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Abstract. In the NIST Post-Quantum Cryptography (PQC) stan-
dardization process, among 17 candidates for code-based public-key
encryption (PKE), signature or key encapsulation mechanism (KEM),
only three are in the 4th evaluation round. The remaining code-
based candidates are Classic McEliece [CCUGLMMNPP+20], BIKE
[ABBBBDGGGM+17] and HQC [MABBBBDDGL+20]. Cryptographic
primitives from coding theory are some of the most promising candidates
and their security is based on the well-known problems of post-quantum
cryptography. In this paper, we present an efficient implementation of a
secure KEM based on binary quasi-dyadic generalized Srivastava (QD-
GS) codes. With QD-GS codes defined for an extension degree m > 2,
this key establishment scheme is protected against the attacks of Barelli-
Couvreur Bardet et al.. We also provide parameters that are secure
against folding technique and FOPT attacks. Finally, we compare the
performance of our implementation in runtime with the NIST finalists
based on codes for the 4th round.

Keywords: NIST PQC Standardization · QD-GS codes · Code-based
KEM · Binary DAGS

1 Introduction

As a reminder, Faugère et al. had introduced an attack known in the litera-
ture as FOPT against scheme using quasi-cyclic or quasi-dyadic algebraic codes
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[FOPT10]. Their attack exploits the algebraic structure to build a system of
equations and then uses the Grobnër bases techniques to solve it efficiently.
Therefore, with FOPT attack, proposals based on quasi-cyclic algebraic codes
are compromised. However, techniques using a quasi-dyadic approach need to be
treated with caution for a proper choice of parameters concerning the dimension
of space of solutions. That means that it is possible to design secure schemes
using for instance binary Goppa codes, or Generalized Srivastava (GS) codes.
Separately, note that, during the first round of the NIST PQC standardization
process, Banegas et al. [BBBCDGGHKN+18] introduced a KEM scheme based
on nonbinary QD-GS codes. This scheme was broken by Barelli and Couvreur
[BC18]. They used in their attack the norm and trace codes technique which
works only for code designed on an extension field with extension degree m
equal to 2. It was shown that a simple parameters variation of the base field
could avoid this attack [BC18, Section 5.3]. Lately, Banegas et al. introduced a
new version of their scheme called DAGS reloaded [BBBCDGGHKN+19]. At the
same time, Bardet et al. [BBCO19] introduced a hybrid version of the Barelli-
Couvreur attack against the updated parameters. However, due to a proper
choice of parameters, their attack worked only for the parameters of NIST secu-
rity level 1 and not for the two others.

As part of this work, we show that the Barelli-Couvreur and Bardet et al.
attacks have no effect against the code-based KEM using binary QD-GS codes
that we call binary DAGS. We provide parameters that are secure against fold-
ing technique [FOPDPT15] and FOPT attacks. The main difference between
the binary DAGS and the version submitted to the first round of NIST PQC
standardization process [BBBCDGGHKN+18] is that the base fields are nonbi-
nary. In addition, the underlying cryptosystem in the binary DAGS is that of
Niederreiter instead of McEliece.

Contribution: In this work, we focus on the fast software implementation of
the secure binary DAGS.

First, we show that the Barelli-Couvreur and Bardet et al. attacks have no
effect against the code-based KEM using binary QD-GS codes that we called
binary DAGS. We provide parameters that are secure against folding technique
[FOPDPT15] and FOPT attacks.

Second, we perform an efficient software implementation of the binary DAGS.
For that, we use techniques from [BBPS20] that specifically aim to improve the
multiplication of QD matrices. These involve a version of the Karatsuba multi-
plication algorithm and an application of the LUP version in order to compute
the product and inverse of matrices more efficiently. These improvements allow
us to achieve better runtimes than previous DAGS implementations.

Finally, we show that our implementation is competitive in terms of execution
time with the NIST candidates for advanced evaluation.

