®

Check for
updates

Integrating Implicit Feedback into Crowd
Requirements Engineering — A Research
Preview

Leon Radeck®™ and Barbara Paech

Institute for Computer Science, Heidelberg University, 69120 Heidelberg, Germany
{radeck,paech}@informatik.uni-heidelberg.de

Abstract. [Context/Motivation] In crowd requirements engineering, users are
asked specific questions (explicit pull feedback) to elicit requirements. Existing
approaches collect explicit pull feedback by asking the same questions to all
users. [Problem] Not all questions are meaningful for all users, e.g. regarding
a functionality they have not yet used. Furthermore, without knowing the user
behaviour giving rise to the feedback, it is difficult to understand the reasons for
the feedback. These reasons are important for deriving requirements. [Principal
ideas] Our idea is to use the user behaviour (implicit feedback) to adapt the col-
lection of explicit pull feedback and the derivation of requirements. We embed
this collection of explicit pull feedback into a novel approach that makes use of
arich palette of discussion elements from crowd-based requirements engineering
to motivate user participation and to support requirements derivation. [Contribu-
tion]. To our best knowledge, this is the first approach that combines the collection
of implicit feedback and explicit feedback with discussion elements from crowd-
based requirements engineering. We sketch our approach and our research and
evaluation plan regarding the application of the approach in the context of the
interdisciplinary and large-scale research project SMART-AGE with around 500
users.

Keywords: Requirements engineering - Crowd - User feedback - Implicit
feedback

1 Introduction

User feedback is essential for the continuous development of software, because it con-
tributes substantially to the elicitation of requirements. Traditional methods of collecting
user feedback, such as interviews or workshops, are only feasible with a limited number
of users as they are very time-consuming. As the number of users increases, the use of
(semi-) automated methods becomes more relevant. These methods do not require the
presence of the persons involved, but can be performed remotely and by many stake-
holders at the same time [5]. Crowd-based requirements engineering (CrowdRE) is an
umbrella term for such approaches to gather and analyse feedback from a large num-
ber of users, also called “crowd”, to derive validated user requirements [4]. Collecting

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 283-292, 2023.
https://doi.org/10.1007/978-3-031-29786-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_20

284 L. Radeck and B. Paech

explicit push feedback (feedback intentionally pushed by the user) is one main app-
roach in CrowdRE [15]. Another main approach in CrowdRE is to request users to give
explicit pull feedback about the product by asking them questions (e.g. “How satisfied
are you with product?”, “What are your ideas on how to improve the product?”) [15].
The problem is that not every question is always suitable for every user. Users who
receive a question about a functionality that they have not used yet, cannot answer the
question. In addition, it is difficult for requirements engineers to understand the reasons
for the feedback without knowing the user behaviour, which led to the feedback. Our
idea is to integrate the capture and analysis of the user behaviour (implicit feedback) into
CrowdRE to adapt the collection of explicit feedback and the derivation of requirements.

In this paper, we present our approach CREII (Crowd-based Elicitation with Inte-
grating Implicit Feedback) that employs the tool SMARTFEEDBACK (SF) to tailor the
collection of explicit pull feedback to an individual user’s usage behaviour. To motivate
user participation and to allow for requirements derivation, SF further integrates vari-
ous established discussion elements from CrowdRE [15]. Users can comment and vote
answers in real-time by the use of a discussion platform, they can classify and prioritize
explicit feedback, they can indicate a representative sentiment for their feedback and they
can discuss about requirements (see Table 1). We also describe the application of CREII
in the context of the interdisciplinary and large-scale research project SMART-AGE. In
particular, we describe preliminary research in the form of a pilot test, the research plan
for the employment of CREII in the main study and our ideas for evaluation. This paper
is organized as follows: Sect. 2 gives a brief overview of SMART-AGE and the relevant
terminology. Section 3 presents related work. Section 4 describes our approach, and
Sect. 5 presents how the approach is applied in SMART-AGE, in particular preliminary
research, our research and evaluation plan.

