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Abstract. Honeywords are fictitious passwords inserted into databases
in order to identify password breaches. Producing honeywords that are
difficult to distinguish from actual passwords automatically is a sophisti-
cated task. We propose a honeyword generation technique (HGT) called
HoneyGAN and an evaluation metric based on representation learning
for measuring the indistinguishability of fake passwords, together with a
novel attack model for evaluating the efficiency of HGTs. We compare
HoneyGAN to state-of-the-art HGTs proposed in the literature using
both evaluation metrics and a human study. Our findings indicate that
HoneyGAN creates genuine-looking honeywords, leading to a low success
rate for knowledgeable attackers in identifying them. We also demon-
strate that our attack model is more capable of finding real passwords
among sets of honeywords compared to previous works.
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1 Introduction

Current password-based authentication systems store sensitive password files
that make them ideal targets for attackers because if successfully obtained and
cracked, an adversary may impersonate registered users undetectable [11]. To
effectively detect password leaks, Juels and Rivest [4] suggest that a website
could store decoy passwords, called honeywords, alongside real passwords in its
credential database, so that even if an attacker steals and reverts the password
file containing the users’ hashed passwords, they must still choose a real pass-
word from a set of k distinct sweetwords, where a real password and its associated
honeywords are referred to as sweetwords. The attacker’s use of a honeyword
could cause the website to become aware of the breach. Notably, honeywords
are only beneficial if they are difficult to distinguish from real-world passwords;
otherwise, a knowledgeable attacker may be able to recognize them and compro-
mise their security. Thus, when implementing this security feature into current
authentication systems, the honeyword generating technique is critical.
The following are the paper’s key contributions:
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— We propose HoneyGAN, an HGT leveraging a password guessing model called
GNPassGAN [14]. HoneyGAN can create passwords that seem legitimate and
could be used in a honeyword system to deceive attackers.

— We introduce two evaluation metrics for determining the indistinguishabil-
ity of honeywords and compare the honeywords generated by our technique
HoneyGAN to those generated by other two state-of-the-art HGTs in the lit-
erature, and so could reliably infer our framework’s true resistance to sophis-
ticated discriminating attackers.

— We conducted a human study via Amazon Mechanical Turk to test the dif-
ficulty of finding the real passwords in sets of honeywords created by our
HGT and other two state-of-the-art HGTs. Our findings are consistent with
the result of using the two evaluation metrics we proposed. To the best of
our knowledge, we are the first to conduct a research ethics-approved human
participant study related to honeywords.

— To encourage more research on this area and to improve reproducibility, we
have made the source code! for HoneyGAN publicly available.

The remainder of the paper is structured as follows: Sect. 2 introduces Hon-
eyGAN, and two other HGTs for comparison. Section3 is the HGTs evalua-
tion. Section 4 is the user study and Sect.5 discusses the limitations and future
prospects of our study.

2 Honeyword Generation Techniques

2.1 HoneyGAN

GNPassGAN. Our HGT is inspired by a password guessing model GNPass-
GAN [14]. GNPassGAN is a GAN-based model that consists of a discriminator
(D) and a generator (G) that are both constructed using deep learning neural
networks. G takes as inputs noise or random features, learns the probability of
the input’s features, and creates data that follow the distribution of the input
data. While D gets both real passwords and samples generated by G and makes
every attempt to distinguish the two by calculating the conditional probability
of a sample being false (or real) given a set of inputs (or features). This cat-
and-mouse game forces D to extract vital information from the training data,
and each iteration brings G’s output closer to the distribution of real passwords,
improving the possibility of matching the passwords of real-world users. GNPass-
GAN also incorporates gradient normalization to boost its guessing capability.
GNPassGAN is adept at generating realistic passwords, with 12.65% of pass-
words created by GNPassGAN being confirmed to exist in real-world password
breaches (the Rockyou test set) [14], and the generated passwords that do not
match the test set are plausible candidates for human-generated passwords.
Because the primary challenge of honeyword creation is to develop indistinguish-
able decoy passwords that attackers cannot discern apart from genuine ones, the-
oretically, we reckon GNPassGAN can be employed for this purpose and demon-
strate it quantitatively in Sect.3 and 4 via experiments. The main difference

! https://github.com/fangyiyu/HoneyGAN.
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between GNPassGAN and HoneyGAN is that GNPassGAN is used as a password
guessing tool in our work, and HoneyGAN is a HGT that utilizes only the gen-
erator of GNPassGAN to generate honeyword candidates, and further select the
passwords that are most similar to the real password as honeywords.

