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Chapter 6 
On the Verge of Impossibility: Accounting 
for Variability Arising from Permutations 
of Comorbidities that Affect the Fate 
of Drugs in the Human Body 

Amin Rostami-Hodjegan and Brahim Achour 

Abstract Contending with variability in drug exposure and effect in disease 
populations requires patient characterization for changes in drug metabolism and 
transport pathways and predictive modelling platforms within the framework of 
systems pharmacology. In this chapter, we explore current and emerging patient 
characterization approaches, the role of physiologically based pharmacokinetic 
modelling in stratified versus individualized predictions, the possibility of exploring 
the impact of permutations of comorbidities, and application of these elements in 
model-informed precision dosing. 

Keywords Variability · Drug metabolism and disposition · In vitro–in vivo · 
Extrapolation (IVIVE) · Physiologically Based Pharmacokinetics (PBPK) · 
Quantitative proteomics · Disease perturbation 

6.1 Introduction 

“Variability is the law of life, and as no two faces are the same, so no two bodies are alike, 
and no individuals react alike and behave alike under the abnormal conditions which we 
know as disease” – Sir William Osler (1849–1919), Professor of Medicine, Oxford, England 

Current drug development mainly focuses on ‘typical’ representation of patients and 
many of the subtypes involving other comorbidities are studied at later stages after 
regulatory approval. The latter does not provide any evidence for potential
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requirements of dosage adjustment that might be necessary for effective and safe 
medication of patients with certain comorbidities or combinations of these. Hence, in 
recent years, drug regulatory agencies, as well as professional associations related to 
drug development and pharmacotherapy, advocated widening the recruitment 
criteria during clinical studies to provide information on the fate of drugs beyond 
what is known in a ‘typical patient’. Two recent Guidance for the Industry docu-
ments issued by the US Food and Drug Administration (FDA) concerning “Enhanc-
ing the Diversity of Clinical Trial Populations — Eligibility Criteria, Enrollment 
Practices, and Trial Designs” [41] and “Diversity Plans to Improve Enrollment of 
Participants from Underrepresented Racial and Ethnic Populations in Clinical Tri-
als” [42] are typical examples of such attempts. Although widening recruitment 
improves gathering of information, and subsequent data analysis can highlight some 
of the significant changes using sparse samples and non-linear mixed-effect models 
(so-called population pharmacokinetics or POP-PK), these are not a panacea for the 
huge lack of data in special populations that may suffer from more than one or two 
comorbidities. Requesting conduct of clinical studies for every given permutation of 
concurrent comorbidities places such an act on the verge of impossibility for any 
drug development entity. However, we cannot leave patients in such special groups 
without sound and scientific decisions on the best dosage regimen for a given drug 
and permit off-label use to become the norm for these patients.
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The solution may lie within the so-called mechanistic models framing the fate of 
drugs. These are known as physiologically based pharmacokinetic (PBPK) models 
and they can accommodate and propagate the physiological and pathological 
changes in bodily systems to consequences for any given drug if the interplay of 
parameters with the drug is adequately characterized using in vitro systems. Even in 
the case of known comorbidities, such as organ impairment (mainly renal or 
hepatic), which are assessed much more often than other conditions regarding their 
impact on the fate of drugs, Jadhav et al. [49] reported in 2015 that over 50% of 
drugs released onto market did not have any information on the impact of severe 
impairment. These authors as well as others went on to say that PBPK models can fill 
the void in such conditions. The situation with the void of information on sub-
populations has not improved since the report by Jadhav et al. in 2015 as evidenced 
by our internal unpublished data that demonstrate the case for renal impairment 
patients (Fig. 6.1). In this chapter, we explore the role of PBPK, in conjunction with 
existing and emerging patient characterization approaches, in addressing this lack of 
dosing information for special populations.
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Fig. 6.1 The number of FDA-approved drugs without explicit dosing recommendation for patients 
with renal impairment at the point of entry to the market. The plot shows data (for 2013 and 2014) 
from Jadhav et al. [49] and unpublished in-house data (for 2015–2019) 
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Fig. 6.2 Factors intrinsic and extrinsic to the patient which affect variability in drug exposure and 
response. Factors are inter-dependent making accounting for their effect challenging. The use of 
modelling allows prediction of the effect of different permutations of such factors. Abbreviations: 
PD pharmacodynamics, PK pharmacokinetics 