2 Project SMART-AGE and Terminology

SMART-AGE. Recent findings on the role and potential of apps for older adults’ quality
of life are encouraging. Major examples for these apps are solutions that address social
engagement and networking, health and disease prevention, and training and fitness. The
5-year project “Smart Aging in Community Contexts: Testing Intelligent Assistive Sys-
tems for Self-regulation and Co-regulation under Real-Life Conditions” (SMART-AGE)
is in its core a complex intervention trial aimed at evaluating different constellations of
apps. These apps are used by around 500 study participants from two communities in
Southwestern Germany (Heidelberg and Mannheim). In this project, we gather feed-
back for three tablet-based apps, namely (1) an app promoting social networking and
social participation (SMARTVERNETZT), (2) an app providing health advice focusing
on major areas of older adults’ health and functioning (SMARTIMPULYS) and, (3) an app
to tailor the collection of explicit pull feedback to an individual user’s usage behaviour
(SMARTFEEDBACK). The gathered user feedback is privacy relevant, as both, voice
messages in the explicit feedback and interaction data in the implicit feedback may
allow identifying a person. Therefore, we obtain declarations of consent from the study
participants. We describe our vision of a CrowdRE process adapted to the needs of older
adults and the challenges in implementing our approach in the context of SMART-AGE
in more detail in [11].

Integrating Implicit Feedback into Crowd Requirements Engineering 285

Terminology. In the following, we distinguish feedback pushed by the user (push) or
pulled from the user (pull), and feedback given with the intent to give feedback (explicit)
or given unintentionally (implicit) [8]. Explicit push feedback are either messages or
comments. Explicit pull feedback are answers to questions. Implicit pull feedback are
usage data (e.g. clicks on user interface). Private feedback are messages and answers
from the users, which are only visible to the researchers. Shared feedback are answers
from the users that are visible to everyone. Implicit push feedback (e.g. comments made
by users about the apps during a conversation, that is not happening over SF) is not
considered in our approach, as users are instructed to give their feedback via SF only.

3 Related Work

According to the mapping study [13], in approaches up to 2017 mainly explicit feedback
is collected and used to derive requirements. Approaches that have collected implicit
feedback have used it to estimate service performance or to compute user profiles [13]
but not to combine it with explicit feedback. There are more recent approaches that
are not included in the study, but combine explicit and implicit feedback. CAFE [2]
enriches explicit push feedback with implicit feedback to facilitate the interpretation of
the explicit push feedback. CAFE shows the requirements engineer what screens the
user visited, what Ul elements the user interacted with prior to giving feedback, as well
as hardware information (e.g. operation system and device model). CAFE, however,
does not give examples on how exactly the interpretation of explicit push feedback is
facilitated by the enrichment with implicit feedback. FAME [9] combines implicit and
explicit push and pull feedback through an ontology. The ontology links explicit push
and pull and implicit feedback by user, timestamp, application and domain concept.
The ontology is presented to the requirements engineer, which allows the requirements
engineer to get a better understanding of the explicit push and pull feedback and to
prioritize requirements derived from the feedback FAME does not use implicit feedback
to adapt pull feedback questions. QoE probe [3] and Wuest et al. [16] introduce explicit
pull feedback based on implicit feedback. QoE logs the user ID, timestamps of events
on feature level (e.g. starting or completing a feature) and user interaction level (e.g.
user input or an application output) and then triggers a feedback collection form with
the option to answer a question about the users satisfaction and the reasons for the
user behaviour. Wuest et al. [16] triggers feedback collection based on user goals in the
context of a navigation system. An example for a goal is that the user reached her target
destination. This is automatically recognized in the implicit feedback, when the users
GPS coordinates match those of the destination, and then explicit pull feedback through
a feedback form is triggered. We adapt this in CREII, where we trigger explicit pull
feedback when the user does not behave according to the defined ideal usage behaviour.
While all of the mentioned approaches combine implicit and explicit feedback, none of
them integrates discussion elements from crowd-based requirements engineering (see
Table 1) to support user participation and requirements derivation.

286 L. Radeck and B. Paech

4 Crowd-Based Requirements Elicitation Via the CREII Method

In the following, we describe our approach CREII (Crowd-based Elicitation Integrating
Implicit Feedback) that employs the tool SF to collect feedback and supports the deriva-
tion of requirements. The process is shown in Fig. 1. We first give a brief explanation
of Fig. 1 and then we describe the collection of pull feedback based on usage behaviour
by using adaptive questions (Sect. 4.1). After that, we describe our plan for bundling
similar feedback (Sect. 4.2) and the derivation of requirements (Sect. 4.2) in more detail.
An explanation of the steps of CREII with examples is given in Table 1.

