®

Check for
updates

Software Vulnerability Detection
via Multimodal Deep Learning

Xin Zhou®) and Rakesh M. Verma(®)

University of Houston, Houston, TX, USA
xzhou21Quh.edu, rmverma2@central.uh.edu

Abstract. Vulnerabilities in software are like ticking time bombs, but
it is difficult to completely eliminate them. For example, buffer overflow
is a quite common vulnerability that occurs when a program receives
too much data that can corrupt nearby space in memory and manipu-
late other data for malicious actions. To detect potential vulnerabilities
in source code, we consider the code as multisource data by extract-
ing semantically meaningful sub-graphs: Abstract Syntax Tree Graph
(ASTG) and Tokenized Data Flow Graph (TDFG). We combine these
with the original sequence of tokens and 49 heuristic features to train
and leverage a multimodal deep learning network to detect vulnerable
statements. We propose a Multisource Deep Learner (MDL) with joint
representations based on the pretrained attention-based Bidirectional
Gated Recurrent Unit (BGRU) neural networks for vulnerability detec-
tion in source code. Our framework not only detects potential vulnera-
bilities but also locates and ranks the vulnerable statements according
to their importance based on the Program Dependence Graph (PDG).
Our results show that an MDL-based model using multiple modalities is
significantly better than a single modality based model. We also present
comparisons with state-of-the-art methods.

Keywords: Static Analysis - Source Code + Software Bugs - Data
Flow Graph - Abstract Syntax Tree - Deep Learning

1 Introduction

During the software development and deployment process, the later the bug is
found, the greater the cost of repair. Most of the software defects are introduced
in the coding stage, some of them escape detection in the current approaches
of unit testing, integration testing, functional testing, and acceptance testing.
InfoQ [39] reported that 30% to 70% of code logic design and coding defects can
be discovered and repaired through static code analysis. Hicken et al. [14] also
reported that, as expected, 85% of defects come in during the coding phase, but
only a few defects are found during coding since we typically find bugs when
we start testing the programs. Static code analysis plays a very critical role
in the secure development process, and it must be moved forward as much as
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 85-103, 2023.
https://doi.org/10.1007/978-3-031-29504-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29504-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-29504-1_5

86 X. Zhou and R. M. Verma

possible, since earlier detection can reduce the cost of development and repair
for developers and companies. Many companies will likely encounter substantial
resistance from developers to implement static code analysis tools due to the
large number of false alarms that are generated. This means developers will waste
considerable time in bug confirmation. Therefore, only a suitable and practicable
static analysis tool can really reduce the development cost. There are two main
static code analysis methods: 1) analyze intermediate files compiled from source
code such as binary, language-independent intermediate representation (LLVM),
etc., and 2) analyze source code directly through semantic information extracted
from source files. Our framework is focused on source code itself.

According to [17,19,36], the main techniques for static code analysis are: 1)
developing a defect pattern database and then matching the code to be ana-
lyzed with common defect patterns to detect potentially vulnerable statements.
This method is simple and convenient but needs enough patterns and is typically
prone to false positives. 2) Type inference refers to the automatic detection of the
type of an expression in a formal language to ensure that each statement in the
code has the correct type. 3) Model checking is based on finite state automata.
The impact of each statement is abstracted into a state of a finite state automa-
ton, and then the purpose of code analysis is achieved by analyzing the finite
state machine. It can check timing characteristics such as program concurrency.
4) Data flow analysis by collecting semantic information from source code and
abstracting it with a control flow graph. It can analyze and discover the behav-
iors of the program during run-time without actually running the program. 5)
Data driven prediction using machine learning by utilizing the above analytical
techniques based on a large training set that contains a diverse set of vulnerable
and non-vulnerable patterns. We focus on data driven techniques.

Multi-modal learning involves relating information from multiple sources
such as images and text. Multi-modal representation learning tries to eliminate
redundancy and utilizes complementarity between modalities, so as to learn bet-
ter features representation. Currently, there are two research directions in multi-
modal learning: 1) joint representation, which refers to mapping the information
of multiple modalities together into a unified multimodal vector space; 2) coor-
dinated representations, which refers to mapping each modality to its respective
representation space, but certain correlation constraints (such as linear correla-
tion) are satisfied between the mapped vectors.

In computer vision, multi-modal learning has grown rapidly recently.
Unstructured data can inherently take many forms such as visual and textual
content. In this paper, we construct two type of modalities, i.e., sequential and
graphical representations, from raw data using different constructors. Then, we
focus on static vulnerability detection in source code via multi-modal learning
and make the following contributions:

1. We propose a new tokenization method with abstract representation of num-
bers that outperforms state of art methods in rigorously repeated experiments
with random train, valid, and test dataset splits and averaged results.

2. We create a multi-modal dataset for vulnerability detection in source code.

Software Vulnerability Detection via Multimodal Deep Learning 87

3. We propose the Multisource Deep Learner for vulnerability detection in source
code via multi-modal learning.

4. We propose the Vulnerability Highlighter to locate vulnerable statements and
rank the relevant statements.

5. We conduct a series of ablation experiments to show the value of significant
components of our ML pipeline.

Organization. After the Related Work section, in Sect. 3, we explain how we
extract and tokenize source code as four modalities from different perspectives.
Section 4 details the data-driven prediction method that learns code patterns and
dependency graph to detect the vulnerabilities and locate vulnerable statements.
In Sect. 5, we describe the datasets used for the evaluation. Experimental details
and results are discussed in Sect. 6 and Sect.7 concludes the paper.

2 Related Work

We discuss the related work on this topic in four categories: custom token-based
approaches, abstract syntax tree based approaches, data driven approaches, and
multimodal learning based approaches.

