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Abstract. INTRODUCTION: Falls constitute a significant threat to
older adults. Several approaches aimed at automatically detecting falls
exist. Smartphones are widespread and can serve as a low-cost pervasive
platform for automated fall detection. Existing fall detection apps are
highly sensitive, but often suffers from sub-optimal specificity which can
result in many false positives.

OBJECTIVES: The aim of this study was to investigate whether the
built-in pedometer virtual sensor on the Android smartphone platform
can be used to increase specificity and thereby achieve higher accuracy
in an accelerometer-based Android fall detection application.

METHODS: An existing open threshold-based accelerometer algo-
rithm was combined with the standard Android virtual sensor pedometer
algorithm for detecting walking in the postfall phase. In a range of exper-
iments, falls were simulated using a combination of a test mannequin and
test participants, in order to determine the sensitivity and specificity of
the solution.

RESULTS: All simulated falls were detected with 100% sensitivity.
By counting postfall subsequent steps using the Android pedometer vir-
tual sensor, the specificity of the application was increased to 100% in
all scenarios.

CONCLUSION: The combination of accelerometer and pedometer
sensors was found feasible to use for increasing the specificity of existing
open fall detection algorithms.
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1 Introduction

The ageing of the world’s population is becoming one of the most significant
social transformations of our time [1]. The number of people aged 65 years or
above is projected to grow from nine percent in 2019 to nearly 12% in 2030.
The number of people aged 80 years or over is expected to be nearly tripled by
2050 [2].
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Based on these demographic changes, many countries are adopting healthy
ageing policies to help elderly living an active and independent life [3].

Age is one of the key risk factors for fall accidents, and elderly people are
the most exposed. Each year, more than 30% of people above the age of 65 falls,
and in half of the cases, falls are recurrent [4].

In a systematic review of fall definitions and measuring methods, some of
the adjectives to describe falls are ‘unintentional’, ‘unexpected’, ‘sudden’ and
‘unplanned’ which all state an element of surprise for the participant. Two com-
mon definitions are from the WHO (i) and the Kellogg Group (ii) [5–7].

(i) A fall is defined as an event which results in a person coming to rest inad-
vertently on the ground or floor or other lower level.

(ii) A fall is an event which results in a person coming to rest inadvertently
on the ground or other lower level and other than as a consequence of the
following: sustaining a violent blow, loss of consciousness, sudden onset of
paralysis, as in a stroke, an epileptic seizure.

Falls have been proven to have a high correlation with mortality, morbidity,
functionality and premature nursing home admissions [8,9].

Some of the health-related consequences include fractures, soft tissue injuries,
longstanding pain and functional impairment which lead to reduced quality of
life [10].

In a study by Bergland et al., 51% of the falls resulted in an injury, of which
24% were considered severe. Thirteen percent of the falls resulted in fractures.
The researchers further suggest that the inability to get up from the floor was
the most influential risk factor for fall-related severe injuries [11].

According to the report, How dangerous are falls in old people at home?,
50% of those who were lying on the floor longer than one hour died within the
following six months [12]. Fleming et al. investigated fall reports and found that
in 54% of the cases, the individual was found on the floor. Of the 60% involved
individuals, 80% of the participants were unable to get up from the floor, and
30% had lain on the floor for at least one hour. A lie of one hour or more is often
referred to as a “long lie” [13–15].

The impact of long lies is the motivation behind automated information and
communication technology systems which can detect and react to the actual
fall event occurring. The main objective of an automated fall detection system
is to automatically detect when a fall event has occurred. Fall detection sys-
tems seek to discriminate between fall events and activity of daily living (ADL)
events. This is challenging as some ADL events, like sitting down from a stand-
ing position in a chair or on a bed, or running or walking at high speeds, have
similarities to falls which often results in lower specificity of the fall detection
system. Robust fall detectors have the potential to detect the falls early and
avoid the severe consequences of long lies while avoiding false positives. To sum-
marize, falls that go undetected increases suffering and the risk of more severe
infections and death, while an excessive number of false alarms can lead to eco-
nomic loss and caregivers rejecting the system [16]. Studies have investigated a
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Fig. 1. A fall divided into the phases proposed by Noury et al. Source: Own work.

variety of approaches, including cameras, ambient sensors and wearable devices
such as smartphones and smartwatches with mixed results [16].