Text Similarity. Similarity between two strings is crucial in HGT since it
demonstrates the indistinguishability of a false password from a genuine one,
and is employed in both the honeyword creation and assessment processes. Typ-
ically, in natural language processing tasks, the distance/similarity of two strings
is determined as follows: the strings are converted to vectors using word embed-
ding techniques, and then the cosine similarity of the two vectors is calculated as
the distance. Here, the strings might be composed of letters, symbols, or num-
bers, similar to how passwords are composed. Popular word embedding methods
include Word2vec [6], FastText [1], and TF — I DF. While these techniques take
into account the semantic and syntactic meanings of a word/text, in our case,
the majority of passwords lack such meanings; hence, we choose the simplest but
still effective method of vectorization known as bag of words (BoW).

In BoW, the core premise is that documents are similar if they contain com-
parable information. We examine the histogram of the characters included inside
the strings, that is, each character count is considered as a feature. To be more
precise, we first count the unique characters and their occurrences in the two
strings being compared, then create a vector for each string with a length equal
to the number of unique characters the strings contain, assign the vector’s value
in the associated index to the character’s occurrences in each string, and finally
compute the cosine similarity of the two vectors by definition. Please note that
we do not consider the semantic connotations of passwords in this work.

Generate Honeywords with GNPassGAN. The following procedure
demonstrates how we generate honeywords using GNPassGAN. (1) GNPass-
GAN first needs to be trained on a password corpus, and we train GNPassGAN
for 200,000 iterations to get a thorough grasp of the construction pattern of pass-
words in the training dataset. (2) We use the GNPassGAN generator to produce
a file F' containing 50,000 fake passwords as honeyword candidates. Notably,
F must be stored separately from the authentication system in a secure place.
(3) We compare each user’s true password to all fake passwords in F' and cal-
culate text similarity scores. Here, we convert each password to a vector using
BoW and compute the cosine similarity of two passwords. (4) Finally, we assign
honeywords for a real password to the k& — 1 most similar fake passwords in F'.

2.2 Baseline Models

We utilize two models as comparisons in this work: chaffing-by-fasttext proposed
by Dioysiou et al. [2] and chaffing-by-tweaking proposed by Juels and Rivest [4].
We will use the term chaffing-by-fasttext and fasttext interchangeably, as well
as chaffing-by-tweaking and tweaking.

Chaffing-by-fasttext first trains the fasttext model with a real password cor-
pus, then fasttext generates vector representations of each password in the cor-
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pus. After training is complete, the trained model can be queried by providing
a real password as input and receiving a multi-dimensional vector representing
the provided password’s word embedding as a response. Finally, the top k — 1
closest neighbours according to cosine similarity are assigned as honeywords for
each password.

Notably, the technique’s primary weakness is that the produced honeywords
are all genuine passwords in the fasttext training dataset, which means that if
an attacker has access to the training dataset, the honeywords will be readily
discovered. Additionally, the size of the training data has a significant impact
on the quality of the honeywords created.

Chaffing-by-tweaking is an approach that mainly relies on random letter,
digit, and symbol substitution.

Honeyword examples generated by the three HGTs can be found in Table 1.

Table 1. Honeyword samples generated by the three HGTs compared in the paper
(HoneyGAN, fasttext and tweaking). Our password guessing model GNPassGAN and
the fasttext model have been trained on a subset of the Rockyou dataset.

