y such that for
alz € X, fo(x) — f(x) in Y. Then f is measurable. Le., lim f, = f is

measurable.
We need also
Proposition 4 [16]. Let f,g be fuzzy random variables from S into Rx. Then

(i) Let c € R, then ¢ ® f is a fuzzy random variable.
(i) f @ g is a fuzzy random variable.

Proposition 5. Let Y (7,w) be a real valued multivariate random function

N
(stochastic process) such that Y is continuous in T e 11 [a:, b:]. Then Y s
i=1

jointly measurable in (?,w) and [y Y (7, w) dt is a real valued random
I [ai,bi]
=1

variable.

Proof. Similar to Proposition 18.14, p. 353 of [7].

2 About Neural Networks Background

2.1 About the Arctangent Activation Function

We consider the

*d
arctanx = / 72, z € R. (5)
0 1422
We will be using
2 2 (% d
h(x):= - arctan (gx) = ;/0 1_'_7222, z € R, (6)

which is a sigmoid type function and it is strictly increasing. We have that

h(0) =0, h(—z) =—h(x), h(+o0) =1, h(—o0) = —1,

and
/ —
B (x) = p— >0,allz € R. (7)
We consider the activation function
1
b1(@) = @+ ) —hz—1), 2 €R, (8)

and we notice that
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it is an even function.
Sincex +1>x —1, then h(x +1) > h(z — 1), and 91 () >0, all z € R.
We see that 1
1 (0) = - arctang = (.319. (10)

Let > 0, we have that
1
Vi) =7 (W (@+1) —h'(z-1)) =

—4n?x

(4 + 72 (x+ 1)2> (4 + 72 (x— 1)2)

< 0. (11)

That is
P (z) <0, for z > 0. (12)

That is 1)y is strictly decreasing on [0,00) and clearly is strictly increasing on
(—O0,0], and wll (O) =0.
Observe that

lim 4y (2) = § (h(+00) = h (+00)) = 0,

and (13)
lim ¢y () = & (h (—o0) — b (—00)) = 0,

Tr— —00

That is the z-axis is the horizontal asymptote on ;.
All in all, ¢ is a bell symmetric function with maximum ; (0) = 18.31.
We need

Theorem 2 ([19], p. 286). We have that

Y i(@-i)=1VzeR (14)

1=—00

Theorem 3 ([19], p. 287). It holds
/ P (z)de = 1. (15)

So that 1 () is a density function on R.
We mention

Theorem 4 ([19], p. 288). Let 0 < a < 1, and n € N with n'=* > 2. It holds

Z Y1 (ne —k) < - =:c1 (a,m). (16)

w2 (nt—o = 2)
k= —o0
{: |nz — k| > nl=@



Multivariate Fuzzy-Random 7

Denote by |-| the integral part of the number and by [-] the ceiling of the
number.

‘We need

Theorem 5 ([19], p. 289). Let x € [a,b] C R and n € N so that [na] < [nb].
It holds

1
< = 49737 =: oy, v X € [0/7 b] . (17)
S s (e — k) (D)
Note 1 ([19], pp. 290-291).
i) We have that
[nb]

k=[na]

for at least some z € [a, b].
ii) For large enough n € N we always obtain [na] < |nb]. Also a < & < b, iff
[na] <k < |nb].

In general, by Theorem 2, it holds

|nb]
> ti(nz—k)<1. (19)

k=[na]

We introduce (see [24])
N

Z4 (5[,'1, ...,.TN) =7 (l‘) = H’(/Jl (m,) , X = (:)31, ...,QTN) € RN, N e N. (20)
i=1

Denote by a = (ai,...,an) and b = (by,...,bn) .
It has the properties:
(i) Z1(z) >0, Vz eRY,
(ii)

oo 0o oo oo
Z Zl (J}—kﬁ) = Z Z Z Z1 (xl—kl,...,l'N—k‘N):l,
k=—o0 ki=—oc0 ka=—0c0 kn=—00
(21)
where k 1= (k1,....,k,) € ZN,V 2 € RV,
hence
(iii)
oo
Z Zy (nx — k) =1, (22)
k=—o00

