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Preface

We are pleased to introduce the proceedings of the 18th edition of the International
Workshop on Security and Trust Management (STM). In recent years, COVID-19meant
that all eventswere run online, but this year after the lockdownwas relaxed, STMenjoyed
a more convivial hybrid format. Several attendees were present at the event, which was
hosted at the 27th European Symposium on Research in Computer Security (ESORICS),
and held in September 2022, Copenhagen, Denmark.

A spin-off of the ERCIM working group on security and trust management, STM
has always welcomed scientific contributions from private and public institutions that
present innovative research both theoretical and experimental.

In particular, STM accepts innovative work on several topics of interest for security
and trust, some more traditional like access control, cryptographic protocols, identity
management, security metrics, and privacy to cite a few; and some others, more inno-
vative and addressing emerging demands, for instance concerning the legal and ethical
aspects in security and trust research, the economics of security and trust, the inter-
play between them and artificial intelligence innovative solutions, as well as the social
implications for trust and security.

This volume presents the contribution of this year’s edition which consists of 11
accepted papers, 7 full and 4 short. They were presented at the workshop, and were
organized into four sessions: security and authentication (with works on mobile device
authentication, watermarking for PRFs, risk indicators for IoT devices, and decryption
for mobile devices); deep learning for security and trust (vulnerability detection via deep
learning, and predictive detection of image-based malware); data analysis (differential
privacy based data analysis, attacks detection in Java environments, and anomaly and
intrusion detection); and finally trust and security (consent for digital services, and
creation of honeywords indistinguishable by an adversary).

The selection of the works reported in this volume was based on scientific quality.
Each paper was reviewed in double-blind mode by at least three qualified reviewers.
Finally, we had a total submission number of 18 papers, and accepted 7 full papers with
an acceptance rate of 38.9%. In addition, we accepted 4 short papers.

As a tradition, also this year STM granted a Best Paper Award to one of ERCIM’s
most accomplished doctoral researchers. This year’s award was earned by Jonas Boehler
for his work “Input Secrecy & Output Privacy: Efficient Secure Computation of Differ-
ential PrivacyMechanisms”. Boehler’s research presents efficient and secure design and
implementation of multi-party computation protocols for distributed parties that intend
to compute differential privacy statistics with high accuracy.

Before we let our readers go deep into the technical part of this volume, we would
like to thank all the people who helped us in the organization of STM 2022. We thank
all the authors for having supported the workshop with their submissions. We thank our
excellent Program Committee members for their help in selecting such a high-quality
program and the quality of articles in this volume. We thank anyone who attended and
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presented their work on site: it was a pleasure to meet you all in person after years of
online meetings, and have a live discussion.

A special thanks must go to Pierangela Samarati, chair of the Security and Trust
Management Working Group, for her inspiring support and her constant guidance in
the organization of the workshop. The high reputation that this workshop holds in the
international community is because of her merit and work. And, eventually, we also
want to thank you, the reader, for picking up this volume. We hope that the work of the
many authors herein may inspire you with new ideas to advance this exciting topic of
research.

September 2022 Gabriele Lenzini
Weizhi Meng
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SIMple ID: QR Codes for Authentication
Using Basic Mobile Phones in Developing

Countries

Chris Hicks1(B), Vasilios Mavroudis1(B), and Jon Crowcroft1,2

1 The Alan Turing Institute, London, UK
{c.hicks,vmavroudis,jcrowcroft}@turing.ac.uk
2 The University of Cambridge, Cambridge, UK

jon.crowcroft@cl.cam.ac.uk

Abstract. Modern foundational electronic IDentity (eID) systems com-
monly rely on biometric authentication so as to reduce both their deploy-
ment costs and the need for cryptographically capable end-user devices
(e.g., smartcards, smartphones). However, this exposes the users to signif-
icant security and privacy risks. We introduce SIMple ID which uses exist-
ing infrastructure, Subscriber Identity Module (SIM) cards and basic fea-
ture phones, to realise modern authentication protocols without the use of
biometrics. Towards this goal, we extend the international standard for dis-
playing images stored in SIM cards and show how this can be used to gener-
ate QR codes on even basic no-frills devices. Then, we introduce a suite of
lightweight eID authentication protocols designed for on-SIM execution.
Finally, we discuss SIMple ID’s security, benchmark its performance and
explain how it can enhance the security and privacy offered by widespread
foundational eID platforms such as India’s Aadhaar.

Keywords: Authentication · Identity Management · Trusted
platforms

1 Introduction

More than 60 less-developed countries have launched national foundational iden-
tity programs in the last 15 years [42]. Unlike functional identity, which claims
specific attributes about people such as voting entitlement or drivers’ licensing,
foundational identity is principally concerned with asserting the uniqueness of
each person [22]. In practice, often because there is no reliable civil registry to
bootstrap, the uniqueness of each resident is determined using biometric dedu-
plication during enrollment. India’s Aadhaar platform for example, which has
generated more than 1.3 billion unique foundational identities [11], requests sam-
ples of all ten fingerprints, both irises and a portrait photograph during enroll-
ment. Aadhaar and the Modular Open Source Identity Platform (MOSIP) (i.e.,
“Aadhaar in a box” [64]) are already being trialed and adopted in six different
countries [12]. They have successfully proven the foundational identity model for
development and are set to impact the lives of many millions more in the near
future.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-29504-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29504-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-29504-1_1
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Aadhaar, MOSIP and other foundational electronic IDentification (eID) plat-
forms must provide digital authentication mechanisms that extend access to
government-subsidised goods and services, as well as opportunities to build credit
and reputation, to some of the poorest in society [43]. The design of authentica-
tion mechanisms is hence constrained by less-developed infrastructure, including
domestic power and mobile network coverage, and limited access to expensive
technologies such as smartphones. Whilst smart cards have been widely adopted
for authentication in developed countries [69] the same is not true globally. Devel-
oping countries are more likely to find the additional capital, skilled labour and
infrastructure required by smart cards prohibitive [5,77]. Aadhaar does not issue
a smart card and, of the approximately 72 billion transactions processed to date,
over 76% were based on biometric authentication. Most of the remaining trans-
actions were authenticated by submitting sensitive personal information, such as
a name and address (i.e., “demographic authentication”). In total, less than 4%
of Aadhaar transactions were authenticated using One-Time-Passwords (OTPs)
sent to resident’s mobile phones using Short Message Service (SMS) [14].

Contemporary foundational eID systems are not making good use of basic
mobile phones, even though such devices are more common than smartphones in
many less-developed countries [18]. This is mostly due to the limited capabilities of
basic phones (e.g., lack of secure enclaves [10]). SIMple ID is a mobile identity solu-
tion that overcomes these limitations. Based on the internationally standardised
mechanism for displaying images stored on a Subscriber Identity Module (SIM)
and the cryptographic capabilities of SIM cards, SIMple ID uses QR codes to trans-
form low-cost mobile handsets into secure authentication credentials.

Contributions

1. We propose a practical extension to the international mobile communication
standards that provides a secure authentication mechanism designed for the
unique sociotechnical landscape of less-developed countries.

2. We evaluate our full, open-source implementation of SIMple ID1 which
includes a Java Card applet and a KaiOS patch implementing the SIM and
mobile handset parts of our protocol, respectively.

3. Beyond authentication, SIMple ID provides a robust general mechanism for
establishing a QR code channel between a SIM and an in-person verifier;
enabling other applications such as digital payments.

2 Preliminaries

Here we provide the prerequisites for a complete understanding of SIMple ID.

2.1 Mobile Phones in Developing Countries

SIMple ID is motivated to use basic phones for authentication because they
are still widely used in a number of countries. On a global scale, basic phones
1 https://github.com/alan-turing-institute/simple-id.

https://github.com/alan-turing-institute/simple-id


SIMple ID: QR Codes for Authentication Using Basic Mobile Phones 5

accounted for 32% of total mobile connections in 2020 [29]. Narrowing down
to the Sub-Saharan Africa region that percentage rises to 52%. In 2020, 46%
of its 1.1 billion inhabitants [17] were mobile network subscribers meaning over
250 million connected using a basic device. Moving from Africa to India, whilst
mobile broadband covers 99% of the country and 77% of mobile subscribers
now have access to a 4G-capable handset; 49% of adults still had not adopted a
smartphone in 2020 [29].

2.2 UICC and (U)SIM Cards

Beginning with 2G Global System for Mobiles (GSM) networks, Subscriber Iden-
tity Module (SIM) cards; which are based on smart cards, provided a portable
mechanism for subscriber identification and authentication [47]. Originally denot-
ing a unified hardware and software package, starting with 3G standards the two
parts were separated and renamed. SIM hardware is now termed a universal inte-
grated circuit card (UICC) [30] and is defined by standards including ISO 7816 [53]
and ETSI TS 102 221 [33]. UICCs are low-cost, and low-performance, but generally
provide a certified degree of tamper-resistance [48,74]. UICCs have their own Cen-
tral Processing Unit (CPU), Read-Only Memory (ROM), Electrically Erasable
Programmable ROM (EEPROM) and often include a dedicated cryptographic co-
processor. All UICCs support the cryptographic algorithms needed for mobile net-
work authentication including secure random number generation, cryptographic
hashing and symmetric encryption. Many UICCs also support public-key algo-
rithms such as RSA, DSA, ECDH and ECDSA [49,78].

A UICC always run at least one Network Access Application (NAA) such as
the SIM [39] and Universal SIM (USIM) applications [37] for connecting to GSM
and 3G+ networks, respectively. Modern UICCs are based on the Java Card
Platform (JCP) which provides a Java Card Runtime Environment (JCRE),
an Application Programming Interface (API) and a Java Card Virtual Machine
(JCVM) [56]. The JCRE is the operating system of a Java Card and manages
the shared facilities including the communication protocols, channels, interrupts,
access conditions, applications and files. All Java Card UICCs also follow the
GlobalPlatform standards [2] which define an API for supporting multiple appli-
cations and managing their life-cycles independently [30]. In addition, Java Card
UICCs support Over-The-Air (OTA) remote management of applications and
files by the network operator [35].

UICC File System. UICCs have an elementary file system based on a hier-
archical file structure that is used .of all applications and data on the Java
Card [33]. As shown in Fig. 1, the root of the file structure; termed the Master
File (MF), is home to a number of subdirectories called Dedicated Files (DFs),
application-specific subdirectories known as Application Dedicated Files (ADFs)
and leaf nodes termed Elementary Files (EFs) which contain only data. The
UICC API supports creating, deleting, (de)activating, reading, updating and
resizing files on the UICC programmatically at run-time using an application
with appropriate privileges.
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Fig. 1. The hierarchical UICC file and application structure.

Card Application Toolkit. The Card Application Toolkit (CAT) generically
defines the interface between the UICC and the Mobile Equipment (ME) host
(e.g., mobile phone) [34]. The CAT is commonly referred to as the SIM Toolkit
(STK) [32] which more specifically designates the CAT subset supported by the
GSM SIM application [39]. Similarly, the USIM Application Toolkit (USAT) [38]
refers to the CAT subset supported by the 3G+ USIM application [37]. In addi-
tion to providing the UICC-ME interface which is needed for basic GSM and
3G+ network access, the CAT also provides a mechanism for the ME user to
interact with the UICC through a basic menu system.

A key feature of the CAT is that it allows the UICC to proactively initi-
ate actions taken by the ME. Since the standard smart card API is based on
the model of an active host controlling a subordinate smart card [53], this is
achieved through regular polling of the UICC by the ME. Proactive UICC com-
mands for user interaction include setting up a menu, displaying text, playing
tones, retrieving user input and launching the web browser [34]. Proactive UICC
commands are commonly used for providing subscriber services including value-
added operator content [75], mobile money [73] and digital signatures [62].

2.3 QR Codes

QR codes are an internationally standardised [46,52] form of barcode that,
although originally intended to support traceability in automotive supply chains
[1], have been widely adopted by mobile applications including digital identifica-
tion [9,71] and payments [79]. QR codes are configured using 40 different version
numbers and 4 different levels of error correcting code (ECC). Each version num-
ber prescribes a specific size, form and data capacity; meanwhile, the level of ECC
determines the tolerance a code has to obscuration and physical damage. Each QR
code version has a specific number of modules, ranging from 21 × 21 for version 1
to 177 × 177 for version 40, which also determine the minimum number of visual
elements needed to draw the barcode. In other words a version 1 QR code requires
at least 21 × 21 pixels on a screen, or dots on a page, for its construction. The ISO
standard [52] further specifies an additional 4 modules should be left blank around
the QR code on all sides to ensure readability.
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2.4 Cryptographic Primitives and Notation

SIMple ID uses standardised cryptographic primitives from open standards. The
use of Java Card UICCs considerably limits the scope of primitives to tradi-
tional and well-analysed algorithms [78]. The following high-level presentation
aims foremost to document our notation for the familiar reader and secondly, to
provide an intuition and references for the unacquainted.

Encryption schemes, used to ensure the secrecy of information, are a triple
(Gen,Enc,Dec) of probabilistic polynomial time (PPT) algorithms for key gen-
eration, encryption and decryption, respectively. Where η is a security parame-
ter, Gen outputs a pair of bit strings (e, d) such that ∀(e, d) ← Gen(1η), and
for every message m ∈ {0, 1}�, Pr[Decd(Ence(m)) = m] = 1. In private key
schemes d = e whereas for public key schemes d �= e, and e is termed the public
key which we denote Pe. The private key d is denoted kd. Informally an encryp-
tion scheme provides (semantic) security when, in the absence of kd, encrypted
messages tell an adversary nothing about the original message [45].

Digital signatures provide assurances about the authenticity of data and
comprise a triple of PPT algorithms (Gen,Sign,Ver) for key generation,
signing and verification, respectively. Gen outputs a pair of bit strings
(ks, Pv) such that ∀(ks, Pv) ← Gen(1η), and for every message m ∈ {0, 1}�,
Pr[VerPv

(Signks
(m)) = 1] = 1. Informally, secure digital signature schemes

demand that no adversary can forge even a single valid signature on any arbi-
trary message [45].

One-time passwords are a popular mechanism for authentication often
encountered as a second-factor when using online password-based systems. One
of the most widely used algorithms is the HMAC-Based OTP (HOTP) first
described in 2005 complete with an analysis of its security [28]. In the rest of
this work we use HOTPkOTP(c) to denote the algorithm described in the stan-
dard as parameterised by private key kOTP and counter c which are shared and
synchronised between the client and server.

3 The Foundational eID Model

Here we introduce the authentication and adversary models of foundational eID.
Aadhaar, and by extension MOSIP [67], is used as the exact basis because it is
more widely described in the literature than other foundational eID systems [8,
20,71,72]. First we provide a brief explanation of the enrolment process before
outlining the authentication and threat models that guide our development.

Regardless of the specific implementation, foundational eID is based on a
Centralised IDentity Repository (CIDR) which is populated by a continuous
enrollment process. Residents with identities in the CIDR are provided a Unique
IDentity (UID) number that, used alongside one or more authentication factors,
is used to prove identity. Enrollment is designed to ensure a one-to-one corre-
spondence between enrolled residents and unique digital identities. Biometric
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enrollment, which is required to provide strong one-person-one-identity guaran-
tees, necessitates a centralised architecture that can pairwise compare each new
enrollment with the identities already in the system. In addition to collecting
biometric data, including fingerprint and iris scans; enrollment also captures per-
sonal demographic information such as name, address and date of birth [6,16].

3.1 Authentication

Authentication in the foundational paradigm requires a UID, or rarely a Virtual
ID (VID), along with one or more authentication factors. The process usually
takes place in-person, between a resident and a requesting entity, and a finger-
print scan is used for verification [14]. The CIDR is queried in every authentica-
tion as the scanned fingerprint biometric must be evaluated against the finger-
prints associated with the submitted UID during enrollment. If the fingerprint
matches, or no match is found, the CIDR returns a digitally signed “yes” or “no”
response to the requesting entity, respectively. The fingerprint can be substituted
with, or complemented by, the iris biometric, demographic or mobile OTP fac-
tors depending on the residents assets and the specific assurances required.

The full Aadhaar authentication ecosystem involves service agencies (SA)
and user agents (UA) that form a distributed network of secure channels from
the CIDR to requesting entities. In our general model of foundational authen-
tication shown in Fig. 2, a resident R authenticates to the requesting entity
RE by submitting their UID and one or more authentication factors. The RE,
using a certified software and hardware stack [4], composes a digitally signed
and encrypted Personal Identity Data (PID) block from the factors. Next, the
RE sends the UID, and the encrypted PID, to the CIDR using the SA-UA net-
work. The CIDR validates and decrypts the PID and then, using the UID to
identify the correct record, checks whether the authentication factors in the PID
are a match with the stored values. The CIDR digitally signs the “yes” or “no”
response and returns it to the RE over the SA-UA network. Finally, the RE’s
authentication software validates the response and indicates the result.

Fig. 2. The foundational eID authentication model.

3.2 Threat Model

Making no assumptions about residents access to documentation or technology
means it is not practically feasible [40] to ensure uniqueness, or allow for digital
authentication, without placing a lot of functionality and trust in a centralised
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architecture. The CIDR collects the personal and biometric information collected
during enrolment and also the authentication data for every transaction. In addi-
tion, Aadhaar’s SAs and UAs maintain a time-limited log of each authentication
including the UID, the encrypted PID block, the CIDR’s “Yes”/“No” response
and any other information (e.g., e-KYC or age-verification) returned upon suc-
cessful authentication [71]. REs learn all of the authentication data during every
transaction except for the authentication factors encrypted in the PID. Aadhaar
specifies data retention policies, access controls, biometric hardware standards
and auditing practices that aim to avoid or detect vulnerabilities and inappro-
priate data collection. Unsurprisingly, a recent analysis identified several high-
impact security and privacy breaches including subsets of the CIDR being made
public and insiders making unauthorised changes to the CIDR [71]. To sum-
marise, the foundational eID adversary model assumes the CIDR, the SA-UA
network operators and the REs operate in the semi-honest model [45] by cor-
rectly executing the protocols but are able to keep a record of the intermediate
computations.

4 CAT QR Codes

This section describes our technique allowing basic mobile phones to display
full-screen QR codes filled with arbitrary UICC data. As described in Sect. 4.1
several proactive UICC commands support the inclusion of a graphical icon that,
at the programmers discretion, can replace an otherwise text-based notification
to the user. Our mechanism builds upon this standardised functionality [34],
which remarkably already allows QR codes stored on the UICC as native CAT
icons to be displayed using some unmodified phones, with a new image coding
scheme that supports rendering image file data as a QR code.

4.1 Native Icon Protocol

A little-known feature of the CAT allows a subset of the proactive UICC com-
mands to include an icon, such as those shown in Fig. 3, intended to enhance the
user experience by providing graphical information. The UICC can also request
that the icon should entirely replace the text that would otherwise be shown [34].
Icons have been supported by UICCs since GSM STK standards, albeit option-
ally for ME, but to the best of the authors’ knowledge have received little
academic or real-world attention. UICC icons support three proprietary cod-
ing schemes: black-and-white, 8 bit colour and colour-with-transparency, and
are not limited in the standards to any maximum dimensions or file size [37,39].

The standardised CAT protocol for displaying a native icon, shown in Fig. 4,
involves using the DISPLAY TEXT proactive UICC command [34] that supports
displaying text or an icon to the screen. To show an icon the command must
include an icon qualifier bit, indicating whether the icon is “self explanatory”,
and an icon identifier specifying which icon to display. Self explanatory icons
replace the text usually displayed by the command, potentially providing more
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Fig. 3. Three exemplar UICC icons from the ETSI CAT conformance specifications
[36]. Icons (a) and (b) use the basic, black and white coding scheme whilst icon (c)
uses the colour coding scheme and a three colour palate.

screen space for the icon. It must be noted that support for displaying icons is
optional and the phone can choose to ignore the icon identifier. The terminal
response may indicate to the UICC when this occurs.

Icons are selected by double reference. First, the icon identifier specifies a
record number in a special lookup table called EFIMG; where the width, height,
coding scheme and FID of the icon is stored. Only after EFIMG has been read
can the icon be retrieved by the phone using the FID. Reading files from the
UICC, including EFIMG, is handled by the phone using ISO 7816-4 commands
[53]. If the icon file is bigger than 256 bytes, the standardised maximum response
payload, then it is read sequentially in chunks of 256 bytes or less. Icon files must
be stored in the DFGRAPHICS subdirectory (see Fig. 1) with an FID 4FYY where
YY is between 0 and FF.

Once the icon file has been read by the phone, the coding scheme byte speci-
fied by the corresponding EFIMG record is used to render the icon to the screen.
The coding scheme byte is either 0 × 11, 0 × 21 or 0 × 22 corresponding to
black and white, colour and colour with transparency respectively. The cod-
ing schemes are all proprietary formats that begin with the width and height,
optionally include colour metadata and then contain the image data using one
(or several) bits per image raster point [37].

4.2 QR Code Rendering

Extending the native icon protocol to efficiently support QR codes is a relatively
straightforward task that only requires defining a new image coding scheme. We
do just this with a new coding scheme we term ‘Render as a QR code’ and assign
the byte value 0x31. The protocol for rendering a QR code is unchanged from
the native one described in the previous section except for the following:

1. EFIMG records corresponding to QR code data must use the new coding
scheme byte value.

2. Icon files no longer store image metadata and raster points but instead contain
the data that will be stored in the QR code.

3. The mobile phone must implement the new coding scheme with a standard
QR code rendering functionality.
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Fig. 4. The standardised CAT protocol for displaying a native icon. The application
specifies the icon using the EFIMG record index X that maps to the icon YY with FID
4FYY. Large icons are split into N chunks each 256 bytes or less.

Note that the changes do not deviate significantly from the existing standard.
Manufacturers can thus easily implement the new icon protocol without having
to allocate significant development resources. This is a significant advantage of
the proposed scheme as it makes widespread adoption easier.

5 SIMple ID

Building upon our technique for displaying QR codes on basic phones, we intro-
duce two authentication protocols in the standard foundational eID model. In
particular we use the model from Sect. 3.1 but for generality, and ease of presenta-
tion, treat the SA-UA network as a secure channel. We evaluate this assumption
further in Section Sect. 6.1. Both of our protocols improve upon the security and
privacy offered by current foundational eID platforms. Our first protocol lightly
builds upon the OTP authentication already used in Aadhaar. We move the
OTP generation onto the UICC and display it along with the resident’s UID
in a low-version QR code. Our second protocol uses public key cryptography to
provide enhanced privacy from prying requesting entities.

Firstly, our protocols assume that the CIDR issuer I has securely generated
two public key pairs (PIsig, kIsig) and (PIenc, kIenc) for digital signatures and
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encryption, respectively. These keys should be generated according to the stan-
dard guidelines [7,57] noting the constraints of cryptography supported by Java
Card UICCs [66,78]. The parameters HOTP, including the number of OTP dig-
its d ≥ 6, synchronisation parameter s and throttling parameter t, should also
be chosen as indicated in the respective standard [28]. We define I’s public keys
PIsig, PIenc and d as public parameters and therefore, to improve readability,
do not explicitly specify them as inputs. Lastly, we assume the resident R is
already enrolled in the foundational eID platform run by the issuer I and is
able to authenticate using one of the usual biometric or demographic mecha-
nisms. Both of our protocols share a common setup and personalisation phase
as follows.

SIMple-Setup is run between the UICC U and the issuer I and assumes a
secure channel between them. This phase is run only once and can take place
either during manufacture or OTA, although the latter requires providing U with
I’s public keys during manufacture. This is common practice with smart card
eID solutions although care must be taken not to repeat past mistakes [70]. At
the beginning, I has private keys kIsig, kIenc and U has unique ICCID icc-id.

1. I sends the public keys (PIsig, PIenc) and dOTP to the UICC U .
2. U generates a uniform random secret key kOTP and initialises a non-secret

counter c := 0. U also generates two public key pairs, (PUsig, kUsig) and
(PUenc, kUenc), for digital signatures and encryption, respectively.

3. U sends public keys (PUsig, PUenc), ICCID icc-id, and OTP parameters
(kOTP, c) to I. These values are stored as a single record by I for associa-
tion with the UID of a specific resident in the next phase.

SIMple-Personalise bootstraps the resident’s existing foundational authenti-
cation credential(s) to securely link their UID with the UICC U . Recall from
Sect. 3.1 that the authentication credential is securely signed and encrypted, for
the issuer I, using certified hardware and software provided to the requesting
entity V . This phase is run between the resident R, U , V and I. Personalisa-
tion takes place after R receives the UICC and only needs to succeed once. This
can be adjusted in favor of personalisation during OTP-Setup, however SIMple-
Personalise allows UICCs to be quickly and widely distributed using e.g., already
well-established networks of mobile agents [54]. To begin, R has UID uid and
U has signing key kUsig, encryption key kUenc and ICCID icc-id. The issuer I
has signing key kIsig, encryption key kIenc, the CIDR containing every unique
residents’ UID uid and records of all (PUsig, PUenc), ICCID icc-id and OTP
parameters (kOTP, c) submitted in the SIMple-Setup phase.

1. The resident R generates a uniformly random Personal Identification Number
(PIN) pin and sends the UID uid and pin to U using their mobile phone.

2. The UICC U generates a uniformly random d-digit session identifier sid, signs
the personalise message mpers. = SignkUsig(“I”|icc-id ‖ uid ‖ sid) and then
encrypts the personalise ciphertext cpers. = EncPIenc(mpers.).
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3. R sends the encrypted authentication factor cauth. (i.e., the regular biometric
or demographic PID block) and the personalise ciphertext cpers. (e.g., shown
as a QR code using a basic phone) to the requesting entity V .

4. V sends cauth. and cpers. to the issuer I (e.g., using the SA-UA network).
5. I decrypts the personalise ciphertext to recover the personalise message

mpers. = DeckIenc(cpers.) containing icc-id, uid and sid. I uses uid to find
the corresponding CIDR eID record and then verifies the regular PID cauth.
using the standard process.

6. If this first verification succeeds (e.g., R’s fingerprint matches the finger-
print(s) in the CIDR record corresponding to the uid submitted in Step 1.),
then I verifies the UICC signature on mpers. using the public key (PUsig linked
to icc-id in the SIMple-Setup phase. Only if both of these verifications suc-
ceed will I tentatively link the UICC’s icc-id, public keys (PUsig, PUenc) and
OTP parameters (kOTP, c) to the resident R’s UID.

7. If the verifications succeeded then I signs the response message mresp =
SignkIsig(“yes” ‖ sid) or else mresp = SignkIsig(“no”). I sends mresp to the
requesting entity V .

8. V verifies the signature on mresp and, if successful and mresp contains the
session identifier sid′, sends sid′ to the resident R. If unsuccessful then the
protocol terminates and must begin again from Step 1.

9. R sends sid′ to the UICC U using their mobile phone. If sid′ = sid then the
resident’s UID uid and PIN pin are stored by U in non-volatile memory. If
unsuccessful after several attempts, the protocol terminates and must begin
again from Step 1.

At this stage the UICC has been personalised for a specific resident and
our two authentication protocols differ in the final phase as now described. To
account for error in the final step of the SIMple-Personalise phase, for example
the resident repeatedly mistypes the session id sid in Step 9, the link between
the UICC and the resident is made tentatively by the issuer until the final phase
has succeeded at least once. Our authentication protocols are assumed to run
over a secure channel (i.e., using TLS over the standard SA-UA network).

SIMple-OTP provides a standard OTP authentication and runs between the
resident R, the UICC U , the requesting entity V and the issuer I. To begin, R
has the PIN pin and U has the UID uid and OTP parameters (kOTP, c). I has
private signing key kIsig, the CIDR containing unique residents’ UID uid and
OTP parameters (kOTP, c) linked in the SIMple-Personalise phase.

1. The resident R sends the PIN attempt pin′ to the UICC U .
2. If pin′ �= pin then authentication fails. Otherwise U computes the OTP

hotp = HOTPkOTP(c), increments the OTP counter c, and then sends the
authentication message mauth = (uid ‖ hotp) to V .

3. V sends mauth to the issuer I (e.g., using the SA-UA network).
4. I uses uid to look up the resident’s eID record of the OTP parameters

(kOTP, c) and computes the OTP response hotp′ = HOTPkOTP(c). If the
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OTP is correct, i.e., hotp′ = hotp, then I computes the response mes-
sage mresp = SignkIsig(“yes”) and increments c. Otherwise, I computes
mresp = SignkIsig(“no”). I sends mresp to the requesting entity V .

5. V verifies the signature on mresp and, if successful and the message is “yes”
then authentication succeeds. Otherwise authentication fails.

SIMple-VID provides authentication with improved privacy using public key
encryption to hide the resident R’s UID uid from the receiving entity V . This
phase is run between R, the UICC U , V and the issuer I. To begin, R has the PIN
pin and U has the UID uid and OTP parameters (kOTP, c). I has private signing
key kIsig, private decryption key kIenc, the CIDR containing unique residents’
UID uid and OTP parameters (kOTP, c) linked in the SIMple-Personalise phase.

1. The resident R runs Step 1. from the SIMple-OTP phase.
2. If pin′ �= pin then authentication fails. Otherwise U computes the OTP

hotp = HOTPkOTP(c), encrypts the authentication challenge cchal =
EncPIenc(uid ‖ hotp) using the public key of the issuer I and increments
the OTP counter c. The UICC U sends cchal to the receiving entity V (i.e.,
it is shown as a QR code).

3. V runs Step 3. from the SIMple-OTP phase.
4. I recovers uid and hotp by decrypting cchal using the private encryption key

kIenc. Next, I runs Step 4. from the SIMple-OTP phase.
5. V runs Step 5. from the SIMple-OTP phase.

6 Evaluation and Discussion

In this section we evaluate SIMple ID in terms of security and privacy in the
foundational eID model. We also present the details of our open-source imple-
mentation, benchmark performance and discuss the use of QR codes on basic
phone screens.

6.1 Security

The security of de-facto foundational eID authentication is critically dependent
on the issuer fulfilling the role of a trusted third party. This is a very strong
assumption, and indeed numerous insider attacks have been documented [71],
however there are substantive incentives for the issuer to remain honest (but curi-
ous [45]). A common motive for less-developed countries to build a national eID
platform is minimising fraud, particularly leakages in subsidy programs [58], and
therefore maintaining the security of authentication is of primary importance.

It must be emphasised that the SIMple-OTP authentication protocol is sim-
ply a standard RFC 4226 HMAC-based OTP [28] accompanying the resident’s
(independently derived and randomly sampled) UID. A PIN on the user’s UICC
is used to prevent an adversary with physical device access from generating valid
OTPs. The security of HOTP is formally analysed in the standard [57], which
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shows that no adversary without knowledge of the private key kOTP can do bet-
ter than approximately brute force. Where d is the number of OTP digits, s
is the look-ahead synchronisation window and the adversary is allowed n total
attempts, the probability of any adversary succeeding is no greater than n∗s

10d

plus some negligible advantage for exploiting the minor algorithmic bias. Whilst
the PIN must be kept secret and of sufficient length, the low average transaction
values of many foundational eID use cases permits a trade off with usability and
convenience.

The SIMple-VID protocol builds on SIMple-OTP, to offer improved privacy
from requesting entities, by encrypting the standard HOTP authentication using
the public key of the issuer. From a security perspective, even if the encryption
algorithm used is wholly insecure, the adversary can still do no better than to
try to break the HOTP which is approximately to brute force the private key
kOTP as described above.

Compared with the current SMS-based OTP mechanism, security is enhanced
by authenticating the UICC hardware rather than the mobile phone number it
is linked with. Crucially, this avoids SIM-jacking attacks where a victim’s mobile
number is switched to a UICC controlled by the adversary [59]. In addition, the
use of QR codes means that all 10 available OTP digits can be transmitted with-
out impacting usability; making it around 10,000 times less likely the adversary
succeeds in guessing the OTP versus when 6 digits are used.

6.2 Privacy

Firstly, the SIMple-OTP protocol does not offer any privacy benefit compared
to the standard foundational eID authentication modalities. We focus therefore
on the SIMple-VID protocol which essentially provides a VID-per-transaction
functionality. The resident’s UID is concealed from requesting entities and the
SA-UA network by the use of a secure public key encryption scheme i.e., cchal =
EncPIenc(uid ‖ hotp).

The limited cryptographic algorithms natively supported by Java Cards
only includes RSA for public key encryption. Though secure when appropriate
padding is used [57], RSA encryption suffers from large private key sizes relative
to the security provided. The 2048 bit key size recommended for new applica-
tions [25] produces 256 byte ciphertexts, necessitating high capacity QR codes
with compromised readability on basic phone screens. Fortunately the Elliptic
Curve Integrated Encryption Scheme (ECIES) [65] has much smaller ciphertexts
for the same level of security and has been reported to operate efficiently on the
Java Card platform even without native support [41]. In any case, the lack of
a standard implementation led us to prototype SIMple ID using 768 bit RSA
encryption. Though insecure for use in a production environment [21], 768 bit
RSA is sufficient to demonstrate the required operating principles (i.e., encrypt-
ing a digitally signed message) using nonetheless pessimistically high-capacity
QR codes.

ECIES is provably secure against adaptive chosen-ciphertext attacks and
provides semantic security, as-well as non-malleability [19]. Our application is
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straightforward and, as noted previously, offers a reduction to the security of
HOTP should ECIES be fatally broken in the future.

6.3 Implementation

Our applet implementing the SIMple ID protocols was developed in Java Card
and deployed on Taisys SIMoME overlay cards that comply with Java Card 3.0.4
and support the SIM toolkit (Sect. 2.2). To support our proposed extension to the
icon protocol and render the QR codes (Sect. 4), we patched “TTfone TT240”
devices featuring the KaiOS Operating System.

Using these implementations, we now examine whether the latency of our pro-
posed protocols is adequately low for real-life transactions. We focus on SIMple-
OTP and SIMple-VID as these are the only two protocols that will be executed
repeatedly by the user once the personalization has been completed. We exe-
cute each protocol 100 times and measure the runtime of the on-SIM and the
on-device parts of the protocol. As seen in Table 1, the total runtime of both
protocols is less than 3 s in all cases. We observe that SIMple-VID has a longer
runtime due to the extra on-SIM operations as well as the increased QR code
size. Finally, we note that on-SIM execution is considerably slower than on-device
operations. This is expected but highlights the importance of using the SIM only
for sensitive cryptographic operations while relying on the phone’s CPU for the
rest of the computations.

Table 1. Average runtime (in milliseconds) of the UICC and the on-device execution
components of the SIMple-OTP and SIMple-VID protocols.

Protocol SIM Runtime (ms) Device Runtime (ms)

SIMple-OTP 2135 220

SIMple-VID 2385 517

6.4 QR Codes

Since we display QR codes using basic phones, the screen size and pixel-density
are of great importance and place limits on the maximum data capacity and
readability. To establish realistic specifications, Amazon was used to identify the
ten best selling basic mobile phones in India [13]. We also include the JioPhone,
a handset designed to provide 4G internet access for the lowest possible cost.
JioPhones are popular in India and Africa where they are heavily subsidised [55].
All of these devices have screens which are either:

– Basic Screens characterised by comparatively low pixels-per-inch (ppi) val-
ues between 110 and 120. The smallest screen is just 1.5 in. with a 120 × 120
resolution, although 1.77 in. and 120 × 160 is the most common.
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– Premium-Basic Screens all have a resolution of 240 × 320, a size of 1.77
inches and a pixel-density of 167 ppi.

When considering QR codes that are displayed on such small and low-
resolution screens, it is vital to ensure that each module is drawn using as many
pixels as possible. Our testing using premium-basic screens found that a mini-
mum module size of 2 × 2 pixels was required to achieve consistent readability.
High levels of ECC proved to be unhelpful as the screens, even when scratched
and damaged, provide high acuity compared to the industrial environments QR
codes are designed to tolerate. Moreover the reduced net data capacity incurred
by sacrificing modules to ECC, and the resulting need for higher version numbers
and reduced module sizes, tended to worsen readability. Table 2 shows the maxi-
mum module size in pixels-squared (px2), with an ECC level of 7%, for basic and
premium-basic phone screens. Although not shown to save space, premium-basic
screens can adequately render a version 13 QR code, providing a capacity of 425
bytes, with a module size of 3 px2.

Table 2. QR code capacity, and maximum module sizes, for the two most common
basic mobile phone screen resolutions.

Version number Capacity
(bytes)

N. modules Max. module
size 120 × 120
device (px2)

Max. module
size 240 × 320
device (px2)

1 17 21 × 21 4 8

2 32 25 × 25 3 7

3 53 29 × 29 3 6

4 78 33 × 33 2 5

5 106 37 × 37 2 5

6 134 41 × 41 2 4

7 154 45 × 45 2 4

8 192 49 × 49 2 4

7 Related Work

UICCs for mobile signatures [31], also known as mobile eID [61], are already
part of the national eID infrastructure in many countries. Existing solutions are
primarily designed for online authentication in developed countries with users
that have reliable and affordable cellular connections. Nonetheless, like SIMple
ID, these systems also make use of UICCs, mobile devices and existing cellular
infrastructure to provide cryptographic identity assurances [31]. Mobile-ID, a
typical mobile eID currently deployed in Estonia and Azerbaijan, allows access
to e-Government services and digital document signing using a basic mobile
phone [60,62]. In Mobile-ID, the resident provides their mobile number to a
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website and then a verification code is shown on both on the website and the
corresponding mobile phone. If the two codes match the resident enters their
secret PIN and the UICC computes a digital signature. Finally, the digital sig-
nature is used as an authentication token for the requested website. Mobile-ID
has been formally modelled and proven secure using ProVeif [62], but in contrast
to SIMple ID may harm privacy by revealing a phone number to the website in
every transaction. Similar UICC-based mobile eID are also deployed in many
other countries including Finland [76], Moldova [63], Norway [3], Switzerland
[68] and Turkey [26]. Zefferer and Teufl [80], and separately Verzeletti et al.
[44], systematically review mobile eID systems. Beyond eID, UICCs are widely
used for mobile money solutions such as the seminal M-PESA payment service
[51]. M-PESA was transformative because it provides a way for those without
bank accounts, people marginalised by conventional finance institutions, to send
money digitally using only basic mobile phones. Within just two years of its 2007
launch in Kenya, 40% of adults were using the service [27]. Today M-PESA is
extensively used for everyday purchases and international remittances by over
51 million customers spanning 7 different African countries [15].

In the academic literature Baqer et al. [23] describe DigiTally, an offline pay-
ment system for feature phones based on exchanging short codes between payee
and recipient. The usability of DigiTally, another UICC-based CAT application
like SIMple ID, is evaluated with participants at a university in Nairobi who
report positively upon the usability and perceived security of the system. A
notable finding of the DigiTally study, that informed the use of QR codes in this
work, is that payers were observed to display their authentication codes to the
recipient rather than read them verbally. In related work the authors also evalu-
ate the security and usability tradeoffs of the short authentication codes used for
DigiTally [24]. Beyond work focused on less-developed countries, Hassinen and
Hyppönen present a protocol which, based on Finland’s national PKI register
and a Java Card application, provides authentication and non-repudiation using
SMS messages [50].