‘ Real Passwords | deshaun96 | dafnny_24 | Shaunil6!
HoneyGAN masdane69 | andey124 nahuasl1
sandesh89 | badhyn24 hunhzanl
naueds09 maydona242 | hanilinl
fasttext boedha2l snuffy22 muchluv!
cutechical | Dushido07 | cliffordx
felli1330 Dampire2 10.04.88
tweaking DeShauN37 | dafnny=96 | Shauni53+
deshaun87 | dafNnY44 SHaunI73$
DesHaun56 | dAfnny+47 | SHaUnI73$

3 Evaluation

3.1 Datasets

We analyze HoneyGAN’s performance and compare it to the other two HGT's
using 13 datasets containing real-world passwords. Our password datasets
include over 828 million plain-text passwords and are derived from 13 differ-
ent online providers (can be found in Table2). We analyze these datasets and
choose only passwords with a length of more than 8 characters, and we randomly
choose 10,000 authentic passwords from each disclosed dataset to facilitate the
assessment of the HGTs without sacrificing generality.

3.2 Internal Similarity Between Honeywords and Real Passwords

The primary goal of HGTSs is to create indistinguishable fake passwords; that
is, the honeywords and their corresponding actual passwords are too close to be
differentiated. Consider passwords to be texts; we can determine the similarity
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of two passwords by comparing their text similarities. The greater the similarity
score, the more similar the two passwords are, and the more difficult it is to
distinguish them. We use the BoW metric to determine the similarity of two
words without considering the semantic and syntactic meanings.

However, this metric is based on the assumption that an attacker attempts to
differentiate real passwords using no resources. Indeed, they may have accessed
a large number of previously compromised password files from data breaches.
Because 40% of users reuse their passwords [7], more sophisticated attackers
would assault the sweetwords using these accessible passwords. As a result, we
develop an attack model as described in Sect. 3.3 and assess the resilience of the
HGTs based on the aforementioned assumption of attackers. The performance
of an HGT is then determined by combining these two evaluation metrics.

3.3 Attack Model: Normalized Top-SW

Our attack model, termed Normalized Top-SW is inspired by Wang et al.’s work
“Normalized Top-PW” [11], and operates as follows: 1) Consider a genuine pass-
word dataset (attack) obtained from a data breach, and the sweetword file (tar-
get). The attacker employs the BoW to vectorize all passwords and sweetwords.
2) The attacker calculates the cosine similarity between each sweetword in the
target file and all genuine passwords in the attack dataset, and then assigns the
maximum similarity score to the sweetword denoting the highest likelihood of
it being a true password. 3) The attacker tries the sweetwords of each user in
decreasing order of their scores. If the guessed sweetword is a valid password for
the associated user, then delete this user from the dataset; otherwise, set the
similarity of the guessed sweetword to 0 to prevent it from being tried again.

In our experiment, we determine the efficiency of HGTs by computing the
attacker’s success rate under various attempts 7'. More precisely, we count the
number of user accounts that are successfully cracked under varying T assign-
ments and divided by the total number of users to get the attack success rate.
We place all genuine passwords in the first column of the sweetword file for
the simplicity of evaluation; in practice, operators should shuffle the order of
sweetwords and securely keep the index of the real passwords.

3.4 Results

As recommended in [4], we assign k = 19 honeywords to each user and calculate
the internal similarity score for each sweetword file generated by the three HGT's.
Assume we are the Rockyou system operator and train our GNPassGAN and
fasttext on our own dataset (Rockyou) to create honeywords for our users. We
then attack the produced sweetword file using all other datasets in Table 2. For
each user, the attacker has T' = 20 attempts.

Average Internal Similarity. As a result, the internal similarity score for hon-
eywords created by chaffing-by-GNPassGAN (HoneyGAN) is 0.8193, whereas
chaffing-by-fasttext is 0.2620, and chaffing-by-tweaking is 0.6270. These numbers
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Tweaking FastText == HoneyGAN Tweaking == FastText == HoneyGAN

Attack Success Rate
Attack Success Rate

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 13 14 16 18 20
Attempts Attempts

(a) Attack Success Rate using all datasets (b) Attack Success Rate using the zynga
except for zynga. dataset.

Fig. 1. The Attack Success Rate by using the datasets in Table 2 (except for Rockyou
as it is the target file) to attack the sweetword file generated by the three HGTs under
the Normalized Top-SW attack. A line closer to the y-axis means the HGT is more
vulnerable to attacks. As a result, honeywords generated by chaffing-by-tweaking are
the easiest to attack, and by HoneyGAN are the hardest.

indicate that the honeywords created by HoneyGAN have the shortest average
distance to their corresponding genuine passwords, implying that they are more
similar to their true passwords and hence more difficult to differentiate.