Custom Token-Based Approaches: Russell et al. [33] design a function-level
vulnerability detection system using machine learning. They compile millions
of open-source functions and label them with carefully selected findings from
three different static analyzers that indicate potential exploits. The authors have
applied a variety of ML techniques inspired by classification problems in the
natural language domain, fine-tuned them for their application, and achieved
the best overall results via convolutional neural network and classified with an
ensemble tree algorithm. However, function-level vulnerability detection is not as
useful as statement-level detection in real-world detection, since functions can
be too large (e.g., 4,000 and 12,000 line functions are mentioned in [25]) and
time-consuming for an expert to manually investigate.

Abstract Syntax Tree-Based Approaches: Mark Weiser [40] designed a pro-
gram slicing method for automatically decomposing programs by analyzing their
data flow and control flow. The author mentions this program slicing method can
be used for debugging and parallel processing of slices. Recently, several auto-
matic vulnerability detection works are based on a similar idea of combining
data flow, control flow, and Abstract Syntax Tree (AST).

VulDeePecker [24] is the first system showing the feasibility of using deep
learning to detect vulnerabilities while being able to narrow down locations
of vulnerabilities. The authors also present the first vulnerability dataset for
deep learning approaches. VulDeePecker is only able to deal with vulnerabilities
related to library/API function calls. Their newer framework SySeVR [23] is
used to detect vulnerabilities in source code based on so-called Syntax-Semantics
Vector Representation, which is extracted with known potential vulnerable char-
acteristics related to function calls, array usage, pointer usage, or arithmetic
expressions. They truncate or pad input as a set of fixed length sequences of
tokens (threshold = 500) for neural networks.

88 X. Zhou and R. M. Verma

The Vulnerability Deep learning-based Locator, VulDeeLocator [22], uses a
deep learning-based fine-grained vulnerability detector for C source code. The
authors detected four vulnerabilities that were not reported in the National
Vulnerability Database (NVD), but their framework is limited to C programs
and heavily relies on the LLVM compiler, since their representations are based
on the LLVM intermediate representation.

Alon et al. designed a neural model, Code2Vec [2], for representating snippets
of code as continuous distributed vectors. They demonstrate the effectiveness of
their model to predict a method’s name from the vector representation of its
body based on the AST. However, their model is only able to predict labels that
were observed as-is at training time and unable to compose such names and
usually catches only the main idea. This paper inspired us to extend program
text representation with different kinds of graph representations.

Other Data Driven Approaches with Different Features: Harer et al.
[11] design a software vulnerability detection framework, which is a data-driven
approach to detect vulnerabilities with machine learning in C and C++ pro-
grams. They use features based on the operations in each basic block (opcode,
vector, or op-vecv) derived from a program build process using Clang and LLVM.
Then, they combine this with source-based features using C/C++ lexer to pre-
dict vulnerability at the function level. Their work is limited by the labels of
functions, since it is really hard to manually investigate and validate labels that
are generated by other static analysis tools such as Clang static analyzer. Li et
al. [21] present a vulnerability detector, based on sub-graphs in the Program
dependence Graphs, that outputs the crucial statements that are relevant to the
detected vulnerability.

Multimodal Learning Approaches: Heidbrink et al. [6,12,13] proposed a
method that uses multimodal learning for flaw detection in software programs
based on two modalities (source code and program binary). In source code, they
extract subgraph information by counting all unique node-edge-node transitions
and flaw analysis-inspired statistical features associated with following program
constructs: function call (e.g., number of external calls), variables (e.g., number
of explicitly defined variables), graph node counts (e.g., number of else state-
ments), graph structure (degrees of AST nodes by type). For binaries, they used
Ghidra to extract and collect statistical count information per function associ-
ated with function call, variables (e.g., number of stack variables), function size
(e.g., number of basic blocks), and p-code opcode instances, which is Ghidra’s
intermediate representation language for assembly language instructions.

Other Approaches: In computer vision research improved model have been
proposed based onmulti-view techniques. This line of research shows that ana-
lyzing an object from different perspectives can extract more semantic features
and information. Jin et al. [15] proposed a method to take joint-embedding of
shapes and contours. Lai et al. [20] introduced a large-scale, hierarchical multi-
view object dataset RGB-D (Red-Green-Blue-Depth) collected using an RGB-D
camera. RGB-D based object combines color and depth information to sub-
stantially improve results. Mokhov [26] designs a machine learning approach for

Software Vulnerability Detection via Multimodal Deep Learning 89

static code analysis and fingerprinting for security bugs using the MARFCAT
[27] application [10]. Sestili et al. [35] points towards future approaches that may
solve vulnerability detection problems using representations of code that can cap-
ture appropriate scope information and using deep learning methods that are
able to perform arithmetic operations. They developed a code generator to pro-
duce an arbitrarily large number of code samples of controlled complexity. They
also investigated the limits of the current state-of-the-art Al system for detect-
ing buffer overflows and compared it with current static analysis engines. Their
data are simple C-like programs, which are generated as basic blocks without
loops, conditionals, and variables with unknown value. Katz et al. [16] design
a framework to convert a program in low-level representation back to a higher-
level human-readable representation based on neural machine translation. Their
framework can automatically learn a decompiler from a given compiler. However,
their framework fails if the input is longer than the threshold value. Wang et al.
[38] propose a graph neural network assisted data flow analysis method to find
potential buffer overflows in execution traces. Yamaguchi et al. [41] employ the
concept of code property graph in many graph databases such as ArangoDB,
Neo4J, and OrientDB and demonstrate its efficacy by identifying 18 previously
unknown vulnerabilities in the source code of the Linux Kernel.

3 Background and Approach

In this section, we first describe and explain how to extract and tokenize source
code into different representations as different modalities. Second, we introduce
and explain our framework for vulnerability detection in source code.

3.1 Data Representations
These four data representations are the modalities for multimodal learning.

1. Token: we extract and tokenize the sliced code into a sequence of lexical tokens
based on the Program Dependence Graph (the definition is in Sect. 3.4).

