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Abstract. This paper considers a gyroscopic rigid rotor with restoring and damp-
ing characteristics of an elastic support. Differential equations of the rotor motion,
which take into account the anisotropy of stiffness and damping, are solved ana-
lytically by the harmonic balance method. It is found that if the linear stiffness
of the elastic support material differs in two mutually perpendicular directions,
there are two critical velocities and corresponding resonance regions. Each crit-
ical velocity is defined by two resonance curves, the principal direction and the
perpendicular direction, respectively. The area limited by the principal direction
resonance curve is larger than the area limited by the second direction resonance
curve. Linear damping or non-linear cubic damping suppresses the maximum
amplitudes of these resonant curves. If damping acts only in one direction, then its
effect is observed in the resonance curves of the corresponding critical velocity.
In the case of the presence of a non-linear component of the rigidity of the support
material, the resonance curves of the main directions are accompanied by jumps.
Combined linear and non-linear cubic damping suppresses the oscillation ampli-
tude more significantly than linear damping. The equations of rotor motion were
also solved numerically and the results are in good agreement with the results of
the analytical solution at the initial stage of time.

Keywords: Dynamic simulation · Gyroscopic rotor · Stiffness anisotropy ·
Damping anisotropy · Non-linear damping

1 Introduction

Although rotor machines have been profoundly researched for a long time, and the
extensive array of literature has been focused on investigation of their dynamics, there
are stillmanyproblems related to vibrations that occur duringmachine start-up, operation
and shut-down. These problems are caused, in particular, by uneven weight distribution,
faults in the supporting structure and the bearings. The restoring and damping properties
and characteristics of the support material are very important in order to stabilize the
motion. In addition to optimal selection of stiffness and optimal damping of the elastic
support, the precise design of the support elements must be reasonably determined to
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ensure reliable machine operation. A precise dynamic calculation of the machine allows
the correct analysis of the elastic support to be carried out.

It is known that linear oscillation damping occurs only near critical speeds, and non-
linear cubic damping, in contrast to linear damping, not only significantly suppresses the
maximum resonant amplitude of the oscillations, but also keeps the vibration isolation
of the system in a wide range of speed of the machine shaft, eliminates jumping effects
[1–9].

Non-linear cubic damping along with the expansion of the vibration isolation area is
also used to control the rotor resonant oscillationswith large amplitudes and to go outside
of the area of instability with the Sommerfeld effects [8] or to weaken and eliminate
these effects [4–10].

In [11] it is demonstrated how the cubic nonlinearity of damping can be distinguished
from other types of nonlinearity, an algorithm for estimating the parameter of cubic
damping nonlinearity is developed.

The vertical deviation of a shaft axis, for example in a gyroscopic rotor, due to the
uneven stiffness and damping of the resilient support material will cause uneven wear
of the gearing and shocks in the drive train. Any resilient support material stiffness and
damping variation consists of the sum of such variations in two directions: opposite
to each other and mutually perpendicular. With the asymmetry of rigidity, there is a
critical velocity corresponding to the mode of increasing the speed and a critical velocity
that occurs when the speed of rotation of the shaft decreases [9]. The support stiffness
variations in two mutually perpendicular directions result in two critical velocities and,
correspondingly, two resonance regions with jump effects in the presence of a non-linear
stiffness component instead of one critical velocity and a resonance region [8, 10], which
is undesirable. This warrants the importance of the dynamic study of the of a gyroscopic
rigid rotor at anisotropy of stiffness and damping of the support material needed in order
to afjust and select the support material with optimal stiffness and damping properties,
resulting in the stable operation of the machine.

