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Abstract. Recently, F. Ivanov, E. Krouk and V. Zyablov proposed new
cryptosystem based of Generalized Reed–Solomon (GRS) codes over field
extensions. In their approach, the subfield images of GRS codes are
masked by a special transform, so that the resulting public codes are
not equivalent to subfield images of GRS code but burst errors still can
be decoded. In this paper, we show that the complexity of message–
recovery attack on this cryptosystem can be reduced due to using burst
errors, and the secret key of Ivanov–Krouk–Zyablov cryptosystem can
successfully recovered in polynomial time with a linear–algebra based
attack and a square–based attack.
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1 Introduction

Due to the development of quantum computing and the vulnerability of tradi-
tional asymmetric cryptosystems to attacks using quantum computers, there is
a need to create new secure cryptosystems. Code–based cryptography is con-
sidered as one of the most promising and mature candidates for post–quantum
cryptography. The first code–based cryptosystem based on binary Goppa codes
was proposed by R. J. McEliece in 1978 [19] and in its modern version ClassicM-
cEliece [7] submitted to NIST–PQC competition is still believed to be secure.
However due to large public key sizes, the McEliece cryptosystem is limited in
some practical applications. In order to get smaller key sizes, there were attempts
to replace binary Goppa codes by other classes of efficient algebraic codes, such
as Generalized Reed–Solomon (GRS) codes [22], Reed–Muller codes [26], AG–
codes [16], concatenated codes [25], rank–metric Gabidulin codes [13]. However,
most of this modifications were proven unsecure [8,11,21,24,25,27]. With gen-
eral McEliece framework being masking a fast–decodable code by using a hid-
ing permutation, there were also attempts to employ more sophisticated hiding
mechanisms (e.g. [3,6,26,28,29]). However most of this modifications were also
successfully attacked [10,12,29]. Another approach to reduce public key size is
using random group–structured codes, which was successfully implemented in
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BIKE [1,2] and HQC [20] cryptosystems, however this introduces some decryp-
tion failure rate (DFR) making it harder to prove CCA security.

Recently, several protocols based on subfield images of algebraic codes over
field extensions were proposed. Namely, in [5] T. Berger, C. Gueye, J. Klamti
introduced the notion of generalized subspace (GS) subcodes, which are inter-
mediate level between subfield subcodes and subfield images of codes over field
extensions Fqm , and proposed using such codes in cryptography. In addition, it
was shown in [5] that a McEliece–like cryptosystem based on subfield images
of GRS codes can be attacked by a modification of the Sidelnikov–Shestakov
attack, and quasi–cyclic variant of this cryptosystem can be attacked by using
approach of [23]. In [17], K. Khathuria, J. Rosenthal and V. Weger proposed
using the punctured subfield images of GRS codes in the Niederreiter–like cryp-
tosystem (XGRS cryptosystem). However, in [9], a cryptosystem based on gener-
alized subspace subcodes of GRS codes (SSRS cryptosystem), which generalizes
XGRS cryptosystem, was successfully attacked using a modification of Schur–
Hadamard product in the case λ > m/2, where λ is dimension of subspaces.
More recently, F. Ivanov, E. Krouk and V. Zyablov proposed a new protocol
[15] based on subfield images of GRS–codes, with the public code being neither
subfield image of GRS–code naither its subcode. However, in this paper we show
that Ivanov–Krouk–Zyablov (IKZ) cryptosystem is also insecure.

This paper is organized is follows. In Sect. 2 we give necessary preliminaries
on m–block codes, subfield images of codes, generalized subspace subcodes and
generalized projected codes. In Sect. 3, we consider a generalization of Ivanov–
Krouk–Zyablov protocol and estimate the complexity of information–set decod-
ing attack on it. In Sect. 4, we propose a key–recovery attack based on linear
algebra. In Sect. 5, we propose a faster attack based on twisted squares attack
of [9] which however requires larger degree field extensions.

2 Preliminaries

Let Fq be a finite field of size q. Given a vector c ∈ F
n
q , by supp(c) = {i =

1, . . . , n | ci �= 0} we denote the support of c and by wt(c) = | supp(c)| we denote
the Hamming weight of c. The Hamming distance between x,y ∈ F

n is denoted
by d(x,y) = wt(x−y). A linear [n, k, d]q–code is a linear subspace C ⊂ F

n
q , such

that dim(C) = k and d = minc∈C\{0} wt(c). GC denotes a generator matrix of
C and HC denotes a parity–check matrix of C. Given a code C, its dual code is
denoted by C⊥. By In we denote n × n–identity matrix.

Shortened and punctured codes are well–known constructions for building
new codes from existing ones. Let 1, n = {1, . . . , n} and let I ⊂ 1, n. Given a
[n, k, d]q–code C, the punctured code of C on positions I is defined as follows

PctI(C) =
{
(ci)i/∈I | (c1, c2, . . . , cn) ∈ C

}
, (1)

i.e. PctI(C) is obtained from C by deleting coordinates indexed by I. The short-
ened code of C on I is

ShI(C) = PctI ({c ∈ C | supp(c) ∩ I = ∅}) . (2)
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Note that PctI(C) and ShI(C) are also linear codes and the following relations
hold.