2. Abstract Syntax Tree Graph (ASTG): is a graph type modality, which is
generated by AST constructor.

3. Tokenized Data Flow Graph (TDFG): is a graph type modality, which is
based on data flow dependencies.

4. Heuristic Features: the syntactic complexity properties of source code [4] (e.g.,
number of variable operations, number of function calls, etc.). Totally, we have
49 features [4] generated from the properties of AST and tokens.

ASTG and TDFG are extracted as structural semantic information similar to
depth scans for images in computer vision. For example, when you consider a
specific variable in source code, you focus only on the lines that use this variable.

90 X. Zhou and R. M. Verma

3.2 Potential Vulnerable Statement

Potential Vulnerable Statement is a pre-defined collection from Li et al. [23]
based on the Checkmarx over open-source tools Flawfinder [9] and RAT [31].
This collection is used for extracting program dependence graph and highlighting
the vulnerabilities.

3.3 Abstract Syntax Tree

An AST is used to represent the abstract syntactic structure of source code
in a formal language. Once we have the tree representation of source code, we
can mine all possible paths through terminal-to-terminal, root-to-terminal, or
other efficient kernels. We use an open-source tool ASTminer [18] to generate
the ASTs. Then, we keep the same node ID for the same variables by merging
all of them into one node to connect all edges for final AST Graph.

3.4 Program Dependence Graph

Program dependence graph (PDG) [8] consists of control dependency and data
dependency, which are defined based on the Control Flow Graph (CFG).

Control Flow Graph (CFG)) [8]: For static analysis, the CFG is essential to
extract semantic features and accurately represent the flow inside of a program
unit. Let P be a program that consists of functions. The CFG of function f;
is a graph G, = (V;, E;), where V; is a set of nodes, each node represents a
statement or control predicate, and E; is a set of directed edges such that each
edge represents the possible flow of control between a pair of nodes.

Data Dependency [8]: Let P be a program that consists of functions and let
the CFG for function f; be G; = (V;i, E;). A node ny, will be considered as data
dependent if there is a path from n; to n;; in G; and a value computed at node
n; is used at node n;j, where 1 < j,k < {; and j # k, where [; is total number
of statements from f;.

Control Dependency [8]: Let P be a program consisting of functions f; with
CFG G; = (V;, E;). If there exists a path starting at n;, and ending at n,; such
that (i) n;; post-dominates every node on the path excluding n;, and n;;, and
(ii) does not post-dominate n;;, then n;; is control dependent on 7;y.

PDG [8]: Let P be a program that consisting of functions f; with PDG G} =
(Vi, EY), where V; is the same as G; for CFG and E’ is a set of directed edges
such that each edge represents a data or control dependency between a pair of
nodes.

3.5 TDFG and ASTG

Tokenized Data Flow Graph (TDFG) is constructed based on the tokenized
program by the following steps: 1) collect potential vulnerable statement line

Software Vulnerability Detection via Multimodal Deep Learning 91

numbers, 2) generate data flow graph based on these collected line numbers,
3) construct a graph G = (V, E) with tokenized source code where a node v;
represents a partial statement and an edge represents a the flow of data between
a pair of nodes. Final TDFG feature set is a collection of sub-graphs from TDFG
based on the potential vulnerable statements. Our previous work [42] shows how
the TDFG is constructed and how sub-graphs are extracted. Abstract Syntax
Tree Graph has the same extraction process as TDFG. Since AST tree can be
directly represented as G = (V, E) where V is a set of nodes and E is a set of
edges, where a node represents a token type and a edge represents a possible
flow of control between a pair of nodes. We convert each potential vulnerable
statement as a shared node (using same node index) over all modalities for
alignment. Both TDFG and ASTG sequences and sub-graphs can be embedded
as word or graph level embedding.

Fig.1. A sub-graph sample. R is root node and E is exit node; Red arrow line is
terminal to terminal path and blue arrow line is root to terminal path on the left; the
right graph shows the first iteration of WLGK algorithm (Color figure online)

3.6 Sub-graph Extractions

We collect sub-graphs using the following three extraction methods to find
semantic representations of source code:

1. Root-to-terminal (RTT): is a collection of paths from the root node to a
terminal node.

2. Terminal-to-terminal (TTT): is a collection of paths from a terminal node to a
terminal node. This method has been used by Code2Vec [2] and Code2Seq [1].

3. Weisfeiler-Lehman Graph Kernels (WLGK): [37] is a rapid feature extrac-
tion scheme based on the Weisfeiler-Lehman test of isomorphism on graphs.
We use WLGK to walk through the paths and extract sub-graphs from
both ASTG and TDFG since it has been found useful in other tasks, e.g.,
Graph2Vec [28].

92 X. Zhou and R. M. Verma

Sample Code Tokenized
#include <stdio.h> 1 PPHASH *ID_2* LT *ID_3* PERIOD *ID_4* GT
2 PPHASH *ID_2* LT *ID_S* PERIOD *ID_4* GT
3 INT *ID_6* LPAREN INT *ID_7* COMMA CHAR TIMES *ID_8* LBRACKET RBRACKET RPAREN
4 LBRACE
S CHAR TINES *ID_6* SEMI
6 CHAR *ID_9* LBRACKET *min_num* + *min_num* RBRACKET SEMI

#include <string.h>

#

1
2
3 int main(int argc, char * argv[])
4
5 char * data;

6 char dataBuffer[100]; =47 em_ev cuats *1o_o* senr
7 data = dataBuffer; 8 memset LPAREN *ID@* COMMA QUOTATION 1 COMMA *min_num* + 4 9 RPAREN SEMI
8 memset(data, 'A’, 100-1); 9 *ID_o* LBRACKET *min_num* + 4 9 RBRACKET EQUALS QUPTATION 2 SEMI
9 data[100-1] = "\0'; 10 CHAR *ID_1* LBRACKET *min_nun* RBRACKET EQUALS STRING_LITERAL SEM
o char dest[se] = **; 11 strcpy LPAREN *ID_1* COMMA *ID_0* RPAREN SEMI
12 Rerace
11 strepy(dest, data);
12 3 ®)

