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Abstract. Otto Fischer was during the late 19th and early 20th cen-
tury the founder of 3-D human gait analysis. From motion recordings
he calculated by hand the inverse dynamics of humans in motion, for
which he discovered and used the principal vectors of a system of mov-
ing bodies. With the principal vectors the equations of motion and the
kinetic energy can be written in a specific simple form with full geometric
meaning and with reduced mass models with which system dynamics can
be investigated in a simple way at link level. Fischer applied his theory
mainly in its planar form. He also presented the theory of the spatial
form by example of a serial two-link chain, however the explanations in
the original texts in German are challenging to understand. This paper
presents Fischer’s spatial form in a modern and understandable way.
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1 Introduction

Otto Fischer is the inventor of 3-D human gait analysis, for which he developed
theory in the late 19th century [2,4]. His method of principal vectors allows
to analyze the dynamics of a system of rigid bodies in an insightful way and,
especially important at that time, by hand calculations as computers were yet to
be invented [1]. After recording the movements of (parts of) a person in motion,
e.g. by photographs at multiple time steps, with the principal vectors he could
graphically derive the motion of the common center of mass (CoM) and the
motions of body segments relative to the common CoM. Subsequently from the
kinetic energy and the equations of motion, both written in a special insightful
form due to the principal vectors, he could calculate the acting forces onto and
within the system separately. With this inverse dynamical analysis he was able
to ultimately derive the individual muscle forces responsible for the motions.

His theory has not found much application in gait analysis by others, perhaps
since it is still cumbersome to apply and computers took over or since it is written
in a challenging way in older German. However for machine design the method of
principal vectors has turned out especially interesting for shaking force balancing
as a clear graphical tool for both analysis and synthesis [5]. The principal vectors
are at the basis of the synthesis method of inherent balancing [7].
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Fischer applied his theory mainly in its planar form for which the approach to
project 3-D gait motions onto the three orthogonal planes for individual analysis
turned out an accurate approximation for 3-D gait analysis, keeping the calcu-
lations relatively simple. However to study general human motions apart from
gait analysis such as motions of the arms about the shoulders, he considered the
spatial theory to be necessary, which he presented for a serial two-link chain in
[3,4] but unfortunately never applied.

This paper presents Fischer’s spatial theory of principal vectors for dynamical
analysis in a modern and understandable way. Fischer’s challenging original texts
and explanations in older German in [3] have been transformed into a modern
presentation that can be readily used for application. This can be of significant
interest for general system dynamics [6] and in specific for spatial balancing. First
the kinematics of a serial chain of two links are presented, followed by the kinetic
energy equations, the reduced mass models, and the equations of motion at the
end for both an unconstrained motion and motion about a fixed base joint.

2 The Kinematics
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Fig. 1. (a) Spatially moving chain of two links connected with a spherical joint in A1

and its geometry of principal vectors describing the location of the common CoM in S;
(b) Spatial pantograph geometry with the principal points P1 and P2 and the principal
dimensions a1 and a2.

Fischer explained his spatial theory by use of a serial chain of two links [3] (pg.
305) as shown in a new way in Fig. 1a with two rectangular bars connected
with a spherical joint in A1. The origin of the fixed reference frame x0y0z0 is
located in the extremity of link 1 A0 and each link i has a center of mass (CoM)
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in point Si, which is on the longitudinal axis of each link. The common CoM
of the two links is located in S and is geometrically found by a parallelogram
based on the principal vectors. Figure 1b shows this geometry which is a spatially
moving pantograph of which P1 and P2 are the principal points which define a
parallelogram in the plane through S, P1, A1, and P2 with principal dimensions
a1 and a2. The conditions for which the common CoM of S1 and S2 is in S for
all motions can be found as m1p1 = m2a1 and m2p2 = m1a2.