Noury et al. proposed protocols for the evaluation of fall detection algorithms.
For categorising the algorithms, they divide falls into four phases: the prefall
phase, the critical phase, the postfall phase and the recovery phase. Figure 1
illustrates the phases based on the proposed protocol. In the prefall phase, the
person performs the usual ADL where sudden movements that should be dis-
tinguished from a fall may happen. In the critical phase, the person is subject
to a sudden movement of the body toward the ground with a small (T1–T0 =
300–500 ms) duration ending in a fall. In the postfall phase, the person is lying
on the floor inactively, and this phase should preferably not last longer than an
hour (T2–T1 < 1h). The recovery phase consists of the person getting up from
the floor on his own or with help [17].

2 Related Work

Fall detection systems can be grouped into camera-based, ambient device-based,
wearable device-based and sensor fusion-based systems [18,19].

Ambient device-based systems often consist of a variety of sensors which are
deployed in the environment. This means that the subject does not need to wear
a device. However, the system is limited to the placement of the sensors, whereas
the most common are floor sensors, microphones and pressure sensors [16].

Camera-based systems typically consist of a video camera monitoring the
home of the elderly in combination with computer vision algorithms which can
detect falls based on the video feed [20]. In a review from 2013, the included
camera-based systems started with an object detection followed by feature
extraction to have sufficient discriminative power to identify fall events. Ulti-
mately, a large variety of different classifiers were used to determine the fall
event [16].
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Wearable devices are worn by the person as accessories, embedded in clothing,
implanted in the user’s body or even tattooed on the skin [21]. The majority
of fall detection systems within this area use accelerometer sensors while some
incorporate other sensor types such as gyroscopes [16].

Sensor fusion combines multiple physical sensors to achieve higher accuracy
than the individual sensors are capable of [22].

2.1 Accelerometer-Based Devices

Accelerometer-based devices are a subgroup of wearable devices and are a
major area for detection of the critical phase of a fall [16]. Igual et al. groups
accelerometer-based systems into two categories [16]:

(i) Threshold-based method (TBM) where a fall is reported when the acceler-
ation peaks, valleys or exceeds predefined thresholds

(ii) Machine learning-based method (MLM) which uses machine learning tech-
niques to classify and report a fall

In 2005, Lindemann et al. integrated an accelerometer-based fall detector
into a hearing aid-housing which was fixed behind the ear. The TBM achieved
100% sensitivity and a self-stated “high” specificity [23].

Also, Bourke et al. explored a TBM with a tri-axial accelerometer for fall
detection. With both young and elderly subjects, the authors investigated the
ability to discriminate between falls and ADLand achieved a specificity of 83.3–
100% [24].

Li et al. based a system on accelerometers and gyroscopes, which sought
to recognise static postures and the dynamic transitions between the postures
where fall is an unintentional transition to a lying state [25].

Kerdegari et al. used an MLM and classified acceleration data using 6,962
instances and 29 attributes with different machine learning algorithms. Multi-
layer perceptron classified 90.15% of the instances correctly where the primitive
learning scheme ZeroR managed to classify 66.49% correctly [26].

Özdemir investigated the optimal sensor placement of accelerometer, gyro-
scope and magnetometer sensors by combing 378 combinations of sensor place-
ments and machine learning techniques. They concluded that the best sensitivity
was accomplished with sensors being placed in the waist region with 99.96% sen-
sitivity and 99.76% specificity although the wrist is highly preferred for today’s
wearable applications and achieved 94.92% accuracy [27]. Ntanasis et al. reached
the same conclusion and also highlighted the thigh as an optimal location [28].

Kangas et al. tested different body placements for a 3-axis accelerometer
sensor with different types of falls, including forward, backward and lateral fall
directions. The authors concluded that an accelerometer placed on the waist or
the head achieved 97–98% sensitivity and 100% specificity, and concluded that
a simple algorithm is sufficient in these cases [29].
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2.2 Smartphone-Systems

While most sensors tend to introduce additional objects in the homes of the
elderly, many elderly people already own a smartphone [30].

In 2018, it was reported that 73% of people between 65–74 years and 42%
between 75–89 years in Denmark possessed a smartphone, and most of them
used it for internet access [31]. Emergency calls and alarms were some of
the most attractive potentials of cell phones for the elderly people who were
often more likely to see the phone as a safety device opposed to seeing it
as a social communication device [32,33]. Due to widespread availability and
decreasing prices for smartphones, the number of smartphone-based fall detec-
tion approaches has increased in the literature, while the number of prototypes
based on special-purpose hardware has decreased [30]. These properties come
with evident advantages. Smartphone applications can operate almost every-
where because of the availability, and most current smartphones already inte-
grate not only the required hardware in terms of accelerometers and gyroscopes
but also cameras, microphones, digital compasses and GPS units [34].