Proposition 1 ([14], Theorem 1.5.7). Let C be a [n, k, d]q–code. Then

1. PctI(C)⊥ = ShI(C⊥) and ShI(C)⊥ = PctI(C⊥);
2. if |I| < d, then dim (PctI(C)) = k and dim

(
Sh(C⊥)

)
= n − k − |I|; if |I| = d

and I is the set of coordinates where a minimum weight codeword is nonzero,
then

dim(PctI(C)) = k − 1, dim(ShI(C⊥)) = n − k − |I| + 1.

2.1 m–block Codes

In [4,5] T. Berger et. al. proposed the notion of m–block codes for which the
ambient alphabet is the set of m–tuples of elements of Fq. Namely, a m–block
code of length n is an additive code over the alphabet Em = F

m
q (i.e. a subgroup

of (En
m,+)), which is stable by scalar multiplication by any λ ∈ Fq. The integer m

is called the block size. Given c = (c1, . . . , cn) ∈ E
n
m � F

mn
q , by suppm(c) = {i |

ci �= 0} we denote block support of c, by wtm(c) = | suppm(c)| and dm(x,y) =
wtm(x − y) we denote block Hamming weight and block Hamming distance
respectively. Since E

n
m and F

nm
q can be identified, it follows that a m–block

code is also a linear code over Fq of length mn, equipped with block Hamming
metric. A m–block code C of block length n, Fq–dimension k and minimum
block distance dm = minc∈C\{0} wtm(c)} is said to be [n, k, dm]mq –block code.

Block codes are of particular interest due to having ability to correct error
bursts. Indeed, let Sm,n,t = {e ∈ E

n
m | wtm(e) ≤ t} be a set of synchronous t

error burst of length m, then clearly a [n, k, dm]mq –code can correct any error
from Sm,n,�(dm−1)/2�.

Remark 1. Let Emn,l ⊂ F
nm
q denote a set of l error bursts of length up to m (non–

synchronous to m–block structure of a code). Note that if an m–block code can
correct any error from Sm,n,t, then it can correct any error from Emn,�t/2� since
any non–synchronous error burst of length m covers at most two m–blocks.

Note that the notion of block codes can be easily generalized to multi-block
codes. Namely, a multi–block code is an additive subgroup of Em1 × · · · × Emn

,
which is stable by scalar multiplication by any λ ∈ Fq.

Two multi–block codes C1 and C2 of length are said to be multiplier equiva-
lent if there exist Λ1, . . . , Λn ∈ GLmi

(Fq) such that

C2 = {c · Λ | c ∈ C1} , Λ = diag(Λ1, . . . , Λn).

Proposition 2. Let C2 = {c · Λ | c ∈ C1}. Then C⊥
2 = {h · (Λ−1

)T | h ∈ C⊥
1 }.

Proof. Let GC1 be a generator matrix of C1 and HC1 be a parity check matrix
of C1. Since GC1 · Λ is a generator matrix of C2 and

(GC1 · Λ) · (Λ−1 · HT
C1

) = 0,

it follows that HC1 · (Λ−1
)T is a parity–check matrix of C2.
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Let V1, . . . , Vn be a tuple of Fq–linear subspaces of Em1 , . . . , Emn
of Fq–

dimensions μi ≤ mi, i = 1, . . . , n. The generalized subspace subcode of a multi–
block code C relative to V1, . . . , Vn is defined as

C|V1,...,Vn
= C ∩ (V1 ⊕ · · · ⊕ Vn) .

One can easily notice that this codes allow short representation. Let T1, . . . , Tn ∈
F

μi×mi
q be generator matrices of V1, . . . , Vn viewed as [mi, μi]q–linear codes.

Define the maps

ψi : Vi → Eμi
= F

μi
q , v 
→ m, s.t. v = mTi.

Then the short representation of C|V1,...,Vn
relative to T1, . . . , Tn is

GSS(C; T1, . . . , Tn) =
{
(ψ1(c1), . . . , ψn(cn)) | (c1, . . . , cn) ∈ C|V1,...,Vn , ci ∈ Emi

}
.

Remark 2. We clearly have

C|V1,...,Vn
= {c · diag(T1, . . . , Tn) | c ∈ GSS(C;T1, . . . , Tn)} .

Let P1, . . . , Pn ∈ F
mi×μi
q be full-rank matrices, which define projection maps

x 
→ xPi. Given a multi–block code C, the generalized projected code relative to
P1, . . . , Pn is defined as follows

GPC(C;P1, . . . , Pn) = {(c1P1, . . . , cnPn) | (c1, . . . , cn) ∈ C, ci ∈ Emi
}.

Proposition 3. Let C be a multi–block code, 1 ≤ μi ≤ mi, and let T1, . . . , Tn ∈
F

μi×mi
q be full-rank matrices. Then

GSS(C;T1, . . . , Tn)⊥ = GPC(C⊥;TT
1 , . . . , TT

n ).