8 Conclusion

SIMple ID can improve the security and privacy properties of existing founda-
tional eID systems without requiring any additional investments in infrastructure.
Instead, it employs technologies that the users are already using and are familiar
with. Given the scepticism towards biometrics and the pressure for more privacy-
preserving systems, we believe that SIMple ID can provide a viable alternative that
can reach millions of users. Our techniques furthermore establish a generic plat-
form for displaying QR codes using basic mobile phones that is readily extensible
to support new applications such as in finance and targeting aid.

Beyond the technical challenges, a full-scale deployment will require properly
incentivised device manufacturers and network operators. In particular, mobile
network operators issuing an over-the-air update to their subscribers’ SIM cards
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and handset manufacturers incorporating the icon standard updates. Nonethe-
less, foundational eID systems are backed by governments who can coordinate
the actions required by the different parties.
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30. Edsbäcker, P.: SIM cards for cellular networks. An introduction to SIM card appli-

cation development. B.Sc. thesis, Mid Sweden University (2012)
31. ETSI TR 102 203: Mobile Commerce (M-COMM); Mobile Signatures; Business

and Functional Requirements. V1.1.1 (2003)
32. ETSI TS 101 476: Digital cellular telecommunications system (Phase 2+); GSM

API for SIM toolkit stage 2 (3GPP TS 03.19 version 8.5.0 Release 1999) (2002)
33. ETSI TS 102 221: Smart Cards; UICC-Terminal interface; Physical and logical

characteristics (Release 17). V17.1.0 (2022)
34. ETSI TS 102 223: Smart Cards; Card Application Toolkit (CAT). V15.3.0 (2019)
35. ETSI TS 102 226: Smart Cards; Remote APDU structure for UICC based appli-

cations (Release 16). V16.0.1, European Telecommunications Standards Institute
(2020)

https://www.vodafone.com/news/inclusion/mpesa-marks-15-years
https://www.vodafone.com/news/inclusion/mpesa-marks-15-years
https://docs.mosip.io/1.1.5/modules/registration-processor/mosip-id-object-definition
https://docs.mosip.io/1.1.5/modules/registration-processor/mosip-id-object-definition
https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG
https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG
https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-319-62033-6_15


SIMple ID: QR Codes for Authentication Using Basic Mobile Phones 21

36. ETSI TS 102 384: Smart Cards; UICC-Terminal interface; Card Application
Toolkit (CAT) conformance specification (Release 11). V11.0.0 (2022)

37. ETSI TS 131 102: Characteristics of the Universal Subscriber Identity Module
(USIM) application (3GPP TS 31.102 version 17.5.0 Release 17) (2022)

38. ETSI TS 131 130: (U)SIM Application Programming Interface (API); (U)SIM API
for JavaTM Card (3GPP TS 31.130 version 17.0.0 Release 17) (2022)

39. ETSI TS 151 011: Digital cellular telecommunications system (Phase 2+); Specifi-
cation of the Subscriber Identity Module - Mobile Equipment (SIM-ME) interface
(3GPP TS 51.011 version 4.15.0 Release 4) (2005)

40. Ford, B.: Identity and personhood in digital democracy: evaluating inclusion, equal-
ity, security, and privacy in pseudonym parties and other proofs of personhood.
arXiv (2020). https://arxiv.org/abs/2011.02412

41. Gayoso Mart́ınez, V., Hernández Encinas, L., Sánchez Ávila, C.: Java card imple-
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standardized versions of ECIES (2010)
66. Mavroudis, V., Svenda, P.: JCMathLib: wrapper cryptographic library for trans-

parent and certifiable JavaCard applets. In: 2020 IEEE European Symposium on
Security and Privacy (EuroS&P) Workshops (2020)

67. MOSIP Docs 1.2.0: ID Authentication Services, Modular Open Source Identity
Platform (2022). https://docs.mosip.io/1.2.0/modules/id-authentication-services

68. Murphy, A.: Swisscom Mobile ID: Enabling an Ecosystem for Secure Mobile
Authentication. GSM Association (2018)

69. Naumann, I., Hogben, G.: Privacy features of European eID card specifications.
Netw. Secur. 2008(8), 9–13 (2008)

70. Parsovs, A.: Estonian electronic identity card: security flaws in key management.
In: Proceedings of the 29th USENIX Conference on Security Symposium (2020)

71. Qin, K., Zhou, L., Livshits, B., Gervais, A.: India’s ”Aadhaar” biometric ID: struc-
ture, security, and vulnerabilities. In: Financial Cryptography and Data Security -
26th International Conference (2022)

72. Rajput, A., Gopinath, K.: Analysis of newer Aadhaar privacy models. In: Ganapa-
thy, V., Jaeger, T., Shyamasundar, R.K. (eds.) ICISS 2018. LNCS, vol. 11281, pp.
386–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05171-6 20

73. Reaves, B., Scaife, N., Bates, A., Traynor, P., Butler, K.R.B.: Mo(bile) money,
Mo(bile) problems: analysis of branchless banking applications in the developing
world. In: 24th USENIX Security Symposium (2015)

74. Reid, J., Looi, M.: Making sense of smart card security certifications. In: Domingo-
Ferrer, J., Chan, D., Watson, A. (eds.) Smart Card Research and Advanced Appli-
cations. ITIFIP, vol. 52, pp. 225–240. Springer, Boston, MA (2000). https://doi.
org/10.1007/978-0-387-35528-3 13

75. Salem, A.M., Elhingary, E.A., Zerek, A.R.: Value added service for mobile com-
munications. In: 4th International Conference on Power Engineering, Energy and
Electrical Drives (2013)

76. Trichina, E., Hyppönen, K., Hassinen, M.: SIM-enabled open mobile payment sys-
tem based on nation-wide PKI. In: ISSE/SECURE 2007 Securing Electronic Busi-

https://doi.org/10.1007/978-3-642-04766-4_19
https://docs.mosip.io/1.2.0/modules/id-authentication-services
https://doi.org/10.1007/978-3-030-05171-6_20
https://doi.org/10.1007/978-0-387-35528-3_13
https://doi.org/10.1007/978-0-387-35528-3_13


SIMple ID: QR Codes for Authentication Using Basic Mobile Phones 23

ness Processes, pp. 355–366. Vieweg (2007). https://doi.org/10.1007/978-3-8348-
9418-2 38

77. Vashistha, A., Anderson, R., Mare, S.: Examining security and privacy research
in developing regions. In: Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies. COMPASS ’18 (2018)
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Abstract. A software watermarking scheme is to embed a “mark” or
a message into a program in a cryptographic way. It is useful in prov-
ing ownership (e.g., in applications to digital rights management) and
in authenticating software (e.g., for proving the distributor of the soft-
ware). A qualified software watermarking scheme should satisfy three
requirements: (i) the marked program should not differ from the original
program significantly; (ii) the embedded “mark” or message should not
be removed without destroying the program dramatically; (iii) forging a
marked program without a watermarking secret key is difficult. To the
best of our knowledge, existing watermarking schemes for PRFs only
deal with a single key, and no scheme supports watermarking the same
PRF key for multiple times which is useful for hierarchical organizations.

In the paper, we put forward a definition and security requirements
for a hierarchical watermarking scheme for PRFs. Under the defini-
tion, a hierarchical watermarking scheme for PRFs is constructed to be
functionality-preserving, unremovable and unforgeable under standard
assumptions, namely, the LWE assumption and the SIS problem. The
watermarking scheme is based on a variant translucent constrained PRF
with desired security properties.

Keywords: Hierarchical Watermarking · Pseudorandom Functions ·
Learning with Errors (LWE) · Short Integer Solution (SIS)

1 Introduction

A software watermarking scheme is to embed a “mark” or a message into a
program such that the marked program satisfies three properties: functionality-
preserving, unremovability, and unforgeability. A watermarking scheme can be
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applied to manage digital rights, such as tracing information leaks or resolv-
ing ownership disputes. In [22], a copyrighted function which is a weaker notion
than a watermarking scheme for PRFs is studied. The weakness of a copyrighted
function comes from the removability. The first simulation-based software water-
marking is defined by Barak et al. in [4,5]and it is stated that the perfectly correct
software watermarking scheme does not exist even under the indistinguishabil-
ity obfuscator (iO) assumption. Towards a positive result, previous works on
cryptographic watermarking [23,27] present unremovable schemes by restricting
an adversary’s ability to modify the marked programs. Later, authors in [13]
relax the watermarking definition in [4,5] by requiring that the watermarked
programs should be statistically correct to the original ones. And the security
model in [13] makes no restriction on adversaries. Due to the relaxation of the
definition, watermarking schemes in [8,13] are proven secure without any restric-
tions on an adversary under the iO assumption. Since iO is not a well-studied
cryptographic tool, researchers prefer to construct watermarking schemes under
standard assumptions. Such results can be found in [17–19,24,26].

To the best of our knowledge, all existing watermarking schemes fail to embed
another watermark into a watermarked program again. Here, we put forward a
question to ask whether there exists a watermarking scheme that enables to embed
another watermark into a watermarked program again. And this new notion of
watermarking is termed as hierarchical watermarking.

Motivation. In reality, authorities that are organized hierarchically prefer a
hierarchical watermarking scheme. On the other hand, a hierarchical water-
marking can help delegate the workload to a subordinate watermarking center.
Consider a software corporation who wants to protect their products from ille-
gal distribution. The software corporation can embed a watermarking message
(e.g. a piece of information indicating the ownership) into their products before
selling them. Then, a buyer (either a community or a person) gets the product
before the buyer’s information watermarked into the software for a second time.
It is possible that the software product can be watermarked for a third time
when a community buyer allows a member to access the software. The hier-
archical watermarking makes the watermarking procedure more flexible. When
the software company suspects an illegal distribution, it can identify the illegal
distributor by extracting the watermarked message.

Our Contributions. In the paper, we answer the proposed question positively
to satisfy the practical needs of hierarchical authorities about hierarchical water-
marking. We formally define a hierarchical watermarking scheme for PRFs and
its security properties as well. Under our definitions, the main contribution can
be summarized informally as follows:

Under the LWE assumption and the existences of PRFs and CPA-secure
public-key encryptions, there is a hierarchical watermarking scheme for PRFs
which is correct, unremovable and unforgeable.

Informally, the hierarchical watermarking definition captures the following
intuition: a user sends a PRF key k and a message msg to the first-level water-
marking center and it receives a watermarked circuit implementing the PRF
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functionality and other auxiliary information. After that, a user can continue
to send the watermarked circuit and other messages to the subordinate levels
of the watermarking center. Note that the watermarking at the first level works
differently from other levels. Thus, they are defined separately. The total levels
of the watermarking center is supposed to be a constant L.

The security definitions are game-based as in previous papers [17–19,24,26].
But differences exist in our security definitions. As for the unremovability, with-
out knowing an original PRF key k, given its L watermarked circuits (unlike
one circuit before) implementing the PRF under k, no adversary can remove the
watermarking message from any one of the L watermarked circuits. As for the
unforgeability, after seeing many pairs of a known key and its L watermarking
circuits (unlike its one watermarking circuit before), no adversary can forge a
watermarked circuit for a PRF key which is never queried to the watermarking
center before.

Technical Overviews. The idea to construct a hierarchical watermarking
scheme follows the traditional blueprint for a normal watermarking scheme. That
is, the functionality of the watermarked cryptographic primitives deviates from
the designed one on a negligible fraction of the whole domain. For convenience,
this small fraction is rephrased as “a puncture set” which encodes the water-
marking message and is kept hidden from adversaries who intend to remove the
watermarking message.

Recall the watermarking scheme for PRFs proposed in [18]. The key tech-
nique is a translucent PRF which owns two types of a key: a normal key k and
a constrained key ck. The normal key k computes correct function values for all
points in the domain while the constrained key ck does so except for a small
point set (i.e., a puncture set). Moreover, the function values evaluated at the
puncture set can be tested by a testing key. Towards a watermarking scheme for
translucent PRFs, the watermarking center computes two N -point sets S0 and
S1 and the puncture set is determined by selecting the i-th point from Smsgi

where msgi is the i-th bit of the watermarking message. The watermarked cir-
cuit implements a rounding of a sum of N puncture PRFs whose same key is
punctured at different points in a puncture set. For more detailed, please refer
to [18].

As in [18], the puncture set is one-time to watermark a program. Towards
a hierarchical watermarking scheme, a naive attempt is to use the puncture set
in a more subtle way. More precisely, the puncture set can be split into several
subsets and each subset is treated as an individual puncture set to encode a
watermarking message.

If so, then the watermarking message encoding method in [18] cannot work
because an adversary can remove the watermarking message easily. Suppose an
adversary has two watermarked circuits: one is watermarked at the first level
of the watermarking center and the other is watermarked at the second level.
Based on the attempt, since the watermarking center at the first level knows
nothing about the watermarking message which will be embedded at the second
level, the two puncture sets reserved for the second embedding must be different.
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Then, the adversary can easily determine the puncture set used for the second
embedding by just comparing the two function values and change the values once
such a difference is found. In this way, the watermarking message is removed1.

Against such an attack, a watermarking message in our scheme is encoded
to be a row number of a matrix. If an adversary changes the embedded message,
then it has to find a row correctly from a possible point set, which is highly
impossible if the parameters are set carefully.

In detail, the watermarking center consists of L marking algorithms and L
extraction algorithms. Take the marking and extraction algorithms at the first
level as an example. Given a program2 and a watermarking message, the marking
algorithm at the first level computes the puncture set by computing two sets
S0, S1 with IJL elements3 and sorting them in I ×J matrices. Each set contains
L matrices which are labelled by 1, 2, . . . , L. Next, suppose the watermarking
message is msg which is interpreted as a number. The puncture set contains
all points in the first msg rows of the first matrix and the remaining (L − 1)
matrices in S0 and the last (I − msg) rows of the first matrix in S1. When the
puncture set is determined, the program can be watermarked accordingly and
the details can be found in Sect. 5.

As for the extraction, if the extraction algorithm computes the same sets
S0, S1, then the message can be extracted correctly based on the property of the
constrained key4.

Three more questions should be considered.

– How is the constrained key computed? On input N different points, a con-
strained key is a collection of the same secret PRF key punctured at these
N different points. Different from the one-time message encoding method
in [18], the whole puncture set in our construction is split into L subsets.
Then, at different levels, a different part of the constrained key should be
output. However, in the definition of translucent PRFs in [18], the constrain
key is output once for all. Hence, the definition should be adapted to allow
to output constrained key partially. To this end, the constrained key gener-
ation algorithm takes as input two more arguments: one is the number set
Tin which indicates that the secret key should be punctured at points whose
positions are in Tin and the other is the number set Tout which indicates that
the constrained key which is punctured at points whose positions are in Tout

should be output.
– How does marking algorithm executed at subordinate levels get the PRF key?

The α-th level is said to be a subordinate level of the β-th level if α > β. After

1 Note that the function value at a puncture point is incorrect and this incorrectness
cannot be tested if the incorrect function value is modified.

2 The program is usually determined by a pseudorandom function secret key, a signing
key or a decryption key. In the paper, the program is an implementation of a PRF.

3 Here, L is a constant and I, J , for example, can be polynomial in the security
parameter.

4 Recall that the constrained key computes incorrect function values which can be
tested whether the function values are evaluated at the points in the puncture set.
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watermarking at the β-th level, the marking algorithm at the subordinate α-
th level is supposed to take a watermarked circuit as input. If the marking
algorithm at the α-th level embeds another watermark into the watermarked
circuit, then it watermarks either the circuit directly or a key. In the paper,
the marking algorithm at the α-th level is formulated to watermark a key
since this would be much straight forward and align with previous studies
focusing on watermarking keys.
The next step is to consider how to send a key which has been watermarked
at the α-th level to the (α + 1)-th level privately. A simple solution is to use
encryption schemes. Since the key also known as the plaintext is chosen by
users, an encryption scheme which is secure against chosen plaintext attack
(CPA) is sufficient.

– How is the watermarking order kept? Our scheme is designed to guarantee
that if a secret PRF key k is sent to the l-th level for watermarking, then it
must have been watermarked at all levels ranking higher than the l-th level.
To make sure of it, the level number and the partially punctured key are
encrypted together.

Organization. In Sect. 2, some preliminaries are introduced. In Sect. 3, formal
definitions and security requirements for a variant translucent constrained PRF
are given. In Sect. 4, the concrete construction and security analysis are stated.
In Sect. 5, the formal definitions, the concrete construction and security analysis
of hierarchical watermarking scheme for PRFs are given.

2 Preliminaries

Let λ be a security parameter. Let χ = χ(λ) be a B-bound error distribution
over integers, n = n(λ), m = m(λ), q = q(λ), p = p(λ) and β = β(λ) be integers.

2.1 The Hypergeometric Distribution

Let N,K, n be integers. The hypergeometric distribution H(K,N, n) describes
the number of “good” elements in n elements sampled without replacement from
a set of N elements with K “good” elements. If a random variable X follows the
hypergeometric distribution H(K,N, n), then Pr[X = k] =

(
K
k

)(
N−K
n−k

)/(
N
n

)
for

max(0, n + K − N) ≤ k ≤ min(K,n), where
(
a
b

)
denotes a binomial coefficient

for integers b ≤ a.

Theorem 1 ([12]). Let X be a random variable following the hypergeometric
distribution H(K,N, n) and δ ≥ 0, then

Pr[X ≤ K

N
· n − δ] ≤ e− 2δ2

n , Pr[X ≥ K

N
· n + δ] ≤ e− 2δ2

n .
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2.2 Lattice Preliminaries

The LWEn,m,q,χ assumption states that for A $← Z
n×m
q , s $← Z

n
q , e $← χm and

u $← Z
m
q , the distributions for (A,AT s + e) and (A,u) are computationally

indistinguishable.
Suppose that q = pΠi∈[n]pi and p1 < p2 < . . . < pn are all coprime and

coprime with p. The 1D-SIS-Rm,p,q,β problem states that given v $← Z
m
q , com-

pute z ∈ Z
m such that ‖z‖ ≤ β and one of the following conditions holds:

(1) 〈v, z〉 ∈ [−β, β] + (q/p) · Z; (2) 〈v, z〉 ∈ [−β, β] + (q/p) · (Z + 1/2). The
1D-SIS-Rm,p,q,β assumption states that no efficient adversary is able to solve
1D-SIS-Rm,p,q,β problem except with negligible probability.5

Theorem 2 (Lattice Trapdoors [1–3,14,20,21]). A polynomial time algo-
rithm TrapGen performs as follows:

TrapGen(1n, 1m, q) → (W, z): On input the parameters n,m, q ∈ Z, this trap-
door generation algorithm outputs a matrix W ∈ Z

n×m
q and a vector z ∈ Z

m.
Moreover,(1) the matrix W is statistically close to uniform;(2) the vector z
is B-bounded, i.e., ‖z‖ ≤ B and W · z = 0 (mod q).

Theorem 3 (Homomorphic Encryption from LWE [10,15]). The leveled
homomorphic encryption scheme (HE) ΠHE = (HE.KeyGen, HE.Enc, HE.Eval,
HE.Dec) for (arithmetic) circuits of depth d = d(λ) over the plaintext space
{0, 1}ρ0 × Z

ρ1
q is defined as follows:

– HE.KeyGen(1λ, 1d, 1ρ) → sk : On input the security parameter λ, the circuit
depth d and the length of plaintext ρ, output a secret key sk where ρ = ρ0+ρ1.

– HE.Enc(sk, (μ,w)) → ct : On input a secret key sk and a message (μ,w) ∈
{0, 1}ρ0 × Z

ρ1
q , output a ciphertext ct ∈ {0, 1}z where z = poly(λ, d, ρ, log q).

– HE.Eval(C, ct) → ct′ : On input an arithmetic circuit C : {0, 1}ρ0 × Z
ρ1
q →

Zq of depth at most d, and a ciphertext ct ← HE.Enc(sk, (μ,w)), output a
ciphertext ct′ ∈ {0, 1}τ .

– HE.Dec(sk, ct′) → w : On input a secret key sk and a ciphertext ct′, out-
put the result which is the computation of circuit C on the plaintext (μ,w).
Suppose the inputs to every multiplication gate in C contain at most a
single non-binary value. For sk ∈ Z

τ
q , (μ,w) ∈ {0, 1}ρ0 × Z

ρ1
q , compute

ct′ ← HE.Eval(C,HE.Enc(sk, (μ,w))). If C(μ,w) = w ∈ Zq, then with high
probability, for some E = B · mO(d),

HE.Dec(sk, ct′) = 〈sk, ct′〉 =
∑

k∈[τ ]

skk · ct′k ∈ [w − E,w + E],

where 〈·, ·〉 denotes the inner product.

5 In [7,11], it is proven that when m = O(n log q) and p1 ≥ β · ω(
√

mn log n), the 1D-
SIS-Rm,p,q,β problem is as hard as approximating certain worst-case lattice problems
to within a factor of β · Õ(

√
mn).
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In addition, there are two properties:

– HE.Eval(C, ·) can be computed by a Boolean circuit of depth poly(d, log z),
where z is the length of the ciphertexts output by HE.Enc.

– The scheme ΠHE is secure under LWEn,m,q,χ assumption where n = poly(λ)
and q > B · mO(d).

If C : {0, 1}ρ → {0, 1}τ is a Boolean circuit, then the circuit IP ◦ C : {0, 1}ρ ×
Z

τ
q → Zq ( [7,16,18]) is defined as follows:

(IP ◦ C)(x,y) = IP (C(x),y) = 〈C(x),y〉 ∈ Zq.

Theorem 4 ([6,16]). There exist algorithms (Evalpk, Evalct) such that for all
matrices A1, . . . ,Aρ, Ã1, . . . , Ãτ ∈ Z

n×m
q , for all inputs (x,y) ∈ {0, 1}ρ × Z

τ
q ,

and for all Boolean circuits C : {0, 1}ρ → {0, 1}τ of depth d, if

bi = sT (Ai + xiG) + eT
i ∀i ∈ [ρ], b̃j = sT (Ãj + yjG) + ẽT

j ∀j ∈ [τ ],

for some vector s ∈ Z
n
q , and ‖ei‖, ‖ẽj‖ ≤ B for all i ∈ [ρ], j ∈ [τ ] where

B = B(λ) is a noise bound such that B · mO(d) < q. Define

bIP◦C = Evalct(x, IP ◦ C,A1, . . . ,Aρ, Ã1, . . . , Ãτ , b1, . . . , bρ, b̃1, . . . , b̃τ )
AIP◦C = Evalpk(IP ◦ C,A1, . . . ,Aρ, Ã1, . . . , Ãτ ).

Then, bIP◦C = sT (AIP◦C +(IP ◦C)(x,y)·G)+eIP◦C with ‖eIP◦C‖ ≤ B ·mO(d).

3 A Variant of Translucent Constrained PRFs

Definition 1 (A Variant of Translucent Constrained PRFs). A vari-
ant of translucent constrained PRF6 with domain X and range Y is a tuple
of algorithms ΠPTP = (PTP.Setup, PTP.SampleKey, PTP.Eval, PTP.PCst,
PTP.PCstEval, PTP.Test) with the following properties:

– PTP.Setup(1λ) → (pp, tk) : On input a security parameter λ, the setup algo-
rithm outputs the public parameters pp and a testing key tk.

– PTP.SampleKey(pp) → msk : On input the public parameters pp, the key
sampling algorithm outputs a master PRF key msk.

– PTP.Eval(pp,msk, x) → y : On input the public parameters pp, a master PRF
key msk, and an argument x ∈ X , the evaluation algorithm outputs a function
value y ∈ Y.

– PTP.PCst(pp,msk, T, Tin, Tout) → skTout

T : On input the public parameters
pp, a master PRF key msk, and a set of points T ⊆ X , two number sets
Tin, Tout ⊆ [L]7, the constraining algorithm outputs a constraint key skTout

T .

6 The variant can generate and output partial constraint key while the original one in
[18] can only generate and output the whole constraint key. The detailed discussion
can be found in the introduction.

7 Tin and Tout indicate the positions in T.
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– PTP.PCstEval(pp, skT , x) → y : On input the public parameters pp, a con-
straint key skT , and an argument x ∈ X , the constrained evaluation outputs
a function value y ∈ Y.

– PTP.Test(pp, tk, y0) → {0, 1} : On input the public parameters pp, a testing
key tk, and a function value y0, the testing algorithm outputs 1 for acceptance
or 0 for rejection.

In the following, the notation ΠPTP is used to simplify ΠPTP = (PTP.Setup,
PTP.SampleKey, PTP.Eval, PTP.PCst, PTP.PCstEval, PTP.Test).

Definition 2 (Selective Correctness Experiment). Let ΠPTP be the vari-
ant of the translucent constrained PRF with domain X and range Y. For an
adversary A = (A1,A2) and a set system S ⊆ 2X . Define the correctness exper-
iment ExptΠP T P ,A,S as follows:

Experiment ExptΠP T P ,A,S(λ):

1. (S, stA) ← A1(1
λ) where S ∈ S; (pp, tk) ← PTP.Setup(1λ); msk ← PTP.SampleKey(pp);

2. sk
Sout
S ← PTP.PCst(pp, msk, S, Sin, Sout), and send the circuit CS =

PTP.PCstEval(pp, sk
Sout
S , ·) to the adversary. The adversary A2 outputs (x, S).

Definition 3 (Correctness [18]). ΠPTP is selectively correct if for any effi-
cient adversary A and (x, S) output by ExptΠP T P ,A,S :

Evaluation Correctness:

Pr[x ∈ X\S ∧PTP.Eval(pp,msk, x) �= PTP.PCstEval(pp, skSout

S , x)] = negl(λ);

Verification Correctness:

Pr[x ∈ S ∧ PTP.Test(pp, tk,PTP.PCstEval(pp, skSout

S , x)) = 1] = 1 − negl(λ),

Pr[x ∈ X\S ∧ PTP.Test(pp, tk,PTP.PCstEval(pp, skSout

S , x)) = 1] = negl(λ).

3.1 Security Definitions

Definition 4 (Constrained Pseudorandom Experiment Adapted from
[9,18]). Let b ∈ {0, 1} be a bit. The constrained pseudorandomness experiment
CExptbΠP T P ,A,S(λ) is defined as follows:

Experiment CExptb
ΠP T P ,A,S(λ):

1. (pp, tk) ← PTP.Setup(1λ) and msk ← PTP.SampleKey(pp);

2. (S, stA) ← APTP.Eval(pp,msk,·)
1 (1λ, pp) where S ∈ S;

3. Define the challenge oracle Ob : (1) O0(·) = PTP.Eval(pp, msk, ·); (2) O1(·) = f(·) where

f is a truly random function. And define a circuit Circ(·) = PTP.PCstEval(pp, sk
Sout
S , ·)

where sk
Sout
S ← PTP.PCst(pp, msk, S, Sin, Sout).

4. Output b′ ← APTP.Eval(pp,msk,·),Ob(·)(stA, Circ(·)).
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Definition 5 (Constrained Pseudorandomness Adaped from [9,18]).
The adversary is admissible if its queries to the evaluation oracle PTP.Eval(pp,
msk, ·) belong to X\S and its queries to the challenge oracle O0 or O1 belong
to S. Then, for a fixed security parameter λ, ΠPTP satisfies constrained pseu-
dorandomness if for all efficient and admissible adversaries A,

|Pr[CExpt0ΠP T P ,A,S(λ) = 1] − Pr[CExpt1ΠP T P ,A,S(λ) = 1]| = negl(λ).

Definition 6 (Key Injectivity [18]). ΠPTP is key-injective if for any two
different keys msk1,msk2 sampled from the key space and x sampled from the
domain,

Pr[PTP.Eval(pp,msk1, x) = PTP.Eval(pp,msk2, x)] = negl(λ),

where the probability is taken over the randomness in PTP.Setup.

Definition 7 (Selectively Consistent Privacy Experiment Adapted
from [25]). For an adversary A and a bit b ∈ {0, 1}, define a selectively consis-
tent privacy experiment as follows:

Experiment CPExptb
ΠP T P ,A(λ):

1. To begin with, A submits two sets: T0 = {X01, X02, . . . , X0L} and T1 =
{X11, X12, . . . , X1L} to the challenger, where each Xij is also a set for i = 0, 1 and
j = 1, 2, . . . , L.

2. The challenger runs (pp, tk) ← PTP.Setup(1λ), msk ← PTP.SampleKey(pp). Then, for all

j ∈ [L], the challenger computes sk
[L]
Xbj

← PTP.PCst(pp, msk, Xbj , [L], [L]). Finally, it

sends L circuits {Cj}j∈[L] to the adversary, where Cj(·) = PTP.PCstEval(pp, sk
[L]
Xbj

, ·).
3. Then, the adversary can access the evaluation oracle: when querying x ∈ {0, 1}n, it

receives a function value y = PTP.Eval(pp, msk, x).
4. Finally, the experiment outputs the bit b′ which is the output of the adversary.

Definition 8 (Selectively Consistent Privacy Adapted from [25]). Define
dx,i,j = 1 if x ∈ Xij for i = 0, 1 and j ∈ [L] and dx,i,j = 0 otherwise. Then,
an adversary A is privacy-admissible if (1) for any x ∈ {0, 1}n, and for any
l, j ∈ [L], dx,0,j ⊕ dx,1,j ⊕ dx,0,l ⊕ dx,1,l = 0; (2) for any x submitted to the
evaluation oracle, and j ∈ [L], dx,0,j = dx,1,j.

The ΠPTP is selectively consistent private if for all efficient and privacy-
admissible adversaries A, the following holds:

|Pr[CPExpt0ΠP T P ,A(λ) = 1] − Pr[CPExpt1ΠP T P ,A(λ) = 1]| ≤ negl(λ).

4 The Construction of ΠP T P

To start, parameters are listed as follows:

– (n,m, q, χ): LWE parameters; Btest: the norm bound in testing algorithm;
– ρ: length of the PRF input; p: rounding modulus;
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– L: the number of hierarchical levels indexed by l; I ×J : the size of a puncture
matrix with the elements indexed by i, j;

– N : the dimension of the coefficient vectors w indexed by t and N = nm;
– z: the bit-length of a ciphertext; τ : the bit-length of a secret key of a homo-

morphic encryption.

Let ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) be the (leveled) homo-
morphic encryption scheme which can be instantiated as in [10,15] with plain-
text space {0, 1}ρ × Z

N
q . Define the equality-check circuit eqt with the depth

of deq: {0, 1}ρ × {0, 1}ρ × Z
N
q → Zq where eqt(x, (x∗,w)) = wt if x = x∗8; 0,

otherwise. Then, a homomorphic evaluation circuit Ct
Eval with the depth of d

w.r.t. the circuit eqt is defined to be Ct
Eval(ct, x) = HE.Eval(eqt(x, ·), ct). For

t ∈ [N ], define Dt[a, b] = 1 if (a − 1)m + b = t; 0, otherwise.9

4.1 The Variant of the Translucent PRF Construction

The variant translucent PRF ΠPTP with domain {0, 1}ρ and range Zm
p is defined

as follows:

PTP.Setup(1λ): On input the security parameter λ, sample the following matri-
ces uniformly at random from Z

n×m
q :

– Â: an auxiliary matrix used to provide additional randomness;
– {A0,A1}, {Bl

i,j,r}l∈[L]
i∈[I],j∈[J],r∈[z], {Cl

k}l∈[L]
k∈[τ ]: matrices for the bit encodings

corresponding to the input to the PRF, ciphertexts of the punctured
points under HE and the HE’s secret key.

Then, take (Wb,l
i,j , z

b,l
i,j) ← TrapGen(1n, 1m, q) for all b ∈ {0, 1}, l ∈ [L], i ∈

[I], j ∈ [J ]. Finally, output the public parameters pp and a testing key tk:
{

pp = (Â, {A0,A1}, {Bl
i,j,r}l∈[L]

i∈[I],j∈[J],r∈[z], {Cl
k}l∈[L]

k∈[τ ], {Wb,l
i,j}b∈{0,1},l∈[L]

i∈[I],j∈[J] )

tk = {zb,l
i,j}b∈{0,1},l∈[L]

i∈[I],j∈[J] .

PTP.SampleKey(pp): On input the public parameters pp, sample a PRF key
s ← χn. Finally, output msk = s.

PTP.Eval(pp,msk, x): On input the public parameters pp, the PRF key msk =
s and an argument x = x1x2 · · · xρ, compute

B̃
l

i,j,t ← Evalpk(Ct,Bl
i,j,1, . . . ,B

l
i,j,z,Ax1 , . . . ,Axρ

,Cl
1, . . . ,C

l
τ )

for all l ∈ L, i ∈ [I], j ∈ [J ], t ∈ [N ] and Ct = IP ◦ Ct
Eval. Finally, output the

function value

yx = � sT (Â +
∑

l∈[L],i∈[I],
j∈[J],t∈[N]

B̃
l

i,j,tG
−1(Dt))�p.

8 wt is the t-th component of the vector w ∈ Zq.
9 The collection {Dt ∈ {0, 1}n×m}t∈[N ] is a basis for the module Z

n×m
q . Its definition

makes it convenient to set a trapdoor in the function values at puncture points. More
technique details can be found in [18].
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PTP.PCst(pp,msk, T, Tin, Tout): On input the public parameters pp, the PRF
key msk = s, and puncture point set T = {X l∗}l∗∈Tin= { {xb∗,l∗

i∗,j∗} i∗∈[I],j∗∈[J]}
l∗∈Tin where b∗ is either 0 or 1, for any non-null value xb∗,l∗

i∗,j∗ , compute

B̃
b∗,l,l∗

i,j,i∗,j∗,t ← Evalpk(Ct,Bl
i,j,1, . . . ,B

l
i,j,z,Axb∗,l∗

i∗,j∗,1
, . . . ,A

xb∗,l∗
i∗,j∗,ρ

,Cl
1, . . . ,C

l
τ )

for all l ∈ [L], l∗ ∈ Tin, i, i∗ ∈ [I], j, j∗ ∈ [J ], t ∈ [N ] and Ct = IP ◦
Ct

Eval. For any l∗ ∈ Tin, i∗ ∈ [I], j∗ ∈ [J ], compute a vector wb∗,l∗
i∗,j∗ =

(wb∗,l∗
i∗,j∗,1, . . . , w

b∗,l∗
i∗,j∗,N ) ∈ Z

N
q satisfying:

Wb∗,l∗
i∗,j∗ = Â +

∑

l∈[L],i∈[I]
j∈[J],t∈[N]

B̃
b∗,l,l∗

i,j,i∗,j∗,t · G−1(Dt) +
∑

t∈[N ]

wb∗,l∗
i∗,j∗,tDt.

Next, sample an FHE key skhe ← HE.KeyGen(1λ, 1deq , 1ρ+N ). For any l∗ ∈
Tin, i∗ ∈ [I], j∗ ∈ [J ], compute ctl

∗
i∗,j∗ ← HE.Enc(skhe, (x

b∗,l∗
i∗,j∗ ,wb∗,l∗

i∗,j∗))10 and
define ctl∗ = (ctl

∗
i∗,j∗)i∗∈[I],j∗∈[J].

Sample error vectors (e, e1,0, e1,1, el∗
2,i,j,r, e3,k) ← χm for any l∗ ∈ Tin, i ∈

[I], j ∈ [J ], r ∈ [z] and k ∈ [τ ]. Then, compute11:

âT = sT Â + eT , aT
b = sT (Ab + b · G) + eT

1,b b = 0, 1

(bl∗)T
i,j,r = sT (Bl∗

i,j,r + ctl∗
i,j,r · G) + (el∗)T

2,i,j,r l∗ ∈ Tin, i ∈ [I], j ∈ [J ], r ∈ [z]

cl∗,T
k = sT (Cl∗

k + skhe,kG) + eT
3,k l∗ ∈ Tin, k ∈ [τ ]

Next, define encl∗ = (â, {ab}b∈{0,1}, {(bl∗
i,j,r)i∈[I],j∈[J],r∈[z]}, {cl∗

k }k∈[τ ]) for any l∗ ∈
Tin. Output skTout

T = {encl∗ , ctl∗}l∗∈Tout .
PTP.PCstEval(pp, skT , x): On input the public parameters pp, a constrained key

skT and an argument x, compute

b̃
l

i,j,t ← Evalct((ct
l
i,j , x), Ct, bl

i,j,1, . . . ,b
l
i,j,z,ax1 , . . . , axρ , cl

1, . . . , c
l
τ )

for l ∈ [L], i ∈ [I], j ∈ [J ], t ∈ [N ] and where Ct = IP ◦ Ct
Eval. Finally, output the

function value
yx = �â +

∑

l∈[L],i∈[I]
j∈[J],t∈[N]

b̃
l

i,j,tG
−1(Dt)�p.

PTP.Test(pp, tk,y): On input the testing key tk = {zb,l
i,j}b∈{0,1},l∈[L]

i∈[I],j∈[J] , a point y ∈ Z
m
p ,

output 1 if 〈y, zb,l
i,j〉 ∈ [−Btest, Btest] for some b ∈ {0, 1}, i ∈ [I], j ∈ [J ], l ∈ [L] and

0 otherwise.

Correctness and Security Analysis. The correctness and security analysis
are formulated as follows.

10 Note that b∗ takes on either 0 or 1 and b∗ is the symbol relative to the puncture
point. b is the symbol standing for the bit.

11 In the following equations, the superscript T stands for the transpostition.
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Theorem 5. Let λ be the security parameter and B be a bound on the error
distribution χ. The parameter instantiations are set the same values as in [18].
Additionally, require I, J = ω(log λ) and L should be some arbitrary constant.
The following statements holds:

– Suppose Btest = B(m + 1), p = 2ρ1+ε

for some constant ε > 0 and q
2pmB >

BmO(d), m′ = m · (3+ IJL ·z +Lτ) and β = BmO(d), under the LWEn,m′,q,χ

and 1D-SIS-Rm′,p,q,β assumption, ΠPTP is (selectively) correct.
– Suppose m′ = m · (3 + IJL · z + τ), m′′ = m · (3 + IJL · (z + 1) + Lτ) and

β = B ·mO(d). Under the the LWEn,m′′,q,χ and 1D-SIS-Rm′,p,q,β assumptions,
ΠPTP satisfies selective constrained pseudorandomness.

– Suppose that p̂ is the smallest prime factor of q, B satisfies B < p̂
2 and

m = ω(n). ΠPTP is key-injective.

Theorem 5 can be proven almost identically as in [18]. The difference between
the variant and the translucent PRF in [18] is whether the constraint key is gen-
erated partially or not, which does not compromise the correctness, constrained
pseudorandomness and key injectivity when the constraint key in the variant is
also generated wholly.

Theorem 6 (Selectively Consistent Privacy). If ΠPTP is correct and
secure, then it satisfies selectively consistent privacy.

The proof of Theorem 6 can be found in the Appendix A.

5 A Hierarchical Watermarking Scheme for PRFs

In this section, we formally define a hierarchical watermarking scheme for PRFs
and its required properties.

Definition 9 (A Hierarchical Watermarking Scheme for PRFs). For a
security parameter λ, a secretly-marking, secretly-extraction, message-embedding
and hierarchical watermarking scheme for PRFs is a tuple of algorithms ΠWM

= (WM.Setup,{WM.Markl,WM.Extractl}l∈[L]) with the following properties:

– WM.Setup(1λ) → {mskl}l∈[L]: On input the security parameter λ, WM.Setup

outputs the watermarking secret key {mskl}l∈[L] for all levels.
– WM.Mark1(msk1,m1, k) → (C1, cipher1): On input the first-level water-

marking secret key msk1, a message m1 and the PRF key k to be marked,
WM.Mark1 outputs a marked circuit C1 and a ciphertext cipher1.