(a)

ken level)
start PLUS ASSIGN PLUS memset LPAREN *ID_0* EQUALS *ID_9* LBRACKET *min_num* + 4 9 RBRACKET EQUALS *ID_9* LBRACKET *min_num* + *min_num* RBRACKET SEMI

SEMI RBRACKET *min_num* LBRACKET *ID_9* EQUALS QUPTATION 1 COMMA *min_num* + 4 9 RPAREN SEMI
ID_0 EQUALS *ID_9* LBRACKET *min_num* EQUALS *ID_9* LBRACKET *min_num* + 4 9 EQUALS *ID_9* LBRACKET *min_num* + *min_num* RBRACKET SEMI

(d)

Fig. 2. TDFG sub-graphs extraction example: (a) is a sliced sample for the model, (b)
is tokenized PDG, (c) is TDFG, and (d) is a set of sub-graphs in token-level.

Weisfeiler-Lehman algorithm updates node attributes of a node v by:
h (0) = HASH(R ™) (0), F{{'" P (u) | w € N(@)}) (1)

where F' is an aggregation function that concatenates topologically ordered
neighbor’s embedding, h; is the ith attribute of v, u is v’s neighbor node, and N
is the set of neighbor nodes. The right part of Fig. 1 shows the first iteration of
Weisfeiler-Lehman algorithm based on the left graph. For our sub-graph extrac-
tion, we collect the paths based on 1-dimensional Weisfeiler-Lehman algorithm
with 5 iterations (after grid search from 1 to 10).

Representation: we extract and concatenate the sub-graphs as final repre-
sentation (MAX = 500 tokens) using above methods based on the TDFG and
ASTG. Figurel is an example of how sub-graphs are extracted by these three
methods.

Figure 2(d) is an example of how a sequence of tokens is generated from raw
sample code: line 1 is an example of an RTT path, line 2 is an example of TTT,
and line 3 is an example of WLGK path in the sub-graphs.

3.7 Pipeline

We propose a multimodal learning framework for vulnerability detection in
source code based on different modality extraction methods. Figure 3 shows the
overview of our framework. We first generate Abstract Syntax Tree from source
code and Program Dependence Graph from tokenized code. Then, we extract
sub-graphs from AST as ASTG modality, tokens from PDG as Token modality
and heuristic features (HF) from PDG as HF modality and extract sub-graphs
from tokenized data flow graph as TDFG modality. The neural network could be
any kind of multimodal leaning network to concatenate and align all modalities
for final classification.

A 7

Software Vulnerability Detection via Multimodal Deep Learning 93

Program
::> Dependency [———— Tokenization [——©
Graph

Source Code

|—|:> Heuristic Embeded
Features Tokens
Result

Neural
Network

Embedding

Joint Representations

KO)

Fig. 3. Multisource Deep Learner Pipeline

EAN EAN

char data;

data="";

fscanf (stdin, "%c", &data);
char result = data + 1;
return result;

}

char * data;

char dataBuffer[100];
data = dataBuffer;
memset(data, ‘A", 100-1);
data[100-1] = "\0";

char dest[50] = "";
strcpy(dest, data);
printf(‘exit');

Fig. 4. Vulnerability Highlighter is used to locate vulnerable statements; left example
shows stack-based buffer overflow and the right example shows integer overflow.

3

.8 Vulnerability Highlighter

We consider the pre-defined potential vulnerable tokens as the Most Possible
Vulnerable Statements (MPVSs). If a program is detected as GOOD, we output
the result without any highlights. If a program is detected as BAD, we proceed
as below:

1.
2.

Denote all statements that contain MPVS label as M.

Generate control flow graph (CFG), data dependency, and control depen-
dency to construct a program dependence graph (PDG@G) for each MPV.
Label all MPVSs ([mq,mg,...,m,] € M) with red (dangerous) background
color in the program if it is detected as vulnerable.

For i = 1 to n, we extract their data and control dependencies for CFG G;.
Union all forward slices as one forward list and all backward slices as one
backward list respectively for data and control dependencies.

Label the statements with orange (warning) background color for backward
data dependents of the MPVs if it is not in dangerous. Label other statements
from PDG with blue (likely neutral) background color.

94 X. Zhou and R. M. Verma

7. Keep all other statements, those that are not in PDG, with no highlights.

Figure 4 shows vulnerable statements found by the Vulnerability Highlighter.

4 Neural Network Models

We used convolutional neural network (CNN) for preliminary investigation on
graph embedding and feature extraction methods, because of its speed for train-
ing and testing. Table 3 shows that Bidirectional Gated Recurrent Unit Neural
Network (BGRU) [34] performs the best, in line with previous observations.
Therefore, we use BGRU as the base model for further investigation.

@ Output

Linear (2) + Sigmoid Classification
| Linear (4664) + ReLU | Laver

Max
Attention

Last

Embedding
Layer

Input

Fig. 5. Attention-based BGRU Classifier

4.1 Attention-Based BGRU

A Bidirectional GRU, or BGRU, is a sequence processing model that consists
of two GRUs. One taking the input in a forward direction, and the other in
a backwards direction. Gated recurrent units (GRUs) are a gating mechanism
in recurrent neural networks, introduced by Kyunghyun Cho et al. [5]. Figure 5
shows how an attention-based BGRU classifier is constructed. Input can be either
Token, ASTG, or TDFG. We use pretrained Word2Vec as embedding layer for
each modality. A dot product attention layer is followed by BGRU layer. Then,
we concatenate the output from attention layer, last hidden layer from BGRU,
and max values of all elements from output of the last hidden layer of BGRU as

Software Vulnerability Detection via Multimodal Deep Learning

95

a joint representation for final linear classifier with ReLLU and Sigmoid activation
functions. Our dot product attention layer is computed as follows:

a:(s) = softmaz((

exp(hgﬁs)

> exp(hihs)

)

where a; is output representation, s is input vector, and h, is each source hidden
state corresponding to the hidden target state h: (Fig.5).