Organisation: The paper is organized as follows. In Sect. 2, we focus on the
required prerequisites for this paper. In Sect. 3, we give the description of the
code-based KEM from binary QD-GS codes. We also propose a set of parameters.
In Sect. 4, we present the technical details about the software implementation
and results. Finally, we conclude this paper in Sect. 5.
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2 Prerequisites

2.1 Notations

In this paper we use the following notations:

Fq finite field of size q = 2m

A matrix

Ir identity matrix of size r × r

a vector

wt(a) Hamming weight of a

d(x,y) Hamming distance between x and y

(x‖y) concatenation of vector x and y

(A‖B) concatenation of matrices A and B

H hash function

Diag(a) Diagonal matrix from vector a

Sw,n Set of binary vectors of length n and Hamming weight w

2.2 Coding Theory

Let Fq be a finite field with q = 2m. A linear code C of length n and dimension k
over Fq is a subspace of Fn

q of dimension k. Elements of C are called code words.
A generator matrix of C is a matrix G ∈ F

k×n
q such that

C =
{
mG s.t m ∈ F

k
q

}

and a parity check matrix of C is a matrix H such HcT = 0 for all c ∈ C.
Let x ,y ∈ F

n
q be two vectors. The Hamming weight of x denoted by wt(x )

corresponds to the number of nonzero components of x . The Hamming distance
between x and y denoted by d(x ,y) is the Hamming weight of the vector x −y .
The minimal distance of a code C denoted by d(C) is the minimal distance
between different code words. For more details on coding theory refer to [MS77].

Let n = 2r be an integer and a = (a0, a1, ..., an−1) ∈ F
n
q be a nonzero vector.

A square matrix A = (ai,j) ∈ F
n×n
q is said dyadic of signature a ∈ F

n
q if it is

defined by:
ai,j = ai⊕j

where ⊕ is the bitwise operation. A matrix is said quasi-dyadic when it is a block
matrix where each block is a dyadic matrix. A linear code C is said quasi-dyadic
when one of its parity check matrices is in the quasi-dyadic form.

Let u = (u0, ..., un−1) ∈ F
n
2m and v = (v0, ..., vs−1) ∈ F

s
2m be two vectors

with pairwise distinct coefficients such that ui − vj �= 0 for all 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ s − 1. The matrix C(u ,v) = (cij)0≤i≤n−1,0≤j≤s−1 such that
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cij = 1/(ui − vj) is called a Cauchy matrix. This matrix plays an important role
in the design of quasi-dyadic Goppa codes. Indeed, it was shown that Goppa with
a monic generator polynomial without multiple zeros has a parity check in the
Cauchy form [MS77]. Moreover, recently, Barreto et Misoczki established how
to design a binary Goppa code in Cauchy and dyadic form [MB09, Section 3].

A Generalized Srivastava code C over a F2m is an alternant code with a parity
check matrix in the form:

H =

⎛

⎜
⎜
⎜
⎝

H0

H1

...
Hs−1

⎞

⎟
⎟
⎟
⎠

. (1)

The matrices Hi are defined by (2) from n+s different elements α0, α1, ..., αn−1

and w0, w1, ..., ws−1 of Fqm , and n nonzero elements z0, z1, ..., zn−1 of Fq with
n ≤ qm − s.

Hi =

⎛

⎜
⎜
⎜
⎜
⎝

z1
α0−wi

· · · zn−1
αn−1−wi

z1
(α0−wi)2

· · · zn−1
(αn−1−wi)2

...
...

z1
(α0−wi)t

· · · zn−1
(αn−1−wi)t

⎞

⎟
⎟
⎟
⎟
⎠

(2)

Dimension k and minimal distance d of C verify k ≥ n − mst and d ≥ st + 1.
It is important to note that when t = 1 GS codes are Goppa codes. Moreover,
by reordering rows of the matrix H defined by (1) we can see that generalized
Srivasta codes could be defined by a parity check matrix in the form

H̃ =

⎛

⎜
⎜
⎜
⎝

H̃1

H2

...
H̃t

⎞

⎟
⎟
⎟
⎠

where H̃i =

⎛

⎜
⎜
⎜
⎜
⎝

z1
(α0−w0)i

· · · zn−1
(αn−1−w0)i

z1
(α0−w1)i

· · · zn−1
(αn−1−w1)i

...
...

z1
(α0−ws−1)i

· · · zn−1
(αn−1−ws−1)i

⎞

⎟
⎟
⎟
⎟
⎠

for i = 1, ..., t. (3)

We can see that for constructing a generalized Srivastava code from (3), we need
to compute the matrix H̃1 and the other matrices H̃i could be obtained by
raising each coefficient of H̃1 to the power of i. For more information about GS
codes see [MS77].

