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Abstract. Many real-world decision-making problems require some
degree of uncertainty to be taken into account. For purpose of repre-
senting such problems, intuitionistic fuzzy sets are used, however, most
well-known multi-criteria decision-making methods operate in a crisp
environment. In this paper, we present an assessment of score functions
that are used to convert fuzzy numbers into crisp ones. Five score func-
tions were selected to assess their usefulness and effectiveness. Those
functions were used to transform the theoretical fuzzy decision matrix
problems into a crisp environment for evaluating alternatives using the
Measurement Alternatives and Ranking according to COmpromise Solu-
tion (MARCOS) method. In addition, the compromise between score
functions is presented and compared with the other results. The research
showed that score functions are useful tools when dealing with problems
in an uncertain environment and might prove helpful for decision-makers.

Keywords: Score functions · Uncertain environment · MCDA ·
MARCOS · Intuitionistic fuzzy sets

1 Introduction

Multi-criteria decision-making problems consider problems that are represented
either by crisp values, or ones that consist of some type of uncertainty. There are
many studies devoted to providing a way of modeling uncertain data based on
classical arithmetic methods [1]. Most real-world problems are presented with
some kind of uncertainty, thus such an approach is crucial to model problems as
precisely as possible to reflect uncertain knowledge flexibly. Uncertainty mod-
eling is often used in multi-criteria decision-making problems due to its high
reliability [15].
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Throughout the years, numerous ways of representing uncertain knowledge
emerged. Among the classical approaches are fuzzy sets (FS), based on the idea
related to partial membership [10]. Over the years, fuzzy sets have seen many
developments: Hesitant Fuzzy Sets (HFS) [24], Fermatean Fuzzy Sets (FFS) [22],
or Intuitionistic Fuzzy Sets (IFS) [11]. Indeed, the main advantage of the gener-
alization of fuzzy sets is a new approach to uncertainty modeling that considers
new degrees of membership, which gives the expert the ability to adapt to the
characteristics of the problem.

The Intuitionistic Fuzzy Sets are one of the most popular fuzzy approaches,
as it introduces the possibility of determining the degree of membership and
non-membership, which provides its usefulness in many areas e.g. sustainable
supplier selection [18], medical diagnosis [9] or investment selection [31]. The
wide use of Intuitionistic Fuzzy Sets has led to many studies which improved
their usability and significance in multi-criteria decision-making environments.

Many multi-criteria decision-making methods were extended to enable
problem-solving in an uncertain environment. However, most of the highly devel-
oped methods are designed to solve problems where the values are crisp [2]. This
has given rise to a number of methods for converting fuzzy values to sharp values,
and one approach is the use of the score functions which was originally proposed
by Chen and Tan [6]. The consequence of the appearance of such a solution was a
trend in which various score functions were proposed. This emerged a new prob-
lem, as their use within the same problem may be characterized by obtaining
different results. It creates a research gap that needs to be filled and determines
which score function to select so that the results are satisfactory.

In this study, five different score functions were chosen to carry out the anal-
ysis. The score functions provide a way to convert fuzzy numbers into crisp ones
which then can be used with the Measurement Alternatives and Ranking accord-
ing to COmpromise Solution (MARCOS) method to assess alternatives of the
decision matrix. The decision problems were generated to ensure that solution
would not depend on a specific problem. The theoretical problems were then
assessed using the previously mentioned approach to provide rankings that can
be compared with selected correlation coefficients. Additionally, the compromise
solution of all score function preferences is proposed. The main purpose of this
study is to emphasize the differences in utilizing different score functions regard-
ing their influence on the final rankings of multi-criteria decision problems.

The rest of the paper is organized as follows. Section 2 presents a literature
review providing a view of current trends in fuzzy problem-solving and the score
functions used in them. In Sect. 3 the preliminaries of the IFS, the scores func-
tions, the MARCOS method, and selected similarity coefficients are presented. In
Sect. 4, the study case is shown, where the theoretical problem of the functioning
of the different scores function is raised. Section 5 includes a description of the
results obtained from the examined research. Finally, in Sect. 6, the summary is
presented, and the conclusions are drawn.
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2 Literature Review

