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Preface 

This book is directed to all concerned with the applications of Pharmacokinetics 
(PK) and Pharmacodynamics (PD) to the development, evaluation and use of 
medicines. The book provides a concise overview of recent advances in PK and 
PD. I invited a number of scientists from academia, industry, and regulatory agencies 
to contribute to this book. My intention was to present informed opinions from those 
actively involved in addressing problems associated with the many recent aspects of 
PK, PD, and PK/PD studies. 

The book consists of seven chapters and is divided in two sections. Part I 
addresses the state of the art in Physiologically Based Pharmacokinetic (PBPK) 
modeling (Chap. 1) as well as the assessment of food effect on drug absorption using 
PBPK modeling (Chap. 2). Chapters 3 and 4 describe the recent development of 
Physiologically Based Finite Time Pharmacokinetic (PBFTPK) models and their 
applications to pharmacokinetic data. Part II focuses on PK/PD modeling. Chap. 5 
provides an overview of PK/PD modeling and simulation in clinical practice and 
studies. Chap. 6 deals with the subject/physiology variability issue encountered in 
PK/PD studies while Chap. 7 reviews the influence of clinical pharmacology in the 
modernization of drug development and regulation. 

I would especially like to thank my co-author and colleague Dr. Athanasios 
A. Tsekouras for helping me bring this book project to fruition. 

Athens, Greece Panos Macheras
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Chapter 1 
Current Status in PBPK Modeling 

Ryuta Asaumi and Kiyohiko Sugano 

Abstract Physiologically based pharmacokinetic (PBPK) modeling is a mathemat-
ical approach that integrates the intrinsic pharmacokinetic properties of a drug and 
the physiological parameters of a target population. It has been utilized in a wide 
range of applications, from the early stages of drug discovery to the submission to 
regulatory authorities. In this chapter, we aimed to evaluate the accuracy of the 
PBPK models in predicting PK parameters related to drug absorption, distribution, 
metabolism, and excretion, as well as the plasma concentration–time profiles under 
various clinical scenarios including the effect of food, drug–drug interactions, 
hepatic or renal impairment, and pediatric growth processes. A survey of the recent 
literature revealed that, although the predicted values of area under the plasma 
concentration–time curve in each report were often claimed to be within twofold 
of the observed values, the following issues were found: (i) the method of model 
construction is not clearly described in the literature and (ii) the method of parameter 
optimization is not standardized among the literature. In order to increase the 
reliability of PK predictions by PBPK models, standardization of the model con-
struction processes is desirable. 

Keywords Physiologically based pharmacokinetic (PBPK) model · In vitro–in vivo 
extrapolation (IVIVE) · Middle-out approach · Optimization 
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Abbreviations

AGP α-1-glycoprotein 
AUC Area under the plasma concentration–time curve
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AUCR AUC ratio 
CLh Hepatic clearance 
CLint Intrinsic clearance 
CLint,esc Intrinsic permeation clearance in intestinal basolateral membrane 

(intrinsic escaping clearance) 
CLint,met Intrinsic clearance of hepatic or intestinal metabolism 
CLpermeability Intrinsic clearance by passive diffusion in intestine 
CLtotal Total clearance 
CP Child-Pugh 
CRCYP3A Ratio of the CYP3A contribution to oral clearance 
CYP Cytochrome P450 
DDI Drug–drug interaction 
Eact Active enzyme amount 
Eact,ratio Ratio of Eact with perpetrator to Eact without perpetrator 
EC50,u Unbound concentration for the half-maximum induction effect 
EM Epithelial membrane 
Emax Maximum induction effect 
F Oral bioavailability 
Fa Fraction of dose absorbed from gut lumen 
FaFg Intestinal availability after an oral dose 
fB Unbound fraction in blood 
Fg Fraction available after intestinal metabolism 
Fh Hepatic availability after an oral dose 
fm Fractional metabolism 
fP Unbound fraction in plasma 
fu,gut Unbound fraction in enterocytes 
GFR Glomerular filtration rate 
GMO Global middle-out approach 
HIP Hepatic impairment patients 
ICCYP3A Apparent increase in clearance of substrates produced by induction 

of CYP3A 
IRCYP3A Time-averaged apparent inhibition ratio of CYP3A 
IVIVE In vitro–in vivo extrapolation 
kdeg Degradation rate constant 
Ki Inhibition constant 
Ki,u Unbound inhibition constant 
Kiapp Concentration of half-maximum inactivation 
kinact Maximum rate constant of inactive enzyme formation 
Km Michaelis–Menten constant 
LMO Local middle-out approach
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M & S Modeling & simulation 
MDCK Madin–Darby canine kidney 
MID3 Model-informed drug discovery and development 
MO Middle-out approach 
OA-PBPK Oral absorption PBPK 
PAMPA Parallel artificial membrane permeability assay 
PBPK Physiologically based pharmacokinetic 
PD Pharmacodynamics 
Peff Effective intestinal permeability 
PK Pharmacokinetics 
Qtissue Blood flow rate in tissue 
RB Blood-to-plasma concentration ratio 
RIP Renal impairment patients 
SF Scaling factor 
UWL Unstirred water layer 
Vmax Maximum metabolism rate 
vsys Synthesis rate 

1.1 Introduction 

Physiologically based pharmacokinetic (PBPK) models are widely used to predict 
the pharmacokinetics and pharmacodynamics of drugs in drug discovery, develop-
ment, regulatory approval, and clinical practice. Advantages of the PBPK model 
would be mechanism-based and quantitative approaches using physiological and 
pharmacokinetic information. Quantitative analysis can enhance industry and regu-
latory decision-making. This chapter will cover the basics of a PBPK model, what it 
can do, and practical issues such as how to construct and verify a PBPK model. In 
addition, the predictive accuracy of PBPK models of small molecules was discussed 
as much as possible based on recent reports. We hope this chapter will help to 
understand the concepts and current status of PBPK modeling. 

1.1.1 Background of Model-Informed Drug Discovery 
and Development 

While the probability of successful drug development is declining, drug develop-
ment costs are increasing in the pharmaceutical industry. To overcome the chal-
lenges, model-informed drug discovery and development (MID3) has been 
becoming active in various areas such as efficacy, safety, and pharmacokinetics 
[1, 2]. One of the most important benefits of these modeling and simulation (M & S) 
is the availability of quantitative predictions, which can facilitate decision-making in



drug discovery, development, and regulatory evaluation processes. A PBPK model 
is one of several PK models that can describe the pharmacokinetics of a drug in a 
variety of clinical situations (e.g., drug–drug interaction (DDI), food effect, hepatic 
or renal impairment patients, and children) [3]. The PBPK model consists of 
physiological parameters (population parameters), drug parameters, and model 
equations [4]. Regarding physiological parameters, many intrinsic and extrinsic 
factors can be incorporated into population models (e.g., age, body weight, gender, 
volume and blood flow rate of each tissue, the expression level of metabolizing 
enzymes and transporters, frequency of gene polymorphisms, smoking, and DDIs). 
This mechanism-based model can be replaced with the target population considering 
the differences in physiological and pathological conditions. In addition, by includ-
ing inter- and intra-individual variability, virtual clinical trials can be conducted by 
generating virtual subjects matched to the actual study design. For drug parameters, 
a variety of pharmacokinetic parameters of an investigational drug can be input into 
the drug model, describing the absorption, distribution, metabolism, and excretion. 
This drug model is not limited to the unchanged form; it is also possible to construct 
its metabolite models. When multiple drug models are developed, DDIs can be 
predicted in co-administration conditions. Combining a population model with a 
drug model, the PBPK model analysis becomes highly versatile, potentially 
predicting the pharmacokinetics in various scenarios that may arise in clinical 
practice. 

In recent years, predicted results of PBPK models have been included in new drug 
application documents [5]. Given the widespread use of the PBPK model, it is 
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crucial to understand the concept of PBPK models and the construction and valida-
tion processes. However, modeling scientists must be aware that there are always 
limitations to the predicted results due to the assumptions and uncertainties in the 
model setting, even if a PBPK model is constructed by considering all data available 
at the time of the predictions. Therefore, this chapter is about the current status of the 
predictability of PBPK modeling. 

1.1.2 Methods for PBPK Model Construction 

The PBPK model of an investigational drug is constructed based on the purpose of 
the analysis, the amount of data available at the time, and the stage of development. 
There are two main approaches to construct a PBPK model: the bottom-up approach 
and the middle-out approach. The middle-out approach can be further divided into 
the local (drug-by-drug) middle-out approach (LMO) and the global middle-out 
approach (GMO). In this chapter, we will distinguish LMO from GMO and discuss 
the pros and cons later. The flow of PBPK model construction, verification, and 
refinement in drug development is generally as follows. In the preclinical stage, a 
PBPK model of an investigational drug is usually constructed by the bottom-up 
approach to predict pharmacokinetics in a phase I study using in vitro data. The 
constructed PBPK model can be verified by the human PK data. If necessary, the



s

PBPK model is refined by LMO, where some model parameters are back-calculated 
using the clinical PK data. Subsequently, the prediction, verification, and refinement 
cycle for the PBPK model is repeated as clinical pharmacology and phase II/III 
studies are conducted. The features and basic concepts of bottom-up and middle-out 
approaches are summarized in the next section. 

1.1.2.1 Bottom-Up Approach 
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The bottom-up approach is a standard way to construct a PBPK model and a method 
that combines multiple in vitro data to predict in vivo PK. In this approach, some 
in vitro parameters are scaled up to in vivo parameters to account for physiological 
conditions. For example, intrinsic clearance of hepatic metabolism (CLint,met) i  
scaled up from the in vitro data using human liver microsomes or hepatocytes in 
most cases. Given that CLint,met is proportional to the amount of metabolizing 
enzymes, the scaling factor (SF) considers the amount of metabolizing enzymes in 
the in vitro system and the human liver. Specifically, in vitro CLint,met (μL/min/mg 
microsomal protein) obtained from human liver microsomes is scaled up to in vivo 
CLint,met by multiplying (i) microsomal protein content per gram of liver and (ii) liver 
weight per person. On the other hand, some in vitro parameters do not need to be 
scaled up when in vitro experimental conditions can be considered to reflect in vivo 
environment, e.g., unbound fraction in plasma ( fP) obtained from in vitro protein 
binding study. 

Since a bottom-up approach uses in vitro data (and in silico data if necessary), it is 
possible to predict clinical PK profiles prospectively even in the non-clinical phase. 
However, accurate prediction of this method is not guaranteed. 

1.1.2.2 Local Middle-Out Approach (LMO) 

The LMO is a combination of the bottom-up and top-down approaches [6–8]. In 
most cases, one or a few parameters (or scaling factors) are optimized to fit the 
clinical data in a drug-by-drug manner. This approach is used when the predictive 
accuracy of the bottom-up approach is poor. LMO may (or may not) be a realistic 
compromise for constructing a PBPK model. In this method, the selection of 
parameters to be optimized is most critical. In principle, the parameters accurately 
obtained from in vitro experiments are usually fixed in the model according to the 
bottom-up approach. In contrast, parameters that cannot be obtained from in vitro 
experiments should be optimized based on the top-down approach with specific 
clinical condition. The parameter must be identifiable from the PK data. Usually, a 
specific clinical study setting is required to determine the parameter accurately. For 
example, PK data with a specific cytochrome P450 (CYP) inhibitor should be used 
to back-calculate the fractional metabolism ( fm) of a victim drug (Fig. 1.1). 

Despite these basic principles, the current reality is that the parameters to be 
optimized vary from literature to literature. In most cases, a common optimization
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Fig. 1.1 Concept of local middle-out approach in the case of inhibition-mediated DDIs. The flow 
of constructing a PBPK model of an investigational drug (victim) with a specific inhibitor is as 
follows. Step 1: Model development. CLh(or CLint) of a victim is calculated using a victim PK 
profile after the intravenous dosing without a specific inhibitor, assuming negligible renal clearance 
(Step 1A). If the intravenous PK profile is not available, the assumption of victim bioavailability is 
required from preclinical data. Then, fm of a victim is calculated using a victim PK profile with a 
specific inhibitor (e.g., itraconazole for CYP3A inhibition) (Step 1B). As the victim PBPK model is 
developed to fit to the victim PK profiles, this is just a description (not a prediction). Step 2: 
Predictability validation. The developed PBPK model can be used to predict DDIs with other 
inhibitors used in Step 1 and the predicted DDI data are compared to the observed data to validate 
the predictability. Step 3: Unknown DDI Prediction. The validated PBPK model can be used to 
predict untested DDIs within the range of steps 1 and 2 (interpolation). CLh hepatic clearance, CLint 
intrinsic clearance of hepatic metabolism, DDI drug–drug interaction, fm fractional metabolism, PK 
plasma concentration–time 

policy is applied within a report. It guarantees one specific approach for the com-
pounds presented in that report, but it does not guarantee whether the same optimi-
zation approach can be applied to other compounds that were not included in the 
report. For instance, when a compound was metabolized by two enzymes (e.g., 
CYP3A4 and CYP2C9) and the predicted in vivo CLint calculated from the in vitro 
data underestimated the observed in vivo CLint, should one or the other, or both 
in vitro CLint be optimized? As another example, when the uptake of a compound 
was evaluated using human hepatocytes, active uptake clearance via transporters and 
passive diffusion clearance were calculated. When the in vitro-derived uptake 
clearance underestimated the in vivo uptake, would one or both be optimized? 
These optimization policies are vital because they can significantly affect the 
predicted DDIs via the metabolizing enzymes or transporters. Thus, it is expected 
to establish a standardized middle-out approach in which the optimization policy in 
the model construction process is consistent among reports. The previous report by 
Yoshikado et al., which proposes a standard PBPK analysis procedure, should be 
consulted [9]. 

However, easy parameter optimization should be avoided because it may lead to a 
model that does not reflect in vivo situation. One should be keenly aware that, in
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in vitro–in vivo extrapolation (IVIVE), an empirical scale-up factor must be used 
within the range where the optimized physiological factor makes sense. Therefore, 
great care should be taken in selecting parameters to be optimized, and one should 
always be aware of the validity of the optimized values. 

1.1.2.3 Global Middle-Out Approach (GMO) 

In the GMO, one or a few parameters (or scaling factors) are back-calculated from 
the clinical data of many model drugs. Once back-calculated, the parameter is 
commonly applied to all drugs for forwarding prediction. GMO is often used 
when a physiological parameter is difficult to measure directly. The model drugs 
are carefully selected so that their PK data reflect the physiological parameter of 
interest. The number of model drugs is set to have a sufficient degree of freedom 
(usually more than 4 drugs per one parameter (like N = 3 measurements)). In 
addition, structural identifiability is carefully considered. 

1.1.3 Summary 

This section presents the concepts of the PBPK model, the strategy of its use in drug 
research, and approaches to model construction. The idea of the PBPK model is 
based on the mechanisms of physiological and pharmacokinetic characteristics, 
focusing on IVIVE. It is challenging to accurately predict human PK profiles 
using only the bottom-up approach (Sects. 1.2 and 1.3). Therefore, the LMO 
approach has been employed in most cases. Since the purpose of PBPK analysis is 
different for each situation in drug research, the structures and parameters of PBPK 
models are also diverse. In addition, a standard method for selecting optimized 
parameters has not been established. To solve these issues, it is desirable to stan-
dardize the structure of PBPK models, the input parameters, and the analysis 
method, including the optimization policy, as much as possible. When using the 
LMO approach, it is necessary to explain why optimization was essential for the 
objective of PBPK modeling and why the parameters to be optimized were selected. 
Parameter optimization may adequately bridge the gap between in vitro and in vivo 
and deepen the understanding of the in vivo mechanism, but it may also lead to 
incorrect models that do not reflect the in vivo situation. Taken together, a PBPK 
model should be constructed in a mechanism-based manner, and if optimization is 
used, its validity must be objectively explained (also see Sect. 1.4).
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1.2 Predictive Accuracy of IVIVE for Pharmacokinetic 
Parameters 

1.2.1 Fraction of Dose Absorbed from Gut Lumen (Fa) 

As for the bottom-up approach, the predictability of the oral absorption PBPK 
(OA-PBPK) model has been systematically evaluated and published in several 
reports [10–14]. All of them suggested that the dynamic and complex OA-PBPK 
models need further improvement, especially for drug development and clinical 
research use. A simple model, of which the predictability has been evaluated, may 
provide sufficient predictability for the uses in drug discovery [13, 15–19]. 

There are many case study reports regarding dynamic and complex OA-PBPK 
modeling in which the LMO (drug-by-drug parameter fitting) was utilized. How-
ever, as discussed in Sect. 1.4, it is difficult to judge the predictability of OA-PBPK 
models based on the case studies (or the compiles of the case studies) due to 
publication bias. In addition, the LMO process changes literature by literature. At 
least, drug-by-drug optimization of physiological parameters should be avoided. 

1.2.2 Fraction Available after Intestinal Metabolism (Fg) 

Intestinal metabolism could play an important role in the first-pass effect on the 
pharmacokinetics of CYP3A substrates [20]. Although it is difficult to evaluate 
in vivo Fg directly, the indirect methods for estimating Fg are reported. The values 
of hepatic availability (Fh) and oral bioavailability(F) are given by the PK profiles of 
a drug after an intravenous and an oral administration. Then, Fg can be calculated 
using the Fa value estimated by another method (Fg = F/Fa/Fh). There is a different 
method for estimating Fg using grapefruit juice–drug interaction data [21]. The Fg 

value can be calculated from the PK profiles of a drug before and after the concom-
itant use of grapefruit juice that inhibits CYP3A in the intestine. 

From the viewpoint of IVIVE, the Qgut model is reported as a useful method for 
easily predicting Fg [22]. This model calculates a Qgut value as a hybrid parameter of 
the villous blood flow rate (Qvillous) and intrinsic clearance by passive diffusion in 
the intestine (CLpermeability) shown in Eq. 1.1. 

Qgut = 
Qvillous ×CLpermeability 

Qvillous þ CLpermeability 
ð1:1Þ 

CLpermeability is calculated through the following processes: (i) effective intestinal 
permeability in humans (Peff) is  first calculated from in vitro data on membrane 
permeability by Caco-2 cells, Madin–Darby canine kidney cells (MDCK cells), or 
parallel artificial membrane permeability assay (PAMPA), (ii) the calculated Peff is 
then multiplied by the surface area of the intestinal lumen to obtain the CLpermeability.



Using the calculated Qgut value, the Fg value can be determined in Eq. 1.2 where fu, 
gut and CLint,met are the unbound fraction in the enterocytes and the intrinsic 
clearance of intestinal metabolism, respectively. 
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Fg = 
Qgut 

Qgut þ f u,gut ×CLint,met 
ð1:2Þ 

In vivo CLint,met is scaled up from in vitro CLint,met evaluated with human 
intestinal microsomes considering physiological conditions. Because CYP3A is 
the most abundant CYP isoform in the intestine [23], the Fg values of structurally 
diverse CYP3A substrates were evaluated with the Qgut model [20]. The predicted Fg 

values were within 1.5-fold of the observed values in 64% (16/25 cases. In this 
literature, the value of fu,gut was set to 1 to give higher predictive accuracy, even 
though this assumption is unrealistic. This point questions the correctness of the Qgut 

model. Theoretically, Fg is determined by the ratio of CLint,met and intrinsic perme-
ation clearance in basolateral membrane (intrinsic escaping clearance, CLint,esc), but 
not the effective intestinal permeation (absorption) clearance (the rate-limiting 
process is different). In the latter case, the unstirred water layer (UWL) in the luminal 
side becomes the rate-limiting steps for most CYP3A4 substrates) (Eq. 1.3). 

Fg = 
f u,gutCLint,esc 

f u,gutCLint,esc þ f u,gutCLint,met 
= 

CLint,esc 
CLint,esc þ CLint,met 

ð1:3Þ 

The escaping clearance consists of three tandem processes (i) basolateral mem-
brane permeation, (ii) diffusion through the sub-basolateral space to the blood flow, 
and (iii) removal by the blood flow (the efflux to the lumen was neglected) [24]. 

Based on this theory, a simplified model was proposed only using CLint,met and 
CLint,esc [25]. The CLint,met and CLint,esc values of 19 CYP3A substrates were 
evaluated with human intestinal microsomes and PAMPA, respectively. As a result, 
the predicted Fg values were within 1.5-fold of the observed values in 79% (15/19 
cases). Kato et al. also proposed a simpler model [26]. Sugano proposed the 
anatomical Fg model, in which (i) to (iii) are all considered. The anatomical Fg 

model suggested that (ii) sub-basolateral diffusion can be the rate-limiting step of the 
escaping clearance for lipophilic drugs [24]. 

1.2.3 Hepatic Clearance (CLh) 

When predicting CLh of metabolized drugs with the bottom-up approach, in vitro 
intrinsic clearance (CLint) determined by human liver microsomes or hepatocytes is 
scaled up to in vivo CLint using relevant amounts of metabolizing enzymes in the 
human liver (Sect. 1.1.2.1). This bottom-up approach tends to underestimate the 
in vivo CLint in most cases [27]. When using human liver microsomes, the predicted



values of in vivo CLint were within twofold of the observed values in 25% (21/83 
drugs). In the case of human hepatocytes, the predicted in vivo CLint were within 
twofold of the observed values in 24% (24/101 drugs). These data demonstrated that 
average fold underprediction was 2.8 for microsomes and 4.7 for hepatocytes. The 
reasons for the poor predictability are unknown, but the following factors may be 
involved: (i) large variability in the metabolic activity of hepatocytes, (ii) inaccuracy 
of drug unbound fraction ( fu) in microsomes or hepatocytes, (iii) involvement of 
metabolic enzymes and transporters not taken into account, (iv) erroneous in vitro 
CLint due to the inhibitory effect of unsaturated fatty acids on the activity of 
metabolizing enzymes, and (v) potential limitation of drug entry into hepatocytes 
by plasma membrane and/or UWL [28–31]. To predict CLh from in vivo CLint, the 
well-stirred model or the other models considering hepatic blood flow are used. The 
hepatic blood flow rate can affect the predictability of the hepatic clearance [32]. 
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In the preclinical phase, in vivo CLint and CLh of a drug candidate are routinely 
predicted by the bottom-up approach for estimating the plasma exposure and doses 
in a first-in-human study. Considering the low predictability for in vivo clearance, 
optimizing the clearance parameter in the PBPK analysis may be necessary to match 
the plasma exposure in clinical studies [29]. However, as mentioned in Sect. 1.1.2.2, 
the LMO process requires caution because optimization policy can change literature 
by literature. 

1.2.4 Blood-to-Plasma Concentration Ratio (RB) 

To predict hepatic clearance, as described in Sect. 1.2.3, the unbound fraction in 
blood ( fB) of a drug, hepatic blood flow rate, and in vivo CLint are required. The fB 
value is calculated by dividing the unbound fraction in plasma ( fP) by the 
RB( fB = fP/RB). Although fP and RB are often obtained in vitro, human RB is 
sometimes assumed to be 1 when unavailable. However, since RB is essential for 
the calculation of fB, a prediction method for RB values from in vitro data has been 
proposed [33]. Using rat RB and fP and human fP, which are readily available for 
experimental data, 77.6% (45/58 compounds) of predicted human RB were within 
1.25-fold of the observed values. Therefore, this method may help predict a human 
RB value. 

1.3 PK Predictions for Clinical Situations by PBPK Models 

1.3.1 Drug–Drug Interaction (DDI) 

One of the areas where the PBPK model is most utilized is DDI predictions 
[5]. PBPK modeling can evaluate untested DDI scenarios and propose an optimized 
design for clinical DDI studies. Moreover, it can suggest appropriate dose



adjustment of drugs. The mechanism of DDI can be classified into three types: direct 
inhibition, mechanism-based inhibition, and induction. Direct inhibition means that 
a perpetrator (inhibitor) inhibits a metabolizing enzyme’s activity without affecting 
the enzyme’s amount. On the other hand, in the case of mechanism-based inhibition 
and induction, a perpetrator (inhibitor or inducer) fluctuates the amount of an active 
metabolizing enzyme by inactivation or induction. 
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In most cases, the magnitude of DDIs is evaluated with an index called the area 
under the plasma concentration–time curve ratio (AUCR) of a victim drug. The 
AUCR is the ratio of the AUC of a victim with perpetrator treatment (i.e., DDI 
condition) to the AUC without perpetrator treatment (i.e., control condition). After 
an oral administration of a victim in the control and DDI conditions, the AUC is 
given by Fa × Fg × Fh × Dose/CLtotal and F0 

a ×F
0 
g ×F

0 
h ×Dose=CL

0 
total, respectively, 

where CLtotal is the total clearance. In addition, the AUCR can be approximated as 
CLint,met/CL0 int,met in Eq. 1.4 with the following assumptions: (i) the perpetrator 
causes hepatic-mediated DDIs and does not affect the intestinal-mediated DDIs 
(Fa × Fg = F0 

a ×F
0 
g ), and (ii) the victim is metabolized and eliminated in the liver 

and is not excreted by the kidney (CLtotal = CLh). 

AUCR= 
F ′ a ∙F ′ g ∙F ′ h ∙Dose 

CL ′ total 
Fa ∙Fg ∙Fh ∙Dose 

CLtotal 

= 
F ′ h 
CL ′ h 
Fh 
CLh 

= 

Qh 
Qhþf B ∙CL ′ int,met 
Qh ∙ f B ∙CL ′ int,met 
Qhþf B ∙CL ′ int,met 

Qh 
Qhþf B ∙CLint,met 
Qh ∙ f B ∙CLint,met 
Qhþf B ∙CLint,met 

= 
CLint,met 

CL ′ int,met 
ð1:4Þ 

For example, when the victim is a substrate of CYP3A and other CYP isoforms, 
the intrinsic clearance of hepatic metabolism (CLint,met) is described by CLint, 
CYP3A + CLint,others. Using the fractional metabolism ( fm) mediated by CYP3A, 
CLint,others can be expressed with CLint,CYP3A and fm. The ratio of CLint,met in the 
presence and absence of a perpetrator for CYP3A can be illustrated by Eq. 1.5. 
Therefore, the AUCR can be calculated simply using the values of fm ranging from 
0 to 1 and the CLint,CYP3A ratio. 

CLint,met 

CL ′ int,met 
= 

CLint,CYP3A þ CLint,others 
CL ′ int,CYP3A þ CLint,others 

= 
CLint,CYP3A þ CLint,CYP3A ∙ 

1 
f m

- 1 

CL ′ int,CYP3A þ CLint,CYP3A ∙ 
1 
f m

- 1 
= 

1 

f m × 
CL ′ int,CYP3A 
CLint,CYP3A 

þ 1- f mð Þ  
ð1:5Þ 

To estimate the CL0 int,met in DDI conditions, an inhibitory and inductive effect of a 
perpetrator should be considered in the next section.
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1.3.1.1 Inhibition 

Inhibition is a well-known and clinically significant DDI mechanism for metaboliz-
ing enzymes and transporters. Co-administration of an inhibitor can increase the 
plasma exposure and the risk of adverse events of a victim drug. During drug 
development, the CYP inhibitory effects of drug candidates and the effects they 
receive from inhibitors are routinely evaluated in vitro. Based on these preclinical 
data, the clinical impact of CYP inhibition can be predicted by PBPK models. 

Modeling 

Direct Inhibition 

When a perpetrator (e.g., CYP3A inhibitor) shows competitive inhibition on the 
pharmacokinetics of a victim (e.g., CYP3A substrate), CL0 int,CYP3A can be described 
based on the Michaelis–Menten equation (Eq. 1.6) where Vmax, Km, and [C]tissue, 
victim are the maximum metabolism rate, Michaelis–Menten constant, and concen-
tration of the victim in the DDI sites such as hepatocytes, respectively. 

CL ′ int,CYP3A = 
Vmax 

Km × 1þ f tissue,inhibitor ∙ I½ �tissue,inhibitor 
Ki,u,inhibitor 

þ C½ �tissue,victim 

ð1:6Þ 

ftissue, inhibitor and [I]tissue, inhibitor represent unbound fraction and concentration of the 
inhibitor in the DDI sites, respectively. The Km value of the victim becomes 
1 +  ftissue × [I]tissue/Ki,u times where Ki,u,inhibitor is the unbound inhibition constant 
of the inhibitor. Assuming that the unbound concentration of the victim is much 
lower than the Km value (Km ≫ [C]tissue,victim), the CLint,CYP3A ratio of the victim in 
the absence and presence of the inhibitor can be described by Eq. 1.7. 

CLint,CYP3A ratio= 
CL ′ int,CYP3A 
CLint,CYP3A 

= 
1 

1þ f tissue,inhibitor ∙ I½ �tissue,inhibitor 
Ki,u,inhibitor 

ð1:7Þ 

Considering the Eqs. 1.4, 1.5, 1.6, and 1.7, the conditions for increasing the 
AUCR are as follows: (i) large fm value of the victim and (ii) large ftissue × [I]tissue/Ki,u 

value of the inhibitor. 

Mechanism-Based Inhibition 

When an inhibitor exhibits a mechanism-based inhibition effect that inactivates the 
activity of a metabolizing enzyme (e.g., CYP3A), it is necessary to model the 
changes active enzyme amount, using the synthesis rate (vsys) and degradation rate 
constant (kdeg), which are not considered in the case of competitive inhibition. A 
turnover model can represent the dynamics of the enzyme. Specifically, the changes



in the active enzyme amount (Eact) under DDI condition can be described as shown 
in Eq. 1.8 where kinact, inhibitor and Kiapp, inhibitor are the maximum rate constant of 
inactive enzyme formation and concentration of half-maximum inactivation, respec-
tively. Under the control condition, the vsys equals the degradation rate 
(vsys = kdeg × Eact,control). Then, the Eact can be converted to the ratio of the Eact 

with the inhibitor to the Eact without the inhibitor (Eact,ratio) in Eq. 1.9. 
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dEact 

dt 
= vsyn - kdeg þ kinact,inhibitor × f tissue,inhibitor ∙ I½ �tissue,inhibitor 

K iapp,u,inhibitor þ f tissue,inhibitor ∙ I½ �tissue,inhibitor 
×Eact ð1:8Þ 

dEact,ratio 

dt 
= kdeg - kdeg þ kinact,inhibitor × f tissue,inhibitor ∙ I½ �tissue,inhibitor 

K iapp,u,inhibitor þ f tissue,inhibitor ∙ I½ �tissue,inhibitor 
×Eact,ratio ð1:9Þ 

The conditions for decreasing the active enzyme amount are as follows: (i) large 
kinact of the inhibitor and (ii) large ftissue × [I]tissue/(Kiapp,u + ftissue × [I]tissue) of the 
inhibitor. 

Predictive Performance of PBPK Models 

The predictive accuracy of PBPK models for mainly CYP3A-mediated inhibition 
was reported based on the submissions from pharmaceutical companies to the FDA 
between July 2008 and December 2013 [34]. In this literature, the inhibitory effects 
of 10 perpetrator drugs on the pharmacokinetics of 15 victim drugs were predicted 
for 26 clinical DDI trials. The victim models were developed by nine sponsors using 
a bottom-up approach (2 victims) or LMO (13 victims). While the detailed LMO 
procedure was not reported, the PK data of phase I studies were used. The major 
elimination pathway of the victims was considered hepatic CYP3A metabolism. For 
perpetrators, ketoconazole, ritonavir, and erythromycin were used mainly. The 
inhibitor models were used with the software default setting in half cases and 
developed by sponsors in the other cases. In 21 out of 26 cases (81%), the predicted 
AUCRs of the victims were within 1.25-fold of the observed AUCRs, suggesting the 
confidence in using PBPK models for the inhibition-mediated DDIs. Similarly, the 
predictive accuracy was summarized from the literature published from January 
2001 to December 2016 [35]. The PBPK models of the investigational drugs, most 
of which were constructed by LMO (details were not shown), were used as victims 
in 80 cases and as perpetrators in 262 cases. The major DDI mechanism was CYP3A 
inhibition. When the investigational drugs were victims, the predicted AUCRs were 
within 1.25-fold of the observed AUCRs in 62% (49/80 cases) and twofold in all 
cases. Moreover, when investigational drugs were perpetrators, the predicted 
AUCRs of victims were within 1.25-fold of the observed AUCRs in 44%



(116/262 cases) and within twofold in 81% (213/262 cases). Taken together, the 
predictive accuracy of inhibitory DDIs is considered good with the twofold criteria, 
but sufficient model verification should be needed to improve the prediction accu-
racy such as 1.25-fold criteria. 
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While these reports could be valuable in understanding the predictive accuracy of 
the PBPK models at this moment, it should be recognized that these are the compiles 
of published case studies. Therefore, publication bias can compromise the assess-
ment of predictability. Although the fold measure is generally used to evaluate the 
predictive accuracy, the criteria should be used with caution. This is because the 
acceptable prediction range becomes larger when the AUCR is closer to 1 than when 
the AUCR is higher. In the case of twofold criteria, if the AUC increases by 400% 
(AUCR: 5), the acceptable range is 150–900% (AUCR: 2.5–10), while if the AUC 
increases by only 10% (AUCR: 1.1), the acceptable range becomes relatively large 
from 45% to 120% (AUCR: 0.55–2.2). Therefore, the predictive accuracy tends to 
be higher when many DDI cases with AUCR close to 1 are collected. To avoid such 
potential bias, the Guest’s criteria have been increasingly used [36]. With the criteria, 
the acceptable range can be set relatively narrow (0.8–1.25) when the observed 
AUCR is 1, and as the observed AUCR increases, the acceptable range approaches 
the twofold criteria. Therefore, the Guest’s criteria, in which the acceptable range is 
set according to the observed AUCR, should be the first choice in the future. 

Instead of using a PBPK model, a different framework for the quantitative 
prediction of CYP-mediated inhibition was proposed. In this method, AUCRs of 
victims after oral administration were predicted using only two parameters as shown 
in Eq. 1.10 [37]: CRCYP3A is the ratio of the CYP3A contribution to oral clearance 
and IRCYP3A is the time-averaged apparent inhibition ratio of CYP3A. 

AUCR= 
1 

1-CRCYP3A × IRCYP3A 
ð1:10Þ 

Both values of IRCYP3A of inhibitors and CRCYP3A of victims were estimated from 
clinical DDI data. The predictive accuracy was verified using 60 clinical DDI studies 
between 14 substrates and 18 inhibitors including mechanism-based inhibitors for 
CYP3A. The predicted AUCRs were within 1.5-fold of the observed AUCRs in 80% 
(50/60 cases) and within twofold in 95% (57/60 cases). This is a simple and reliable 
DDI prediction method. The simplicity is in contrast to the PBPK models, which 
require many parameters. 

1.3.1.2 Induction 

Induction is as critical as inhibition in the DDI mechanism, which can decrease 
plasma exposure and efficacy of a victim drug. PBPK modeling of induction has 
evolved mainly for the predictions of CYP3A-mediated DDIs [38]. The predictive 
accuracy for the induction effect is controversial because sufficient information has 
not been accumulated. The reasons for the difficulty may include the following: (i) a



large degree of variability in the induced mRNA levels evaluated in vitro, 
(ii) uncertainty in the unbound fraction of an inducer and a victim at DDI sites, 
and (iii) involvement of multiple DDI mechanisms (e.g., inhibition and induction) 
for multiple metabolizing enzymes and transporters [39, 40]. 
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Modeling 

The induction mechanism of an inducer (e.g., rifampicin) for a metabolizing enzyme 
(e.g., CYP3A) can be described using a turnover model by Eq. 1.11, where Emax, 

inducer, EC50,u,inducer, and [I]tissue,inducer are the maximum induction effect, unbound 
concentration for the half-maximum induction effect, and concentration of inducer in 
the DDI sites, respectively [41]. The change in Eact,ratio is shown in Eq. 1.12, as is the 
case with the mechanism-based inhibition shown in Sect. 1.3.1.1. The Eact,ratio 

indicates the increased levels of CYP3A under the inducer treatment, and CLint, 
CYP3A of a victim (e.g., midazolam) increase proportionally, resulting in a decrease 
in the AUC of the victim compared to the AUC in the control condition. 

dEact 

dt 
= vsyn × 1þ Emax,inducer × f tissue,inducer ∙ I½ �tissue,inducer 

EC50,u,inducer þ f tissue,inducer ∙ I½ �tissue,inducer
- kdeg ×Eact ð1:11Þ 

dEact,ratio 

dt 
= kdeg 

× 1þ Emax,inducer × f tissue,inducer ∙ I½ �tissue,inducer 
EC50,u,inducer þ f tissue,inducer ∙ I½ �tissue,inducer

-Eact,ratio ð1:12Þ 

Predictive Performance of PBPK Models 

The predictive accuracy of PBPK models for CYP3A induction was reported based 
on the submissions from pharmaceutical companies to the FDA between July 2008 
and December 2014 [42]. In this literature, PBPK models of 11 victim drugs and four 
CYP3A inducers were used for predicting 13 clinical DDI studies. The victim 
models were developed by six sponsors using a bottom-up approach (1 victim) or 
LMO (10 victims). While the detailed LMO procedure was not reported, the PK data 
of phase I studies were used. The major elimination pathway of the victims was 
considered hepatic CYP3A metabolism. For inducers, rifampicin, rifabutin, carba-
mazepine, and efavirenz were used in 9, 2, 1, and 1 studies, respectively. In 10 out of 
13 cases (77%), the predicted AUCRs of the victims were within 1.25-fold of the 
observed AUCRs, suggesting that the validated PBPK models were submitted to the 
FDA. Another study also summarized the predictive accuracy for inductive DDIs by 
collecting PBPK analysis reports published from January 2001 to December 2016



[35]. Most cases analyzed CYP3A-mediated induction, but some cases analyzed 
induction for other CYP isoforms and transporters. The PBPK models of the 
investigational drugs were used as victims in 44 cases and as perpetrators in 
98 cases. When the investigational drugs were victims, the predicted AUCRs were 
within 1.25-fold of the observed AUCRs in 50% (22/44 cases) and within two-fold 
in 80% (35/44 cases). Moreover, when the investigational drugs were inducers, the 
predicted AUCRs of victims were within 1.25-fold of the observed AUCRs in 43% 
(42/98 cases) and within two-fold in 86% (84/98 cases). Further improvements in 
predictive accuracy will be needed when the investigational drugs are inducers. 
Similar to the case of inhibitory predictions, it should be noted that these are the 
compiles of published case studies, most of which used the LMO approach. 
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Notably, there is a simpler method for predicting CYP3A induction than the 
PBPK models. The AUCRs of victims after oral administration can be predicted 
using an ICCYP3A in addition to the CRCYP3A shown in the previous section 
(Eq. 1.13) [43]. ICCYP3A represents the apparent increase in clearance of substrates 
produced by induction of CYP3A. 

AUCR= 
1 

1þ CRCYP3A × ICCYP3A 
ð1:13Þ 

Both ICCYP3A and CRCYP3A were estimated from clinical DDI data. The predic-
tive accuracy was verified using 42 clinical DDI studies between 22 substrates and 
seven inducers for CYP3A. In all 42 cases, the predicted AUCRs were within 1.2-
fold of the observed AUCRs, indicating the robustness and usefulness of this model. 
If a clinical DDI study between an investigational drug and a typical CYP3A inducer 
(or substrate) is conducted, the CRCYP3A (or ICCYP3A) value of the investigational 
drug can be estimated and applied for the DDI predictions with untested CYP3A 
inducers (or substrates). 

1.3.2 Food Effect 

To predict the food effect on oral drug absorption, the effect of bile micelles on both 
solubility and intestinal membrane permeability should be considered in OA-PBPK 
modeling [44]. In general, bile micelles increase the solubility but decrease the 
permeability of a drug. This balance determines whether the food effect becomes 
positive or negative in many cases. The effect of bile micelles on the effective 
membrane permeability depends on the rate-limiting step of the permeation process. 
The drug molecules bound to bile micelles cannot permeate the epithelial membrane 
(EM) but can diffuse across the unstirred water layer (UWL) adjacent to the 
membrane. In the case of a low solubility/EM limited permeability drug, an increase 
in solubility is canceled out by a decrease in EM permeability, resulting in little food 
effect (e.g., pranlukast). In the case of a low solubility/UWL limited permeability 
drug, an increase in solubility is only slightly canceled out by a decrease in UWL



2 2

4 4

permeability, resulting in a positive food effect (e.g., danazol). In the case of a high 
solubility/EM limited permeability drug, if the drug can bind to bile micelles, the 
permeability is decreased, resulting in a negative food effect [45]. 
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1.3.3 Hepatic Impairment 

Hepatic impairment can be caused by chronic diseases such as hepatic and biliary 
cirrhosis. Liver cirrhosis is a progressive disease characterized by a decline in 
functional hepatocytes, hepatic blood flow, plasma protein (serum albumin, α-1-
glycoprotein (AGP)), and expression levels of metabolizing enzymes and trans-
porters in the liver as well as the intestine [46]. These changes can affect the 
pharmacokinetics of drugs. Then, PK predictions in hepatic impairment patients 
(HIP) are important for the optimization of clinical trial design as well as dose 
adjustments. Hepatic impairment is usually classified by the Child-Pugh (CP) grade: 
CP-A, CP-B, and CP-C represent mild, moderate, and severe hepatic impairment, 
respectively as shown below [47] (Table 1.1). 

To construct each Child-Pugh population, the following factors varying with the 
degree of hepatic impairment have been incorporated: age distribution and sex ratio; 
liver size; expression levels of hepatic CYP isoforms; glomerular filtration rate 
(GFR); the plasma concentration of albumin and AGP; hematocrit; cardiac output; 
hepatic blood flow; and effect of portocaval shunting [48]. 