Attack Success Rate (ASR). As illustrated in Fig. 1, under our Normalized
Top-SW attack, when all datasets except Rockyou (exclude it since it is the
target) are used as the attack dataset, we see the same pattern: we are able to
crack all users’ accounts in 4 attempts under the chaffing-by-tweaking condition,
in 11 attempts under the chaffing-by-fasttext condition, and in 14 attempts under
the HoneyGAN condition. Furthermore, 13 attempts are sufficient for the zynga
dataset under the HoneyGAN condition. As a result, honeywords formed by
tweaking are the simplest to discern, while those generated using HoneyGAN
are the most difficult.

We show the average attack success rate (AASR) in Table 2, where AASR =
% 21221 ASR®. As can be seen in the table, an attacker could achieve a success
rate of around 60% when honeywords are created using HoneyGAN and 68%
when honeywords are generated using fasttext when given 20 attempts per user,
and it is statistically significant (p = 3.09 * 1072 for a one-tale t-test) that the
attack success rate is lower when attacking honeywords generated by HoneyGAN
than fasttext. Honeywords generated by tweaking is the most vulnerable with
more than 90% attack success rate. Furthermore, HoneyGAN can produce better
undetectable honeywords than fasttert and tweaking regardless of which dataset
is used as the resource for attacking.

HoneyGAN outperforms fastext and tweaking in terms of both average inter-
nal similarity and attack success rate, indicating that HoneyG AN-generated hon-
eywords are more similar to real passwords, therefore deceiving attackers and
reducing their attack success rate, and alerting honeycheck towards the password
breach.



HoneyGAN 195

Table 2. The Average Attack Success Rate on the three HGTs when various attack
datasets with Rockyou as the target dataset are used. A number in bold indicates that
the relevant HGT performs the best.

Dataset Tweak FastText HoneyGAN
have-i-been-pwned-v2 0.9149 0.6863 0.5923
linkedin 0.9092 0.6863 0.5943
myspace 0.9279 0.6857 0.6090
youku 0.9072 0.6858 0.6090
zynga 0.9300 0.6907 0.6213
adultfriendfinder 0.9230 0.6902 0.6006
dubsmash 0.9229 0.6886 0.6138
last.fm (2016) 0.9226  0.6854 0.5880
chegg 0.9123 0.6888 0.6032
dropbox 0.9257 0.6928 0.6096
yahoo 0.9188 0.6881 0.5868
phpbb 0.9260 0.6855 0.5972

4 User Study

4.1 Study Design

We want to validate the hypothesis that individuals need more attempts to
correctly find the real password when honeywords are generated by HoneyGAN
than tweaking and fasttext.

We conducted a within-subjects experiment with 300 participants where each
person performed all three HGTs. In our experiment, we have one independent
variable: HGT type; three conditions: HoneyGAN, tweaking and fasttext; and one
dependent variable: the number of attempts required to find the real password.
Our study was approved by the Research Ethics Board at our institution.

Similar to previous security-related studies [3,5,8,10], we recruited partici-
pants through Amazon Mechanical Turk (AMT), where we embedded a survey
designed on an online survey platform called Qualtrics. Qualified respondents
were encouraged to complete our survey. We imposed three requirements on
participants: (1) To avoid misunderstandings about our instructions, we need
participants to be proficient in English; hence, we required participants exclu-
sively from English-speaking countries including Canada, the US, the UK, and
Australia. (2) Participants should have general knowledge as to what secure pass-
words look like, and we would expect that normally people savvy in information
technology have such knowledge. So we only recruited those who self-identify
as having a job related to information technology. (3) Additionally, we aim to
include only individuals who accomplish high task quality on AMT, as mea-
sured by two AMT scores: the total number of approved Human Intelligence
Tasks (HITs) and the percentage of approved HITs. We selected individuals
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who have 1,000 or more approved HITs and a 90% or greater approval rate for
HITs.

Participants were required to answer 18 rank-order questions, which match 6
sets of honeyword samples produced from each of the three HGTs. Each question
has 19 honeywords and 1 real password. The order of the 20 sweetwords is ran-
domized. The participants were asked to sort the 20 sweetwords in each question
according to their level of confidence that the sweetword is a real password. We
compensated each participant with CAD$5.00 for completing the experiment,
and the compensation was prorated using the Ontario minimum wage at the
time of the study.