VzeRN:neN,
and
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/ 7 (@) do =1, (23)
RN

that is Z; is a multivariate density function.
(v) It is clear that

- 2
> Zy (nz — k) < 2B _g) (B,n), (24)
k= —o0
1% =l > 75
0<fB<1l,neN:n"#>2 zecRVN.
(vi) By Theorem 5 we get that
0< ! 1t =~ (4.9737) (N) (25)
n N — . =M 5
S 2o — k) (a (1)
Ve (Hfil [ai,bi]), n € N.
Furthermore it holds
[nb]
lim Y Zi(nz—k)# 1, (26)
k=[na]
for at least some x € (sz\il [a;, bz]>
Above it is ||z := max {|z1],..., |zn|}, 2 € RV, also set oo := (o0, ..., 00),
—00 = (—00,... — 00) upon the multivariate context.

2.2 About the Algebraic Activation Function

Here see also [20].
We consider the generator algebraic function

x

which is a sigmoidal type of function and is a strictly increasing function.
We see that ¢ (—z) = —¢ (z) with ¢ (0) = 0. We get that
1
,($):—2W>07V$€R, (28)

(1+x2m) 2m

proving ¢ as strictly increasing over R, ¢’ (z) = ¢’ (—x). We easily find that
lim ¢ (z) =1, ¢(+o0) =1, and lim ¢ (z)= -1, ¢ (—o0) = —1.

r——+00
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We consider the activation function

1
o) = Flo@+1) —pl—1). (29)
Clearly it is ¥o () = 3 (—2x), V & € R, so that ¥ is an even function and
symmetric with respect to the y-axis. Clearly v9 (z) >0,V z € R.
Also it is

1
0)=——. 30
1/]2 ( ) 2 2% ( )
By [20], we have that ¢4 () < 0 for = > 0. That is 1), is strictly decreasing over
(0, +00) .
Clearly, 19 is strictly increasing over (—o0,0) and ¢4 (0) = 0.
Furthermore we obtain that
. 1
lim s () = 7 [p (+00) — ¢ (+00)] =0, (31)
z—+00 4
and 1
lim_4i2 (2) = 7 [ (—00) — o (~o0)] = 0. (32)
r— —0Q
That is the z-axis is the horizontal asymptote of 5.
Conclusion, ¥y is a bell shape symmetric function with maximum
$2(0) = 5 meEN ()
= , m .
? 27%/2
We need
Theorem 6 [20]. We have that
Y pw—i)=1,YzeR (34)
Theorem 7 [20]. It holds
/ Vo () d = 1. (35)
Theorem 8 [20]. Let 0 < a < 1, and n € N with n'=* > 2. It holds
i Y (nx — k) < ! 5 = c2 (,n), meN.
4m (nl-o —2)""
k= —o0
{ :nw — k| > ntme
(36)

‘We need
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Theorem 9 [20]. Let [a,b] C R and n € N so that [na] < |nb|. It holds

1
] <2(W1+4m) = s, (37)
> Va2 (nz —k)
k=[na]
Yz € la, b, meN.
Note 2. 1) By [20] we have that
[nd)
lim Y by (na — k) # 1, (38)
k=[na]

for at least some z € [a, b] .

2) Let [a,b] C R. For large n € N we always have [na] < [nb]. Also a < £ <,
iff [na] <k < |nb|.
In general it holds that

Lnb)
> g (nz—k)<1. (39)

k=[na]

We introduce (see also [25])

N
Zy (21, ..yxy) = Za (x) := Hz/)g (x;), x = (x1,...,xN) € RN, N eN. (40)
i=1

It has the properties:

(i) Zo(x) >0, V2 eRY,
(ii)

Yo Zo(—ky:= > > > Ze(wr—kian —ky) =1,

k=—o00 k1=—00 kg=—00 kny=—o00
(41)
where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence
(iii)
> Zy(nz—k)=1, (42)
k=—o00
VzeRN:neN,
and
(iv)
/ o (2)da = 1, (43)
]RN

that is Z5 is a multivariate density function.
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(v) Tt is clear that
- 1

Z Zy (nx — k) <

k=—00
I =l >

%) nb

4m (n1=F = 2)*™ =c2(B,n), (44)

0<fB<l,neN:n'#>2 zcRY meN.
(vi) By Theorem 9 we get that

! L = 2T+ 4m)]" = 75 (N), (45)

0
SN e k) e (1)

Vaoe (Hi\il [ai,bi]), n € N.
Furthermore it holds

Lnb)
lim Z Zy (nz — k) # 1, (46)

k=[na]

for at least some = € (Hf\il [a,;,b,]) .

