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Preface

Post-quantum cryptography has known tremendous interest these past few years, espe-
cially since the call for standardization of quantum-safe primitives by the US National
Institute of Standards and Technology (NIST) back in 2017. Earlier this summer, NIST
announced the first algorithms to be standardized, including proposals based on lattices
and hash functions, as well as the beginning of the fourth and last round. To date, the
latter only features proposals relying on coding theory assumptions, making the field
of code-based cryptography of utmost importance. Originally named the “Code-Based
Cryptography (CBC) Workshop”, the series was initiated in 2009 as an informal forum
with the goal of bringing together researchers active in the analysis and development
of code-based encryption and authentication schemes. Over the years, the workshop
has grown from a Europe-based, regional event to become a worldwide venue for the
code-based cryptography community. The workshop was renamed “CBCrypto” in 2020,
its organization was co-located with the flagship conference Eurocrypt, and extended to
include the publication of revised selected manuscripts in the form of a post-conference
proceedings volume. The 2022 edition of CBCrypto was held in Trondheim, Norway
in a hybrid mode due to the COVID-19 pandemic. With more than 70 registrations for
physical attendance and 150 for online participation, this edition was a great success.
Featuring 8 sessions and 1 invited talk, there were 19 contributed talks over 2 days,
presenting recent research and works in progress. This book collects the 8 contributions
that were selected for publication by the Program Committee through a careful peer
review process. These contributions span all aspects of code-based cryptography, from
design to implementation, including studies of security, new systems, and improved
decoding algorithms. As such, the works presented in this book provide a synthesized
yet significant overview of the state-of-the-art of code-based cryptography, laying out
the groundwork for future developments. We wish to thank the Program Committee
members and the external reviewers for their hard and timely work, as well as Edoardo
Persichetti for the local organization, and Marco Baldi for administrative support.

December 2022 Jean-Christophe Deneuville



Organization

General Chair

Jean-Christophe Deneuville ENAC, University of Toulouse, France

Local Organization

Edoardo Persichetti Florida Atlantic University, USA

Program Committee

Carlos Aguilar SandBoxAQ, France
Marco Baldi Università Politecnica delle Marche, Italy
Gustavo Banegas Inria and École polytechnique, France
Alessandro Barenghi Politecnico di Milano, Italy
Hannes Bartz German Aerospace Center (DLR), Germany
Emanuele Bellini Technology Innovation Institute, UAE
Pierre-Louis Cayrel Laboratoire Hubert Curien, France
Franco Chiaraluce Università Politecnica delle Marche, Italy
Jean-Christophe Deneuville École Nationale de l’Aviation Civile, France
Taraneh Eghlidos Sharif University of Technology, Iran
Jérôme Lacan ISAE-SUPAERO, France
Gianluigi Liva German Aerospace Center (DLR), Germany
Pierre Loidreau Celar and Irmar, Université de Rennes 1, France
Chiara Marcolla Technology Innovation Institute, UAE
Giacomo Micheli University of South Florida, USA
Kirill Morozov University of North Texas, USA
Ayoub Otmani University of Rouen, France
Gerardo Pelosi Politecnico di Milano, Italy
Edoardo Persichetti Florida Atlantic University, USA
Joachim Rosenthal University of Zurich, Switzerland
Simona Samardjiska Radboud University, The Netherlands
Paolo Santini Università Politecnica delle Marche, Italy
Antonia Wachter-Zeh Technical University of Munich, Germany
Øyvind Ytrehus University of Bergen, Norway



viii Organization

External Reviewers

Luca Bastioni
Austin Dukes
Lukas Kölsch
Vincenzo Pallozzi Lavorante



Contents

Distinguishing and Recovering Generalized Linearized Reed–Solomon
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Felicitas Hörmann, Hannes Bartz, and Anna-Lena Horlemann

Verifying Classic McEliece: Examining the Role of Formal Methods
in Post-Quantum Cryptography Standardisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Martin Brain, Carlos Cid, Rachel Player, and Wrenna Robson

Key-Recovery Fault Injection Attack on the Classic McEliece KEM . . . . . . . . . . 37
Sabine Pircher, Johannes Geier, Julian Danner,
Daniel Mueller-Gritschneder, and Antonia Wachter-Zeh

Towards Automating Cryptographic Hardware Implementations: A Case
Study of HQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion,
James Howe, Romain Malmain, Vincent Migliore, Mamuri Nawan,
and Kashif Nawaz

Software Implementation of a Code-Based Key Encapsulation Mechanism
from Binary QD Generalized Srivastava Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Boly Seck, Cheikh Thiécoumba Gueye, Gilbert Ndollane Dione,
Jean Belo Klamti, Pierre-Louis Cayrel, Idy Diop, and Ousmane Ndiaye

On Decoding High-Order Interleaved Sum-Rank-Metric Codes . . . . . . . . . . . . . . 90
Thomas Jerkovits, Felicitas Hörmann, and Hannes Bartz

Information Set Decoding for Lee-Metric Codes Using Restricted Balls . . . . . . . 110
Jessica Bariffi, Karan Khathuria, and Violetta Weger

Cryptanalysis of Ivanov–Krouk–Zyablov Cryptosystem . . . . . . . . . . . . . . . . . . . . . 137
Kirill Vedenev and Yury Kosolapov

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



Distinguishing and Recovering
Generalized Linearized Reed–Solomon

Codes

Felicitas Hörmann1,2(B) , Hannes Bartz1 , and Anna-Lena Horlemann2

1 Institute of Communications and Navigation, German Aerospace Center (DLR),
Oberpfaffenhofen-Wessling, Germany

{felicitas.hoermann,hannes.bartz}@dlr.de
2 School of Computer Science, University of St. Gallen, St. Gallen, Switzerland

anna-lena.horlemann@unisg.ch

Abstract. We study the distinguishability of linearized Reed–Solomon
(LRS) codes by defining and analyzing analogs of the square-code and
the Overbeck distinguisher for classical Reed–Solomon and Gabidulin
codes, respectively. Our main results show that the square-code distin-
guisher works for generalized linearized Reed–Solomon (GLRS) codes
defined with the trivial automorphism, whereas the Overbeck-type dis-
tinguisher can handle LRS codes in the general setting. We further show
how to recover defining code parameters from any generator matrix of
such codes in the zero-derivation case. For other choices of automor-
phisms and derivations simulations indicate that these distinguishers and
recovery algorithms do not work. The corresponding LRS and GLRS
codes might hence be of interest for code-based cryptography.

1 Introduction

Researchers have made tremendous progress in the design and realization of
quantum computers in the last decades. As it was shown that quantum comput-
ers are capable of solving both the prime-factorization and the discrete-logarithm
problem in polynomial time, attackers can break most of today’s public-key cryp-
tosystems (as e.g. RSA and ECC) if they have a powerful quantum computer
at hand. The urgent need for quantum-safe cryptography is obvious, especially
since store now, harvest later attacks allow to save encrypted data now and
decrypt it as soon as the resources are available. This is reflected in the stan-
dardization process that NIST started for post-quantum cryptography in 2016.
The first key-encapsulation mechanisms (KEMs) were standardized in July 2022
after three rounds of the competition and some of the submissions were for-
warded to a fourth round for further investigation [1]. Three out of the four
remaining KEM candidates in round four are code-based. Moreover, the fourth
one (namely, SIKE) was recently broken [7]. This explains why the community
has high hopes and trust in coding-related primitives even though no code-based
candidate has been chosen for standardization so far.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-C. Deneuville (Ed.): CBCrypto 2022, LNCS 13839, pp. 1–20, 2023.
https://doi.org/10.1007/978-3-031-29689-5_1
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Code-based cryptography mostly relies on McEliece-like schemes that are
inspired by the seminal paper [17]. The main idea is to choose a generator matrix
of a secret code and disguise its algebraic structure by applying some, in most
cases isometric or near-isometric, transformations such that an adversary cannot
derive the known (or any other) efficient decoder from the mere knowledge of
the scrambled matrix.

McEliece-like instances based on a variety of code families and disguis-
ing functions in the Hamming and the rank metric were proposed over time.
For example, the works [4,25] are based on Reed–Solomon (RS) codes in the
Hamming metric and the GPT system and its variants (see e.g. [8,9,23]) use
Gabidulin codes in the rank metric. But in both cases, polynomial-time attacks
were proposed and broke several of the systems: RS codes can be distinguished
from random codes by using the square-code approach introduced in [25,28] and
Overbeck-like strategies [10,11,19–21] yield a distinguisher for Gabidulin codes.
The works also explain the recovery of an equivalent secret key which enables
the attacker to decrypt with respect to the public code.

The sum-rank metric was first established in 2005 [13, Sect. III] and general-
izes both the Hamming and the rank metric. It is thus natural to investigate if
McEliece-like cryptosystems based on sum-rank-metric codes can ensure secure
communication. The work [22] considers generic decoding of sum-rank-metric
codes and hence gives guidance for the security-level estimation of sum-rank-
based cryptography. Mart́ınez-Peñas [14] introduced linearized Reed–Solomon
(LRS) codes which are the sum-rank analogs of RS and Gabidulin codes and
thus could be a first naive choice for secret codes in McEliece-like systems.

We focus on the task of distinguishing LRS codes from random codes and
present two distinguishers that are inspired by the square-code idea and by Over-
beck’s approach, respectively. Our results can be applied to distinguish gener-
alized linearized Reed–Solomon (GLRS) codes which we define as LRS codes
with nonzero block multipliers. As this more general code family is closed under
semilinear equivalence, the methods also apply to GLRS codes with isometric
disguising. We finally focus on the zero-derivation case and show how an efficient
decoding algorithm can be recovered from a GLRS generator matrix that was
disguised by means of semilinear isometries.

2 Preliminaries

Let us first gather some notions and results that we will use later on. In par-
ticular, let q be a prime power and denote the finite field of order q by Fq. For
m ≥ 1, we further consider the extension field Fqm ⊇ Fq of order qm. For a
matrix M ∈ F

k×n
qm , let 〈M〉 denote the Fqm-linear vector space spanned by the

rows of M .

2.1 The Sum-Rank Metric

An (integer) composition of n ∈ N
∗ into � ∈ N

∗ parts (or �-composition for
short) is a vector n = (n1, . . . , n�) ∈ N

� with ni > 0 for all 1 ≤ i ≤ � that
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satisfies n =
∑�

i=1 ni. If n contains k distinct elements ñ1, . . . , ñk, let λj denote
the number of occurrences of ñj in n for each j = 1, . . . , k and write λ(n) :=
(λ1, . . . , λk) ∈ N

k.
Throughout the paper, n ∈ N

∗ usually refers to the length of the considered
codes and we will stick to one particular �-composition n = (n1, . . . , n�) of n.
We often divide vectors x ∈ F

n
qm or matrices M ∈ F

k×n
qm with k ∈ N

∗ into blocks
with respect to n. Namely, we write x = (x(1) | · · · | x(�)) with x(i) ∈ F

ni
qm for

all 1 ≤ i ≤ � and M = (M (1) | · · · | M (�)) with M (i) ∈ F
k×ni
qm for all 1 ≤ i ≤ �,

respectively.
The sum-rank weight of a vector x ∈ F

n
qm (with respect to n) is defined

as wtn
ΣR(x) =

∑�
i=1 rkq(x(i)), where rkq(x(i)) is the maximum number of Fq-

linearly independent entries of x(i) for i = 1, . . . , �. The hereby induced sum-rank
metric is given by dn

ΣR(x,y) = wtn
ΣR(x − y) for x,y ∈ F

n
qm . Since we always

consider the same �-composition n, we write wtΣR and dΣR for simplicity.
An Fqm-linear sum-rank-metric code C is an Fqm-subspace of F

n
qm . Its length

is n and its dimension k := dim(C). We further define its minimum (sum-rank)
distance as

d(C) := {dΣR(c1, c2) : c1, c2 ∈ C, c1 �= c2} = {wtΣR(c) : c ∈ C, c �= 0},

where the last equality follows from the linearity of the code. A matrix G ∈ F
k×n
qm

is a generator matrix of C if C = 〈G〉. If C is the kernel of a matrix H ∈ F
(n−k)×n
qm ,

H is called a parity-check matrix of C. The code generated by any parity-check
matrix H of C is the dual code of C and denoted by C⊥.

2.2 Automorphisms, Derivations, and Conjugacy

An automorphism θ on Fqm is a mapping θ : Fqm → Fqm with the properties θ(a+
b) = θ(a) + θ(b) and θ(a · b) = θ(a) · θ(b) for all a, b ∈ Fqm . We denote the group
of all Fqm -automorphisms by Aut(Fqm). Note that every automorphism fixes a
subfield of Fqm pointwise. The cyclic subgroup of Aut(Fqm), whose elements fix
(at least) Fq pointwise, is called the Galois group of the field extension Fqm/Fq

and we denote it by Gal(Fqm/Fq). Every σ ∈ Gal(Fqm/Fq) is a power of the
Frobenius automorphism (with respect to q) that is defined as

ϕ : Fqm → Fqm , a 
→ aq.

Namely, σ ∈ {ϕ0, . . . , ϕm−1}. The fixed field of σ = ϕl with l ∈ {0, . . . , m−1} is
F
gcd(l,m)
q . For simplicity, assume in the following that σ = ϕl with gcd(l,m) = 1,

i.e., let the fixed field of σ be Fq.
A σ-derivation is a map δ : Fqm → Fqm that satisfies both δ(a + b) =

δ(a) + δ(b) and δ(a · b) = δ(a) · b + σ(a) · δ(b) for all a, b ∈ Fqm . In our finite-
field setting, every σ-derivation is an inner derivation, that is δ = γ(Id −σ) for a
γ ∈ Fqm and the identity Id on Fqm . When the automorphism σ is clear from the
context, we often write δγ to refer to the derivation corresponding to γ ∈ Fqm .

For a fixed pair (σ, δ), we can group the elements of Fqm with respect to an
equivalence relation called (σ, δ)-conjugacy:
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Definition 1. Two elements a, b ∈ Fqm are called (σ, δ)-conjugate if there is a
c ∈ F

∗
qm with

ac := σ(c)ac−1 + δ(c)c−1 = b.

All conjugates of a ∈ Fqm are collected in the respective conjugacy class

K(a) := {ac : c ∈ F
∗
qm} ⊆ Fqm .

For δ = δγ with γ ∈ Fqm , the class K(γ) is called trivial conjugacy class.

2.3 Isometries in the Sum-Rank Metric

As most code-based cryptosystems use isometric disguising, we quickly recall
the characterization of sum-rank isometries. Note that we have to differentiate
between Fq-linear and Fqm-linear isometries. The former were studied in [18,
Prop. 4.26], whereas the latter were considered in [2,15]. Precisely, the special
case of equal block lengths (i.e., n =

(
n
� , . . . , n

�

)
) was treated in [15, Thm. 2]

and the generalization to arbitrary block lengths and the extension to semilin-
ear isometries is due to [2, Sect. 3.3]. We focus on Fqm -(semi)linear isometries
because of our motivation from code-based cryptography. Namely, we consider
the following:

Definition 2. A bijective map ι : F
n
qm → F

n
qm is a (sum-rank) isometry on F

n
qm

if it is sum-rank preserving, that is if dΣR(x) = dΣR(ι(x)) holds for all x ∈ F
n
qm .

We call an isometry linear when it is Fqm-linear. A semilinear isometry ι is
additive and there exists an Fqm-automorphism θ such that ι fulfills ι(ax) =
θ(a)ι(x) for all a ∈ Fqm and all x ∈ F

n
qm .

Recall that the general linear group GL(n, Fq) contains all full-rank matri-
ces of size n × n over Fq and that the symmetric group Symn consists of all
permutations of n elements. We introduce the notations

GL(n, Fq) := GL(n1, Fq) × · · · × GL(n�, Fq)
and Symλ(n) := Symλ1

× · · · × Symλk
,

where λ(n) counts the occurrences of distinct entries of n (see Subsect. 2.1).
Note that Symλ(n) is a subgroup of Sym∑

j λj
= Sym�.

Theorem 1 (Sum-Rank Isometries [2,15]). The group of Fqm-linear isome-
tries on F

n
qm is

LI(Fn
qm) :=

(
(F∗

qm)� × GL(n, Fq)
)

� Symλ(n) .

Its action actLI : LI(Fn
qm) × F

n
qm → F

n
qm is defined as

actLI(ι,x) :=
(
c1x

(π−1(1))M1 | · · · | c�x
(π−1(�))M�

)
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for ι = ((c1, . . . , c�), (M1, . . . ,M�), π) and x ∈ F
n
qm . Similarly, the group of

Fqm-semilinear isometries on F
n
qm is

SI(Fn
qm) := LI(Fn

qm) � Aut(Fqm)

and its action actSI : SI(Fn
qm) × F

n
qm → F

n
qm is given by

actSI((ι, θ),x) := θ(actLI(ι,x))

for (ι, θ) ∈ SI(Fn
qm) and x ∈ F

n
qm .

Since MacWilliams’ extension theorem does not hold in this general setting
(see [3, Ex. 2.9 (a)] for a counterexample in the rank-metric case), code equiv-
alence in the sum-rank metric is defined by means of isometries of the whole
space (cp. [2, Def. 3.9]).

Definition 3. Two sum-rank-metric codes C,D ⊆ F
n
qm are called linearly equiv-

alent if there is a linear isometry ι ∈ LI(Fn
qm) such that

actLI(ι, C) := {actLI(ι, c) : c ∈ C} = D.

They are semilinearly equivalent if there is (ι, θ) ∈ SI(Fn
qm) such that

actSI((ι, θ), C) := {actSI((ι, θ), c) : c ∈ C} = D.

2.4 Skew Polynomials

The skew-polynomial ring Fqm [x;σ, δ] is defined as the set of polynomials f(x) =∑
i fix

i with finitely many nonzero coefficients fi ∈ Fqm . It is equipped with
conventional polynomial addition but the multiplication is determined by the
rule xa = σ(a)x + δ(a). Similar to conventional polynomial rings, we define the
degree of a nonzero skew polynomial f(x) =

∑
i fix

i ∈ Fqm [x;σ, δ] as deg(f) :=
max{i : fi �= 0} and set the degree of the zero polynomial to −∞.

Note that despite lots of similarities to Fqm [x], the same evaluation strategy
(i.e., f(c) =

∑
i fic

i for c ∈ Fqm) does not work in this setting. Instead, the
literature provides two different ways to adequately evaluate skew polynomials:
remainder evaluation and generalized operator evaluation. We will focus on the
latter in this work.

For a, b ∈ Fqm , define the operator

Da(b) := σ(b)a + δ(b)

and its powers Di
a(b) := Da(Di−1

a (b)) for i ≥ 0 (with D0
a(b) = b and

D1
a(b) = Da(b)). For a = (a1, . . . , a�) ∈ F

�
qm , and B ∈ F

k×n
qm , we write

Da(B) := (Da1(B
(1)) | · · · | Da�

(B(�))), where Dai
(B(i)) stands for the ele-

mentwise application of Dai
(·) to the entries of B(i) for 1 ≤ i ≤ �. This notation

also applies to vectors b ∈ F
n
qm and can be extended to powers of the operator.
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In the zero-derivation case, the i-fold application of the above defined oper-
ator can be expressed as

Di
a(b) = σi(b) · Ni (a)

for any a, b ∈ Fqm and i ∈ N
∗. Here, Ni (a) :=

∏i−1
j=0 σj(a) = σi−1(a) . . . σ(a) · a

denotes the generalized power function.

Lemma 1. The equality Da(bc) = σ(b)Da(c) + δ(b)c holds for any a, b, c ∈ Fqm .

Proof. The definition of Da(·) and the product rule for derivations yield

Da(bc) = σ(bc)a + δ(bc) = σ(bc)a + δ(b)c + σ(b)δ(c)
= σ(b)(σ(c)a + δ(c)) + δ(b)c = σ(b)Da(c) + δ(b)c.

�
Let us now define the generalized operator evaluation of skew polynomials:

Definition 4. The generalized operator evaluation of a skew polynomial f(x) =∑
i fix

i ∈ Fqm [x;σ, δ] at a point b ∈ Fqm with respect to an evaluation parameter
a ∈ Fqm is given by

f(b)a :=
∑

i

fiDi
a(b).

For a vector x ∈ F
n
qm , a vector a = (a1, . . . , a�) ∈ F

�
qm , and a parameter

d ∈ N
∗, the generalized Moore matrix Md(x)a is defined as

Md(x)a :=
(
Vd(x(1))a1 , . . . ,Vd(x(�))a�

)
∈ F

d×n
qm ,

where Vd(x(i))ai
:=

⎛

⎜
⎜
⎜
⎜
⎝

x
(i)
1 · · · x

(i)
ni

Dai
(x(i)

1 ) · · · Dai
(x(i)

ni )
...

. . .
...

Dd−1
ai

(x(i)
1 ) · · · Dd−1

ai
(x(i)

ni )

⎞

⎟
⎟
⎟
⎟
⎠

for 1 ≤ i ≤ �.

If a contains representatives of pairwise distinct nontrivial conjugacy classes of
Fqm and rkq

(
x(i)

)
= ni for all 1 ≤ i ≤ �, we have by [14, Thm. 2] and [12,

Thm. 4.5] that rkqm (Md(x)a) = min(d, n).

2.5 (Generalized) Linearized Reed–Solomon Codes

Let us recall the definition of LRS codes that generalize both RS and Gabidulin
codes. LRS codes are evaluation codes with respect to skew polynomials, which
specialize to conventional and linearized polynomials in the Hamming- and the
rank-metric setting, respectively.
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Definition 5 (Linearized Reed–Solomon Codes [14, Def. 31]). Let a =
(a1, . . . , a�) ∈ F

�
qm consist of representatives of distinct nontrivial conjugacy

classes of Fqm . Choose a vector β ∈ F
n
qm whose blocks β(i) =

(
β
(i)
1 , . . . , β

(i)
ni

)

contain Fq-linearly independent elements for all i = 1, . . . , �. Then, a linearized
Reed-Solomon (LRS) code of length n and dimension k is defined as

LRS[β,a;n, k] :=
{(

c(1)(f) | · · · | c(�)(f)
)

: f ∈ Fqm [x;σ, δ]<k

}
⊆ F

n
qm

where c(i)(f) :=
(
f(β(i)

1 )ai
, . . . , f(β(i)

ni )ai

)
.

Note that LRS codes reach the Singleton-like bound d ≤ n − k + 1 from [14,
Prop. 34] with equality, where d denotes the minimum sum-rank distance of the
code. They are thus maximum sum-rank distance (MSRD) codes.

The generalized Moore matrix Mk(β)a is a generator matrix of the code
LRS[β,a;n, k]. Since a generator matrix of this form is desirable as it e.g. gives
rise to known efficient decoding algorithms, we call it a canonical generator
matrix of LRS[β,a;n, k]. Note that the parameters β and a of a canonical
generator matrix are in general not uniquely determined, and not even fixing a
particular a ensures the uniqueness of β.

In the zero-derivation case, the dual of an LRS code can be described as

LRS[β,a;n, k]⊥ = LRS[α, σ−1(a);n, n − k]σ−1 , (1)

where the index σ−1 on the right-hand side stands for the fact that it is an
LRS code with respect to the inverse automorphism σ−1 (see [5,6]). The vector
α = (α(1) | · · · | α(�)) ∈ F

n
qm satisfies

�∑

i=1

ni∑

j=1

α
(i)
j Dh−1

ai
(β(i)

j ) = 0 for all h = 1, . . . , n − 1 (2)

and has sum-rank weight wtΣR(α) = n according to [16, Thm. 4]. In particular,
the dual of a zero-derivation LRS code is again an LRS code. When nonzero
derivations are allowed, the duals of LRS codes are linearized Goppa codes which
are (noncanonically) isomorphic to LRS codes [5,6].

As the proof of Theorem 2 shows, codes that are (semi)linearly equivalent to
LRS codes are not necessarily LRS codes themselves. However, this is true for a
more general code family that is obtained by allowing nonzero block multipliers.
We define GLRS codes as follows:

Definition 6 (Generalized Linearized Reed–Solomon Codes). Let C :=
LRS[β,a;n, k] be an LRS code as in Definition 5. Further, let v = (v1, . . . , v�) ∈
F

�
qm be a vector of nonzero Fqm-elements. We define the generalized linearized

Reed–Solomon code GLRS[β,a,v;n, k] as

GLRS[β,a,v;n, k] :=
{(

v1c
(1) | · · · | v�c

(�)
)

: c ∈ C
}

⊆ F
n
qm .
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Remark that we recover LRS codes from GLRS codes for v being the all-one
vector. Since multiplying blocks with different nonzero Fqm-elements is a sum-
rank isometry according to Theorem 1, we obtain the following corollary:

Corollary 1. The minimum sum-rank distance of the code GLRS[β,a,v;n, k]
is d = n − k + 1. Therefore, GLRS codes are MSRD.

The code GLRS[β,a,v;n, k] has a generator matrix of the form

G =
(
v1Vk(β(1))a1 | · · · | v�Vk(β(�))a�

)
.

Similar to the LRS case, we call any generator matrix of this form a canonical
generator matrix of GLRS[β,a,v;n, k]. Note that a canonical generator matrix
of a GLRS code depends not only on the parameters β and a but also on the
block multipliers v.

3 Problem Statement

The main problem we want to solve is distinguishing GLRS codes, that were
disguised by means of Fqm-semilinear isometries, from random sum-rank-metric
codes of the same length and dimension. Formally, we state this task as follows:

Problem 1 (Distinguishing GLRS Codes up to Semilinear Equivalence). Given
a full-rank matrix M ∈ F

k×n
qm , decide if there are parameters β ∈ F

n
qm , a ∈

F
�
qm , v ∈ F

�
qm , σ ∈ Gal(Fqm/Fq), and δ being a σ-derivation, such that 〈M〉 is

semilinearly equivalent to GLRS[β,a,v;n, k].

We now investigate how Fqm -semilinear transformations affect GLRS codes
to get a better understanding of the problem. Theorem 2 shows that every semi-
linear isometry (cp. Theorem 1) transforms a GLRS code into another GLRS
code with possibly different parameters:

Theorem 2. Let C = GLRS[β,a,v;n, k] be a GLRS code with respect to σ
and δ := δγ . Let further ι ∈ LI(Fn

qm) denote an Fqm-linear isometry with ι =
((c1, . . . , c�), (M1, . . . ,M�), π). Then, the linearly equivalent code Ĉ := actLI(ι, C)
is also a GLRS code with respect to σ and δ. Namely, Ĉ = GLRS[β̂, â, v̂;n, k]
with β̂ = (β(π−1(1))M1 | · · · | β(π−1(�))M�), â = (aπ−1(1), . . . , aπ−1(�)), and
v̂ = (c1vπ−1(1), . . . , c�vπ−1(�)).

For a semilinear isometry (ι, θ) ∈ SI(Fn
qm) with ι as above and θ ∈ Aut(Fqm),

the code actSI((ι, θ), C) is a GLRS code with respect to the automorphism σ and
the possibly different derivation δθ(γ) := θ(γ)(Id −σ). Its parameters are θ(β̂),
θ(â), and θ(v̂), where θ is applied elementwise to the vectors.

Proof. Let us use the shorthand notations vπi
:= vπ−1(i), aπi

:= aπ−1(i), and
β(πi) := β(π−1(i)) throughout this proof. C has a generator matrix of the form
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G :=
(
v1Vk(β(1))a1 , . . . , v�Vk(β(�))a�

)
. If ι acts on the j-th row of G for j ∈

{1, . . . , k}, we obtain
(
c1vπ1Dj−1

aπ1
(β(π1))M1 | · · · | c�vπ�

Dj−1
aπ�

(β(π�))M�

)
. (3)

Since generalized operator evaluation is Fq-linear, we get Dj−1
aπi

(β(πi))Mi =
Dj−1

aπi
(β(πi)Mi) for all i = 1, . . . , � and thus, (3) is exactly the j-th row of

Ĝ :=
(
c1vπ1Vk(β(π1)M1)aπ1

, . . . , c�vπ�
Vk(β(π�)M�)aπ�

)
.

As Ĝ generates Ĉ, this proves the first part of the theorem. The second one
follows from the observation

θ(vDj−1
a (β)) = θ(v)

(
Dσ,δθ(γ)

θ(a)

)j−1

(θ(β)) (4)

for any v, a, β ∈ F
∗
qm and j ∈ N

∗ with Dσ,δθ(γ)
· (·) denoting the generalized

operator evaluation with respect to the automorphism σ and the derivation
δθ(γ) := θ(γ)(Id −σ). (4) can be verified by induction over j. �

In fact, this shows that GLRS codes with respect to a fixed automorphism
and a fixed derivation are closed under linear equivalence. If we allow different
derivations for a fixed automorphism, GLRS codes are even closed under semi-
linear equivalence. This means, intuitively speaking, that Problem 1 boils down
to distinguishing GLRS codes. We hence formulate and focus on Problem 2:

Problem 2 (Distinguishing GLRS Codes). Given a full-rank matrix M ∈ F
k×n
qm ,

decide if there are parameters β ∈ F
n
qm , a ∈ F

�
qm , v ∈ F

�
qm , σ ∈ Gal(Fqm/Fq),

and δ being a σ-derivation, such that 〈M〉 = GLRS[β,a,v;n, k].

Let us describe more precisely how the two above-defined problems are
related in case we assume the knowledge of the automorphism σ and the deriva-
tion δ := δγ . If we restrict ourselves to linear equivalence, Problem 1 is equivalent
to Problem 2 since every code that is linearly equivalent to a GLRS code with
respect to σ and δ is a GLRS code with respect to the same automorphism and
derivation. In the more general, semilinear setting, we can solve Problem 1 by
solving multiple instances of Problem 2. Namely, we have to consider Problem 2
for all derivations δθ(γ) := θ(γ)(Id −σ) with θ ∈ Aut(Fqm) according to Theorem
2. As |Aut(Fqm)| = sm for s being the extension degree of Fq over its prime
field, we obtain that Problem 1 is equivalent to sm instances of Problem 2.

We present two polynomial-time distinguishers that partly solve Problem
2 when σ and δ are known in Sect. 4. However, the pure knowledge whether a
matrix generates a GLRS code or not does not yet break a hypothetical McEliece-
like cryptosystem based on GLRS codes. We rather wish to recover an efficient
decoding algorithm for the publicly known code by e.g. finding a canonical gen-
erator matrix. Therefore, the following problem is of great interest:
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Problem 3 (Recovering a Canonical GLRS Generator Matrix). Given an arbi-
trary generator matrix G ∈ F

k×n
qm of a GLRS code C, find parameters β ∈ F

n
qm ,

a ∈ F
�
qm , v ∈ F

�
qm , σ ∈ Gal(Fqm/Fq), and δ being a σ-derivation, such that

(
v1Vk(β(1))a1 | · · · | v�Vk(β(�))a�

)
is a canonical generator matrix of C.

We study Problem 3 in Sect. 5 and show two techniques to partially solve it
for GLRS codes in the zero-derivation case with known automorphism σ.

4 Distinguishers for GLRS Codes

This section contains two approaches that solve Problem 2, that is the task
of distinguishing GLRS codes from random codes, for many instances. In both
cases, we assume the knowledge of the automorphism σ and the derivation δ
with respect to which the code should be distinguished.

In Subsect. 4.1, we focus on a square-code distinguisher that is inspired by
an RS-code distinguisher. It works for GLRS codes constructed by means of the
identity automorphism and zero derivation.

Afterwards, we present an Overbeck-like distinguisher inspired by the rank-
metric case in Subsect. 4.2. This approach can handle any valid combination
of automorphism and derivation but requires the knowledge of the evaluation-
parameter vector a. Moreover, the Overbeck-type distinguisher cannot deal with
block multipliers and is thus applicable to LRS codes only. However, GLRS
codes can still be handled by applying the distinguisher at most (qm − 1)� times
(see Subsect. 4.2 for more details).

We experimentally verified all results presented in this section for different
parameter sets with an implementation in SageMath [26].

4.1 A Square-Code Distinguisher

The first polynomial-time attack on a McEliece/Niederreiter variant based on
generalized Reed–Solomon (GRS) codes was proposed by Sidelnikov and Shes-
takov in [25]. The attack was later on refined by Wieschebrink to attack the
improved Berger–Loidreau cryptosystem [27], which is based on GRS subcodes.
The approach from [27] was further improved in [28] to work with smaller sub-
codes and thus to break the cryptosystem for most practical parameters. The
attack in [28] is based on the properties of the elementwise product (or Schur-
square) of a code. For any vectors x,y ∈ F

n
qm we define the elementwise product

(also referred to as Schur or star product) of x and y as

x  y := (x1y1, x2y2. . . . , xnyn).

The square-code of an Fqm-linear code C ⊆ F
n
qm is defined as

C  C := {c1  c2 : c1, c2 ∈ C} .

The main observation for distinguishing a random linear code in F
n
qm from

a GRS code C is that the squared GRS code has dimension dim(C  C) =
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min(n, 2k −1), which is small compared to the expected dimension of a squared
random linear code. Note that a similar technique was used for the power decod-
ing of RS codes beyond the unique-decoding radius (see [24, Lemma 1]).

We will now derive a similar distinguisher for GLRS codes constructed from
skew-polynomial rings with identity automorphism σ = Id. Observe that in this
case the only possible derivation is the zero derivation. Lemma 2 provides some
basic results required for deriving a square-code distinguisher for GLRS codes:

Lemma 2. For σ = Id, let C = GLRS[β,a,v;n, k] be a GLRS code constructed
by polynomials from Fqm [x;σ]<k = Fqm [x]<k. Then we have that

C =
{(

f(a1), . . . , f(a1) | · · · | f(a�), . . . , f(a�)
) · diag

(
(v1β(1) | · · · | v�β

(�))
)

: f ∈ Fqm [x]<k

}
,

where f(·) denotes ordinary polynomial evaluation.

Proof. Since σ is the identity automorphism, the generalized operator evalua-
tion of f ∈ Fqm [x;σ] at an element β

(i)
j ∈ Fqm with respect to the evaluation

parameter ai ∈ Fqm is

f(β(i)
j )ai

=
k−1∑

l=0

flDl
ai

(β(i)
j ) =

k−1∑

l=0

flσ
l(β(i)

j )Nl (ai) = β
(i)
j

k−1∑

l=0

fla
l
i = β

(i)
j f(ai),

where f(·) denotes the ordinary polynomial evaluation. Hence, any c ∈ C can be
written as

c = (v1f(β(1)
1 )a1 , . . . , v1f(β(1)

n1
)a1 | · · · | v�f(β(�)

1 )a�
, . . . , v�f(β(�)

n�
)a�

)

= (v1β
(1)
1 f(a1), . . . , v1β(1)

n1
f(a1) | · · · | v�β

(�)
1 f(a�), . . . , v�β

(�)
n�

f(a�)).

�
This allows the derivation of Lemma 3 which is a result about the dimension

of the square code of GLRS codes and, in contrast, of random linear codes.

Lemma 3. 1. Let C ⊆ F
n
qm be a GLRS code of dimension k with respect to

σ = Id. Then
dim(C  C) = min(�, 2k − 1).

2. Let C ⊆ F
n
qm be a linear code of dimension k that was chosen uniformly at

random. Then

Pr
(

dim(C  C) < min
(

n,
k(k + 1)

2

))
k→∞−−−−→ 0,

where Pr(·) denotes the probability of the event in parentheses.
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Proof. 1. Let c, c′ be two codewords from C  C constructed by the evaluation
of the polynomials f, g ∈ Fqm [x;σ] having the maximal degree deg(f) =
deg(g) = k − 1. Then, by Lemma 2, we have that c  c′ has the form

c  c′ = ((f · g)(a1), . . . , (f · g)(a1) | · · · | (f · g)(a�), . . . , (f · g)(a�))

· diag
((

v2
1

(
β(1)

)2

| · · · | v2
�

(
β(�)

)2
))

,

where the squaring of the blocks β(i) for i = 1, . . . , � is understood elemen-
twise. Since a contains representatives of different conjugacy classes of Fqm ,
the elements in a are pairwise distinct. Since β contains block-wise Fq-linearly
independent elements, all entries in β are nonzero. Together with the fact that
v contains only nonzero elements this implies that the diagonal matrix has
full rank n. Hence, by considering only the first column of each block, we get
a GRS code of length � and dimension deg(f · g)+1 = 2k − 1. The size of the
corresponding generator matrix is (2k − 1) × �, which yields the statement.

2. This follows directly from [27].
�

Theorem 3 summarizes the results for the Wieschebrink-like square-code dis-
tinguisher for GLRS codes in the identity-automorphism case.

Theorem 3 (Square-Code Distinguisher). Let 2 < k ≤ n
2 and let σ be the

identity automorphism. Given a generator matrix of a k-dimensional code in
F

n
qm , we can distinguish a GLRS code from a random code with high probability1

in O(n5) operations in Fqm .

Proof. Using Lemma 3 we can distinguish a GLRS code with high probability
from a random linear code by considering the dimension of the square code. The
complexity, which is in the order of

O(k4n + k2n + k2(n − k)2n) ⊆ O(n5)

operations in Fqm , follows from [28]. �

4.2 An Overbeck-Like Distinguisher

Overbeck proposed a distinguisher for Gabidulin codes in [19–21]. The main
idea is to repeatedly apply the Frobenius automorphism to the public generator
matrix and stack the results vertically. Since there is a generator matrix of a
Gabidulin code whose i-th row is the (i − 1)-fold application of the Frobenius
automorphism to a generating vector, the rank of the stacked matrix will only
increase by one for each new matrix block. But random full-rank matrices behave
differently and the stacked matrix has much higher rank in general.

1 In fact, the distinguisher recognizes a GLRS code with probability one. But, with a
small probability, it might wrongly declare a non-GLRS code to be a GLRS code.
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Horlemann-Trautmann, Marshall, and Rosenthal [11] used a slightly different
approach, which we will call HMR approach for short, to recover the secret
parameters of a Gabidulin code. We mention their technique because it gives
rise to a distinguisher and it is similar to Overbeck’s approach, as it also makes
use of the repeated application of the Frobenius automorphism to the public
generator matrix. But instead of considering the sum of the corresponding codes,
the HMR approach focuses on the intersection of the codes and shows that its
dimension only decreases by one for each iteration step. Again, random codes
show a different behavior under this operation.

We now present a generalization of Overbeck’s approach to LRS codes in the
sum-rank metric. In contrast to the square-code distinguisher, the Overbeck-like
distinguisher works for the general setting with an arbitrary automorphism σ and
any valid σ-derivation δ. Since it does not support block multipliers, i.e., GLRS
codes, let us quickly describe how we can apply distinguishers for LRS codes to
GLRS codes in general. Recall therefore that a GLRS code GLRS[β,a,v;n, k]
has a generator matrix of the form (v1G(1) | · · · | v�G

(�)), where G ∈ F
k×n
qm is

a generator matrix of LRS[β,a;n, k]. But this implies that the Overbeck-like
distinguisher will (at least) succeed if we apply it to the matrix (v−1

1 M (1) | · · · |
v−1

� M (�)), where M ∈ F
k×n
qm denotes the public generator matrix of the GLRS

code. We can thus run the Overbeck-like distinguisher for different choices of
v−1 ∈ F

�
qm until it either succeeds or all possible (qm − 1)� (inverse) block

multipliers were checked in the worst case.

Lemma 4. Choose k < n, let the entries of a ∈ F
�
qm belong to distinct nontrivial

conjugacy classes of Fqm and let x ∈ F
n
qm be a vector with wtΣR(x) = n. Then

the following holds for the generalized Moore matrix Mk(x)a :

1. The addition code A := 〈Mk(x)a〉 + 〈Da(Mk(x)a)〉 equals 〈Mk+1(x)a〉 and
thus dim(A) = k + 1.

2. The intersection code I := 〈Mk(x)a〉 ∩ 〈Da(Mk(x)a)〉 is generated by the
matrix Mk−1(Da(x))a and hence dim(I) = k − 1.

Proof. 1. Let A ∈ F
2k×n
qm denote the matrix that is obtained by vertically stack-

ing Mk(x)a and Da(Mk(x)a). Since the first k − 1 lines of Da(Mk(x)a)
coincide with the last k − 1 rows of Mk(x)a due to the Moore-matrix struc-
ture, we obtain

A = 〈A〉 =
〈(

Mk(x)a

Dk
a(x)

)〉

= 〈Mk+1(x)a〉.

As further k + 1 ≤ n holds and the necessary conditions on a and x apply,
we get dim(A) = rkqm(Mk+1(x)a) = min(k + 1, n) = k + 1.

2. As the last k − 1 lines of Mk(x)a and the first k − 1 lines of Da(Mk(x)a)
coincide, their span 〈Mk−1(Da(x))a〉 is certainly contained in I. Note that,
because of the Fq-linearity of Da(·), wtΣR(Da(x)) = wtΣR(x) = n holds,
which implies rkqm(Mk−1(Da(x))a) = k − 1. Thus,

dim(I) = rkqm(Mk(x)a) + rkqm(Da(Mk(x)a)) − dim(A)
= 2k − k − 1 = k − 1
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and I = 〈Mk−1(Da(x))a〉 follows from the dimension equality.
�

Define the operator

Γ j
a : F

k×n
qm → F

(j+1)k×n
qm , M 
→

⎛

⎜
⎜
⎜
⎝

M
Da(M)

...
Dj

a(M)

⎞

⎟
⎟
⎟
⎠

for a fixed vector a ∈ F
�
qm of evaluation parameters and a natural number j ∈ N.

Corollary 2. Let G be an arbitrary generator matrix of the code LRS[β,a;n, k].
Then, Γ j

a (G) generates the code LRS[β,a;n, k + j] and rkqm(Γ j
a (G)) = k + j

holds for all 0 ≤ j ≤ n − k.

Proof. If G = Mk(β)a , the statements follow from an iterative application of
Lemma 4. In any other case, there is a matrix S = (Si,j)i,j ∈ GLk(Fqm) such
that G = S · Mk(β)a .

Let us first focus on the smallest nontrivial choice for j, namely j = 1. The
l-th row of Da(G) = Da(S · Mk(β)a) is

Da

( k∑

i=1

Sl,iDi−1
a (β)

)
=

k∑

i=1

Da(Sl,iDi−1
a (β))

(∗)
=

k∑

i=1

σ(Sl,i)Di
a(β) + δ(Sl,i)Di−1

a (β), (5)

where (∗) follows from Lemma 1. But this is a Fqm -linear combination of the ele-
ments β,Da(β), . . . ,Dk

a(β), i.e., of a basis of LRS[β,a;n, k+1]. Hence, the inclu-
sion 〈Da(G)〉 ⊆ LRS[β,a;n, k + 1] applies. Since G generates LRS[β,a;n, k] ⊆
LRS[β,a;n, k + 1], it follows further that 〈Γa(G)〉 ⊆ LRS[β,a;n, k + 1].