The utility of score functions has been demonstrated in a number of researches
that solve real-world problems that are based on intuitionistic fuzzy data.
G. Büyüközkan and F. Göçer [4] showed the usefulness of score functions in the
problem of supplier selection, where five alternatives were considered. They pro-
posed a new approach consisting of IF-AHP, IFAD, and score functions which
they compared to IF-TOPSIS. C. Zhang et al. [32] presented a similar app-
roach to solving MCDA problems, as they have as well utilized the MCDA
method with score functions, but the method they chose was MULTIMOORA.
In their work, they have created the assessment of the energy storage technolo-
gies, where fourteen alternatives described by eleven criteria were considered.
A different approach was presented by Y. Chen [8] in his work, where for the
evaluation of physical education teachers he proposed an evaluation solely based
on intuitionistic fuzzy information. Jian Lin et al. [17] presented a new MCDA
method based on a score function which they called Preference Attitude-Based.
Moreover, they presented its usage in a real problem, which considered renew-
able energy source selection, where four different alternatives were considered.
D. Tripathi et al. [25] presented an improved CoCoSo method that incorpo-
rated intuitionistic fuzzy parametric divergence measures and score function.
The usage of this method was presented as a medical decision-maker support
system where treatment options for patients were evaluated. S. Zeng et al. [30]
and JH Park et al. [20], both presented their approach to modifying the VIKOR
method that incorporated the score functions, however, S. Zeng et al. presented
its usage in the subject of supply chain management, on the other hand, JH Park
et al. problem at hand was evaluating university faculty. Moreover, the usage
of score functions was adopted for interval-valued intuitionistic fuzzy problems.
Their usage was presented for example by Jin Han Park [21] in his work where he
proposed an extended TOPSIS method that incorporated the score function for
IVIFNs, which usage was shown through the evaluation of five air-conditioning
systems should be installed in a library. Additionally, Liangping Wu et al. [27]
provided a way of using the score function with the VIKOR method for financ-
ing risk assessment of rural tourism projects under interval-valued intuitionistic
fuzzy circumstances. Aside from the practical presentations of usage, the score
functions utility is researched through many angles, which is presented in Table 1.
The literature review shows how crucial the score functions are in the MCDM
problems, but not enough analysis was carried out. This research tries to pro-
vide a comprehensive view of how the usage of different score functions alters
the final results and advises the most favourable score function depending on
the problem at hand.
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3 Research Methodology

3.1 Intuitionistic Fuzzy Sets

Definition 1. An Intuitionistic Fuzzy Set (IFS) A in a universe X is defined
as an object of the following form:

A = {〈xj , μj , νj〉 | xj ∈ X} (1)

where μ : X → [0, 1] and ν : X → [0, 1] such that 0 � μj +νj � 1 for all xj ∈ X.
The values of μj and νj represent the degrees of membership and non-membership
of xj ∈ X in A respectively [7].

For every A ∈ IFS(X) (the class of IFSs in the universe X), the value of

πj = 1 − μj − νj (2)

represents the degree of hesitation (or uncertainty) associated with the member-
ship of element xj ∈ X in IFS A, where 0 � πj � 1.

3.2 IFS Score Functions

The purpose of the score function is to convert the uncertain data representation
to a crisp value. Different approaches to performing such an action obtain diverse
values as a final output. Selected score functions and the formulas for their
calculations are presented below [7,9,15].

SI (Xij) = μij − vij (3)

SII (Xij) = μij − vij · πij (4)

SIII (Xij) = μij −
(

vij + πij

2

)
(5)

SIV (Xij) =
(

μij + vij

2

)
− πij (6)

SV (Xij) = γ · μij + (1 − γ) · (1 − vij) , γ ∈ [0, 1] (7)

where SI(Xij), SII(Xij), SV (Xij) ∈ [−1, 1], SIII(Xij) ∈ [−0.5, 1], and
SIV (Xij) ∈ [−1, 0.5].

3.3 MARCOS Method

The Measurement Alternatives and Ranking according to COmpromise Solu-
tion (MARCOS) method was introduced by Željko Stević in 2020 [23] as a new
multi-criteria decision-making method, which was presented in the study case of
sustainable supplier selection in healthcare industries. This method provides a
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new approach to solving decision problems, as it considers an anti-ideal and an
ideal solution at the initial steps of consideration of the problem. Moreover, it
proposes a new way to determine utility functions and their further aggregation,
while maintaining stability in the problems requiring a large set of alternatives
and criteria.
Step 1. The initial step requires to define set of n criteria and m alternatives
to create decision matrix.
Step 2. Next, the extended initial matrix X should be formed by defining ideal
(AI) and anti-ideal (AAI) solution.

X =

AII

A1

A2

· · ·
Am

AI

⎡
⎢⎢⎢⎢⎢⎢⎣

xaa1 xaa2 . . . xaan

x11 x12 · · · x1n

x21 x22 . . . x2n

· · · · · · · · · · · ·
xm1 x22 · · · xmn

xai1 xai2 · · · xain

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

The anti-ideal solution (AAI) which is the worst alternative is defined by
Eq. (9), whereas the ideal solution (AI) is the best alternative in the problem at
hand defined by Eq. (10).

AAI = min
i

xij if j ∈ B and max
i

xij if j ∈ C (9)

AI = max
i

xij if j ∈ B and min
i

xij if j ∈ C (10)

where B is a benefit group of criteria and C is a group of cost criteria.
Step 3. After defining anti-ideal and ideal solutions, the extended initial matrix
X needs to be normalized, by applying Eqs. (11) and (12) creating normalized
matrix N .

nij =
xai

xij
if j ∈ C (11)

nij =
xij

xai
if j ∈ B (12)

Step 4. The weight for each criterion needs to be defined to present its impor-
tance in accordance with others. The weighted matrix V needs to be calculated
by multiplying the normalized matrix N with the weight vector through Eq. (13).

vij = nij × wj (13)

Step 5. Next, the utility degree K of alternatives in relation to the anti-ideal
and ideal solutions needs to be calculated by using Eqs. (14) and (15).