2.3 About the Gudermannian Activation Function

See also [21,34].
Here we consider gd (z) the Gudermannian function [34], which is a sigmoid
function, as a generator function:

x Todt
o (z) = 2arctan (tanh (5)) = /0 ol = gd(z), z e R. (47)

Let the normalized generator sigmoid function

f@=2o@=2[ Lot aser )

71' 7w Jo cosht m J, et +

Here
2

!
r)= ——
I (@) m cosh
hence f is strictly increasing on R.
Notice that tanh (—z) = — tanhz and arctan (—z) = — arctanz, z € R.

So, here the neural network activation function will be:

>0,VzeR,

Ys(0) = {Uf @+ 1)~ f -1, 2 € R (19)

By [21], we get that
s () =3 (=), Ve eR, (50)
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i.e. it is even and symmetric with respect to the y-axis. Here we have f (+00) = 1,
f(=o00) = =1 and f(0) = 0. Clearly it is

f(=z)=—f(z),VzeR, (51)

an odd function, symmetric with respect to the origin. Since x +1 >z — 1, and
fx+1)> f(x—1), we obtain 93 () >0,V z € R.
By [21], we have that

Y3 (0) = %gd(l) ~ ().2757. (52)

By [21] 45 is strictly decreasing on (0, 400), and strictly increasing on (—o0,0),
and ¥% (0) = 0.
Also we have that

lim 3 (z) = lim 43 () =0, (53)

r—+00

that is the z-axis is the horizontal asymptote for 3.

Conclusion, 13 is a bell shaped symmetric function with maximum 5 (0) &
0.551.

We need

Theorem 10 [21]. [t holds that

> ds(@—i)=1,YzeR. (54)

1=—00

Theorem 11 [21]. We have that

/:’0 s (z) dx = 1. (55)

So s () is a density function.

Theorem 12 [21]. Let 0 < a < 1, and n € N with n'=* > 2. It holds

oo

3 s (na — k) < ——2 2 ey(ayn).  (56)

T o=2) ~ pent e
k= —o0
{ :nw — k| > ntme

Theorem 13 [21]. Let [a,b] C R and n € N, so that [na] < [nb|. It holds

1 2
=~ 4.824 =:
3y (na k><gd(2) T v
s (nz —

k=[na]

vV z € [a,b].
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We make
Remark 5 [21].

(i) We have that
Lnb]
lim Y by (na — k) # 1, (58)

k=[na]

for at least some z € [a, b].

(i) Let [a,b] C R. For large n we always have [na] < |nb|. Also a < £ < b, iff
[na] < k < |nb].
In general it holds
Lnb]
> sz —k)<1. (59)
k=[na]

We introduce (see also [23])
N

Zs (21, ..yxy) = Z3 (x) := H’(/)g (z;), x = (21, ...,xN) € RN, N eN. (60)
i=1

It has the properties:

(i) Zs(z) >0, VxRN,
(i)

Z Zg(.’l?—ki) = Z Z Z Zg(xl—k17...7.'1,‘N—kN):l,
k=—o0 k1=—00 ke=—00 kn=—o00
(61)
where k 1= (k1,....,k,) € ZN, ¥V 2 € RV,
hence
(iii)
o0
Z Z3 (nx — k) =1, (62)
k=—o0
VereRY; neN,
and
(iv)
/ Zs () do =1, (63)
]RN

that is Z3 is a multivariate density function.
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(v) It is also clear that

o0

2 2
Z Z3 (nx—k) < ﬂ_en% =C3 (ﬁvn)7 (64)
k=—00
Iz =2l > 75

0<B<l,neN:n'"?>2 zecRY, meN.
(vi) By Theorem 13 we get that

1 or \V N
0< < =~ (4.824 =7 N , 65
S 1 Zs (ne — k) (gd <2>> @820 =5 (), (65)
Vae (Hzl\; [a’iabi]), n € N.
Furthermore it holds
[nb]
lim Z Zs(nx — k) # 1, (66)

k=[na]

for at least some z € (sz\; [ai,bi]) .