Let us show the other inclusion 〈Γa(G)〉 ⊇ LRS[β,a;n, k + 1]. First realize
that 〈Γa(G)〉 ⊇ 〈G〉 = LRS[β,a;n, k] and LRS[β,a;n, k+1] = LRS[β,a;n, k]+
〈Dk

a(β)〉 hold. It is thus enough to show that there is an element of 〈Γa(G)〉
whose Fqm -linear combination contains a nonzero multiple of Dk

a(β). But since
S has full rank, there is a nonzero entry in its k-th column, say Sl∗,k. Now (5)
shows that the l∗-th row of Da(G) has the form

σ(Sl∗,k)Dk
a(β) +

k−1∑

i=1

σ(Sl,i)Di
a(β) + δ(Sl,i)Di−1

a (β),

where the right-hand side is clearly contained in LRS[β,a;n, k]. As σ(Sl∗,k)
is nonzero if and only if Sl∗,k �= 0, this shows 〈Da(G)〉 ⊇ 〈Dk

a(β)〉 and hence
〈Γa(G)〉 ⊇ LRS[β,a;n, k + 1].

Summing up, we obtain 〈Γa(G)〉 = LRS[β,a;n, k+1], which directly implies
rkqm(Γa(G)) = k + 1.
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For j > 1, the results follow inductively from the fact that

〈Γ j
a (G)〉 =

〈(
Γ j−1

a (G)
Dj

a(G)

)〉
(◦)
= 〈Γa(Γ j−1

a (G))〉,

since all rows that are added in step (◦) are already contained in the row
space of Γ j−1

a (G). The statements 〈Γ j
a (G)〉 = LRS[β,a;n, k + j] and hence

rkqm(Γ j
a (G)) = k + j follow with the knowledge of Γ j−1

a (G) = LRS[β,a;n, k +
j − 1] and the proof for j = 1. �

In contrast, randomly chosen full-rank matrices over Fqm tend to behave
quite differently when Γa is applied. This is analogous to [20, Assumption 2].

Conjecture 1. Let M ∈ F
k×n
qm be a randomly chosen matrix with full Fqm -rank

and such that each block M (i) for i = 1, . . . , � has full column rank over Fq.
Assume that a ∈ F

�
qm consists of randomly chosen representatives of distinct

nontrivial conjugacy classes of Fqm and fix a parameter j ∈ {1, . . . , n − k}.
Then, rkqm(Γ j

a (M)) = min((j + 1)k, n) holds with high probability.

With these results, we can solve Problem 2 for LRS codes in polynomial time
if σ, δ, and a are known. We summarize it in Theorem 4:

Theorem 4 (Overbeck-like Distinguisher). Let M ∈ F
k×n
qm be an arbitrary

full-rank matrix. We can decide with high probability2 if M generates an LRS
code with respect to σ, δ, and a in O(n5) operations in Fqm .

Proof. First, choose a 0 ≤ j ≤ n−k for which k+j < min((j +1)k, n) holds. We
set up the matrix Γ j

a (M) ∈ F
(j+1)k×n
qm in O(jkn) ⊆ O(n3) operations in Fqm .

Next, we compute its rank in O(n5) Fqm -operations. By Corollary 2 and Conjec-
ture 1, we know with high probability that M generates an LRS code with
respect to the given parameters if rkqm(Γ j

a (M)) = k + j holds. If however
rkqm(Γ j

a (M)) > k + j, we know for sure that M is no generator matrix of
an LRS code with respect to the given parameters. �
Remark 1. We empirically verified by simulations that the distinguisher can in
most cases not recognize an LRS code if it is executed with respect to a different
set of evaluation parameters. This is the case even if the conjugacy classes of the
evaluation parameters a = (a1, . . . , a�) are known and only other representatives
â := (a1

c1 , . . . , a�
c�) with c1, . . . , c� ∈ F

∗
qm are used for the distinguisher.

This means that not even side information about the chosen conjugacy classes
helps the distinguishing process but knowledge of the exact evaluation param-
eters is needed. If we do not have access to this information, we have to try
exponentially many possibilities in the worst case.

2 In fact, the distinguisher recognizes a GLRS code with probability one. But, with a
small probability, it might wrongly declare a non-GLRS code to be a GLRS code.
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We use the remainder of this section to give a short outline of how the
distinguisher using the HMR approach can be generalized to the LRS case. If a
full-rank matrix M ∈ F

k×n
qm and parameters σ, δ, and a are given, we focus on

the intersection code instead of considering the addition code as we indicated
earlier. Similar to Corollary 2, we can derive Corollary 3 whose proof we omit
for brevity.

Corollary 3. Let G be an arbitrary generator matrix of the code LRS[β,a;n, k].
Then, the j-fold intersection code

⋂j
i=0〈Di

a(M)〉 equals LRS[Dj
a(β),a;n, k − j]

and has thus Fqm-dimension k − j for all 0 ≤ j ≤ k − 1.

Heuristically speaking, the application of Da(·) to a random full-rank matrix
produces another essentially random code. For small dimension k, it is hence
reasonable to assume that the j-fold intersection code from Corollary 3 has a
much lower dimension. This illustrates why Corollary 3 can serve as a distin-
guisher for LRS codes that can, of course, also be applied to GLRS codes as
explained in the beginning of this section.

5 Recovery of a Canonical Generator Matrix

If only a scrambled and possibly further disguised generator matrix of a GLRS
code is known, it is a crucial task to recover a canonical generator matrix of the
same code. The secret code structure, that is revealed by a canonical genera-
tor matrix, is (up to now) directly linked to the knowledge of efficient decoding
algorithms. We partly tackle Problem 3 in this section and show how the recov-
ery can be done in the case of GLRS codes with zero derivation for which the
automorphism σ is given. As for the distinguishers, the following results were
also implemented in SageMath and checked for several parameter sets.

The first approach requires the identity automorphism and finds suitable eval-
uation parameters a and block multipliers v, whereas the second one assumes
the knowledge of a and allows to recover β for an arbitrary but known automor-
phism. If GLRS codes with respect to the identity automorphism are considered,
we can thus combine the two distinguishers to recover first a and v, and then β.

5.1 Square-Code Approach

For this approach, we focus on the identity automorphism which allows zero
derivation only. The recovery strategy is based on the fact that we can extract
a GRS code from an arbitrary generator matrix of a GLRS code as described
in Subsect. 4.1. We then recover the parameters of the GRS code and afterwards
the ones of the GLRS code.

Theorem 5. Let G ∈ F
k×n
qm denote a generator matrix of a GLRS code C with

respect to the identity automorphism and zero derivation. We can recover param-
eters a,v ∈ F

�
qm for which a canonical generator matrix of C exists in O(k2n)

operations in Fqm .
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Proof. Recall from Lemma 3 that the matrix consisting of one column of each
block G(i) of the generator matrix G generates a GRS code of length � and
dimension k. If � > k this is a nontrivial GRS code, whereas for � ≤ k the
code is the whole space F

�
qm . For the description of the recovery process we will

differentiate between these two cases:

1. In the case where � ≥ k holds we can simply choose the evaluation points
to be a = (1, α, α2, . . . , α�) for a primitive element α ∈ Fqm . Clearly, the
Vandermonde matrix with these parameters is full-rank and hence spans the
whole space, i.e., it is a generator matrix of the trivial RS code. Furthermore,
1, α, α2, . . . , α� represent distinct conjugacy classes (since we consider zero
derivation) and are hence a valid choice for the LRS code. Note that we do
not need to consider column multipliers in this setting, i.e., we can assume v
to be the all-one vector.

2. In the other case, i.e., where � < k, the resulting GRS code and its dual code
are nontrivial, i.e., they both have minimum distance greater than one. We
can now use the Sidelnikov–Shestakov algorithm from [25] on the parity-check
matrix of our GRS code to find suitable a and v ∈ F

�
qm . This requires O(k2n)

operations in Fqm . �
Depending on how the code is disguised in a potential cryptosystem, an attacker
can use the fact about the square-code dimension from Lemma 3 to find suitable
subcodes of the public code. Then, the parameter-recovery algorithm from The-
orem 5 can be applied to the obtained subcodes.

5.2 Overbeck-Like Approach

In the literature, there are three different approaches for recovering the secret
parameters of Gabidulin codes based on ideas similar to Overbeck’s distinguisher:

1. Overbeck [20] considers the sum of the codes obtained by repeated appli-
cation of the Frobenius automorphism until a code of codimension one is
obtained. The secret parameters are then recovered from a generator of the
one-dimensional dual code.

2. Horlemann-Trautmann, Marshall, and Rosenthal [11] compute the intersec-
tion of the codes that arise from repeated application of the Frobenius auto-
morphism until the result is a one-dimensional code. A generator of the latter
yields the secret parameters of the code.

3. Another approach by Horlemann-Trautmann, Marshall, and Rosenthal [10]
maps the task to the problem of finding rank-one codewords in the code
generated by the public matrix and a corrupted codeword.

We present the first two approaches for LRS codes in the zero-derivation
regime where the automorphism σ and the evaluation parameters a ∈ F

�
qm are

known. Note that the third technique is also applicable to our setting but omitted
for brevity. Moreover, the recovery methods extend to GLRS codes by executing
them after guessing the block multipliers, similar to the distinguishing strategy
explained in Subsect. 4.2.
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Theorem 6. Let G ∈ F
k×n
qm denote a generator matrix of an LRS code C :=

LRS[β,a;n, k] with respect to a known automorphism σ and zero derivation.
If the evaluation parameters a ∈ F

�
qm are known, we can recover code locators

β̃ ∈ F
n
qm such that Mk(β̃)a generates C in O(n5) operations in Fqm .

Proof. First note that any F
∗
qm -multiple β̃ of β is sufficient because

Mk(β̃)a = diag
(
(c, σ(c), . . . , σk−1(c))

) · Mk(β)a

holds for β̃ := c · β with c ∈ F
∗
qm . Since the diagonal matrix has full rank, the

row spaces of Mk(β̃)a and Mk(β)a both equal C. We show how to recover such
a β̃ ∈ F

n
qm with the first two of the three approaches mentioned above:

1. From Corollary 2, we obtain the equality 〈Γn−k−1
a (G)〉 = LRS[β,a;n, n − 1]

and the dual D of this code has dimension one. The solution H ∈ F
n
qm of

the system Γn−k−1
a (G) ·H	 = 0 is a generator matrix (or rather a generator

vector) of D. Since we are in the zero-derivation case, we can use the result (1)
about duals of LRS codes and recover a suitable β̃ from H via (2).

2. We first compute the intersection space
⋂k−1

i=0 〈Di
a(G)〉 which is equal to

LRS[Dk−1
a (β),a;n, 1] according to Corollary 3. Therefore, every generator

g ∈ F
n
qm of this space (and in particular the one that we computed) has the

form c · Dk−1
a (β) for a c ∈ F

∗
qm . Note that, in the zero-derivation case, the

inverse of the operator Di
a(·) for fixed a ∈ Fqm and i ≥ 0 is

(Di
a

)−1
(b) := σ−i

(
b

Ni (a)

)

for all b ∈ Fqm .

We use this fact to derive the following equation from g = c · Dk−1
a (β):

σ−k+1

((
g(1)

Nk−1 (a1)
| · · · | g(�)

Nk−1 (a�)

))

= σ−k+1(c) · β.

Solving the obtained system of linear equations lets us recover a suitable β̃.

The complexity is in both cases dominated by computing the reduced row-
echelon form of Γn−k−1

a (G) and Γ k−1
a (G), respectively. This can be achieved

in O(n5) operations in Fqm . �

6 Conclusion

We introduced GLRS codes as LRS codes with nonzero block multipliers and
proposed two distinguishers for this code family that are inspired by similar
techniques in the Hamming and the rank metric. The square-code distinguisher
works for the identity automorphism and zero derivation, whereas the Overbeck-
like distinguisher can handle arbitrary automorphisms and derivations. Both
have polynomial runtime when the automorphism σ, the derivation δ, and in the
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latter case additionally the evaluation parameters a and the block multipliers v
are known.

Since many McEliece-like cryptosystems use isometric disguising, we further
studied codes that are semilinearly equivalent to GLRS codes. We showed that
GLRS codes are closed under semilinear equivalence for a fixed automorphism
and some possible choices for the derivation.

Finally, we partially solved the problem of recovering a canonical generator
matrix (and thus finding an efficient decoder) from an arbitrary generator matrix
of a GLRS code in the zero-derivation case. The complexity is again polynomial
if either σ = Id or σ, v and a are known. More precisely, we showed that the
square-code code approach allows to recover suitable evaluation parameters a
and block multipliers v of a GLRS code in the identity-automorphism setting,
and that an Overbeck-like strategy can recover suitable code locators β of a
GLRS code for arbitrary automorphisms and zero derivations if a and v are
known.

This work is a first step towards building quantum-secure cryptosystems in
the sum-rank metric. Naturally, many other research questions arise in this field:
As simulations show, the Overbeck-like distinguisher seems not to work when the
wrong evaluation parameters are used. This is the case even when the parameters
are chosen from the correct conjugacy classes, what makes it interesting to study.
Another idea is to find a new operation with respect to which the square-code
distinguisher works also for arbitrary automorphisms.

We further want to investigate more distinguishing methods as e.g. augment-
ing the generator matrix or applying near-isometries and see also how GLRS
codes and their distinguishers carry over to the skew metric.
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Abstract. Developers of computer-aided cryptographic tools are opti-
mistic that formal methods will become a vital part of developing new
cryptographic systems. We study the use of such tools to specify and
verify the implementation of Classic McEliece, one of the code-based
cryptography candidates in the fourth round of the NIST Post-Quantum
standardisation Process. From our case study we draw conclusions about
the practical applicability of these methods to the development of novel
cryptography.

1 Introduction

Computer-aided cryptography [10] is the field of study which “develops and
applies formal, machine-checkable approaches to the design, analysis, and imple-
mentation of cryptography”. This can be categorised into three strands:

– Establishing security guarantees at the design level, using symbolic and com-
putational approaches.

– Verifying that implementations (new or pre-existing) are both efficient and
functionally correct, by showing they conform to the design about which
security guarantees have been established.

– Establishing security guarantees at the implementation level, such as
constant-time execution and secret-data-independent memory accesses, both
of which indicate resistance to timing attacks.

Panelists in a recent roundtable [29] on computer-aided cryptography
expressed broad optimism on the future of the field, citing the success of tools
and projects like HACL* [32], Fiat Cryptography [24], and Cryptoline [26]. One
participant expressed the view that, within a few years, “the state of the art
in program proofs will have advanced enough that verifying primitives will be
considered mundane and a strong requirement for any new proposed algorithm”.
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Despite this optimism, most submissions to the NIST Post-Quantum Cryp-
tography standardisation Process [5] made no documented use of computer-
aided cryptography in their development. Indeed, only two submissions—NTRU
Prime [15] and Classic McEliece [8]—made mention of any potential use of for-
mal methods in improving their designs. The NTRU Prime supporting docu-
mentation stated [15] that the design choices of the scheme enabled easier for-
mal verification of its security properties, and that the authors had begun work
on verifying the optimised NTRU Prime implementation against the reference
implementation [14]. The Classic McEliece specification suggested a need for for-
mally verified proofs of quantum security, and also mentioned the potential of
formal verification of defences against timing attacks. Moreover, there has not
been much use of computer-aided formal techniques in the evaluation of any of
the schemes proposed for standardisation thus far.

Recently, NIST concluded the third round of their standardisation process.
After round three, none of the remaining code-based candidates were selected
for standardisation, but all of them were moved forward to the fourth round [1].
The isogeny-based scheme SIKE was also advanced to the fourth round, but has
subsequently seen a successful attack on its underlying hard problem [21]. If any
fourth-round candidates for KEM are selected for standardisation, they are thus
likely to be a code-based, which motivates further scrutiny of these candidates.

The security of the remaining code-based candidates is reasonably well-
understood, especially Classic McEliece, which has been long studied. Therefore,
other criteria will play an important role in evaluating and distinguishing these
schemes. We argue that applying the tools of computer-aided cryptography to
study these schemes is vital at this stage. Firstly, the amenability of each scheme
to being scrutinised and verified using these tools could be a criterion for their
evaluation. Secondly, demonstrating that the design or an implementation of a
scheme has been verified gives further confidence in this scheme.

In this work, we focus on applying computer-aided cryptography techniques
for developing efficient verified implementations to the Classic McEliece scheme.
Our main focus is an application of the SAW/Cryptol toolchain [20,25] to the
Classic McEliece reference implementation. We also report on our recent efforts
using the interactive theorem prover Lean in the verification of the mathematics
underlying aspects of the Classic McEliece design.

1.1 Related Work

Verification of Code-Based Cryptography. To the best of our knowledge,
there are only two other works [3,4] whose goal, as in this work, is to create a
formal specification of Classic McEliece. The first is a partial specification [4]
written in Cryptol, which, as far as we are aware, has not been used for the
verification of an implementation. The specification is comparable in size to the
one we produced in this work, but is incomplete in different ways. Moreover,
it does not seem to correspond to a named version of the Classic McEliece
implementation, and targets a different parameter set that the one we aimed at.
Thus, we did not derive our own specification from it.
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The second is a specification [3] written in Lean 4, that was made public
only after this work was concluded. As with our work, the goal of that work
was to investigate the use of Lean 4 for cryptographic specification. The spec-
ification [3] compiled to an implementation of the Round 3 version of Classic
McEliece which passes the Known Answer Tests, and some of its functions have
proven properties.

Considering the formalisation of code-based cryptography more broadly, the
HOL Light theorem prover was used in [13] to formally verify an algorithm to cal-
culate the “control-bits” of a permutation. The implementation of this algorithm
is a key component of Classic McEliece. We also note that there are formali-
sations in Coq of linear error-correcting codes [7], but they are not orientated
towards cryptography.

Applications of the SAW/Cryptol Toolchain. While our application of
the SAW/Cryptol toolchain to Classic McEliece is novel, we draw inspiration
from prior work applying this toolchain to other cryptographic schemes. The
primary work we build on is a work from Galois and Amazon [19]. The paper
takes two highly-optimised, trusted implementations of two current primitives,
AES-256-GCM and SHA-384, and describes the process of proof engineering and
tool development that led to high-level functional correctness proofs for these
primitives. It demonstrates some of the current capabilities and limits of the
toolchain; as we will discuss, our own work demonstrates different limits.

Developing Verified Implementations. While our work focuses on verifying
an existing implementation, another approach [9,18] is to generate verified code
directly from the specification. For example, a framework for building verified
cryptographic implementations is provided in [9]; delivering assembly code that
is provably functionally correct, protected against side-channels, and as efficient
as hand-written assembly. The framework is illustrated in [9] by an application
to the ChaCha20-Poly1305 cipher suite.

1.2 Our Contributions Towards Classic McEliece Implementation
Verification

In our work, our primary goal is explore to what extent the Classic McEliece
reference implementation submitted to the NIST standardisation process can be
formally specified and verified using the SAW/Cryptol toolchain. Our secondary
goal is to see if it is possible to find improvements on the implementation that
make it easier to specify and verify, while not impacting performance or its
security properties.
To this end, we offer in this paper:

– Formal specifications and verification proofs for large parts of the Classic
McEliece reference implementation as of the Round 3 submission, available
at [31].

– A revised implementation for one of the core encryption routines in Classic
McEliece which both runs faster and admits a verification proof.
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– A set of recommendations for designers and those setting standardisation
criteria for engaging with computer-aided cryptography.

As an additional contribution, we also report on recent efforts to apply the
interactive theorem prover Lean [27,30] to produce verified proofs of certain
mathematical constructions used in the design of Classic McEliece.

Our attack model assumes that an attacker has full access to the imple-
mentation source code, and is acting as a man-in-the-middle between a client
and server attempting to perform key agreement using this KEM. Bugs in the
implementation are relevant only when they cause the implementation to deviate
from the theoretical design sufficiently that the IND-CCA2 security guaranteed
by the design is violated. Deviations between the specification and implementa-
tion that do not cause a weakening of security in practice are less relevant. Our
verification target, therefore, was the equivalence of parts of the Classic McEliece
implementation with equivalent parts of the design.

2 Our Toolchain and Its Target

The SAW/Cryptol toolchain consists of Cryptol [25], a domain-specific language
for specifying cryptographic algorithms, and the Software Access Workbench
(SAW) [20], a tool for verifying compiled bytecode against specifications defined
using Cryptol. They have both been developed, and are maintained, by Galois
Inc. Cryptol is a size-polymorphic and strongly typed functional programming
language, and a Cryptol specification of an algorithm can resemble its mathe-
matical specification more closely than an implementation in a general purpose
language. The SAW/Cryptol toolchain is suitable for verifying pre-existing code
against a specification. Thus, it could be applied to code that is highly trusted
and so cannot be changed. The SAW/Cryptol toolchain could also form part of
a continuous integration framework, where changes to the underlying program
are run against tests that include SAW proof scripts.

The Classic McEliece key-establishment scheme is derived from the code-
based public-key cryptosystem introduced in 1978 by McEliece [28]. The public
key in the McEliece cryptosystem specifies a random binary Goppa code—a
linear binary code with certain useful mathematical properties. The private key
contains information necessary to perform efficient decoding from an input that is
within a bounded error of a codeword. It is the claim of the designers that Classic
McEliece is not “new” in any sense: it aims to be a conservative implementation
of an established scheme. Where there are relatively novel elements, such as the
storage of permutations in the form of control bits, they are not core to the PKE
encryption and decryption operations.

Our target system for verification was the reference implementation for the
version of Classic McEliece submitted in Round 3 of the NIST process [8], using
the mceliece348864 parameter set (the smallest parameter set). This reference
implementation was created by the Classic McEliece team to be the definitive
reference for their scheme’s operation. It formed a key part of their submission
to the NIST process, and has been available for manual public review since its
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initial release. Its operation and the rationale for its design have been fairly well-
documented in the literature by its creators [16] [22], as have the operation of
the optimised implementations released alongside it. Our decision to target the
reference implementation was partly based on its status as a “golden reference”
for the scheme, and partly because as a reference implementation we hoped to
avoid verifying too much low-level optimisation, which can be extremely chal-
lenging [19].

We aimed to create a specification for this system in Cryptol, using SAW
to create proofs of equivalency between the abstract Cryptol specification and
the compiled bytecode of key functions used in the implementation. It should
be noted that SAW and Cryptol were not originally designed for specifying and
verifying asymmetric cryptography, but rather block ciphers, hash functions, and
other forms of symmetric cryptography. As such, Cryptol is not a very expressive
language for describing complex algebraic constructions, and specifying a scheme
in this way can lead to unusably slow performance. On the other hand, expressing
asymmetric ciphers in terms of bitwise operations as might suit Cryptol better
could obscure the rich mathematical structures that often underlie them. This
issue is not specific to Cryptol and reflects a general pattern in the computer-
aided cryptography literature: it is a lot easier to find verifications of symmetric
cryptographic schemes and implementations. We therefore expected that the
task of applying the SAW/Cryptol toolchain to Classic McEliece to be very
challenging, and this is why our primary goal was to test the capability limits of
SAW/Cryptol in this task.

We emphasise that our SAW/Cryptol work sits in the ‘second strand’ of
research in computer-aided cryptography (see Sect. 1). It does not cover aspects
in the ‘first strand’ (such as formal verification of the Classic McEliece security
proofs) or the ‘third strand’ (such as verifying that the implementations possess
the claimed resistance to constant-time attacks).

3 Verifying Classic McEliece with SAW/Cryptol

We begin with an overview of what was successfully verified and what was not.
Discounting those functions that are part of the RNG or that call the external
hash function used in Classic McEliece, there are 41 different functions that make
up the mceliece348864 reference implementation. Of these, 18 were completely
specified and verified; a further five were partially verified. All verifications were
performed within WSL2 on a Windows 10 PC with 16GB of RAM and an Intel
i5-8400 2.8Ghz processor. The limit on performance was generally memory: it
is conceivable that, in a few cases, with a higher-specification machine it would
have been possible for some additional proofs to complete, but this would require
further testing to verify. This work represents around 5.5 months of person-time.

In general, the lower-level “utility” functions were easily verifiable. The most
substantial successes on cryptographically-relevant functions were in verifying
the implementation of the finite field operations, both against a mathematically-
defined specification and a literal translation of the C source, which we could
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prove were equivalent under relevant preconditions. The PKE encryption and
decryption functions were where we found partial success, with full verification
of the key calculation loops. We found little success with the KEM wrapper,
which needed functions that Cryptol could not implement efficiently, and so it
was impractical to test them.

Of the five functions that we partially verified, these can be split into three
categories. Firstly, there were two functions for which it was possible to ver-
ify the core loop used in the function but not the function’s effect across
all loops. Secondly, there were two functions for which we found errors in
the original code. These were the two sorting functions, which contain small
but vital bugs in their comparators. Our discovery of these issues—which do
not impact Classic McEliece directly but are nevertheless real bugs in these
functions—demonstrates that verification can find problems that current meth-
ods of scrutiny might miss. Finally, there was one function that we found we
could rewrite into a form that appears both slightly higher in performance and
possible to verify. This function is especially interesting as it demonstrates that
it is possible to write implementations that are “more verifiable”, and this does
not have to come at the cost of performance (in this case, quite the opposite)
or, indeed, security.

The above information is summarised in Fig. 1, which shows the call graph of
functions in the implementation, with functions and their groupings colour-coded
to signify the level of verification achieved. Green denotes that the contents of
that box have been fully specified and verified, orange that the contents have
been partially verified, red that the contents have been verified and a bug found,
purple that a refactored version of the contents has been verified, and blue that
the contents have not been specified or verified. A standalone version of this dia-
gram is available at https://github.com/linesthatinterlace/verifying-cmce/blob/
main/docs/graph.pdf.

It should also be noted that all functions for which it was possible to sym-
bolically execute them using SAW—which include all verified functions but also
some that could not be fully verified—are thus guaranteed to be memory-safe and
free of undefined behaviour, simply by virtue of having been executed through
SAW’s internal model.

3.1 Verification Details

In the following, we highlight certain representative examples to demonstrate the
different classes of function we considered. These are chosen in order to illustrate
the strengths and weaknesses of the tools we used. Details of the specifications
and proof scripts are omitted here but are available in a public repository [6].

Transposition. The function transpose_64x64 transposes a 64 × 64 matrix
over the binary field F2, represented as a sequence of 64 64-bit unsigned integers
taken as little-endian bitstrings. In the reference implementation, this is 33 lines-
of-code, with the method of its operation being non-obvious, using masks to avoid
any branching. We produced a two-line specification for this. This specification

https://github.com/linesthatinterlace/verifying-cmce/blob/main/docs/graph.pdf
https://github.com/linesthatinterlace/verifying-cmce/blob/main/docs/graph.pdf
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Fig. 1. The call graph of the Classic McEliece implementation with verification status
highlighted.

exactly captures the mathematical definition of transpose_64x64, adjusting
for Cryptol’s big-endian representation of 64-bit integers. There were multiple
functions with simple definitions that had complex implementations (often to
avoid branching for constant-time reasons), and these often admitted simple
specifications against which they could be easily verified. The SAW/Cryptol
toolchain excels at handling situations like these.

Field Operations. There is a set of low-level functions for performing opera-
tions over a finite field of prime order and one of its extensions. At the lowest
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level, these use simple bit operations, but for an operation like field division, a
combination of field inversion and field multiplication is needed. SAW/Cryptol
has the facility for compositional proofs, which means it can use equivalence
proofs for functions that have already been proved or assumed in order to sim-
plify a new proof that uses those functions. This lends itself well to proving facts
about field arithmetic, where this is a common pattern.

For many of these field functions, we created two specifications: a low-level
specification corresponding to the original implementation, and a higher-level one
closer to the arithmetic implementation. The higher-level one is only equivalent
to the low-level one under the condition that the inputs are valid members of the
field. That this invariant is preserved—that is, that valid field members remain
valid field members under all field operations—is a fact that it is possible and
desirable to prove, but which was slightly out of scope of our own work (though
we were able to do so in some cases). We were able to prove this equivalence
under the assumption of this invariant using both SAW’s symbolic execution
and the native SMT support within Cryptol.

Loop Functions. There were some functions that took the form of loops oper-
ating on a large array. For these, it was possible to prove that the body of the
loop (or a large section of it) was equivalent to the specification, but it was
not possible to then use that equivalence to prove equivalence across all loop
iterations.

We theorised that it might be possible to re-write one of these functions in
some cases, re-factoring it to avoid one or more of the issues that cause SAW to
stumble. In particular, a large amount of state needed to be carried across the
loops—the entire current state of the array. We theorised that if the data flow
could be isolated and split into smaller operations—removing the need to carry
a large state—it would result in a more verifiable implementation. This turned
out to be correct in at least one case.

The core component of encryption under Classic McEliece is the multiplica-
tion, in the ring of matrices over F2, of a vector e of length n by an (n− k)× n
matrix H, producing the result s := He of length (n − k); this vector s is the
syndrome of e. The values n and k are parameters of the scheme. For a given
parameter set, n is the code length and k the code dimension of the underlying
permuted Goppa code, the linear code on which Classic McEliece is based. H
has the form (In−k | T ), where In−k is the identity matrix of dimension (n− k),
and T , the public key, is a (n− k)× k matrix.

For all parameter sets, n and k divide by 8, and thus so too does n− k. The
data for e, T , and s are stored in the implementation as byte arrays, treating
bytes as little-endian as with transpose_64x64. These byte arrays have length
n
8 , (n− k)× k

8 , and (n−k)
8 respectively.

The implementation version of the function syndrome takes the byte array
storing T and e and the pointer of the byte array that will store s, reconstructs
H, and loops over its (n − k) rows. Each iteration of the loop sets a bit in s,
performing the appropriate row multiplication of H for the current index with
e. This is done using bit-manipulation to avoid branching.



Verifying Classic McEliece 29

1 void syndrome(unsigned char *s, const unsigned char *pk ,
unsigned char *e)

2 { unsigned char b, row[SYS_N /8];
3 const unsigned char *pk_ptr = pk;
4

5 int i, j;
6

7 for (i = 0; i < SYND_BYTES; i++)
8 s[i] = 0;
9

10 for (i = 0; i < PK_NROWS; i++)
11 { for (j = 0; j < SYS_N /8; j++)
12 row[j] = 0;
13

14 for (j = 0; j < PK_ROW_BYTES; j++)
15 row[ SYS_N/8 - PK_ROW_BYTES + j ] = pk_ptr[j];
16

17 row[i/8] |= 1 << (i%8);
18

19 b = 0;
20 for (j = 0; j < SYS_N /8; j++)
21 b ^= row[j] & e[j];
22

23 b ^= b >> 4;
24 b ^= b >> 2;
25 b ^= b >> 1;
26 b &= 1;
27

28 s[ i/8 ] |= (b << (i%8));
29

30 pk_ptr += PK_ROW_BYTES; } }
31

Listing 1. Original syndrome implementation.

The issue for verification is that this means each loop stores the entire state
of s. We found that while we could verify that one loop correctly modified s per
the specification, the symbolic execution of all of syndrome could not complete
when we applied the compositional override. As each loop sets the appropri-
ate bit of s by performing an accumulative OR on the appropriate byte with a
suitably shifted weight-1 byte, every iteration was storing more and more accu-
mulative information about the byte array s that SAW had to keep track of in
the execution. We suspect that the loop became too large for SAW to support.
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However, we were able to rewrite syndrome to avoid this issue. The key insight
was the following one: each eight rows, a byte in s is completely determined, and
thereafter plays no role in what follows. This is easy to see as a human reader,
but is not information that SAW can derive. This is possibly because the index
of the byte set each loop is calculated each time as i

8 , where in our loop function
we simply model the row index i as a 16-bit integer. It is possible that SAW,
internally, cannot conclude that this implies that as i is incremented by one
each time, after eight values of i a byte in s is fixed. Our idea was to implement
not only a row-multiplication function, but also a function to take a block of
eight rows and perform the corresponding multiplications across all of them,
producing the resultant byte.

In addition, we noted that because e is multiplied by the identity matrix,
it can be split into (eid, epk) := e, where eid and epk are stored as byte arrays
of length n−k

8 and k
8 respectively. This means that s = eid + Tepk, and so we

can focus on performing Tepk, with no need to reconstruct H. We can calculate
Tepk a byte at a time, exclusive-or this byte to the corresponding byte of eid,
and this gives the corresponding byte of s.

This means that we are performing n−k
8 loops rather than (n − k), but at

each loop we perform eight row multiplications instead of one, albeit also on a
smaller matrix. The crucial part is that then each loop sets a byte of s without
reference to the current state of s. This is unlike the original implementation,
which modifies s each loop by performing an OR operation on one of its bytes.

Not only does this implementation of syndrome actually allow efficient sym-
bolic execution and a verification proof, but our re-implementation appears to
result in a modest performance improvement over the original. In testing on
random data, we found it ran in an average of 1.4ms as opposed to an average
of 1.5ms for the original implementation. We should note that this implemen-
tation is also used in the scheme’s optimised implementation, though not the
additionally optimised implementation that uses assembly-level code. In addi-
tion, we believe we have maintained the side-channel resistance properties of
the original – in testing, there did not appear to be an appreciable difference in
performance with different random inputs, and there is no branching or memory
accesses indexed with secret data.

In summary, we were able to produce an implementation of syndrome that
was faster, as secure, and, crucially, more verifiable than the original. This is
evidence for the following claim: it is meaningful to consider one implementation
being more verifiable than another, and there are properties a function can have
that make it inherently easier to find a more verifiable implementation. If it was
not the case that the data flow for syndrome could be separated as we did here,
then the above approach would not have worked. Thus, at the design stage,
such “separability” could be considered as a desirable attribute that can make
an implementation more verifiable (for some chosen definition of verifiability).
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1 unsigned char bytes_bit_dotprod(const unsigned char *u,
const unsigned char *v, size_t n)

2 { unsigned char b;
3 int i;
4 b = 0;
5 for (i = 0; i < n; i++)
6 b ^= u[i] & v[i];
7

8 return b_func(b); }
9

10 unsigned char bytes_bit_mul_block(const unsigned char *u
, const unsigned char *v, size_t n)

11 { const unsigned char *u_ptr = u;
12 unsigned char b;
13 int i;
14 b = 0;
15 for (i = 0; i < 8; i++)
16 {
17 b += (bytes_bit_dotprod(u_ptr , v, n) << i);
18 u_ptr += n;
19 }
20

21 return b; }
22

23 void syndrome_bytewise(unsigned char *s, const unsigned
char *pk , unsigned char *e)

24 { const unsigned char *pk_ptr = pk;
25 const unsigned char *eid = e;
26 const unsigned char *epk = e + SYND_BYTES;
27 int i;
28 for (i = 0; i < SYND_BYTES; i++)
29 {
30 s[i] = eid[i] ^ bytes_bit_mul_block(pk_ptr , epk ,

PK_ROW_BYTES);
31 pk_ptr += 8* PK_ROW_BYTES;
32 } }
33

Listing 2. Revised syndrome implementation.

Sorting Comparator Bugs. We discovered bugs in the sorting functions used
by the Classic McEliece implementation, which do not directly affect the imple-
mentation but could certainly present an issue in code reuse. The bugs we found
were in macros used by the sorting functions as element comparators. These
macros take two variables, and place the minimum value in the first variable
and the maximum one in the second without performing a branch. The first acts
on two unsigned 64-bit integers, and the second acts on two signed 32-bit inte-
gers. In the former case, it simply does not produce the right output for certain
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inputs. In the latter, signed integer overflow can occur for certain inputs, which
leads to implementation-defined and possibly undefined behaviour.

Fig. 2. Conditions for uint64_MINMAX to behave correctly.

The problem in both cases is the most significant bit; the sign bit in the
signed case. Using a Cryptol implementation of the unsigned case, and careful,
iterative use of its SMT-solving capabilities, we were able to isolate a condition
(Fig. 2) for the first macro to work correctly. That is, the first macro only works
when the inputs have the same most significant bit.

We did not detect the bug with the second macro Cryptol directly, but
instead when verifying the sorting algorithm in SAW. This is because Cryp-
tol’s behaviour for integer overflow is always that it wraps, which is also the
assumption of the macro. However, SAW’s symbolic execution models the C
specification itself, in which it is implementation-defined whether signed inte-
gers are treated as modular or if they overflow, and an overflow is undefined
behaviour. Therefore, SAW detects the possibility of undefined behaviour and
terminates the symbolic execution. The condition for avoiding any possibility of
overflow is exactly that b − a can be stored in a 32-bit integer, which admits a
similar condition to that for the 64-bit case.

By looking at where these functions are used and what is stored in them,
it appears that the troublesome bit will only ever be set to 0 in practice, and
thus these bugs appear to be of limited, if at all, impact to Classic McEliece.
However, another implementor might re-use these sorting functions in another
context. Indeed, these functions are derived from a separate library, the djbsort
library [11], and thus the bugs could have a wider impact. These functions could
be fixed by applying input validation to check for the problematic cases.

This sort of subtle issue is one that is very hard to see with casual human
review, but was easy to spot once the formal tool drew our attention to it.
Thus this example further motivates the use of formal verification tools in the
development of cryptographic schemes.

4 Verifying Aspects of Classic McEliece with Lean

In this section, we report on our efforts to apply the interactive theorem prover
Lean 3 and its mathlib library [27] to produce verified proofs relating to Classic
McEliece. Lean aims to be both a functional programming language, in which it
is easy to write correct and maintainable code; and also an interactive theorem
prover, similar to Coq [17]. Like Coq and its MathComp library, Lean has its
own mathematical components library, mathlib. The mathlib library has enjoyed
extensive interest from the pure mathematics community and has been growing
and updating at a rapid pace in the last few years. The style in Lean and mathlib
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is generalised and abstract; in contrast to Coq formalisations, which tend towards
a concrete approach [7].

Verification of Control Bit Constructions. In [13], Bernstein uses the HOL
Light tool to gives proofs, and formal verifications of those proofs, for the control
bit constructions used in Classic McEliece. As a proof of concept, we decided to
attempt to re-implement the same proofs in Lean. The proofs we were able to
obtain verified more theorems than the verifications in [13]; in addition, unlike
HOL Light, it is relatively easy in Lean to talk about permutations of {0, 1, ..., n}
rather than permutations of {0, 1, ...} that fix {n, n + 1, ..., }, or indeed permu-
tations defined on any well-ordered type. As such, unlike the verifications in
HOL Light, the theorems we verified were closer to the original mathematical
statements, with no translations required.

However, these proofs are not compatabile in the most recent version of Lean
and mathlib, because the library itself has advanced since then. While they are
available [2], they would require further work to update to the latest version of
the library. This illustrates an issue with formal methods in general and ones
based on unstable libraries in particular: they create an extra technical debt
as they require maintenance. Nevertheless, the relative ease at which our work
proceeded made us optimistic to try more experiments in proving aspects of
Classic McEliece’s design using Lean in future.

Verification of Coding Theory. We also investigated the use of Lean to verify
the correctness of the decoding methods used in Classic McEliece. We targeted a
recent monograph of Bernstein [12] setting out the necessary theorems of coding
theory used in the proof of correctness. In theory, Lean’s mathlib contains all
the mathematics necessary to prove these theorems. In practice, there were a
number of hurdles to overcome, for example in edge cases that need to be formally
specified even though they may appear not to matter on paper, and this work
is still in progress.

Towards this goal, we have provided to mathlib a refactor of theorems about
Lagrange interpolation, and an implementation of the Hamming distance and
theorems around it. These theorems are a building block towards verifying Goppa
codes and Classic McEliece. Given the recent publishing of a Lean 4 specifica-
tion of Classic McEliece [3], the possibility (even if a difficult one) of joining
this work with proofs about the abstract design of the scheme is an interesting
and potentially exciting one. This would be ‘first strand‘ verification—in that
it is verifying the mathematical correctness of the design itself—combined with
‘second strand‘ verification—as it would be verifying an implementation against
the constraints of a design.

5 Conclusions and Perspectives

5.1 Recommendations

Our work adds to the increasing body of work showing that formal approaches
can and should be incorporated into cryptographic design evaluation. In particu-
lar, we demonstrate that it is meaningful to talk of the verifiability of a particular
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implementation, and, by extension, of a particular design. Such verifiability can
be treated as evidence in favour of a proposed design or implementation. Advo-
cates for the use of computer-aided cryptography should aim to play a role in
the setting of common standards around verifiability.

Designers and implementers of cryptographic schemes can follow two main
approaches to incorporate computer-aided cryptography techniques. The first
approach is using tools that aim to verify existing code. In this case, we recom-
mend engaging with the limits of the chosen tool before beginning implementa-
tion. For instance, with SAW/Cryptol, we found that large loops that carried
large amounts of state between each loop iteration were not feasibly verifiable.
Other tools will have different limitations. Such tools can be incorporated into
the software development cycle, as prior work has demonstrated [19,23]. It is
easier to adjust the design of an implementation at an earlier stage in its devel-
opment, and our experience in this study demonstrates that seemingly-small
alterations in a design can make a real difference to verifiability.

The second approach is for implementors to choose a synthesis-first app-
roach [9,18]. Novel cryptography has the advantage that it is necessarily based
on “fresh” code, and has the flexibility to support verified code synthesis. More-
over, such implementations can be as efficient as hand-written code, if not more
so.

5.2 Future Work Using Similar Approaches

Verification of Classic McEliece. The functions that we could verify or
partially verify with SAW/Cryptol constitute the core of the decryption and
encryption operations of Classic McEliece. It would be interesting to extend this
to the higher-level encapsulation or decapsulation functions. For example, their
memory safety could be determined by checking that SAW could symbolically
execute them. In addition, some components of the implementation were tech-
nically challenging to specify in Cryptol. For instance, whilst we were able to
produce a specification for the function that calculates permutation control bits,
we were not successful at using it in verification. Prior work has explored for-
mally proving the design of the formulae used for the control bit calculation [13].
Future work should seek to explore this further, perhaps porting these proofs to
a language like Project Everest’s F* [18] which has the facility for code synthesis.