6.2 Accounting for Sources of Interindividual Variability 
in Pharmacokinetics 

Numerous internal and external factors, with complex interplay, affect between-
patient variability in drug kinetics (Fig. 6.2); these have an impact on patient 
physiology, biology, and expression of proteins involved in drug disposition. 
Other factors unrelated to patient biology, such as compliance, can also add to the 
apparent PK variability [68]. Quantitative assessment of variability in the fate of 
drugs in the body due to these factors follows mathematical formalism of pharma-
cokinetics. This can be in the form of simple equations that describe temporal



changes of drug concentration after dosing. Finding the covariates that define 
interindividual differences in the various model parameters is an a posteriori activity 
within these models (e.g. using POP-PK methods for sparse samples that employ 
non-linear mixed-effect methods). However, predicting such individual variations in 
concentration–time profiles in advance of conducting clinical studies requires more 
mechanistic models in the form of physiologically based pharmacokinetics 
(PBPK) [19]. 
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Adequate drug exposure, as defined by the area under the curve of the 
concentration-time profile (AUC) or either maximum or minimum exposure, respec-
tively defined by the highest concentration (Cmax) or trough concentration (Ctrough), 
is an essential element of reaching therapeutic response. Together, absorption, 
distribution, metabolism, and excretion (ADME) of drugs determine the features 
of the concentration-time profile following drug administration. Data generated from 
in vitro studies are used to determine and understand ADME variations in different 
individuals by integration of data with PBPK models [80, 81]. However, the multi-
scale nature of these mechanistic models [96] necessitates large efforts and wide 
expertise to create and verify the model elements, putting PBPK under the frame-
work of systems pharmacology/biology [51] that requires drug-independent systems 
data, as enlisted below [52].

• Physiological, anatomical, biological, and biochemical data for each individual 
(some are defined based on demography, such as ethnicity, sex, age, and envi-
ronment of the population that an individual belongs to when the actual individual 
values are not known).

• Trial design parameters, such as the conditions under which the drug is taken 
(e.g. fed versus fasted state) or any concomitant drugs interfering with the 
functions of the systems that handle the drug (e.g. perturbing enzyme expression 
or function). 

The above are combined with drug data (physicochemical properties, e.g. LogP 
and pKa, drug intrinsic clearance by certain enzymes, affinity to certain transporters) 
to help not only understand but also predict the behaviour of the drug in certain 
individuals or a subgroup of patients using a realistic compartmental structure 
defined as a set of differential equations. Critical considerations are listed below.

• The factors affecting the variability of the absorption and bioavailability of orally 
administered drugs are described previously [53]. It is important to note that 
cytochrome P450 (CYP) 3A and multidrug resistance P-glycoprotein (P-gp), 
which have wide interindividual variability, are present at high levels in the 
villi tips of enterocytes in the small intestine [6] and they can cause variations 
in the bioavailability of drugs, as shown for tacrolimus controlled-release formu-
lation in the case of Afro-Americans versus their Caucasian counterparts 
[60, 91]. Variations in these proteins as well as other CYP and non-CYP enzymes 
and transporters in the small intestine are demonstrated in disease states, such as 
Crohn’s disease [9] and can play a significant role in altering the fate of drugs in 
such patients [10].
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• Early screening tools can assess the relative importance of the routes of metab-
olism by various metabolic pathways. Hence, it is now possible to employ 
information on in vivo intrinsic clearance as well as transporter-mediated uptake 
to postulate about variability associated with hepatic clearance in human 
populations [80]. This is facilitated with knowledge of scaling factors [1, 2, 13, 
67].

