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Abstract. In the field of multi-criteria decision-making, compromise is
often sought because it is highly desirable for decision-making. However,
over the years, many methods have been developed for decision-making,
between which discrepancies in the final rankings are often present. For
this reason, it is worth noting the possibility of a compromise between
different multi-criteria decision-making methods. One such solution is the
Iterative Compromise Ranking Analysis (ICRA), which, by means of an
iterative evaluation of the preferences of alternatives, leads to a compro-
mise between the methods under consideration. This work presents an
example of a solution to a theoretical decision problem, for which five
methods were used: TOPSIS, VIKOR, MARCOS, MABAC and EDAS.
In addition, an empirical analysis of the compromise solution was car-
ried out to check the effect of parameters on the number of iterations
needed to reach a compromise and the differences between the rankings
proposed by the methods and the compromise ranking. The work showed
that this is an interesting tool that can find its use in the field of multi-
criteria decision-making as well as can be used to analyze the behaviour
of multi-criteria decision-making methods.
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1 Introduction

A number of new approaches to solving multi-criteria problems have emerged
over recent years. For this reason, there have been many works attempting to
compare methods of multi-criteria decision-making in different fields [8] as well
as attempts to empirically compare methods among themselves [3] or to present
approaches to how to benchmark them. In addition, due to the number of meth-
ods available Wątróbski et al. presented a generalised framework of selection of
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multi-criteria decision-making method as the sole selection of a method becomes
a problem in itself [28]. However, choosing one method is not necessarily the
only way out, in cases where the decision maker believes that several methods
can guarantee an adequate result, a compromise approach can be used.

Compromise in decision-making is a desirable phenomenon that manifests
itself in this field in many forms. Virtually every method seeks to compro-
mise through the principle of linear programming, however, some methods e.g.
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [1], The Mea-
surement Alternatives and Ranking according to COmpromise Solution (MAR-
COS) [25] and A Combined Compromise Solution (CoCoSo) [30] methods extend
it even further. Moreover, the compromise might be sought through objective
criteria weighting [20] as it provides a direct impact on criteria significance in
the considered problem.

Another popular approach is the ranked voting system, which is used to
establish a compromise ranking based on reference rankings. Many voting
approaches were used in multi-criteria decision-making in specific practical prob-
lems such as the Borda rule and the Copeland rule for performance assessment of
battery electric vehicles [7], the Copeland rule for E-commerce recommender sys-
tem [2]. Moreover, Lamboray presented a comparison between available voting
system [15].

However, these methods mainly focus on rankings in which it is difficult to
observe slight differences between the obtained preferences of decision options.
For the purpose of providing a better-suited way of obtaining a compromise, the
Iterative Compromise Ranking Analysis (ICRA) was proposed by Kizielewicz et
al. [13]. This new approach use evaluations of the decision alternatives obtained
by the selected methods by creating a new decision matrix consisting of men-
tioned preference values, where the types of attributes for the newly formed
matrix depend on the ranking method and iteratively seeking the compromise.

In this study, five multi-criteria decision-making methods were selected
to perform the ICRA, namely the TOPSIS, the VIKOR, the MARCOS, the
MABAC, and the EDAS methods. This approach makes it possible to obtain a
consensus between different rankings that presents some discrepancies by means
of an iterative evaluation using the multi-criteria decision-making methods con-
sidered. An example of the use of this approach to solve a specific theoretical
multi-criteria problem is presented and a quantitative analysis of the influence
of the factors of the course of obtaining a consensus on the number of iterations
and the final consensus ranking obtained is carried out.

The rest of the article is structured as follows. Section 2 presents a literature
review of different approaches to compromise in multi-criteria decision-making.
In Sect. 3, preliminaries are presented that include the newly proposed method
and selected methods of multi-criteria decision-making. In Sect. 4, a study case is
presented in which the performance of the algorithm on five methods is presented
and quantitative analysis is carried out with a discussion of the acquired results.
Finally, in Sect. 5 the conclusions were drawn and a summary is presented.
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2 Literature Review

Compromise is one aspect of multi-criteria decision-making that should be highly
desirable. It allows the use of one of the available options which will be close
to the majority, but at the same time will take into account the minority. Most
multi-criteria decision-making use linear programming to provide for the aspect
of compromise among considered alternatives, which often might not be enough,
thus some methods tried to present a different approach. Several methods have
emerged in multi-criteria decision-making that base their core principles on com-
promise and assess the set of considered alternatives.