Verification Using Lean. Lean is a relatively new theorem prover, and as such
has seen relatively little attention from the cryptographic community. Lean’s
strong support for Unicode and the tendency of mathlib towards abstraction
and generality means that statements and even proofs in mathlib can look closer
to their “pen and paper” equivalents in, say, Coq. This is of interest for forms
of cryptography in which the underlying constructions are often abstract and
mathematical, even though the instantiations are necessarily concrete. The rapid
development of Lean and mathlib means there is an opportunity for cryptogra-
phers to “get in at the ground floor” and shape the implementation choices behind
key concepts. We see this as an important direction for future work.
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Abstract. We present a key-recovery fault injection attack on the Clas-
sic McEliece Key Encapsulation Mechanism (KEM). The fault injections
target the error-locator polynomial of the Goppa code and the validity
checks in the decryption algorithm, making a chosen ciphertext attack
possible. Faulty decryption outputs are used to generate a system of
polynomial equations in the secret support elements of the Goppa code.
After solving the equations, we can determine a suitable Goppa polyno-
mial and form an alternative secret key. To demonstrate the feasibility
of the attack on hardware, we simulate the fault injections on virtual
prototypes of two RISC-V cores at register-transfer level.
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1 Introduction

Post-Quantum Cryptography (PQC) is an important research topic due to the
imminent development of large-scale quantum computers. If capable quantum
computers become available, cryptographic systems based on the integer factor-
ization problem and the discrete logarithm problem over finite fields and elliptic
curves can be attacked in polynomial time due to the work of Shor [23] in 1997.
Therefore, the currently employed public-key cryptographic schemes like RSA
and ECC are no longer secure. In 2017, the U.S. National Institute of Stan-
dards and Technology (NIST) initiated a competition for post-quantum cryp-
tography to replace their current FIPS 186 and SP 800-56A/B recommendations
[16]. PQC includes algorithms that run on classical computers but are resistant
against attacks from quantum computers. The hardness of PQC is based on
computationally hard problems that are expected to be resistant against attacks
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performed by quantum computers for the next tens or hundreds of years. Cur-
rently proposed algorithms rely on, e.g., lattice problems, the syndrome decoding
problem of error-correcting codes, the solving of multivariate equations and iso-
genies between elliptic curves.

The McEliece cryptosystem is a code-based public-key encryption (PKE)
scheme that relies on the syndrome decoding problem (SDP) for decoding error-
correcting codes [14]. The McEliece cryptosystem was introduced in 1978 [14]
and its dual version, the Niederreiter cryptosystem, in 1986 [18]. In general,
every PKE can be transformed into a key encapsulation mechanism (KEM) that
encapsulates and decapsulates a symmetric secret session key for a key exchange
procedure and is IND-CCA2 secure. The Classic McEliece KEM [3] is a code-
based cryptosystem among the finalists of the PQC competition based on the
Niederreiter PKE. It needs a large public key size compared to lattice-based
KEMs, but is free from decryption failures and has a long history of research.
With the efforts towards standardization, the security of implementations is
an important issue and fault attacks are an interesting field of research. Fault
injections are physical attacks on hardware which lead to computation errors
that are exploited to extract secret information from the device. To produce
such errors one may use highly focused laser beams that achieve good spatial
and temporal precision in order to set and reset single and adjacent bits on a
chip [22].

Cayrel et al. [4] present a message-recovery fault attack on Classic McEliece
by attacking the syndrome computation that changes the syndrome from F2 to
the integers N. The resulting syndrome decoding problem in N can be easily
solved by integer linear programming. In [5] they present a similar message-
recovery attack using only side-channel information on power consumption of
the chip. This attack also gathers information on the syndrome in N but is
more tolerant to noise. Very recently, Guo et al. [10] published a key-recovery
side-channel attack on Classic McEliece KEM. They use chosen ciphertexts and
exploit a side-channel leakage in the additive Fast Fourier Transform (FFT) that
evaluates the ELP during decoding. Xagawa et al. [27] demonstrate a single-fault
injection attack that works for all NIST PQC Round 3 KEM candidates except
Classic McEliece. The single-fault injection attacks presented in [27] are executed
by skipping instructions on a chip using glitching of the power supply. The
skipping circumvents the IND-CCA2 security of the KEM and enables chosen-
chiphertext attacks on the vulnerable PKE. In the course of this work, we found
useful relations for completing partially known support sets of a Goppa code, as
independently reported by [11].

In this paper, we show that we can obtain an alternative secret key of Classic
McEliece by adapting and combining the skipping attacks of Xagawa et al. [27]
with the fault injection attack on the PKE by Danner and Kreuzer [6]. We addi-
tionally investigated our fault attack on two Open Source RISC-V processors.

The structure of the paper is as follows: Sect. 2 reviews the Classic McEliece
KEM. In Sect. 3 we define our hardware fault model and give a mathematical
description of the key-recovery attack. In Sect. 4 we present our implementation
details and simulation results that validate our attack, together with a feasibility
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study for two RISC-V processors using RTL simulations. We conclude in Sect. 5.
All algorithms can be found in the Appendix.

We use the following notation: The finite field of size q is denoted by Fq. Row
vectors are denoted by bold lower-case letters (e.g., e) and column vectors by e�.
Denote supp(e) := {i ∈ {1, . . . , n} | ei �= 0} for e ∈ F

n
q , and the Hamming weight

of e by wt(e). We denote matrices by bold capital letters (e.g., H). We consider
the Hamming metric for weight and distance. Let Fq[x] denote the univariate
polynomial ring in x with coefficients in Fq. For a polynomial f ∈ Fq[x] we
denote its degree by deg(f), and the ideal generated by f with 〈f〉.

2 Classic McEliece KEM

The Classic McEliece KEM specified in [3] is designed as a quantum-resistant
public-key encapsulation mechanism based on the Niederreiter cryptosys-
tem [18]. The security relies on the syndrome-decoding problem (SDP) which
is NP-complete for random linear codes [2]. The core idea of the Niederreiter
cryptosystem in the KEM is to choose a binary irreducible Goppa code which
allows efficient correction of errors when the algebraic structure is known, while a
systematic parity check matrix of the code appears to be random. The algebraic
structure is part of the secret key and the legitimate user thereby has access to
an efficient decoder. For everyone else, the linear code appears to be a random
code. It is believed that not only traditional computers, but also quantum com-
puters require an exponential number of operations to correct errors without
knowledge of the underlying algebraic structure.

Classic McEliece is extremely efficient in encoding and decoding at the cost
of a large public key. For the CAT-5 proposed parameters the public key size
is about 1 MB. This large public key makes its generation and storage more
expensive compared to other PQC cryptosystems. We work with the Classic
McEliece KEM implementation [3] submitted to NIST Round 3 and explain
its key functionalities in the remainder of this section.1 The current proposed
parameter sets for Classic McEliece are listed in Table 4 in the appendix.

Classic McEliece consists of three main functions: key generation, encap-
sulation and decapsulation. They use the public parameters n,m, t ∈ N with
n ≤ 2m, and a monic irreducible polynomial f(z) ∈ F2[z] of degree m. The lat-
ter is used to fix a representation of elements in the field F2m

∼= F2[z]/〈f(z)〉 as
bit-tuples, i.e., elements in F

m
2 . The identification is given by the bijective map

ϕ : Fm
2 → F2[z]/〈f(z)〉 ∼= F2m where (c0, . . . , cm−1) 	→ c0+c1z+ · · ·+cm−1z

m−1.
Classic McEliece uses the SHA-3 Keccak SHAKE-256 hash function, defined

in [17]. We denote it by H, and its output is always 256 bits long, independent
of its input length. In particular, we write H(2,v) and H(i,v, C) for the hash
of the concatenation of an initial byte valued i ∈ {0, 1} or 2, vector v ∈ F

n
2 and

ciphertext C, see also [3, Sec. 2.5.2].
1 In this paper we do not consider the accelerated variant of the key generation in

Classic McEliece that also accepts a semi-systematic form of the parity-check matrix.
We expect the attack to work also on this variant after minor modification.
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2.1 Key Generation

In this paper we understand the secret key2 as a tuple (s, γ) where s is a bit-
vector in F

n
2 and γ = ( g, α ) ∈ F2m [x] × F

n
2m is a generator tuple of the binary

irreducible Goppa code

Γ (α, g) =

{
(c1, . . . , cn) ∈ F

n
2 | ∑

i∈supp(c)

(x − αi)−1 = 0 in F2m [x]/〈g〉
}

⊆ F
n
2 ,

with deg(g) = t and α = (α1, . . . , αn).
Then g is a monic irreducible polynomial and called the Goppa polynomial

of the code, and α = (α1, . . . , αn) ∈ F
n
2m satisfies αi �= αj for i �= j and g(αi) �= 0

and is called the support of the code. Key generation ensures that the linear
code Γ (α, g) has dimension k = n−mt, length n and allows efficient correction of
up to t errors. Moreover, one can compute a parity-check matrix in systematic
form Hsys = (In−k|T), where In−k is the identity matrix of size n − k. The
public key is then given by the matrix T ∈ F

(n−k)×k
2 . Note that in particular the

code Γ (α, g) itself is public knowledge since T is public. However, the algebraic
structure, i.e., the Goppa polynomial and the support, are part of the secret
key. Algorithm 1 summarizes the construction of the secret and public keys in
Classic McEliece.

2.2 Encapsulation

The encapsulation (Algorithm 3) takes a random plaintext and uses the public
key to generate a ciphertext from which only the holder of the secret key can
extract the random plaintext again. This can be used to establish a common
secret session key. In particular, the encapsulation party chooses a vector e ∈ F

n
2

of Hamming weight t at random. The ciphertext C = (c0, C1) is generated by
encoding the vector e using the public key such that c0 = eHsys

� and by
calculating the hash C1 = H(2, e). The secret session key K is then the hash of
H(1, e, C). Details can be found in Algorithm 2 and Algorithm 3.

2.3 Decapsulation

The holder of the secret key can compute the same session key using Algorithm 5.
This is done by splitting the received ciphertext into the two parts c0 ∈ F

n−k
2

and the hash C1, decoding c0 to a vector e′ ∈ F
n
2 of weight t using knowledge

of the generator tuple (α, g) of the Goppa code. Then the result is checked
by calculating C ′

1 = H(2, e′) and ensuring that C ′
1 and C1 are equal. (If no

errors occurred during transmission and the computation is not faulted, this is
the case.) Then the output is given by the (reconstructed) session key K ′ =
H(1, e′, C). In this way both parties conclude with the same session key.

2 In the actual implementation the secret key does not contain the support α explicitly,
but instead the seed of the random function that is used to generate it.
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In case the input C1 or C2 is no valid ciphertext, the decoding step will fail,
or the check of C ′

1 = C1. In this case a predefined output K ′ = H(0, s, C) is
returned, where s ∈ F

n
2 is part of the secret key (see line 7 in Algorithm 1).

Our fault injections target the decapsulation algorithm in order to gain poly-
nomial equations in the support α of the Goppa code. To decode a syndrome
c0 = eHsys

� ∈ F
n−k
2 Algorithm 4 first forms the word v ∈ F

n
2 by appending

zeros to c0. By construction the syndrome of v w.r.t. Hsys is exactly c0, i.e., v
and e are in the same coset. This means that there is a codeword c ∈ Γ (α, g)
such that v = c+ e. This word is computed in Line 2. Different algorithms have
been suggested in literature for this decoding step: the Sugiyama Algorithm [25],
the Berlekamp-Massey Algorithm [1,13], and the Patterson Algorithm [21]. All
of them explicitly compute the error-locator polynomial (ELP) of e ∈ F

n
2

defined as
σe(x) =

∏
i∈supp(e)

(x − αi) ∈ F2m [x].

The error e can then be reconstructed directly from the zeros of σe(x), since
we have for all i ∈ {1, . . . , n}: ei = 1 if and only if σe(αi) = 0. For more
details on Goppa codes we refer the reader to [12, Ch. 12]. Figure 1a depicts the
corresponding steps that are executed in the Classic McEliece implementations,
which use the Berlekamp-Massey algorithm to find the ELP.

2.4 Implementation

The implementations submitted to NIST [3] contain a reference implementa-
tion, as well as several hardware accelerated implementations for x86/AMD64
processors. For our software simulation of the attack, we adapt the hardware
accelerated implementation that makes use of vector arithmetics on the proces-
sor for faster runtime. To simulate the fault injections on RISC-V cores, we use
the reference implementation.

The ELP σe(x) ∈ F2m [x] is represented differently in the reference and hard-
ware accelerated code. The following remark summarizes how the implementa-
tions handle invalid inputs, i.e., syndromes corresponding to errors of smaller
weight.

Remark 1 (ELP Implementation Details).

(a) For any valid syndrome c0 = eHsys
� with wt(e) ≤ t, the coefficients of

the corresponding ELP σe(x) are stored in such a way that it is read as the
polynomial σe(x) · xt−deg(σe) of degree t.

(b) This does not affect error correction as long as no αi is zero, or wt(e) =
deg(σe(x)) = t. But, if there is i ∈ {1, . . . , n} with αi = 0 and wt(e) < t,
then the output e′ ∈ F

n
2 of line 2 in Algorithm 4 is indeed changed and we

get supp(e′) = supp(e) ∪ {i}.
(c) In particular, e �= e′ only if there is an i ∈ {1, . . . , n} with αi = 0 and ei = 0,

and we have wt(e′) ≤ wt(e) + 1.

Later, this allows us to quickly find the index i ∈ {1, . . . , n} with αi = 0, if there
is such (see Remark 4).
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Fig. 1. Flowchart showing the decapsulation and decoding steps indicating the differ-
ences between normal and faulty operation. Fault injections target the steps marked
in red. (Color figure online)

3 Key-Recovery Attack

This section describes our key-recovery attack. It targets the decapsulation func-
tion and can find an alternative secret key. This key can be used in place of the
original secret key, i.e., it can be used to find session keys generated with the cor-
responding public key. Three steps are necessary: First, we inject a fault in the
decoding procedure on the ELP coefficients so that it leaks information about
the secret key, adapting the work of [6]. Second, we inject a fault to bypass
the validity check (VCB) ensuring the faulty decoding result is not rejected.
This is done similar to [27]. Third, we demonstrate that under given circum-
stances the information about the secret key contained in the hashed output
can be retrieved. The injections in the decapsulation algorithm necessary for
the attack are illustrated in Fig. 1b. We describe two kinds of faults in the ELP
coefficients: ELP coefficient bit corruption (ELPb) and ELP coefficient zeroing
(ELPz). Both lead to successful key recovery, with ELPz being more efficient.
ELPz further has synergy with the validity check bypass (VCB), as both can
be achieved by fault injections at the same position on the chip (see Sect. 4.3).

3.1 Fault Model

We consider the setting that the secret key is stored in a Trusted Execution
Environment (TEE) so that its memory location is well protected. Only the TEE
itself has access to the secret key, i.e., the key cannot be physically accessed or
retrieved by any other means.
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Assumption 1. The attacker has access to the input and output of the decapsu-
lation function (Algorithm 5). We can freely choose the input of the decapsulation
function (chosen ciphertext attack).

Assumption 2. We can inject faults on the physical device during decapsulation
changing the transistor states at specific positions and times. To be precise, we
assume that single and adjacent bits can be set or reset.

Such faults are achievable e.g. by a laser fault injection [22].
On the computational level, the following is achieved by fault injections:

The validity check in line 4 of Algorithm 4 and line 5 of Algorithm 5 is
bypassed (VCB), and the ELP is corrupted either by setting or resetting one or
more adjacent bits in a single coefficient (ELPb) or by setting a coefficient to
zero (ELPz).

To simplify the theoretic analysis of fault injections into the ELP, consider
the following remark.

Remark 2. We model the faults on a coefficient a ∈ F2m of the ELP as an
addition in the field F2m , i.e., write the faulty coefficient ã ∈ F2m as ã = a + ξ
for some appropriately chosen ξ ∈ F2m . Note that for our attack we do not need
to know the fault value ξ.

3.2 Fault Attack on the Validity Checks (VCB)

The validity checks confirm whether the decoding function provides a valid out-
put and compares the corresponding hashes. If not, a predefined session key
is returned (“Failed Output” in Fig. 1a). After fault injection into the ELP,
the faulty output ẽ′ in general does not pass the check ẽ′H�

sys = eH�
sys and

wt(ẽ′) = t in Algorithm 4 line 4 and the check H(2, e) = H(2, ẽ′) in Algorithm 5
line 5. Therefore, we need an additional fault injection to bypass these checks
such that we are able to retrieve the faulty session key K̃ ′ = H(1, ẽ′, C), which
contains information about ẽ′, see Fig. 1b.

A faulty session key K̃ ′ = H(1, ẽ′, C) is a hash of the input ciphertext C =
(c0,H(2, e)) and the output ẽ′ ∈ F

n
2 of the decode algorithm. According to our

fault model the attacker has full control over C. It is feasible to extract ẽ′ from
K̃ ′ by exhaustive search if the weight of ẽ′ is small enough.

Remark 3 (De-hash Session Key).

(a) If C and hash K̃ ′ = H(1, ẽ′, C) are known for some ẽ′ ∈ F
n
2 with wt(ẽ′) ≤ 2,

then one can find ẽ′ with less than
(
n
2

)
+

(
n
1

)
+

(
n
0

)
hash computations and

comparisons via exhaustive search.
(b) The statement in (a) is also true if wt(ẽ′) ≤ 3 and one index i ∈ supp(ẽ′) is

known.
(c) For the parameters (Table 4), we have n ≤ 213, this means that less than

225 + 212 + 1 hash computations and comparisons are required to find the
output of the decoding algorithm ẽ′ from a faulty session key K̃ ′, given that
supp(ẽ′) contains at most two unknown indices.
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3.3 Fault Attack on the ELP Coefficients

The goal is to inject faults into certain coefficients of the error-locator polyno-
mial (ELP) during the decoding process of chosen words e ∈ F

n
2 of Hamming

weight 2 such that the evaluation of that polynomial is erroneous. If we have
access to the faulty output ẽ′ ∈ F

n
2 of the decoding step, we can obtain polyno-

mial equations in the secret support α. A set of such equations eventually leads
to an alternative support α̃ ∈ F

n
2m for which there is an irreducible polynomial

g̃ ∈ F2m [x] of degree t with Γ (α, g) = Γ (α̃, g̃). This allows efficient correction of
up to t errors in the code Γ (α, g). Hence, for every s ∈ F

n
2 the tuple (s, (g̃, α̃))

can be used as an alternative secret key with Algorithm 5.
The fault injections on the ELP are mainly based on the ideas of the fault

attack presented in [6], but a handful of adjustments had to be made to accom-
modate the different fault model and the peculiarities of the implementation.
Also the solving process was refined to decrease the number of required fault
injections.

Before we discuss how corrupting coefficients of the ELP can lead to poly-
nomial equations in the unknown support α ∈ F

n
2m of the Goppa code, we show

that one can easily check if zero is one of the support elements and if so, find its
index.

Locating Zero in the Support. In the previous section we have seen that
we can choose the input of the decoding algorithm as well as read the output,
if it is of small weight (Remark 3). So instead of syndromes corresponding to
errors e ∈ F2 of weight t, we may select errors of smaller weight, e.g. the all-zero
vector. This allows us to decide whether zero is contained in the support, and if
it is, find the index i ∈ {1, . . . , n} for which αi = 0.

Remark 4 (Finding Zero). Let e = 0 ∈ F
n
2 , and consider c0 = eHsys

� as input
for the decoding algorithm. If there is a j ∈ {1, . . . , n} with αj = 0, then the
decoding algorithm evaluates the polynomial xt and outputs e′ ∈ F

n
2 where

supp(e′) = {j} by Remark 1; otherwise we have e′ = e = 0. Since wt(e′) ≤ 1
we can quickly access e′ from the hash output of the decapsulation function, see
Remark 3, and from e′ read off whether there is j ∈ {1, . . . , n} with αj = 0 and
in that case deduce this index j.

From now on, we assume that we know j ∈ {1, . . . , n} with αj = 0, if there
is such an index; as this information can be gathered with just a single run of
the decapsulation algorithm where the validity checks are skipped.

Corrupting Bits of Coefficients (ELPb). For the fault injections on the
ELP that eventually provide the polynomial equations in the support α, we
choose syndromes corresponding to vectors e ∈ F

n
2 of weight 2 as input to the

decoding algorithm. This way the ELP has the form σe(x) = (x−αi1)(x−αi2) ∈
F2m [x] for chosen i1, i2 ∈ {1, . . . , n} with i1 �= i2. The idea is to set or reset
single or adjacent bits in one of the two coefficients such that it is replaced by
σ̃e(x) = ξxd+σe(x) for d ∈ {0, 1} and some (unknown) ξ ∈ F2m (see Remark 2).
Recall that the output of the decode algorithm, say ẽ′ ∈ F

n
2 , is constructed not
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from the zeros of σ̃e(x) but from the zeros of xt−2σ̃e(x), see Remark 1. The
next remark summarizes the information about the zeros of σ̃e(x) that can be
obtained from ẽ′.

Remark 5. Let e ∈ F
n
2 with supp(e) = {i1, i2} and i1 �= i2. Assume that a fault

ξ ∈ F2m is injected into the d-th coefficient of σe(x) with d ∈ {0, 1}. Let ẽ′ ∈ F
n
2

be the output of the decoding algorithm when the polynomial for the root finding
is given by xt−2σ̃e(x) where σ̃e(x) = ξxd + σe(x).

(a) If αj �= 0 for all j ∈ {1, . . . , n}, then we have wt(ẽ′) ≤ 2, and

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)}.

(b) If there is j ∈ {1, . . . , n} with αj = 0, then wt(ẽ′) ≤ 3 and j ∈ supp(ẽ′) is
known. Moreover, we have

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} ∪ {j}.

By Remark 4 we can distinguish those two cases, and Remark 3 tells us how we
can then gain access to ẽ′ ∈ F

n
2 .

Definition 6. Let d ∈ {0, 1}, e ∈ F
n
2 with supp(e) = {i1, i2} ⊆ {1, . . . , n},

i1 �= i2, and let ẽ′ ∈ F
n
2 be the output of Algorithm 4 where

(1) a fault was injected such that the d-th coefficient of σe(x) is corrupted by
ξ ∈ F2m , i.e., the ELP is replaced by σ̃e(x) = ξxd + σe(x),

(2) the output ẽ′ is constructed from the roots of xt−2σ̃e(x) (see Remark 1), and
(3) a fault injection ensures that the validity checks in line 4 pass.

Then we call the tuple (e, ẽ′) a fault injection. If d = 0 it is also called a
constant injection, and a linear injection for d = 1, respectively.

Our fault model allows to generate arbitrary many such fault injections. Also
note that we assume no control over the unknown fault ξ.

Not all fault injections lead to polynomial equations, only those where the
faulty ELP has two zeros among the support α. In view of Remark 5, a sufficient
condition is given by the following definition.

Definition 7. A fault injection (e, ẽ′) is called successful, if

(1) for all j ∈ {1, . . . , n} we have αj �= 0 and wt(ẽ′) = 2, or
(2) there is j ∈ {1, . . . , n} with αj = 0 and wt(ẽ′) = 3.

For every successful fault injection the set {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)}
can be deduced from ẽ′ with Remark 5 and contains exactly two elements.

Next we explain why the term successful is adequate.

Proposition 8. Let (e, ẽ′) be a successful fault injection with supp(e) = {i1, i2}
and {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} = {j1, j2}.
(a) If (e, ẽ′) is a successful constant injection, then αi1 + αi2 = αj1 + αj2 , and

α is a zero of the linear polynomial xi1 + xi2 + xj1 + xj2 ∈ F2m [x1, . . . , xn].
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(b) If (e, ẽ′) is a successful linear injection, then αi1αi2 = αj1αj2 , and α is a
zero of the quadratic polynomial xi1xi2 + xj1xj2 ∈ F2m [x1, . . . , xn].

Proof. Denote the ELP by σe(x) = (x − αi1)(x − αi2) and the faulty ELP by
σ̃e(x) = ξxd+σe(x) for d ∈ {0, 1} and ξ ∈ F2m . By Remark 5 and Definition 7, we
get that αj1 and αj2 are the roots of σ̃e(x), i.e., σ̃e(x) = (x−αj1)(x−αj2). Both
statements are now shown by comparing the coefficients in ξxd +σe(x) = σ̃e(x):

ξxd + (x − αi1)(x − αi2) = (x − αj1)(x − αj2).

For (a) we get x2 + (αi1 + αi2)x+ (αi1αi2 + ξ) = x2 + (αj1 + αj2)x+ αj1αj2 , as
d = 0. Comparing the linear coefficients yields αi1 +αi2 = αj1 +αj2 . For (b) we
get x2 + (αi1 + αi2 + ξ)x + αi1αi2 = x2 + (αj1 + αj2)x + αj1αj2 , as d = 1. So in
particular αi1αi2 = αj1αj2 follows from the constant coefficients. �
Remark 9. The probability to have a successful fault injection increases with the
ratio n

2m . This follows simply from the fact that the number of support elements
increases with n and by that also the number of possible roots for the faulty
ELP σ̃e(x) increases.

Zeroing Coefficients (ELPz). Instead of targeting the General Purpose Reg-
ister (GPR) holding the ELP coefficients directly, one may also aim at the
instructions operating on them. For example, by skipping the instruction stor-
ing the ELP coefficient to memory, the resulting coefficient will be equal to zero.
This is the case because the algorithm sets the ELP vector to zero before calcu-
lating its coefficients. Such fault injections also fit well with Definition 6, where
the fault value ξ ∈ F2m has the same value as the targeted coefficient of the ELP
such that the coefficient cancels out. Using coefficient-zeroing fault injections
can also provide polynomial equations as follows.

Proposition 10. Let (e, ẽ′) be a fault injection on the d-th coefficient of σe(x)
s.t. the d-coefficient of σ̃e(x) is zero. Write supp(e) = {i1, i2}, and let j ∈
supp(ẽ′) with αj �= 0.

(a) If (e, ẽ′) is a constant fault injection, then we have αi1 +αi2 = αj, and α is
a zero of the linear polynomial xi1 + xi2 + xj ∈ F2m [x1, . . . , xn].

(b) If (e, ẽ′) is a linear fault injection, then we have αi1αi2 = α2
j , and α is a

zero of the quadratic polynomial xi1xi2 + x2
j ∈ F2m [x1, . . . , xn].

Proof. Note that we have σe(x) = (x−αi1)(x−αi2) = x2+(αi1 +αi2)x+αi1αi2 .
In the situation of (a) we have σ̃e(x) = x2 + (αi1 + αi2)x. By Remark 1 the

implementation constructs ẽ′ from the zeros of xt−2σ̃e(x) = xt−1(x+ αi1 + αi2)
which has only one non-zero root, αi1 +αi2 . Now j ∈ supp(ẽ′) and αj �= 0 imply
that αj is exactly this non-zero root. Thus we get αj = αi1+αi2 . For (b) we have
σ̃e(x) = x2 + αi1αi2 . Now we know that αj is non-zero and a zero of xt−2σ̃e(x),
i.e., it is a zero of σ̃e(x). This gives α2

j = αi1αi2 . �
Recall that the attacker knows exactly if there is j ∈ supp(ẽ′) with αj �= 0 by
virtue of Remark 4. As such the above proposition can be applied directly.
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Remark 11. If the support elements α1, . . . , αn and e ∈ F
n
2 with wt(e) = 2 are

chosen uniformly at random, then the probability that there exists an αj with
αj = αi1 + αi2 or α2

j = αi1αi2 for supp(e) = {i1, i2} is n
2m . This means that

the success rate for obtaining a polynomial equation for a zeroing fault injection
(ELPz) is about n

2m .

This probability is significantly greater than the success rate of the injections
that directly target single or adjacent bits of the coefficients (ELPb), especially
if n � 2m. Our simulations confirm this observation.

The first step of the attack is now straightforward: generate constant and
linear fault injections (where each injection requires two fault injections to (1)
corrupt/zero a coefficient in the ELP and (2) skip the validity checks) and deduce
linear and quadratic equations which have the common zero α.

3.4 Computing Alternative Secret Keys

Using many fault injections, we collect polynomial equations using Proposition 8
and Proposition 10 in a so-called fault equation system L ⊆ F2m [x1, . . . , xn]
with the common zero α. Note that all these polynomials are either linear or
quadratic. We require both linear and quadratic equations, as shown in Propo-
sition 18. The first goal is to find a support candidate set SL ⊆ F

n
2m that

is a subset of the set of the common zeros of L and contains a support can-
didate α̃ ∈ SL for which an irreducible polynomial g̃ of degree t exists with
Γ (α, g) = Γ (α̃, g̃). To find such a support candidate set we follow the core solv-
ing process of the fault attack in [6, Section 6], summarized in the following
proposition. Denote the set of zeros of L ⊆ F2m [x1, . . . , xn] by

Z(L) = {a ∈ F
n
2m | f(a) = 0 for all f ∈ L}.

Proposition 12 (Solving Fault Equations). Let L ⊆ F2m [x1, . . . , xn] be a
fault equation system. Consider the following sequence of instructions.

(1) Reduce the linear polynomials in L (via Gaussian elimination).
(2) Substitute the leading terms in the quadratic polynomials, call the set of

reduced quadratic equations Lred ∈ F2m [xi1 , . . . , xis ].
(3) Fix one of the remaining indeterminates to 1, i.e., for some i ∈ {i1, . . . , is}

add xi − 1 to Lred.
(4) Find the set of zeros Z(Lred) ⊆ F

s
2m of Lred via Gröbner basis techniques.

(5) Extend the zeros in Z(Lred) to elements of Z(L∪{xi − 1}) ⊆ F
n
2m using the

linear polynomials, construct and return

SL = {α̃ ∈ Z(L ∪ {xi − 1}) | α̃j1 �= α̃j2 for j1 �= j2}.

This computes a support candidate set SL for L.

As soon as support candidates have been found, we check one by one, if they
can be extended with an irreducible Goppa polynomial g̃ to generate the Goppa
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code Γ (α, g). One approach to do this, based upon [6, Algorithm 6.7], uses the
fact that for every c ∈ Γ (α, g) we have

g | ∑
i∈supp(c)

∏
k∈supp(c)\{i}

(x − αk).

Proposition 13 (Finding Goppa Polynomials). Let α̃ ∈ F
n
2m with α̃i �= α̃j

for i �= j. For s ≥ 1, consider the following sequence of instructions.

(1) Let g̃ = 0. Choose codewords c1, . . . , cs ∈ Γ (α, g), for j ∈ {1, . . . , s} set
fj =

∑
i∈supp(c)

∏
k∈supp(c)\{i}(x − αk), and compute h = gcd(f1, . . . , fs).

(2) Factorize h and collect all irreducible factors of degree t in a set G.
(3) For every ĝ ∈ G, check if Γ (α̃, ĝ) = Γ (α, g) by comparing parity check

matrices in systematic form. In that case let g̃ = ĝ.
(4) Return g̃.

This is an algorithm that returns a non-zero g̃ if and only if there exists an
irreducible polynomial g′ ∈ F2m [x] with Γ (α̃, g′) = Γ (α, g). In that case we have
Γ (α̃, g̃) = Γ (α, g).

Proof. If g̃ is non-zero, by step (3), we have Γ (α̃, g̃) = Γ (α, g). Conversely, if
there is an irreducible g′ ∈ F2m [x] of degree t with Γ (α̃, g′) = Γ (α, g), then g′

is an irreducible factor of h, i.e., g′ ∈ G. This g′ is processed in step (3) and
ensures g̃ �= 0. This proves the claim. �
With s = 5 our simulations showed that, in practice, we always have two cases
in step (2): either deg(h) = 2t and G contains exactly one element, or h = 1 and
G = ∅. Our implementation is optimized for this observation.

Improvements. While the above already summarizes the overall solving pro-
cedure, we make a few additional remarks and optimizations.

The first observation is that in the first two steps of the Algorithm in
Proposition 13 for finding Goppa polynomials only support elements α̃j where
j ∈ supp(ci) with i ∈ {1, . . . , s} are used, i.e., to get a Goppa polynomial candi-
date g̃ not all elements α̃i need to be known.

Remark 14 (Support Candidate Completion). Let α̃ ∈ F
n
2m be a support candi-

date with irreducible Goppa polynomial g̃ ∈ F2m [x] where Γ (α, g) = Γ (α̃, g̃).
Let J ⊆ {1, . . . , n} be a set where α̃j is known for j ∈ J .

(a) Let c ∈ Γ (α, g) be a code-word with supp(c)\J = {i} for some i ∈ {1, . . . , n}.
Then one can determine α̃i as the unique zero of the linear polynomial

1 + (x − y) ·
∑

j∈supp(c)\{i}
(x − α̃j)−1 ∈ (F2m [x]/〈g̃(x)〉)[y],

since
∑

j∈supp(c)(x − α̃j)−1 = 0 in F2m [x]/〈g̃〉 by definition of Γ (α̃, g̃).
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(b) In order to find (all) codewords c ∈ Γ (α, g) with supp(c) \ J = {i} one can
compute an affine F2-basis of the intersection of the (affine) vector subspaces
Γ (α, g) and {c ∈ F

n
2 | ci = 1, cj = 0 for j �∈ J ∪ {i}} by linear algebra.

(c) This allows us to exclude all indeterminates xik that do not occur in Lred

in step (2) of the solving procedure (Proposition 12) such that Z(Lred)
decreases in size by a factor of 2m for every removed indeterminate. Then
we find Goppa polynomial candidates g̃ using the first two steps of Propo-
sition 13, where only known support elements are used (find appropriate
code-words c1, . . . , cs similar to (b)). Using part (a), one can now find the
missing support elements and construct support candidates α̃. Finally, one
can check if Γ (α, g) = Γ (α̃, g̃) as in Proposition 13, step (3).

This optimization only works if codewords as in (b) actually exist. Since many
linear equations are required to make the solving of the quadratic polynomials
in Lred feasible in the first place, only a few elements of the support candidates
need to be found in the above way, i.e., the set J is rather large in practice.
This also makes the existence of the required codewords highly likely. Recently,
[11] followed the same approach, and showed that it suffices to know as little as
mt+1 support elements to find both - the corresponding Goppa polynomial and
the remaining support elements - under mild conditions.

Denote the Frobenius automorphism by ψ : F2m → F2m , a 	→ a2 and consider
the related automorphism Ψ : F2m [x1, . . . , xn] → F2m [x1, . . . , xn] where Ψ(xi) =
xi for i ∈ {1, . . . , n} and Ψ |F2m = ψ. For α ∈ F2m we also write in the following
ϕ(α) := (ϕ(α1), . . . , ϕ(αn)).

Remark 15. Let L ⊆ F2m [x1, . . . , xn] be a fault equation system. Then all
polynomials in L are homogeneous, their coefficients are contained in F2, and
α ∈ Z(L) is a common zero. In particular Ψ(f) = f for all f ∈ L.

(a) For a ∈ F2m we have a·α ∈ Z(L), as for all f ∈ L: f(a·α) = adeg(f)f(α) = 0.
(b) For i ∈ {0, . . . , m − 1} we have ψi(α) ∈ Z(L), since for all f ∈ L:

0 = ψi(0) = ψi(f(α)) = Ψ i(f)(ψi(α)) = f(ψi(α)).

This highlights that Z(L) contains quite many elements derived from α, and in
fact all these are as useful to us as the support itself. This is a direct consequence
of the following remark, proven in [9]. Let Ψ now operate on F2m [x].

Remark 16. Remember that Γ (α, g) is a binary irreducible Goppa code with
deg(g) = t as before.

(a) For every a ∈ F2m \ {0} we have Γ (α, g(x)) = Γ (a · α, g(a−1x)).
(b) For every i ∈ {0, . . . , m − 1} we have Γ (α, g(x)) = Γ (ψi(α), Ψ i(g))

Moreover, g(a−1x) and Ψ i(g) are both irreducible polynomials of degree t.

Of all these zeros in Z(L) only a single one of them is sufficient to construct an
alternative secret key, as for all of those α̃ there is an irreducible g̃ of degree t with
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Γ (α, g) = Γ (α̃, g̃). In the following we discuss how one can decrease the size of the
support candidate set SL while still ensuring that one of these support candidates
is present. Note that step (3) of our solving procedure (Proposition 12) already
uses part (a) of the above remarks by fixing the coordinate of xi to 1. This
shrinks the support candidate set by a factor of 2m. The next observation allows
us to reduce this set by another factor of almost m.

Remark 17. Let U ⊆ F2m such that for every a ∈ F2m there exists u ∈ U and
i ∈ {0, . . . , m − 1} with a = ψi(u). By Remark 15.(b) and Remark 16.(b) for
every s ∈ {1, . . . , n} there is α̃ ∈ Z(L) with α̃i �= α̃j for i �= j and α̃s ∈ U .

Instead of Z(Lred) we can thus compute⋃
u∈U

Z(Lred ∪ {xi1 − u}) = {α̃ ∈ Z(Lred) | α̃i1 ∈ U}

in step (4) of Proposition 12.

To find such a set U ⊆ F2m consider the following greedy algorithm: Choose
u ∈ F2m and add it to U . Then repeat with F2m \ {u, u2, . . . , u2m−1 | u ∈ U}.
For the proposed parameter sets, this gave sets U of size very close to 2m

m .
Our implementation computes each individual set of zeros with Gröbner basis

techniques, to be precise it uses the SageMath function variety.
The following proposition indicates the necessity of the quadratic equations

in our solving procedure by showing that it is impossible to find a small set of
support candidates only from linear fault equations.

Proposition 18. Assume that n > 2m−1. Let L ⊆ F2m [x1, . . . , xn] be a fault
equation system consisting only of linear polynomials. Then L contains less than
n − m linearly independent polynomials.

Proof. We know from Remark 15 that for all j ∈ {0, ...,m − 1} the tuple zj =
ψj(α) is a zero of the polynomials in L. We show that (z0, ..., zm−1) is F2-linear
independent in F

n
2m . The rank theorem then shows that L contains less than

n − m linearly independent polynomials. Let b0, ..., bm−1 ∈ F2 with b0z0 + ... +
bm−1zm−1 = 0. Then we have b0αi + ... + bm−1α

2m−1

i = 0 for i ∈ {1, . . . , n}.
Consider the polynomial f(x) = b0x+b1x

2+...+bm−1x
2m−1 ∈ F2m [x]. Suppose f

is non-zero, then it has at most deg(f) ≤ 2m−1 roots, but f(αi) = 0 for all
i ∈ {1, . . . , n}. With n > 2m−1 we get a contradiction. This shows f = 0, and
thus b0 = · · · = bm−1 = 0 and the linear independence follows by definition. �
Note that the condition n > 2m−1 is satisfied by all proposed parameter sets (see
Table 4). So for the set of reduced quadratic polynomials Lred ∈ F2m [xi1 , . . . , xis ]
in step (2) of Proposition 12 we have s ≥ m.

4 Fault Attack Implementation and Simulation

In this section, we demonstrate the viability of the key-recovery attack. We first
use a C-implementation to simulate the attack (Sect. 4.1). For this we inject
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faulty variable values directly in software. We simulate the inputs and corre-
sponding hashed outputs of the faulty decapsulation procedure. The de-hashing
of these is described separately in Sect. 4.2, leading to the system of polyno-
mial equations. This is solved to obtain an alternative secret key as described in
Sect. 3.4 by a program written in Python3 using SageMath [26].

An attacker cannot directly modify the software execution. Instead, there
are different ways to conduct a fault attack, e.g., using a laser to corrupt hard-
ware memory elements in a processor. To investigate whether this allows to
inject the specific faults required for the presented attack as were identified at
software-level, we execute the cryptosystem as software on a virtual prototype
(VP) (Sect. 4.3). The VP implements the RISC-V Instruction Set Architecture
(ISA) and allows us to inject faults into the hardware of the processor in order
to study how they impact the executing software. For our software-error-model-
based fault injection attack, we first analyze the binary to find the program
sections calculating the ELP and processing the validity checks. The disassem-
bly and its required alteration gives us the fault positions necessary to produce
the identified faulty variable values. The necessary hardware fault attacks are
then simulated on two levels; First, a fast ISA-level simulation assures that the
hardware faults produce exploitable output. Second, a Register Transfer Level
(RTL) simulation yields practicability of the fault attack w.r.t. a real CPU core’s
micro-architecture.

4.1 Key-Recovery Simulation

We simulated the attack of Sect. 3 in C and SageMath code. To speed up that
simulation at C-level we work on AMD64 machines with the vector-accelerated
AVX-2 implementation. An overview of the software simulation is given in Algo-
rithm 6.

To model the attack, we adapt the implementation of the cryptosystem to
include the effects of the ELPb, ELPz and VCB faults. For the fault injections
on the ELP, we have identified the following lines of code as injection points. The
fault injection on the ELP happens between the function calls bm(locator, s)
and root(images, locator, L) in decrypt.c. Fault injections on the ELP are
modelled as bitwise operations on one of its coefficients. This way, the ELPb
fault injection that sets two adjacent bits is implemented by setting one coeffi-
cient a → aOR ζ, where ζ is an m-bit array containing only zeros except for two
adjacent entries. The ELPz fault injection is implemented by replacing all entries
of one ELP coefficient with zeroes. Note that the fault value ξ corresponding to
these injections as defined in Remark 2 is unknown, as it depends on the value
of a. To skip the validity checks the variable m in file operations.c and in func-
tion crypto_kem_dec_faulty in the line m = ret_decrypt | ret_confirm are
forced to 0. This gives H(1, ẽ′, C) as output of the C-code for further analysis
(see next Sect. 4.2).3

3 For the purposes of verifying the fault attack, the simulator also directly gives ẽ′ as
output, sparing us the computational effort of de-hashing H(1, ẽ′, C) → ẽ′.
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The simulation code is called repeatedly for different chosen ciphertexts and
faults ζ to build a system of equations using Propositions 8 and 10, that can
be solved with the methods from Sect. 3.4 to obtain an (alternative) secret
key. To obtain linear equations in the support elements, faults are injected
into the constant term of the ELP. In ELPb mode, we start with ζ having
the two least significant bits non-zero. Then we generate faulty session keys
from ciphertexts corresponding to plaintext vectors e with wt(e) = 2 and
supp(e) ∈ {{n − 1, 0}, {0, 1}, {1, 2}, . . . }. This is repeated for faults ζ with non-
zero bits in other adjacent positions, until the resulting system of equations con-
tains equations involving all the support elements. In ELPz mode, there is only
one way of injecting a fault, so that instead of different fault values ζ, ciphertexts
corresponding to plaintext vectors e with wt(e) = 2 with increasing distance
between the non-zero support elements supp(e) ∈ {{n − 1, 1}, {0, 2}, {1, 3}, . . . }
are used to obtain a sufficiently large system of equations (this is also done in the
ELPb-case if the number of possible ζ is exhausted before finding sufficiently
many equations). The same procedure is used to inject faults on the linear term
of the ELP in order to obtain quadratic equations in the support elements, finish-
ing after an empirically determined fixed number of equations has been obtained.
To confirm that the attack is working, we ran simulations of 100 random pub-
lic/private key pairs, for several sets of parameters where n ∈ {3488, 6688, 8192}
(see Table 4). The average number of required fault injections for a successful
attack on the different parameter sets are shown in Tables 1 and 2 for the fault
modes ELPb and ELPz respectively. The ELPz-mode requires significantly
fewer fault injections to complete the attack (compare with Remark 11). Param-
eter sets with smaller ratio n

2m also require more injections, as indicated by
Remark 9. We find that the SageMath code usually takes only minutes to obtain
an alternative secret key from the system of polynomial equations on an office
computer.

