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Abstract. This paper presents a structural-parametric synthesis of the four-bar
and Stephenson II, Stephenson III six-bar function generating linkages. Four-bar
linkage is formed by connecting two coordinate systems with given angles of
rotation using a negative closing kinematic chain (CKC) of the RR type. Six-bar
linkages are formed by connecting two coordinate systems using two CKCs: a
passive CKC of the RRR type and a negative CKC of the RR type. The negative
CKC of the RR type imposes one geometrical constraint to the relative motion of
the links, and its geometric parameters are defined by least-square approximation.
Passive CKC of the RRR type does not impose a geometrical constraint, and the
geometric parameters of its links are varied.

Keywords: Function generator · Structural-parametric synthesis · Least-square
approximation

1 Introduction

The first studies on the design of function generating linkages are due to A. Svoboda [1,
2], who designed aWatt II function generator for generation of the logarithmic function.
Kinematic synthesis (dimensional or parametric synthesis) of mechanisms, including
functiongenerating linkages, is carriedout on thebasis of the kinematic geometry offinite
positions of a rigid body, approximation methods (polynomials) and computers [3]. The
kinematic geometry of finite positions of a rigid body, which in the case of plane motion
is known as the Burmester theory [4] is used for the synthesis of function generators in
the works of Hunt [5], Bottema and Roth [6], Angeles and Bai [7, 8], Pira and Cunaku
[9],McCarthy and Soh [10] and others. Synthesis of mechanisms by kinematic geometry
is clarity and simple. However, these methods are applicable for a limited number of
positions. For the kinematic synthesis of mechanisms with unlimited positions of the
output links, the approximation methods are used, the foundations of which were laid
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by Chebyshev [11]. Approximation (algebraic, optimization) methods for the kinematic
synthesis of four-bar and six-bar function generators Watt II, Stephenson II, Stephenson
III were used in the works of Freudenstein [12], Hartenberg and Denavit [13], McLarnan
[14], Kiper [15], Hwang and Chen [16], Bulatovic et al. [17], Plecnik and McCarthy
[18–20] and others. In [18–20] the polynomial homotopic software Bertini [21] was
used.

At the intersection of kinematic geometry and approximation synthesis, a new direc-
tion in the kinematic synthesis of mechanisms: approximation kinematic geometry, has
been created; Sarkissyan, Gupta, Roth [22–24]. Based on approximation kinematic
geometry by Baigunchekov, Laribi, Carbone, et al. [25, 26] the parallel mechanism
and manipulator are synthesized. In this work, a structural-parametric synthesis of four-
bar and six-bar function generators is carried out, where the structures and geometric
parameters of the links of the synthesized mechanisms are determined in arbitrary given
discrete values of the input and output links angles.

2 Structural Synthesis of the Planar Four-Bar and Six-Bar
Function Generators with Revolute Joints

According to the developed principle of mechanism formation, they are formed by
connecting the output object to the base using active, passive and negative CKCs [25].

The output object of a function generating linkage is a link that performs a given
rotary or translational motion relative to the base at a given motion of the input link. Let
the input link and the output object perform rotational movements. We choose as the
input and output links, the coordinate systems Ax1y1 and Bx2y2, rotating relative to the
base with rotation angles ϕi and ψi (Fig. 1 a).

If we connect the planes of two moving coordinate systems Ax1y1 and Bx2y2 by a
negative CKC CD of the binary link RR type, then we get a structural diagram of four-
bar function generator ACBD. The connection of the planes of two moving coordinate
systems Ax1y1 and Bx2y2 by the binary link CD of the type RR is possible when the
plane of the moving coordinate system Bx2y2 has a circular point (a point moving along
a circle) D in relative motion to the coordinate system Ax1y1, or vice versa, i.e. when
there is a circular point C in the plane of the coordinate system Ax1y1 in relative motion
with respect to the coordinate system Bx2y2.

If none of the planes of the moving coordinate systems Ax1y1 and Bx2y2 do not
have circular points in relative motion, then the planes of the two coordinate systems
are connected by a passive CKC CDE of the RRR type dyad. As a result, we obtain
a structural diagram of the five-bar mechanism ACDEB with two degrees of freedom
(Fig. 1b).

To form six-bar function generators from this five-bar linkage we connect its non-
adjacent links by a binary linkFG of the typeRR, having one negative degree of freedom,
defined by Chebyshev formula [27].