The most well-known and regarded classic method is the VIKOR method
presented by Serafim Opricovic [6]. This method in its assumptions proposes
two rankings, which can then be aggregated using the compromise value given
by the expert. This method has been used in many works, demonstrating its use-
fulness in various fields. In addition, the method has seen many developments,
e.g. for group decision-making [10], an approach that operates in a fuzzy environ-
ment [9] and uses interval numbers [22]. Since the VIKOR method was presented,
few methods have directly addressed compromise, two solutions being the rela-
tively new, namely the combined compromise solution (COCOSO) method and
the Measurement of alternatives and ranking according to the COmpromise solu-
tion (MARCOS) method. The COCOSO method was proposed by Yazdani et
al. in work presented in 2018 [30], where the new method combines the weighted
product method (WPM) and the weighted sum method (WSM) to provide a new
equation which results in balanced compromise of those two scores in accordance
to the best and the worst alternative. The MARCOS method, on the other hand,
was first introduced by Željko Stević et al. in 2020 [25]. This method presented
the utility functions which provided the compromise of the considered alterna-
tives in relation to the ideal and anti-ideal solution. They presented the usage
of this function in the example of sustainable supplier selection in healthcare
industries.

Another approach to incorporating comparison in multi-criteria decision-
making methods is to use objective criteria weighting methods. These methods
do not directly address the use of comparison, but by checking the correlation
between the criteria considered they provide some degree of compromise value
of the importance of a criterion. Such approaches, although rarely considered,
can be helpful in the case of a problem in determining the relevance of crite-
ria. Such methods allow for a better resolution of the conflict characterizing
a given decision situation. One of the best-known and also oldest methods is
CRiteria Importance Through Intercriteria Correlation (CRITIC) presented by
Diakoulaki et al. in 1995 [5]. This method determines the importance of a crite-
rion through the calculation of intercriteria correlation. In 2021 Krishnan et al.
presented an extension of the CRITIC method where a new distance correlation
coefficient was incorporated [14]. Aggregated method of Integrated Determina-
tion of Objective CRIteria Weights (IDOCRIW) was presented by Zavadskas
and Podvezko in 2016 [31] which used the assumptions of the criterion impact
loss (CILOS) approach and entropy and was further extended by them into a
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fuzzy environment in 2020 [21]. One of the latest methods is MEthod based on
the Removal Effects of Criteria (MEREC) presented by Keshavarz-Ghorabaee et
al. in 2021 [11]. This method provides a new perspective on objective weighting
methods as the criterion’s removal effect on the performance of alternatives is
presented and incorporated into the algorithm.

More relevant, from the point of view of this work, are solutions that make
compromises between rankings obtained using multiple multi-criteria decision-
making methods. For this purpose, the Borda count methodology was applied.
Its usage in multi-criteria decision-making is prominent in many fields, for exam-
ple, Roozbahani et al. presented a framework that incorporated Borda count for
the final ranking calculation in Ground Water Management Based problem [23],
on the other hand, Serrai et al. presented its usage for compromise ranking for a
problem of web service selection [24]. This methodology was further used by Wu
et al. to extend MULTIMOORA decision-making method to improve robust-
ness in the alternatives assessment [29]. Another well-known and highly used
method is the Copeland method, which execution was presented for example by
Özdagoglu et al. in the case study of motorcycle selection [18] or by Lestari et
al. in the performance comparison of Copeland and Borda methods in a rec-
ommender system [16]. Even though those two are most prominent in research
where aggregation of rankings is considered, there are many different approaches
to provide a compromise solution. There are such approaches as Kemeny’s rule
and Condorcet’s rule which were used by Muravyov et al. [17].

In this work, we present the iterative approach to obtain a compromise solu-
tion of rankings provided by several multi-criteria decision-making methods.
This approach let the decision-maker choose more than one desirable method
and acquire one final ranking. Such an approach may be highly desirable in
scenarios where selecting a specific method might not be considered easy.

3 Research Methodology

3.1 TOPSIS Method

Technique of Order Preference Similarity (TOPSIS) is based on the ideal solution
approach for solving multi-criteria decision problems [4]. The approach evaluates
decision alternatives for the distance between a positive ideal solution and a
negative ideal solution. Its basic version can be presented in the following steps:

Step 1. Construct the decision matrix and determine the weight of
criteria and type of it (1). Criteria can be either: profit (more is better) or
cost (less is better).