2.3 Key Encapsulation Mechanism

A KEM is a set of four algorithms (Setup, KeyGen, Encapsulation, Decapsulation)
described as follows:

• Setup(1λ): Setup is a probabilistic algorithm that takes as in input a security
parameter λ and returns public parameters PP

• KeyGen(PP): KeyGen is the key generation algorithm. It takes as input public
parameters and returns a couple (sk, pk) of secret and public keys.
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• Encapsulation(PP, pk): This algorithm takes as input public parameters and
public key. It first generates a session key k then computes its encapsulated
value c. Finally, it returns c.

• Decapsulation(sk, c): Decapsulation is the algorithm consisting to recover a
session key from an encapsulation c. It takes as input an encapsulation c and
a secret key sk. It returns either a session key k or the failed symbol ⊥.

3 KEM from Binary QD-GS Codes

In this section, we first describe the key encapsulation mechanism from binary
QD-GS codes and then make its security analysis.

3.1 Description

It is important to note that the scheme is built upon the Niederreiter cryp-
tosystem thus the public key is a systematic parity check matrix. In the
key generation algorithm, the process is similar to that of DAGS reloaded
[BBBCDGGHKN+19]. However, the main difference is in the fact that the base
field is the binary field F2 instead of an extension F2r . The key generation, encap-
sulation, and decapsulation algorithms of binary DAGS are defined as follows:

Algorithm 1. Key Generation

Input: A finite field F2m , nonzero integers n = n0s and t.
Output: A public key pk and a secret key sk

1. Generate the dyadic signature h
2. Construct the Cauchy support (u,v)
3. Compute the Cauchy matrix H1 = C(u,v)
4. Compute Hi for i = 2, ..., t by computing the power of i of each coefficient

of the matrix H1

5. Compute a vector z by sampling uniformly at random elements in F2m with
the restriction zis+j = zis for i = 0, ..., n0 − 1, j = 0, ..., s − 1.

6. Compute the matrix H̃ =

⎛

⎜
⎜
⎜
⎝

H1

H2

...
Ht

⎞

⎟
⎟
⎟
⎠

Diag(z )

7. Split Hbin as (B‖A) such that A is a mst × mst invertible matrix.
8. Compute the systematic form H̃bin = (M‖I) = A−1Hbin

9. Choose randomly a binary string r ∈ F
n
2 .

10. Return pk = M and sk = (u ,A, r,M)

In the key generation algorithm the dyadic signature h is computed according
to the work of Barreto and Misoczki [MB09]. The integer s represents the order
of the quasi-dyadic matrix H1. Finally, n is the length of the code and t is the
number of block rows in the parity check matrix of the generalized Srivastava
code.
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The Cauchy support (u,v) is constructed as follows:

– Choose a random offset w
$←− F2m ;

– Compute ui = 1
hi

+ w and vj = 1
hj

+ 1
h0

+ w for i = 0, · · · , s − 1 and
j = 0, · · · , n − 1 ;

– Set u = (u0, · · · ,us−1) and v = (v0, · · · ,vn−1).

Algorithm 2. Encapsulation

Input: The public key pk = M where H̃bin = (M‖I) is a binary parity check
matrix of a QD-GS code.
Output: A session key k and its encapsulation c

1. Choose randomly an error vector e
$← Sw,n

2. Compute c0 = e1 + Me0 and c1 = H(2,e) where e is parse as (e0‖e1).
3. Set c = (c0‖c1)
4. Compute k = H(1,e, c)
5. Return the encapsulation c

Algorithm 3. Decapsulation

Input: The secret key sk = (u ,A, r,M), encapsulation c
Output: A session key k

1. Parse c into c = (c0‖c1)
2. Obtain the syndrome c′

0 ∈ Fq from c0.
3. Compute e′ = Decode(sk, c′

0) where Decode is a decoding algorithm for alter-
nant code.