2 Equations of Motion. Frequency Responses

We consider a harmonically forced ideal rotary system consisting of a disk, a shaft, and
a support structure (see Fig. 1). The disk has the mass m, the moment of inertia relative
to its rotational axis JP and the moment of inertia relative to its diametrical axis JT . It
is fixed without skewing on the free end of the rigid shaft. The shaft has the length L
and is mounted vertically by means of a bottom hinged and an upper elastic support.
The distance between the supports is l0. The speed of the shaft rotation ϕ̇, is so high
that the rotor can be considered as a gyroscope. The position of the geometric center of
disk S in the stationary coordinate system Oxyz is determined by the coordinates and
the position of the shaft in space is determined by the Euler angles α, β nd the angle of
rotation ϕ. Then we denote the coordinates of the disk center of mass m as xm and ym.
We also assume that the linear eccentricity e lies in the axis N of the coordinate system
ONKZ. If we restrict ourselves to small deviations of the rotor axis, then the coordinate
z can be deemed as equal to z = L = const and excluded from consideration.

Let us express the projections of the angular velocity of the rotor in the coordinate
axes of the systemONKZ, the coordinates of the disk center ofmass and the coordinates of
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Fig. 1. Structural diagram of the rotor.

the upper support through the angular coordinates α, β and ϕ. Thus, we find expressions
for the kinetic energy of the disk, the potential energy, and the generalized Rayleigh
function, given the anisotropy of the stiffness and damping of the elastic support in
two mutually perpendicular directions, and the projections of the momentum of gravity
acting on the rotor.

The natural frequencies (critical speeds) of a non-damped rotor system [8]:

ω1,2 =
√
b̃
/
2 ∓

√
b̃2

/
4 − c̃, (1)

where

b̃ =
(
JT + mL2

)[(
c11l20 − mgL

) + (
c12l20 − mgL

)]
(
JT + mL2

)2 − J 2P
, c̃ =

(
c11l20 − mgL

)(
c12l20 − mgL

)
(
JT + mL2

)2 − J 2P
,

(2)

For numerical calculations, some geometric and dynamic parameters of the gyroscopic
rotor system are borrowed from the experimental setup used in [5]: L = 0.46 m, l0 =
0.33 m, m = 2 kg, c11 = 2 104 N/m, c12 = 2.4 104 N/m, JT = 0.090 kgm2, JP = 0.011
kgm2, e = 0.0193 m.

The intrinsic angular velocity of shaft rotation ω1, calculated using formula (1) and
taking into account expressions (2), in the interval of difference of natural frequencies
[64.95 s−1, 64.48 s−1], can be approximately considered constant and equal to ω1 =
65 s−1. This allows ω1 to be used in the process of bringing the system parameters into
a dimensionless form.
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Let us introduce the following dimensionless parameters of the system:
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(3)

where c11, c12 are linear stiffness coefficients, c31, c32 are non-linear stiffness coeffi-
cients of the support in mutually perpendicular directions, μd11, μd12 are linear viscous
damping coefficients, μd31, μd32 are non-linear cubic viscous damping coefficients in
mutually perpendicular directions, and ω1 is the first natural frequency (first critical
speed) of the non-damped rotor system.

In the absence of anisotropy of elasticity and damping of the support material, this
property can be created using the following methodology. In a steel spring support,
the unevenness of its elastic properties can be realized by adjusting the tension of the
springs in opposite directions or in orthogonal directions. Viscoelastic materials: rubber,
rubber, etc. simultaneously have a damping property. Figure 2 shows the arrangement
of viscoelastic plates on four support cells in cases of uneven of stiffness and damping
in opposite directions (Fig. 2a) and orthogonal directions (Fig. 2b).

Fig. 2. Elastic supports with unevenness of stiffness and damping in opposite directions (a) and
in orthogonal directions (b): 1 - HIPS plate (high impact polystyrene), 2 – Bflex plate, 3 - shaft,
4 – bearing

Non-linear differential equations of the rotor motion, derived from the Lagrange
equations of the second kind, using (3), the assumptions of the second and higher orders
of smallness relatively to α, β, their derivatives, and their combinations ϕ′′ � �2, and
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J p � JT can be represented in dimensionless form:

α′′ + Jp1�β ′ + μ11α
′ + μ31α

′3 + ω2
n1α + C31α

3 = er�
2 cos�t,

β ′′ − Jp1�α′ + μ12β
′ + μ32β

′3 + ω2
n2β + C32β

3 = er�
2 sin�t,

(4)

Where

ωn1 =
√(

C11l2 − G
)
/
(
1 + JT

)
(5)

is the dimensionless natural frequency of the rotor system (4) at, C1 = C11

ωn2 =
√(

C12l2 − G
)
/
(
1 + JT

)
(6)

- is the dimensionless natural frequency of the rotor system (4) at C1 = C12, where
it is assumed that JT � J p.