Zhuang et al. compared different mobile operating systems for a fall detection
application, including Windows Phone, Symbian, and Android and decided to
use Android due to its multitasking capabilities and accessible integration to the
system components which led to decreased implementation efforts [35]. In 2010,
Dai et al. proposed PerFallD as, according to themselves, the first pervasive fall
detection system utilising mobile phones as the platform. The authors imple-
mented a prototype on an Android G1 phone, which considered the values of
the total acceleration of the phone and the absolute vertical acceleration during
a time window. The performance of the prototype was evaluated with both a
mannequin and test participants. It was afterwards compared with existing solu-
tions. Using a TBM with 15 test participants, the prototype achieved an average
sensitivity of 91.3% and an average specificity of 97.3% while also highlighting
the waist as the optimal position. When using a mannequin, the results showed
a slightly lower specificity of 97.2% [36].

He et al. used the same approach and classified body motions into five dif-
ferent patterns, i.e. vertical activity, lying, sitting or static standing, horizontal
activity and fall. The authors found it to be a problem that the smartphone
was worn in the pocket rather than attached on the waist because its loose
attachment in the pocket might introduce mechanical movement [37].

Tran et al. used machine learning techniques to classify falls by implementing
a self-learning mechanism with user interactions to avoid false alarms. The proto-
type was tested with 92 volunteering students who performed four activities: sit-
ting, jumping, walking and falling. The authors concluded that the experiments
yielded better results in terms of accuracy than the most downloaded commercial
applications with a sensitivity of 60.5% and a specificity of 94.8% [38].
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3 Scope and Objectives

As shown, there is a large body of existing work on creating fall detection algo-
rithms using smartphones. This includes freely available existing open fall detec-
tion algorithms as well as studies on using the Android platform on a smart-
phone to execute these algorithms [29]. However, to the best of our knowledge,
our study is the first to investigate the potential of combining existing open
fall detection algorithms, running on a standard Android smartphone combined
with step counting of the user measured by the built-in virtual sensor pedome-
ter of the Android platform in order to lower the false positive rate and thereby
increase the specificity of the system. In addition, no open source fall detection
apps for Android was found in our related work survey. Open source can be
important if the service is to be used as part of a greater ecosystem of sensors
and services, rather than as a stand-alone app.

The aim of this study was to investigate whether the built-in pedometer vir-
tual sensor on the Android smartphone platform can be used to increase speci-
ficity and thereby achieve higher accuracy in an accelerometer-based Android
fall detection application.

4 Materials and Methods

The study uses the Java programming language to build an Android “fall detec-
tor evaluation app” in order to facilitate our experiments. The app utilized two
of the Android platform’s virtual sensors: The “Accelerometer sensor” and the
“Step counting sensor”.

In order to mitigate “device bias”, two typical Android phones were used
simultaneously during all experiment: The Google Pixel 4, Google, US and the
Nexus 5X, LG, South Korea.

The fall detection evaluation app detects fall events by combining sensor
data from the accelerometer and the pedometer sensors. Initially, the application
detects a fall motion followed by monitoring the user’s steps. If steps are detected
subsequently, the fall motion is discarded. However, if no steps are detected
within a given grace period, the fall motion will be identified as a fall event and
thus be reported.

The detection of fall motions are based on the paper Comparison of
low-complexity fall detection algorithms for body attached accelerometers that
proposed three low-complexity fall detection algorithms for body attached
accelerometers. All three algorithms are threshold based and combine the iden-
tification of drop, impact, posture and velocity in different ways to detect fall
events [29].

The fall detection algorithm in our study implements one of these
accelerometer-based approaches to identify a drop and the subsequent impact
to detect fall motions. The magnitude of a “resultant vector” (RV) is calculated
based on the acceleration force data from the three coordinate axes as shown
in Eq. (1) where x, y and z are the acceleration in the x-, y-, and z-planes,
respectively.
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|RV| =
√

x2 + y2 + z2 (1)

When the phone is in a stationary position, the magnitude of the RV is
approximately 1 g, and when the phone is in free fall, the RV has a magnitude
of 0 g. Since RV is the summation of the accelerations in all three dimensions,
the orientation of the phone has no impact on the result. A drop is identified
when the magnitude of RV gets below 0.6 g, and an impact is identified when the
magnitude is higher than 2.0 g. A fall motion is detected, when a drop occurs,
followed by an impact within one second.