2.4 About the Generalized Symmetrical Activation Function

Here we consider the generalized symmetrical sigmoid function [22,29]

xz%,u>0,x€ﬂ£. (67)
(14 [a]™)*

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter p is a shape parameter controling how fast the curve
approaches the asymptotes for a given slope at the inflection point. When p =1
f1 is the absolute sigmoid function, and when p = 2, f; is the square root
sigmoid function. When g = 1.5 the function approximates the arctangent func-
tion, when p = 2.9 it approximates the logistic function, and when p = 3.4
it approximates the error function. Parameter p is estimated in the likelihood
maximization [29]. For more see [29].

Next we study the particular generator sigmoid function

fa(z) = %, A is an odd number, = € R. (68)

(14 1)
We have that f2 (0) =0, and
f2(=2) =—f2(2), (69)

so fy is symmetric with respect to zero.
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When = > 0, we get that [22]

1
fé (:E) = i 0,
(142>

15

(70)

that is fo is strictly increasing on [0, +00) and fs is strictly increasing on (—o0, 0].

Hence f5 is strictly increasing on R.
We also have fy (+00) = fo (—o0) = 1.
Let us consider the activation function [22]:

Ui (@) = ;LR @+ 1)~ fa (o= 1)) =

(x+1) B (x—1)

M=

1
4 T
(1l +1P) (1 —1P)
Clearly it holds [22]
Yy (x) =y (—z), VI ER.

and
1

Py (0) = mv

and ¢4 (z) >0,V z € R,

Following [22], we have that 14 is strictly decreasing over [0, +00), and ¢y
is strictly increasing on (—o0,0], by t4-symmetry with respect to y-axis, and

5 (0) = 0.
Clearly it is
lim ¢4 (z) = lim ¢4 (z) =0,

r——+00

therefore the z-axis is the horizontal asymptote of ¥4 (z) .
The value

¥4 (0)

1
= ——, Ais an odd number,
232
is the maximum of 4, which is a bell shaped function.
We need

Theorem 14 [22]. It holds

Y u(@—i)=1,YzeR

i=—00

Theorem 15 [22]. We have that

/_Z¢4(x)dx:1.

(74)

(75)
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So that 14 () is a density function on R.
We need

Theorem 16 [22]. Let 0 < a < 1, and n € N with n'=® > 2. It holds
i 1/14(n:r—j)<;)\::czl((;u,n)7
, 2X\ (nlt—e —2)
j=—
{: |nz — j| >nt=®
where A € N is an odd number.
We also need
Theorem 17 [22]. Let [a,b] C R and n € N so that [na] < |nb]. Then

1 —
[nb] <2 v 1+ 22 =: Qay,
> Ya(lna — k)

k=[na]

where X is an odd number, ¥ x € [a,b].
We make

Remark 6 [22]. (1) We have that

Lnb]
lim Z g (nz — k) # 1, for at least some z € [a, b].
k=[na]

(80)

(2) Let [a,b] C R. For large enough n we always obtain [na] < |nb]|. Also

a< k< iff [na] <k < [nb.
In general it holds that
[nb]

Z g (nz — k) < 1.

k=[na]
We introduce (see also [26])

N

(81)

Zy(x1,.yy) = Zy (x) := Hz/)4 (z;), = (z1,..,znx) €ERY, NeN. (82)

i=1
It has the properties:

(i) Zi(z) >0, Yo RV,
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(if)

(oo}

k=—oc0 ki=—00 ko=—00 kn=—o00

where k := (k1,...,k,) € ZN,V z € RV,
hence
(iii)
Z Zy(nx —k)=1,

k=—o00

/ Zy(z)de =1,
RN

that is Z, is a multivariate density function.
(v) Tt is clear that

= 1
Z Z4(n$—k)<—)\:04(ﬂ,n),
k= —o0
1% =2l > 7=

0<pB<l,neN:n"#>2 2ecRN, \is odd.
(vi) By Theorem 17 we get that

N
0 [nb] : < (2 AV I+ 2/\> =174 (N) )

<
Zk:(na] Zy (nz — k)

Vae (Hf—il [ai7bi])7 n €N, \is odd.

Furthermore it holds

nb)
lim_ > Zi(nz—k) #1,

k=[na]

for at least some = € (Hf\il [a,-,b,-]) .