K−
i =

∑n
i=1 vij∑n

i=1 vaai
(14)
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K+
i =

∑n
i=1 vij∑n
i=1 vai

(15)

Step 6. The utility function f of alternatives, which is the compromise of the
observed alternative in relation to the ideal and anti-ideal solution, needs to be
determined. Its done using Eq. (16).

f (Ki) =
K+

i + K−
i

1 +
1−f(K+

i )
f(K+

i ) +
1−f(K−

i )
f(K−

i )

(16)

where f
(
K−

i

)
represents the utility function in relation to the anti-ideal solution

and f
(
K+

i

)
represents the utility function in relation to the ideal solution.

Utility functions in relation to the ideal and anti-ideal solution are determined
by applying Eqs. (17) and (18).

f
(
K−

i

)
=

K+
i

K+
i + K−

i

(17)

f
(
K+

i

)
=

K−
i

K+
i + K−

i

(18)

Step 7. Finally, rank alternatives accordingly to the values of the utility func-
tions. The higher the value the better an alternative is.

3.4 Rank Similarity Coefficients

In order to compare the performance of the score functions, it would be useful
to compare the rankings obtained after evaluating the values calculated using
these functions. For this purpose, one can use rank similarity coefficients, which
are often used in the literature to compare the resulting rankings. In the case
of our study, we decided to use the weighted Spearman’s correlation coefficient,
which allows comparing rankings considering alternatives rated the best as more
significant, and the WS ranking similarity coefficient, which the main assumption
that the positions of top of the rankings have a more significant influence on
similarity. The formulas for the calculation of both coefficients are presented
below in Eq. (19) for weighted Spearman’s correlation and Eq. (20) for WS rank
similarity coefficient.

rw = 1 − 6 · ∑n
i=1 (xi − yi)

2 ((n − xi + 1) + (n − yi + 1))
n · (n3 + n2 − n − 1)

(19)

WS = 1 −
n∑

i=1

(
2−xi

|xi − yi|
max {|xi − 1| , |xi − n|}

)
(20)

where xi means position in the reference ranking, yi is the position in the second
ranking and n is a number of ranked elements.
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4 Research Findings

With the increasing popularity of multi-criteria decision-making, the need has
arisen to reflect real-world problems as accurately as possible. However, in many
real-world problems, it is impossible to give crisp values, as uncertainties arise
that can significantly alter the results. For the purposes of mapping expert knowl-
edge as accurately as possible and providing sufficient flexibility, fuzzy sets have
been proposed as one of the solutions. The intuitionistic fuzzy sets are a type
of fuzzy set that represents decisiveness and indecisiveness for a given alterna-
tive. However, many multi-criteria decision-making methods have been devel-
oped that base their operation on crisp values, rendering them unsuitable for
use with IFS problems.

In order to ensure that existing methods can be used for fuzzy problems,
score functions were proposed to convert crisp to fuzzy values. However, as a
number of score functions were developed, it presented a need of comparing
those functions. For this purpose, we present two examples, one with a small
decision matrix and the second with a big one. The matrices were generated to
provide an objective view of the results, as the field of the problems is no concern
in this matter. Moreover, the compromise ranking was calculated, by creating
a matrix from the preferences acquired by score functions and executing the
MARCOS method for such a decision matrix.

4.1 Small Example

The small example was generated for six alternatives and four criteria and is
presented in Table 2. Such matrix dimensions should represent most of the prob-
lems considered, as small problems are the most prevailing in the literature. In
the matrix, the first value indicates the value of decisiveness, while the second
determines the degree of indecisiveness.

Table 2. Small decision matrix represented by intuitionistic fuzzy sets.

Ai C1 C2 C3 C4

(μ, ν) (μ, ν) (μ, ν) (μ, ν)

A1 (0.66588, 0.23451) (0.01186, 0.58725) (0.27335, 0.24798) (0.19894, 0.13208)

A2 (0.22461, 0.70848) (0.17635, 0.79087) (0.26652, 0.43553) (0.73207, 0.01165)

A3 (0.77158, 0.22185) (0.31678, 0.08189) (0.58012, 0.06394) (0.43352, 0.41035)

A4 (0.10396, 0.46207) (0.41412, 0.58285) (0.72563, 0.02145) (0.70608, 0.16961)

A5 (0.03777, 0.17833) (0.21884, 0.66360) (0.36338, 0.55215) (0.02329, 0.40128)

A6 (0.31007, 0.44148) (0.55196, 0.19111) (0.49831, 0.15947) (0.04384, 0.94746)

4.2 Big Example

The second example taken into consideration is supposed to represent problems
with a large number of alternatives. For this purpose, the matrix of twenty
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alternatives and six criteria was generated. Problems with such dimensionality
are less frequently used in literature, however, in real-world problems, one often
encounters even more alternatives and it is usually even more difficult for the
decision-maker to make the right choice, which makes it an important case to
check with every MCDA solution. The generated values for the decision matrix
are presented in Table 3 for criteria one to three and in Table 4 for criteria four
to six.

Table 3. Big decision matrix represented by intuitionistic fuzzy sets C1 − C3.