Proof. Let T̃i ∈ F
mi×mi
q be a non–singular matrix derived from Ti by adding

mi − μi linearly independent rows. Let

C̃ =
{

c · diag
(
T̃1

−1
, . . . , T̃n

−1
) ∣

∣ c ∈ C
}

.

Since GSS(C;T1, . . . , Tn) is shortened subcode of C̃ on last mi − μi positions
of each mi–block, using Proposition 1 we obtain that GSS(C;T1, . . . , Tn)⊥ is
punctured code of

C̃⊥ =
{
h · diag

(
T̃1

T
, . . . , T̃n

T
) ∣

∣ h ∈ C⊥
}

(see Proposition 2) on the same positions, which is GPC(C⊥;TT
1 , . . . , TT

n ).

For more details on m–block codes, generalized subspace and generalized
projected codes we refer to [4,5,9].
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2.2 Subfield Images of Codes

A possible way to construct m–block codes with known parameters is to consider
subfield images of codes over some extension field Fqm . Let B = {b1, . . . , bm} be
a Fq–basis of Fqm , by φB we denote Fq–linear isomorphism between Fqm and
Em = F

m
q , i.e.

φB

(
m∑

i=1

tibi

)

= (t1, . . . , tm).

Let
ΦB : F

n
qm → E

n
m, (c1, . . . , cn) 
→ (φB(c1), . . . , φB(cn))

be an extension of φB to F
n
qm . The subfield image of a [n, k, d]qm code C ⊂

F
n
qm relative to the basis B is defined as ΦB(C) = {ΦB(c) | c ∈ C}. Clearly,

ΦB(C) is [n, k, d]mq block code and if DecC : F
n
qm → C is a decoder of C, then

ΦB ◦ DecC ◦Φ−1
B is a decoder of ΦB(C).

Remark 3. Let Fqm = Fq[γ], where γ is a root of a primitive polynomial. Note
that the usual choice of a basis of Fqm is Γ = {γ0, . . . , γm−1}.

Proposition 4 (Proposition 3 of [5]). Suppose B′ is another basis of Fqm and
M is basis change matrix, i.e. φB′(x) = φB(x)M for any x ∈ Fqm , then ΦB(C)
and ΦB′(C) are multiplier equivalent with Λ1 = · · · = Λn = M , i.e.

ΦB′(C) = {(c1M, . . . , cnM) | (c1, . . . , cn) ∈ ΦB(C)}

Remark 4. Note that ΦB(C) = ΦλB(C) for any nonzero λ ∈ Fqm .

Given ξ ∈ Fqm , by MB(ξ) we denote the matrix of transformation x 
→ ξx
written in basis B, i.e.

MB(ξ) =

⎛

⎜
⎝

φB(b1ξ)
...

φB(bmξ)

⎞

⎟
⎠ .

Note that for any λ, ξ ∈ Fqm , ξ �= 0, the following equality holds

φB(ξλ) = φB(λ) · MB(ξ) = φξ−1B(λ).

Proposition 5 (Proposition 4 of [5]). If GC = (gi,j) ∈ F
k×n
qm is a generator

matrix of C, then

ExpB(GC) =

⎛

⎜
⎝

MB(g1,1) . . . MB(g1,n)
...

. . .
...

MB(gk,1) . . . MB(gk,n)

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ΦB(— b1g1 —)
. . .

ΦB(— bmg1 —)
...

ΦB(— bmgk —)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is a generator matrix of ΦB(C).



142 K. Vedenev and Y. Kosolapov

Given a basis B of Fqm , the dual basis B∗ is the unique basis of Fqm , such
that MB∗(ξ) = (MB(ξ))T for any ξ ∈ Fqm .

Proposition 6 (Proposition 5 of [5]). Let C ⊂ Fqm be a [n, k]qm–code with
a parity–check matrix HC , then

(ΦB(C))⊥ = ΦB∗(C⊥).

and the parity–check matrix of ΦB(C) is

Exp∗
B(HC) = ExpB∗(HC) =

⎛

⎜
⎝

MB(h1,1)T . . . MB(h1,n)T
...

. . .
...

MB(hn−k,1)T . . . MB(hn−k,n)T

⎞

⎟
⎠ .

Corollary 1. Let C ⊂ Fqm be a [n, k]qm–code. Then Proposition 3 and Propo-
sition 6 imply

GSS(ΦB(C);T1, . . . , Tn)⊥ = GPC(ΦB∗(C⊥);TT
1 , . . . , TT

n ).

2.3 Generalized Reed–Solomon Codes

Let x = (x1, . . . , xn) ∈ F
n
q be a vector of distinct non–zero values and let y =

(y1, . . . , yn) ∈ F
n
q be a vector, such that yi �= 0 for all i. The generalized Reed–

Solomon code with support x and multiplier y of length n and dimension k
is

GRSk(x,y) = {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x], deg(f) ≤ k − 1} .

When y = (1, 1, . . . , 1), the code is said to be a Reed–Solomon code and denoted
as RSk(x). As is well–known, GRSk(x,y) is a [n, k, n−k+1]q–code, the generator
matrix of GRSk(x,y) is

Gk(x,y) =

⎛

⎜
⎜
⎜
⎝

x0
1 · · · x0

n

x1
1 · · · x1

n
...

