
JChainz: Automatic Detection
of Deserialization Vulnerabilities

for the Java Language

Luca Buccioli1(B) , Stefano Cristalli3 , Edoardo Vignati1 ,
Lorenzo Nava3 , Daniele Badagliacca1 , Danilo Bruschi1, Long Lu2,

and Andrea Lanzi1

1 University of Milan, Milan, Italy
luca.buccioli@unimi.it

2 Northeastern University, Boston, USA
3 Security Pattern Inc., Milan, Italy

Abstract. In the last decade, we have seen the proliferation of code-
reuse attacks that rely on deserialization of untrusted data in the context
of web applications. The impact of these attacks is really important since
they can be used for exposing private information of the users.

In this paper, we design a tool for automatic discovery of deserializa-
tion vulnerabilities for the Java language. Our purpose is to devise an
automatic methodology that use a set of program analysis techniques and
is able to output a deserialization attack chain. We test our techniques
against common Java libraries used in web technology. The execution of
our tool on such a dataset was able to validate the attack chains for the
majority of already known vulnerabilities, and it was also able to discover
multiple novel chains that represent new types of attack vectors.

1 Introduction

In the last decade, we see a propagation of code-reuse attacks in the context
of web applications [4,11,14]. The impact of these attacks is important, since
such vulnerabilities can be used for exposing several pieces of private informa-
tion like credit card numbers, social security numbers of the common users. One
example of this attack is direct to the agency Equifax, which exposes informa-
tion on 143 million of US users. This attack exploits a well-known vulnerability
named untrusted data deserialization in the web application context. In par-
ticular the insecure deserialization in the Apache Struts framework within a
Java web application ends up in remote code execution (RCE) on Equifax web
servers. The attack exploited the XML serialization data objects into textual
strings and inject malicious XML payloads into Struts servers during the deseri-
alization process. Such attacks show the need to systematically face code-reuse
attack problems at research level.

More precisely to exploit this type of vulnerability, an attacker should create
a custom instance of a chosen serializable class which redefines the readObject
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 136–155, 2023.
https://doi.org/10.1007/978-3-031-29504-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29504-1_8&domain=pdf
http://orcid.org/0000-0001-7590-6964
http://orcid.org/0000-0002-0124-4467
http://orcid.org/0000-0002-8447-9527
http://orcid.org/0000-0003-4782-3728
http://orcid.org/0000-0002-1337-7451
http://orcid.org/0000-0002-1544-3758
https://doi.org/10.1007/978-3-031-29504-1_8

JChainz: Automatic Detection of Deserialization Vulnerabilities 137

method. The object is then serialized and send to an application which will
deserialize it, causing an invocation of readObject and trigger the attacker’s
payload. Since the attacker has complete control on the deserialized data, he can
choose among all the Java classes present in the target application classpath, and
manually compose them by using different techniques (e.g., wrapping instances
in serialized fields, using reflection), and create an execution path that forces the
deserialization process towards a specific target (e.g., execution of a dangerous
method with input chosen by the attacker).

Recently researchers have published a paper that creates an automatic tool
for generating a deserialization attack exploit for .NET applications [21]. Such
an approach applies a practical field-sensitive taint-based dataflow analysis tar-
geting the CIL languages. The core of such analysis leverages inter-procedural
abstract interpretation based on method summaries, pointer aliasing, and effi-
cient on-the-fly reconstruction of the control flow graph. This method is very
specific for the CIL bytecode and it has not been tested on programming lan-
guages that use a different low-level representation such as Java bytecode.

Despite clear differences between Java bytecode and CIL, such representa-
tions also have similarities: both are low-level, object-oriented languages and
they store objects on the heap. Even though it is tempting to create an equiva-
lence between the two representations (e.g, applying the same analysis approach
on both low-level languages), such goal is not easy to achieve since the two
low-level representations work on languages with different characteristics (e.g.,
memory operations, safe pointer etc.). Such translation introduces issues about
the exact meaning of equivalence between CIL and its translation into Java byte-
code. Moreover, the translation should not introduce code artifacts that confuse
the analyzer and consequently produce false positives and/or false negatives [6].

In this paper we face the problem of detection of the deserialization vulnera-
bilities for the Java language. Our purpose is to devise an automatic methodology
that works directly on the language features and is able to output a potential
deserialization attack chains. Our methodology uses a different approach com-
pared with the one designed in [21]. In particular the analysis framework works
directly on constructs of the Java language: objects/method, data type etc. and
it designs an analysis which aims to discover potential attack Java deserializa-
tion chains that connect Java classes libraries. The advantage of working on the
language construct is the use of semantic information that can be extracted by
the rules of the language itself. As we will see in Sect. 3 such information is
used to improve the precision of the analysis and reduce false positives and false
negatives.

To this end we design a custom static data-flow analysis framework called
JChainz, that works directly on the Java language and combines the reaching
definitions and type propagation analysis for obtaining potential deserialization
attack vectors, such attack vectors they need to manually validate for obtaining
the final exploit. In particular our tool works in two main phases. In the first
phase the system builds up a call graph and data dependency graph that contain
the control-flow and data dependency information among the Java variables of

138 L. Buccioli et al.

the analyzed code (e.g., libraries of the target application). Goal of this phase is
to select execution links between the methods of different classes (e.g. execution
chains) in terms of execution call. Then, in the second phase, the system analyzes
the potential attack chains and validates them. The validation is applied by
propagating the variable type in the graph and marking the type inconsistencies.
Such techniques can help the system to exclude the majority of false positives
and select potential real attack vectors.