Table 1. Arithmetic Mean out of 100 simulations for ELPb.

CAT I
n = 3488,
m = 12, t = 64

CAT V
n = 6688,
m = 13, t = 128

CAT V
n = 8192,
m = 13, t = 128

# of constant injections 31759 70700 56991

# of linear equations 8627 17649 21343

# of linear injections 293 564 266

# of quadratic equations 80 140 100
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Table 2. Arithmetic Mean out of 100 simulations for ELPz.

CAT I
n = 3488,
m = 12, t = 64

CAT V
n = 6688,
m = 13, t = 128

CAT V
n = 8192,
m = 13, t = 128

# of constant injections 8030 16516 8944

# of linear equations 6836 13482 8941

# of linear injections 94 121 100

# of quadratic equations 80 100 100

4.2 De-hashing: Obtaining the Faulty Error Vector from Hash
Output

As output of the simulation in Sect. 4.1 we generate two files containing hashes
K̃ ′ = H(1, ẽ′, C) with (e, ẽ′) defining linear or quadratic equations in the support
elements. Thanks to the small weight of the error vectors ẽ′, we can determine
them from the hashes in a brute-force manner as follows.

First, we determine whether the zero element is part of the support
set (Remark 1) and determine its index if present, according to Remark 4.
This requires only one fault injection, giving the output H(1, e′, C) for C =
(0,H(2,0)), with wt(e′) ∈ {0, 1}. The support supp(e′) specifies the index of
the zero element in the support set, if it is present. It is determined from the
hash by calculating all n + 1 possible hashes until the match with the output
is found. Next, for every K̃ ′ we calculate the hashes H(1,v, C) for the chosen
ciphertext C = (c0,H(2, e)) and all possible ẽ′, as described in Remark 3. When
a match is found, ẽ′ has been determined.

We run the de-hashing on a computer with AMD EPYC 7543P processor
running up to 3.3GHz using 32 cores (64 threads) on Arch Linux with kernel
5.19.7. For the ELPb case we have about

(
n
2

)
different ẽ′ to check for every

hash output (number of constant injections plus number of linear injections in
Table 1). Depending on the cryptosystem and its parameters, the total runtime
on our system spans a few hours up to a few days. For the ELPz case we have
about

(
n
1

)
= n different ẽ′ to check for every hash output (number of constant

injections plus number of linear injections in Table 2). The running time on our
system is a few seconds.

4.3 Simulation at Register Transfer Level

A fault injection simulation campaign and its cost w.r.t. simulation time is
dependent on the abstraction level, such that limiting the fault space is crucial.
Figure 2a shows our approach to identify the fault injection points to further
evaluate the feasibility of an attack by exhaustive search campaign on RTL.
Exhaustive search means applying the fault model (single bit set/reset) to all
possible bits at all possible simulation steps (clock cycles). To gain more detailed



54 S. Pircher et al.

results quicker, we align the simulation abstraction level with the fault abstrac-
tion level: We start by formulating a software test for Exploit, so that we have
a defined faulty reference output of the targeted system. This can be directly
manipulated to the source code on C-level. We continue on the ISA Error Model
level where we run the attacked system on the VP with a fast ISA Level Simula-
tion (RISC-V) to transfer the source code faults into ISA specific errors. This is
basically assembly level. From there we gain a more narrow timing information
as to where faults in the processor core can result in the wanted exploit, e.g.,
instruction data manipulations or register value modifications. After that, we
take this set of narrow program sections and feed it into an RTL fault simula-
tion, a specific micro architecture, to evaluate the Manifestation. This gives us
the benefit to do an exhaustive search on bit level to reproduce the exploits while
focusing on program sections that were earlier identified as critical. Depending
on the Physical Attack we want to mimic, we can directly transfer the findings
from the RTL simulation (Laser Fault analogue) or make predictions (vulnera-
ble micro architecture) that could become an attack scenario for other physical
attacks, e.g., clock or voltage glitches.

Fig. 2. Experimental Setup for ISS/RTL Fault Injection Evaluation.

Figure 2b shows the fault injection VP used to evaluate the vulnerability of
two open source RISC-V cores, the OpenHWGroup’s CV32E40P [19], formerly
known as RI5CY [7,8], and its security focused derivative CV32E40S [20]. The
RTL model is generated with the open source Verilog hardware description lan-
guage to C++/SystemC synthesis tool Verilator [24]. The generated RTL is then
modified with a LLVM-based automated source code transformation tool. The
modified RTL yields a clock cycle accurate simulation with fault injection capa-
bility into sequential storage elements, i.e., flip-flop and latch equivalents. The
RTL’s SystemC ports are connected to the Transaction Level Modeling (TLM)
peripherals and memory through an RTL to TLM transactor that implements
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Table 3. Single-Bit RTL Fault Injection Results.

the required bus protocol. The VP’s memory may host any cross-compiled RISC-
V binary suitable for the used core and is initialized before simulation start by an
binary loader. TLM transactions, certain RTL signals, and the peripheral output
are logged in respective trace files. This allows to evaluate the effect an injected
fault has on the system’s behavior compared to a reference simulation executing
the same binary without fault injection. Through the RTL fault injection, we are
able to simulate faults on the manifestation level of our fault attack abstraction
model as shown in Fig. 2a. We deem a fault attack experiment as successful in
a security scenario, if its manifestation results in an undetected exploit defined
by the first step of our simulations, see Sect. 4.1.

Table 3a shows the simulation results for the output mask fault attack to
bypass the cryptosytem’s validity check. For CV32E40P, in total 4, 351 micro
architectural and 1, 650 ISA related bits were faulted over a clock cycle period
of 301 cycles. The cycle range reflects vulnerable sections of the cryptosystem.
93 unique bits were found to be capable to result in a bypass of the validity
check in 114 experiments. None of which resemble ISA registers, e.g. RISC-V
GPRs. Although CV3240S contains more sequential logic, thus, injectable bits,
the number of successful fault experiments is much lower at 57. Table 3b shows
the simulation results for the ELP fault attacks over a clock cycle period of 521
cycles. 69 experiments on 35 unique bits resulted in a faulted ELP coefficient of
which a small number was directly injected into GPRs. For the ELP coefficient
zeroing exploit, 225 unique bits were the reason for a total number of 508 faulty
scenarios in CV32E40P. Most of these fault injections, all of which in the core’s
micro architecture, manifested as manipulation of the memory store instructions
for the respective ELP coefficient. Furthermore, 47 bits and 17 bits, for CV3240P
and CV32E40S respectively, are equal for the validity check bypass and the ELP
coefficient zeroing attack. This can result in a significantly less complex fault
injection setup, e.g., by only requiring one laser injection source.
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Fig. 3. Single-Bit RTL Fault Injection Results.

Figure 3 shows a plot of the three scenarios for both cores. Overall, the
more secure CV32E40S is harder to fault. Reasons for this can be found in its
hardware-based countermeasures, such as an ECC protected register file elimi-
nating all bit errors up to two by raising a security alert. The remaining faults
can be mostly traced back to in-pipeline faults, e.g., modified instruction code
or operands for which no error protection is deployed. Furthermore, in both
cores faulting the fetch instruction address can result in replacing the origi-
nal instruction code without modifying the in-pipeline program counter, thus,
bypassing the program counter validity checks of CV32E40S. Here, configuring
the Memory Protection Unit (MPU) with executable memory ranges can help
to mitigate this easy instruction replacement. For our RTL fault analysis, we
did not make use of CV32E40S’s side-channel countermeasure that randomly
inserts dummy instructions in the executed code, but would consider it as viable
countermeasure. Feeding this unit with a true random seed, would make our
proposed attack significantly harder. The attack requires delicate timing of the
fault injection which would become harder due to the unpredictable execution
time.

5 Summary

We have presented a key-recovery fault injection attack on Classic McEliece. Two
fault injections are necessary for the attack. CCA2-security is bypassed by one
fault injection in combination with brute-force de-hashing of possible faulty ses-
sion keys. The other fault injection targets the error-locator polynomial (ELP)
to find the support set of the Goppa code, which is part of the secret key. We
use the faulty output of the decapsulation function to construct a polynomial
system of equations whose unknowns are the elements of the support set. Solving
these equations, we obtain their values, which can be used with the public key to
generate a matching Goppa polynomial. Together, this can be used as an alter-
native secret key that generates valid session keys. We have verified the attack,
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simulating it using C and SageMath code. Simulations for several instances of
Classic McEliece show that parameters with n close to 2m are particularly easy
to attack. We evaluated the vulnerability of two RISC-V cores, simulating the
fault injections on virtual prototypes at RTL. On specific hardware and with
knowledge of the core structure, the two required faults may be injected at the
same location, simplifying the execution of the attack. The next steps are to
deploy our attack on real hardware.

The simulation code in C and SageMath can be found online at GitHub:
https://www.github.com/sahpir/attackFI-ClassicMcEliece.

Acknowledgements. This research was partly funded by the Bavarian State Ministry
for Economic Affairs as part of the funding program Information and Communication
Technology through the project MITHRIL, grant no. IUK623.

A Appendix

A.1 Classic McEliece KEM Algorithms and Parameters

Here we show the parameters and algorithms used in Classic McEliece KEM [3].
In Algorithm 6 we list the steps executed for the attack simulation.

Table 4. Parameter sets of Classic McEliece KEM [3].

Security Categorya n m t

CAT 1 3488 12 64
CAT 3 4608 13 96
CAT 5 6688 13 128
CAT 5 6960 13 119
CAT 5 8192 13 128

aNIST defines security categories
in [15] with the requirement “Any
attack that breaks the relevant secu-
rity definition must require com-
putational resources comparable to
or greater than those required
for key search on a block cipher
with a 128-bit key (e.g. AES128)”
with 128/192/256-bit key size cor-
responding to CAT-1/3/5, respec-
tively.

https://www.github.com/sahpir/attackFI-ClassicMcEliece
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Algorithm 1. Key Generation
Input: Parameters m, t, n ≤ 2m, f(z) ∈ F2[z] irreducible of degree m.
Output: Secret key (s, γ), public key T.

1: Generate a uniform random monic irreducible polynomial g(x) ∈ F2m [x] of degree t.
2: Select a uniform random sequence L = (α1, α2, . . . , αn) of n distinct elements

in F2m .
3: Compute the t × n matrix H = {hij} over F2m where hij = αi−1

j /g(αj) for i ∈
[t], j ∈ [n], i.e.,

H =

⎛
⎜⎜⎜⎜⎝

1
g(α1)

1
g(α2)

· · · 1
g(αn)

α1
g(α1)

α2
g(α2)

. . . αn
g(αn)

...
...

. . .
...

αt−1
1

g(α1)

αt−1
2

g(α2)
· · · αt−1

n
g(αn)

⎞
⎟⎟⎟⎟⎠

.

4: Form matrix Ĥ ∈ F
mt×n
2 by replacing each entry c0 + c1z + ... + cm−1z

m−1 ∈
F2[z]/〈f(z)〉 ∼= F2m of H ∈ F

t×n
2m with a column of m bits c0, c1, ..., cm−1.

5: Reduce Ĥ to systematic form (In−k|T) where In−k is an identity matrix of (n −
k) × (n − k) and k = n − mt

6: If Step 5 fails, go back to Step 1
7: Generate a uniform random n-bit string s (needed if decapsulation fails).
8: Output secret key: (s, γ) with γ = (g(x), α1, α2, ..., αn)

9: Output public key: T ∈ F
(n−k)×k
2

Algorithm 2. Encoding
Input: Weight-t row vector e ∈ F

n
2 , public key T

Output: Syndrome c0
1: Construct Hsys = (In−k|T).
2: Compute and output c0 = eHsys

� ∈ F
n−k
2

Algorithm 3. Encapsulation
Input: Public key T
Output: Session key K, chiphertext C
1: Generate a uniform random vector e ∈ F

n
2 of Hamming weight t.

2: Use the encoding subroutine defined in Algorithm 2 on e and public key T to
compute c0

3: Compute C1 = H(2, e) (input to hash function is a concatenation of 2 and e as a
1-byte and �n/8	-byte string representation).

4: Put C = (C0, C1) .
5: Compute K = H(1, e, C) (input to hash function is a concatenation of 1, e and C

as a 1-byte, �n/8	-byte and �mt/8	 + ��/8	 string representation).
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Algorithm 4. Decoding
Input: vector c0 ∈ F

n−k
2 , private key (s, γ)

Output: Weight-t vector e′ ∈ F
n
2 or Failure

1: Extend c0 to v = (c0, 0, ..., 0) ∈ F
n
2 by appending k zeros.

2: Find the unique codeword c in the Goppa code defined by γ that is at distance ≤ t
from v. If there is no such codeword, return failure.

3: Set e′ = v + c.
4: If w(e′) = t and c0 = e′Hsys

�, return e′, otherwise return Failure.

Algorithm 5. Decapsulation
Input: Ciphertext C, Private key (s, γ)
Output: Session key K′

1: Split the ciphertext C as (c0, C1) with c0 ∈ F
n−k
2 and hash C1.

2: Set b ← 1.
3: Use the decoding subroutine defined in Algorithm 4 on c0 and private key γ to

compute e′. If the subroutine returns Failure, set e′ ← s and b ← 0.
4: Compute C′

1 = H(2, e′) (input to hash function is concatenation of 2 and e′ as a
1-byte and �n/8	-byte string representation).

5: If C′
1 �= C1, set e′ ← s and b ← 0.

6: Compute K′ = H(b, e′, C) (input to hash function is concatenation of b, e′ and C
as a 1-byte, �n/8	-byte and �mt/8	 + ��/8	 string representation).

7: Output session key K′.

Algorithm 6. Attack Simulation on C-level
1: Specify a ciphertext C as input for the decapsulation function as follows:

i. Choose a plaintext e of Hamming weight wt(e) = 2.
ii. Calculate the ciphertext C = (c0, C1) = (eHsys

�, H(2, e))
2: Inject a fault into the error locator polynomial (ELP) as follows:

i. Fix a fault value of ζ ∈ F2m

ii. Start the decapsulation process and let the Berlekamp-Massey algorithm cal-
culate the ELP (in file decrypt.c).

iii. Inject a constant or quadratic fault into the ELP (see Definition 6).
3: Inject a fault and reset the variable called m during decapsulation such that the

following comparisons are bypassed (in file operations.c)
a) Skip the comparison ẽ′Hsys

� = eHsys
� (Alternative: in file decrypt.c clear

8-bit variable ret_decrypt during decapsulation).
b) Skip the comparison C′

1 = H(2, ẽ′) = H(2, e) = C1 (Alternative: in file opera-
tions.c clear 8-bit variable ret_confirm).

4: Reconstruct ẽ′ from the output K̃′ = H(1, ẽ′, (eHsys
�, H(2, e))) of the decapsula-

tion function as described in Section 4.2.
5: Calculate an alternative secret key as described in Section 3.4.
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Abstract. While hardware implementations allow the production of
highly efficient and performance-oriented designs, exploiting features
such as parallelization, their longer time to code and implement often
bottlenecks rapid prototyping. On the other hand, high-level synthesis
(HLS) tools allow for faster experimentation of software code to a hard-
ware platform while demonstrating a reasonable extrapolation of the
expected hardware behavior. In this work, we attempt to show a rapid
prototyping of the well known HQC algorithm, using HLS, and show how
with a modification of certain parameters, varying degrees of compara-
ble results can be obtained. These results, in turn, could be used as a
guide for HDL (Hardware Description Language)-RTL (Register-transfer
Level) developers to enhance their designs and better prototyping time
in the future. Additionally, we also demonstrate that it is possible to ben-
efit from HQC’s versatility; by achieving a low hardware footprint whilst
also maintaining good performances, even on low-cost FPGA devices,
which we demonstrate on the well-known Artix-7 xc7a100t-ftg256-1.

1 Introduction

Quantum-resistant cryptography, more colloquially known as Post-Quantum
Cryptography (PQC), has emerged as one of the leading research fields in the
broader scope of theoretical and applied cryptography. This research field has
appeared due to the likely realization of quantum computers in the next few
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-C. Deneuville (Ed.): CBCrypto 2022, LNCS 13839, pp. 62–76, 2023.
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decades, which threaten the current public-key cryptography standards ubiqui-
tously used today. Indeed, with a large fault-tolerant quantum computer, quan-
tum algorithms are able to trivially solve discrete logarithms and factor very
large numbers, which has been the cornerstone of our public-key cryptography
standards for the last few decades. In 2016, the National Institute of Standards
and Technology (NIST) [15] initiated an open call for post-quantum crypto-
graphic algorithms for public evaluation. This standardization process started
with having 69 accepted submissions for either a key encapsulation mechanism
(KEM) or a digital signature scheme (DSS) to in 2022 where we received the
first PQC standards; one KEM selection, CRYSTALS-Kyber, and three DSS selec-
tions, CRYSTALS-Dilithium, SPHINCS+, and Falcon [4]. Additionally, four KEM
candidates were promoted to a fourth round for further analysis, with the poten-
tial of them being standardized in the future. Three of these KEMs are based
on code-based cryptography, being seen as a good alternative to CRYSTALS-
Kyber, a lattice-based cryptography scheme, and which would add diversity to
NIST’s PQC suite of standards. These three candidates are BIKE, HQC and Clas-
sic McEliece. NIST have stated that at the end of the fourth round they intend
to standardize at most one of the two former candidates, and also that they are
in no rush to standardize the latter [4].

This standardization process partially motivates the purpose of this research.
Since the beginning, NIST has stated their desire for hardware designs of these
PQC candidates, and has in the past used these results to compare similar
proposals in their decision process. We add to this line of research by propos-
ing hardware designs for the code-based KEM HQC, specifically for HQC-128.
We utilize tools and techniques for the rapid prototyping of schemes in hard-
ware, specifically high-level synthesis (HLS), which has proven in the past to
significantly increase design time for hardware engineers by converting especially
designed software code to hardware languages such as VHDL. This strategy was
recently shown successfully by Guerrieri, Da Silva, Regazzoni, and Upegui for
PQC candidates based on lattice-based cryptography [11].

1.1 Design Artifacts

The source code for the HLS designs can be downloaded under an open source
license at https://pqc-hqc.org/implementation.html.

1.2 Outline of the Paper

The remainder of the paper is structured as follows. Section 2 gives some mathe-
matical preliminaries and a background on the HQC algorithm. Section 3 details
the HLS synthesis design and implementation. Section 4 presents our results and
compares this HQC design to other, existing designs, both in hardware and
software. Section 5 concludes the paper and provides future research directions.

https://pqc-hqc.org/implementation.html


64 C. Aguilar-Melchor et al.

2 Preliminaries and Background

Hamming Quasi-Cyclic (HQC) is a public-key encryption scheme that relies on
the hardness of —as its name suggests— decoding random quasi-cyclic codes in
Hamming metric. The construction itself shares similarities with Alekhnovich’s
cryptosystem [5], which uses random linear codes, making it inefficient in prac-
tice. HQC was originally proposed in 2016 by Aguilar et al. using BCH codes
tensored with a repetition code [2,3]. Aragon et al. later proposed an improved
version using Reed-Muller concatenated with Reed-Solomon codes [6] named
HQC-RMRS. The version that is currently considered in the NIST standard-
ization process is an IND-CCA2 KEM variant (see [1, Section 2.3.2]) of HQC-
RMRS, obtained by applying the Fujisaki- Okamoto (FO⊥) transform to the
IND-CPA public-key encryption scheme [12].

This section describes the notations used throughout this paper, and recalls
the description of the HQC encryption scheme. For conciseness, we refer the
reader:

– to [13] for additional details on Reed-Muller and Reed-Solomon codes;
– to [10] for an introduction to code-based cryptography;
– to [3,6] for full details about HQC (original and RMRS versions), including

the security proof and decryption failure analysis; and
– to [12] for full details about the PKE-KEM conversion.

2.1 Notations

Throughout this document, Z denotes the ring of integers and F2 the binary
field. Additionally, we denote by ω(·) the Hamming weight of a vector i.e. the
number of non-zero coordinates, and by Sn

w (F2) the set of words in F
n
2 of weight

w. Formally:
Sn
w (F2) = {v ∈ F

n
2 , such that ω(v) = w} .

V denotes the vector space F
n
2 of dimension n over F2 for some positive n ∈ Z.

Elements of V can be interchangeably considered as row vectors or polynomials
in R = F2[X]/(Xn−1). Vectors/Polynomials (resp. matrices) will be represented
by lower-case (resp. upper-case) bold letters. For a vector v, vk denotes its k-th
coordinate. For the sake of conciseness, we will say that a prime integer n is
primitive if 2 is a primitive n-th root of unity, equivalently if the polynomial
(Xn − 1)/(X − 1) is irreducible in F2[X].

For u,v ∈ V, we define their product similarly as in R, i.e. uv = w ∈ V
with

wk =
∑

i+j≡k mod n

uivj , for k ∈ {0, 1, . . . , n − 1}. (1)

HQC takes great advantage of matrices with a cyclic structure. Following [3],
rot(v) for v ∈ V denotes the circulant matrix whose i-th column is the vector
corresponding to vXi. This is captured by the following definition.
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Definition 1 (Circulant Matrix). Let v = (v0, . . . , vn−1) ∈ F
n
2 . The circulant

matrix induced by v is defined and denoted as follows:

rot(v) =

⎛

⎜⎜⎜⎝

v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

⎞

⎟⎟⎟⎠ ∈ F
n×n
2 (2)

As a consequence, it is easy to see that the product of any two elements
u,v ∈ R can be expressed as a usual vector-matrix (or matrix-vector) product
using the rot(·) operator as

u · v = u × rot(v)� =
(
rot(u) × v�)�

= v × rot(u)� = v · u. (3)

Finally, the HQC version considered for standardization in the NIST PQC
process has been modified to use Reed-Muller codes concatenated with Reed-
Solomon codes, between the 2nd and 3rd rounds.

Definition 2 [Concatenated codes [1, Section 2.5.1]]. A concatenated code
consists of an external code [ne, ke, de] over Fq and an internal code [ni, ki, di]
over F2, with q = 2ki . We use a bijection between elements of Fq and the words
of the internal code, this way we obtain a transformation:

F
ne
q → F

N
2

where N = neni. The external code is thus transformed into a binary code of
parameters [N = neni,K = keki,D � dedi].

2.2 Background on HQC

We now recall the HQC scheme in Fig. 1. In [3], code C used for decoding is
a tensor product of BCH and repetition codes. But since this code is public,
its structure has no incidence on security, and one can choose any code family,
influencing only the DFR and the parameter sizes.

Fig. 1. Description of HQC.
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Based on this observation, Aragon et al. suggested using Reed-Muller con-
catenated with Reed-Solomon codes to reduce the size of the resulting parame-
ters, yielding HQC-RMRS.

For the external code, HQC-RMRS uses a Reed-Solomon code of dimension
32 over F256 and for the internal code, a Reed-Muller code [128, 8, 64] duplicated
3 or 5 times (i.e. duplicating each bit to obtain codes of parameters [384, 8, 192]
and [640, 8, 320]).

For decoding, a maximum likelihood decoding algorithm is first performed
onto the internal code, yielding a (noisy) vector in F

ne
q , that is hence decoded

using an algebraic decoder for the external Reed-Solomon code.
All technical details regarding the encoding and decoding of Reed-Muller

and (shortened) Reed-Solomon are provided in the NIST submission package of
HQC [1, Sections 2.5.2 to 2.5.7].

3 HLS Design Implementation of the HQC

In this section, we detail the High-level synthesis (HLS) and the Software (SW)
implementations that we optimize. We describe this synthesis and optimizations
for HQC with parameters that target NIST Level 1 security, that is 128 bits of
security, i.e., HQC-128.

3.1 HLS Implementation: Basics

Traditional RTL development, using an HDL-based language, most commonly
Verilog or VHDL dates back a few decades providing a robust and concrete
methodology in which almost all (if not all) digital designs are conceived, writ-
ten (in code) and implemented. Clearly, these languages have been resilient and
have resisted much change (compared to their more dynamic counterparts in the
corresponding software world) and are the de-facto jargon of all digital designers
and engineers alike. The final implementation of code developed using these lan-
guages finds implementations in devices like FPGAs and ASICs, for prototyping
or production. The design cycle from concept to the final bitstream (in case of
the FPGA) or the GDSII (in case of ASIC) often involves considerable time
and design effort1 and hence, correspondingly a higher time-to-market. Addi-
tionally, if there are changes required to be made on the design, post-routing
and post-implementation, it involves considerable debugging in case of FPGAs,
to understand the nuances of the proprietary synthesizer engines, whereas in
the case of ASICs, if these are detected post-fabrication, it involves a complete
reversal to the RTL design phase.

Although digital designers have ways to circumvent and prevent such catas-
trophic failures, software engineers, or hardware-software co-designers/system
architects, cannot simply afford the time to port their software code to RTL

1 We note here that compared to FPGAs, ASICs have a much higher and longer
tun-around time.
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design based flow and debug back. High-level synthesis offers a cheap, quick
and versatile design flow methodology that allows the software designer to pre-
dict what their code would perform like in a hardware setting, what will be the
resources and performance numbers etc. Nevertheless acknowledging, that hand-
crafted RTL could outperform HLS based designs, but at the cost of increased
time and effort. We now briefly review some terminologies specific to the HLS
design methodology.

1. Initiation-Interval, II, is defined as the minimum number of clock cycles
between any two successive operations. In the case of HLS, the initiation
interval is defined w.r.t the loop iterations, i.e., the number of clock cycles
between any given two loop iterations. In an ideal pipelined based flow, the
expected value of the II=1 [11].

2. Loop iteration, n, is defined as the number of counts an operation is repeated;
in a design implementing pipelines, the loop iteration is simply number of
times a pipeline is full when performing operations.

3. Iteration latency, til, the number of (minimum) clock cycles required to com-
plete one loop iteration (i.e., for n = 1).

4. Latency-Area Product (LAP), the classical LAP metric, in the context of
HLS methodology [11], can be defined as

LAP = (tii × (n − 1) + til) × Area (4)

where (tii × (n − 1) + til) represents the total latency and Area, the number
of Slices (or LUTs).

3.2 Methodology and Implementation

The NIST submission package for the HQC, available online2, contains refer-
ence, optimized and the hardware implementations available for download. The
reference implementation is the NIST KEM submitted version which contains
the source C-files from the authors of the algorithm. The README file details
the conversion requirements as per NIST FAQ #13 and describes the different
variants of the submission, which we omit here for brevity. Additionally, the sub-
mission provides the reference implementations for all the 3 proposed versions
of the HQC-algorithm, namely, hqc-128, hqc-192, and hqc-256. During the build,
the corresponding binaries are generated in the build folder.

The optimized implementation consists of the AVX2 implementation and is
constant time (as per the latest submission specification) and avoids any secret
key dependent memory access [1].

The hardware implementation consists of an HLS-compatible C implemen-
tation (although the authors explicitly specify the C++ extension) which can
be compiled standalone as a C code (with the same functionality as the golden
reference implementation) or translated into a VHDL implementation using the
HLS design flow methodology.
2 See https://pqc-hqc.org/implementation.html.

https://pqc-hqc.org/implementation.html
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Additionally, we provide an area-friendly compact and a performance-
oriented perf version to allow for trade-offs between an area-footprint and
throughput.

In addition to the above, the vanilla (or the pure) version also adds an opti-
mized version, wherein we manually refactor some of the HLS-synthesized VHDL-
generated code to remove possible duplications of the modules (as in the case of
keccak which we explore in the next section) (Fig. 2).

Fig. 2. A highly simplified overview of the HLS flow. Adapted from [17]

Design Flow Methodology. The methodology consists of converting a design,
written in a high-level programming language such as C/C++, to a hardware
description language (HDL), such as Verilog or VHDL. HLS consists of 3 main
steps: resource allocation (or sharing), scheduling (using a scheduler) and binding
[8]. As the name implies, the resource allocator allocates or allows sharing of
multiple resources (such as functional blocks like Block-RAMs, DSP units, LUTs,
registers etc.) between different code blocks. The scheduler is responsible for the
actual implementation of the target operation, corresponding to the operation
defined in the C-code. For instance, a multiplier operation between, any two
variables, x and y, and the corresponding product, z would entail, retrieval of
x and y, from their corresponding stored locations (which may be ROM, RAM,
or simply registers holding on to those values), determining their bit widths,
looking for optimizations (if they can be applied such as using a DSP unit),
computing the product z, and finally writing back to the specified target location
(in RAM) or holding onto the value for subsequent computations. For all of
these enumerated operations, the scheduler determines (or rather estimates) the
number of clock cycles required and schedules the operation either in a single
clock cycle or over a span of multiple clock cycles. This then allows the scheduler
to determine if parallelism can be exploited to reduce the number of clock cycles,
by computing the number of available resources at hand and checking for any
instructions that could (potentially) have some data-dependencies [8]. Binding
allows for the variable to be linked to a functional unit (storage or otherwise) to
allow for better optimization.
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HLS Implementation of HQC. The HQC algorithm submission package
consists of 3 main algorithms, as defined in the preceding section, namely the
keypair generation, the encapsulation function and the decapsulation functions.
These can be categorized according to the top level functions, first introduced
in [17], namely, the crypto kem keygen, crypto kem enc and crypto kem dec
functions. Each of these functions could then be further divided into smaller func-
tions based on their respective modules; for instance, crypto kem enc would con-
sist of the crypto kem pke ind cpa. As mentioned above, the IND-CPA scheme
is transformed into a secure CCA-2 KEM, thanks to the FO transform.

1. crypto kem keygen outputs the public key, pk and the secret key sk
2. crypto kem enc outputs the shared key K and the ciphertext ck taking the

public key pk as input
3. crypto kem dec outputs the key K, taking in the secret key sk and the

ciphertext ck as inputs

While HLS allows for rapid prototyping and outputs an HDL netlist, it must
be highlighted that the tool in itself is restricted in terms of the functionalities it
can implement; for instance, converting recursive functions or using unspecified
lengths of execution loops, which are currently not supported by the HLS syn-
thesis engines. Additionally, integration of open source libraries, which software
implementations usually rely upon, for instance, in the case of random number
generation, presents further scope for optimizations and enhancing the synthesis
capabilities of such tools [11].

4 Results and Comparisons

In this section, we present and describe our synthesis, implementation and sim-
ulation results for the High-level synthesis of the HQC algorithm. Although the
results described here are for HQC-128, we hypothesize similar trends for the
other variants, i.e., HQC-192 and HQC-256 and leave these implementations for
future works.

4.1 Target Settings

The HLS has been synthesized and implemented for a target frequency of ≥125
MHz (i.e., a clock period of 8 ns). In principle, achieving higher target clock
frequencies (especially for performance-oriented applications) is desirable, nev-
ertheless, our goal is to demonstrate the versatility of HLS in general and a
first-pass at the design, so as to benchmark the overall performance/area of a
design over a broad range of applications quickly, rather than elaborate into tim-
ing closure and optimizations issues (which require finer tuning of the directives
settings and the code itself). The target FPGA for these settings is the Xilinx
artix7 xc7a100t-ftg256-1.
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4.2 Synthesis Results

In this section, we present our HLS results for the given target FPGA for each
module (i.e., individual functions). This allows for a granular understanding
of how the HLS engine is able to resource allocate and share similar blocks
across different operations. Note, for brevity, we present only the values for the
optimized perf version of our implementation.

1) crypto kem keygen: Table 1 presents the synthesis and implementation
results for the modules (functions) comprising the keypair generation mod-
ule. For the sake of brevity, we report the minimum values of the latency
(both in terms of the number of clock cycles required and the absolute time)
to demonstrate the competitiveness of the HLS based designs. Additionally,
we provide the post-implementation results to highlight the optimizations the
tool (in this case Vivado, and not the Vitis or HLS tool) is able to implement
the HLS synthesized netlist. We also compare our design with the state-of-art
for the available modules, for instance, the polynomial multiplier and adder
module from [9] are compared with our vector multiplier and adder mod-
ule. Although handcrafted RTL is superior in terms of the number of clock
cycles (required for the computation), nevertheless it provides a close enough
approximation for a software designer to optimize the design. We also note
that the RTL design (from [9]) uses four BRAM modules compared to zero
from the HLS design.

Table 1. Post-synthesis latency and area results for the individual crypto kem keygen

functions.

Module (function) Latency BRAM DSP FF LUT

Clocks Time

seedexpander init 51 0.337 µs 0 0 3 384 9 552

seedexpander mult ty 3048 20.117 µs 0 0 3 723 9 240

shake prng 4 26.40 ns 0 0 3 380 9 055

shake prng init 70 0.462 µs 1 0 3 572 10 311

vect mul add 21418 0.141 ms 0 0 3 701 6 175

poly mult & add modulea [9] 18976 83 µs 4 - 906 2137

vect set random fixe 2573 16.982 µs 0 0 4 354 9 942

vect set random fixe 1 2478 16.335 µs 0 0 72 225

fixed weight generator module [9] 3649 16.39 µs 2 0 124 316
a includes the sum of the poly mult and the adder modules.

2) crypto kem enc: Table 2 presents the synthesis and implementation results
for the modules (functions) comprising the encapsulation module. Again,
for the sake of brevity, we report the minimum values of the latency (both
in terms of the number of clock cycles required and the absolute time)
to demonstrate the competitiveness of the HLS based designs like above.
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Additionally, we omit the modules which are shared across the different
functions for instance, the shake prng init, and the vect set random fixe
functions described above.

Table 2. Post-synthesis latency and area results for the individual crypto kem enc

functions.

Module (function) Latency BRAM DSP FF LUT

Clocks Time

reed solomon encode 803 5.3 µs 0 0 423 1 523

reed muller encode 6 441 42.511 µs 0 0 180 496

vect add 2 211 14.593 µs 0 0 54 112

shake256 512 ds 238 1.57 µs 0 0 3 721 10 343

shake256 [7] 270 1.80 µs 0 0 270 2017

hqc ciphertext to st 4 489 29.627 µs 0 0 177 483

hqc public key from s 559 3.689 µs 0 0 118 164

From Table 2, specifically for the SHAKE256 module, HLS outperforms the
handcrafted RTL design in terms of latency. Although, the reader may be
tempted to point to the larger usage area using HLS, which indeed can be further
optimized, the design from [7] uses a parallel slice-based design, and the total
area is computed using the LUTs as both logic and memory, which amortizes the
total overall area cost.

3) crypto kem dec: Table 3 presents the synthesis and implementation results
for the modules (functions) comprising the encapsulation module. Again,
for the sake of brevity, we report the minimum values of the latency (both
in terms of the number of clock cycles required and the absolute time) to
demonstrate the competitiveness of the HLS based designs as above. Addi-
tionally, we omit the modules which are shared across the different func-
tions for instance, the shake prng init, the vect set random fixe func-
tions described above.

Table 3. Post-synthesis latency and area results for the individual crypto kem dec

functions.

Module (function) Latency BRAM DSP FF LUT

Clocks Time

reed solomon decode 12 774 0.11 ms 3 0 1 910 7 894

reed muller decode 55 845 0.482 ms 0 0 659 2260

vect compare 64 18 0.115 µs 0 0 13 100

vect compare 2 210 19.070 µs 0 0 19 143

hqc ciphertext from s 4 465 38.528 µs 0 0 152 413

hqc public key from s 559 4.824 µs 0 0 118 164
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4.3 Modular Comparisons Among Different Versions

To the best of our knowledge, this is the first work that targets a high-level
synthesis hardware implementation of the HQC algorithm, although a very recent
work that targets a complete handcrafted Hardware implementation of HQC is
available from [9].

In this subsection, we provide a detailed breakdown of the hardware compo-
nents utilized for all the 3 functions, for the sake of completeness of our results,
in Table 4.

Table 4. Implementation comparisons of HQC-128 across the different implementation
variants with state-of-the-art.

Target Alg. Design Freq
(MHz)

Slices LUT FF BRAM Latency

Clocks ms

HLS (this work) keygen pure Perf 153 8 359 24 746 21 746 7 40 427 0.27

Comp 132 2 470 7 907 9 544 7 626 589 5.01

optimized Perf 150 3 921 11 484 8 798 6 40 427 0.27

Comp 130 1 541 4 676 9 544 6 626 589 5.01

encaps pure Perf 148 9 955 29 496 26 333 11 89 131 0.59

Comp 131 3 075 9 544 9 544 11 1 482 332 11.85

optimized Perf 152 5 575 16 487 13 390 10 89 110 0.59

Comp 129 2 122 9 544 9 544 1 482 332 11.85

decaps pure Perf 150 8 434 24 898 21 680 18 193 004 1.27

Comp 129 3 168 9 544 9 544 21 2 152 313 17.21

optimized Perf 152 6 223 18 739 15 243 18 193 082 1.27

Comp 130 2 678 9 544 9 544 21 2 152 313 17.21

RTL [9] keygen single clock - 164 - 2 350 1 106 9.5 23 480 0.14

dual clock - 242 - 3 094 879 14.5 27 013 0.12

encaps single clock - 164 - 2 725 2 060 15.5 52 757 0.32

dual clock - 218 - 2 609 2 070 15.5 45 739 0.30

decaps single clock - 164 - 8 426 6 642 36 78 233 0.48

dual clock - 204 - 8 434 6 652 36 71 199 0.43

Figure 3 provides a comparison of the area (measured in the number of LUTs)
between the different variants the HLS HQC-128 design offers. Clearly,

– The area utilization of the perf version is ×2 - ×3 the comp version, which
is expected. This is further elaborated in the difference (both in terms of
absolute latency (measured in ms and the number of clock cycles) and the
frequency of operation, as detailed in Table 4.

– The optimized version clearly outperforms the pure or the baseline version,
for both the perf and comp variants, across all the functional modules, i.e.,
keygen, encapsulation and decapsulation.

– Interestingly, the gain (in terms of area, higher is better) is better for the
optimized version across the perf and comp variants compared to the base-
line implementation. This demonstrates that irrespective of the architecture
deployed, (i.e., round-based or performance-oriented), HLS is able to optimize
the overall design in a better fashion.
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Fig. 3. Area (measured in LUTs) optimizations between perf and compact for the pure
(baseline) and optimized versions.

4.4 Comparisons with Software Implementations

In Table 5 we provide results for our proposed HLS designs of HQC-128 com-
pared to those in software, taken from SUPERCOP [18]. For variety, the table
shows results from a variety of different CPU targets, and thus provides an
overall indicator of how performant the proposed implementations are in com-
parison. Our performance-enhanced design makes significant savings in clock
cycles compared to high-end CPUs, with savings between 4–7× on average. Our
compact enhanced design has at least a 2× saving in clock cycles compared to
the low-end CPU results. Overall we see that HLS designs are a viable option
for implementing HQC, for both high-end and low-end devices and applications.

Table 5. Benchmarking results of HQC-128, comparing those in software, taken from
SUPERCOP-20220506 (using 50% median values), to our results for HLS.

Platform Clock Cycles

Keygen Encaps Decaps

Intel Xeon Skylake (2015) 202 120 351 273 645 728

AMD Ryzen 7 (2017) 307 486 661 913 1 259 627

ARM Cortex A53 (2018) 1 509 404 3 029 021 5 179 020

Artix 7 FPGA (perf) 40 427 89 110 193 082

Artix 7 FPGA (comp) 626 589 1 482 332 2 152 313
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4.5 Comparison with State-of-art Hardware Implementations

In Table 6, we compare our HQC implementation in HLS with state-of-the-art
handcrafted RTLs available for code-based post-quantum implementations. We
note that

1. HLS-HQC-128 version outperforms all of the handcrafted RTL implementa-
tions, most notably in terms of the area optimizations (i.e., LUTs). Notably,
HLS has a lower BRAM footprint compared to most handcrafted RTL imple-
mentations.

2. In terms of the frequency of operation, HLS (both comp and perf) variants
offer a comparable frequency of operation. We note that this is limited to the
loop unrolling, which is typically preferred in HLS design, and can impact fre-
quency. Additionally, given the overall optimizations the tool performs, trying
to limit the overall area, could also result in degradation of the frequency.

3. The overall latency (in terms of the absolute value in ms, for the perf version
is comparable to the handcrafted RTL [9] (we do not claim that HLS outper-
forms them) but rather point out that such values, if obtained very earlier in
the design cycle, allow for a better optimization of the existing code. A sim-
ilar argument can be made for the clock cycles required for each operation.
Nevertheless, we clearly see our HLS based design outperforms the existing
BIKE (level 1) and classic McEliece and the SIKE RTL-based implementations.

Table 6. FPGA design comparisons of post-quantum code-based KEMs at NIST L1
security level across implementation variants lightweight (LW) and high-speed (HS),
for our works this corresponds to comp and perf, respectively. For HQC-128-RTL we
provide single- (SC) and dual-clock (DC).