• Aspects defining variations in renal excretion are also formulated under systems 
pharmacology [83, 84] and capture the role of urine flow and pH alongside the 
physical chemistry, lipophilicity, and ionization of the compound that define 
plasma protein and erythrocyte binding and add knowledge of drug affinity to 
efflux transporters [85] and abundance of such transporters in human kidney [7].

• Variability in volume of distribution does not have an impact on overall exposure 
(as measured by AUC0). However, it defines the shape of the temporal changes of 
the concentration-time profiles (Cmax and Ctrough); hence, defining/predicting its 
variability is important. The physical volume of tissues and their blood flows are 
components of PBPK models that capture population variability related to these 
parameters. Nonetheless, there are other aspects of the volume of distribution 
which are more relevant to protein binding in the systemic circulation as well as 
tissues. Many of these can be measured in vitro and used for in vitro–in vivo 
extrapolation (IVIVE) purposes through PBPK models [16, 72, 75]. 

6.3 The Growing Role of Physiologically Based 
Pharmacokinetics (PBPK) 

In a recent survey, El-Khateeb et al. [37] demonstrated that the first two decades of 
the twenty-first century have witnessed a more than 40-fold increase in the applica-
tions of PBPK (based on the number of publications in the literature). This was in 
contrast to the general discipline of pharmacokinetics which had a relatively modest 
increase of around fourfold, in line with an increase in the bulk of scientific 
publications by threefold. The fastest growing area of PBPK applications according 
to the survey was focused on addressing alterations to kinetics (or lack thereof) in 
special populations. Indeed, this was one of the areas that regulatory scientists 
advocated for the use of PBPK over a decade ago [101] by harnessing the natural 
compatibility between PBPK and assessment of internal/external factors affecting 
the kinetics of drugs in various patients. 

So, what are the attributes of PBPK that make it so popular with determining the 
impact of patient variability? The essence of PBPK modelling was described by 
Rostami-Hodjegan [77] in relation to separation of the system parameters from those 
of drugs and formulations (Fig. 6.3). Therapeutic effects of a minority of drugs can 
be monitored relatively easily using established biomarkers (e.g. international nor-
malized ratio, INR, for anticoagulants, blood pressure for antihypertensive agents, 
and blood glucose for antidiabetic agents) for dose adjustment. However, for most



drugs, such effects are not readily measurable or finding out the outcome takes a long 
time (e.g. patient survival). On the other hand, accounting for drug exposure 
differences can minimize a large part of the variation in patient outcomes that is 
related to kinetics. One of the major sources of variability in kinetics is related to 
interindividual differences in metabolic and transporter-mediated clearance. Clear-
ance and first pass gut and liver metabolism together define internal exposure of the 
bioavailable dose after entering the gut wall. Many drugs have an optimal therapeu-
tic window for exposure. Whereas for renal clearance, creatinine can be used as a 
general marker for glomerular filtration as well as active secretion of the drugs into 
the urine, hepatic clearance does not have a single universal marker that can be 
applied to all drugs. Characterization of metabolism becomes very important in 
various groups of patients when we consider that >70% of 698 orally administered 
marketed drugs have high levels of metabolism as part of their clearance [15]. As 
shown by Rostami-Hodjegan and Tucker [80], PBPK models can readily incorporate 
the known variations in drug metabolism and propagate them to projected clearance 
values using IVIVE techniques. Availability of liver [93, 99], intestinal [9, 33], brain 
[5, 17, 87], kidney [7, 57], skin [29], and lung [40] tissue for conducting quantitative 
analysis of proteins related to drug ADME has contributed to advancing a priori 
understanding of likely differences in kinetics in special populations before 
conducting any clinical studies. Table 6.1 summarizes prominent examples of such 
applications. With this approach, and if the baseline in healthy adults (or other 
control cohorts) is established, it is possible to simulate kinetics in special 
populations, such as foetal exposure to medications taken by pregnant mothers, or
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Prediction of Variability in PK/PD in Patient Population(s) 
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Fig. 6.3 Separation of parameters related to the drug from parameters related to the population in 
PBPK models. This approach enables testing different permutations of factors, allowing assessment 
of changes in PK (or PD) in the target population a priori to conducting clinical studies. Abbrevi-
ations: ADME, absorption, distribution, metabolism and excretion; IVIVE, in vitro–in vivo extrap-
olation; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamics; PK, 
pharmacokinetics
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in disease groups, such as patients with hepatic impairment [67]. While availability 
of human samples for these applications is certainly increasing, access is still 
restricted by ethical and logistic obstacles, with samples largely limited to post-
mortem or surgical surplus tissue.
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The principles of PBPK can also be extended to propagation of interindividual 
variability to drug pharmacodynamics (PD) within the framework of quantitative 
systems pharmacology [25]. PBPK-PD models are mainly used to predict drug 
effects in special populations (e.g. predicting dental analgesic effect of ibuprofen 
in children [30]) and PD effects of drug-drug interactions (DDI) (e.g. the impact of 
coadministration of domperidone and ketoconazole on QT prolongation in the 
electrocardiogram of patients [65]). Application of quantitative proteomics to mon-
itoring changes in drug receptors and other PD targets, such as the insulin receptor 
(INSR) in the human blood–brain barrier [92] and receptor tyrosine kinases in 
human metastatic liver cancer from colon [95], is expected to facilitate modelling 
of drug concentration–effect relationships in special/disease populations. 