Set
[nal := ([na1], ..., [nan]),

[nb] := (Inb1], ..., |[nbN]),
where a := (a1, ...,an), b:= (b1, ....,bn), k= (k1, ..., kn) .

17

Z Z4(1‘—k):= Z Z Z Z4(:E1—/€1,...,1‘N—]€N)=1,

(83)

(87)

(83)
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Let feC va_l (@i, ]) , and n € N such that [na;] < |nb;],i=1,...,N.
We define the multivariate averaged positive linear quasi-interpolation neural

network operators (x := (z1,...,xN) € (Hf\il [ai,bi]>) i=1,2,3,4

Sk £ (8) 2 (nz — )
A (frar, e an) i= A, (frz) i= anJJ = (89
D ohe ral Z; (nx — k)
|nb1] [nb2 ] [nbn | k N
Eh:l(nal] Zk‘2=2[naﬂ ZkN N[naN] (7 e TN) (Hi:1 ¥j (na; — kl))
N nb; '
Hi:l ( IE.L-:[Jnaﬂ wj (TLLE,L - k’b))
For large enough n € N we always obtain [na;| < |nb;|, i« = 1,...,N. Also
alg%gb“lﬁfnaﬂgk <|_an i=1,...,N.
When f € Cp (RY) we define (j = 1,2,3 4)
S k
By (1) = 3B (franseon) = 30 £(5) Zio—0)i= (0
k=—o0

> Y X

N
k1 kz kn
( s > (ij (na; — kl)> ,
ki=—00 ka=—00 kny=—00 i=1

n € N,Vz e RV, N € N, the multivariate full quasi-interpolation neural

network operators.
Also for f € Cp (RN ) we define the multivariate Kantorovich type neural

network operators (j =1,2,3,4)
k41

(f,z1, ..., zN) = Z (nN/k f()dt) i (ne —k) =
(91)

k=—o0 n

C, (f,z) = ;C,
kn+1

S k1+1 kot1
F(tn,entn) dtl...dtN>

S ké@( / / o
. (f[l ¥ (nx; — kﬂ) ;

neN, VzeRN.
Again for f € Cp (]RN ), N € N, we define the multivariate neural net-

work operators of quadrature type ;D, (f,z), n € N, as follows. Let 6§ =
,TN) € Zf, Wy = Wry ry,..ry > 0, such that

k?1=—00 k2=—00

(017"'70N) € NN7 T = (T'l,

(4 0 0
> wy = Z Z Z Wy g, o = 13 k € ZN and
7=0 r1=0r2=0 rny=0
i kT
Ok (f) := O oy (f) 1= D wrf (n+ )
=0
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01 62 On

ki r ko T kny TN
T1,72,...T - > T ey T ] 92
ZZ thz, Nf(n+n91 n+n02 n+n9N (92)
r1:O ’I“g:O ’I“N:(]
where = (%i%) j=1,2,3,4.
We put
iDn (f,x) = ;D (f,21,...,2N) := Z Onk (f) Zj (nx — k) := (93)

k=—o00

Z Z Z 6”1191,1@27...,161\7 (f) (H wj ('nnTZ — k‘l>> ,

k1=—00 ko=—o0 kn=—00
VzeRN.
For the next we need, for f € C (Hi\[:l (@i, bi]> the first multivariate modulus
of continuity

wi (f,h) = sup |f (@) = f )], h>0. (94)
z,y € Hii] [aivbi]
[z =yl <h
It holds that
limawy (f,h) = 0. (95)

Similarly it is defined for f € Cp (RN ) (continuous and bounded functions
on RY) the w; (f,h), and it has the property (95), given that f € Cy (RN)
(uniformly continuous functions on RY).

We mention

Theorem 18 (see [23-26]). Let f € C(H?{:l [ai,bi]), 0 < B <1,z €
(Hf\il [ai,bi]) ,N,neN withn'=# >2;j=1,2,34. Then

1
A0 (Fo) = £ @ 22 () o (£33 ) 265 B 1| = A, (90)

and
2)
An (f) = flloo < M- (97)

We notice that lim ;A, (f) = f, pointwise and uniformly.
n—oo

In this article we extend Theorem 18 to the fuzzy-random level.
We mention

Theorem 19 (see [23-26]). Let f € Cp (RY), 0< <1,z € RY, NoneN
with n' =P > 2; 1 =1,2,3,4. Then
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1)

380 (1.0) = @] < (F5 ) 26 B Il = de (98)

2)
15Ba (F) = Flle < Ao

(99)

Given that f € (Cu (RN)NCp (RY)), we obtain lim ;B, (f) = f, uni-

formly.