We test our techniques against the most common Java libraries used in web
technology. More precisely we select libraries from Apache Commons Collections
version 3.1 and 4.0. The Commons Collections libraries are included in a great
number of projects like for example on Apache Maven Central, where we can
find more than 2700 public artifacts that use such libraries. The results of our
experiments show our tool was able to validate the attack chains for the majority
of already known vulnerabilities, and it was also able to discover multiple novel
chains [16,17], new attacks that it has been confirmed in April 2022 by yososerial
research community [9].

In summary, the paper reports the following contributions:

– We present a systematic approach for discovering deserialization vulnerabili-
ties in Java applications including the framework and libraries that is based
on custom program analysis techniques.

– We design and develop a tool that is able to extract a deserialization attack
vector from the Java code and help the security analyst to fix the code of
the vulnerable applications. Our tool is open sourced (https://github.com/
Kigorky/JChainz) for future research.

– Our experiments show the effectiveness of our approach on finding new attack
vectors. We describe three new case study attacks and will also discuss the
limitations of our analysis and future improvements that consider reflection
and dynamic proxying techniques.

2 Background

In this section we describe background concepts for understanding the security
problems of deserialization of untrusted data in Java and we provide a real attack
example.

2.1 Deserialization Terminology

Java Object Serialization. Serialization is the process of encoding objects into
a stream of bytes, while deserialization is the opposite operation. Java deserializa-
tion is performed by the class Java.io.ObjectInputStream, and in particular by
its method readObject. A class is suitable for serialization/deserialization if the
following requirements are satisfied [19]: (1) the class implements the interface
Java.io.Serializable, (2) the class has access to the no-argument construc-
tor of its first non-serializable superclass. A class C can specify custom behavior

https://github.com/Kigorky/JChainz
https://github.com/Kigorky/JChainz

JChainz: Automatic Detection of Deserialization Vulnerabilities 139

for deserialization by defining a private void readObject method. If present,
such a method is called when an object of type C is deserialized. Other methods
can be defined to control deserialization process: (1) writeObject is used to
specify what information is written to the output stream when an object is seri-
alized (2) writeReplace allows a class to nominate a replacement object to be
written to the stream (3) readResolve allows a class to designate a replacement
for the object just read from the stream.

2.2 Running Attack Example

To describe an example of a real attack, we use a real vulnerability
present in Apache Common Collection libraries, and we show how an
attacker can pilot a deserialization process and execute a dangerous native
method. In Listing 1.2 we report the code for functions heapify, siftDown
and siftDownUsingComparator of class Java.util.PriorityQueue of Java
Framework. In Listings 1.3 and 1.4 we show methods compare of class
TransformingComparator and method transform of InvokerTransformer,
from library Apache Commons Collections 4. Listing 1.5 shows an hypotheti-
cal target class for executing a system command.

Listing 1.1. readObject in Java.util.PriorityQueue
private void readObject(Java.io.ObjectInputStream s) /∗ function a ∗/

throws Java.io.IOException,
ClassNotFoundException {

// Read in size, and any hidden stuff
s.defaultReadObject();

// Read in (and discard) array length
s.readInt() ;
queue = new Object[size];

// Read in all elements.
for (int i = 0; i < size; i++)

queue[i] = s.readObject();

heapify() ;
}

Listing 1.2. heapify and siftDownUsingComparator in PriorityQueue
private void heapify() { /∗ function b ∗/

for (int i = (size >>> 1) − 1; i >= 0; i−−)
siftDown(i, (E) queue[i]) ;

}

private void siftDown(int k, E x) {
if (comparator != null)

siftDownUsingComparator(k, x);
else

siftDownComparable(k, x);
}

private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {

int child = (k << 1) + 1;
Object c = queue[child];
int right = child + 1;
if (right < size && comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;
k = child;

}
queue[k] = x;

}

140 L. Buccioli et al.

Listing 1.3. TransformingComparator.compare

public int compare(final I obj1, final I obj2) { final O value1 =
this .transformer.transform(obj1); final O value2 =
this .transformer.transform(obj2); return
this .decorated.compare(value1, value2); }

Listing 1.4. InvokerTransformer.transform

public O transform(final Object input) {
if (input == null) return null;
try {

final Class<?> cls = input.getClass();
final Method method = cls.getMethod(iMethodName, iParamTypes);
return (O) method.invoke(input, iArgs);

...
}

Listing 1.5. Command class

public class Command implements Serializable {
private String command;

public Command(String command) {
this .command = command;

}

public void execute() throws IOException {
Runtime.getRuntime().exec(command);

}
}

Listing 1.6. Attack payload

final InvokerTransformer transformer =
new InvokerTransformer(”execute”, new Class[0], new Object[0]);

final PriorityQueue<Object> queue =
new PriorityQueue<Object>(2, new TransformingComparator(transformer));

queue.add(1);
queue.add(new Command(”rm −f importantFile”));

Now, suppose an attacker created and serialized an object in listing 1.6.
When this object is deserialized, the first method invoked after reading all the
data from the priority queue is heapify as defined in the source code Listing 1.1
(readObject entry point of the deserialization); then siftDownUsingComparator
is called (via siftDown), Listing 1.2, which uses the comparator modified by
the attacker into the serialized object, in this case a TransformingComparator,
Listing 1.6, for comparing the queue elements. The compare function in
TransformingComparator, Listing 1.3, uses the field transformer, provided by
the attacker, Listing 1.6, and calls its transform function on the objects being
compared. At this point the InvokerTransformer is invoked, Listing 1.4, and
such a method uses reflection to call the method with name equal to its field
iMethodName on input, in this case the Command method. The reflection helps
the attacker to invoke methods of generic classes; by crafting the deserializa-
tion input, the attacker is able to invoke method execute on an instance of the
Command class with controlled parameters and execute arbitrary commands. In
Listing 1.7 we report the stack trace collected at the execution of Runtime.exec,
which contains all the Java methods invoked during the malicious deserialization
event.