. . .
...

xk−1
1 · · · xk−1

n

⎞

⎟
⎟
⎟
⎠

diag(y1, ..., yn),

the generator matrix of RSk(x) is Gk(x) = Gk(x,1), the dual of GRSk(x,y) is
GRSn−k(x, z), where

z−1
i = yi

∏

i,j∈1,n
j 	=i

(xi − xj). (3)

Note that for a given GRS code multiplier and support are not unique. We refer
[18, Chapter 12] and [14, §5.3] for more details on GRS codes.

Remark 5. Any subfield image of GRSk(x,y) is multiplier equivalent to a sub-
field image of RSk(x). Indeed,

ΦB(GRSk(x,y)) =
{

(φB(ci) · MB(yi))i=1,...,n | (c1, . . . , cn) ∈ RSk(x)
}

.
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3 Ivanov–Krouk–Zyablov Cryptosystem

In [15] F. Ivanov, E. Krouk and V. Zyablov proposed a new cryptosystem based
on subfield images of generalized Reed–Solomon codes, with its key feature being
that public code is not equivalent to a subfield image. In this section, we give
a generalized version of it, consider some of its properties, and estimate the
complexity of a key–recovery attack.

3.1 Protocol Description

– Key generation. Let C = RSk(x) be a random [n, k]qm RS–code of even
length with support x = (x1, . . . , xn). Choose a random non–singular matrix
S ∈ GLkm(Fq), and random non–singular matrices Yj ∈ GLm(Fq), Mj ∈
GLmj

(Fq), j = 1, . . . , n, where

mj =

{
m − 1, j is odd
m + 1, j is even

.

The public key is Gpub = S · ExpΓ (Gk(x)) · Y · M , where

Y = diag(Y1, . . . , Yn), M = diag(M1, . . . ,Mn)

and secret key is (x, S,Q = Y · M).
– Encryption. Let t = (n − k)/2 be a number of errors that can be corrected

by C. Let m ∈ F
km
q be a plain text, then the ciphertext is

z = mGpub + e, e ∈ Emn,t/3.

– Decryption. Let DecC : Fqm → C be a decoder of C. Then mGpub can be
found as follows

mGpub = ΦB ◦ DecC ◦Φ−1
B

(
z · Q−1

)
.

Remark 6. Note that eQ−1 ∈ Sm,n,t. Indeed, let j be a starting position of an
error burst of length m. Two cases are possible:

1) (2s− 1)m+1 ≤ j ≤ 2sm for some s. It follows that after multiplying by Q−1

only two m–blocks get corrupted.
2) 2sm+1 ≤ j ≤ (2s+1)m for some s. It follows that after multiplying by Q−1

three m–blocks can get corrupted. Namely, 2s, 2s + 1, 2s + 2–th blocks.

Note that in [15] case 2) hasn’t been considered and due to this it was erroneously
proposed to sample e from Emn,t/2.

Remark 7. The use of GRS–codes in this protocol is equivalent to the use of
RS–codes due to the presence of Y (see Remark 5).
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Remark 8. Without loss of generality, one can assume that Y2i = Im and
M2i−1 = Im−1. Indeed,

diag(Y2i−1, Y2i) diag(M2i−1,M2i) = diag
(

Y2i−1

(
M2i−1

1

)
, Im

)

· diag
(

Im−1,

(
1

Y2i

)
M2i

)

Proposition 7. Let Gpub = S · ExpΓ (Gk(x,y)) · Q be a public key of IKZ–
cryptosystem based on GRSk(x,y)–code. Then any parity–check matrix of C⊥

pub

is of the form

H = S′ · ExpΓ∗(Gn−k(x, z)) · Q−1T, z−1
i = yi

∏

i,j∈1,n
j 	=i

(xi − xj).

In addition, since

Q−1T = diag(Y −1
1

T
, . . . , Y −1

n
T
) · diag(M−1

1

T
, . . . ,M−1

n
T
),

it follows that H is a public key of IKZ cryptosystem based on GRSn−k(x, z)–
code.

Proof. Using Proposition 6 and (3), we obtain

GpubH
T = S · ExpΓ (Gk(x,y)) · Q · Q−1 · ExpΓ ∗(Gn−k(x, z))T · S′T = 0.

3.2 Message–Recovery Attack

Since the error e is structured, it is possible to exploit it for reducing com-
plexity of information–set decoding attack. Indeed, we can consider Cpub =
Span

Fq
(Gpub) as a m–block code, then any error from Emn,t/3 covers at most

2t/3 m–blocks (see Fig. 1). It follows that remaining n − 2t/3 blocks are error–
free and the probability of finding error–free information set of k blocks is

ProbISD =

(
n−2t/3

k

)
(
n
k

) ,

which does not depend on m. Therefore, the workfactor of Ivanov–Krouk–
Zyablov cryptosystem is significantly lower than estimates of [15]. We also note
that due to using structured errors a significant reduction in complexity of ISD–
attacks also extends to several more IKZ–like cryptosystems recently proposed
in [30].