– WM.Markl(mskl,ml,(Cl−1, cipherl−1)12) → (Cl, cipherl): On input the
watermarking secret key mskl for the l-th level, a message ml, a circuit Cl−1

and a ciphertext cipherl−1, WM.Markl outputs a marked circuit Cl and a
ciphertext cipherl.

12 The circuit Cl−1 and the ciphertext cipherl−1 are output at the (l − 1)-th level.
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– WM.Extractl(mskl, C ′, level number) → {ml,⊥}: On input the watermarking
secret key mskl, a circuit C ′, and a level number level number, WM.Extractl
outputs the marked message ml or a symbol ⊥.

In the following, the notation ΠWM is used to simplify ΠWM = (WM.Setup,
WM.Extractl}l∈[L]).

Definition 10 (Circuit Similarity [18]). Define a circuit class C = {C|C :
{0, 1}n → {0, 1}∗} and f : N → N is non-decreasing function. For any two
circuits C,C ′ ∈ C, the following two expressions are equivalent:

C ∼f C ′ ⇐⇒ Pr
x

$←{0,1}n

[C(x) �= C ′(x)] ≤ 1/f(n).

Symmetrically, C �∼f C ′ ⇐⇒ Pr
x

$←{0,1}n

[C(x) �= C ′(x)] ≥ 1/f(n).

Definition 11 (Watermarking Correctness). Let ΠWM be a hierarchical
watermarking scheme for PRFs ΠPRF = (PRF.KeyGen, PRF.Eval) with domain
{0, 1}n. The scheme is correct if the following two properties hold for all l ∈ [L]:

– Functionality-preserving: Cl ∼f PRF.Eval(pp, k, ·), where Cl is the
marked circuit at the l-th level, k ← PRF.KeyGen(1λ) and 1/f(n) = negl(λ)
with overwhelming probability.

– Extraction correctness: Pr[WM.Extractl(mskl, Cl, l) = ml] = 1 − negl(λ),
where Cl is the marked circuit and ml is the embedded message at the l-th
level.

Security. Following [8,13,18,25], we specify two security notions for a hierar-
chical watermarking scheme for PRFs: unremovability and unforgeability.

Definition 12 (Watermarking Experiment). The watermarking experi-
ment ExptΠW M ,A(λ) between an adversary A and a challenger C is defined as
follows. Firstly, the challenger C invokes WM.Setup(1λ) to obtain the watermark-
ing secret keys {mskl}l∈[L]. Then, the adversary can access:

– Marking oracle: On input a message m and a secret PRF key k at the first
level or on input a message m, a pair of a ciphertext and a marked circuit
from the (l − 1)-th level at the l-th level, the challenger returns a marked
circuit and a ciphertext by invoking WM.Mark1 or WM.Markl.

– Challenge oracle: On input a set of messages {ml}l∈[L], the challenger
samples a secret key k̂ ← PRF.KeyGen(1λ) and returns watermarked circuits
{Ĉl}l∈[L] to the adversary.

Finally, the adversary A outputs a circuit C̃ and a level number l̃. Denote
by ExptΠW M ,A(λ) the output of the experiment which is the output of
WM.Extractl̃(mskl̃, C̃, l̃).
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Definition 13 (Unremovability). An adversary A is unremoving-adm-
issible if (1) the adversary A makes exactly one query to the challenge oracle;
(2) the circuit C̃ output by the adversary satisfies C̃ ∼f Ĉ l̃ where Ĉ l̃ is output
by the challenger and l̃ is the level number output by the adversary. In addition,
1/f(n) = negl(λ).

The hierarchical watermarking scheme ΠWM is unremovable if for all effi-
cient and unremoving-admissible adversaries A, any level number l̃ ∈ [L] output
by the adversaries,

Pr[ExptΠW M ,A(λ) �= ml̃] = negl(λ),

where ml̃ is the marked message at the l̃-th level submitted by the adversary
accessing the challenge oracle.

Definition 14 (δ-Unforgeability). An adversary A is δ-unforging-
admissible if (1) the adversary does not access the challenge oracle; (2) the
circuit C̃ output by the adversary A satisfies C̃ �∼f Cl

ql
for all l ∈ [L], ql ∈ [Ql],

where Ql is the number of queries that A makes to the marking oracle at the
l-th level, Cl

ql
is the corresponding marked circuit for the ql-th query at the l-th

level, and 1/f > δ.
The hierarchical watermarking scheme is δ-unforgeable if for all efficient and

δ-unforging-admissible adversaries,

Pr[ExptΠW M ,A(λ) �=⊥] = negl(λ).

5.1 A Hierarchical Watermarking Scheme for PRFs

In this section, we demonstrate how to construct a hierarchical watermarking
scheme for PRFs. The concrete construction relies on the following ingredients:

– Let ΠPTP be a variant translucent constrained PRF with a key space K, a
domain {0, 1}n and a range {0, 1}m.

– Let ΠPRF = (PRF.KeyGen,PRF.Eval) be a secure PRF with a domain
({0, 1}m)d and a range ({0, 1}n)IJ .

– Let E = (E.KeyGen,E.Enc,E.Dec) be a CPA-secure public-key encryption
with a plaintext space P and a ciphertext space C.

We require that d = λ
δ , δ = 1

poly(λ) , I = ω(log λ), J = (I + 1)2ω(log λ).
The hierarchical watermarking scheme ΠWM = (WM.Setup, {WM.Markl,
WM.Extractl}l∈[L]) for PRFs is defined as follows:

– WM.Setup(1λ): On input the security parameter λ, the setup algorithm
invokes (pp, tk) ← PTP.Setup(1λ) where tk = {zb,l

i,j}b∈{0,1},l∈[L]
i∈[I],j∈[J] . Next,

for l ∈ [L], sample L PRF keys k∗
l ← PRF.KeyGen(1λ) and define

Kl ={k∗
l ,k∗

l+1,. . . , k
∗
L}. For l ∈ [L], u ∈ [d], b ∈ {0, 1}, sample hb,l

u
$←

{0, 1}n uniformly at random, and define Hb,l={hb,l
u ,hb,l+1

u ,. . .,hb,L
u }u∈[d] and
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TKb,l={zb,l
i,j ,z

b,l+1
i,j ,. . .,zb,L

i,j }i∈[I],j∈[J]. For l = 2, 3, . . . L, sample (pkl
E , skl

E) ←
E.KeyGen(1λ). For l = 1, define (pk1

E , sk1
E) = (⊥,⊥).

Finally, it outputs the master watermarking key for every level mskl = (pp,
{TKb,l,Hb,l,Kb,l}b∈{0,1}, {pkl′

E}l′∈[L], skl
E) for all l ∈ [L].

– WM.Mark1(msk1,m1, k): On input the
key msk1 = (pp, {TKb,1,Hb,1,Kb,1}b∈{0,1}, {pkl′

E}l′∈[L], sk1
E), a PRF key

k ∈ K to be marked, and a message m1 ∈ {0, 1}M where M = �log I�, the
marking algorithm at the first level proceeds as follows:
1. Execute the following steps:

• for l ∈ [L]:
• for u ∈ [d]:
• y0,l

u ← PTP.Eval(pp, k, h0,l
u )

• Y 0,l = (y0,l
1 , y0,l

2 , . . . , y0,l
d ).

2. For l ∈ [L], X0,l = {x0,l
ij }i∈[I],j∈[J] ← PRF.Eval(k∗

l , Y 0,l).
3. Compute y1,1

u ← PTP.Eval(pp, k, h1,1
u ) for u ∈ [d] and define Y 1,1 =

(y1,1
1 , y1,1

2 , . . . , y1,1
d ). Then, compute X1,1 = {x1,1

ij }i∈[I],j∈[J] ← PRF.Eval

(k∗
1 , Y 1,1).

4. Define T = ({x0,1
ij }i∈[m1],j∈[J], {x1,1

ij }i∈{m1+1,...,I},j∈[J],X
0,2, . . . , X0,L)

and invoke PTP.PCst(pp, k, T, {1, . . . , L}, {1, . . . , L}) to get the con-
strained key sk

[L]
T .

5. Output the circuit C1 where C1(·) = PTP.PCstEval(pp, sk
[L]
T , ·), and a

ciphertext
cipher1 = E.Encpk2

E
(sk{1}

T , k, 2) where sk
{1}
T is a part of sk

[L]
T correspond-

ing to the point set ({x0,1
ij }i∈[m1],j∈[J], {x1,1

ij }i∈{m1+1,...,I},j∈[J]).
– WM.Markl(mskl,ml, (Cl−1, cipherl−1)): On input a master watermarking

secret key mskl at the l-th level, a marked circuit Cl−1 and a cipher cipherl−1

from the previous (l−1)-th level, a message ml to be marked at the l-th level,
the WM.Markl proceeds as follows:
1. Decryption

• Decipher the ciphertext cipherl−1 to obtain the level number l′, the
secret key k and the constrained key sk

{1}
T , . . . , sk

{l−1}
T . If the level

number l′ is not l, then output ⊥.
2. Computation of point matrices from the l-th to the L-th level

• for itr = l, l + 1, . . . , L:
• for u ∈ [d]:
• yb,itr

u ← PTP.Eval(pp, k, hb,itr
u ) for b ∈ {0, 1};

• Y b,itr = (yb,itr
1 , yb,itr

2 , . . . , yb,itr
d ) for b ∈ {0, 1}.

• For itr = l, l + 1, . . . , L, Xb,itr = {xb,itr
ij }i∈[I],j∈[J] ← PRF.Eval(k∗

itr,

Y b,itr) for b ∈ {0, 1}.
3. Verification of puncture

• For all b ∈ {0, 1}, itr = l, l+1, . . . , L, i ∈ [I], initialize counters ctrb,itr
i

and compute ctrb,itr
i =

∑
j∈[J] PTP.Test(C

l−1(xb,itr
ij )). For b = 0, if

there exists some itr or i such that ctr0,itr
i �= J , then output ⊥. For

b = 1, if there exists some itr or i such that ctr1,itr
i �= 0, then output

⊥.



A Hierarchical Watermarking Scheme for PRFs 39

4. Computation of the constrained key
• Define

T = ({x0,l
ij }i∈[ml],j∈[J], {x1,l

ij }i∈{ml+1,...,I},j∈[J],X
0,l+1, . . . , X0,L) and

invoke PTP.PCst(pp, k, T, {l, . . . , L}, {l, . . . , L}) to get the constrained
key sk

{l,...,L}
T .

• Output the circuit Cl(·) = PTP.PCstEval(pp, skl
T , ·) where skl

T =
(sk{1}

T , . . . , sk
{l−1}
T , sk

{l,...,L}
T ).

5. Encryption
• Compute cipherl = E.Encpkl+1

E
(sk{1}

T , . . . , sk
{l}
T , k, l + 1), where sk

{l}
T

is a part of sk
{l,...,L}
T corresponding to the point set ({x0,l

ij }i∈[ml],j∈[J],

{x1,l
ij }i∈{ml+1,...,I},j∈[J]).

6. Finally, output the circuit Cl(·) and the ciphertext cipherl.
– WM.Extractl(mskl, C, level number): On input the master watermarking key

for the l-th level and a circuit C, the extraction algorithm proceeds as follows:
1. If level number < l, then output ⊥; otherwise,

• for itr = l, l + 1, . . . , L:
• for u ∈ [d]:
• y0,itr

u ← C(h0,itr
u ).

• Y 0,itr = (y0,itr
1 , y0,itr

2 , . . . , y0,itr
d ).

2. For itr = l, l + 1, . . . , L, X0,itr = {x0,itr
ij }i∈[I],j∈[J] ← PRF.Eval(k∗

itr,

Y 0,itr).
3. Define ctritr

i =
∑

j∈[J] PTP.Test(C(x0,itr
ij )) for itr = l, l + 1, . . . , L and

i ∈ [I]. Specifically, set ctritr
0 = J and ctritr

I+1 = 0.
4. Define mitr = min

i=0,1,...,I
{i : |ctritr

i − ctritr
i+1| ≥ J

I+1}. Output the embedded

message mlevel number if mlevel number �= 0; otherwise, output ⊥.

Security Analysis. The correctness and the security for the above watermark-
ing scheme are stated in the following theorem, but the detailed proofs are
deterred to Appendix B.

Theorem 7 (Correctness, Unremovability, δ-Unforgeability). If ΠPTP

and ΠPRF both are secure, and E is correct and a CPA-secure encryption
scheme, then the hierarchical watermarking scheme ΠWM is correct, unremov-
able and δ-unforgeable.
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A Proof of Theorem 6

Proof. The idea behind the proof is that any two consecutive hybrids differs at
one point and this difference cannot be distinguished with noticeable probabil-
ity since the adversary is privacy-admissible and the security of the variant of
translucent constrained PRF.

Let {X01,X02, . . . , X0L} and {X11,X12, . . . , X1L} be the two sets that an
adversary sends to the challenger for the selectively consistent privacy exper-
iment. Let Dj be the symmetric difference of sets X0j and X1j . Then, Dj =
(X0j ∨ X1j) \ (X0j ∧ X1j) for all j ∈ [L] and define D = D1 ∨ D2 . . . ∨ DL.

The hybrids are defined as follows:

– Hybrid H0: This is exactly the selectively consistent privacy experiment
when b = 0. An adversary A chooses two sets {X01,X02, . . . , X0L} and
{X11,X12, . . . , X1L}. Then, A sends them to the challenger. The challenger
runs (pp, tk) ← PTP.Setup(1λ), msk ← PTP.SampleKey(pp). Since b = 0, the
challenger computes skX0j

← PTP.PCst(pp,msk,X0j) for all j ∈ [L]. Define
a circuit Cj(·) = PTP.PCstEval(pp, skX0j

, ·) for all j ∈ [L] and the challenger
sends all circuits {Cj}j∈[L] to the adversary. Besides, the adversary can access
the evaluation oracle. Finally, the experiment outputs whatever the adversary
outputs.

– Hybrid H0,i: Arrange all elements in D in a lexicographical order and
define Di be the set of first i elements. Define Xi

bj = (Xbj ∨ (Dj ∧ Di)) \
(Xbj ∧ (Dj ∧ Di)) for b = 0, 1, j ∈ [L] and set {Xi

01,X
i
02, . . . , X

i
0L} and

{Xi
11,X

i
12, . . . , X

i
1L} as the two puncture sets. The remaining experiment

steps are the same as in Hybrid H0.
– Hybrid H1: This is exactly the selectively consistent privacy experiment

when b = 1. Same as Hybrid H0 except that the constraint key are computed
as skX1j

← PTP.PCst(pp,msk,X1j) for all j ∈ [L]

Observe that Hybrid H0,0 is the same as Hybrid H0 and Hybrid H0,|D| is
the same as Hybrid H1. To see this, for any j ∈ [L], the following equations
hold:
⎧
⎪⎨

⎪⎩

X0
0j = (X0j ∨ (Dj ∧ D0)) \ (X0j ∧ (Dj ∧ D0)) = (X0j ∨ ∅) \ (X0j ∧ ∅) = X0j ;

X
|D|
0j = (X0j ∨ (Dj ∧ D|D|)) \ (X0j ∧ (Dj ∧ D|D|)) = (X0j ∨ Dj) \ (X0j ∧ Dj)

= X1j .

Next, we prove the indistinguishability between Hybrid H0,i and Hybrid
H0,i+1. The difference between them is how the (i + 1)-th element denoted by
di+1 in D is computed. Since the adversary A is privacy-admissible, di+1 must
be in either X0j ∧ Dj or X1j ∧ Dj for all j ∈ [L]. In H0,i, according to the
correctness of our variant of the translucent constrained PRF,

Ci
j(di+1) =

{
PTP.PCstEval(pp, skXi

0j
, di+1) di+1 ∈ X0j ∧ Dj

PTP.Eval(pp,msk, di+1) di+1 ∈ X1j ∧ Dj ,
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where Ci
j is the j-th circuit that the challenger returns to the adversary as the

challenge response in Hybrid H0,i. skXi
0j

is the constraint key for the puncture
set Xi

0j as defined in Hybrid H0,i.
In H0,i+1, according to the correctness,

Ci+1
j (di+1) =

{
PTP.Eval(pp,msk, di+1) di+1 ∈ X0j ∧ Dj

PTP.PCstEval(pp, skXi+1
0j

, di+1) di+1 ∈ X1j ∧ Dj .

Define an intermediate hybrid InterH where, for y1, y2
$← {0, 1}m,

CIH
j (di+1) =

{
y1 di+1 ∈ X0j ∧ Dj

y2 di+1 ∈ X1j ∧ Dj .

Since the adversary is privacy-admissible, di+1 will never be asked. Besides, since
the variant of the translucent constrained PRF is constrained pseudorandom and
is pseudorandom, Hybrids H0,i and H0,i+1 are both indistinguishable with the
intermediate hybrid.

B Proof of Theorem 7

B.1 Proof of Correctness

Proof. Recall that the hierarchical watermarking scheme runs {mskl}l∈[L] ←
WM.Setup(1λ) to get the watermarking keys. Then, a PRF key is sampled: k ←
PTP.SampleKey(pp). To embed a set of messages {ml}l∈[L] to a PRF key k,
invoke {Cl, cipherl}l∈[L] ← WM.Markl where Cl(·) = PTP.PCstEval(pp, skl

T , ·)
and skl

T is the constraint key at the l-th level. {Cl}l∈[L] are the watermarked
circuits.

By the correctness of the encryption scheme E, the ciphertext at the l-th
level can be correctly deciphered at the (l + 1)-th level.

– Functionality-preserving: Let Sl be the set of points x where Cl(x) �=
PTP.Eval(pp, k, x) for all l ∈ [L] and x ∈ D \ T l where D is the domain and
T l is the puncture point set at the l-th level. By the evaluation correctness
of ΠPTP , it holds that |Sl|

2n is negligible for all l ∈ [L]. Besides, the size of T l

is at most IJL and IJL
2n is negligible for I, J, L = ω(log λ). To sum up, Cl(·)

agrees with PTP.Eval(pp, k, ·) on all but a negligible fraction of points.
– Extraction correctness: Let X l be the set of puncture points at l-th level

and H be the set of sampled points which is part of the watermarking key
used for computing X l. Since ΠPRF is secure, points in X l are pseudo-
random. Moreover, points in H are sampled uniformly at random. Hence,
Pr[x = h] ≤ 2 · (IJL)·(Ld)

2n = negl(λ) for any x ∈ X l and h ∈ H. By the evalua-
tion correctness, Cl(h) = PTP.Eval(pp, k, h) with high probability for h ∈ H.
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Thus, with high probability, the sets of puncture points are identical in mark-
ing and extraction procedures at the same level. By the verification correct-
ness, we get ctrl

0 = ctrl
1 = . . . = ctrl

ml = J and ctrl
ml+1 = . . . = ctrl

I+1 = 0
with high probability. To conclude, the marked message can be correctly
extracted with high probability.

B.2 Proof of Unremovability

Hybrid H0 is the watermarking experiment.

Hybrid H1: Same as H0, except that the challenger chooses L truly random
function {fl}l∈[L] during the setup phase. Then, during the experiment, the
challenger evaluates fl(·) whenever it has to evaluate PRF.Eval(k∗

l , ·).
Hybrid H2: Same as H1, except that for all l ∈ [L], the challenger maintains
two tables T 0

l , T 1
l at the l-th level. Every table keeps track of a mapping K →

{0, 1}nIJ , where K is the PRF key space. The challenger responds to all queries
as follows:

– Marking oracle: Same as H1, except that when the challenger obtains a
PRF key k ∈ K either from the adversary or by decrypting a ciphertext,
it firstly searches k in the tables T 0

l , T 1
l where l is the level number from

the adversary. If a match is found, then the challenger sets X0,l = T 0
l (k)

and X1,l = T 1
l (k). Otherwise, the challenger uniformly samples X0,l,X1,l $←

{0, 1}nIJ , and adds the mapping k → X0,l, k → X1,l to tables T 0
l , T 1

l respec-
tively. The rest proceeds as in H1.

– Challenge oracle: On input a set of messages {ml}l∈[L] from the adversary,
the challenger samples a key k̂ ← PTP.SampleKey(pp). The puncture point
set (X̂0,l, X̂1,l) is computed as in Marking oracle. The rest proceeds as in
H1.

During the extraction phase, the challenger checks whether there exist an l and
two different keys from tables T 0

l , T 1
l , say, k and k′, such that Y 0,l = Y

′0,l or
Y 1,l = Y

′1,l. If yes, then abort the experiment and output Bad1. Otherwise,
compute Ỹ 0,l, Ỹ 1,l for all l ∈ [L] as in H1. Next, the challenger checks whether
(Ỹ 0,l, Ỹ 1,l) equals some (Y 0,l, Y 1,l) in the table T 0

l , T 1
l for all l ∈ [L]. If so, then

set (X̃0,l, X̃1,l) to be the value (X0,l,X1,l) corresponding to the (Y 0,l, Y 1,l).

Otherwise, uniformly sample X̃0,l, X̃1,l $← {0, 1}nIJ . The rest of the extraction
procedure is the same as H1.

Hybrid H3: Same as H2, except that when answering the challenge oracle,
the challenger directly samples {X̂0,l, X̂1,l}l∈[L]

$← {0, 1}nIJ without checking
whether the PRF key k̂ sampled by the challenger is queried by the adversary
before. Besides, the mapping k̂ → {X̂0,l, X̂1,l}l∈[L] is added into the correspond-
ing table T 0

l , T 1
l for l ∈ [L] in the extraction phase instead of in the query phase.

The rest is the same as H2.
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Hybrid H4: Same as H3, except that during the extraction phase, the challenger
checks whether Ĉl(hb,itr

u ) �= PTP.Eval(pp, k̂, hb,itr
u ) holds for some b∗, l∗, itr∗, u∗

where b ∈ {0, 1}, l ∈ [L], u ∈ [d], itr = l, l + 1, . . . , L and Ĉl is the l-th water-
marked circuit from the challenger. If there exist such b∗, l∗, itr∗, u∗, then the
experiment aborts and outputs Bad2. The rest is the same as H3.

Hybrid H5: Same as H4, except that during the extraction phase, the challenger
checks whether C̃ l̃(hb,itr

u ) �= PTP.Eval(pp, k̂, hb,itr
u ) holds for some b∗, l∗, itr∗, u∗

where b ∈ {0, 1}, u ∈ [d], itr = l̃, l̃ + 1, . . . , L, l̃ is the level number and C̃ l̃ is the
l̃-th watermarked circuit from the adversary. If there exist such b∗, l∗, itr∗, u∗,
then abort the experiment and output Bad3. Otherwise, set X̃b,itr = X̂b,itr for
itr = l̃, l̃ + 1, . . . , L and b ∈ {0, 1}. The rest is the same as H4.

Hybrid H6: Same as H5, except that during the extraction phase, for the level
number l̃ from the adversary, re-define ctrl̃

i = ‖{j|C̃(x0,l̃
ij ) = Ĉ l̃−1(x0,l̃

ij )}‖ for
i ∈ [I]. The rest is the same as H5.

Hybrid H7: Same as H6, except that when the challenger responds to the
challenge oracle, it uses different and uniformly sampled {ηb,l

u }b∈{0,1},l∈[L]
u∈[d] . The

rest is the same as in H6.

Hybrid H8: Same as H7, except that during the extraction phase, the chal-
lenger aborts the experiment and outputs Bad4 if there exist b ∈ {0, 1},
i, i′ ∈ [I], j, j′ ∈ [J ], l, l′ ∈ [L] such that (i, j, l) �= (i′, j′, l′) but x̂b,l

ij = x̂b,l′
i′j′ .

The rest is the same as H7.

Lemma 1. If ΠPRF is secure, then for all efficient adversaries A,

|Pr[H0(A) �= ml̃] − Pr[H1(A) �= ml̃]| = negl(λ).

Proof. Any adversary who can distinguish H0 and H1 with non-negligible advan-
tage can be used to break the security of the PRF.

Lemma 2. If ΠPTP is key-injective, then for all efficient adversaries,

|Pr[H1(A) �= ml̃] − Pr[H2(A) �= ml̃]| = negl(λ).

Proof. H1 and H2 are identical if H2 does not output Bad1. In the following, we
prove that Bad1 happens with a negligible probability. If there exists an l ∈ [L],
such that Y 0,l

k1
= Y 0,l

k2
or Y 1,l

k1
= Y 1,l

k2
for two different keys k1 and k2 queried by

the adversary at the l-th level, then PTP.Eval(pp, k1, h
b,l
u ) = PTP.Eval(pp, k2, h

b,l
u )

for all u ∈ [d] and some b ∈ {0, 1}, which happens with a negligible probability
due to the key-injectivity of ΠPTP .

Lemma 3. If ΠPTP satisfies selective constrained pseudorandomness, then for
all efficient adversaries A,

|Pr[H2(A) �= ml̃] − Pr[H3(A) �= ml̃]| = negl(λ).
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Proof. H2 and H3 are identical if the adversary never makes a query on the key
k̂ sampled by the challenger answering the challenge oracle. If there exists an
adversary A that can distinguish H2 and H3 with a non-negligible advantage ε,
then an adversary B can be constructed from A to break the selective constrained
pseudorandomness of ΠPTP .

1. First, B samples T = {xl
ij}l∈[L]

i∈[I],j∈[j] ← {0, 1}n uniformly at random and
it sends T to the challenger that simulates the scheme ΠPTP . Next, the
challenger runs (pp, tk) ← PTP.Setup(1λ), msk ← PTP.SampleKey(pp) and
skT ← PTP.PCst(pp,msk, T ). Then, B receives pp and a circuit C(·) =
PTP.PCstEval(pp, skT , ·) from the challenger.

2. B simulates H2 and H3 for the adversary A. It sends pp from the challenger
to the adversary A. The remaining setup is the same as in H2 and H3.

3. During the query phase, B answers the marking queries at the first level
as in H2 and H3. For marking oracle queries at l-th level (l �= 1), since B
cannot receive the testing key tk from the challenger, it computes ctrv

i =
‖{j|Cl−1(x0,v

ij ) = PTP.PCstEval(pp, skl−1, x0,v
ij )}‖ for v = l, l + 1, . . . , L, i ∈

[I] and j ∈ [J ], where Cl−1(·) is the marked circuit from the adversary A
and skl−1 is the deciphered constraint key. The rest of marking procedure
remains the same. When A accesses challenge oracle, B returns {Cl(·) =
PTP.PCstEval(pp, skT , ·)}l∈[L] to the adversary.

4. Let k1, k2, . . . , kQ ∈ K be the keys queried by A and Q be the maximum

query number. At the end of the query phase, B chooses an index i
$← [Q]

uniformly at random and computes y = PTP.Eval(pp, ki, x
1
11) where x1

11 ∈ T .
Then, it makes a query x1

11 to the challenger for the selective constrained
pseudorandomness and receives a response ŷ. If y = ŷ, then B outputs 1;
otherwise, it outputs 0.

Since A can distinguish H2 from H3 with a non-negligible probability ε, then
with the same probability, it submits a PRF key which is exactly the same key
sampled by the challenger. Now, consider the following two cases:

– Suppose that for the query x1
11, the challenger for the constrained pseudoran-

domness experiment answers PTP.Eval(pp,msk, x1
11). With probability ε/Q,

ki = msk where ki is the key queried by A but chosen by B. In this case,
y = ŷ and B outputs 1 with probability at least ε/Q.

– Suppose the challenger for the constrained pseudorandomness experiment
answers a truly random value. Then, y = ŷ with a probability 1

2m which is
negligible.

To sum up, B can break the constrained pseudorandomness of ΠPTP with an
advantage ε/Q − 1

2m , where ε is non-negligible, Q is polynomial in λ. Thus,
H2 and H3 are indistinguishable under the condition that ΠPTP is selectively
constrained pseudorandom.

Lemma 4. If ΠPTP satisfies selective evaluation correctness, then for all adver-
saries A,

|Pr[H3(A) �= ml̃] − Pr[H4(A) �= ml̃]| = negl(λ).
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Proof. Hybrids H3 and H4 are identical only if in H4, the challenger does
not output Bad2. For all l ∈ [L], Ĉl(·) = PTP.PCstEval(pp, skl

T , ·). Since all
{h0,l

u , h1,l
u }l∈[L]

u∈[d] are sampled uniformly at random and independent of other

parameters, and ΠPTP satisfies selective evaluation correctness, Pr[Ĉl(hb,itr
u ) �=

PTP.Eval(pp, k̂, hb,itr
u )] = negl(λ) for b ∈ {0, 1}, itr = l̃, l̃ + 1, . . . , L and u ∈ [d].

Since L = ω(log λ) and d = poly(λ), Bad2 is output in H4 with negligible
probability by a union bound. Thus, Hybrids H3 and H4 are indistinguishable.

Lemma 5. For all unremoving-admissible adversary A,

|Pr[H4(A) �= ml̃] − Pr[H5(A) �= ml̃]| = negl(λ).

Proof. We prove that the output distributions of H4 and H5 are statistically
indistinguishable. In the following, firstly prove that Bad3 in H5 is output by
the challenger with negligible probability; then, prove that with high probability,
Ỹ b,itr = Ŷ b,itr for b ∈ {0, 1}, itr = l̃, l̃ + 1, . . . , L.

– Note that {h0,l
u , h1,l

u }l∈[L]
u∈[d] do not relate to the challenger’s behavior and the

adversary’s view until the extraction phase. The sampling of {h0,l
u , h1,l

u }l∈[L]
u∈[d]

can be deterred at the extraction phase. Since the adversary is unremoving-
admissible, C̃ ∼f Ĉ l̃ where 1

f = negl(λ) and l̃ is the level number from the

adversary at the challenge phase. Since all {h0,l
u , h1,l

u }l∈[L]
u∈[d] are sampled uni-

formly and independent of C̃ and Ĉ l̃, for b ∈ {0, 1}, Pr[C̃(hb,l
u ) �= Ĉ l̃(hb,l

u )] ≤
1
f = negl(λ). Besides, since L = ω(log λ) and d = poly(λ), by a union bound,

for all b ∈ {0, 1}, l ∈ [L], u ∈ [d], Pr[C̃(hb,l
u ) = Ĉ l̃(hb,l

u )] ≥ 1 − negl(λ).
If Bad2 in H4 is not output, then Ĉ l̃(hb,itr

u ) = PTP.Eval(pp, k̂, hb,itr
u ) for

b ∈ {0, 1}, itr = l̃, l̃ + 1, . . . , L, u = 1, 2, . . . , d. Hence, the Bad3 in H5 is
output by the challenger with negligible probability.

– As discussed above, Bad3 in H5 is output by the challenger with negligible
probability. In other words, ỹb,itr

u = C̃(hb,itr
u ) = PTP.Eval(pp, k̂, hb,itr

u ) = ŷb,itr
u

with high probability for b ∈ {0, 1}, itr = l̃, l̃ +1, . . . , L and u ∈ [d]. Hence, in
both H4 and H5, X̃b,itr = X̂b,itr for b ∈ {0, 1}, itr = l̃, l̃ + 1, . . . , L.

Lemma 6. If ΠPTP satisfies selective verification correctness, then for all effi-
cient and unremoving-admissible adversaries A,

|Pr[H5(A) �= ml̃] − Pr[H6(A) �= ml̃]| = negl(λ).

Proof. Since Bad1, Bad2, Bad3 do not happen, X̃b,itr = X̂b,itr for b ∈
{0, 1}, itr = l̃, l̃ + 1, . . . , L where l̃ is the level number output by the adver-
sary. By unremoving-admissibility of the adversary A, with high probability
C̃(xb,itr

ij ) = Ĉ l̃(xb,itr
ij ) for b ∈ {0, 1}, itr = l̃, l̃ + 1, . . . , L, i ∈ [I] and j ∈ [J ].

Then, by the verification correctness,

PTP.Test(pp, tk, C̃(x0,itr
ij ))

= PTP.Test(pp, tk, Ĉ l̃(x0,itr
ij )) =

{
1 i = 1, 2, . . . , ml̃

0 i = ml̃ + 1,ml̃ + 2, . . . , L.
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Thus, the counter ctrl̃
i are computed the same in H5 and H6. H5 and H6 are

indistinguishable.

We first prove the indistinguishability between H7 and H8. Then, the indistin-
guishability between H6 and H7 is proven.

Lemma 7. For all efficient and unremoving-admissible adversaries A,

|Pr[H7(A) �= ml̃] − Pr[H8(A) �= ml̃]| = negl(λ).

Proof. The difference between Hybrids H7 and H8 is the event Bad4. Since
the probability of Bad4 happening is (IJL)2

2n−1 which is negligible since I, J, L =
ω(log λ) and n = poly(λ), Hybrids H7 and H8 are indistinguishable.

Next, prove that Hybrids H8 outputs ml̃ with non-negligible probability.
First, prove that with high probability, ctrl̃

i = J for adversary’s level number l̃
and i ∈ [ml̃]. Since the adversary A is unremoving-admissible, for a negligible
function 1

f(n) , C̃(·) ∼f Ĉ l̃(·) where C̃(·) is the challenge response circuit from the

adversary and Ĉ l̃(·) is the challenge circuit watermarked at the l̃-th level. Since
{x̂b,l

ij }b∈{0,1},l∈[L]
i∈[I],j∈[J] used for answering the challenge query are sampled uniformly

and independent of the adversary’s view, C̃(x̂b,l
ij ) = Ĉ l̃(x̂b,l

ij ) for b ∈ {0, 1}, l ∈
[L], i ∈ [I], j ∈ [J ] with high probability.

Then, we prove that for any i = ml̃ + 1,ml̃ + 2, . . . , I, |ctrl̃
i − ctrl̃

i+1| ≤ J
I+1 .

Define X
l̃
= {x0,l̃

ij } where i = ml̃ + 1,ml̃ + 2, . . . , I and j ∈ [J ] and denote the

size of X
l̃

by g. Define Xand = {x|x ∈ X
l̃ ∧ C̃(x) = Ĉ l̃−1(x)} and denote the

size of Xand by u. Since the exact partition of X
l̃

is independent of the view
of the adversary A, the distribution of ctrl̃

i for i = ml̃ + 1,ml̃ + 2, . . . , I is the
hypergeometric distribution H(u, g, J). Therefore,

Pr[ctrl̃
i ≥ (

u

g
+

1

2(I + 1)
)J ] ≤ e

− J
2(I+1)2 , Pr[ctrl̃

i+1 ≤ (
u

g
− 1

2(I + 1)
)J ] ≤ e

− J
2(I+1)2 ,

which are both negligible. By the union bound, the probability that there exists
i = ml̃ + 1,ml̃ + 2, . . . , I such that |ctrl̃

i − ctrl̃
i+1| ≥ J

I+1 is negligible. Thus, the

smallest subscribe such that |ctrl̃
i − ctrl̃

i+1| ≥ J
I+1 is ml̃ with high probability.

Lemma 8. If ΠPTP satisfies selectively consistent privacy, then for all efficient
adversaries A,

|Pr[H6(A) �= ml̃] − Pr[H7(A) �= ml̃]| = negl(λ).

Proof. Suppose that an adversary A can distinguish H6 and H7 with a non-
negligible probability, then an adversary B can be constructed to break the
selectively consistent privacy of the ΠPTP . The reduction proceeds as follows:
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1. To start, B guesses what L messages the adversary A is intended to
embed in the challenge phase. Suppose these L messages are guessed to
be {m1,m2, . . . ,mL}. Next, B samples two point sets T0, T1 with a spe-
cial form uniformly at random. More specifically, if we define Tm1

b = {xbl
ij :

xbl
ij

$←− {0, 1}n,∀l ∈ [L], i ∈ [I], j ∈ [J ]}, X̄ml

b = {xbl
ij

$←− {0, 1}n : i ∈
{ml + 1,ml + 2, . . . , I − 1, I}, j ∈ [J ]}, and Xml

b = {xbl
ij ∈ T

ml−1
b : i ∈

{ml +1,ml +2, . . . , I −1, I}, , j ∈ [J ]}, then for l = 2, 3, . . . , L and b = {0, 1},
Tml

b = (Tml−1
b \ Xml

b ) ∪ X̄ml

b
13. Then, T0 = {Tm1

0 , Tm2
0 , . . . , TmL

0 } and
T1 = {Tm1

1 , Tm2
1 , . . . , TmL

1 } are sent to the challenger C.
2. C samples a bit β uniformly at random. Then, C runs the setup algorithm

of the scheme ΠPTP and generates L constraint keys {skl}l∈[L] punctured at
Tβ . Finally, the public parameters pp and L circuits {Cl = PTP.PCstEval(pp,
skl, ·)}l∈[L] are sent to B.

3. B invokes A. To simulate the unremovability experiment, B proceeds the
setup as in the watermarking scheme. At the end of the setup phase, B sends
pp to A.

4. In the query phase, B answers the queries as follows:
– Marking oracle: There exists one difference when B answers the marking

oracle. Since B does not have the testing key, B cannot compute the
counters same as in the third step of WM.Markl(·). To overcome this
difficulty, B computes the counters by ctrb,itr

i =
∑J

j=1 1�=(Cl−1(xb,itr
ij ) �=

PTP.Eval(pp, k, xb,itr
ij )) for itr = l, l + 1, . . . , L where 1�= is an indicator

function, i.e.,

1 �=(expression) =

{
1 expression is true

0 expression is false.

– Challenge oracle: On input a set of challenge messages {ml}L
l=1, B checks

whether it has made a correct guess. If yes, then B sends L circuits
{Cl}l∈[L] to A directly. If no, then B aborts the experiment and outputs
a bit uniformly at random.

5. A outputs a circuit C̃ l̃ and a level number l̃ when it makes no more queries.
Then, B extracts the watermarked message from C̃ l̃. If the extracted message
is not ml̃, then B outputs 1; otherwise, it outputs 0.

As in Lemma 7, H7 and H8 are indistinguishable and H8 does not output ml̃

with a negligible probability. Thus, it is concluded that H7 does not output ml̃

with a negligible probability. By contradiction, assume that H6 does not output
ml̃ with a noticeable probability ε. In the following, we discuss two cases: β = 0
and β = 1.

– β = 0: B simulates H6 for A. Under our assumption, B outputs 1 with a
probability at 1

2 + 1
IL ε.

13 T
ml
b is the puncture point set encoding the watermarking messages m1, m2, . . . , ml..
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– β = 1: B simulates H7 for A. Based on our proof, B outputs 1 with a proba-
bility at 1

2 plus a negligible probability.

In our scheme, L is set to be a constant and I is a polynomial in λ. To con-
clude, B breaks the selectively consistent privacy of ΠPTP with a non-negligible
probability which is a contradiction.

Combining all these lemmas, unremovability is proven.