The spatial orientations of each link in Fig. 1a, each having a body fixed
reference frame xiyizi with origin in Pi, are defined with angles θi, ϕi, and ψi as
illustrated, which are all defined positively in the negative rotational direction.
Angles θi and ϕi define the orientation of the longitudinal axis of each link
relative to the z0-axis and the y0-axis, respectively, where ϕi defines the rotation
of the vertical planes 1© and 2© and θi defines the orientation of the links within
each of the two planes. The line of intersection of these two planes intersects with
the joint in A1 and plane 1© also intersects with the z0-axis. Angle ψi defines
the rotation of each link about its longitudinal axis relative to the illustrated
line that is normal to the longitudinal link axis and lays within the respective
plane 1© or 2©. The spatial orientation of the plane of parallelogram SP1A1P2

depends on all the six angles.
This spatial two-link chain with a ball joint connection can be considered the

most general two-link model with maximal mobility, which might be reduced for
applications that require lower mobility. For the kinetic energy equations and
the equations of motion Fischer considered two cases of this model: (1) the case
that the two-link chain is moving freely in space and (2) the case that point A0

is a spherical base joint and the motion of the two-link chain is constrained. The
second case would represent for instance the motion of the upper and lower arm
with the shoulder joint in a fixed point.

The positions of the link CoMs can be written in a special way relative to
the common CoM in S as the sum of the principal vectors from the common
CoM to each link CoM as

r1 = SP1 + P1S1 = −a2

⎡
⎣

sin θ2 sin ϕ2

sin θ2 cos ϕ2

cos θ2

⎤
⎦ − p1

⎡
⎣

sin θ1 sin ϕ1

sin θ1 cos ϕ1

cos θ1

⎤
⎦ (1)

r2 = SP2 + P2S2 = a1

⎡
⎣

sin θ1 sin ϕ1

sin θ1 cos ϕ1

cos θ1

⎤
⎦ + p2

⎡
⎣

sin θ2 sinϕ2

sin θ2 cos ϕ2

cos θ2

⎤
⎦ (2)

from which the velocities of S1 and S2 relative to the common CoM in S can be
derived as

υ1 = ṙ1 = −a2

⎡
⎣

cθ2θ̇2sϕ2 + sθ2cϕ2ϕ̇2

cθ2θ̇2cϕ2 − sθ2sϕ2ϕ̇2

−sθ2θ̇2

⎤
⎦ − p1

⎡
⎣

cθ1θ̇1sϕ1 + sθ1cϕ1ϕ̇1

cθ1θ̇1cϕ1 − sθ1sϕ1ϕ̇1

−sθ1θ̇1

⎤
⎦ (3)

υ2 = ṙ2 = a1

⎡
⎣

cθ1θ̇1sϕ1 + sθ1cϕ1ϕ̇1

cθ1θ̇1cϕ1 − sθ1sϕ1ϕ̇1

−sθ1θ̇1

⎤
⎦ + p2

⎡
⎣

cθ2θ̇2sϕ2 + sθ2cϕ2ϕ̇2

cθ2θ̇2cϕ2 − sθ2sϕ2ϕ̇2

−sθ2θ̇2

⎤
⎦ (4)
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with s and c representing the sin and cos, respectively.
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Fig. 2. Angular velocities of each link, all defined positively in the negative directions.

Figure 2 shows the angular velocities ωix, ωiy, and ωiz of each link about the
principal inertial axes x′

i, y′
i, and z′

i, which are equal to the link rotations about
the body fixed reference frame xiyizi located in the principal point Pi since both
reference frames are parallel. The angular velocities can be obtained as

⎡
⎣

ωix

ωiy

ωiz

⎤
⎦ =

⎡
⎣

cos ψi sinψi 0
sinψi − cos ψi 0

0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 sin θi 0
0 cos θi 1

⎤
⎦

⎡
⎣

θ̇i

ϕ̇i

ψ̇i

⎤
⎦ (5)

This is a mapping of the absolute link rotations to the relative rotations of
the links which can be rewritten for each link as

ω1x = θ̇1 cos ψ1 + ϕ̇1 sin θ1 sin ψ1 ω2x = θ̇2 cos ψ2 + ϕ̇2 sin θ2 sinψ2

ω1y = θ̇1 sinψ1 − ϕ̇1 sin θ1 cos ψ1 ω2y = θ̇2 sinψ2 − ϕ̇2 sin θ2 cos ψ2 (6)