JChainz: Automatic Detection of Deserialization Vulnerabilities 141

Listing 1.7. Stack trace of sample attack payload

Runtime.exec
Command.execute
Method.invoke
InvokerTransformer.transform
TransformingComparator.compare
PriorityQueue.siftDownUsingComparator
PriorityQueue.heapify
PriorityQueue.readObject

The attack vector described in this section is based on payload CommonsCol-
lections2 from the ysoserial repository, used in real attacks. The only difference
with the original version is the class Command, that we introduced for simplicity
in our description. The real attack vector uses a dynamic class loading [9] as a
gadget attack execution.

3 Overview

The goal of our analysis is to discover, given a specific Java library, the relation-
ship among its classes and their methods in terms of execution. To discover such
chains, as a first step we need to build a call graph that shows the relationships
between methods of the analyzed classes in terms of caller and callee. After-
wards, we need to extract from the call graph, chains that reach an exit point
of our interest (e.g., invoked method) and represent a potential attack vector.
In Fig. 1 we depict an architectural design of our framework. More precisely, in
our framework, we identify two main components: The Finder and the Ana-
lyzer. The Finder component starts from the Java bytecode and builds up the
call graph (Sect. 3.1) of the target libraries by using the entry and exit point of
any potential attack vectors (i.e., first three blocks in the diagram). Entry and
exit points are defined by the deserialization process and the target attack class
(Sect. 2.1). When the step is completed, the Analyzer component applies, for
each discovered chain, the Data Dependencies Graph (Sect. 3.3) to determine
the input data flow among the chain classes. In the last step of the analysis,
the Analyzer applies a type propagation algorithm (Sect. 3.3) to exclude false
positives and select the attack vectors candidates.

3.1 Call Graph Accuracy

The first challenge to solve is related to the call graph generation. A trivial
solution for such a problem is to check the invoke instructions in Java bytecode,
and build the call graph from them. While this represents a good starting point
from our analysis, it is not sufficient to construct precise relationships among
methods.

142 L. Buccioli et al.

Fig. 1. Architecture of JChainz Framework

Listing 1.8. SubClass Example

class Example {
SomeClass o = new SubClass();
public a() {

o.method();
}

}

For example, consider the code in Listing 1.8. The call on o.method is per-
formed on an instance of SomeClass, so the link Example -> SomeClass is triv-
ial. At runtime, the instance is actually of type SubClass, so this link must also
be considered. Such missing information (i.e., runtime subtypes of classes and
interfaces) can lead to an incomplete graph (e.g., missing chains’ links), and
produce false negatives since such class type is not considered and the attack
vector cannot exploit its methods for executing the exploitable chain. For this
reason we need to consider such cases for building the graph, and include inter-
face implementors and class extenders as well. More precisely, we create a link
between methods in the graph only when at least one of the following conditions
are satisfied:

– (1) The method’s class implements the Serializable interface.
– (2) The callee method’s class is a superclass of the caller method class.
– (3) The method has the static modifier.

It is important to note that all the objects (i.e., methods) that appear in the
chain should be serializable. The only exceptions to such a case are invocations to
methods in a non-serializable superclass (condition 2), or calls to static methods
by directly invoking the method from the Java class (condition 3). For building
the class call graph we use Soot [22] and we leverage Soot’s capability (i.e., Soot
APIs) of constructing the call graph of our input class path. In particular Soot
first generates the Intermediate Representation (IR) for all the classes and their
methods, and then it builds the call graph from Java invoke statements. For

JChainz: Automatic Detection of Deserialization Vulnerabilities 143

any invoke statement we considered class extenders and interface implementors
for the analyzed callees and we label the graph according to the discovered
information.

3.2 Data Type Inconsistency

Once we have built the call graph, the system extracts the execution chains
and validates them. The validation process defines the input data flow from the
entry point (e.g., Serializable class) of the chain till the exit point (e.g., invoke
method). More precisely, the Analyzer needs to control the existence of a data
flow path that depends on the input and can be used for controlling the execution
of the target attack class. Such analysis needs to exclude false positives that can
be raised by data type inconsistency.