B.3 Proof of Unforgeability

Proof. To start with, define the following hybrids:
Hybrid Hi ( i = 0, 1, 2, 3): It is almost identical to Hi defined in proving

unremovability, except that there is no challenge oracle. Besides, in the extraction
phase of Hybrid H3, the challenger computes Ỹ b,l = (C̃(hb,l

1 ), . . . , C̃(hb,l
d )) for

b ∈ {0, 1} and aborts the experiment if for some k queried by the adversary at
the query phase, Ỹ b,l=(PTP.Eval(pp, k, hb,l

1 ),. . .,PTP.Eval(pp, k, hb,l
d )) for b = 0, 1.

Otherwise, it proceeds as H2.

Lemma 9. If ΠPRF is a secure PRF and ΠPTP is key-injective, then for all
adversaries,

|Pr[Hi(A) �=⊥] − Pr[Hi+1(A) �=⊥]| = negl(λ), for i = 0, 1.

Proof. The proof follows the same arguments for Lemmas 1 and 2.

Lemma 10. If ΠPTP satisfies evaluation correctness, then for all δ-unforging-
admissible adversaries A where δ = 1

poly(λ) ,

|Pr[H2(A) �=⊥] − Pr[H3(A) �=⊥]| = negl(λ).

Proof. If H3 does not abort the experiment, then Hybrid H2 and H3 are statis-
tically indistinguishable. In the following, we prove the abortion in H3 happens
with a negligible probability.

For l ∈ [L] and ql ∈ [Ql], let Sl
ql

be the set of points at which the circuit C̃

output by the adversary and the circuit computing PTP.Eval(pp, kl
ql

, ·) disagree.
Note that PTP.Eval(pp, kl

ql
, ·) agrees at all but a negligible fraction of the whole

domain with Cl
ql

(·). Here, Cl
ql

is the marked circuit for the PRF key kl
ql

at the

l-th level for the ql-th query. Due to the δ-unforging-admissibility,
|Sl

ql
|

2n ≥ δ.
Since the marking phase does not depend on {h0,l

u , h1,l
u }l∈[L]

u∈[d], the sampling of

{h0,l
u , h1,l

u }l∈[L]
u∈[d] can be deterred until the extraction phase. Since each hb,l

u is
sampled uniformly and independently, for b ∈ {0, 1}, l ∈ [L], u ∈ [d] and ql ∈
[Ql], we have that Pr[hb,l

u ∈ Sl
ql

] =
|Sl

ql
|

2n ≥ δ. Then, for all l ∈ [L] and ql ∈ [Ql],
b ∈ {0, 1},

Pr[∀u ∈ [d] : hb,l
u �∈ Sl

ql
] = (1 − |Sl

ql
|

2n
)d ≤ (1 − δ)λ/δ ≤ e−λ, (1)
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where d = λ/δ and δ = 1/poly(λ). Since we set
∑L

l=1 ql = poly(λ), with neg-
ligible probability, H3 aborts the experiment. Thus, Hybrid H2 and H3 are
statistically indistinguishable.

Lemma 11. For all adversaries, Pr[H3(A) �=⊥] = negl(λ).

Proof. Since H3 does not abort, then X = {xl
ij ← {0, 1}n : for all l ∈ [L], i ∈

[I], j ∈ [J ]}.
Since LIJ

2n is negligible, Pr[PTP.Test(pp, tkl̃, C̃(xl̃
ij)) = 1] = LIJ

2n = negl(λ).
By a union bound, Pr[ctrl̃

i =
∑

j∈[J]

PTP.Test(pp, tkl̃, C̃(xl̃
ij)) = 0] = (1 − LIJ

2n )J ∼

1 − negl(λ) for all i ∈ [I]. Thus, with high probability, 0 is extracted from C̃
which leads to output ⊥ for the experiment.

Combing all these lemmas, the watermarking scheme satisfies unforgeability.
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Abstract. IoT devices are present in many, especially corporate and
sensitive, networks and regularly introduce security risks due to slow ven-
dor responses to vulnerabilities and high difficulty of patching. In this
paper, we want to evaluate to what extent the development of future
risk of IoT devices due to new and unpatched vulnerabilities can be pre-
dicted based on historic information. For this analysis, we build on exist-
ing prediction algorithms available in the SAFER framework (prophet
and ARIMA) which we evaluate by means of a large data-set of vul-
nerabilities and patches from 793 IoT devices. Our analysis shows that
the SAFER framework can predict a correct future risk for 91% of the
devices, demonstrating its applicability. We conclude that this approach
is a reliable means for network operators to efficiently detect and act on
risks emanating from IoT devices in their networks.

Keywords: IoT · Security risk assessment · Device identification ·
Firmware analysis · Vulnerability analysis · Risk prediction · Future
risk · SAFER network

1 Introduction

IoT devices are becoming more wide-spread in areas such as smart homes, smart
cities, but also in research and office environments. Their sheer number, hetero-
geneity and limited patch availability provide significant challenges for the security
of local networks and the internet in general. This stems from the observation that
many devices have vulnerabilities and the availability of patches varies greatly by
device and vendor. The systematic evaluation of device risks, which is essential for
mitigation decisions, is currently a skill-intensive task that requires expertise like
network vulnerability scanning, or even manual firmware binary analysis.

This paper presents an in-depth and large-scale IoT device security assess-
ment by utilizing the risk prediction & scoring component of the Security Assess-
ment Framework for Embedded-device Risks (SAFER) [23]. SAFER is a highly-
automated framework to identify devices on the network for estimating their
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 52–70, 2023.
https://doi.org/10.1007/978-3-031-29504-1_3
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current as well as future security risk based on publicly retrievable firmware
information. For this work, we focus on the future prediction quality as the
current risk of a device is calculated deterministically. To estimate device risks,
we rely on information from among others public vulnerability databases, ven-
dor published software license statements and firmware release notes. Moreover,
based on past vulnerability data and vendor patch intervals for device models,
SAFER’s risk component extrapolates those observations into the future using
different predefined and automatically parameterized prediction models. This
lets SAFER estimate an indicator for future device security risks enabling users
to be aware of devices exposing high risks in the future.

One major strength of using SAFER’s risk component over other approaches
is the ability to perform significantly automated risk assessments for risks asso-
ciated to the current firmware, the detection of already patched vulnerabilities
and the estimation of a future device risk indicator based on past observed and
estimated future information.

Oser et al. [23] describe SAFER extensively, however the evaluation focuses
on device identification and the authors only performed a preliminary evaluation
of the risk metrics with 38 device models. They concluded that for their reduced
data-set, current and future risk was predicted with almost 100% accuracy. As
this perfect prediction could be caused by a too small data sample, it remains
to show the prediction performance in a large scale, realistic setting.

To investigate this strength, we deployed a version of SAFER with an
enhanced risk prediction & scoring component in the network of a large multi-
national organization to systematically assess the security level for hundreds of
IoT devices in large-scale networks. In this work, we utilized SAFER to estimate
the risks of 6,123 different firmware versions for 838 device models. The future
security risk is calculated from a patch trend, indicating how long vendor needs
to patch vulnerabilities, and a vulnerability trend, indicating the likely severity
of future vulnerabilities. For the combined future device security risks, SAFER
achieved correct predictions for 91.30% of 793 device models using vendor pub-
lished information. This shows that the preliminary evaluation lacked in depth
and that SAFER is indeed a valuable tool in realistic settings with many devices
and can guide administrators to identify devices that are likely to cause security
problems in the future.

2 Related Work

To give an overview of the field, we first introduce related work for the separate
aspects of our contribution like vulnerability prediction and risk scoring, as we
are not aware of a similar combined work.

Vulnerability Prediction. Wu et al. [36] use a multi-variable Long Short-Term
Memory (LSTM) to predict time-series data for vulnerabilities. The authors use
browser vulnerabilities from May 2008 to May 2019 of the National Vulnerability
Database (NVD) to retrieve vulnerabilities for five web browsers which they use
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to evaluate their approach on. An Auto-regressive Integrated Moving Average
(ARIMA) model is also trained on this data to compare the results with the
proposed solution. The authors state that their solution predicts the number of
vulnerabilities for Chrome better than an ARIMA model and achieve an RMSE
of 8.032 by their approach and an RMSE of 15.210 by using an ARIMA model.
The RMSE is based on the error of the predicted vulnerabilities for 40% of the
browser data-set.

ReVeal by Chakraborty et al. [4] performs vulnerability prediction on the
Linux Debian Kernel and Chromium. The authors use these code bases because
those are well-maintained public projects with large evolutionary history includ-
ing plenty of publicly available vulnerability reports. They compare ReVeal with
four other approaches [18,19,28,39] of related work and state that existing works
have the following limitations: 1) they introduce data duplication, 2) do not
handle data imbalance, 3) do not learn semantic information, and 4) lack class
separability. The authors compare their Deep-Learning approach with the best
performing model in the literature and state that ReVeal performs up to 33.57%
better in precision and 128.38% better in recall.

Dam et al. [5] propose an LSTM model to learn both semantic and syn-
tactic features of code. With this knowledge, the model predicts vulnerabilities
for 18 Android applications written in Java. The authors claim a prediction
improvement, compared to traditional software metrics approaches, of 3–58%
for within-project prediction and 85% for cross-project prediction.

Jimenez et al. [12] analyzed the Linux Kernel with more than 570,000 com-
mits from 2005 to 2016. They observed that approaches based on header files
and function calls perform best for future vulnerability prediction. The authors
state that text mining is the best technique when aiming at random instances
and identified that code metrics, on the opposite, perform poorly.

Risk Assessment Approaches. In the following, we introduce risk assess-
ment approaches partly focused on IoT. Bahizad [2] discusses the increase of
IoT devices and the resulting risks a network has to deal with. Bahizad states:
“[...] due to the connections between IoT devices, the security of one device is
also dependent on the security of other devices and the cascading effects of its
vulnerabilities to the whole system. As these devices increase, the risk added to
the system increases.” [2]. This observation emphasizes the problems existing in
large heterogeneous networks of IoT devices and motivates the need for IoT risk
assessment solutions and their performance evaluation in real world scenarios.

Shivraj et al. [30] propose a model-driven risk assessment framework based
on graph theory. The authors modeled the system using attack trees and sim-
ulated different modes of attack propagation on it. Ultimately, they stress the
usefulness of their work by empirical analysis and experiments on the STRIDE1

and LINDDUN2 threat models. The authors performed an in-depth analysis of
207 vulnerabilities to identify the time until a vulnerability was discovered and
1 https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx.
2 https://www.linddun.org.

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.linddun.org
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advisories released. On average, it takes 5.3 years until the investigated vul-
nerabilities are publicly registered. As a conclusion, they propose guidelines to
improve reporting and consistency of ICS CVE information.

Li et al. [17] developed a method to detect security risks of devices based
on firmware fingerprinting. The authors retrieved 9,716 firmware images from
third-party websites and 347,685 security reports. For firmware fingerprinting,
they identified subtle differences in firmware file-systems as well as analyzing
contained HTML files after labeling them manually. Using word embeddings in
combination with two-layer neural networks and regular expressions, the authors
claim 91% precision and 90% recall for fingerprinting firmware images. 6,898
security reports contain firmware and vulnerability information. The authors
also identified that more than 10% of detected firmware vulnerabilities do not
have any patches listed in public databases.

Duan et al. [7] propose an automated security assessment framework for IoT
networks. The proposed security model automatically assesses the security of
the IoT network by capturing potential attack paths and identifying the most
vulnerable ones. They use machine learning and natural language processing
to analyze vulnerability descriptions and predict vulnerability metrics of new
vulnerabilities with more than 90% accuracy. The predicted vulnerability metrics
are used in a graphical security model consisting of attack graphs.

Rodŕıguez et al. [27] quantified how IoT manufacturers may act as “super-
spreaders” for device infections. The authors scanned the internet during two
months for Mirai-infected devices resulting in 31,950 infected IoT devices of 70
unique manufacturers found in 68 countries. 53% of the 70 identified manufactur-
ers offer firmware or software downloads on their websites, 43% provide password
changing procedures (as Mirai targets devices using standard passwords), and
26% of the manufacturers offer advice to protect devices from attacks. In total,
they identified that nine vendors share almost 50% of the infections identified.

Security Scoring Mechanisms. We introduce approaches of multiple
researchers who work on specialized ways of the Common Vulnerability Scoring
System (CVSS). Some propose improved versions of the CVSS [34], device type
specific scoring systems [26,32], propose vulnerability assessment methods [33]
or risk management for embedded devices [10]. Johnson et al. [13] compare the
credibility of the CVSS scoring data of different vulnerability sources of NVD,
X-Force, OSVDB, CERT-VN, and Cisco. Le and Hoang [16] propose an app-
roach to compute the probability distribution of cloud security threats based on
Markov chains and the CVSS.

3 Preliminaries

Before presenting our evaluation, we first introduce details of the SAFER frame-
work on which our evaluation builds. We also explain what enhancements we
have introduced compared to the version described in [23].
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The SAFER framework implements various components to 1) identify IoT
devices, 2) gather vulnerability information for identified devices, 3) score this
information and 4) display results to support SAFER’s users in making informed
decisions regarding their devices’ security.

Initiating a device assessment starts by specifying the host-name, IP address
or network range which multiple identification mechanisms will scan. SAFER
combines the results of different identification mechanisms using a probabilistic
logic framework called Subjective Logic [14]. The next step is then to retrieve
available firmware image and software license statements per firmware version
from a vendor’s support web-site. This lets SAFER determine contained software
and additional information about the firmware. Next, the framework gathers
publicly known vulnerabilities for identified device models and all contained
software using public vulnerability repositories. In its last step, all information
is aggregated and SAFER computes a Current Device Security Risk Indicator
(CDSRI) and a Future Device Security Risk Indicator (FDSRI) based on past
evidence. Previous works about SAFER describe its components [1,22,24] and
the overall framework [23] but evaluate in particular the FDSRI with only few
devices and less details.

Predicting a Device’s Future Risk. SAFER extrapolates past observations
into a prediction of a future security risk a device may pose due to future vul-
nerabilities. It also considers how quickly such future vulnerabilities might be
patched by vendors. To calculate this so called Future Device Security Risk Indi-
cator (FDSRI), SAFER tries to separately predict the frequency and severity
level of such future vulnerabilities and also estimates future patch intervals both
based on observed historic data. The FDSRI is composed of two dimensions: To
predict future vulnerability severity levels we calculate a so-called Vulnerabil-
ity Trend (VT). For this, SAFER takes all previously identified vulnerabilities
of a device into account. The Patch Trend (PT), on the other hand, predicts
future patch intervals based on time intervals of previously patched vulnera-
bilities; from the date they became publicly known until the vendor released a
patch. For those predictions, SAFER applies various prediction models on its
vulnerability severity and patch data, specifically Facebook Prophet [31], simple
moving average, an auto regressive model3 and different Auto Regressive Inte-
grated Moving Average (ARIMA) models4 based on the Box-Jenkins method [3].

4 Predicting the Patch Trend

This section introduces the evaluation of the Patch Trend. First, we introduce
how we built our data-set containing dates of past patch intervals for our device

3 https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar model.AutoReg.
html.

4 https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARI
MA.html.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima.model.ARIMA.html
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models under investigation. Second, based on the device model’s past patch
behavior, we evaluate different prediction models to measure how well these pre-
dict future patch intervals. Third, we discuss the predicted future patch intervals
and how they compare with actually observed patch intervals to identify predic-
tion accuracy.

4.1 Data-Set Observation

SAFER analyzed, exemplary for Axis, hundreds of release notes and license
statements. Those support SAFER with detailed information about firmware-
contents by simply parsing text files. The parser is vendor specific and needs to
understand the semantics of patch notes. We noticed that the structure is consis-
tent within vendors but differ slightly between them, requiring adaptation of the
parser. SAFER creates a new data-set per device model containing the release
dates of relevant CVEs and the time in days the vendor required to patch those5.
The data also varies on the amount of patches the vendor applied to device mod-
els. SAFER identified that 423 device models have not been patched by their
vendor compared to 370 device models having received between 2 and 19 patches.
The data shows an average amount of 38.84 patches for all 793 device models
and an average of 83.26 patches for the 370 device models having received at
least one patch. The average interval in days the exemplary analyzed vendor
Axis requires to patch registered vulnerabilities in their analyzed device models
is about 953 days. The data divides in the first quartile ranging to 316 days,
the second quartile ranging to 634 days and the third quartile ranging to 1,170
days. The maximum time Axis required to patch a device model’s vulnerability
was 6,017 days resulting in circa 16.5 years. A histogram of the years (x-axis)
Axis needed for patching vulnerabilities (y-axis) over all their device models is
shown in Fig. 1.
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Fig. 1. Patch interval overview in years for patched vulnerabilities.

After having established our data set, we proceed by using the observed patch
intervals per device model and estimate future patch intervals.
5 The raw data-set will become available at https://safer.network/.

https://safer.network/
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4.2 Prediction Model Evaluation

To evaluate the predicted patch intervals and, hence, derive a patch trend after-
wards, we analyzed the data-sets of past patch time-spans for each device model
separately.

Each of the data-sets was split in a 66% training- and 34% test-set. We then
trained the device model specific prediction models on the training-set of past
patch intervals and predicted future patch intervals which we compared with
observed values of the test-set.

While this was also done in the original version of SAFER, we introduce a
number of changes in this paper: originally, the AR model was not evaluated
individually and the parameter changepoint-prior-scale6 of Facebook’s Prophet
was set to a static value. In this work, we enhanced SAFER by performing
a semi-automated data analysis and automated 1) the AR model’s lags and
2) Prophet’s changepoint-prior-scale parameter to tune parameters per device
model data-set. This improvement enables the prediction model to handle dif-
ferent behavior regimes, e.g. if a vendor suddenly stopped patching a once fre-
quently patched device. Per device model, we evaluated the parameter value
for changepoint prior scale which adjusts the trend flexibility from rather static
(0.01) to highly fluctuating (2.1) trends. We find that adding those two param-
eterizing approaches increased the prediction accuracy significantly.

We use Facebook’s Prophet as one of our prediction models. There, we
changed seasonality mode7 to multiplicative which performed better for PT data
as seasonality rather grows with data in comparison to being a constant factor
where additive models are used. In time series, seasonality refers to fluctuations
that occur at regular intervals and prevent regular patterns.

For the ARIMA prediction model, we use pmdarima8 to perform automated
evaluation of the best fitting ARIMA model including others like SARIMAX.
The tool evaluates all p, d, and q parameters which we configured to be in range
from 0 to 12 and uses the augmented Dickey-Fuller test to evaluate the most
accurate ARIMA model. We consider the parameter range as sufficient for the
automated evaluation of device model data, because higher values are likely to
overfit the ARIMA model.

The auto-regressive model (AR) is part of the previously discussed ARIMA
model but has the d and q parameters set to 0. For evaluation, we use the AR
model of statsmodels9 and used the default configuration which performed best.
This means that no seasonality and a constant trend is considered. The lags (p
parameter) were evaluated individually per data-set.

Finally, we use the Simple Moving Average (SMA) to compare the other
prediction mechanisms to a relatively simple approach for forecasting. SMA con-

6 https://facebook.github.io/prophet/docs/trend changepoints.html#automatic-
changepoint-detection-in-prophet.

7 https://facebook.github.io/prophet/docs/multiplicative seasonality.html.
8 https://pypi.org/project/pmdarima/.
9 https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar model.AutoReg.

html.

https://facebook.github.io/prophet/docs/trend_changepoints.html#automatic-changepoint-detection-in-prophet
https://facebook.github.io/prophet/docs/trend_changepoints.html#automatic-changepoint-detection-in-prophet
https://facebook.github.io/prophet/docs/multiplicative_seasonality.html
https://pypi.org/project/pmdarima/
https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html
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siders a defined amount of past data-points when forecasting which is known as
the so-called window. Calculating the average of past patch intervals in the win-
dow and dividing it by the number of patch-intervals leads to the estimated
forecast for the next patch-interval. This process is performed recursively until
reaching the end of the test-set. The window size was evaluated using the same
approach like for ARIMA.

The prediction model results are shown in Table 1. Our enhanced version of
SAFER was able to predict patch intervals for 793 device models requiring a
minimum amount of two past patch intervals to estimate future patch intervals.
If a device model did receive less than two patches, the prediction models cannot
predict future data as no trend is available and considers the PT of the device
model as slow as in [23].

To compare how accurate the prediction models estimated the observed patch
intervals of the test-set, we calculated the Root Mean Square Error (RMSE) and
Median Absolute Deviation (MAD). The RMSE is the square root of the average
of the square of all errors. The MAD is defined as “a measure of scale based on
the median of the absolute deviations from the median of the distribution.” [11].
MAD and RMSE are important indicators when considering both normally and
not normally distributed data.

Table 1. Comparison of average patch interval
prediction error

Version Predictor Devices RMSE MAD

Our Prophet 793 443.75 119.0

Our ARIMA 793 417.14 154.15

Our AR 793 53.17 25.13

Our SMA 793 166.52 65.08

Original Prophet 38 - 14.31

Original ARIMA 38 - 24.12

Calculating the median over all AR device model prediction errors results in
an RMSE of 53.17 days and MAD of 25.13 days which is the best performing
prediction model. We compare our results with the different ARIMA models
achieving an RMSE of 417.14 days and a MAD of 154.15 days. Prophet achieved
on median an RMSE of 443.75 days and a MAD of 119.0 days. The simple
moving average achieves an RMSE of 166.52 days and a MAD of 65.08 days.
Compared to the original SAFER analysis, our best results are still worse which
is expected in a larger, realistic data-set. This highlights the importance of our
extended evaluation here.

Predicting patch time-spans is not trivial, because the data has a high amount
of variation and ranges from a few days up to years. If the trend for all patch
intervals would be more stable, we believe that the auto-regressive model would
also estimate future patch-intervals more accurately. If the trend fluctuates heav-
ily, Prophet has a higher residual error rate but a better adaptation to the
high variation in comparison to other evaluated prediction models. Moreover,
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Prophet’s multiplicative model better adapts to the heavily varying data in those
forecasts but introduces a higher prediction error which significantly increases
the RMSE in comparison to the more stable MAD. Based on the heavily varying
data for device models and data sources, we achieved the most accurate predic-
tion results when evaluating the best configuration per prediction model and
data-set before forecasting.

To conclude, AR predicted the future patch intervals with an average error
of 53.17 days in RMSE and 25.13 days in MAD. AR predicted the PT category
for 318 out of 793 device models correctly. Due to the heavily varying data per
device model and data-source, we do not suggest to choose one single prediction
model and configuration for PT forecasting as this would worsen the prediction
accuracy. For SAFER’s PT, achieving the correct PT category based on pre-
dicted patch intervals for a device model is the most important task we want to
solve. Thus, we discuss how accurate the predicted patch-intervals in days are
in comparison to observed patch intervals of the test-set.

4.3 Prediction Accuracy

To show the accuracy of our SAFER version for each device model category like
CCTV, we grouped the analyzed device models by their category in Table 2. The
table shows that categorizing the PT (in Fast, Medium and Slow) correctly is
not trivial due to less available and heavily fluctuating data, ranging from few
days to multiple years for a single device model. We use the same patch trend
categories (interval of vendor response) as Oser et al. [23]: Fast (0–22 days, the
median time until an exploit exists), Medium (23–413 days, the median time
until full disclosure) and Slow (≥414 days).

Table 2. Predicted PT accuracy per device category

Category # D Prophet ARIMA AR SMA

CCTV 720 25.97% 20.41% 37.50% 30.41%

Streaming 63 33.33% 34.92% 46.03% 42.85%

Switch 4 0.0% 0.0% 0.0% 0.0%

Speaker 3 0.0% 0.0% 0.0% 0.0%

Controller 2 0.0% 50.0% 50.0% 0.0%

IP2Serial 1 100.0% 100.0% 100.0% 100.0%

Table 2 shows that the predicted PT category does not often align with the
observed PT category for all device models. Below, we discuss our findings for
the prediction models to highlight which PT category was estimated and which
category was correct. 318 out of 793 device models were predicted with the
correct PT using AR. It wrongly estimated future PT for 52 device models (14%
of all devices on which there was enough data to perform a prediction) with a
too high/low PT category. We identified that 29 device models were estimated
with a too high PT and 23 device models were estimated with a too low PT.
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The lack of historic patch data prevented AR to predict the PT for 423 device
models. We think that PT predictions will improve over time if vendors support
devices longer, state when a patch was applied and when additional data-sources
for SAFER are used to combine information. We also think that the prediction
error can be decreased even further if vendors introduce regular patch-cycles
resulting in less fluctuating patch intervals.

In this section, we presented a fine-grained evaluation of our enhanced
SAFER patch trend calculation to estimate future patch intervals per device
model and prediction model. The resulting patch trend, combining past and esti-
mated future patch intervals, indicates in which time interval a vendor patches
vulnerabilities. In standard risk assessments, the risk value is calculated by com-
bining the incidence rate and the impact of the risk. For SAFER’s device risk
assessments, we consider the likelihood as the patch trend calculated above and
the impact of the device risk as the vulnerabilities a device is vulnerable to.
Hence, the following section focuses on the latter part: 1) considering a device’s
known vulnerabilities, and 2) estimating the severity of future vulnerabilities to
3) ultimately identify the most common vulnerability severity level per device
model.

5 Predicting the Vulnerability Trend

In order to determine the likely severity levels of an IoT device’s future vulner-
abilities, we calculate the vulnerability trend. Similar to the previous section, we
first introduce the data-set containing severity levels of past security vulnera-
bilities of our device models as it is provided by SAFER’s firmware and release
note analysis. Second, based on the device model’s past vulnerabilities, we apply
different prediction models to evaluate how well they are able to predict severity
levels of future vulnerabilities. Third, we compare predicted future vulnerability
severity levels with observed ones to identify our prediction accuracy.

5.1 Data-Set Observation

A histogram of all vulnerabilities for all analyzed device models without dupli-
cates is shown in Fig. 2. Our enhanced version of SAFER identified that 293 out
of 793 device models do not have registered vulnerabilities. This is either based
on 1) vendors replacing firmware-contained software so that they do not con-
tain vulnerable software or 2) SAFER did not find a vulnerability in analyzed
firmware images.

Our data further contains 479 device models having between 1 and 2,064 reg-
istered vulnerabilities as shown in Fig. 2, arithmetic average being 549. Over all
device models, the average amount of vulnerabilities is 341. Based on SAFER’s
retrieved data, the average vulnerability severity level over all models is 4.9
CVSS. The data is split into the first quartile ranging to 4.4 CVSS, the second
quartile ranging to 4.9 CVSS and the third quartile ranging to 7.1 CVSS. Out
of all retrieved vulnerabilities, the lowest CVSS severity level is 1.2 CVSS and
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Fig. 2. All device models with more than one vulnerability

the highest CVSS is 10.0. To estimate future vulnerabilities for device models
based on this data-set, we again analyzed different prediction models.

5.2 Prediction Model Evaluation

To estimate future vulnerability severity levels for the VT, we use the following
prediction models; namely Facebook’s Prophet, the auto-regressive integrated
moving average (ARIMA) model, the auto-regressive model (AR) and a simple
moving average (SMA) model. To evaluate the prediction models, we again split
our data-set in a 66% training and 34% testing-set per device model. For the
VT, the training and test-set contain the severity levels of all vulnerabilities
per device model. As the VT data is based on vulnerability severity levels, the
vertical axis is limited from the minimum 0.0 to the maximum 10.0 CVSS value.
The forecast time interval (horizontal axis) is – analog to PT – set as the time
interval of the test-set.

Our enhanced SAFER version was able to predict future vulnerability sever-
ity levels with Prophet for 793, with ARIMA for 770, with AR for 793 and with
SMA for 793 out of 793 device models. Based on the correctly estimated device
models and lowest prediction error, we consider AR as the best performing pre-
diction model. SAFER requires a minimum amount of two past vulnerabilities to
estimate a trend. If a device’s firmware content has less than two vulnerabilities
registered, the prediction models cannot predict future data accurately as there
is no trend available. This happened for 394 device models for which we did not
include a prediction error in Table 3. We argue that for those device models, the
vendor actively takes care of replacing vulnerable software which reduces the
VT data-set per device model and is represented in SAFER by indicating a low
VT [23].

We identified the CVSS category of future vulnerabilities for all 793 device
models correctly and achieved over all models an RMSE of 1.49 CVSS and a
MAD of 0.98 CVSS using AR. This means that we can predict the severity for
future vulnerabilities better than a simple moving average or Prophet which both
achieve the same amount of correct device models but face a higher prediction
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error. Since the severity levels of the VT data range from 0.0 to 10.0 there is less
fluctuating data. Thus, we use AR – being a linear model with less variation –
to predict CVSS values from this data source.

We chose the best performing prediction model AR and discuss the predicted
CVSS values hereafter.

5.3 Prediction Accuracy

In this section, we compare how accurate our SAFER version estimates the
vulnerability trend in comparison to the observed test-data we use to verify the
results.

Table 3. VT prediction accuracy overview

Version Model Corr. VT Corr. # RMSE MAD

Our Prophet 100.0% 793/793 2.08 1.40

Our ARIMA 97.10% 770/793 1.94 1.04

Our AR 100.0% 793/793 1.49 0.98

Our SMA 100.0% 793/793 1.74 1.19

Orig Prophet 100.0% 38/38 - 2.39

Orig ARIMA 100.0% 38/38 - 1.31

As Table 3 shows, three out of four prediction models estimated the VT
correct for all devices. Only AR estimated the VT category for devices cor-
rect with the lowest RMSE of 1.49 CVSS and a MAD of 0.98 CVSS. Thus, our
enhanced SAFER version reduces the prediction error in comparison to the orig-
inal SAFER by 25.2%. To provide users of SAFER an intuitive understanding
of the vulnerability trend, we categorize the most likely vulnerability severity by
using CVSS version 2.0 into: Low (0.0–3.9), Medium (4.0–6.9) and High (7.0–
10.0).

Table 4. Predicted VT accuracy per device category

Category Devices AR ARIMA SMA Prophet

CCTV 720 100.0% 95.69% 100.0% 100.0%

Streaming 63 100.0% 100.0% 100.0% 100.0%

Switch 4 100.0% 100.0% 100.0% 100.0%

Speaker 3 100.0% 100.0% 100.0% 100.0%

Controller 2 100.0% 100.0% 100.0% 100.0%

IP2Serial 1 100.0% 100.0% 100.0% 100.0%

Table 4 shows that the VT category per device model was often predicted
correctly by the prediction models. Apart from the ARIMA prediction model,
all three others predicted the VT category correctly for 793 out of 793 device
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models. However, even though the prediction models achieved 100% for the VT
category, they differ in their prediction errors measured in CVSS. We conclude
that the prediction models of SAFER’s enhanced version estimate the future
vulnerability severity levels with 25.2% less error.

This section presented the evaluation of our enhanced SAFER version to
estimate future vulnerability severity levels per device and prediction model. The
resulting VT, combining past and estimated future vulnerability severity levels,
indicates the most likely vulnerability severity per device model. Combining 1)
the most likely time a vendor requires to issue a firmware update (by PT) with
2) the most likely vulnerability severity level per device model (by VT) results
in the Future Device Security Risk Indicator (FDSRI) described below.

6 Predicting the Future Device Security Risk Indicator

Besides knowing the current risk, it is also relevant for IoT device owners to
have an estimate of the risk a device might pose in the future. This section
refers to the FDSRI introduced in SAFER’s original work [23] which is based on
the vulnerability and patch trend, both containing past observations and future
predictions for device models. We use the patch trend and vulnerability trend
in a heuristic to calculate the FDSRI. Then, we discuss how accurate the results
for the FDSRI are compared to real, observed data.

6.1 Definition of the Future Device Security Risk Indicator

Table 5. Future Device Security Indicators

Vulnerability Trend Patch Trend

Fast Medium Slow

Low Low Low Medium

Medium Low Medium High

High Medium High Critical

To determine the FDSRI per device model, SAFER needs to combine the
device model’s previously calculated PT and VT. We use the risk matrix
(Table 5) introduced in SAFER’s original work [23] to combine the PT and
VT in a heuristic leading to the FDSRI. We evaluated our approach by first
calculating the VT and PT on observed data including the FDSRI. Afterwards,
SAFER predicted the patch intervals and future vulnerability severity levels for
the test-set which we used in previous sections to calculate the PT and VT on.
Ultimately, we calculated the FDSRI using both trend (PT and VT) predictions
and compare it with the FDSRI derived from real observations. This allows us
to verify the accuracy of SAFER’s estimated FDSRI.

We highlight that our enhanced SAFER version estimates the correct PT for
40.10% and the correct VT for 100% of 793 device models. We achieve this by
individually parameterizing and combining different prediction models to best
fit the patch and vulnerability data.
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6.2 Classifying the Future Device Security Risk Indicator

Table 6. FDSRI accuracy comparison.

Version PT/VT Model Corr. FDSRI Corr. #

Our Prophet 79.70% 632/793

Our ARIMA 73.52% 583/793

Our AR 91.30% 724/793

Our SMA 84.49% 670/793

Original Prophet 100% 38/38

Original ARIMA 100% 38/38

Table 6 shows how many future device security risk indicators (FDSRI) were
identified correctly. In previous sections for VT and PT, we identified that the
AR prediction model performed best for the data-source which Table 6 shows by
achieving a correct FDSRI for 91.30%, i.e. 724 of 793 device models.

Analogous to VT and PT separately, the original SAFER evaluation with
a small sample of devices had an unrealistically high accuracy. Our evaluation
therefore provides a realistic prediction performance.

Table 7. Correctly estimated FDSRI per device category

Category Correct FDSRI Devices per Category

CCTV 90.83% 720

Streaming 95.24% 63

Switch 100.0% 4

Speaker 100.0% 3

Controller 100.0% 2

IP2Serial 100.0% 1

When looking at the device model categories in Table 7, our SAFER version
estimated the FDSRIs for the largest device category (CCTV) with 721 device
models achieving a correct FDSRI for 90.84% and the second largest device
category (Streaming) achieved a correct FDSRI for 95.16%. 41 out of 793 device
models are estimated to have a higher FDSRI than we observed in real data. This
splits into two device models where SAFER predicted the FDSRI to be medium
but was observed low, and 39 device models where SAFER predicted a high
FDSRI but was observed medium. On the contrary, for 53 device models SAFER
estimated a too low FDSRI. Those divide in 16 device models with estimated
medium and observed high FDSRI, and 37 device models with estimated low
and observed medium FDSRI. The reason being that the PT was previously
predicted too high for 29 device models (medium instead of slow) and for 23
device models, SAFER predicted a too low PT (slow instead of medium).
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We showed that our SAFER version – implementing the above mentioned
mechanisms to predict PT, VT and FDSRI – is able to indicate the future device
security risk indicator for 91.30% of 793 device models correctly. Moreover, we
recall that after the initial configuration, SAFER is able to perform device risk
scoring in an automated fashion. This enables SAFER to inform embedded-
device owners with different security skill-sets about the estimated future device
security risks, display technical evidence, e.g. discovered software libraries within
the firmware, to understand the risks and to support SAFER’s users in making
informed decisions about possible mitigations to secure the connected network.

7 Discussion

We point out that we split the data into a training and test-set for predictions
of PT and VT. Using this split, we verified that all predictions were compared
to observed data. This enabled us to make statements on how accurate the
prediction mechanisms perform compared to real, observed data.

7.1 Limitations

We assume that publicly registered vulnerabilities for device models and third-
party software are verified by other parties prior to registering them at CVE
numbering authorities. However, SAFER cannot identify if the device uses, e.g.,
a vulnerable function in its operation. SAFER estimates the device risks based
on publicly known vulnerabilities and patch intervals. This does not include
unpublished vulnerabilities (zero-days) from, e.g., nation states and underground
forums. Thus, SAFER’s calculated risk indicator needs to be considered as a risk
approximation based on public vulnerability information. SAFER considers the
“created” date of a CVE as the date the CVE was publicly registered. SAFER
cannot identify if at this date the CVE contained vulnerability information or
temporary placeholder information. We assume that when a CVE gets registered
for a product, the vendor knows about the vulnerability and is already able
to work on patches. The extended data-set from this work contains data from
Axis devices, because we considered license statements and release note files as
data-sources from this vendor. A wider range of vendors would result in a more
realisitc data-set and alleviate possible a possible bias specific to Axis. However,
with SAFER, one can create the metrics we discussed for Axis for various vendors,
e.g., by uploading firmwares to SAFER’s firmware analysis component.

7.2 Comparing with Related Work

The majority of vulnerability prediction approaches require the public avail-
ability of source code for all software versions. Massacci et al. [21], for exam-
ple, investigated Firefox and compared 18 different vulnerability approaches of
related work with their own approach, whereas the 12 best performing ones focus
on vulnerability prediction. Other vulnerability prediction works require specific
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amount of past software patches in the source-code as, e.g., [9] to train a machine
model on. Other works are limited to specific programming languages they can
parse and process as, e.g., [5]. The last group does not only require source code
availability, but also a large code-base as, e.g., [12] to perform predictions on.
Unlike related work [6,20,25,29,37,38] finding vulnerabilities in, e.g., source-
code, SAFER uses public sources to fetch known vulnerabilities only. Though,
related work [8,15,35,36] with the same approach achieved accurate results.
However, we state that by using SAFER’s approach to retrieve vulnerabilities,
SAFER is not limited in detecting vulnerabilities for, e.g., specific programming
languages, but even supports closed-source software and does not require a large
source-code base. SAFER’s risk scoring component uses the CVSS standard (in
comparison to modified CVSS versions like related work [10,26,33,34]) to gen-
erate universal and comparable metrics. This is a relevant fact to make device
comparisons for different device categories possible.

8 Summary and Future Work

This paper presented an in-depth evaluation of the FDSRI with 793 device mod-
els in comparison to its original work [23] with 38 device models and showed that
historic vulnerability and patch data can be used to estimate future risks. We
used SAFER’s risk prediction & scoring component, which aims to automate
future security risk assessments by calculating the future device security risk
indicator (FDSRI). This indicator identifies how problematic a device might
become in the future even if the currently used firmware is considered secure.

With our enhanced SAFER version, we decreased the vulnerability trend’s
prediction error by 25.2% and slightly increased the patch trend’s prediction
error by merely 4.1%. We highlight that in comparison to SAFER’s original
work [23] with 38 device models, we analyzed 793 IoT devices which represents
20.86 times more device models. Hence, our evaluation provides a clear indication
of the feasibility but also scalability of SAFER.

SAFER is a suitable tool to establish IoT security awareness in large-scale
networks and enables highly automated risk assessments for IoT devices esti-
mating its current as well as future risk. By using our enhanced SAFER version,
we correctly estimate the FDSRI for 91.30% of 793 devices.

8.1 Future Work

The risk prediction & scoring component could be further enhanced by imple-
menting detection methods for vulnerability chaining, e.g., by using the Common
Weakness Enumeration (CWE).

Assuming that SAFER will include more data-sources in the future, we con-
sider evaluating Long Short-Term Memory (LSTM) and further neural network
based prediction models for future work which require significantly more data
to compute predictions on.
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Abstract. We propose a threshold encryption scheme with two-party
decryption, where one of the keyshares may be stored and used in a
device that is able to provide only weak security for it. We state the
security properties the scheme needs to have to support such use-cases,
and construct a scheme with these properties. Our construction is based
on the ElGamal cryptosystem, with additional zero-knowledge proofs
that can provide IND-CCA security, and resistance to offline guessing
attacks.