ω1z = ϕ̇1 cos θ1 + ψ̇1 ω2z = ϕ̇2 cos θ2 + ψ̇2

3 The Kinetic Energy

The kinetic energy T of the two-link chain can be written as

T = TS + Trel + Trot (7)

where TS is the kinetic energy of the two-link chain translating as a single rigid
body in space, Trel is the kinetic energy of the link masses in S1 and S2 moving
relative to the common CoM in S, and Trot is the kinetic energy of the rotations
of the two links. As compared to Trot, TS + Trel = Ttrans can be regarded the
translational kinetic energy with the absolute and the relative kinetic energy
separately calculated as, respectively,

TS =
mtot

2
υ2

S , Trel =
m1

2
υ2
1 +

m2

2
υ2
2 (8)
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with the total mass mtot = m1 + m2. The rotational kinetic energy can be
obtained as

Trot =
1
2
(I1xω2

1x + I1yω2
1y + I1zω

2
1z) +

1
2
(I2xω2

2x + I2yω2
2y + I2zω

2
2z) (9)

with the inertia tensor Ii = [Iix, Iiy, Iiz] of each link about its CoM in Si.
For Trel the squared velocities of the link masses are calculated as υ2

i =
υ2

ix + υ2
iy + υ2

iz which from (3) and (4) can be derived as

υ2
1 = p21θ̇

2
1 + p21 sin2 θ1ϕ̇

2
1 + a2

2θ̇
2
2 + a2

2 sin2 θ2ϕ̇
2
2 + (10)

2a2p1(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
2a2p1 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +
2a2p1 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +
2a2p1 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2

υ2
2 = p22θ̇

2
2 + p22 sin2 θ2ϕ̇

2
2 + a2

1θ̇
2
1 + a2

1 sin2 θ1ϕ̇
2
1 + (11)

2a1p2(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
2a1p2 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +
2a1p2 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +
2a1p2 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2

These terms are very similar with only all the indices 1 and 2 reversed.
Combining both terms and substituting also the balance conditions m1p1 =
m2a1 and m2p2 = m1a2 for m1p1 and m2p2, Trel can be rewritten as

Trel = (
m1

2
p21 +

m2

2
a2
1)θ̇

2
1 + (

m1

2
a2
2 +

m2

2
p22)θ̇

2
2 + (12)

(
m1

2
p21 +

m2

2
a2
1) sin2 θ1ϕ̇

2
1 + (

m1

2
a2
2 +

m2

2
p22) sin2 θ2ϕ̇

2
2 +

mtota1a2(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
mtota1a2 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +
mtota1a2 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +
mtota1a2 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2

For the rotational kinetic energy the squared rotational velocities of each link
i are obtained from (6) as

ω2
ix = cos2 ψiθ̇

2
i + sin2 θi sin2 ψiϕ̇

2
i + 2 cos ψi sin θi sinψiθ̇iϕ̇i

ω2
iy = sin2 ψiθ̇

2
i + sin2 θi cos2 ψiϕ̇

2
i − 2 sin ψi sin θi cos ψiθ̇iϕ̇i

ω2
iz = cos2 θiϕ̇

2
i + ψ̇2

i + 2 cos θiϕ̇iψ̇i
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with which the rotational kinetic energy can be derived and written as

Trot =
1
2
(I1x cos2 ψ1 + I1y sin2 ψ1)θ̇21 +

1
2
(I2x cos2 ψ2 + I2y sin2 ψ2)θ̇22 + (13)

1
2
(I1x sin2 θ1 sin2 ψ1 + I1y sin2 θ1 cos2 ψ1 + I1z cos2 θ1)ϕ̇2

1 +

1
2
(I2x sin2 θ2 sin2 ψ2 + I2y sin2 θ2 cos2 ψ2 + I2z cos2 θ2)ϕ̇2

2 +

1
2
I1zψ̇

2
1 +

1
2
I2zψ̇

2
2 +

(I1x − I1y) sin θ1 sin ψ1 cos ψ1θ̇1ϕ̇1 +

(I2x − I2y) sin θ2 sin ψ2 cos ψ2θ̇2ϕ̇2 +

I1z cos θ1ϕ̇1ψ̇1 + I2z cos θ2ϕ̇2ψ̇2

When summed together, the complete kinetic energy of the two-link chain
(7) can now be written as

T =
mtot

2
υ2
S +

1

2
(I1x cos2 ψ1 + I1y sin2 ψ1 + m1p21 + m2a2

1)θ̇
2
1 + (14)