Listing 1.9. Data Type Inconsistency

1 class Example {
2 public example() {
3 return ”FOO” + ”BAR”;
4 }
5 }
6
7 // class StringBuilder
8 public StringBuilder append(Object var1) {
9 return this .append(String.valueOf(var1));

10 }
11
12 // class String
13 public static String valueOf(Object var0) {
14 return var0 == null ? ”null” : var0.toString() ;
15 }

To see an example of data type inconsistency problem, we consider the code in
Listing 1.9. In this case, we have method Example.example, which concatenates
two strings by using the method StringBuilder.append, and then we have the
second method String.valueOf that returns the string value. A correct call
graph must link them, and the following chain results in a correct execution
stream, as a call to Example.example always results in the execution of the
entire chain:

C1: Example.example -> StringBuilder.append -> String.valueOf

Analyzing the call graph we see that valueOf calls the method toString on
its Object parameter. In such a case to obtain a valid attack vector, we should
(e.g., attacker point of view) be able to assign an instance of Object (i.e. any-
thing we want) to the parameter, and proceed from there. While this reasoning
would be correct if we were considering only the method String.valueOf, in
our case such an example produce a false positive.

C2: Example.example -> StringBuilder.append -> String.valueOf ->

Example.toString

144 L. Buccioli et al.

In fact such a chain misses two important pieces of information for being cor-
rectly validated: (1) the type of the parameter var0 can only be set to String
(propagated from Example.example) and not to a general object, (2) moreover
the string parameter is constant as defined in the class Example.example, "BAR",
and consequently it cannot be modified by the attacker.

3.3 Validation Algorithm

To solve the data type inconsistency problem and validate the attack chain we
need to design a custom static data-flow analysis algorithm, that combines reach-
ing definitions and type propagation analysis and works directly on the data. The
idea is to build a data dependency graph (DDG), that contains information on
control flow and data dependency between variables. By propagating the vari-
able types in the graph, we can mark type inconsistencies and remove the false
positives.

Data Dependency Graph. For implementing an accurate data type prop-
agation analysis we need to apply intra and inter method mechanisms. In the
following we report how the standard algorithm works in our specific context.
We first apply the intra method mechanism by considering the following steps:

– For each method in the chain, we generate the control-flow graph (CFG), and
trace the data dependency starting from a reaching definitions analysis [15]
(intra-method analysis)

– For each link in the chain M1 -> M2, corresponding to a call to M2 in the body
of M1, we map the arguments in the call statement in M1 to the corresponding
variables in M2 (inter-method analysis)

Each node in our DDG represents a particular variable defined in a
specific statement. More in detail we define a node composed by a triple
(Method, V alue, Unit), with the following parameters: (1)Method: represents the
class and method of the current statement. (2) V alue: represents the variable of
the node. (3) Unit represents the current statement. For example, considering the
return statement at line 9, Listing 1.9, we can see that such statements affect two
variables: this and var0. Therefore, two nodes in the DDG will be created.

We now define edges in the DDG, which represent dependency relationships
between nodes. Such definitions are useful for constructing the intra-method
representations. More precisely, there is an edge between node A and node B if
A depends on B, the dependency is defined by the following rules:

1. A use of a variable V at a node N (with value V) depends on the definition
of V at the node M

2. The definition of a variable V at a node N depends on the use of another
variable U at a node M if N and M have the same unit

3. A use of a variable V at a node N (with value different U different from V)
depends on the definition of U at the node M

JChainz: Automatic Detection of Deserialization Vulnerabilities 145

Listing 1.10. DDG construction example

1 class Example {
2 public void a() {
3 String var0 = ”BAR”;
4 String var1 = ”FOO” + var0;
5 }
6
7 public void b() {
8 new Example().c(”FOOBAR”);
9 }

10
11 public void c (String var2) {
12 String toPrint = var2;
13 this .a();
14 System.out.println(toPrint);
15 }
16 }

Fig. 2. intra-method DDG for Listing 1.10

In Fig. 2 we show the intra-method DDG constructed for method Example.a
in Listing 1.10. Each edge is marked with the rule applied for data dependency.
At this point, the DDG contains only information about intra-method data
dependency;

After we build a intra-method we have to insert inter-method information to
the graph.

To this end we follow the following strategy: when we find an invoke statement
at method Mx in the chain, we check whether the callee belong to the step Mx+1

of the chain. If this is the case, we create an inter-method edge in our DDG. In
particular in our context we need to distinguish two main cases:

1. inter-method parameter call - in this case, the value of node Mx is a parameter
of the method call. We track the value and make sure it is correlated with
the appropriate parameter in the next method’s DDG.

2. inter-method instance call - in this case, the value of node Mx is the object
on which the method call is performed. Therefore, in the CFG of Mx+1, such
object will be referenced by the this pointer in Java.

146 L. Buccioli et al.

Type Propagation Analysis. After computing the DDG, we execute a type
propagation analysis. To this end we first assign type information to each node
for which the type is known, and we then propagate the information through the
DDG, to detect any type inconsistencies. For this purpose, we add a dictionary
to each node, named allowed types. This dictionary contains an entry for each
known variable at a given node in the DDG, and contains all the possible types
for this variable; the types are inferred from the DDG itself.

We start with a null value for allowed types at every node, then we initialize
only nodes with no dependencies for their value, apply the following rule: for each
node N with value V and no dependencies for V , we add the type of V to the
allowed types for V at N .

Once we statically determine the type information for each node, we navigate
the graph and for each step we process all the nodes which have no dependencies
with allowed types. When we process node N with value V , we copy the allowed
types for each variable in its successors in its allowed types dictionary (duplicates
are removed), with the following logic: each of them is compared with the type T
of V at N ; only types that “can hold” T are copied and allowed for V at N (i.e.,
T and supertypes). If a node with value V has the empty set as the allowed types
for V , we have found a type inconsistency, consequently the data-flow through
a particular node is not possible.