PQC Scheme Imp. LUT FF BRAM DSP Freq
(MHz)

Latency (cc/106, ms)

keygen encaps decaps

HLS-HQC-128 LW 8 876 6 405 28 0 132 0.62 5.01 1.48 11.85 2.15 17.21

(this work) HS 20 169 16 374 25 0 148 0.04 0.27 0.09 0.59 0.19 1.27

Classic LW 23 890 45 658 139 5 112 8.88 79.20 0.13 1.10 0.17 1.50

McEliece [7] HS 40 018 61 881 178 4 113 0.97 8.60 0.03 0.30 0.10 0.90

BIKE-L1 [16] LW 12 868 5 354 17 7 121 2.67 21.90 0.20 1.20 1.62 13.30

HS 52 967 7 035 49 13 96 0.26 2.60 0.01 0.10 0.19 1.90

HQC-128-RTL [9] SC 16 320 10 044 61 0 164 0.02 0.14 0.05 0.32 0.08 0.48

DC 16 956 9 837 66 0 204 0.03 0.12 0.06 0.30 0.08 0.43

SIKE [14] LW 11 943 7 202 21 57 145 - 25.60 - 27.20 - 15.10

HS 22 673 11 661 37 162 109 - 15.30 - 16.30 - 9.10

5 Conclusions

Given the interesting results HLS has generated, the importance of HLS in rapid
prototyping and in HW-SW co-designs cannot be understated, although the
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authors note that HLS cannot be a (complete) alternative to RTL developed
using handwritten code. Rather, we emphasize that for certain designs where
a quick understanding of the bottleneck parts of a larger algorithm need to be
identified and quickly reworked upon, then HLS is the perfect candidate for such.
We would also like to extend our work to the hqc-192 and hqc-256 versions, in
addition to HLS implementations of other code-based cryptographic schemes as
open future works. Additionally, this paves the way for further design automa-
tion in hardware based designs and allows for designing better and efficient
implementations with minimal effort and time [11].
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Abstract. In the NIST Post-Quantum Cryptography (PQC) stan-
dardization process, among 17 candidates for code-based public-key
encryption (PKE), signature or key encapsulation mechanism (KEM),
only three are in the 4th evaluation round. The remaining code-
based candidates are Classic McEliece [CCUGLMMNPP+20], BIKE
[ABBBBDGGGM+17] and HQC [MABBBBDDGL+20]. Cryptographic
primitives from coding theory are some of the most promising candidates
and their security is based on the well-known problems of post-quantum
cryptography. In this paper, we present an efficient implementation of a
secure KEM based on binary quasi-dyadic generalized Srivastava (QD-
GS) codes. With QD-GS codes defined for an extension degree m > 2,
this key establishment scheme is protected against the attacks of Barelli-
Couvreur Bardet et al.. We also provide parameters that are secure
against folding technique and FOPT attacks. Finally, we compare the
performance of our implementation in runtime with the NIST finalists
based on codes for the 4th round.

Keywords: NIST PQC Standardization · QD-GS codes · Code-based
KEM · Binary DAGS

1 Introduction

As a reminder, Faugère et al. had introduced an attack known in the litera-
ture as FOPT against scheme using quasi-cyclic or quasi-dyadic algebraic codes
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J.-C. Deneuville (Ed.): CBCrypto 2022, LNCS 13839, pp. 77–89, 2023.
https://doi.org/10.1007/978-3-031-29689-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29689-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-29689-5_5


78 B. Seck et al.

[FOPT10]. Their attack exploits the algebraic structure to build a system of
equations and then uses the Grobnër bases techniques to solve it efficiently.
Therefore, with FOPT attack, proposals based on quasi-cyclic algebraic codes
are compromised. However, techniques using a quasi-dyadic approach need to be
treated with caution for a proper choice of parameters concerning the dimension
of space of solutions. That means that it is possible to design secure schemes
using for instance binary Goppa codes, or Generalized Srivastava (GS) codes.
Separately, note that, during the first round of the NIST PQC standardization
process, Banegas et al. [BBBCDGGHKN+18] introduced a KEM scheme based
on nonbinary QD-GS codes. This scheme was broken by Barelli and Couvreur
[BC18]. They used in their attack the norm and trace codes technique which
works only for code designed on an extension field with extension degree m
equal to 2. It was shown that a simple parameters variation of the base field
could avoid this attack [BC18, Section 5.3]. Lately, Banegas et al. introduced a
new version of their scheme called DAGS reloaded [BBBCDGGHKN+19]. At the
same time, Bardet et al. [BBCO19] introduced a hybrid version of the Barelli-
Couvreur attack against the updated parameters. However, due to a proper
choice of parameters, their attack worked only for the parameters of NIST secu-
rity level 1 and not for the two others.

As part of this work, we show that the Barelli-Couvreur and Bardet et al.
attacks have no effect against the code-based KEM using binary QD-GS codes
that we call binary DAGS. We provide parameters that are secure against fold-
ing technique [FOPDPT15] and FOPT attacks. The main difference between
the binary DAGS and the version submitted to the first round of NIST PQC
standardization process [BBBCDGGHKN+18] is that the base fields are nonbi-
nary. In addition, the underlying cryptosystem in the binary DAGS is that of
Niederreiter instead of McEliece.

Contribution: In this work, we focus on the fast software implementation of
the secure binary DAGS.

First, we show that the Barelli-Couvreur and Bardet et al. attacks have no
effect against the code-based KEM using binary QD-GS codes that we called
binary DAGS. We provide parameters that are secure against folding technique
[FOPDPT15] and FOPT attacks.

Second, we perform an efficient software implementation of the binary DAGS.
For that, we use techniques from [BBPS20] that specifically aim to improve the
multiplication of QD matrices. These involve a version of the Karatsuba multi-
plication algorithm and an application of the LUP version in order to compute
the product and inverse of matrices more efficiently. These improvements allow
us to achieve better runtimes than previous DAGS implementations.

Finally, we show that our implementation is competitive in terms of execution
time with the NIST candidates for advanced evaluation.

Organisation: The paper is organized as follows. In Sect. 2, we focus on the
required prerequisites for this paper. In Sect. 3, we give the description of the
code-based KEM from binary QD-GS codes. We also propose a set of parameters.
In Sect. 4, we present the technical details about the software implementation
and results. Finally, we conclude this paper in Sect. 5.
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2 Prerequisites

2.1 Notations

In this paper we use the following notations:

Fq finite field of size q = 2m

A matrix

Ir identity matrix of size r × r

a vector

wt(a) Hamming weight of a

d(x,y) Hamming distance between x and y

(x‖y) concatenation of vector x and y

(A‖B) concatenation of matrices A and B

H hash function

Diag(a) Diagonal matrix from vector a

Sw,n Set of binary vectors of length n and Hamming weight w

2.2 Coding Theory

Let Fq be a finite field with q = 2m. A linear code C of length n and dimension k
over Fq is a subspace of Fn

q of dimension k. Elements of C are called code words.
A generator matrix of C is a matrix G ∈ F

k×n
q such that

C =
{
mG s.t m ∈ F

k
q

}

and a parity check matrix of C is a matrix H such HcT = 0 for all c ∈ C.
Let x ,y ∈ F

n
q be two vectors. The Hamming weight of x denoted by wt(x )

corresponds to the number of nonzero components of x . The Hamming distance
between x and y denoted by d(x ,y) is the Hamming weight of the vector x −y .
The minimal distance of a code C denoted by d(C) is the minimal distance
between different code words. For more details on coding theory refer to [MS77].

Let n = 2r be an integer and a = (a0, a1, ..., an−1) ∈ F
n
q be a nonzero vector.

A square matrix A = (ai,j) ∈ F
n×n
q is said dyadic of signature a ∈ F

n
q if it is

defined by:
ai,j = ai⊕j

where ⊕ is the bitwise operation. A matrix is said quasi-dyadic when it is a block
matrix where each block is a dyadic matrix. A linear code C is said quasi-dyadic
when one of its parity check matrices is in the quasi-dyadic form.

Let u = (u0, ..., un−1) ∈ F
n
2m and v = (v0, ..., vs−1) ∈ F

s
2m be two vectors

with pairwise distinct coefficients such that ui − vj �= 0 for all 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ s − 1. The matrix C(u ,v) = (cij)0≤i≤n−1,0≤j≤s−1 such that
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cij = 1/(ui − vj) is called a Cauchy matrix. This matrix plays an important role
in the design of quasi-dyadic Goppa codes. Indeed, it was shown that Goppa with
a monic generator polynomial without multiple zeros has a parity check in the
Cauchy form [MS77]. Moreover, recently, Barreto et Misoczki established how
to design a binary Goppa code in Cauchy and dyadic form [MB09, Section 3].

A Generalized Srivastava code C over a F2m is an alternant code with a parity
check matrix in the form:

H =

⎛

⎜
⎜
⎜
⎝

H0

H1

...
Hs−1

⎞

⎟
⎟
⎟
⎠

. (1)

The matrices Hi are defined by (2) from n+s different elements α0, α1, ..., αn−1

and w0, w1, ..., ws−1 of Fqm , and n nonzero elements z0, z1, ..., zn−1 of Fq with
n ≤ qm − s.

Hi =

⎛

⎜
⎜
⎜
⎜
⎝

z1
α0−wi

· · · zn−1
αn−1−wi

z1
(α0−wi)2

· · · zn−1
(αn−1−wi)2

...
...

z1
(α0−wi)t

· · · zn−1
(αn−1−wi)t

⎞

⎟
⎟
⎟
⎟
⎠

(2)

Dimension k and minimal distance d of C verify k ≥ n − mst and d ≥ st + 1.
It is important to note that when t = 1 GS codes are Goppa codes. Moreover,
by reordering rows of the matrix H defined by (1) we can see that generalized
Srivasta codes could be defined by a parity check matrix in the form

H̃ =

⎛

⎜
⎜
⎜
⎝

H̃1

H2

...
H̃t

⎞

⎟
⎟
⎟
⎠

where H̃i =

⎛

⎜
⎜
⎜
⎜
⎝

z1
(α0−w0)i

· · · zn−1
(αn−1−w0)i

z1
(α0−w1)i

· · · zn−1
(αn−1−w1)i

...
...

z1
(α0−ws−1)i

· · · zn−1
(αn−1−ws−1)i

⎞

⎟
⎟
⎟
⎟
⎠

for i = 1, ..., t. (3)

We can see that for constructing a generalized Srivastava code from (3), we need
to compute the matrix H̃1 and the other matrices H̃i could be obtained by
raising each coefficient of H̃1 to the power of i. For more information about GS
codes see [MS77].

2.3 Key Encapsulation Mechanism

A KEM is a set of four algorithms (Setup, KeyGen, Encapsulation, Decapsulation)
described as follows:

• Setup(1λ): Setup is a probabilistic algorithm that takes as in input a security
parameter λ and returns public parameters PP

• KeyGen(PP): KeyGen is the key generation algorithm. It takes as input public
parameters and returns a couple (sk, pk) of secret and public keys.
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• Encapsulation(PP, pk): This algorithm takes as input public parameters and
public key. It first generates a session key k then computes its encapsulated
value c. Finally, it returns c.

• Decapsulation(sk, c): Decapsulation is the algorithm consisting to recover a
session key from an encapsulation c. It takes as input an encapsulation c and
a secret key sk. It returns either a session key k or the failed symbol ⊥.

3 KEM from Binary QD-GS Codes

In this section, we first describe the key encapsulation mechanism from binary
QD-GS codes and then make its security analysis.

3.1 Description

It is important to note that the scheme is built upon the Niederreiter cryp-
tosystem thus the public key is a systematic parity check matrix. In the
key generation algorithm, the process is similar to that of DAGS reloaded
[BBBCDGGHKN+19]. However, the main difference is in the fact that the base
field is the binary field F2 instead of an extension F2r . The key generation, encap-
sulation, and decapsulation algorithms of binary DAGS are defined as follows:

Algorithm 1. Key Generation

Input: A finite field F2m , nonzero integers n = n0s and t.
Output: A public key pk and a secret key sk

1. Generate the dyadic signature h
2. Construct the Cauchy support (u,v)
3. Compute the Cauchy matrix H1 = C(u,v)
4. Compute Hi for i = 2, ..., t by computing the power of i of each coefficient

of the matrix H1

5. Compute a vector z by sampling uniformly at random elements in F2m with
the restriction zis+j = zis for i = 0, ..., n0 − 1, j = 0, ..., s − 1.

6. Compute the matrix H̃ =

⎛

⎜
⎜
⎜
⎝

H1

H2

...
Ht

⎞

⎟
⎟
⎟
⎠

Diag(z )

7. Split Hbin as (B‖A) such that A is a mst × mst invertible matrix.
8. Compute the systematic form H̃bin = (M‖I) = A−1Hbin

9. Choose randomly a binary string r ∈ F
n
2 .

10. Return pk = M and sk = (u ,A, r,M)

In the key generation algorithm the dyadic signature h is computed according
to the work of Barreto and Misoczki [MB09]. The integer s represents the order
of the quasi-dyadic matrix H1. Finally, n is the length of the code and t is the
number of block rows in the parity check matrix of the generalized Srivastava
code.
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The Cauchy support (u,v) is constructed as follows:

– Choose a random offset w
$←− F2m ;

– Compute ui = 1
hi

+ w and vj = 1
hj

+ 1
h0

+ w for i = 0, · · · , s − 1 and
j = 0, · · · , n − 1 ;

– Set u = (u0, · · · ,us−1) and v = (v0, · · · ,vn−1).

Algorithm 2. Encapsulation

Input: The public key pk = M where H̃bin = (M‖I) is a binary parity check
matrix of a QD-GS code.
Output: A session key k and its encapsulation c

1. Choose randomly an error vector e
$← Sw,n

2. Compute c0 = e1 + Me0 and c1 = H(2,e) where e is parse as (e0‖e1).
3. Set c = (c0‖c1)
4. Compute k = H(1,e, c)
5. Return the encapsulation c

Algorithm 3. Decapsulation

Input: The secret key sk = (u ,A, r,M), encapsulation c
Output: A session key k

1. Parse c into c = (c0‖c1)
2. Obtain the syndrome c′

0 ∈ Fq from c0.
3. Compute e′ = Decode(sk, c′

0) where Decode is a decoding algorithm for alter-
nant code.

4. If decoding failed or wt(e′) �= w set b = 0 and η = r
5. If H̃bine

′ = c0 and c1 = H(2,e′).
Set b = 1 and η = e′

6. Else:
Set b = 0 and η = r

7. Return k = H(b, η, c)

Description of the Decoding Algorithm
The input to the decoding algorithm is not, as commonly, a noisy codeword, but
a syndrome.

The main step in the decoding algorithm involves reconstructing the alter-
nant matrix Halt and a syndrome c′

0 corresponding to the alternant code. For
this reconstruction, we first compute AH̃bin = Hbin; Ac0 = c̃0. Then we use
the inverse of the co-trace function to transform respectively Hbin and c̃0 into
matrix H̃ and syndrome c̃ with coefficients in the extension field F2m . Finally, we
compute Halt = C−1H̃ and c′

0 = C−1c̃, where C is a r×r matrix such that its
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r rows correspond to the coefficients of the polynomials g1(x), g2(x), · · · , gr(x)
defined by:

g(l−1)t+i =

s∏

j=1

(x − uj)
t

(x − ul)
i

for l = 1, · · · , s and i = 1, · · · , t. For more details on the alternant
matrix reconstruction and the corresponding alternant syndrome, refer to
[BBBCDGGHKN+19].

3.2 Security Analysis

Decoding Attack. In code-based cryptography, the main efficient and known
decoding attack is the information set decoding (ISD) technique introduced by
E. Prange [Pra62]. Other approaches such as statistical decoding [Jab01] are
considered as less efficient. For a given linear code of length n and dimension k,
the main idea behind the information-set decoding algorithm is to find a set of k
coordinates of a garbled vector that are error-free and such that the restriction
of the code’s generator matrix to these positions is invertible. Then, the original
message can be computed by multiplying the encrypted vector by the inverse of
the submatrix.

Thus, those k bits determine the codeword uniquely, and hence the set is
called an information set. It is sometimes difficult to draw the exact resistance
to this type of attack. However, they are always lower-bounded by the ratio of
information sets without errors to total possible information sets, i.e.,

RISD =

(
n−ω

k

)
(
n
k

) ,

where ω is the Hamming weight of the error vector. Therefore, well-chosen
parameters can avoid these non-structural attacks.

Algebraic Attack. In code-based cryptography, the main key recovery attack
against schemes using structured codes are that of Faugère et al. denoted in
the literature by FOPT attack [FOPT10]. Their attack was originally aimed
at two variants of McEliece-like schemes, introduced respectively in [BCGO09]
and [MB09]. The first scheme based on quasi-cyclic is completely broken. The
second variant, instead, only considered quasi-dyadic Goppa codes. Most of the
parameters proposed in [MB09], have also been broken very easily, except for
the binary case code. This is not connected to the base field but is due to the
fact that with a small base field, authors provided a higher extension degree.
The extension degree m plays an important role in the attack, as it defines
the dimension of the solution space, which is equal, in fact, exactly to m − 1.
However, in [FOPT13], the authors provided a bound of the complexity of their
attack and showed that schemes for which this dimension is less or equal to 20
should be within the scope of the attack.
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In this paper, the underlying code is Generalized Srivastava code and in
[Per12], the author showed that the dimension of the solution space is mt − 1
instead of m−1. Therefore the choice of a good parameter could avoid this attack.
Recently, in [FOPDPT16] an improvement of FOPT attack was introduced.
Authors introduced a new technique called folding to reduce the complexity of
the FOPT attack to that of attacking a smaller code (i.e. the folded code) by
using the strong properties of the automorphism group of the alternant codes.
However, it is important to note that there is not a clear application of this
attack against GS codes and furthermore, the authors do not propose a concrete
bound, but only experimental results.

During the NIST process for standardization of post-quantum public key
schemes, there is only one scheme based on quasi-dyadic generalized Srivas-
tava code presented by Banegas et al. [BBBCDGGHKN+18]. The specificity
of this scheme is that the authors used a non-binary based field and a small
degree extension compared to the scheme of [MB09]. Some proposal parameters
of Banegas et al.’s scheme were attacked by Barelli and Couvreur in [BC18].

The Barelli-Couvreur attack is based on a novel construction called Norm-
Trace Code. The construction of these codes is given explicitly only for
the specific case m = 2 which is the case in all parameters proposed in
[BBBCDGGHKN+18]. However, it is possible to avoid this attack by modi-
fying a single parameter, namely the size q of the base field i.e by changing this
value from 26 to 28. To address of the Barelli-Couvreur attack, Banegas et al.
provided updated parameters in [BBBCDGGHKN+19] while keeping the size of
the base field corresponding to the level 1 of NIST security to q = 26. This leads
to a new attack introduced by Bardet et al. [BBCO19].

In Bardet et al.’s paper, they first applied the Barelli-Couvreur attack and
after, presented a hybrid attack combining exhaustive search and Gröbner basis
to attack the updated parameters of level 1 in [BBBCDGGHKN+19]. However,
note that their attack did not concern updated parameters of NIST security
levels 2 and 3 where the size of the base field is q = 28. In addition, in [BBCO19]
authors showed that when the reduced system is undetermined, both attacks (i.e.
of [BC18] and [BBCO19]) have no effect. Note that among all aforementioned
attacks only that of Faugère et al.’s [FOPT10] concerns binary codes. As it is
mentioned, to avoid it we need to choose parameters to have a dimension of the
solution space satisfying mt − 1 > 20.

Proposal Parameters. The parameters used for this implementation (Table 1)
are that proposed in [BBBCDGGHKN+19]. These parameters are chosen to
be secure against information decoding attack as well as the folding technique
[FOPDPT15] and FOPT attacks. They are chosen as follows:

• Information set decoding attack : for avoiding the information set decoding
attack, the parameters n and k are chosen such that the ration n

k is closed
to 1

2 .
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Table 1. Proposal parameters in [BBBCDGGHKN+19]

Security level q n k s t w

1 213 6400 3072 27 2 128

3 214 11520 4352 28 2 256

5 214 14080 6912 28 2 256

• FOPT attack : considering the fact that the underlying quasi-dyadic code is
a generalized Srivastava code which is a generalization of Goppa code, the
parameters m and t are chosen such that the dimension of solution space is
larger than 20 as recommended in [FOPT13].

• Folding technique attack : for avoiding the folding technique attack, the quasi-
dyadic order s of the underlying generalized Srivastava code is chosen such
that it is not very large.
Despite these parameter adjustments, binary DAGS still has a small pub-
lic key size compared to Classic McEliece [CCUGLMMNPP+20] and BIKE
[ABBBBDGGGM+17] (Table 2).

4 Efficient Implementation

In this software implementation for binary DAGS (DAGSbin), we will exploit the
particular structure of QD matrices to improve the multiplication of two QD
matrices. Some matrix operations, such as sum or inversion, can be performed
efficiently in the dyadic case by simply considering the signatures as in [BBPS20].
The multiplication operations can be significantly improved by means of LUP
decomposition and the Karatsuba multiplication in the QD case. This method
provides a fast software implementation of key generation and decapsulation in
the binary DAGS compared to the standard method.

4.1 Implementation Details

For Key Generation. We realized that the systematization of the matrix Hbin

represents almost the total cost of the key generation. To reduce this, we first
performed a trick in our implementation. By combining Steps 6 and 7 into one
and with the projection of the matrix H̃ onto F2, we obtain a QD matrix mst×n
Hbin. Then the systematic form H̃bin of Hbin is also a QD matrix. Therefore,
instead of considering the complete mst × n matrix Hbin, we just need the
signature of each block. Thus, the first row of Hbin is composed of the signatures
of the first blocks, the second row is obtained from the signatures of the second
blocks, and so on. Finally, Hbin is mt × n matrix, with n0 block-rows, where
n0 = n/s. As a result, the time required to systematize the matrix Hbin decreases
significantly.

Second, in Step 9, we used the efficient inversion of the secret matrix A as
in [BBPS20] by merging the LUP decomposition and Karatsuba multiplication.
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This improved inversion method reduces the execution time of the key generation
by almost 10 times for the level security 1 (DAGSbin 1) for example.

Table 2. Public key size in bytes for level security 3

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGS

reloaded

DAGSbin 3

Public Key 24 659 4 522 524 160 11 264 15 232

For Encapsulation. This is faster than the key generation and the decapsu-
lations algorithms. It is just composed by a binary matrix-vector product and
hash computation. We just cleaned up the C code compared to the previous
implementations.

For Decapsulation. For the decapsulation we need to reconstruct the alter-
nant syndrome c′

0 and the alternant secret matrix Halt from the secret key
[BBBCDGGHKN+19]. We observe that this step consumes almost half of the
execution time in the decapsulation. Therefore, we first compute Hbin = AH̃bin.
Here we use the Karatsuba multiplication technique in the QD case to save time
in our implementation.

Then, from Hbin, we apply the inverse of the co-trace function to obtain
the matrix H̃ with coefficients in the extension field. We compute the matrix C
from the support u.

Finally, we compute Halt = C−1H̃ using the same technique in Step 9 in
the key Generation. The LUP decomposition factorizes the matrix C as LUP.
This procedure consists in using a block decomposition, which works directly on
the signatures, to exploit the simple and efficient algebra of QD matrices. Once
the factorization of C is obtained, it is sufficient to perform the computation of
C−1 in an efficient way and use the Karatsuba method to perform the product.

All these techniques could have allowed us to make the decapsulation very
fast. Unfortunately, we could not generate the session key correctly for some tests
with the version of the binary DAGS (DAGSbin 5) of level security 5. Therefore
we cannot present the runtime for this version in the results.

In the following, we call the version of the binary DAGS with the application
of the above techniques for key generation and decapsulation, DAGSbin improved.

Table 3. Timings with previous codes for security level 1

Algorithm DAGS reloaded DAGSbin 1 DAGSbin 1 improved

Key Generation 408 342 881 679 076 980 77 768 093

Encapsulation 5 061 697 6 564 782 4 641 252

Decapsulation 192 083 862 298 987 096 15 091 4566
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Table 4. Timings with previous codes for security level 3

Algorithm DAGS reloaded DAGSbin 3 DAGSbin 3 improved

Key Generation 1 560 879 328 1 597 980 876 847 980 876

Encapsulation 14 405 500 15 200 232 8 020 732

Decapsulation 392 435 142 454 765 478 34 656 844

4.2 Results

In this section, we present the results obtained in our implementation in C. The
timings were acquired by running the code 10 times and taking the average. We
used CLANG compiler version 8.0.0 and the processor was an Intel(R) Core(TM)
i5-5300U CPU @ 2.30 GHz.

We present below the number of cycles obtained for our binary DAGS imple-
mentation with the improvements in key generation and decapsulation compared
to previous implementations (Table 3 and Table 4). Tables 5 and 6 compare our
implementation with the other NIST finalists.

Table 5. Timings with NIST finalists for security level 1

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGSbin 1

improved

Key Generation 650 638 98 570 49 758 742 77 768 093

Encapsulation 247 976 356 980 56 672 4 741 252

Decapsulation 2 575 687 467 891 253 864 15 091 4566

Table 6. Timings with NIST finalists for security level 3

Algorithm BIKE

[ABBBBDGGGM+17]

HQC

[MABBBBDDGL+20]

Classic McEliece

[CCUGLMMNPP+20]

DAGSbin 3

improved

Key Generation 3 674 894 267 983 364 756 564 847 980 876

Encapsulation 564 896 567 836 245 794 8 020 732

Decapsulation 4 298 673 947 920 387 678 34 656 844

5 Conclusion

This paper is an extension of the work of Banegas et al. [BBBCDGGHKN+19]
on DAGS. We first established that the Barelli-Couvreur and Bardet et al.
attacks have no effect against binary DAGS. This is a code-based KEM
scheme using quasi-dyadic binary generalized Srivastava codes. We have pro-
vided parameters that are secure against folding technique and FOPT attacks et
al. [BBBCDGGHKN+19]. Despite these parameter adjustments, binary DAGS
still has a small public key size. Then, we realized an efficient software implemen-
tation of the binary DAGS using tricks to reduce the computational time mainly
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in the key generation and decapsulation algorithms. We also used LUP decom-
position and Karatsuba multiplication techniques in the case of quasi-dyadic
matrices. This allowed us to have a competitive runtime performance compared
to other code-based NIST finalists. Finally, the high execution time in binary
DAGS compared to DAGS reloaded is related to the choice of parameters that
are very large (e.g. n = 6400 security level 1). We need to reduce the parameters
in binary DAGS while being aware of existing attacks. In this way, we will be
able to achieve even better performance. This work is currently in progress and
the results will appear in our future work.
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Abstract. We consider decoding of vertically homogeneous interleaved
sum-rank-metric codes with high interleaving order s, that are con-
structed by stacking s codewords of a single constituent code. We propose
a Metzner–Kapturowski-like decoding algorithm that can correct errors
of sum-rank weight t ≤ d − 2, where d is the minimum distance of the
code, if the interleaving order s ≥ t and the error matrix fulfills a cer-
tain rank condition. The proposed decoding algorithm generalizes the
Metzner–Kapturowski(-like) decoders in the Hamming metric and the
rank metric and has a computational complexity of O

(
max{n3, n2s})

operations in Fqm , where n is the length of the code. The scheme per-
forms linear-algebraic operations only and thus works for any interleaved
linear sum-rank-metric code. We show how the decoder can be used to
decode high-order interleaved codes in the skew metric. Apart from error
control, the proposed decoder allows to determine the security level of
code-based cryptosystems based on interleaved sum-rank metric codes.

1 Introduction

The development of quantum-secure cryptosystems is crucial in view of the
recent advances in the design and the realization of quantum computers. As it
is reflected in the number of submissions during the NIST’s post-quantum cryp-
tography standardization process for key encapsulation mechanisms (KEMs),
many promising candidates belong to the family of code-based systems of which
still three candidates are in the current 4th round [1]. Code-based cryptography
is mostly based on the McEliece cryptosystem [11] whose trapdoor is that the
public code can only be efficiently decoded if the secret key is known.

Variants of the McEliece cryptosystem based on interleaved codes in the
Hamming and the rank metric were proposed in [4,7,19]. Interleaving is a well-
known technique in coding theory that enhances a code’s burst-error-correction
capability. The idea is to stack a fixed number s of codewords of a constituent
code over a field Fqm in a matrix and thus to transform burst errors into errors
occurring at the same position in each codeword. Equivalently, these errors can
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be seen as symbol errors in a vector code over the extension field Fqms . There
exist list and/or probabilistic unique decoders for interleaved Reed–Solomon
(RS) codes in the Hamming metric [8] as well as for interleaved Gabidulin codes
in the rank metric [9] and for interleaved Reed–Solomon (LRS) codes in the
sum-rank metric [2].

All of the mentioned decoders are tailored to a particular code family and
explicitly exploit the code structure. In contrast, Metzner and Kapturowski pro-
posed a decoder which works for interleaved Hamming-metric codes with any
linear constituent code. The decoding algorithm only requires a high interleav-
ing order s as well as a linear-independence constraint on the error [14]. Vari-
ants of the linear-algebraic Metzner–Kapturowski algorithm were further stud-
ied in [5,6,12,13,15,21], often under the name vector-symbol decoding (VSD).
Moreover, Puchinger, Renner and Wachter-Zeh adapted the algorithm to the
rank-metric case in [18,20].

This affects the security level of McEliece variants that are based on inter-
leaved codes in the Hamming and the rank metric as soon as the interleaving
order s is too large (i.e. s ≥ t for error weight t). Cryptosystems based on
interleaved codes with small interleaving order are not affected. Their security
level can be evaluated based on information-set-decoding (ISD) algorithms (see
e.g. [16] for an adaptation of Prange’s algorithm to interleaved Hamming-metric
codes).

Contribution. We present a Metzner–Kapturowski-like decoding algorithm for
high-order interleaved sum-rank-metric codes with an arbitrary linear con-
stituent code. This gives valuable insights for the design of McEliece-like cryp-
tosystems based on interleaved codes in the sum-rank metric. The proposed
algorithm is purely linear-algebraic and can guarantee to correct errors of sum-
rank weight t ≤ d − 2 if the error matrix has full Fqm-rank t, where d is the
minimum distance of the code. The computational complexity of the algorithm
is in the order of O

(
max{n3, n2s})

operations over Fqm , where s ≥ t is the inter-
leaving order and n denotes the length of the linear constituent code. Note, that
the decoding complexity is independent of the code structure of the constituent
code since the proposed algorithm exploits properties of high-order interleaving
only. Since the sum-rank metric generalizes both the Hamming and the rank
metric, the original Metzner–Kapturowski decoder [14] as well as its rank-metric
analog [18,20] can be recovered from our proposal.

2 Preliminaries

Let q be a power of a prime and let Fq denote the finite field of order q and
Fqm an extension field of degree m. We use F

a×b
q to denote the set of all a × b

matrices over Fq and F
b
qm for the set of all row vectors of length b over Fqm .

Let b = (b1, . . . , bm) ∈ F
m
qm be a fixed (ordered) basis of Fqm over Fq. We

denote by ext(α) the column-wise expansion of an element α ∈ Fqm over Fq

(with respect to b), i.e.
ext : Fqm �→ F

m
q
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such that α = b · ext(α). This notation is extended to vectors and matrices by
applying ext(·) in an element-wise manner.

By [a : b] we denote the set of integers [a : b] := {i : a ≤ i ≤ b}. For a matrix
A of size a × b and entries Ai,j for i ∈ [1 : a] and j ∈ [1 : b], we define the
submatrix notation

A[c:d],[e:f ] :=

⎛

⎜
⎝

Ac,e . . . Ac,f

...
. . .

...
Ad,e . . . Ad,f

⎞

⎟
⎠ .

The Fqm -linear row space of a matrix A over Fqm is denoted by Rqm(A).
Its Fq-linear row space is defined as Rq(A) := Rq(ext(A)). We denote the row-
echelon form and the (right) kernel of A as REF(A) and kerr(A), respectively.

2.1 Sum-Rank-Metric Codes

Let n = (n1, . . . , n�) ∈ N
� with ni > 0 for all i ∈ [1 : �] be a length partition1

of n, i.e. n =
∑�

i=1 ni. Further let x = (x(1) |x(2) | . . . |x(�)) ∈ F
n
qm be a vector

over a finite field Fqm with x(i) ∈ F
ni
qm . For each x(i) define the rank rkq(x(i)) :=

rkq(ext(x(i))) where ext(x(i)) is a matrix in F
m×ni
q for all i ∈ [1 : �]. The sum-

rank weight of x with respect to the length partition n is defined as

wtΣR(x) :=
�∑

i=1

rkq(x(i))

and the sum-rank distance of two vectors x,y ∈ F
n
qm is defined as dΣR(x,y) :=

wtΣR(x − y). Note that the sum-rank metric equals the Hamming metric for
� = n and is equal to the rank metric for � = 1.

An Fqm-linear sum-rank-metric code C is an Fqm-subspace of F
n
qm . It has

length n (with respect to a length partition n), dimension k := dimqm(C) and
minimum (sum-rank) distance d := min{dΣR(x,y) : x,y ∈ C}. To emphasize
its parameters, we write C[n, k, d] in the following.

2.2 Interleaved Sum-Rank-Metric Codes and Channel Model

A (vertically) s-interleaved code is a direct sum of s codes of the same length n.
In this paper we consider homogeneous interleaved codes, i.e. codes obtained by
interleaving codewords of a single constituent code.

Definition 1 (Interleaved Sum-Rank-Metric Code). Let C[n, k, d] ⊆ F
n
qm

be an Fqm-linear sum-rank-metric code of length n with length partition n =
(n1, n2, . . . , n�) ∈ N

� and minimum sum-rank distance d. Then the corresponding
(homogeneous) s-interleaved code is defined as

IC[s;n, k, d] :=

⎧
⎨

⎩

⎛

⎝
c1...
cs

⎞

⎠ : cj = (c(1)j | . . . | c(�)j ) ∈ C[n, k, d]

⎫
⎬

⎭
⊆ F

s×n
qm .

1 Note that this is also known as (integer) composition into exactly � parts in combi-
natorics.
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Each codeword C ∈ IC[s;n, k, d] can be written as

C =

⎛

⎜
⎜
⎝

c
(1)
1 c

(2)
1 . . . c

(�)
1

...
...

. . .
...

c
(1)
s c

(2)
s . . . c

(�)
s

⎞

⎟
⎟
⎠ ∈ F

s×n
qm

or equivalently as
C = (C(1) | C(2) | · · · | C(�))

where

C(i) :=

⎛

⎜
⎜
⎜
⎜
⎝

c
(i)
1

c
(i)
2
...

c
(i)
s

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
s×ni
qm

for all i ∈ [1 : �].
As a channel model we consider the additive sum-rank channel

Y = C + E

where
E = (E(1) |E(2) | . . . |E(�)) ∈ F

s×n
qm

with E(i) ∈ F
s×ni
qm and rkq(E(i)) = ti for all i ∈ [1 : �] is an error matrix with

wtΣR(E) =
∑�

i=1 ti = t.

3 Decoding of High-Order Interleaved Sum-Rank-Metric
Codes

In this section, we propose a Metzner–Kapturowski-like decoder for the sum-rank
metric, that is a generalization of the decoders proposed in [14,18,20]. Similar to
the Hamming- and the rank-metric case, the proposed decoder works for errors
of sum-rank weight t up to d − 2 that satisfy the following conditions:

– High-order condition: The interleaving order s ≥ t,
– Full-rank condition: Full Fqm-rank error matrices, i.e., rkqm(E) = t.

Note that the full-rank condition implies the high-order condition since the Fqm-
rank of a matrix E ∈ F

s×n
qm is at most s.

Throughout this section we consider a homogeneous s-interleaved sum-rank-
metric code IC[s;n, k, d] over a field Fqm with a constituent code C[n, k, d]
defined by a parity-check matrix

H = (H(1) |H(2) | . . . |H(�)) ∈ F
(n−k)×n
qm
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with H(i) ∈ F
(n−k)×ni

qm . The goal is to recover a codeword C ∈ IC[s;n, k, d] from
the matrix

Y = C + E ∈ F
s×n
qm

that is corrupted by an error matrix E of sum-rank weight wtΣR(E) = t assum-
ing high-order and full-rank condition.

As the Metzner–Kapturowski algorithm and its adaptation to the rank met-
ric, the presented decoding algorithm consists of two steps. The decoder first
determines the error support from the syndrome matrix S = HY �. Secondly,
erasure decoding is performed to recover the error E itself.

3.1 The Error Support

The error matrix E can be decomposed as

E = AB (1)

where A = (A(1) |A(2) | . . . |A(�)) ∈ F
s×t
qm with A(i) ∈ F

s×ti
qm and rkq(A(i)) = ti

and
B = diag (B(1), . . . ,B(�)) ∈ F

t×n
q (2)

with B(i) ∈ F
ti×ni
q and rkq(B(i)) = ti for all i ∈ [1 : �] (see [17, Lemma 10]).

The rank support of one block E(i) is defined as

suppR

(
E(i)

)
:= Rq

(
E(i)

)
= Rq

(
B(i)

)
.

The sum-rank support for the error E with sum-rank weight t is then defined as

suppΣR(E) := suppR

(
E(1)

)
× suppR

(
E(2)

)
× · · · × suppR

(
E(�)

)
(3)

= Rq

(
B(1)

)
× Rq

(
B(2)

)
× · · · × Rq

(
B(�)

)
.

The following result from [17] shows how the error matrix E can be recon-
structed from the sum-rank support and the syndrome matrix S.

Lemma 1 (Column-Erasure Decoder [17, Theorem 13]). Let t < d and
B = diag (B(1), . . . ,B(�)) ∈ F

t×n
q be a basis of the row space of the error matrix

E ∈ F
s×n
qm and S = HE� ∈ F

(n−k)×�
qm be the corresponding syndrome matrix.

Then, the error is given by E = AB with A being the unique solution of the
linear system

S = (HB�)A�

and E can be computed in O
(
(n − k)3m2

)
operations over Fq.
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3.2 Recovering the Error Support

In the following we show how to recover the sum-rank support suppΣR(E) of
the error E given the syndrome matrix

S = HY � = HE� =
�∑

i=1

H(i)(E(i))�

and the parity-check matrix H of the sum-rank-metric code IC[s;n, k, d]. Let
P ∈ F

(n−k)×(n−k)
qm with rkqm(P ) = n − k be such that PS = REF(S). Further,

let Hsub be the rows of PH corresponding to the zero rows in PS, i.e. we have

PS =
(
S′

0

)
and PH =

(
H ′

Hsub

)

where S′ and H ′ have the same number of rows. Since P performs Fqm-linear
row operations on H, the � blocks of PH are preserved, i.e. we have that

Hsub =
(
H

(1)
sub |H(2)

sub | . . . |H(�)
sub

)
.

The following lemma is a generalization of [18, Lemma 3] to the sum-rank
metric.

Lemma 2. Let H = (H(1) |H(2) | . . . |H(�)) ∈ F
(n−k)×n
qm be a parity-check

matrix of a sum-rank-metric code C and let S = HE� ∈ F
(n−k)×s
qm be the syn-

drome matrix of an error

E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm

of sum-rank weight wtΣR(E) = t < n−k where E(i) ∈ F
s×ni
qm with rkq(E(i)) = ti

for all i ∈ [1 : �]. Let P ∈ F
(n−k)×(n−k)
qm be a matrix with rkqm(P ) = n − k such

that PS is in row-echelon form. Then, PS has at least n − k − t zero rows. Let
Hsub be the submatrix of PH corresponding to the zero rows in PS. Then we
have that

Rqm(Hsub) = kerr(E)qm ∩ C⊥ ⇐⇒ Rqm(Hsub) = kerr(E)qm ∩ Rqm(H) .

Proof. Since E(i) has Fq-rank ti, its Fqm -rank is at most ti for all i ∈ [1 : �].
Since t =

∑�
i=1 ti, E has at most Fqm-rank t as well. Hence, the Fqm -rank of S

is at most t and thus at least n − k − t of the n − k rows of PS are zero.
The rows of PH and therefore also the rows of Hsub are in the row space

of H, i.e. in the dual code C⊥. Since HsubE
� = 0 the rows of Hsub are in the

kernel of E. It is left to show that the rows of Hsub span the entire intersection
space. Write

PS =
(
S′

0

)
and PH =

(
H ′

Hsub

)
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where S′ and H ′ have the same number of rows and S′ has full Fqm -rank. Let
v = (v1,v2) ∈ F

n−k
qm and let

h = v ·
(

H ′

Hsub

)

be a vector in the row space of PH and in the kernel of E. Since HsubE
� = 0

we have that 0 = hE� = v1H
′E� = v1S

′. This implies that v1 = 0 since the
rows of S′ are linearly independent and thus h is in the row space of Hsub. ��

Lemma 3 shows that the kernel kerr (E)qm of the error E is connected with
the kernel of the matrix B if the Fqm-rank of the error is t, i.e. if the full-rank
condition is satisfied.

Lemma 3. Let E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm be an error of sum-rank

weight wtΣR(E) = t where E(i) ∈ F
s×ni
qm with rkq(E) = ti for all i ∈ [1 : �]. If

rkqm(E) = t (full-rank condition), then

kerr(E)qm = kerr(B)qm

where B ∈ F
t×n
q is any basis for the Fq-row space of E of the form (2). Further,

it holds that
kerr(E(i))qm = kerr(B(i))qm , ∀i ∈ [1 : �].

Proof. Let E have Fqm -rank t and let E = AB be a decomposition of the error
as in (1) such that E(i) = A(i)B(i) for all i ∈ [1 : �]. Since rkqm(E) = t implies
that rkqm(A) = t, we have that kerr(A)qm = {0}. Hence, for all v ∈ F

n
qm ,

(AB)v� = 0 if and only if Bv� = 0 which is equivalent to

kerr(E)qm = kerr(AB)qm = kerr(B)qm . (4)

Assume a vector v = (v(1) |v(2) | . . . |v(�)) ∈ F
n
qm and let v(i) ∈ F

ni
qm be any

element in kerr(B(i))qm . Due to the block-diagonal structure of B (see (2)) we
have that

Bv� = 0 ⇐⇒ B(i)(v(i))� = 0, ∀i ∈ [1 : �]

which is equivalent to

v ∈ kerr(B)qm ⇐⇒ v(i) ∈ kerr(B(i))qm , ∀i ∈ [1 : �]. (5)

Combining (4) and (5) yields the result. ��
Combining Lemma 2 and Lemma 3 finally allows us to recover the sum-rank

support of E.

Theorem 1. Let E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm be an error of sum-rank

weight wtΣR(E) = t ≤ d − 2 where E(i) ∈ F
s×ni
qm with rkq(E(i)) = ti for all

i ∈ [1 : �]. If s ≥ t (high-order condition) and rkqm(E) = t (full-rank condition),
then

Rq

(
E(i)

)
= kerr

(
ext(H(i)

sub)
)

q
, ∀i ∈ [1 : �]. (6)
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Proof. In the following, we prove that the Fq-row space of the extended Hsub

instead of the Fqm-row space of Hsub is equal to the Fq-kernel of B, i.e.,

Rq(ext(Hsub)) = kerr(B)q.

Recall that Rq

(
E(i)

)
= Rq

(
B(i)

)
holds for all i ∈ [1 : �] according to the

definition of the error decomposition (1). With this in mind, the statement of the
theorem is equivalent to showing kerr(B(i))q = Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �]

since Rq

(
B(i)

)⊥
= kerr(B(i))q and kerr

(
ext(H(i)

sub)
)⊥

q
= Rq

(
ext(H(i)

sub)
)

hold.