Feedback collection about apps

Feedback c_o]]ection Requirements
"{ Usage data is recorded } Feedback about requirements derivation and
L R3 refinement
U1 @ N Implicit Pull REngs ask users
; tions about
REngs ask questions about — q?es irem z?u
2 apps Usage data cquirements
5] v =i U4
2 U2 — <J[[Users answer questions
Ed [Users answer questions 1 Explicit pull 0
= [REngs derive
E ¥ ~N Answers to {URS y - i
- Users comment and vote and questions Or‘re ne
5 REngs comment answers and Users comment and vote and requirements
3 messages about apps . REngs comment answers and
Explicit push messages about requirements v
Rl :
votes equirements [~
uo)
Users send messages M Users send messages
about apps cssages about requirements
T Zy

Fig. 1. Diagram representing the process of collecting feedback about apps and requirements, as
well as requirements derivation and refinement. Activities in green are executed by users, activities
in blue are executed by requirements engineers. Implicit pull feedback and associated arrows are
red. Everything else is black.

After the users begin to use the apps (U1), they can provide feedback about the apps
by sending messages to the requirements engineers (U4) or they can answer questions
about the apps (U2), that the requirements engineers have asked (R1). The require-
ments engineers ask different types of questions. They ask questions to collect opinions,
improvement ideas and problems with the apps and they pose adaptive questions that ask
for reasons for the observed implicit feedback of the users and corresponding improve-
ment ideas (see Sect. 4.1). The questions can address the app itself, as well as functional
and non-functional requirements of the app. After the users have answered questions
about the apps, they can comment and vote other answers to the same questions, as far
as other users shared their answers (UR3). We stipulate that this discussion possibility
enhances the motivation to the user to give feedback. The requirements engineers can
also comment the answers to questions and messages about apps to thank the users
for their feedback and to ask for clarification (UR3). The users can comment back on
messages that they sent (UR3). The requirements engineers do not vote on answers,
because they do not want to influence the opinion of the users. Furthermore, we explic-
itly do not allow users to comment on answers of questions that they did not answer

Integrating Implicit Feedback into Crowd Requirements Engineering 287

by themselves, because we believe a minimum level of commitment is necessary to
have a meaningful discussion. Based on the collected explicit and implicit feedback,
the requirements engineers derive and refine requirements (R2). These requirements are
presented to the users and users are asked about their opinions (R3). Implicit feedback is
used during the derivation, to make sure that users receive only questions about require-
ments for apps, that they have accessed. To support requirements derivation, users can
answer the questions about the requirements (U4), send messages about the require-
ments to the requirements engineers (U6), and comment and vote on the requirements.
The requirements engineers can comment answers and messages about requirements
in the same way as answers and messages about apps (URS5). Based on the feedback
about the requirements, the requirements engineers derive new requirements and refine
existing requirements (R2). Whenever users give feedback, they have the opportunity to
assign a priority (low, medium, high) to the feedback and a sentiment (very dissatisfied,
dissatisfied, neutral, satisfied, very satisfied). These two attributes can be used by the
requirements engineers to bundle feedback (see Sect. 4.2). The users can also indicate
whether to share the feedback with other users or whether to give the feedback privately
to the researchers. This is important because certain users place high value on privacy
[12].

4.1 Collecting Pull Feedback by Using Adaptive Questions

Adaptive questions ask for reasons for the observed implicit feedback of the users and
corresponding improvement ideas. The process of asking adaptive questions for the app
SMARTIMPULS is illustrated in Fig. 2.

The user with user id “Userl” starts interacting with the app (A). The resulting
implicit feedback is sent to SF (B). The implicit feedback consists of the ID of the user
(UserID), the app that was used (App), the event that happened (Event — e.g. CLICK
for clicking on a user interface element or START for starting the app), the context of
the event (Context — e.g. which user interface element was clicked on), a foreign ID
referencing an entity of the app that was used (FID — e.g. the ID of the answer) and the
data to which the event was created (Created). SF receives the implicit feedback and saves
it to the database (C). SF now periodically loads the history of the implicit feedback (D)
and checks whether it does not represent the ideal usage behaviour of SMARTIMPULS
(E). The ideal usage behaviour is configured initially by the requirements engineers. It
consists of different metrics, e.g. the ideal usage frequency of the app, the ideal usage
duration of the app and the ideal answer rate to questions, as in SMARTIMPULS the
user has to answer certain questions about his or her health. Checking for ideal usage
behaviour means calculating the metrics based on the history of implicit feedback (e.g.
accumulating the time difference between START and STOP events per day, to get the
usage duration per day) and then comparing it to the expected ideal behaviour (10 min per
day). The check happens once per day. If the implicit feedback does not represent ideal
usage behaviour, the user receives an adaptive question (F), which asks for the reason
and for improvement ideas. Adaptive questions are only asked again after some time
has passed, so that the user does not feel disturbed. When collecting pull feedback with
adaptive questions (for an example, see Q2 in Table 1), we combine asking for the reason
of a users’ usage behaviour with asking for an improvement idea, because knowing the