Keywords: Threshold encryption schemes · Offline guessing attacks

1 Introduction

Considering recent legistlative initiatives [14], we may be soon storing many ver-
ifiable credentials about our sensitive attributes in our smartphones, supported
by electronic wallet applications, streamlining the procurement and presenta-
tion of these credentials. By themselves, smartphones cannot provide sufficient
confidentiality for these credentials. Rather, we expect to store them in some
encrypted form, decrypted only while they are in use. The decryption keys are
stored inside a Secure Element [22], a tamper-resistant piece of hardware con-
tained in the phone. Hence we have to trust the producers of Secure Elements,
and abstain from the use of e-Wallets (with credentials containing sensitive infor-
mation) on phones without Secure Elements. This is not a desirable situation.
We would like to replace trusted hardware with something that has weaker trust
requirements, e.g. threshold cryptography.

Common constructions of primitives of threshold cryptography and their
security definitions are difficult to map to a setting where some keyshares are
stored and operations performed on platforms with weak security protections.
We have proposed a server-supported signature scheme [7], where the signing key
was shared between a phone and a server, and the keyshare in the phone was
protected only by symmetrically encrypting it with a key with very low entropy
(derived from a PIN that the user can remember). The security of our scheme
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 71–81, 2023.
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was based on the infeasibility of offline guessing attacks by someone who has
obtained the encrypted keyshare of the phone, and by the ability of the server to
recognize online guessing attacks. The latter property allows the server to count
wrong guesses, and a clone detection mechanism [19] allows to reset the counter.

In this paper, we propose an encryption scheme with similar properties, i.e.
it has distributed decryption, where offline guesses by someone masquerading
as the phone are impossible, and wrong guesses made online are detected by
the server. We want the phone to initiate the decryption, and the server to
learn nothing about the decrypted plaintext. We give a formalization of these
properties. Combined with the clone detection mechanism, our scheme could be
used as an alternative to Secure Elements, at least when the requirement for
online connectivity during decryption is acceptable.

Related Work. Our encryption scheme is motivated by a set of requirements that
have previously not been tried to address together. They have been considered in
the context of server-supported signature schemes [7], where we attempt to avoid
offline guessing attacks [2] and detect online guessing attacks [12]. This is also
the case for scheme [8], where the server supports the functionality of a secure
construction. It is in contrast to the schemes where a server is employed to reduce
the client’s workload in performing computationally expensive operations [1,4].
It is also in contrast to key-insulated encryption [13], where a mostly offline server
is used to reduce the impact of repeatedly breaking a weakly secure device.

Our scheme builds upon threshold encryption schemes. Threshold cryptogra-
phy has a long history, starting from [11], where a method for threshold creation
of RSA signatures was proposed. IND-CCA secure encryption schemes with
threshold decryption [21] were proposed shortly after IND-CCA secure asym-
metric encryption schemes [10]. At present, threshold cryptography is a mature
field, discussed in textbooks [5] and subject to standardization activities [6].

2 Desired Properties of Distributed Decryption

In this paper, we consider asymmetric key encapsulation [18] schemes, where the
decapsulation functionality is distributed between two parties—the client, and
the server. The roles of these parties are not identical, and the desired security
properties for each of them are different.

An encapsulation scheme with client-server decryption consists of the follow-
ing sets, algorithms, and protocols, parameterized with the security parameter
λ and other public parameters (e.g. the definition of the used cyclic groups):

– Sets of shared secrets SS, ciphertexts CT, public keys PK, client’s private keys
SKC, and server’s private keys SKS.

– Key-generation protocol 〈KGC|KGS〉, run by both parties. It returns
(sk1, pk) ∈ SKC × PK to the client, and (sk2, pk) ∈ SKS × PK to the server.

– Encapsulation algorithm Enc. It takes as input a public key pk ∈ PK, and
returns a shared secret k ∈ SS and a ciphertext c ∈ CT.
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Experiment IND-CCA-SA

〈(sk1, pk), (sk2, state)〉 ←$ 〈KGC|A()〉
(k0, c) ←$ Enc(pk)

k1 ←$ SS, b ←$ {0, 1}
O1(·) ← Dec(·, sk1, sk2, pk)

O2(·) ← DCC(·, sk1, pk)

b∗ ←$ AEXCLc[O1],EXCLc[O2](state, c, kb)

return b = b∗

Experiment IND-CCA-CA

〈(sk1, state), (sk2, pk)〉 ←$ 〈A()|KGS〉
(k0, c) ←$ Enc(pk)

k1 ←$ SS, b ←$ {0, 1}
O1(·) ← Dec(·, sk1, sk2, pk)

O2(·) ← DCS(·, sk2, pk)

b∗ ←$ AEXCLc[O1],EXCLc[O2](state, c, kb)

return b = b∗

Fig. 1. Security against chosen-ciphertext attacks

– Decapsulation protocol 〈DCC|DCS〉, run by the client and the server. Client’s
inputs are c ∈ CT, sk1 ∈ SKC, and pk ∈ PK. Server’s inputs are c ∈ CT,
sk2 ∈ SKS and pk ∈ PK. The protocol returns either k ∈ SS or the failure
notice ⊥ to the client. It returns success/failure notice �/⊥ to the server.

We also define the decapsulation algorithm Dec, that on inputs c, sk1, sk2, pk
invokes 〈DCC(c, sk1, pk)|DCS(sk2, pk)〉 and returns client’s output.

In the following, we write x1, . . . , xn ←$ X to denote that values x1, . . . , xn

are uniformly, independently sampled from a set X. We also write x ←$ X(. . .) to
denote that x is returned by a stochastic computation X. Given an oracle O(·)
and a value c, we let EXCLc[O] denote an oracle that on input c∗ returns ⊥ if
c∗ = c, and O(c∗) otherwise. A protocol party executed as an oracle gives the
adversary the messages this party produces.

Definition 1 (Correctness). A encapsulation scheme is correct, if

Pr

[
k′ = k ∧ r = �

∣∣∣∣ 〈(sk1, pk), (sk2, pk)〉 ←$ 〈KGC|KGS〉, (k, c) ← Enc(pk),
〈k′, r〉 ← 〈DCC(c, sk1, pk)|DCS(c, sk2, pk)〉

]
≈ 1.

The confidentiality properties of the encapsulation scheme are defined in
the usual manner. The definitions refer to the experiments in Fig. 1 that follow
general definitions of IND-CCA for threshold encryption schemes.

Definition 2 (IND-CCA against server/client). The encapsulation scheme
provides indistinguishability against the chosen-ciphertext attacks by the server
[resp. client], if the experiment IND-CCA-SA [resp. IND-CCA-CA] is successful
with probability at most negligibly larger than 1/2 for all efficient adversaries A.

The impossibility of offline guessing and detectability of online guessing is
defined below, using the experiment defined in Fig. 2. Here shuffle returns a list
that is a random permutation of its arguments. The list SK 1 corresponds to the
list of candidate private keys that an intruder may obtain after extracting the
weakly encrypted (e.g. the encryption key has been derived from a PIN) private
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Experiment OG-CCA-CA
T,L

〈(sk(1)1 , pk), (sk2, pk)〉 ←$ 〈KGC|KGS〉
sk(2)1 , . . . , sk(L)

1 ←$ SKC, SK 1 ←$ shuffle(sk(1)1 , . . . , sk(L)
1 )

(k0, c) ←$ Enc(pk), k1 ←$ SS, b ←$ {0, 1}, t ← 0
O2(·) ← {

t ← t+ 1; r ← DCS(·, sk2, pk); if(r = �) then t ← t − 1
}

b∗ ←$ AEXCLc[Dec(·,sk(1)1 ,sk2,pk)],O2(·)(pk, c, kb,SK 1)
return (b = b∗) and t ≤ T

Fig. 2. Security against offline and online guessing

key from the smartphone, and trying to decrypt it with all possible values of the
key. We see that the adversary may start sessions of the server, and may even
submit it the challenge ciphertext, but no more than T sessions may finish with
⊥ (or not finish at all).

Definition 3 (No guessing by client). The encapsulation scheme provides
offline guessing security against chosen-ciphertext attacks by the client, if the
experiment OG-CCA-CA

T,L is successful with probability at most negligibly larger
than 1/2 + T/L for all efficient adversaries A, and numbers T,L.

Finally, we ask for the integrity of shared secrets, i.e. the client would not
accept a secret k′ different from the one output by the encapsulation algorithm.

Definition 4 (Integrity for client). The encapsulation scheme provides key
integrity for the client, if for all efficient adversaries A,

Pr
[
k′ ∈ {k,⊥}

∣∣∣∣ 〈(sk1, pk), state〉 ← 〈KGC|A()〉, (k, c) ← Enc(pk),
〈k′, 〉 ← 〈DCC(c, sk1, pk)|A(state)〉

]
≈ 1.

3 Building Blocks

Let G be a cyclic group of size p, with generator g. The discrete loga-
rithm problem is to find n ∈ Zp, such that gn = h, for a value h ←$G.
The decisional Diffie-Hellman (DDH) problem is to distinguish tuples of the
form (g, gx, gy, gxy) (called Diffie-Hellman tuples) from tuples of the form
(g, gx, gy, gz) for x, y, z ←$Zp. A problem is hard if all efficient algorithms have
at most negligible advantage (over a trivial algorithm) of solving it.

Our schemes build on top of the ElGamal KEM, the IND-CPA security of
which is equivalent to the hardness of DDH in the used group G. In this KEM,
private key is a random sk ∈ Zp, while public key is pk = gsk. The encapsula-
tion algorithm generates r ←$Zp, and outputs the shared secret ss ← pkr and
ciphertext c = gr. The decapsulation algorithm computes ss = csk. In hashed
ElGamal, the shared secret is H ′(pkr) for some hash function H ′ that we model
as a random oracle. Note that an input to a random oracle can be anything
encodable as a bitstring.
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A DDH proof π = (α, α′, γ) ←$ DHPH [r � u,v
g,h|ctx ] [9] is a non-interactive [16]

zero-knowledge (NIZK) proof that logg u = logh v, given in context ctx , where
r ∈ Zp is the discrete logarithm and H is a hash function, modeled as a random
oracle. It is given by s ←$Zp, α ← gs, α′ ← hs, β ← H(g, h, u, v, α, α′, ctx ) ∈ Zp,
and γ ← s + r · β. The checking procedure ChPH [π � u,v

g,h|ctx ] recomputes β, and
checks that gγ = α · uβ and hγ = α′ · vβ .

In our schemes, similarly to [21], DDH proofs are often used to give simu-
latable proofs of knowledge of exponent π′ ←$ KnEH,H̃ [r � ug |ctx ]. These prove that
someone knows the value r = logg u. Additionally, they allow the simulator to
raise a value (an element of G) of its choice to the power of r; the simulator
has to choose that value at the time the adversary computes the proof. The
construction makes use of two hash functions, both modeled as random oracles,
where H returns elements of Zp and H̃ returns elements of G. It is given by
first computing h ← H̃(g, u, ctx ) and v ← hr. The proof is π′ = (π, v), where
π ← DHPH [r � u,v

g,h|ctx ]. The checking procedure ChEH,H̃ [π′ � ug |ctx ] recomputes v
and checks the DDH proof. During simulation, if the simulator wants to obtain
zr, it will generate t ←$Zp, and program H̃ to return z1/t when the adversary
queries it with g, u, ctx . Then zr = vt.

4 The Encryption Scheme

Secret-sharing the private key will straightforwardly thresholdize the ElGamal
KEM [15]. IND-CCA may be achieved by adding the non-interactive zero-
knowledge proof of knowledge (NIZKPoK) of r to the ciphertext. For non-
threshold systems, this may be a designated-verifier (DV) NIZKPoK [10],
aimed towards the receiver. For general case, Schnorr’s proofs for discrete loga-
rithm [20], made non-interactive through the Fiat-Shamir transform [16] using
a random oracle (i.e. Schnorr signatures, using r as the signing key), are typi-
cally used to show the knowledge of r, but it is unknown how to combine them
with ElGamal KEM in a way that allows IND-CCA to be derived only from
the hardness of the DDH problem [3]. The TDH2 (threshold) cryptosystem [21]
overcomes this by changing how the random oracle is used by the Fiat-Shamir
transform, making certain additional computations possible in the simulation.
The scheme NPS that we present here is quite similar to TDH2. Interestingly,
only small changes are needed to make it secure against guessing attacks (Defi-
nition 3).

Let G be a cyclic group of size p, with generator g, with hard DDH problem.
Let H1,H2,H3 be hash functions outputting elements of Zp, and H̃1, H̃2 be
hash functions outputting elements of G, all modeled as random oracles. We put
NPS.SS = NPS.PK = G, NPS.SKC = Zp, and NPS.SKS = Zp × G

2. The set
NPS.CT is given together with the algorithm NPS.Enc and protocol NPS.DC in
Fig. 3. In the key-generation protocol, the client generates sk1 ←$Zp, and the
server generates sk2 ←$Zp. They compute pki ← gski , fairly exchange the values
pki with each other (using some trapdoor commitment scheme [17]), and define
pk ← pk1 ·pk2. The server stores pk1, pk2 together with the private exponent sk2.
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Fig. 3. Encryption and decryption for the scheme NPS

We see that the ciphertext is simply an ElGamal ciphertext, together with a
simulatable proof of knowledge of the exponent r. When decrypting, the client
first verifies this proof. If an assertion fails, then ⊥ is immediately returned. As
next, the client asks the server to apply its private key share sk2 to the ciphertext
u. This request includes a Schnorr proof of knowing the private key sk1, where
the challenge depends on the ciphertext; hence this proof cannot be reused.
The request also contains the value h′′ that allows the simulator to perform an
exponentiation with sk1. The server verifies the Schnorr proofs of knowing both
r and sk1, and then computes w ← usk2 . The value w is returned together with a
Schnorr proof that it has been correctly computed—that logu w = logg pk2. The
client verifies this proof, applies its private key share sk1 to u, and combines the
result with the plaintext share w obtained from the server. It is clear that the
scheme satisfies Definition 1 and Definition 4 due to the NIZK proofs.

Theorem 1. In ROM, if the DDH problem is hard in group G, then NPS pro-
vides IND-CCA against the server and the client.

Proof. To show IND-CCA against the server, let A be an adversary that has
non-negligible advantage in experiment IND-CCA-SA with the scheme NPS. We
construct an algorithm S that solves the DDH problem in G. The algorithm S
(called “simulator”) internally calls A, realizing the oracles it accesses, including
the random oracle. It receives (h1, h2, h3) ∈ G

3 as an input, and outputs whether
they are a DH tuple. In the experiment, the values hi play the following roles:
pk = h1, u = h2, kb = h3. We see that if (g, h1, h2, h3) are [resp. are not] a DH
tuple, then (pk, u, kb) are distributed identically to the case b = 0 [resp. b = 1].

The internal state of S contains the tables Ti, T̃j storing the current states of
random oracles Hi, H̃j . For tables Ti, a table row contains the argument made
to the oracle, and the given response. For T̃j , a table row additionally contains
the exponent generated while responding a H̃j-query.

We now describe how S behaves in different interactions with A. For key
generation, receive pk2 (committed and opened) from A, while sending it a
commitment later opened to pk1 ← h1/pk2. For responding a random oracle
query (either directly from A, or from simulating the responses to other queries)
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Hi(x), look up the row (x, v) from Ti, generating v ←$Zp and adding the row to
the table, if it is not there. Then respond with v. Do the same for H̃2-query (put
⊥ as the exponent). Also do the same for query H̃j(x), but if the row (x, v, t)
is not yet in T̃j then generate t ←$Zp, define v = pk1/t, add (x, v, t) to T̃1, and
return v.

Simulator S has to prepare a challenge ciphertext c = (u, h′, α, α′, γ) for A.
We have defined u; the rest is constructed by faking the NIZK proofs: S generates
s ←$Zp, defines g′ ← gs, h′ ← hs

2, generates β, γ ←$Zp, computes α ← uβ/gγ

and α′ ← (h′)β/(g′)γ , and adds ((g′, u, h′, α, α′), β) to T1 and ((u, α), g′,⊥) to
T̃1. This computation may fail if the added rows are already present in the tables,
but this happens with only negligible probability because all arguments contain
fresh randomness.

A query from A to the Dec-oracle with argument c∗ = (u∗, h′∗, α∗, α′∗, γ∗) is
handled by S as follows. First check the proofs, similarly to NPS.DCC. Return
⊥, if they fail. Otherwise look up the row ((u∗, α∗), g′, t) in T̃1 and return (h′∗)t.
This row has to exist, because the proof-checks look it up. The value t may be
missing, but in this case c∗ had to be the challenge ciphertext.

A query from A to the DCC-oracle with the same argument c∗ is handled by
S as follows. Check the proofs; return ⊥ if they fail. Prepare the query to the
server, faking the proof of knowledge π′ of sk1. Whenever A invokes DCC for the
second round, S ignores this query: the server is not expected to get any answer
from the client’s second round.

Throughout this construction, all values that A sees are distributed identi-
cally to the experiment IND-CCA-SA for NPS. In particular, the responses from
the random oracles are uniform and mutually independent. Finally, A gives its
guess b∗, which S outputs. The advantage of S is equal to the advantage of A.

The proof of IND-CCA against client is similar. When the A generates the
simulatable proof of knowledge of sk1 (as in DCC) and invokes H̃2(g, pk1, u) for
that purpose, S chooses u as the value it wants to raise to power sk1. If A then
invokes the oracle DCS, the simulator S can reply with w ← pkr/usk1 . 	


Theorem 2. In ROM, if the DDH problem is hard in group G, then NPS pro-
vides CCA against offline guessing attacks by the client.

Proof. Similarly to the proof of Theorem 1, we assume the existence of an adver-
sary A that has advantage at least 1/2 + T/L + ν for a non-negligible ν in the
experiment OG-CCA-CA

T,L with the scheme NPS, and construct the algorithm
S that solves the DDH problem in G. It again gets (h1, h2, h3) as the input, and
again uses them as pk = h1, u = h2, kb = h3.

The internal state of S consists of the same tables as in the proof of Theo-
rem 1. For some h ∈ G, we additionally define T2|h as the subset of rows of T2

of the form ((h, α1, c), v) (i.e. the first component to the argument of H2 was h).
The simulator S also maintains a set of integers K, initialized to {1, . . . , L}.

Simulator S has to prepare the arguments to A. The challenge cipher-
text c = (u, h′, α, α′, γ) is prepared identically to the proof of Theorem 1.
The list of potential private key shares of the client is defined by generating
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sk
(1)
1 , . . . , sk

(L)
1 ←$Zp and putting SK 1 = [sk(1)1 , . . . , sk

(L)
1 ]. Note that the inputs

to A are distributed identically to the experiment OG-CCA-CA
T,L for NPS. Also

note that at this point, S has not selected the “right” private key share. Define
also pk

(i)
1 ← gsk

(i)
1 for i ∈ {1, . . . , L}.

A query from A to either one of the hash functions or to the Dec-oracle
is handled identically to the proof of Theorem 1. Again, all responses to these
queries are distributed identically to the actual experiment OG-CCA-CA

T,L.
The t-th query (ct, α1,t, γ1,t) to the DCS-oracle is handled by S as follows.

First, verify the proofs in ct = (ut, h
′
t, αt, α

′
t, γt), corresponding to the assertions

in NPS.DCS. Return ⊥, if these verifications fail.
The simulator continues with the response for DCS-oracle as follows. It finds

the index i ∈ {1, . . . , L}, such that the row ((pk
(i)
1 , α1,t, γ1,t), β1,t) is in the table

T2 for some β1,t, and gγ1,t = α1,t · (pk
(i)
1 )β1,t . If there is no such row, then let

i = ⊥. The probability of having more than one such row in T2 is negligible.
Indeed, if i and i′ would both be such indices, then (pk

(i)
1 )β1,t = (pk

(i′)
1 )β′

1,t . The
values β1,t and β′

1,t are random, and generated independently from pk
(i)
1 and

pk
(i′)
1 , hence this equality can hold only with negligible probability.
If i �∈ K, then S returns ⊥ to A. If i ∈ K, then S has to decide whether the

“right” private key is sk
(i)
1 . For this purpose, S tosses a biased coin, with the

result “heads” having the probability 1/|K|. If the result is “heads”, then this
means that the “right” private key was indeed sk

(i)
1 . In this case, S gives up the

simulation, outputting ⊥. Otherwise, S sets K ← K\{i} and returns ⊥ to A.
Again, we have that as long as A has not managed to find the “right” private

key, all values in the simulation are distributed identically to the experiment
OG-CCA-CA

T,L for NPS. The probability of finding the “right” private key is
upper-bounded by T/L, hence S still has at least the non-negligible advantage
ν in solving the DDH problem in G. 	


5 Fit for Our Main Use-Case

In our main use-case, the client is a smartphone, receiving and storing encrypted
messages (e.g. credentials), and decrypting them for short uses. The smartphone
communicates with the helper server over mobile internet, through a secure
channel. An attacker in this system may have the following goals: (A) learn the
plaintext corresponding to a ciphertext, or (B) make the phone accept wrong
plaintext. Against this attacker we deploy NPS, including the clone detection.
The latter may be continuous.

We consider the following attacks that an attacker may perform: (1) convince
the phone to start decryption protocol with a particular ciphertext; (2) learn
phone’s encrypted memory; (3) learn phone’s unencrypted memory; (4) learn
server’s keyshare; (5) take passive control over server; (6) take active control
over server; (7) masquerade as phone to the server; (8) masquerade as server to
the phone.
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Let the boolean variable x indicate whether the clone detection is done con-
tinuously. Let yi (i ∈ {1, . . . , 8}) be a boolean variable indicating whether adver-
sary has successfully performed the attack (i); note that y3 ⇒ y2, y6 ⇒ y5, and
y5 ⇒ y4. Let the boolean variables zX for X ∈ {A,B} indicate that the adver-
sary achieves his goal X. Let also z̃X denote that the goal is achieved only for a
short time (until the continuously running clone detection mechanism discovers
something); obviously zX ⇒ z̃X. The following implications hold:

[y2 ∧ y4] ∨ [((y2 ∧ y8) ∨ y3) ∧ y7 ∧ ¬x] ⇒ zA ((y2 ∧ y8) ∨ y3) ∧ y7 ⇒ z̃A

Also, if some zX or z̃X is true, then this must follow from some of the implications.
We see that zB never holds, because Definition 4 forbids it. Server’s keyshare and
phone’s encrypted keyshare are sufficient for decryption. So is the knowledge of
phone’s unencrypted keyshare, if the attacker can masquerade the phone and the
clone detection does not stop the attack. Interestingly, y2 ∧y8 ⇒ y3, because the
information sent in phone’s first message may enable the offline guessing attack
against the PIN. We consider all these vulnerabilities acceptable.

We see that our scheme adds significant overhead to “plain” IND-CPA secure
ElGamal. We also see that the overheads are wholly acceptable for our main
intended use-case. We have implemented NPS encryption and decryption in
Python on top of the PyCryptodome cryptographic library, using the elliptic
curve group P-256 as G; the running times are 6 ms for Enc, 135 ms for DCC,
and 107 ms for DCS running on a laptop with an Intel® Core™ i5-10210U CPU
and 16GB RAM. The size of a key encapsulation is 6 kilobytes, the messages
sent from the client to the server and back: 6.7KB and 5.5KB, respectively.
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Abstract. Vulnerabilities in software are like ticking time bombs, but
it is difficult to completely eliminate them. For example, buffer overflow
is a quite common vulnerability that occurs when a program receives
too much data that can corrupt nearby space in memory and manipu-
late other data for malicious actions. To detect potential vulnerabilities
in source code, we consider the code as multisource data by extract-
ing semantically meaningful sub-graphs: Abstract Syntax Tree Graph
(ASTG) and Tokenized Data Flow Graph (TDFG). We combine these
with the original sequence of tokens and 49 heuristic features to train
and leverage a multimodal deep learning network to detect vulnerable
statements. We propose a Multisource Deep Learner (MDL) with joint
representations based on the pretrained attention-based Bidirectional
Gated Recurrent Unit (BGRU) neural networks for vulnerability detec-
tion in source code. Our framework not only detects potential vulnera-
bilities but also locates and ranks the vulnerable statements according
to their importance based on the Program Dependence Graph (PDG).
Our results show that an MDL-based model using multiple modalities is
significantly better than a single modality based model. We also present
comparisons with state-of-the-art methods.

Keywords: Static Analysis · Source Code · Software Bugs · Data
Flow Graph · Abstract Syntax Tree · Deep Learning

1 Introduction

During the software development and deployment process, the later the bug is
found, the greater the cost of repair. Most of the software defects are introduced
in the coding stage, some of them escape detection in the current approaches
of unit testing, integration testing, functional testing, and acceptance testing.
InfoQ [39] reported that 30% to 70% of code logic design and coding defects can
be discovered and repaired through static code analysis. Hicken et al. [14] also
reported that, as expected, 85% of defects come in during the coding phase, but
only a few defects are found during coding since we typically find bugs when
we start testing the programs. Static code analysis plays a very critical role
in the secure development process, and it must be moved forward as much as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Lenzini and W. Meng (Eds.): STM 2022, LNCS 13867, pp. 85–103, 2023.
https://doi.org/10.1007/978-3-031-29504-1_5
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possible, since earlier detection can reduce the cost of development and repair
for developers and companies. Many companies will likely encounter substantial
resistance from developers to implement static code analysis tools due to the
large number of false alarms that are generated. This means developers will waste
considerable time in bug confirmation. Therefore, only a suitable and practicable
static analysis tool can really reduce the development cost. There are two main
static code analysis methods: 1) analyze intermediate files compiled from source
code such as binary, language-independent intermediate representation (LLVM),
etc., and 2) analyze source code directly through semantic information extracted
from source files. Our framework is focused on source code itself.

According to [17,19,36], the main techniques for static code analysis are: 1)
developing a defect pattern database and then matching the code to be ana-
lyzed with common defect patterns to detect potentially vulnerable statements.
This method is simple and convenient but needs enough patterns and is typically
prone to false positives. 2) Type inference refers to the automatic detection of the
type of an expression in a formal language to ensure that each statement in the
code has the correct type. 3) Model checking is based on finite state automata.
The impact of each statement is abstracted into a state of a finite state automa-
ton, and then the purpose of code analysis is achieved by analyzing the finite
state machine. It can check timing characteristics such as program concurrency.
4) Data flow analysis by collecting semantic information from source code and
abstracting it with a control flow graph. It can analyze and discover the behav-
iors of the program during run-time without actually running the program. 5)
Data driven prediction using machine learning by utilizing the above analytical
techniques based on a large training set that contains a diverse set of vulnerable
and non-vulnerable patterns. We focus on data driven techniques.

Multi-modal learning involves relating information from multiple sources
such as images and text. Multi-modal representation learning tries to eliminate
redundancy and utilizes complementarity between modalities, so as to learn bet-
ter features representation. Currently, there are two research directions in multi-
modal learning: 1) joint representation, which refers to mapping the information
of multiple modalities together into a unified multimodal vector space; 2) coor-
dinated representations, which refers to mapping each modality to its respective
representation space, but certain correlation constraints (such as linear correla-
tion) are satisfied between the mapped vectors.

In computer vision, multi-modal learning has grown rapidly recently.
Unstructured data can inherently take many forms such as visual and textual
content. In this paper, we construct two type of modalities, i.e., sequential and
graphical representations, from raw data using different constructors. Then, we
focus on static vulnerability detection in source code via multi-modal learning
and make the following contributions:

1. We propose a new tokenization method with abstract representation of num-
bers that outperforms state of art methods in rigorously repeated experiments
with random train, valid, and test dataset splits and averaged results.

2. We create a multi-modal dataset for vulnerability detection in source code.
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3. We propose the Multisource Deep Learner for vulnerability detection in source
code via multi-modal learning.

4. We propose the Vulnerability Highlighter to locate vulnerable statements and
rank the relevant statements.

5. We conduct a series of ablation experiments to show the value of significant
components of our ML pipeline.

Organization. After the Related Work section, in Sect. 3, we explain how we
extract and tokenize source code as four modalities from different perspectives.
Section 4 details the data-driven prediction method that learns code patterns and
dependency graph to detect the vulnerabilities and locate vulnerable statements.
In Sect. 5, we describe the datasets used for the evaluation. Experimental details
and results are discussed in Sect. 6 and Sect. 7 concludes the paper.

2 Related Work

We discuss the related work on this topic in four categories: custom token-based
approaches, abstract syntax tree based approaches, data driven approaches, and
multimodal learning based approaches.

Custom Token-Based Approaches: Russell et al. [33] design a function-level
vulnerability detection system using machine learning. They compile millions
of open-source functions and label them with carefully selected findings from
three different static analyzers that indicate potential exploits. The authors have
applied a variety of ML techniques inspired by classification problems in the
natural language domain, fine-tuned them for their application, and achieved
the best overall results via convolutional neural network and classified with an
ensemble tree algorithm. However, function-level vulnerability detection is not as
useful as statement-level detection in real-world detection, since functions can
be too large (e.g., 4,000 and 12,000 line functions are mentioned in [25]) and
time-consuming for an expert to manually investigate.

Abstract Syntax Tree-Based Approaches: Mark Weiser [40] designed a pro-
gram slicing method for automatically decomposing programs by analyzing their
data flow and control flow. The author mentions this program slicing method can
be used for debugging and parallel processing of slices. Recently, several auto-
matic vulnerability detection works are based on a similar idea of combining
data flow, control flow, and Abstract Syntax Tree (AST).

VulDeePecker [24] is the first system showing the feasibility of using deep
learning to detect vulnerabilities while being able to narrow down locations
of vulnerabilities. The authors also present the first vulnerability dataset for
deep learning approaches. VulDeePecker is only able to deal with vulnerabilities
related to library/API function calls. Their newer framework SySeVR [23] is
used to detect vulnerabilities in source code based on so-called Syntax-Semantics
Vector Representation, which is extracted with known potential vulnerable char-
acteristics related to function calls, array usage, pointer usage, or arithmetic
expressions. They truncate or pad input as a set of fixed length sequences of
tokens (threshold = 500) for neural networks.
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The Vulnerability Deep learning-based Locator, VulDeeLocator [22], uses a
deep learning-based fine-grained vulnerability detector for C source code. The
authors detected four vulnerabilities that were not reported in the National
Vulnerability Database (NVD), but their framework is limited to C programs
and heavily relies on the LLVM compiler, since their representations are based
on the LLVM intermediate representation.

Alon et al. designed a neural model, Code2Vec [2], for representating snippets
of code as continuous distributed vectors. They demonstrate the effectiveness of
their model to predict a method’s name from the vector representation of its
body based on the AST. However, their model is only able to predict labels that
were observed as-is at training time and unable to compose such names and
usually catches only the main idea. This paper inspired us to extend program
text representation with different kinds of graph representations.

Other Data Driven Approaches with Different Features: Harer et al.
[11] design a software vulnerability detection framework, which is a data-driven
approach to detect vulnerabilities with machine learning in C and C++ pro-
grams. They use features based on the operations in each basic block (opcode,
vector, or op-vecv) derived from a program build process using Clang and LLVM.
Then, they combine this with source-based features using C/C++ lexer to pre-
dict vulnerability at the function level. Their work is limited by the labels of
functions, since it is really hard to manually investigate and validate labels that
are generated by other static analysis tools such as Clang static analyzer. Li et
al. [21] present a vulnerability detector, based on sub-graphs in the Program
dependence Graphs, that outputs the crucial statements that are relevant to the
detected vulnerability.

Multimodal Learning Approaches: Heidbrink et al. [6,12,13] proposed a
method that uses multimodal learning for flaw detection in software programs
based on two modalities (source code and program binary). In source code, they
extract subgraph information by counting all unique node-edge-node transitions
and flaw analysis-inspired statistical features associated with following program
constructs: function call (e.g., number of external calls), variables (e.g., number
of explicitly defined variables), graph node counts (e.g., number of else state-
ments), graph structure (degrees of AST nodes by type). For binaries, they used
Ghidra to extract and collect statistical count information per function associ-
ated with function call, variables (e.g., number of stack variables), function size
(e.g., number of basic blocks), and p-code opcode instances, which is Ghidra’s
intermediate representation language for assembly language instructions.

Other Approaches: In computer vision research improved model have been
proposed based onmulti-view techniques. This line of research shows that ana-
lyzing an object from different perspectives can extract more semantic features
and information. Jin et al. [15] proposed a method to take joint-embedding of
shapes and contours. Lai et al. [20] introduced a large-scale, hierarchical multi-
view object dataset RGB-D (Red-Green-Blue-Depth) collected using an RGB-D
camera. RGB-D based object combines color and depth information to sub-
stantially improve results. Mokhov [26] designs a machine learning approach for
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static code analysis and fingerprinting for security bugs using the MARFCAT
[27] application [10]. Sestili et al. [35] points towards future approaches that may
solve vulnerability detection problems using representations of code that can cap-
ture appropriate scope information and using deep learning methods that are
able to perform arithmetic operations. They developed a code generator to pro-
duce an arbitrarily large number of code samples of controlled complexity. They
also investigated the limits of the current state-of-the-art AI system for detect-
ing buffer overflows and compared it with current static analysis engines. Their
data are simple C-like programs, which are generated as basic blocks without
loops, conditionals, and variables with unknown value. Katz et al. [16] design
a framework to convert a program in low-level representation back to a higher-
level human-readable representation based on neural machine translation. Their
framework can automatically learn a decompiler from a given compiler. However,
their framework fails if the input is longer than the threshold value. Wang et al.
[38] propose a graph neural network assisted data flow analysis method to find
potential buffer overflows in execution traces. Yamaguchi et al. [41] employ the
concept of code property graph in many graph databases such as ArangoDB,
Neo4J, and OrientDB and demonstrate its efficacy by identifying 18 previously
unknown vulnerabilities in the source code of the Linux Kernel.

3 Background and Approach

In this section, we first describe and explain how to extract and tokenize source
code into different representations as different modalities. Second, we introduce
and explain our framework for vulnerability detection in source code.

3.1 Data Representations

These four data representations are the modalities for multimodal learning.

1. Token: we extract and tokenize the sliced code into a sequence of lexical tokens
based on the Program Dependence Graph (the definition is in Sect. 3.4).

2. Abstract Syntax Tree Graph (ASTG): is a graph type modality, which is
generated by AST constructor.

3. Tokenized Data Flow Graph (TDFG): is a graph type modality, which is
based on data flow dependencies.

4. Heuristic Features: the syntactic complexity properties of source code [4] (e.g.,
number of variable operations, number of function calls, etc.). Totally, we have
49 features [4] generated from the properties of AST and tokens.

ASTG and TDFG are extracted as structural semantic information similar to
depth scans for images in computer vision. For example, when you consider a
specific variable in source code, you focus only on the lines that use this variable.
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3.2 Potential Vulnerable Statement

Potential Vulnerable Statement is a pre-defined collection from Li et al. [23]
based on the Checkmarx over open-source tools Flawfinder [9] and RAT [31].
This collection is used for extracting program dependence graph and highlighting
the vulnerabilities.

3.3 Abstract Syntax Tree

An AST is used to represent the abstract syntactic structure of source code
in a formal language. Once we have the tree representation of source code, we
can mine all possible paths through terminal-to-terminal, root-to-terminal, or
other efficient kernels. We use an open-source tool ASTminer [18] to generate
the ASTs. Then, we keep the same node ID for the same variables by merging
all of them into one node to connect all edges for final AST Graph.

3.4 Program Dependence Graph

Program dependence graph (PDG) [8] consists of control dependency and data
dependency, which are defined based on the Control Flow Graph (CFG).

Control Flow Graph (CFG)) [8]: For static analysis, the CFG is essential to
extract semantic features and accurately represent the flow inside of a program
unit. Let P be a program that consists of functions. The CFG of function fi
is a graph Gi = (Vi, Ei), where Vi is a set of nodes, each node represents a
statement or control predicate, and Ei is a set of directed edges such that each
edge represents the possible flow of control between a pair of nodes.

Data Dependency [8]: Let P be a program that consists of functions and let
the CFG for function fi be Gi = (Vi, Ei). A node nik will be considered as data
dependent if there is a path from nik to nij in Gi and a value computed at node
nik is used at node nij , where 1 � j, k � li and j �= k, where li is total number
of statements from fi.

Control Dependency [8]: Let P be a program consisting of functions fi with
CFG Gi = (Vi, Ei). If there exists a path starting at nik and ending at nij such
that (i) nij post-dominates every node on the path excluding nik and nij , and
(ii) does not post-dominate nij , then nij is control dependent on nik.

PDG [8]: Let P be a program that consisting of functions fi with PDG G′
i =

(Vi, E
′
i), where Vi is the same as Gi for CFG and E′ is a set of directed edges

such that each edge represents a data or control dependency between a pair of
nodes.

3.5 TDFG and ASTG

Tokenized Data Flow Graph (TDFG) is constructed based on the tokenized
program by the following steps: 1) collect potential vulnerable statement line
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numbers, 2) generate data flow graph based on these collected line numbers,
3) construct a graph G = (V, E) with tokenized source code where a node vi
represents a partial statement and an edge represents a the flow of data between
a pair of nodes. Final TDFG feature set is a collection of sub-graphs from TDFG
based on the potential vulnerable statements. Our previous work [42] shows how
the TDFG is constructed and how sub-graphs are extracted. Abstract Syntax
Tree Graph has the same extraction process as TDFG. Since AST tree can be
directly represented as G = (V, E) where V is a set of nodes and E is a set of
edges, where a node represents a token type and a edge represents a possible
flow of control between a pair of nodes. We convert each potential vulnerable
statement as a shared node (using same node index) over all modalities for
alignment. Both TDFG and ASTG sequences and sub-graphs can be embedded
as word or graph level embedding.

Fig. 1. A sub-graph sample. R is root node and E is exit node; Red arrow line is
terminal to terminal path and blue arrow line is root to terminal path on the left; the
right graph shows the first iteration of WLGK algorithm (Color figure online)

3.6 Sub-graph Extractions

We collect sub-graphs using the following three extraction methods to find
semantic representations of source code:

1. Root-to-terminal (RTT): is a collection of paths from the root node to a
terminal node.

2. Terminal-to-terminal (TTT): is a collection of paths from a terminal node to a
terminal node. This method has been used by Code2Vec [2] and Code2Seq [1].

3. Weisfeiler-Lehman Graph Kernels (WLGK): [37] is a rapid feature extrac-
tion scheme based on the Weisfeiler-Lehman test of isomorphism on graphs.
We use WLGK to walk through the paths and extract sub-graphs from
both ASTG and TDFG since it has been found useful in other tasks, e.g.,
Graph2Vec [28].
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Fig. 2. TDFG sub-graphs extraction example: (a) is a sliced sample for the model, (b)
is tokenized PDG, (c) is TDFG, and (d) is a set of sub-graphs in token-level.

Weisfeiler-Lehman algorithm updates node attributes of a node v by:

h
(t)
i (v) = HASH(h(t−1)

i (v), F{h(t−1)
i (u) | u ∈ N(v)}) (1)

where F is an aggregation function that concatenates topologically ordered
neighbor’s embedding, hi is the ith attribute of v, u is v’s neighbor node, and N
is the set of neighbor nodes. The right part of Fig. 1 shows the first iteration of
Weisfeiler-Lehman algorithm based on the left graph. For our sub-graph extrac-
tion, we collect the paths based on 1-dimensional Weisfeiler-Lehman algorithm
with 5 iterations (after grid search from 1 to 10).