Fig. 3. Type propagation algorithm for method a in Listing 1.10. Subsequent iterations
are shown from left to right

JChainz: Automatic Detection of Deserialization Vulnerabilities 147

Special care is taken for inter-method links, which are handled separately.
The logic of type propagation is the same, but the types are matched also on the
called object and the method parameters, depending on the type of inter-method
edge, described above. For instance, in the inter-method DDG shown in Fig. 3,
our algorithm correctly infers type String for var2, and type Example for this.
The algorithm iterates till all the nodes have been processed. Then all the nodes
that are marked type inconsistency are removed from the graph. The remaining
chains are marked as attack vector candidates.

4 Experimental Evaluation

In this section we present our evaluation results. We evaluate both the components
of our system, the Finder and the Analyzer, measuring their effectiveness and per-
formance. For validating the results of JChainz we also perform data analysis for
discovering false positives and false negatives along with the real attack vectors.
In Appendix section we also reported two case studies of new exploitation chains
found by our framework. The following experiments have been run on a Debian
GNU/Linux 9.11 (64 bit) machine with an Intel Xeon CPU (2.27 GHz) and 20 GB
of DRAM. The code was compiled using Java OpenJDK 1.8.

4.1 Dataset

To evaluate our framework, we select the test code from the Commons Col-
lections libraries 3.1 and 4.0 as reported in the ysoserial repository [9]. The
Commons Collections packages used for the evaluation are composed of: (1) 421
classes and 3485 methods in the Commons Collections 4.0; (2) 425 classes and
3728 methods in the Commons Collections 3.1. In literature, those libraries are
known to be vulnerable, thus representing an interesting target for the evalu-
ation of our tool (e.g., Ground Truth). Due to their versatility, the Commons
Collections libraries are included in a huge number of projects, for example in
Apache Maven Central project. Moreover Commons Collections libraries seek to
build upon the JDK classes by providing new interfaces, implementations and
utilities also in a web context [7].

4.2 Finder Results

In this section we report the results of a run of the Finder on our dataset.
Main aim of the Finder is to discover connections among the methods defined
in a specific library. We set up the tool to perform a depth first search naviga-
tion starting from the readObject() custom implementations (i.e. entry points),
reaching Java.lang.reflect.Method.invoke (i.e. exit point), which is an easy
springboard for an attacker to launch arbitrary code. To help our Finder com-
ponent on performing its own task we set up several parameters that control the
graph’s analysis exploration. In particular we define the following variables: (1)
Max depth: maximum depth for the DFS algorithm for exploring the call graph

148 L. Buccioli et al.

in terms of nodes starting from a single entry point.(2) Max chains: maximum
numbers of chains devised from a single entry point. (3) Max seconds: Maximum
number of seconds to search for chains starting from a single entry point.

Table 1. Finder parameters

Parameter Value

Max depth 10

Max chains 100

Max seconds 10800

In Table 1 we reported the values considered in our experiments. The max

depth parameter has been selected by considering the round up average depth
of the already known real exploitable chains from entry points to the exit points
(e.g, Common Collections in ysoserial repository). Note that, the arguments
max chains and max seconds are mutually exclusive parameters that interrupt
the research before the full graph exploration is completed. We chose such values
based on the ground truth chains parameters. In our experiments, the searching
phase took approximately 40 h to complete. In Table 2 we report the results of
the Finder’s Analysis on a single run on both libraries.

Table 2. Finder results

CC 3.1 CC 4.0

Entry points 32 30

Active Entry Points 11 12

Total number of chains found 36 567

In particular, in the Table 2 we reported three main parameters of our results:
(1) number of Entry points that have been statically found in the libraries. With
the term “entry point”, we considered the Serializable classes that redefine
the readObject() method. (2) Active Entry points: this is a subset of entry
points that contains at least one chain found by the Finder component. It is
important to note that due to the time constraints of the graph exploration
not all the Entry points have been analyzed in a single run of the experiment.
(3) Total number of chains found : the number of chains for which the Finder
generates a path from the entry point to an exit point (i.e., Method.invoke).

In summary, in this first run of the experiments based on the previous set-
tings parameters, the Finder analyzed a class’s call graph composed by 934300
connections (i.e., arches) for common collection 3.1 and a class’s call graph com-
posed by 519980 connections for common collection 4.0 and it was able to extract
36 chains for common collections 3.1 and 567 chains for common collections 4.0.

JChainz: Automatic Detection of Deserialization Vulnerabilities 149

4.3 Analyzer Results

After the searching phase performed by the Finder component, the system sends
all the found chains to the second component, the Analyzer, whose main aim is
to validate them. The Analyzer starts analyzing the single chain and for each
of them builds up the inter-method DDG, then it applies the data types prop-
agation algorithm described in the previous section. The whole analysis took
approximately 27 h. In the Table 3 we report the results of these second running
steps.

Table 3. Analyzer results

CC 3.1 CC 4.0

Non-exploitable chains 22 531

Exploitable chains 8 36

As we can see from the Table 3, the Analyzer was able to exclude a large
fraction of the false positive chains. In particular for the CC 4.0 the tool was
able to discard 93% of the false positive chains while for the 3.1 the tool was able
to discard 64% of the false positive chains. This reduction was mainly achieved
by the data type propagation analysis. In particular the average size of the Data
Dependencies Graph before the pruning for common collection 3.1 was composed
by 658 nodes and 1338 arches. After the pruning we obtained a graph with on
average 76 nodes and 143 arches. For the common collection 4.0 we start with
a graph before pruning composed by 718 nodes and 1468 arches and we obtain a
graph with 138 nodes and 249 arches.