Ai C1 C2 C3

(μ, ν) (μ, ν) (μ, ν)

A1 (0.03008, 0.59822) (0.54799, 0.26195) (0.44687, 0.28107)

A2 (0.65028, 0.34754) (0.39855, 0.52727) (0.45998, 0.15288)

A3 (0.65990, 0.15513) (0.13322, 0.20364) (0.01991, 0.45287)

A4 (0.11286, 0.15714) (0.38047, 0.01957) (0.09701, 0.10392)

A5 (0.06691, 0.23208) (0.20909, 0.62088) (0.44542, 0.47977)

A6 (0.45541, 0.22584) (0.01929, 0.87036) (0.01559, 0.17132)

A7 (0.20855, 0.46328) (0.02354, 0.66232) (0.11760, 0.37040)

A8 (0.47737, 0.22873) (0.28764, 0.29996) (0.00493, 0.38813)

A9 (0.04359, 0.47662) (0.07547, 0.82165) (0.50706, 0.36966)

A10 (0.37778, 0.10292) (0.26738, 0.41870) (0.02580, 0.87791)

A11 (0.06616, 0.27073) (0.03201, 0.89392) (0.38430, 0.52810)

A12 (0.03170, 0.27506) (0.90900, 0.04329) (0.77808, 0.05569)

A13 (0.04928, 0.16643) (0.18588, 0.76387) (0.12327, 0.65232)

A14 (0.48724, 0.23737) (0.06983, 0.47740) (0.08177, 0.68484)

A15 (0.18019, 0.71784) (0.60128, 0.07074) (0.27282, 0.10789)

A16 (0.11729, 0.25536) (0.60794, 0.35294) (0.65381, 0.00884)

A17 (0.29735, 0.04217) (0.23092,0.01618) (0.00990, 0.98991)

A18 (0.07894, 0.72784) (0.27682, 0.34924) (0.52028, 0.19206)

A19 (0.14809, 0.76951) (0.61404, 0.34116) (0.74713, 0.06286)

A20 (0.64628, 0.35096) (0.15257, 0.26666) (0.79898, 0.02703)

5 Discussion of Findings

5.1 Small Example

The crisp values of criteria for each alternative calculated by the score function
are presented by corresponding Tables. Table 5 presents the values for the SI

score function. This function operates in the range [−1, 1] and the spread of its
values is around 1.624, which shows that the range is used effectively, and values
should differ greatly from each other.

Table 6 presents values calculated using SII score function. This function is
defined as the degree of membership minus the product of the non-membership
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Table 4. Big decision matrix represented by intuitionistic fuzzy sets C4 − C6.

Ai C4 C5 C6

(μ, ν) (μ, ν) (μ, ν)

A1 (0.17807, 0.62603) (0.79718, 0.09979) (0.11472, 0.53089)

A2 (0.43069, 0.17812) (0.42217, 0.28637) (0.41295, 0.06847)

A3 (0.06626, 0.15496) (0.48144, 0.15189) (0.22848, 0.41295)

A4 (0.47157, 0.37453) (0.46475, 0.25735) (0.15571, 0.26099)

A5 (0.35187, 0.15178) (0.12133, 0.53977) (0.11654, 0.71676)

A6 (0.03106, 0.22659) (0.02487, 0.46356) (0.56558, 0.04465)

A7 (0.15746, 0.28173) (0.42951, 0.00288) (0.25495, 0.53578)

A8 (0.18569, 0.48341) (0.49683, 0.10407) (0.31878, 0.15729)

A9 (0.14470, 0.10471) (0.35489, 0.12449) (0.71246, 0.21683)

A10 (0.04063, 0.16260) (0.96672, 0.00880) (0.83796, 0.11231)

A11 (0.09013, 0.34629) (0.37471, 0.01166) (0.43074, 0.50213)

A12 (0.48861, 0.43642) (0.42810, 0.51547) (0.15026, 0.38831)

A13 (0.23309, 0.30895) (0.15394, 0.57738) (0.30725, 0.53843)

A14 (0.46602, 0.07656) (0.29870, 0.10660) (0.06250, 0.16147)

A15 (0.30307, 0.23982) (0.03609, 0.42349) (0.25163, 0.41869)

A16 (0.47752, 0.51659) (0.49845, 0.41165) (0.04280, 0.02324)

A17 (0.64467, 0.05589) (0.07594, 0.92166) (0.17589, 0.22486)

A18 (0.49845, 0.48739) (0.42027, 0.02709) (0.37743, 0.61117)

A19 (0.03727, 0.38806) (0.04631, 0.71954) (0.34496, 0.03066)

A20 (0.53209, 0.08420) (0.20154, 0.59238) (0.45175, 0.53248)

Table 5. Crisp small decision matrix calculated with SI score function.

Ai C1 C2 C3 C4

A1 0.4313 −0.5753 0.0253 0.0668

A2 −0.4838 −0.6145 −0.1690 0.7204

A3 0.5497 0.2348 0.5161 0.0231

A4 −0.3581 −0.1687 0.7041 0.5364

A5 −0.1405 −0.4447 −0.1887 −0.3779

A6 −0.1314 0.3608 0.3388 −0.9036

and hesitation degrees. This function operates in the same range as the SI func-
tions, which is [−1, 1]. However, in its case, the spread of the values is around
0.9937 which is significantly lower than the one for the SI function. Which might
be crucial in terms of highlighting the differences between alternatives.
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Table 6. Crisp small decision matrix calculated with SII score function.