Representation: we extract and concatenate the sub-graphs as final repre-
sentation (MAX = 500 tokens) using above methods based on the TDFG and
ASTG. Figure 1 is an example of how sub-graphs are extracted by these three
methods.

Figure 2(d) is an example of how a sequence of tokens is generated from raw
sample code: line 1 is an example of an RTT path, line 2 is an example of TTT,
and line 3 is an example of WLGK path in the sub-graphs.

3.7 Pipeline

We propose a multimodal learning framework for vulnerability detection in
source code based on different modality extraction methods. Figure 3 shows the
overview of our framework. We first generate Abstract Syntax Tree from source
code and Program Dependence Graph from tokenized code. Then, we extract
sub-graphs from AST as ASTG modality, tokens from PDG as Token modality
and heuristic features (HF) from PDG as HF modality and extract sub-graphs
from tokenized data flow graph as TDFG modality. The neural network could be
any kind of multimodal leaning network to concatenate and align all modalities
for final classification.
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Fig. 3. Multisource Deep Learner Pipeline

Fig. 4. Vulnerability Highlighter is used to locate vulnerable statements; left example
shows stack-based buffer overflow and the right example shows integer overflow.

3.8 Vulnerability Highlighter

We consider the pre-defined potential vulnerable tokens as the Most Possible
Vulnerable Statements (MPVSs). If a program is detected as GOOD, we output
the result without any highlights. If a program is detected as BAD, we proceed
as below:

1. Denote all statements that contain MPVS label as M.
2. Generate control flow graph (CFG), data dependency, and control depen-

dency to construct a program dependence graph (PDG) for each MPV.
3. Label all MPVSs ([m1,m2, ...,mn] ⊆ M) with red (dangerous) background

color in the program if it is detected as vulnerable.
4. For i = 1 to n, we extract their data and control dependencies for CFG Gi.
5. Union all forward slices as one forward list and all backward slices as one

backward list respectively for data and control dependencies.
6. Label the statements with orange (warning) background color for backward

data dependents of the MPVs if it is not in dangerous. Label other statements
from PDG with blue (likely neutral) background color.
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7. Keep all other statements, those that are not in PDG, with no highlights.

Figure 4 shows vulnerable statements found by the Vulnerability Highlighter.

4 Neural Network Models

We used convolutional neural network (CNN) for preliminary investigation on
graph embedding and feature extraction methods, because of its speed for train-
ing and testing. Table 3 shows that Bidirectional Gated Recurrent Unit Neural
Network (BGRU) [34] performs the best, in line with previous observations.
Therefore, we use BGRU as the base model for further investigation.

Fig. 5. Attention-based BGRU Classifier

4.1 Attention-Based BGRU

A Bidirectional GRU, or BGRU, is a sequence processing model that consists
of two GRUs. One taking the input in a forward direction, and the other in
a backwards direction. Gated recurrent units (GRUs) are a gating mechanism
in recurrent neural networks, introduced by Kyunghyun Cho et al. [5]. Figure 5
shows how an attention-based BGRU classifier is constructed. Input can be either
Token, ASTG, or TDFG. We use pretrained Word2Vec as embedding layer for
each modality. A dot product attention layer is followed by BGRU layer. Then,
we concatenate the output from attention layer, last hidden layer from BGRU,
and max values of all elements from output of the last hidden layer of BGRU as
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a joint representation for final linear classifier with ReLU and Sigmoid activation
functions. Our dot product attention layer is computed as follows:

at(s) = softmax((
exp(hᵀ

t hs)
∑

s′ exp(hᵀ
t hs)

)

where at is output representation, s is input vector, and hs is each source hidden
state corresponding to the hidden target state ht (Fig. 5).

Fig. 6. Multisource Deep Learner

4.2 Multisource Deep Learner

We use three pretrained embedding layers and attention-based BGRU layer as
the encoders for token, ASTG, and TDFG modalities. Then, we unfreeze pre-
trained encoders (learned parameters can still be updated with 0.0001 learning
rate) for correlational joint representations (size = 4,664) for vulnerability detec-
tion using our Multisource Deep Learner.

Multisource Deep Learner (MDL): it has a similar architecture as Corre-
lational Neural Network (CorrNN [3]), but we use cross entropy loss function
instead and added a classifier to fit our classification task. Our framework does
not reconstruct all raw inputs, it reconstructs the joint representation by simple
MLP encoder-decoder model to get semi-reconstruction loss to fine-tuning clas-
sification model using learning rate 0.0001. First, we take concatenated vector
[x1, x2, x3, x4] of size d1 + d2 + d3 + d4 from the pooled layer (Attention
+ Last + Max) based on three pre-trained BGRU and one pre-trained random
forest. Given z = (x1, x2, x3, x4), the first hidden layer computes an encoded
representation as

h1(z) = f(w1x1 + w2x2 + w3x3 + w4x4 + b) (2)
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where w is a projection matrix and b is bias vector. Function f can be any non-
linear activation function. We grid searched to find the best activation function
ReLU for our framework. Our latent vector h is used for classification. We use
Binary Cross Entropy (BCE) loss for training. BCE is computed as follows:

BCE = −(y log(p) + (1 − y) log(1 − p)) (3)

where log is the natural log, y is binary indicator and p is predicted probability.
We also tested with combined loss by summing up BCE of the classification and
Mean Square Error (MSE) loss of the concatenation reconstruction.

5 Dataset

We use the MVDSC dataset [42], which is generated based on two sources:
NVD [30] and SARD [29]. SySeVR dataset is also extracted from the same
raw datasets, but it contains more than 10,000 mislabeled instances (e.g., see
Fig. 7) and duplicates. However, we still use SySeVR [23] dataset as a baseline
to compare with our single-modality based model, which investigates different
tokenization methods for source code. MVDSC is a dataset generated without
any duplicates. MVDSC-Mixed is a combination of MVDSC dataset and a small
portion of synthetic instances. All these datasets are focused on the vulnera-
bilities that can be learned from vulnerable and non-vulnerable patterns such
as buffer-related (overflow, underflow, etc.), integer-related (overflow, underflow,
etc.), divide-by-zero, double-free, etc. For more details, please refer to NVD [30],
SARD [29], and MVDSC [42].

Fig. 7. Two code snippets from SySeVR dataset that are identical except for function
names, but they label the left as vulnerable, and the right one as non-vulnerable.

5.1 Preprocessing and Tokenization

Each program consists of one or more functions in NVD [30] and SARD [29].
Each function contains labels and comments about vulnerability details including
how to fix. Therefore, we need to mask or remove sensitive information that
may benefit models. We convert all file names and any token, that contains
“bad”, ‘good’, or ‘cwe’ sub-string (cwe * contains sensitive information about
vulnerabilities), to a fixed common string *C* with star symbols around to avoid
code conflicts. We also convert all strings with single quotation mark as ‘*SQ*
+ n’ and double quotation mark as ‘*DQ* + n’ where n is the length of content
in quotation. In addition, we remove all comments. We are using 811 pre-defined
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Table 1. Dataset statistics (vulnerable: non-vulnerable).

Dataset train valid test

SySeVR pool: 64403 (13603:50800)

MVDSC 7569:22416 1914:5580 1857:5637

MVDSC-Mixed 11416:26569 2401:6093 2325:6169

vulnerable syntax characteristics (memset, strcpy, etc.) which is generated by
Li et al. [23] since we use the same raw dataset. We use pycparser [7] as our
base lexer to find identifiers including variables and functions (finding identifiers
can be tricky). We convert all variable and function names into more semantic
meaningful representations (Table 1).

Locate ID: for masking variable and function names, we need to index them.
To keep the index order meaningful, we always index destination (sink) vari-
able before source variable. Ex. strcpy(dest, src) will always be masked as str-
cpy(*ID 0*, *ID 1*), no matter which variable was declared first. To align those
variables which are related to potential vulnerable statement, we denote the vari-
ables which are the closest to a potential vulnerable statement starting from 0.
That means we can ensure that ‘*ID 0*’ and ‘*ID 1*’ are the two aligned tokens
to vulnerable statements since most of function calls take two arguments in our
dataset. A more complex function with more arguments can also be handled.

Abstract: after ‘Locate ID’, we tokenize the remaining program units based
on their types. Once the whole PDG is tokenized, we apply a number abstrac-
tion function, Abstract(), to convert numbers as (*MIN*, difference) in data
flow statements only based on the potential vulnerable statement, where *MIN*
represents the minimum number value of all numbers in these data dependents.

6 Experimental Results and Analysis

We now present the results of our experiments and ablation studies.

Metrics. We use accuracy (A), precision (P), recall (R), and F1 as our evaluation
metrics. Our dataset is highly skewed since vulnerable statements are far fewer
than non-vulnerable statements, so we add extra metric Matthews Correlation
Coefficient (MCC) for evaluation.

Comparing Single-Modality Model with Baseline: we use SySeVR [23]
as our baseline for single-modality model, since it was developed for detection
originally from the same sources as MVDSC dataset [42]. SySeVR dataset con-
tains 64,403 instances and the authors reported their results based on randomly
picked dataset 30000/7500/7500 as train/valid/test, we also randomly picked
with random seed from the pool with same split ratio. We report average and
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Table 2. Tokenization comparison using SySeVR dataset; 10 run in 10 different random
seeds. SySeVR-BGRU [23] was the best previous result. T is our tokenization method.

Method A P R F1 MCC

SySeVR-BGRU 94.7 91.5 n/a 86.8 83.6

T + CNN 94.7±0.4 87.6±2.1 87.5±1.7 87.5±0.9 84.2±1.1

T + BGRU 95.3±0.2 90.5±1.7 87.2±2.4 88.8±0.8 85.9±0.9

standard deviation in 10 runs with 10 random seeds, since it is a better evalua-
tion method [32]. Table 2 shows that our single-modality model with same BGRU
model as theirs is significantly better than their best result. Hence, we only use
the MVDSC dataset [42] for further investigation. For the following experiments,
we report the average of three runs in the same train/valid/test sets.

Table 3. Comparing models with token modality on MVDSC dataset [42]

Network A P R F1 MCC

CNN 95.5 90.4 91.4 90.9 87.9

LSTM 91.9 85.5 81.1 83.3 78.0

BLSTM 95.8 92.1 90.7 91.4 88.6

GRU 96.1 94.9 89.2 91.9 89.5

BGRU 96.6 94.3 91.6 93.0 90.7

Comparing token modality with different models: to find the best model
for single-modality and build some pretrained models, we evaluated our token
modality with five common networks on the MVDSC dataset. Table 3 shows that
the Bidirectional-GRU classifier achieved the best performance among CNN,
LSTM, Bidirectional-LSTM, and GRU. The table also shows that both bidi-
rectional LSTM and GRU are better than LSTM and GRU respectively. This
suggests that both backward and forward paths are useful for vulnerability detec-
tion.

Table 4. Comparing graph embedding in TDFG and ASTG

TDFG2Vec A P R F1 MCC

token 90.0 82.1 76.6 79.2 72.8

graph 84.7 76.7 55.0 64.1 55.9

ASTG2Vec Acc Pre Recall F1 MCC

token 91.5 83.7 81.5 82.6 77.0

graph 84.8 72.1 63.0 67.2 57.6
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Comparing embedding methods for graph modality: we compare sub-
graph embedding and Graph2Vec [28]. For sub-graph embedding, we concate-
nate all extracted paths as a long sequence (MAX = 500 tokens) and then use
a Word2Vec embedding + BGRU (Fig. 5) that is connected with a dot prod-
uct attention layer for classification. For graph embedding, we use a standard
Graph2Vec [28] to embed ASTG or TDFG into a 1024-dimension vector with 5
Weisfeiler-Lehman iterations, then normalize it as a 32×32 grey scale image with
a standard CNN classifier. Table 4 shows that token level embedding method is
significantly better than graph level embedding. So, we embed a set of sub-graphs
as 500 × 32 matrix for further experiments.

Table 5. Comparing tokenization methods on MVDSC dataset

Normal Locate ID Abstract A P R F1 MCC

� 96.1 94.0 89.8 92.0 89.5

� � 96.3 94.6 89.8 92.4 90.0

� � � 96.6 94.3 91.6 93.0 90.7

Comparing tokenization with add-ons: Table 5 shows the differences
between different tokenization methods. Two add-ons (Locate ID and Abstract)
eventually and slightly improved the model. With the abstract representation of
numbers, the recall is increased by 1.8 which is a critical improvement in vul-
nerability detection since the size is very sensitive in memory allocation such as
malloc()→free().

Table 6. Freezing vs Unfreezing the parameters of pre-trained models

Method A P R F1 MCC

4 modalities + BCE + freeze 97.0 96.3 91.3 94.8 91.8

4 modalities + BCE + unfreeze 97.7 97.2 93.4 95.2 93.8

4 modalities + CombinedLoss + freeze 95.1 98.5 81.5 89.2 86.7

4 modalities + CombinedLoss + unfreeze 97.8 97.0 93.9 95.4 94.0

Comparing freeze/unfreeze: we compared multiple modalities with frozen
and unfrozen mode and tested with two loss functions. Table 6 shows that both
unfrozen encoders worked significantly better than their frozen ones. Combined-
Loss is not significantly different from BCE but made model training much
slower. Therefore, we use BCE for further comparisons. We can see that unfreez-
ing the parameters of the pre-trained model is a better way for fine-tuning.
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Table 7. Ablation study of modalities on MVDSC dataset

Modalities A P R F1 MCC

Token 96.6 94.3 91.6 93.0 90.7

Token + ASTG 97.1 92.3 96.1 94.2 92.2

Token + ASTG + TDFG 97.6 96.9 92.9 94.8 93.2

Token + ASTG + TDFG + HF 97.7 97.2 93.4 95.2 93.8

Comparing single modality and multiple modalities using MVDSC
dataset: this ablation study is used to learn how modalities can be stacked up
and improve the classification performance in MVDSC dataset. Table 7 shows
that all combined model has the best overall performance. The result also shows
that ASTG is the booster for higher recall. TDFG and HF make the model more
balanced for precision. Comparing token-modality to four combined modalities,
the MCC is increased by 3.1% which is significantly better.

Table 8. Model comparisons using MVDSC-Mixed dataset

Modalities A P R F1 MCC

Token 94.2 94.8 83.6 88.8 85.3

Token + ASTG 95.2 91.0 92.0 91.3 88.0

Token + ASTG + TDFG 95.6 94.1 89.6 91.8 88.9

Token + ASTG + TDFG + HF 95.5 92.7 90.8 91.7 88.7

Table 9. MVDSC vs MVDSC-Mixed

Representations MVDSC MVDSC-Mixed Differences

R MCC R MCC ΔR ΔMCC

Token 91.6 90.7 83.6 85.3 -8.0 -5.4

Token + ASTG 96.1 92.2 92.0 88.0 -4.1 -4.2

Token + ASTG + TDFG 92.9 93.2 89.6 88.9 -3.3 -4.3

Token + ASTG + TDFG + HF 93.4 93.8 90.8 88.7 -2.6 -5.1

Comparing single modality and multiple modalities using MVDSC-
mixed dataset: MVDSC-Mixed adds around 10% adversarial data to MVDSC.
Table 8 shows that all modalities are negatively impacted by adversarial data.
Table 9 shows that single-modality based model is the most negatively impacted
to both recall (−8.0%) and MCC (−5.4%). Therefore, using multiple modalities
not only improves the detection performance but also improves the robustness
of the model.
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7 Conclusion

We propose Multisource Deep Learner, a multimodal learning framework to
detect vulnerabilities in source code and show their location in code. The frame-
work mines semantic information for developers. We compared our framework
with state-of-the-art algorithms from previous works. We evaluated our sys-
tem with our multi-modal dataset MVDSC [42]. Our results show that multi-
modality-based models are significantly better in performance and robustness
than single-modality-based models by the dataset-based evaluation.

Acknowledgments. Research partially supported by NSF grants 1433817 and
2210198, ARO grant W911NF-20-1- 0254, and ONR award N00014-19-S-F009. Verma
is the founder of Everest Cyber Security and Analytics, Inc.

A Appendix

A.1 Limitations

Apart from the usual limitations of static analysis and machine learning, other
limitations are: 1) adversarial data may negatively impact model’s performance,
2) the current implementation does not address interprocedural analysis.

References

1. Alon, U., Brody, S., Levy, O., Yahav, E.: Code2seq: generating sequences from
structured representations of code. In: International Conference on Learning Rep-
resentations (2019). https://openreview.net/forum?id=H1gKYo09tX

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: Code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.
org/10.1145/3290353

3. Chandar, S., Khapra, M.M., Larochelle, H., Ravindran, B.: Correlational neu-
ral networks. Neural Comput. 28(2), 257–285 (2016). https://doi.org/10.1162/
NECO a 00801

4. Chernis, B., Verma, R.: Machine learning methods for software vulnerability detec-
tion. In: Proceedings of the Fourth ACM International Workshop on Security and
Privacy Analytics, pp. 31–39 (2018)

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep
Learning, December 2014 (2014)

6. Cooper, A., Zhou, X., Heidbrink, S., Dunlavy, D.M.: Using neural architecture
search for improving software flaw detection in multimodal deep learning models.
arXiv:2009.10644 (2020)

7. Eliben: Complete c99 parser in pure python: pycparser v2.21. https://github.com/
eliben/pycparser/blob/master/pycparser. Accessed Nov 2021

8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. (TOPLAS) 9(3), 319–
349 (1987). https://doi.org/10.1145/24039.24041

https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1162/NECO_a_00801
https://doi.org/10.1162/NECO_a_00801
http://arxiv.org/abs/2009.10644
https://github.com/eliben/pycparser/blob/master/pycparser
https://github.com/eliben/pycparser/blob/master/pycparser
https://doi.org/10.1145/24039.24041


102 X. Zhou and R. M. Verma

9. Flawfinder: Flawfinder. https://dwheeler.com/flawfinder/. Accessed Feb 2022
10. SQ Group: Static analysis tool exposition (SATE) VI workshop. https://www.

nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-
workshop. Accessed Mar 2022

11. Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing. arXiv abs/1803.04497 (2018)

12. Heidbrink, S., Rodhouse, K.N., Dunlavy, D.M.: Multimodal deep learning for flaw
detection in software programs. arXiv:2009.04549 (2020)

13. Heidbrink, S., Rodhouse, K.N., Dunlavy, D., Cooper, A., Zhou, X.: Joint analysis
of program data representations using machine learning for improved software
assurance and development capabilities (2020). https://doi.org/10.2172/1670527.
https://www.osti.gov/biblio/1670527

14. Hicken, A.: The shift-left approach to software testing. https://www.stickyminds.
com/article/shift-left-approach-software-testing. Accessed Mar 2022

15. Jin, A., Fu, Q., Deng, Z.: Contour-based 3D modeling through joint embedding of
shapes and contours. In: Symposium on Interactive 3D Graphics and Games, I3D
2020. Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3384382.3384518

16. Katz, O., Olshaker, Y., Goldberg, Y., Yahav, E.: Towards neural decompilation.
arXiv abs/1905.08325 (2019)

17. Kotenko, I., Izrailov, K., Buinevich, M.: Static analysis of information sys-
tems for IoT cyber security: a survey of machine learning approaches. Sensors
22(4) (2022). https://doi.org/10.3390/s22041335. https://www.mdpi.com/1424-
8220/22/4/1335

18. Kovalenko, V., Bogomolov, E., Bryksin, T., Bacchelli, A.: PathMiner: a library for
mining of path-based representations of code. In: Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories, pp. 13–17. IEEE Press (2019)

19. Kulenovic, M., Donko, D.: A survey of static code analysis methods for security
vulnerabilities detection. In: 2014 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pp.
1381–1386 (2014). https://doi.org/10.1109/MIPRO.2014.6859783

20. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D
object dataset. In: 2011 IEEE International Conference on Robotics and Automa-
tion, pp. 1817–1824 (2011). https://doi.org/10.1109/ICRA.2011.5980382

21. Li, Y., Wang, S., Nguyen, T.N.: Vulnerability detection with fine-grained inter-
pretations, pp. 292–303. Association for Computing Machinery, New York (2021).
https://doi.org/10.1145/3468264.3468597

22. Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H.: VulDeeLocator: a deep learning-
based fine-grained vulnerability detector. IEEE Trans. Dependable Secure Comput.
19(4), 2821–2837 (2022). https://doi.org/10.1109/TDSC.2021.3076142

23. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: SySeVR: a framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secure
Comput. 1 (2021). https://doi.org/10.1109/tdsc.2021.3051525

24. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, 18–21 February 2018. The Internet
Society (2018). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018 03A-2 Li paper.pdf

25. McConnell, S.: Code Complete. Pearson Education (2004)

https://dwheeler.com/flawfinder/
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-vi-workshop
http://arxiv.org/abs/2009.04549
https://doi.org/10.2172/1670527
https://www.osti.gov/biblio/1670527
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://doi.org/10.1145/3384382.3384518
https://doi.org/10.1145/3384382.3384518
https://doi.org/10.3390/s22041335
https://www.mdpi.com/1424-8220/22/4/1335
https://www.mdpi.com/1424-8220/22/4/1335
https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1109/ICRA.2011.5980382
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1109/TDSC.2021.3076142
https://doi.org/10.1109/tdsc.2021.3051525
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf


Software Vulnerability Detection via Multimodal Deep Learning 103

26. Mokhov, S.A.: The use of machine learning with signal- and NLP processing of
source code to fingerprint, detect, and classify vulnerabilities and weaknesses with
MARFCAT. arXiv, Cryptography and Security (2011)

27. Mokhov, S.A., Paquet, J., Debbabi, M.: MARFCAT: fast code analysis for defects
and vulnerabilities. In: 2015 IEEE 1st International Workshop on Software Ana-
lytics (SWAN), pp. 35–38 (2015). https://doi.org/10.1109/SWAN.2015.7070488

28. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.:
Graph2vec: learning distributed representations of graphs. arXiv abs/1707.05005
(2017)

29. NIST: Software assurance reference dataset. https://samate.nist.gov/SRD/index.
php. Accessed Mar 2022

30. NIST: National vulnerability database. https://nvd.nist.gov/. Accessed Nov 2021
31. RAT: rough-auditing-tool-for-security. https://code.google.com/archive/p/rough-

auditing-tool-for-security/. Accessed May 2022
32. Reimers, N., Gurevych, I.: Reporting score distributions makes a difference: perfor-

mance study of LSTM-networks for sequence tagging. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, pp. 338–348. Association for Computational Linguistics (2017). https://
doi.org/10.18653/v1/D17-1035. https://aclanthology.org/D17-1035

33. Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757–762 (2018). https://doi.org/10.1109/
ICMLA.2018.00120

34. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997). https://doi.org/10.1109/78.650093

35. Sestili, C.D., Snavely, W., VanHoudnos, N.M.: Towards security defect prediction
with AI. arXiv abs/1808.09897 (2018)

36. Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Sarro, F.: A survey on machine
learning techniques for source code analysis. arXiv abs/2110.09610 (2021)

37. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(77), 2539–2561
(2011). http://jmlr.org/papers/v12/shervashidze11a.html

38. Wang, Z., Yu, L., Wang, S., Liu, P.: Spotting silent buffer overflows in execu-
tion trace through graph neural network assisted data flow analysis. arXiv (2021).
https://arxiv.org/abs/2102.10452

39. Wanjia: This 66-year-old is still writing code and wants to fix bugs early in the
SDLC. https://xcalibyte.com/. Accessed Mar 2022

40. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352–357 (1984).
https://doi.org/10.1109/TSE.1984.5010248

41. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, pp. 590–604 (2014). https://doi.org/10.1109/SP.2014.44

42. Zhou, X., Verma, R.M.: Vulnerability detection via multimodal learning: datasets
and analysis. In: ASIA Conference on Computer and Communications Security
(2022). https://doi.org/10.1145/3488932.3527288

https://doi.org/10.1109/SWAN.2015.7070488
https://samate.nist.gov/SRD/index.php
https://samate.nist.gov/SRD/index.php
https://nvd.nist.gov/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://aclanthology.org/D17-1035
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/78.650093
http://jmlr.org/papers/v12/shervashidze11a.html
https://arxiv.org/abs/2102.10452
https://xcalibyte.com/
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/3488932.3527288


Assessing Deep Learning Predictions
in Image-Based Malware Detection

with Activation Maps

Giacomo Iadarola1(B) , Francesco Mercaldo1,2(B) , Fabio Martinelli1,
and Antonella Santone2

1 Institute of Informatics and Telematics (IIT),
National Research Council of Italy (CNR), Pisa, Italy

{giacomo.iadarola,francesco.mercaldo,fabio.martinelli}@iit.cnr.it
2 Department of Medicine and Health Sciences “Vincenzo Tiberio”,

University of Molise, Campobasso, Italy
{francesco.mercaldo,antonella.santone}@unimol.it

Abstract. Machine learning and deep learning models have been widely
adopted to detect malware and protect our cyber infrastructures. The
training is the most effective and important element of the artificial
intelligence models. Nevertheless, it can be challenging and may require
expertise and high-quality data. Inadequate training can be counterpro-
ductive, and lead to a model which may not detect the threats or, even
worst, being exploited by the attackers. In this regard, the contribution
of this short paper is twofold: we propose a method to (i) detect the
malware belonging family and (i) provide reasoning about model evalua-
tion and assess model soundness. The rationale behind this work aims to
improve the evaluation of image-based deep learning models for malware
family detection, especially in supervised learning tasks without recog-
nizable or known patterns in the dataset samples. Our model obtains
an overall accuracy of 0.934 in the evaluation of a dataset composed of
15726 real-world malware.

Keywords: Malware Analysis · Deep Learning · Explainable AI ·
Image-based Classifier · Cybersecurity

1 Introduction

Part of the reason for the perpetrated malware damages is due to the inade-
quacy of the commercial antimalware that use the signature-based paradigm;
they provide automatic detection of malware by looking for malicious patterns
(i.e. the signatures) stored in datasets of well-known threats. To overcome this
limitation, researchers have been focusing on the adoption of machine learning,
to change the signature-based paradigm and instead teaching models how to
identify unknown malicious samples.
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In a nutshell, a machine learning model discovers and formalizes the principles
and patterns shared by a set of data; with this knowledge, the algorithm can
“reason” the properties of unedited samples. In malware detection, the data
are the malicious and legitimate samples. Most of the malicious samples (the
malware) are variants of an original sample, thus, they share part of the code
and can be grouped in “families”. Therefore, the machine learning model task is
to discover similar or identical patterns between samples belonging to the same
family, and exploit these patterns to classify newly discovered input samples.

In this short paper, we propose an approach for malware detection and fam-
ily identification based on deep learning, with a particular focus on prediction
assessment. Our approach exploits the representation of an application under
analysis in terms of RGB images.

We compare two different deep networks architectures, the first one is a
Convolutional Neural Network (CNN) designed by authors while the second one
is a well-known CNN model for (generic) image classification task, the “Visual
Geometry Group” (VGG16) model. Also, we visualise the so-called activation
maps (i.e., the areas of the image symptomatic of a certain prediction) for the
models obtaining the best performances in malware detection. This aspect allows
us to understand the reason why the classifier output that specific prediction,
and improve the explainability about the model decision.

The activation maps can help to understand why a certain sample is incor-
rectly classified and the differences between families. Nevertheless, understanding
and exploiting the activation map information often requires prior knowledge of
the malicious behaviour of the malware and expertise in the malware analy-
sis field. Especially in the field of image-based malware analysis, where usually
the target patterns are unknown due to the nature of the images, the model
assessment plays an essential role but the evaluation of the model prediction
robustness is a complex task. We try to overcome this problem by formalizing
two novel evaluation metrics for evaluating activation maps in model assessment
procedures, called intra-family-SSIM and inter-models-SSIM.

2 Background

To assess deep learning prediction and explainability in image-based malware
detection, we exploits two Deep Learning (DL) models, a Grad-CAM model and
the Structural Similarity Index Method (SSIM). In this section, a short overview
on these techniques is reported but we refer to the literature for further details.

Image-Based Malware Detector. In a classical image classification task,
such as identifying which animal is shown in a picture, DL models are able to
correctly classify a sample because they are trained to recognize a specific pattern
in the input image (i.e.: the pattern which represents the shape of that animal).
Similarly, in the malware family classification, the application under analysis are
classified by looking for the peculiar pattern of a specific malware family. Two
malware belong to the same malware family if they share common malicious
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behaviour, thus, they share part of the source code (i.e.: the source code that
performs the malicious behaviour). Indeed, the classical image classification and
the malware family classification tasks are similar in their goal: identify a pattern
able to discern an input sample into one of the output classes.

Therefore, converting malware to an image is the necessary but sufficient
step to apply Deep Learning models for image classification tasks to malware
family classification tasks. The conversion is straightforward, and widely adopted
in literature [1,5,6]: every file stored in the hard disk of a computer can be
represented in byte code, thus, we can cast each byte to an 8-bit unsigned integer
(value in the range [0, 255]) which can be seen as a grayscale pixel. Similarly,
we can group bytes and form pixels in the RGB colour model, to generate a
three-channel colour information image. Figure 2 reports (on the left) a sample
of malware converted to an image, belonging to the Neoreklami family.

Explainable Methods. Convolutional Neural Networks (CNNs) are widely
adopted for Malware detection, and recently, researchers start studying tech-
niques to explain the detection decisions. Explainable methods can be classified
in different ways, but one of the most adopted classifications is the model-specific
vs. model-agnostic techniques and local vs. global explanations. The model-
specific techniques can interpret only the model for which they were devised; on
the other hand, the model-agnosic techniques claim to be applied to any model.
The local vs. global explanations regard the interpretability of the predictions
of a model, the former explains a single output given a specific input, whereas
the latter provides explanations of the whole model logic, without focusing on a
specific input-output pair.

Most of the model-agnostic methods treat the model as a black box and anal-
yse the output with regard to changes in the input. Local Interpretable Model
Explanations (LIME) [7] is a widely adopted method for explaining predictions
of models treated as a black box. LIME takes the input data sample, perturbs
the data and analyse the impact on the output results. By doing so, it collects
the set of “explanations” given by the input-output pairs and forms a local linear
model that approximates the global model behaviour.

Our methodology is based on the explanations of single input-output pairs,
thus, our approach lies in the local explanations techniques. Nevertheless, we
also propose to group together the input-output pairs into output classes sets,
to provide explanations for entire classes’ decisions. We treat the model as a
black box but our technique depends on the Convolutional layers, which makes
the methodology (CNN-)model-specific.

Grad-CAM and SSIM. The Gradient-weighted Class Activation Mapping
(Grad-CAM) is a technique to provide graphical information on the parts of
the input image which have influenced the most the classification output of a
CNN. The output of the Grad-CAM is a heatmap, that can be overlayed on the
input image to highlight the relevant part. The heatmap is generated using the
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gradients of the final convolutional layers, which is the one that captures higher-
level visual patterns and preserves spatial information on the input image.

The Grad-CAM adopted in this paper [9] is a relaxed generalization of the
CAM approach [10]. The Grad-CAM does not require any modification to the
CNN model architecture and provide a clear way to understand if the model
has learnt correctly; that is, if the model is using the discriminative pattern in
the input image to classify that sample. Intuitively, in an image-based malware
classification task, the DL model should highlight the payload, (i.e.: the malicious
code) of the malware, which is the shared pattern with the other malware of the
family. Otherwise, if the model is classifying that sample because of another part
of the input image than the payload, the malware could be easily modified by
cutting out that highlighted part, preserving the malicious behaviour (express
by the payload), and so generating a new malware variant, which will pass the
model check as legitimate.

In contrast with the classical image classification task, in image-based mal-
ware classification, there are no recognizable shapes in the input image, at least
for the human perception. Therefore, the heatmaps generated from the Grad-
CAM do not have immediate usefulness because we are unaware of what con-
stitutes the area they are highlighting. To compare the heatmaps and exploit
their information, we use the Structure Similarity Index Method (SSIM), which
is a perception based model to compare two different images [8]. Originally, the
SSIM is used to evaluate image degradations, distortions and changes, such as
contrast masking, in different versions of the same image. SSIM estimates the
perceived quality of images by taking into account also spatially closed pixels
and the different visibility (lightness) of the area in the different input image
versions. The SSIM range values extend between −1 and +1 and only equal 1 if
the two images are identical.

3 Methodology

The adoption of the methodology is not restricted to the DL model tested in
our experiments (see Sect. 4), but it could be applied to any DL model capa-
ble of working with the Grad-CAM (i.e.: DL model with convolutional lay-
ers). Moreover, most of the process, excluding the dataset preprocessing, can
be automatized and does not require prior knowledge on the malware or exper-
tise on the topic. The methodology was implemented on a tool, freely available
on GitHub [2].

For a better understanding of the methodology, it can be split into several
steps, depicted in Fig. 1, which shows the approach we propose for assessing the
prediction of a malware detection model built by means of deep learning. The
first step of the methodology regards the collection of malware that compose the
dataset. Every executable file can be taken into account, but the dataset has to
be labelled and split into “Malware Families”. One dataset class is reserved for
“trusted” or “benign” applications. For the sake of simplicity, we refer generically
to “malware families” all the classification output classes, even if one output is
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Fig. 1. Overall schema of the methodology.

reserved for trusted executables. Once the dataset is composed, the executables
have to be converted into images. The images can be either in grayscale or colour
format, but they should be similar in size. The DL model performs resizing on
the input images, but if they differ too much in dimension the loss of information
may compromise the DL model accuracy.

The images dataset is split into training, validation and test set, and a model
assessment can be performed to find the best DL architecture and the best
hyperparameters for the classification task. Moreover, and that is the key of the
methodology, the model assessment takes into account not only the performance
measures in the test (such as accuracy, precision, etc.) but also the “explainabil-
ity” and robustness of the model by evaluating the Grad-CAM heatmaps. For
instance, as reported in Sect. 4, we take into account two different CNN model
architectures with similar accuracy, and we use the IF-SSIM and IM-SSIM for
evaluating their “inference step”, and ensure robustness in their outputs. The
heatmap generated by the Grad-CAM can be overlayed on the input images
(see Fig. 2), but the visual representation does not provide immediate and useful
information; we can not easily understand what the highlighted area refer to in

Fig. 2. Malware sample classified (correctly) as belonging to the Neoreklami family
(on the left), next to the Grad-CAM output (the heatmap) of its evaluation (on the
right).
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the original source code of the application. Despite it is possible to reverse the
process and reconstruct the original bytes of the application, as demonstrated
in [3], there is the need of a soundness decompilation step, prior knowledge of
the source code and time for performing the manual analysis.

Furthermore, in a previous work [4], we started exploring the use of the
heatmaps for Image-based malware analysis, but we were not able to automatize
or extract any information that would not require prior knowledge of the prob-
lem. Indeed, to ensure the robustness of the DL model, the adoption of heatmaps
still would have required expertise to debug the deployed models. Recalling that
the highlighted area should be the one covering the payload (the shared pattern
between malware of the same family), different DL models trained on the same
dataset should highlight the same area of the input image, otherwise, at least
one of them is making a mistake. Exploiting this intuition, we propose to adopt
the SSIM to evaluate differences between the heatmaps, and thus, the differences
in the output predictions of the models. In detail, we propose two metrics called
inter-models-SSIM IM-SSIM) and intra-family-SSIM (IF-SSIM), calculated as
shown in Listing 1 and Listing 2, respectively, using the Python language. These
metrics could be very useful in Image-based supervised learning tasks, when the
pattern to identify in the input images is unknown (or not marked); for instance,
in our experiments, we have a dataset of malware labelled by family but we are
unable to locate the peculiar pattern of each family in their input samples.

The two novel metrics constitute the main core of the methodology, and they
are explained in the next paragraphs in detail.

# Assuming that ’I’ contains all the images classified by BOTH models

# (’CNN_1’ and ’CNN_2’) belonging to the SAME malware family

def inter_models_SSIM(I, CNN_1, CNN_2):

fam_avg = 0

# Iterate over all images

for i in I:

# Generating heatmaps h_1 and h_2 from the same input i but

# different CNN models

h_1 = grad_cam(CNN_1, i)

h_2 = grad_cam(CNN_2, i)

# adding the SSIM value to fam_avg

fam_avg = fam_avg + SSIM(h_1,h_2)

# calculate average SSIM of I where len(I) returns cardinality of I

fam_avg = fam_avg / len(I)

return fam_avg

Listing 1: Simplified python code to calculate the IM-SSIM metric for two DL
models CNN 1 and CNN 2 and a given malware family.

IM-SSIM. This metric evaluates the performances of different trained models
on the same test set by exploiting the differences in the heatmaps for the same
malware family. Specifically, given a malware family and a couple of trained
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models, we take the set of input images that were classified into that family by
both of the models. Then, we generate the two heatmaps for each input image,
one for each model under analysis, and compare them with the SSIM metric. The
SSIM values for each couple of heatmaps are summed up for all the input images
classified into that malware family and the average is computed. The IM-SSIM
value represents how much the two models differ in classifying the same samples
for that specific malware family.

If the training is correct, the model will highlight in the input image the pat-
tern that represents the malware payload, the peculiar pattern for that malware
family and the only one that contains the malicious behaviour. Nevertheless, we
do not have the information on the payload localization, thus, evaluating only
the accuracy performance may lead to incomplete and misleading models. The
IM-SSIM contributes to overcoming this problem by evaluating the model infer-
ence among a set of trained models. Intuitively, the heatmaps should be very
similar across different models, because they should highlight the same pattern
in the input images, and then IM-SSIM should tend to 1. If so, we can exploit
this information and shrink the area to look for the family pattern. Otherwise,
it means that (at least) one of the models (may also) correctly classify a sample
but using an incorrect pattern, not the one peculiar to that malware family.

# Assuming that ’I’ contains all the images classified by model ’CNN_1’

# belonging to the SAME malware family

def intra_family_SSIM(I, CNN_1):

fam_avg = 0

# map grad_cam(i,CNN_1) to all images ’i’ in I and collect

# all the heatmaps in ’H’

H = get_heatmaps(I, CNN_1)

# generate all combinations of size 2 of H

P = combinations(H, 2)

# Iterate over all combinations of H

for (h_1, h_2) in P:

# adding SSIM values to single_avg

fam_avg = fam_avg + SSIM(h_1, h_2)

# calculate average SSIM of H, where len(H) returns cardinality of H

fam_avg = fam_avg / len(H)

return fam_avg

Listing 2: Simplified python code to calculate the IF-SSIM metric for a DL model
CNN 1 and a given malware family.

IF-SSIM. The second novel metric focuses on a single model, and outputs
information on how much the heatmaps of the same model and the same malware
family differ from each other. While the IM-SSIM works on a subset of models,
the IF-SSIM provides information on a single model, for a specific given malware
family.
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Once the model is trained, we take the set of input images classified into a
specific family and generate the heatmaps. Then, we calculate the SSIM of each
heatmap compared with any other, and we compute the average SSIM value.
Finally, the IF-SSIM is computed as the average of these averages SSIM values.
This algorithm requires many calculations, but it can be proved [2] that the result
value is equivalent to calculating the average SSIM value of all the combinations
of the list of heatmaps, which requires half of the operations; Listing 2 shows
this more efficient approach.