First we show that Rq(ext(Hsub)) ⊆ kerr(B)q which, due to the block-

diagonal structure of B, implies that Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q for all i ∈
[1 : �]. Let v = (v(1) |v(2) | . . . |v(�)) ∈ F

n
qm with v(i) ∈ F

ni
qm for all i ∈ [1 : �]

be any element in the Fqm-linear row space of Hsub. Then, by [18, Lemma 5]
we have that each row vj for j ∈ [1 : m] of ext(v) is in Rq(ext(Hsub)) which

implies that v
(i)
j ∈ Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �]. By Lemma 3 we have that
v ∈ kerr(B)qm , i.e. we have

Bv� = 0 ⇐⇒ B(i)(v(i))� = 0, ∀i ∈ [1 : �]

where the right-hand side follows from the block-diagonal structure of B. Since
the entries of B are from Fq, we have that

ext(Bv�) = Bext(v)� = 0 (7)

which implies that v ∈ kerr(B)q and thus Rq(ext(Hsub)) ⊆ kerr(B)q. Due to
the block-diagonal structure of B we get from (7) that

ext(B(i)(v(i))�) = B(i)ext(v(i))� = 0, ∀i ∈ [1 : �] (8)

which implies that v(i)
j ∈ kerr(B(i))q for all i ∈ [1 : �] and j ∈ [1 : m]. Therefore,

we have that Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q, for all i ∈ [1 : �].

Next, we show that kerr(B(i))q = Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �] by
showing that

ri := dim
(
Rq

(
ext(H(i)

sub)
))

= ni − ti, ∀i ∈ [1 : �].

Since Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q we have that ri > ni − ti is not possible for
all i ∈ [1 : �].

In the following we show that r < n−t is not possible and therefore ri = ni−ti
holds for all i = [1 : �]. Let {h1, . . . ,hr} ⊆ F

n
q be a basis for Rq(ext(Hsub)) and

define

Hb =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hr

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q
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with hj = (h(1)
j |h(2)

j | . . . |h(�)
j ) ∈ F

n
q where h(i)

j ∈ Rq

(
ext(H(i)

sub)
)

for j ∈ [1 : r]
and i ∈ [1 : �]. Also define

H
(i)
b =

⎛

⎜
⎜
⎜
⎜
⎝

h
(i)
1

h
(i)
2
...

h
(i)
r

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
r×ni
q , ∀i ∈ [1 : �].

By the basis-extension theorem, there exist matrices B(i)′′ ∈ F
(ni−ti)×ni
q such

that the matrices

B(i)′ :=
(

(
B(i)

)� |
(
B(i)′′

)�
)

∈ F
ni×ni
q

have Fq-rank ni for all i ∈ [1 : �].
Next define Ȟ(i) = H

(i)
b B(i)′ ∈ F

r×ni
q for all i ∈ [1 : �] and

Ȟ :=
(
Ȟ(1) | Ȟ(2) | . . . | Ȟ(�)

)
= Hb · diag

(
B(1)′, . . . ,B(�)′

)
.

Since h
(i)
1 ,h

(i)
2 , . . . ,h

(i)
r are in the right Fq-kernel of B(i) (see (8)) we have

that

Ȟ(i) =

⎛

⎜
⎜
⎝

0 . . . 0 ȟ
(i)
1,ti+1 . . . ȟ

(i)
1,ni

...
. . .

...
...

. . .
...

0 . . . 0 ȟ
(i)
r,ti+1 . . . ȟ

(i)
r,ni

⎞

⎟
⎟
⎠

for all i ∈ [1 : �] and thus Ȟ has at least t =
∑�

i=1 ti all-zero columns.
By the assumption that r < n− t it follows that ri < ni − ti holds for at least

one block. Without loss of generality assume that this holds for the �-th block,
i.e. we have r� < n� − t�. Then there exists a full-rank matrix

J =

(
It�

0

0 J̃

)

∈ F
n�×n�
q

with J̃ ∈ F
(n�−t�)×(n�−t�)
q such that the matrix

H̃ = Ȟ · diag
(
In1 , . . . , In�−1 ,J

)
(9)

has at least t + 1 all-zero columns.
Define D := diag

(
B(1)′, . . . ,B(�−1)′,B(�)′J

)
∈ F

n×n
q which has full Fq-rank

n. Then we have that H̃ = Hb · D. Since D has full Fq-rank n, the submatrix
D′ := D[1:n],I ∈ F

n×(t+1)
q has Fq-rank t + 1, where

I = [1 : t1]∪ [n1 +1 : n1 + t2]∪ [n�−2 +1 : n�−2 + t�−1]∪ [n�−1 +1 : n�−1 + t� +1]
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By (9) it follows that
hj · D′ = 0 ∈ F

t+1
q (10)

for all j ∈ [1 : r]. Since H ∈ F
(n−k)×n
qm is a parity-check matrix of an [n, k, d] code

it has at most d−1 Fqm-linearly dependent columns (see [17, Lemma 12]). Since
by assumption t+1 ≤ d−1 and rkq(D′) = t+1 we have that rkqm(HD′) = t+1.
Thus, there exists a vector g ∈ Rqm(H) such that

gD′ = (0, g′
t+1) ∈ F

t+1
qm

with g′
t+1 �= 0. Since the first t positions of gD′ are equal to zero we have that

g ∈ Rqm(Hsub). Expanding the vector gD′ over Fq gives

ext(g)D′ =

⎛

⎜
⎜
⎜
⎝

0 g′
1,t+1

0 g′
2,t+1

...
...

0 g′
m,t+1

⎞

⎟
⎟
⎟
⎠

∈ F
m×(t+1)
q

where ext(g′
t+1) = (g′

1,t+1, g
′
2,t+1, . . . , g

′
m,t+1)

� ∈ F
m×1
q . Since g′

t+1 �= 0 there
exists at least one row with index ι in ext(g′

t+1) such that g′
ι,t+1 �= 0. Let gι be

the row in ext(g) for which gιD
′ is not all-zero. This leads to a contradiction

according to (10). Thus r < n − t is not possible and leaves r = n − t and
therefore also ri = ni − ti for all i ∈ [1 : �] as the only valid option. ��

3.3 A Metzner–Kapturowski-Like Decoding Algorithm

Using Theorem 1 we can formulate an efficient decoding algorithm for high-
order interleaved sum-rank-metric codes. The algorithm is given in Algorithm 1
and proceeds similar to the Metzner–Kapturowski(-like) decoding algorithms for
Hamming- or rank-metric codes. As soon as Hsub is computed from the syndrome
matrix S, the rank support of each block can be recovered independently using
the results from Theorem 1. This corresponds to finding a matrix B(i) with
rkq(B(i)) = ti such that ext(H(i)

sub)(B
(i))� = 0 for all i ∈ [1 : �] (see (6)).

Theorem 2. Let C be a codeword of a homogeneous s-interleaved sum-rank-
metric code IC[s;n, k, d] of minimum sum-rank distance d. Furthermore, let E ∈
F

s×n
qm be an error matrix of sum-rank weight wtΣR(E) = t ≤ d − 2 that fulfills

t ≤ s (high-order condition) and rkqm(E) = t ( full-rank condition). Then C
can be uniquely recovered from the received word Y = C +E using Algorithm 1
in a time complexity equivalent to

O
(
max{n3, n2s})

operations in Fqm .



100 T. Jerkovits et al.

Algorithm 1: Decoding High-Order Interleaved Sum-Rank-Metric Codes
Input : Parity-check matrix H, Received word Y

Output: Transmitted codeword C

1 S ← HY � ∈ F
(n−k)×s
qm

2 Compute P ∈ F
(n−k)×(n−k)
qm s.t. PS = REF(S)

3 Hsub =
(
H

(1)
sub |H(2)

sub | . . . |H(�)
sub

)
← (PH)[t+1:n−k],[1:n] ∈ F

(n−t−k)×n
qm

4 for i = 1, . . . , � do

5 Compute B(i) ∈ F
ti×ni
q s.t. ext(H(i)

sub)(B
(i))� = 0 and rkq(B(i)) = ti

6 B ← diag(B(1),B(2), . . . ,B(�)) ∈ F
t×n
q

7 Compute A ∈ F
s×t
qm s.t. (HB�)A� = S

8 C ← Y − AB ∈ F
s×n
qm

9 return C

Proof. By Lemma 1 the error matrix E can be decomposed into E = AB.
Algorithm 1 first determines a basis of the error support suppΣR(E) and then
performs erasure decoding to obtain A. The matrix B is computed by trans-
forming S into row-echelon form using a transformation matrix P (see Line 2).
In Line 3, Hsub is obtained by choosing the last n − k − t rows of PH. Then
using Theorem 1 for each block (see Line 5) we find a matrix B(i) whose rows
form a basis for kerr

(
ext(H(i)

sub)
)

q
and therefore a basis for suppR(E(i)) for all

i ∈ [1 : �]. The matrix B is the block-diagonal matrix formed by B(i) (cf. (2)
and see Line 6). Finally, A can be computed from B and H using Lemma 1
in Line 7. Hence, Algorithm 1 returns the transmitted codeword in Line 9. The
complexities of the lines in the algorithm are as follows:

– Line 1: The syndrome matrix S = HY � can be computed in at most O
(
n2s

)

operations in Fqm .
– Line 2: The transformation of [S | I] into row-echelon form requires

O
(
(n − k)2(s + n − k)

) ⊆ O
(
max{n3, n2s})

operations in Fqm .
– Line 3: The product (PH)[t+1:n−k],[1:n] can be computed requiring at most

O(n(n − k − t)(n − k)) ⊆ O
(
n3

)
operations in Fqm .

– Line 5: The transformation of [ext(H(i)
sub)

� | I�]� into column-echelon form
requires O

(
n2

i ((n − k − t)m + ni)
)

operations in Fq per block. Overall we get

O
(∑�

i=1 n2
i ((n − k − t)m + ni)

)
⊆ O

(
n3m

)
operations in Fq since we have

that O
(∑�

i=1 n2
i

)
⊆ O

(
n2

)
.
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– Line 7: According to Lemma 1, this step can be done in O
(
(n − k)3m2

)

operations over Fq.
– Line 8: The product AB = (A(1)B(1) |A(2)B(2) | . . . |A(�)B(�)) can be com-

puted in
∑�

i=1 O(stini) ⊆ O
(
sn2

)
and the difference of Y − AB can be

computed in O(sn) operations in Fqm .

The complexities for Line 5 and Line 7 are given for operations in Fq. The
number of Fq-operations of both steps together is in O

(
n3m2

)
and their execu-

tion complexity can be bounded by O
(
n3

)
operations in Fqm (see [3]).

Thus, Algorithm 1 requires O
(
max{n3, n2s})

operations in Fqm and
O

(
n3m2

)
operations in Fq. ��

Note that the complexity of Algorithm 1 is not affected by the decoding com-
plexity of the underlying constituent code since a generic code with no structure
is assumed.

Example 1. Let Fqm = F52 with the primitive polynomial x2 + 4x + 2 and the
primitive element α be given. Further let IC[s;n, k, d] be an interleaved sum-
rank-metric code of length n with n = (2, 2, 2), k = 2, d = 5, � = 3 and s = 3,
defined by a generator matrix

G =
(

α4 α7 α21 α4 α3 α5

α20 α11 α10 α21 α17 α3

)

and a parity-check matrix

H =

⎛

⎜
⎜
⎝

1 0 0 0 α8 α19

0 1 0 0 α5 α12

0 0 1 0 α17 α
0 0 0 1 α22 α18

⎞

⎟
⎟
⎠ .

Suppose that the codeword

C =

⎛

⎝
α20 α22 1 α6 α11 α10

α23 α7 α4 0 α17 α9

α15 1 α22 α12 α22 α10

⎞

⎠ ∈ IC[s;n, k, d]

is corrupted by the error

E =

⎛

⎝
α19 α α6 α9 0 0
α17 α23 α10 α7 0 0
α2 α8 α15 α6 0 0

⎞

⎠

with wtΣR(E) = rkqm(E) = t = 3 and t1 = 1, t2 = 2 and t3 = 0. The resulting
received matrix is

Y =

⎛

⎝
α17 α8 α18 α16 α11 α10

α11 α3 α22 α7 α17 α9

α7 α4 α23 1 α22 α10

⎞

⎠ .
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First the syndrome matrix is computed as

S = HY � =

⎛

⎜
⎜
⎝

α19 α17 α2

α α23 α8

α6 α10 α15

α9 α7 α6

⎞

⎟
⎟
⎠

and then P

P =

⎛

⎜
⎜
⎝

0 α2 α6 α8

0 α4 α20 α15

0 α23 0 α3

1 α6 0 0

⎞

⎟
⎟
⎠ =⇒ PS =

⎛

⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟
⎟
⎠

with rkqm(P ) = 4. The last n − k − t = 1 rows of

PH =

⎛

⎜
⎜
⎝

0 α2 α6 α8 α13 α7

0 α4 α20 α15 α22 α16

0 α23 0 α3 α11 1
1 α6 0 0 α18 α16

⎞

⎟
⎟
⎠

gives us Hsub = (1 α6 | 0 0 |α18 α16). We expand every block of Hsub over F5

and get

ext(H(1)
sub) =

(
1 2
0 0

)
, ext(H(2)

sub) =
(

0 0
0 0

)
and ext(H(3)

sub) =
(

3 3
0 3

)
.

We observe that the second block H
(2)
sub is zero which corresponds to a full-

rank error. Next we compute a basis for each of the right kernels of ext(H(1)
sub),

ext(H(2)
sub), and ext(H(3)

sub) which gives us

B(1) =
(
1 2

)
, B(2) =

(
1 0
0 1

)
, B(3) = (),

where B(3) is empty since ext(H(3)
sub) has full rank. The matrix B is then given

by

B = diag(B(1),B(2),B(3)) =

⎛

⎝
1 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞

⎠.

Solving for A

HB�A� = S
⎛

⎜
⎜
⎝

1 0 0
α6 0 0
0 1 0
0 0 1

⎞

⎟
⎟
⎠A� =

⎛

⎜
⎜
⎝

α19 α17 α2

α α23 α8

α6 α10 α15

α9 α7 α6

⎞

⎟
⎟
⎠
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gives

A� =

⎛

⎝
α19 α17 α2

α6 α10 α15

α9 α7 α6

⎞

⎠ ⇒ Ê = AB =

⎛

⎝
α19 α α6 α9 0 0
α17 α23 α10 α7 0 0
α2 α8 α15 α6 0 0

⎞

⎠

and Ê = E. Finally, the codeword C can be recovered as C = Y − Ê.

4 Implications for Decoding High-Order Interleaved
Skew-Metric Codes

The skew metric is closely related to the sum-rank metric and was first considered
in [10]. In particular, there exists an isometry between the sum-rank metric and
the skew metric for most code parameters (see [10, Theorem 3]).

We show in this section how an interleaved skew-metric code can be con-
structed from a high-order interleaved sum-rank-metric code. This enables us to
apply the presented decoder to the obtained high-order interleaved skew-metric
codes and correct errors of a fixed skew weight.

The mentioned isometry can be described and applied to the interleaved con-
text as follows: Let us consider vectors from F

n
qm , where n satisfies the constraints

in [10, Theorem 2]. By [10, Theorem 3], there exists an invertible diagonal matrix
D ∈ F

n×n
qm such that

wtΣR(xD) = wtskew(x), ∀x ∈ F
n
qm , (11)

where for the definition of the skew weight wtskew(·) see [10, Definition 9]. The
skew metric for interleaved matrices has been considered in [2]. Namely, the
extension of (11) to F

s×n
qm , we get (see [2])

wtΣR(XD) = wtskew(X), ∀X ∈ F
s×n
qm . (12)

Now consider a linear s-interleaved sum-rank-metric code IC[s;n, k, d] with
parity-check matrix H. Then by (12) the code

ICskew[s;n, k, d] :=
{
CD−1 : C ∈ IC[s;n, k, d]

}

is an s-interleaved skew-metric code with minimum skew distance d. Observe
that the parity-check matrix of the constituent skew-metric code Cskew[n, k, d]
of ICskew[s;n, k, d] is given by Hskew = HD.

Let us now study a decoding problem related to the obtained skew-metric
code. Consider a matrix Y = C + E where C ∈ ICskew[s;n, k, d] and E is an
error matrix with wtskew(E) = t. Then (12) implies that we have

Ỹ := (C + E)D = C̃ + Ẽ

where C̃ ∈ IC[s;n, k, d] and wtΣR(E) = t. Hence, using the isometry from [10,
Theorem 3] we can map the decoding problem in the skew metric to the sum-rank
metric and vice versa (see also [2]).
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In particular, this allows us to use Algorithm 1 to solve the posed decoding
problem in the skew metric. The steps to decode a high-order interleaved skew-
metric code ICskew[s;n, k, d] with parity-check matrix Hskew (whose parameters
comply with [10, Theorem 2]) can be summarized as follows:

1. Compute the transformed received matrix Ỹ := (C + E)D = C̃ + Ẽ where
C ∈ ICskew[s;n, k, d] and wtskew(E) = t.

2. Apply Algorithm 1 to Ỹ . If rkqm(Ẽ) = t, which is equivalent to rkqm(E) = t,
the algorithm recovers C̃ ∈ IC[s;n, k, d].

3. Recover C ∈ ICskew[s;n, k, d] as C = C̃D−1.

Since the first and the third step both require O(sn) operations in Fqm ,
the overall complexity is dominated by the complexity of Algorithm 1, that is
O

(
max{n3, n2s})

operations in Fqm .

5 Comparison of Metzner-Kapturowski-Like Decoders
in the Hamming, Rank and Sum-Rank Metric

The decoder presented in Algorithm 1 is a generalization of the Metzner–Kaptu-
rowski decoder for the Hamming metric [14] and the Metzner–Kapturowski-like
decoder for the rank metric [18]. In this section we illustrate how the proposed
decoder works in three different metrics: 1.) Hamming metric, 2.) Rank metric
and 3.) Sum-rank metric. Note that the Hamming and the rank metric are both
special cases of the sum-rank metric. We also show the analogy of the different
definitions of the error support for all three cases.

The support for the Hamming-metric case is defined as

suppH(E) := {j : j-th column of E is non-zero}.

In the Hamming metric an error matrix E with tH errors can be decomposed
into E = AB, where the rows of B are the unit vectors corresponding to the
tH error positions. This means the support of the error matrix is given by the
union of the supports of the rows Bi of B (∀i ∈ [1 : tH ]), hence

suppH(E) =
tH⋃

i=1

suppH(Bi).

If the condition for the Metzner–Kapturowski decoder is fulfilled (full-rank con-
dition), then the zero columns in Hsub indicate the error positions and thus give
rise to the error support, i.e. we have that

suppH(E) = [1 : n] \
n−k−tH⋃

i=1

suppH(Hsub,i)

where Hsub,i is the i-th row of Hsub. Figure 1 illustrates how the error support
suppH(E) can be recovered from Hsub.
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The rank-metric case is similar, except for a different notion for the error
support. Again, the error E with rkq(E) = tR can be decomposed as E = AB.
Then the rank support suppR(E) of E equals the row space of ext(B), which
is spanned by the union of all rows of ext(Bi) with Bi being the i-th row of B.
This means the support of E is given by

suppR(E) =
⊕tR

i=1
suppR(Bi)

with
⊕

being the addition of vector spaces, which means the span of the union of
the considered spaces. If the condition on the error matrix (full-rank condition)
is fulfilled, the rank support of E is given by the kernel of ext(Hsub) [20]. As
illustrated in Fig. 2 the row space of ext(Hsub) can be computed by obtaining
the span of the union of spaces suppR(Hsub,i), where Hsub,i is the i-th row of
Hsub. Finally, the support of E is given by

suppR(E) =
(⊕n−k−tR

i=1
suppR(Hsub,i)

)⊥
.

For the sum-rank metric we get from (3) that

suppΣR(E) = suppR (B(1)) × suppR (B(2)) × · · · × suppR (B(�))

=
(⊕n−k−t1

i=1
suppR(B(1)

1 )
)

× · · · ×
(⊕n−k−t�

i=1
suppR(B(�)

� )
)

.

According to Theorem 1 we have that

suppΣR(E) =
(⊕n−k−t1

i=1
suppR(H(1)

sub,1)
)⊥

× . . .

· · · ×
(⊕n−k−t�

i=1
suppR(H(�)

sub,�)
)⊥

.

The relation between the error matrix E, the matrix Hsub and the error supports
for the Hamming metric, rank metric and sum-rank metric are illustrated in
Fig. 1, Fig. 2 and Fig. 3, respectively.
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error positions

E = =

A

·

B

1
1

1
1

error positions

Hsub =

all-zero columns in error positions

⇒ suppH(E) =
tH⋃

i=1

suppH(Bi) =

= [1 : n] \
n−k−tH⋃

i=1

suppH(Hsub,i)

Fig. 1. Illustration of the error support for the Hamming-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tH
qm , B ∈ F

tH×n
q and Hsub ∈ F

(n−k−tH)×n
qm . Bi is the i-th row of B and Hsub,i

the i-th row of Hsub.

E = = Fq

A

·

B

Hsub =

Hsub,1

...
Hsub,n−k−t

�→ ext(Hsub) =

generating set of
suppR(Hsub,1)

...
generating set of

suppR(Hsub,n−k−t)

Fig. 2. Illustration of the error support for the rank-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tR
qm , B ∈ F

tR×n
q and Hsub ∈ F

(n−k−tR)×n
qm . Bi is the i-th row of B and Hsub,i

the i-th row of Hsub.
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blocks with rank errors

E(1) · · · E(�)

E = =

A

·

B

A(1)· · ·A(�)

B(i)

blocks with rank errors

Hsub =

H
(1)
sub

· · · H
(�)
sub

all-zero blocks at positions of full-rank errors

�→ H
(i)
sub =

∀i ∈ [1 : �]

H
(i)
sub,1

...
H

(i)
sub,n−k−t

Fig. 3. Illustration of the error support for the sum-rank-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tΣR
qm , B ∈ F

tΣR×n
q and Hsub ∈ F

(n−k−tΣR)×n
qm . Bi is the i-th row of B and

Hsub,i the i-th row of Hsub.

6 Conclusion

We studied the decoding of homogeneous s-interleaved sum-rank-metric codes
that are obtained by vertically stacking s codewords of the same arbitrary linear
constituent code C over Fqm . The proposed Metzner–Kapturowski-like decoder
for the sum-rank metric relies on linear-algebraic operations only and has a
complexity of O

(
max{n3, n2s})

operations in Fqm , where n denotes the length of
C. The decoder works for any linear constituent code and therefore the decoding
complexity is not affected by the decoding complexity of the constituent code.
The proposed Metzner–Kapturowski-like decoder can guarantee to correct error
matrices E ∈ F

s×n
qm of sum-rank weight t ≤ d − 2, where d is the minimum

distance of C, if E has full Fqm -rank t, which implies the high-order condition
s ≥ t.

As the sum-rank metric generalizes both, the Hamming metric and the rank
metric, Metzner and Kapturowski’s decoder in the Hamming metric and its
analog in the rank metric are both recovered as special cases from our proposal.
Moreover, we showed how the presented algorithm can be used to solve the
decoding problem of some high-order interleaved skew-metric codes.

Since the decoding process is independent of any structural knowledge about
the constituent code, this result has a high impact on the design and the security-
level estimation of new code-based cryptosystems in the sum-rank metric. In fact,
if high-order interleaved codes are e.g. used in a classical McEliece-like scheme,
any error of sum-rank weight t ≤ d−2 with full Fqm-rank t can be decoded with-
out knowledge of the private key. This directly renders this approach insecure
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and shows that the consequences of the presented results need to be carefully
considered for the design of quantum-resistant public-key systems.

We conclude the paper by giving some further research directions: The pro-
posed decoder is capable of decoding an error correctly as long as it satisfies
the full-rank condition and has sum-rank weight at most d − 2, where d denotes
the minimum distance of the constituent code. Similar to Haslach and Vinck’s
work [6] in the Hamming metric, it could be interesting to abandon the full-
rank condition and study a decoder that can also handle linearly dependent
errors. Another approach, that has already been pursued in the Hamming and
the rank metric [15,18], is to allow error weights exceeding d− 2 and investigate
probabilistic decoding.

Moreover, an extension of the decoder to heterogeneous interleaved codes
(cp. [18] for the rank-metric case) and the development of a more general decod-
ing framework for high-order interleaved skew-metric codes can be investigated.
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10. Mart́ınez-Peñas, U.: Skew and linearized Reed-Solomon codes and maximum sum
rank distance codes over any division ring. J. Algebra 504, 587–612 (2018)

11. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing THV 4244, 114–116 (1978)

12. Metzner, J.J.: Vector symbol decoding with erasures, errors and symbol list deci-
sions. In: Proceedings IEEE International Symposium on Information Theory, p.
34. IEEE (2002)

13. Metzner, J.J.: Vector symbol decoding with list inner symbol decisions. IEEE
Trans. Commun. 51(3), 371–380 (2003)

http://arxiv.org/abs/2201.01339
https://doi.org/10.1016/j.ffa.2008.07.004
http://arxiv.org/abs/1809.03024


On Decoding High-Order Interleaved Sum-Rank-Metric Codes 109

14. Metzner, J.J., Kapturowski, E.J.: A general decoding technique applicable to repli-
cated file disagreement location and concatenated code decoding. IEEE Trans. Inf.
Theory 36(4), 911–917 (1990)

15. Oh, K.T., Metzner, J.J.: Performance of a general decoding technique over the class
of randomly chosen parity check codes. IEEE Trans. Inf. Theory 40(1), 160–166
(1994)

16. Porwal, A., Holzbaur, L., Liu, H., Renner, J., Wachter-Zeh, A., Weger, V.: Inter-
leaved Prange: a new generic decoder for interleaved codes. In: Cheon, J.H., Johans-
son, T. (eds.) Post-Quantum Cryptography (PQCrypto 2022). LNCS, vol. 13512,
pp. 69–88. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2 4

17. Puchinger, S., Renner, J., Rosenkilde, J.: Generic decoding in the sum-rank metric.
In: 2020 IEEE International Symposium on Information Theory (ISIT), pp. 54–59.
IEEE (2020)

18. Puchinger, S., Renner, J., Wachter-Zeh, A.: Decoding high-order interleaved rank-
metric codes. arXiv preprint arXiv:1904.08774 (2019)

19. Renner, J., Puchinger, S., Wachter-Zeh, A.: Interleaving Loidreau’s rank-metric
cryptosystem. In: 2019 XVI International Symposium “Problems of Redundancy in
Information and Control Systems” (REDUNDANCY), pp. 127–132. IEEE (2019)

20. Renner, J., Puchinger, S., Wachter-Zeh, A.: Decoding high-order interleaved rank-
metric codes. In: 2021 IEEE International Symposium on Information Theory
(ISIT), pp. 19–24. IEEE (2021)

21. Roth, R.M., Vontobel, P.O.: Coding for combined block-symbol error correction.
IEEE Trans. Inf. Theory 60(5), 2697–2713 (2014)

https://doi.org/10.1007/978-3-031-17234-2_4
http://arxiv.org/abs/1904.08774


Information Set Decoding for Lee-Metric
Codes Using Restricted Balls

Jessica Bariffi1,2(B), Karan Khathuria3, and Violetta Weger4

1 Institute of Communication and Navigation, German Aerospace Center,
Oberpfaffenhofen-Wessling, Germany

jessica.bariffi@dlr.de
2 Institute of Mathematics, University of Zurich, Zürich, Switzerland
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Abstract. The Lee metric syndrome decoding problem is an NP-hard
problem and several generic decoders have been proposed. The observa-
tion that such decoders come with a larger cost than their Hamming met-
ric counterparts make the Lee metric a promising alternative for classical
code-based cryptography. Unlike in the Hamming metric, an error vector
that is chosen uniformly at random of a given Lee weight is expected to
have only few entries with large Lee weight. Using this expected distri-
bution of entries, we are able to drastically decrease the cost of generic
decoders in the Lee metric, by reducing the original problem to a smaller
instance, whose solution lives in restricted balls.

Keywords: Information Set Decoding · Lee Metric · Code-Based
Cryptography

1 Introduction

The original syndrome decoding problem (SDP) asks to decode a random linear
code over a finite field endowed with the Hamming metric. This problem has
been long studied and is well understood. The SDP is an NP-hard problem
[5,8] and lays the foundation of code-based cryptography, which is a promising
candidate for post-quantum cryptography.

The fastest algorithms to solve the syndrome decoding problem are called
information set decoding (ISD) algorithms and started with the work of Prange
[19] in 1962. Although the literature on ISD algorithms in this classical case is
vast (see [18] for an overview), the cost of generic decoding has only decreased
little and is considered stable. One of fastest algorithms over the binary field is
called BJMM algorithm [7]. Note that BJMM is a generalization of MMT [16]
and has also been generalized to the ternary case [9].

Due to new challenges in code-based cryptography, such as the search for
efficient signature schemes, other metrics are now investigated. For example the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-C. Deneuville (Ed.): CBCrypto 2022, LNCS 13839, pp. 110–136, 2023.
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rank metric has gained a lot of attention due to the NIST submission ROLLO
[1] and RQC [2]. While the understanding of the hardness of the rank-metric
SDP is rapidly developing, it is still unknown whether the rank-metric SDP is
an NP-hard problem.

The situation for the Lee metric is quite different. The Lee-metric SDP was
first studied for codes over Z/4Z in [13]. Later, in [22] the problem was shown
to be NP-hard over any Z/ps

Z and several generic decoding algorithms to solve
the problem have been provided. Also the paper [11] confirmed the cost regimes
of [22] and more importantly the observation, that Lee-metric ISD algorithms
cost more than their Hamming metric counterparts for fixed input parameters.
Thus, the Lee metric has a great potential to reduce the key sizes or signature
sizes in code-based cryptosystems. For example, Lee-metric codes can be used to
develop Stern-like authentication and signature schemes. This could be of special
interest, since NIST recently launched a second call for post-quantum signature
schemes.

Furthermore, modern code-based cryptography is moving away from the
classical idea of McEliece [17], where the distinguishability of the secret code
obstructs a security reduction to the random instance of SDP, and moving
towards ideas from lattice-based cryptography such as the ring learning with
error (RLWE) problem, which dates back to Alekhnovich’s code-based cryptosys-
tem [3]. The Lee metric is the closest metric in coding theory to the Euclidean
metric used in lattice-based cryptography, in the sense that both metrics take
into consideration the magnitude of the entries. Note that the Lee metric can
be thought of as the L1-norm in Z/mZ, for any positive integer m. In fact, to
consider the Lee metric in code-based cryptography is a very natural choice,
for this new direction: in [20] it was shown that a lattice-based problem in the
Euclidean metric can be reduced to solving the problem in the L1-norm, while
a reduction in the other direction is not known yet. Moreover, the reduction in
[20] blows-up the dimension only by a constant factor. Hence, an algorithm to
solve problems in the L1-norm can be applied to solve problems in the L2-norm.

In this paper, we improve existing Lee-metric ISD algorithms using the new
results from [6] on the marginal distribution of vectors of given Lee weight. Thus,
the paper contributes to the recent advances in understanding the hardness of
this problem, with the final goal of deeming this setting secure for applications.

For the Lee-metric SDP we assume that the instance is given by a randomly
chosen parity-check matrix and an error vector of fixed Lee weight which was
also chosen uniformly at random. The results from [6] now provide us with new
and central information on the sought-after error vector e. In fact, using the
marginal distribution we are able to determine the expected number of entries
of e, which have a fixed Lee weight. The main idea of the novel algorithm is
that we expect only very few entries of e to have a large Lee weight (which is
defined through a threshold r) if the relative Lee weight is lower than a fixed
constant depending on the size ps of the residue ring Z/ps

Z. Thus, using the
partial Gaussian elimination (PGE) approaches, like in BJMM [7], we are able to
reduce the original instance to a smaller instance, where the sought-after smaller
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error vector now only has entries of Lee weight up to r and thus lives in smaller
Lee-metric balls. This will clearly help reducing the cost of ISD algorithms. This
paper thus reduces the cost of the algorithms from [22] and [11], which were the
fastest known Lee-metric ISD algorithms up to now.

This paper is organized as follows. In Sect. 2 we introduce the required notions
on ring-linear codes and results for Lee-metric codes, such as the restricted
spheres. In Sect. 3 we recall the results of [6] on the marginal distribution and
introduce the necessary values for our algorithm. The main part, the new Lee-
metric ISD algorithm, is presented in Sect. 4 together with an asymptotic cost
analysis. Finally, in Sect. 5 we compare the new algorithm to the previously
fastest Lee-metric ISD algorithms.

2 Preliminaries

Notation: Let p be a prime and s be a positive integer and let us consider the
integer residue ring Z/ps

Z. The cardinality of a set V is denoted as |V | and its
complement by V C . We use bold lower case (respectively, upper case) letters to
denote vectors (respectively, matrices). By abuse of notation, a tuple in a module
over a ring will still be denoted by a vector. The n × n identity matrix will be
denoted by Idn. Let S ⊆ {1, . . . , n}. For a vector x ∈ (Z/ps

Z)n, we denote by
xS the vector consisting of the entries of x indexed by S. Similarly, for a matrix
A ∈ (Z/ps

Z)k×n, we denote by AS the matrix consisting of the columns of A
indexed by S.

Definition 1. A linear code C ⊆ (Z/ps
Z)n is a Z/ps

Z-submodule of (Z/ps
Z)n.

Since we are over a ring, our code does not possess a dimension, instead we
denote by the Z/ps

Z-dimension of the code C ⊆ (Z/ps
Z)n the following

k := logps (|C|) .

The rate of the code is given by R = k
n . In addition to the Z/ps

Z-dimension,
the code C ⊆ (Z/ps

Z)n also possesses a rank K, which is defined as the minimal
number of generators of C as a Z/ps

Z-module. In the case of a non-free code,
note that k < K. As for classical codes, we still have the notion of generator
matrix and parity-check matrix.

Definition 2. Let C ⊆ (Z/ps
Z)n be a linear code, then a matrix G over Z/ps

Z

is called a generator matrix for C, if it has the code as row span and a matrix
H is called a parity-check matrix for C if it has the code as kernel.

For a code C ⊆ (Z/ps
Z)n, we denote by CS the code consisting of all codewords

cS , where c ∈ C. The notion of information set remains as in the classical case.

Definition 3. Let C ⊆ (Z/ps
Z)n be a linear code of rank K, then a set I ⊆

{1, . . . , n} of size K is called an information set of C if |CI | = |C|.
In this paper we are interested in the Lee metric, which can be thought of as the
L1 norm modulo ps.
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Definition 4. Let x ∈ Z/ps
Z. The Lee weight of x is given by

wtL(x) = min{x, |ps − x|}.

The Lee weight of a vector is defined additively, i.e., for x ∈ (Z/ps
Z)n, we have

wtL(x) =
n∑

i=1

wtL(xi).

Finally, this weight induces a distance, that is, for x,y ∈ (Z/ps
Z)n the Lee

distance between x and y is given by dL(x,y) = wtL(x − y).

Let us denote by M := �ps

2 �, then one can easily see that for x ∈ Z/ps
Z we have

0 ≤ wtL(x) ≤ M. The Lee-metric ball, respectively the Lee-metric sphere, of
radius r around x ∈ (Z/ps

Z)n are defined as

B(x, r, n, ps) := {y ∈ (Z/ps
Z)n | dL(x − y) ≤ r},

S(x, r, n, ps) := {y ∈ (Z/ps
Z)n | dL(x − y) = r}.

Since the size of a Lee-metric ball or a Lee-metric sphere is independent of the
center, we will denote their cardinalities by

V (r, n, ps) := |B(0, r, n, ps)|, F (r, n, ps) := |S(0, r, n, ps)|.
Definition 5. Let C ⊆ (Z/ps

Z)n be a linear code endowed with the Lee-metric,
then the minimum Lee distance of C is given by

dL(C) = min{dL(x,y) | x �= y ∈ C}.
In this paper we are interested in algorithms that have as input a code generated
by a matrix chosen uniformly at random. Due to the result in [10, Proposition
16], we therefore assume that our code is free, i.e., k = K and a generator matrix
and a parity-check matrix having the following form (up to permutation):

G =
(
Idk A

)
, H =

(
Idn−k B

)
,

where A ∈ (Z/ps
Z)k×(n−k) and B ∈ (Z/ps

Z)(n−k)×k.
In addition, in [10, Theorem 20] it was shown that such a random code also

attains the Gilbert-Varshamov bound with high probability. Let AL(n, d, ps)
denote the maximal cardinality of a code C ⊆ (Z/ps

Z)n of minimum Lee distance
d and let us consider the maximal information rate

R(n, d, ps) :=
1
n

logps(AL(n, d, ps)),

for 0 ≤ d ≤ nM . We define the relative minimum distance to be δ := d
nM .

Theorem 1 (Asymptotic Gilbert-Varshamov Bound [4]). It holds that

lim inf
n→∞ R(n, δMn, ps) ≥ lim

n→∞

(
1 − 1

n
logps(V (δMn, n, ps))

)
.
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Let C ⊆ (Z/ps
Z)n be a linear code with parity-check matrix H, then for an

x ∈ (Z/ps
Z)n we say that s = xH� is a syndrome. In this paper we give

an algorithm that solves the following problem, called Lee syndrome decoding
problem (LSDP), which was shown to be NP-complete in [22]:

Problem 1. Let H ∈ (Z/ps
Z)(n−k)×n

, s ∈ (Z/ps
Z)n−k and t ∈ N. Find e ∈

(Z/ps
Z)n such that s = eH� and wtL(e) = t.

To this end, we assume that the input parity-check matrix H is chosen uniformly
at random in (Z/ps

Z)(n−k)×n and that there exists a solution e ∈ (Z/ps
Z)n,

which was chosen uniformly at random in S(0, t, n, ps) and set s to be its syn-
drome s = eH�. We provide two new algorithms, taking care of two different
scenarios. The main idea of these new algorithms is to use the results of [6], which
provide us with additional information on the unique solution e ∈ (Z/ps

Z)n. For
example, the expected number of entries of e having a fixed Lee weight.

In the first scenario, we want to decode up to the minimum distance of the
code having H as parity-check matrix. For this, we let dL be the minimum dis-
tance from the Gilbert-Varshamov bound. Hence, even if we assume full distance
decoding, i.e., t = dL, we expect to have a unique solution e to Problem 1. In
fact, the expected number of solutions to the LSDP is given by

N =
F (t, n, ps)
ps(n−k)

=
F (dL, n, ps)

ps(n−k)
≤ 1.

In the second scenario, we consider a Lee weight t larger than the minimum
distance, and solve this new problem by reversing the idea of the first algorithm.

Similar to the size of the Lee sphere F (t, n, ps), we define the size of the
restricted Lee spheres, where each entry has the Lee weight at most r, respec-
tively at least r, for some r ∈ {0, . . . , M}, as

F(r)(t, n, ps) = |{x ∈ {0,±1, . . . ,±r}n | wtL(x) = t in Z/ps
Z}|,

F (r)(t, n, ps) = |{x ∈ {±r, . . . ,±M}n | wtL(x) = t in Z/ps
Z}|.

Let us consider t as a function in n and define T := limn→∞ t(n)/n. We denote
their asymptotic sizes as

A(r)(T, ps) := lim
n→∞

1
n

logps

(
F(r)(t(n), n, ps)

)
,

A(r)(T, ps) := lim
n→∞

1
n

logps

(
F (r)(t(n), n, ps)

)
.

We provide the formula for the asymptotic sizes of the restricted Lee spheres in
Appendix A. The derivation of the asymptotic formulas follows the saddle point
technique used in [12].

Lastly, we need a notion of restricted compositions of a number. Recall that
for a given integer t, a weak integer composition of t into n parts is an n-
tuple λ = (λ1, . . . , λn) of non-negative integers satisfying λ1 + · · · + λn = t. A
weak composition π of a positive integer v into n parts is said to fit into a weak
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composition λ of a positive integer t of the same number of parts n, if the part
sizes of π are upper bounded by the part sizes of λ, i.e., for every i ∈ {1, . . . , n}
it holds πi ≤ λi. Let λ be a (weak) composition of t of n parts. We denote by
C(v, t, λ, n, ps) the number of weak compositions π of v which fit into λ. If we
assume that v, t are functions of n and λ is the expected composition of t in n
parts, then the asymptotic size of C(v, t, λ, n, ps) can be computes as

γ(V, T ) := lim
n→∞

1
n

logps (C(v, t, λ, n, ps)) , (2.1)

where V := lim
n→∞

v
n . The formula and its derivation can be found in Appendix A.

3 Distribution of a Random Lee Vector

In this section, we analyze the error vector e that is chosen uniformly at random
from S(0, t, n, ps). We first recall the results from [6] that studies the distribution
of the entries of a random vector having a fixed Lee weight.

Let E denote a random variable corresponding to the realization of an entry
of e. As n tends to infinity we have the following result on the distribution of
the elements in e.

Lemma 1 ([6, Lemma 1]). For any j ∈ Z/ps
Z,

P(E = j) =
1

Z(β)
exp(−βwtL (j)), (3.1)

where Z denotes the normalization constant and β is the unique solution to
T =

∑ps−1
i=0 wtL (i)P(E = i).

Note, that if β = 0, the entries of e are uniformly distributed over Z/ps
Z. In that

case, the relative weight of a randomly chosen entry is equal to p2s−1
4ps if p is odd,

respectively ps/4 if p = 2. Furthermore, if β > 0 the relative weight becomes
smaller. In addition, since the marginal distribution (3.1) is an exponential func-
tion with negative exponent, it is decreasing in the weight. This means that for
β > 0 the elements of smallest Lee weight, i.e., 0, are the most probable, then
elements of weight 1 until the least probable Lee weight M . Let us emphasize
here that, by Remark 2, if we are in scenario 1, where we decode up to the
minimum distance given by the Gilbert-Varshamov bound, we will always have
t/n ≤ M/2, which is roughly the threshold p2s−1

4ps for p odd, respectively ps/4
for p = 2, and hence elements of small weight will always be more probable. In
the other case, where β < 0, the elements of largest Lee weight, i.e., M , are the
most probable, followed by the elements of weight M − 1, and so on, until the
least probable of Lee weight 0. This is the case for the second scenario, where we
decode beyond the minimum distance, i.e., t/n ≥ M/2. As a direct consequence
of Lemma 1, we can give the probability of a random entry E having some given
Lee weight j ∈ {0, . . . ,M} (Fig. 1).

P(wtL (E) = j) =

{
P(E = j) if (j = 0) or (j = M and p is even),
2P(E = j) else.

(3.2)
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Fig. 1. Marginal distribution for the elements in Z/47Z for different values of T =
limn→∞ t(n)/n.