The population models of HIP were constructed by back calculating the expres-
sion levels of several CYP isoforms from the clinical data of each CYP probe 
substrate. The established population models of HIP (CP-A, CP-B, and CP-C) 
were verified using nine drugs (midazolam, caffeine, theophylline, metoprolol, 
nifedipine, quinidine, diclofenac, sildenafil, and omeprazole) which are mainly 
metabolism by CYP isoforms [48]. The predicted AUCRs (=AUC of HIP/AUC of 
healthy adults; the same hereafter in this section) of the drugs were within 0.8- to 
1.25-fold of the observed AUCRs in 65% (13/20 cases). Another PBPK report 
extensively investigated the effect of hepatic impairment on the pharmacokinetics

Table 1.1 Classifications of hepatic impairment based on Child-Pugh Score 

Points scored for observed findings 

1 point 2 points 3 points 

Serum bilirubin (mg/dL) < –3 >3 

Serum albumin (g/dL) >3.5 2.8–3.5 <2.8 

Prothrombin time (sec prolonged) < –6 >6 

Encephalopathy grade None 1–2 3 or 4 

Ascites Absent Slight Moderate 

Child-Pugh A: 5–6 points (mild hepatic impairment) 
Child-Pugh B: 7–9 points (moderate hepatic impairment) 
Child-Pugh C: 10–15 points (severe hepatic impairment)



of 27 compounds, many of which are mainly metabolized in the liver [49]. As a 
result, 77% (43/56 cases, including 18 in mild, 25 in moderate, and 13 in severe 
hepatic impairment) of the predicted AUCRs were within two-fold of the observed 
AUCRs. Another article investigated the predictability of hepatic impairment on the 
pharmacokinetics of hepatic uptake and efflux transporter substrates [50]. Using 
bosentan, repaglinide, telmisartan, valsartan, and olmesartan, the uniform decreased 
level of several transporters in each HIP class to healthy adults was estimated by a 
top-down approach. Consequently, the described AUCRs were within 1.5-fold of the 
observed AUCRs in 5 out of 7 cases and within two-fold in all the cases. Considering 
the lack of supporting data for the predictions, such as the changes in protein levels 
of each transporter and the fractional contributions of each transporter to the overall 
uptake/efflux process of the substrates according to the Child-Pugh classification, the 
accumulation of such data in the future will enable more confident prediction from 
the IVIVE perspective.
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To verify the population model of HIP, many efforts have been made to collect 
physiological data on HIP. However, we still rely on estimates based on a top-down 
approach for some parameters especially on the expression levels of metabolizing 
enzymes and transporters. Since quantifying their expression levels using biopsy 
samples is highly invasive and poses high implementation hurdles, the less invasive 
liquid biopsy method is expected to become a practical method in the future [51]. At 
this point, PK predictions in HIP might be used as reference data for optimizing the 
design of clinical studies, but the predictive accuracy would be on a case-by-case 
basis, as it depends on the accuracy of physiological data regarding the elimination 
route of an investigational drug. Of note, before PK prediction in HIP, it is necessary 
to confirm that a PBPK model of an investigational drug can appropriately describe 
pharmacokinetics in the control population (e.g., healthy adults). 

1.3.4 Renal Impairment 

Predicting the pharmacokinetics in renal impairment patients (RIP) is useful to 
inform dosing recommendations in the population. Glomerular filtration rate 
(GFR) is used as an index to classify the severity of renal function as shown 
below [52] (Table 1.2). 

Table 1.2 Classifications of renal function 

Classification Range of values for renal function (mL/min/1.73 m2 ) 

Normal renal function ≥90 
Mild impairment 60–89 

Moderate impairment 30–59 

Severe impairment 15–29 

Kidney failure <15
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It has been reported that renal impairment can affect the renal excretion of drugs, 
hepatic and intestinal metabolism, and serum albumin concentration [53–55]. The 
mechanisms of the decrease in hepatic and renal clearance seem to be the down-
regulation of metabolizing enzymes and transporters and the inhibition effects on the 
enzymes by uremic toxins accumulated in the body [56]. Population models of RIP 
were constructed by including the various physiological parameters in renal impair-
ment. Using PBPK models of 7 compounds eliminated mainly by renal excretion 
(fe > 0.79), the pharmacokinetics in mild, moderate, and severe RIP were predicted 
and compared with that in healthy adults [57]. The predicted AUCRs (=AUC of 
RIP/AUC of healthy adults; the same hereafter in this section) were within 1.5-fold 
of the observed AUCRs in 91% (20/22 cases) and within two-fold in 95% (21/22 
cases). In contrast to this analysis by dynamic PBPK models, the authors also 
proposed a static model considering the differences in fP, GFR, and hepatic intrinsic 
clearance between renal impairment patients and healthy adults. With the static 
model, the predicted AUCRs were within 1.5-fold of the observed AUCRs in 95% 
(21/22 cases) and within two-fold in all cases. Another PBPK report investigated the 
effect of renal impairment on the pharmacokinetics of 25 compounds, many of 
which are mainly metabolized in the liver [49]. As a result, 94% (47/50 cases 
including 8 in mild, 14 in moderate, 25 in severe renal impairment, and 3 in 
end-stage renal disease) of predicted AUCRs were within two-fold of the observed 
AUCRs. 

Given that the observed AUCRs in the above literature were within three-fold in 
many cases, it may be difficult to evaluate the predictive accuracy appropriately. 
However, PBPK models that can describe PK profiles in healthy adults showed the 
potential to predict PK profiles in RIP, and these predictions could be helpful in 
considering the timing of a renal impairment PK study and optimizing the study 
design. It is also noteworthy that the prediction accuracy of the static model, which 
incorporates multiple factors in RIP, was at least as good as that of the dynamic 
PBPK model. Further understanding of physiological conditions according to the 
degree of renal impairment can improve the PK predictability. 

1.3.5 Children 

Although there is a growing demand for pediatric drug development, conducting 
frequent clinical trials on children is unrealistic. In addition, estimating the effective 
and safe doses is a significant challenge considering their rapid growth. While a 
PBPK model can be helpful in proposing pediatric doses in a first-in-pediatric study, 
the predictive accuracy has not been fully verified. After constructing a PBPK model 
in adults, pediatric PK profiles should be predicted by replacing population param-
eters in adults with pediatric subjects. In a previous report, the PBPK models of 
10 drugs that are primarily metabolized by major CYP isoforms were constructed in 
adults (bottom-up or LMO not known) and used to predict pediatric pharmacoki-
netics in the following age groups: infants (1 month to <2 years), young children



(2 to <6 years), school-aged children (6 to <12 years), and adolescents (12 to 
<18 years) [58]. After the drugs were administered intravenously or orally, the 
predicted AUCs were within 1.5-fold of the observed AUCs in 64% (43/67 cases) 
and within two-fold in 87%(58/67 cases). 
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In this report, the PBPK model for CYP2C19 substrate (esomeprazole), which 
could predict PK profiles in adults appropriately, failed to predict PK profiles in 
infants. Moreover, the ontogeny profile of CYP2C8 significantly impacted the 
predictive accuracy of CYP2C8 substrates in infants. These findings suggest the 
need for validation of age-dependent physiological data and the possibility of 
estimating ontogeny profiles of metabolizing enzymes with GMO approach if 
sufficient PK data in children can be accumulated. 

1.4 Summary and Opinion on PBPK Models 

The PBPK model is utilized in a wide range of applications, from the early stages of 
drug discovery to the submission to regulatory authorities. This mechanism-based 
model could be highly versatile since it can predict various scenarios by changing 
the parameters related to a population when predicting the effects such as age and 
disease state, and by adding a perpetrator model when predicting DDI. The authors 
place a high expectation on PBPK models. But unfortunately, during the preparation 
of this manuscript, we recognized that the current practice of PBPK modeling has 
some issues as described below [59]. One possible way to overcome the issues 
would be to start with a simple PBPK model and progress step-by-step to more 
complex models (called Occam’s razor principle). It is easier to report all details for a 
simple PBPK model. As discussed in the above sections, simple and/or static models 
for Fa, Fg, AUCR by DDI, and AUCR in RIP have been reported, and their 
predictability has been systemically evaluated using more than several dozens of 
drugs. 

1.4.1 Transparency of Modeling Processes 

For most of the studies using commercial software, we found that it was impossible 
to examine the model equations and physiological parameters, trace the calculation, 
and reproduce the results based on the disclosed information. The absence of 
transparency may shed a question on whether these articles could have had rigorous 
peer review before publication. This issue is not limited to complex PBPK models 
but is generally recognized in computational sciences. Recently, National Acade-
mies of Sciences, Engineering, and Medicine recommended the ways to improve 
transparency and rigor in research, saying, “All researchers should include a clear, 
specific, and complete description of how the reported results were reached.” and 
“Journals should consider ways to ensure computational reproducibility for



publications that make claims based on computations, to the extent ethically and 
legally possible.” [60]. It is critically important to disclose all model equations and 
physiological parameters for proper peer-review by referees and readers. 
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1.4.2 Literacy about Middle-out Approach 

In many reports of the local middle-out approach (LMO), “description” and “pre-
diction” has often been confused. LMO is conducted as (i) drug-by-drug back-
calculation of one to several parameters from the existing clinical PK data (parameter 
fitting, optimization), and (ii) use those parameters for forwarding predictions for a 
different clinical situation. Unfortunately, (i) and (ii) have often been confused in the 
literature. Complex PBPK models are flexible and allow the users to perform 
parameter fitting as much as they want. In many cases, the users increase the number 
of parameters for fitting until obtaining a perfect match to the mean clinical data. 
When a parameter (s) of a complex PBPK model is fitted to the existing clinical PK 
data in such a way, a complex PBPK model can describe the existing data always 
perfectly. However, this does not mean that the model is correct and predictive. To  
make matters worse, parameter fitting hides any errors in the model. It should be 
noted that LMO using a scaling factor (SF) is mathematically the same as back 
calculating a physiological or a drug parameter (and vice versa) (SF is applied to 
these parameters, e.g., SF × CLint). The introduction of SF with no physiological 
meaning is regarded as instrumentalism rather than scientific realism. SF should be 
used following the rules of statistical empirical models. 

1.4.3 Evidence Level of Local Middle-Out Approach 

There is little or no systematic evaluation of LMO using complex PBPK models. 
Only case studies (or compiles of case studies) have been reported. Therefore, based 
on the concept of evidence-based medicine, the evidence level of LMO is low at this 
moment. In the future, it is highly desirable to systematically examine the predict-
ability of the LMO approach using a wide variety of data as many as possible 
(at least several dozens) for each prediction purpose using a standardized procedure. 
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Chapter 2 
Physiologically Based Pharmacokinetic 
(PBPK) Modeling Application on Food 
Effect Assessment 

Di Wu, John P. Gleeson, and Filippos Kesisoglou 

Abstract Food–drug interaction is one of the major factors that impact clinical 
pharmacokinetics in drug development. Unfortunately, the available in vitro and 
preclinical models do not appropriately predict food effects due to the complex 
mechanisms. It is recognized by the FDA that a food effect study should be 
conducted in the early clinical stage to inform the dosing paradigm and establish 
food effects risks in patients. Physiologically based biopharmaceutics modeling 
(PBBM) is a powerful tool to predict clinical PK by incorporating physiology-
related and drug product-related factors in the mechanistic absorption model. 
PBBM has been utilized in various applications in drug development, such as 
biopharmaceutics risk assessment, bioequivalence safe space setup, and 
pH-mediated drug–drug interaction evaluation. The application of utilizing PBBM 
for food effect assessment has been tested and validated through many published 
case studies. In this chapter, an overview of food effects including current assess-
ment practice, various food–drug interaction mechanisms, and clinical consider-
ations is included. Thorough instruction on using PBBM to evaluate food effects 
is provided, followed by two detailed case studies. Though PBBM has shown 
potential in food effect prediction, it is still an evolving area, and current gaps and 
future directions are discussed. 

Keywords Food effect · Physiologically based biopharmaceutics modeling 
(PBBM) · Physiologically based pharmacokinetics modeling (PBPK) 

2.1 Introduction 

In the past decades, physiologically based pharmacokinetic (PBPK) modeling or 
physiology-based biopharmaceutics modeling (PBBM) has been an evolving area in 
drug development to support clinical pharmacology assessment such as drug–drug
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interaction (DDI) prediction, pH-mediated DDI, food effect, and biopharmaceutics 
applications including formulation development, bioequivalence prediction, in vitro 
specification settings, application for study waivers, and internal decision making 
[1, 2]. PBBM is considered a powerful tool in drug development, that can describe or 
predict a drug product’s exposure in human by incorporating physiological condi-
tions, physicochemical properties of the compound, and additional relevant factors 
into the model parameters [3]. Advanced compartmental absorption transit (ACAT) 
or advanced dissolution, absorption, and metabolism (ADAM) models are the most 
commonly used mechanistic models to mimic in vivo absorption processes in PBBM 
[4]. Health authorities have released guidance on PBPK and PBBM to encourage 
their applications in drug development for both innovators and generic companies in 
the past years [3].
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The interaction between drug and food is a significant factor that may impact the 
drug product’s bioavailability, safety, and efficacy. About 40% of on-market drug 
products have a significant food effect [5]. In the early stage of drug development, 
in vitro testing and preclinical studies are two major approaches for assessing 
potential food effects. However, the food effect mechanism can be complicated, so 
there are no mature or biopredictive in vitro tools for food effect assessment. 
Moreover, the translation from preclinical to clinical is hard to manage due to species 
barrier. Hence, the overall prediction accuracy using in vitro or preclinical strategies 
still requires refinement. In the clinical stage, the most effective approach to evaluate 
food effect is through clinical study, which is recognized by the agency [6]. PBBM is 
advantageous over other in vitro approaches for food effect assessment by taking 
into account the changes in physiology, compound characterizations, elimination 
parameters, etc., which may be altered in the presence of food. In addition, 
the regulatory agency usually encourages an early assessment of food effects in 
the clinic to inform later clinical studies [6]. To avoid unnecessary clinical studies in 
the late stage, PBBM is an alternative tool to evaluate food effects with formulation 
changes. 

Food–drug interaction can potentially alter the exposure of drug products in the 
clinic, which further impacts the safety and efficacy profiles [6]. As stated, the FDA 
has recommended assessing the food effect in the early stage of drug development 
and conducting a food effect study in the early clinical phases. In practice, a food 
effect study is a routine study in a Phase I clinical trial in drug development. To 
define a food effect, if the 90% confidence interval (CI) for the ratio of the population 
geometric means between fed and fasted conditions for AUC0-INF (AUC0-t when 
appropriate) and Cmax fall in the equivalence limits (80–125%), then it is considered 
to have no food effect for the tested drug product, otherwise, it would be either 
positive or negative food effect [6], as shown in Fig. 2.1. 

Food effect assessment is critical to inform the overall drug development pro-
gram, further dosing instructions with food, and the final labeling. Hence, a food 
effect study is highly recommended by FDA for all orally administered new chem-
ical entities (NCE). The only study waiver included in the current food effect 
guidance for the investigation of a new drug (IND) and new drug application 
(NDAs) is for biopharmaceutics classification system (BCS) I drug (high
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permeability, high solubility) that are formulated as immediate-release (IR) and 
show high bioavailability (F ≥ 0.85) and low first-pass extraction [6]. 
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Fig. 2.1 Schematic figure on food-drug interactions 

The effect of food on drug dissolution, solubility, absorption, and clearance is 
very complex as it pertains to the drug, the formulation, and the GI fluids. Com-
monly studied mechanisms can be classified into direct interaction between drug 
products and food and indirect interaction [7, 8]. Specific mechanistic food effects 
will be discussed in detail in the following sections. In this chapter, a detailed 
description of the food effect mechanism, modeling instruction, and case studies to 
show how to use PBBM to assess food effect, and current gaps and future directions 
are included. 

2.2 Food–Drug Interactions 

2.2.1 Specific Food–Drug Interactions 

2.2.1.1 Milk 

Bovine milk is a commonly consumed beverage in Western diets; however, it poses 
a pharmacokinetic risk due to its complex composition and can result in positive or 
negative food effects depending on the physicochemical characteristics of the active 
pharmaceutical ingredient (API; drug). Whole-fat cow’s milk has a calorie content of 
65 kcal/100 mL, and per 100 g contains 3.4 g of protein, 4.6 g of carbohydrates, and 
3.7 g of fats (predominantly medium- and long-chain fatty acids). The fats and 
proteins in milk form an oil-in-water emulsion which can have positive food effects 
on the absorption of lipophilic drug API. Lumefantrine, an anti-malarial drug, had 
improved absorption when co-administered with 200 ml of whole milk containing 
6.8 g of fat [9]. However, an increase in oral bioavailability was not observed with 
the co-administration of the lipophilic erlotinib, a chemotherapeutic, and 250 ml of 
cow’s milk containing 3.9% fat [10]. 

Negative food effects are more commonly found when a drug is co-administered 
in the presence of milk. The high protein content in milk is metabolized by gastric 
and pancreatic enzymes to release free amino acids and small peptides which 
compete with drugs for absorption via the intestinal di- and tripeptide transporter



PEPT1 (SLC15A1) [11]. The oral absorption of oseltamivir, an anti-viral prodrug 
substrate for PEPT1, had a reduced Cmax and delayed Tmax when co-administered 
with 400 ml of milk compared to water likely due to competition for PEPT1-
mediated uptake [12]. Chelation also poses a negative food effect on certain classes 
of drugs such as bisphosphonates and tetracyclines. The Ca2+ ions present in milk 
form insoluble chelates of tetracycline reducing the drug’s ability to be absorbed 
[13]. The oral bioavailability of demeclocycline, a tetracycline antibiotic, was 
reduced by 80% when co-administered with milk [14]. The major protein in milk, 
casein, can also contribute to both physical and chemical drug binding reducing the 
amount of free drug in the intestinal lumen available for absorption [15]. 
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2.2.1.2 Grapefruit Juice 

Some prescription and over-the-counter (OTC) drugs have label claims warning 
against co-administration with grapefruit juice. Citrus fruits including grapefruits, 
Seville oranges, limes, and pomelos contain large amounts of the flavonoid naringin, 
and the furanocoumarins bergamottin and 6′, 7′-dihydroxy-bergamottin. These 
polyphenols impact the pharmacokinetic profile of a drug in two ways: (1) inhibition 
of cytochrome P450 (CYP) enzymes leading to decreased drug clearance and 
(2) inhibition of uptake and efflux transporters leading to decreased or increased 
absorption, respectively. 

Bailey and colleagues discovered the interaction between grapefruit and the 
calcium channel blockers, felodipine, and nifedipine [16, 17]. The oral bioavailabil-
ity of felodipine increased from 15% to 270% when co-administered with 250 ml of 
grapefruit juice [18]. This was due to the inhibition of CYP3A4 in both the intestinal 
enterocytes and liver hepatocytes that under normal conditions metabolize the drug 
thus reducing the oral bioavailability. These polyphenols have also been reported to 
inhibit the intestinal efflux transporter P-glycoprotein (P-gp) in cell models which 
altered the absorption of talinolol (a beta-blocker) and vinblastine 
(a chemotherapeutic) [19]. It is unclear how much this contributes to altered phar-
macokinetic profile in vivo as these cell models are often directly exposed to high 
concentrations of drugs and inhibitors. However, metabolizing enzymes and P-gp 
substrates can be factored into models in systems such as a GastroPlus® and 
Simcyp™. 

2.2.1.3 Alcohol (Ethanol) 

Ethanol consumption can lead to both specific and unspecific interactions when 
co-administered with a drug. BCS Class II and IV drugs typically have a higher 
solubility in the presence of ethanol as a solvent/solubilizing agent. In one such 
study, non-ionizable and weak acid drugs had increased solubility in the presence of 
20% ethanol in dissolution media (either NaCl at pH 2.5 or FaSSGF), whereas weak 
base drugs’ solubility was unaffected by the presence of ethanol [20]. In a rat study,



with co-administration of 20% ethanol and either felodipine or indomethacin, the 
oral absorption of the drugs was not impacted by the presence of ethanol [21]. How-
ever, when healthy volunteers were co-administered 0.8 g/kg ethanol with diazepam, 
there was an increase in plasma drug levels, particularly for whiskey, beer, and white 
wine [22]. Although diazepam is a BCS Class I drug, it has increased solubility in the 
presence of alcohol that increases the AUC. Non-specifically, alcohol-dependent 
patients have intestinal barrier inflammation and dysfunction leading to increase 
intestinal permeability and oral bioavailability that would not be accounted for in 
simulations or models [23, 24]. 
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2.2.2 Non-specific Food–Drug Interactions 

2.2.2.1 Description of Fasted and Fed Conditions in Clinical Studies 
by the Agency 

The FDA guides the planning and specifics of food effects studies for orally 
administered drugs. Under these guidelines, the FDA defines “Fasted Conditions” 
as an overnight fast of at least 10 h and the drug should be administered with 240 ml 
of water with additional water permitted ad-lib an hour after administration. The 
FDA defines “Fed Conditions” as an overnight fast of at least 10 h and consumption 
of a meal (Table 2.1) 30 min before drug administration and the meal should be 
consumed within 30 min. Like the fasted state, the drug is administered with 240 ml 
of water, and water is permitted ad-lib an hour after administration. If there are data 
to suggest positive or negative food effects and a potential label restriction is being 
sought, e.g., “no food should be consumed X hours before or Y hours after drug 
administration,” then this would fall under “Modified Fasted Conditions” and the 
study should be designed with appropriate separation times between drug adminis-
tration and food consumption [6]. 

Similar recommended diets are not prescribed for pediatric studies; however, the 
FDA suggests comparing the age-appropriate formulation in adults and subsequently

Table 2.1 Test meal definitions and composition [6] 

Meal type High fat Low-fat 

Total Kcal 800–1000 400–500 

Fat Kcal 500–600 100–125 

Grams 55–65 11–14 

Percent 50 25 

Example of 
meal 

Two eggs fried in butter. 
Two strips of bacon. 
Two slices of toast with butter. 
Four ounces of hash brown 
potatoes. 
Eight ounces of while milk. 

One boiled egg. 
One packet flavored instant oatmeal made with 
water. 
Eight ounces of milk (1% fat).



testing appropriate food interactions, e.g., apple sauce and pudding [25]. Mini-tablet 
and sprinkle/granule formulations are increasingly developed for pediatric patients, 
and these are often delivered in a food vehicle. The pH range of typically delivered 
foods needs to be anticipated with on the impact of these formulations, e.g., fruit 
juices pH is 3–4.5 white milk pH is ~6.5 [26].
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2.2.2.2 Gastrointestinal Transit Time 

The gastric emptying half-life is estimated to be 11–15 min with 85% of the initial 
gastric volume being emptied after 30 min under fasting conditions [27]. The 
disintegration of immediate-release (IR) dosage forms is estimated to be 
10–20 min in the fasted stomach and ~ 40 min in the fed stomach [28]. In simula-
tions, the transit time in the fasted is 15 mins such as the fasted human ACAT™ 
(Advanced Compartmental and Transit) in GastroPlus®, whereas, in the fed-state 
human ACAT™ is 1 hour. The small intestinal transit time has been measured and 
found that age and sex do not impact transit time of 3–4 h  [29]. Similarly, food 
effects do not impact the transit time in the small intestine and the regional transit 
times are consistent in ACAT™ models in GastroPlus®. 

2.2.2.3 Physicochemical Properties of Luminal Fluid 

The luminal fluids in the gastrointestinal tract undergo physicochemical changes 
when a meal is consumed. The gastric fluid volume under the fasting state is ~35 ml, 
and drug formulations in the clinic are typically administered with 240 ml which is 
cleared within 30 minutes [30]. In healthy volunteers after the intake of a high-
calorie high-fat standard meal (as per FDA guidelines), the gastric fluid increases to 
500–600 ml directly after ingestion and over the course of 3–4 h decreases toward 
basal conditions [31]. Though the gastric fluid volume increases rapidly, the fasted 
state of small intestinal fluid increases more slowly from ~40 ml to ~90 ml at 12 min 
after dosing of 240 ml water and the volume remains >60 ml for 2 h [30, 32]. Data 
are sparse on the small intestinal fluid volume under fed conditions as the MRI 
method used for quantifying volume cannot accurately measure chyme or mixed 
fluid content. It is assumed that the fluid volume is at least equivalent to fasted state 
although the viscosity of the chyme is likely much higher than that of water 
[33]. Luminal contents from healthy adults after eating a solid meal of 645 ml 
indicate that the volume of chyme that passed the mid-duodenum and proximal 
jejunum was 1.5 and 0.75 L, respectively, over 2 h [34]. 

The stomach has a resting fasted state pH between 1 and 2 (Table 2.2); however, 
after ingesting a meal, the pH rapidly increases >4, and the osmolality increases 
from 50–180 to 300–500 mOsm/kg [35]. The altered gastric pH and osmolality will 
impact the dissolution of a drug formulation and it may be necessary to carry out 
dissolution testing in fed-state simulated gastric fluid (FeSSGF) [36]. Additionally, 
the consistency of the meal impacts the gastric fluid pH, a homogenous liquid meal



SGF FaSSIF FeSSIF 

leads to higher postprandial gastric pH in the first hour compared to a solid–liquid 
meal. The resting pH of the upper small intestine under fasting conditions is slightly 
acidic (pH 6.1–7.0) and decreases to pH 6.4 (1 h postprandial) and pH 5.3–6.1 (2–3 h  
postprandial) [37]. The buffer capacity increases significantly from 6.9–9.0 to 
>20 mmol/L/ΔpH after ingestion of 240 ml of water or a meal [38]. Similarly, the 
osmolality increases from ~100–200 to ~300–400 mOsm/kg after ingestion of water 
or a meal. 
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Table 2.2 Composition and characteristics of simulated and human gastrointestinal fluids [39, 42, 
79, 80] 

Stomach 
(fasted) 

Stomach 
(fed)

Fasted 
HIF

Fed 
HIF 

pH 1.6 1.4–2-5 4.3–5.4 6.5 6.83 5 5.96 

Buffer capacity 
(mmol/L/pH) 

– 7–18 14–28 10–12 5.4 
± 0.1 

72–76 18.0 
± 0.8 

Osmolarity (mmol/ 
kg) 

120 171–276 217 270 189 635–670 372 

Total bile salt con-
tent (mM) 

0.08 0.08 ± 0.03 0.06 3 3.52 15 8.91 

Beyond these compositional changes, the bile salt, phospholipid, cholesterol, and 
free fatty acid concentrations increase postprandial which impact the solubility and 
absorption of drugs across the intestinal epithelium. For example, danazol (a neutral 
compound steroid) and phenytoin (a weak acid antiepileptic) have significantly high 
solubility and faster dissolution in fed-state simulated intestinal fluid (FeSSIF) than 
fasted-state SIF (FaSSIF) or blank buffers due to bile salt solubilization [39]. The 
duodenal bile salt composition profile has minor changes between prandial states, 
e.g., taurocholic acid increases from 14% to 19% of total bile salt composition 
[40]. However, the concentration of bile salt in human intestinal fluids increases 
dramatically: glycocholic acid (1–2.7 mM), taurocholic acid (0.5–1.7 mM), 
glycochenodeoxycholic acid (0.8–2 mM), and taurochenodeoxycholic acid 
(0.4–1.2 mM) changes in fasted to fed states respectively. The regional concentra-
tion of bile salts in the duodenum and jejunum in fasted conditions fall within the 
same range of 570–5137 μM and 829–5470 μM respectively [40]. Simulated intes-
tinal fluids (SIF) used for dissolution and solubility assessment in vitro only contain 
one bile salt (taurocholate) with a concentration of 3 mM (fasted) and 10–15 mM 
(fed) [39]. However, FeSSIF has been shown to underestimate the solubility and 
dissolution of drugs such as cyclosporine, valsartan, and ketoconazole when com-
pared to human intestinal fluid (HIF) likely due to the lower bile salt concentration 
and differing composition [41, 42]. 

2.2.2.4 Intestinal Barrier: Transporters and Blood Flow 

Although there is a myriad of influx transporters on the apical surface of the 
intestinal enterocytes in regards to food effects studies, much focus is given to the



intestinal di- and tripeptide transporter PEPT1 (SLC15A1) and the organic anion 
transporting polypeptide 2B1 (OATP2B1), and the efflux transporter P-glycoprotein 
1 (Pgp; MDR1). OATP2B1 has broad substrate specificity and is involved in the 
absorption of steroid hormone conjugates (estrone sulfate), statins (HMG-coenzyme 
A inhibitors), and small molecules (fexofenadine) [43]. An in vitro study of HEK293 
(human embryonic kidney cells) transiently overexpressing OATP2B1 indicated 
that food additives such as colorants were inhibitors of OATP2B1 at dietary con-
centrations at both pH 5.5 and 7.4 [44]. PEPT1 is a similarly broad specificity 
transporter and therefore suffers from the competition of substrates for absorption. 
In a mouse study looking at food effects of PEPT1, researchers found that the 
absorption of dipeptide substrate (Gly-Sar) was reduced by 30% in the presence of 
food [45]. These transporters typically result in negative food effects, e.g., a decrease 
in the amount of drug that is absorbed resulting in a reduced Cmax and AUC. The 
efflux transporter P-gp is known to limit the bioavailability of several drugs belong-
ing to different chemical classes including cyclosporin A, talinolol, digoxin, and 
vinblastine [46]. Cell-based in vitro assays have allowed for the assessment of food-
derived Pgp substrates including inhibitors that will decrease drug efflux (green tea, 
rosemary extract, and mint extract), and stimulators that will increase drug efflux 
(olive oil secoiridoid oleocanthal and palm oil γ-tocotrienol) [46, 47]. Many BCS 
Class III drugs have negative food effects (decreased drug absorption) due to 
inhibition of uptake transporters. 
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In addition to the physiological food effects topics discussed, the increased blood 
flow and increase in clearance of biliary compounds can impact the absolute oral 
bioavailability of a drug formulation. The exact mechanism that leads to increased 
splanchnic blood flow remains unknown; however, it is clear that the increase in 
hepatic blood flow accelerates the uptake of drugs from the portal vein into systemic 
circulation but also increases first-pass metabolism [48]. Estimated hepatic blood 
flow increased by 34% an hour after a high protein meal was delivered to patients 
[49]. Using available data sets, Xiao and colleagues showed that a high-fat meal 
increased the biliary clearance of BCS I/II drugs by 39% and BCS III/IV drugs by 
125% based on the equation: 

CLB,fasted=fed =CLfed=fasted - CLM þ CLRð Þ  

where CLB,fasted/fed is the biliary clearance; CLfed/fasted, CLM, and CLR are the total 
clearance, metabolic clearance, and renal clearance, respectively [8]. 

2.2.2.5 In Vitro, In Vivo Testing of Food Effects 

Based on the food-drug DDI mechanism, to assess food effect, in vitro testing on 
drug substance and drug products and animal PK models are commonly used [50– 
54]. As previously mentioned, bile salts contribute to the solubility and dissolution 
of orally administered drugs. Unfortunately, there is no perfect in vitro model to



determine food effects as it is such a complicated process; however, a combination of 
in vitro solubility testing combined with in silico calculations can help predict food 
effects. Henze et al. used the in vitro solubility of venetoclax (a BCS IV drug) in 
pig-specific FaSSIF and a fasted min-pig ACAT™ (Advanced Compartmental and 
Transit) in GastroPlus® to predict food effects accurately (Tmax: 6 h [observed] vs 
6.4 h [predicted], AUC: 12.5 ± 3.2 [observed; μg.h/ml) vs 9.53 [predicted] [55]. This 
example indicates the necessity of species-specific in vitro buffers due to the 
difference in bile salt concentration can lead to an underprediction of the bile salt 
solubilization ratio (SR). The bile salt SR is a parameter in GastroPlus® that can be 
derived from the solubility difference in buffer that contain bile salts (FaSSIF and 
FeSSIF) and buffers that a free of bile salts (PBS). The solubilization ratio deter-
mines the bile salts’ contribution to the solubility of the drug using the following 
equation: 
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Csx =Cso þ SCbsð Þ  MWð Þ  NaTC½ �ð Þ  

where Csx is the solubility in the presence of taurocholate, Cso is the solubility in the 
absence of bile salts, SCbs is the solubilization capacity of the bile salt for the drug 
predicted from the partition coefficient, MW is the molecular weight of the drug, and 
[NaTC] is the concentration of sodium taurocholate [56]. 

2.3 Tutorial of PBPK Modeling for Food Effect Assessment 

PBPK models consider the body to have various compartments due to the physio-
logical differences of tissues/organs. The incorporated mechanistic absorption 
models such as ACAT and ADAM models represent the absorption process. 
PBPK modeling integrates physiological conditions with compound-specific param-
eters to describe or predict drug concentration in tissue or plasma. In practice, three 
aspects are considered in PBPK modeling, including physicochemical properties of 
test compound (compound tab), physiology conditions (physiology tab), and dispo-
sition parameters (pharmacokinetics tab). Detailed information on each tab is 
described below. 

2.3.1 Compound Tab: Physiochemical Property 

The input in the compound tab is compound-specific, and it is the determining factor 
in the absorption of the drug product. Information such as pH solubility/biorelevant 
solubility, pKa, permeability, particle size, and precipitation time is the key param-
eters for model simulation. The high quality of parameter input is critical to model 
confidence. For example, for poorly soluble drugs or weak basic compounds, the 
input of pH-solubility profile should cover the whole physiology pH range



(pH 1.3–6.8), and it is preferred to cover intrinsic solubility for a better pKa 
estimation. For food effect assessment, it is preferred to input solubility in 
biorelevant media including FaSSIF and FeSSIF for a biopredictive prediction. 
The apparent permeability (Papp) value can be obtained from in vitro transport assays 
in cell lines such as Caco-2, MDCK, and LLC-PK1. The measured Papp can be 
calculated into human effective permeability (Peff) based on default software build-in 
calculation or company internal correlation. In silico approach such as quantitative 
structure–property relationship (QSPR) allows an estimation of some essential 
parameters including lipophilicity, acidity/basicity, clearance, solubility, permeabil-
ity, binding to red blood cells, and plasma protein especially when the experimental 
value is hard to measure or drug development is still in the early stage. 
ADMETPredictor® is a build-in tool in Gastroplus. By importing the structure 
(mol. file) from software such as ChemDraw into Gastroplus allows the software 
to predict parameter values based on structure. Combining QSPR and 
ADMETPredictor® enables the estimation of the compounds’ properties allowing 
for an initial evaluation of the drug characterization and behavior. 
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2.3.2 Physiology Tab: Meal Type and Physiological Changes 

The physiology tab has incorporated the mechanistic absorption model (ACAT for 
Gastroplus and ADAM for Simcyp) to account for physiological changes of each 
compartment in the GI tract such as composition, volume, and transit time. As 
discussed in the previous section on the food effect mechanism, the major impact 
of food–drug interaction on the gastrointestinal (GI) tract is gastric transit time, 
lumen fluid, and transporters. In Gastroplus, the default value of GI parameters is 
used for human under fasted status, with 0.25-h gastric transit time. The ASF model 
accounts for the permeability of each sub-compartment in the GI tract. The opti-
mized logD Model SA/V 6.1 is considered more suitable for human prediction 
(Fig. 2.2). 

When modeling food ingestion, the gastric transit time is changed to 1 h by 
default for high-calorie high fat (HCHF) meals, and there are slight changes in the 
ASF values in the gastric and upper small intestine. In the commercial software, the 
fed option under physiology can be selected to account for the fed status, and 
selections for different meal types are available such as FDA high-fat breakfast, 
user-defined meal, and the HCHF meal. The gastric emptying time depends on the 
calorie content of a meal. Zero-order gastric emptying will be applied for all new 
meal selections based on the preponderance of literature gastric emptying studies. 
The gastric transit time can be further optimized to fit each clinical subject for weak 
acid drugs since the transit time will be highly dependent on the phases of 
interdigestive migrating myoelectric complex (IMMC), which brings more viability 
to the transit time [57]. In the study of Xavier et al., the individual gastric transit time 
was fit to the clinical pharmacokinetic profile and used for further simulation, also



the longer transit time is used to account for the double peak observed in the 
clinic [58]. 
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Fig. 2.2 Mechanistic absorption model and an overview of PBBM, modified from [1, 78] 

Another critical influencing parameter on the absorption of food is luminal fluid, 
especially for poorly solubility compounds. Lumen bile salt concentration in the 
modeling depends on the fat percentage in the meal. The higher the fat%, the higher 
the bile salt concentration, which contributes to higher potential drug solubilization 
in the lumen. The water percentage in the intestine is another determining factor. The 
input of water content in the small intestine and colon under the physiology tab 
allows the user to adjust the water fraction of the intestine total volume. The default 
setting for small intestine and colon water volume is 40 and 10%, respectively; 
however, several studies have reported much lower values, such as 10% and 2% or 
7.5% and 2.5% by fitting the observed PK data [58]. 

2.3.3 PK Tab: Compartmental or Whole-Body Models 

Normally in PBBM, two models (compartmental model and whole-body PBPK 
model) are available to describe drug distribution and disposition. The compartmen-
tal model derives PK parameters using compartmental PK analysis. For most drug 
compounds, the compartmental PK model is preferred, as PBBM is more focused on 
the absorption process. Two major independent PK parameters, clearance (CL) and 
volume of distribution (Vd), account for drug disposition and distribution, respec-
tively. By definition, clearance describes the efficiency of the irreversible elimination



of a drug from the body. Vd is not a real volume; it is the parameter relating the 
concentration of a drug in the plasma to the total amount of the drug in the body. 
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The PK parameters can be determined from preclinical, in vitro assays, and 
clinical PK profiles. When clinical PK is not available or in the early stage of drug 
development, multiple approaches can be used to extrapolate CL and Vd from 
in vitro experiments and preclinical PK studies using allometric scaling approaches, 
such as in vitro in vivo extrapolation (IVIVE), single species scaling approach, 
Wajima method or estimated from QSPR. A detailed comparison of the different 
extrapolation approaches is discussed in other reviews [59]. If clinical PK is avail-
able, IV dosing or oral solution formulation with a lower dose assuming a full 
absorption is preferred use to determine CL and Vd. Usually, the clearance and 
volume of distribution used for fasted conditions stay the same for fed status unless 
there is a specific reason. For example, food may impact the blood flow rate, for 
compounds with high hepatic clearance, the consideration of biliary flow rate is 
critical for food effect simulation. 

2.3.4 Model Optimization and Strategy 

A well-summarized article by Li M. et al. has assessed case studies in the filing from 
FDA NDAs of using PBPK models to evaluate food effects [60]. That study showed 
simulation for fed conditions using prospective predictions taken up to 49% of the 
tested compounds, and among these cases, 60% has predicted food effect within 
twofold by comparing the ratio of PK parameters (AUC and Cmax) with and without 
food taken. For the optimized cases, optimization on dissolution rate and precipita-
tion time are the most commonly optimized parameters when PBPK modeling 
cannot predict fed conditions by changing the physiology status from fasted to fed. 
The pH-dependent solubility (including biorelevant solubility), disposition parame-
ters (Vd and CL), in vitro release rate, and apparent permeability were also adjusted 
in 22% (2/9), 22% (2/9), 11% (1/9), and 11% (1/9) of the cases, respectively [60]. 

Another summary by Kesisoglou F. compiled case studies from peer-reviewed 
publications up to Feb 2020 on the same topic [61]. In this book chapter, an extended 
table was generated to include published case studies using PBBM to assess food 
effects at the time of publishing (May 2022) as shown in Table 2.3. It is worth 
noticing that the published or submitted case studies using modeling strategy to 
assess food effects are mostly changes in solubility or gastric emptying time by the 
fed state. From the observation of Table 2.3, the commonly optimized parameters for 
such cases include precipitation time, permeability, solubility, gastric emptying time, 
and disposition parameters. These optimized parameters are particularly difficult to 
evaluate in vitro due to limitations in methodology. 

The ideal situation would be to fit the clinical PK data using a “bottom-up” 
approach, where the simulation greatly depends on the in vitro or in silico experi-
mental data. However, the in vitro characterization is not always biopredictive. The 
“middle-out” approach incorporates in vitro testing and in vivo observation to



Compound BCS Food effect 
Food effect 
mechanism Publication 

(continued)
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Table 2.3 Summary of case studies of using PBBM/PBPK to evaluate food effect, modified from 
[61] 

prospective or 
middle-out 
approach to 
modeling

Nefazodone-
HCl 

I Negative Slow gastric 
emptying, lower 
first-pass gut 
extraction 

Prospective [81] 

Theophylline 
(CR) 

I None Slower absorp-
tion due to 
slower gastric 
emptying 

Prospective [82] 

Proprietary 
compound 
(NVS732) 

I None Slower absorp-
tion due to 
slower gastric 
emptying 

Prospective [83] 

Zolpidem MR I Negative Viscosity and 
meal compo-
nents affecting 
release rate 

Modeled using 
in vitro data 
mechanistic 
investigation to 
identify best 
in vitro condi-
tions to describe 
the data 

[84] 

Proprietary 
compound 

I None Slower absorp-
tion due to 
slower gastric 
emptying 

Prospective [85] 

Aprepitant II Positive (micron-
ized tablet), no 
(nanosuspension) 

Micronized tab-
let: pH and bile 
salt concentra-
tion changes 
affecting 
solubilization 

Prospective [81] 

Pazopanib-
HCl 

II Positive Bile salt concen-
tration changes 
affecting solubil-
ity using bicar-
bonate media 

Prospective (low 
confidence) 

[70] 

Ziprasidone-
HCl 

II Positive Bile salt concen-
tration changes 
increase 
solubility 

Prospective, 
optimized pre-
cipitation time, 
ion effect was 
considered (low 
confidence) 

[70] 

Alpelisib II Positive Bile salt concen-
tration changes 
increase 
solubility 

Prospective [64]



Compound BCS Food effect
Food effect
mechanism Publication

(continued)
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Table 2.3 (continued)

prospective or 
middle-out 
approach to 
modeling 

Rivaroxaban II Positive pH and bile salt 
concentration 
changes affect-
ing solubility 

Prospective [86] 

Aprepitant II Positive/none Bile salt concen-
tration changes 
increase solubil-
ity. Slower 
absorption due 
to slower gastric 
emptying for 
nanosized. 

Model parame-
ters optimized 
based on fasted 
data (permeabil-
ity and regional 
solubility) 

[82] 

Aprepitant II (micron/nano-
sized) 

Bile salt concen-
tration changes 
increase solubil-
ity. Slower 
absorption due 
to slower gastric 
emptying for 
nanosized. 