Fig. 1. non–synchronous error burst of length 2 corrupts 4 blocks
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So, due to simple message–recovery attack, Ivanov–Krouk–Zyablov cryp-
tosystem [15] can only be considered as a way to avoid key–recovery attacks
since it produces a public code which is not multiplier equivalent to a subfield
image of a GRS–code. However, below we show that such application of Ivanov–
Krouk–Zyablov protocol is also insecure.

4 Direct Key–Recovery Attack

In this section, we propose a key–recovery attack which is based on the unique-
ness of systematic generator matrix of Cpub and distinguishability of matrices
MΓ (a), a ∈ Fqm , from random ones.

4.1 Case of Even k

Define Qi ∈ F
2m×2m
q as

Qi = diag(Y2i−1, Y2i) · diag(M2i−1,M2i),

so Q = diag(Q1, . . . , Qn/2). Let Gsys
C = [Ik | L] = (li,j) ∈ F

k×n
qm be the systematic

generator matrix of C. One can easily notice that
⎛

⎜
⎝

Q1 K1,k/2+1Qk/2+1 . . . K1,(n−k)/2Qn/2

. . .
...

. . .
...

Qk/2 Kk/2,k/2+1Qk/2+1 . . . Kk/2,(n−k)/2Qn/2

⎞

⎟
⎠ ,

where

Ki,j =
(
MΓ (l2i−1,2j−1) MΓ (l2i−1,2j)
MΓ (l2i,2j−1) MΓ (l2i,2j)

)
,

is a generator matrix of Cpub. It follows that the unique systematic generator
matrix Gsys

pub of Cpub is of the form
⎛

⎜
⎝

I2m Q−1
1 K1,k/2+1Qk/2+1 . . . Q−1

1 K1,(n−k)/2Qn/2

. . .
...

. . .
...

I2m Q−1
k/2Kk/2,k/2+1Qk/2+1 . . . Q−1

k/2Kk/2,(n−k)/2Qn/2

⎞

⎟
⎠ . (4)

Let us denote Q−1
i Ki,jQj by K ′

i,j . For 1 ≤ i, r ≤ k/2 and k/2 + 1 ≤ j, s ≤ n/2
define

Vi,j,r,s = K ′
i,j(K

′
r,j)

−1
K ′

r,s(K
′
i,s)

−1 = Q−1
i

(
Ki,jK

−1
r,j Kr,sK

−1
i,s

)
Qi, (5)

Wi,j,r,s = (K ′
i,j)

−1
K ′

i,s(K
′
r,s)

−1
K ′

r,j = Q−1
j

(
K−1

i,j Ki,sK
−1
r,s Kr,j

)
Qj (6)

if corresponding inverse matrices exist (which is true in most cases). Since matri-
ces Ki,j have very special structure, namely, Ki,j belong to the Fq–algebra

Δ =
{(

MΓ (a) MΓ (b)
MΓ (c) MΓ (d)

) ∣
∣
∣ a, b, c, d ∈ Fqm

}
,

we can exploit it to recover the matrix Q up to certain equivalences.
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Proposition 8. Let a Fqm–code C ′ be semi–linear equivalent over Fq to C, i.e.

C ′ = {(θ(α1c1), θ(α2c2), . . . , θ(αncn)) | (c1, . . . , cn) ∈ C}
(see [14]), where αi ∈ Fqm \ {0}, and θ ∈ Gal(Fqm/Fq) is an automorphism of
Fqm that fixes Fq pointwise. Let Aθ be a matrix representation of θ written in
the basis Γ = {γ0, . . . , γm−1} of Fqm = Fq[γ], i.e.

Aθ =

⎛

⎜
⎝

— φΓ

(
θ(γ0)

)
—

...
. . .

...
— φΓ

(
θ(γm−1)

)
—

⎞

⎟
⎠ .

Then the matrix ExpΓ (GC′) · diag(Q′
1, . . . , Q

′
n/2), where

Q′
i+1 = diag

(
A−1

θ · MΓ (α−1
2i+1), A

−1
θ · MΓ (α−1

2i+2)
) · Qi+1, (7)

also spans Cpub.

Conjecture 1. Let X,Y ∈ QMat, where

QMat = {diag(Y, Im) · diag(Im−1,M) | Y ∈ GLm(Fq),M ∈ GLm+1(Fq)} .

Let Ξ be a sufficiently large subset of Δ and ζ ∈ Δ be non–zero. Then

1. if
{
Y X−1 · ξ · XY −1 | ξ ∈ Ξ

} ⊂ Δ, then there exist a, b ∈ F
∗
qm and θ ∈

Gal(Fqm/Fq), such that

Y = diag(A−1
θ · MΓ (a), A−1

θ · MΓ (b)) · X,

2. if ζ · XY −1 ∈ Δ or Y X−1 · ζ ∈ Δ and
{
Y X−1 · ξ · XY −1 | ξ ∈ Ξ

} ⊂ Δ, then
there exist a, b ∈ F

∗
qm , such that

Y = diag(MΓ (a),MΓ (b)) · X

with high probability.

Remark 9. Note that the set Ξ has to contain at least one matrix which is not
of the form

ξ = diag(MΓ (α),MΓ (β)).