F = 3n− 2p5, (1)

where n = 1 is the number of moving link, p5 = 2 is the number of kinematic pairs of
the fifth class, then F = −1.
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Fig. 1. Structural synthesis of planar function generators

Consequently, the negative CKC FG, imposing one geometrical constraint on the
five-bar linkages with two DOF, forms six-bar function generators with one DOF. Fig-
ures 1c–f show the structural diagrams of the formed six-bar function generators. If links
1 and 2 of the five-bar linkage are connected by a binary link FG, we get a Stephenson
I mechanism. If links 3 and 2 of the five-bar linkage are connected by a binary link FG,
we get a Stephenson II mechanism. When a link 3 of the five-bar linkage is connected
to the base by a binary link FG, we get a Stephenson III mechanism. When link 4 of the
five-bar linkage is connected to the base by a binary link FG, we get a different type of
six-bar function generator.

3 Parametric Synthesis of a Four-Bar Function Generator

Let given the function

ψi = f (ϕi), (2)

where i= 1,2,…,N; N is the number of finite positions of the movable planes Ax1y1 and
Bx2y2. It is necessary to determine the synthesis parameters (geometric parameters) of
the four-bar function generator that implements function (2). The synthesis parameters
are: x(1)

C , y(1)
C , x(2)

D , y(2)
D and lCD, where x

(1)
C , y(1)

C and x(2)
D , y(2)

D are the coordinates of the
joints C and D in coordinate systems Ax1y1 and Bx2y2, respectively, lCD is the length of
the CD link.

Consider the movement of the coordinate system Bx2y2 relative to the coordinate
system Ax1y1. In this case, point D moves along a circle centered at point C and with
radius lCD. Let’s derive an equation

(x(1)
Di

− x(1)
C )2 + (y(1)

Di
− y(1)

C )2 − l2CD = 0, (3)
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where [
x(1)
Di

y(1)
Di

]
=

[
cosϕi sin ϕi

− sin ϕi cosϕi

]
·
[
XDi

− XA

YDi
− YA

]
, (4)

[
XDi

YDi

]
=

[
XB

YB

]
+

[
cosψi − sinψi

sinψi cosψi

]
·
[
x(2)
D

y(2)
D

]
. (5)

Equation (3) is an equation of a geometrical constraint imposed by a binary link
CD of the type RR on the movements of two moving coordinate systems Ax1y1 and
Bx2y2. The left side of Eq. (3) will be denoted by�qi and called the weighted difference
function

�qi = (x(1)
Di

− x(1)
C )2 + (y(1)

Di
− y(1)

C )2 − l2CD. (6)

Parametric synthesis of a four-bar function generator is to determine five geometric
parameters x(2)

D , y(2)
D , l2CD from the minimum of function (6).

Substituting expressions (4) and (5) into Eq. (3), we obtain

�qi = 2{[−(XA − XA) cosϕi − (YB − YA) sin ϕi] · x(1)C + [(XB − XA) sin ϕi − (YB − YA) cosϕi] · y(1)C

+[ 1
2
(x(1)

2

C + y(1)
2

C + x(2)
2

D + y(2)
2

D − l2CD)] + [(XB − XA) cosψi + (YB − YA) sinψi] · x(2)D

+[−(XB − XA) sinψi + (YD − YA) cosψi] · y(2)D + [− cos(ψi − ϕi) · (x(1)C · x(2)D + y(1)C · y(2)D )]
+ [sin(ψi − ϕi) · (x(1)C · y(2)D − y(1)C · x(2)D )] + 1

2
[(XB − XA)2 + (YB − YA)2 ]}.

(7)

If we introduce the notations

p1 = x(1)C , p2 = y(1)C , p3 = 1

2
(x(1)

2

C + y(1)
2

C + x(2)
2

D + y(2)
2

D − l2CD), p4 = x(2)D , p5 = y(2)D ,

f1i = −(XB − XA) cosϕi − (YB − YA) sin ϕi, f2i = (XB − XA) sin ϕi − (YB − YA) cosϕi,

f3 = 1, f4i = (XB − XA) cosψi − (YB − YA) sinψi, f5i = −(XB − XA) sinψi + (YB − YA)2 cosψi,

f6i = − cos(ψi − ϕi), f7i = sin(ψi − ϕi), f0i = − 1

2
[(XB − XA)2 + (YB − YA)2],

then Eq. (7) takes the form

�qi = 2[p1 · f1i + p2 · f2i + p3 · f3 + p4 · f4i + p5 · f5i
+(p1 · p4 + p2 · p5) · f6i + (p1 · p5 − p2 · p4) · f7i − f0i].

(8)

Equation (8) is linear in the following two groups of synthesis parameters

p(1) = [p1, p2, p3]T ,p(2) = [p4, p5, p3]T (9)

and is represented in two linear forms

�q(1)
i

= 2[p1(f1i + p4 · f6i + p5 · f7i) + p2(f2i + p5 · f6i − p4 · f7i)
+p3 · f3] + [p4 · f4i + p5 · f5i − f0i]

(10)
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and

�q(2)
i

= 2[p4(f4i + p1 · f6i − p2 · f7i) + p5(f5i + p2 · f6i + p1 · f7i)
+p3 · f3 + [p1 · f1i + p2 · f2i − f0i].