XToken XasTG XTDFG XuF
Pre-trained-1 Pre-trained-2 Pre-trained-3 Pre-trained Random
Forest

Atten+ Last + Max

Atten+ Last + Max

Atten+ Last + Max

|

l

|

Concatenation (4664) + ReLU

v

| Linear(512) + ReLU |

Linear(128) + ReLU |» -----)| Linear(256) + ReLU |

U
| v | v |

Linear(256) + ReLU Linear(512) + ReLU

Good/Bad H
A 4

Reconstructed(4664) + Tanh

Fig. 6. Multisource Deep Learner

4.2 Multisource Deep Learner

We use three pretrained embedding layers and attention-based BGRU layer as
the encoders for token, ASTG, and TDFG modalities. Then, we unfreeze pre-
trained encoders (learned parameters can still be updated with 0.0001 learning
rate) for correlational joint representations (size = 4,664) for vulnerability detec-
tion using our Multisource Deep Learner.

Multisource Deep Learner (MDL): it has a similar architecture as Corre-
lational Neural Network (CorrNN [3]), but we use cross entropy loss function
instead and added a classifier to fit our classification task. Our framework does
not reconstruct all raw inputs, it reconstructs the joint representation by simple
MLP encoder-decoder model to get semi-reconstruction loss to fine-tuning clas-
sification model using learning rate 0.0001. First, we take concatenated vector
[x1, x2, x3, x4] of size d1 + d2 + d3 + d4 from the pooled layer (Attention
+ Last + Max) based on three pre-trained BGRU and one pre-trained random
forest. Given z = (x1, x2, x3, x4), the first hidden layer computes an encoded
representation as

hl(z) = f(w1x1 —+ Woko + W3x3 + WaTy + b)

(2)

96 X. Zhou and R. M. Verma

where w is a projection matrix and b is bias vector. Function f can be any non-
linear activation function. We grid searched to find the best activation function
ReLU for our framework. Our latent vector h is used for classification. We use
Binary Cross Entropy (BCE) loss for training. BCE is computed as follows:

BCE = —(ylog(p) + (1 — y)log(1 — p)) (3)

where log is the natural log, y is binary indicator and p is predicted probability.
We also tested with combined loss by summing up BCE of the classification and
Mean Square Error (MSE) loss of the concatenation reconstruction.

5 Dataset

We use the MVDSC dataset [42], which is generated based on two sources:
NVD [30] and SARD [29]. SySeVR dataset is also extracted from the same
raw datasets, but it contains more than 10,000 mislabeled instances (e.g., see
Fig.7) and duplicates. However, we still use SySeVR [23] dataset as a baseline
to compare with our single-modality based model, which investigates different
tokenization methods for source code. MVDSC is a dataset generated without
any duplicates. MVDSC-Mixed is a combination of MVDSC dataset and a small
portion of synthetic instances. All these datasets are focused on the vulnera-
bilities that can be learned from vulnerable and non-vulnerable patterns such
as buffer-related (overflow, underflow, etc.), integer-related (overflow, underflow,
etc.), divide-by-zero, double-free, etc. For more details, please refer to NVD [30],
SARD [29], and MVDSC [42].

static void badSink (char * data) static void goodG2BSink (char * data)

chardest [50] =" " ; chardest [50] =" " ;

memmove (dest ,data , strlen (data) * sizeof (char)) ; memmove (dest ,data , strlen (data) *sizeof (char)) ;
dest [50 -1] ="\0"; dest [50 -1] ="\0";

Fig. 7. Two code snippets from SySeVR dataset that are identical except for function
names, but they label the left as vulnerable, and the right one as non-vulnerable.

5.1 Preprocessing and Tokenization

Each program consists of one or more functions in NVD [30] and SARD [29].
Each function contains labels and comments about vulnerability details including
how to fix. Therefore, we need to mask or remove sensitive information that
may benefit models. We convert all file names and any token, that contains
“bad”, ‘good’, or ‘cwe’ sub-string (cwe_* contains sensitive information about
vulnerabilities), to a fixed common string *C* with star symbols around to avoid
code conflicts. We also convert all strings with single quotation mark as ‘*SQ*
+ n’ and double quotation mark as ‘“*DQ* + n’ where n is the length of content
in quotation. In addition, we remove all comments. We are using 811 pre-defined

Software Vulnerability Detection via Multimodal Deep Learning 97

Table 1. Dataset statistics (vulnerable: non-vulnerable).

Dataset train ‘ valid ‘ test
SySeVR pool: 64403 (13603:50800)
MVDSC 7569:22416 | 1914:5580 | 1857:5637
MVDSC-Mixed | 11416:26569 | 2401:6093 | 2325:6169

vulnerable syntax characteristics (memset, strcpy, etc.) which is generated by
Li et al. [23] since we use the same raw dataset. We use pycparser [7] as our
base lexer to find identifiers including variables and functions (finding identifiers
can be tricky). We convert all variable and function names into more semantic
meaningful representations (Table1).

Locate_ID: for masking variable and function names, we need to index them.
To keep the index order meaningful, we always index destination (sink) vari-
able before source variable. Ex. strcpy(dest, src) will always be masked as str-
cpy(*ID_0*, *ID_1*), no matter which variable was declared first. To align those
variables which are related to potential vulnerable statement, we denote the vari-
ables which are the closest to a potential vulnerable statement starting from 0.
That means we can ensure that ‘*ID_0*" and ‘“*ID_1*’ are the two aligned tokens
to vulnerable statements since most of function calls take two arguments in our
dataset. A more complex function with more arguments can also be handled.