F =

⎡
⎢⎢⎢⎣

f11 f12 · · · f1n
f21 f22 · · · f2n
...

... · · · ...
fm1 fm2 · · · fmn

⎤
⎥⎥⎥⎦ , (1)

where fm denotes alternative m.
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Step 2. Calculate the normalized decision matrix. This step allows the
attributes to be converted to a single scale for easier comparison.

Step 3. Determine the weighted normalized decision matrix. The
weighted normalized value is calculated in the following way (2):

Fw =

⎡
⎢⎢⎢⎣

r11 · w1 r12 · w2 · · · r1n · wn

r21 · w1 r22 · w2 · · · r2n · wn

...
... · · · ...

rm1 · w1 rm2 · w2 · · · rmn · wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n
v21 v22 · · · v2n
...

... · · · ...
vm1 vm2 · · · vmn

⎤
⎥⎥⎥⎦ , (2)

where rm - normalized alternative m, w - weight corresponding to criteria.

Step 4. Calculate positive and negative ideal solution. Calculate the
separation measures, using the n-dimensional Euclidean distance. The separation
of each alternative from the positive ideal solution is given as (3):

D∗
j =

√√√√
n∑

i=1

(vij − v∗
i )

2
, j = 1, . . . , J, (3)

where vij = rij · wj , v∗
i - positive ideal solution.

Similarly, the separation from the negative ideal solution is given as (4):

D−
j =

√√√√
n∑

i=1

(
vij − v−

i

)2
, j = 1, . . . , J, (4)

where vij = rij · wj , v−
i - negative ideal solution.

Step 5. Calculate the relative closeness to the ideal solution. The relative
closeness of the alternative aj is defined as follows (5):

C∗
j =

D−
j(

D∗
j +D−

j

) , j = 1, . . . , J (5)

Step 6. Rank the preference order.

3.2 VIKOR Method

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) is a method
based on the compromise approach, which evaluates alternatives with conflicting
types of criteria [1]. The compromise solution in this method is considered to
be the solution that is closest to the ideal. On the other hand, compromise
is achieved through mutual concessions. This method can be presented in the
following steps:
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Step 1. Determine the best and the worst values of all criteria - deter-
mine best and worst values in given problem for the profit type criteria (6) and
cost type criteria (7).

f∗
j = max

i
fij , f

−
j = min

i
fij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (6)

f∗
j = min

i
fij , f

−
j = max

i
fij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (7)

Step 2. Compute Si (8) and Ri values (9) - wj is weight vector which
describe the relevance of a given criterion.

Si =
n∑

i=1

wj

(
f∗
j − fij

)
(
f∗
j − f−

j

) , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (8)

Ri = max
j

[
wj

(
f∗
j − fij

)
(
f∗
j − f−

j

)
]
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (9)

Step 3. Compute the values of Qi by Eq. (10) - v is introduced as a weight
for the strategy of the majority of criteria, whereas 1 - v is the weight of the
individual regret. These strategies could be compromised by v = 0.5.

Qi = v
(Si − S∗)
(S− − S∗)

+ (1 − v)
(Ri − R∗)
(R− − R∗)

, i = 1, 2, · · · ,m (10)

Step 4. Rank the alternatives - the VIKOR method provides three rankings
named S, R and Q. Each of them should be ranked in ascending order. The
measures of S and R are integrated into Q for a compromise solution, the base
for an agreement established by mutual concessions. It is up to the decision-
maker to choose a preferred solution.

3.3 MARCOS Method

The Measurement Alternatives and Ranking according to COmpromise Solution
(MARCOS) method provided a new approach to solving decision problems by
considering an anti-ideal and an ideal solution a the initial steps of problem-
solving. It was first proposed by Željko Stević et al. in 2020 [25] where they
introduced the method by solving the problem of sustainable supplier selection
in healthcare industries. Moreover, they proposed a new way to determine util-
ity functions and their further aggregation, while maintaining stability in the
problems requiring a large set of alternatives and criteria.

Step 1. The initial step requires to define set of n criteria and m alternatives
to create decision matrix.
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Step 2. Next, the extended initial matrix X should be formed by defining ideal
(AI) and anti-ideal(AAI) solution.