Otherwise, the conjecture does not hold, i.e. Y = diag(Aθ1 ·MΓ (a), Aθ2 ·MΓ (b))·
X for some a, b ∈ F

∗
qm , θ1, θ2 ∈ Gal(Fqm/Fq). Indeed,

Y X−1 · ξ · XY −1 = diag
(
MΓ (θ−1

1 (α)),MΓ (θ−1
2 (β))

) ∈ Δ.

Our experiments performed in computer algebra system Sage evince that
Conjecture 1 is most likely correct as soon as |Ξ| ≥ 3. So, the resulting key–
recovery algorithm can be summarized as follows.1

1 The code for our implementation is available on https://github.com/kirill-vedenev/
ikz-cryptanalysis.

https://github.com/kirill-vedenev/ikz-cryptanalysis
https://github.com/kirill-vedenev/ikz-cryptanalysis
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Step 1. Compute the systematic generator matrix (4) of Cpub. Using a brute-
force search, find a matrix Q′

1 ∈ QMat such that
{

Q′
1 · V1,j,r,s · Q′

1
−1 ∈ Δ

(see (5)) for some set of indices 1 ≤ r ≤ k/2 and k/2 + 1 ≤ j, s ≤ n/2 of
size ≥ 5. Conjecture 1 implies that Q′

1 is of the form (7). Since Proposi-
tion 8 allows replacing C with any semi–linear equivalent code, it follows
that without loss of generality, we may assume that θ ∈ Gal(Fqm/Fq) is
the identity automorphism.

Step 2. For j = k/2 + 1, . . . , n/2, find matrices Q′
j ∈ QMat, such that

{(
Q′

1 · K ′
1,j

) · Q′
j
−1 ∈ Δ,

Q′
j · Wi,j,r,s · Q′

j
−1 ∈ Δ,

(see (4), (6)) for some set of indices 1 ≤ i, r ≤ k/2 and k/2+1 ≤ s ≤ n/2
of size ≥ 5.

Step 3. Finally, for i = 2, . . . , k find Q′
i ∈ QMat satisfying

{
Q′

i ·
(
Ki · Q′

j
−1

)
∈ Δ for all j = k/2 + 1, . . . , n/2.

Step 4. Let Q′ = diag(Q′
1, . . . , Q

′
n/2), using Conjecture 1 we obtain

Q′ = diag(A−1
θ MΓ (α1), . . . A−1

θ MΓ (αn)) · Q

for some θ ∈ Gal(Fqm/Fq) and (α1, . . . , αn) ∈ F
∗
qm . Hence

C ′ = Φ−1
Γ

(
Span

Fqm
(Gpub · Q′−1)

)

is semi–linear equivalent to C and is therefore a GRS code. Indeed,

C ′ = {(θ(α1c1), . . . , θ(αncn)) | (c1, . . . , cn) ∈ RSk(x)} =
= {(θ(α1)f(θ(x1)), . . . , θ(α1)f(θ(xn))) | f ∈ Fqm [x],deg(f) ≤ k − 1} .

So, after applying the Sidelnikov–Shestakov attack [27] to C ′, it is pos-
sible to decode Cpub.

4.2 Case of Odd k

Suppose first that Q(k+1)/2 is known. Let Gsys
C = (li,j) ∈ F

k×n
qm be the sys-

tematic generator matrix of C. It follows that the systematic form of Gpub ·
diag(I(k−1)m, Q−1

(k+1)/2, I(n−k−1)m) is

⎛

⎜
⎜
⎜
⎝

I2m

. . .
I2m

Im

J1

...
J(k−1)/2

C

K ′
1,(k+1)/2+1 . . . K ′

1,n/2

...
. . .

...
K ′

(k−1)/2,(k+1)/2+1 . . . K ′
(k−1)/2,n/2

D(k+1)/2+1 . . . Dn/2

⎞

⎟
⎟
⎟
⎠

, (8)
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where
Ji = Q−1

i · (MΓ (l2i−1,k+1) MΓ (l2i,k+1))
T ∈ F

2m×m
q ,

C = MΓ (lk,k+1) ∈ F
m×m
q ,

Dj = (MΓ (lk,2j−1) MΓ (lk,2j)) · Qj ∈ F
m×2m
q ,

K ′
i,j = Q−1

i ·
(
MΓ (l2i−1,2j−1) MΓ (l2i−1,2j)
MΓ (l2i,2j−1) MΓ (l2i,2j)

)
· Qj ∈ F

2m×2m
q .

Hence the above–described attack can be modified as follows.

Step 1. In this step, we try to guess Q(k+1)/2 (up to equivalences described in
Proposition 8). To do this, for each Q′

(k+1)/2 ∈ QMat we compute the
systematic form (8) of

Gpub · diag(I(k−1)m, Q′
(k+1)/2

−1
, I(n−k−1)m)

and then check
⎧
⎪⎨

⎪⎩

C ∈ {MΓ (a) | a ∈ Fqm} ,

DjK
′
i,j

−1
Ji,∈ {MΓ (a) | a ∈ Fqm}

for all 1 ≤ i ≤ (k − 1)/2, (k + 1)/2 + 1 ≤ j ≤ n/2

until proper Q′
(k+1)/2 is found.