Ai C1 C2 C3 C4

A1 0.6425 −0.2235 0.1546 0.1105

A2 0.1772 0.1504 0.1367 0.7290

A3 0.7701 0.2675 0.5573 0.3694

A4 −0.0965 0.4123 0.7202 0.6849

A5 −0.1020 0.1408 0.3167 −0.2076

A6 0.2003 0.5028 0.4437 0.0356

The values acquired by execution of SIII function are presented in Table 7.
This function subtracts the arithmetic mean of the non-membership and hesita-
tion degrees and operates in the range of [−0.5, 1]. Considering this and the fact
that the spread of the values is around 1.1396 it presents high differentiation of
the individual IFS values from the initial decision matrix.

Table 7. Crisp small decision matrix calculated with SIII score function.

Ai C1 C2 C3 C4

A1 0.4988 −0.4822 −0.0899 −0.2015

A2 −0.1630 −0.2354 −0.1002 0.5981

A3 0.6573 −0.0248 0.3701 0.1502

A4 −0.3440 0.1211 0.5884 0.5591

A5 −0.4433 −0.1717 0.0450 −0.4650

A6 −0.0349 0.3279 0.2474 −0.4342

Score function SIV operates in a similar range as the SIII function, but
the exact values are different, namely, the range of this function is [−1, 0.5].
This function is defined as the arithmetic mean of the membership and non-
membership degrees minus the hesitation degree and the values calculated using
it, are presented in Table 8. The spread of calculated values is around 1.1713,
which suggests that this function is used to a similar extent as the SIII function,
making visible differences between original IFS values.

In Table 9, the values calculated using the function SV are presented. This
function operates in exactly the same range as the SI and SII functions, how-
ever, the spread of the values is the smallest, being around 0.812. This function
differentiates the original values the least and even though it may not be suitable
for all decision-makers, this function may prove to be more suitable for use with
decision-making methods.

Each of the matrices acquired with the usage of score functions was used to
execute the MARCOS method to calculate the preference of considered alterna-
tives. The preferences for specific score functions are shown in Table 10. Those



A Sustainable Approach for Determining Compromise Ranking 203

Table 8. Crisp small decision matrix calculated with SIV score function.

Ai C1 C2 C3 C4

A1 0.3505 −0.1013 −0.2180 −0.5034

A2 0.3996 0.4508 0.0530 0.1155

A3 0.4901 −0.4019 −0.0339 0.2658

A4 −0.1509 0.4954 0.1206 0.3135

A5 −0.6758 0.3236 0.3733 −0.3631

A6 0.1273 0.1146 −0.0133 0.4869

Table 9. Crisp small decision matrix calculated with SV score function.

Ai C1 C2 C3 C4

A1 0.7156 0.2123 0.5126 0.5334

A2 0.2580 0.1927 0.4154 0.8602

A3 0.7748 0.6174 0.7580 0.5115

A4 0.3209 0.4156 0.8520 0.7682

A5 0.4297 0.2776 0.4056 0.3110

A6 0.4342 0.6804 0.6694 0.0481

results provide us with a better view of how those functions differ in terms of
the final results of conducting a multi-criteria decision analysis. Functions SI

and SIV provide values, that might be hard to distinguish by the decision maker
as most of them are on the second decimal place and the spread of the values
is 0.0301 and 0.0403 respectively. The function SIII is somewhat in the middle
presenting relatively easy-to-distinguish differences between preferences with a
spread of 0.2547. While functions SII and SV allowed to obtain values that are
easy to distinguish and their spread is 0.6069 and 0.3739 respectively.

Table 10. Preferences for small decision matrix computed with MARCOS method for
SI -SV score functions.

Ai SI SII SIII SIV SV Scomp

A1 0.0044 0.1828 −0.0826 −0.0139 0.5774 0.0158

A2 0.0117 0.4157 −0.0094 0.0264 0.4943 0.4667

A3 −0.0155 0.6801 0.1241 0.0081 0.7969 0.3547

A4 −0.0040 0.6369 0.1225 0.0208 0.6856 0.5207

A5 0.0146 0.0732 −0.1306 −0.0059 0.4230 0.0571

A6 0.0001 0.4655 0.0441 0.0183 0.5644 0.3861
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In order to better reflect the differences in the obtained rankings, two sim-
ilarity coefficients were used. The first one, Weighted Spearman’s correlation
coefficient is shown on the heatmap in Fig. 1. In this specific example, we can
see that rankings provided by the function SII and SIII are identical. Consid-
ering this, the score function SII might be preferred by decision-makers as it
provided more distinctive values of preference. Those two rankings are highly
similar to the one provided by the function SV which was the second function
with the highest spread in terms of preference values. However, the compromise
ranking showed the highest similarity with the one acquired using the function
SIV . This is an interesting case and should be taken into account when choosing
the score function, because even though the score function SIV provided values
with low spread, the consensus of all score functions is the closest to provided
by this exact function.

The second coefficient, namely the WS coefficient is presented in Fig. 1. In
the case of this coefficient, the situation is very similar, which only confirms the
previous conclusions. The use of this coefficient is important not only to confirm
but also to see how the podium changes, as this coefficient is asymmetric. As
can be seen from the presented heatmap, it is not very significant in the case
under consideration.

Fig. 1. Weighted Spearman’s correlation and WS coefficient of rankings for small deci-
sion matrix.