Fed GET 
adjusted based 
on dog data 

[82] 

Celecoxib II Positive Bile salt concen-
tration changes 
increase 
solubility 

PK disposition 
parameters fitted 
to both fed and 
fasted data 

[87] 

Aprepitant II Positive/none Bile salt concen-
tration changes 
increase 
solubility 

Dissolution rate 
modeled via 
in vitro dissolu-
tion data. Mid-
dle-out approach 
for dissolution/ 
solubility 

[88] 

Aprepitant II (micron/nano
-sized) 

Bile salt concen-
tration changes 
increase 
solubility 

Dissolution rate 
modeled via 
in vitro dissolu-
tion data. PK 
disposition 
parameters fitted 
to both fed and 
fasted data 

[88] 

Proprietary 
compound 
(NVS406) 

II Positive Bile salt concen-
tration changes 
increase 
solubility 

Prospective [83] 

Proprietary 
compound 
(NVS701) 

II Positive pH changes and 
bile salt concen-
tration changes 

Prospective— 
Precipitation 
optimized based



Compound BCS Food effect
Food effect
mechanism

affecting solubi-
lization and
precipitation

on preclinical
fed/fasted PK
data

(continued)
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Table 2.3 (continued)

prospective or 
middle-out 
approach to 
modeling Publication 

Proprietary 
compound 
(NVS113) 

II Negative Solubility 
changes 

Solubility for 
formulations 
optimized based 
on preclinical 
PK data—But 
failed to capture 
negative food 
effect 

Proprietary 
compound 
(NVS123) 

II Positive pH changes 
affecting solubi-
lization/ 
precipitation; 

Middle out—In 
vitro dissolution 
data used for 
model; dissolu-
tion input 
optimized 

[89] 

Ketoconazole II Positive pH changes and 
bile salt concen-
tration changes 
affecting solubi-
lization and 
precipitation 

GET adjusted to 
reflect calorie 
content, precipi-
tation adjusted 
based on avail-
able intraluminal 
data 

[90] 

Posaconazole II Positive pH changes and 
bile salt concen-
tration changes 
affecting solubi-
lization and 
precipitation 

GET adjusted to 
reflect calorie 
content, precipi-
tation adjusted 
based on avail-
able 
intraluminal 
data 

Alectinib II Positive Bile salt concen-
tration changes 
increase 
solubility 

Optimized solu-
bility to account 
for regional bile 
salt differences 

[91] 

Ziprasidone II Positive Bile salt concen-
tration changes 
increase 
solubility 

Permeability/ 
precipitation fit 
to duodenal 
infusion data. 
Adjustments to 
GET and bile 
salts for different 
meals. 

[68] 

Propranolol II Positive Changes in liver 
blood flow 

Prospective but 
model did not 

[92]



Compound BCS Food effect
Food effect
mechanism

affecting first-
pass metabolism

fully capture
food effect

(continued)
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Table 2.3 (continued)

prospective or 
middle-out 
approach to 
modeling Publication 

Ibrutinib II Positive Changes in liver 
blood flow 
affecting first-
pass metabolism 

Prospective but 
model did not 
fully explain the 
observed effect 

[92] 

Mebendazole II Positive pH changes and 
bile salt concen-
tration changes 
affecting 
solubilization 

Prospective— 
in vitro dissolu-
tion data used to 
model 
precipitation 

[85] 

Bitopertin II Positive Bile salt concen-
tration changes 
increase 
solubility 

Prospective 

Proprietary 
compound 

II None Bile salt concen-
tration changes 
increase 
solubility 

Prospective— 
Intestinal vol-
ume adjusted 
based on fasted 
data 

Clarithromycin II None Gastric empty-
ing time affect-
ing absorption 
rate 

Prospective [93] 

Trospium-cl III Negative Slower dissolu-
tion rate in fed 
state, reduced 
jejunum Peff 

Top-down opti-
mized perme-
ability (low 
confidence) 

[70] 

Proprietary 
compound 
(NVS001) 

III Negative Food competi-
tive inhibiting 
uptake 
transporter 

Middle-out— 
Transporter 
parameters fitted 
against observed 
data 

[89] 

Furosemide IV Negative Limited absorp-
tion window in 
small intestine? 

Prolonged stom-
ach transit time 
(2 h instead of 
default 1 h), 
reduce fluid vol-
ume, middle-out 
approach with 
measured Peff in 
duodenum and 
jejunum 

[81] 

Danirixin HBr IV Negative Prospective [94]



Compound BCS Food effect
Food effect
mechanism Publication
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Table 2.3 (continued)

prospective or 
middle-out 
approach to 
modeling 

Interactions with 
food 
components 

Ritonavir IV Negative Luminal fluid 
viscosity and 
permeability 
difference 

Prospective [95] 

Proprietary 
compound 
(NVS169) 

IV None Solubility for 
microemulsion 
formulation opti-
mized based on 
preclinical PK 
data slower 
absorption due 
to slower gastric 
emptying 

Prospective— 
Solubility opti-
mized based on 
preclinical PK 
data 

[89] 

Venetoclax IV Positive Bile salt concen-
tration changes 
increase 
solubility 

Prospective— 
Low-fat meal 
predicted cor-
rectly but high-
fat meal 
underpredicted 

[96] 

Proprietary 
compound 
(NVS562) 

II or 
IV 

Positive pH changes and 
bile salt concen-
tration changes 
impacting solu-
bilization/precip-
itation slower 
absorption due 
to slower gastric 
emptying for 
SEDDS 
formulation. 

Prospective; pre-
cipitation esti-
mated from 
in vitro data 

[89] 

Proprietary 
compound 

II or 
IV 

Positive pH and bile salt 
concentration 
changes affect-
ing solubiliza-
tion/ 
precipitation 

Precipitation fit 
to fasted/fed 
data. Stomach 
pH changes over 
time taken into 
account 

[97] 

Ribociclib II or 
IV 

None Gastric empty-
ing time affect-
ing absorption 
rate 

Prospective [85]



optimize the parameters. To be noted, any optimization should provide mechanistic 
justification, as recognized in FDA 2020 PBPK guidance [3].
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2.3.5 PBBM/PBPK Model Validation and Acceptance 
Criteria 

A workflow for PBBM/PBPK development, validation, and application is shown in 
Fig. 2.3. Upon the model development, the model should be validated against 
available independent clinical studies. The FDA 2020 PBPK Guidance recommends

Fig. 2.3 Example of workflow of PBBM development, validation, and application, modified from 
[78]



model validation should consider the clinical risk and the intended purpose [3]. In 
general, independent clinical datasets not used for model development should be 
used for validation for regulatory uses of the model. There were extensive discus-
sions on the use of clinical PK data of “non-bioequivalence batch” to evaluate model 
predictive performance. Although it is ideal, in many cases, these PK data from 
non-BE batches are not readily available. Collaboration across regulatory agencies 
and the industry for a robust model validation approach is desired.
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Model verification is to test if the model is robust and can be applied for model 
applications. Unfortunately, there are no formal acceptance criteria proposed by the 
agency on PBBM. The current practice is to align with IVIVC acceptance criteria, in 
which the % prediction error (%PE) should be smaller than 10% [62]. It should be 
noted, that the recommended acceptance criteria for IVIVC are for a carefully 
designed cross-over study, while it is not the case for most of the studies used for 
PBBM, especially when it is preferred to set up the model with independent clinical 
studies. In addition, the acceptance criteria should be drug product, model applica-
tion, and drug development stage-dependent. In early-stage drug development, the 
criteria can be less strict for internal decision-making, and in the later stages or for 
filling purposes, the acceptance criteria should be more strict. 

Some common practices for model verification observed in published studies are 
as follows. Besides to reach a desirable agreement between observed and predicted 
PK profiles, the commonly applied verification method is to calculate the difference 
between the PK parameters (AUC and Cmax) of predicted and observed data as a 
comparison. In some studies, the average fold error (AFE)/absolute average fold 
error (AAFE), or coefficient of determination (R2 ) was calculated. The value of AFE 
and R2 is desired to be close to 1. For AAFE, it is usually set below 2 [58]. This 
approach shares the same principle of comparing the PK parameters. For DDI 
studies such as pH-mediated DDI and food effect, the ratio of PK parameters 
(AUC and Cmax) with or without food or acid-reducing agents (ARA) is compared 
between predicted and observed data [63]. It is well accepted that if the simulated 
ratios of AUC and Cmax with or without food or ARAs are comparable with clinical 
observation (CI = 0.8–1.25), the model is considered biopredictive and can be used 
to aid drug development or further applications. 

2.4 Case Studies of PBPK Models to Assess Food Effects 

In this section, we will provide examples from the literature of models that identify 
potential food effect risks: positive and negative. This will enable the reader to utilize 
the previous sections’ tutorial information in conjunction with these case studies to 
navigate food effects assessment in their work.
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2.4.1 Positive Food Effect: A PBPK Model of the BCS Class 
II Drug Alpelisib 

Alpelisib (a PI3K inhibitor prescribed for breast cancer treatment) is a weak base 
drug with both pH-dependent and bile acid concentration-dependent solubility 
[64]. An increase in the stomach pH due to acid-reducing agents such as antacids, 
proton pump inhibitors (omeprazole), or H2 receptor antagonists (ranitidine) would 
lead to a decrease in the solubility and reduction of the drug in bioavailability. While 
an increase in bile acid secretion under the fed state would increase the solubility of 
the drug and likely lead to a positive food effect. Due to these characteristics of 
alpelisib, Gajewska and colleagues established a GastroPlus® PBPK and validated it 
with clinical data to assess food effects and pH-mediate drug interactions. We will 
highlight the key input criteria and optimizations employed by the authors to validate 
their model. 

Parameter Input and Model Establishment Beyond standard input parameters 
(described in Sect. 3.1.1), the pH solubility for alpelisib in FeSSIF was measured 
across a pH range as it was known that the drug had increased solubility in fed state. 
The authors note that assessment of the Johnson vs Takano or Z-factor model was 
necessary as they account for particle size on dissolution or in vitro dissolution data, 
respectively, and cannot be used at the same time. Based on simulations, a constant 
Z-factor was fitted to experimental in vitro dissolution data per formulation condi-
tion. Preclinical PK studies in rats and dogs showed a low plasma clearance, 
moderate volume of distribution, and an elimination half-life ~3–4 h. Data from 
two clinical studies were also available to the researchers: (1) a five-period cross-
over study of two formulations to investigate the impact of elevated stomach pH 
(ranitidine), different prandial conditions (high-fat high-calorie [HFHC], and low-fat 
low-calorie meal [LFLC]), and their combined effects on alpelisib absorption where 
n = 20 and 2) a bioequivalence study of two formulations in healthy volunteers in 
fasted or fed (HFHC) state where n = 95 [65]. The authors used two approaches to 
estimate the drug CL and Vd using either clinical data (population pharmacokinetic 
[popPK] modeling) or preclinical data (Dedrick Plot and Wajima method) [66, 67] 
The ACAT model was coupled with a compartmental PK model that represented the 
plasma and the rest of the body. The available parameters within GastroPlus® were 
used for fasted state and the HFHC state; however, for the LFLC state, the stomach 
transit time and volume were modified to reflect a smaller meal, and for ranitidine, 
the stomach pH was set to 6.5 [68, 69]. The Johnson dissolution model was used to 
simulate the conditions of the first clinical trial, and the Takano/Z-factor dissolution 
model for the second clinical trial. The authors note that this strategy was used to 
train the model toward its validation and application based on clinical data in healthy 
subjects. 

Model Results The pharmacokinetic parameters from popPK, Dedrick Plot, and 
Wajima method predicted a CL of 20 L/h and Vd of 100 L for 70 kg body weight 
(Dedrick Plot overestimated the Vd parameter). The simulations aligned with the



observed clinical data that (1) HFHC and LFLC meals had a positive food effect on 
the Cmax and AUC0-inf, (2) co-administration of ranitidine resulted in a decrease in 
Cmax and AUC0-inf, and (3) co-administration of ranitidine with LFLC meal had an 
increase in Cmax and AUC0-inf compared to fasted but lower than LFLC alone. 
However, although the simulations trended similar to clinical observations, the 
Tmax in simulations was delayed by 0.5–1 h in all simulations except the fasted 
state. The simulations for the second clinical study were again in agreement with 
clinical observations, although this time, the simulations were even more accurate 
and the Cmax and AUC0-inf were within the predefined bioequivalence boundaries of 
0.80 and 1.25 (0.932 and 0.961, respectively). Though the authors used different 
dissolution models in the simulations, they concluded that the dissolution models 
were similar with a slightly higher fraction absorbed predicted using the Takano/Z-
factor model. In conclusion, Gajewska et al. demonstrate that PBPK models can be 
used to predict a positive food effect, drug–drug interaction, and bioequivalence of a 
BCS Class II drug. 
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2.4.2 Negative Food Effect: A PBPK Model of the BCS Class 
III Drug Trospium-Cl 

Trospium-Cl is an antispasmodic and antimuscarinic agent prescribed for overactive 
bladder and is a quaternary ammonium cation drug that is ionized upon dissolution. 
From a physicochemical perspective, it has low lipophilicity (log P = -1.22), low 
permeability, and a high solubility and therefore is classified as a BCS class III drug 
[70, 71]. Both immediate-release (IR) and modified-release (MR) formulations of 
trospium-Cl have been shown to have negative food effects in healthy volunteers 
[72, 73]. Due to the clinical observation of a negative food effect, Wagner and 
co-authors used trospium-Cl along with pazopanib-HCl and ziprasidone-HCl (pos-
itive food effects) as model compounds in their study to improve PBPK predictions 
of food–drug interactions with typically poor predictive confidence [70]. We will 
highlight the key input criteria and optimizations employed by the authors to validate 
their model. 

Parameter Input and Model Establishment The authors provide input parameters 
for both GastroPlus® and Simcyp™ but as the alpelisib case study provided 
parameters for GastroPlus® we will focus on these for comparison. The CL and 
renal CL (CLR) were calculated in the software based on published data on the IV 
bolus administration of 0.5 mg of trospium-Cl to a single healthy volunteer 
[74]. Using PKPlus™, a 2-compartment PK model was fitted to the IV data and 
used for simulations. The authors fitted effective permeability data (Peff) to PK data 
from a gastric infusion over 6 h in fed and fasted states to account for variations in 
permeability under different prandial scenarios (fed: 0.008 and fasted: 0.018 × 10-
4 cm/s). The authors note that a low log P and high solubility drug do not typically 
predict an impact of bile salts on solubilization; therefore, this was not a factor in the



model. The Johnson dissolution model was used to simulate drug dissolution for IR 
formulations while a Weibull function was used for the dissolution of the MR 
formulation. The Weibull function allowed for the model to factor in the decreased 
dissolution rate due to the higher viscosity of postprandial luminal fluid [75]. Sim-
ulations were run using a standard high-fat high-calorie breakfast in healthy volun-
teers to allow comparison to clinical study data. 
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Model Results To validate the basal conditions of the model (fasted-state with IR 
formulation), the authors ran simulations of 20, 30, and 40 mg doses based on 
clinical data. The model predictions for 20 and 40 mg were on trend with the clinical 
observed data for AUC (ratio predictive/observed: 1.41 [20 mg] and 0.82 [40 mg]) 
and Cmax (ratio predictive/observed: 0.83 [20 mg] and 0.92 [40 mg]). However, the 
30 mg simulation significantly underpredicted both Cmax and AUC (ratio predictive/ 
observed: 0.45 and 0.56, respectively). The authors stated that the 20 and 40 mg data 
conformed to pre-established criteria for model verification [76] and thus applied this 
model to the food effects data. The simulation of a 30 mg IR formulation in a fed 
state using the Johnson dissolution model resulted in an overprediction of the Cmax, 
delay in the Tmax, and underprediction of the AUC. When the Weibull function based 
on increased viscosity causing decreased dissolution has applied to the simulation, it 
resolved the Cmax prediction (ratio predictive/observed: 0.85) and the authors con-
cluded that the model captured the negative food effect. Although the Weibull 
function improved the Cmax prediction, the AUC and Tmax were still under and 
overpredicted respectively and it is likely to further optimization of the dissolution 
model and permeability may be necessary to resolve the Tmax and AUC, respec-
tively. The authors conclude that the higher permeability of trospium-Cl in the fasted 
state is due to the ion-pair formation with bile salts whereas the increased viscosity of 
chyme in the fed-state impacts the dissolution of IR and MR formulations. A better 
understanding of the impact of hydrodynamics on the in vivo dissolution of drug 
formulations in a fed state will enable better calculation of this in such models and 
simulations. In conclusion, the use of the Weibull function combined with in vitro 
dissolution data in a higher viscosity buffer enabled this model to predict a negative 
food effect of a BCS Class III drug. 

2.5 Utilization of PBPK to Streamline Food Effect 
Assessment in Clinical Development 

The BCS classifies drugs based on their permeability and solubility as follows: BCS 
I (high permeability, high solubility), BCS II (high permeability, low solubility), 
BCS III (low permeability, high solubility), and BCS IV (low permeability, low 
solubility). To better utilize PBBM to streamline food effect assessment, Kesisoglou 
F. has proposed a decision tree on the PBBM application scenario based on BCS 
classification [61]. It is well accepted that most of the BCS I compounds formulated 
as IR exhibit a low probability of food effect due to high solubility and high



permeability, which is acknowledged by the FDA, as this class is the only one 
approachable for a food effect study waiver. PBBM can be utilized to study the 
impact of gastric emptying time on PK exposure if necessary. BCS III compounds 
are likely to have negative food effects due to the inhibition of update transporters in 
the intestine, and the increase of biliary excretion. Those potential mechanisms are 
hard to evaluate with the current modeling approach or in vitro testing [8]. If the 
observed food effect is related to changes in dissolution rate due to the presence of 
bile salts, PBBM can be used to assess the food effect, which will require clinical PK 
to confirm. BCS II/IV compounds are mostly studied in food effect assessment using 
PBBM. As shown in Table 2.3, 39 case studies were included and 32 of them (82%) 
are BCS II/IV compounds. For those compounds, the absorption is usually solubility 
limited, and if the food effect mechanism is related to the solubility increase caused 
by food intake, a PBBM can be considered with sufficient confidence. 
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2.6 Current Gaps and Future Directions 

Despite the progress made in recent years in PBPK modeling of food effects, it is fair 
to state that the field is still evolving. In our opinion, future efforts in the field should 
concentrate on three areas (a) expansion of food effect mechanisms that can be 
addressed by PBPK modeling; (b) increase regulatory acceptance for clinical 
decision-making; c) expansion to pediatric populations. 

As discussed in this book chapter, food can interact with drug absorption in 
multiple ways. A recent manuscript by the IQ Consortium Food Effect PBPK 
Working Group highlighted that current PBPK models show significantly greater 
predictability for positive food effects related to changes in the intestinal lumen 
environment (i.e., solubilization by bile salts) and gastrointestinal transit (i.e., 
delayed gastric emptying) compared to all other plausible sources of food–drug 
interactions or negative food effects [76]. In fact, the authors a priori excluded from 
the analysis mechanisms related to interactions with transporters as too difficult to 
attempt the model. As shown in Table 2.3, the majority of studied food effect 
mechanisms are due to pH and bile salt changes. However, the issue with the 
application of the models to only a subset of food effects is not solely a computa-
tional one. While opportunities exist to improve PBPK models to, e.g., better 
account for dissolution of salts, PBPK models rely on relevant in vitro data inputs; 
in the case of food effect modeling, this differential input will need to come from 
distinct in vitro data sets for these two prandial states. While biorelevant media are 
available, those primarily focus on capturing the solubility difference in fed and 
fasted stomach/intestine; accounting for direct interactions with food components or 
differential behavior of dosage forms due to, e.g., disintegration differences is 
currently only achievable retrospectively. Thus, a parallel investment in in vitro 
methodologies along with the PBPK models appears needed. 

Based on manuscripts and presentations by regulators, it is fair to state that 
currently there is healthy skepticism on the application of models to replace clinical



food effect studies [6, 60, 77]. A lot of the concern comes from the diversity of food 
effect mechanisms and the non-standardized workflows for model development. 
Several authors have more recently proposed a more standardized approach to 
food effect modeling with appropriate model validation against clinical data to 
increase confidence [61, 76]. We also believe that more consistency in the model 
development will facilitate adoption. Furthermore, focusing on more narrow food 
effect scenarios as a starting point may make more sense rather than looking for 
broad food effect study waivers via PBPK. One such example may be the application 
of the models to repeat food effect studies for new formulations/potencies. Under 
that scenario the baseline model, and thus the mechanism of food effect, will have 
been confirmed against clinical data, thus increasing confidence for model 
application. 
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Finally, while the focus of PBPK modeling has been on adult food effect studies, 
many pediatric formulations are currently dosed with soft foods [6]. PBBM model-
ing for pediatrics is still in its early stages and largely relies on the extrapolation of 
models from adults. In vitro methodologies to simulate dissolution in the gastroin-
testinal tract of younger children are far from being standardized and their use is 
quite inconsistent. Thus, similar to the situation with expanding food effect mech-
anisms discussed above, a parallel investment in the advancement of in vitro and 
PBPK tools specific to pediatric populations is needed. 
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Chapter 3 
Physiologically Based Finite Time 
Pharmacokinetic (PBFTPK) Models: 
Inception and Development 

Athanasios A. Tsekouras and Panos Macheras 

Abstract Oral drug absorption has always been modeled as a first-order process 
that lasts indefinitely. Since common knowledge takes for granted that this is not so, 
the concept of Finite Absorption Time (FAT) was introduced recently and relevant 
models were generated for one- and two-compartment disposition in conjunction 
with zero-order absorption kinetics. This chapter justifies these choices by consid-
ering all possible classes of drugs based on the BCS classification system. It also 
presents simulations to show accessible variability as well as successful fits to the 
pharmacokinetic data of several orally administered drugs. 

Keywords Oral absorption · Finite absorption time · Biopharmaceutic classification 
system · Biowaivers 

3.1 Introduction 

Most drugs are administered orally owing to the convenience provided by this route. 
In the simplest case, the pharmacokinetic analysis of oral drug absorption data relies 
on the classical Bateman equation (Eq. 3.1), which assumes a one-compartment 
model disposition with the first-order absorption and elimination rates [1]: 
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C tð Þ= 
FDka 

Vd ka - kelð Þ  e- kel t - e- ka t ð3:1Þ 

Where C is the drug concentration in the body (compartment) at time t, F is the 
bioavailable fraction of dose D, Vd is the volume of distribution, and ka and kel are the 
absorption and elimination rate constants, respectively. Depending on the relative 
magnitude of the rate constants, classical (ka > kel) and flip-flop (ka < kel) cases are 
encountered. In the special case of equality of rate constants (ka = kel = k), the time 
dependence of drug concentration becomes (Eq. 3.2): 

C tð Þ= 
FDkt 
Vd 

e- kt ð3:2Þ 

If we assume a two-compartment disposition model, the drug concentration can 
be expressed with (Eq. 3.3): 

C tð Þ= 
FDka 
Vc 

k21 - αð Þe- αt 

ka - αð Þ  β- αð Þ þ k21 - βð Þe- βt 

ka - βð Þ  α- βð Þ þ k21 - kað Þe- kat 

α- kað Þ  β- kað Þ  ð3:3Þ 

Where α β= k12 k21 k10 and αβ= k21k10 3:4 

and k12, k21, and k10 are the rate microconstants for the first-order kinetics of transfer 
from the central (blood) to the peripheral compartment, the reverse process, and the 
removal process, respectively. 

The history of Eq. 3.1 goes back to 1910 when the British mathematician Henry 
Bateman [2] solved the problem of the conversion of successive radioactive iso-
topes. As long as there are radioactive isotopes, they will undergo transformation to 
different elements. 43 years later, this solution was adopted by H. F. Dost [1] to  
describe the concentration of a drug in the blood as a function of time (see Fig. 3.1). 
The common underlying principle was that both the absorption and the elimination 
processes follow the first-order kinetics just the same as the conversion of radioac-
tive isotopes. However, the infinite time of drug absorption is not physiologically

Fig. 3.1 Henry Bateman’s vis-a-vis Friedrich Harmut Dost’s kinetic considerations



sound since drugs are not absorbed beyond their absorptive sites in the gastrointes-
tinal (GI) tract. In fact, oral drug absorption takes place in a certain period of time in 
accordance with the biopharmaceutical properties of the drug as well as the physi-
ological, gastric, intestinal, and colon transit times reported in the literature [3]. For 
sufficiently fast processes, the similarities allow adequate implementation of the 
radioactivity equations in the pharmacokinetics problem. But this condition is not 
met if absorption in the GI tract is not fast enough and the drug is removed from the 
GI tract before it has the chance to be absorbed in the blood. This situation leads to 
obvious shortcomings of the model equation (Eq. 3.1). Nonetheless, this fact had not 
been appreciated for many decades and Eq. 3.1 as well as its extension Eq. 3.3 have 
been used without reservations to describe pharmacokinetic data.
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3.1.1 Background 

The oral route is the most common pathway for drug administration. Extensive work 
in this research field revealed that two basic drug properties, namely, solubility and 
permeability of gastrointestinal membrane dictate the extent of oral drug absorption. 
These scientific advances lead to the development of the biopharmaceutic classifi-
cation system (BCS), the biopharmaceutic drug disposition classification system 
(BDDCS), and the publication of relevant regulatory guidelines, by the Food and 
Drug Administration (FDA) and the European Medicines Agency (EMA) 
[4–7]. These guidelines formulate the scientific requirements for the performance 
or not of bioequivalence studies towards the approval of generics/drugs classified 
into four drug classes (I, II, III, and IV). For example, a highly soluble, highly 
permeable drug (Class I) can get a biowaiver status for bioequivalence studies. This 
does not apply to Class II (low solubility and high permeability) and Class IV (low 
solubility and low permeability) drugs. For Class III (high solubility and low 
permeability) a biowaiver status can be assigned under certain conditions 
[6, 7]. Class I drugs exhibit extensive absorption (the fraction of dose absorbed 
>0.90), while for Class II, III, and IV drugs, the fraction of dose absorbed is 
certainly lower than 0.90. However, it is very well known that the absorption of 
orally administered drugs is complex and depends not only on drug properties but 
also on physiological aspects of the GI tract such as (a) drug/formulation-dependent 
factors—drug physicochemical properties [e.g., aqueous solubility, permeability, 
molecular size, aggregation, complexation, charge, pKa, H-bonding potential, hydro-
phobicity, and crystal lattice energy] and formulation composition (e.g., dosage 
form, absorption enhancers, and drug release) and (b) system dependent factors— 
physiological parameters (e.g., gastric emptying, intestinal motility, intestinal pH, 
site-dependent permeability, intestinal content composition, and disease state) and 
biochemical parameters (e.g., metabolism, efflux transporters, and active uptake 
transporters). Due to this complexity, during the last 15 years or so different 
modeling approaches have been proposed and software packages (GastroPlus®



ð

Software, n.d.; Simcyp® Simulator, n.d.; PK-Sim® Software, n.d.) have been 
developed for the analysis of oral drug absorption. These advances have resulted 
in the development of physiologically based pharmacokinetic (PBPK) modeling 
field [8–11]. 
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One characteristic of paramount importance for all modeling approaches is the 
duration of the absorption process, the so-called mean intestinal transit time. In the 
most of the cases, the user/modeler can fix the value to a finite time period 
e.g. 199 min [12–15]. The selection of finite time is crucial for the predictive 
purposes of the model/software. However, in hundreds and hundreds of pharmaco-
kinetic pharmacokinetic-pharmacodynamic, and pharmacometric studies dealing 
with oral drug absorption, the rate of drug input is routinely estimated with the 
absorption rate constant [16, 17]. This parameter is the hallmark of the first-order rate 
of drug absorption, which is associated with an infinite absorption time. Its use 
started in 1953 when Dost introduced the term pharmacokinetics [1] by adopting the 
relevant Bateman equation [2] quoted in all pharmacokinetic textbooks. The current 
chapter focuses on the duration of oral drug absorption. 

3.2 Coupling Biopharmaceutic Classification System (BCS) 
with Pharmacokinetics Using the Finite Absorption 
Time (FAT) Concept 

Basically, drugs pass through the gastrointestinal membranes by passive diffusion. 
Fick’s laws of diffusion describe the flux of solutes (drugs) undergoing classical 
diffusion. The simplest system to consider is a solution of a drug with two regions of 
different concentrations, CGI at the absorption site of the gastrointestinal lumen and 
blood concentration, C of a boundary (GI membrane) separating the two regions. 
The driving force for drug transfer is the concentration gradient between the con-
centrations of the drug molecules in the two regions. 

Thus, the rate of penetration can be written as follows: 

Rate of Penetration=P ∙ SA ∙ CGI-Cð Þ 3:5Þ 

Where P is the permeability of drug expressed in velocity units (length/time) and 
SA is the surface area of the membrane in (length)2 units. The sheer size of the body, 
by diluting absorbed drug, tends to maintain sink conditions in which C is much 
smaller than CGI, therefore, 

Rate of Penetration=P ∙ SA ∙CGI ð3:6Þ 

Equation 3.6 can be written in terms of drug amount, AGI assuming that the 
volume of fluid at the absorption site VGI remains relatively constant,
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Rate of Penetration=P ∙ SA ∙ AGI 

VGI 
= ka ∙AGI ð3:7Þ 

where ka is the absorption rate constant expressed in (time)-1 units, which is equal to 
P�(SA)/VGI. In all pharmacokinetic text books, the classical analysis of the 
one-compartment model starts from Eq. 3.7 assuming a first-order decrease in the 
amount of drug, AGI: 

dAGI 

dt 
= - kA ∙AGI ð3:8Þ 

which upon integration from t = 0, AGI = FD to t = t, AGI = AGI one obtains: 

AGI =F ∙D ∙ e- kat ð3:9Þ 

Equation 3.9 is further coupled with the differential equation describing the 
change of drug concentration in blood, C, which eventually leads to Eq. 3.1. Thus, 
the infinite absorption time implied from Eq. 3.1 results from the first-order change 
(Eq. 3.8) of the amount of drug in the gastrointestinal lumen, AGI. 

One of the most important steps in oral drug absorption is the dissolution of drug 
in the GI fluids [18]. In this context, we reconsider below the rate of drug permeation 
for the various drug classes (I–IV) [4] using the fundamental Eq. 3.6 taking into 
account the dissolution process. For the moment, the pharmacokinetic consider-
ations rely on the one-compartment model disposition assuming for simplicity no 
first-pass effect, i.e., the fraction of dose absorbed equals bioavailable fraction. As 
the FAT notion unravels, one will have the chance to get acquainted with finer 
equations describing the kinetics of more than one-compartment models along with 
multiple input steps. Extensive materialized fittings and simulations will satisfy the 
most demanding reader. 

Class I Drugs For highly soluble, highly permeable drugs (Class I), the rate of 
permeation is high, Eq. 3.6, Fig. 3.2. Regardless of the formulation administered 
(drug solution or solid formulation), these drugs do not exhibit either dissolution or 
permeability-limited absorption. Therefore, the high value of P coupled with the 
high surface area, (SA)i, of the small intestine leads to rapid and extensive absorp-
tion, Fig. 3.2. Therefore, this rapid absorption can be approximated with a constant 
rate of drug penetration: 

Rate of Penetrationð ÞI =P ∙ SAð Þi ∙CGI = kI = 
FiD 
τι 

ð3:10Þ 

where kI denotes the constant penetration rate (mass/time units) for Class I drugs, Fi 

is the fraction of dose absorbed in the stomach and small intestine and τi is the 
duration of this initial absorption phase. Since Class I drugs are absorbed fully,



Fi = 1 is being used in Eq. 3.10. Accordingly, the change of drug blood concentra-
tion C as a function of time for Class I drugs is: 

62 A. A. Tsekouras and P. Macheras

Fig. 3.2 A schematic of the biopharmaceutical/physiological drug absorption model, which relies 
on the transit times of the drug along the gastrointestinal tract. For Class I drugs, the completion of 
absorption (F > 0.90) ceases in a shorter time than the duration of the stomach and the small 
intestine transit 4.86 h [3]. For Class II, III, and IV drugs, the limited overall absorption (F < 0.90) 
can be continued beyond the ileocecal valve and lasts not more than the whole gut transit time 
e.g. 29.81 h [3]. The absorbed drug reaches the hepatic portal vein; the blood flow (20–40 cm/s) [19] 
imposes sink conditions on drug transfer. The thick black arrow denotes the major site of drug 
absorption, namely, the small intestine. The dashed arrow indicates the potentially limited drug 
absorption from the colon 

VddC 
dt 

= kI - kel CVdð Þ= 
D 
τι

- kel CVdð Þ ð3:11Þ 

Plausibly, the small intestine is the major site of absorption for Class I drugs while 
absorption always ceases in much shorter time than 4.86 h, which is the sum of the 
gastric and small intestine transit time, Fig. 3.2. Εquation 3.8 gives upon integration 
for t = 0, C = 0 and t = t, C  = C: 

C tð  Þ= 
Dka 

τi Vd kelð Þ  1- e- kel t ð3:12Þ 

Upon completion of the absorption phase at time t = τi, the drug concentration 
will be C(τi) in accordance with Eq. 3.12. The change of drug concentration beyond 
time τi is described by the following equation:
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dC 
dt 

= - kel ∙C ð3:13Þ 

Equation 3.13 upon integration for t = τi, C = C (τi) and t → 1, C = 0, leads to 
Eq. 3.14 which describes the monotonic elimination phase 

C tð Þ=C τið Þ ∙ e- kel t- τið Þ ð3:14Þ 

Class II Drugs For low soluble, highly permeable drugs (Class II), the rate of drug 
permeation is low, Eq. 3.6. This is so, since the maximum value of the term CGI, of  
Eq. 3.6 cannot be higher than the low saturation solubility, CS, of the drug in the 
gastrointestinal fluids. This solubility value can be also considered constant. There-
fore, the rate of gastric and small intestine penetration for a Class II drug can be 
approximated: 

Rate of Penetrationð ÞII =P ∙ SAð Þi ∙CS = kII = 
FiD 
τi 

ð3:15Þ 

where kII denotes the constant penetration rate (mass/time units) for Class II drugs, 
Fig. 3.2. Accordingly, the change of drug blood concentration C as a function of time 
assuming the one-compartment model disposition for Class II drugs is 

VddC 
dt 

= kII - kel CVdð Þ= 
FiD 
τι

- kel CVdð Þ ð3:16Þ 

Equations 3.15 and 3.16 roughly operate for not more than 4.86 h, which is the 
sum of gastric and small intestine transit time [3]. The passage of Class II drugs to 
the colon via the ileocecal valve, which separates the small intestine and the large 
intestine, can either result in the termination of drug absorption or the significant 
reduction of the rate of drug penetration since the effective surface area (SA)c is 
much smaller in the colon and the amount of unabsorbed drug at the ileocecal valve 
is equal to (1-Fi)D: 

ðRate of PenetrationÞII,c =P ∙ ðSAÞc ∙CS = kII,c = 
ð1-FiÞD 
τc- τi 

ð3:17Þ 

where τc denotes the termination time of drug absorption from the colon and kII,c 
denotes the constant penetration rate (mass/time units) for Class II drugs in the colon, 
Fig. 3.2. Accordingly, the change of drug blood concentration C as a function of time 
assuming one-compartment model disposition for Class II drugs during the drug 
passage through the colon is 

VddC 
dt 

= kII,c - kel CVdð  Þ ð3:18Þ
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This equation roughly holds from 4.86 h to the time needed for the drug to reach the 
non-absorptive sites of the colon, τc, but certainly shorter than 20.28 or 31.95 h, i.e., 
the colon transit time for a single-unit or multi-unit formulation, respectively [3], 
Fig. 3.2. At time τc absorption ceases; beyond this time point, the drug is only 
eliminated from the body. Hence, the drug concentration decreases according to 
Eq. 3.19, which is similar to Eq. 3.14: 

C tð Þ=C τcð Þ  ∙ e- kel t- τið Þ ð3:19Þ 

where C(τc) is the drug concentration at time τc. 

Class III Drugs For highly soluble, low permeable drugs (Class III), the rate of 
drug permeation is low, Eq. 3.6. This is so, since the low permeability value, Pl, is  
rate limiting for absorption; therefore, the rate of penetration for a Class III drug, 
throughout the passage of drug from the stomach and small intestine, can be 
approximated 

Rate of Penetrationð ÞIII =Pl ∙ SAð Þi ∙ CGIð Þ= kIII = 
FiD 
τi 

ð3:20Þ 

where kIII denotes the constant penetration rate (mass/time units) for Class III drugs, 
Fig. 3.2. Accordingly, the change of drug blood concentration C as a function of time 
for Class III drugs is 

VddC 
dt 

= kIII - kel CVdð Þ ð3:21Þ 

Equations 3.20 and 3.21 roughly operate for not more than 4.86 h, which is the 
sum of gastric and small intestine transit time [3]. The passage of Class III drugs to 
the colon via the ileocecal valve can either result in the termination of drug 
absorption or the significant reduction of the rate of drug penetration since the 
effective surface area (SA)c is much smaller in the colon and the amount of 
unabsorbed drug at the ileocecal valve is equal to (1 - Fi)D: 

ðRate of PenetrationÞIII, c=Pl ∙ ðSAÞc ∙CGI = kIII,c = 
ð1-FiÞD 
τc- τi 

ð3:22Þ 

where kIII,c, denotes the zero-order penetration rate (mass/time units) for Class III 
drugs in the colon. Accordingly, the change of drug blood concentration C as a 
function of time assuming the one-compartment model disposition for Class III 
drugs in the colon is 

VddC 
dt 

= kIII,c - kel CVdð  Þ ð3:23Þ
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This equation roughly holds from 4.86 h to the time needed for the drug to reach 
the non-absorptive sites of the colon, τc, but certainly shorter than 20.28 or 31.95 h, 
i.e., the colon transit time for a single-unit or multi-unit formulation, respectively 
[3]. At time τc absorption ceases; beyond this time point, the drug is only eliminated 
from the body. Hence, the drug concentration decreases according to Eq. 3.19 for 
t ≥ τc. 

Class IV Drugs For low soluble, low permeable (Class IV) drugs, the rate of 
permeation is low, Eq. 3.6. Both solubility and permeability are limiting absorption. 
The low values of the terms P and CGI in Eq. 3.6 allow their replacement, as 
explained above, with Pl and CS, respectively. This leads to slow and limited 
absorption (F < <0.90). Therefore, this slow absorption can be approximated with 
a constant rate of penetration: 

Rate of Penetrationð ÞIV =Pl ∙ SAð Þi ∙ CSð Þ= kIV = 
FiD 
τi 

ð3:24Þ 

where kIV denotes the constant penetration rate (mass/time units) for Class IV drugs, 
Fig. 3.2. Using the same syllogism delineated above, the differential equation 
describing the change of drug blood concentration C during the passage of drug 
from the stomach and small intestine (roughly, 4.86 h) [3] is as follows: 

VddC 
dt 

= kIV - kel CVdð Þ ð3:25Þ 

The passage of Class IV drugs to the colon via the ileocecal valve can either result 
in the termination of drug absorption or the significant reduction of the rate of drug 
penetration since the effective surface area is much smaller in the colon (SA)c and the 
amount of unabsorbed drug at the ileocecal valve is equal to (1 - Fi)D: 

ðRate of PenetrationÞIV,c =P ∙ ðSAÞc ∙CGI = kIV,c = 
ð1-FiÞD 
τc- τi 

ð3:26Þ 

where kIV,c denotes the constant penetration rate (mass/time units) for Class IV drugs 
in the colon. Accordingly, the change of drug blood concentration C as a function of 
time assuming one-compartment model disposition for Class IV drugs in the colon is 

VddC 
dt 

= kIV,c - kel CVdð Þ ð3:27Þ 

As explained above, this equation roughly holds from 4.86 h to the time needed 
for the drug to reach the non-absorptive sites of the colon, τc,  (< 20.28 or < 31.95 h), 
i.e., the colon transit time for a single-unit or multi-unit formulation, respectively 
[3]. Beyond, this time point, τc, the drug is only eliminated from the body. Hence, the 
drug concentration decreases according to Eq. 3.19 for t ≥ τc.
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The theoretical section of oral drug absorption was established on (i) the FAT 
concept, (ii) the physiologically based transit times reported in the literature [3], and 
(iii) the basic drug properties, namely, solubility and permeability, which have been 
adopted by the regulatory authorities as the key factors controlling oral drug 
absorption (6.7). However, the reader should be aware of the qualitative character 
of biopharmaceutics classification system, which implies large differences in the 
drug properties among the drugs of the same class. Accordingly, the theoretical 
aspects developed here can be considered a general framework of drug absorption 
while the in vivo drug behavior can vary remarkably even for drugs of the same 
Class (6.7). Moreover, deviations from the general modeling framework may be 
applied in accordance with the experimental observations. For example, a drug may 
exhibit the regional rate of absorption differences in the various segments of the 
small intestines, e.g., jejunum and ileum. In such a case, two successive constant 
input rates can be considered. Although the development of models up to this point 
was based on the one-compartment model disposition, similar equations can be 
written assuming a two-compartment model disposition. The reader will have the 
chance to become familiar with the relevant equations later on. Due to the physio-
logical relevance of the finite time absorption models developed, we coin the term 
physiologically based finite time pharmacokinetic (PBFTPK) models [20]. 

The physiological aspects of the PBFTPK models rely on the physiological/ 
anatomical differences between the two regions, the small intestine and the large 
intestine. It is widely known today that because of its permeability, large surface area 
and high blood flow, the small intestine is the primary site for drug absorption, 
Fig. 3.2. In fact, a monolayer of enterocytes that is characterized by protrusions that 
extend into the gut lumen, called villi, results in a potential absorptive surface area of 
60 m2 in both the jejunum and ileum [21]. On the contrary, the colon surface area 
totals around 0.25 m2 as there are no villi [22]; this huge anatomical difference 
causes a very large difference in the rate of drug absorption, Fig. 3.2. Besides, drug’s 
transport from the GI lumen to the portal vein relies on the sink conditions’ principle 
of the universally accepted passive drug absorption notion. This is substantiated by 
the fact that the blood in the portal vein has a velocity of 20–40 cm/s [19], which 
does not allow Fick’s reversibility considerations for the drug transfer. In parallel, 
the small intestine was presented (Fig. 3.2) as a homogeneous compartment in terms 
of drug’s uptake. However, drug absorption takes place mainly from the lower part 
of the small intestine. For example, drug absorption can be higher from the jejunum 
than the ileum. 

The unique features of the PBFTPK models [20] are the finite termination times 
for the absorption phases, τi and τc, respectively. The upper limit for τi is 5 h, 
Fig. 3.2, with the most frequently observed values in the literature in the range 1–3  h  
depending on the drug’s biopharmaceutical properties. The upper limit for τc is 30 h, 
Fig. 3.2, while the most usual values for τc are unknown since estimates for τc have 
not been explored so far. However, a large number of in vivo studies based on 
imaging techniques like gamma scintigraphy or magnetic resonance imaging 
coupled with drug blood measurements have shown that the completion of the 
absorption phase is terminated during the drug’s passage from the small intestine,

https://doi.org/10.1007/978-3-031-29541-6_6.7


e.g., erythromycin study [23]. Needless to say that according to the current theory 
(Eq. 3.1), the termination of either the elimination or the absorption phase is 
irreconcilable. 
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3.3 Mathematical Modeling 

All of the above considerations lead to the development of model equations [24] that 
have the following properties: 

(a) Absorption in the GI tract is described as a zero-order kinetics process that lasts 
for a limited time and then ceases altogether. The absorption rate constant can 
have a single value throughout the absorption stage or it may have different 
values for specific time intervals. The number of intervals may vary from one to 
half a dozen. 