1

2
(I2x cos2 ψ2 + I2y sin2 ψ2 + m1a2

2 + m2p22)θ̇
2
2 +

1

2
(I1x sin2 θ1 sin

2 ψ1 + I1y sin2 θ1 cos
2 ψ1 + I1z cos

2 θ1 + (m1p21 + m2a2
1) sin

2 θ1)ϕ̇
2
1 +

1

2
(I2x sin2 θ2 sin

2 ψ2 + I2y sin2 θ2 cos
2 ψ2 + I2z cos

2 θ2 + (m1a2
2 + m2p22) sin

2 θ2)ϕ̇
2
2 +

1

2
I1zψ̇2

1 +
1

2
I2zψ̇2

2 +

(I1x − I1y) sin θ1 sinψ1 cosψ1θ̇1ϕ̇1 +

(I2x − I2y) sin θ2 sinψ2 cosψ2θ̇2ϕ̇2 +

I1z cos θ1ϕ̇1ψ̇1 + I2z cos θ2ϕ̇2ψ̇2 +

mtota1a2(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
mtota1a2 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +

mtota1a2 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +

mtota1a2 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2

This formulation can be significantly simplified in a particular way when the
expressions before θ̇2i are rewritten as

I1x cos2 ψ1 + I1y sin2 ψ1 + m1p
2
1 + m2a

2
1 = mtot(χ2

1x cos2 ψ1 + χ2
1y sin2 ψ1)

I2x cos2 ψ2 + I2y sin2 ψ2 + m1a
2
2 + m2p

2
2 = mtot(χ2

2x cos2 ψ2 + χ2
2y sin2 ψ2)

with the reduced inertias IRi formulated as

mtotχ
2
1x = I1x + m1p

2
1 + m2a

2
1 = IR1x mtotχ

2
2x = I2x + m1a

2
2 + m2p

2
2 = IR2x

mtotχ
2
1y = I1y + m1p

2
1 + m2a

2
1 = IR1y mtotχ

2
2y = I2y + m1a

2
2 + m2p

2
2 = IR2y

mtotχ
2
1z = I1z = IR1z mtotχ

2
2z = I2z = IR2z (15)

These reduced inertias can be explained geometrically as the inertias of the
reduced mass models shown in Fig. 3. In the model of link 1 the principal point P1
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is the common CoM of mass m1 in S1 and mass m2 projected in joint A1, while in
the model of link 2 the principal point P2 is the common CoM of mass m2 in S2 and
mass m1 projected in joint A1. The inertias of these models about Pi, consisting of
the inertia of the two masses m1 and m2 at their distance from Pi and the inertia
tensors of the links, then result in the reduced inertia terms. The coefficients χi

can be regarded as the radii of gyration of these reduced mass models.
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Fig. 3. Reduced mass model of (a) link 2 and (b) link 1 of which the common CoM is
in the principal point Pi. The inertias of these models about the principal point result
in the reduced inertias terms.

Also the expressions before ϕ̇2
i can be simplified and rewritten as

I1x sin2 θ1 sin2 ψ1 + I1y sin2 θ1 cos2 ψ1 + I1z cos2 θ1 + (m1p
2
1 + m2a

2
1) sin2 θ1 =

mtot((χ2
1x sin2 ψ1 + χ2

1y cos2 ψ1) sin2 θ1 + χ2
1z cos2 θ1)

I2x sin2 θ2 sin2 ψ2 + I2y sin2 θ2 cos2 ψ2 + I2z cos2 θ2 + (m1a
2
2 + m2p

2
2) sin2 θ2 =

mtot((χ2
2x sin2 ψ2 + χ2

2y cos2 ψ2) sin2 θ2 + χ2
2z cos2 θ2)

and

I1x − I1y = mtot(χ2
1x − χ2

1y) I2x − I2y = mtot(χ2
2x − χ2

2y) (16)

With the reduced inertias substituted, the kinetic energy of the two-link chain
moving freely in space can be written in its final form as