4. If decoding failed or wt(e′) �= w set b = 0 and η = r
5. If H̃bine

′ = c0 and c1 = H(2,e′).
Set b = 1 and η = e′

6. Else:
Set b = 0 and η = r

7. Return k = H(b, η, c)

Description of the Decoding Algorithm
The input to the decoding algorithm is not, as commonly, a noisy codeword, but
a syndrome.

The main step in the decoding algorithm involves reconstructing the alter-
nant matrix Halt and a syndrome c′

0 corresponding to the alternant code. For
this reconstruction, we first compute AH̃bin = Hbin; Ac0 = c̃0. Then we use
the inverse of the co-trace function to transform respectively Hbin and c̃0 into
matrix H̃ and syndrome c̃ with coefficients in the extension field F2m . Finally, we
compute Halt = C−1H̃ and c′

0 = C−1c̃, where C is a r×r matrix such that its
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r rows correspond to the coefficients of the polynomials g1(x), g2(x), · · · , gr(x)
defined by:

g(l−1)t+i =

s∏

j=1

(x − uj)
t

(x − ul)
i

for l = 1, · · · , s and i = 1, · · · , t. For more details on the alternant
matrix reconstruction and the corresponding alternant syndrome, refer to
[BBBCDGGHKN+19].

3.2 Security Analysis

Decoding Attack. In code-based cryptography, the main efficient and known
decoding attack is the information set decoding (ISD) technique introduced by
E. Prange [Pra62]. Other approaches such as statistical decoding [Jab01] are
considered as less efficient. For a given linear code of length n and dimension k,
the main idea behind the information-set decoding algorithm is to find a set of k
coordinates of a garbled vector that are error-free and such that the restriction
of the code’s generator matrix to these positions is invertible. Then, the original
message can be computed by multiplying the encrypted vector by the inverse of
the submatrix.

Thus, those k bits determine the codeword uniquely, and hence the set is
called an information set. It is sometimes difficult to draw the exact resistance
to this type of attack. However, they are always lower-bounded by the ratio of
information sets without errors to total possible information sets, i.e.,

RISD =

(
n−ω

k

)
(
n
k

) ,

where ω is the Hamming weight of the error vector. Therefore, well-chosen
parameters can avoid these non-structural attacks.

Algebraic Attack. In code-based cryptography, the main key recovery attack
against schemes using structured codes are that of Faugère et al. denoted in
the literature by FOPT attack [FOPT10]. Their attack was originally aimed
at two variants of McEliece-like schemes, introduced respectively in [BCGO09]
and [MB09]. The first scheme based on quasi-cyclic is completely broken. The
second variant, instead, only considered quasi-dyadic Goppa codes. Most of the
parameters proposed in [MB09], have also been broken very easily, except for
the binary case code. This is not connected to the base field but is due to the
fact that with a small base field, authors provided a higher extension degree.
The extension degree m plays an important role in the attack, as it defines
the dimension of the solution space, which is equal, in fact, exactly to m − 1.
However, in [FOPT13], the authors provided a bound of the complexity of their
attack and showed that schemes for which this dimension is less or equal to 20
should be within the scope of the attack.
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In this paper, the underlying code is Generalized Srivastava code and in
[Per12], the author showed that the dimension of the solution space is mt − 1
instead of m−1. Therefore the choice of a good parameter could avoid this attack.
Recently, in [FOPDPT16] an improvement of FOPT attack was introduced.
Authors introduced a new technique called folding to reduce the complexity of
the FOPT attack to that of attacking a smaller code (i.e. the folded code) by
using the strong properties of the automorphism group of the alternant codes.
However, it is important to note that there is not a clear application of this
attack against GS codes and furthermore, the authors do not propose a concrete
bound, but only experimental results.

During the NIST process for standardization of post-quantum public key
schemes, there is only one scheme based on quasi-dyadic generalized Srivas-
tava code presented by Banegas et al. [BBBCDGGHKN+18]. The specificity
of this scheme is that the authors used a non-binary based field and a small
degree extension compared to the scheme of [MB09]. Some proposal parameters
of Banegas et al.’s scheme were attacked by Barelli and Couvreur in [BC18].