(b) Disposition may involve just the blood circulation (one, central compartment) or 
it may happen in more than one compartment. In what follows, we will consider 
two compartments. Furthermore, we will expect the elimination of the drug to 
take place only through the central compartment. In short, this means that the 
elimination phase follows a simple exponential decay (one-compartment 
models) or a double exponential decay (two-compartment models). 

According to the fundamental model developed in [20], drugs are absorbed 
passively under sink conditions for physiological reasons [3, 19], Fig. 3.3a. Drug 
absorption under sink conditions has been used and is still used extensively and 
successfully in physiologically based pharmacokinetic (PBPK) modeling 
[8–11]. Due to the anatomical-physiological characteristics of the GI tract, drugs 
with different biopharmaceutical properties, e.g., solubility, permeability, and ioni-
zation, can exhibit one or two or three successive constant input rates, Fig. 3.3b [24]. 

For drugs following linear disposition kinetics, we coin the term p-PBFTPK-m, 
where p is the number of the successive input rates 1, 2, 3, and m takes the values 1 or 
2 denoting the disposition characteristics of the drug, namely, one- or 
two-compartment model, respectively. For the metabolized drugs following 
non-linear Michaelis–Menten disposition kinetics, we coin the term p-PBFTPK-
m(MM). A schematic representation of models exhibiting linear or non-linear 
disposition kinetics is shown in Fig. 3.4. 

The differential equations for the linear models, p-PBFTPK-m, are listed in 
Table 3.1 [24]. For the sake of brevity, we present only the simplest and the most 
complicated case, since the intermediate ones can be easily inferred. The 
corresponding equations for drug’s concentration change as a function of time in 
the central compartment, C(t), and in the peripheral compartment, CP(t), for these 
models are listed in Tables 3.2 and 3.3. It should be noted that the ratio of the 
distribution volumes of the central and the peripheral compartment is not included 
explicitly in the following expressions. This does not affect any calculations or 
conclusions because there are no data on the actual drug concentration in the 
peripheral compartment.
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Fig. 3.3 (a) Schematic of the passive transfer of dissolved drug molecules (white spheres) from the 
gut lumen to the portal vein. The blood flow in the portal vein, 20–40 cm/s [19] ensures sink 
conditions for the passive drug transfer due to its continuous removal from the portal vein to the 
liver. The physiological time limits 5 and 30 h for drug absorption from the small intestines and 
colon [3], respectively are shown on the time axis. (b) Enlargement of the region gut wall-portal 
vein for the drug transfer; the arrows indicate up to three successive constant input rates for the 
dissolved drug molecules (white spheres) passive transfer under sink conditions 

3.4 Simulations 

Figures 3.5 and 3.6 show the simulated concentration-time curves generated from 
the model equations for one- and two-compartment model drugs, respectively. Both 
Figures demonstrate the resemblance of the simulated curves with real life data 
reported in the literature. When a single input rate is applied (Figs. 3.5a and 3.6a), the
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Fig. 3.4 Schematic representation of one-compartment (a) and two-compartment (b) p-PBFTPK-
m models. In all cases, the horizontal arrows at the left-hand side of the central compartment denote 
the number of successive constant drug input rates, not necessarily of the same drug amount or 
duration; kel is the elimination rate constant, k10 is the elimination rate constant of the central 
compartment of the two-compartment model drugs; k12 and k21 are the disposition micro-constants 
for the transfer of drug from the central to the peripheral compartment and vice versa, respectively; 
Vmax and KM correspond to the maximum biotransformation rate and the constant of the Michaelis–-
Menten kinetics
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simulated data exhibit a patent change of drug concentration C(τ) at the end of the 
duration of the absorption process at time τ, (marked with the symbol ▲), which also 
corresponds to the maximum drug concentration, Cmax, observed in plasma. For the 
simulated data with multiple input rates, the values of C(τ) can be either equal to 
Cmax (Figs. 3.5b, d and 3.6d) or smaller (Figs. 3.5c and 3.6b, c), i.e., the termination 
of the absorption phase is observed at the descending limb of the curve. The 
simulated results for the CP(t) curves show the shape similarity of the generated
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Table 3.1 Differential equations for linear models p-PBFTPK-ma 

Kinetic (differential) equations ti-1 ti Equations 
dC 
dt = FD τVd

- kelC 0 τ 3.28 

2 dC 
dt = - kelC τ 3.29 
dC 
dt = FiD 

τiVd
- kelC 0 τ1 3.30 

2 Same as above τ1 τ1+τ2 
3 Same as above τ1+τ2 τ1+τ2+τ3 
4 Same as above τ1+τ2+τ3 τ1+τ2+τ3+τ4 
5 dC 

dt = - kelC τ1+τ2+τ3+τ4 3.31 
dC 
dt = FD τVd

- k12C- k10C k21CP 0 τ 3.32 

dP 
dt = k12C- k21CP 3.33 
dC 
dt = - k12C- k10C k21CP τ 3.34 
dP 
dt = k12C- k21CP 3.35 
dC 
dt = FiD 

τiVd
- k12C- k10C k21CP 0 τ1 3.36 

dP 
dt = k12C- k21CP 3.37 

2 Same as above τ1 τ1+τ2 
3 Same as above τ1+τ2 τ1+τ2+τ3 
4 Same as above τ1+τ2+τ3 τ1+τ2+τ3+τ4 
5 dC 

dt = - k12C- k10C k21CP τ1+τ2+τ3+τ4 3.38 
dP 
dt = k12C- k21CP 3.39 

a Each equation is defined for t in the range ti-1 < t < ti 

Table 3.2 Solutions to linear models p-PBFTPK-1a 

C(t) ti-1 ti Equations 
FD 

τVdkel 
1- e- kel t 0 Τα 3.40 

2 C τ e- kel t- τð Þ τ 3.41 
FiD 

τiVdkel 
1- e- kel t 0 τ1 3.42 

2 C ti- 1 e- kel t- ti- 1ð Þ FiD 
τiVdkel 

1- e- kel t- ti- 1ð τ1 τ1+τ2 3.43 

3 Same as above τ1+τ2 τ1+τ2+τ3 
4 Same as above τ1+τ2+τ3 τ1+τ2+τ3+τ4 
5 C ti- 1 e- kel t- ti- 1ð Þ τ1+τ2+τ3+τ4 3.44 

a Each equation is defined for t in the range ti-1 < t < ti
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Fig. 3.5 Simulated curves for one-compartment model drugs (m = 1) following linear disposition 
kinetics with p = 1 (Eqs. 3.40 and 3.41, panel a), p = 2 (Eqs. 3.42, 3.43, and 3.44, panel b), p = 3 
(Eqs. 3.42, 3.43, and 3.44, panels c and d). Model parameter values are shown in each panel. The 
symbol ▲ denotes the termination of all absorption stages 

Fig. 3.6 Simulated curves for two-compartment model drugs (m = 2) following linear-linear 
disposition kinetics showing the central (red) and peripheral (black) compartment concentrations 
for p = 1 (Eqs. 3.45, 3.46, 3.47 and 3.48, panel a), p = 2 (Eqs. 3.49, 3.50, 3.51, 3.52, 3.53 and 3.54, 
panel b), p = 3 (Eqs. 3.49, 3.50, 3.51, 3.52, 3.53 and 3.54, panels c and d). Model parameters are 
shown in each panel. The symbol ▲ denotes the termination of all absorption stages



curves, which poorly reflect the changes of the drug concentration in the central 
compartment C(t), Fig. 3.6 [24].
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Fig. 3.7 Plots of the derivative dC/dt as a function of time. A. tmax = τ = 4.0 h and the derivative 
was calculated from Eqs. 3.40 and 3.41. B. tmax = 3.5 h < τ = 9.5 h and the derivative was 
calculated from Eqs. 3.42, 3.43, and 3.44 

In all above plots, the (C(τ), τ) pair is a discontinuity datum point. When tmax = τ, 
there is a more patent change of the concentration-time curve in the neighborhood of 
the discontinuity time point, Figs. 3.5a, b, 3.6a, and d. On the contrary, when tmax< τ, 
the discontinuity datum point lies in the descending part of the concentration–time 
curve, Figs. 3.5c, d, 3.6b, and c and therefore, this change is less abrupt. In Fig. 3.7, 
one can see the change of the derivative dC/dt for two examples with tmax = τ and 
tmax < τ. In the former case, the derivative changes from positive to negative values 
at tmax = τ; in the latter case, the sign of the derivative is maintained negative close to 
τ and throughout the descending portion of the curve. These plots demonstrate that 
under experimental conditions, the estimation of τ will be easier when tmax = τ. 
When tmax < τ, the presence of experimental error and the sparse sampling close to τ 
can make the estimation of τ impossible. 

3.5 Sample Data Fitting 

We present an example exhibiting a single zero-order input (paracetamol) and then 
extend our applications to drugs belonging to various biopharmaceutical classes 
exhibiting more complex absorption and following one-or two-compartment model 
disposition. In all cases, modified-release formulations were not examined. The term 
“best-fit results” quoted in the legend of the figures below corresponds to the best 
model found among the PBFTPK and the classical first-order models tested. 

(i) Paracetamol. We analyzed the experimental data of a pharmacokinetic study 
[24]. The best fit results using Eqs. (3.40 and 41), which adhere to the simplest 
model with a constant input rate and first-order elimination are shown in 
Fig. 3.8. According to the results presented in Fig. 3.8, paracetamol absorption 
is very fast and terminates at 0.51 ± 0.03 h.
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Fig. 3.8 Best fit results of Eqs. 3.40 and 3.41 to paracetamol experimental data [25]. The symbol ▲ 
denotes the end of the absorption process. The top panel depicts the fit residuals 

(ii) Ibuprofen. This is a classical BCS class II drug with low solubility at pH 1.2 
and 4.5 and high solubility at pH 6.8 since it is a carboxylic acid. We analyzed 
the experimental data of a pharmacokinetic study [25]. The best-fit results using 
Eqs. (3.42, 3.43 and 3.44), which adhere to a model with two constant input 
rates and first-order elimination are shown in Fig. 3.9. These data reveal that 
absorption terminates at 2.3 h, namely, ibuprofen is absorbed in the small 
intestine. 

(iii) Almotriptan malate. This is a selective serotonin receptor agonist with hydro-
philic properties. We analyzed the experimental data of a pharmacokinetic 
study [26]. The best-fit results using Eqs. (3.42, 3.43, and 3.44), which adhere 
to a model with two constant input rates and first-order elimination are shown in 
Fig. 3.10. These data reveal that absorption terminates at 2.8 h, namely, 
almotriptan is absorbed in the small intestine. 

(iv) Cyclosporine. This is a Class II drug with very low solubility [27]. We analyzed 
the experimental data of the fundamental bioequivalence study under fasted 
and fed conditions, which led to the replacement of the reference formulation 
(Sandimmune) with the test formulation (Sandimmune Neoral) [28]. The best-
fit results for the test (administered as a single oral dose of 180 mg) and 
reference (administered as a single oral dose of 300 mg) formulations under 
fasted and fed conditions are shown in Fig. 3.11. 

The plots of Fig. 3.11a, b, and c reveal that the absorption of cyclosporine for the 
test formulation (Sandimmune Neoral) under both fasted and fed conditions as well 
as for the reference formulation (Sandimmune) under fasted conditions is described 
by the zero-order input process, which terminates at 1.6, 1.7, and 2.9 h, respectively.



This shows that cyclosporine absorption terminates sooner with the test formulation 
than with the reference formulation. The graph in Fig. 3.11d shows the complex 
absorption of cyclosporine from the test formulation under fed conditions; in fact, 
the best fit corresponds to a model with three successive fluctuating input rates of the 
total duration of 4.6 h. All these results are indicative of the erratic absorption of 
cyclosporine from the reference formulation in the presence of food. These findings 
are related to the hydrophobic nature of cyclosporine and the pharmaceutical
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Fig. 3.9 Best fit results of Eqs. 3.42, 3.43, and 3.44 to ibuprofen experimental data [25]. The 
symbol ▲ denotes the end of the absorption processes 

Fig. 3.10 Best fit results of Eqs. 3.42, 3.43, and 3.44 to almotriptan experimental data [26]. The 
symbol ▲ denotes the end of the absorption processes



differences of the two formulations, namely, the test formulation is a micro-emulsion 
while the reference formulation is a solution of cyclosporine in olive oil. The reader 
should also notice the high uncertainty (SDs) of the disposition parameters of 
cyclosporine in the panel of Fig. 3.11d in contrast to the corresponding values in 
panels of Fig. 3.11a, b, and c. In all cases, the fits presented in Fig. 3.11 were 
superior (data not shown) to the fits of Eqs. 3.1 or 3.3 to the experimental data.
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Fig. 3.11 Best fit results of Eqs. 3.45 and 3.47 to test formulation under fasted (a), fed (b) 
conditions, and reference formulation under fasted (c) conditions [28]. Best fit results of 
Eqs. 3.49, 3.51, 3.53 to reference formulation under fed (d) conditions. The symbol ▲ denotes 
the end of the absorption processes 

(v) Niraparib. This is an orally bioavailable anticancer agent. Here, we analyze the 
pharmacokinetics of an absolute bioavailability study of niraparib [29] using the 
PBFTPK models. The best-fit results using Eqs. (3.51 and 3.53), which adhere to 
a model with two constant input rates and two-compartment disposition are 
shown in Fig. 3.12. These data reveal that absorption terminates at 3.4 h, namely, 
niraparib is absorbed in the small intestine; the long stay of the drug in the body 
is due to the slow disposition characteristics. 

3.6 Towards a Biophamraceutic-Pharmacokinetic 
Classification System 

The analysis of data, Figs. 3.8, 3.9, 3.10, 3.11 and 3.12, underlines the fact that the 
duration, τ, of the absorption process is a fundamental biopharmaceutical parameter 
of drugs when administered as an immediate-release formulation. The type of



immediate-release formulation can also have an impact on the τ estimate (see 
cyclosporine results, Fig. 3.11). 
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Fig. 3.12 Best-fit results of Eqs. 3.51, 3.53 to the experimental data of niraparib [29]. The symbol 
▲ denotes the end of the absorption processes 

For years and years, the absorption rate constant became the sole parameter for 
expressing quantitatively the rate of drug absorption in classical and population 
pharmacokinetic studies. However, it was found to be the most variable parameter 
with non-meaningful physiological units (time-1 ), not allowing a valid interspecies 
or pediatric scaling and relying on the unphysical assumption of infinite time of 
absorption [16, 17]. The results presented in Figs. 3.8, 3.9, 3.10, 3.11 and 3.12, if  
contrasted with the results derived from the fitting of Eqs. 3.1 and 3.3 to the same 
data, clearly demonstrate the superiority of the PBFTPK models for the description 
of absorption characteristics of drugs/formulations. Roughly, the more complex the 
absorption is the better is the performance of the PBFTPK models compared to the 
Bateman equation (Eq. 3.1). 

The assessment of permeation in the physiologically based pharmacokinetic 
(PBPK) models [8–11] is based on permeability estimates; thus, the use of the 
absorption rate constant for the assessment of the drug’s input rate has been 
abandoned in the PBPK modeling work. The current work relies on the FAT concept 
[20, 24] and allows the estimation of τ, which can characterize each drug/formula-
tion given as an immediate-release formulation, Figs. 3.8, 3.9, 3.10, 3.11 and 3.12. 
This is so since τ is conceptually associated with the fundamental biopharmaceutical 
properties of solubility and permeability as shown in Sect. 3.2. Intuitively, drugs/ 
immediate release formulations can be classified into: (i) rapidly absorbing τ < 1.5 h 
like paracetamol and borderline cyclosporine (Sandimmune Neoral) administered 
under fasted conditions in the present study; (ii) medium absorbing 1.5 ≤ τ < 5 h like 
ibuprofen, almotriptan, and cyclosporine (Sandimmune Neoral) administered under



fed conditions as well as cyclosporine (Sandimmune) administered under fasted 
conditions in the present study and niraparib; (iii) slow absorbing 5 ≤ τ < 30 h not 
observed in the present study. For the first two categories, drug absorption takes 
place only in the small intestine, while for the third category, colon absorption is also 
operating. Several drugs/formulations exhibiting either selective regional permeabil-
ity or solubility/ionization characteristics which lead to precipitation/re-dissolution 
comprise a fourth category characterized by a complex absorption profile like 
cyclosporine (Sandimmune) administered under fed conditions in the present study 
(see Fig. 3.11d). Figure 3.13 shows the proposed three categories (A, B, and C) of a 
biophamraceutic-pharmacokinetic classification system where a drug exhibiting 
complex absorption, denoted with c-abs, can also be classified in accordance with 
its τ estimate. All estimates for τ are coupled with the corresponding estimate for 
drug’s elimination rate constant kel or β for drugs obeying one-or two-compartment 
model kinetics, respectively, Fig. 3.13. 
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Fig. 3.13 Plot of elimination rate constant, kel or β, estimates vs. finite absorption time (FAT), τ, 
estimates (±SD) Key: paracetamol (●), cyclosporine (Sandimmune Neoral, fasted) (Δ), ibuprofen 
(►), almotriptan (▼), cyclosporine (Sandimmune Neoral fed) (□), cyclosporine (Sandimmune, 
fasted) (#), niraparib (◊), theophylline [30] (◄), BMS-626529 drug [30] (♦). Filled symbols 
correspond to kel estimates (one-compartment model drugs), while empty symbols correspond to β 
estimates (two-compartment model drugs). The term c-abs next to cyclosporine (Sandimmune, fed) 
(o) administered under fed conditions, denotes complex absorption 

Visual inspection of Fig. 3.13 reveals that the one-compartment model drugs 
paracetamol (Fig. 3.8) and theophylline [30], which are biowaivers, are located in 
Class A close to the ordinate. This is in accordance with their extensive absorption 
calculated from oral data, if one applies the one-compartment model methodology 
described for theophylline in Ref. [30]. This also applies for the BMS-626529 drug 
[30, 31]. All cyclosporine formulations, ibuprofen and almotriptan are classified in 
Class B. 

In all examples analyzed, the estimate for τ was found to be equal to tmax. Reliable 
estimates were derived for τ using our PBFTPK software, Figs. 3.8, 3.9, 3.10, 3.11 
and 3.12, since an adequate number of samples were available throughout the time



course of drug in the body. For the one-compartment model drugs exhibiting one 
input rate like paracetamol, this finding, τ = tmax, is a logical consequence of the 
FAT concept. On the contrary, estimates for τ were not found in the descending leg 
of the curves (τ > tmax), which could be observed in other drugs. Although this is 
theoretically possible (Fig. 3.7b), the fitting results and the statistical measures are 
presented in Figs. 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 provide conclusive evidence that 
τ = tmax. However, the sampling design in the neighborhood of τ and the magnitude 
of the experimental error of the data can make the estimation of τ not possible using 
the PBFTPK software developed. Interested readers can contact the authors in case 
they wish to use it. 
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Overall, the application of finite absorption time (FAT) concepts can open new 
avenues in the oral drug absorption research. Thus, the FAT concepts can be also 
applied to interspecies and pediatric scaling using the τ estimates for each one of the 
species or children/adults as a core parameter in the scaling exercise. Additionally, 
the application of PBFTPK software for the re-analysis of oral data can provide input 
rate estimate(s) (FD/τVd), which will be certainly associated with the rate-controlling 
parameter(s) of absorption, solubility and/or permeability as explained in Sect. 3.2. 
The analysis of big oral data using machine learning techniques coupled with 
molecular descriptors can also elucidate critical factors of oral drug absorption 
phenomena. Besides, further applications of PBFTPK models to the following topics 
can be envisaged too: (i) the development of models based on multiple oral drug 
administration; (ii) the construction of percent absorbed versus time plots and use in 
in vitro-in vivo correlations (IVIVC) under the prism of the FAT concept; (iii) the 
extension/application of the modeling work to population studies; and (iv) coupling 
the PBFTPK modes with pharmacodynamic models. These applications (i–iv) can 
be also considered in the light of non-linear (Michaelis–Menten) kinetics. All above, 
if coupled with the implications of finite absorption time models on bioavailability/ 
bioequivalence issues [5, 25], point to a new era in the scientific and regulatory 
aspects of oral drug absorption. To this end, a Finite Absorption Time-Group 
(FAT-G) has been established for all those interested in the experimental and 
theoretical analysis of oral drug absorption phenomena using the FTA concepts, 
which can be contacted via the website http://www.athenarc.gr/. 
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Chapter 4 
Physiologically Based Finite Time 
Pharmacokinetic (PBFTPK) Models: 
Applications 

Athanasios A. Tsekouras, Nikolaos Alimpertis, and Panos Macheras 

Abstract The concept of finite absorption time is applied to a detailed discussion of 
generated models in bioavailability and bioequivalence. Considering detailed 
expressions for full and partial areas under the curve (AUCs), interesting conclusions 
are arrived at. Old digoxin pharmacokinetic data are reanalyzed under this prism. 
Physiologically based pharmacokinetic modeling and pharmacometrics are 
contrasted with the models derived from the Finite Absorption Time (FAT) concept 
and complicated concentration profiles successfully fit with these models. 

Keywords Oral drug absorption · Finite absorption time · Pharmacokinetics · 
Bioavailability · Bioequivalence 

4.1 The Finite Absorption Time (FAT) Concept 
as Columbus’ Egg 

The introduction of the finite absorption time (FAT) concept [1–5] has led to the 
development of the relevant physiologically based finite time (PBFTPK) models, 
which were successfully fitted to experimental data; reliable estimates for FAT and 
the other model parameters were derived. The FAT concept causes a paradigm shift 
in oral drug absorption. This is shown diagrammatically in a schematic for the 
underlying processes in the gastrointestinal (GI) membrane/vena cava (V.C.) region, 
which are supportive of the FAT concept (Fig. 4.1a). Furthermore, panels b, c, and d 
of Fig. 4.1 show the resulting variations of drug concentration in the blood. 
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Fig. 4.1 A paradigm shift in oral drug absorption [6, 7]. (a) The passive transport of drug 
molecules (vertical arrow) from the GI tract to the blood in the vena cava (V.C.) always takes 
place under sink conditions, since the blood flow rate is very high, 20–40 cm/s [8] (horizontal 
arrow), resulting in the constant drug input rate to the liver. (b) According to the established view, 
drug absorption and elimination operate concurrently from zero time to infinity [9]. (c, d) According 
to the F.A.T. concept [1–5], drug absorption and elimination operate concurrently from zero to τ, 
while only elimination continues to operate until infinity. Two different profiles can be observed 
with (c) tmax = τ and (d) tmax < τ. Such behavior has been observed in a number of drugs [5] 
including paracetamol, cyclosporine, and axitinib [10] formulations, respectively 

We consider Fig. 4.1a as a “Columbus egg” since the underlying microscopic 
processes were not known at the beginning of pharmacokinetics [8], but they have 
been very well known for several decades now. However, it was only recently 
realized that the high blood flow (20–40 cm/s) in the vena cava ensures sink 
conditions for the drug transfer [5–7]. In fact, this blood flow rate is five orders of 
magnitude higher than the usual drug-effective permeability estimates ~10-4 cm/s. 
Hence, the rate of presentation of drug to the liver is the product of this blood flow 
and the drug’s concentration in blood, which changes linearly in accordance with its 
permeability expressed in velocity units (cm/s), Fig. 4.1a. Plausibly, this constant 
drug input entry to the liver terminates, when either the drug has been completely 
absorbed prior to its passage from the absorptive sites in the intestines or the 
dissolved and undissolved drug species pass beyond the absorptive sites; the latter, 
in the great majority of cases, are located in the small intestines. Accordingly, 
beyond time τ only drug elimination is operating, Fig. 4.1c, d. 

All the work published so far on the FAT concept and PBFTPK models have 
focused on passively absorbed drugs. Here, we consider briefly the application of the 
FAT concept to drugs following the carrier-mediated transport assuming 
one-compartment model disposition, first-order elimination kinetics, and a single



input rate following Michaelis–Menten saturation kinetics operating for time τ. In  
such a case, it is not possible to arrive at an analytic expression for the drug concen-
tration in the blood as a function of time, but the situation can be remedied with a 
numerical approach whose main disadvantage is that it is not as elegant, but equally 
valid. As expected, the general form of the resulting curve has the familiar form of a 
rising and a falling part, with the details depending on the duration of the input stage 
and the values of the model parameters, namely, the maximum transport velocity, the 
Michaelis constant for the drug transport, and the elimination rate constant. 
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4.2 Bioavailability/Bioequivalence Implications 

The results of a recent study [5] provide conclusive evidence that in all experimental 
sets examined, drug absorption from the gastrointestinal tract takes place in finite 
time, τ. Accordingly, the corresponding area AUC½ �τ 0 and not AUC½ �10 is the 
appropriate metric for a drug’s extent of absorption. This has been theoretically 
explained on the basis of FAT. concept [3] and it was verified [4] using digoxin data 
from a bioavailability study carried out in 1973 [11] and a bioequivalence study 
analyzed by FDA [12], Fig. 4.2. 

The termination of digoxin absorption in the former study was estimated to be at 
1 and 3 h under fasting and fed conditions, respectively utilizing the PBFTPK 

models. Using the pertinent AUC ratios, i.e., AUC½ �1 0fasted 
AUC½ �3 0fed 

we found the same result 

(equal bioavailability) with the results derived from the cumulative five-day urinary 
excretion of digoxin [11]. Similarly, the duration of drug absorption in the 1992 
bioequivalence study [12] under fasting and fed conditions was found to be 1 and 

1.5 h, respectively; the corresponding ratios AUC½ �1 0fasted, test 
AUC½ �1 0fasted, reference 

, AUC½ �1:5 0 fed, test 
AUC½ �1:5 0 fed, reference 

were 

quite similar to the classical comparison of AUCs calculated up to the very end of the 
sampling scheme (144 h) and infinity, namely, AUC½ �144 0 and AUC½ �10 , reported in 
the FDA document [12]. 

The take-home message from these findings is that AUC½ �τ 0 can replace AUC½ �10 in 
bioequivalence studies, as a more proper indicator of the extent of absorption, while 
AUC½ �10 can be maintained as an exposure metric. Several aspects of the current 
FDA [13] and EMA [14] guidelines concerning the sampling period of the study for 
a reliable estimation of AUC½ �10 are not in accord with the FAT concept; e.g., the 
sampling schedule required to be long enough to achieve AUC½ �t 0 covers at least 80% 
of AUC½ �10 . Moreover, the recommended time limit of 72 h for the truncated AUC, 
namely, AUC½ �72 0 , to be used as an alternative to AUC½ �t 0, is much longer than the 
physiological FAT limit of ~30 h [2, 15] for immediate release formulations. 

A long time ago, an experimental study [16] and more recent simulation studies 
[17–19] focused on the use of truncated concentration-time curves for bioequiva-
lence assessment; albeit the first-order character of gastrointestinal absorption was 
maintained, in all cases [17–19], the experimental and simulation results validated



the use of the truncated areas for bioequivalence assessment. In the same vein, our 
recent work [2–5] not only provides conclusive evidence that truncated 
concentration-time curves can be used reliably for bioequivalence assessment, but 
also the ideal metric is AUC½ �τ 0 since time τ denotes the termination of drug’s 
absorption. 
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Fig. 4.2 Concentration-time data from a bioavailability study (a) [11] and a bioequivalence study 
(b) [12]. Inset in (b) shows an expanded view of the first 6 h of the data 

4.3 Theoretical Background for Bioavailability 
and Bioequivalence 

The development of bioavailability concepts and metrics both for the extent and rate 
of absorption was based on the parameters AUC½ �10 , Cmax and tmax, which are 
derived from Eq. 4.1 [3].
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C tð Þ= 
FDka 

Vd ka - kelð Þ e- kel t - e- ka t ð4:1Þ

AUC½ �10 = 
FD 
Vdkel 

= 
FD 
CL

ð4:2Þ

tmax = 
1 

ka - kel 
ln 

ka 
kel 

ð4:3Þ

Cmax = 
FD 
Vd 

ka 
kel

- kel 
ka - kel ð4:4Þ

where CL is the drug clearance. AUC½ �10 is the infinite integral of Eq. 4.1, tmax is 
calculated by equating the first derivative of Eq. 4.1 with zero, and Cmax is evaluated 
from Eq. 4.1 by setting t = tmax. 

(PBFTPK)0 Models We utilize the index “zero” to indicate PBFTPK models [5] 
with the zero-order input lasting for time τ. For the one-compartment model, the 
following equation was used to describe the drug blood concentration for t ≤ τ 
assuming the termination of absorption at time τ [7]: 

C tð Þ= 
FD 
τ 

1 
Vdkel 

1- e- kelt t≤ τ ð4:5Þ

while for t > τ, Eq. 4.6 applies. 

C tð Þ=C τð Þe- kel t- τð Þ t ≤ τ ð4:6Þ

The drug blood concentration Cb(τ) corresponding to time τ, for the 
one-compartment (PBFTPK)0 model is derived from Eq. 4.5 using t = τ: 

C τð Þ= 
FD 
τ 

1 
Vdkel 

1- e- kelτ = 
FD 
τ 

1 
CL 

1- e- kelτ ð4:7Þ

while the areas AUC½ �τ 0 and AUC½ �1τ are derived by integrating Eqs. 4.5 and 4.6, 
respectively:
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AUC½ �τ 0 = 
FD 
τ 

1 
Vdkel 

τ-
1- e- kelτ 

kel 
= 

FD 
Vdkel 

1-
1- e-mln2 

mln2 
= 

= AUC½ �10 1-
1- e-mln2 

mln2 

ð4:8Þ

where m is the ratio (m = τ/t½) of  τ over the half-life t½ while kel = (ln2)/t½. 

AUC½ �1τ = 
C τð Þ
kel 

= 
FD 
Vdkel 

1 
kelτ 

1- e- kelτ = AUC½ �10 
1 

mln2 
1- e-mln2 ð4:9Þ

The sum of the two last integrals, Eqs. 4.8 and 4.9, gives AUC 10 , Eq. 4.3. 
A hypothetical curve corresponding to the same dose given as an intravenous 

bolus dose would follow the same track for t ≥ τ. Having the general form of 

Civ tð Þ=Ge- kelt ð4:10Þ

Requiring 

Civ tð Þ=C tð Þ for t≥ τ, ð4:11Þ

we get: 

Ge- kelt =C τð Þe- kel t- τð Þ = 
FD 
τ 

1 
Vdkel 

1- e- kelτ e- kel t- τð Þ ð4:12Þ

giving 

G= 
FD 
τ 

1 
Vdkel 

1- e- kelτ ekelτ = 
FD 
τ 

1 
Vdkel 

ekelτ - 1 ð4:13Þ

Then, the hypothetical curve would give: 

AUCiv½ �10 = 
G 
kel 

= 
FD 
Vdkel 

1 
kelτ 

ekelτ - 1 = AUC½ �10 
1 
kelτ 

ekelτ - 1 ð4:14Þ

Re-arranging the last equation, we get 

F = 
AUC½ �10 
AUCiv½ �10 

= 
kelτ 

ekelτ - 1
ð4:15Þ

where F is the fraction of dose absorbed since both oral and intravenous data rely on 
a single oral administration of dose to an individual. However, if the first-pass effect 
is not encountered then F in Eq. 4.9 denotes the bioavailable fraction.
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Although more than one constant input rate may operate successively under 
in vivo conditions, this section focuses on the simplest case, i.e., the 
one-compartment model with constant input rate and first-order elimination. How-
ever, the concepts developed herein can be adapted to models with more than one 
input rate. 

(PBFTPK)1 Models We utilize the index “one” to indicate PBFTPK models [5] 
with the first-order input lasting for time τ. These models rely on Eqs. 4.1 and 4.6. 
Using 

C τð Þ= 
FDka 

Vd ka - kelð Þ e- kelτ - e- kaτ ð4:16Þ

the areas AUC½ �τ 0 and AUC½ �1τ are derived by integrating Eqs. 4.1 and 4.7, 
respectively: 

AUC½ �τ 0 = 
FD 
Vdkel

-
FDka 

Vd ka - kelð Þ
e- kelτ 

kel
-

e- kaτ 

ka 
ð4:17Þ

AUC½ �1τ = 
Cb τð Þ
kel 

= 
FDka 

Vdkel ka - kelð Þ e- kelτ - e- kaτ ð4:18Þ

The sum of Eqs. 4.24 and 4.25 gives 

AUC½ �10 = 
FD 
Vdkel 

1- e- kaτ ð4:19Þ

The deviation of the latter quantity from the required value of FD 
Vdkel 

is associated 

with the discrepancy between the physical assumption that the drug is not absorbed 
any more beyond time τ, and the mathematics of the first-order absorption process, 
which lasts until infinity. In fact, the term in parentheses of Eq. 4.19 is linked with 
the absorption characteristics, i.e., the absorption rate constant ka and the duration of 
absorption τ. The impact of this term becomes smaller for high values of ka and τ, 
Fig. 4.3; the term used in the ordinate of Fig. 4.3 allows a dimensionless plot. 

A hypothetical curve corresponding to the same dose given as an intravenous 
bolus dose would follow the same track for t ≥ τ. Having the general form of 

Civ tð Þ=Ge- kelt ð4:20Þ

Requiring 

Civ tð Þ=C tð Þ for t≥ τ, ð4:21Þ

we get:
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Fig. 4.3 Plot of AUC 10 kelVd=FD as a function of ka and τ. (see Eq. 4.19) 

Ge- kelt =C τð Þe- kel t- τð Þ = 
FDka 

Vd ka - kelð Þ e- kelτ - e- kaτ e- kel t- τð Þ ð4:22Þ

giving 

G= 
FDka 

Vd ka - kelð Þ e- kelτ - e- kaτ ekelτ = 
FDka 

Vd ka - kelð Þ 1- e- ka - kelð Þτ ð4:23Þ

Then, the curve for the hypothetical intravenous bolus administration of an equal 
dose would give: 

AUCiv½ �10 = 
G 
kel 

= 
FDka 

Vdkel ka - kelð Þ 1- e- ka - kelð Þτ ð4:24Þ

Using Eqs. 4.19 and 4.24 one can find 

F = 
AUC½ �10 
AUCiv½ �10 

= 1-
kel 
ka 

1- e- kaτ 

1- e- ka - kelð Þτ ð4:25Þ

where F is the fraction of dose absorbed since both oral and intravenous data rely on 
a single oral dose administration to an individual. However, if the first-pass effect is 
not encountered, then F in Eq. 4.25 denotes the bioavailable fraction. The limit of 
Eq. 4.25 for τ = 0 (intravenous bolus dose) correctly predicts F tends to 1 as ka tends 
to a very large number. The visual inspection of Eq. 4.25, reveals that F is fully 
dependent on the values of the rate constants ka, kel and τ. Hence, an estimate for 
F can be obtained, based on the estimates of these parameters derived from the oral 
experimental data of oral administration.
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4.4 Model Implementations 

In the last 20 years or so, biopharmaceutical scientists gradually unveiled the 
complex nature of gastrointestinal drug absorption phenomena, e.g., drug solubili-
zation, supersaturation, drug dissolution, drug precipitation, the interplay of food 
with the various processes, (selective) permeability, and drug ionization changes 
along the gastrointestinal lumen affecting all above processes. In our days, all these 
phenomena are interpreted (modeled) with the use of the PBPK (physiologically 
based pharmacokinetic) models [19–21]. Undoubtedly, a single value of the absorp-
tion rate constant cannot capture the complex dynamics of the absorption phase 
phenomena taking place concurrently. It is worthy to mention that drug absorption is 
assessed in the PBPK studies using the permeability estimate expressed in the 
constant velocity units (length/time), i.e., “a zero-order type parameter”. Likewise, 
drug absorption in the (PBFTPK)0 models [5] is also expressed in constant mass/ 
time units. For both (PBFTPK)0 and (PBFTPK)1 models, the duration of the 
absorption process, τ is a pivotal element. Similarly, the user/modeler of the software 
packages (GastroPlus® Software, n.d.; Simcyp® Simulator,n.d.; PK-Sim® Soft-
ware, n.d.) of the PBPK [19–21] models fix a  finite-time absorption period, e.g., 
199 min [22, 23] or transit times for each anatomical segment are specified [19– 
21]. In some cases, when PBPK models are coupled with a pharmacokinetic model, 
the fraction of dose absorbed is related proportionally to drug concentration in the 
gastrointestinal lumen since “the blood on the basolateral side of the membrane is 
regarded as an ideal sink”. Overall, the fixed time duration of the absorption 
processes and the deviations from the classical first-order absorption have been 
adopted in the PBPK models [19–21]. 

(PBFTPK)0 and (PBFTPK)1 Models: A Pictorial Comparison Using 
Simulations Figures in the previous chapter show (PBFTPK)0 model simulations; 
(PBFTPK)1 models simulations as well as curves generated from the classical 
Bateman equation (Eq. 4.1) without time restrictions for comparative purposes are 
shown in Fig. 4.4. 

Three examples with various finite time absorption durations deviating from the 
classical first-order absorption (top curve in all graphs of Fig. 4.4) are shown using 
three different values of the absorption rate constant ka, namely, 0.1 h-1 (Fig. 4.4a), 
0.25 h-1 (Fig. 4.4b), and 0.5 h-1 (Fig. 4.4c). The curves corresponding to the lower 
value of the absorption rate constant 0.1 h-1 depicted in Fig. 4.4a clearly indicate 
that the smaller is the duration of the absorption time, the larger is the difference in 
the concentration-time profiles compared to the classical top curve. The examples 
shown in Fig. 4.4b, c using higher values for the absorption rate constant, 0.25 and 
0.5 h-1 , respectively, demonstrate that the concentration-time profiles become 
progressively indistinguishable from the classical case (top curve) as the values of 
the duration of drug absorption, τ and the absorption rate constant ka are increasing. 
These observations are in full agreement with Eq. 4.18 and the relevant plot of 
Fig. 4.3. It is worthy to mention that the classical top curve of Fig. 4.4a exhibits 
appreciable drug absorption of drug beyond the physiological limit of 30 h [2, 15]
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Fig. 4.4 Truncated Bateman drug concentration profiles with (a) ka = 0.1 h-1 , kel = 0.05 h-1 and 
termination times 10 h (gray), 14 h (yellow), and 30 h (blue); (b) ka = 0.25 h-1 , kel = 0.05 h-1 and 
termination times 8 h (gray), 10 h (yellow), and 30 h (blue); (c): ka = 0.5 h-1 , kel = 0.05 h-1 and 
termination times 5 h (gray), 10 h (yellow), and 30 h (blue)



using the frequently encountered values for absorption and elimination rate con-
stants, 0.1 and 0.05 h-1 , respectively. Accordingly, the concern is rising for signif-
icant drug absorption beyond the absorptive sites [4]. According to Eq. 4.19, the 
ratio of the area under the curve for τ values 14 and 30 h compared to the area of the 
top curve in Fig. 4.4a is 75 and 95%, respectively, indicating that a misinterpretation 
for an infinite absorption is quite possible.
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The simulated examples of Fig. 4.4 demonstrate the rich dynamic behaviors 
associated with the (PBFTPK)1 models. Most importantly, Fig. 4.4 shows that the 
relative magnitude of the parameters Cmax, tmax vis-a-vis C(τ), and τ can vary 
remarkably according to the specific case examined. In all cases, however, the 
concentration of drugs starts to decline monotonically beyond the datum point 
(C(τ), τ), i.e., drug absorption is not taking place beyond time τ. 

Intuitively, one can conclude that the shorter the absorption time duration τ is, the 
higher is the resemblance of the concentration-time profiles generated from the 
(PBFTPK)0, (PBFTPK)1 models and the classical Bateman function (Eq. 4.1). 
This is so since all curves approximate the limiting case, i.e., the intravenous bolus 
administration in the one-compartment model. 

Rate Metrics: (Cmax, tmax) vis a vis (C(τ), τ) The use of Cmax as a measure of the 
rate of absorption is historically associated with its derivation from Eq. 4.1 as a 
steady-state value. Although it is used as a bioavailability rate parameter, Eq. 4.4 
reveals that Cmax is also dependent on the extent of absorption. During the previous 
decades, concerns on this problem were raised and several alternative metrics and 
methodologies have been suggested [24–28]. However, Cmax is always being used as 
a rate parameter in all bioequivalence guidelines, but mainly its numerical value 
provides the maximum concentration of the drug in the blood. 

According to Eq. 4.7 of (PBFTPK)0 models, C(τ) is proportional to the rate of 
input FD/τ. This is an ideal property for the rate of input parameter; besides, time τ 
underlines the termination of the absorption process, which is the fundamental 
characteristic of the (PBFTPK)0 models. Although Cmax and C(τ) differ conceptu-
ally, in actual practice, the two quantities may or may not be identical since 
Cmax ≥ C(τ). When Cmax = C(τ), one can easily derive from the (PBFTPK)0 models 
[2] 

Rate in= 
VdC 
dt 

= 
FD 
τ

- kelCVd = 0 ð4:26Þ

C τð Þ=Cmax = 
FD 

τkelVd 
= 

FD 
τCL

ð4:27Þ

This equality means that the absorption of drugs has been terminated or com-
pleted at time τ while Cmax or C(τ) are proportional to the input rate (FD/τ) as well as 
to the extent of absorption (FD), Eq. 4.27. However, Cmax or C(τ) is not the 
asymptotic limit of a zero-order absorption process with first-order elimination 
usually found as a steady-state solution in continuous intravenous infusion. In 
other words, the (C(τ),τ) datum point is a discontinuity point associated with



(i) the completion of the input process (no more drug is available for absorption) or 
(ii) a sudden change in drug’s solubility, e.g., precipitation or (iii) drug’s permeabil-
ity change, e.g., reduced regional permeability because of pH changes or (iv) drug’s 
transit beyond the absorptive sites. 
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The termination of absorption at time τ in the (PBFTPK)1 models may result from 
the completion of drug absorption or the passage of drug beyond the absorptive sites. 
The corresponding value of C(τ) (Eq. 4.7), is always equal to or smaller than the 
experimental Cmax, Fig. 4.4. However, the experimental values for C(τ) and  τ of 
(PBFTPK)1 models are not steady-state values, namely, Cmax (Eq. 4.4) and tmax 

(Eq. 4.3), respectively; the pair (C(τ), τ) represents a discontinuity time point. 