Abstract: after ‘Locate_ ID’, we tokenize the remaining program units based
on their types. Once the whole PDG is tokenized, we apply a number abstrac-
tion function, Abstract(), to convert numbers as (*MIN*, difference) in data
flow statements only based on the potential vulnerable statement, where *MIN*
represents the minimum number value of all numbers in these data dependents.

6 Experimental Results and Analysis
We now present the results of our experiments and ablation studies.

Metrics. We use accuracy (A), precision (P), recall (R), and F1 as our evaluation
metrics. Our dataset is highly skewed since vulnerable statements are far fewer
than non-vulnerable statements, so we add extra metric Matthews Correlation
Coefficient (MCC) for evaluation.

Comparing Single-Modality Model with Baseline: we use SySeVR [23]
as our baseline for single-modality model, since it was developed for detection
originally from the same sources as MVDSC dataset [42]. SySeVR dataset con-
tains 64,403 instances and the authors reported their results based on randomly
picked dataset 30000/7500/7500 as train/valid/test, we also randomly picked
with random seed from the pool with same split ratio. We report average and

98 X. Zhou and R. M. Verma

Table 2. Tokenization comparison using SySeVR dataset; 10 run in 10 different random
seeds. SySeVR-BGRU [23] was the best previous result. T is our tokenization method.

Method A P R F1 MCC
SySeVR-BGRU | 94.7 91.5 n/a 86.8 83.6

T 4+ CNN 94.740.4 | 87.6+2.1 | 87.54+1.7 | 87.54+0.9 | 84.2+1.1
T + BGRU 95.3+£0.2 | 90.541.7 | 87.2+2.4 | 88.84+0.8 | 85.94-0.9

standard deviation in 10 runs with 10 random seeds, since it is a better evalua-
tion method [32]. Table 2 shows that our single-modality model with same BGRU
model as theirs is significantly better than their best result. Hence, we only use
the MVDSC dataset [42] for further investigation. For the following experiments,
we report the average of three runs in the same train/valid/test sets.

Table 3. Comparing models with token modality on MVDSC dataset [42]

Network | A P R |F1 |MCC
CNN 95.5/90.4|91.490.9|87.9
LSTM 91.9/85.5|81.1|83.3|78.0
BLSTM | 95.8|92.190.7 | 91.4 | 88.6
GRU 96.1]94.9|89.2/91.9|89.5
BGRU 96.694.3/91.6|93.0|90.7

Comparing token modality with different models: to find the best model
for single-modality and build some pretrained models, we evaluated our token
modality with five common networks on the MVDSC dataset. Table 3 shows that
the Bidirectional-GRU classifier achieved the best performance among CNN,
LSTM, Bidirectional-LSTM, and GRU. The table also shows that both bidi-
rectional LSTM and GRU are better than LSTM and GRU respectively. This
suggests that both backward and forward paths are useful for vulnerability detec-
tion.

Table 4. Comparing graph embedding in TDFG and ASTG

TDFG2Vec | A P R F1 |MCC

token 90.0 1 82.1|76.6 |79.2|72.8
graph 84.7 767 55.0 | 64.1/55.9
ASTG2Vec | Acc | Pre |Recall | F1 | MCC
token 91.583.7/81.5 |82.6|77.0

graph 84.8/72.1 63.0 | 67.2|57.6

Software Vulnerability Detection via Multimodal Deep Learning 99

Comparing embedding methods for graph modality: we compare sub-
graph embedding and Graph2Vec [28]. For sub-graph embedding, we concate-
nate all extracted paths as a long sequence (MAX = 500 tokens) and then use
a Word2Vec embedding + BGRU (Fig. 5) that is connected with a dot prod-
uct attention layer for classification. For graph embedding, we use a standard
Graph2Vec [28] to embed ASTG or TDFG into a 1024-dimension vector with 5
Weisfeiler-Lehman iterations, then normalize it as a 32 x 32 grey scale image with
a standard CNN classifier. Table 4 shows that token level embedding method is
significantly better than graph level embedding. So, we embed a set of sub-graphs
as 500 x 32 matrix for further experiments.

Table 5. Comparing tokenization methods on MVDSC dataset

Normal | Locate ID | Abstract | A P R |F1 |MCC
v 96.1194.0|89.892.0|89.5
v v 96.394.6 | 89.8 1 92.490.0
v v v 96.6 1 94.3|91.6 | 93.0 | 90.7

Comparing tokenization with add-ons: Table5 shows the differences
between different tokenization methods. Two add-ons (Locate_ID and Abstract)
eventually and slightly improved the model. With the abstract representation of
numbers, the recall is increased by 1.8 which is a critical improvement in vul-
nerability detection since the size is very sensitive in memory allocation such as
malloc()—free().

Table 6. Freezing vs Unfreezing the parameters of pre-trained models

Method A P R F1 |MCC
4 modalities + BCE + freeze 97.0/96.391.394.8|91.8
4 modalities + BCE + unfreeze 97.7197.2193.4195.2/93.8

4 modalities + CombinedLoss + freeze 95.1]98.5|81.5[89.286.7
4 modalities + CombinedLoss + unfreeze | 97.8 | 97.0 | 93.9 | 95.4 | 94.0

Comparing freeze/unfreeze: we compared multiple modalities with frozen
and unfrozen mode and tested with two loss functions. Table 6 shows that both
unfrozen encoders worked significantly better than their frozen ones. Combined-
Loss is not significantly different from BCE but made model training much
slower. Therefore, we use BCE for further comparisons. We can see that unfreez-
ing the parameters of the pre-trained model is a better way for fine-tuning.