To confirm the results we apply the manual analysis on the 44 exploitable
chains found by our tool. The manual analysis reveal that 32 of the 44 exploitable
chains represent false positive and 12 of the 44 chains were real attack vectors.
Among the results of the exploitable chains, we first search for the ground truth
exploits present in Common Collections Libraries 3.1 and 4.0. The Analyzer
component was able to validate all of them with three missing exploits. Such
an issue about the results depends on the fact that our tool does not handle
Java Proxy classes which alter the program behavior at run-time (i.e., dynamic
feature). Such dynamic gadgets are needed for exploit CC1, CC3, CC4. This
represents a limitation for our tool and it will be discussed in the limitations
section.

Beyond the already known exploits our tool was able to find three new real
attack chains, the exploit CC7, CC8 and CC10 that have been acknowledge by
the yoserial community [9] and the other six new exploit discovered by our tool
are variants of the original ones. For space limitation we report some exploits
of the variants here: https://github.com/Kigorky/JChainz/tree/main/exploits.
CC7, CC8, CC10 can be considered new since they require a new exploitation
technique for delivering the attack. In Appendix section we report a description
on how to build up a successful attacks by using such chains.

In Table 4 we report all the known vulnerabilities validated by our tool.

https://github.com/Kigorky/JChainz/tree/main/exploits

150 L. Buccioli et al.

Table 4. Ground Truth ChainzAnalyzer results

Vulnerability Exploit Results

CC1 exploit Failed

CC2 exploit Pass

CC3 exploit Failed

CC4 exploit Failed

CC5 exploit Pass

CC6 exploit Pass

The 32 false positive chains were present in the results show the problem
related to the precision of the analysis of our framework. Through the manual
analysis we find out the typical false positive that our tool is affected. In par-
ticular our Analyzer is not able to process the expression of the conditions’ in
terms of value. In the following code we report a case of false positive found in
our experiments. In particular this function is a part of the exploitable chain
validated by the Analyzer.

Listing 1.11. False Positive example

1
2 private GeneralRange(Comparator<? super T> comparator, boolean hasLowerBound, @Nullable T

lowerEndpoint, BoundType lowerBoundType, boolean hasUpperBound, @Nullable T upperEndpoint,
BoundType upperBoundType) {

3 ...
4 if (hasLowerBound) {
5 comparator.compare(lowerEndpoint, lowerEndpoint);
6 }
7 ...
8 }

In our exploitable chain the system includes the method compare of the
Comparator class defined as a block of the if statement (Line 5). The problem
here is that the hasLowerBound is always set to false by the class defined in this
chain and the method comparator.compare() will never be executed. Conse-
quently since our chain cannot reach that method, the exploit is not feasible.

5 Limitations

Our tool is affected by some limitations, mainly due to the technical limits of
the static analysis approach. The dynamic features of Java language, such as the
reflection technique, are known to be an obstacle to the static code analysis. Due
to the nature of these objects, the tool is not able to detect chains that could
potentially be exploitable (e.g., false negatives). For example, our tool cannot
handle proxy classes which alter their behavior at run-time. Some tools tried to
model the static analysis over these dynamic features but this problem is still
quite hard to solve [8,13].

Moreover our tool cannot handle the expression evaluation of the conditions
statement (i.e., false positive). In particular such a problem could be solved by

JChainz: Automatic Detection of Deserialization Vulnerabilities 151

adding more precising analysis like symbolic execution. At the moment, several
possibilities exist for performing symbolic execution in Java [1,2]; however, while
constraint solving works well with basic types such as integers and strings, to the
best of our knowledge there is currently no modeling of custom objects in OOP.
If such a model were developed, then the whole search of exploitable chains
could be made more accurate, by exactly solving constraints on objects and
variables, and deterministically generating inputs that allow a particular chain
to be executed/exploited. Another point for improving our analysis is to use a
new framework for building up Java Call Graph such as [20].

6 Related Works

The most recent work related to ours is by Shcherbakov and Ballium. [21]. In
their work, the authors present a tool, SerialDetector, aimed at automatic dis-
covery of Object Injection Vulnerabilities in .NET applications and libraries.
Such an approach is based on the CIL intermediate language and based its own
efficacy on a practical field-sensitive taint-based dataflow analysis targeting the
CLI languages. This method is very specific for the CIL bytecode and it has not
been tested on programming languages that use a different low-level presentation
such as Java (e.g., bytecode).

In the particular context of deserialization vulnerabilities attack, an interest-
ing work to mention is the tool Serianalyzer by Bechler [18]. Serianalyzer uses
static Java bytecode analysis to trace native method calls made during the dese-
rialization process and it uses several heuristics to identify already known attack
patterns. Although it produces many false positives, it has been used to find
many of the exploits present in the ysoserial repository. In our work we decided
to create a more agnostic tool that leverages the capabilities of Soot and its
intermediate representation. In particular we design an automatic analysis by
implementing ad-hoc data flow and type propagations analysis to discover such
a tool.