4.2 Results

Our analysis is based on the responses to our survey that each participant pro-
vided. We want to determine if there is a significant difference in the average
number of attempts required for users to properly guess the real password in the
HoneyGAN condition compared with the other two conditions.

Among all 300 responses, 7 responses were detected as robots by Qualtrics,
and we deleted these suspicious responses. The remaining 293 responses took
between 47s and 211 min to complete. To ensure validity, we removed 13 of the
293 replies from participants who finished the exam in less than 3 min, as it is
possible that they were not concentrating. Additionally, we eliminated outliers
with completion time longer than 39 min and 30s (boxplot maximum), leaving
us with 272 responses to analyze.

The average completion time for the remaining 272 surveys was 14 min with
58 s, with a standard deviation of 7.86 min. This would suggest that the remain-
ing participants were diligent in their responses.

We concatenated the responses for each HGT and got a dataset containing
three columns (the three HGTs), and 1632 (6 x 272) rows, where each value
represents the attempts needed to find the real password in one of the questions
in the corresponding HGT. Since our experiment is a within-group study with
non-uniform data, we used two-factor ANOVA without replication to examine
the effect that the HGTs have on attempts needed to find the real password. The
results indicated that the type of HGT resulted in statistically significant differ-
ences in the number of attempts required to find the real password (F(2, 3262) =
448.276, p < 0.001). We also ran two paired-samples t-tests to examine if there
are significant differences between attempts required to find the real password
for HoneyGAN vs tweaking, and HoneyGAN vs fasttext. As a result of compar-
ing HoneyGAN and fasttext, the mean number of attempts required to find the
real password is 12.479 in the HoneyGAN condition, meaning that participants
require approximately 13 attempts to find the real password when HoneyGAN
generates the honeywords, compared to 6.734 when fasttext generates the hon-
eywords. And the result is statistically significant (t(1631) = 29.767, p < 0.001).
A similar result can be found in the comparison of HoneyGAN vs tweaking: Hon-
eyGAN requires 12.479 attempts while tweaking requires 8.89 (t(1631)=16.948,
p < 0.001).
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5 Discussion

In this section, we highlight the limitations and future work of our study.

Semantics in Passwords. One limitation of our study is that we did not
consider the semantic meanings of passwords. This is flawed when authentica-
tion systems incorporate passphrases to assist users in memorization [3,9]. A
passphrase, as opposed to a password, is typically a 4-to-10-word phrase, sen-
tence, or statement having semantic and grammatical connotations.

Targeted Attacks. For targeted attacks, attackers exploit users’ Personal Iden-
tifiable Information (PII) to guess passwords, which increases the likelihood of
users’ accounts being compromised. This is a critical problem because numerous
PII and passwords become widely accessible as a result of ongoing data breaches,
and people are used to create easy-to-remember passwords using their names,
birthdays, and their variants [12]. Once an attacker obtains users’ PII, and if
only one sweetword in a user’s sweetword list contains the user’s PII, it is highly
likely that this sweetword is the real password and others are fake.

To the best of our knowledge, Wang et al. [13] are the only ones that dis-
cuss how to generate honeywords that are resistant to targeted attacks. We are
currently investigating how to generate honeywords for the same purpose with
Natural Language Processing techniques.

6 Conclusions

In this paper, we propose HoneyGAN, an HGT built on top of GNPassGAN
that generates high-quality honeywords capable of luring attackers and detect-
ing password breaches. HoneyGAN can be easily integrated into any current
password-based authentication system. Additionally, we present internal text
similarity to assess the quality of honeywords and Normalized Top-SW, a hon-
eyword attack model that mimics the real-world attack situation and avoids any
ambiguity. We compare HoneyGAN’s performance to two state-of-the-art HGT's
using these two metrics, as well as a human study and discovered that Honey-
GAN is capable of creating more hard-to-find honeywords and decreasing the
success rate of sophisticated attackers. Furthermore, we demonstrated that our
attack model Normalized Top-SW is more effective than Normalized Top-PW
[11] in discovering real passwords.
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