To investigate the performance of the fall detection application when combin-
ing pedometer and accelerometer data, five test scenarios were defined (S1–S5).

Scenario S1 and S2 investigated whether the algorithm could detect the fall
event correctly based on the postfall phase. Simulated falls were performed using
a test mannequin, as it is not considered ethical to use human participants due
to the risk of potential injury during the fall. The mannequin consisted of a body
based on 60 kg boxing bag with an attached plastic head. Running the research
application, both Android smartphones were placed in the two pockets of the
pullover. In both scenarios, the authors manoeuvred the mannequin according
to the scenarios’ respective protocols.

Scenarios S3, S4 and S5 studied selected misclassifications of fall motions
during ADL events. In these scenarios, human test participants were used rather
than the mannequin, as there were no risks associated with these scenarios.

In scenarios S3 to S5, participants carried the smartphones with the test
software installed, one in each front pocket, while performing the procedures.
The chair used in scenarios S3 and S5 was 47 cm from the floor to the seat and
cushioned. In scenario S4, a bed with a height of 43 cm from the floor to the top
of the mattress was used.
The specific protocol of the scenarios S1-S5 were:

S1: Simulated fall using test mannequin without recovery in the postfall phase,
where the test mannequin remains lying on the ground.
S2: Simulated fall using test mannequin followed by a recovery phase, where the
test mannequin is able to recover immediately after a fall and continues walking
where the mannequin is picked up and carried by a facilitator.
S3: Sitting down in chair scenario. Test participant sits down on a chair in order
to test the prevalence of false positive fall events during this type of activity.
S4: Lying down in bed scenario. The participant lies down on a bed in order to
test the prevalence of false positive fall events during this type activity.
S5: Rising up from chair scenario. The participant rises from a chair in order to
test the prevalence of false positive fall events during this type of activity.

5 Results

The group of participants consisted of two male and two female subjects, aged
25, 29, 56 and 64 years. Authors acted as test facilitators.
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Table 1 presents the results from scenario S1, where a true positive is repre-
senting the algorithm detecting a fall event, and a false negative represents the
cases where it did not detect a fall event.

Table 1. Results of scenario S1 which show the sensitivity of the fall detection algo-
rithm on two Android smartphones, the Nexus 5X from LG and the Pixel 5 from
Google. For all scenarios, 100% sensitivity was secured.

Scenario Specificity Model True Positive False Negative

S1 100% Pixel 7 0

S1 100% Nexus 5X 7 0

S1 100% Total 14 0

Table 2 presents the results for scenarios S2 to S5. A true negative was regis-
tered when no fall events were detected, and a false positive was registered when
a fall event was detected.

Table 2. Results of scenarios S2–S5, showing the specificity of the fall detection algo-
rithm on a Nexus 5X, LG and a Pixel 5, Google. For all scenarios, 100% sensitivity
was secured.

Scenario Specificity Model True Positive False Negative

S2 100% Pixel 7 0

100% Nexus 5X 7 0

Total 14 0

S3 97.5% Pixel 38 2

96.25% Nexus 5X 39 1

Total 77 3

S4 90% Pixel 35 5

88.5% Nexus 5X 36 4

Total 71 9

S5 100% Pixel 40 0

100% Nexus 5X 40 0

Total 80 0

6 Discussion

As seen in Table 1, the algorithm achieved a sensitivity of 100% in all test cases
in scenario S1, which means that it was capable of classifying all falls correctly.
Both smartphones returned the same outcome of 0 false negatives. At first glance,
it is positive that the algorithm is capable of detecting all falls, but it may also
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indicate that it is hypersensitive, because the threshold is set too low. A low
threshold can lead to a high number of false positives. However, one could argue
that this is suitable for the use scenarios, as false positives should be sorted out
by looking at subsequent events in the postfall and recovery phases.

The high sensitivity may also be related to the use of a mannequin which can
lead to a significantly higher impact. In real-life scenarios, more diverse falls are
to be expected, which may go undetected and thus result in a lower sensitivity.