On the protection side several attempts have been made for protection
against attacks based on deserialization of untrusted data. Dietrich et al. [5]
analyze the problem of deserialization of untrusted data not only in Java, but
in several affected languages. After analyzing a few chains that cause Denial Of
Service, they study in detail possible mitigation for the problem. In the specific
context of Java deserialization, Cristalli et al. [3] describe a system for estab-
lishing the trusted execution path in an existing application during a learning
phase, and enforcing it at run-time with analysis of stack traces in the JVM.
A similar approach had been followed by Hawkins et al. [10]; their ZenIDS sys-
tem uses trusted execution path validation for protection of PHP software via
anomaly detection. ObjectMap [12] is a tool that aims at detecting vulnera-
ble deserialization entry points in Java and PHP systems. Most of those works
check dynamically the integrity features of the deserialization process and show
a quite big run-time overhead. The final goal of our tool is to recognize and
directly correct the vulnerabilities inside the Java source code.

152 L. Buccioli et al.

7 Conclusion

In this paper we present a new tool, called JChainz, that is the first tool that
directly work on the Java language and it is able to discover untrusted data dese-
rialization attack vector. We present the first systematic approach for automatic
creating the Deserialization attack in Java applications including the framework
and libraries. We test our tool on well-known libraries and we show its effective-
ness by validating results on known and new vulnerabilities. We describe three
new case study attacks along with the limitations of our approach and future
improvements such reflection and dynamic proxing.

Acknowledgment. This project has received funding by the Italian Ministry of For-
eign Affairs and International Cooperation (grant number: PGR00814).

1 Appendix

1.1 Case Studies

By taking advantage of our tool, we discovered and exploited new chains
described in the following repositories [16,17]. Each chain is composed of two
main parts, the first one from the entry point to the exit-point. In this case, the
exit-point is the method.invoke method. The latter exit-point allows an attacker
to access and call the entire set of methods and classes available in the java class-
path. The second part of the chain is composed of a gadget. In our experiments,
we attached the well-known gadgets already available in the ysoserial repository,
which allowed us to run arbitrary code. The gadget can be seen as an already
sequence of methods for achieving a specific operation. These chains have been
discovered by the Finder, filtered by the Analyzer, then manually validated and
exploited.

CommonsCollections7 The payload CommonsCollections7 [17], found with
the aid of our tools, consists of the following chain:
java.util.Hashtable.readObject

java.util.Hashtable.reconstitutionPut

collections.map.AbstractMapDecorator.equals

java.util.AbstractMap.equals

collections.map.LazyMap.get

collections.functors.ChainedTransformer.transform

collections.functors.InvokerTransformer.transform

java.lang.reflect.Method.invoke

sun.reflect.DelegatingMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke0

java.lang.Runtime.exec

JChainz: Automatic Detection of Deserialization Vulnerabilities 153

The chain starts in the JDK class Hashtable, and produces an invocation of
an arbitrary system command, via Runtime.exec. In order to reach this result,
the chain reuses the LazyMap gadget from chain CommonsCollections5, already
part of ysoserial before our work. Therefore, the novelty of CommonsCollections7
consists of the trigger made of the first five methods in the chain, up to the
invocation of the gadget with entry point LazyMap.get.

While the potential exploitability of the chain was confirmed by our Analyzer,
we still had to build the code for the exploit. To trigger the method sequence
leading to the invocation of LazyMap.get starting from Hashtable, we built an
hashtable containing two instances of the LazyMap gadget object we wanted to
reuse, with the aim of triggering comparison between the two in the hashtable
upon the insertion of the second. This comparison would force the call to equals
on the LazyMap, which calls method get and triggers the gadget.

We discovered that inserting the same object twice in the hashtable was not
sufficient, as the duplicate would be recognized right away without the need of
any comparison with the objects already present in the hashtable. Therefore,
we fabricated two different instances of the LazyMap, but with colliding hashes.
This was possible because it is extremely easy to obtain colliding object hashes
in Java, as the hashing mechanism has not been designed for security purposes
and does not make use of any cryptographic hash function. In the specific case
of LazyMap, the hash of the entire object is calculated from the hashes of the
objects in the map. Therefore, it was sufficient for us to make the keys of the
LazyMap gadgets collide. In particular, we chose colliding String objects "yy"
and "zZ".

At this point, the LazyMap objects can be inserted in the Hashtable, which
will be then serialized. When deserialized, the reconstruction of the hashtable via
its custom readObject method will insert the two objects. The insertion of the
second will trigger a comparison with the first because of the colliding hashes,
starting the rest of the chain as seen above. This manual design enabled us to
transform the chain found by our framework into a fully functional deserialization
exploit.

CommonsCollections8. The payload CommonsCollections8 has an interest-
ing property that differentiates it from all other previous Commons Collections
payloads: its entry point (i.e. the serializable class TreeBag) is part of the library
itself, while all other known chains have entry points in standard Java classes
found in the JRE. The payload CommonsCollections8 [16] generates the follow-
ing stacktrace:

org.apache.commons.collections4.bag.TreeBag.readObject

collections4.bag.AbstractMapBag.doReadObject

java.util.TreeMap.put

java.util.TreeMap.compare

collections4.comparators.TransformingComparator.compare

collections4.functors.InvokerTransformer.transform

java.lang.reflect.Method.invoke

154 L. Buccioli et al.

sun.reflect.DelegatingMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke0

com.sun.org.apache.xalan.(...).TemplatesImpl.newTransformer

... (TemplatesImpl gadget)

java.lang.Runtime.exec

This chain starts in the TreeBag class and leads to the execution of the
Runtime.exec method, triggering the vulnerability in the Commons Collections
4.0 package. The contribution of this chain, like the previous one (Sect. 1.1),
consists of spotting a new entry point.