Values α and β are generalized coordinates, and when these values are low, the
harmonic oscillations at the frequency of the forcing momentum of centrifugal force of
inertia prevail in solutions of system (4). Then we can proceed with solution of system
(4) in the following form:

α = A cos
(
�t + γ

)
, β = B sin

(
�t + δ

)
, (7)

where A,B are oscillation amplitudes in two mutually perpendicular directions, γ, δ

are phase displacement angles between the oscillations of angular coordinates and the
projections of the centrifugal momentum of centrifugal inertia.

Substituting expressions (7) into system (4), using some trigonometric identities and
equating only the coefficients at functions cos�t and sin�t, we obtain a system of four
equations with respect to four variables A,B, γ, δ. From here, introducing the following
notations:
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(
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n1 − �2

)
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2A,
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2B,

e� = er�
2.

(8)

let us present the expressions for the amplitude-frequency dependences as follows:
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(9)
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and let us present the expressions for phase-frequency dependencies as follows:
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3 Results. Amplitude-Frequency Dependencies

Calculations using the formulas (1), (2) and (3) gives the following values of dimen-
sionless parameters: l = 0.72; J p = 0.026; JT = 0.213; G = 0.0051; C11 = 2.37;
C12 = 2.84; er = 0.0346; Jp1 = 0.021; ωn1 = 1, ωn2 = 1.1. Dimensionless parameters
C31 = C32 = 0.1; μ11 = 0.01, 0.02, 0.04; μ12 = 0.01, 0.02, 0.04; μ31 = 0.01, 0.02,
0.04; μ32 = 0.01, 0.02, 0.04 were chosen out of the right physical consideration. Since,
at values C31 = C32 = 0.1 and μ3i = 0.01, 0.02 (i = 1, 2) and μ3i = 0.01, 0.02 (i = 1,
2), the slopes of the resonance curves and jumping effects will be well noticed, at μ3i =
0.04 (i = 1, 2), these effects will already be eliminated.

The results of calculations using formulas (9) and (10) are shown in Figs. 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, and 14. From these plots, the one can see two critical velocities and
two resonance regions corresponding to the values of the linear stiffness of the support
material in two mutually perpendicular directions.

Fig. 3. Amplitude-frequency dependences at
various values of μ11 and constant value of
μ12 = 0.01.

Fig. 4. Amplitude-frequency dependences at
various values of μ31 and constant values of
μ32 = 0.01 of μ11 = μ12 = 0.01.

For each of the twomutually perpendicular directions there are two resonant regions.
At each critical velocity, the resonant region of the main direction is larger in size than
for the second direction. Increase of the linear damping coefficient or the non-linear
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Fig. 5. Amplitude-frequency dependences at
constant value of μ11 = 0.01 and various
values of μ12.

Fig. 6. Amplitude-frequency dependences at
constant values of μ31 = 0.01 and μ11 = μ12
= 0.01 and various values of μ32.

Fig. 7. Amplitude-frequency dependences at
various values of μ11 = μ12.

Fig. 8. Amplitude-frequency dependences at
various values of μ31 = μ32 and constant
value of μ11 = µ12 = 0.01.

cubic damping coefficient (when the linear damping value is constant) for one of the
directions suppresses the resonance curves caused by vibrations of the given direction
and vibrations of the perpendicular direction, but corresponding to the given critical
velocity. A comparative analysis shows that the combined linear and non-linear cubic
damping suppresses themaximumamplitudes of the resonance curvesmore significantly
than linear damping.