Exposure Metrics: AUC 10 Versus AUC τ 0 and AUC 
1
τ The golden standard for½ � ½ � ½ �

the extent of absorption, without any doubt, in bioavailability-bioequivalence studies 
is AUC½ �10 , Eq. 4.2. This is also justified here for the (PBFTPK)0 models since the 
sum of Eqs. 4.8 and 4.9, adhering to the (PBFTPK)0 model principles, is equal to 
AUC½ �10 , Eq. 4.2. Although Eq. 4.8 reveals that AUC½ �τ 0 is a fraction of AUC½ �10 , its 
magnitude is solely determined from the quantity m, namely, the ratio of duration of 
the absorption process τ over the elimination half-life, (m = τ/t½). Therefore, the 
meaning of AUC½ �τ 0 for the (PBFTPK)0 models is not in accord with the usual 
concept of partial areas used as indicators for the initial rate of exposure [25– 
27]. Besides, AUC½ �τ 0 for the (PBFTPK)1 models is dependent on τ (Εq. 4.17), 
while AUC½ �10 (Eq. 4.19) is also dependent on τ. Hence, for both (PBFTPK)0 and 
(PBFTPK)1 models, the usual role of partial areas (portions of AUC½ �τ 0 ) is not 
applicable due to the involvement of τ in the calculations. 

According to Eq. 4.9, AUC½ �1τ is proportional to the fraction of dose absorbed, 
which is in the general circulation at time τ [12]. This proportionality is valuable for 
bioequivalence studies when the duration of the absorption process is short or very 
short and the absorption phase data exhibit high variability; this is the case with 
inhalers [29–31] and nasal products [32]. For these formulations, the test-reference 
comparison can be based on the area AUC½ �1τ which is proportional to the fraction of 
dose absorbed being in the general circulation at time τ. Table 4.1 shows the results 
based on the analysis of AUC½ �1τ for the test and reference formulations of three 

bioequivalence studies [29–31]. All ratios for the five drugs studied AUC½ �72 τ 
test 

/ 

AUC½ �72 τ 
reference 

lie in the range 0.828–1.104. Although the 90% confidence 

intervals for the means were not constructed, these values lie in the range of 

80–125% used in bioequivalence testing. Besides, the ratios AUC½ �72 τ = AUC½ �72 0 for 
all drugs and formulations studied are in the range 0.858–0.999, Table 4.1, which 

indicates that the area AUC½ �72 τ represents a very large portion (>80%) of the total 
area AUC½ �10 . Since the variability of the experimental data in the ascending limb of 
the curve of the inhaled products is very high [29–31], while a dense sampling 

strategy is usually applied, the use of AUC½ �72 τ as an extent of absorption metric can 
lead to a smaller number of volunteers and a less dense sampling protocol in
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Budesonide 

ð Þ
AUC½ �14τð Þreference

ð Þ
AUC½ �3τð Þsolution

ð Þ
AUC½ �4τð Þsolution

ð Þ
AUC½ �140ð Þreference

ð Þ
AUC½ �30ð Þsolution

ð Þ
AUC½ �40ð Þsolution

ð Þ
AUC½ �140ð Þ

test

ð Þ
AUC½ �30ð Þpowder

ð Þ
AUC½ �40ð Þpowder

½ � Þ

½ �

bioequivalence studies. Data on oral absorption of digoxin [12], which also exhibit 
fast absorption assuming tmax = τ, were analyzed in the same way and included in 
Table 4.1. Additional relevant data from two nasal absorption studies were analyzed 
assuming tmax = τ and are presented in Table 4.2.
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Table 4.2 The ratio of AUC½ �14 τ of the test over the reference formulation in a nasal absorption 

bioequivalence study of budesonide [33] and AUC½ �3 τ or AUC½ �4 τ ratios (powder vs. solution) in a 
comparative systemic bioavailability study [34] of three nasal remimazolam (RMZ) formulations 

PK 
parameters

PK 
parameters 

RMZ 
(10 mg) 

PK 
parameters 

RMZ 
(20 mg) 

RMZ 
(40 mg) 

AUC½ �14 τ test 1.024 AUC½ �3 τ powder 1.226 AUC½ �4 τ powder 1.422 2.118 

AUC½ �14 τ reference 0.942 AUC½ �3 τ solution 0.831 AUC½ �4 τ solution 0.854 0.858 

AUC½ �14 τ test 0.944 AUC½ �3 τ powder 0.893 AUC½ �4 τ powder 0.858 0.904 

Table 4.3 The meaning of the classical and novel bioequivalence parameters in the light of 
(PBFTPK)0 and (PBFTPK)1 models 

Parameters Remarks 

Cmax, C(τ) When tmax = τ, Cmax is equal to C(τ); it corresponds to the blood 
concentration at the termination or completion of drug absorption at 
time τ. When tmax < τ, then Cmax > C(τ); Cmax does not correspond to 
the termination or completion of drug absorption at time τ. 

tmax, τα When tmax = τ, the recorded tmax corresponds to the termination or 
completion of drug absorption at time τ. When tmax < τ, the numerical 
value of τ is the physiologically meaningful parameter, since it denotes 
the duration of the absorption process. 

Partial areas (portions of 
AUC τ 0 

For the (PBFTPK)0 models, the magnitude of the areas (portions of 
AUC½ �τ 0Þ depends exclusively on m, (m  = τ/t½); therefore, these 
portions cannot be used as early absorption rate indicators. 
For the (PBFTPK)1 models, the magnitude of the areas (portions of 
AUC½ �τ 0Þ and the total area ( AUC½ �10 ) are both dependent on τ; 
therefore these portions are not typical indicators of the early 
absorption rate. 

AUC 1τ Proportional to the fraction of the dose absorbed and remaining in the 
body at time τ. It could be used instead of AUC½ �10 when very fast 
absorption is encountered. 

Scientific-Regulatory Implications In the light of (PBFTPK)0 and (PBFTPK)1 
models, a re-consideration of the meaning and use of the typical bioequivalence 
parameters were analyzed and presented (Cmax, tmax and partial areas), which is 
required. This is summarized in Table 4.3 along with the meaning and potential use 
of the novel parameters C(τ), τ, AUC½ �1τ .Undoubtedly, the duration of absorption τ 
plays a pivotal role in all novel parameters of both (PBFTPK)0 and (PBFTPK)1 
models. Its use should follow the physiological time constraints for intestinal and 
colon absorption [7].
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Fig. 4.5 Semi-logarithmic concentration-time plots of theophylline formulations A, B, and C [35] 

The remarks quoted in Table 4.3 can guide regulatory agencies for potential 
changes in the assessment of bioequivalence studies. The utilization of the param-
eters τ and AUC½ �1τ as well as the re-consideration of the partial area utility as a rate 
of exposure metric are the most challenging questions. In addition, the two recom-
mendations of the current bioequivalence guidelines [9, 10], namely, (i) “The 
sampling schedule should also cover the plasma concentration-time curve long 
enough to provide a reliable estimate of the extent of exposure, which is achieved 
if AUC½ �t 0 covers at least 80% of AUC½ �10 ” and (ii) the specific time limit of 72 h, for 
the calculation of total AUC, i.e., “AUC truncated at 72 h ( AUC½ �72 0 ) may be used as 
an alternative to AUC½ �t 0 for the comparison of extent of exposure as the absorption 
phase has been covered by 72 h for immediate release formulations”, should be 
re-considered in view of the results of the present study. This is so since drug 
absorption beyond 30 hours is not physiologically sound [7, 31]. However, long 
half-life drugs may require extensive sampling design because of the very slow 
disposition characteristics. Overall, this first analysis and the above-mentioned 
remarks will certainly need further investigation and may eventually lead to regula-
tory implications. 

Towards the Unthinkable: Application of Eqs. 4.15 and 4.25 for the Estimation 
of Absolute Bioavailability from Oral Data Exclusively In this section, we ana-
lyzed published data from a bioequivalence study with three formulations of the-
ophylline [35]. We first analyzed the entire set of elimination phase data using a 
semi-logarithmic plot, Fig. 4.5. All plots are linear and the regression coefficients, R2 

found were 0.9995, 0.9997, and 0.9998 for formulations A, B, and C, respectively. 
This verifies that the entire set of elimination phase data follows one-compartment 
model disposition. Then, an unrestricted non-linear least squares fit of the 
(PBFTPK)0 model (Eqs. 4.5 and 4.6), (PBFTPK)1 model (Eqs. 4.1 and 4.6), and 
Bateman equation (Eq. 4.1 without time restriction) was applied, Fig. 4.6. The 
parameter estimates are listed in Table 4.4 along with the calculated F values derived 
from Eqs. 4.15 and 4.25 adhering to the (PBFTPK)0 and (PBFTPK)1 models, 
respectively. 

Excellent fits were observed for all data sets, Table 4.4. There is a minor 
superiority of the Bateman function and the (PBFTPK)1 model over the (PBFTPK)0 
model, which is associated with the usually more erratic absorption phase whereas 
one or two data points deviate slightly from the (PBFTPK)0 model fitting. However, 
Eq. 4.15 provides for F a single estimate, 0.97 for all formulations studied, while the



estimates for F based on Eq. 4.27 are 1.04 for formulations A and B and 1.45 for 
formulation C. The latter numerical value originates from the poor estimate for τ, 
2.93 (3.04) h derived from the (PBFTPK)1 model fitting. It is very well known that 
estimates for F cannot be derived from the fitting of the Bateman function to oral 
data. Nevertheless, all three approaches demonstrate that theophylline absorption 
has terminated in the small intestine; however, the (PBFTPK)0 and (PBFTPK)1 
model fittings clearly show the complete absorption of theophylline in the small 
intestines from the three formulations studied. Needless to say that no clear advan-
tage of the (PBFTPK)0 and (PBFTPK)1 models over the classical Bateman equation 
in terms of the modeling exercise could be concluded. This is so since the infinite 
time implied in the use of the first-order input, everyone knows, never happens in the 
real world. The absorption process is almost completed after ca. 3 absorption half-
lives. The remaining ca. 10% left to be absorbed is either not detectable or con-
founded by the experimental error. In practice, however, the use of the finite 
absorption time limit in the (PBFTPK)0 and (PBFTPK)1 models allowed the esti-
mation of F. This cannot be accomplished using the classical approach. The esti-
mates for F derived in Table 4.4 are in full agreement with the reported value for F, 
0.96 ± 0.03 for the immediate release of theophylline tablets [36]. 
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Fig. 4.6 Analysis of concentration-time data of theophylline formulations A, B, and C using the 
(PBFTPK)0 model (Eqs. 4.5 and 4.6) (I), (PBFTPK)1 model (Eqs. 4.1 and 4.6) (II), and Bateman 
equation (III). Shown are the experimental data [35], model fit curves and residuals
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Estimation of F From Oral Data Exclusively Using a Ratio of Areas Under 
The Curve For drugs obeying one-compartment model disposition following any 
type of input kinetics lasting τ time units, an estimate for F can be also derived from 
the areas proportionality corrected in terms of dose: 

F = 
AUCð Þ½ �10 oralDose 

AUCð Þ10 hy:i:v
FDose

ð4:28Þ

where AUCð Þ10 hy:i:v
, (Fig. 4.8), corresponds to the area of the hypothetical intra-

venous bolus administration of the same dose derived from the back extrapolation of 
the elimination phase experimental data beyond time τ of the oral dose. Its numerical 
value is calculated from the ratio e(y - intercept) /kel, where the y-intercept on the lnC 
axis corresponds to the back extrapolated regression line with slope –kel of lnC, t 
elimination phase data beyond time τ. The integral AUCð Þ½ �10 oralis calculated using 
the trapezoidal rule from the experimental data, Fig. 4.8. Solving Eq. 4.29 in terms of 
F, 

F2 = 
AUCð Þ½ �10 oral 
AUCð Þ10 hy:i:v 

ð4:29Þ

The positive root of Eq. 4.29 provides the estimate for F. Eq. 4.29 was used for 
the estimation of F of theophylline formulations, Table 4.4. The results show that 
very similar estimates were derived using the two methodologies, i.e., Eq. 4.15 or 
4.25 and Eq. 4.29. Figure 4.7a shows the graphical analysis of a theophylline 
formulation. Besides, very similar results (not shown) were obtained using the 
experimental tmax values of theophylline formulations instead of τ estimates. In 
this context, we analyzed the concentration plasma data of BMS-626529 drug [37] 
assuming τ = tmax and found F = 0.904, Fig 4.7b. 
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Fig. 4.7 Semi-logarithmic plot of theophylline (a) from formulation A and BMS-626529 (b) 
plasma data. For both drugs, the “triangle” represents the AUCð Þ10 hy:i:v semi-logarithmically 

while the AUCð Þ½ �10 oral corresponds to the area under the curve of the experimental data points, 
depicted semi-logarithmically too
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4.5 PBPK Modeling and Pharmacometrics 
with Finite-Absorption Time 

PBPK Versus PBFTPK models Since the PBFTPK models are “top-down”, while 
the currently used Physiologically-Based Pharmacokinetics (PBPK) models are 
“bottom-up” models, their application to the same dataset will enhance our under-
standing of drug absorption phenomena. The first such application [38] using six 
Merck drugs revealed correlations between the simulated luminal drug concentra-
tions from the PBPK model with the absorption rate estimates derived from the 
PBFTPK models using the same datasets. This finding is fundamental and in accord 
with the basic biopharmaceutical-physiological principles of PBFTPK models. In 
addition, both models resulted in absorption time estimates within the small intes-
tinal transit time, with PBFTPK models generally providing shorter time estimates. 
This should be attributed to the Gastro Plus software used for the estimation of drug 
absorbed over time curve, i.e., the simulation of absorption with differential equa-
tions based on indefinite integral and not finite integral with a time limit was used. It 
should be noted here that this “first-order approach” contradicts the quantification of 
the uptake rate in the PBPK models on the basis of permeability estimates. 

The combinatory applications of PBPK/PBFTPK modes for studies involving 
modified release formulations are anticipated. The PBFTPK models can provide an 
estimate for the “prolonged” duration of drug absorption as well as drug’s input rate 
(s), i.e., the two principal components of drug absorption from modified release 
formulations. Other potential applications of PBFTPK models can be envisaged in 
interspecies or pediatric pharmacokinetic scaling studies, which focus on 
bioavailability. 

Pharmacometrics Since the early days of NONMEM (Non-Linear Mixed Effect 
Modeling) software, population approaches have been applied extensively in numer-
ous oral, pulmonary, and intranasal PK, PD, and PK-PD studies, all of which involve 
absorption step(s). These studies have interpreted drugs’ kinetics-dynamics as well 
as the variability associated with the parameters on the basis of what we call “a valid 
population model”. However, this vast literature relies on structural models, which 
are invariably mostly using either one- or two-compartment disposition model “with 
a first-order absorption rate constant, ka” governing the absorption process. In fact, 
citations for “the absorption rate constant” as a function of time in PUBMED from 
the beginning of its use circa 1964, both in the pre-NONMEM and the meta-
NONMEM era, are over 7000. The increase after 2005 is most likely associated 
with the explosion of pharmacometric studies and the development of PBPK, 
pharmacometric software packages close to the turn of the century. It is widely 
understood that these commonly utilized models of drug absorption in population 
pharmacokinetics, with and without lag time or with transit compartments, often 
estimate large variabilities associated with the absorption rate constant, ka, which are 
unrealistic. In this context, it is not uncommon to see “impossible” ka estimates



submitted to and accepted by Drug Agencies since physically/physiologically sound 
alternatives do not exist. 
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However, one can also see pharmacometricians replacing the models with the 
first-order rate constant assuming complex absorption kinetics [39]. Common exam-
ples are mixed first-order and zero-order absorptions, either sequentially or simulta-
neously, and fast and slow parallel first-order absorptions, e.g., [40, 41]. Although 
these models provide better fits in comparison with their single first-order absorption 
counterparts, the physical/physiological meaning of the first-order parameters does 
not comply with the passive or active drug transport operating for time τ in accord 
with the finite absorption time concept. 

In this vein, we analyzed [42], using PBFTPK models, nine sets of PK data from a 
mavoglurant population study [43] whose complex absorption processes have been 
modeled with a sum of two or three inverse Gaussian functions. PBFTPK models 
with one, two, three, or four constant successive input rates and two-compartment 
model disposition were used. Figure 4.8 presents the successful fitting results of the 
PBFTPK models to four out of nine sets of data in three subjects. 

Figure 4.8 shows that mavoglurant absorption from the immediate release for-
mulation exhibits one, three, and four absorption phases for subjects S16, S18, and 
S38 respectively. The absorption of mavoglurant from the modified-release
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Fig. 4.8 Fitting results of a PBFTPK model with one (top panels) or three (bottom left panel) or 
four (bottom right panel) constant input rates of a specific time total duration, τ and 
two-compartment model disposition to four sets of mavoglurant data [43]. Parameter estimates 
for τ, the concentration factor FD/Vc and the compartmental constants are shown in each inset. 
Upper left and bottom panels: Immediate-release (IR) formulation administered to subjects S16, 
S18, and S38 [43]. Top right panel: oral administration of modified release formulation to fasted 
subject S16. The solid triangles denote the end of the absorption process. The upper portion of each 
graph shows the fit residuals



formulation administered to the fasted subject S16 has one single phase of absorp-
tion, i.e., it is quite similar to the absorption profile with the immediate release 
formulation in the same subject. Based on the total time of drug duration quoted in 
Fig. 4.3, mavoglurant absorption from the immediate release formulation terminates 
at the upper part of the small intestine (τ = 2.07 h) for subject S16, close to the 
ileocecal valve that separates the small intestine from the large intestine (τ = 5.13 h) 
for subject S18 and the beginning of the ascending colon for subject S38 
(τ = 6.21 h). For fitting purposes and in order to avoid negative values for the 
input rate, the mavoglurant input rate was set equal to zero during the declining 
portion of the absorption phase, Fig. 4.8. The unsuccessful fittings of the PBFTPK 
models to the rest of the five sets of data provide unreliable parameter estimates. 
However, it was found again that mavoglurant is absorbed in successive input 
stages; the large variability of data coupled with the small number of data points 
compared to the large number of estimated parameters results in large uncertainties 
for the parameter estimates.
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The development of the FAT concept has led to a paradigm shift in oral pharmaco-
kinetics. It is hoped that the application of FAT in PBPK modeling and 
pharmacometrics will place an end to the perpetuation of infinite oral drug absorp-
tion fallacy. Overall, the envisioned new technology based on the PBFTPK models 
would ultimately lead to better population approaches in the dosage regimen design 
adjustment in various therapeutic areas and speed up the development of generic 
medicines. Most of the advances made in the FAT concept have been included in a 
relevant book published recently [44]. 
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Chapter 5 
Pharmacokinetic–Pharmacodynamic 
Modeling and Simulation in Clinical 
Practice and Studies 

Thomas P. C. Dorlo and Elin M. Svensson 

Abstract The past decade has seen a revival of the use of modeling and simulation 
of pharmacokinetics and pharmacodynamics in clinical practice. This resulted in a 
concept that is called model-informed precision dosing (MIPD), for which a wide 
range of software tools has been developed to be implemented in the clinical routine. 
These tools use modeling and model-based predictions to optimize the first or 
subsequent dosing for a patient based on what is already known about 
pharmacokinetic–pharmacodynamic relationships in combination with collected 
concentration-time data and patient characteristics. Newer applications have 
attempted to use also pharmacodynamic outcomes to inform dosing regimens 
using model-based approaches. This chapter discusses the use of modeling and 
simulation of both pharmacokinetics and pharmacodynamics in clinical practice 
and how it can be implemented in clinical routine. A particularly important clinical 
field where modeling and simulation of pharmacokinetics and pharmacodynamics 
have made a disproportionally large impact is drug dosing in children. Examples are 
provided of model-based pediatric dose regimens that have been implemented in 
clinical practice, as well as pharmacometric simulation approaches that can aid 
design of clinical pharmacokinetic–pharmacodynamic studies. 
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5.1 Introduction 

While the science of quantitative modeling and simulation of pharmacokinetics and 
pharmacodynamics is currently particularly associated with informing decisions in 
the contemporary drug development process as part of modern model-informed drug 
development (MIDD), its advent and introduction actually find its roots in the clinic. 
Methods were sought to deal with the highly heterogeneous data collected in clinical 
practice and how these could be used to find the optimal dose for the individual 
patient [1]. When Lewis Sheiner, Stuart Beal, and colleagues introduced nonlinear 
mixed-effects modeling in the field of pharmacokinetics and pharmacodynamics 
through the development of the software package NONMEM in the late 1970s and 
early 1980s, their evaluations focused on how this new methodology was better 
capable at dealing with the sparse and heterogeneous data collected in routine 
clinical settings and how this could inform individualized dose regimens based on 
patient-specific covariates [1–4]. In the past decade, there has been a revival of the 
use of modeling and simulation of pharmacokinetics and pharmacodynamics in 
clinical practice. This renewed interest has resulted in a concept that is called 
model-informed precision dosing (MIPD), for which a wide range of software 
tools have been developed to be implemented in the clinical routine. These tools 
use modeling and model-based predictions to optimize the first or subsequent dosing 
of a patient based on either patient characteristics plus what is already known about 
the pharmacokinetics and pharmacokinetic–pharmacodynamic relationships of a 
drug in this particular patient population, and/or previously collected drug 
concentration–time data of this patient, to further optimize the future dosing of this 
particular patient. Newer applications have attempted to use pharmacodynamic 
outcomes on top or instead of drug concentrations to inform dosing regimens 
using model-based approaches. This chapter will focus on the use of modeling and 
simulation of both pharmacokinetics and pharmacodynamics in clinical practice and 
how it can be implemented in clinical routine. A particularly important clinical field 
where modeling and simulation of pharmacokinetics and pharmacodynamics have 
made a disproportionally large impact is drug dosing in children. Pediatric dose 
finding and optimization are often neglected during drug development, leading to 
long delays before novel therapies become available also to young patients. Model-
based approaches incorporating physiological and other changes in this patient 
population affecting drug disposition and drug effects can be a very powerful way 
to derive pediatric regimens faster and more accurately. We will provide a few 
examples of model-based pediatric dose regimens that have been implemented in 
clinical practice, as well as pharmacometric simulation approaches that can aid 
pharmacokinetic–pharmacodynamic studies in clinical practice.
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5.2 Use of Pharmacokinetic–Pharmacodynamic Models 
in Clinical Practice 

5.2.1 Personalized Medicine 

Driven by an increased interest and capacity in pharmacogenetics in the past two 
decades, the current perception and interpretation of “personalized medicine” is 
often only limited to pharmacogenetics-based treatment adjustment, where, e.g., 
the identification of a single nucleotide polymorphism could indicate a required 
dose adjustment or expression of a particular drug target in cancer determines the 
choice of pharmacotherapy. This can be related to individual treatment response, 
e.g., drug target expression such as BRAF V600E expression indicating the use of 
BRAF inhibitor vemurafenib [5]; or both individual treatment exposure and subse-
quently treatment response, e.g., in the case of metabolic enzyme expression such as 
dihydropyrimidine dehydrogenase (DPYD) variant expression determining 
5-fluorouracil and capecitabine metabolism and severe toxicity [6]. This is, however, 
a too narrow interpretation of the term, given that metabolomic and genetic predis-
position is only one of the many covariates influencing individual pharmacodynamic 
response. The impact and overall effect size of pharmacogenetics on individual drug 
exposure and drug response is arguably rather limited, with a few exceptions, 
particularly when compared to other influential covariates, such as body weight 
and renal function. 

A more holistic view on “personalized medicine” would thus incorporate all 
individual factors, covariates, or biomarkers affecting or defining drug exposure 
and treatment response, with the aim to distill the most influential ones that eventu-
ally can and should be used to determine the dose or the requirement for a dose 
adjustment or even the type of treatment or drug, ultimately resulting in an optimal 
therapy for the individual patient. Population pharmacokinetic and pharmacody-
namic models are of course quintessentially suitable to identify these (changes in) 
clinical factors, patient characteristics and biomarkers, including pharmacogenetic 
markers, eventually determining treatment response. In addition, population phar-
macokinetic and pharmacodynamic models can estimate the effect size and quantify 
the impact of the factors on drug exposure and/or treatment response, where model-
based simulations can assess the impact of dose or treatment adjustments on an 
individual and population level. Population pharmacokinetic and pharmacodynamic 
modeling and simulation is thus an essential tool in enabling personalizing medicine 
and providing evidence for treatment guideline development, certainly in those 
instances where “one dose does not fit all.”
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5.2.2 Model-Informed Precision Dosing 

5.2.2.1 From Therapeutic Drug Monitoring to Model-Informed 
Precision Dosing 

The approach and interpretation of personalized medicine as discussed in the 
previous paragraph could be considered as a priori individualization or stratification 
of therapy based on clinical and patient characteristics. Treatment and particularly 
drug dose can also be adjusted during the course of treatment, based on initial or 
continued treatment response, resulting in an optimized and personalized treatment. 
This is commonly done by means of therapeutic drug monitoring. Given the overall 
assumption of a dose–exposure–response relationship for any type of treatment and 
a common delay in actual measurement of treatment response, often drug concen-
tration instead of clinical response or disease biomarker is measured. This is then 
compared to a reference concentration or concentration window, also referred to as 
therapeutic window. 

Traditionally, such a therapeutic drug monitoring approach to adjust the dose has 
been highly empirical, titrating the dose in increments followed by subsequent 
repeated measurements of the drug plasma concentration until the drug concentra-
tion, often a trough concentration (Cmin) right before the next dose, is within the 
specified or aimed target concentration window. There are various apparent issues 
for this traditional therapeutic drug monitoring approach, complicating a fast opti-
mization of individual dose and treatment, without exposing the patient to 
non-optimal or non-toxic levels of drug exposure. 

Firstly, conventional therapeutic drug monitoring is often based on sample 
collection around the time of Cmin, which is not only difficult to collect and time, 
particularly in an outpatient context, but is also yielding only limited pharmacolog-
ical information. For dose adjustment, the individual drug clearance will be of key 
importance, while a Cmin is typically not very informative for this pharmacokinetic 
parameter. Moreover, in clinical practice, samples are typically taken on an ad hoc 
basis, instead of the targeted time right before the next dose. 

Secondly, the actual algorithms for dose adjustment based on the concentration 
target attainment are often ill-defined and either based on, e.g., standard increments 
or the decision is entirely left to the treating clinician’s own experience or convic-
tion. This can be particularly dangerous if there is a large inter-individual variability 
in any of the parameters defining the dose–exposure–response relationship. Such an 
empirical approach will also increase the duration of under- or over-exposure, given 
that in most individual cases it will take multiple cycles of dose adjust-measure 
concentration until the desired target is achieved. Despite wide adoption of thera-
peutic drug monitoring, particularly in the field of antibiotics, this empirical 
approach and the passive nature underlying therapeutic drug monitoring have 
also received criticism. Amongst others, a concept called target concentration 
intervention was introduced, which emphasized on the more active approach to 
intervene rather than to monitor [7]. Rather than specifying a therapeutic window



or range, a single target drug concentration or biomarker response is being consid-
ered and based on existing pharmacokinetic and pharmacodynamic knowledge the 
corresponding dose is calculated to derive an individualized intervention to be 
implemented by the clinician. 
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These aforementioned issues related to therapeutic drug monitoring have led to 
the adoption of Bayesian forecasting approaches, where Bayesian priors based on 
population pharmacokinetic or pharmacokinetic–pharmacodynamic models are 
being used in combination with the observed patient concentration or biomarker 
and individual covariate information for covariates included in the previously 
developed models, to derive a posterior set of predicted individual model parameters 
that can then be used to adjust the individual dosing regimen. The first so-called 
“computer-aided dosing” algorithms arose more than 50 years ago [8–10], which 
actually initiated and formed the impetus for the field of population pharmacokinetic 
modeling or pharmacometrics. More recently, this model-based approach to opti-
mize individual therapy has been referred to as model-informed precision dosing. 

5.2.2.2 Model-Informed Precision Dosing Software Tools 

Uptake and implementation of model-informed precision dosing in clinical practice 
and routines have been relatively limited, even though it is emergingly popular 
among clinical pharmacologists and pharmacometricians. Model-informed precision 
dosing generally requires custom-made software tools and the use and implementa-
tion of these tools have historically been limited to academic centers of excellence. 
The main reasons for the lack of implementation have been suggested to include a 
lack of published evidence of large-scale utility and clinical impact of software 
implementing model-informed precision dosing, a lack of technical and computa-
tional expertise at the clinical site of implementation, a lack of standardized valida-
tion requirements of these software tools, and a lack of user-friendliness of the 
software tools themselves [11]. Particularly, the lack of prospective evidence for 
improved patient outcomes or a decrease in overall healthcare costs, generated 
through randomized controlled clinical trials has been identified as a major limitation 
and barrier for implementation [11, 12]. An example of such a prospective trial 
focused on the prediction of individual vancomycin dosing using model-informed 
precision dosing compared to the conventional use of Cmin, which showed indeed 
better clinical outcomes for the model-based tool approach [13]. 

There is a large range of software tools for model-informed precision dosing 
available, either developed as a spin-off from academic or clinical activities or by 
for-profit companies (Table 5.1)  [14]. A recent evaluation of their performance, 
assessed by an expert-based evaluation, evaluated these tools on user-friendliness, 
user support, computational aspects, population models, quality and validation, 
output generation, privacy & data security, and cost [15]. Overall, all tools showed 
an adequate performance, but with large differences in terms of number of drug 
modules and populations, quality control and user interface design [15], where the 
choice of the optimal software tool is probably highly dependent on the specific local 
requirements and personal preference and existing know-how.
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5.2.2.3 Issues in Model-Informed Precision Dosing 

A first issue for any type of model-informed precision dosing tool and its imple-
mentation in the clinic is model selection and model qualification. Model selection 
can be a daunting task given that for many drugs, a multitude of published models is 
available, most of which developed in different populations, in different clinical 
contexts and, perhaps most importantly, developed for different reasons and with 
different aims. Ideally, the population pharmacokinetic or pharmacokinetic–phar-
macodynamic model to be used to optimize dosing in a certain patient should be 
relevant for the intended population. Therefore, practically, a model should be 
developed in a matching age group (pediatric, adolescent, adult, etc.), clinical 
indication, disease severity (intensive care unit, outpatient, etc.), body composition 
(normal weight, obese, etc.), genetic background, studied dose ranges/levels, etc. 
[16]. Most models have been developed in rather limited population, for instance 
only in adults or only in pediatrics, based on a focused clinical trial, which poses 
threats to extrapolations from those models, particularly outside original covariate 
ranges. 

Therefore, it is pivotal to evaluate whether the chosen model or models are fit-for-
purpose and for this the predictive performance should be evaluated in the particular 
context and setting where the model-informed precision dosing is intended to be 
used, e.g., based on historical (therapeutic drug monitoring) data from the institution 
or context where the tool will be implemented [16]. The different aspects of the 
model to evaluate depend on the purpose of implementation and can include a priori 
predictive value to assess the optimal starting dose for an individual, or rather the 
performance of the a posteriori Bayesian forecasting when the aim is to adjust dosing 
based on measured drug concentrations or other biomarker quantifications in an 
individual. The importance of evaluating the predictive value for extrapolation in a 
therapeutic drug monitoring setting was recently highlighted by a large systematic 
review on the extrapolation of population pharmacokinetic models to enable model-
informed precision dosing of antibiotics [17]. Only 25% of the identified external 
evaluation studies actually assessed predictive performance by Bayesian forecasting. 
That population models for the same drug exhibit large variability in their predictive 
performance was shown recently for vancomycin and the predicted 
pharmacokinetic–pharmacodynamic target attainment, which varied by more than 
300%, directly having a large impact on associated decisions on dose optimization 
bases on these predictions. This systematic evaluation of Bayesian forecasting 
indicated some model properties associated with a predictive performance: (1) the 
larger the population the model is based on, the better the predictive performance, 
(2) misspecifications in the population models can lead to biased predictions, often 
based on biased sampling designs, such as exclusive use of Cmin [18]. 

One of the solutions that has been proposed for this issue of model selection and 
evaluating whether its fit-for-purpose or fit-for-context and ultimately to create more 
standardization in the implementation and adoption of model-informed precision 
dosing is a process introduced as a “continuous learning approach” [19]. This 
approach entails the adaptation of a population model to a local context, by



re-estimating population parameters based on locally available, good-quality, well-
registered, historic data, e.g., based on historic therapeutic drug monitoring. The 
overall aim of this approach is to reduce the prediction error and optimize the model 
to a local population and context. Another proposed solution to the model selection 
issue is an algorithm known as “model averaging.” Here, a set of available (candi-
date) models from literature is used, which may not all be optimal or adapted to the 
local context or individual patient targeted. The model averaging algorithm can 
either select a population model or average a combination of population models for 
an individual patient on an a posteriori basis once biomarker concentration data of 
this individual become available. Such a model averaging approach has been 
evaluated as well for vancomycin, where both available models and data sets are 
highly heterogeneous, leading to an improved predictive performance [20]. 
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A second issue is the predictive ability for extreme patients, i.e., patients that 
exhibit characteristics at the edges or even outside the covariate range for the 
population the model was originally build for. While the model-informed precision 
dosing is probably of high clinical relevance for these types of extreme patients, 
these patients are typically poorly fitted and poorly predicted based on a population 
model. A solution for this is to flatten the model priors or by downweighing them in 
the likelihood function. This makes the predictions to be relying more on the 
(extreme) observed data and thus allows more extreme individual parameter esti-
mates. The balance between overfitting of extreme observed data by downweighing 
priors and on the other hand relying on these prior estimates to enable robust model-
based predictions is highly delicate and further emphasizes the need to collect more 
data in extreme patients for confirmation [16]. 

A third issue for model-informed precision dosing might be time-variable 
changes in pharmacokinetics and pharmacodynamics, e.g., as a result of changes 
in patient (patho)physiology. Such variability in pharmacokinetics and pharmaco-
dynamics over time might also be random between dosing occasions, which can be 
considered in models as between-occasion variability. This poses difficulties as it 
might reduce, in various ways, the importance of historical data in an individual for 
the predictive value of future treatment course [16]. In the case of random between-
occasion variability, this should be properly implemented, as its omission has been 
shown to lead to imprecisions in Bayesian forecasting [21]. Drugs that are to a large 
extent affected by between-occasion variability, most often oral drugs with a day-to-
day variable absorption rate and extent of absorption, might require repeated sam-
pling and observations over multiple occasions to enable disentangling of between-
subject and between-occasion variability and improve individual predictions. 

A more practical issue, particularly in low- and middle-income countries, limiting 
the widespread global implementation of model-informed precision dosing, is the 
non-availability of easily accessible bioanalytical facilities that can provide drug 
quantifications at a low cost with a short turnaround after sample collection. Addi-
tional problems can arise in terms of patient data protection and other privacy-related 
issues, where model-informed precision dosing requires implementation and inte-
gration in hospital IT systems and infrastructure where patient record files are 
maintained. More recent data protection regulations, such as the General Data 
Protection Regulation implemented in the European Union in 2018, complicate 
this integration and potentially the use of cloud-based solutions.
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5.2.2.4 Pharmacodynamic Model-Informed Precision Dosing 

While model-informed precision dosing is most often based on drug concentrations 
as a biomarker, in the form of therapeutic drug monitoring, the biomarker of choice 
can of course be a pharmacodynamic endpoint instead of a pharmacokinetic end-
point, which is likely more closely related to the desired clinical outcome. In this 
paragraph, a few examples of applications of dose individualization based on 
Bayesian tools for pharmacodynamic endpoints will be discussed: dose individual-
ization of (I) warfarin based on international normalized ratio (INR), 
(II) chemotherapy based on neutrophils, and (III) tyrosine kinase inhibitors based 
on soluble vascular-endothelial growth factor receptor-3 (sVEGFR-3). 

International Normalized Ratio for Warfarin Dose Individualization 

Despite being in use for more than 50 years now, the clinical application of warfarin 
for the management of thromboembolic events is, while highly effective, rather 
limited by a narrow therapeutic range and particular variability in response to a given 
dose. The variability in response is not only due to pharmacokinetic variation in the 
patient population as a result of genetic polymorphisms in, e.g., the gene for the 
metabolizing enzyme cytochrome P450 2C9, but also due to variability in the 
pharmacodynamic response, e.g., due to vitamin K intake. Based on established 
population pharmacokinetic–pharmacodynamic models characterizing the 
antithrombotic effect of the warfarin exposure in relation to the risk of bleeding as 
measured by the prothrombin time INR [22–24], a Bayesian warfarin dose individ-
ualization tool was developed by Hamberg et al. [25]. There is a pronounced delay 
between the dosing of warfarin and the INR response, which is included in the 
population pharmacokinetic–pharmacodynamic model by a transduction model 
consisting of a flexible parallel compartment chain, comparable to a transit-chain 
compartment model, which sits in between the direct drug effect on the inhibition of 
the vitamin K cycle and the ultimately observed increase in INR from baseline. The 
developed model-based tool allows the estimation of an a priori dose based on body 
weight, baseline and target INR, and optionally relevant genetic polymorphisms, 
while an a posteriori update of the individualized dose is enabled through Bayesian 
forecasting and additional incoming information about the warfarin dose history and 
INR observations solely. The tool is a good example of how population 
pharmacokinetic–pharmacodynamic models can be employed and implemented in 
a clinical setting together with relevant biomarker measurements to enable not only 
starting doses, but also dose adaptation in the course of treatment based on a highly 
relevant pharmacodynamic biomarker.
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Neutrophil-Guided Dose Individualization of Chemotherapy 

A typical example where drug concentrations are maximized based on acceptable 
tolerability in the individual patient is chemotherapy dosing in anticancer treatment, 
where there is a continuous and dynamic balance between achieving maximal 
chemotherapeutic exposure to maximize the probability of reducing the tumor load 
while at the same time maintaining a tolerable toxicity profile, acceptable for the 
patient. Neutropenia is one of the most frequent and most severe adverse events of 
chemotherapy as it is life-threatening, making patients highly vulnerable with an 
increased risk of infections. Various semi-mechanistic pharmacodynamic and 
pharmacokinetic–pharmacodynamic models have been developed to characterize 
the time course of myelosuppression leading to neutropenia and its relationship to 
drug dosing and cumulative drug exposure [26]. Based on this, a dosing tool, 
specifically focused at etoposide, has been developed – and implemented in 
Microsoft Excel – to make the population pharmacodynamic model more easily 
available to non-modelers [27]. The tool requires previous neutrophil counts from a 
previous treatment course to derive and based on a Bayesian estimation procedure 
predicts a dose that results in a desired neutrophil nadir for the next treatment cycle. 

Later various other approaches for model-informed precision dosing based on 
neutropenia and neutrophil counts have been presented [28–30]. One of the chal-
lenges to choose which model and which model-informed precision dosing tool fits 
best the clinical application and context is, as described earlier, model averaging or 
model selection [20]. 

sVEGFR-3 for Tyrosine Kinase Inhibitor Sunitinib Dose Individualization 

Tyrosine kinase inhibitors have been a major game-changer for the safety and 
effectiveness of treatment of a wide variety of malignancies. They are more 
patient-friendly as they can be taken orally and were designed as more targeted 
therapies compared to conventional chemotherapy. Nevertheless, many of the tyro-
sine kinase inhibitors have shown to exhibit large between-patient variability in both 
pharmacokinetics and pharmacodynamics in terms of both safety and effectiveness 
endpoints. There is thus a large need for further dose individualization in order to 
optimize treatment outcome and patient tolerability. Most dose individualization of 
tyrosine kinase inhibitors has been based on therapeutic drug monitoring of drug 
concentrations given the large between-patient variability in drug exposure and 
dose–exposure–effect relationships, e.g., focusing on the area under the 
concentration–time curve or the trough concentration at steady-state, various thera-
peutic drug monitoring targets have been suggested for both adults and children 
[31, 32]. Other dose individualization approaches for tyrosine kinase inhibitors have 
been focused on pharmacodynamic markers related to the targeted effect or toxicity 
such as soluble biomarkers, blood pressure, or neutrophil counts [33]. One of these 
biomarkers that have been evaluated and proposed for dose individualization is 
sVEGFR-3 for sunitinib, where semi-mechanistic population pharmacokinetic–



pharmacodynamic models have been developed to capture between-patient variabil-
ity and longitudinal time course of the biomarker [34]. Centanni and Friberg 
presented a pharmacometric framework to evaluate the effect of model-based dosing 
individualization based on sVEGFR-3 not only on outcome endpoints but also in 
terms of cost-effectiveness and compared it performance to more conventional dose 
individualization strategies such as based on therapeutic drug monitoring using 
sunitinib drug concentrations or adjustment based on clinical toxicity measurements 
[35]. The model-based simulations showed that a sVEGFR-3-based dosing led to the 
longest median overall survival compared to fixed, therapeutic drug monitoring-
based or neutrophil counts-based (2.16 vs 1.71, 1.80 and 1.90 years, respectively). 
On top of that, it was also predicted to be highly cost-effective compared to the other 
dose individualization approaches, with a cost per additional quality-adjusted life 
year of €36,784 versus €173,150 and €104,438 for therapeutic drug monitoring-
based and neutrophil counts-based, respectively. This framework provides a good 
example of how model-based dose individualization based on pharmacodynamic 
biomarkers linked to the main clinical endpoint of overall survival can provide an 
improved prediction of effects of dose adjustments particularly for drugs and drug 
classes where there is large variability in exposure-response relationships or gener-
ally large between-patient variability in biomarker response. A prospective clinical 
trial should validate these findings in a “real-world” population and setting, based on 
which the framework and dose individualization algorithms could be further adapted 
to the clinical needs and context. 
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5.2.3 Optimizing Pediatric Dosing 

Dose optimization between patient subpopulations is most often focused on achiev-
ing a similar level of drug response between the various subpopulations. Pediatric 
patients form a sub-population which is consistently being neglected during drug 
development [36], most often because of ethical concern, logistical challenges, and 
lack of financial interest. If pediatric pharmacokinetic data are available, these data 
are often highly heterogeneous and sparse in nature, which makes interpretation 
difficult. Particular focus in model-informed drug development is therefore paid to 
the extrapolation of dosing regimens to children based on adult pharmacokinetic and 
pharmacodynamic data. In all diseases for which the exposure-response relationship 
is expected to be similar in adults and children, the general aim is to derive a 
pediatric dosing regimen that provides an equivalent level of drug exposure that 
was found effective in adults [37]. Pediatric dose optimization or extrapolation in 
that context is primarily focused on adjusting the adult dose regimen by accounting 
for effects of body size and maturation of physiological systems involved in the 
distribution and metabolism of drugs [38]. If a specific pediatric formulation is used, 
or the adult formulation is manipulated to enable dosing in children not able to 
swallow whole tablets, potential effect of the administration form could also be 
considered.
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Based on the general concept of allometry in metabolism, which was first coined 
by Kleiber in 1938 [39] and investigated the relationship between an organism’s 
body size and metabolic processes, the theory of allometric scaling has been widely 
accepted in the pharmacokinetic field. This relationship between body size and drug 
clearance, for small molecules, is described by a non-linear power function with an 
exponent of 0.75, which particularly in older children above the age of 2 years is able 
to predict both clearance and variability in clearance based on adult pharmacokinetic 
data [40, 41]. The relationship between volume of distribution and body size is linear 
with a power exponent of 1. The most practical and most easy to measure parameter 
reflecting the quantification of body size is total body weight, which is most often 
used for this type of extrapolations. An additional factor to consider when optimizing 
dose regimens in children is the developmental changes in metabolism which mainly 
take place within the first 2 years after birth. These maturation effects particularly 
affect drug-metabolizing enzyme expression and glomerular filtration and are most 
often a function of increasing metabolic function with increasing age. 