5.2 Big Example

Table 11 presents values calculated using SI function. Similarly to the small
problem in this case the function managed to utilize almost the whole range
considering that it operates in the range [−1, 1], and provided values which
spread is around 1.9379 (Table 11).

The second function, namely the SII function yielded values presented in
Table 12. Their spread is about 1.1971, which is higher than in the case of the
small example, but there may be a tendency for more alternatives to result in
more spread-out values.

The values acquired using the function SIII are presented in Table 13. This
function operates in the range of [−0.5, 1] and its spread is around 1.4427, which
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Table 11. Crisp big decision matrix calculated with SI score function.

Ai C1 C2 C3 C4 C5 C6

A1 −0.5681 0.2860 0.1658 −0.4480 0.6974 −0.4162

A2 0.3027 −0.1287 0.3071 0.2526 0.1358 0.3445

A3 0.5048 −0.0704 −0.4330 −0.0887 0.3296 −0.1845

A4 −0.0443 0.3609 −0.0069 0.0970 0.2074 −0.1053

A5 −0.1652 −0.4118 −0.0343 0.2001 −0.4184 −0.6002

A6 0.2296 −0.8511 −0.1557 −0.1955 −0.4387 0.5209

A7 −0.2547 −0.6388 −0.2528 −0.1243 0.4266 −0.2808

A8 0.2486 −0.0123 −0.3832 −0.2977 0.3928 0.1615

A9 −0.4330 −0.7462 0.1374 0.0400 0.2304 0.4956

A10 0.2749 −0.1513 −0.8521 −0.1220 0.9579 0.7257

A11 −0.2046 −0.8619 −0.1438 −0.2562 0.3630 −0.0714

A12 −0.2434 0.8657 0.7224 0.0522 −0.0874 −0.2381

A13 −0.1172 −0.5780 −0.5291 −0.0759 −0.4234 −0.2312

A14 0.2499 −0.4076 −0.6031 0.3895 0.1921 −0.0990

A15 −0.5377 0.5305 0.1649 0.0633 −0.3874 −0.1671

A16 −0.1381 0.2550 0.6450 −0.0391 0.0868 0.0196

A17 0.2552 0.2147 −0.9800 0.5888 −0.8457 −0.0490

A18 −0.6489 −0.0724 0.3282 0.0111 0.3932 −0.2337

A19 −0.6214 0.2729 0.6843 −0.3508 −0.6732 0.3143

A20 0.2953 −0.1141 0.7720 0.4479 −0.3908 −0.0807

Table 12. Crisp big decision matrix calculated with SII score function.

Ai C1 C2 C3 C4 C5 C6

A1 −0.1923 0.4982 0.3704 0.0554 0.7869 −0.0734

A2 0.6495 0.3594 0.4008 0.3610 0.3387 0.3774

A3 0.6312 −0.0018 −0.2189 −0.0544 0.4257 0.0804

A4 −0.0019 0.3687 0.0140 0.4139 0.3932 0.0035

A5 −0.0958 0.1035 0.4095 0.2765 −0.0616 −0.0029

A6 0.3834 −0.0768 −0.1237 −0.1371 −0.2123 0.5482

A7 0.0565 −0.1845 −0.0720 −0.0005 0.4279 0.1428

A8 0.4101 0.1639 −0.2306 0.0257 0.4553 0.2364

A9 −0.1851 −0.0091 0.4615 0.0661 0.2901 0.6971

A10 0.3243 0.1359 −0.0587 −0.0889 0.9665 0.8324

A11 −0.1134 −0.0342 0.3380 −0.1050 0.3676 0.3970

A12 −0.1590 0.9069 0.7688 0.4559 0.3990 −0.0289

A13 −0.0813 0.1475 −0.0231 0.0916 −0.0012 0.2242

A14 0.4219 −0.1463 −0.0781 0.4310 0.2353 −0.0628

A15 0.1070 0.5781 0.2060 0.1934 −0.1928 0.1136

A16 −0.0429 0.5941 0.6508 0.4745 0.4614 0.0211

A17 0.2695 0.2187 0.0097 0.6279 0.0737 0.0411

A18 −0.0617 0.1462 0.4650 0.4916 0.4053 0.3705

A19 0.0847 0.5988 0.7352 −0.1857 −0.1222 0.3258

A20 0.6453 −0.0023 0.7943 0.4998 0.0795 0.4434
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Table 13. Crisp big decision matrix calculated with SIII score function.