In this work, we are interested in the expected number of entries that have
‘large’ Lee weight, i.e., entries having Lee weight larger than some threshold
r ∈ {0, . . . , M}. Let ψ(r, t, n, ps) denote the expected number of entries of e
which have a larger Lee weight than r and let ϕ(r, t, n, ps) denote the expected
Lee weight of e without the entries of larger Lee weight than r. In addition, for
some randomly chosen set S ⊆ {1, . . . , n} of size 0 ≤ 	 ≤ n, let us denote by
σ(	, t, n, ps) the expected support size of eS .

Lemma 2. Let e be chosen uniformly at random in S(0, t, n, ps), r ∈ {0, . . . , M}
and 0 ≤ 	 ≤ n. Then

ψ(r, t, n, ps) = n

M∑

i=r+1

P(wtL (E) = i),

ϕ(r, t, n, ps) = n

r∑

i=0

i · P(wtL (E) = i),

σ(	, t, n, ps) = 	

M∑

i=1

P(wtL (E) = i).

Proof. The proof easily follows from (3.2) and using the assumption that each
entry of e is independent. 	


4 Restricted-Balls Algorithm

The idea of the new information set decoding algorithms is to use the information
on the uniformly chosen e ∈ S(0, t, n, ps). We start with the algorithm for the
first scenario, where we only decode up to the minimum distance given by the
Gilbert-Varshamov bound and later adapt this algorithm to the second scenario,
where we decode beyond the minimum distance.
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4.1 Decoding up to the Minimum Lee Distance

The high level idea lies in the following observation: for t/n < M/2, which is
given by the Gilbert-Varshamov bound, we know, as n grows large, that 0 is the
most likely entry of e, the second most likely is ±1 and so on, until the least
likely entry is ±M . Hence, if we define a threshold Lee weight 0 ≤ r ≤ M , with
a high probability (depending on the choice of r) we have that all entries of e of
Lee weight larger than r can be found outside an information set. Thus, using
the partial Gaussian elimination (PGE) algorithms, we are left with finding a
smaller error vector which only takes values in {0,±1, . . . ,±r}. This will make
a huge difference for algorithms such as the Lee-metric BJMM [22], where the
list sizes are the main factor in the cost.

General Framework: In general, this idea can be considered as a framework,
where we can apply any algorithm that solves the smaller instance, but now in
a smaller space. The framework takes as input (H, s, t, r,S), where S denotes
a solver for the smaller instance in the space {0,±1, . . . ,±r} which, instead
of outputting a list of possible solutions for the smaller instance, immediately
checks whether the smaller solution at hand leads to a solution of the original
instance. Let us consider a random instance of the LSDP given by

H ∈ (Z/ps
Z)(n−k)×n

, s ∈ (Z/ps
Z)n−k and t ∈ N with t/n < M/2.

The framework on (H, s, t, r,S) works as follows:

Step 1: For some 0 ≤ 	 ≤ n−k, we will bring the parity-check matrix into partial
systematic form by multiplying H with some invertible U ∈ (Z/ps

Z)(n−k)×(n−k)

and adapting the syndrome accordingly to sU�. For simplicity, assume that we
have an information set in the last k positions. Thus, the LSDP becomes

(
e1 e2

)(
Idn−k−� 0
A� B�

)
=

(
s1 s2

)
,

with A ∈ (Z/ps
Z)(n−k−�)×(k+�)

,B ∈ (Z/ps
Z)�×(k+�)

, s1 ∈ (Z/ps
Z)n−k−� and

s2 ∈ (Z/ps
Z)�

. Hence, we have to solve two parity-check equations:

e1 + e2A� = s1, e2B� = s2, (4.1)

Here, we assume that e2 has Lee weight v and e1 has Lee weight t − v, for some
positive integer 0 ≤ v ≤ t.

Step 2: We solve the smaller instance of the LSDP given by the second equality
in Eq. (4.1) using algorithm S. In particular, we find an error vector e2 such
that e2B� = s2, wtL (e2) = v, and it has entries in {0,±1, . . . ,±r}. Instead of
storing a list of solutions e2, S will immediately check whether e1 = s1 − e2A�

has the remaining Lee weight t − v. Clearly, v also depends on the choice of r.
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Solving the smaller instance can be achieved using various techniques, for
example via Wagner’s approach used in [11,22] or via the representation tech-
nique used in [22]. We adapt these techniques to make use of the assumption
that the entries are restricted to {0,±1, . . . ,±r}. Let S(r)(0, v, n, ps) denote
the Lee sphere of weight v centered at the origin with entries restricted to
{0,±1, . . . ,±r}, i.e.,

S(r)(0, v, n, ps) := {x ∈ {0,±1, . . . ,±r}n |wtL (x) = v}.

In the following lemma, we show that if e is a random vector of length n and
Lee weight t which splits as (e1, e2) with e2 ∈ S(r)(0, v, k + 	, ps), then e2 has a
uniform distribution in S(r)(0, v, k + 	, ps).

Lemma 3. Let e be chosen uniformly at random in S(0, t, n, ps) such that e =
(e1, e2) with e2 ∈ S(r)(0, v, k + 	, ps). Then e2 follows a uniform distribution in
S(r)(0, v, k + 	, ps), and henceforth e1 follows a uniform distribution in S(0, t −
v, n − k − 	, ps).

Proof. We note that for an arbitrary e2 ∈ S(r)(0, v, k + 	, ps), there are exactly
|S(0, t − v, n − k − 	, ps)| possible vectors e that restrict to e2 in their last k + 	
coordinates. Therefore, if e is chosen uniformly at random, then each e2 has an
equal chance of being chosen in S(r)(0, v, k + 	, ps). 	

As a corollary, we see that this splitting of e comes with a probability of

P = F(r)(v, k + 	, ps)F (t − v, n − k − 	, ps)F (t, n, ps)−1. (4.2)

Now, it is easy to see that the average time complexity of the generic ISD algo-
rithm is P−1 times the cost of one iteration.

Solving Smaller SDP Using the BJMM-Approach: The BJMM algorithm
belongs to a class of ISD algorithms that finds a desired vector e2 in a multi-level
approach. For an a-level algorithm, we split e2 into 2a parts in a certain way. At
each level, we merge all the adjacent parts together to satisfy the syndrome equa-
tions partially or completely. This merging can be performed in several ways,
for example, using generalized birthday algorithm introduced in [21], or using
the representation technique introduced in [14]. In this section, we consider the
Lee-BJMM algorithm from [22] which is a two-level Lee metric adaptation of the
original BJMM algorithm. The BJMM algorithm uses representation technique
where a vector e2 is built from the sum of two vectors y1 + y2 and the merging
forces some fixed number of positions to overlap and cancel out. Although the
smaller error vector e2 now only has entries in {0,±1, . . . ,±r}, to enable rep-
resentation technique, we will assume that ε positions cancel out and thus are
allowed to live in the whole ring Z/ps

Z.
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e2

k + �

︸ ︷︷ ︸

supp(e2) ∈ {±1, . . . , ±r}|supp(e2)|

v

=

+

y1 v/4

ε/2

︸ ︷︷ ︸

x
(1)
1

v/4

ε/2

︸ ︷︷ ︸

x
(1)
2

y2 v/4

ε/2

︸ ︷︷ ︸

x
(2)
1

v/4

ε/2

︸ ︷︷ ︸

x
(2)
2

Fig. 2. Two levels decomposition of the vector e2 into y1 and y2, where yi = (x
(i)
1 ,x

(i)
2 )

for i = 1, 2. with corresponding Lee weights in the support (gray areas).

Description of the Algorithm: The high level idea of BJMM on two levels is as
follows: we split e2 as

e2 = y1 + y2 =
(
x(1)
1 ,x(1)

2

)
+

(
x(2)
1 ,x(2)

2

)
,

where x(i)
j ∈ (Z/ps

Z)(k+�)/2 for i, j ∈ {1, 2}. Thus, for the syndrome equation to
be satisfied, we want that

s2 = e2B� = y1B� + y2B�.

Let us also split B ∈ (Z/ps
Z)�×(k+�) into two matrices B =

(
B1 B2

)
, where

Bi ∈ (Z/ps
Z)�×(k+�)/2

, for i ∈ {1, 2}. In order to obtain syndrome equations
containing x(i)

j , we assume that y1B� = 0 and y2B� = s2 in the last u positions,
where 0 ≤ u ≤ 	 is a fixed parameter. To ease the notation, we write x =u y
to denote that x = y in the last u positions. Hence, in the first merge we get
yi = (x(i)

1 ,x(i)
2 ) for i ∈ {1, 2} satisfying the following syndrome equations

x(1)
1 B�

1 =u −x(1)
2 B�

2 ,

x(2)
1 B�

1 =u s2 − x(2)
2 B�

2 .

We also split the ε overlapping positions evenly into two parts such that ε/2 posi-
tions overlap within

{
1, . . . , k+�

2

}
and ε/2 overlap within

{
k+�
2 + 1, . . . , k + 	

}
.

Therefore, the weight distribution of e2 is as follows: each yi has Lee weight v/2
on some k + 	 − ε positions, and each x(i)

j has Lee weight v/4 on some k+�−ε
2

positions. See Fig. 2 for an illustration of the weight distribution.
The algorithm starts with building the base list B defined as follows:

B=
{
x | xEC ∈S(r)

(
0, v

4 , k+�−ε
2 , ps

)
for some E ⊆ {

1, . . . , k+�
2

}
with |E| = ε

2

}
,

which corresponds to all the possible vectors for x(i)
j . Next, we apply the first

merging algorithm, (Algorithm1), two times: first to obtain a list L1 using the
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Algorithm 1. Merge-concatenate
Input: The input lists B1, B2, the positive integers 0 ≤ u ≤ �, B1,B2 ∈ (Z/ps

Z)�×(k+�)/2

and t ∈ (Z/ps
Z)�.

Output: L = B1 ++t B2.

1: Lexicographically sort B1 according to the last u positions of x1B
�
1 for x1 ∈ B1.

We also store the last u positions of x1B
�
1 in the sorted list.

2: for x2 ∈ B2 do
3: for x1 ∈ B1 with x1B

�
1 =u t − x2B

�
2 do

4: L = L ∪ {(x1,x2)}.

5: Return L.

Algorithm 2. Last Merge
Input: The input lists L1, L2, the positive integers 0 ≤ v ≤ t, 0 ≤ u ≤ �, B ∈
(Z/ps

Z)�×(k+�) , s2 ∈ (Z/ps
Z)� and s1 ∈ (Z/ps

Z)n−k−� ,A ∈ (Z/ps
Z)(n−k−�)×(k+�).

Output: e ∈ L1 �� L2.

1: Lexicographically sort L1 according to y1B
� for y1 ∈ L1. We also store y1B

� in
the sorted list.

2: for y2 ∈ L2 do
3: for y1 ∈ L1 with y1B

� = s2 − y2B
� do

4: if wtL (y1 + y2) = v and wtL

(
s1 − (y1 + y2)A

�)
= t − v then

5: Return (s1 − (y1 + y2)A
�,y1 + y2).

input B1 = B2 = B and t = 0, and second to obtain a list L2 using the input
B1 = B2 = B and t = s2. The lists Li contain all the possible vectors yi and can
be written as:

L1=
{
y | yB� =u 0, yEC ∈S(r)

(
0, v

2 , k + 	 − ε, ps
)

for some E ⊆ {1, . . . , k + 	} with |E| = ε}
L2=

{
y | yB� =u s2, yEC ∈S(r)

(
0, v

2 , k + 	 − ε, ps
)

for some E ⊆ {1, . . . , k + 	} with |E| = ε} .

We then merge L1 � L2 on the syndrome s2 and 	 positions using Algo-
rithm2. As a result, we get e2 = y1 + y2, for (y1,y2) ∈ L1 × L2 such that
wtL(e2) = v and that satisfies the original syndrome Eq. (4.1). The complete
Lee-BJMM algorithm using restricted weights is given in Algorithm 3.

Remark 1. Note that, it might happen that y1 + y2 results in a vector of Lee
weight v, but the E positions did not cancel out, or the positions of low Lee
weight are going above the threshold r. This will not be a problem for us, as
this only results in a larger final list, which does not need to be stored and the
success probability of the algorithm would then even be larger than P given in
(4.2). As a result, the final cost of the algorithm we get will be an upper bound
on the actual cost.

In order for the algorithm to succeed, we must ensure that there exists at least
one representative y1 ∈ L1 of the solution e2, i.e., such that there exists y2 ∈ L2
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Algorithm 3. Lee-BJMM with Restricted Balls
Input: H ∈ (Z/ps

Z)(n−k)×n , s ∈ (Z/ps
Z)n−k , t ∈ N, given the positive integers 0 ≤

� ≤ n − k, 0 ≤ v ≤ t, 0 ≤ ε ≤ k + �.
Output: e ∈ (Z/ps

Z)n with s = eH� and wtL(e) = t.

1: Choose an n × n permutation matrix P and find an invertible matrix U ∈
(Z/ps

Z)(n−k)×(n−k) such that

UHP =

(
Idn−k−� A

0 B

)
,

where A ∈ (Z/ps
Z)(n−k−�)×(k+�) ,B ∈ (Z/ps

Z)�×(k+�) .
2: Compute

sU� =
(
s1 s2

)
,

where s1 ∈ (Z/ps
Z)n−k−� , s2 ∈ (Z/ps

Z)� .
3: Build the list B as

B=
{
x | xEC ∈S(r)

(
0, v

4
, k+�−ε

2
, ps) for some E ⊆ {

1, . . . , k+�
2

}
with |E| = ε/2

}

4: Compute L1 = B1 ++0 B2 and L2 = B1 ++s2 B2 using Algorithm 1.
5: Compute e ∈ L1 �� L2 using Algorithm 2.
6: If this fails, return to Step 1.
7: Return P�e.

with y1+y2 = e2. This is achieved by a correct choice of the parameter u. We first
compute the expected total number of such representatives for a fixed e2. From
Lemma 3, we know that e2 follows a uniform distribution in S(r)(0, v, k + l, ps).
Using the marginal distribution in (3.1) and (3.2), we can compute the expected
Lee weight distribution for e2. Let λ be the expected Lee weight composition
of e2, and σ be the expected support size of e2. Also recall that for a weak
composition λ of v, we denote by C(v/2, v, λ, k + 	, ps) the number of weak
compositions π of v/2 which fit into a composition λ of length k + 	, i.e., the
maximal part sizes are given by λ.

Lemma 4. The expected number of representatives (y1,y2) ∈ L1 × L2 for a
fixed solution e2 is at least given by

RU = C(v/2, v, λ, k + 	, ps)
(

k + 	 − σ

ε

)
(ps − 1)ε,

where λ is the expected Lee weight composition of e2, and σ is the expected
support size of e2.

The proof of Lemma 4 can be found in Appendix B. In order to expect the exis-
tence of at least one representative y1 ∈ L1 of e2, we choose u =

⌊
logps (RU )

⌋
.

Asymptotic Cost of the Algorithm: We now present an upper bound on the
asymptotic costs of the algorithm. For this, let R be the rate of the code and
M = �ps/2�. We assume that the internal algorithm parameters t, v, 	, ε, u are
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some functions depending on n. We define the real numbers T := lim
n→∞

t(n)
n ,

V := lim
n→∞

v(n)
n , L := lim

n→∞
�(n)

n , E := lim
n→∞

ε(n)
n and U := lim

n→∞
u(n)

n . Note that
these real numbers satisfy the following inequalities:

0 ≤ V ≤ min{T, ϕ(r, t, n, ps)/n}, 0 ≤ L ≤ 1 − R, 0 < E < R + L

0 ≤ T − 2V ≤ M(1 − R − L) and 0 < U < L.

We first provide the asymptotic cost of Algorithm1 and Algorithm 2. In the
following results, we compute the asymptotic exponent e of the cost of an algo-
rithm, which means that the cost is given by (ps)(e+o(1))n.

Lemma 5 ([22, Lemma 4.3]). The asymptotic exponent of the average cost
of Algorithm1 is

lim
n→∞

1
n

max
{
logps (|B1|) , logps (|B2|) , logps (|B1|) + logps (|B2|) − U

}
.

Lemma 6 ([22, Corollary 2]). The asymptotic exponent of the average cost
of the last merge (Algorithm2) is given by

lim
n→∞

1
n

max
{
logps(|L1|), logps(|L2|),

(
logps(|L1|) + logps(|L2|)

) − (L − U)
}

.

Note that the L − U comes from the fact that the vectors already merge to s2
on U positions due to the first merge.

Let us denote the asymptotics of the binomial coefficient by

H(F,G) := lim
n→∞

1
n

logps

((
f(n)
g(n)

))

= F logps(F ) − G logps(G) − (F − G) logps(F − G),

where f(n), g(n) are integer-valued functions such that lim
n→∞

f(n)
n = F and

lim
n→∞

g(n)
n = G. Recall, from (2.1), that

γ(V/2, V ) = lim
n′→∞

1
n′ logps (C(v/2, v, λ, n′, ps)) .

For us n′ = k + 	, which also tends to infinity for n going to infinity. Thus,

lim
n→∞

k + 	

n
lim

k+�→∞
1

k + 	
logps (C(v/2, v, λ, k + 	, ps)) = (R + L)γ(V/2, V ).

Let S = lim
n→∞ σ(n)/n. By Lemma 4 we choose U as

U = (R + L)γ(V/2, V ) + H(R + L − S,E) + E.
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Theorem 2. The asymptotic exponent of the average time complexity of the
Lee-metric BJMM algorithm on two levels is at most given by I + C, where

I = A(M)(T, ps) − A(r)

(
V

R+L , ps
)

− A(M)

(
T−V

1−R−L , ps
)

,

is the exponent of the expected number of iterations and C = max{B, 2D − L +
U,D} is the exponent of the expected cost of one iteration with

B = A(r)

(
V
4 , R+L−E

2 , ps
)

+ H
(

R+L
2 , E

2

)
+ E/2,

D = A(r)

(
V
2 , R + L − E, ps

)
+ H(R + L,E) + E − U.

Proof. For our base lists Bi, we have that

|B| = F(r)

(
v
4 , k+�−ε

2 , ps
) (

(k + 	)/2
ε/2

)
(ps)ε/2.

Due to Lemma 5 and Corollary 2, the asymptotic exponent of the average cost
of the first merge is then given by

B = A(r)

(
V
4 , R+L−E

2 , ps
)

+ H
(

R+L
2 , E

2

)
+ E/2.

For the second merge we also need to compute the asymptotic sizes of Li. First,
we note that the expected size of Li is given by

|Li| =
(

F(r)

(
v
2 , k + 	 − ε, ps

) (
k + 	

ε

)
(ps)ε

)
/psu.

Thus,

D = lim
n→∞

1
n

logps (|Li|) = A(r)

(
V
2 , R + L − E, ps

)
+ H(R + L,E) + E − U.

Using Lemma 6, the asymptotic exponent of the average cost of the last merge
is then given by

2D − L + U = 2A(r)(V/2, R + L − E, ps) + 2H(R + L,E) + 2E − U − L.

We recall from Eq. (4.2) that the success probability of the algorithm is given
by P , hence, we get the asymptotic number of iterations I. 	

Observe that 	, v, r, ε are internal parameters, which can be chosen optimal, i.e.,
such that the algorithm achieves the minimal cost. Clearly, the choice for the
threshold r will influence the possible choices for v.

The Amortized Case: If we only consider psu many vectors from the base lists
B, we can potentially reduce the cost. The algorithm is going to work exactly
the same way, with the only difference that the base lists B′ have size psu. Thus,
after using the merging Algorithm 1 on u positions we get lists L′

i of size psu as
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well. Finally, we merge these lists using Algorithm 2 on 	 positions. Note that
the condition on U = limn→∞ u(n)/n now is

L/3 ≤ U ≤ min{(R + L)γ(V/2, V ) + H(R + L − S,E) + E,B,L},

where B denotes the asymptotic size of the original base lists, i.e.,

B = A(r)(V/4, (R + L − E)/2, ps) + H((R + L)/2, E/2) + E/2.

The condition L/3 ≤ U , comes from the size of the final list, i.e., the number of
solutions for the smaller instance, which is ps2u

ps(�−u) = ps(3u−�). In order to have at
least one solution, we require 3u ≥ 	. The other conditions are as before. Note
that in the amortized case, the success probability of splitting e = (e1, e2) is not
simply given by

P = F(r)(v, k + 	, ps)F (t − v, n − k − 	, ps)F (t, n, ps)−1

as in the non-amortized case, since our list of e2 is by construction smaller.
That is: instead of all solutions to the smaller problem F(r)(v, k + 	, ps)p−s�, we
only consider Z many solutions to the smaller problem. In other words, Z is the
number of distinct e2 in our last list. Similar to the approach of [11], we have a
success probability of

P ′ = Zps�F (t − v, n − k − 	, ps)F (t, n, ps)−1.

In order to compute Z, let us denote by X the maximal amount of collisions of
the last merge which would lead to an e2 (i.e., with possible repetitions), by Y
the total number of solutions to e2B� = s2 with e2 ∈ S(r)(0, v, k+	, ps), namely

Y = F(r)(v, k + 	, ps)p−s�,

and finally by W the number of collisions that we are considering, that is

W = ps(3u−�) = ps2up−s(�−u).

This leaves us with a combinatorial problem: given a basket with X balls having
Y colors, if we pick W balls at random, how many colors are we going to see on
average? This will determine the number of distinct tuples e2 in the final list.
This number is on average

Y
(
1 − (

X−X/Y
W

)(
X
W

)−1
)

,

which can be lower bounded by W. In fact,

1 − (
X−X/Y

W

)(
X
W

)−1 ≥ 1 − (1 − W/X)X/Y ∼ W/Y.

Hence, Z ≥ ps(3u−�) and we get a success probability of at least

ps3uF (t − v, n − k − 	, ps)F (t, n, ps)−1.
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The asymptotic exponent of the average cost of the amortized version of Algo-
rithm3 is then given by I ′ + max{U, 3U − L}, where I ′ corresponds to the
expected number of iterations, i.e.,

I ′ ≤ A(M)(T, ps) − 3U − A(M)((T − V )/(1 − R − L), ps).

Hence, we can see that the restriction to the smaller balls does not influence the
amortized version of BJMM, as the idea of amortizing is already to restrict the
balls. The restriction only influences the conditions and thus the choice of U.

4.2 Decoding Beyond the Minimum Distance

There could be scenarios where one wants to decode more errors than the mini-
mum Lee distance of the code at hand.

In a scenario where we have t > Mn/2, the marginal distribution of e ∈
(Z/ps

Z)n implies that ±M is the most likely entry of e, then the second most
likely is ±(M − 1) and so on, until the least likely entry is 0. In this case,
we will reverse the previous algorithm and for some threshold Lee weight 0 ≤
r ≤ M , we want the vector e2 of Lee weight t − ϕ(r − 1, t, n, ps) ≤ v ≤ t
to live in {±r, . . . ,±M}k+�. In order to construct such a vector, we will use a
similar construction as before, where we exchange the set {0,±1, . . . ,±r} with
{±r, . . . ,±M}. Note that the success probability of such splitting is given by

P = F (r)(v, k + 	, ps)F (t − v, n − k − 	, ps)F (t, n, ps)−1.

Furthermore, there are two main differences to the previous algorithm: firstly,
the ε overlapping positions now sum up to ±M , since M is the most likely Lee
weight. Secondly, we require to partition the weights in order to guarantee that
the large weight entries of y1 will not be decreased after adding y2. Therefore,
the weight distribution of e2 is as follows: on some (k + 	− ε)/2 positions y1 has
Lee weight (v − εM)/2 and y2 is zero, and on some other (k + 	− ε)/2 positions
y2 has Lee weight (v − εM)/2 and y1 is zero. The vectors x(i)

j follow a similar
partition as before. See Fig. 3 for an illustration. The base list B is then

B=
{
x

∣∣ xZ = 0,xW ∈ S(r)
(
0, v−εM

4 , k+�−ε
4 , ps

)
,xE ∈(Z/ps

Z)ε/2 for a partition

Z ∪ W ∪ E of
{
1, . . . , k+�

2

}
with |Z| = |W | = k+�−ε

4 , |E| = ε
2

}
.

All of the base lists have the same size, which is given by
(

(k + 	)/2
ε/2

)
psε/2

(
(k + 	 − ε)/2
(k + 	 − ε)/4

)
F (r)

(
(v − εM)/4, (k + 	 − ε)/4, ps

)
.
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Fig. 3. Two levels decomposition of the vector e2 into y1 and y2, where yi = (x
(i)
1 ,x

(i)
2 )

for i = 1, 2 with corresponding Lee weights in the support (gray areas). For (y1)i and
(y2)i with i ∈ E , we require wtL ((y1)i + (y2)i) = M .

Performing the concatenation merge of Algorithm 1 on B1 = B2 = B, we obtain
the lists L1 and L2 for y1 and y2, respectively, as follows

L1 =
{
y

∣
∣ yB� =u 0,yZ = 0,yE ∈(Z/ps

Z)ε,yW ∈S(r) (
0, v−εM

2
, k+�−ε

2
, ps) , for a

partition Z ∪ W ∪ E of {1, . . . , k + �} with |Z| = |W | = k+�−ε
2

, |E| = ε
}

,

L2 =
{
y

∣
∣ yB� =u s2,yZ = 0,yE ∈(Z/ps

Z)ε,yW ∈S(r) (
0, v−εM

2
, k+�−ε

2
, ps) , for a

partition Z ∪ W ∪ E of {1, . . . , k + �} with |Z| = |W | = k+�−ε
2

, |E| = ε
}

.

Both lists are of size
(

k + 	

ε

)
ps(ε−u)

(
k + 	 − ε

(k + 	 − ε)/2

)
F (r)

(
(v − εM)/2, (k + 	 − ε)/2, ps

)
.

For this procedure to work, we also need the additional condition on v, r and ε,
that v ≥ ε(M − r) + r(k + 	). Then, a final merge using Algorithm2 produces a
final list of all solutions of the smaller instance which does not need to be stored.

Lemma 7. The number of representations e2 = y1 +y2 for (y1,y2) ∈ L1 ×L2,
for ε′ = k + 	 − ε, is then given by at least

RB =
(

k + 	

ε

) (
ε∑

i=0

(
ε

i

)
(M − r + 1)irε−i

(
ε′

i

)
(M − r + 1)i

(
ε′ − i

(ε′ − i)/2

))
.

The proof of this Lemma can be found in Appendix B. Thus, we will need the
additional condition ε ≤ (k + 	)/2 and we choose u =

⌊
logps(RB)

⌋
. Since we

cannot take the asymptotic of an infinite sum, we need to bound this quantity.
In fact, setting i = ε gives such lower bound.

RB ≥
(

k + 	

ε

)
(M − r + 1)2ε

(
k + 	 − ε

ε

)(
k + 	 − 2ε

(k + 	 − 2ε)/2

)
.
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Thus, we choose U = limn→∞ u(n)/n as

H(R+L, E)+2E logps(M −r+1)+H(R+L−E, E)+H(R+L−2E, (R+L−2E)/2).

In addition, since we decode beyond the minimum distance, the LSDP has several
solutions. Since the inputs have been chosen uniformly at random, we can assume
that these solutions are independent from each other. Thus, to find just one of
all the expected N = F (t, n, ps)p−s(n−k) solutions we have an expected number
of iterations given by (NP )−1, instead of P−1. Note that asymptotically this
value is bounded by R, as

X := lim
n→∞

1
n

logps

(
F (t, n, ps)p−s(n−k)

)
= A(M)(T, ps) − 1 + R ≤ R.

Corollary 1. The asymptotic exponent of the average time complexity of the
Lee-metric BJMM algorithm on two levels for t > Mn/2 is given by at most
I + C, where

I =(1 − R) − A(r)
(

V
R+L , ps

)
− A(M)

(
T−V

1−R−L , ps
)

is the expected number of iterations and C = max{B,D, 2D −L+U} is the cost
of one iteration, where

B = E
2 + H

(
R+L
2 , E

2

)
+ H

(
R+L−E

2 , R+L−E
4

)
+ A(r)

(
V −EM
R+L−E , ps

)
,

D = E − U + H(R + L,E) + H
(
R + L − E, R+L−E

2

)
+ A(r)

(
V −EM
R+L−E , ps

)
.

The Amortized Case: We consider again the amortized version of this algorithm,
i.e., we only take psu many vectors from the base lists B. The algorithm is going
to work exactly the same way, similar to the amortized version for the first
scenario. The asymptotic cost of the amortized version of Algorithm 3 is then
given by I ′ + max{U, 3U − L}, where I ′ is as before the expected number of
iterations, i.e.,

I ′ ≤(1 − R) − 3U − A(M)((T − V )/(1 − R − L), ps).

5 Comparison

In this section we compare the new Lee-metric BJMM algorithm to the
Lee-metric BJMM algorithm from [22] and to the Lee-metric Wagner algo-
rithm [11]. For this we denote by e(R, ps) the exponent of the asymptotic
cost, i.e., the asymptotic cost is given by (ps)(e(R,ps)+o(1))n. We compare
the worst case cost exponent e(R∗, ps) for R∗ = argmax0≤R≤1 (e(R, ps)).
All computations made in this section are based on Mathematica [15] pro-
grams available at https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-comple
xities/-/blob/master/Lee-ISD-restricted.nb.

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
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Fig. 4. Comparison of asymptotic costs (ps)(e(R,ps)+o(1))n of various Lee ISD algo-
rithms for full-distance decoding for ps = 47.

Table 1. Comparison of asymptotic costs (ps)(e(R,ps)+o(1))n of various Lee ISD algo-
rithms for full-distance decoding for ps = 47.

Algorithm e(R∗, ps) R∗ Optimal internal parameters Memory

Lee-BJMM 0.1620 0.4514 T = 1.4680, V = 0.0692
L = 0.0405, E = 0.0017

0.0376

Restricted Lee-BJMM
for r = 5

0.1541 0.4081 T = 1.7516, V = 0.2502
L = 0.1007, E = 0

0.0791

Amortized
Lee-BJMM

0.1190 0.4056 T = 1.7691, V = 0.5868
L = 0.1787, E = 0.1331

0.0894

Amortized Restricted
Lee-BJMM for r = 6

0.1191 0.4046 T = 1.7765, V = 0.6195
L = 0.1838, E = 0.0200

0.0919

Amortized
Lee-Wagner

0.1441 0.4454 T = 1.5048, V = 0.3245
L = 0.0939

0.0470

Amortized Restricted
Lee-Wagner for r = 7

0.1441 0.4451 T = 1.5063, V = 0.3248
L = 0.0940

0.0470

In the first scenario, we only decode up to the Gilbert-Varshamov bound,
that is V (d(n), n, ps) = 1−R, thus giving an immediate relation between T and
R, where T is limn→∞ d(n)/n, i.e., we are considering full-distance decoding.

In the second scenario, where we have N > 1 solutions, one possible analysis
technique, proposed in [11], is to fix a rate R and go through all M/2 ≤ T ≤ M ,
to see at which T the largest cost is attained for this fixed rate. However, this
approach gives for the algorithm in [11] as well as for our algorithm always
either T = M or T very close to M (see [11, Figure 1-2, Table 1]). This is a very
high weight, where e will mostly have entries ±M . Hence, this approach is not
suitable for the comparison of different ISD algorithms for all rates.

In order to compare ISD algorithms for all rates, we adapt the full distance
decoding approach that fixes a relation between R and T . Note that for a random
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Fig. 5. Comparison of asymptotic costs (ps)(e(R,ps)+o(1))n of various Lee ISD algo-
rithms for decoding beyond the minimum distance for ps = 47.

Table 2. Comparison of asymptotic costs (ps)(e(R,ps)+o(1))n of various Lee ISD algo-
rithms for decoding beyond the minimum distance for ps = 47.

Algorithm e(R∗, ps) R∗ Optimal internal parameters Memory

Amortized Restricted
Lee-BJMM for r = 20

0.0346 0.3424 T = 18.9921, V = 9.4574
L = 0.0692, E = 0.2145

0.0346

Amortized
Lee-Wagner

0.0370 0.3118 T = 18.7093, V = 8.6930
L = 0.0717

0.0359

Amortized Restricted
Lee-Wagner for
r = 20

0.0369 0.2912 T = 18.5065, V = 8.2049
L = 0.0718

0.0359

instance of LSDP, the asymptotic value for the number of solutions N is given
by

X = A(M)(T, ps) − 1 + R ≤ R,

thus we can fix X to be a function in R, e.g. X = R/2. This will also directly
lead to a T = lim

n→∞ t(n)/n, for which A(M)(T, ps) = 1 − R/2. If we would have
fixed X to be a constant independent of R instead, this would have obstructed
the comparison for all rates smaller than this constant. Since there is no other
non-amortized algorithm which considers the second case, we will only compare
our amortized version with the algorithm provided in [11].

We can observe in Table 1 and 2 and Fig. 4 and 5 that the restricted algo-
rithms using the information from the distribution are indeed improving the
cost of the known ISD algorithms. Since amortized ISD algorithms are already
restricting the sizes of the balls, we get little to no improvement to these algo-
rithms.
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Appendix A Asymptotics

We first present the formula and derivation of the asymptotic size of the
restricted Lee spheres and the restricted compositions.

Appendix A.1 Asymptotics of Lee Spheres

In the complexity analysis of our algorithm, we are interested in the asymptotic
size of Lee spheres, Lee balls, and some types of restricted Lee spheres. All these
quantities can be described using generating functions, and their limit for n
going to infinity can be computed using the saddle point technique used in [12].

Generally, we consider two functions f(x) and g(x) both not depending on
n and define a generating function

Φ(x) = f(x)ng(x).

We are usually interested in the coefficients of generating functions. Therefore,
for some positive integer k we denote the coefficient of xk in Φ(x) by

[xt]Φ(x).

In the course of the paper, for a given length-n vector of Lee weight t we are
mainly focusing on the relative Lee weight per entry. Let us therefore denote
the relative Lee weight by T := t/n. The goal now is to estimate the coefficient
[xTn]Φ(x), for some fixed T ∈ (0, 1). The following gives an asymptotic result
on the growth rate of this coefficient.

Lemma 8 ([12, Corollary 1]). Let Φ(x) = f(x)ng(x) with f(0) �= 0, and t(n)
be a function in n. Set T := limn→∞ t(n)/n and set ρ to be the solution to

Δ(x) :=
xf ′(x)
f(x)

= T.

If Δ′(ρ) > 0, and the modulus of any singularity of g(x) is larger than ρ, then
for large n

1
n

logps([xt(n)]Φ(x)) ≈ logps(f(ρ)) − T logps(ρ) + o(1).
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(Restricted) Lee Spheres. We consider now the function

f(x) :=

{
1 + 2

∑M
i=1 xi if p �= 2,

1 + 2
∑M−1

i=1 xi + xM if p = 2.

The generating functions of the sizes of n-dimensional Lee spheres and Lee
balls are known to be Φ(x) = f(x)n and Φ′(x) = f(x)n

1−x , respectively. The asymp-
totics of these sizes have been computed in [12,22].

The generating function of the size of the restricted Lee sphere F(r)(t, n, ps)
is given by Φ(r)(x) = f(r)(x)n, where

f(r)(x) :=
{

1 + 2
∑M−1

i=1 xi + xM if p = 2 and r = M,
1 + 2

∑r
i=1 xi otherwise.

whereas, for F (r)(t, n, ps) the generating function is given by Φ(r)(x) = f (r)(x)n,
where

f (r)(x) =

⎧
⎪⎨

⎪⎩

f(M)(x) if r = 0,

2
∑M−1

i=r xi + xM if p = 2 and r > 0,

2
∑M

i=r xi if p �= 2 and r > 0.

Note that the coefficient of xt in Φ(r)(x) is equal to the coefficient of xt−rn in
Ψ (r)(x) = g(r)(x)n, where

g(r)(x) :=

⎧
⎨

⎩

f(M)(x) if r = 0,

2
∑M−1−r

i=0 xi + xM−r if p = 2 and r > 0,

2
∑M−r

i=0 xi if p �= 2 and r > 0.

In particular, we have that F(r)(t, n, ps) = [xt]Φ(r)(x) and F (r)(t, n, ps) =
[xt−rn]Ψ (r)(x). Note that F(M)(t, n, ps) = F (0)(t, n, ps) = F (t, n, ps). Using
Lemma 8, we get the following asymptotic behavior of restricted Lee spheres.

Corollary 2. Let T ∈ [0,M) and t = t(n) be a function of n such that t(n) :=
Tn for large n. Then,

1. for p �= 2 or r < M , we get

lim
n→∞

1
n

logps(F(r)(t(n), n, ps)) = logps(f(r)(ρ)) − T logps(ρ),

where ρ is the unique real positive solution of 2
∑r

i=1(i − T )xi = T .
2. for p = 2 and r = M , respectively r′ = 0, we get

lim
n→∞

1
n

logps(F(r)(t(n), n, ps)) = logps(f(r)(ρ)) − T logps(ρ),

where ρ is the unique real positive solution of 2
∑M−1

i=1 (i − T )xi + (M − T )
xM = T .
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3. for p = 2 and 0 < r ≤ T , we get

lim
n→∞

1
n

logps(F (r)(t(n), n, ps)) = logps(g(r)(ρ)) − (T − r) logps(ρ),

where ρ is the unique real positive solution of

2
M−1−r∑

i=1

(i − T + r)xi + (M − T )xM−r = 2(T − r).

4. for p �= 2 and 0 < r ≤ T , we get

lim
n→∞

1
n

logps(F (r)(t(n), n, ps)) = logps(g(r)(ρ)) − (T − r) logps(ρ),

where ρ is the unique real positive solution of 2
∑M−r

i=1 (i−T +r)xi = 2(T −r).

Proof. For the parts 1 and 2, we apply Lemma 8 to the generating function
Φ(r)(x) and obtain the mentioned results, similar to r = M for f(r) case proved
in [22, Lemma 2.6]. For the parts 3 and 4, we apply Lemma 8 to the generating
function Ψ (r)(x) and obtain the mentioned results. 	

Remark 2. Note that, for p odd (respectively, even), we get T ≥ M(M +
1)/(2M + 1) (respectively, T ≥ M/2) if and only if

lim
n→∞

1
n

logps(V (Tn, n, ps)) = 1.

Hence, if 0 < R, then a code that attains the asymptotic Gilbert-Varshamov
bound has

lim
n→∞

1
n

logps(V (Tn, n, ps)) = 1 − R < 1,

and we get that T < M(M + 1)/(2M + 1) if p is odd, or T < M/2 if p is even.

Restricted Compositions. Recall that we denote by C(v, t, λ, n, ps) the num-
ber of weak compositions π of v, which fit into the composition λ of t both
having n part sizes, i.e., for all i ∈ {1, . . . , n} we have πi ≤ λi. The reason we
are interested in this number is that we can think of the Lee weight composition
of a vector e ∈ (Z/ps

Z)n as λ = (λ1, . . . , λn), which is such that λi = wtL((e)i).
For a given composition λ of t, let m denote the maximal part size, i.e.,

m = max {λi | i ∈ {1, . . . , n}} .

Then, the generating function of C(v, t, λ, n, ps) is given by

Φ(z) =
n∏

i=1

⎛

⎝
λi∑

j=0

zj

⎞

⎠ =
m∏

i=1

⎛

⎝
i∑

j=0

zj

⎞

⎠
cin

,
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where ci corresponds to the multiplicity of i in the composition λ, i.e., there are
cin entries of e ∈ (Z/ps

Z)n which have Lee weight i. Thus, Φ(z) = f(z)n, for

f(z) =
m∏

i=1

⎛

⎝
i∑

j=0

zj

⎞

⎠
ci

.

To get the asymptotics of C(v, t, λ, n, ps) we are interested in the coefficient of
zv in Φ(z). For this, let v be a function of n and V = lim

n→∞ v(n)/n. Now using the

saddle point technique of [12] we define Δ(f(z)) = zf ′(z)
f(z) . Let ρ be the unique

positive real solution to Δ(f(z)) = V. Then

lim
n→∞

1
n

logps (C(v, t, λ, n, ps)) = logps(f(ρ)) − V logps(ρ).

Let us summarize this discussion in the following lemma.

Lemma 9. Let us consider a weak composition λ = (λ1, . . . , λn) of t and asymp-
totic relative Lee weight T := lim

n→∞ t(n)/n. In addition, let us consider a positive

integer v ≤ t with V := lim
n→∞ v(n)/n. Let m = max{λi | i ∈ {1, . . . , n}}. If

0 ≤ V < M , then

lim
n→∞

1
n

logps(C(v, t, λ, n, ps)) = logps(f(ρ)) − V logps(ρ),

where ρ is the unique real positive solution of
m∑

i=1

ci
z + 2z2 + · · · + izi

1 + z + · · · + zi
= V.

Appendix B Proofs of Lemma 4 and 7

Lemma 4. The expected number of representatives (y1,y2) ∈ L1 × L2 for a
fixed solution e2 is at least given by

RU = C(v/2, v, λ, k + 	, ps)
(

k + 	 − σ

ε

)
(ps − 1)ε,

where λ is the expected Lee weight composition of e2, and σ is the expected
support size of e2.

Proof. Consider the Lee weight composition of e2 to be λ = (λ1, . . . , λk+�),
which is such that λi = wtL((e2)i). Thus, e2 = (s1λ1, . . . , sk+�λk+�), for si ∈
{1,−1}. Then, to get all possible representatives y1, we need the number of
weak compositions π of v/2 fitting into λ. In fact, for any π = (π1, . . . , πk+�)
fitting into λ, there will exist exactly one eligible y1 with wtL((y1)i) = πi and
(y1)i = siπi. Note that the Lee weight composition of y2 ∈ L2 is then |λ − π| =
(|λ1 − π1|, . . . , |λk+� − πk+�|).

On the other hand, for any representative y1, we cannot have πi =
wtL((y1)i) > wtL((e2)i) and (y1)i = −siπi for any i ∈ {1, . . . , σ}. In fact, let us
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assume we have A many positions in y1 which are such that πi = wtL((y1)i) >
wtL((e2)i) = λi. Due to the entry-wise additivity of the Lee weight, we have that
y2, with composition |λ − π|, has wtL(y2) > v/2: in the considered A positions
we have that wtL((y2)j) = πj − λj and the Lee weight of the remaining σ − A
positions is given by wtL((y2)j) = λj − πj , which if we sum over all positions
gives

wtL(y2) =
A∑

j=1

(πj − λj) +
k+�∑

j=A+1

(λj − πj)

=
A∑

j=1

(πj − λj) + v −
A∑

j=1

λj −
⎛

⎝v/2 −
A∑

j=1

−πj

⎞

⎠

= v/2 + 2

⎛

⎝
A∑

j=1

πj − λj

⎞

⎠ �= v/2.