6.4 Predicting Pharmacokinetics in Subgroups of Patients 
Versus Predictions in an Individual 

Despite advances made in the prediction of changes that occur in pharmacokinetics 
in subgroups of patients, predicting the fate of drugs in a specific individual who may 
not be the average patient in his or her subgroup requires characterization of changes 
that happen in ADME proteins in that particular individual as opposed to the average 
person in the relevant subgroup. Figure 6.4 summarizes current and emerging 
characterization methods. 

Genotyping can identify the bracket of the pharmacogenetic subgroup for an 
individual patient, which is then linked to a specific activity score, such as the case of 
CYP2D6 genotype [44]. The Clinical Pharmacogenetics Implementation Consor-
tium (CPIC) [23] has published several guideline reports demonstrating the value of 
such tests in managing optimal dosing for many drugs, e.g. tacrolimus (CYP3A5 
genotype), clopidogrel (CYP2C19 genotype), and efavirenz (CYP2B6 genotype) 
[18, 32, 86]. CPIC guidelines typically offer recommendation of dose adjustment, 
the use of therapeutic drug monitoring or consideration of alternative therapeutic 
agents for each genotype group. However, there are wide population variations in the 
activity of proteins encoded by the same gene, and indeed, some ADME proteins 
with large population variability in abundance and activity do not have known 
genotypes that correlate with changes in activity. Hence, endogenous biomarkers 
and exogenous probes have been used to characterize patients regarding sets of 
important ADME pathways (e.g. cocktails of drug substrates). Established probe 
cocktails include the Geneva cocktail (6 enzymes and 1 transporter [20]), the 
Cooperstown 5 + 1 cocktail (5 enzymes [24]), the Karolinska cocktail (5 enzymes 
[26]), and the Pittsburgh cocktail (5 enzymes [43]). The issue with these biomarkers
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Assigning Metabolic/Transport Capacity 

Phenotyping cocktails Endogenous biomarkersGenotyping

�Polymorphisms in 
enzymes: CYP enzymes 
(e.g., CYP2B6, 2C9, 
2C19, 2D6, 3A5); other 
enzymes (NAT2, TPMT)

�Polymorphisms in 
transporters (e.g., 
SLCO1B1)