The allometry of pharmacokinetics implies that clearance is relatively larger in 
children compared to adults when normalized to body weight, which means that 
children (over 2 years of age at least) will generally require a higher mg/kg dose than 
adults to reach the same level of drug exposure [42]. Whether this is needed is of 
course dependent on the therapeutic window or range of drug concentrations which 
is required to be attained for a safe and effective usage of the drug. In addition, there 
might be a need to adapt for scaling of the pharmacodynamic response from adults to 
children in diseases where the effect of the drug might be subject to age maturation 
as well, such as immunological effects. In children below 2 years of age, the 
extrapolation is not as straightforward and is largely depending on what is known 
about the specific maturation function of the enzyme and renal functions involved in 
the specific metabolism of that drug. 

A model-based approach is the most suitable approach to incorporate all these 
biologically supported body size and age effects on the pharmacokinetics, and to 
decide on optimal dosing weight bands based on the available dose strengths. 
Various examples are available where a model-based informed dose regimen has 
been introduced in place of the adult mg/kg dosage. Such dosages have often been 
developed and evaluated based on pharmacokinetic simulations of virtual pediatric 
patient populations relevant for the pediatric population of interest. Two case 
examples will be used to further illustrate this: (1) the update of pediatric dosing 
guidelines of bedaquiline for the treatment of rifampicin-resistant tuberculosis, and 
(2) the optimized dose regimen of miltefosine for the treatment of children with the 
neglected tropical disease visceral leishmaniasis. 

5.2.3.1 Updating Pediatric Dosing Guidelines for Tuberculosis 
in Children 

Every year about one million children worldwide fall ill with tuberculosis, almost 
half of those are 4 years or younger [43]. Tuberculosis is an infectious disease caused 
by Mycobacterium tuberculosis, most commonly affecting the lungs. Effective



combination treatments including up to four drugs are available, but mycobacterial 
strains resistant to the most important first-line drugs are becoming increasingly 
common. Fortunately, a few novel drugs have been approved for treatment in adults 
in the last decade and these are now becoming available for children as well. 
However, pediatric data from clinical trials investigating the novel anti-tuberculosis 
compounds are very limited. Modeling and simulations played a key role when the 
World Health Organization (WHO) recently (2021) updated their guidance on 
treatment of multi-drug resistant tuberculosis in children and published weight-
and age-based dosing tables as part of an Operational Handbook [44]. This section 
describes how the WHO recommendations for dosing of bedaquiline in children 
were determined, as an illustrative example. The process is described in detail in the 
public report from the associated WHO expert consultation [45]. 
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Bedaquiline was approved for treatment of rifampicin-resistant tuberculosis by 
the U.S. FDA in 2012. It has a novel mechanism of action, shortens the time to 
culture conversion (i.e., when mycobacteria no longer can be detected in sputum 
samples collected from the patient), and improves long-term treatment outcomes 
[46]. A decade later, the pediatric trials to determine optimal bedaquiline dosing in 
children are still not finalized and the dosing recommendations from stringent 
regulatory authorities only cover children 5 years and older. The reasons for the 
slow progress with the pediatric trials are multiple and have to do with the difficulty 
to include young children with the relevant diagnosis, lack of qualified trial sites in 
the part of the world where the disease is common, the use of inefficient age-de-
escalation study designs, and sub-optimal planning. In the meantime, bedaquiline 
has become a cornerstone in combination therapy of rifampicin-resistant tuberculo-
sis in adults and is categorized as a group A drug according to WHO, which means 
that it should always be included if possible. After a review of the limited clinical 
data available, a WHO guideline development group recommended that bedaquiline 
can be used in children of all ages (down to infants) and this was publicized through 
a so-called WHO rapid communication (conditional recommendation, very low 
certainty of evidence) [47]. After that, a technical consultation was conducted to 
determine how to practically conduct the dosing. 

The scope to the dosing scheme was defined as children of all ages down to term-
born infants of 3 kg or more. Another prerequisite was that the dosing schedule 
should follow the pattern of the approve regimen in adults, with includes a 2-week 
loading phase with daily administration (400 mg) and a 22-week-long continuation 
phase with three times weekly (TIW) dosing (200 mg). A 100 mg tablet and a 20 mg 
scored dispersible tablet (bioequivalence demonstrated indirectly) are the available 
formulations. Key features of bedaquiline pharmacokinetics to note include the long 
terminal half-life (>5 months), strong positive effect of food on bioavailability, and 
high protein binding (>99.9%) [48]. Bedaquiline is metabolized by CYP3A4 to the 
less active M2 metabolite. Weekly average bedaquiline concentrations have been 
linked to efficacy (rate of decline in bacterial load) and M2 concentrations have been 
linked to the most important side effect of bedaquiline treatment, QT prolongation 
[49, 50].
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A simulation framework was developed with the aim to select pediatric doses 
predicted to achieve exposures as close as possible to exposures achieved in adults 
on the approved dosing regimens. This is in line with the FDA general clinical 
pharmacology considerations for pediatric anti-infective drugs, where for anti-
infectives it is often reasonable to assume that adults and children share a sufficiently 
similar disease course and response to intervention [37]. The simulation framework 
included the following components:

• Weight Banding Approach 
To align with other components in the multi-drug regimen, the weight banding 

implemented in the previous version of the WHO Operational handbook was 
primarily followed, with a few small adjustments. The approach included 9 cat-
egories with 8 cut-off points between 5 and 50 kg. Given the expected strong 
influence of age on clearance, doses for the lower weight range were evaluated in 
age group categories (0 to <3 months, 3 to <6 months, and ≥6 months).

• Virtual Pediatric Population 
The population included 40,000 children aged between 0 and 18 years with 

body weight 3 kg or higher (50–50 girls and boys). The weight-per-age distribu-
tion was based on WHO growth standards (0–10 years) enriched with data from 
the US National Health and Nutrition Examination Survey (NHANES) database 
(10–18 years). To be representative of children with tuberculosis disease which 
are generally smaller than healthy children of the same age, the age–weight 
distribution was adjusted using an earlier reported approach [51].

• Target Exposures 
The main target was set as the weekly median steady-state exposures in adults 

who received WHO-recommended bedaquiline dosing. Exposures of the main 
metabolite (M2) during the loading phase were also considered, based on the 
assumption that too high exposures might cause toxicity.

• Population Pharmacokinetic Model 
A population pharmacokinetic model developed on data from adults was used 

for the exposure simulations [52]. This model describes the pharmacokinetics of 
bedaquiline using three disposition compartments for bedaquiline, and two for the 
M2 metabolite. Semi-physiological models were used to characterize changes in 
weight and albumin over time. Weight and albumin were correlated; they typi-
cally increased after the start of treatment and significantly affected bedaquiline 
and M2 plasma disposition. Allometric scaling based on body weight with the 
theoretical components (0.75 for clearance and 1 for volumes) accounted for size 
effects. The age effect was included with published CYP3A4 maturation func-
tions [53, 54]. Two different options were used given that the available informa-
tion from children on bedaquiline was too limited to determine which of them 
fitted best. Bioavailability was assumed to be unaffected by age. The model was 
applied to a limited dataset from children and found to describe the data 
adequately.
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Table 5.2 Pharmacometric 
model-based weight-banded 
dosing for bedaquiline in 
pediatric patients with 
rifampicin-resistant 
tuberculosis 

Weight range Age category Dosing of bedaquilinea 

3 to  <5 kg 0  to  <3 months 
≥3 months 

30 mg QD/10 mg TIW 
60 mg QD/20 mg TIW 

5 to  <7 kg 0  to  <3 months 
≥3 months 

30 mg QD/10 mg TIW 
60 mg QD/20 mg TIW 

7 to  <10 kg 0 to <3 months 
3 to  <6 months 
≥6 months 

30 mg QD/10 mg TIW 
60 mg QD/20 mg TIW 
80 mg QD/40 mg TIW 

10 to <16 kg 3 to <6 months 
≥6 months 

60 mg QD/20 mg TIW 
120 mg QD/60 mg TIW 

16 to <30 kg 200 mg QD/100 mg TIW 

≥30 kg 400 mg QD/200 mg TIW 

QD once a day, tuberculosis tuberculosis, TIW thrice weekly 
(Monday/Wednesday/Friday) 
a Dosing is provided for the intensive phase (2 weeks) followed by 
dosing for the continuation phase (22 weeks) 

Different practically feasible dosing options were outlined and evaluated in the 
simulation framework. Expected exposures were presented with boxplots also 
including the target exposure and a reference range for low and high exposures 
seen in phase 2 trials in adults. The simulation results were presented to an inde-
pendent expert panel with representation from all continents including medical and 
pharmacological expertise, pediatricians, civil society, and national tuberculosis 
program representatives. The panel collectively assessed the model-derived dosing 
options in a dynamic process, weighting the risks linked to over-versus under-
exposure, and finally selected the doses to bring forward in the WHO Operational 
Handbook (Table 5.2). The modeling and simulation work was instrumental in the 
process to generate dosing recommendations in a populations where limited direct 
data are available, making the most out of drug-specific information from adults and 
established knowledge about developmental physiology. The appropriateness of the 
dosing schedule should be evaluated in clinical studies, but the immediate inclusion 
in the WHO Operational Handbook demonstrated the confidence in careful model-
based extrapolation to facilitate access to life-saving bedaquiline treatment for 
children of all ages affected by rifampicin-resistant tuberculosis. 

5.2.3.2 Optimized Dose Regimens for Children with the Neglected 
Tropical Disease Visceral Leishmaniasis 

Visceral leishmaniasis is globally one of the most neglected tropical diseases and the 
second largest killer among parasitic disease, only after malaria. After a successful 
elimination campaign on the Indian subcontinent, the main burden of this fatal 
disease caused by the Leishmania parasite is currently in Eastern Africa, where 
about 50–60% of the patients are pediatric. Historically clinical trials to evaluate new 
drugs for leishmaniasis have largely been focused on adult patients. One of the key 
drugs to treat leishmaniasis is oral miltefosine, which is a repurposed drug originally



developed for the treatment of cancer and is the only oral drug currently available for 
leishmaniasis. During the initial clinical development of this drug in India, only 
limited attention was given to the clinical pharmacokinetics of this drug: for 
instance, only very sparse descriptive pharmacokinetic data were reported in the 
registration documents that were initially filed in India (2002) and Germany 
(2004) [55]. 
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Early studies on miltefosine in visceral leishmaniasis in India already indicated a 
lower end-of-treatment/steady-state concentration in children compared to adults 
[56], while given a similar 2.5 mg/kg/day regimen for 28 days. However, this was 
not given much attention due to an adequate efficacy in both children and adults in 
that region. Later the pediatric underexposure was confirmed in a Nepalese cohort 
study, where again children had around 30% lower steady-state concentrations 
compared to adults [57]. The relevance of this finding in Nepal was corroborated 
by the observation that a longer follow-up time of patients of 12 months revealed a 
much larger failure rate of the treatment in terms of relapse of disease. Most of the 
patients experiencing treatment failure were children [58], who were underexposed 
to the drug in comparison with adults. A pharmacokinetic–pharmacodynamic model 
identified an exposure-response relationship and revealed that the time that the 
miltefosine concentration was above the in vitro susceptibility EC90 (t > EC90) 
was related to the probability of experiencing a relapse of infection [59]. A similar 
finding was done in Eastern Africa, where it was demonstrated that children below 
the age of 12 years were exposed to significantly and clinically relevant lower 
concentrations of miltefosine compared to adult patients with a higher body weight, 
with again on average a difference of 36% in end-of-treatment steady-state 
concentrations [60]. 

The relevance of achieving sufficient miltefosine exposure has been demonstrated 
through various established exposure-response relationships, in an attempt to char-
acterize and explain the increased treatment failure rate of this drug in Eastern Africa 
compared to the Indian subcontinent. Not only was experiencing a relapse within 
12 months associated with a lower drug exposure, but in Eastern Africa it was also 
demonstrated that the time until relapse of infection was associated with the 
miltefosine t > EC90, affecting the relapse hazard in a pharmacometric time-to-
event model [61]. This lack of efficacy of the conventional 2.5 mg/kg/day 
miltefosine regimen really prevented the use of the only oral drug available for the 
treatment of leishmaniasis in Eastern Africa, given that >50% of the visceral 
leishmaniasis patients in that region are pediatric [60]. 

Various observations from controlled and observational studies from both the 
Indian subcontinent and Eastern Africa confirmed that children accumulate the drug 
to a lesser degree than adults when administered 2.5 mg/kg/day. This pediatric 
underexposure with the conventional mg/kg dosing is consistent with the clinical 
observations from various regions of endemicity that children are more at risk of 
failing miltefosine treatment and later relapse of infection [58, 59, 63]. Based on a 
pooled population pharmacokinetic analysis combining pharmacokinetic data from 
both Indian adult, Indian pediatric and European adult visceral leishmaniasis patients 
with a wide distribution of body weights (range 9–113 kg), clearance of miltefosine



was most accurately estimated when scaled allometrically with a power exponent of 
0.75, based on fat-free mass of the patient [64]. Model-based simulations confirmed 
once again the pediatric underexposure with a mg/kg/day dose. An allometric dose 
was developed based on the most significant body size descriptor fat-free mass, 
which was derived from the body weight, height, and sex of a patient (Fig. 5.1) 
[64]. This so-called allometric miltefosine dosing regimen was predicted to result in 
equivalent exposure in Indian and Eastern African children compared to adults. 
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A pediatric Phase II trial with this allometric miltefosine regimen administered for 
28 days was conducted in Kenya on 30 pediatric visceral leishmaniasis patients 
(≤12 years of age) to assess pharmacokinetic equivalence, efficacy, and safety of this 
regimen. Efficacy with this allometric regimen increased to 90% compared to 59% 
with the conventional miltefosine regimen. Exposure in terms of pharmacokinetic 
target t> EC90 attainment and AUCd0–28 was improved and specifically less variable 
compared to the mg/kg dose, while the increased absolute daily dose was found to be 
tolerable with no particular increase in toxicity [62, 65]. Based on these promising 
results, the model-based allometric miltefosine dosing regimen enabled the first ever 
shortened partly-oral combination treatment regimen for visceral leishmaniasis 
without the highly toxic antimonial sodium stibogluconate. This 14-day pediatric-
adapted allometric miltefosine + paromomycin regimen showed again comparable 
drug exposure, pharmacokinetic target attainment, and efficacy between pediatric 
and adult patients and was found to be non-inferior to the current 17-day 
WHO-recommended paromomycin + sodium stibogluconate treatment [66]. This 
new 14-day allometric miltefosine + paromomycin regimen is currently being rolled 
out and access is being promoted by implementation in the treatment guidelines for 
visceral leishmaniasis in the Eastern African region. Similar shortened combination 
treatments based on the pediatric allometric miltefosine dosing regimen are currently 
being evaluated clinically in other clinical presentations of leishmaniasis such as 
post-kala-azar dermal leishmaniasis [67]. 

5.3 Use of Pharmacokinetic–Pharmacodynamic Models 
in Design of Clinical Studies 

Two key aspects of a clinical trial including pharmacokinetics or longitudinal 
biomarker data collection are how many patients to include and when to sample. 
Pharmacokinetic–pharmacodynamic modeling can be used to guide design of clin-
ical studies through power evaluation and clinical trial simulation. A prerequisite is 
that a population model describing the components of interest, directly or indirectly 
through extrapolation or assumptions, is available. Optimizing study design is 
important to maximize the chance to answer the posed research questions while 
minimizing the burden for participants and costs. Relevant approaches and tools are 
outlined in this section.
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Fig. 5.1 Dosing table height chart for the pediatric allometric miltefosine regimen, based on 
fat-free mass of the pediatric visceral leishmaniasis patient, as used in clinical practice during the 
pediatric Phase II trial on allometric miltefosine in Kenya [62]
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5.3.1 Stochastic Simulation and Estimation 

The Stochastic Simulation and Estimation (SSE) approach is sometimes also called a 
parametric bootstrap. It is a tool that can investigate parameter identifiability and 
precision as well as power to detect a certain effect, answering question like “How 
long after dose administration do we need to sample to estimate clearance accu-
rately?” or “How many subjects do we need to have at least 80% power to detect a 
covariate effect of X size on parameter Y?” An SSE consists of the following steps: 

1. Make a data frame describing an initial sampling schedule 
2. Add a virtual population of the initial sampling size, including covariates if 

relevant for the used simulation model 
3. Simulate X number of clinical trials based on the population model and the data 

frame 
4. Estimate the model parameters in each of the X simulated trials 
5. If evaluating power: Estimate an alternative reduced model not including the 

effect of interest in each of the X simulated trials 
6. Summarize the results, e.g., parameter precision and in the case of power esti-

mation, the difference in objective function value (OFV) for the original and 
reduced alternative model. The power is the proportion of trials where the 
difference in OFV is larger than the relevant cut-off value for the desired statis-
tical significance level. 

How many trials should be simulated and estimated? This depends on the 
certainty needed in the results and the available computational resources. Commonly 
used numbers are between 100 and 1000. The results from the SSE only directly 
inform about the tested scenario, but parametric power estimation can be used to 
extrapolate to a full power curve [68]. To evaluate parameter precision and 
identifiability under other sampling schedules, the process needs to be repeated. 

5.3.2 Monte-Carlo Mapped Power 

The Monte-Carlo Mapped Power (MCMP) approach is a way to estimate power at 
different sample sizes [69]. It cannot evaluate other aspects like parameter precision. 
An MCMP consists of the following steps: 

1. Make a data frame describing a selected sampling schedule 
2. Make a large virtual population, including covariates if relevant for the used 

simulation model 
3. Simulate results for the whole virtual population one time 
4. Estimate on the whole virtual population one time with the original model and 

one time with the reduced model not including the effect of interest 
5. Calculate the individual differences in OFV (ΔiOFV)
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6. Randomly sample X ΔiOFV from the large dataset and sum up. Repeat 1000 
times 

7. Power for X individual is the proportion of the 1000 replicates where the 
difference in OFV is larger than the relevant cut-off value for desired statistical 
significance level 

8. Repeat for X + 1, X + 2. . .  individuals to get the full power curve 

How large should the initial dataset to sample from be? It is relative to the sample 
size needed for desired power and a rule of thumb is at least 50 times larger than the 
sample size selected. Fulfillment of this condition should be checked in the end of 
the procedure. Both SSE and MCMP procedures can be automated though 
implementations in programs such as Perl-speaks-NONMEM (PsN) [70]. 

In the SSE and MCMP approaches, the user is required to provide an initial 
design of the study and a sampling schedule to start evaluations from. An alternative 
is optimal design methodology where an optimal sampling schedule is the output of 
the procedure. Optimal here means that model parameters are as precise as possible. 
The standard errors of parameter estimates are one measure of precision, and 
Optimal Design methodology utilizes the so-called Fisher Information Matrix to 
find a design that minimizes the standard errors. Optimal design procedure can be 
conducted in specialized software such as PopED or PFIM [71, 72]. Recently, the 
much-used software for population modeling NONMEM added functionality to 
perform simple design evaluation including optimization of sampling timepoints 
through the $DESIGN option [73]. 

5.3.3 Aiding the Study Design of Clinical Studies Focusing 
on Dose–Exposure–Response 

An example of a pharmacometric-based model approach and the use of SSE in 
evaluating the study design of clinical trials was recently presented, investigating a 
parallel design versus cross-over design to assess the effect of two different dosing 
regimens on a pharmacodynamic toxicity outcome [74]. Irinotecan and its metabo-
lite SN-38 are metabolized by the UGT1A1 enzyme, where genetic variants of this 
enzyme may confer reduced enzyme activity and lead to a phenotype that could be 
characterized as “poor metabolizer.” The impact of a 30% initial dose reduction for 
these poor metabolizers based on the pharmacogenetic UGT1A1 profile on the 
irinotecan-induced hematologic toxicity versus non-reduced initial dose was 
assessed. The clinical trial simulation combined population pharmacokinetic models 
for irinotecan and its metabolite SN-38, in combination with a semi-mechanistic 
model of drug-induced myelosuppression to describe the time course of neutrophils 
and the incidence of grade 4 neutropenia. Through clinical trial simulations two 
study designs were compared, with a 21-day parallel design versus a 63-day cross-
over design, based on virtual clinical trial populations including a proportion of poor 
metabolizers. Five-hundred clinical trial simulations were performed and were 
analyzed using two distinct data analysis methods (Fig. 5.2):
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Fig. 5.2 Workflow of the pharmacometric model-based study design evaluation to assess the effect 
of the standard (STD) versus pharmacogenomic (PGx) dose of irinotecan on the pharmacodynamic 
endpoint of grade 4 neutropenia (G4N). (Reproduced from Minichmayr et al. Pharm Res. 2021 [74] 
under a Creative Commons Attribution 4.0 International License) 

1. A conventional statistical analysis based on the comparison of fractions of 
patients experiencing grade 4 neutropenia for the reduced versus standard dose 
regimen. 

2. A pharmacometric model-based analysis, where a base pharmacokinetic–phar-
macodynamic model was compared to an alternative model with an additional 
estimated dose-dependent difference in the neutrophil-time profiles. 

Consistently, the pharmacometric model-based analysis method showed a higher 
efficiency of identifying a difference in grade 4 neutropenia, resulting in a lower 
number of study participants in the trial to identify this difference. To achieve >80% 
power, with α = 0.05, a study size of 220/100 patients per treatment arm/sequence 
was needed when using the conventional statistical approach, while only 100/15 
patients were needed when using the model-based analysis approach for the parallel/



cross-over clinical study design, respectively. At the same time, the pharmacometric-
based clinical trial simulations allowed the investigation of alternative scenarios and 
the impact of certain model assumptions and study design features, through sensi-
tivity analyses. This not only helps rationalizing the design of the clinical trial, but 
also aids to avoid unfeasible trials. For instance, it was shown that the parallel versus 
cross-over study design had a major impact on the detectability of differences in 
occurrence of grade 4 neutropenia events. Additionally, the magnitude of the 
pharmacogenetic effect, i.e., the extent of reduction in metabolite clearance in poor 
metabolizers, was identified to have a high impact on the power of the study. 
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Other clinical trial simulations have shown similar advantages of analyzing the 
endpoints using a model-based analysis of clinical trial data compared to more 
conventional statistical analysis of the comparison of treatment arms or sequences. 
Consistently, model-based analyses have shown to reach a higher statistical power, 
resulting in a ≤8.5 times lower required sample size to identify an effect for a wide 
variety of study designs and therapeutic fields, such as stroke, diabetes, cancer, and 
hyperhidrosis [75–78]. This is an inherent effect of the higher information density in 
the model-based analysis due to consideration of all available longitudinal data and 
information contained in these data throughout the observation period in the clinical 
trial instead of an, often binary or categorical, outcome at a certain pre-specified time 
point or even a summary statistic of this longitudinal data. 
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Chapter 6 
On the Verge of Impossibility: Accounting 
for Variability Arising from Permutations 
of Comorbidities that Affect the Fate 
of Drugs in the Human Body 

Amin Rostami-Hodjegan and Brahim Achour 

Abstract Contending with variability in drug exposure and effect in disease 
populations requires patient characterization for changes in drug metabolism and 
transport pathways and predictive modelling platforms within the framework of 
systems pharmacology. In this chapter, we explore current and emerging patient 
characterization approaches, the role of physiologically based pharmacokinetic 
modelling in stratified versus individualized predictions, the possibility of exploring 
the impact of permutations of comorbidities, and application of these elements in 
model-informed precision dosing. 

Keywords Variability · Drug metabolism and disposition · In vitro–in vivo · 
Extrapolation (IVIVE) · Physiologically Based Pharmacokinetics (PBPK) · 
Quantitative proteomics · Disease perturbation 

6.1 Introduction 

“Variability is the law of life, and as no two faces are the same, so no two bodies are alike, 
and no individuals react alike and behave alike under the abnormal conditions which we 
know as disease” – Sir William Osler (1849–1919), Professor of Medicine, Oxford, England 

Current drug development mainly focuses on ‘typical’ representation of patients and 
many of the subtypes involving other comorbidities are studied at later stages after 
regulatory approval. The latter does not provide any evidence for potential
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requirements of dosage adjustment that might be necessary for effective and safe 
medication of patients with certain comorbidities or combinations of these. Hence, in 
recent years, drug regulatory agencies, as well as professional associations related to 
drug development and pharmacotherapy, advocated widening the recruitment 
criteria during clinical studies to provide information on the fate of drugs beyond 
what is known in a ‘typical patient’. Two recent Guidance for the Industry docu-
ments issued by the US Food and Drug Administration (FDA) concerning “Enhanc-
ing the Diversity of Clinical Trial Populations — Eligibility Criteria, Enrollment 
Practices, and Trial Designs” [41] and “Diversity Plans to Improve Enrollment of 
Participants from Underrepresented Racial and Ethnic Populations in Clinical Tri-
als” [42] are typical examples of such attempts. Although widening recruitment 
improves gathering of information, and subsequent data analysis can highlight some 
of the significant changes using sparse samples and non-linear mixed-effect models 
(so-called population pharmacokinetics or POP-PK), these are not a panacea for the 
huge lack of data in special populations that may suffer from more than one or two 
comorbidities. Requesting conduct of clinical studies for every given permutation of 
concurrent comorbidities places such an act on the verge of impossibility for any 
drug development entity. However, we cannot leave patients in such special groups 
without sound and scientific decisions on the best dosage regimen for a given drug 
and permit off-label use to become the norm for these patients.
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The solution may lie within the so-called mechanistic models framing the fate of 
drugs. These are known as physiologically based pharmacokinetic (PBPK) models 
and they can accommodate and propagate the physiological and pathological 
changes in bodily systems to consequences for any given drug if the interplay of 
parameters with the drug is adequately characterized using in vitro systems. Even in 
the case of known comorbidities, such as organ impairment (mainly renal or 
hepatic), which are assessed much more often than other conditions regarding their 
impact on the fate of drugs, Jadhav et al. [49] reported in 2015 that over 50% of 
drugs released onto market did not have any information on the impact of severe 
impairment. These authors as well as others went on to say that PBPK models can fill 
the void in such conditions. The situation with the void of information on sub-
populations has not improved since the report by Jadhav et al. in 2015 as evidenced 
by our internal unpublished data that demonstrate the case for renal impairment 
patients (Fig. 6.1). In this chapter, we explore the role of PBPK, in conjunction with 
existing and emerging patient characterization approaches, in addressing this lack of 
dosing information for special populations.
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Fig. 6.1 The number of FDA-approved drugs without explicit dosing recommendation for patients 
with renal impairment at the point of entry to the market. The plot shows data (for 2013 and 2014) 
from Jadhav et al. [49] and unpublished in-house data (for 2015–2019) 
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Fig. 6.2 Factors intrinsic and extrinsic to the patient which affect variability in drug exposure and 
response. Factors are inter-dependent making accounting for their effect challenging. The use of 
modelling allows prediction of the effect of different permutations of such factors. Abbreviations: 
PD pharmacodynamics, PK pharmacokinetics 

6.2 Accounting for Sources of Interindividual Variability 
in Pharmacokinetics 

Numerous internal and external factors, with complex interplay, affect between-
patient variability in drug kinetics (Fig. 6.2); these have an impact on patient 
physiology, biology, and expression of proteins involved in drug disposition. 
Other factors unrelated to patient biology, such as compliance, can also add to the 
apparent PK variability [68]. Quantitative assessment of variability in the fate of 
drugs in the body due to these factors follows mathematical formalism of pharma-
cokinetics. This can be in the form of simple equations that describe temporal



changes of drug concentration after dosing. Finding the covariates that define 
interindividual differences in the various model parameters is an a posteriori activity 
within these models (e.g. using POP-PK methods for sparse samples that employ 
non-linear mixed-effect methods). However, predicting such individual variations in 
concentration–time profiles in advance of conducting clinical studies requires more 
mechanistic models in the form of physiologically based pharmacokinetics 
(PBPK) [19]. 
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Adequate drug exposure, as defined by the area under the curve of the 
concentration-time profile (AUC) or either maximum or minimum exposure, respec-
tively defined by the highest concentration (Cmax) or trough concentration (Ctrough), 
is an essential element of reaching therapeutic response. Together, absorption, 
distribution, metabolism, and excretion (ADME) of drugs determine the features 
of the concentration-time profile following drug administration. Data generated from 
in vitro studies are used to determine and understand ADME variations in different 
individuals by integration of data with PBPK models [80, 81]. However, the multi-
scale nature of these mechanistic models [96] necessitates large efforts and wide 
expertise to create and verify the model elements, putting PBPK under the frame-
work of systems pharmacology/biology [51] that requires drug-independent systems 
data, as enlisted below [52].

• Physiological, anatomical, biological, and biochemical data for each individual 
(some are defined based on demography, such as ethnicity, sex, age, and envi-
ronment of the population that an individual belongs to when the actual individual 
values are not known).

• Trial design parameters, such as the conditions under which the drug is taken 
(e.g. fed versus fasted state) or any concomitant drugs interfering with the 
functions of the systems that handle the drug (e.g. perturbing enzyme expression 
or function). 

The above are combined with drug data (physicochemical properties, e.g. LogP 
and pKa, drug intrinsic clearance by certain enzymes, affinity to certain transporters) 
to help not only understand but also predict the behaviour of the drug in certain 
individuals or a subgroup of patients using a realistic compartmental structure 
defined as a set of differential equations. Critical considerations are listed below.

• The factors affecting the variability of the absorption and bioavailability of orally 
administered drugs are described previously [53]. It is important to note that 
cytochrome P450 (CYP) 3A and multidrug resistance P-glycoprotein (P-gp), 
which have wide interindividual variability, are present at high levels in the 
villi tips of enterocytes in the small intestine [6] and they can cause variations 
in the bioavailability of drugs, as shown for tacrolimus controlled-release formu-
lation in the case of Afro-Americans versus their Caucasian counterparts 
[60, 91]. Variations in these proteins as well as other CYP and non-CYP enzymes 
and transporters in the small intestine are demonstrated in disease states, such as 
Crohn’s disease [9] and can play a significant role in altering the fate of drugs in 
such patients [10].



6 On the Verge of Impossibility: Accounting for Variability Arising. . . 141

• Early screening tools can assess the relative importance of the routes of metab-
olism by various metabolic pathways. Hence, it is now possible to employ 
information on in vivo intrinsic clearance as well as transporter-mediated uptake 
to postulate about variability associated with hepatic clearance in human 
populations [80]. This is facilitated with knowledge of scaling factors [1, 2, 13, 
67].

• Aspects defining variations in renal excretion are also formulated under systems 
pharmacology [83, 84] and capture the role of urine flow and pH alongside the 
physical chemistry, lipophilicity, and ionization of the compound that define 
plasma protein and erythrocyte binding and add knowledge of drug affinity to 
efflux transporters [85] and abundance of such transporters in human kidney [7].

• Variability in volume of distribution does not have an impact on overall exposure 
(as measured by AUC0). However, it defines the shape of the temporal changes of 
the concentration-time profiles (Cmax and Ctrough); hence, defining/predicting its 
variability is important. The physical volume of tissues and their blood flows are 
components of PBPK models that capture population variability related to these 
parameters. Nonetheless, there are other aspects of the volume of distribution 
which are more relevant to protein binding in the systemic circulation as well as 
tissues. Many of these can be measured in vitro and used for in vitro–in vivo 
extrapolation (IVIVE) purposes through PBPK models [16, 72, 75]. 

6.3 The Growing Role of Physiologically Based 
Pharmacokinetics (PBPK) 

In a recent survey, El-Khateeb et al. [37] demonstrated that the first two decades of 
the twenty-first century have witnessed a more than 40-fold increase in the applica-
tions of PBPK (based on the number of publications in the literature). This was in 
contrast to the general discipline of pharmacokinetics which had a relatively modest 
increase of around fourfold, in line with an increase in the bulk of scientific 
publications by threefold. The fastest growing area of PBPK applications according 
to the survey was focused on addressing alterations to kinetics (or lack thereof) in 
special populations. Indeed, this was one of the areas that regulatory scientists 
advocated for the use of PBPK over a decade ago [101] by harnessing the natural 
compatibility between PBPK and assessment of internal/external factors affecting 
the kinetics of drugs in various patients. 

So, what are the attributes of PBPK that make it so popular with determining the 
impact of patient variability? The essence of PBPK modelling was described by 
Rostami-Hodjegan [77] in relation to separation of the system parameters from those 
of drugs and formulations (Fig. 6.3). Therapeutic effects of a minority of drugs can 
be monitored relatively easily using established biomarkers (e.g. international nor-
malized ratio, INR, for anticoagulants, blood pressure for antihypertensive agents, 
and blood glucose for antidiabetic agents) for dose adjustment. However, for most



drugs, such effects are not readily measurable or finding out the outcome takes a long 
time (e.g. patient survival). On the other hand, accounting for drug exposure 
differences can minimize a large part of the variation in patient outcomes that is 
related to kinetics. One of the major sources of variability in kinetics is related to 
interindividual differences in metabolic and transporter-mediated clearance. Clear-
ance and first pass gut and liver metabolism together define internal exposure of the 
bioavailable dose after entering the gut wall. Many drugs have an optimal therapeu-
tic window for exposure. Whereas for renal clearance, creatinine can be used as a 
general marker for glomerular filtration as well as active secretion of the drugs into 
the urine, hepatic clearance does not have a single universal marker that can be 
applied to all drugs. Characterization of metabolism becomes very important in 
various groups of patients when we consider that >70% of 698 orally administered 
marketed drugs have high levels of metabolism as part of their clearance [15]. As 
shown by Rostami-Hodjegan and Tucker [80], PBPK models can readily incorporate 
the known variations in drug metabolism and propagate them to projected clearance 
values using IVIVE techniques. Availability of liver [93, 99], intestinal [9, 33], brain 
[5, 17, 87], kidney [7, 57], skin [29], and lung [40] tissue for conducting quantitative 
analysis of proteins related to drug ADME has contributed to advancing a priori 
understanding of likely differences in kinetics in special populations before 
conducting any clinical studies. Table 6.1 summarizes prominent examples of such 
applications. With this approach, and if the baseline in healthy adults (or other 
control cohorts) is established, it is possible to simulate kinetics in special 
populations, such as foetal exposure to medications taken by pregnant mothers, or
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Prediction of Variability in PK/PD in Patient Population(s) 

Trial 
DesignDrug Data Systems Data 

Mechanistic IVIVE 
linked to PBPK

� Demography
� Tissue attributes
� Tissue blood flow
� Plasma protein
� Abundance of 

ADME proteins/ 
receptors

� Drug molecular 
weight

� Drug pKa
� Drug LogP
� Protein/tissue 

binding
� In vitro metabolism
� Dissolution 

� Dose 
� Dosage regimen
� Administration 

route
� Co-administered 

medications 

Fig. 6.3 Separation of parameters related to the drug from parameters related to the population in 
PBPK models. This approach enables testing different permutations of factors, allowing assessment 
of changes in PK (or PD) in the target population a priori to conducting clinical studies. Abbrevi-
ations: ADME, absorption, distribution, metabolism and excretion; IVIVE, in vitro–in vivo extrap-
olation; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamics; PK, 
pharmacokinetics
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in disease groups, such as patients with hepatic impairment [67]. While availability 
of human samples for these applications is certainly increasing, access is still 
restricted by ethical and logistic obstacles, with samples largely limited to post-
mortem or surgical surplus tissue.
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The principles of PBPK can also be extended to propagation of interindividual 
variability to drug pharmacodynamics (PD) within the framework of quantitative 
systems pharmacology [25]. PBPK-PD models are mainly used to predict drug 
effects in special populations (e.g. predicting dental analgesic effect of ibuprofen 
in children [30]) and PD effects of drug-drug interactions (DDI) (e.g. the impact of 
coadministration of domperidone and ketoconazole on QT prolongation in the 
electrocardiogram of patients [65]). Application of quantitative proteomics to mon-
itoring changes in drug receptors and other PD targets, such as the insulin receptor 
(INSR) in the human blood–brain barrier [92] and receptor tyrosine kinases in 
human metastatic liver cancer from colon [95], is expected to facilitate modelling 
of drug concentration–effect relationships in special/disease populations. 

6.4 Predicting Pharmacokinetics in Subgroups of Patients 
Versus Predictions in an Individual 

Despite advances made in the prediction of changes that occur in pharmacokinetics 
in subgroups of patients, predicting the fate of drugs in a specific individual who may 
not be the average patient in his or her subgroup requires characterization of changes 
that happen in ADME proteins in that particular individual as opposed to the average 
person in the relevant subgroup. Figure 6.4 summarizes current and emerging 
characterization methods. 

Genotyping can identify the bracket of the pharmacogenetic subgroup for an 
individual patient, which is then linked to a specific activity score, such as the case of 
CYP2D6 genotype [44]. The Clinical Pharmacogenetics Implementation Consor-
tium (CPIC) [23] has published several guideline reports demonstrating the value of 
such tests in managing optimal dosing for many drugs, e.g. tacrolimus (CYP3A5 
genotype), clopidogrel (CYP2C19 genotype), and efavirenz (CYP2B6 genotype) 
[18, 32, 86]. CPIC guidelines typically offer recommendation of dose adjustment, 
the use of therapeutic drug monitoring or consideration of alternative therapeutic 
agents for each genotype group. However, there are wide population variations in the 
activity of proteins encoded by the same gene, and indeed, some ADME proteins 
with large population variability in abundance and activity do not have known 
genotypes that correlate with changes in activity. Hence, endogenous biomarkers 
and exogenous probes have been used to characterize patients regarding sets of 
important ADME pathways (e.g. cocktails of drug substrates). Established probe 
cocktails include the Geneva cocktail (6 enzymes and 1 transporter [20]), the 
Cooperstown 5 + 1 cocktail (5 enzymes [24]), the Karolinska cocktail (5 enzymes 
[26]), and the Pittsburgh cocktail (5 enzymes [43]). The issue with these biomarkers
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Assigning Metabolic/Transport Capacity 

Phenotyping cocktails Endogenous biomarkersGenotyping

�Polymorphisms in 
enzymes: CYP enzymes 
(e.g., CYP2B6, 2C9, 
2C19, 2D6, 3A5); other 
enzymes (NAT2, TPMT)

�Polymorphisms in 
transporters (e.g., 
SLCO1B1)

�Categorical evidence 
associated with activity 
scores

�Cocktails: Geneva1, 
Karolinska2, 
Cooperstown3, 
Pittsburgh4 cocktails

�Targets monitored: 
CYP enzymes 
(CYP3A1,2,3, 2C91,2,3,4, 
2C191,2,3,4, 2D61,2,3,4, 
2B61, 2E14, 1A21,2,3,4); 
other enzymes (NAT24); 
transporters (P-gp1)

�Endogenous 
metabolites: e.g., 
CYP3A (cortisol 
6βhydroxylation); 
OATP1B1/3 (CPI/III, 
CB, UCB, GCDCA-S); 
OCT2, MATE1/2K 
(NMN, creatinine); 
OAT1 (taurine); OAT3 
(6βhydroxycortisol, 
GCDCA-S) 

New characterization methods* 

Drug-metabolizing enzymes and drug transportersDrug-mmetabolizing enzymes and drug transporters 
(*mRNA, microRNA, Protein, Activity) 

Homogenates 
Tissue fractions 

Cells 

Tissue samples Tissue biopsy Liquid biopsy 

Exosomes 

Cells 
Homogenates 
Fractions 

Fig. 6.4 Methods used for the characterization of drug-metabolizing and transporting pathways. 
Traditionally used methods include genotyping of polymorphic enzymes/transporters, characteri-
zation with specific probes (in cocktails administered orally) or the use of endogenous biomarkers 
for enzyme and transporter activity. More recent methods assess the expression/activity of enzymes 
and transporters in human samples (either from surgical surplus or post-mortem), in tissue biopsies 
(from individual patients), or in liquid biopsies (tissue-shedded exosomes). The measurements 
require modelling platforms for prediction of drug exposure and response. Abbreviations: CB 
conjugated bilirubin, CPI/III coproporphyrin I and III, CYP cytochrome P450, GCDCA-S 
glycochenodeoxycholate-3-O-sulphate, MATE1/2 K multidrug and toxin extrusion protein 1 and 
2  K,  NAT2 N-acetyltransferase 2, NMN N1-methylnicotinamide, OATP1B1/3 organic anion 
transporting polypeptide 1B1 (gene name SLCO1B1) and 1B3, OAT1/3 organic anion transporter 
1 and 3, OCT2 organic cation transporter 2, P-gp P-glycoprotein, TPMT thiopurine 
methyltransferase, UCB unconjugated bilirubin. Under phenotyping cocktails, superscript numbers 
indicate the pathways each cocktail can monitor



is their limited scope which does not cover all relevant pathways of metabolism and 
transport for the range of clinically used drugs and the specificity of several sub-
strates shows considerable overlap. Whereas tissue proteomics is able to address the 
quantitative nature of ADME/PD proteins for large sets of targets (a few thousand 
proteins in the same experiment), obtaining tissue from donors is fraught with ethical 
and logistic challenges. Hence, the recently introduced possibility of using liquid 
biopsy offers a more practical alternative for characterization of patients as an input 
compatible with PBPK models.
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Liquid biopsies are biofluids sampled from a patient for diagnostic, companion 
diagnostic or therapeutic applications. Exosomes shedded by tissue into a biofluid 
offer a snapshot of the cellular biomolecular pool of macromolecules, which reflect 
the functional state of their tissue of origin (Fig. 6.5). The vesicles (30–150 nm in 
size) enclose DNA, (non-coding, messenger and micro) RNA, and (transmembrane 
and non-membrane) proteins, offering protection from degradation, and therefore 
longer half-lives of cargo molecules in systemic circulation [21]. ‘Omics’ analysis 
generates quantitative data for the cargo of extracted exosomes and the levels are 
linked to the abundance/activity of corresponding proteins in the liver or other 
organs. Several FDA-approved diagnostic oncology tests rely on liquid biopsy 
profiling with RNA or DNA sequencing to generate qualitative expression and 
mutation profiles of batteries of disease markers (e.g. the receptor tyrosine kinases, 
EGFR and ERBB2) [63]. Integration of quantitative transcriptomic and proteomic 
analyses into such assays is the next step in the development trajectory of current 
screening tests towards precision diagnostics and therapeutics. In addition to mon-
itoring ADME proteins (PK variability), liquid biopsy can be used to define 
between-patient variability in receptors and other therapeutic targets 
(PD variability). Achour et al. [3, 4] demonstrated the possibility to monitor vari-
ability in the expression of over 500 ADME genes (171 enzymes, 362 transporters 
and the neonatal Fc receptor, FcRn) and over 80 FDA-approved drug targets after 
appropriate normalization for between-patient differences in the rate of shedding 
(defined based on expression of a set of tissue-specific stably expressed markers). 
Although not very well understood, exosome shedding is, in essence, a physiological 
process that is altered under pathological conditions, adding another parameter that 
modelling PK variability needs to contend with. Determination of such parameter 
becomes critical when the patient cohort includes a heterogeneous mix of diseases. 
The use of tissue-specific cell surface markers can help with purification, by 
immunoenrichment, of specific extracellular vesicles originating from the tissue of 
interest, e.g. asialoglycoprotein receptor 1, ASGR1, in the case of liver 
exosomes [76]. 