288

L. Radeck and B. Paech

Table 1. Explanation of steps of CREII with examples

Step Step description Action (Q = Question, A = Answer, C = Comment,
(discussion elements | M = Message)
are underlined)
R1 Requirements Q1I: How could SMARTIMPULS be improved in your
engineers ask opinion?
questions Q2 (adaptive): Why do you not use SMARTIMPULS
every day”
U2 Users answer QIAI: It would help to be reminded to answer
questions questions
Q2A1: 1 find the questions not suitable for me
UR3 Users comment and Some users vote for Q1A 1, some users vote for Q2A1
vote QIAICI: “I"d like to be reminded every day.”
UR3 Requirements QIAIC2: “Thank you very much for your input.”
engineers comment Q2AI1CI: “Why are the questions not suitable for you?
U4 Users send messages | M1: The letters of the app are too small for me to read
R2 Requirements From Q/AI a new system function “Remind user to
engineers derive and | answer questions” is extracted. By QIAIC1 the SF is
refine requirements detailed by adding a rule about the frequency of
reminding. M1 details the NFR Accessibility
R3 Requirements To validate the SF, the question Q3 “How would you
engineers ask like a new functionality in SMARTIMPULS that
questions about reminds you every day to answer questions? Please
requirements explain your judgement?” is asked
To validate M1, the question Q4 “How would you like
an increased font size in SMARTIMPULS? Please
explain your judgement?” is asked
U4 Users answer Q3AI: “I would love that, because I am a bit
questions forgetful.”
Q3A2: “I am a bit sceptic.”
Q4A1I: “That’s a good idea, then I use the app without
my glasses.”
URS Users comment and Some users vote for Q3A 1, some user vote for Q3A2
vote Q3A2CI: “Me too, I don’t know if that helps”
URS Requirements Q3A2C2: “Thanks for giving feedback. Why are you
engineers comment sceptic?”’
U6 Users send messages | M2: I don’t want to tell it publicly, but I think

reminders about answering questions would stress

”

me.

reason alone might not be enough to derive a requirement. Adaptive questions can avoid
asking users for feedback before the users have gained minimal experience with the app

Integrating Implicit Feedback into Crowd Requirements Engineering 289

® jmmmmmmm i m— . Implicit feedback (usage behavior)
a» |—Interact—pi & -Send
\’_L'_ S_nlar_tll\/l_PEJI:S_ p— UserID App Event Context FID Created
. . Userl smart START A - 04.11.22
Ask adaptive question IMPUL PP 09:01:58
R) s uTC
& <—sae 1 (@ smartFEEDBACK ! ¢——| Userl smart CLICK Button:: 2 04.11.22
- L ! IMPULS Submit 09:02:00
C Answer UTC
Database
EI Userl smart STOP App - 04.11.22
Load history of implicit feedback IMPULS 09:02:02
UTC
History of implicit
El feedback -
Ideal usage behavior & smartIMPULS
Check if history of implicit feedback does not
represent ideal usage behavior Ideal usage frequency per day: once
[] i) Ideal usage duration per day: 10 minutes
R; s Configures in smartFEEDBACK »| Ideal answer rate to questions: 90%

Legend: 1Software;

Fig. 2. Diagram representing the process of asking adaptive questions.

or functionality, which would be disturbing [15]. In SMART-AGE, each user joins the
study at a different time. We give the users a few days to get familiar with the apps and
then start asking the questions relative to the users’ start date.

4.2 Bundling of Explicit Feedback

The more explicit feedback is collected, the greater the likelihood that feedback will be
similar. To save effort, we bundle similar feedback on the basis of its attributes before
deriving requirements. Table 2 shows attributes that we deem useful for bundling.