We also need

Theorem 20 (see [23-26]). Let f € Cp (RN), 0<B<1l,zeRY, NneN

with n' =" > 2; 1 =1,2,3,4. Then
1)
1

10 o) = F @ o (£ 4 25 ) 426 () [l = Aae (100

2)
[;Cn (f) = flloo < Aja-

(101)

Given that f € (Cy (RN)NCp (RY)), we obtain lim ;Cy (f) = f, uni-

formly.

We also need

Theorem 21 (see [23-26]). Let f € Cp (RY), 0< <1,z € RV, NoneN

with n' =P > 2; 1 =1,2,3,4. Then

1)

Da(fia) = F@ < (F2 4 ) +26 B I = s, (102

2)
1300 (f) = fllw < Ajs-

(103)

Given that [ € (CU (RN) NCg (RN)) , we obtain lim ;D, (f) = f, uniformly.

In this article we extend Theorems 19, 20, 21 to the random level.

We are also motivated by [1-16] and continuing [17]. For general knowledge

on neural networks we recommend [31-33].
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3 Main Results

I) g¢-mean Approximation by Fuzzy-Random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sects. 1, 2.
N
Let f € C’g%a(n[ai,bi]), 1<qg< 400, n,NeNO0O<B<1, 7€

i=1

N
(H [ai,bi]>, (X, B, P) probability space, s € X; j =1,2,3,4.
i=1

We define the following multivariate fuzzy random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based quasi-

interpolation linear neural network operators

GATR () (Z,s)= > f <,s> © —] . (104)
Fefnal N\ S 7 (n? . ?)
?:[mﬂ

(see also (89).
We present

N
Theorem 22. Let f € C;J-% <H [ai,bi]>, 0<B<1, 7 ¢ (H [ai7bi]>,
i=1 i=1
n,N € N, with n'=% > 2,1 < ¢ < +oo. Assume that [, (D*(f(-,s),
0))? P (ds) < o0; j =1,2,3,4. Then

1)

1
q

( /X DY (GALR (1) (T,5),F (T, 9)) P<ds>) < (105)

7 (N) {n (ra5) +2Gn ([ @ Gen.y P(ds>)é} =T,

1
a

(FR)
N = )\jl
o fjec0i)
(106)

1(4)he)re Vi (N) as in (25), (45), (65), (87) and G5 (B,n) asin (24), (44). (64),
86).

Proof. We notice that

D <f <§s> ,f(?,s)> <D (f (58) ,5> +D(f(7,s),0)  (107)

)

2)
H (/X DU((ALR (1) (Zy9), f (F,5)) p(d8)>
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Hence

D1 (f (fi) ,f(?,8)> < 2D (f(-5).0), (108)
and
(/ D1 (f <?s> 7f(778)> P(ds)>q <2 (/ (D*(f(9) 75))qP(d8)>1
D'e n D'e
(109)

We observe that

k=[na] Z Zj (nx — k)
k=[na]
[nb]
Lmb] - B . > Zj(nz—k)
nr — — k=[na]
R (n’s> © B j@s)o b] =
k=[nal Zj (nx — k) > Zj(nx—k)
k=[na] k=[na]
(111)
[nb] - |nb]
k Zi(nx —k _ Zi(nx —k
Pl f<n’5>® LanJ( ) 2. (@90 Lnbjj( :
k=[na] > Zj(nx — k) k=[nal Z; (nx — k)

So that

) i (nz — %
Z Lnij ( k) D <f <:,s> ,f(?,s)> = (113)
F=[na] > Zj(nz—k)

%= [nal
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o Z; (nx — k) *
J v —
. [nb) D<f<n78>7f<mas)>+
- k=[na] Z Zj (nﬂ:‘*k)
|57 < \F=fnal
[nb] —
Z; (nx — k) k _
D .
. [nb| <f<n7s>7f(x78)
B k=[na] Z Zj (TL.’E—]C)
||%—?‘Oo>n% K =lna)