The Barelli-Couvreur attack is based on a novel construction called Norm-
Trace Code. The construction of these codes is given explicitly only for
the specific case m = 2 which is the case in all parameters proposed in
[BBBCDGGHKN+18]. However, it is possible to avoid this attack by modi-
fying a single parameter, namely the size q of the base field i.e by changing this
value from 26 to 28. To address of the Barelli-Couvreur attack, Banegas et al.
provided updated parameters in [BBBCDGGHKN+19] while keeping the size of
the base field corresponding to the level 1 of NIST security to q = 26. This leads
to a new attack introduced by Bardet et al. [BBCO19].

In Bardet et al.’s paper, they first applied the Barelli-Couvreur attack and
after, presented a hybrid attack combining exhaustive search and Gröbner basis
to attack the updated parameters of level 1 in [BBBCDGGHKN+19]. However,
note that their attack did not concern updated parameters of NIST security
levels 2 and 3 where the size of the base field is q = 28. In addition, in [BBCO19]
authors showed that when the reduced system is undetermined, both attacks (i.e.
of [BC18] and [BBCO19]) have no effect. Note that among all aforementioned
attacks only that of Faugère et al.’s [FOPT10] concerns binary codes. As it is
mentioned, to avoid it we need to choose parameters to have a dimension of the
solution space satisfying mt − 1 > 20.

Proposal Parameters. The parameters used for this implementation (Table 1)
are that proposed in [BBBCDGGHKN+19]. These parameters are chosen to
be secure against information decoding attack as well as the folding technique
[FOPDPT15] and FOPT attacks. They are chosen as follows:

• Information set decoding attack : for avoiding the information set decoding
attack, the parameters n and k are chosen such that the ration n

k is closed
to 1

2 .
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Table 1. Proposal parameters in [BBBCDGGHKN+19]

Security level q n k s t w

1 213 6400 3072 27 2 128

3 214 11520 4352 28 2 256

5 214 14080 6912 28 2 256

• FOPT attack : considering the fact that the underlying quasi-dyadic code is
a generalized Srivastava code which is a generalization of Goppa code, the
parameters m and t are chosen such that the dimension of solution space is
larger than 20 as recommended in [FOPT13].

• Folding technique attack : for avoiding the folding technique attack, the quasi-
dyadic order s of the underlying generalized Srivastava code is chosen such
that it is not very large.
Despite these parameter adjustments, binary DAGS still has a small pub-
lic key size compared to Classic McEliece [CCUGLMMNPP+20] and BIKE
[ABBBBDGGGM+17] (Table 2).

4 Efficient Implementation

In this software implementation for binary DAGS (DAGSbin), we will exploit the
particular structure of QD matrices to improve the multiplication of two QD
matrices. Some matrix operations, such as sum or inversion, can be performed
efficiently in the dyadic case by simply considering the signatures as in [BBPS20].
The multiplication operations can be significantly improved by means of LUP
decomposition and the Karatsuba multiplication in the QD case. This method
provides a fast software implementation of key generation and decapsulation in
the binary DAGS compared to the standard method.

4.1 Implementation Details

For Key Generation. We realized that the systematization of the matrix Hbin

represents almost the total cost of the key generation. To reduce this, we first
performed a trick in our implementation. By combining Steps 6 and 7 into one
and with the projection of the matrix H̃ onto F2, we obtain a QD matrix mst×n
Hbin. Then the systematic form H̃bin of Hbin is also a QD matrix. Therefore,
instead of considering the complete mst × n matrix Hbin, we just need the
signature of each block. Thus, the first row of Hbin is composed of the signatures
of the first blocks, the second row is obtained from the signatures of the second
blocks, and so on. Finally, Hbin is mt × n matrix, with n0 block-rows, where
n0 = n/s. As a result, the time required to systematize the matrix Hbin decreases
significantly.

Second, in Step 9, we used the efficient inversion of the secret matrix A as
in [BBPS20] by merging the LUP decomposition and Karatsuba multiplication.
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This improved inversion method reduces the execution time of the key generation
by almost 10 times for the level security 1 (DAGSbin 1) for example.

Table 2. Public key size in bytes for level security 3

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGS

reloaded

DAGSbin 3

Public Key 24 659 4 522 524 160 11 264 15 232

For Encapsulation. This is faster than the key generation and the decapsu-
lations algorithms. It is just composed by a binary matrix-vector product and
hash computation. We just cleaned up the C code compared to the previous
implementations.