These two metrics (i.e. the IM-SSIM and IF-SSIM) can be used in conjunction
with the classical measure performance metrics (such as accuracy, precision,
recall, F-measure and AUC) to provide a wider analysis of the DL models, also
in case of unknown target patterns in the dataset samples. It is worth noting that
both the metrics apply to the classified samples set, which also (may) contains
misclassifications, and do not take into account the sample true label. Indeed, the
metrics can be used in a real-world scenario with new and not labelled samples,
because they evaluate the overall robustness of the model inference step, instead
of single sample accuracy (unknown for unlabelled samples).

4 Experiments

Dataset. We collect 15726 malware samples split into 26 families (25 malware
families and 1 trusted class). Each malware family count around 500 samples,
except the Ransom and the Trusted ones which gather around 2000 samples
each. Namely, all the malware family are: Agent, Allaple, Amonetize, Androm,
Autorun, BrowseFox, Dinwod, Elex, Expiro, Fasong, HackKMS, Hlux, Injector,
InstallCore, MultiPlug, Neoreklami, Neshta, Ransom, Regrun, Sality, Snarasite,
Stantinko, Trusted, VBKrypt, and Vilsel. The DL models performance results
(see Table 1) take into account the entire dataset, but due to the paper’s limited
length, we analyse only a couple of interesting families in detail (see Table 2).
The GitHub repository [2] reports also the complete experimental results for all
the families. The dataset samples were split into training, validation and test
set, with a ratio of 80/10/10 respectively, and equally distributing the family
samples.

Results and Discussion. We trained two different CNN models architecture,
which we refer to with the name of CNN and VGG16. The main difference
between them is the size of the architecture: the so-called CNN counts only 6
layers, instead of the 16 layers of the VGG16. The purpose of our experiments
was to prove the usefulness of the new performance measures in the case of
similar DL models. The complete DL architectures and experiments detail is
reported in [2].

Table 1 reports the test results of the two DL models. Both models were
trained on the same size input image (250 × 250 pixels in RGB colour). The
results are comparable but the CNN performed slightly better than the VGG16.
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Table 1. Comparison between the results on the test set.

DL model CNN VGG16

Img size x channels 250 x 3

Epochs & Batch Size 20 & 32

Layers 6 16

Loss 0.35 0.327

Accuracy 0.934 0.93

Precision 0.951 0.936

Recall 0.927 0.926

F-Measure 0.939 0.931

AUC 0.989 0.99

Table 2. Performance results on a subset of malware families.

Model Acc. Prec. Recall F-Meas. AUC IF-SSIM IM-SSIM

Hlux CNN 1.000 1.000 1.000 1.000 1.000 0.925 0.333

VGG16 0.996 0.893 1.000 0.943 0.998 0.952

Neoreklami CNN 0.998 0.980 0.960 0.970 0.980 0.649 0.493

VGG16 0.999 1.000 0.980 0.990 0.990 0.668

Ransom CNN 0.994 0.966 0.985 0.975 0.990 0.247 0.272

VGG16 0.987 0.950 0.945 0.947 0.969 0.452

Sality CNN 0.978 0.683 0.549 0.609 0.770 0.280 0.272

VGG 0.980 0.711 0.627 0.667 0.810 0.478

Trusted CNN 0.969 0.838 0.897 0.866 0.937 0.285 0.280

VGG16 0.966 0.817 0.897 0.855 0.936 0.470

Vilsel CNN 1.000 1.000 1.000 1.000 1.000 0.782 0.199

VGG16 1.000 1.000 1.000 1.000 1.000 0.876

On the other hand, the results in Table 2 shows that the models are not so
robust as evaluating the standard measure performances only would express.
The DL models on the Hlux family (as reported in Table 2) achieved very high
accuracy values, and also very high IF-SSIM values, both of the models. There-
fore, both of the models use one (and only) specific area of the input samples
to classify (correctly) the malware; they use only the information in this limited
input area to perform the classification since the IF-SSIM tend to 1, thus the
heatmaps are all similar. Nevertheless, the IM-SSIM value of 0.333 means that
the models do not agree: the input area used by one model is different from the
area of the other. Similarly, it happens for the Vilsel family, that reports a lower
IM-SSIM value of 0.199. Instead, the Neoreklami family appears to have a higher
IM-SSIM and similar IF-SSIM values; the two models appear to have found a
similar input area/pattern to classify these samples with very good accuracies.

One more interesting result is coming from the comparison between the Ran-
som and Sality families. The models have comparable IM-SSIM and IF-SSIM
but different accuracy performances. Finally, the IF-SSIM help in evaluating the
Trusted class, which is the only class that gathers executables that do not have
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a shared common pattern. In this case, the IF-SSIM value should be low because
the heatmaps should differ. This can also be useful for assessing the quality and
diversity of the Trusted samples.

5 Conclusion and Future Works

This paper proposes a CNN model for Image-based malware family classification.
We tested the DL model on 15726 malware samples, split into 25 malware fam-
ilies and 1 Trusted class, and we achieved 0.934 accuracy on the test set. Also,
we propose two novel performance metrics (intra-family-SSIM and inter-models-
SSIM ) to help the analysis of the DL performances; the metrics do not require
prior knowledge on the dataset or the task, and they contribute to formalize and
consider robustness and reliability in the classification process.

Despite the fact that the IF-SSIM and IM-SSIM can be used without any
prior knowledge of the classification task, more experiments are needed to study
the average values and improve the readability of these metrics, such as adding
text explanation for given values ranges.

Also, the authors plan to extend this work by experimenting with more DL
models and a larger dataset, and testing the usefulness of the metrics when
evaluating adversarial samples.
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Abstract. Differential privacy is the standard privacy definition for per-
forming analyses over sensitive data. Yet, its privacy budget bounds the
number of tasks an analyst can perform with reasonable accuracy, which
makes it challenging to deploy in practice. This can be alleviated by
private sketching, where the dataset is compressed into a single noisy
sketch vector which can be shared with the analysts and used to perform
arbitrarily many analyses. However, the algorithms to perform specific
tasks from sketches must be developed on a case-by-case basis, which is
a major impediment to their use. In this paper, we introduce the generic
moment-to-moment (M2M) method to perform a wide range of data
exploration tasks from a single private sketch. Among other things, this
method can be used to estimate empirical moments of attributes, the
covariance matrix, counting queries (including histograms), and regres-
sion models. Our method treats the sketching mechanism as a black-box
operation, and can thus be applied to a wide variety of sketches from the
literature, widening their ranges of applications without further engi-
neering or privacy loss, and removing some of the technical barriers to
the wider adoption of sketches for data exploration under differential pri-
vacy. We validate our method with data exploration tasks on artificial
and real-world data, and show that it can be used to reliably estimate
statistics and train classification models from private sketches.

Keywords: Privacy · Differential privacy · Sketching · Sketched
learning

1 Introduction

The amount and level of detail of data collected has increased exponentially over
the last two decades. Behavioral data has evolved from hand-collected medical
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records to GPS traces automatically recorded with a temporal resolution on
the scale of seconds. While this increased availability and precision of data has
resulted in tremendous advances in research, they raise serious privacy concerns.
Modern datasets often contain highly detailed summaries of our lives, and are
notoriously hard to anonymize. Individuals have indeed been shown to be easily
re-identifiable in large-scale behavioral datasets, such as mobile phone meta-
data [27], credit card data [28] and web browsing data [5].

Differential privacy (DP) [14] was introduced by Dwork et al. as a prop-
erty of algorithms that protect the privacy of users in a dataset. It requires for
a randomized algorithm’s outputs to be distributed approximately identically
whether any one individual is in the dataset or not. The discrepancy between
distributions is controlled by a parameter ε known as the privacy budget. DP is
considered by many to as the gold standard definition for privacy loss in aggre-
gated data releases. DP mechanisms have been deployed by institutions with
access to large datasets, such as Google to measure changes in mobility patterns
caused by confinement measures [2], LinkedIn to answer analytics queries [21],
and the US Census for the 2020 Census [1].

Most applications of DP remain limited to specialized tasks on large datasets.
Indeed, each differentially private access to a dataset consumes some privacy
budget ε, and the total acceptable budget is fixed by the data owner for the
dataset. Once this budget has been used entirely, the dataset must be discarded.
As such, the number of accurate statistical tasks an analyst can run on a dataset
is capped. This strongly limits the utility of differential privacy in practice.
In particular, data exploration with DP is particularly challenging: it requires
analysts to establish which analyses they want to perform on the dataset, and
how to divide the budget between them, before accessing the data.

An increasingly popular solution to this issue is to first compute a differ-
entially private summary of the data, called a private sketch, which is then
shared with analysts. Once computed, the private sketch can be used as much
as desired to solve new learning tasks without accessing the data anymore or
using additional privacy budget. This follows from the post-processing prop-
erty of DP. Sketches have long been used as a technique to compress large-scale
datasets to reduce the computational load of algorithms. In this work, the sketch
of a dataset is defined as the empirical average of some feature map function
Φ over all records in a dataset D: zD = 1

|D|
∑

xi∈D Φ(xi). The choice of fea-
ture map controls the specificity of the information contained in the sketch. For
example, researchers have proposed sketches based on Random Fourier Features
(RFF) [35] and locality-sensitive hashing [11] that approximate kernel density
estimates of the empirical distribution. For some specific sketches and tasks, algo-
rithms with strong theoretical guarantees of accuracy have been developed [17].

However, performing arbitrary data analysis tasks from sketches is difficult,
as extracting the desired information from a highly compressed representation
of the data is challenging. Each specific task and feature map Φ would require
a dedicated algorithm designed by experts. For instance, RFF sketches have in
practice only been used for a few tasks, such as Gaussian mixture modeling
(GMM) [22] or k-means [23]. Developing compressive methods for other data
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Fig. 1. Considered setup. The data curator releases “once and for all” a private
sketch with privacy budget ε. The analyst then chooses a function f and uses our M2M
method to learn a vector a ∈ R

m such that ˜f = 〈a, ẑD〉 approximates the empirical
average value of f over the dataset, f = 1

n

∑

i f(xi). This procedure can be repeated
any number of times (for various choices of f) without additional privacy budget.

exploration tasks remains an open problem. This is the main obstacle to using
sketches for general data analysis.

In this paper, we introduce a heuristic to learn from dataset sketches
as shown in Fig. 1, which we call the moment-to-moment (M2M) method.
M2M allows to approximate empirical averages of functions f from the sketch,
1

|D|
∑

xi∈D f(xi), and can in principle be applied to any feature map Φ. This
method is inspired by approximation techniques for kernel methods using ran-
dom features [25,32]. We empirically validate our method with artificial
and real-world data, and show that a variety of tasks (moment estimation,
counting queries, covariance estimation, logistic regression) can be learned from
sketches with comparable performances to alternatives (synthetic data).

2 Background

2.1 Sketches

Sketches are compressed representations of data collections, which can be used to
perform some operations efficiently but approximately [6,12]. Sketches usually
rely on randomness to achieve a compact representation size. This comes at
the price of a probabilistic approximation error. This general principle finds
applications in a broad set of contexts, from data streams [16,26] to randomized
linear algebra [13]. Here, we focus on sketches that compress the dataset D =
(x1, . . . , xn) to a single sketch vector zD ∈ R

m by computing the average of a
nonlinear feature map Φ, applied to each record xi.

Definition 1. Given a feature map Φ : R
d → R

m, the sketch of a dataset
D = (x1, . . . , xn) ∈ D is

zD � ΣΦ(D)
|D| = 1

n

∑n
i=1 Φ(xi) ∈ R

m, (1)
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with n = |D| the dataset size and ΣΦ(D) =
∑n

i=1 Φ(xi) the sum of features.

The representation (ΣΦ(D), |D|), where the sum-of-features and dataset size
are distinctly encoded, is often used in practice to make it possible to further
combine sketches of different datasets into a single one [12].

Typically, sketches are constructed such that scalar products approximate
a specific similarity score (called kernel κ : R

d × R
d → R+), 〈Φ(x), Φ(x′)〉 �

κ(x, x′) ∀x, x′ [30]. This means that they can be used for kernel density estima-
tion (KDE) , i.e. building an approximation of the data distribution pX by a
density p̂(x) � 1

n

∑n
i=1 κ(x, xi) ≈ 〈φ(x), zD〉.

The feature map Φ should be designed such that the sketch zD captures
enough information to solve a target learning task (i.e. the sketched KDE density
p̃ accurately represents the true data distribution pX) while compressing the
data as much as possible (i.e. the sketch size m should be small). We here review
several important feature map choices.

Histograms. Histograms and contingency tables have been extensively studied
in the DP literature [14]. Both can be seen as a illustrative examples of sketches
(in the sense of Definition 1), where the feature map is

ΦHIST(x) � (I{x ∈ Pi})i=1,...,m ∈ {0, 1}m,

where (Pi)
m
i=1 is a list of subsets of the data domain R

d, and I{A} is the indicator
function which returns 1 (resp. 0) whenever A is true (resp. false). For 1-D
histograms with nbins bins for example (what we call the HIST sketch), these sets
are the one-dimensional bins along each component. For this sketch, m = d·nbins.

RFF Sketches. Random Fourier Features (RFF) aim to approximate shift-
invariant kernels κ(x, x′) = K(x − x′). They were initially introduced to accel-
erate kernel methods in machine learning [32].

Definition 2 (Random Fourier Features). Given m′ = m
2 “frequency vec-

tors” Ω = [ω1, . . . , ωm′ ] ∈ R
d×m′

drawn ωj ∼i.i.d. Λ, the RFF map is defined
as:

ΦRFF(x) �
[
cos(xT Ω), sin(xT Ω)

]T ∈ R
m.

The idea is that shift-invariant kernels can be decomposed as K(x − x′) =
Eω∼ΛeiωT (x−x′) where the probability distribution Λ is the kernel Fourier trans-
form Λ(ω) =

∫
K(u)e−iωT udu (owing to Bochner’s theorem [34]). For example,

the Gaussian kernel κ(x, x′) = exp
(−‖x − x′‖22/2σ2

)
admits a Gaussian distri-

bution as Fourier transform, Λ = N (0, σ−2Id). One can then show [32] that up
to a constant scaling, ΦRFF satisfies the kernel equation for this kernel.

RFF sketches have been successfully used for parametric density estimation
tasks, such as k−means [23] and Gaussian Mixture Modeling [22], reducing the
computational resources required by orders of magnitude on large-scale datasets.
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RACE Sketches. The Repeated Array-of Counts Estimator (RACE) sketch
was proposed [11] as an alternative way to approximate KDE for so-called LSH
kernels. In RACE, the feature map Φ takes binary values, and is constructed
by concatenating R independent hashing functions that each map to W dis-
tinct buckets. The size of the sketch is thus m = R · W . RACE sketches use
locally-sensitive hash (LSH) functions: let W ∈ N0, a family H of hash func-
tions h : R

d → {1, ...,W} is locally-sensitive with collision probability κ if
PH [h(x) = h(x′)] = κ(x, x′) for all x, x′ ∈ R

d.

Definition 3 (Repeated Array-of Counts Estimator). Given W ∈ N0,
hj , j = 1, ..., R, a set of R = m

W hash functions drawn independently from H, the
associated RACE map is defined as:

ΦRACE(x) �
[
ι(h1(x))T , ..., ι(hR(x))T

]T ∈ {0, 1}m,

where ι : {1, ...,W} → {0, 1}W denotes the one-hot encoding operation.

Similarly to RFF, one can show [11] that for all choices of LSH, there exists
a kernel κ such that the kernel equation is satisfied.

2.2 Differential Privacy

Differential privacy (DP) [14] is seen as the standard definition of privacy for
aggregate data releases. It states that the distribution of a differentially private
algorithm’s output is similar for any two neighboring datasets. Different rela-
tions can be considered, but in general (and for the rest of this manuscript), we
consider that two datasets are neighbors if they differ by the addition or removal
of any one record; this is known as “unbounded” DP1. The guarantees of DP
are characterized by a privacy “budget” ε > 0 which bounds the information
disclosure from the dataset. Denote by D the set of all datasets, equipped with
a neighboring relation ∼. In this work, we consider datasets as collections of
d-dimensional real-valued vectors xi ∈ R

d.

Definition 4 (Differential Privacy). A randomized mechanism M : D →
R

m is ε-differentially private iff ∀D ∼ D′ ∈ D, ∀S ⊂ R
m:

P [M(D) ∈ S] ≤ eε
P [M(D′) ∈ S] .

Differential privacy has several desirable properties. First, composition guar-
antees that accessing the same dataset with N different mechanisms respectively
using budgets ε1, . . . , εN uses a total budget of at most εtotal =

∑N
i=1 εi. Sec-

ond, post-processing ensures that once some quantities have been computed by
a differentially private algorithm, no further operation on these quantities can

1 We consider only unbounded DP for conciseness, yet the private sketches from
Sect. 2.3 can be extended in a straightforward manner to the bounded DP setting.
In this case no noise needs to be added to the denominator in (2).
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weaken the privacy guarantees. The latter is particularly important for sketches,
as it implies that all analyses ran on a ε−DP sketch are ε−differentially private.

A common method to compute a function f over a dataset with ε-DP is the
Laplace mechanism [15]. For a target function f : D → R

m, this mechanism
adds centered Laplace noise with scale proportional to the sensitivity of f .

Definition 5 (Laplace Mechanism). The Laplace mechanism to estimate
privately a function f : D → R

m is defined as ML
f (D) = f(D) + ξ, where

ξj ∼ L(β), j = 1, ...,m is centered Laplace noise with scale parameter β = Δ1(f)
ε .

The sensitivity Δ1(f) is defined as Δ1(f) � supD∼D′ ‖f(D) − f(D′)‖1.

2.3 Differentially Private Sketching

We new consider privatized versions of the sketches in the form (1). As the
considered feature maps are bounded, their sensitivities are also easily bounded;
thus, the Laplace mechanism can be used to produce private versions of these
sketches. Following [8] we compute a sketch of the form

ẑD � ΣΦ(D)+ξ
|D|+ζ �

∑n
i=1 Φ(xi)+ξ

n+ζ , (2)

where ξj (j = 1, ...,m) and ζ are all Laplace random variables with scale param-
eter chosen according to Definition 5. For ξ, the scale depends on the sensi-
tivity of the sum-of-features function, which can be expressed as Δ1(ΣΦ) =
maxx ‖Φ(x)‖1, which can be computed as: m′√2 for RFF [8], R for RACE [11],
and k for HIST [14]. For ζ the scale parameter depends on the sensitivity of the
cardinality function which is always Δ1(| · |) = 1. The total privacy budget ε
is split across the numerator and the denominator, i.e. the noises ξ and ζ are
also respectively proportional to ε−1

num and ε−1
den, with ε = εnum +εden. As stated

above, such private sketches have already been considered in the literature and
are not a contribution of this paper: we simply use sketches of this form in order
to apply the M2M method introduced in the next section.

Although we focus on pure ε-DP in this manuscript for simplicity, private
sketches can easily be extended to satisfy approximate DP (also known as
(ε, δ)−differential privacy) using the Gaussian mechanism [15]. This requires
computing the L2 sensitivity of the feature map, see for example [8,18] for RFF.

2.4 Related Work

The key advantages of sketching methods for data analysis with differential pri-
vacy is that they produce a private “summary” of the dataset, from which an
arbitrary number of analyses can be performed. This idea of publishing a DP
summary of the data has been explored in the literature, e.g., by Barak et al. with
the release of full contingency tables [4]. As contingency tables do not scale with
the number of dimensions, further work has been proposed to publish so-called
“views” of the data, from which n−way marginals can then be computed [31].
Another type of data summary that has gained popularity in recent years is
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synthetic data, where the data curator publishes a dataset is “similar” to the
original data, but with no mapping from real to synthetic records. These usually
involve training a statistical model on the data, which is then used to generate
synthetic records, either explicitly [24,37] or using generative networks [36].

Kernel mean embeddings are known to carry a lot of information on the data
distribution and are thus of particular interest for privacy applications. Balog et
al. suggested to use synthetic data points in order to represent (possibly infinite-
dimensional) kernel mean embeddings in a private manner [3]. Finite-dimensional
approximations based on random Fourier features have been made private using
simple additive perturbation mechanisms with applications to clustering and
Gaussian modeling [8] as well as synthetic data generation [18]. More recently,
compact sketches based on Hermite polynomials have been proposed [29] and
have been shown empirically to provide a better privacy-utility tradeoff for pri-
vate data generation than random Fourier features.

Relating specifically to the M2M method, the idea of considering a learned
linear combination of random features (without privacy) has been popularized by
Rahimi and Recht [33], and then extensively studied under the name of “extreme
learning machines” (ELMs) [19,20]. The sketches considered in this paper can
be interpreted as instances of this idea, with an additional averaging operation
over the dataset. This is made possible by the fact that we only consider learning
moments of the data.

3 The Moment-to-Moment Method

Sketching methods can be used to efficiently perform specific learning tasks, and
can often be made private in a straightforward manner by additive perturbation;
however, extracting information from them is hard in general. Here, we introduce
the moment-to-moment (M2M) heuristic to learn a broad range of aggregate
statistics from a single sketch. While previous sketched learning methods were
relatively specific in the sense that both the feature map and the algorithm to
learn from the sketch had to be tailored to a specific machine learning task,
our heuristic can be used to approximate various kinds of statistics from the
same sketch. Although M2M can naturally be used on a non-private sketch, it
is particularly attractive for private sketches, as it allows an analyst to perform
arbitrarily many analyses from the sketches without incurring any additional
privacy budget.

In the following, we assume that the data curator holds a sensitive dataset
D of size n, chooses a data-independent feature map Φ, and releases publicly
the triplet (Φ, ẑD, n + ζ) where ẑD = 1

n+ζ (
∑n

i=1 Φ(xi) + ξ) is the private sketch
computed as in (2) and ξ, ζ are random and chosen as explained in Sect. 2.3 in
order to ensure ε-DP (i.e. they depend on the sensitivity of the feature map Φ).
Note that any result obtained by post-processing from this triplet will always
remain ε−DP.
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3.1 Method Description

Suppose that an analyst wants to compute the empirical average of an arbitrary
target function f : Rd → R over the dataset, i.e. the quantity f � 1

n

∑n
i=1 f(xi).

The M2M method estimates f by a linear function of the sketch 〈a, ẑD〉, where
the coefficients a ∈ R

m are computed by the method. Because both the input
(the sketch ẑD) and the output (the target average f) can be seen as “generalized
moments” (averages of some features of the data) of the dataset, this amounts
to transforming one type of generalized moment to another, hence the name of
our method.

In order to apply the method, an analyst chooses a priori a bounded domain
DM2M ⊂ R

d such that all possible records lie inside of DM2M (for example, DM2M

might be a box constrained by physical upper and lower bounds on the data
values). The principle of M2M is to approximate the target function f : Rd → R

over this domain DM2M by a linear model f̃ of parameters a ∈ R
m in the output

space of the sketch feature map Φ : Rd → R
m, i.e.,

f̃(x) � 〈a, Φ(x)〉 ≈ f(x), ∀x ∈ DM2M.

The key insight is that this linear model can then be used to estimate the dataset
average f from the dataset sketch zD, since the sketching operator is linear:

f̃(zD) = 〈a, zD〉 = 1
n

∑n
i=1〈a, Φ(xi)〉 ≈ 1

n

∑n
i=1 f(xi) = f. (3)

Intuitively, the target function f(·) is approximated by a linear combination
〈a, Φ(·)〉 of a set of m base functions (the components of the feature map, Φi(·)).
The quality of the approximation depends on the compatibility between the
feature map Φ and the function to approximate f . Zhang et al. [38] showed that
such a linear combination can approximate continuous functions arbitrary well
for a large enough number of features m, under conditions satisfied by many
standard feature maps. This suggests that M2M can be used to approximate
any continuous function f for a large array of sketches, although quantifying
precisely how the approximation quality decreases with m is out of the scope
of this paper. It should also be expected that approximating a discontinuous
function f with, e.g., RFF features will lead to high approximation error (e.g.,
some kind of Gibbs phenomenon).

We illustrate M2M with a toy example in Fig. 2. We consider the step function
f(x) = I{x ≥ 0.5} restricted to the domain DM2M = [0, 1] ⊂ R

d=1. For RFF,
the approximation f̃(x) is a linear combination of cos(ωT

i x) and sin(ωT
i x), for

some fixed ωi, which explains the bumps observed in the approximation (Gibbs
phenomenon). The RACE feature map, whose base functions are the one-hot
encoding of locally-sensitive hash functions, approximates f by a piecewise con-
stant function.

3.2 Optimizing the M2M Model

For the results produced by the M2M method to be useful, the parameters of the
linear model a need to be chosen such that f̃(·) is a good approximation of the
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f (x) = I{x ≥ 0.5}
f̂ (x) with ΦRFF

f̂ (x) with ΦRACE

f̂ (x) with ΦHIST

Fig. 2. How M2M works: the M2M method approximates the target function f as a
linear combination of components of the feature map,

∑m
i=1 aiΦi(x) ≈ f(x).

true function f(·) on the domain of interest. For this, we formulate and optimize
a loss function J for the vector of weights a that penalizes differences between f
and f̃ . The full learning procedure is described in Algorithm 1 in Appendix B.

Similarly to Rahimi et al. [32], we use the squared difference as distance,
d(f(x), f̃(x)) = (f̃(x) − f(x))2. Assume that the records xi ∈ D are drawn from
some (unknown) probability distribution xi ∼i.i.d. pX . Ideally, the M2M proce-
dure would minimize the average error of the approximation over the true data

distribution pX , Jideal(a) = EX∼pX

[

d
(
f(x), f̃(x)

)2
]

. However, the analyst only

has access to the private sketch and does not know pX , let alone the data D.
Instead, they choose an a priori distribution ψ that is either (1) close to pX ,
or (2) likely to yield a good approximation where pX takes significant values

when optimizing for the (approximate) loss Jψ(a) = EX∼ψ

[

d
(
f(x), f̃(x)

)2
]

.

In this work, we assume no prior knowledge except for the domain DM2M and
thus use the uniform distribution on this domain ψ = Unif(DM2M), follow-
ing the principle of maximum entropy. Finally, since evaluating the expectation
operator analytically can be challenging for arbitrary ψ, f and Φ, especially in
high dimensions, we approximate it by sampling a large number ns of training
synthetic data points (x̃i)

ns
i=1 sampled i.i.d. from ψ. The resulting loss, given a

choice of ψ, is:

Jnoreg(a) = 1
N

∑N
i=1 (f(Xi) − 〈a, Φ(Xi)〉)2 X1, . . . , XN ∼i.i.d. ψ

However, minimizing Jnoreg directly is not robust to noise, and in particular
to the noise added to obtain differential privacy. Indeed, when applying the
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linear model a from (3) to the private data summary ẑD, we get (neglecting, for
illustration, the noise ζ on the denominator):

〈ẑD, a〉 = 〈 1
n

∑n
i=1 Φ(xi) + ξ, a〉 ≈ 1

n

∑n
i=1 f(xi) + 1

n 〈ξ, a〉.

Hence, the noise on the numerator ξ causes an error in the M2M estimate of
variance σ2

ξ‖a‖22/n2. To account for this noise, we add a term proportional to its
variance to the loss function J :

J(a) � EX∼ψ

[
(f(X) − 〈a, Φ(X)〉)2

]
+ λ‖a‖22, (4)

where we set the regularization parameter λ to the value σ2
ξ/n2. We prove that

this loss J is an upper bound for the mean square prediction error between f̄
and the M2M estimate 〈a, ẑD〉 (see proof in Appendix A).

Theorem 1. Let Φ : R
d → R

m be a feature map, DM2M ⊂ R
d, and D be

a random dataset of n records X1, . . . , Xn ∼i.i.d. ψ. For all a ∈ R
m, and all

distributions ψ, if λ = σ2
ξ/n2 and ζ = 0, we have that, if ζ = 0:

J(a) ≥ EX1,...,Xn, ξ

[(
1
n

∑n
i=1 f(Xi) − 〈a, ẑD〉)2

]

Since the exact dataset size n is not directly available to the analyst, we use
|D|+ζ as an estimation of n. Further to this, we found empirically that using λ =
σ2

ξ

n2 makes the model insufficiently robust to noise (especially when the sensitivity
of the feature map is large). We thus use a larger regularization parameter in
experiments by removing the square on the estimated number of samples.

λ = σ2
ξ

(|D|+ζ) = 2·Δ1(Φ)2

ε2
num·(|D|+ζ) . (5)

Solving for J . Let (x̃i)ns
i=1 denote the set of random training samples used inside

the M2M procedure. Denote the synthetic feature matrix P = (Φ(x̃i))
ns
i=1 ∈

R
ns×m, and the vector of corresponding outputs F = (f(x̃i))

ns
i=1 ∈ R

n. The
empirical loss that M2M optimizes is J(a) = 1

ns
‖P · a − F‖22 + λ‖a‖22. This

corresponds to a ridge regression problem with regularization parameter λ, and
can be solved efficiently.

3.3 Sources of Error

M2M is a heuristic method to approximate f̄ , and as such will always incur some
error. We here outline the four main sources of error of M2M.

1. Sampling error : The expectation operator in the cost function J(a) is not
computed exactly, but estimated by sampling ns points x̃i ∼ ψ. If ns is too
small, this estimate can be inaccurate, and the model a risks “overfitting” to
the small training set.
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2. Approximation error : M2M finds coefficients a such that the linear combina-
tion f̃(·) = 〈a, Φ(·)〉 =

∑m
i=1 aiΦi(·) approximates the target function f . In

general, even if a is the exact minimizer of J(a), there remains some inherent
approximation error which depends on the compatibility between the feature
map Φ and target function f .

3. Distributional shift : In practice, the empirical distribution pX differs from
the probability distribution ψ used for training. Distributional shift is a hard
problem to fix, as it requires tailoring ψ to pX without accessing the data, or
only through the sketch. We discuss this in Sect. 5.

4. Differential privacy noise: Finally, the noises ξ and ζ added in the computa-
tion of the sketch ẑD further distort the representation. This error decreases
when the privacy budget ε increases.

3.4 Statistical Estimation with M2M

Many learning tasks can be written as the estimation of some generalized
moments of the data. Here we give some common examples.
1. Moments: The jth component of the kth moment of the empirical data
distribution is defined as

m
(k)
j = 1

n

∑n
i=1(xi)k

j ≈ EX∼pX
Xk

j ,

which is the empirical average of the function f (j,k) : Rd → R : x �→ xk
j .

2. Counting queries: Given a set S ⊂ R
d, a counting query over D consists of

finding the number of data points from the dataset D that belong to S:

COUNT(D,S) = |{i ∈ {1, . . . , n} : Di ∈ S}| =
∑

1≤i≤n fS(xi).

where fS : Rd → {0, 1} : x �→ I{x ∈ S} denotes the indicator function of S.
Histograms are a specific subset of counting queries, where the set S is chosen
to be a one-dimensional “bin”.
3. Covariance: The (i, j)th entry of the empirical covariance matrix is

cij = 1
n

∑n
l=1((xl)i − μi) · ((xl)j − μj),

which is the empirical average of the function f (i,j) : R
d → R : x �→ (xi −

μi)(xj −μj). The mean of the component i, μi, can be estimated using M2M for
the first-order moment, m

(1)
i .

3.5 Classification and Regression by Approximation of the Loss

Many learning tasks can be formulated as learning a parametric model with
parameter θ using a loss function L. For such tasks, one will typically solve
the optimization problem θ∗ ∈ arg minθ

1
n

∑n
i=1 L(xi, θ), whose objective func-

tion takes the form of a generalized moment. Specifically, for a classification or
regression task, the analyst wants to fit some model Fθ : Rd−1 → R parame-
terized by θ ∈ R

p to the data samples (xi)n
i=1, where each sample xi is a pair
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xi = (xi ∈ R
d−1, yi ∈ R). If the fitting quality is quantified by a loss function

l(., .), one can define Lθ(xi) � L(xi, θ) � l (Fθ(xi), yi) and M2M can be used
with the target f = Lθ for any fixed value of θ. Finding the optimal parameter
θ∗ involves solving the following bi-level optimization problem:

θ∗ ∈ arg min
θ

〈aθ, ẑD〉 such that aθ ∈ arg min
a

Jθ(a) (6)

where Jθ is the M2M objective associated to the target function Lθ. As men-
tioned in Sect. 3.2, solving for a is a ridge regression a problem, which has a
closed-form solution (given synthetic samples x̃ used to compute J) of aθ =

S · ∑ns
i=1 Φ(x̃i)Lθ(x̃i) where S =

(
1
ns

∑ns
i=1 Φ(x̃i)T Φ(x̃i) + λI

)−1

. We then
use this result in Eq. 6 to formulate the dual optimization problem as an opti-
mization problem in θ∗:

θ∗ ∈ arg min
θ

ns∑

i=1

Φ(x̃i)T · S · ẑD
︸ ︷︷ ︸

�w(x̃i)

· Lθ(x̃i)

This method, which we call implicit-M2M, computes a weighting function
w : Ω → R from the feature map Φ, private sketch ẑD, and regularization coeffi-
cient λ, independently of the loss. This weighting function is used to weigh the
contribution of each synthetic points to the total loss. Any learning procedure,
such as gradient descent, can then be applied to the re-weighted loss.

4 Experiments

We empirically evaluate the M2M method on a range of data analysis tasks on
artificial and real data. We perform our analyses on the LifeSci dataset, a real-
world dataset of life sciences measurements (n = 2.7 · 104 records and d = 10
attributes), which we normalize to Ω = [0, 1]d. In order to analyze the different
sources of errors independently, we perform the same analyses on a uniformly
sampled artificial dataset of same shape (n, d), which we call Random10. Since
the training distribution ψ is equal to the empirical distribution pX , there is no
distributional shift, and the error observed in the results for Random10 is thus the
combination of approximation error, sampling error and the DP noise addition.

We sketch each dataset the using RFF (m = 200, σ = 1), RACE (R =
W = 80), and HIST (marginals of each attribute, nbins = 100 bins of same size
in [0, 1]), and add noise to ensure DP with privacy budget ε ∈ [10−2, 102], as
described in Sect. 2.3. For all sketches, we split the privacy budget as εnum =
0.98 ε and εden = 0.02 ε. We train M2M models with ns = 105 samples, which
empirically results in very low sampling error (training and testing R2 scores
almost identical). We repeat each experiment 50 times and report, for each task,
the average accuracy over all runs.

An alternative to sketches is synthetic data generation (SDG), where a sta-
tistical model is fit to the real data, and so-called synthetic data are then gen-
erated by sampling from this model. We compare our results with datasets
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generated using three differentially private SDG methods: DP-Copula [24],
PrivBayes [37], and DP-WGAN [36]. The latter method relies on a relaxed
definition of differential privacy, (ε, δ)−DP, and hence the guarantees provided
are weaker. In our experiments, we use δ = 10−5. For each SDG and ε, we gen-
erate 10 synthetic datasets from LifeSci, and perform the tasks of interest on the
synthetic data (by computing the empirical average of the functions f on the
synthetic data), reporting the average over all runs.

4.1 Tasks Involving Columns in Isolation

As a first illustrative example, we consider a range of simple tasks where the
function learned with M2M only concerns one attribute in isolation. For each
sketch and each column in the datasets, we train a M2M model to predict (1) its
mean 1

n

∑n
i=1 xi, (2) its order 2 moment 1

n

∑n
i=1 x2

i , and (3) its cumulative dis-
tribution function (CDF) in 10 equi-distant points

(
1
n

∑n
i=1 I{xi ≤ Sj}

)10
j=1

. We
then measure the error obtained between the predicted value and the empirical
value using mean relative error (MRE) MRE(μ̂, μ) = |μ̂−μ|

μ for (1) and (2), and
the Earth-Mover Distance (EMD) for (3) For each task, sketch, and dataset, we
report the average error across all attributes in Fig. 3.
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Fig. 3. Estimation of one-dimensional statistics over a random artificial
dataset (top row) and LifeSci (bottom row). We estimate the mean, second-
order moment, and CDF of each attribute using M2M on three sketches (RFF, RACE,
and HIST), and synthetic datasets (generated using DP-Copula, PrivBayes, and DP-
WGAN). We estimate the covariance matrix and the answer to a large number of
random counting queries using M2M on three sketches (RFF, RACE, and HIST), and
synthetic datasets (generated using DP-Copula, PrivBayes, and DP-WGAN).

We show that, in the absence of distributional shift, M2M can be used to
estimate single-variable tasks with good accuracy. As expected, the HIST sketch
performs well on all tasks and for both datasets, since it is specifically designed
to approximate one-dimensional distributions. However, distributional shift (in
LifeSci) worsens results significantly for all feature maps. This is particularly
true for CDF, where the RFF and RACE feature maps result in high error,
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probably due to high approximation error. Comparing with synthetic data, we
find that the RFF sketch compares favorably with both PrivBayes and DP-
WGAN (especially when ε ≥ 1), while the RACE sketch leads to less useful
results. DP-copula datasets outperform both sketches, which is to be expected
since the method explicitly estimates marginals.

We further analyze the different sources of error in Table 1. We report the
mean relative error on the first moment E[X] obtained with either the exact
sketch (ε = +∞) or the private sketch with parameter ε = 1, for the RFF and
HIST feature maps, on both datasets. For the HIST feature map and ε = +∞,
we find the M2M coefficients using a small regularization λ = 10−9 (for numeric
stability). The error on the artificial dataset for ε = +∞ is the approximation
error of f , the irreducible error obtained when approximating f by a linear mix-
ture of components of the feature map Φi. We observe that this error is low for
the RFF feature map, which has strong approximation properties [32,38], and
higher for the HIST sketch, which roughly approximates a function as a product
of 1D piecewise constant functions. The second row (ε = 1) is the result of adding
DP error to the approximation error. DP error has a negligible impact on the
performances of the histogram sketch, as it is dominated by the approximation
error. The opposite applies to RFF, where the DP error is 5 orders of magnitude
larger. Results from the LifeSci dataset (rows 3 and 4) illustrate the impact of
distributional shift, when the distribution used to generate M2M’s training set
differs from the empirical distribution. For ε = 1, we observe that all resulting
errors are one order of magnitude larger, as a result of distributional shift. Fur-
thermore, as expected, when there is no DP error (ε = +∞), the approximation
error for LifeSci is higher than for the Random10, for both sketches. Hence,
distributional shift can have disparate effects on the resulting accuracy of the
method, by amplifying either or both of the approximation and DP error.

Table 1. Comparison of asymptotic, DP, and distributional shift errors: We
measure the RMSE on the first moment E[X] estimated with the M2M method and
the Random Fourier Features ΦRFF and HIST ΦHIST feature maps, on the artificial and
LifeSci datasets. We report the asymptotic error (no noise) and the error for ε = 1. All
results are averaged over 100 trials.