Step 2. For j = (k + 1)/2 + 1, . . . , n/2, find matrices Q′
j ∈ QMat, such that

{
Q′

j · Wi,j,r,s · Q′
j
−1 ∈ Δ,

Dj · Q′
j
−1 ∈ {(MΓ (a),MΓ (b)) | a, b ∈ Fqm}

(see (4), (6)) for some set of indices 1 ≤ i, r ≤ (k−1)/2 and (k+1)/2+1 ≤
s ≤ n/2 of size ≥ 5.

Step 3. For i = 1, . . . , (k − 1)/2 find Q′
i ∈ QMat satisfying

{
Q′

i ·
(
Ki · Q′

j
−1

)
∈ Δ for all j = (k + 1)/2 + 1, . . . , n/2.

Compute Q′ = diag(Q′
1, . . . , Qn/2) and run Step 4 of Sect. 4.1.

Since the size of QMat is O(qm2+(m+1)2), it follows that the complexity of
the attack is O(nqm2+(m+1)2m3) assuming brute–force search is used in each
step. Note that for large m this attack is too complex. However, for m ≥ 3 it is
possible to implement another attack based on twisted squares.

5 Twisted Squares–Based Attack

Let Ui be an i–th mi–block column of Gpub, i.e.

Gpub =
(
U1︸︷︷︸
m−1

U2︸︷︷︸
m+1

. . . Un−1︸ ︷︷ ︸
m−1

Un︸︷︷︸
m+1

)

.

Attack we propose is consist of the following steps.
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5.1 Recovering the Support x

By xodd we denote (x1, x3, . . . , xn−1). Let Π ∈ F
m×(m−1)
q be the projection

matrix of the following form

Π =
(

Im−1

0

)
,

Consider
Godd = (U1 | U3 | · · · | Un−1).

We have
Godd = S ExpΓ (Gk(xodd)) diag(N1, N3, . . . Nn−1) , (9)

where Ni = YiΠMi ∈ F
m×m−1
q . It follows that Godd is a generator matrix of

GPC (ΦΓ (RSk(xodd));N1, . . . , Nn−1) .

So, Proposition 3 and Corollary 1 imply that Godd is a parity–check matrix of
the code

D = GSS(ΦΓ (RSk(xodd))⊥;NT
1 , NT

3 , . . . , NT
n−1) =

= GSS(ΦΓ ∗(RSk(xodd)⊥);NT
1 , NT

3 , . . . , NT
n−1),

(10)

Remark 10. Recall that, RSk(xodd)⊥ = GRSn−k(xodd, zodd), where

zodd = (z1, z3, . . . , zn−1), z−1
i =

∏

i,j∈{1,3,...,n−1}
j 	=i

(xi − xj) (11)

Hence D is short representation of generalized subspace subcode of a GRS code.

It follows that it is possible to recover one of the supports xodd
′ of RSk(xodd)⊥

from D by applying CL–attack [9, Alg. 1 and Alg. 2] to D. Indeed, given GSS–
subcode of GRSk(a,b), such that the dimension of all subspaces is λ > m/2,
CL–attack reconstructs a support of corresponding GRS–code by applying the
algorithm of [5, §VI.B] to its twisted square.

Remark 11. Note that in order to apply CL–attack, Godd has to be singular,
which is true if

km < (m − 1)n/2.

In addition, it is also possible to find xodd in the case when

(n − k)m < (m − 1)n/2

by attacking the dual of the public code (see Proposition 7).

Remark 12. Since the support of a GRS code is completely defined by fixing
arbitrary three points, it follows that without loss of generality we may assume
that xodd

′ = xodd.



150 K. Vedenev and Y. Kosolapov

It remains now to recover x2, x4, . . . , xn. For the sake of convenience, we
describe the recovering procedure only for x2. Consider the matrix

Godd+2 = (U1 | U2 | U3 | U5 | · · · | Un−1).

One can easily notice that

Godd+2 = S · Exp∗
Γ (Gk (x1, x2, x3, x5, . . . , xn−1)) · diag(Q1, N3, N5, . . . , Nn−1),

where Ni are the same as in (9) and

Q1 = diag(Y2, Y2) · diag(M1,M2) ∈ GL2m(Fq).

Using Proposition 3 and Corollary 1, we see that Godd+2 is a generator matrix
of

GPC (ΦΓ (RSk(x1, x2, x3, x5, . . . , xn−1));Q1, N3, . . . , Nn−1) .

and a parity–check matrix of

D2 = GSS
(
ΦΓ (RSk(x1, x2, x3, x5, . . . , xn−1))⊥;QT

1 , NT
3 , . . . , NT

n−1

)
.

Let GD2 be a generator matrix of D2. We have

Span
Fq

(
GD2 · diag

(
QT

1 , NT
3 , . . . , NT

n−1

)) ⊂ [ΦΓ (RSk (x1, x2, x3, x5, . . . , xn−1))]
⊥

(see Sect. 2.1), it follows that

GD2 · diag
(
QT

1 , NT
3 , . . . , NT

n−1

) · ExpΓ (Gk(x1, x2, x3, x5, . . . , xn−1))
T = 0.