�Categorical evidence 
associated with activity 
scores

�Cocktails: Geneva1, 
Karolinska2, 
Cooperstown3, 
Pittsburgh4 cocktails

�Targets monitored: 
CYP enzymes 
(CYP3A1,2,3, 2C91,2,3,4, 
2C191,2,3,4, 2D61,2,3,4, 
2B61, 2E14, 1A21,2,3,4); 
other enzymes (NAT24); 
transporters (P-gp1)

�Endogenous 
metabolites: e.g., 
CYP3A (cortisol 
6βhydroxylation); 
OATP1B1/3 (CPI/III, 
CB, UCB, GCDCA-S); 
OCT2, MATE1/2K 
(NMN, creatinine); 
OAT1 (taurine); OAT3 
(6βhydroxycortisol, 
GCDCA-S) 

New characterization methods* 

Drug-metabolizing enzymes and drug transportersDrug-mmetabolizing enzymes and drug transporters 
(*mRNA, microRNA, Protein, Activity) 

Homogenates 
Tissue fractions 

Cells 

Tissue samples Tissue biopsy Liquid biopsy 

Exosomes 

Cells 
Homogenates 
Fractions 

Fig. 6.4 Methods used for the characterization of drug-metabolizing and transporting pathways. 
Traditionally used methods include genotyping of polymorphic enzymes/transporters, characteri-
zation with specific probes (in cocktails administered orally) or the use of endogenous biomarkers 
for enzyme and transporter activity. More recent methods assess the expression/activity of enzymes 
and transporters in human samples (either from surgical surplus or post-mortem), in tissue biopsies 
(from individual patients), or in liquid biopsies (tissue-shedded exosomes). The measurements 
require modelling platforms for prediction of drug exposure and response. Abbreviations: CB 
conjugated bilirubin, CPI/III coproporphyrin I and III, CYP cytochrome P450, GCDCA-S 
glycochenodeoxycholate-3-O-sulphate, MATE1/2 K multidrug and toxin extrusion protein 1 and 
2  K,  NAT2 N-acetyltransferase 2, NMN N1-methylnicotinamide, OATP1B1/3 organic anion 
transporting polypeptide 1B1 (gene name SLCO1B1) and 1B3, OAT1/3 organic anion transporter 
1 and 3, OCT2 organic cation transporter 2, P-gp P-glycoprotein, TPMT thiopurine 
methyltransferase, UCB unconjugated bilirubin. Under phenotyping cocktails, superscript numbers 
indicate the pathways each cocktail can monitor



is their limited scope which does not cover all relevant pathways of metabolism and 
transport for the range of clinically used drugs and the specificity of several sub-
strates shows considerable overlap. Whereas tissue proteomics is able to address the 
quantitative nature of ADME/PD proteins for large sets of targets (a few thousand 
proteins in the same experiment), obtaining tissue from donors is fraught with ethical 
and logistic challenges. Hence, the recently introduced possibility of using liquid 
biopsy offers a more practical alternative for characterization of patients as an input 
compatible with PBPK models.