T =
mtot

2
υ2

S +
mtot

2
(χ2

1x cos2 ψ1 + χ2
1y sin2 ψ1)θ̇21 + (17)

mtot

2
(χ2

2x cos2 ψ2 + χ2
2y sin2 ψ2)θ̇22 +

mtot

2
((χ2

1x sin2 ψ1 + χ2
1y cos2 ψ1) sin2 θ1 + χ2

1z cos2 θ1)ϕ̇2
1 +

mtot

2
((χ2

2x sin2 ψ2 + χ2
2y cos2 ψ2) sin2 θ2 + χ2

2z cos2 θ2)ϕ̇2
2 +

mtot

2
χ2
1zψ̇

2
1 +

mtot

2
χ2
2zψ̇

2
2 +

mtot(χ2
1x − χ2

1y) sin θ1 sin ψ1 cos ψ1θ̇1ϕ̇1 +
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mtot(χ2
2x − χ2

2y) sin θ2 sin ψ2 cos ψ2θ̇2ϕ̇2 +

mtotχ
2
1z cos θ1ϕ̇1ψ̇1 + mtotχ

2
2z cos θ2ϕ̇2ψ̇2 +

mtota1a2(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
mtota1a2 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +
mtota1a2 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +
mtota1a2 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2

It is remarkable that this formulation is solely based on the total mass, the
two principal dimensions, and the reduced inertias, in an elegant and compact
form.

The kinetic energy of the two-link chain for the second case when it would
have a spherical base joint in A0, for which A0 has no translational motions, can
be easily derived from the kinetic energy of the free moving system. The only
differences are a modification of the reduced inertias according

χ2
1x,o = χ2

1x + a′2
1 χ2

2x,o = χ2
2x + a2

2

χ2
1y,o = χ2

1y + a′2
1 χ2

2y,o = χ2
2y + a2

2 (18)

χ2
1z,o = χ2

1z χ2
2z,o = χ2

2z

with a′
1 the distance between P1 and A0 as illustrated in Fig. 1b and with a1

substituted with l1 = a1 + a′
1 which is the length of link 1. This means that the

reduced inertia of the reduced mass model of the first link in Fig. 3b is calculated
about joint A0 and that the reduced inertia of the reduced mass model of the
second link is calculated about joint A1. With these changes the kinetic energy
of the two links rotating about A0 is written as

TA0 =
mtot

2
(χ2

1x,o cos2 ψ1 + χ2
1y,o sin2 ψ1)θ̇21 + (19)

mtot

2
(χ2

2x,o cos2 ψ2 + χ2
2y,o sin2 ψ2)θ̇22 +

mtot

2
((χ2

1x,o sin2 ψ1 + χ2
1y,o cos2 ψ1) sin2 θ1 + χ2

1z,o cos2 θ1)ϕ̇2
1 +

mtot

2
((χ2

2x,o sin2 ψ2 + χ2
2y,o cos2 ψ2) sin2 θ2 + χ2

2z,o cos2 θ2)ϕ̇2
2 +

mtot

2
χ2
1z,oψ̇

2
1 +

mtot

2
χ2
2z,oψ̇

2
2 +

mtot(χ2
1x,o − χ2

1y,o) sin θ1 sinψ1 cos ψ1θ̇1ϕ̇1 +

mtot(χ2
2x,o − χ2

2y,o) sin θ2 sinψ2 cos ψ2θ̇2ϕ̇2 +

mtotχ
2
1z,o cos θ1ϕ̇1ψ̇1 + mtotχ

2
2z,o cos θ2ϕ̇2ψ̇2 +

mtotl1a2(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ2 − ϕ1))θ̇1θ̇2 −
mtotl1a2 cos θ1 sin θ2 sin(ϕ2 − ϕ1)θ̇1ϕ̇2 +
mtotl1a2 sin θ1 cos θ2 sin(ϕ2 − ϕ1)θ̇2ϕ̇1 +
mtotl1a2 sin θ1 sin θ2 cos(ϕ2 − ϕ1)ϕ̇1ϕ̇2
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From this equation the kinetic energy of a planar two-link chain or double
pendulum rotating about a revolute base joint in A0 can be derived too by
substituting ϕi = ψi = 0 and ϕ̇i = ψ̇i = 0 for planar 2-DoF motion with θ1 and
θ2 as

T planar
A0

=
mtot

2
(χ2

1x,oθ̇
2
1 + χ2

2x,oθ̇
2
2) + mtotl1a2 cos(θ1 − θ2)θ̇1θ̇2 (20)