The results from the scenarios S2, S3, S4, and S5 are shown in Table 2.
Scenario S2 achieved 100% specificity for all test cases which means that if
minimum seven subsequent steps are detected within the given period, which
can span from 30 to 90 s after a fall motion detection, the algorithm is able to
discard the fall motion as a false positive. Due to implementation details, the
non-deterministic timespan can affect the reproducibility in a negative direction.

The high specificity of our study is likely associated with the limited number
of scenarios selected. Preferably, a broader range of activities should be investi-
gated in future studies.

Scenarios S3, S4, and S5 achieved more diverse results than S1 and S2. The
algorithm was able to correctly discriminate between a fall and standing up
from a chair with 100% specificity. S3 achieved a total specificity of 96.25% with
just one false positive on the Nexus 5X. S4 also shows promising results that
span from 87.5% specificity on the Pixel phone to 90% specificity on the Nexus
5X. These results show high performance in discriminating between falls and
sitting and lying down. However, when a person is sitting or lying down, it is
appropriate to assume that subsequent steps will be absent. This can be due to
the fact that the user is not moving, but also that the smartphone may be placed
in a stationary position. These situations can potentially lead to a false-positive
fall detection in the fall detection algorithm.

The specificity may also be affected by the diversity amongst the test partici-
pants. In scenarios S3, S4 and S5, a non-homogeneous group of participants with
differences in age, gender, weight, and height were recruited. The results may
express that the algorithm does not suit all individuals. However, no correlation
could be found between the individual test subjects and false positives.

The first scenario S1 evaluated the sensitivity of the fall detection algorithm
on the Android application by placing a smartphone on the upper body region
of the mannequin. The mannequin was held in an upright position followed by a
backward free fall with no subsequent movement. The use of a mannequin comes
with the significant advantage that a fall can be performed without restrictions
to avoid injuries to human test participants. However, one disadvantage is that
a mannequin does not perform actions like injury-avoiding initiatives during the
falls, which can make the impact higher than if a human was falling. This could
potentially lead to a higher sensitivity compared to a real-world scenario. Thus,
the algorithm threshold in the implemented TBM is more likely to be exceeded
and produce a fall event. The use of a mannequin makes the experiments repro-
ducible as the same specific mannequin can be used to replicate experiments
multiple times.
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Alwan et al. also used an anthropomorphic mannequin with similar mass
and mass distribution to a human to perform falls from an upright position
and while attempting to get out of a wheelchair. The authors obtained a high
accuracy of 100%, which strengthens the hypothesis that the use of mannequins
could lead to higher sensitivity [39]. The study by Alwan et al. detected falls
based on floor vibrations and is thus also subject to the high impact with the
use of a mannequin which makes the study comparable to our study. Optimally,
we would use real-world fall data which could lead to a decreased sensitivity.

Also, the threshold should be tested with persons of different genders, ages,
weights, heights and with different fall histories and assistive devices, as sug-
gested by Klenk et al. [40]. The landing surface should also be taken into
account for comparison as many studies use a soft landing surface, whereas
this study used solid ground. According to Kangas et al., multiple impact peaks
were present in real-world falls, and the use of landing surface may affect the
results. Often the researchers use a soft landing surface like a mattress to avoid
injuries of the subjects, but this approach lowers the impact of the fall [41].

Also, due to the design of the mannequin, the mobile phones were placed
at a position on the mannequin torso which could potentially be higher than if
worn by elderly people, e.g. if placed in a pocket in their trousers, which means
that the free-falling time could be artificially increased during our experiments
when compared to actual fall events. A different free-falling time would lead
to different acceleration characteristics which could influence the time aspect of
the algorithm. In the implemented fall detection algorithm, the maximum time
from free-fall detection to impact is one second if a fall is to be detected, but
no lower limit is provided in the algorithm. A higher placement likely leads to
an increased impact force due to the higher velocity, and thus lower placement
could lead to reduced sensitivity. Dai et al. investigated different placements of a
smartphone-based accelerometer with a similar algorithm as used in our study;
however, the study by Dai et al. also included gyroscope values. The results are
inconsistent with these considerations. When the smartphone was placed on the
waist in a backward fall, the false-negative percentage was 5.5% while placement
on the waist and thigh achieved respectively 2.4% and 2.6% [36]. The differences
in the results compared to our study may come from different thresholds and
sampling frequencies.Thus, it seems evident that there is a need to calibrate for
the height of the user, as well as for placement strategy.