With sufficient validation and rapidly declining costs, the use of liquid biopsy will 
facilitate implementation of model-informed precision dosing owing to the inherent 
advantages of the technique; it is minimally invasive, quantitative (connecting 
exosomal profiles to tissue expression), and compatible with modelling platforms, 
such as Virtual Twins [31, 71]. Virtual Twins should incorporate detailed individual 
data, such as demographics, genotype, PK/PD expression grades (e.g. from liquid 
biopsy), and clinical scores (e.g. eGFR for renal function) into a generic PBPK



model of the cohort that the individual patient belongs to (Fig. 6.6). The use of liquid 
biopsy data with such modelling platforms opens the possibility of a priori selection 
of the optimal initial dose in a treatment regimen for an individual patient and allows 
identification of patients most likely to experience adverse events or lack of efficacy 
(for closer therapeutic monitoring). Achour et al. [4] demonstrated correlation with 
activity in a cohort of patients with cardiovascular disease monitored with the 
Geneva cocktail (for CYP1A2, CYP2B6, CYP2C9, CYP3A and P-gp), in support 
of findings by Rowland et al. [82] for CYP3A4 in a set of healthy volunteers before
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Fig. 6.5 Liquid biopsies, their nature, and attributes. (a) The anatomical origin and level of 
invasiveness of commonly sampled liquid biopsies (+, least invasive; ++++, most invasive, but 
all are less invasive than tissue biopsies). (b) Biofluids used to probe ADME/PD protein expression 
in liver, kidney, lung, and brain tissue as some of the main systems studied in PK/PD research. (c) 
Blood is the most widely used liquid biopsy with diagnostic, companion diagnostic and therapeutic 
applications. Tissue (liver) is perfused in blood and continuously sheds microvesicles (exosomes) 
into the systemic circulation. Molecules shedded include proteins and RNA (of PK and PD targets). 
The electron micrograph shows exosomes extracted from plasma (size range: 30–150 nm). Abbre-
viations: ADME absorption, distribution, metabolism and excretion, PD pharmacodynamics, PK 
pharmacokinetics



and after induction. Early applications have focused on precision dosing and inves-
tigation of DDI potential [3, 76].
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Fig. 6.6 The use of a liquid biopsy with modelling platforms for precision therapeutics. (a) Liquid 
biopsy can be used as a test for grading patients based on quantitative measurement of PK/PD 
targets while traditional tests (in oncology diagnostics) rely on qualitative evidence of the presence/ 
absence of disease markers and the mutation profiles of such markers. (b) Quantitative data for PK 
and PD targets from liquid biopsy can be used to generate Virtual Twin models for individualized 
therapeutics. Abbreviations: PD pharmacodynamics, PK pharmacokinetics 

Despite its potential applications, liquid biopsy requires specialist expertise in 
isolation and purification of exosomes from biofluids, extraction of RNA and 
protein, and multi-omic analysis (genomics, RNAseq and proteomics). For this 
reason, the bulk of recent work has focused on assessment of enzymes and trans-
porters in readily accessible systems, such as plasma exosomes [3, 27, 45, 56, 82],



while measurements of ADME targets in more challenging biofluids, such as urine 
[28] and cerebrospinal fluid, are lacking. 
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6.5 Modelling the Impact of Permutations of Various 
Comorbidities 

The added value of PBPK becomes paramount when we consider combinations of 
factors that influence the fate of the drug, which are very difficult, if not impossible, 
to study in advance of the drug becoming available on the market. We take the 
example of DDIs as the case here. In 1999, Krayenbühl et al. [55] proposed that 
interpretation of interaction studies should focus not only on mean DDI effect but 
also observed and theoretically conceivable extremes. This initiated some efforts 
within the PBPK community to conduct virtual clinical studies involving large 
groups of virtual patients where various scenarios could be tested (the platform 
later became known as the Simcyp Population Based PBPK Platform) [52]. One of 
the essential elements of the system is its ability to run “what if” scenarios such as 
those shown in Fig. 6.7. “What if” scenarios take into account factors that affect the 
outcome of the interaction, e.g. genetics, renal/hepatic impairment, age, or combi-
nations of these elements [79]. It took almost another decade before such facilities 
were put to practical use by some scientists. In 2012, researchers at the Office of 
Clinical Pharmacology (OCP) at the US FDA published a PBPK study that verified a 
previously reported case study [88] on DDI in renal impairment for telithromycin 
[97]. They went on then to prospectively project on the level of DDI for rivaroxaban
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(metabolized by CYP1A2 and CYP2D6) and an inhibitor of CYP1A2. Scenarios examined the 
magnitude of interaction in renal impairment, CYP2D6 poor metabolizer genotype and a combi-
nation of the two. Abbreviations: AUCpo area under the plasma concentration-time profile after oral 
administration, DDI drug-drug interaction. (The concept of the figure is adopted from Rostami-
Hodjegan and Tucker [79])



in renal impairment where no clinical data were available [46]. The study informed 
the label for the drug and was a guide to prescribers dealing with these rare 
occasions. Almost 10 years later, real-world data (RWD) analysis on retrospective 
information for rivaroxaban and associated side effects clearly demonstrated twofold 
higher incidence of bleeding in renally impaired patients who were receiving 
inhibitors of metabolic/transporter clearance (Grillo et al. [47]). The analysis was 
based on extracts from electronic health records (EHR) from HIPAA-compliant 
anonymized individual-patient-level data for 117 US institutions in the Cerner-
Oracle RWD dataset for a 5-year period (2017–2021). One can postulate that such 
adverse effects could have been more frequent if the label did not contain the 
information on the combined impact of renal impairment and DDI. The example 
above is not unique and there are now many other cases where PBPK information 
has informed the drug label in the absence of clinical data. Table 6.2 shows a list of 
examples collated in an internal database by Certara. Similar but less comprehensive 
lists are published elsewhere [48, 50].
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6.6 Conclusions and Future Use of PBPK 
for Model-Informed Precision Dosing 

While the debate on the nature of PBPK models (Open Source Code versus Closed 
Source Code) continues [78], the use of closed-source systems has certainly accel-
erated applications in drug development. Achieving a similar success in model-
informed precision dosing faces many hurdles and not just the lack of a user-friendly 
interface for PBPK. These are discussed by Darwich et al. [31] in the lines of 
creating virtual twins of patients [71]. However, the first critical step of such efforts 
is the faithful characterization of patients’ phenotypes beyond genetic-based cate-
gorization. It appears that liquid biopsy, in conjunction of omics analyses, may just 
provide such capacity, if the technical aspects of such game-changing initiatives are 
addressed [4]. 
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Chapter 7 
Impact of Clinical Pharmacology 
on the Modernization of Drug Development 
and Regulation 

Liang Zhao and Carl C. Peck 

Abstract This chapter provides a brief history of the influence of clinical pharma-
cology on modernizing drug regulation and development. The intertwined emer-
gence of bioequivalence and clinical pharmacology in regulatory science, the 
evolving role of clinical pharmacology in drug development, and the application 
of quantitative pharmaco-statistical models (pharmacometrics) for decision-making 
are traced throughout the last half-century. The prospects for incorporation of real-
world data, artificial intelligence, and machine-learning techniques in drug develop-
ment and regulatory assessment are considered. Finally, the impact of clinical 
pharmacology in drug regulation via guidance, statutory recognition, regulatory 
initiatives for model-informed drug development (MIDD), and model-integrated 
evidence (MIE) that strongly encourage employment of quantitative clinical phar-
macology, altogether provide perspectives for the future. 

Keywords Clinical pharmacology · Drug regulation · Regulatory science · Model-
informed drug development · Bioequivalence 

7.1 Introduction 

Clinical pharmacology concerns how drugs influence human pathophysiology and 
how the body deals with them. It is a translational science which aims to provide a 
rationale, scientistic, and mechanistic causal approach for optimizing the benefit– 
risk profile in individual patients and application to therapeutic monitoring and 
management strategies [1]. Prior to the 1970s, drug development and regulation
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practices were largely empirical and ad hoc. In the meantime, the science of clinical 
pharmacology has played a critical role in modernizing the development and regu-
lation of drugs, and their use in the practice of medicine. The fundamental sciences 
supporting clinical pharmacology focus on the interaction between drugs and human 
physiology and involve chemistry, biochemistry, toxicology, drug metabolism, 
pharmacokinetics (PK), pharmacodynamics (PD), quantitative modeling, pharmaco-
genomics, clinical pharmacology practice, drug interactions, and clinical drug trials. 
In the regulatory realm, clinical pharmacology focuses on influences of intrinsic and 
extrinsic factors on inter-patient and intra-subject variability in drug exposure, and 
clinical responses including those that impact dose adjustments in various 
populations, drug–drug interactions (DDIs), optimization of dosing regimens, 
designs of clinical study, and precision medicine, etc. [1]. In this chapter, the authors 
give an account of the chronical influence of clinical pharmacology in the modern-
ization of drug development and regulation.
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7.2 A Historical Account of the Clinical Pharmacology 
Emergence in Drug Regulation 

7.2.1 The Evolving Landscape for Drug Regulation 
for Licensing Drug Products in FDA 

At the beginning of the twentieth century, no federal regulations were in place to 
protect the public by regulating the composition and sale of food and drugs produced 
in the United States. An important step in FDA’s history was the formation by 
Harvey W. Wiley, M.D., in 1902 of a Drug Laboratory in the USDA Bureau of 
Chemistry, which began researching adulteration and misbranding of foods and 
drugs on the domestic market. In 1906, President Theodore Roosevelt signed the 
Pure Food and Drugs Act prohibiting interstate commerce of misbranded and 
adulterated foods, drinks, and drugs. The label of a food or drug could not be false 
or misleading and was required to list the presence and amount of 11 dangerous 
ingredients (e.g., alcohol, heroin, and cocaine). Specifically, “adulterated” drugs 
were those in which the “standard of strength, quality, or purity” of the active 
ingredient was not clearly stated on the label or listed in the United States Pharma-
copeia or the National Formulary. Wiley’s USDA Bureau of Chemistry, which 
became the Food and Drug Administration in 1938, was responsible for examining 
food and drugs for such “adulteration” or “misbranding” [2–6]. 

Motivated by the Elixir Sulfanilamide tragedy in 1937, when a formulation of 
sulfanilamide drug made sweet with propylene glycol (antifreeze) was responsible 
for the deaths of more than 100 people across the country [3], the Food, Drug, and 
Cosmetic Act (FD & C Act) was signed into law in 1938. The Act vastly expanded 
federal regulatory powers of the FDA by requiring pre-market review of the safety of 
all new drugs and mandated that a new drug application (NDA) would automatically



become effective within 60 days from its submission unless FDA actively refused to 
approve the application. FDA’s affirmative approval of an NDA was not a require-
ment until codified in the 1962 Drug Amendment [7]. The FD & C Act also 
eliminated the Sherley Amendment requirement to prove intent to defraud in drug 
misbranding cases, and the Act set safe tolerances for unavoidable poisonous sub-
stances, authorized factory inspections, expanded enforcement powers, and stan-
dards of identity, quality, and fill-of-container for foods, and extended federal 
regulatory authority to cosmetics and therapeutic devices [2–6]. 
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Prior to 1938, few regulatory barriers existed to the marketing of drugs, including 
the generic versions of brand name products [7, 8]. FDA interpreted the 1938 FD & 
C Act to mean that drugs marketed prior to the 1938 law those drugs did not require 
FDA approval, and as such, those drugs were grandfathered. Following the 1938 
amendment, however, a new drug could only be marketed after its NDA as approved 
by FDA or the drug was generally recognized as safe (GRAS) [7, 8]. Both new and 
generic drugs were required to submit animal and in vitro toxicity data but given the 
lack of resources to review the submitted applications, FDA began an informal 
practice of issuing “Not New Drug” letters to the generic manufacturers. Such 
practice was discontinued in 1968 and all “Not New Drug” letters were formally 
revoked by FDA. Between 1938 and 1962, FDA considered drugs that were 
identical, similar, or related to drugs with effective applications to be covered by 
those approvals and allowed those drugs to be marketed without independent 
approval [7, 8]. 

Motivated by the worldwide disaster linked to thalidomide for rare, severe birth 
defects [4], in 1962, Congress approved the Kefauver-Harris Drug Amendment [9], 
which added evidence of effectiveness as a condition for approval of a drug and 
required a retrospective evaluation of the effectiveness of all drugs approved as safe 
between 1938 and 1962 [7, 8]. In addition to the effectiveness requirement, the 
amendments also set standards for good manufacturing practices and required 
adverse event reporting. In 1966, FDA contracted with the National Academy of 
Science (NAS)/National Research Council (NRC) to evaluate the effectiveness of 
3400 drugs approved on the basis of safety alone between 1938 and 1962 by 
reviewing medical literature. Subsequently, FDA established the Drug Efficacy 
Study Implementation (DESI) program in 1968 to implement the NAS recommen-
dations [10, 11]. When data were not sufficient to determine efficacy, the company 
was allowed time to generate such data. Determination of bioavailability (BA) was 
also required for each case. By 1984, the DESI had issued final regulatory actions on 
3443 products; of which 64.6% were found to be effective (n = 2225), 30.5% not 
effective (n = 1051), and 4.8% pending more research (n = 167). Of note, more than 
1000 drugs were removed from the market as deemed ineffective [10, 11]. While the 
DESI process is largely complete, a few drugs remain subject to further review to 
date [11]. 

Having terminated the issuance of “Not New Drug” letters, academic concerns 
were raised that different formulations of marketed generic drugs might not be 
equivalent [7, 8]. Thus, and in view of the 1962 amendment requiring evidence of 
effectiveness as a condition for approval, the FDA established a new form of NDA,



the Abbreviated New Drug Application (ANDA) system. Prior to the ANDA 
system, FDA had interpreted the 1962 amendment to mean that all generic drug 
formulations marketed between 1938 and 1962 had to file NDAs and establish 
equivalency to the approved brand name product [8]. The ANDA application 
required sponsors only to prove sameness of active ingredients and “bioequivalence” 
of the generic product to that of the innovative marketed product. As well, FDA 
would not require toxicological or clinical studies if the information was already 
available in the innovators’ NDA [8]. 
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Congress passed the Hatch-Waxman Amendments to the FD & C Act in 1984 
[12]. The amendments aimed to create an abbreviated pathway for generic drug 
approval with even more simplified requirements and to provide for patent exten-
sions, thus addressing concerns of the innovator drug industry about losing the 
effective period of patent protection due to the lengthy and costly development 
and NDA approval process. The amendments also introduced market exclusivity 
incentives for both research and challenging patents. The Hatch-Waxman Act 
created two new abbreviated statutory pathways: (i) ANDAs submitted under section 
505(j); and (ii) NDAs submitted under section 505(b)(2) [12]. Overall, the Hatch-
Waxman Act aimed to enable competitive marketing of safe and effective generics 
as quickly as possible after expiration of the underlying patent and while protecting 
rights of brand-name manufacturers [7]. 

In the 1980s, the FDA drug review process was often criticized for being too 
slow, while, based on FDA’s estimates, a 1-month delay in a new drug’s approval 
could cost its sponsor $ten million. At the same time, FDA had not received 
sufficient appropriations from Congress to hire the additional staff necessary to 
end the backlog of drugs pending market approval. In 1988, the Food and Drug 
Administration Act was officially established FDA as an agency of the Department 
of Health and Human Services with a Commissioner of Food and Drugs and broadly 
spelled out the responsibilities for research, enforcement, education, and 
information [13]. 

In 1992, Congress passed the Prescription Drug User Fee Act (PDUFA) [14], 
mandating that drug and biologics manufacturers pay user fees for product applica-
tions and supplements, and other services so the FDA could hire more reviewers to 
assess application and speed up drug review times, without compromising standards. 
In exchange for the additional resources, the FDA was required to meet certain 
performance benchmarks for review times. As a result of the PDUFA implementa-
tion, user fees have been instrumental in expediting the drug approval process 
[15]. PDUFA must be reauthorized every 5 years and was renewed in 1997 
(PDUFA II), 2002 (PDUFA III), 2007 (PDUFA IV), 2012 (PDUFA V), 2017 
(PDUFA VI), and 2022 (PDUFA VII) [15]. 

In November 21, 1997, the Food and Drug Administration Modernization Act 
(FDAMA) was enacted, which amended the FD & C Act relating to the regulation of 
food, drugs, devices, and biological products [16]. With the passage of FDAMA, 
Congress enhanced FDA’s mission in ways that recognized the Agency would be 
operating in the twenty-first century, characterized by increasing technological, 
trade, and public health complexities [16]. PDUFA II was renewed under



FDAMA. FDAMA also supported accelerated approval, single-trial approval, and 
awarded an extra period (6 months) of marketing exclusivity to manufacturers that 
carried out studies in children. This legislation affirmed the CDER’s public health 
protection role, calling for the FDA to continue promoting the public health by 
efficiently reviewing drugs and to join with representatives of other countries to 
harmonize regulatory requirements [16]. 
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Analogous to PDUFA, Congress first enacted the Generic Drug User Fee Act 
(GDUFA) in 2012, with the aim of expanding FDA resources for speeding and 
increasing access to safe and effective generic drugs to the public, while reducing 
costs to industry [17, 18]. Under GDUFA, FDA user fees had to be paid by all firms 
that manufacture human generic drug products, and active ingredients for human 
generic drug products that are distributed in U.S. commerce. GDUFA fees are 
directly related to the Agency’s ability to perform critical program functions to 
reduce costs and review timelines [18]. GDUFA also must be reauthorized every 
5 years and was renewed in 2017 (GDUFA II) and 2022 (GDUFA III) [18, 19] 
(assuming that GDUFDAIII and PDUFA VII will be officially renewed by the 
publication date of this chapter). Of note, clinical pharmacology as a discipline has 
contributed significantly to the success of both PDUFA and GDUFA. 

7.2.2 The Intertwined Emergence of Bioequivalence 
(BE) and Clinical Pharmacology in Regulatory Science 

7.2.2.1 The Emerging Need and Evolving Selection of Criteria 
for BE Assessment 

Methods for estimating bioequivalence (BE) were demonstrated to the FDA as early 
as 1969 by Professor John Wagner, who compared areas under the serum concen-
tration versus time curves (AUC) of generic and brand name drugs [8]. However, at 
that time, such studies were deemed not necessary by FDA, since the agency did not 
believe a problem existed and thus Wagner’s approach was ignored. The “Bioavail-
ability Problem” was considered a “Content Uniformity Problem” by the Offices of 
Pharmaceutical Research and Compliance in the Bureau of Medicine and the 
Commissioner’s  [8, 20]. The FDA was reorganized in 1974, with the establishment 
of an “Office of Drug Monographs” in the newly established Bureau of Drugs 
(former Bureau of Medicine) [8]. This Office was formed with the purpose of 
publishing the formulation information on various drug products that could be 
used to manufacture generic products for which bioequivalence would be ensured 
given identical formulations, both chemically and functionally. For functionality, the 
dissolution test [8] appeared to be promising. As such, there would be no need for 
in vivo bioequivalence (BE) studies [8]. In vivo/in vitro correlations were expected 
to support dissolution specifications for lot-to-lot BE assurance, after content uni-
formity to the innovator’s product had been determined [8]. However, this approach 
was challenged when the same generic company marketed two different lots of 
digoxin differing in systemic bioavailability (BA) by over 100% [20].
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After the enaction of the 1984 amendment, demonstration of in vivo BE was 
required for all generic drug approvals [8]. Studies on blood levels and/or urinary 
excretion were required by law to be carried out when feasible [8, 21]. Alternative 
pharmacodynamic studies could be used to demonstrate BA/BE, if the above-
mentioned studies were considered not possible due to non-systemically available 
drugs. However, full clinical studies of safety and effectiveness would be required if 
neither blood level/urinary excretion studies nor pharmacodynamic studies were 
feasible. Pharmacodynamic measurements could be hard to interpret, so only a 
few pharmacodynamic endpoints have gained regulatory acceptance, such as the 
cutaneous vasoconstrictor assay for topical glucocorticoids [8, 22–25] and forced-
expiratory-volume-in-1 s (FEV1) based metrics for orally inhaled asthma and 
chronic obstructive pulmonary disease (COPD) products [26]. For locally acting 
dermatological products, efforts to develop a pharmacokinetics-based BE approach 
using a skin-stripping method proved unsuccessful [8]. After a difficult but fasci-
nating journey, the FDA Division of Biopharmaceutics was ultimately divided into 
several review divisions under the Office of Clinical Pharmacology [8]. 

7.2.2.2 The Co-emergence of Quantitative Clinical Pharmacology 
(QCP) and Modern BE Assessment and Uptake by the FDA 

In the 1970s, the first quantitative clinical pharmacology (QCP) breakthrough 
occurred when FDA became aware that varying absorption rates, bioavailability, 
and systemic exposures were observed within manufactured lots and between among 
marketed oral drug products containing the same active ingredient [27], as men-
tioned above with digoxin [20]. Thus, without comparative systemic bioavailability 
testing, the interchangeability of generic and brand name drugs was called into 
question, particularly for those drugs with a narrow therapeutic range [27]. As a 
result, a regulation was issued in 1977 mandating drug manufacturers to apply 
rigorous statistical procedures to assure BE and to document BA of all new drugs 
[21, 27]. 

The huge policy leap of requiring demonstration of in vivo BE using pharmaco-
kinetic methods for ANDA approval can be credited to clinical pharmacology. To 
understand the historical context of the public health impact of equivalence deter-
minations, it is important to recognize that the early advances in pharmacokinetics 
were driven mostly by discussion about sameness, which was the topic of an 
ongoing debate between academia, industry, and regulators since the 1960s 
[28, 29]. Under the ANDA system, which requires FDA approval before a generic 
drug product could be legally marketed, neither toxicological nor clinical effective-
ness studies were required, provided that FDA already had such information in the 
innovators’ new drug application [8]. The requirement for BE and its evaluation 
process represented a powerful advance, based upon pharmacokinetic principles of 
clinical pharmacology. In fact, not only are all systemically bioavailable generic 
drug approvals critically based on BE, such evaluations are routinely used to bridge 
different formulations during development of new drugs [27]. Essentially, testing BE



is the most universally used “surrogate” endpoint accepted by FDA. BE enables 
market approval of a generic drug to rely on a showing of BE with a small PK study 
in normal volunteers—in essence, substituting for an entire clinical development 
program with the BE PK study [27]. 
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7.2.2.3 Uptake of QCP in New Drug Development and Regulation 

During the 1970s, PK and drug metabolism concepts, and integration of PK and PD 
[27] rapidly evolved [30–32]. As a result, patient differences in age, body size, sex, 
renal and hepatic disease, and stage of disease gathered increased attention to 
account for individualization of drug dosage [27]. In the early 1980s, the FDA 
showed interest in the population PK (popPK) methods and PK/PD model estima-
tion approaches that by Sheiner and colleagues introduced in the 1970s [33, 34], to 
support computer-assisted dosage individualization approaches and clinical thera-
peutic drug monitoring algorithms. This development provided the basis for FDA’s 
“PK screen,” a term first coined in a paper on studying drugs for special populations 
such as the elderly [35], as a potential means of explaining unexpected outcomes and 
identification of PK outliers potentially at risk of adverse reactions in a phase 3 trial 
[27, 35–38]. 

Physiologically based PK (PBPK) modeling, pioneered by Malcolm Rowland 
et al. [39–45], has steadily gaining traction and both the pharmaceutical industry and 
regulatory science practitioners have used this approach to further drug development 
and approval [27]. PBPK is a computer modeling approach using animal and human 
body models that are both anatomically and physiologically correct, to inform 
computer simulations of expected PK and drug–drug interactions in humans. 
PBPK modeling represents a mechanistic approach to study and predict the PK of 
drugs based not only on physiologic and anatomic characteristics, but also on the 
physical and chemical properties of a given drug (e.g., incorporation of pre-clinical 
in vitro data on drug physicochemical properties, metabolizing enzymes, trans-
porters and permeability properties, etc.) [27, 36, 46, 47]. 

The first uses of PBPK were reported in the 1970s within the context of academic 
pharmacology research [44]. In the 1990s, the first regulatory application of PBPK 
was documented by FDA in its review and approval of tretinoin, the active ingre-
dient of a teratogenic topical wrinkle cream [48]. FDA requested PBPK modeling 
and simulations to assess the risk of fetal exposure, on which basis, fetal exposure 
was concluded by FDA to be de minimis. The data from clinical studies and the 
nonclinical pharmacokinetic data in the NDA were employed in the PBPK model to 
estimate maternal and fetal plasma concentrations of tretinoin and its metabolites in a 
theoretical maximum exposure situation (i.e., after excessive topical application of 
tretinoin to the skin of upper body of a pregnant human and assuming maximal 
absorption of 10% of the applied product). Relying on the PBPK model, the FDA 
reviewers concluded that exposure to the fetus of tretinoin and potentially toxic 
metabolites under such conditions were several orders of magnitude below that from 
endogenous sources, rendering the exposure to be essentially a non-teratogenic dose 
of retinoic acid [27, 49].
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7.3 The Evolving Role of Clinical Pharmacology in Drug 
Development 

7.3.1 Clinical Pharmacology in the Twentieth Century 

A quantitative, theoretical pathophysiological foundation of drug action was not 
inherent in the development and regulation of new drugs prior to 1970s [27]. Row-
land, Benet and colleagues pioneered the current understanding of drug clearance 
concepts and drove the development of crucial tools for drug development and 
regulatory scientists, such as PBPK modeling and standard approaches for charac-
terizing drug metabolism. Drug regulatory science has been fundamentally impacted 
by such key advances via the central understanding that pharmacodynamic effects 
(including disease biomarkers and clinical outcomes) are driven by quantitative 
variations in drug concentrations, rather than assigned dosage alone [27]. 

Drug development relies on clinical pharmacology including both in vitro and 
in vivo studies to evaluate the pharmacokinetic and pharmacodynamic characteris-
tics of the drug, such as absorption, distribution, metabolism, and excretion 
(ADME), and desired drug activity and adverse effects, respectively [1]. As shown 
in Fig. 7.1, such studies evaluate how drug exposure and response are impacted by 
intrinsic (e.g., age, gender, race/ethnicity, genomics, physiology) and extrinsic 
factors (e.g., food effect, smoking, and DDIs) [1]. 

Fig. 7.1 Scope of clinical pharmacology in the twentieth century
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7.3.2 Clinical Pharmacology in the Twenty-First Century 

Incorporation of advanced quantitative clinical pharmacology procedures is being 
incorporated into regulatory science procedures, as articulated by the Model-
Informed Drug Development (MIDD) initiative, and expanded in the real-world 
data (RWD) program [1]. The MIDD Pilot program has quickly matured to facilitate 
decision-making in drug development by employing a wide range of quantitative 
models. These advances in clinical pharmacology have helped to achieve better drug 
efficacy and safety by making the drug development process more rational and 
efficient and improving access to patient-tailored new drug treatments [1]. 

Clinical pharmacology-related questions in NDAs and BLAs pivot around dose 
selection, dosing regimen optimization, dose adjustment in specific populations, 
pediatric dose selections, benefit–risk assessment in whole and sub-populations 
[1, 50]. Once a drug is approved, the product labeling must provide relevant clinical 
pharmacology information, especially factors influencing PK, PD, effectiveness, and 
safety, possibly requiring dose adjustment [1]. When needed, post-marketing 
requirements (PMRs) may include studies to investigate issues that have not been 
adequately addressed [1]. PMRs may be needed to provide dosing instructions for 
subpopulations of patients who may not yet have been studied, to prevent serious 
adverse events when treated with the new drug [1]. For example, the approval letter 
for remdesivir treatment of COVID-19—approved 76 days after submission— 
required a PMC study in pregnant women and a PMR study in children and patients 
with renal and hepatic impairment, as well as evaluation of the drug’s potential to 
prolong the QT interval [1, 51]. 

7.3.3 Pharmacometrics: The Combination of Pharmacology 
Models and Statistics for Decision-Making 

In the last three decades, pharmacometrics has been increasingly employed in drug 
development and regulatory reviews. Efficient drug development and regulatory 
decisions are facilitated by pharmacometrics, a maturing science that quantifies 
drug, disease, and trial information [52]. Pharmacometrics scientists are part of 
multidisciplinary teams working closely with clinicians and statisticians comprising 
quantitative clinical pharmacologists, engineers, statisticians, and data management 
experts [52]. Pharmacometrics is central to drug, disease, and trial models that 
describe, respectively, (i) individual patient characteristics and the relationship 
between PK and PD for both desired and undesired effects, (ii) the relationship 
between biomarkers and clinical outcomes, time course of disease and placebo 
effects, (iii) the inclusion/exclusion criteria in clinical studies, patient 
dis-continuation, and adherence [52].
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Characteristically, pharmacometric approaches employ pharmaco-statistical drug 
models, for simulation of concentration–effect, dose–response, PKPD relationships. 
Such analyses are planned, carried out, and discussed in the context of drug 
development and the therapeutic and regulatory decision-making process. Most 
importantly, such analyses can integrate knowledge about biology, compounds, 
and the development program, which is their most crucial strength [52]. 

7.3.3.1 Model-Informed Drug Development (MIDD) 

The FDA’s MIDD initiative was formally announced in 2018 in the sixth iteration of 
Prescription Drug User Fee Act (PDUFA VI), included as part of the FDA 
Reauthorization Act of 2017. Overall, the MIDD program aims to guide medical 
product developers to efficiently employ quantitative drug modeling for the follow-
ing purposes, e.g., (i) dose optimization, (ii) supportive evidence for efficacy, and 
(iii) clinical trial design, [1, 53, 54]. In addition to traditional compartmental and 
empirical PK modeling and population PKPD in MIDD, new approaches are gaining 
traction, such as mechanistic models, systems pharmacology models, machine-
learning models, and real-world data/evidence. Application of model-based analysis 
is steadily increasing in NDA submissions. MIDD has been adopted by new drug 
industry rapidly in recent years [54, 55]. MIDD models provide a platform for 
characterizing patient characteristics, pharmacology, and the current understanding 
of a disease. 

Under PDUFA VI, FDA committed to advancing many key FDA activities via 
increased MIDD efforts by developing MIDD-related guidance updates, holding 
public workshops, and establishing a standard operating procedure to review MIDD-
related submissions. Since 2018, FDA has also offered an MIDD Pilot Program to 
facilitate the development and application of MIDD approaches, i.e., exposure-
based, biological, and statistical models using preclinical and clinical data. Success-
ful application of these MIDD approaches can advance efficiency of clinical trials, 
decrease attrition rate, and optimize and/or individualize dosing regimens when 
dedicated trials are not available [56]. Via the MIDD Pilot Program, sponsors can 
meet with FDA scientists to discuss modeling approaches in product development 
[56]. The Pilot Program is administered jointly by CDER and the Center of Biologics 
Evaluation and Research, with CDER’s Office of Clinical Pharmacology (OCP) as 
the point of contact. The pilot program aims to connect multidisciplinary efforts and 
make a regulatory platform available to all stakeholders early in the development of 
a new drug. 

Under the MIDD Pilot Program, FDA has conducted an average 12 meetings a 
year during the last 2 years (2021–2022). The submissions posed questions such as 
dose/dosing regimen justifications, design of clinical trials, and post-approval dosing 
regimen changes by employing a variety of approaches including popPK, exposure– 
response [29] modeling, quantitative systems biology, and PBPK modeling [1]. As 
of 2021, these discussions between FDA and sponsors under this pilot program have 
led to the MIDD-supported approval of two regulatory submissions, a supplemental



NDA, and a supplemental Biological License Application [1]. Between 2018 and 
2019, there was an increase in the use of PBPK submissions for drug development in 
several application areas, such as evaluating potential DDIs involving metabolizing 
enzymes and transporters; pediatrics; assessment of drug exposure in patients with 
renal impairment, etc. [47, 54, 57, 58]. Additionally, different model types used in 
MIDD are increasingly used either in sequence or simultaneously, such as combin-
ing mechanistic modeling with machine learning (ML) for response prediction, 
which will create its own set of challenges and opportunities in the future [1, 54, 59]. 
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7.3.3.2 Generic Drugs 

A principal application of clinical pharmacology to generic drug use is derivation of 
actionable knowledge of the variability connected to generic substitution during the 
drug product’s lifecycle [29]. Intrasubject variability can be observed when different 
results are observed resulting from the administration to a patient of the same 
identical drug product on two different occasions [29]. Several authors have 
described how variability can impact patient perception of generic substitution, 
and how differences in excipients can affect both the BA and pharmacology of 
generic drug products. Significant differences may be present in the clinical phar-
macology between batches of the brand drug product, which—while permissible— 
can make evaluation of BE more challenging [29, 60]. Authorized generics, exact 
same drug products as the branded drug product, manufactured by the brand name 
company but without the brand name on their label, have been described as a natural 
experiment, allowing scientists to assess variability of clinical effects due to differ-
ences in drug product appearance [29, 61] as perceived by the consumer. 

Model-based integration of the data obtained during a drug product lifecycle can 
be used to design of accurate, sensitive, and efficient BE studies that incorporate the 
current understanding of drug exposure mechanisms and the variability sources in 
both patients and healthy subjects [29]. By leveraging the existing clinical pharma-
cological knowledge of the brand product, PBPK and QCP models can be used to 
generate model-integrated evidence to inform decisions in generic drug development 
and approval [62]. Such tools are used extensively by FDA to make regulatory 
review decisions and to establish recommendations for demonstrating drug product 
BE to the reference listed drug, as described in the FDA product-specific guidances 
for industry for generic drug development [63]. FDA has been employing PBPK 
modeling in both policy and standards development [27, 64–67]. For example, in 
FDA’s generics drug review section used PBPK techniques to investigate several 
challenging policy issues including BCS class II/III biowaiver and food effect on 
PK. An example of how PBPK can be used in generic drug development from an 
industry perspective has been published recently [68]. Using a model to gain 
knowledge about the population PK of a drug can result in a model-based BE 
study that is more efficient than a larger, more expensive, and less sensitive com-
parative clinical end-point BE study [29, 69]. Of note, new clinical study designs and 
statistical analyses for efficient conduct of comparative clinical endpoint BE for



generic drug development are also emerging [70], such as patient enrichment 
strategies, stratified randomization by baseline or demographic characteristics, rep-
lication, adaptive designs, clinical data aggregation and analysis in real time, and 
product-specific clinically justified equivalence criteria. 
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Evaluation of generic drug sameness and BE for substitution in patients present 
several scientific challenges, which in turn propagate within a complex regulatory 
and economic environment. For example, the FDA’s generic drug program receives 
circa 1000 new ANDA submissions each year and responds to over 3000 written 
development questions prior to application submission (i.e., controlled correspon-
dence) [29]. More than 1600 product-specific guidances have been created by FDA 
to assist generic drug developers to meet FDA standards for specific brand products. 
Each of these actions has a scientific foundation and potential regulatory, and 
economic impact on both brand and generic product developers, and impact on 
patient access to generic products. By applying scientifically sound, efficient, sen-
sitive, and accurate BE studies, regulatory clinical pharmacologists, working in 
FDA, have lasting impacts on public health by ultimately ensuring ensure timely 
access to generic drugs and correct decisions on generic drug substitution. Clinical 
pharmacologists can expand and refine the application of these tools of sameness, 
equivalence, and substitution so that their utility can be further expanded to not only 
the generic drug space but also other aspects of drug and biologic product 
development [29]. 

7.3.3.3 Real-World Data 

Real-word data (RWD) are the data relating to the health status of patients and/or the 
delivery of health care which are regularly collected from several different sources. 
Different sources RWD include electronic health records (EHRs), claims and billing 
activities, product and disease registries, patient-generated data including in home-
use settings, other sources (e.g., mobile devices). Analysis of RWD can yield clinical 
evidence on the use and potential benefits or risks of a medical product, which is 
referred to as real-world evidence (RWE). RWE was also defined by Congress as 
data derived from sources other than traditional clinical trials. Different study 
designs or analyses can generate RWE, such as randomized trials, pragmatic trials, 
and observational studies [1, 71]. 

RWD have been used to generate RWE and provide insights into different 
pharmacotherapeutic issues including identification of adverse event and compari-
son of effectiveness. While there are challenges and opportunities associated with 
employment of RWD, evidence from RWD has been used to address clinical 
pharmacology issues and promote therapeutic individualization [72, 73]. In partic-
ular, RWD have been used for optimization of dose and dosing regimen, evaluation 
of benefit/risk in specific populations, and optimization of treatment for intrinsic and 
extrinsic factors, filling the gap between traditional clinical trials and real-world 
clinical practice, and development of endpoints and biomarkers [72, 73].
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The digital ecosystem for healthcare is rapidly evolving. Electronic health record 
systems have been widely adopted in the recent past, and patients also generate large 
amounts of personal health data on a constant basis in their mobile devices, wear-
ables, and other biosensors. While already on the rise in the last decade, the COVID-
19 pandemic has accelerated the use of wearable digital health technology and 
telemedicine [1]. Such a large trove of health data can potentially be used to answer 
previously unanswerable questions and improve the design and conduct of clinical 
trials and studies. 

Given the rapidly evolving healthcare setting and the challenges such as COVID-
19, clinical pharmacologists have both the chance and responsibility to use RWE 
from RWD at their full potential to promote public health [1]. Even though FDA has 
traditionally used RWD and RWE for safety surveillance, as also emphasized in 
PDUFA VI and VII [74, 75], additional focus on their use to support regulatory 
decisions was introduced by the twenty-first Century Cures Act in 2016 (e.g., for 
new indications for approved drugs) [1, 76]. Specifically, the Cures Act mandated 
FDA to develop a framework which was issued in 2018 with the aim to evaluate the 
use of RWD/RWE in regulatory decisions and included considerations whether 
(i) RWD is fit for use, (ii) the trial or study design RWE is generated from provides 
adequate scientific evidence to answer the regulatory question, and (iii) the conduct 
of the study meets FDA regulatory requirements [71, 77]. 

Clinical pharmacology knowledge can be employed bridge knowledge gaps 
between clinical trials and real-world clinical practice [1, 72]. Using RWD, the 
benefit–risk profile of a drug can be better understood in patients that are either 
underrepresented or absent in the clinical trials conducted during drug development 
(e.g., infants and children, pregnant women, older adults, patients with organ 
dysfunction or receiving concomitant medications, or individuals with different 
drug metabolism) [1], leading to the development of appropriate treatment monitor-
ing and management strategies. RWD/RWE can also be applied to the selection of 
the optimal treatment and dosing regimens for different patient populations, simpli-
fication of clinical trials and drug development by guiding the eligibility criteria of 
the clinical trials, and disease modeling and the development of biomarkers and 
clinical endpoints [1]. 

However, there are limitations to the use of RWE from RWD in drug develop-
ment and regulation, and additional regulatory research is necessary to determine 
where and how RWD can be most helpful and to develop best practices [78]. RWE 
can be hindered by the suboptimal quality, incompleteness, and unstructured formats 
of data, which would make the analyses time-consuming. A lack of randomization in 
the data may also lead to analyses subject to confounding and bias. Finally, the 
multiple systems hosting patient information may be non-interoperable due to 
incompatible formats and standards, which may compromise data aggregation and 
subsequent analyses [1]. 

To illustrate the use of RWD/RWE, randomized clinical trial data and a cohort 
derived from RWD were recently used in a collaborative study between FDA, a 
RWD company, and a health system, to investigate the incidence of on-treatment 
pneumonitis in patients with non-small-cell lung cancer (NSCLC) treated with 
chemotherapy or immune checkpoint inhibitors (ICI). The clinical trial data



comprised a comparison of ICI treatment (with/without chemotherapy) to a chemo-
therapy alone control arm using pooled data from approximately 6500 patients from 
8 randomized trials. The RWD sample included about 1200 patients from the health 
system. Both clinical trial and RWD cohorts showed a higher incidence of treatment-
associated pneumonitis among ICI-treated NSCLC patients compared to those 
receiving chemotherapy alone. Both clinical trials and RWD also showed a consis-
tent increase of treatment-associated pneumonitis in patient with a prior medical 
history of pneumonitis as compared to patients without it [1, 79]. 
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Another recent example of the use to RWD is a 2022 study comparing serum 
thyrotropin (TSH) levels between patients who continued taking the same generic 
levothyroxine product and those who switched, using a large data set from a national 
administrative claims database linked to laboratory test results. No clinically signif-
icant changes in TSH level were observed as a result of switching among different 
generic levothyroxine products. Such findings conflict with what recommended in 
the current guideline [80]. 

7.3.4 Role of Academia in the Science of Drug Development 
and Regulation 

Advances in clinical pharmacology as a discipline have been greatly advanced and 
driven by collaborations between academic experts and drug development and 
regulatory scientists. Pharmaceutical medical science aims to employ clinical phar-
macology learnings on how drugs work and vary in patients’ response, what their 
limitations are, and how to optimally use them in practice. [81, 82]. The successful 
evaluation of potential new medicines relies on of clinical pharmacology expertise, 
based on effective integration of diverse skills. It is therefore key to nurture such 
skills, including experimental and clinical research methods, PK and PK/PD model-
ing and simulation, and translational knowledge, through innovative partnerships 
between industry and academia which will benefit both partners [81, 82]. For exam-
ple, the discipline of population-based modeling originated from academia. 
Non-linear mixed-effects modeling techniques and the NONMEM software package 
for population pharmacokinetic modeling were developed by Stuart L. Beal and 
Lewis B. Sheiner in the late 1970s at the University of California San Francisco and 
have served as foundations of pharmacometrics ever since [83]. 