4 Equations of Motion

The Euler-Lagrange equations of motion can be derived from the kinetic energy.
For the two-link chain moving in free space this leads to 9 differential equations,
for which this paper leaves no space unfortunately to show the derivations. The
first three equations of motion are related to the absolute translational motions
of the complete linkage in space as if it is a single rigid body and write

mtotẍS = ΣX mtotÿS = ΣY mtotz̈S = ΣZ (21)

in which ΣX, ΣY , and ΣZ represent the sums of all externally applied forces
anywhere to the two-link chain. The other six equations of motion are related
to the relative motions of the links with respect to the common CoM in S. Here
Fischer made the assumption that the links are symmetric about their longitu-
dinal axes for which χ1y = χ1x and χ2y = χ2x, which he considered realistic for
biomechanics where the links represent arms or legs. With this assumption the
three equations of motion for link 1 result in

mtotχ
2
1xθ̈1 − mtot(χ2

1x − χ2
1z) sin θ1 cos θ1ϕ̇

2
1 + mtotχ

2
1z sin θ1ϕ̇1ψ̇1 = Dθ1

mtot(χ2
1x sin2 θ1 + χ2

1z cos2 θ1)ϕ̈1 + mtotχ
2
1z cos θ1ψ̈1 +

2mtot(χ2
1x − χ2

1z) sin θ1 cos θ1θ̇1ϕ̇1 − mtotχ
2
1z sin θ1θ̇1ψ̇1 = Dϕ1 (22)

mtotχ
2
1zψ̈1 + mtotχ

2
1z cos θ1ϕ̈1 − mtotχ

2
1z sin θ1θ̇1ϕ̇1 = Dψ1

Remarkable here is that these equations are elegantly and compactly written
solely in terms of the total mass and the reduced inertias. Also particular are
the terms Dθ1 , Dϕ1 , and Dψ1 which are the principal moments, i.e. the resultant
moments in the reduced model of the link about the principal point due to all the
applied internal and external forces and moments. From these principal moments
Fischer could derive the individual muscle forces causing these moments and
responsible for the recorded motions. Since with the reduced mass models each
link can be investigated individually with the dynamics of a single rigid body, it
allows a simple investigation of different situations, e.g. different combinations
of internally and externally applied forces and moments, for which the equations
remain the same and do not need to be derived again. The three equations of
motion for link 2 are identical with index 1 changed into 2.

For the constrained two-link chain with spherical base joint in A0 there are
just 6 equations of motion, 3 for each link which are equal to (22) but with the
reduced inertias of (18) replacing the reduced inertias of the free moving system.
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By rewriting (22), the principal moments of each link i can also be expressed
in terms of the reduced inertias as

Dθi
= IRix(θ̈i − sin θi cos θiϕ̇

2
i ) + IRiz(sin θi cos θiϕ̇

2
i + sin θiϕ̇iψ̇i)

Dϕi
= IRix(sin2 θiϕ̈i + 2 sin θi cos θiθ̇iϕ̇i) +

IRiz(cos2 θiϕ̈i + cos θiψ̈i − 2 sin θi cos θiθ̇iϕ̇i − sin θiθ̇iψ̇i) (23)
Dψi

= IRiz(ψ̈i + cos θiϕ̈i − sin θiθ̇iϕ̇i)

5 Conclusion

This paper presented in a modern and understandable way the kinetic energy,
the reduced mass models, the equations of motion, and the principal moments
of an unconstrained spatial two-link chain with spherical joint by means of prin-
cipal vectors as originally published by Fischer in 1905. The formulations have a
specific simple form with full geometric meaning and depend solely only the total
mass, the reduced inertias and the principal dimensions. The characteristics of
the spatial form therefore are equal to the planar form.

From the unconstrained case the equations for a variety of constrained spatial
two-link chains with lower mobility can be derived easily, as was shown for a
spatial two-link chain with a spherical base joint. Although presented for a two-
link chain, extending the spatial theory to serial chains with more than two
links will be, as the planar theory already showed, straightforward with similar
results. The theory is expected to be especially useful as a simpler and insightful
way to analyze the dynamics of a system of rigid bodies since with the reduced
mass models system dynamics can be investigated at a single body level. This
is to be investigated further.
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