Ai C1 C2 C3 C4 C5 C6

A1 −0.4549 0.3220 0.1703 −0.2329 0.6958 −0.3279

A2 0.4754 0.0978 0.1900 0.1460 0.1333 0.1194

A3 0.4899 −0.3002 −0.4701 −0.4006 0.2222 −0.1573

A4 −0.3307 0.0707 −0.3545 0.2074 0.1971 −0.2664

A5 −0.3996 −0.1864 0.1681 0.0278 −0.3180 −0.3252

A6 0.1831 −0.4711 −0.4766 −0.4534 −0.4627 0.3484

A7 −0.1872 −0.4647 −0.3236 −0.2638 0.1443 −0.1176

A8 0.2160 −0.0685 −0.4926 −0.2215 0.2452 −0.0218

A9 −0.4346 −0.3868 0.2606 −0.2830 0.0323 0.5687

A10 0.0667 −0.0989 −0.4613 −0.4390 0.9501 0.7569

A11 −0.4008 −0.4520 0.0765 −0.3648 0.0621 0.1461

A12 −0.4524 0.8635 0.6671 0.2329 0.1421 −0.2746

A13 −0.4261 −0.2212 −0.3151 −0.1504 −0.2691 −0.0391

A14 0.2309 −0.3953 −0.3773 0.1990 −0.0519 −0.4062

A15 −0.2297 0.4019 −0.0908 −0.0454 −0.4459 −0.1226

A16 −0.3241 0.4119 0.4807 0.2163 0.2477 −0.4358

A17 −0.0540 −0.1536 −0.4851 0.4670 −0.3861 −0.2362

A18 −0.3816 −0.0848 0.2804 0.2477 0.1304 0.0661

A19 −0.2779 0.4211 0.6207 −0.4441 −0.4305 0.0174

A20 0.4694 −0.2711 0.6985 0.2981 −0.1977 0.1776

shows that it yielded values almost across the whole range similar to function
SI .

The function SIV similar to function SIII used up almost the whole range of
values, as its spread is 1.4 and presented values are easily distinguishable from
each other. Once again the spread is even higher than in the small example,
which is preferable considering that such differences should be more prominent
to the decision maker making it suitable for problems where a high number of
alternatives is considered.

The last function, namely function SV yielded values presented in Table 15.
This function operates in the same range as functions SI and SII , however, the
spread of its values which is around 0.9689 is the smallest out of all presented
functions. The same characteristics are present as in the small problem, where
function SV provides the smallest spread of values, which might be less preferable
by a decision maker, as the perceived differences are not so apparent. However,
in some of the decision-making methods, such an approach might be preferable.

Each of the score functions provided matrices of crisp values, which then
were used in the MARCOS method. The calculated preferences of considered
alternatives are presented in Table 16. Similar to the small problem, using score
function SI the calculated preferences are hard to distinguish as almost all values
have zeros on the first two decimal places. This function provided preferences
with a spread of 0.0026, which might be perceived by decision-makers that this
function does not differentiate the values enough. Functions SIII , SIV and SV
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Table 14. Crisp big decision matrix calculated with SIV score function.

Ai C1 C2 C3 C4 C5 C6

A1 −0.0576 0.2149 0.0919 0.2061 0.3455 −0.0316

A2 0.4967 0.3887 −0.0807 −0.0868 0.0628 −0.2779

A3 0.2226 −0.4947 −0.2908 −0.6682 −0.0500 −0.0378

A4 −0.5950 −0.3999 −0.6986 0.2691 0.0831 −0.3749

A5 −0.5515 0.2450 0.3878 −0.2445 −0.0083 0.2500

A6 0.0219 0.3345 −0.7196 −0.6135 −0.2674 −0.0847

A7 0.0077 0.0288 −0.2680 −0.3412 −0.3514 0.1861

A8 0.0591 −0.1186 −0.4104 0.0036 −0.0987 −0.2859

A9 −0.2197 0.3457 0.3151 −0.6259 −0.2809 0.3939

A10 −0.2789 0.0291 0.3556 −0.6951 0.4633 0.4254

A11 −0.4947 0.3889 0.3686 −0.3454 −0.4204 0.3993

A12 −0.5398 0.4284 0.2506 0.3875 0.4153 −0.1922

A13 −0.6764 0.4246 0.1634 −0.1869 0.0970 0.2685

A14 0.0869 −0.1792 0.1499 −0.1861 −0.3920 −0.6640

A15 0.3470 0.0080 −0.4289 −0.1857 −0.3106 0.0055

A16 −0.4410 0.4413 −0.0060 0.4912 0.3651 −0.9009

A17 −0.4907 −0.6294 0.4997 0.0508 0.4964 −0.3989

A18 0.2102 −0.0609 0.0685 0.4788 −0.3290 0.4829

A19 0.3764 0.4328 0.2150 −0.3620 0.1488 −0.4366

A20 0.4959 −0.3712 0.2390 −0.0756 0.1909 0.4764

Table 15. Crisp big decision matrix calculated with SV score function.