A vibrant academic clinical pharmacology community has contributed a large 
body of concepts and techniques for drug researchers, while also being instrumental 
in the training of researcher–clinical pharmacologist [82]. For example, believing 
that industry and academia could collaborate in a more integrated and productive 
way, GlaxoSmithKline developed the Academic Discovery Performance Unit 
(AcDPU) as a new business model to manage the early development of a few 
drugs [84]. AcDPUs combine academia’s in-depth scientific and clinical expertise 
with industry’s expertise in drug discovery and development. Such collaborations 
can facilitate the design and execution of a preclinical and clinical plan, up to the



n

proof-of-concept stage—generating enough evidence about the safety and efficacy 
of a promising new drug to warrant the investment in larger Phase II clinical trials 
[84]. However, as previous interactions between pharmaceutical industries and 
academia have resulted in conflict-of-interest challenges, a commitment to joint 
objectives between the two partners is necessary to help address conflicting priorities 
and different approaches to publication, for example [84]. 
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To further facilitate fruitful collaborations, industry could commit to publish 
results of all studies, both positive and negative, and explore new models of shared 
risk, shared reward, IP pools, etc. Collaborations could also be enhanced by allowing 
access to tool compounds and industry labs and projects for training of clinical 
pharmacologists at different career stages. With due attention to preventing conflicts 
of interest, careful creation of shared and revolving door appointments (i.e., move-
ment of high-level employees from public-sector jobs to private-sector jobs and vice 
versa) could also benefit a thriving collaboration across different stakeholders. At the 
same time, academia should not perceive industry exclusively as a source of 
financial support only but recognize industry partners as equal scientific and clinical 
partners. Clinicians should be encouraged to take part in research and engage with 
industry as training partners. Academics should fully use the collective excellence 
across academic institutions and accept a level of risk in return for longer term 
reward [85]. 

FDA collaborates with academic institutions via Centers of Excellence in Regu-
latory Science and Innovation (CERSIs), aimed at advancing regulatory science 
through innovative research, training, and scientific exchanges. Through these 
collaborations, FDA’s scientific staff has access to regulatory science-related train-
ing, workshops, and seminars. For example, current research and advancements in 
regulatory science are presented via FDA’s CERSI Lecture Series addressing the 
safety and efficacy of medical products at a pre-clinical stage and emerging 
technologies [86]. 

The American Course on Drug Development and Regulatory Sciences (ACDRS), 
established by the University of California San Francisco (UCSF) in 2007, is an 
advanced level postgraduate training program for professionals in the fields of 
pharmaceutical, medical devices, regulatory authorities, government, and academia. 
The ACDRS Course covers all facets of pharmaceutical sciences relating to the 
development of medicine and medical product https://pharm.ucsf.edu/acdrs. I  
collaboration with Beijing University, UCSF collaborated in the 2009 launch of 
the Chinese Course on Drug Development and Regulatory Science (CCDRS), aimed 
at improving the quality and acceptance of pharmaceuticals and pharmaceutical 
products exported from China [87]. Dr. Carl Peck and colleagues have played a 
pivotal role in launching these courses. 

In Europe, the European Center of Pharmaceutical Medicine (ECPM) is the main 
university institute for medicines and drug development, after “sowing the seeds for 
training in pharmaceutical medicine” in 1989 by FDA scientists Drs. Carl Peck and 
Robert O’Neill as recognized by the ECPM community. The ECPM’s education/ 
training and research departments aim to form highly skilled drug development 
specialists (https://ecpm.unibas.ch/).

https://pharm.ucsf.edu/acdrs
https://ecpm.unibas.ch/
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7.4 Training in FDA 

FDA has long been engaged in staff training and regulatory research. The forerunner 
agency to the FDA, the Drug Laboratory in the USDA Bureau of Chemistry headed 
by Harvey Wiley, trained its staff and set standards based upon research of poisons 
in food substances and identification of ingredients of drugs. Skelly [8] documents 
the FDA’s research on BA and BE that led to BE requirements of bioequivalence and 
generic drug pharmaceutical quality standards. In 1987, the FDA Bureau of Drugs 
and Biologics was renamed to recognize FDA “research” functions in the respective 
center names (e.g., Center for Drug Evaluation and Research (CDER) and Center for 
Biologics Evaluation and Research (CBER)). 

In 1988, the Office of Professional Development and Staff College was 
established in CDER for the purpose intramural postgraduate training of FDA 
reviewers in regulatory clinical pharmacology, biostatistics, and other disciplines 
required to competently review regulatory submissions [88]. This new Office aimed 
to train and professionally develop a team of regulatory clinical pharmacologists and 
enrich CDER’s scientific environment [88]. Establishing an intramural training 
program was envisioned to advance both the regulatory science and clinical phar-
macology fields by (i) training newly recruited professionals and bringing them up to 
a high skill level in critical CDER program areas as quickly as possible; 
(ii) enhancing the competency of current scientists by creating opportunities for 
CDER staff to acquire and maintain essential knowledge; (iii) using different formal 
fellowship programs to develop regulatory science specialists, (iv) communicate and 
cooperate with the drug development and general medical communities by dissem-
inating information about regulatory science; and (v) improving the drug develop-
ment process based on outcome of research projects. 

Professional development in FDA is achieved via participation in intramural 
courses, online training modules, studying of guidances, experience and practice 
of drug regulatory science, and reviewer-initiated regulatory research projects 
[88]. While fundamental to the development of highly skilled staff, the above-
mentioned activities are complementary to a mentor-mentee relationship 
[88]. Numerous training courses in a wide range of scientific and reviewer pro-
cedures have been offered to FDA staff. In 2018, the CDER’s Division of Learning 
and Organizational Development (DLOD) was established to be responsible 
(DLOD) for the development of scientific, regulatory, core competency, and lead-
ership skills in support of CDER’s mission. DLOD provides several different 
learning opportunities, educational activities, and professional development through 
a variety of instructional methods to best prepare CDER staff to meet the organiza-
tion’s mission. While DLOD’s offerings are for FDA staff’s use only, many other 
public training opportunities are available. Today, FDA offers many courses and 
opportunities for FDA staff, consumers, and industry personnel [89]. 

The Critical Path Initiative (CPI) was launched in March 2004. It represents the 
Agency’s plan to update and improve via scientific innovation the development, 
evaluation, and manufacture process of FDA-regulated medical products. At launch,



FDA released the landmark report “Innovation/Stagnation: Challenge and Opportu-
nity on the Critical Path to New Medical Products,” describing a slowdown in 
innovative medical treatments therapies submitted to the FDA for approval, even 
after scientific discoveries with the potential to prevent and cure diseases such as 
diabetes, cancer, and Alzheimer’s. That report raised the urgent concern about the 
difficulties and unpredictability associated with the development of medical prod-
ucts. It called for urgent collective action to modernize the Critical Path, i.e., the 
medical product development process, by using scientific, technical, and information 
technology to evaluate and predict the safety, effectiveness, and manufacturability of 
medical products, thus making product development more predictable and less 
costly [90]. For example, the FDA’s Sentinel Initiative was launched in 2008, a 
long-term program designed to build and implement a national electronic system for 
monitoring the safety of FDA-approved drugs and other medical products. A list of 
Critical Path reports is archived at http://wayback.archive-it.org/7993/201801250 
75636/https://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/ 
CriticalPathOpportunitiesReports/default.htm. 

7 Impact of Clinical Pharmacology on the Modernization of Drug. . . 181

7.4.1 Tools for Drug Development and Evaluation that 
Leverage Advances in Basic, Biomedical, and Clinical 
Science 

The twenty-first Century Cures act added a new section to the FD & C Act 
“Qualification of Drug Development Tools” (DDTs) [76]. DDTs comprise methods, 
materials, or measures able to potentially aid drug development [1, 91] and can 
include biomarkers, clinical outcome assessments (COAs), and certain animal 
models. To support DDT development and qualification, FDA has established 
qualification programs with a multi-step process [1, 92, 93]. Qualification concludes 
that the DDT can reliably provide specific interpretation and application in drug 
development and regulatory review within the stated context of use. Once qualified, 
DDTs can be used in any drug development program for the qualified context of use 
and generally included in IND, NDA, or BLA submissions without FDA having to 
reconsider and reconfirm its suitability [1, 92, 93]. 

Clinical pharmacologists in the FDA are an essential part of the program as they 
are responsible for reviewing submissions to the DDT qualification program and 
conducting active regulatory research to help develop DDTs [1, 93]. For example, 
for cardiac condition treatment like high cholesterol in the development of 
biosimilars, the Division of Applied Regulatory Science in the Office of Clinical 
Pharmacology (OCP) sponsored a clinical study for PD biomarker identification 
[1, 94]. OCP is also collaborating with different stakeholders (i.e., foreign counter-
parts, non-profits, academia, and drug developers) on the vitro Proarrhythmia Assay 
(CiPA), to potentially estimate the risk for a drug to cause cardiac arrhythmia 
torsades de pointes [1, 95]. Human genomic testing as a tool for precision medicine

http://wayback.archive-it.org/7993/20180125075636/https://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/default.htm
http://wayback.archive-it.org/7993/20180125075636/https://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/default.htm
http://wayback.archive-it.org/7993/20180125075636/https://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/default.htm


has been steadily moved forward through research including use of in vitro assays. 
For example, FDA qualified a cystic fibrosis mutation test to detect the presence of 
CFTR [1, 96]. The FDA is also researching emerging technologies and facilitating 
scientific discussion and advancement by also organizing workshops on innovative 
topics co-sponsored with the Centers of Excellence in Regulatory Science and 
Innovation, and Center of Research for Complex Generics [1, 86, 97]. 
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FDA has leveraged its access to patient and study-level clinical data during drug 
application to develop a series of disease progression models [52]. Disease progres-
sion models are necessary to understand the progression of disease and are valuable 
in retrospective cohort analyses. Such models rely on longitudinal observation of 
patients and the temporal profiles of cognitive scores to predict the patient’s status at 
baseline [98]. There are three broad categories of disease progression models: 
empirical, semi-mechanistic, and systems biology. Empirical and system biology 
models represent the two extremes, with the former if exclusively data driven, and 
the latter physiologically based. Semi-mechanistic models can be described as the 
midpoint between empirical and systems biology models [98]. Empirical models 
serve as mathematical frameworks to interpolate between observed data and do not 
describe underlying biological processes. Systems biology models utilize as much 
molecular detail as possible to mathematically represent biological, pathophysiolog-
ical, and pharmacological processes in the course of the disease [98]. Based on the 
problem at hand, a specific model type would be more appropriate than others. For 
example, empirical models are better suited to answer questions with a relatively 
narrow in scope, such as dose selection or clinical trial design and interpretation 
[98]. On the other hand, broader scientific questions, such as those on drug effects 
prediction, identification of novel target(s), or use of biomarker data for risk projec-
tion, are better answered by semi-mechanistic and systems models, given their more 
mechanistic nature [98–100]. 

Additionally, disease models are often developed for the characterization of 
slowly progressing chronic diseases, and as such, they require disease severity 
data collected over protracted time periods. Pooling of data from several clinical 
studies is often necessary to provide sufficient observations to model a disease 
progression. Consequently, disease modeling has greatly benefited by model-based 
meta-analysis by pooling results of multiple previously conducted studies [98]. 

7.4.2 Generic Drug Development and Research 

The GDUFA-funded Science and Research program aims to establish standards for 
drug equivalence and provide the American public with safe, effective, and high-
quality generic drug products, by supporting the advance of state-of-the-art meth-
odologies and tools [101]. In 2021, OGD funded generic drug science and research 
programs with about $20 million in the forms of grants and contracts. Several 
research outcomes were highlighted by FDA, such as those focusing on the use of 
(i) in vitro and in vivo studies to better assess the role of excipients in abuse-deterrent



opioid drug products, (ii) AI methods to improve data analytics, and (iii) differences 
in animal and human anatomy and physiology to improve the extrapolation of 
animal data to humans [101]. Facilitating the development of complex generic 
drugs was also on the OGD research agenda by focusing on the development of an 
efficient in vitro BE approach (which led to the approval of two generic ophthalmo-
logic drugs) [101]. 
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A complex generic is a generic that could have a complex active ingredient, 
complex formulation, complex route of delivery, or complex drug device combina-
tions. They are harder to develop and for which few or no generics are available as a 
result. In the absence of market competition among generic alternatives, patients 
needing such medicines may not be able to afford them as they can be so expensive. 
Therefore, a program like the GDUFA Science and Research program is particularly 
important for complex products [101]. 

Understanding of these complex products is improved as a result of GDUFA-
funded research and its outcomes, which often contribute to the development of 
advanced methods for product quality and performance characterization. Such 
methods may play a critical role in how FDA assesses the quality and BE of complex 
generic products. These methods may also be the scientific basis for novel and more 
efficient pathways for the development of complex generics [101]. As a result, these 
methods can be included in new and revised product-specific guidances (PSGs), as 
well as general guidances for industry, which are published on a regular basis to 
communicate BE and quality recommendations to the generic industry [63]. Further-
more, FDA uses GDUFA research outcomes to determine the likely suitability of 
proposed BE approaches in submitted in pre-ANDA product development meetings, 
and the most current scientific insights and regulatory expectations, thus helping 
prospective ANDA applicants with scientific and technical advice. FDA facilitated 
87 product development and pre-submission pre-ANDA meetings in Fiscal Year 
2021. The GDUFA research outcomes also helped FDA assess ANDA referencing 
complex products, thus ultimately improving patient access to complex generics for 
which development was presumed unfeasible even just a few years ago [101]. 

As part of FDA’s commitment to expand its collaboration and communication 
with industry, the Center for Research on Complex Generics (CRCG) was 
established in FY 2021, to overcome challenges impacting patient access to high 
quality, safe, and effective generic products by bringing generic industry stake-
holders and FDA together [101]. The CRCG ultimately aims to successfully develop 
complex generics by helping the generic industry stakeholders efficiently and 
effectively use GDUFA Science and Research outcomes (i.e., scientific insights, 
technical methods, study designs, data analyses, and others) [101]. 

Every fiscal year, FDA and industry stakeholders develop scientific priorities 
[102]. Many of the 15 scientific priorities developed for FY 2021 [102] are clinical 
pharmacology and modeling related and include the establishment, implementation, 
improvement, integration, and/or expansion of:
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• Predictive in silico, in vitro, and animal models to evaluate immunogenicity risk 
of formulation or impurity differences in generic products

• Improvement of drug absorption PBPK models via complex routes of delivery 
(e.g., nasal, inhalation, dermal, ophthalmic) so they can be used to support 
alternative BE approaches,

• In vitro methods with PK and other methods as alternative to the use of compar-
ative clinical endpoint BE studies for nasal and inhaled drug products,

• Quantitative pharmacology and BE trial simulation to optimize design of BE 
studies for generic drug products and establish a foundation for model-based BE 
study designs,

• Predictive dissolution, PBPK, PK/PD models, and ML to evaluate in vitro BE 
options for orally administered drug products and support global harmonization 
of the most efficient BE recommendations,

• Scientific understanding of the role of excipients in generic drug products to 
support the expansion of the Biopharmaceutics Classification System (BCS) 
Class 3 biowaivers to drug products with differences in formulations larger than 
currently recommended in FDA guidance. 

As mentioned above, many of the GDUFA research outcomes critically benefited 
complex generic drug approvals, which could be otherwise difficult to be approved. 
As a case example, application PBPK modeling on topical dermatological products 
was instrumental in the approval of first generic Diclofenac topic gel 
[103]. Conducting comparative clinical endpoint studies for dermatological drug 
products can be expensive and certain formulation differences may not be detected 
considering the studies may not be sufficiently sensitive. Minimized or no human 
testing can be supported by using quantitative methods and modeling, such as PBPK 
modeling. PBPK models used for regulatory decision-making should be sufficiently 
verified and validated (V & V) for their intended purpose [103]. The generic 
diclofenac sodium topical gel was approved by FDA based on a totality of evidence, 
including qualitative and quantitative sameness and physical and structural similarity 
to the reference product, an in vivo BE study with PK endpoints, and, notably, a 
virtual BE (VBE) assessment using dermal PBPK modeling and simulation in place 
of a comparative clinical endpoint study in patients [103]. Describing the relation-
ship among systemic (plasma) and local (skin and synovial fluid) diclofenac expo-
sure with the modeling approach allowed BE of the generic and reference products at 
the presumed site of action to be demonstrated. Based on the validation-for-purpose 
principle, the V & V process involved assessing the goodness of fit for observed data 
of diclofenac concentrations in skin tissues and plasma, and the overall performance 
of the modeling platform for predicting local and systemic exposures for relevant 
products following the same route of delivery. This instance illustrates how PBPK 
modeling and simulation can be used for regulatory decision-making and offers 
scientific considerations on good practices for the validation and verification of 
models and the determination of BE for dermatological drugs [103].
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7.4.3 Coupling Real-World Data on Generic Drugs 
with Clinical Pharmacology 

In the field of generic drug, RWD analysis using post-market data represents a great 
opportunity to compare the real-world performance of generic and brand name 
products to address concerns inherent in medical practice for certain therapeutic 
areas. For example, the current guideline recommendation in medical practice warns 
clinicians about potential changes in TSH levels associated with switching among 
levothyroxine products sourced from different manufacturers. Recently, 
FDA-sponsored research retrospectively looked at the clinical dynamics related to 
the therapeutic use of levothyroxine, a drug that not only has a narrow therapeutic 
window, but that also is one of the most widely prescribed drugs in the United States. 
The research, published in JAMA Internal Medicine [80], capitalizes on the use of 
health records to anonymously identify hypothyroid patients who have switched in 
their use of manufactured thyroxine products while being monitored for thyroid 
function over time. The focus on levothyroxine allowed the researchers to execute a 
real-world clinical review (within limitations dictated by available claims data) of an 
FDA-approved therapeutic available from several alternative manufacturers 
[80]. Additionally, the investigators’ analysis extended to a consideration of whether 
social or institutional concerns, rather than potential evidence-based issues related to 
generic product performance, may ultimately place limitations on the uptake and 
prescribing practices of approved generic drug products. Results of this comparative 
effectiveness research study suggest that switching among different generic 
levothyroxine products was not associated with clinically significant changes in 
TSH level. These findings would counter the current guideline 
recommendation [80]. 

To safeguard the continual safety and effectiveness of generic drugs, also given 
the high rate of generic drug usage in the US, effective post-marketing surveillance 
of generic drugs is fundamental [104]. Generic post-marketing surveillance and new 
drug surveillance share the identical aim of monitoring drug use, clinical effective-
ness, and safety issues after a drug is marketed and reaches a larger and broader 
population [104]. Nevertheless, surveillance of generic drugs presents additional and 
specific issues [104]. Evaluation of substitutability can supplement BE testing and 
determine if patient characteristics interact with formulation differences between 
products. 

7.4.4 Research on Artificial Intelligence (AI) and Machine 
Learning (ML) Models 

The rapid development of AI and ML may revolutionize drug development, manu-
facture, and regulatory approval. It is therefore necessary to have a shared under-
standing and standardization of AI and its subset models and machine learning 
(ML), as well as the associated best practices and regulatory expectations. ML



models can be developed by training algorithms through analysis of data and prior 
experience, without explicit mechanistic bases [105, 106]. For drug development, 
AI/ML applications in the broad context of drug development include drug target 
identification/selection/prioritization, drug candidate screening and design, the 
development of in vivo predictive models based on preclinical information, dose/ 
dosing regimen optimization, selection of trial participants, patient recruitment, 
adherence monitoring, patient retention, clinical trial data collection/management/ 
analysis, and clinical endpoint assessment. For post-marketing surveillance, AI/ML 
have been used for case processing and case submission. For pharmaceutical 
manufacturing, AI/ML have been used in optimization of process design, advanced 
process control, smart monitoring and maintenance, and trend monitoring. 
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7.5 The Evolving Role of Clinical Pharmacology in Drug 
Regulation and Guidance 

Clinical pharmacology can be classified as non-quantitative or quantitative 
[27]. Non-quantitative clinical pharmacology focuses on the classification of drug 
actions and its variability and as such includes several different concepts (i.e., 
biological, biochemical, genetic, demographic, environmental, and immunological), 
and factors (i.e., formulation and manufacturing). These characteristics represent the 
underlying sources of variability in drug absorption, metabolism, and elimination, 
and drug effects. Broadly, non-quantitative clinical pharmacology focuses on where 
the drug goes and what the body does to the drug (e.g., PK) and what the drug does 
to the body (e.g., PD) [27]. Drug disposition in healthy individuals and patients 
allows to track a drug and its metabolite(s) during the time the drug is passing 
through the body. In contrast, pharmacodynamics studies the effects of the drug and 
its metabolites on cells, tissues, and the body at a whole [27]. 

Quantitative clinical pharmacology involves modeling drug disposition, provid-
ing measurable, numerical meaning to the mass, volume, concentration, and time 
dimensions, and calculable metrics for PD effects and clinical responses [27]. Quan-
tified pathophysiological–pharmacological relationships can be modeled using 
PK/PD or exposure-response models. The addition of stochastic elements to models 
allows the pharmacostatistical estimation of model parameters (using datasets 
derived from experiments and trials), and the PK/PD simulation in individuals, 
populations, and clinical trials [27]. Overall, “pharmacometrics” comprises methods 
and approaches for PK, PD, population estimations, and simulations. The term, 
which initially had a more limited definition [107], was used in the current meaning 
by Rowland and Benet [32]. 

Starting in the 1990s, FDA started applying advanced QCP approaches that 
included PK-guided clinical trial designs [27, 108], and encouraging wide usage 
of popPK and PD [27]. Development of QCP-based clinical trial simulation tech-
niques represented a far-reaching enhancement of such approaches [27, 109, 
110]. The approximate timeline for QCP-related guidances and policies is depicted



in Fig. 7.2. In 1992, a national meeting focusing on applications in drug develop-
ment and regulation was held building on the advances in PK, PD, and population 
PKPD of the previous decades [27, 111]. During that time, FDA also focused its 
attention to safety consequences of drug metabolism based DDIs following sudden 
deaths in patients using a common non-sedating antihistamine terfenadine (Seldane), 
in combination with ketoconazole, an antifungal agent [27]. It was determined that 
ketoconazole caused a CYP3A4-mediated clearance reduction of terfenadine, 
resulting in an increase of cardiotoxic systemic plasma concentrations of terfenadine. 
This resulted in increased regulatory requirements regarding data on the drug’s 
metabolism, possibly interfering drugs, and the association of electrocardiographic 
QT-interval prolongation and fatal arrhythmia [27, 112]. The research findings of 
Malcolm Rowland and others provided necessary advice to drug developers and has 
been represented the critical foundations on which guidances regarding vitro and 
in vivo drug metabolism and DDI studies were based on [27]. 
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Fig. 7.2 Approximate timeline of major events for incorporating quantitative clinical pharmacol-
ogy concepts into FDA practice, guidance, and policies. (Partially adapted from Reference [27]) 

FDA further emphasized PK-centric regulatory research, guidance, and review 
[27]. Particularly, important developments were the creation of (i) the Clinical 
Pharmacology Subcommittee of the Advisory Committee on Pharmaceutical Sci-
ence and Clinical Pharmacology, (ii) the Division of Pharmacometrics, (iii) the 
Clinical Pharmacology Question-based Review template, identifying key QCP ele-
ments required for the review of the clinical pharmacology section of a filed NDA, 
and (iv) the meeting procedure for End-of-Phase 2a, allowing cooperation between 
industry and regulatory scientists to apply QCP interpretation and planning of 
ongoing INDs [27]. 

A guideline with general recommendations for BA and BE data was published at 
time of the 1977 bioavailability regulation [21]. FDA subsequently released updated 
guidances containing detailed study design and statistical data analysis procedures 
for BA and BE studies [27]. FDA started encouraging for dose–response information 
to be included in NDAs in the early 1980s. Such a recommendation was heightened 
in in 1994 when the International Council for Harmonisation of Technical



Requirements for Pharmaceuticals for Human Use (ICH) released a Dose-Response 
guidance stating that “Agencies should also be open to the use of various statistical 
and pharmacometric techniques such as Bayesian and population methods, model-
ing, and pharmacokinetic-pharmacodynamic approaches” [113]. The guidance on 
derivation and analysis of exposure–response (PKPD) data further recommended 
and described advanced QCP pharmacometrics approaches [114]. 
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All official FDA guidances are available at https://www.fda.gov/regulatory-
information/search-fda-guidance-documents. Users can filter results by specific key-
words, product, issue date, FDA organizational unit, type of document, subject, draft 
or final status, and comment period. As of April 14th, 2022, OCP has issued a total of 
29 guidances. The Office of Generic Drugs has issued 12 guidances, including such 
as “Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs Submitted 
Under an Abbreviated New Drug Application” and “Topical Dermatologic Cortico-
steroids: in Vivo Bioequivalence.” Overall, there are a total of 43 guidances asso-
ciated with clinical pharmacology on broad drug development topics (Table 7.1). 
Each published guidance is the product of years of regulatory research and repre-
sents the Agency’s current thinking on a particular subject. For example, the recently 
published guidance for industry: Bioavailability Studies Submitted in NDAs or 
INDs – General Considerations is consolidated from three decades of scientific 
thinking as well as regulatory practices and reflects an achievement from all stake-
holders including FDA, industry, academia, and other regulatory agencies [115]. In 
addition, the final recommendations account for the comments received during the 
public comment period when the draft guidance documents were published. 

The successful and efficient development of new drugs to protect and promote 
public health critically relies on the availability of clear, practical, and current 
guidances and policies to inform drug development and regulatory evaluation 
[116]. As a result, several stakeholders (e.g., drug developers, Congress, FDA 
leadership, and patient advocacy groups) have highlighted the need for timely 
revision and issuance of new FDA guidance documents and policies. Considering 
the broad field of clinical pharmacology, an integrated collaborative approach across 
different stakeholders is required to satisfy this need. The Guidance and Policy Team 
(GPT) was formed by OCP to act in a collaborative and transparent manner to lead 
the development and implementation of current and evidence-based guidance and 
policies governing clinical pharmacology in drug development [116]. 

Guidance documents represent what the FDA is currently thinking regarding a 
particular topic. Guidances are not enforceable as they are neither regulations or 
laws. Guidance documents describe FDA’s interpretation of FDA’s policy on a 
regulatory issue. They “usually discuss more specific products or issues that relate 
to the design, production, labeling, promotion, manufacturing, and testing of regu-
lated products. Guidance documents may also relate to the processing, content, and 
evaluation or approval of submissions as well as to inspection and enforcement” 
[117]. Comments can be made on FDA draft guidance documents at www. 
regulations.gov/. Electronic or written comments on the draft guidance should be 
made before the close date, to ensure that the Agency considers your comment 
before it begins working on the final version of the guidance. Policy refers to an

https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
http://www.regulations.gov/
http://www.regulations.gov/
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Table 7.1 Current list (as of July 2022) of the 43 FDA total Guidances associated with clinical 
pharmacology on broad drug development topics, obtained from https://www.fda.gov/regulatory-
information/search-fda-guidance-documents. The asterisk indicates guidances for which comments 
are still open as of April 2022 

Issue 
Date 

FDA 
Organizationa 

Guidance 
Status 

Docket 
Number 

The use of published literature in support of 
new animal drug approvals 

20-
Apr-
2022 

CVM Draft* FDA-
2021-D-
1155 

Bioavailability studies submitted in NDAs or 
INDs – General considerations 

15-
Apr-
2022 

CDER Final FDA-
2018-D-
4367 

Clinical pharmacology considerations for 
antibody-drug conjugates guidance for indus-
try: Draft guidance for industry 

7-
Feb-
2022 

CDER CBER Draft* FDA-
2021-D-
1051 

Population pharmacokinetics: guidance for 
industry 

3-
Feb-
2022 

CDER CBER Final FDA-
2019-D-
2398 

Pharmacokinetic-based criteria for supporting 
alternative dosing regimens of programmed 
cell death Receptor-1 (PD-1) or programmed 
cell death-ligand 1 (PD-L1) blocking anti-
bodies for treatment of patients with cancer: 
draft guidance for industry 

25-
Aug-
2021 

OCE CDER Draft FDA-
2021-D-
0691 

Bioequivalence studies with Pharmacokinetic 
endpoints for drugs submitted under an abbre-
viated new drug application 

20-
Aug-
2021 

CDER Draft FDA-
2013-D-
1464 

Demonstrating bioequivalence for soluble 
powder Oral dosage form products and type A 
medicated articles containing active pharma-
ceutical ingredients considered to be soluble in 
aqueous media 

21-
May-
2021 

CVM Final FDA-
2019-D-
3764 

Evaluation of gastric pH-dependent drug 
interactions with acid-reducing agents: study 
design, data analysis, and clinical implications 
guidance for industry: draft guidance for 
industry 

30-
Nov-
2020 

CDER Draft FDA-
2020-D-
1794 

Clinical drug interaction studies with com-
bined Oral contraceptives guidance for indus-
try: draft guidance for industry 

20-
Nov-
2020 

CDER Draft FDA-
2020-D-
1848 

The use of physiologically based Pharmacoki-
netic analyses — biopharmaceutics applica-
tions for oral drug product development, 
manufacturing changes, and controls. Guid-
ance for industry 

30-
Sep-
2020 

CDER Draft FDA-
2020-D-
1517 

Pharmacokinetics in patients with impaired 
renal function — study design, data analysis, 
and impact on dosing and labeling 

3-
Sep-
2020 

CDER Draft FDA-
2010-D-
0133 

CBER CDER Draft 

(continued)

https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
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Table 7.1 (continued)

Issue 
Date 

FDA 
Organizationa 

Guidance 
Status 

Docket 
Number 

Drug-drug interaction assessment for thera-
peutic proteins guidance for industry: draft 
guidance for industry 

7-
Aug-
2020 

FDA-
2020-D-
1480 

Clinical drug Interaction studies — cyto-
chrome P450 enzyme- and transporter-
mediated drug Interactions guidance for 
industry 

23-
Jan-
2020 

CDER Final FDA-
2017-D-
5961 

In vitro drug Interaction studies — cytochrome 
P450 enzyme- and transporter-mediated drug 
Interactions guidance for industry 

23-
Jan-
2020 

CDER Final FDA-
2017-D-
5961 

Drugs for treatment of partial onset seizures: 
full extrapolation of efficacy from adults to 
pediatric patients 2 years of age and older 
guidance for industry 

6-
Sep-
2019 

CDER Final FDA-
2018-D-
0178 

Osteoporosis: nonclinical evaluation of drugs 
intended for treatment guidance for industry: 
guidance for industry 

15-
Aug-
2019 

CDER Final FDA-
2016-D-
1273 

General clinical pharmacology considerations 
for neonatal studies for drugs and biological 
products guidance for industry 

1-
Aug-
2019 

CDER Draft FDA-
2019-D-
3132 

Maximal usage trials for topically applied 
active ingredients being considered for inclu-
sion in an over-the -counter monograph: study 
elements and considerations 

10-
May-
2019 

CDER Final FDA-
2018-D-
1456 

Clinical lactation studies: considerations for 
study design 

9-
May-
2019 

CDER Draft FDA-
2018-
D-4525. 

Assessing the effects of food on drugs in INDs 
and NDAs – clinical pharmacology 
considerations 

26-
Feb-
2019 

CDER Draft FDA-
2018-D-
4368 

Testicular toxicity: evaluation during drug 
development 

25-
Oct-
2018 

CDER Final FDA-
2015-D-
2306 

Developing targeted therapies in 
low-frequency molecular subsets of a disease 

16-
Oct-
2018 

CBER CDER Final FDA-
2017-D-
6617 

Physiologically based Pharmacokinetic ana-
lyses — format and content guidance for 
industry 

4-
Sep-
2018 

CDER Final FDA-
2016-D-
3969 

General principles for evaluating the abuse 
deterrence of generic solid oral opioid drug 
products guidance for industry 

21-
Nov-
2017 

CDER Final FDA-
2016-D-
0785 

Clinical pharmacology data to support a dem-
onstration of biosimilarity to a reference 
product 

29-
Dec-
2016 

CBER CDER Final FDA-
2014-D-
0234
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Table 7.1 (continued)

Issue 
Date 

FDA 
Organizationa 

Guidance 
Status 

Docket 
Number 

Bioequivalence: blood level Bioequivalence 
study 

16-
Dec-
2016 

CVM Final FDA-
2014-D-
1352 

General clinical pharmacology considerations 
for pediatric studies for drugs and biological 
products 

9-
Dec-
2014 

CDER Draft FDA-
2013-D-
1275 

Clinical pharmacogenomics: premarket evalu-
ation in early-phase clinical studies and rec-
ommendations for labeling 

28-
Jan-
2013 

CDER 
CDRH 
CBER 

Final FDA-
2011-D-
0082 

Safety reporting requirements for INDs 
(investigational new drug applications) and 
BA/BE (bioavailability/bioequivalence) stud-
ies: guidance for industry and investigators 

20-
Dec-
2012 

CDER CBER Final FDA-
2010-D-
0482 

Safety reporting requirements for INDs and 
BA/BE studies: guidance for industry and 
investigators 

20-
Dec-
2012 

CDER CBER Final FDA-
2010-D-
0482 

Individual product bioequivalence recommen-
dations for specific products 

10-
Jun-
2010 

CDER Final FDA-
2007-D-
0433 

Guidance for industry – end-of-phase 2A 
meetings 

18-
Sep-
2009 

CDER Final FDA-
2008-D-
0514 

Bioequivalence guidance 8-
Nov-
2006 

CVM Final FDA-
1994-D-
0317 

Pharmacokinetics in pregnancy — study 
design, data analysis, and impact on dosing and 
labeling 

1-
Nov-
2004 

CDER CBER Draft FDA-
2004-D-
0459 

Pharmacokinetics in patients with impaired 
hepatic function: study design, data analysis, 
and impact on dosing and labeling 

30-
May-
2003 

CDER CBER Final FDA-
1999-D-
0063 

Exposure-response relationships — study 
design, data analysis, and regulatory 
applications 

5-
May-
2003 

CDER CBER Final FDA-
2002-D-
0177 

Statistical information from the June 1999 draft 
guidance and statistical information for in vitro 
bioequivalence data posted on August 18, 1999 

11-
Apr-
2003 

CDER Draft na 

Bioavailability and Bioequivalence studies for 
nasal aerosols and nasal sprays for local action 

3-
Apr-
2003 

CDER Draft FDA-
1999-D-
0050 

Statistical approaches to establishing 
bioequivalence 

1-
Feb-
2001 

CDER Final 01D-
0027
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internal document describing the regulatory thinking on a particular topic with the 
goal of accuracy and consistency to the review of drug applications. The public 
cannot comment on policies, given their nature of being internal to the agency 
[116]. However, attention can be brought to specific areas for policy development 
by emailing CDER at the proper channel. Federal Register Notice is the Federal 
government’s official publication to inform the public on many Agency actions. 
Formal comments on rules, proposed rules, and notices should be submitted via 
Regulations.gov, to the agency dockets on Regulations.gov, or to other places 
identified under the “Addresses” heading in Federal Register documents. For exam-
ple, the public commented on four Federal Register notices on different topics such 
as pH-dependent and therapeutic protein drug interactions, E-R relationships, and 
oligonucleotide therapeutics [116]. Technical specifications are sometimes used by 
FDA to communicate expectations for changing clinical and non-clinical study data, 
for example to outline a general framework for organizing study data (including 
templates). Comments can be submitted to Docket No FDA-2018-D-1216 or by 
contacting the relevant FDA center as described [118]. CDER’s Manual of Policies 
and Procedures (MAPPs) are federal directives and documentation of internal 
policies and procedures. MAPPs are required by law and made available to the 
public to make CDER a more transparent organization [116].

192 L. Zhao and C. C. Peck

Table 7.1 (continued)

Issue 
Date 

FDA 
Organizationa 

Guidance 
Status 

Docket 
Number 

Content and format of INDs for phase 1 studies 
of drugs, including well-characterized, thera-
peutic, biotechnology-derived products. 
Questions and answers: guidance for industry 
Q & A  

1-
Oct-
2000 

CDER CBER Final None 
found 

Content and format of investigational new drug 
applications (INDs) for phase 1 studies of 
drugs, including well-characterized, therapeu-
tic, biotechnology-derived products: Guidance 
for industry 

1-
Nov-
1995 

CDER CBER Final FDA-
1995-D-
0251 

Topical dermatologic corticosteroids: in vivo 
bioequivalence 

2-
Jun-
1995 

CDER Final FDA-
2021-D-
0384 

Format and content of the human pharmaco-
kinetics and Bioavailability section of an 
application 

1-
Feb-
1987 

CDER Final AA3: 
E45 

a CVM Center for Veterinary Medicine, CDER Center for Drug Evaluation and Research, CBER 
Center for Biologics Evaluation and Research, OCE Oncology Center of Excellence, CDRH Center 
for Biologics Evaluation and Research

http://regulations.gov
http://regulations.gov
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7.5.1 Statutory Recognition and Regulatory Initiatives 
on Quantitative Clinical Pharmacology (QCP) 

In the 1997 FDA Modernization Act (FDAMA), Congress recognized that “science 
and practice of drug development and clinical evaluation have evolved significantly 
in the past 35 years, and this evolution has implications for the amount and type of 
data needed to support effectiveness in certain cases” [16, 27, 119]. This amendment 
to the FD & C Act marked statutory recognition of the value of QCP procedures in 
two sections, one on Pediatric Studies (Section 111) and one on Clinical Investiga-
tions (Section 115A). Under Section 111, incentives were established for drug 
developers to apply for pediatric labeling approval by FDA in part “based upon 
the known pharmacokinetics of the drug, as opposed to requiring pediatric clinical 
trials for efficacy” [27, 119]. Under Section 115a, FDA was confirmed to have the 
authority to accept effectiveness evidence resulting from a single-phase III trial, with 
the support of “confirmatory evidence,” described as “scientifically sound data from 
any investigation in the NDA that provides substantiation as to the safety and 
effectiveness of the new drug. . .consisting of earlier clinical trials, pharmacokinetic 
data, or other appropriate scientific studies” [27, 120]. 

In May 1998, FDA issued the guidance “Providing Clinical Evidence of Effec-
tiveness for Human Drug and Biological Products” elucidating QCP-based eviden-
tiary requirements to prove drug effectiveness. For instance, the guidance states that 
a new dose, regimen, or dosage form can be deemed effective based on PK data 
alone, in cases where blood levels and exposure are not very different. It may be also 
possible to conclude effectiveness of a new dose, regimen, or dosage form on PK 
data without an additional clinical efficacy trial even if blood levels are quite 
different. This is possible if there is a well-understood relationship between blood 
concentration and response, including an understanding of the time course of that 
relationship. In this situation, the controlled trial results from one dose, regimen, or 
dosage form can be translated to a new dose, regimen, or dosage form, based on the 
use of PK data, together with the well-defined PK/PD relationship [27, 121]. The 
guidance was updated in December 2019, to complement and expand on the 1998 
guidance mentioned above [122]. Several opportunities and applications of FDAMA 
Section 115a have been described [27, 123]. 

Overall, traditional drug development and regulatory practice have been pro-
foundly impacted by advances in QCP on drug regulation, and on drug development 
practices, moving from an inefficient, empirical non-scientific approach into an 
efficient model-based, quantitative scientific discipline [27]. FDA’s Critical Path 
Initiative highlighted QCP as expressed in model-based regulatory research and 
clinical trial simulations [90]. When applying the “learn & confirm” paradigm of 
efficient science management in drug development and regulation, QCP offers a 
pharmacostatistical framework for application of modern mechanistic causality 
theory for drug intervention in disease states, which can provide compelling effec-
tiveness evidence [27, 124, 125]. Regulatory scientists have utilized QCP for 
pharmacometric-intensive regulatory reviews, guidance, labeling, and approval 
decisions. Several authors have documented FDA’s record of the hundreds of 
applications of QCP in NDA reviews [27, 55, 126–129].
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7.6 Perspectives for the Future 

An increasing demand for improved and individualized, patient-centric approaches 
to drug safety and efficacy is expected in the next few years, and the field of 
pharmacology has been well positioned to respond by focusing on personalized or 
precision medicine [1, 130]. A prerequisite for such a development will be a robust 
communication platform and exchange between clinical and experimental pharma-
cologists, toxicologists, clinicians, and researchers in biomedical sciences. Interdis-
ciplinarity and cross-skilling will be the most important means to shape 
pharmacology to address current shortcomings and ensure public health for future 
generations. 

Clinical pharmacology has been particularly important in pioneering and shaping 
precision medicine mostly via pharmacogenomics and therapeutic drug monitoring 
[130, 131]. The individual efficacy and safety of drugs have been improved by 
insights on PK parameters (e.g., organ functions, drug transporters, or genetic 
variations in CYP enzymes, or HLA gene variants) [47, 130–132]. A more informed 
and individualized drug treatment can also be achieved by identifying novel drug 
target or clinical subtypes of disease with reverse translational research approaches 
[130, 133, 134]. Additionally, biobanks and databanks, high-throughput methods, 
and computational tools may become increasingly available, and the amount of 
available data may prove invaluable in supporting precision medicine and reverse 
translational research [130, 133, 135–138]. In the future, large amounts of RWD will 
continue to be generated considering the ever-increasing use of electronic data in 
healthcare. Therapeutic individualization of approved drugs and development of 
new drugs could be critically supported by integrating and linking currently siloed 
data sources. RWE obtained from prospective, randomized, pragmatic studies using 
EHRs and other RWD could help address clinical pharmacology issues, such as 
comparing dosing regimens in the post-approval setting [72]. 

Considering our intense information/digital age, we foresee an increasingly 
important role of RWD and RWE in informing clinical pharmacology assessment 
of new and approved drugs, by adding to the totality of evidence and further aiding 
regulatory decision-making. A significant body of new scientific evidence and 
increased complexity will likely be available for clinical and experimental pharma-
cologists, which will offer novel opportunities for develop individualized drug 
treatment [72]. 

To allow AI/ML models to have a bigger impact in product development life 
cycles, the effort to qualify them in regulatory decision-makings could involve 
method development and model validation. This is partially due to the fact that 
AI/ML models can often lack a clear definition on the scope of use, transparency, 
and mechanistic interpretation due to their inherent nature of relying on data and 
empirical learning. As a result, biased results and erroneous predictions can be 
obtained when applied out of scope and context and this in turn can raise ethics, 
privacy, and civil liberty issues. Therefore, future efforts should focus on the 
identification of the scope of use, development of novel algorithm under different



contexts, and mitigation and legalization of ethical issues. To allow for regulatory 
impacts and model relevance, NIST guidelines on key characteristics of AI trust-
worthiness should be closely followed, including accuracy, explainability, interpret-
ability, reliability, privacy, robustness, safety, security, and mitigation of unintended 
and/or harmful bias. 
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