For Decapsulation. For the decapsulation we need to reconstruct the alter-
nant syndrome c′

0 and the alternant secret matrix Halt from the secret key
[BBBCDGGHKN+19]. We observe that this step consumes almost half of the
execution time in the decapsulation. Therefore, we first compute Hbin = AH̃bin.
Here we use the Karatsuba multiplication technique in the QD case to save time
in our implementation.

Then, from Hbin, we apply the inverse of the co-trace function to obtain
the matrix H̃ with coefficients in the extension field. We compute the matrix C
from the support u.

Finally, we compute Halt = C−1H̃ using the same technique in Step 9 in
the key Generation. The LUP decomposition factorizes the matrix C as LUP.
This procedure consists in using a block decomposition, which works directly on
the signatures, to exploit the simple and efficient algebra of QD matrices. Once
the factorization of C is obtained, it is sufficient to perform the computation of
C−1 in an efficient way and use the Karatsuba method to perform the product.

All these techniques could have allowed us to make the decapsulation very
fast. Unfortunately, we could not generate the session key correctly for some tests
with the version of the binary DAGS (DAGSbin 5) of level security 5. Therefore
we cannot present the runtime for this version in the results.

In the following, we call the version of the binary DAGS with the application
of the above techniques for key generation and decapsulation, DAGSbin improved.

Table 3. Timings with previous codes for security level 1

Algorithm DAGS reloaded DAGSbin 1 DAGSbin 1 improved

Key Generation 408 342 881 679 076 980 77 768 093

Encapsulation 5 061 697 6 564 782 4 641 252

Decapsulation 192 083 862 298 987 096 15 091 4566
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Table 4. Timings with previous codes for security level 3

Algorithm DAGS reloaded DAGSbin 3 DAGSbin 3 improved

Key Generation 1 560 879 328 1 597 980 876 847 980 876

Encapsulation 14 405 500 15 200 232 8 020 732

Decapsulation 392 435 142 454 765 478 34 656 844

4.2 Results

In this section, we present the results obtained in our implementation in C. The
timings were acquired by running the code 10 times and taking the average. We
used CLANG compiler version 8.0.0 and the processor was an Intel(R) Core(TM)
i5-5300U CPU @ 2.30 GHz.

We present below the number of cycles obtained for our binary DAGS imple-
mentation with the improvements in key generation and decapsulation compared
to previous implementations (Table 3 and Table 4). Tables 5 and 6 compare our
implementation with the other NIST finalists.

Table 5. Timings with NIST finalists for security level 1

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGSbin 1

improved

Key Generation 650 638 98 570 49 758 742 77 768 093

Encapsulation 247 976 356 980 56 672 4 741 252

Decapsulation 2 575 687 467 891 253 864 15 091 4566

Table 6. Timings with NIST finalists for security level 3

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGSbin 3

improved

Key Generation 3 674 894 267 983 364 756 564 847 980 876

Encapsulation 564 896 567 836 245 794 8 020 732

Decapsulation 4 298 673 947 920 387 678 34 656 844

5 Conclusion

This paper is an extension of the work of Banegas et al. [BBBCDGGHKN+19]
on DAGS. We first established that the Barelli-Couvreur and Bardet et al.
attacks have no effect against binary DAGS. This is a code-based KEM
scheme using quasi-dyadic binary generalized Srivastava codes. We have pro-
vided parameters that are secure against folding technique and FOPT attacks et
al. [BBBCDGGHKN+19]. Despite these parameter adjustments, binary DAGS
still has a small public key size. Then, we realized an efficient software implemen-
tation of the binary DAGS using tricks to reduce the computational time mainly
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in the key generation and decapsulation algorithms. We also used LUP decom-
position and Karatsuba multiplication techniques in the case of quasi-dyadic
matrices. This allowed us to have a competitive runtime performance compared
to other code-based NIST finalists. Finally, the high execution time in binary
DAGS compared to DAGS reloaded is related to the choice of parameters that
are very large (e.g. n = 6400 security level 1). We need to reduce the parameters
in binary DAGS while being aware of existing attacks. In this way, we will be
able to achieve even better performance. This work is currently in progress and
the results will appear in our future work.
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