(11)

Let us introduce the notations

g(1)
1i = [g(1)

1i , g(1)
2i , g(1)

3i ]T , g(2)
1i = [g(2)

1i , g(2)
2i , g(2)

3i ]T ,

where

g(1)
1i = f1i + p4 · f6i + p5 · f7i, g(1)

2i = f2i + p5 · f6i − p4 · f7i, g(1)
3i = p3 · f3,

g(2)
1i = f4i + p1 · f6i − p2 · f7i, g(2)

2i = f5i + p2 · f6i + p1 · f7i, g(2)
3i = p3 · f3,

g(1)
0i = p4 · f4i + p5 · f5i − f0i, g

(2)
0i = p1 · f1i + p2 · f2i − f0i.

Then Eqs. (10) and (11) take the form

�q(k)
i

= 2(g(k)T

i · p(k) − g(k)
0i ), k = 1, 2. (12)

To determine the vectors p(k) of synthesis parameters, we minimize function (12)
by the least square optimization, i.e. derive the sums

S(k) =
N∑
i=1

(�q
(k)

i
)2 (13)

and consider the necessary conditions for the minimum of function (13) over two groups
of synthesis parameters p(k):

∂S(1)

∂p1
= 0,

∂S(1)

∂p2
= 0,

∂S(1)

∂p3
= 0 (14)

and

∂S(2)

∂p4
= 0,

∂S(2)

∂p5
= 0,

∂S(2)

∂p3
= 0. (15)

Conditions (14) and (15) lead to the following two systems of linear equations for
two groups of synthesis parameters

D(1) · p(1) = d(1) (16)

and

D(2) · p(2) = d(2), (17)

where

D(1) =
N∑
i=1

⎡
⎢⎣ g(1)2

1i g(1)
1i · g(1)

2i g(1)
1i

g(1)
1i · g(1)

2i g(1)2

2i g(1)
2i

g(1)
1i g(1)

2i 1

⎤
⎥⎦, d(1) =

N∑
i=1

⎡
⎢⎣g(1)

1i · g(1)
0i

g(1)
2i · g(1)

0i

g(1)
0i

⎤
⎥⎦, (18)
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D(2) =
N∑
i=1

⎡
⎢⎣ g(2)2

1i g(2)
1i · g(2)

2i g(2)
1i

g(2)
1i · g(2)

2i g(2)2

2i g(2)
2i

g(2)
1i g(2)

2i 1

⎤
⎥⎦, d(2) =

N∑
i=1

⎡
⎢⎣g(2)

1i · g(2)
0i

g(2)
2i · g(2)

0i

g(2)
0i

⎤
⎥⎦. (19)

It is easy to show that the Hessian of matrices D(1) and D(2) is positive definite
together with the principal minors [23], and then the solutions of the systems of linear
Eqs. (16) and (17) correspond to the minimum of function (13). Therefore, for given
values of the vector parameters p(2) = [p4, p5, p3]T , the vector parameters p(1) =
[p1, p2, p3]T are determined by solving the system of linear Eq. (16). Based on the
obtained values of the vector parameters p(2), the vector parameters p(1) are determined
from the system of linear Eq. (16). In this case, the sequence of function S(k) values will
be decreasing and have a limit as a sequence bounded from below. This allows using the
linear iteration method based on kinematic inversion to solve the quadratic optimization
problem.

4 Parametric Synthesis of the Six-Bar Function Generators

Parametric synthesis of six-bar function generators (Fig. 1c–f) consists of the paramet-
ric synthesis of the passive CKC CED and the negative CKC FG. Synthesis param-
eters of the passive CKC CED of all six-bar function generators (Fig. 1c–f) are
x(1)
C , y(1)

C , x(2)
D , y(2)

D , lCE, lED, where x(1)
C , y(1)

C and x(2)
D , y(2)

D are the coordinates of the
joints C and D in the coordinate systems Ax1y1 and Bx2y2 of the links 1 and 2, respec-
tively, lCE and lED are the lengths of theCE andED links. Since the passive CKCCED of
the typeRRR has zero degree of freedom and it does not impose a geometrical constraint
on the motion of the coordinate systems Ax1y1 and Bx2y2, the geometric parameters of
their links are varied, and the synthesis parameters of the negative CKC FG are approx-
imated. For the parametric synthesis of Stephenson II (Fig. 1d), Stephenson III (Fig. 1e)
function generator shown in Fig. 1f, we determine the positions of the links CE and ED
of the passive CKC CED by the equations

ϕ3i = ϕ(CD)i + cos−1
l2CE + l2(CD)i

− l2ED
2lCE · l(CD)i

, (20)