(/X D ((AT®(f)) (?,s),f(?,s))P(ds))q < (114)
[nbd] — %
Z Lnij (nx — k) (/ DY <f (: s) f(Z 5)> p(d5)> +
?:(na] Z Zj (nx _ k‘) X
[nb] — %
Z Lnij (nz — k) (/ D1 <f (: s) f(x s)) P(ds)> <
F=[na) >0 Zj(nx—k) X
1 1
[nb] : {QEF) <f> nﬁ> + (115)
> Zj(nz—k) La
k=[na]
H [nb)
([0t pas) %1
* ?:]’na]
[#-7].>%

(by (24), (25); (44), (45); (64), (65); (86), (87))

<3 (V) {9@ (£55) w2 ([ 000 Cs0 P @) é} .
(116)

We have proved claim.



24 G. A. Anastassiou

Conclusion 6. By Theorem 22 we obtain the pointwise and uniform conver-
gences with rates in the g-mean and D-metric of the operator ;AT to the unit

N
operator for f € C;]-“R (H [ai,bi]> ,j=1,23,4.

=1

IT) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
full Quasi-Interpolation Neural Network Operators

Let g € C' (RY),0< B <1, 7 €RY, n,N €N, with |[g|| g~ x < 00,
(X, B, P) probability space, s € X.

We define

B (9)(T,s):= > g <n8> Z; (mi - k) j=12,3,4, (117)
(see also (90)).

We give

Theorem 23. Let g € Cgl (RN) ,0<B<1, @eRY, n,NeN, withn'=# >
2, |9l oo mrv x <003 j=1,2,3,4. Then

1)
/ ’<jB£R) (9)) (7,S)fg(?,s)’P(ds) < (118)
b's
L _ R
Ql 9 7 + 2CJ (57’”) ||g||oo,]RN7X - ,ujl )
nf ).
2)
H/ ‘(jBéR) (9)) (7, s) —g(?,s)’ P (ds) <l (119)
X oo, RN
Proof. Since |||, gn x < 00, then
&
g <n> (T ,5)| < 29l x < 00 (120)
Hence .
k
/X g <n8> —g(@,5)| P(ds) < 2|gll o pn x < 00 (121)

We observe that
(1BR(9)) (7,5) = g(F.5) =

Z g(i,s) Zj (nx — k) — g (7, s) Z Z;i (nx — k) = (122)
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Z g(Z,s) —g(7,s) Zj(nx — k).

=—00

However it holds

Hence

> %
> o) o]z 0=
n
K =—oc
0o z B
Y. ol s) —9(@9)| Zi (nx — k) +
7| <
> %
Z g (,s) —9(7,8)| Zj (nx — k)
n

> (/ 9<k~9>g<x,s)P(ds))Zj(mk>+
— X n
k=—oc0
E,? S%
Z </X 9<:7S>—g(?,8) P(ds))Zj(na:—k:)g
F=—o0
E_z >
1 o0
g, B + 2 Hg||OO7RN7X Z Zj(nx —k) <
Lt —
k=—00

n

x_—= 1
7] >

1
2 (0:55) 26 (B ol v
n L1

proving the claim.

25

(123)

(124)

(125)
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Conclusion 7. By Theorem 23 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jB,(LR) to the unit operator for
geCg (RY), j=1,2,3,4.

ITT) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate Kantorovich type neural network operator

Let g € Cg' (RY),0< B <1, 7 €RY, n,N €N, with |g|| g~ x < 00,
(X, B, P) probability space, s € X.

We define (7 = 1,2, 3,4):

-
00 k41

SO () (T, 8) = Z nN/ ' g ( t ,s) dt Z; (n? - ?) , (126)

(see also (91).
We present

Theorem 24. Let g € C%l (RN) ,0<pB<1, @R, n,NeN, withn' 8 >
27 .7 = 1a2a3747 ||g||m7RN7X < 0. Then

1)
/.