Ai C1 C2 C3 C4 C5 C6

A1 0.2159 0.6430 0.5829 0.2760 0.8487 0.2919

A2 0.6514 0.4356 0.6535 0.6263 0.5679 0.6722

A3 0.7524 0.4648 0.2835 0.4557 0.6648 0.4078

A4 0.4779 0.6804 0.4965 0.5485 0.6037 0.4474

A5 0.4174 0.2941 0.4828 0.6000 0.2908 0.1999

A6 0.6148 0.0745 0.4221 0.4022 0.2807 0.7605

A7 0.3726 0.1806 0.3736 0.4379 0.7133 0.3596

A8 0.6243 0.4938 0.3084 0.3511 0.6964 0.5807

A9 0.2835 0.1269 0.5687 0.5200 0.6152 0.7478

A10 0.6374 0.4243 0.0739 0.4390 0.9790 0.8628

A11 0.3977 0.0690 0.4281 0.3719 0.6815 0.4643

A12 0.3783 0.9329 0.8612 0.5261 0.4563 0.3810

A13 0.4414 0.2110 0.2355 0.4621 0.2883 0.3844

A14 0.6249 0.2962 0.1985 0.6947 0.5960 0.4505

A15 0.2312 0.7653 0.5825 0.5316 0.3063 0.4165

A16 0.4310 0.6275 0.8225 0.4805 0.5434 0.5098

A17 0.6276 0.6074 0.0100 0.7944 0.0771 0.4755

A18 0.1755 0.4638 0.6641 0.5055 0.6966 0.3831

A19 0.1893 0.6364 0.8421 0.3246 0.1634 0.6572

A20 0.6477 0.4430 0.8860 0.7239 0.3046 0.4596
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provide preferences whose spread is respectively 0.2851, 0.2291 and 0.2961. The
function SII once again provided the highest spread of preference values, as its
spread is 0.4665, which might be highly preferable by decision-makers.

Table 16. Preferences for big decision matrix computed with MARCOS method for
SI -SV score functions.

Ai SI SII SIII SIV SV Scomp

A1 0.000706 0.238862 −0.032103 −0.067912 0.519326 0.177506

A2 −0.001127 0.510740 0.123427 −0.046274 0.687340 0.305169

A3 −0.000177 0.178261 −0.053505 0.118224 0.577427 0.257636

A4 −0.000331 0.232269 −0.050289 0.150741 0.611184 0.307373

A5 0.001054 0.133209 −0.093876 −0.009465 0.439827 0.156982

A6 0.000477 0.088837 −0.116222 0.110048 0.496652 0.200024

A7 0.001024 0.063267 −0.122511 0.062309 0.457438 0.183669

A8 −0.000065 0.205221 −0.036939 0.074221 0.575831 0.248356

A9 0.000327 0.238104 −0.049121 0.002237 0.538470 0.198030

A10 −0.000630 0.378988 0.026421 −0.026016 0.641746 0.215489

A11 0.001036 0.140678 −0.110144 0.004242 0.454364 0.157308

A12 −0.000668 0.440281 0.082662 −0.068258 0.659115 0.254490

A13 0.001472 0.065774 −0.140213 −0.012616 0.391144 0.112410

A14 0.000019 0.193764 −0.043427 0.104703 0.550408 0.275579

A15 0.000455 0.203464 −0.054095 0.047976 0.529571 0.246673

A16 −0.000540 0.415292 0.040908 0.001269 0.639517 0.286787

A17 0.000277 0.279380 −0.043999 0.048080 0.509463 0.257759

A18 0.000498 0.358002 0.017530 −0.073369 0.533194 0.249278

A19 0.000532 0.262462 −0.035903 −0.035001 0.524955 0.199734

A20 −0.001008 0.529739 0.144936 −0.078379 0.666613 0.308986

Figure 2 presents a heatmap of the values of correlation calculated using
Weighted Spearman’s correlation coefficient for resulting rankings. Once again
rankings acquired using functions SII and SIII present high similarity equal to
0.96. Additionally, those two functions are highly similar to rankings provided
by the function SV . The compromise ranking shows the highest similarity of 0.78
with rankings yielded using the function SIV , but it is worth mentioning that
functions SII and SIII have significant similarity as well. Contrary to the small
example, the function SIV did not provide a similar ranking to the compromise
one.

WS similarity coefficient presented in Fig. 2 allows us to draw similar con-
clusions as in the case of Weighted Spearman’s correlation coefficient. However,
this coefficient shows a higher similarity of compromise ranking with rankings
provided by functions SII and SIII , which means that more important alter-
natives, namely the one closer to the podium are more alike than the end of
the ranking. Additionally, the similarity of ranking of the function SIV shows
asymmetrical similarity to compromise ranking.
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Fig. 2. Weighted Spearman’s correlation and WS coefficient of rankings for big decision
matrix.

6 Conclusion

The multitude of decision-making problems in the real world requires a constant
search for new solutions in this area. Often the problems considered are problems
in which there is a degree of uncertainty that renders a large proportion of the
already-known solutions useless and unusable. This creates a great need to find
ways of defuzzification of problems, so as not to be limited to methods that only
solve a specific type of problem.

In this study, defuzzification of the intuitionistic fuzzy sets was taken into
consideration. For this purpose, five different score functions were compared in
terms of what values they return and ultimately how this affects the ranking
obtained using the MARCOS method. From the results obtained, it can be con-
cluded that the SI function uses most of the range in which it operates, and yet
the preference values that are obtained using this function differ from each other
at the third decimal place, making the values unreadable to the decision-maker.
The function SIII shows similar characteristics to the SI function. On the other
hand, functions SII , SIII and SV provide highly distinguishable preference values
and moreover, the rankings acquired by using those functions are highly simi-
lar to the compromise ranking. Additionally, the decision maker could calculate
the problem using all of the score functions and conduct additional MARCOS
method assessment as the ranking yielded by such compromise showed to be a
viable option.

In future studies, practical examples might be presented to encourage the use
of score functions in real-world problems and present their reliability in practical
settings. Moreover, the technique for compromise of score functions should be
further studied, as it might prove to be even more reliable in decision-making
problems than any of the considered score functions on its own.
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