ϕ4i = tg−1 YEi − YDi

XEi − XDi

, (21)

where

l(CD)i
= [(XDi

− XCi
)2 + (YDi

− YCi
)2] 12 , (22)

ϕ(CD)i = tg−1 YDi − YCi

XDi − XCi

, (23)

[
XCi

YCi

]
=

[
XA
YA

]
+

[
cosϕi − sin ϕi

sin ϕi cosϕi

]
·
[
x(1)
C

y(1)
C

]
, (24)
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[
XDi

YDi

]
=

[
XB
YB

]
+

[
cosψi − sinψi

sinψi cosψi

]
·
[
x(2)
D

y(2)
D

]
. (25)

The synthesis parameters for the negative CKC FG of the Stephenson I mecha-
nism (Fig. 1c) are x(1)

F , y(1)
F , x(2)

G , y(2)
G , which are determined similarly to the parametric

synthesis of the four-bar function generator (Fig. 1a). Therefore, the functionality of
the Stephenson I mechanism is the same as the functionality of the four-bar function
generator.

The synthesis parameters for the negative CKC FG of the Stephenson II function
generator (Fig. 1d) are x(3)

F , y(3)
F , x(2)

G , y(2)
G , lFG , where x(3)

F , y(3)
F and x(2)

G , y(2)
G are the

coordinates of the joints F and G in coordinate systems Cx3y3 and Bx3y3 of the links 3
and 2, respectively. For parametric synthesis of the link FG, we consider the movement
of the coordinate system Bx3y3 relative to the coordinate system Cx3y3 and derive the
equation of the geometrical constraint

(x(3)
Gi

− x(3)
F )2 + (y(3)

Gi
− y(3)

F )2 − l2FG = 0, (26)

where [
x(3)
Gi

y(3)
Gi

]
=

[
cosϕ3i sin ϕ3i

− sin ϕ3i cosϕ3i

]
·
[
XGi

− XCi

YGi
− YCi

]
, (27)

[
XGi

YGi

]
=

[
XB
YB

]
+

[
cosψi − sinψi

sinψi cosψi

]
·
[
x(2)
G

y(2)
G

]
. (28)

Further, the synthesis parameters of the link FG are determined similarly to the
determination of the synthesis parameters of the linkCD of a four-bar function generator.

The synthesis parameters for the binary link FG of the Stephenson III function
generator (Fig. 1e) and the mechanism shown in Fig. 1f are x(3)

F , y(3)
F - for the Stephenson

III mechanism and x(4)
F , y(4)

F - for the mechanism shown in Fig. 1f, and XG,YG, lFG are

for both mechanisms, where x(3)
F , y(3)

F and x(4)
F , y(4)

F are the coordinates of the joint F in
the coordinate systems Cx3y3 andDx4y4, respectively, XG and YG are the coordinates of
the joint G in the absolute coordinate system OXY. For the parametric synthesis of the
link FG of the Stephenson III function generator and the mechanism shown in Fig. 1f,
we derive the following geometrical constraint equation

(XFi − XG)2 + (YFi − YG)2 − l2FG = 0, (29)

where for the Stephenson III function generator[
XFi
YFi

]
=

[
XCi

YCi

]
+

[
cosϕ3i − sin ϕ3i

sin ϕ3i cosϕ3i

]
·
[
x(3)
F

y(3)
F

]
, (30)

for the mechanism shown in Fig. 1f:[
XFi
YFi

]
=

[
XDi

YDi

]
+

[
cosϕ4i − sin ϕ4i

sin ϕ4i cosϕ4i

]
·
[
x(4)
F

y(4)
F

]
. (31)
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Further, the synthesis parameters of the binary link FG are determined similarly to
the parametric synthesis of the four-bar function generator.

5 Conclusion

Structural synthesis of four-bar and six-bar function generators with revolute joints has
been carried out. A four-bar function generator is formed by connecting two rotating
coordinate systems with given rotation angles using a binary link of the type RR, which
is a negative CKC that imposes one geometrical constraint. Six-bar function generators
are formed by connecting these two rotationally moving coordinate systems using a
passive CKC of the type RRR and by connecting non-adjacent links of the resulting
five-bar linkage by binary link of the type RR. As a result, Stephenson I, Stephenson II,
Stephenson III function generators were formed. Passive CKC of the type RRR does
not impose a geometrical constraint on the movement of twomoving coordinate systems
and its geometric parameters are varied. Geometric parameters of the negative CKC of
the type RR are determined by least-square approximation. In this case, the least-square
approximation problem is reduced to a simple kinematic inversion problem based on
linear iteration.
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and High Education of Kazakhstan (Grant No AP14872115 “Development and research of the
novel tripod type parallel manipulators with six degrees of freedom”).
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