X =

AII

A1

A2

· · ·
Am

AI

⎡
⎢⎢⎢⎢⎢⎢⎣

xaa1 xaa2 . . . xaan

x11 x12 · · · x1n

x21 x22 . . . x2n

· · · · · · · · · · · ·
xm1 x22 · · · xmn

xai1 xai2 · · · xain

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

The anti-ideal solution (AAI) which is the worst alternative is defined by
Eq. (12), whereas the ideal solution (AI) is the best alternative in the problem
at hand defined by Eq. (13).

AAI = min
i

xij if j ∈ B and max
i

xij if j ∈ C (12)

AI = max
i

xij if j ∈ B and min
i

xij if j ∈ C (13)

where B is a benefit group of criteria and C is a group of cost criteria.

Step 3. After defining anti-ideal and ideal solutions, the extended initial matrix
X needs to be normalized, by applying Eqs. (14) and (15) creating normalized
matrix N .

nij =
xai

xij
if j ∈ C (14)

nij =
xij

xai
if j ∈ B (15)

Step 4. The weight for each criterion needs to be defined to present its impor-
tance in accordance with others. The weighted matrix V needs to be calculated
by multiplying the normalized matrix N with the weight vector through Eq. (16).

vij = nij × wj (16)

Step 5. Next, the utility degree K of alternatives in relation to the anti-ideal
and ideal solutions needs to be calculated by using Eqs. (17) and (18).

K−
i =

∑n
i=1 vij∑n
i=1 vaai

(17)

K+
i =

∑n
i=1 vij∑n
i=1 vai

(18)
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Step 6. The utility function f of alternatives, which is the compromise of the
observed alternative in relation to the ideal and anti-ideal solution, needs to be
determined. Its done using Eq. (19).

f (Ki) =
K+

i +K−
i

1 +
1−f(K+

i )
f(K+

i )
+

1−f(K−
i )

f(K−
i )

(19)

where f
(
K−

i

)
represents the utility function in relation to the anti-ideal solution

and f
(
K+

i

)
represents the utility function in relation to the ideal solution.

Utility functions in relation to the ideal and anti-ideal solution are determined
by applying Eqs. (20) and (21).

f
(
K−

i

)
=

K+
i

K+
i +K−

i

(20)

f
(
K+

i

)
=

K−
i

K+
i +K−

i

(21)

Step 7. Finally, rank alternatives accordingly to the values of the utility func-
tions. The higher the value the better an alternative is.

3.4 MABAC Method

The Multi-Attributive Border Approximation Area Comparison (MABAC) is
a multi-criteria decision-making method introduced by Pamučar and Ćirović
in 2015 [19] on the problem of selection of transport and handling resources in
logistics centres. This method’s approach was to determine the distance measures
between each possible alternative and the boundary approximation area (BAA).
Moreover, this method has seen many developments such as extensions into
hesitant fuzzy linguistic [26] or q-rung orthopair fuzzy environments [27]. Its
original version can be presented in the following steps:

Step 1. Define a decision matrix of dimension n×m, where n is the number of
alternatives, and m is the number of criteria (22).

xij =

⎡
⎢⎢⎣
x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .
xn1 xn2 . . . xnm

⎤
⎥⎥⎦ (22)

Step 2. Normalization of the decision matrix, where for criteria of type profit
use Eq. (23) and for criteria of type cost use Eq. (24).

nij =
xij − minxi

maxxi − minxi
(23)

nij =
xij − maxxi

minxi − maxxi
(24)
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Step 3. Create a weighted matrix based on the values from the normalized
matrix according to the formula (25).

vij = wi · (nij + 1) (25)

Step 4. Boundary approximation area (G) matrix determination. The Bound-
ary Approximation Area (BAA) for all criteria can be determined using the
formula (26).

gi =

⎛
⎝

m∏
j=1

vij

⎞
⎠

1/m

(26)

Step 5. Distance calculation of alternatives from the boundary approximation
area for matrix elements (Q) by Eq. (27).

Q =

⎡
⎢⎢⎣
v11 − g1 v12 − g2 . . . v1n − gn
v21 − g1 v22 − g2 . . . v2n − gn

. . . . . . . . . . . .
vm1 − g1 vm2 − g2 . . . vmn − gn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
q11 q12 . . . q1n
q21 q22 q2n
. . . . . . . . . . . .
qm1 qm2 . . . qmn

⎤
⎥⎥⎦ (27)

The membership of a given alternative Ai to the approximation area (G, G+ or
G−) is established by (28).