With xodd = (x1, x3, . . . , xn−1) being known, it is possible to find x2 by
iterating w ∈ F

∗
qm \{x1, x3, x5, . . . , xn−1} and checking whether the linear system

GD2 · diag
(
XT

1 ,XT
3 , . . . , XT

n−1

) · ExpΓ (Gk(x1, w, x3, x5, . . . , xn−1))
T = 0, (12)

where X3, . . . , Xn−1 ∈ F
m×m−1
q and

X1 =

(
X

(1)
1 X

(2)
1

0 X
(3)
1

)

, X
(1)
1 ∈ F

m×m−1
q ,X

(2)
1 ∈ F

m×m+1
q ,X

(3)
1 ∈ F

m×m+1
q

has a non–zero solution. Note that in most practical cases the number of
unknowns (n/2 − 1)(m − 1)m + 3m2 + m = O(nm2/2) is much less than the
number of equations (n/2+1−k)km2 and the solution, if it exists, is most likely
unique up to multiplication by

diag(MΓ (a1),MΓ (a2),MΓ (a3),MΓ (a5), . . . ,MΓ (an−1)), ai ∈ F
∗
qm .

In our experiments, the above described method allowed successfully recovering
correct x2 in all cases.2

2 The code for our implementation of this and the next step is available on https://
github.com/kirill-vedenev/ikz-cryptanalysis.

https://github.com/kirill-vedenev/ikz-cryptanalysis
https://github.com/kirill-vedenev/ikz-cryptanalysis
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Remark 13. It is also possible to reconstruct x when neither km < (m − 1)n/2
and (n − k)m < (m − 1)n/2 hold. Choose the smallest s ∈ 1, n/2 such that

(n′ − k)m > (m − 1)n′/2

where n′ = n − 2s. Consider

G′
pub =

(
U1 U2 . . . Un−2s−1 Un−2s

) ∈ F
km×n′m
q ,

G′′
pub =

(
U2s+1 U2s+2 . . . Un−1 Un

) ∈ F
km×n′m
q .

One can easily notice that

G′
pub = S ·ExpB (Gk ((x1, . . . , xn−2s))) ·diag(Y1, . . . Yn−2s) ·diag(M1, . . . Mn−2s),

G′′
pub = S ·ExpB (Gk ((x2s+1, . . . , xn))) ·diag(Y2s+1, . . . Yn) ·diag(M2s+1, . . . Mn),

i.e. G′
pub and G′′

pub are public keys of IKZ–cryptosystem. Therefore, it is possible
to recover x1, . . . , xn−2s by attacking G′

pub as above first and then to recover
xn−2s+1, . . . xn by attacking G′′

pub.

5.2 Recovering the Matrix Q

Since Gpub = S · ExpΓ (Gk(x)) · diag(Q1, . . . , Qn/2), is follows that Gpub is a
generator matrix of

GPC(ΦΓ (Gk(x);Q1, . . . , Qn/2),

so, due to Proposition 3 Gpub a parity–check matrix of

D̂ = GSS(ΦΓ (Gk(x)⊥;QT
1 , . . . , QT

n/2).

Let GD̂ be a generator matrix of D̂. Since

Span
Fq

(
GD̂ · diag

(
QT

1 , . . . , QT
n/2

))
⊂ ΦΓ (Gk(x))⊥,

it follows that

GD̂ · diag
(
QT

1 , . . . , QT
n/2

)
· ExpΓ (Gk(x))T = 0.

With x being known after previous step, Q1, . . . , Qn/2 can be found by solving
the linear system

GD̂ · diag
(
XT

1 , . . . , XT
n/2

)
· ExpΓ (Gk(x))T = 0,

where Xi are of the form

Xi =

(
X

(1)
i X

(2)
i

0 X
(3)
i

)

, X
(1)
i ∈ F

m×m−1
q ,X

(2)
1 ∈ F

m×m+1
q ,X

(3)
1 ∈ F

m×m+1
q .

Since again the number of equations is larger than the number of unknowns the
solution is most likely be unique up to multiplication by diagn(MΓ (β)) for some
β ∈ Fqm , which was experimentally validated. The complexity of CL-attack is
O(nqm) operations in Fq, the complexity of support recovering is O(qm(mn)3)
and the complexity of recovering Q is O((mn)3). Hence the overall complexity
of the attack is O((mn)3qm).
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6 Conclusion

In this paper, it was shown that Ivanov–Krouk–Zyablov cryptosystem is insecure
and its secret key can be recovered in polynomial time due to proposed key–
recovery attacks. Since the first one is based only on linear algebra, it can easily
be generalized to recover the matrix Q even for other classes of codes. So, the
masking transform used by Ivanov, Krouk and Zyablov is intrinsically flawed. It
also seems that using hiding transforms that allow decoding error bursts cannot
improve key sizes compared to classic approaches due to simple message–recovery
attacks based on information–set decoding.
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