150 A. Rostami-Hodjegan and B. Achour

Liquid biopsies are biofluids sampled from a patient for diagnostic, companion 
diagnostic or therapeutic applications. Exosomes shedded by tissue into a biofluid 
offer a snapshot of the cellular biomolecular pool of macromolecules, which reflect 
the functional state of their tissue of origin (Fig. 6.5). The vesicles (30–150 nm in 
size) enclose DNA, (non-coding, messenger and micro) RNA, and (transmembrane 
and non-membrane) proteins, offering protection from degradation, and therefore 
longer half-lives of cargo molecules in systemic circulation [21]. ‘Omics’ analysis 
generates quantitative data for the cargo of extracted exosomes and the levels are 
linked to the abundance/activity of corresponding proteins in the liver or other 
organs. Several FDA-approved diagnostic oncology tests rely on liquid biopsy 
profiling with RNA or DNA sequencing to generate qualitative expression and 
mutation profiles of batteries of disease markers (e.g. the receptor tyrosine kinases, 
EGFR and ERBB2) [63]. Integration of quantitative transcriptomic and proteomic 
analyses into such assays is the next step in the development trajectory of current 
screening tests towards precision diagnostics and therapeutics. In addition to mon-
itoring ADME proteins (PK variability), liquid biopsy can be used to define 
between-patient variability in receptors and other therapeutic targets 
(PD variability). Achour et al. [3, 4] demonstrated the possibility to monitor vari-
ability in the expression of over 500 ADME genes (171 enzymes, 362 transporters 
and the neonatal Fc receptor, FcRn) and over 80 FDA-approved drug targets after 
appropriate normalization for between-patient differences in the rate of shedding 
(defined based on expression of a set of tissue-specific stably expressed markers). 
Although not very well understood, exosome shedding is, in essence, a physiological 
process that is altered under pathological conditions, adding another parameter that 
modelling PK variability needs to contend with. Determination of such parameter 
becomes critical when the patient cohort includes a heterogeneous mix of diseases. 
The use of tissue-specific cell surface markers can help with purification, by 
immunoenrichment, of specific extracellular vesicles originating from the tissue of 
interest, e.g. asialoglycoprotein receptor 1, ASGR1, in the case of liver 
exosomes [76]. 

With sufficient validation and rapidly declining costs, the use of liquid biopsy will 
facilitate implementation of model-informed precision dosing owing to the inherent 
advantages of the technique; it is minimally invasive, quantitative (connecting 
exosomal profiles to tissue expression), and compatible with modelling platforms, 
such as Virtual Twins [31, 71]. Virtual Twins should incorporate detailed individual 
data, such as demographics, genotype, PK/PD expression grades (e.g. from liquid 
biopsy), and clinical scores (e.g. eGFR for renal function) into a generic PBPK



model of the cohort that the individual patient belongs to (Fig. 6.6). The use of liquid 
biopsy data with such modelling platforms opens the possibility of a priori selection 
of the optimal initial dose in a treatment regimen for an individual patient and allows 
identification of patients most likely to experience adverse events or lack of efficacy 
(for closer therapeutic monitoring). Achour et al. [4] demonstrated correlation with 
activity in a cohort of patients with cardiovascular disease monitored with the 
Geneva cocktail (for CYP1A2, CYP2B6, CYP2C9, CYP3A and P-gp), in support 
of findings by Rowland et al. [82] for CYP3A4 in a set of healthy volunteers before
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Fig. 6.5 Liquid biopsies, their nature, and attributes. (a) The anatomical origin and level of 
invasiveness of commonly sampled liquid biopsies (+, least invasive; ++++, most invasive, but 
all are less invasive than tissue biopsies). (b) Biofluids used to probe ADME/PD protein expression 
in liver, kidney, lung, and brain tissue as some of the main systems studied in PK/PD research. (c) 
Blood is the most widely used liquid biopsy with diagnostic, companion diagnostic and therapeutic 
applications. Tissue (liver) is perfused in blood and continuously sheds microvesicles (exosomes) 
into the systemic circulation. Molecules shedded include proteins and RNA (of PK and PD targets). 
The electron micrograph shows exosomes extracted from plasma (size range: 30–150 nm). Abbre-
viations: ADME absorption, distribution, metabolism and excretion, PD pharmacodynamics, PK 
pharmacokinetics



and after induction. Early applications have focused on precision dosing and inves-
tigation of DDI potential [3, 76].
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Fig. 6.6 The use of a liquid biopsy with modelling platforms for precision therapeutics. (a) Liquid 
biopsy can be used as a test for grading patients based on quantitative measurement of PK/PD 
targets while traditional tests (in oncology diagnostics) rely on qualitative evidence of the presence/ 
absence of disease markers and the mutation profiles of such markers. (b) Quantitative data for PK 
and PD targets from liquid biopsy can be used to generate Virtual Twin models for individualized 
therapeutics. Abbreviations: PD pharmacodynamics, PK pharmacokinetics 