100 X. Zhou and R. M. Verma

Table 7. Ablation study of modalities on MVDSC dataset

Modalities A P R |F1 |MCC
Token 96.6 | 94.3 1 91.6 1 93.0 | 90.7
Token + ASTG 97.1192.3/96.194.292.2
Token + ASTG + TDFG 97.6/96.9|92.9 | 94.8 | 93.2
Token + ASTG + TDFG + HF | 97.7|97.2/93.4|95.2|93.8

Comparing single modality and multiple modalities using MVDSC
dataset: this ablation study is used to learn how modalities can be stacked up
and improve the classification performance in MVDSC dataset. Table7 shows
that all combined model has the best overall performance. The result also shows
that ASTG is the booster for higher recall. TDFG and HF make the model more
balanced for precision. Comparing token-modality to four combined modalities,
the MCC is increased by 3.1% which is significantly better.

Table 8. Model comparisons using MVDSC-Mixed dataset

Modalities A P R |F1 |MCC
Token 94.2|94.8|83.6 | 88.8|85.3
Token + ASTG 95.2191.0|92.091.3|88.0
Token + ASTG + TDFG 95.6|94.1|89.6 | 91.8 | 88.9
Token + ASTG + TDFG + HF | 95.5|92.7|90.8 | 91.7 | 88.7

Table 9. MVDSC vs MVDSC-Mixed

Representations MVDSC MVDSC-Mixed | Differences
R |MCC R |MCC AR | AMCC
Token 91.6 1 90.7 |83.6|85.3 -8.0/-54
Token + ASTG 96.1]92.2 1 92.0|88.0 -4.1(-4.2
Token + ASTG + TDFG 92.9193.2 | 89.6|88.9 -3.3-4.3
Token + ASTG + TDFG + HF | 93.4|93.8 |90.8 | 88.7 -2.6 |-5.1

Comparing single modality and multiple modalities using MVDSC-
mixed dataset: MVDSC-Mixed adds around 10% adversarial data to MVDSC.
Table 8 shows that all modalities are negatively impacted by adversarial data.
Table 9 shows that single-modality based model is the most negatively impacted
to both recall (—8.0%) and MCC (—5.4%). Therefore, using multiple modalities
not only improves the detection performance but also improves the robustness
of the model.

Software Vulnerability Detection via Multimodal Deep Learning 101

7 Conclusion

We propose Multisource Deep Learner, a multimodal learning framework to
detect vulnerabilities in source code and show their location in code. The frame-
work mines semantic information for developers. We compared our framework
with state-of-the-art algorithms from previous works. We evaluated our sys-
tem with our multi-modal dataset MVDSC [42]. Our results show that multi-
modality-based models are significantly better in performance and robustness
than single-modality-based models by the dataset-based evaluation.

Acknowledgments. Research partially supported by NSF grants 1433817 and
2210198, ARO grant W911NF-20-1- 0254, and ONR award N00014-19-S-F009. Verma
is the founder of Everest Cyber Security and Analytics, Inc.

A Appendix

A.1 Limitations

Apart from the usual limitations of static analysis and machine learning, other
limitations are: 1) adversarial data may negatively impact model’s performance,
2) the current implementation does not address interprocedural analysis.

References

1. Alon, U., Brody, S., Levy, O., Yahav, E.: Code2seq: generating sequences from
structured representations of code. In: International Conference on Learning Rep-
resentations (2019). https://openreview.net /forum?id=H1gKYo09tX

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: Code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.
org/10.1145/3290353

3. Chandar, S., Khapra, M.M., Larochelle, H., Ravindran, B.: Correlational neu-
ral networks. Neural Comput. 28(2), 257-285 (2016). https://doi.org/10.1162/
NECO_a_00801

4. Chernis, B., Verma, R.: Machine learning methods for software vulnerability detec-
tion. In: Proceedings of the Fourth ACM International Workshop on Security and
Privacy Analytics, pp. 31-39 (2018)

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep
Learning, December 2014 (2014)

6. Cooper, A., Zhou, X., Heidbrink, S., Dunlavy, D.M.: Using neural architecture
search for improving software flaw detection in multimodal deep learning models.
arXiv:2009.10644 (2020)

7. Eliben: Complete ¢99 parser in pure python: pycparser v2.21. https://github.com/
eliben/pycparser/blob/master/pycparser. Accessed Nov 2021

8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9(3), 319-
349 (1987). https://doi.org/10.1145/24039.24041

https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1162/NECO_a_00801
https://doi.org/10.1162/NECO_a_00801
http://arxiv.org/abs/2009.10644
https://github.com/eliben/pycparser/blob/master/pycparser
https://github.com/eliben/pycparser/blob/master/pycparser
https://doi.org/10.1145/24039.24041

102

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

X. Zhou and R. M. Verma

Flawfinder: Flawfinder. https://dwheeler.com/flawfinder/. Accessed Feb 2022

. SQ Group: Static analysis tool exposition (SATE) VI workshop. https://www.

nist.gov /itl/ssd /software-quality-group/static-analysis-tool-exposition-sate-vi-
workshop. Accessed Mar 2022

Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing. arXiv abs/1803.04497 (2018)

Heidbrink, S., Rodhouse, K.N., Dunlavy, D.M.: Multimodal deep learning for flaw
detection in software programs. arXiv:2009.04549 (2020)

Heidbrink, S., Rodhouse, K.N., Dunlavy, D., Cooper, A., Zhou, X.: Joint analysis
of program data representations using machine learning for improved software
assurance and development capabilities (2020). https://doi.org/10.2172/1670527.
https://www.osti.gov/biblio/1670527

Hicken, A.: The shift-left approach to software testing. https://www.stickyminds.
com/article/shift-left-approach-software-testing. Accessed Mar 2022

Jin, A., Fu, Q., Deng, Z.: Contour-based 3D modeling through joint embedding of
shapes and contours. In: Symposium on Interactive 3D Graphics and Games, 13D
2020. Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3384382.3384518

Katz, O., Olshaker, Y., Goldberg, Y., Yahav, E.: Towards neural decompilation.
arXiv abs/1905.08325 (2019)

Kotenko, I., Izrailov, K., Buinevich, M.: Static analysis of information sys-
tems for IoT cyber security: a survey of machine learning approaches. Sensors
22(4) (2022). https://doi.org/10.3390/522041335. https://www.mdpi.com/1424-
8220/22/4/1335