The payload is composed by a TreeBag object built with a comparator of
the type TransformingComparator and populated with a TemplatesImpl object
from the ysoserial repository. During the deserialization process, the TreeBag
class builds a new TreeMap object containing the attacker’s comparator and
passes it to the AbstractMapBag.doReadObject method as a parameter. At
this point, the put method is invoked on the map object received as parameter,
triggering the compare method call on the unsafe comparator. Starting from
the transform method, the following operations that lead to the execution of
arbitrary code are managed by the gadget from ysoserial.

References

1. Java Pathfinder. https://github.com/javapathfinder
2. Java Symbolic Execution. https://docs.angr.io/advanced-topics/java support

(2019)
3. Cristalli, S., Vignati, E., Bruschi, D., Lanzi, A.: Trusted execution path for protect-

ing java applications against deserialization of untrusted data. In: Bailey, M., Holz,
T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp.
445–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5 21

4. Dahse, J., Krein, N., Holz, T.: Code reuse attacks in PHP: automated pop chain
generation. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security, vol. 11, pp. 42–53 (2014)

5. Dietrich, J., Jezek, K., Rasheed, S., Tahir, A., Potanin, A.: Evil pickles: dos attacks
based on object-graph engineering. In: 31st European Conference on Object-
Oriented Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017)

6. Ferrara, P., Cortesi, A., Spoto, F.: From CIL to java bytecode: semantics-based
translation for static analysis leveraging. Sci. Comput. Program. 191, 102392
(2020)

7. The Apache Software Foundation. Java collections framework. https://commons.
apache.org/proper/commons-collections/

8. Fourtounis, G., Kastrinis, G., Smaragdakis, Y.: Static analysis of java dynamic
proxies. In: Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, pp. 209–220, New York, NY, USA.
Association for Computing Machinery (2018)

9. Frohoff, C.: ysoserial repository. https://github.com/frohoff/ysoserial (2015)

https://github.com/javapathfinder
https://docs.angr.io/advanced-topics/java_support
https://doi.org/10.1007/978-3-030-00470-5_21
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://github.com/frohoff/ysoserial

JChainz: Automatic Detection of Deserialization Vulnerabilities 155

10. Hawkins, B., Demsky, B.: Zenids: introspective intrusion detection for PHP appli-
cations. In: 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), pp. 232–243. IEEE (2017)

11. Holzinger, P., Triller, S., Bartel, A., Bodden, E.: An in-depth study of more than
ten years of java exploitation, pp. 779–790 (2016)

12. Koutroumpouchos, N., Lavdanis, G., Veroni, E., Ntantogian, C., Xenakis, C.:
Objectmap: detecting insecure object deserialization. In: Proceedings of the 23rd
Pan-Hellenic Conference on Informatics, pp. 67–72 (2019)

13. Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of java
reflection - literature review and empirical study. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), pp. 507–518 (2017)

14. Lekies, S., Kotowicz, K., Groß, S., Nava, E.V., Johns, M.: Breaking cross-site script-
ing mitigations via script gadgets, Code-reuse attacks for the web (2017)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company, Incorporated, Cham (2010)

16. Authors names obfuscated. Commonscollections8 (2019). https://github.com/
frohoff/ysoserial/pull/116

17. Authors names obfuscated. CommonsCollections7 (2019). https://github.
com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/
CommonsCollections7.java

18. Bechler, M.: Serianalyzer (2017). https://github.com/mbechler/serianalyzer
19. Oracle Corporation. The serializable interface (2017). https://docs.oracle.com/

javase/8/docs/platform/serialization/spec/serial-arch.html#a4539
20. Santos, J.C., Jones, R.A., Ashiogwu, C., Mirakhorli, M.: Serialization-aware call

graph construction. In: Proceedings of the 10th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis, SOAP 2021, pp. 37–42.
Association for Computing Machinery, New York (2021)

21. Shcherbakov, M., Balliu, M.: Serialdetector: principled and practical exploration of
object injection vulnerabilities for the web. In: Network and Distributed Systems
Security (NDSS) Symposium 202121–24 February 2021 (2021)

22. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a
java bytecode optimization framework. In: Proceedings of the 1999 Conference of
the Centre for Advanced Studies on Collaborative Research, CASCON ’99, p. 13.
IBM Press (1999)

https://github.com/frohoff/ysoserial/pull/116
https://github.com/frohoff/ysoserial/pull/116
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections7.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections7.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections7.java
https://github.com/mbechler/serianalyzer
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serial-arch.html#a4539
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serial-arch.html#a4539

	JChainz: Automatic Detection of Deserialization Vulnerabilities for the Java Language
	1 Introduction
	2 Background
	2.1 Deserialization Terminology
	2.2 Running Attack Example

	3 Overview
	3.1 Call Graph Accuracy
	3.2 Data Type Inconsistency
	3.3 Validation Algorithm

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Finder Results
	4.3 Analyzer Results

	5 Limitations
	6 Related Works
	7 Conclusion
	1 Appendix
	1.1 Case Studies

	References