1 1 R
2 (0h ) A2 Gl ] =P a2

(/O (@) (7,5) =9 (F.9)| P (ds) <

2)
<P, (128)

oo,RN

(1C () (7 .5) = 9 (7, 5)| P (ds)

1A

Proof. Since |||, g x < 00, then

nN /:.n g (7,8) dt —g(7,s)| = nN /? ! (g (?,5) —g(?,s)) dt <

k

T4l
w [ | (To5) 9@ )|dT < 2ol <o (129)
: &7,
Hence
E41
[ L7 (7o) dT = (79| P9 < 2lgllcmn x <o (130)
o [ &)

We observe that
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i [mv ;ﬂ , (775) _g(?,s)( d?] Z; (n? - ?) < 2|gllopn x < o0
T ) (132)
H
o (105 (9)) (@15) — 9 (F9)| <
i [nN - g(?,s)—g(m,s)‘d?] Z; (nx— k) (133)
T oo m

dt Z; (n? - ?) +
=—o00
|- <5
(135)
s % — ? -
Z [nN/O g<t+n,s>—g(x,s)dt %(n?—k)
K=—o00
e

27
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Furthermore it holds

(/x ‘(ijﬂ) (g)) (7,s) —g(7,5) ’ P(dS)) <

(by Fubini’s theorem)

oo 1 -
) |:nN/ </ g<?+’“,s>—g(?,s) P(ds)> dt | z; (n@ - F)+
. 0 X n
k =—oc0
E,? S%
(136)
o o LT - L
Z n / /g t +—,s —g(m,s) P(ds)|dt Z](nm—k>§
- 0 X n
k=—o00
g—? >—l
11 > .
(9 -+ 5) 209l x > Zj(nx—k:>§
r F=—oo
£ _z Oc>n%6
(924 25 ) 426 (0 Lol e (137)
77’1, nﬁ I J ’ oo, RNV, X

proving the claim.

Conclusion 8. By Theorem 24 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jC’,(LR) to the unit operator for
geCg (RY), j=1,2,3,4.

IV) l-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate quadrature type neural network operator

Let g € Cg' (RY),0< 8 <1, 7 € RV, n,N €N, with gl g~ x < 0,
(X, B, P) probability space, s € X, j = 1,2,3,4.

We define

D (0)(@5)= > (0,7@) )% (7 -F),  (138)
F=—o0

where .
T
(6,7 (9) () =D w=g (n + _>,s> : (139)
T=0
(see also (92), (93)).
We finally give

Theorem 25. Let g € C’gl (RN) ,0< B <1, T c RN7 n, N € N, with nl=8 >
2? .] = 17253747 ||g||007RN,X < oQ. Then



Multivariate Fuzzy-Random 29

1)
/X (jDS” (g)) (7,5)—g (E’,s)‘ P (ds) <
2 (g7 +5) +2e0m) gl =0, (40
1 g’n+n5 B ¢ (B,n) 19lloo gy x = V51
2)
H/x’(jD’(’R) (9)) (?,s)—g(?,s)‘P(ds) N <P (141)
Proof. Notice that
16,7 (9) (5) =g (7, 5)| =
7 - —
T ] N B T |
= n n o
7 =0
7 g —
k T
w=|g < + —>,S> —g(2,s)| < 2||gllog gy x < 00 (142)
= no nf
7 =0
Hence
(6,5 (9)) (5) = g (T, 9)| P(ds) < 2lgllopr x <00 (143)

> (6,7 @) () ~a(T.9) 2, (n7 ~F). (144)

Thus

2 16z @) &= 9(T 9] 2 (1T~ F) < 2ller x <00 (145)

k=—00

Hence it holds

S (6, @) () 9 (F.5)] 2, (n7 - F) =
T =—o00
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S 6 @) ) —g(T)| 2 (nT - F) +
T =—o0
B
S 6,5 @) ) —9(T9)| 2 (nT - F) (146)
F=—o0
-7 >

Furthermore we derive

= L FLT -
Z w— (/ g(+_),s>—g(§),s)P(ds))Zj(n?—k)
K v X n n
k=—00 7 =0
[%5-7]| <5
(147)
s —
+ Yz (nzu k) 219l o x <
T =—o0
E_— 1
[ e
(et L) voe 8.0l (148)
1 gan nB I J s g oo, RN X

proving the claim.

Conclusion 9. From Theorem 25 we obtain pointwise and uniform conver-
gences with rates in the 1-mean of random operators ngz) to the unit operator
forge Cy (RY), j=1,2,3,4.
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