Kovalenko, V., Bogomolov, E., Bryksin, T., Bacchelli, A.: PathMiner: a library for
mining of path-based representations of code. In: Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories, pp. 13-17. IEEE Press (2019)
Kulenovic, M., Donko, D.: A survey of static code analysis methods for security
vulnerabilities detection. In: 2014 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pp.
1381-1386 (2014). https://doi.org/10.1109/MIPRO.2014.6859783

Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D
object dataset. In: 2011 IEEE International Conference on Robotics and Automa-
tion, pp. 1817-1824 (2011). https://doi.org/10.1109/ICRA.2011.5980382

Li, Y., Wang, S., Nguyen, T.N.: Vulnerability detection with fine-grained inter-
pretations, pp. 292-303. Association for Computing Machinery, New York (2021).
https://doi.org/10.1145/3468264.3468597

Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H.: VulDeeLocator: a deep learning-
based fine-grained vulnerability detector. IEEE Trans. Dependable Secure Comput.
19(4), 2821-2837 (2022). https://doi.org/10.1109/TDSC.2021.3076142

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: SySeVR: a framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secure
Comput. 1 (2021). https://doi.org/10.1109 /tdsc.2021.3051525

Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, 18-21 February 2018. The Internet
Society (2018). http://wp.internetsociety.org/ndss/wp-content /uploads/sites/25/
2018/02/ndss2018_03A-2_Li_paper.pdf

McConnell, S.: Code Complete. Pearson Education (2004)

https://dwheeler.com/flawfinder/
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
http://arxiv.org/abs/2009.04549
https://doi.org/10.2172/1670527
https://www.osti.gov/biblio/1670527
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://doi.org/10.1145/3384382.3384518
https://doi.org/10.1145/3384382.3384518
https://doi.org/10.3390/s22041335
https://www.mdpi.com/1424-8220/22/4/1335
https://www.mdpi.com/1424-8220/22/4/1335
https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1109/ICRA.2011.5980382
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1109/TDSC.2021.3076142
https://doi.org/10.1109/tdsc.2021.3051525
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Software Vulnerability Detection via Multimodal Deep Learning 103

Mokhov, S.A.: The use of machine learning with signal- and NLP processing of
source code to fingerprint, detect, and classify vulnerabilities and weaknesses with
MARFCAT. arXiv, Cryptography and Security (2011)

Mokhov, S.A., Paquet, J., Debbabi, M.: MARFCAT: fast code analysis for defects
and vulnerabilities. In: 2015 IEEE 1st International Workshop on Software Ana-
lytics (SWAN), pp. 35-38 (2015). https://doi.org/10.1109/SWAN.2015.7070488
Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.:
Graph2vec: learning distributed representations of graphs. arXiv abs/1707.05005
(2017)

NIST: Software assurance reference dataset. https://samate.nist.gov/SRD /index.
php. Accessed Mar 2022

NIST: National vulnerability database. https://nvd.nist.gov/. Accessed Nov 2021
RAT: rough-auditing-tool-for-security. https://code.google.com/archive/p/rough-
auditing-tool-for-security/. Accessed May 2022

Reimers, N., Gurevych, I.: Reporting score distributions makes a difference: perfor-
mance study of LSTM-networks for sequence tagging. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, pp. 338-348. Association for Computational Linguistics (2017). https://
doi.org/10.18653/v1/D17-1035. https://aclanthology.org/D17-1035

Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757-762 (2018). https://doi.org/10.1109/
ICMLA.2018.00120

Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673-2681 (1997). https://doi.org/10.1109/78.650093
Sestili, C.D., Snavely, W., VanHoudnos, N.M.: Towards security defect prediction
with AL arXiv abs/1808.09897 (2018)

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Sarro, F.: A survey on machine
learning techniques for source code analysis. arXiv abs/2110.09610 (2021)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(77), 2539-2561
(2011). http://jmlr.org/papers/v12/shervashidzella.html

Wang, Z., Yu, L., Wang, S., Liu, P.: Spotting silent buffer overflows in execu-
tion trace through graph neural network assisted data flow analysis. arXiv (2021).
https://arxiv.org/abs/2102.10452

Wanjia: This 66-year-old is still writing code and wants to fix bugs early in the
SDLC. https://xcalibyte.com/. Accessed Mar 2022

Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352-357 (1984).
https://doi.org/10.1109/TSE.1984.5010248

Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, pp. 590-604 (2014). https://doi.org/10.1109/SP.2014.44

Zhou, X., Verma, R.M.: Vulnerability detection via multimodal learning: datasets
and analysis. In: ASTA Conference on Computer and Communications Security
(2022). https://doi.org/10.1145/3488932.3527288

https://doi.org/10.1109/SWAN.2015.7070488
https://samate.nist.gov/SRD/index.php
https://samate.nist.gov/SRD/index.php
https://nvd.nist.gov/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://aclanthology.org/D17-1035
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/78.650093
http://jmlr.org/papers/v12/shervashidze11a.html
https://arxiv.org/abs/2102.10452
https://xcalibyte.com/
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/3488932.3527288

	Software Vulnerability Detection via Multimodal Deep Learning
	1 Introduction
	2 Related Work
	3 Background and Approach
	3.1 Data Representations
	3.2 Potential Vulnerable Statement
	3.3 Abstract Syntax Tree
	3.4 Program Dependence Graph
	3.5 TDFG and ASTG
	3.6 Sub-graph Extractions
	3.7 Pipeline
	3.8 Vulnerability Highlighter

	4 Neural Network Models
	4.1 Attention-Based BGRU
	4.2 Multisource Deep Learner

	5 Dataset
	5.1 Preprocessing and Tokenization

	6 Experimental Results and Analysis
	7 Conclusion
	A Appendix
	A.1 Limitations

	References