Ai ∈
⎧
⎨
⎩

G+ if qij > 0
G if qij = 0
G− if qij < 0

(28)

Step 6. Ranking the alternatives according to the sum of the distances of the
alternatives from the areas of approximation of the borders (29).

Si =
n∑

j=1

qij , j = 1, 2, . . . , n, i = 1, 2, . . . ,m (29)

3.5 EDAS Method

The Evaluation based on Distance from Average Solution (EDAS) method was
proposed by Keshavarz et al. in 2015 [12] and its main aim was to design a
method which would be useful when conflicting criteria are present. This method
utilizes two different measures, the positive distance from average (PDA), and
the negative distance from average (NDA) which can show the difference between
each alternative and the average solution. The higher the PDA values are or the
lower the NDA values are, the better is the alternative in comparison to the
average solution. This method can be executed by following steps:

Step 1. Define a decision matrix of dimension n×m, where n is the number of
alternatives, and m is the number of criteria (30).

Xij =

⎡
⎢⎢⎣
x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .
xn1 xn2 . . . xnm

⎤
⎥⎥⎦ (30)
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Step 2. Calculate the average solution for each criterion according to the
formula (31).

AVj =
∑n

i=1 Xij

n
(31)

Step 3. Calculating the positive distance from the mean solution and the neg-
ative distance from the mean solution for the alternatives. When the criterion
is of profit type, the negative distance and the positive distance are calculated
using Eqs. (32) and (33), while when the criterion is of cost type, the distances
are calculated using formulas (34) and (35).

NDAij =
max (0, (AVj − Xij))

AVj
(32)

PDAij =
max (0, (Xij − AVj))

AVj
(33)

NDAij =
max (0, (Xij − AVj))

AVj
(34)

PDAij =
max (0, (AVj − Xij))

AVj
(35)

Step 4. Calculate the weighted sums of PDA and NDA for each decision variant
using Eqs. (36) and (37).

ASPi =
m∑
j=1

wjPDAij (36)

SNi =
m∑
j=1

wjNDAij (37)

Step 5. Normalize the weighted sums of negative and positive distances using
Eqs. (38) and (39).

NSNi = 1 − SNi

maxi (SNi)
(38)

NSPi =
SPi

maxi (SPi)
(39)

Step 6. Calculate the evaluation score (AS) for each alternative using the for-
mula (40). A higher point value determines a higher ranking alternative.

ASi =
1
2
(NSPi +NSNi) (40)
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3.6 Weighted Spearman’s Correlation Coefficient

Correlation coefficients are used to represent the similarity of compared rankings
in a quantifiable way. The weighted Spearman’s correlation coefficient is one
of the most commonly used coefficients. It was designed to consider the most
relevant alternatives which are the ones that were rated the best. This coefficient
is presented in Eq. (41).

rw = 1 − 6 · ∑n
i=1 (xi − yi)

2 ((N − xi + 1) + (N − yi + 1))
n · (n3 + n2 − n − 1)

(41)

4 Research Findings and Discussion

The Iterative Compromise Ranking Approach (ICRA) main aim is to provide a
way of compromising rankings obtained through different multi-criteria decision-
making methods. A need arose as many methods are proposed which provided
a new way of evaluating the alternatives. However, this creates a problem in
which the best decision-making method must be picked for the final evaluation
of alternatives, which might not be an easy case in some situations, thus such
a compromise approach might be better suited. To carry out this approach, the
following steps are required:

Step 1. Evaluate formed decision matrix by n MCDM methods

Step 2. Create a decision matrix based on the preference value calculated by
MCDM methods. Criteria types are determined based on the method’s ranking
type.

Step 3. Return to step 1 until rankings provided by all selected methods are
the same. For the purpose of comparison correlation coefficient usage is preferred
and in this work, the weighted Spearman’s correlation coefficient was used.
The study of the solution was carried out by demonstrating the use of ICRA on
a randomly generated example, and by analyzing the influence of factors on the
course of the solution by generating one hundred random decision matrices, and
then changing the research factor, whose influence was shown on boxen plots.

4.1 Theoretical Example

In the first approach, a decision matrix with ten alternatives and eight criteria was
generated. The types of criteria were set as follows:C1 - Cost,C2 - Cost,C3 - Profit,
C4 - Cost, C5 - Profit, C6 - Profit, C7 - Cost, C8 - Cost. The matrix was randomly
generated, where the values fell within the normal distribution [0, 1]. For the use of
multi-criteria decision-making methods, the weights were divided evenly, i.e. each
criterion had the same significance. The matrix is shown in Table 1.