The graphs in Figs. 9, 10, 11, 12, 13, and 14 show that with irregularities of linear
stiffness in mutually perpendicular directions and the presence of a nonlinear cubic
component of the stiffness of the flexible support material, the resonant curves of the
main directions have four jumping effects (the figures show two jumping effects). They
can be eliminated more efficiently with an increase in the magnitude of joint linear and
nonlinear cubic damping (see Figs. 10, 12 and 14) compared to linear damping (see
Figs. 9, 11 and 13). It is known that with the isotropy of the linear stiffness of the support
material, the resonance curve can have only two jumping effects.
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To verify the reliability of the results obtained, the results of analytical and numerical
solutions of the equations of motion (4) were compared (see Figs. 15 and 17).

Fig. 9. Amplitude-frequency dependences at
C31 = C32 = 0.1, various values of μ11 and
constant value of μ12 = 0.01.

Fig. 10. Amplitude-frequency dependences at
C31 = C32 = 0.1, various values of μ31 and
constant values of μ32 = 0.01 of μ11 = μ12
= 0.01.

Fig. 11. Amplitude-frequency dependences at
C31 = C32 = 0.1, constant value of μ11 =
0.01 and various values of μ12.

Fig. 12. Amplitude-frequency dependences at
C31 = C32 = 0.1, constant values of μ31 =
0.01 and μ11 = μ12 = 0.01 and various values
of μ32.

Fig. 13. Amplitude-frequency dependences at
C31 = C32 = 0.1, various values of μ11 =
μ12.

Fig. 14. Amplitude-frequency dependences at
C31 = C32 = 0.1, various values of μ31 =
μ32 and constant value of μ11 = µ12 = 0.01.

Comparative analysis shows the proximity of these results at the initial stage of time
and a decrease in their convergence over time, this is especially noticeable in the graphs
β = β

(
t
)
(see Fig. 17). The suppression of the amplitudes of the angular coordinate

waveforms obtained by the numerical method, as the value ofμ32 increases (see Figs. 16
and 18), also proves the correctness of the analytically obtained conclusions. Analytical
and numerical solutions of Eqs. (4) were carried out for the following parameters: � =
1.0067; C31 = C32 = 0; μ31 = 0.01, 0.02, 0.04; μ32 = 0.01; μ11 = μ12 = 0.01.



Dynamic Simulation of Gyroscopic Rigid Rotor 347

Fig. 15. Oscillograms α = α
(
t
)
plotted based

on analytical and numerical solutions of
equations at values μ31 = 0.02, μ32 = 0.01
and μ11 = μ12 = 0.01.

Fig. 16. Oscillograms α = α
(
t
)
plotted based

on numerical solutions of equations of motion
at various values of μ31 and constant values of
μ32 = 0.01 and μ11 = μ12 = 0.01.

Fig. 17. Oscillograms β = β
(
t
)
, plotted

based on analytical and numerical solutions of
equations of motion at values μ31 = 0.02, μ32
= 0.01 and μ11 = μ12 = 0.01.

Fig. 18. Oscillograms β = β
(
t
)
plotted based

on numerical solutions of equations of motion
at various values of μ31 and constant values of
μ32 = 0.01 and μ11 = μ12 = 0.01.

4 Conclusion

The differential equations of motion of a gyroscopic rigid rotor taking into account
the anisotropy of restoring and damping properties of the elastic support material are
constructed and solved analytically by the harmonic balance method.

If the linear stiffness of the elastic support material differs in two mutually per-
pendicular directions, two critical velocities and corresponding resonant regions are
found.

At each critical velocity, the area of the resonance curve of the main direction is
greater than the area of the resonance curve of the perpendicular direction.

In the case of the presence of a non-linear component of the rigidity of the support
material, the resonant phenomena of the main directions are accompanied by jumping
effects.

Joint linear and non-linear damping suppresses the resonance amplitudes of each
direction more significantly than linear damping.

The results of analytical and numerical solutions wa the equations of motion of the
rotor are in good agreement with each other at the initial stage of time.
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