It is easy to see, that for each fixed π, there exists only one representative y1,
which has in each position the same sign as e2.

Recall that C(v/2, v, λ, k + 	, ps) denotes the number of weak compositions
π of v/2 which fit into λ. Now, since y1 can take any non-zero value on the
ε positions outside of the support of e2, we get the claim. Finally, the exact
number of representations might even be larger than this, since a solution e2
might also be formed from positions E which will not cancel out, as assumed for
this computation. 	

Lemma 7. The number of representations e2 = y1 +y2 for (y1,y2) ∈ L1 ×L2,
for ε′ = k + 	 − ε, is then given by at least

RB =
(

k + 	

ε

) (
ε∑

i=0

(
ε

i

)
(M − r + 1)irε−i

(
ε′

i

)
(M − r + 1)i

(
ε′ − i

(ε′ − i)/2

))
.

Proof. To give a lower bound on the number of representations it is enough
to give one construction. The overall idea of this construction is to split the ε
positions of y1 (denoted by set E1) and ε positions of y2 (denoted by set E2) into
those parts where they overlap and those parts where they do not overlap. In
the parts where E1 does not overlap with E2, we can only allow small Lee weights
in y1 such that, by adding large Lee weight entries of y2, we can still reach the
large Lee weight entries of e2.

So let us consider a fixed e2 ∈ F (r)(v, k + 	, ps). As a first step we fix the E1

positions which gives
(
k+�

ε

)
. Then, within the E1 position we fix those of small

Lee weight. This means for a fixed position we can assume that the entry in e2 is
a with r ≤ wtL(a) ≤ M . Small Lee weights of y1 now refer to the possible values
of y1 in this position such that a can be reached through large Lee weight entries
of y2. That is, for example if a = r, we allow in y1 the entries {0,−1, . . . , r−M},
or if a = M we allow in y1 the entries {M −r, . . . , 0}. These allowed sets of small
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Lee weight always have size M − r + 1, independently of the value a. Thus, in
E1 of size ε we choose i entries of small Lee weight, which give

(
ε
i

)
(M − r + 1)i

many choices. For the remaining ε − i positions in E1 we have large Lee weights
in y1, which cannot reach the large Lee weight entries of e2 through large Lee
weight entries in y2. Thus, they must come for the E2 positions. In these entries
we have rε−i possible choices. Note that out of the ε many positions of E2 we
have only assigned ε− i many. Hence, as a next step we choose of the remaining
k + 	 − ε positions the remaining i positions to have small Lee weight in y2.
Thus, the fixed large Lee weight entries of e2 can be reached by adding these
positions to large Lee weight entries of y1. For this we have

(
k+�−ε−i

i

)
(M −r+1)i

possibilities. As a final step we then partition the remaining positions to either
be 0 or of large Lee weight, i.e.,

(
k+�−ε−i

(k+�−ε−i)/2

)
. 	
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Abstract. Recently, F. Ivanov, E. Krouk and V. Zyablov proposed new
cryptosystem based of Generalized Reed–Solomon (GRS) codes over field
extensions. In their approach, the subfield images of GRS codes are
masked by a special transform, so that the resulting public codes are
not equivalent to subfield images of GRS code but burst errors still can
be decoded. In this paper, we show that the complexity of message–
recovery attack on this cryptosystem can be reduced due to using burst
errors, and the secret key of Ivanov–Krouk–Zyablov cryptosystem can
successfully recovered in polynomial time with a linear–algebra based
attack and a square–based attack.

Keywords: Code–based cryptography · GRS codes · Field
extensions · Subspace subcodes · Projected codes · Information–set
decoding · Key–recovery attack

1 Introduction

Due to the development of quantum computing and the vulnerability of tradi-
tional asymmetric cryptosystems to attacks using quantum computers, there is
a need to create new secure cryptosystems. Code–based cryptography is con-
sidered as one of the most promising and mature candidates for post–quantum
cryptography. The first code–based cryptosystem based on binary Goppa codes
was proposed by R. J. McEliece in 1978 [19] and in its modern version ClassicM-
cEliece [7] submitted to NIST–PQC competition is still believed to be secure.
However due to large public key sizes, the McEliece cryptosystem is limited in
some practical applications. In order to get smaller key sizes, there were attempts
to replace binary Goppa codes by other classes of efficient algebraic codes, such
as Generalized Reed–Solomon (GRS) codes [22], Reed–Muller codes [26], AG–
codes [16], concatenated codes [25], rank–metric Gabidulin codes [13]. However,
most of this modifications were proven unsecure [8,11,21,24,25,27]. With gen-
eral McEliece framework being masking a fast–decodable code by using a hid-
ing permutation, there were also attempts to employ more sophisticated hiding
mechanisms (e.g. [3,6,26,28,29]). However most of this modifications were also
successfully attacked [10,12,29]. Another approach to reduce public key size is
using random group–structured codes, which was successfully implemented in
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BIKE [1,2] and HQC [20] cryptosystems, however this introduces some decryp-
tion failure rate (DFR) making it harder to prove CCA security.

Recently, several protocols based on subfield images of algebraic codes over
field extensions were proposed. Namely, in [5] T. Berger, C. Gueye, J. Klamti
introduced the notion of generalized subspace (GS) subcodes, which are inter-
mediate level between subfield subcodes and subfield images of codes over field
extensions Fqm , and proposed using such codes in cryptography. In addition, it
was shown in [5] that a McEliece–like cryptosystem based on subfield images
of GRS codes can be attacked by a modification of the Sidelnikov–Shestakov
attack, and quasi–cyclic variant of this cryptosystem can be attacked by using
approach of [23]. In [17], K. Khathuria, J. Rosenthal and V. Weger proposed
using the punctured subfield images of GRS codes in the Niederreiter–like cryp-
tosystem (XGRS cryptosystem). However, in [9], a cryptosystem based on gener-
alized subspace subcodes of GRS codes (SSRS cryptosystem), which generalizes
XGRS cryptosystem, was successfully attacked using a modification of Schur–
Hadamard product in the case λ > m/2, where λ is dimension of subspaces.
More recently, F. Ivanov, E. Krouk and V. Zyablov proposed a new protocol
[15] based on subfield images of GRS–codes, with the public code being neither
subfield image of GRS–code naither its subcode. However, in this paper we show
that Ivanov–Krouk–Zyablov (IKZ) cryptosystem is also insecure.

This paper is organized is follows. In Sect. 2 we give necessary preliminaries
on m–block codes, subfield images of codes, generalized subspace subcodes and
generalized projected codes. In Sect. 3, we consider a generalization of Ivanov–
Krouk–Zyablov protocol and estimate the complexity of information–set decod-
ing attack on it. In Sect. 4, we propose a key–recovery attack based on linear
algebra. In Sect. 5, we propose a faster attack based on twisted squares attack
of [9] which however requires larger degree field extensions.

2 Preliminaries

Let Fq be a finite field of size q. Given a vector c ∈ F
n
q , by supp(c) = {i =

1, . . . , n | ci �= 0} we denote the support of c and by wt(c) = | supp(c)| we denote
the Hamming weight of c. The Hamming distance between x,y ∈ F

n is denoted
by d(x,y) = wt(x−y). A linear [n, k, d]q–code is a linear subspace C ⊂ F

n
q , such

that dim(C) = k and d = minc∈C\{0} wt(c). GC denotes a generator matrix of
C and HC denotes a parity–check matrix of C. Given a code C, its dual code is
denoted by C⊥. By In we denote n × n–identity matrix.

Shortened and punctured codes are well–known constructions for building
new codes from existing ones. Let 1, n = {1, . . . , n} and let I ⊂ 1, n. Given a
[n, k, d]q–code C, the punctured code of C on positions I is defined as follows

PctI(C) =
{
(ci)i/∈I | (c1, c2, . . . , cn) ∈ C

}
, (1)

i.e. PctI(C) is obtained from C by deleting coordinates indexed by I. The short-
ened code of C on I is

ShI(C) = PctI ({c ∈ C | supp(c) ∩ I = ∅}) . (2)
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Note that PctI(C) and ShI(C) are also linear codes and the following relations
hold.

Proposition 1 ([14], Theorem 1.5.7). Let C be a [n, k, d]q–code. Then

1. PctI(C)⊥ = ShI(C⊥) and ShI(C)⊥ = PctI(C⊥);
2. if |I| < d, then dim (PctI(C)) = k and dim

(
Sh(C⊥)

)
= n − k − |I|; if |I| = d

and I is the set of coordinates where a minimum weight codeword is nonzero,
then

dim(PctI(C)) = k − 1, dim(ShI(C⊥)) = n − k − |I| + 1.

2.1 m–block Codes

In [4,5] T. Berger et. al. proposed the notion of m–block codes for which the
ambient alphabet is the set of m–tuples of elements of Fq. Namely, a m–block
code of length n is an additive code over the alphabet Em = F

m
q (i.e. a subgroup

of (En
m,+)), which is stable by scalar multiplication by any λ ∈ Fq. The integer m

is called the block size. Given c = (c1, . . . , cn) ∈ E
n
m � F

mn
q , by suppm(c) = {i |

ci �= 0} we denote block support of c, by wtm(c) = | suppm(c)| and dm(x,y) =
wtm(x − y) we denote block Hamming weight and block Hamming distance
respectively. Since E

n
m and F

nm
q can be identified, it follows that a m–block

code is also a linear code over Fq of length mn, equipped with block Hamming
metric. A m–block code C of block length n, Fq–dimension k and minimum
block distance dm = minc∈C\{0} wtm(c)} is said to be [n, k, dm]mq –block code.

Block codes are of particular interest due to having ability to correct error
bursts. Indeed, let Sm,n,t = {e ∈ E

n
m | wtm(e) ≤ t} be a set of synchronous t

error burst of length m, then clearly a [n, k, dm]mq –code can correct any error
from Sm,n,�(dm−1)/2�.

Remark 1. Let Emn,l ⊂ F
nm
q denote a set of l error bursts of length up to m (non–

synchronous to m–block structure of a code). Note that if an m–block code can
correct any error from Sm,n,t, then it can correct any error from Emn,�t/2� since
any non–synchronous error burst of length m covers at most two m–blocks.

Note that the notion of block codes can be easily generalized to multi-block
codes. Namely, a multi–block code is an additive subgroup of Em1 × · · · × Emn

,
which is stable by scalar multiplication by any λ ∈ Fq.

Two multi–block codes C1 and C2 of length are said to be multiplier equiva-
lent if there exist Λ1, . . . , Λn ∈ GLmi

(Fq) such that

C2 = {c · Λ | c ∈ C1} , Λ = diag(Λ1, . . . , Λn).

Proposition 2. Let C2 = {c · Λ | c ∈ C1}. Then C⊥
2 = {h · (Λ−1

)T | h ∈ C⊥
1 }.

Proof. Let GC1 be a generator matrix of C1 and HC1 be a parity check matrix
of C1. Since GC1 · Λ is a generator matrix of C2 and

(GC1 · Λ) · (Λ−1 · HT
C1

) = 0,

it follows that HC1 · (Λ−1
)T is a parity–check matrix of C2.
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Let V1, . . . , Vn be a tuple of Fq–linear subspaces of Em1 , . . . , Emn
of Fq–

dimensions μi ≤ mi, i = 1, . . . , n. The generalized subspace subcode of a multi–
block code C relative to V1, . . . , Vn is defined as

C|V1,...,Vn
= C ∩ (V1 ⊕ · · · ⊕ Vn) .

One can easily notice that this codes allow short representation. Let T1, . . . , Tn ∈
F

μi×mi
q be generator matrices of V1, . . . , Vn viewed as [mi, μi]q–linear codes.

Define the maps

ψi : Vi → Eμi
= F

μi
q , v 
→ m, s.t. v = mTi.

Then the short representation of C|V1,...,Vn
relative to T1, . . . , Tn is

GSS(C; T1, . . . , Tn) =
{
(ψ1(c1), . . . , ψn(cn)) | (c1, . . . , cn) ∈ C|V1,...,Vn , ci ∈ Emi

}
.

Remark 2. We clearly have

C|V1,...,Vn
= {c · diag(T1, . . . , Tn) | c ∈ GSS(C;T1, . . . , Tn)} .

Let P1, . . . , Pn ∈ F
mi×μi
q be full-rank matrices, which define projection maps

x 
→ xPi. Given a multi–block code C, the generalized projected code relative to
P1, . . . , Pn is defined as follows

GPC(C;P1, . . . , Pn) = {(c1P1, . . . , cnPn) | (c1, . . . , cn) ∈ C, ci ∈ Emi
}.

Proposition 3. Let C be a multi–block code, 1 ≤ μi ≤ mi, and let T1, . . . , Tn ∈
F

μi×mi
q be full-rank matrices. Then

GSS(C;T1, . . . , Tn)⊥ = GPC(C⊥;TT
1 , . . . , TT

n ).

Proof. Let T̃i ∈ F
mi×mi
q be a non–singular matrix derived from Ti by adding

mi − μi linearly independent rows. Let

C̃ =
{

c · diag
(
T̃1

−1
, . . . , T̃n

−1
) ∣

∣ c ∈ C
}

.

Since GSS(C;T1, . . . , Tn) is shortened subcode of C̃ on last mi − μi positions
of each mi–block, using Proposition 1 we obtain that GSS(C;T1, . . . , Tn)⊥ is
punctured code of

C̃⊥ =
{
h · diag

(
T̃1

T
, . . . , T̃n

T
) ∣

∣ h ∈ C⊥
}

(see Proposition 2) on the same positions, which is GPC(C⊥;TT
1 , . . . , TT

n ).

For more details on m–block codes, generalized subspace and generalized
projected codes we refer to [4,5,9].
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2.2 Subfield Images of Codes

A possible way to construct m–block codes with known parameters is to consider
subfield images of codes over some extension field Fqm . Let B = {b1, . . . , bm} be
a Fq–basis of Fqm , by φB we denote Fq–linear isomorphism between Fqm and
Em = F

m
q , i.e.

φB

(
m∑

i=1

tibi

)

= (t1, . . . , tm).

Let
ΦB : F

n
qm → E

n
m, (c1, . . . , cn) 
→ (φB(c1), . . . , φB(cn))

be an extension of φB to F
n
qm . The subfield image of a [n, k, d]qm code C ⊂

F
n
qm relative to the basis B is defined as ΦB(C) = {ΦB(c) | c ∈ C}. Clearly,

ΦB(C) is [n, k, d]mq block code and if DecC : F
n
qm → C is a decoder of C, then

ΦB ◦ DecC ◦Φ−1
B is a decoder of ΦB(C).

Remark 3. Let Fqm = Fq[γ], where γ is a root of a primitive polynomial. Note
that the usual choice of a basis of Fqm is Γ = {γ0, . . . , γm−1}.

Proposition 4 (Proposition 3 of [5]). Suppose B′ is another basis of Fqm and
M is basis change matrix, i.e. φB′(x) = φB(x)M for any x ∈ Fqm , then ΦB(C)
and ΦB′(C) are multiplier equivalent with Λ1 = · · · = Λn = M , i.e.

ΦB′(C) = {(c1M, . . . , cnM) | (c1, . . . , cn) ∈ ΦB(C)}

Remark 4. Note that ΦB(C) = ΦλB(C) for any nonzero λ ∈ Fqm .

Given ξ ∈ Fqm , by MB(ξ) we denote the matrix of transformation x 
→ ξx
written in basis B, i.e.

MB(ξ) =

⎛

⎜
⎝

φB(b1ξ)
...

φB(bmξ)

⎞

⎟
⎠ .

Note that for any λ, ξ ∈ Fqm , ξ �= 0, the following equality holds

φB(ξλ) = φB(λ) · MB(ξ) = φξ−1B(λ).

Proposition 5 (Proposition 4 of [5]). If GC = (gi,j) ∈ F
k×n
qm is a generator

matrix of C, then

ExpB(GC) =

⎛

⎜
⎝

MB(g1,1) . . . MB(g1,n)
...

. . .
...

MB(gk,1) . . . MB(gk,n)

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ΦB(— b1g1 —)
. . .

ΦB(— bmg1 —)
...

ΦB(— bmgk —)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is a generator matrix of ΦB(C).
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Given a basis B of Fqm , the dual basis B∗ is the unique basis of Fqm , such
that MB∗(ξ) = (MB(ξ))T for any ξ ∈ Fqm .

Proposition 6 (Proposition 5 of [5]). Let C ⊂ Fqm be a [n, k]qm–code with
a parity–check matrix HC , then

(ΦB(C))⊥ = ΦB∗(C⊥).

and the parity–check matrix of ΦB(C) is

Exp∗
B(HC) = ExpB∗(HC) =

⎛

⎜
⎝

MB(h1,1)T . . . MB(h1,n)T
...

. . .
...

MB(hn−k,1)T . . . MB(hn−k,n)T

⎞

⎟
⎠ .

Corollary 1. Let C ⊂ Fqm be a [n, k]qm–code. Then Proposition 3 and Propo-
sition 6 imply

GSS(ΦB(C);T1, . . . , Tn)⊥ = GPC(ΦB∗(C⊥);TT
1 , . . . , TT

n ).

2.3 Generalized Reed–Solomon Codes

Let x = (x1, . . . , xn) ∈ F
n
q be a vector of distinct non–zero values and let y =

(y1, . . . , yn) ∈ F
n
q be a vector, such that yi �= 0 for all i. The generalized Reed–

Solomon code with support x and multiplier y of length n and dimension k
is

GRSk(x,y) = {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x], deg(f) ≤ k − 1} .

When y = (1, 1, . . . , 1), the code is said to be a Reed–Solomon code and denoted
as RSk(x). As is well–known, GRSk(x,y) is a [n, k, n−k+1]q–code, the generator
matrix of GRSk(x,y) is

Gk(x,y) =

⎛

⎜
⎜
⎜
⎝

x0
1 · · · x0

n

x1
1 · · · x1

n
...

. . .
...

xk−1
1 · · · xk−1

n

⎞

⎟
⎟
⎟
⎠

diag(y1, ..., yn),

the generator matrix of RSk(x) is Gk(x) = Gk(x,1), the dual of GRSk(x,y) is
GRSn−k(x, z), where

z−1
i = yi

∏

i,j∈1,n
j 	=i

(xi − xj). (3)

Note that for a given GRS code multiplier and support are not unique. We refer
[18, Chapter 12] and [14, §5.3] for more details on GRS codes.

Remark 5. Any subfield image of GRSk(x,y) is multiplier equivalent to a sub-
field image of RSk(x). Indeed,

ΦB(GRSk(x,y)) =
{

(φB(ci) · MB(yi))i=1,...,n | (c1, . . . , cn) ∈ RSk(x)
}

.
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3 Ivanov–Krouk–Zyablov Cryptosystem

In [15] F. Ivanov, E. Krouk and V. Zyablov proposed a new cryptosystem based
on subfield images of generalized Reed–Solomon codes, with its key feature being
that public code is not equivalent to a subfield image. In this section, we give
a generalized version of it, consider some of its properties, and estimate the
complexity of a key–recovery attack.

3.1 Protocol Description

– Key generation. Let C = RSk(x) be a random [n, k]qm RS–code of even
length with support x = (x1, . . . , xn). Choose a random non–singular matrix
S ∈ GLkm(Fq), and random non–singular matrices Yj ∈ GLm(Fq), Mj ∈
GLmj

(Fq), j = 1, . . . , n, where

mj =

{
m − 1, j is odd
m + 1, j is even

.

The public key is Gpub = S · ExpΓ (Gk(x)) · Y · M , where

Y = diag(Y1, . . . , Yn), M = diag(M1, . . . ,Mn)

and secret key is (x, S,Q = Y · M).
– Encryption. Let t = (n − k)/2 be a number of errors that can be corrected

by C. Let m ∈ F
km
q be a plain text, then the ciphertext is

z = mGpub + e, e ∈ Emn,t/3.

– Decryption. Let DecC : Fqm → C be a decoder of C. Then mGpub can be
found as follows

mGpub = ΦB ◦ DecC ◦Φ−1
B

(
z · Q−1

)
.

Remark 6. Note that eQ−1 ∈ Sm,n,t. Indeed, let j be a starting position of an
error burst of length m. Two cases are possible:

1) (2s− 1)m+1 ≤ j ≤ 2sm for some s. It follows that after multiplying by Q−1

only two m–blocks get corrupted.
2) 2sm+1 ≤ j ≤ (2s+1)m for some s. It follows that after multiplying by Q−1

three m–blocks can get corrupted. Namely, 2s, 2s + 1, 2s + 2–th blocks.

Note that in [15] case 2) hasn’t been considered and due to this it was erroneously
proposed to sample e from Emn,t/2.

Remark 7. The use of GRS–codes in this protocol is equivalent to the use of
RS–codes due to the presence of Y (see Remark 5).
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Remark 8. Without loss of generality, one can assume that Y2i = Im and
M2i−1 = Im−1. Indeed,

diag(Y2i−1, Y2i) diag(M2i−1,M2i) = diag
(

Y2i−1

(
M2i−1

1

)
, Im

)

· diag
(

Im−1,

(
1

Y2i

)
M2i

)

Proposition 7. Let Gpub = S · ExpΓ (Gk(x,y)) · Q be a public key of IKZ–
cryptosystem based on GRSk(x,y)–code. Then any parity–check matrix of C⊥

pub

is of the form

H = S′ · ExpΓ∗(Gn−k(x, z)) · Q−1T, z−1
i = yi

∏

i,j∈1,n
j 	=i

(xi − xj).

In addition, since

Q−1T = diag(Y −1
1

T
, . . . , Y −1

n
T
) · diag(M−1

1

T
, . . . ,M−1

n
T
),

it follows that H is a public key of IKZ cryptosystem based on GRSn−k(x, z)–
code.

Proof. Using Proposition 6 and (3), we obtain

GpubH
T = S · ExpΓ (Gk(x,y)) · Q · Q−1 · ExpΓ ∗(Gn−k(x, z))T · S′T = 0.

3.2 Message–Recovery Attack

Since the error e is structured, it is possible to exploit it for reducing com-
plexity of information–set decoding attack. Indeed, we can consider Cpub =
Span

Fq
(Gpub) as a m–block code, then any error from Emn,t/3 covers at most

2t/3 m–blocks (see Fig. 1). It follows that remaining n − 2t/3 blocks are error–
free and the probability of finding error–free information set of k blocks is

ProbISD =

(
n−2t/3

k

)
(
n
k

) ,

which does not depend on m. Therefore, the workfactor of Ivanov–Krouk–
Zyablov cryptosystem is significantly lower than estimates of [15]. We also note
that due to using structured errors a significant reduction in complexity of ISD–
attacks also extends to several more IKZ–like cryptosystems recently proposed
in [30].

Fig. 1. non–synchronous error burst of length 2 corrupts 4 blocks



Cryptanalysis of Ivanov–Krouk–Zyablov Cryptosystem 145

So, due to simple message–recovery attack, Ivanov–Krouk–Zyablov cryp-
tosystem [15] can only be considered as a way to avoid key–recovery attacks
since it produces a public code which is not multiplier equivalent to a subfield
image of a GRS–code. However, below we show that such application of Ivanov–
Krouk–Zyablov protocol is also insecure.

4 Direct Key–Recovery Attack

In this section, we propose a key–recovery attack which is based on the unique-
ness of systematic generator matrix of Cpub and distinguishability of matrices
MΓ (a), a ∈ Fqm , from random ones.

4.1 Case of Even k

Define Qi ∈ F
2m×2m
q as

Qi = diag(Y2i−1, Y2i) · diag(M2i−1,M2i),

so Q = diag(Q1, . . . , Qn/2). Let Gsys
C = [Ik | L] = (li,j) ∈ F

k×n
qm be the systematic

generator matrix of C. One can easily notice that
⎛

⎜
⎝

Q1 K1,k/2+1Qk/2+1 . . . K1,(n−k)/2Qn/2

. . .
...

. . .
...

Qk/2 Kk/2,k/2+1Qk/2+1 . . . Kk/2,(n−k)/2Qn/2

⎞

⎟
⎠ ,

where

Ki,j =
(
MΓ (l2i−1,2j−1) MΓ (l2i−1,2j)
MΓ (l2i,2j−1) MΓ (l2i,2j)

)
,

is a generator matrix of Cpub. It follows that the unique systematic generator
matrix Gsys

pub of Cpub is of the form
⎛

⎜
⎝

I2m Q−1
1 K1,k/2+1Qk/2+1 . . . Q−1

1 K1,(n−k)/2Qn/2

. . .
...

. . .
...

I2m Q−1
k/2Kk/2,k/2+1Qk/2+1 . . . Q−1

k/2Kk/2,(n−k)/2Qn/2

⎞

⎟
⎠ . (4)

Let us denote Q−1
i Ki,jQj by K ′

i,j . For 1 ≤ i, r ≤ k/2 and k/2 + 1 ≤ j, s ≤ n/2
define

Vi,j,r,s = K ′
i,j(K

′
r,j)

−1
K ′

r,s(K
′
i,s)

−1 = Q−1
i

(
Ki,jK

−1
r,j Kr,sK

−1
i,s

)
Qi, (5)

Wi,j,r,s = (K ′
i,j)

−1
K ′

i,s(K
′
r,s)

−1
K ′

r,j = Q−1
j

(
K−1

i,j Ki,sK
−1
r,s Kr,j

)
Qj (6)

if corresponding inverse matrices exist (which is true in most cases). Since matri-
ces Ki,j have very special structure, namely, Ki,j belong to the Fq–algebra

Δ =
{(

MΓ (a) MΓ (b)
MΓ (c) MΓ (d)

) ∣
∣
∣ a, b, c, d ∈ Fqm

}
,

we can exploit it to recover the matrix Q up to certain equivalences.



146 K. Vedenev and Y. Kosolapov

Proposition 8. Let a Fqm–code C ′ be semi–linear equivalent over Fq to C, i.e.

C ′ = {(θ(α1c1), θ(α2c2), . . . , θ(αncn)) | (c1, . . . , cn) ∈ C}
(see [14]), where αi ∈ Fqm \ {0}, and θ ∈ Gal(Fqm/Fq) is an automorphism of
Fqm that fixes Fq pointwise. Let Aθ be a matrix representation of θ written in
the basis Γ = {γ0, . . . , γm−1} of Fqm = Fq[γ], i.e.

Aθ =

⎛

⎜
⎝

— φΓ

(
θ(γ0)

)
—

...
. . .

...
— φΓ

(
θ(γm−1)

)
—

⎞

⎟
⎠ .

Then the matrix ExpΓ (GC′) · diag(Q′
1, . . . , Q

′
n/2), where

Q′
i+1 = diag

(
A−1

θ · MΓ (α−1
2i+1), A

−1
θ · MΓ (α−1

2i+2)
) · Qi+1, (7)

also spans Cpub.

Conjecture 1. Let X,Y ∈ QMat, where

QMat = {diag(Y, Im) · diag(Im−1,M) | Y ∈ GLm(Fq),M ∈ GLm+1(Fq)} .

Let Ξ be a sufficiently large subset of Δ and ζ ∈ Δ be non–zero. Then

1. if
{
Y X−1 · ξ · XY −1 | ξ ∈ Ξ

} ⊂ Δ, then there exist a, b ∈ F
∗
qm and θ ∈

Gal(Fqm/Fq), such that

Y = diag(A−1
θ · MΓ (a), A−1

θ · MΓ (b)) · X,

2. if ζ · XY −1 ∈ Δ or Y X−1 · ζ ∈ Δ and
{
Y X−1 · ξ · XY −1 | ξ ∈ Ξ

} ⊂ Δ, then
there exist a, b ∈ F

∗
qm , such that

Y = diag(MΓ (a),MΓ (b)) · X

with high probability.

Remark 9. Note that the set Ξ has to contain at least one matrix which is not
of the form

ξ = diag(MΓ (α),MΓ (β)).

Otherwise, the conjecture does not hold, i.e. Y = diag(Aθ1 ·MΓ (a), Aθ2 ·MΓ (b))·
X for some a, b ∈ F

∗
qm , θ1, θ2 ∈ Gal(Fqm/Fq). Indeed,

Y X−1 · ξ · XY −1 = diag
(
MΓ (θ−1

1 (α)),MΓ (θ−1
2 (β))

) ∈ Δ.

Our experiments performed in computer algebra system Sage evince that
Conjecture 1 is most likely correct as soon as |Ξ| ≥ 3. So, the resulting key–
recovery algorithm can be summarized as follows.1

1 The code for our implementation is available on https://github.com/kirill-vedenev/
ikz-cryptanalysis.

https://github.com/kirill-vedenev/ikz-cryptanalysis
https://github.com/kirill-vedenev/ikz-cryptanalysis
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Step 1. Compute the systematic generator matrix (4) of Cpub. Using a brute-
force search, find a matrix Q′

1 ∈ QMat such that
{

Q′
1 · V1,j,r,s · Q′

1
−1 ∈ Δ

(see (5)) for some set of indices 1 ≤ r ≤ k/2 and k/2 + 1 ≤ j, s ≤ n/2 of
size ≥ 5. Conjecture 1 implies that Q′

1 is of the form (7). Since Proposi-
tion 8 allows replacing C with any semi–linear equivalent code, it follows
that without loss of generality, we may assume that θ ∈ Gal(Fqm/Fq) is
the identity automorphism.

Step 2. For j = k/2 + 1, . . . , n/2, find matrices Q′
j ∈ QMat, such that

{(
Q′

1 · K ′
1,j

) · Q′
j
−1 ∈ Δ,

Q′
j · Wi,j,r,s · Q′

j
−1 ∈ Δ,

(see (4), (6)) for some set of indices 1 ≤ i, r ≤ k/2 and k/2+1 ≤ s ≤ n/2
of size ≥ 5.

Step 3. Finally, for i = 2, . . . , k find Q′
i ∈ QMat satisfying

{
Q′

i ·
(
Ki · Q′

j
−1

)
∈ Δ for all j = k/2 + 1, . . . , n/2.

Step 4. Let Q′ = diag(Q′
1, . . . , Q

′
n/2), using Conjecture 1 we obtain

Q′ = diag(A−1
θ MΓ (α1), . . . A−1

θ MΓ (αn)) · Q

for some θ ∈ Gal(Fqm/Fq) and (α1, . . . , αn) ∈ F
∗
qm . Hence

C ′ = Φ−1
Γ

(
Span

Fqm
(Gpub · Q′−1)

)

is semi–linear equivalent to C and is therefore a GRS code. Indeed,

C ′ = {(θ(α1c1), . . . , θ(αncn)) | (c1, . . . , cn) ∈ RSk(x)} =
= {(θ(α1)f(θ(x1)), . . . , θ(α1)f(θ(xn))) | f ∈ Fqm [x],deg(f) ≤ k − 1} .

So, after applying the Sidelnikov–Shestakov attack [27] to C ′, it is pos-
sible to decode Cpub.

4.2 Case of Odd k

Suppose first that Q(k+1)/2 is known. Let Gsys
C = (li,j) ∈ F

k×n
qm be the sys-

tematic generator matrix of C. It follows that the systematic form of Gpub ·
diag(I(k−1)m, Q−1

(k+1)/2, I(n−k−1)m) is

⎛

⎜
⎜
⎜
⎝

I2m

. . .
I2m

Im

J1

...
J(k−1)/2

C

K ′
1,(k+1)/2+1 . . . K ′

1,n/2

...
. . .

...
K ′

(k−1)/2,(k+1)/2+1 . . . K ′
(k−1)/2,n/2

D(k+1)/2+1 . . . Dn/2

⎞

⎟
⎟
⎟
⎠

, (8)
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where
Ji = Q−1

i · (MΓ (l2i−1,k+1) MΓ (l2i,k+1))
T ∈ F

2m×m
q ,

C = MΓ (lk,k+1) ∈ F
m×m
q ,

Dj = (MΓ (lk,2j−1) MΓ (lk,2j)) · Qj ∈ F
m×2m
q ,

K ′
i,j = Q−1

i ·
(
MΓ (l2i−1,2j−1) MΓ (l2i−1,2j)
MΓ (l2i,2j−1) MΓ (l2i,2j)

)
· Qj ∈ F

2m×2m
q .

Hence the above–described attack can be modified as follows.

Step 1. In this step, we try to guess Q(k+1)/2 (up to equivalences described in
Proposition 8). To do this, for each Q′

(k+1)/2 ∈ QMat we compute the
systematic form (8) of

Gpub · diag(I(k−1)m, Q′
(k+1)/2

−1
, I(n−k−1)m)

and then check
⎧
⎪⎨

⎪⎩

C ∈ {MΓ (a) | a ∈ Fqm} ,

DjK
′
i,j

−1
Ji,∈ {MΓ (a) | a ∈ Fqm}

for all 1 ≤ i ≤ (k − 1)/2, (k + 1)/2 + 1 ≤ j ≤ n/2

until proper Q′
(k+1)/2 is found.

Step 2. For j = (k + 1)/2 + 1, . . . , n/2, find matrices Q′
j ∈ QMat, such that

{
Q′

j · Wi,j,r,s · Q′
j
−1 ∈ Δ,

Dj · Q′
j
−1 ∈ {(MΓ (a),MΓ (b)) | a, b ∈ Fqm}

(see (4), (6)) for some set of indices 1 ≤ i, r ≤ (k−1)/2 and (k+1)/2+1 ≤
s ≤ n/2 of size ≥ 5.

Step 3. For i = 1, . . . , (k − 1)/2 find Q′
i ∈ QMat satisfying

{
Q′

i ·
(
Ki · Q′

j
−1

)
∈ Δ for all j = (k + 1)/2 + 1, . . . , n/2.

Compute Q′ = diag(Q′
1, . . . , Qn/2) and run Step 4 of Sect. 4.1.

Since the size of QMat is O(qm2+(m+1)2), it follows that the complexity of
the attack is O(nqm2+(m+1)2m3) assuming brute–force search is used in each
step. Note that for large m this attack is too complex. However, for m ≥ 3 it is
possible to implement another attack based on twisted squares.

5 Twisted Squares–Based Attack

Let Ui be an i–th mi–block column of Gpub, i.e.

Gpub =
(
U1︸︷︷︸
m−1

U2︸︷︷︸
m+1

. . . Un−1︸ ︷︷ ︸
m−1

Un︸︷︷︸
m+1

)

.

Attack we propose is consist of the following steps.
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5.1 Recovering the Support x

By xodd we denote (x1, x3, . . . , xn−1). Let Π ∈ F
m×(m−1)
q be the projection

matrix of the following form

Π =
(

Im−1

0

)
,

Consider
Godd = (U1 | U3 | · · · | Un−1).

We have
Godd = S ExpΓ (Gk(xodd)) diag(N1, N3, . . . Nn−1) , (9)

where Ni = YiΠMi ∈ F
m×m−1
q . It follows that Godd is a generator matrix of

GPC (ΦΓ (RSk(xodd));N1, . . . , Nn−1) .

So, Proposition 3 and Corollary 1 imply that Godd is a parity–check matrix of
the code

D = GSS(ΦΓ (RSk(xodd))⊥;NT
1 , NT

3 , . . . , NT
n−1) =

= GSS(ΦΓ ∗(RSk(xodd)⊥);NT
1 , NT

3 , . . . , NT
n−1),

(10)

Remark 10. Recall that, RSk(xodd)⊥ = GRSn−k(xodd, zodd), where

zodd = (z1, z3, . . . , zn−1), z−1
i =

∏

i,j∈{1,3,...,n−1}
j 	=i

(xi − xj) (11)

Hence D is short representation of generalized subspace subcode of a GRS code.

It follows that it is possible to recover one of the supports xodd
′ of RSk(xodd)⊥

from D by applying CL–attack [9, Alg. 1 and Alg. 2] to D. Indeed, given GSS–
subcode of GRSk(a,b), such that the dimension of all subspaces is λ > m/2,
CL–attack reconstructs a support of corresponding GRS–code by applying the
algorithm of [5, §VI.B] to its twisted square.

Remark 11. Note that in order to apply CL–attack, Godd has to be singular,
which is true if

km < (m − 1)n/2.

In addition, it is also possible to find xodd in the case when

(n − k)m < (m − 1)n/2

by attacking the dual of the public code (see Proposition 7).

Remark 12. Since the support of a GRS code is completely defined by fixing
arbitrary three points, it follows that without loss of generality we may assume
that xodd

′ = xodd.
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It remains now to recover x2, x4, . . . , xn. For the sake of convenience, we
describe the recovering procedure only for x2. Consider the matrix

Godd+2 = (U1 | U2 | U3 | U5 | · · · | Un−1).

One can easily notice that

Godd+2 = S · Exp∗
Γ (Gk (x1, x2, x3, x5, . . . , xn−1)) · diag(Q1, N3, N5, . . . , Nn−1),

where Ni are the same as in (9) and

Q1 = diag(Y2, Y2) · diag(M1,M2) ∈ GL2m(Fq).

Using Proposition 3 and Corollary 1, we see that Godd+2 is a generator matrix
of

GPC (ΦΓ (RSk(x1, x2, x3, x5, . . . , xn−1));Q1, N3, . . . , Nn−1) .

and a parity–check matrix of

D2 = GSS
(
ΦΓ (RSk(x1, x2, x3, x5, . . . , xn−1))⊥;QT

1 , NT
3 , . . . , NT

n−1

)
.

Let GD2 be a generator matrix of D2. We have

Span
Fq

(
GD2 · diag

(
QT

1 , NT
3 , . . . , NT

n−1

)) ⊂ [ΦΓ (RSk (x1, x2, x3, x5, . . . , xn−1))]
⊥

(see Sect. 2.1), it follows that

GD2 · diag
(
QT

1 , NT
3 , . . . , NT

n−1

) · ExpΓ (Gk(x1, x2, x3, x5, . . . , xn−1))
T = 0.

With xodd = (x1, x3, . . . , xn−1) being known, it is possible to find x2 by
iterating w ∈ F

∗
qm \{x1, x3, x5, . . . , xn−1} and checking whether the linear system

GD2 · diag
(
XT

1 ,XT
3 , . . . , XT

n−1

) · ExpΓ (Gk(x1, w, x3, x5, . . . , xn−1))
T = 0, (12)

where X3, . . . , Xn−1 ∈ F
m×m−1
q and

X1 =

(
X

(1)
1 X

(2)
1

0 X
(3)
1

)

, X
(1)
1 ∈ F

m×m−1
q ,X

(2)
1 ∈ F

m×m+1
q ,X

(3)
1 ∈ F

m×m+1
q

has a non–zero solution. Note that in most practical cases the number of
unknowns (n/2 − 1)(m − 1)m + 3m2 + m = O(nm2/2) is much less than the
number of equations (n/2+1−k)km2 and the solution, if it exists, is most likely
unique up to multiplication by

diag(MΓ (a1),MΓ (a2),MΓ (a3),MΓ (a5), . . . ,MΓ (an−1)), ai ∈ F
∗
qm .

In our experiments, the above described method allowed successfully recovering
correct x2 in all cases.2

2 The code for our implementation of this and the next step is available on https://
github.com/kirill-vedenev/ikz-cryptanalysis.

https://github.com/kirill-vedenev/ikz-cryptanalysis
https://github.com/kirill-vedenev/ikz-cryptanalysis
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Remark 13. It is also possible to reconstruct x when neither km < (m − 1)n/2
and (n − k)m < (m − 1)n/2 hold. Choose the smallest s ∈ 1, n/2 such that

(n′ − k)m > (m − 1)n′/2

where n′ = n − 2s. Consider

G′
pub =

(
U1 U2 . . . Un−2s−1 Un−2s

) ∈ F
km×n′m
q ,

G′′
pub =

(
U2s+1 U2s+2 . . . Un−1 Un

) ∈ F
km×n′m
q .

One can easily notice that

G′
pub = S ·ExpB (Gk ((x1, . . . , xn−2s))) ·diag(Y1, . . . Yn−2s) ·diag(M1, . . . Mn−2s),

G′′
pub = S ·ExpB (Gk ((x2s+1, . . . , xn))) ·diag(Y2s+1, . . . Yn) ·diag(M2s+1, . . . Mn),

i.e. G′
pub and G′′

pub are public keys of IKZ–cryptosystem. Therefore, it is possible
to recover x1, . . . , xn−2s by attacking G′

pub as above first and then to recover
xn−2s+1, . . . xn by attacking G′′

pub.

5.2 Recovering the Matrix Q

Since Gpub = S · ExpΓ (Gk(x)) · diag(Q1, . . . , Qn/2), is follows that Gpub is a
generator matrix of

GPC(ΦΓ (Gk(x);Q1, . . . , Qn/2),

so, due to Proposition 3 Gpub a parity–check matrix of

D̂ = GSS(ΦΓ (Gk(x)⊥;QT
1 , . . . , QT

n/2).

Let GD̂ be a generator matrix of D̂. Since

Span
Fq

(
GD̂ · diag

(
QT

1 , . . . , QT
n/2

))
⊂ ΦΓ (Gk(x))⊥,

it follows that

GD̂ · diag
(
QT

1 , . . . , QT
n/2

)
· ExpΓ (Gk(x))T = 0.

With x being known after previous step, Q1, . . . , Qn/2 can be found by solving
the linear system

GD̂ · diag
(
XT

1 , . . . , XT
n/2

)
· ExpΓ (Gk(x))T = 0,

where Xi are of the form

Xi =

(
X

(1)
i X

(2)
i

0 X
(3)
i

)

, X
(1)
i ∈ F

m×m−1
q ,X

(2)
1 ∈ F

m×m+1
q ,X

(3)
1 ∈ F

m×m+1
q .

Since again the number of equations is larger than the number of unknowns the
solution is most likely be unique up to multiplication by diagn(MΓ (β)) for some
β ∈ Fqm , which was experimentally validated. The complexity of CL-attack is
O(nqm) operations in Fq, the complexity of support recovering is O(qm(mn)3)
and the complexity of recovering Q is O((mn)3). Hence the overall complexity
of the attack is O((mn)3qm).
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6 Conclusion

In this paper, it was shown that Ivanov–Krouk–Zyablov cryptosystem is insecure
and its secret key can be recovered in polynomial time due to proposed key–
recovery attacks. Since the first one is based only on linear algebra, it can easily
be generalized to recover the matrix Q even for other classes of codes. So, the
masking transform used by Ivanov, Krouk and Zyablov is intrinsically flawed. It
also seems that using hiding transforms that allow decoding error bursts cannot
improve key sizes compared to classic approaches due to simple message–recovery
attacks based on information–set decoding.
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