Table 2. Attributes of feedback used for bundling (R = Specified by requirements engineer, U =
Specified by user, A = Automatically recorded by SF)

R |U |A | Attributes

X Task Oriented Requirements Engineering (TORE) Category [10]
(Goal & Task, Domain, Interaction, System Level)
X Degree of readability (measured by different common readability formulas)
X Category (improvement, problem, opinion, neutral)
X Sentiment (very happy, happy, neutral, sad, very sad)
X Priority (low, normal, high)

X | Implicit feedback (usage behaviour)

We think that TORE [10] could help with bundling, because feedback can be grouped
by different levels. We think that the degree of readability of feedback is helpful for
bundling, because unreadable feedback can contribute less to requirements derivation.

290 L. Radeck and B. Paech

We also think that the category of feedback plays a role for requirements derivation.
Feedback of the category improvement could have more potential for deriving require-
ments than feedback which is classified as an opinion. Feedback can also be bundled
by sentiment and priority. Feedback with low happiness and an indication of the reason
could be especially useful for improving the apps. Feedback that was assigned a high
priority by the user is more relevant for requirements derivation than feedback with low
priority. We also think that implicit feedback can be helpful to bundle feedback. For
example, feedback can be bundled by the users’ usage time.

5 Application of CREII in SMART-AGE

Preliminary Research. We performed a convincing proof-of-concept version of CREII
in a pilot test with 20 participants over the period of one week. Overall, 208 responses
to 24 questions and 33 messages were sent. Feedback for SF was very positive.

Research Plan. We follow the design science methodology proposed by Wieringa [14].
‘We plan to deploy CREII in SMART-AGE to collect feedback and derive requirements
for the apps from around 500 users in the first five months of the study and then follow up
with one month of requirement validation and refinement. For the evaluation of CREII,
we also ask questions about the acceptance of SF by using the System Usability Scale
[1]. In order not to overwhelm the users, we plan to ask them no more than five questions
on the same day. As a reminder and for motivation, we also plan to remind users after a
week of inactivity to participate in the feedback collection again.

Evaluation. Table 3 shows our research questions.

Table 3. Research questions

Usage behaviour

RQ1 | Does the usage behaviour of a user influence the quality or quantity of the provided
feedback?

Feasibility
RQ2 | Is it feasible to collect high quality feedback with CREII and SF?
RQ2.1 | What is the quantity and quality of the collected feedback?

RQ2.2 | Do adaptive questions and discussion elements influence the quality or quantity of the
provided feedback?

RQ2.3 | Does reminding to give feedback influence the quality or quantity of feedback?

RQ3 | Isit feasible to collect high quality requirements with CREII and SF?

RQ3.1 | What is the quantity and quality of the derived requirements?

Acceptance
RQ4 | What is the acceptance of SF?

Integrating Implicit Feedback into Crowd Requirements Engineering 291

RQ1 investigates whether the usage behaviour of a user influences the quality or
quantity of feedback. For example, high usage duration could lead to feedback of higher
quality. RQ2 and RQ3 investigate the feasibility of CREII and SF to collect high quality
feedback and high quality requirements. RQ2.1 investigates the quantity and quality of
the collected feedback and RQ3.1 investigates the quantity and quality of the derived
requirements. Investigating the quantity and quality of derived requirements allows us
to make a comparison to similar approaches [15]. RQ2.2 investigates the influence of
adaptive questions or discussion elements on the quality and quantity of feedback. If
adaptive questions or discussion elements have a positive influence on the quality and
quantity of feedback, then it would make sense for others to implement this practice
as well. RQ2.3 investigates whether reminding to give feedback affects its quality of
quantity. Reminding is easy to implement and would be an implementable practice for
others. RQ4 evaluates the acceptance of SF through the questions of the System Usability
Scale [1].

Quality of Requirements. We assess the quality of requirements manually. We use
established quality criteria from the International Requirements Engineering Board
(IREB) manual [7], such as Adequacy, Necessity, Unambiguity, Completeness, Under-
standability, Verifiability, Consistency, Redundancy.

Quality of Feedback. We assess the quality of feedback manually. To our best knowl-
edge there does not exist an established set of quality aspects for user feedback about
software. We therefore derive quality aspects from established standards. We plan to
adapt the characteristics for data quality of ISO 25012 [6] and the quality criteria for
requirements (IREB) on feedback and to establish metrics that let us quantify each
quality aspect manually.

Limitations and Risks. Eliciting pull feedback requires the users to answer the ques-
tions of us researchers. This can be time-consuming and strenuous, especially for elderly
people. In [11] we discuss how CREII is tailored to the individual needs of older adults.

Acknowledgement. We thank the Carl Zeiss Foundation for the generous 5-year funding of
SMART-AGE (P2019-01-003; 2021-2026).