The Spearman weighted correlation values of ranking i with ranking i−1 are
shown in Table 2. From the values shown, we can see that the TOPSIS method
stabilised the fastest, followed by the MABAC method, the EDAS method and
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Table 1. Generated theoretical problem decision matrix.

Ai C1 C2 C3 C4 C5 C6 C7 C8

A1 0.695342 0.537567 0.817879 0.590484 0.669001 0.06372 0.224616 0.936154
A2 0.191504 0.485942 0.041557 0.288029 0.011213 0.981233 0.312331 0.222928
A3 0.30724 0.320894 0.453718 0.573191 0.711328 0.314716 0.365802 0.893979
A4 0.947824 0.307941 0.537124 0.961897 0.089169 0.698669 0.976673 0.465632
A5 0.121483 0.376043 0.571574 0.292358 0.728113 0.739274 0.958435 0.836585
A6 0.741406 0.482223 0.844639 0.254446 0.509148 0.429902 0.490728 0.308689
A7 0.170687 0.433029 0.030963 0.932767 0.7613 0.930262 0.54715 0.038406
A8 0.734518 0.738879 0.572844 0.649799 0.812476 0.85712 0.832846 0.181159
A9 0.729182 0.103717 0.92813 0.532178 0.442577 0.298785 0.293263 0.050323
A10 0.82726 0.327959 0.759711 0.407212 0.848137 0.578501 0.307067 0.854799
Type Cost Cost Profit Cost Profit Profit Cost Profit

Table 2. Spearman’s weighted coefficient rw values for subsequent iterations.

Iteration Methods
TOPSIS VIKOR MARCOS MABAC EDAS

i = 2 1.0 0.906336 0.850137 0.987878 0.990082

i = 3 1.0 0.960330 0.940495 1.0 0.966942

i = 4 1.0 0.987878 1.0 1.0 1.0

i = 5 1.0 1.0 1.0 1.0 1.0

the MARCOS method, and finally the VIKOR method, where in the case of the
VIKOR method five iterations were needed to obtain the final compromise. It
is interesting case that the TOPSIS method ranking in this case did not require
any modification.

The rankings obtained in each iteration for each method are shown in Fig. 1.
As can be seen, the TOPSIS method showed no changes, MABAC and EDAS
have slightly visible changes, but the largest changes in rankings are seen for the
MARCOS and VIKOR methods. For the MABAC method, the most significant
changes are the positions of the sixth and ninth alternatives, where they have
swapped positions, but this is not a change at the podium of the ranking so it
is not that significant. In the case of the EDAS method, the situation is similar,
except that there are more changes, namely for the second, sixth and ninth
alternatives, but these are also not significant changes as these alternatives are
more or less in the middle of the ranking. In the case of the MARCOS and
VIKOR methods, changes are evident not only in the middle of the ranking but
also in the podium, which means that the initial ranking differs quite significantly
compared to the compromise ranking.

In Fig. 2 the preferences in consecutive iterations are presented for each of
the considered methods. Even though, the ranking for the TOPSIS method did
not change the preferences changed significantly, more precisely the range and
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Fig. 1. Obtained rankings for TOPSIS, VIKOR, MARCOS, MABAC, and EDAS meth-
ods in subsequent iterations.



164 B. Paradowski et al.

standard deviation of values have changed. In the first iteration, the standard
deviation of preference values was around 0.0885, whereas in the last iteration
the values presented a standard deviation of around 0.2987. Moreover, the range
of the values extended from [0.3658, 0.6679] to [0, 1], making the spread 0.7 higher
than in the first iteration. A similar high change in the standard deviation of val-
ues can be seen in the MARCOS method where it changed from 0.0917 to 0.3372
and the spread increased by around 0.8. In the case of the MABAC method, the
changes are less visible as the standard deviation in the first iteration was around
0.1189 and 0.2988 in the last iteration. The spread of the values increased by
around 0.595. However, the least change occurred in the VIKOR and the EDAS
methods. It is interesting as the highest change in the actual ranking was pre-
sented by the VIKOR method. In the case of the VIKOR method the standard
deviation changed from 0.2888 to 0.3 and the spread of values increased by
around 0.065. The MABAC method presented a similar small change as in the
standard deviation it was a difference of around 0.038, namely from 0.2473 to
0.2853 and the spread of values increased by around 0.13. This shows that an
iterative approach to compromise ranking stretches the range of values of pref-
erences and provides more distinctive evaluation of alternatives as the standard
deviation and spread is higher.