The types of falls are heavily restricted while performing with a mannequin.
In this study, the mannequin was set only to fall backwards with a quarter
circle rotation. In the study by Dai et al., the results showed a lower accuracy
when the mannequin was exposed to lateral and backward falls as compared to
forward falls, which indicates that different fall directions should be explored in
the future [36].

Also, human-specific falls should be taken into account so that the study
can benefit from more deviating falls, which will include behaviour like trying to
avoid falling and not lying entirely still. In scenario S1, the subject is supposed
to keep lying on the ground. This is relatively simple when using a mannequin,
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however it is reasonable to believe that human participants will keep moving after
a fall, e.g. trying to get up by themselves which could provoke the pedometer
to detect false positive steps. If postfall movements are considered steps, the
system may simply reject the detected fall motion, and the fall detection will
not be transmitted. Our study sought to investigate this particular scenario
using a real person, but it does not consider the situations where a real fall has
happened and thus does not reflect the different postfall behaviours of people.

As mentioned earlier, the use of a mannequin leads to a higher reproducibility,
but it is, however, not the optimal condition, and different results in real-life
environments are to be expected. Again, the absence of real-world data is an
issue and gives a basis for further evaluation. Kangas et al. collected real-life falls
and concluded that the acceleration signals were similar in elderly people’s real-
life falls and experimental falls performed by middle-aged subjects. However, the
authors further conclude that real-life falls provide essential material for further
investigation [41]. The conclusion obtained by Kangas et al. did, however, not
involve a mannequin but speaks for the fact that experiments can be conducted
with people outside the target group.

Scenario S2 used a similar approach but differed from S1 by having the
subject take steps after the fall motion detection. This implies a situation where
the subject either quickly recovered from the floor or simply did not fall although
the fall motion was detected by the fall detection algorithm. Again, the use of
a mannequin poses some issues, because it is not capable of walking. The test
coordinators tried to hold and walk with the mannequin to avoid interacting with
the phones after the fall. To avoid artificial footsteps, the test coordinators could
have performed the steps themselves, but that would require taking the phones
out of the mannequin’s pockets and thereby introduce further bias. People tend
to move differently, both in terms of gaits and speeds, and if a person is in the
recovery phase after a fall, potential injuries can influence the way of moving
[42].

The scenarios S3, S4, and S5 focused on specificity when the subject per-
formed different kinds of ADL. The selected ADL were considered highly rele-
vant for night-time fall incidents, but more ADL with similar characteristics to
falls could be added for future work.

In these scenarios, human test subjects were used. It is common to measure
sensitivity with young people simulating falls while measuring specificity with
elderly people performing ADL [16,24].

Dai et al. evaluated a smartphone approach with human test participants
performing ADL, including walking, jogging, standing and sitting. These results
achieved a false positive percentage of 8.7–11.2% according to the smartphone
placements [36]. This performance is similar to the performance achieved by
scenarios S3 to S5. However, walking and jogging were not included in our study
as falls detected in these ADL are expected to be discarded by the fall detection
algorithm as they include steps, as seen in scenario S2. A potential issue of this
reflection is situations where a fall motion is detected while the user is walking,
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followed by a temporary stationary position of the user. These situations are not
further examined but could lead to false positives.

The furniture used in the experiments might have influenced the results in
different directions. The chair used in the scenarios S3 and S5 had a height
of 47 cm and was cushioned. A smaller chair may lead to a higher impact and
thus lower the specificity. The cushioning causes the opposite by attenuating the
impact. The same considerations apply to the bed in scenario S4.

7 Conclusion

Our results indicate that the chosen open source algorithm was capable of detect-
ing all falls and thus achieve a sensitivity of 100% when tested on two Android-
based smartphones.

We found that the chosen open source algorithm resulted in a substantial
number of false positives when only the accelerometer sensor was taken into
account, resulting in an unacceptable low specificity, which could lead to false
alerts being issued in a real-world setting.

In the S2 scenario where the participants would walk after a detected fall,
the added use of a pedometer virtual sensor as part of the algorithm on an
Android-based fall detection system resulted in a specificity of 100%. However,
this combination of accelerometer and pedometer algorithms still struggles with
situations where a fall is detected but not followed by steps to be counted. These
scenarios include sitting down on a chair and lying down on a bed, where we
only achieved a specificity of 96.25% and 88.5%, respectively.

Thus, more work is needed, including identifying additional scenarios which
need to be studied, and how additional sensors and devices may be used to
increase the specificity of the fall detection system.
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