References

1. Brooke, J.: SUS - a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., lan Lyall,
M., Bernard, W. (eds.) Usability Evaluation in Industry, pp. 207-212 (1996)

2. Dzvonyar, D., Krusche, S., Alkadhi, R., Bruegge, B.: Context-aware user feedback in con-
tinuous software evolution. In: Proceedings of the International Workshop on Continuous
Software Evolution and Delivery, CSED 2016, pp. 12-18 (2016).https://doi.org/10.1145/289
6941.2896952

3. Fotrousi, F., Fricker, S.A.: QoE probe: a requirement-monitoring tool. CEUR Workshop Proc.
1564, 7-8 (2016)

4. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and challenges.
IEEE Softw. 34, 44-52 (2017). https://doi.org/10.1109/MS.2017.33

https://doi.org/10.1145/2896941.2896952
https://doi.org/10.1109/MS.2017.33

292

10.

11.

12.

13.

14.

15.

16.

L. Radeck and B. Paech

Groen, E.C.: How Requirements Engineering can benefit from crowds. Requirements Eng.
Mag., 1-13 (2016)

International Organization for Standardization/International Electrotechnical Commission:
Software engineering—Software product Quality Requirements and Evaluation (SQuaRE)—
Data quality model ISO/IEC 25012:2008(E) (2008)

IREB: Certified Professional for Requirements Engineering — Foundation Level. Karlsruhe,
Germany (2015)

Maalej, W., Happel, H.-J., Rashid, A.: When users become collaborators: towards continuous
and context-aware user input. In: International Conference OOPSLA, pp. 981-990. ACM
(2009). https://doi.org/10.1145/1639950.1640068

Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user
feedback and monitoring. In: IEEE Requirements Engineering Conference (RE), pp. 217-227.
IEEE (2018). https://doi.org/10.1109/RE.2018.00030

Paech, B., Kohler, K.: Task-driven requirements in object-oriented development. In: do Prado
Leite, J.C.S., Doorn, J.H. (eds.) Perspectives on Software Requirements. The Springer Inter-
national Series in Engineering and Computer Science, vol. 753. Springer, Boston, MA (2004).
https://doi.org/10.1007/978-1-4615-0465-8_3

Radeck, L., et al.: Understanding IT-related well-being, aging and health needs of older
adults with crowd- requirements engineering. In: Workshop on Requirements Engineering
for Well-Being, Aging, and Health of the International Requirements Engineering Conference,
pp. 57-64. IEEE (2022). https://doi.org/10.1109/REW56159.2022.00018

Tizard, J., Rietz, T., Blincoe, K.: Voice of the users: a demographic study of software feed-
back behaviour. In: IEEE International Conference on Requirements Engineering, pp. 55-65
(2020). https://doi.org/10.1109/RE48521.2020.00018

Wang, C., Daneva, M., van Sinderen, M., Liang, P.: A systematic mapping study on crowd-
sourced requirements engineering using user feedback. J. Softw. Evol. Process. (2019). https://
doi.org/10.1002/smr.2199

Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engi-
neering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

Wouters, J., Menkveld, A., Brinkkemper, S., Dalpiaz, F.: Crowd-based requirements elici-
tation via pull feedback: method and case studies. Requirements Eng. 27, 429-455 (2022).
https://doi.org/10.1007/s00766-022-00384-6

Wiiest, D., Fotrousi, F., Fricker, S.: Combining monitoring and autonomous feedback requests
to elicit actionable knowledge of system use. In: Knauss, E., Goedicke, M. (eds.) REFSQ2019.
LNCS, vol. 11412, pp. 209-225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
15538-4_16

https://doi.org/10.1145/1639950.1640068
https://doi.org/10.1109/RE.2018.00030
https://doi.org/10.1007/978-1-4615-0465-8_3
https://doi.org/10.1109/REW56159.2022.00018
https://doi.org/10.1109/RE48521.2020.00018
https://doi.org/10.1002/smr.2199
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/s00766-022-00384-6
https://doi.org/10.1007/978-3-030-15538-4_16

	Integrating Implicit Feedback into Crowd Requirements Engineering – A Research Preview
	1 Introduction
	2 Project SMART-AGE and Terminology
	3 Related Work
	4 Crowd-Based Requirements Elicitation Via the CREII Method
	4.1 Collecting Pull Feedback by Using Adaptive Questions
	4.2 Bundling of Explicit Feedback

	5 Application of CREII in SMART-AGE
	References