4.2 Analysis of the Compromise Approach

The second approach consisted of generating one hundred decision matrices to
draw quantitative conclusions from the compromise ranking approach under con-
sideration. The research was conducted on the same five multi-criteria decision-
making methods used in the theoretical example. First, the effect of the number
of alternatives in the decision problem on the number of iterations needed to
obtain a compromise was tested. Each matrix size was generated one hundred
times, where the matrix size was n alternatives by six criteria, and the values
were generated from the normal distribution [0, 1].

Initially, the matrices were generated with the number of alternatives in the
range [10, 100] with a step of 10, which should represent most small problems.
The results obtained are shown in the Fig. 3. It can be seen that for small prob-
lems i.e. those that contain ten alternatives, the average number of iterations
remains at 4. The number of iterations increases gradually as the number of iter-
ations increases, slowing down with a larger number of alternatives, whereas with
100 alternatives, an average of 9 iterations were needed to reach a compromise.

The second case that was considered was problems consisting of a much
larger number of alternatives. The sizes that were checked are in the range of
[100, 1000] with a step of 100. The results for this case are shown in Fig. 4. As
can be seen in the boxen plots shown, the values slowly increased until, with
a matrix containing 700 alternatives, it grew rapidly, but at higher values, it
already increased slightly. This behaviour may show that the number of itera-
tions needed can increase sharply in huge decision problems at specific sizes and
then stay within a single value. In the case of 1000 alternatives, the compromise
was obtained after 22 iterations on average, which, looking at the size of the
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Fig. 2. Obtained preference for TOPSIS, VIKOR, MARCOS, MABAC, and EDAS
methods in subsequent iterations.
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Fig. 3. Influence of number of alternatives on the number of iterations in small decision
problems.

problem, does not seem to be a large value, because as the number of alterna-
tives in a decision problem increases, the difficulty of decision-making increases
significantly.

For each method considered, it was checked how the ranking proposed in the
first step by methods changes in relation to the compromise ranking obtained.
A hundred matrices were generated with values from the normal distribution
[0, 1] with the size of ten alternatives and six criteria. The values were visual-
ized in Fig. 5. The TOPSIS method in this chart proposed rankings closest to
the compromise rankings, followed by the MABAC method, MARCOS, EDAS,
and finally VIKOR. In the case of the VIKOR method, there were the greatest
discrepancies in the compromise rankings relative to the initial rankings. It can
be said in this case that all methods except VIKOR proposed similar rankings.
In such cases, the compromise approach can prove to be a good solution, as
it takes into account how the majority opined, given the rating, which differed
significantly.
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Fig. 4. Influence of number of alternatives on the number of iterations in big decision
problems.

Fig. 5. Correlation between first ranking provided by a method and compromise rank-
ing.
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5 Conclusion

The ever-evolving field of multi-criteria decision-making requires the search for
non-standard solutions to produce a result that could be considered appropriate
by the decision-maker. One of the important problems is obtaining a compromise
between different decision-making methods. While these are interesting tools for
determining the set of best solutions to the problem under consideration, discrep-
ancies in final rankings often arise between the results from different methods.
To determine a single final ranking from different multi-criteria decision-making
methods, we can use an iterative approach to obtain a compromise ranking.

In this study, the use of this approach to solve the theoretical problem using
TOPSIS, VIKOR, MARCOS, MABAC, and EDAS methods is presented. The
use of the ranking similarity coefficient to obtain the final result guarantees its
stability and reliability. The study showed that this is a method that can easily
be used to obtain a compromise ranking, which will allow aggregation of results
from multiple methods using a larger value space for preference evaluation, as
well as an increased standard deviation of preference values. An additional quan-
titative study showed how the method behaves according to the different number
of alternatives and the similarity of the initial rankings to the compromise rank-
ing for a particular method. This shows the feasibility of using this method to
compare multi-criteria decision-making methods as well as the simplicity and
fast execution of using this approach.

In future studies, it would be worthwhile to test the broader applicability of
this approach for comparing multi-criteria decision-making methods. In addition,
it would be important to see how the number and specific set of methods affect
the resulting solution, and to what extent this affects the number of iterations
needed to reach a compromise. Moreover, it would be good practice to conduct
multiple analyses of real-world problems.
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