Despite its potential applications, liquid biopsy requires specialist expertise in 
isolation and purification of exosomes from biofluids, extraction of RNA and 
protein, and multi-omic analysis (genomics, RNAseq and proteomics). For this 
reason, the bulk of recent work has focused on assessment of enzymes and trans-
porters in readily accessible systems, such as plasma exosomes [3, 27, 45, 56, 82],



while measurements of ADME targets in more challenging biofluids, such as urine 
[28] and cerebrospinal fluid, are lacking. 
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6.5 Modelling the Impact of Permutations of Various 
Comorbidities 

The added value of PBPK becomes paramount when we consider combinations of 
factors that influence the fate of the drug, which are very difficult, if not impossible, 
to study in advance of the drug becoming available on the market. We take the 
example of DDIs as the case here. In 1999, Krayenbühl et al. [55] proposed that 
interpretation of interaction studies should focus not only on mean DDI effect but 
also observed and theoretically conceivable extremes. This initiated some efforts 
within the PBPK community to conduct virtual clinical studies involving large 
groups of virtual patients where various scenarios could be tested (the platform 
later became known as the Simcyp Population Based PBPK Platform) [52]. One of 
the essential elements of the system is its ability to run “what if” scenarios such as 
those shown in Fig. 6.7. “What if” scenarios take into account factors that affect the 
outcome of the interaction, e.g. genetics, renal/hepatic impairment, age, or combi-
nations of these elements [79]. It took almost another decade before such facilities 
were put to practical use by some scientists. In 2012, researchers at the Office of 
Clinical Pharmacology (OCP) at the US FDA published a PBPK study that verified a 
previously reported case study [88] on DDI in renal impairment for telithromycin 
[97]. They went on then to prospectively project on the level of DDI for rivaroxaban
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Fig. 6.7 “What if” scenarios simulated with PBPK modelling for a DDI between a substrate 
(metabolized by CYP1A2 and CYP2D6) and an inhibitor of CYP1A2. Scenarios examined the 
magnitude of interaction in renal impairment, CYP2D6 poor metabolizer genotype and a combi-
nation of the two. Abbreviations: AUCpo area under the plasma concentration-time profile after oral 
administration, DDI drug-drug interaction. (The concept of the figure is adopted from Rostami-
Hodjegan and Tucker [79])



in renal impairment where no clinical data were available [46]. The study informed 
the label for the drug and was a guide to prescribers dealing with these rare 
occasions. Almost 10 years later, real-world data (RWD) analysis on retrospective 
information for rivaroxaban and associated side effects clearly demonstrated twofold 
higher incidence of bleeding in renally impaired patients who were receiving 
inhibitors of metabolic/transporter clearance (Grillo et al. [47]). The analysis was 
based on extracts from electronic health records (EHR) from HIPAA-compliant 
anonymized individual-patient-level data for 117 US institutions in the Cerner-
Oracle RWD dataset for a 5-year period (2017–2021). One can postulate that such 
adverse effects could have been more frequent if the label did not contain the 
information on the combined impact of renal impairment and DDI. The example 
above is not unique and there are now many other cases where PBPK information 
has informed the drug label in the absence of clinical data. Table 6.2 shows a list of 
examples collated in an internal database by Certara. Similar but less comprehensive 
lists are published elsewhere [48, 50].
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6.6 Conclusions and Future Use of PBPK 
for Model-Informed Precision Dosing 

While the debate on the nature of PBPK models (Open Source Code versus Closed 
Source Code) continues [78], the use of closed-source systems has certainly accel-
erated applications in drug development. Achieving a similar success in model-
informed precision dosing faces many hurdles and not just the lack of a user-friendly 
interface for PBPK. These are discussed by Darwich et al. [31] in the lines of 
creating virtual twins of patients [71]. However, the first critical step of such efforts 
is the faithful characterization of patients’ phenotypes beyond genetic-based cate-
gorization. It appears that liquid biopsy, in conjunction of omics analyses, may just 
provide such capacity, if the technical aspects of such game-changing initiatives are 
addressed [4]. 
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