Dataset Budget MRE for ΦRFF MRE for ΦHIST

Random10 ε = +∞ 6.25 · 10−8 1.87 · 10−5

ε = 1 9.55 · 10−3 9.10 · 10−4

LifeSci ε = +∞ 1.67 · 10−6 5.91 · 10−5

ε = 1 4.20 · 10−2 3.8 · 10−3

4.2 Multi-column Tasks

We evaluate M2M on tasks that involve attributes taken together. First, we
compute the covariance matrix of the dataset, 1

n ((xi − μ̂i) · (xj − μ̂j))
n,n
i=1,j=1,
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using μ̂i estimated as above. We measure the Frobenius distance between the
estimated and empirical covariance matrices. Next, we perform a large number
of simple counting queries COUNT(D,S), where the query S is defined as the
conjunction of three predicates of the form Xi ≤ u or X ≥ l, for three different
attributes Xi,Xi′ ,Xi”. We report the Mean Absolute Error (MAE) between the
real query answers and the answers predicted by M2M.

Figure 3 reports the error decrease for both tasks and on each dataset as ε
increases. Similarly to the one-dimensional tasks (Fig. 3), we observe that M2M
estimations perform well on the Random10 dataset, and worse on LifeSci. Except
for PrivBayes, all synthetic datasets (and in particular, DP-Copula) outperform
M2M. The queries use case is particularly challenging to approximate with M2M,
as the target function f is not continuous. Finally, as expected, results for the
HIST sketch quickly plateau for all tasks and datasets.

4.3 Logistic Regression

We use the implicit-M2M method described in Sect. 3.5 to perform logistic regres-
sion from the private sketch of a dataset. We use real-world building occupancy
data [7] (d = 6, n = 20, 560) with 5 continuous attributes (building characteris-
tics) and a binary attribute (whether a building is occupied). This dataset is such
that the last attribute is strongly predicted by the continuous attributes, with
an AUC (area under curve) of >0.99. We normalize the continuous attributes to
[0, 1] and define Ω = [0, 1]5 × {0, 1} and ψ = Unif(Ω). We randomly separate
the data between training (90%) and testing (10%), then sketch the training
dataset using RFF (σ = 1,m = 200), RACE (R = 80,H = 80, σ = 0.1) and
HIST (nbins = 20) for a range of ε. Using implicit-M2M, we perform logistic
regression on each sketch and evaluate the result on the testing dataset. We
compare our results with Chaudhuri et al.’s DP-ERM [9], a dedicated method
to train a logistic regression with DP using objective perturbation.

We also generate synthetic datasets using the same SDG techniques as above.
We train a logistic regression using sklearn on each dataset 10 times, and measure
its AUC on the test dataset. It can happen that the synthetic dataset only has
one class for the last attribute; in this case we report the AUC to be 0.5.

In Fig. 4, we show that implicit-M2M compares remarkably well with DP-
ERM for the RFF feature map. While it leads to higher error, the RACE feature
map consistently produces an AUC of at least 0.9 for ε ≥ 0.3. Unsurprisingly, the
method performs poorly on the HIST feature map (AUC < 0.1, not featured on
the plot), which cannot, by definition, be used to estimate correlations between
attributes. Importantly, models trained with implicit-M2M compare favorably
with models trained on synthetic datasets using the same budget ε. As expected,
the task-specific DP-ERM outperforms all other methods, but this comes at the
cost of the entire budget ε. Our results suggest that implicit-M2M is a promising
solution to perform sophisticated learning tasks on sketches.
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Fig. 4. AUC of a logistic regression trained from sketches on the occupancy
dataset. We use implicit-M2M to fit a logistic regression to the occupancy dataset
from RFF and RACE sketches. We compare our results with the dedicated method
DP-ERM and three synthetic data generation methods.

5 Future Work and Conclusion

Distributional shift occurs when the distribution used to generate M2M’s training
set, ψ, differs from the data distribution pX . This is a significant source of error
in the method. We here propose a few options to reduce this error.

– Improving the approximation ψ ≈ pX using the sketch. KDE sketches are
built to approximate a kernel, encoding a kernel density estimate for the
data distribution: pX(x) ≈ 1

n

∑n
i=1 κ(x, xi) ≈ 〈Φ(x), ẑD〉. One could thus use

ψ : x �→ 〈Φ(x), ẑD〉. However, the approximate distribution 〈Φ(x), ẑD〉 can be
negative and is not robust to noise addition for privacy.

– Learning a generative model on the sketch [18] that, if accurately trained, gen-
erates synthetic data similar to the sketched dataset. These synthetic records
can then be used to train the M2M model, as their distribution psynth is likely
to be close to pX (or at least closer than ψ uniform). Although the synthetic
records could be used directly for the learning tasks, re-accessing the data
sketch through the M2M mechanism could yield greater utility.

– Solving the loss minimization problem on the real data using a differentially
private procedure. For instance, techniques such as DP-Empirical Risk Min-
imisation (DP-ERM) [10] could be applied – although this can be challenging,
since J is non-convex. While this method is most likely the best solution to
distributional shift, it requires additional privacy budget to learn the param-
eters of M2M, which contradicts the idea of data summaries.

A Proof of Theorem 1

Let JΣ , the left-hand side of the inequality, the mean squared error between
the empirical mean f and the estimation from the sketch f̃ . Denoting X =
(X1, . . . , Xn), we have
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JΣ = EX,ξ

[

(

1
n

∑n
i=1 f(Xi) − 〈a, 1

n

(∑n
i=1 Φ(Xi) + ξ

)〉)2
]

= EX,ξ

[

(

1
n

∑n
i=1 (f(Xi) − 〈a, Φ(Xi)〉) − 1

n
〈a, ξ〉)2

]

(i)
= EX

[

(

1
n

∑n
i=1 (f(Xi) − 〈a, Φ(Xi)〉)

)2
]

+ 1
n2Eξ

[〈a, ξ〉2]
(ii)
= n(n−1)

n2 · (EX [f(X)] − 〈a,EX [Φ(X)]〉)2
+ n

n2 · EX

[

(f(X) − 〈a, Φ(X)〉)2] + ||a||22 V[ξ]

n2

where we used in (i) the independence from ξ and X and the fact that
E [ξ] = 0, and in (ii) the fact that samples (Xi)1≤i≤n are independent (and V[·]
denotes the variance of a random variable). Finally, we use Jensen’s inequal-
ity (since x �→ x2 is convex) to show that (EX [f(X)] − 〈a,EX [Φ(X)]〉)2 ≤
EX

[
(f(X) − 〈a, Φ(X)〉)2

]
, which concludes the proof.

B M2M Learning Procedure

Input: Target function f , private data sketch (ẑD, n + ζ) with associated
feature map Φ and noise level σ2

ξ , a priori distribution ψ, number of
synthetic samples ns, (optional) additional regularization R = 1.

Output: f̂ , an estimate for 1
n

∑n
i=1 f(xi).

1 Get ns synthetic training samples x̃i ∼i.i.d. ψ;
2 Set regularization parameter λ = σ2

ξ/ (|D| + ζ) · R;
3 Get coefficients a = arg minα J(α), using the samples x̃i as estimation for ψ;

4 return f̂ = 〈a, ẑD〉 ≈ 1
n

∑n
i=1 f(xi).

Algorithm 1: M2M learning procedure: Given a dataset sketch ẑD and
a target function f : Rd → R, the procedure estimates the empirical mean
of f over D.
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Abstract. In the last decade, we have seen the proliferation of code-
reuse attacks that rely on deserialization of untrusted data in the context
of web applications. The impact of these attacks is really important since
they can be used for exposing private information of the users.

In this paper, we design a tool for automatic discovery of deserializa-
tion vulnerabilities for the Java language. Our purpose is to devise an
automatic methodology that use a set of program analysis techniques and
is able to output a deserialization attack chain. We test our techniques
against common Java libraries used in web technology. The execution of
our tool on such a dataset was able to validate the attack chains for the
majority of already known vulnerabilities, and it was also able to discover
multiple novel chains that represent new types of attack vectors.

1 Introduction

In the last decade, we see a propagation of code-reuse attacks in the context
of web applications [4,11,14]. The impact of these attacks is important, since
such vulnerabilities can be used for exposing several pieces of private informa-
tion like credit card numbers, social security numbers of the common users. One
example of this attack is direct to the agency Equifax, which exposes informa-
tion on 143 million of US users. This attack exploits a well-known vulnerability
named untrusted data deserialization in the web application context. In par-
ticular the insecure deserialization in the Apache Struts framework within a
Java web application ends up in remote code execution (RCE) on Equifax web
servers. The attack exploited the XML serialization data objects into textual
strings and inject malicious XML payloads into Struts servers during the deseri-
alization process. Such attacks show the need to systematically face code-reuse
attack problems at research level.

More precisely to exploit this type of vulnerability, an attacker should create
a custom instance of a chosen serializable class which redefines the readObject
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method. The object is then serialized and send to an application which will
deserialize it, causing an invocation of readObject and trigger the attacker’s
payload. Since the attacker has complete control on the deserialized data, he can
choose among all the Java classes present in the target application classpath, and
manually compose them by using different techniques (e.g., wrapping instances
in serialized fields, using reflection), and create an execution path that forces the
deserialization process towards a specific target (e.g., execution of a dangerous
method with input chosen by the attacker).

Recently researchers have published a paper that creates an automatic tool
for generating a deserialization attack exploit for .NET applications [21]. Such
an approach applies a practical field-sensitive taint-based dataflow analysis tar-
geting the CIL languages. The core of such analysis leverages inter-procedural
abstract interpretation based on method summaries, pointer aliasing, and effi-
cient on-the-fly reconstruction of the control flow graph. This method is very
specific for the CIL bytecode and it has not been tested on programming lan-
guages that use a different low-level representation such as Java bytecode.

Despite clear differences between Java bytecode and CIL, such representa-
tions also have similarities: both are low-level, object-oriented languages and
they store objects on the heap. Even though it is tempting to create an equiva-
lence between the two representations (e.g, applying the same analysis approach
on both low-level languages), such goal is not easy to achieve since the two
low-level representations work on languages with different characteristics (e.g.,
memory operations, safe pointer etc.). Such translation introduces issues about
the exact meaning of equivalence between CIL and its translation into Java byte-
code. Moreover, the translation should not introduce code artifacts that confuse
the analyzer and consequently produce false positives and/or false negatives [6].

In this paper we face the problem of detection of the deserialization vulnera-
bilities for the Java language. Our purpose is to devise an automatic methodology
that works directly on the language features and is able to output a potential
deserialization attack chains. Our methodology uses a different approach com-
pared with the one designed in [21]. In particular the analysis framework works
directly on constructs of the Java language: objects/method, data type etc. and
it designs an analysis which aims to discover potential attack Java deserializa-
tion chains that connect Java classes libraries. The advantage of working on the
language construct is the use of semantic information that can be extracted by
the rules of the language itself. As we will see in Sect. 3 such information is
used to improve the precision of the analysis and reduce false positives and false
negatives.

To this end we design a custom static data-flow analysis framework called
JChainz, that works directly on the Java language and combines the reaching
definitions and type propagation analysis for obtaining potential deserialization
attack vectors, such attack vectors they need to manually validate for obtaining
the final exploit. In particular our tool works in two main phases. In the first
phase the system builds up a call graph and data dependency graph that contain
the control-flow and data dependency information among the Java variables of
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the analyzed code (e.g., libraries of the target application). Goal of this phase is
to select execution links between the methods of different classes (e.g. execution
chains) in terms of execution call. Then, in the second phase, the system analyzes
the potential attack chains and validates them. The validation is applied by
propagating the variable type in the graph and marking the type inconsistencies.
Such techniques can help the system to exclude the majority of false positives
and select potential real attack vectors.

We test our techniques against the most common Java libraries used in web
technology. More precisely we select libraries from Apache Commons Collections
version 3.1 and 4.0. The Commons Collections libraries are included in a great
number of projects like for example on Apache Maven Central, where we can
find more than 2700 public artifacts that use such libraries. The results of our
experiments show our tool was able to validate the attack chains for the majority
of already known vulnerabilities, and it was also able to discover multiple novel
chains [16,17], new attacks that it has been confirmed in April 2022 by yososerial
research community [9].

In summary, the paper reports the following contributions:

– We present a systematic approach for discovering deserialization vulnerabili-
ties in Java applications including the framework and libraries that is based
on custom program analysis techniques.

– We design and develop a tool that is able to extract a deserialization attack
vector from the Java code and help the security analyst to fix the code of
the vulnerable applications. Our tool is open sourced (https://github.com/
Kigorky/JChainz) for future research.

– Our experiments show the effectiveness of our approach on finding new attack
vectors. We describe three new case study attacks and will also discuss the
limitations of our analysis and future improvements that consider reflection
and dynamic proxying techniques.

2 Background

In this section we describe background concepts for understanding the security
problems of deserialization of untrusted data in Java and we provide a real attack
example.

2.1 Deserialization Terminology

Java Object Serialization. Serialization is the process of encoding objects into
a stream of bytes, while deserialization is the opposite operation. Java deserializa-
tion is performed by the class Java.io.ObjectInputStream, and in particular by
its method readObject. A class is suitable for serialization/deserialization if the
following requirements are satisfied [19]: (1) the class implements the interface
Java.io.Serializable, (2) the class has access to the no-argument construc-
tor of its first non-serializable superclass. A class C can specify custom behavior

https://github.com/Kigorky/JChainz
https://github.com/Kigorky/JChainz
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for deserialization by defining a private void readObject method. If present,
such a method is called when an object of type C is deserialized. Other methods
can be defined to control deserialization process: (1) writeObject is used to
specify what information is written to the output stream when an object is seri-
alized (2) writeReplace allows a class to nominate a replacement object to be
written to the stream (3) readResolve allows a class to designate a replacement
for the object just read from the stream.

2.2 Running Attack Example

To describe an example of a real attack, we use a real vulnerability
present in Apache Common Collection libraries, and we show how an
attacker can pilot a deserialization process and execute a dangerous native
method. In Listing 1.2 we report the code for functions heapify, siftDown
and siftDownUsingComparator of class Java.util.PriorityQueue of Java
Framework. In Listings 1.3 and 1.4 we show methods compare of class
TransformingComparator and method transform of InvokerTransformer,
from library Apache Commons Collections 4. Listing 1.5 shows an hypotheti-
cal target class for executing a system command.

Listing 1.1. readObject in Java.util.PriorityQueue
private void readObject(Java.io.ObjectInputStream s) /∗ function a ∗/

throws Java.io.IOException,
ClassNotFoundException {

// Read in size, and any hidden stuff
s.defaultReadObject();

// Read in (and discard) array length
s.readInt() ;
queue = new Object[size];

// Read in all elements.
for (int i = 0; i < size; i++)

queue[i] = s.readObject();

heapify() ;
}

Listing 1.2. heapify and siftDownUsingComparator in PriorityQueue
private void heapify() { /∗ function b ∗/

for (int i = (size >>> 1) − 1; i >= 0; i−−)
siftDown(i, (E) queue[i]) ;

}

private void siftDown(int k, E x) {
if (comparator != null)

siftDownUsingComparator(k, x);
else

siftDownComparable(k, x);
}

private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {

int child = (k << 1) + 1;
Object c = queue[child];
int right = child + 1;
if (right < size && comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;
k = child;

}
queue[k] = x;

}
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Listing 1.3. TransformingComparator.compare

public int compare(final I obj1, final I obj2) { final O value1 =
this .transformer.transform(obj1); final O value2 =
this .transformer.transform(obj2); return
this .decorated.compare(value1, value2); }

Listing 1.4. InvokerTransformer.transform

public O transform(final Object input) {
if (input == null) return null;
try {

final Class<?> cls = input.getClass();
final Method method = cls.getMethod(iMethodName, iParamTypes);
return (O) method.invoke(input, iArgs);

...
}

Listing 1.5. Command class

public class Command implements Serializable {
private String command;

public Command(String command) {
this .command = command;

}

public void execute() throws IOException {
Runtime.getRuntime().exec(command);

}
}

Listing 1.6. Attack payload

final InvokerTransformer transformer =
new InvokerTransformer(”execute”, new Class[0], new Object[0]);

final PriorityQueue<Object> queue =
new PriorityQueue<Object>(2, new TransformingComparator(transformer));

queue.add(1);
queue.add(new Command(”rm −f importantFile”));

Now, suppose an attacker created and serialized an object in listing 1.6.
When this object is deserialized, the first method invoked after reading all the
data from the priority queue is heapify as defined in the source code Listing 1.1
(readObject entry point of the deserialization); then siftDownUsingComparator
is called (via siftDown), Listing 1.2, which uses the comparator modified by
the attacker into the serialized object, in this case a TransformingComparator,
Listing 1.6, for comparing the queue elements. The compare function in
TransformingComparator, Listing 1.3, uses the field transformer, provided by
the attacker, Listing 1.6, and calls its transform function on the objects being
compared. At this point the InvokerTransformer is invoked, Listing 1.4, and
such a method uses reflection to call the method with name equal to its field
iMethodName on input, in this case the Command method. The reflection helps
the attacker to invoke methods of generic classes; by crafting the deserializa-
tion input, the attacker is able to invoke method execute on an instance of the
Command class with controlled parameters and execute arbitrary commands. In
Listing 1.7 we report the stack trace collected at the execution of Runtime.exec,
which contains all the Java methods invoked during the malicious deserialization
event.



JChainz: Automatic Detection of Deserialization Vulnerabilities 141

Listing 1.7. Stack trace of sample attack payload

Runtime.exec
Command.execute
Method.invoke
InvokerTransformer.transform
TransformingComparator.compare
PriorityQueue.siftDownUsingComparator
PriorityQueue.heapify
PriorityQueue.readObject

The attack vector described in this section is based on payload CommonsCol-
lections2 from the ysoserial repository, used in real attacks. The only difference
with the original version is the class Command, that we introduced for simplicity
in our description. The real attack vector uses a dynamic class loading [9] as a
gadget attack execution.

3 Overview

The goal of our analysis is to discover, given a specific Java library, the relation-
ship among its classes and their methods in terms of execution. To discover such
chains, as a first step we need to build a call graph that shows the relationships
between methods of the analyzed classes in terms of caller and callee. After-
wards, we need to extract from the call graph, chains that reach an exit point
of our interest (e.g., invoked method) and represent a potential attack vector.
In Fig. 1 we depict an architectural design of our framework. More precisely, in
our framework, we identify two main components: The Finder and the Ana-
lyzer. The Finder component starts from the Java bytecode and builds up the
call graph (Sect. 3.1) of the target libraries by using the entry and exit point of
any potential attack vectors (i.e., first three blocks in the diagram). Entry and
exit points are defined by the deserialization process and the target attack class
(Sect. 2.1). When the step is completed, the Analyzer component applies, for
each discovered chain, the Data Dependencies Graph (Sect. 3.3) to determine
the input data flow among the chain classes. In the last step of the analysis,
the Analyzer applies a type propagation algorithm (Sect. 3.3) to exclude false
positives and select the attack vectors candidates.

3.1 Call Graph Accuracy

The first challenge to solve is related to the call graph generation. A trivial
solution for such a problem is to check the invoke instructions in Java bytecode,
and build the call graph from them. While this represents a good starting point
from our analysis, it is not sufficient to construct precise relationships among
methods.
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Fig. 1. Architecture of JChainz Framework

Listing 1.8. SubClass Example

class Example {
SomeClass o = new SubClass();
public a() {

o.method();
}

}

For example, consider the code in Listing 1.8. The call on o.method is per-
formed on an instance of SomeClass, so the link Example -> SomeClass is triv-
ial. At runtime, the instance is actually of type SubClass, so this link must also
be considered. Such missing information (i.e., runtime subtypes of classes and
interfaces) can lead to an incomplete graph (e.g., missing chains’ links), and
produce false negatives since such class type is not considered and the attack
vector cannot exploit its methods for executing the exploitable chain. For this
reason we need to consider such cases for building the graph, and include inter-
face implementors and class extenders as well. More precisely, we create a link
between methods in the graph only when at least one of the following conditions
are satisfied:

– (1) The method’s class implements the Serializable interface.
– (2) The callee method’s class is a superclass of the caller method class.
– (3) The method has the static modifier.

It is important to note that all the objects (i.e., methods) that appear in the
chain should be serializable. The only exceptions to such a case are invocations to
methods in a non-serializable superclass (condition 2), or calls to static methods
by directly invoking the method from the Java class (condition 3). For building
the class call graph we use Soot [22] and we leverage Soot’s capability (i.e., Soot
APIs) of constructing the call graph of our input class path. In particular Soot
first generates the Intermediate Representation (IR) for all the classes and their
methods, and then it builds the call graph from Java invoke statements. For
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any invoke statement we considered class extenders and interface implementors
for the analyzed callees and we label the graph according to the discovered
information.

3.2 Data Type Inconsistency

Once we have built the call graph, the system extracts the execution chains
and validates them. The validation process defines the input data flow from the
entry point (e.g., Serializable class) of the chain till the exit point (e.g., invoke
method). More precisely, the Analyzer needs to control the existence of a data
flow path that depends on the input and can be used for controlling the execution
of the target attack class. Such analysis needs to exclude false positives that can
be raised by data type inconsistency.

Listing 1.9. Data Type Inconsistency

1 class Example {
2 public example() {
3 return ”FOO” + ”BAR”;
4 }
5 }
6
7 // class StringBuilder
8 public StringBuilder append(Object var1) {
9 return this .append(String.valueOf(var1));

10 }
11
12 // class String
13 public static String valueOf(Object var0) {
14 return var0 == null ? ”null” : var0.toString() ;
15 }

To see an example of data type inconsistency problem, we consider the code in
Listing 1.9. In this case, we have method Example.example, which concatenates
two strings by using the method StringBuilder.append, and then we have the
second method String.valueOf that returns the string value. A correct call
graph must link them, and the following chain results in a correct execution
stream, as a call to Example.example always results in the execution of the
entire chain:

C1: Example.example -> StringBuilder.append -> String.valueOf

Analyzing the call graph we see that valueOf calls the method toString on
its Object parameter. In such a case to obtain a valid attack vector, we should
(e.g., attacker point of view) be able to assign an instance of Object (i.e. any-
thing we want) to the parameter, and proceed from there. While this reasoning
would be correct if we were considering only the method String.valueOf, in
our case such an example produce a false positive.

C2: Example.example -> StringBuilder.append -> String.valueOf ->

Example.toString
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In fact such a chain misses two important pieces of information for being cor-
rectly validated: (1) the type of the parameter var0 can only be set to String
(propagated from Example.example) and not to a general object, (2) moreover
the string parameter is constant as defined in the class Example.example, "BAR",
and consequently it cannot be modified by the attacker.

3.3 Validation Algorithm

To solve the data type inconsistency problem and validate the attack chain we
need to design a custom static data-flow analysis algorithm, that combines reach-
ing definitions and type propagation analysis and works directly on the data. The
idea is to build a data dependency graph (DDG), that contains information on
control flow and data dependency between variables. By propagating the vari-
able types in the graph, we can mark type inconsistencies and remove the false
positives.

Data Dependency Graph. For implementing an accurate data type prop-
agation analysis we need to apply intra and inter method mechanisms. In the
following we report how the standard algorithm works in our specific context.
We first apply the intra method mechanism by considering the following steps:

– For each method in the chain, we generate the control-flow graph (CFG), and
trace the data dependency starting from a reaching definitions analysis [15]
(intra-method analysis)

– For each link in the chain M1 -> M2, corresponding to a call to M2 in the body
of M1, we map the arguments in the call statement in M1 to the corresponding
variables in M2 (inter-method analysis)

Each node in our DDG represents a particular variable defined in a
specific statement. More in detail we define a node composed by a triple
(Method, V alue, Unit), with the following parameters: (1)Method: represents the
class and method of the current statement. (2) V alue: represents the variable of
the node. (3) Unit represents the current statement. For example, considering the
return statement at line 9, Listing 1.9, we can see that such statements affect two
variables: this and var0. Therefore, two nodes in the DDG will be created.

We now define edges in the DDG, which represent dependency relationships
between nodes. Such definitions are useful for constructing the intra-method
representations. More precisely, there is an edge between node A and node B if
A depends on B, the dependency is defined by the following rules:

1. A use of a variable V at a node N (with value V ) depends on the definition
of V at the node M

2. The definition of a variable V at a node N depends on the use of another
variable U at a node M if N and M have the same unit

3. A use of a variable V at a node N (with value different U different from V )
depends on the definition of U at the node M
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Listing 1.10. DDG construction example

1 class Example {
2 public void a() {
3 String var0 = ”BAR”;
4 String var1 = ”FOO” + var0;
5 }
6
7 public void b() {
8 new Example().c(”FOOBAR”);
9 }

10
11 public void c (String var2) {
12 String toPrint = var2;
13 this .a();
14 System.out.println(toPrint);
15 }
16 }

Fig. 2. intra-method DDG for Listing 1.10

In Fig. 2 we show the intra-method DDG constructed for method Example.a
in Listing 1.10. Each edge is marked with the rule applied for data dependency.
At this point, the DDG contains only information about intra-method data
dependency;

After we build a intra-method we have to insert inter-method information to
the graph.

To this end we follow the following strategy: when we find an invoke statement
at method Mx in the chain, we check whether the callee belong to the step Mx+1

of the chain. If this is the case, we create an inter-method edge in our DDG. In
particular in our context we need to distinguish two main cases:

1. inter-method parameter call - in this case, the value of node Mx is a parameter
of the method call. We track the value and make sure it is correlated with
the appropriate parameter in the next method’s DDG.

2. inter-method instance call - in this case, the value of node Mx is the object
on which the method call is performed. Therefore, in the CFG of Mx+1, such
object will be referenced by the this pointer in Java.
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Type Propagation Analysis. After computing the DDG, we execute a type
propagation analysis. To this end we first assign type information to each node
for which the type is known, and we then propagate the information through the
DDG, to detect any type inconsistencies. For this purpose, we add a dictionary
to each node, named allowed types. This dictionary contains an entry for each
known variable at a given node in the DDG, and contains all the possible types
for this variable; the types are inferred from the DDG itself.

We start with a null value for allowed types at every node, then we initialize
only nodes with no dependencies for their value, apply the following rule: for each
node N with value V and no dependencies for V , we add the type of V to the
allowed types for V at N .

Once we statically determine the type information for each node, we navigate
the graph and for each step we process all the nodes which have no dependencies
with allowed types. When we process node N with value V , we copy the allowed
types for each variable in its successors in its allowed types dictionary (duplicates
are removed), with the following logic: each of them is compared with the type T
of V at N ; only types that “can hold” T are copied and allowed for V at N (i.e.,
T and supertypes). If a node with value V has the empty set as the allowed types
for V , we have found a type inconsistency, consequently the data-flow through
a particular node is not possible.

Fig. 3. Type propagation algorithm for method a in Listing 1.10. Subsequent iterations
are shown from left to right
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Special care is taken for inter-method links, which are handled separately.
The logic of type propagation is the same, but the types are matched also on the
called object and the method parameters, depending on the type of inter-method
edge, described above. For instance, in the inter-method DDG shown in Fig. 3,
our algorithm correctly infers type String for var2, and type Example for this.
The algorithm iterates till all the nodes have been processed. Then all the nodes
that are marked type inconsistency are removed from the graph. The remaining
chains are marked as attack vector candidates.

4 Experimental Evaluation

In this section we present our evaluation results. We evaluate both the components
of our system, the Finder and the Analyzer, measuring their effectiveness and per-
formance. For validating the results of JChainz we also perform data analysis for
discovering false positives and false negatives along with the real attack vectors.
In Appendix section we also reported two case studies of new exploitation chains
found by our framework. The following experiments have been run on a Debian
GNU/Linux 9.11 (64 bit) machine with an Intel Xeon CPU (2.27 GHz) and 20 GB
of DRAM. The code was compiled using Java OpenJDK 1.8.

4.1 Dataset

To evaluate our framework, we select the test code from the Commons Col-
lections libraries 3.1 and 4.0 as reported in the ysoserial repository [9]. The
Commons Collections packages used for the evaluation are composed of: (1) 421
classes and 3485 methods in the Commons Collections 4.0; (2) 425 classes and
3728 methods in the Commons Collections 3.1. In literature, those libraries are
known to be vulnerable, thus representing an interesting target for the evalu-
ation of our tool (e.g., Ground Truth). Due to their versatility, the Commons
Collections libraries are included in a huge number of projects, for example in
Apache Maven Central project. Moreover Commons Collections libraries seek to
build upon the JDK classes by providing new interfaces, implementations and
utilities also in a web context [7].

4.2 Finder Results

In this section we report the results of a run of the Finder on our dataset.
Main aim of the Finder is to discover connections among the methods defined
in a specific library. We set up the tool to perform a depth first search naviga-
tion starting from the readObject() custom implementations (i.e. entry points),
reaching Java.lang.reflect.Method.invoke (i.e. exit point), which is an easy
springboard for an attacker to launch arbitrary code. To help our Finder com-
ponent on performing its own task we set up several parameters that control the
graph’s analysis exploration. In particular we define the following variables: (1)
Max depth: maximum depth for the DFS algorithm for exploring the call graph
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in terms of nodes starting from a single entry point.(2) Max chains: maximum
numbers of chains devised from a single entry point. (3) Max seconds: Maximum
number of seconds to search for chains starting from a single entry point.

Table 1. Finder parameters

Parameter Value

Max depth 10

Max chains 100

Max seconds 10800

In Table 1 we reported the values considered in our experiments. The max

depth parameter has been selected by considering the round up average depth
of the already known real exploitable chains from entry points to the exit points
(e.g, Common Collections in ysoserial repository). Note that, the arguments
max chains and max seconds are mutually exclusive parameters that interrupt
the research before the full graph exploration is completed. We chose such values
based on the ground truth chains parameters. In our experiments, the searching
phase took approximately 40 h to complete. In Table 2 we report the results of
the Finder’s Analysis on a single run on both libraries.

Table 2. Finder results

CC 3.1 CC 4.0

Entry points 32 30

Active Entry Points 11 12

Total number of chains found 36 567

In particular, in the Table 2 we reported three main parameters of our results:
(1) number of Entry points that have been statically found in the libraries. With
the term “entry point”, we considered the Serializable classes that redefine
the readObject() method. (2) Active Entry points: this is a subset of entry
points that contains at least one chain found by the Finder component. It is
important to note that due to the time constraints of the graph exploration
not all the Entry points have been analyzed in a single run of the experiment.
(3) Total number of chains found : the number of chains for which the Finder
generates a path from the entry point to an exit point (i.e., Method.invoke).

In summary, in this first run of the experiments based on the previous set-
tings parameters, the Finder analyzed a class’s call graph composed by 934300
connections (i.e., arches) for common collection 3.1 and a class’s call graph com-
posed by 519980 connections for common collection 4.0 and it was able to extract
36 chains for common collections 3.1 and 567 chains for common collections 4.0.
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4.3 Analyzer Results

After the searching phase performed by the Finder component, the system sends
all the found chains to the second component, the Analyzer, whose main aim is
to validate them. The Analyzer starts analyzing the single chain and for each
of them builds up the inter-method DDG, then it applies the data types prop-
agation algorithm described in the previous section. The whole analysis took
approximately 27 h. In the Table 3 we report the results of these second running
steps.

Table 3. Analyzer results

CC 3.1 CC 4.0

Non-exploitable chains 22 531

Exploitable chains 8 36

As we can see from the Table 3, the Analyzer was able to exclude a large
fraction of the false positive chains. In particular for the CC 4.0 the tool was
able to discard 93% of the false positive chains while for the 3.1 the tool was able
to discard 64% of the false positive chains. This reduction was mainly achieved
by the data type propagation analysis. In particular the average size of the Data
Dependencies Graph before the pruning for common collection 3.1 was composed
by 658 nodes and 1338 arches. After the pruning we obtained a graph with on
average 76 nodes and 143 arches. For the common collection 4.0 we start with
a graph before pruning composed by 718 nodes and 1468 arches and we obtain a
graph with 138 nodes and 249 arches.

To confirm the results we apply the manual analysis on the 44 exploitable
chains found by our tool. The manual analysis reveal that 32 of the 44 exploitable
chains represent false positive and 12 of the 44 chains were real attack vectors.
Among the results of the exploitable chains, we first search for the ground truth
exploits present in Common Collections Libraries 3.1 and 4.0. The Analyzer
component was able to validate all of them with three missing exploits. Such
an issue about the results depends on the fact that our tool does not handle
Java Proxy classes which alter the program behavior at run-time (i.e., dynamic
feature). Such dynamic gadgets are needed for exploit CC1, CC3, CC4. This
represents a limitation for our tool and it will be discussed in the limitations
section.

Beyond the already known exploits our tool was able to find three new real
attack chains, the exploit CC7, CC8 and CC10 that have been acknowledge by
the yoserial community [9] and the other six new exploit discovered by our tool
are variants of the original ones. For space limitation we report some exploits
of the variants here: https://github.com/Kigorky/JChainz/tree/main/exploits.
CC7, CC8, CC10 can be considered new since they require a new exploitation
technique for delivering the attack. In Appendix section we report a description
on how to build up a successful attacks by using such chains.

In Table 4 we report all the known vulnerabilities validated by our tool.

https://github.com/Kigorky/JChainz/tree/main/exploits
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Table 4. Ground Truth ChainzAnalyzer results

Vulnerability Exploit Results

CC1 exploit Failed

CC2 exploit Pass

CC3 exploit Failed

CC4 exploit Failed

CC5 exploit Pass

CC6 exploit Pass

The 32 false positive chains were present in the results show the problem
related to the precision of the analysis of our framework. Through the manual
analysis we find out the typical false positive that our tool is affected. In par-
ticular our Analyzer is not able to process the expression of the conditions’ in
terms of value. In the following code we report a case of false positive found in
our experiments. In particular this function is a part of the exploitable chain
validated by the Analyzer.

Listing 1.11. False Positive example

1
2 private GeneralRange(Comparator<? super T> comparator, boolean hasLowerBound, @Nullable T

lowerEndpoint, BoundType lowerBoundType, boolean hasUpperBound, @Nullable T upperEndpoint,
BoundType upperBoundType) {

3 ...
4 if (hasLowerBound) {
5 comparator.compare(lowerEndpoint, lowerEndpoint);
6 }
7 ...
8 }

In our exploitable chain the system includes the method compare of the
Comparator class defined as a block of the if statement (Line 5). The problem
here is that the hasLowerBound is always set to false by the class defined in this
chain and the method comparator.compare() will never be executed. Conse-
quently since our chain cannot reach that method, the exploit is not feasible.

5 Limitations

Our tool is affected by some limitations, mainly due to the technical limits of
the static analysis approach. The dynamic features of Java language, such as the
reflection technique, are known to be an obstacle to the static code analysis. Due
to the nature of these objects, the tool is not able to detect chains that could
potentially be exploitable (e.g., false negatives). For example, our tool cannot
handle proxy classes which alter their behavior at run-time. Some tools tried to
model the static analysis over these dynamic features but this problem is still
quite hard to solve [8,13].

Moreover our tool cannot handle the expression evaluation of the conditions
statement (i.e., false positive). In particular such a problem could be solved by
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adding more precising analysis like symbolic execution. At the moment, several
possibilities exist for performing symbolic execution in Java [1,2]; however, while
constraint solving works well with basic types such as integers and strings, to the
best of our knowledge there is currently no modeling of custom objects in OOP.
If such a model were developed, then the whole search of exploitable chains
could be made more accurate, by exactly solving constraints on objects and
variables, and deterministically generating inputs that allow a particular chain
to be executed/exploited. Another point for improving our analysis is to use a
new framework for building up Java Call Graph such as [20].

6 Related Works

The most recent work related to ours is by Shcherbakov and Ballium. [21]. In
their work, the authors present a tool, SerialDetector, aimed at automatic dis-
covery of Object Injection Vulnerabilities in .NET applications and libraries.
Such an approach is based on the CIL intermediate language and based its own
efficacy on a practical field-sensitive taint-based dataflow analysis targeting the
CLI languages. This method is very specific for the CIL bytecode and it has not
been tested on programming languages that use a different low-level presentation
such as Java (e.g., bytecode).

In the particular context of deserialization vulnerabilities attack, an interest-
ing work to mention is the tool Serianalyzer by Bechler [18]. Serianalyzer uses
static Java bytecode analysis to trace native method calls made during the dese-
rialization process and it uses several heuristics to identify already known attack
patterns. Although it produces many false positives, it has been used to find
many of the exploits present in the ysoserial repository. In our work we decided
to create a more agnostic tool that leverages the capabilities of Soot and its
intermediate representation. In particular we design an automatic analysis by
implementing ad-hoc data flow and type propagations analysis to discover such
a tool.

On the protection side several attempts have been made for protection
against attacks based on deserialization of untrusted data. Dietrich et al. [5]
analyze the problem of deserialization of untrusted data not only in Java, but
in several affected languages. After analyzing a few chains that cause Denial Of
Service, they study in detail possible mitigation for the problem. In the specific
context of Java deserialization, Cristalli et al. [3] describe a system for estab-
lishing the trusted execution path in an existing application during a learning
phase, and enforcing it at run-time with analysis of stack traces in the JVM.
A similar approach had been followed by Hawkins et al. [10]; their ZenIDS sys-
tem uses trusted execution path validation for protection of PHP software via
anomaly detection. ObjectMap [12] is a tool that aims at detecting vulnera-
ble deserialization entry points in Java and PHP systems. Most of those works
check dynamically the integrity features of the deserialization process and show
a quite big run-time overhead. The final goal of our tool is to recognize and
directly correct the vulnerabilities inside the Java source code.
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7 Conclusion

In this paper we present a new tool, called JChainz, that is the first tool that
directly work on the Java language and it is able to discover untrusted data dese-
rialization attack vector. We present the first systematic approach for automatic
creating the Deserialization attack in Java applications including the framework
and libraries. We test our tool on well-known libraries and we show its effective-
ness by validating results on known and new vulnerabilities. We describe three
new case study attacks along with the limitations of our approach and future
improvements such reflection and dynamic proxing.

Acknowledgment. This project has received funding by the Italian Ministry of For-
eign Affairs and International Cooperation (grant number: PGR00814).

1 Appendix

1.1 Case Studies

By taking advantage of our tool, we discovered and exploited new chains
described in the following repositories [16,17]. Each chain is composed of two
main parts, the first one from the entry point to the exit-point. In this case, the
exit-point is the method.invoke method. The latter exit-point allows an attacker
to access and call the entire set of methods and classes available in the java class-
path. The second part of the chain is composed of a gadget. In our experiments,
we attached the well-known gadgets already available in the ysoserial repository,
which allowed us to run arbitrary code. The gadget can be seen as an already
sequence of methods for achieving a specific operation. These chains have been
discovered by the Finder, filtered by the Analyzer, then manually validated and
exploited.

CommonsCollections7 The payload CommonsCollections7 [17], found with
the aid of our tools, consists of the following chain:
java.util.Hashtable.readObject

java.util.Hashtable.reconstitutionPut

collections.map.AbstractMapDecorator.equals

java.util.AbstractMap.equals

collections.map.LazyMap.get

collections.functors.ChainedTransformer.transform

collections.functors.InvokerTransformer.transform

java.lang.reflect.Method.invoke

sun.reflect.DelegatingMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke0

java.lang.Runtime.exec
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The chain starts in the JDK class Hashtable, and produces an invocation of
an arbitrary system command, via Runtime.exec. In order to reach this result,
the chain reuses the LazyMap gadget from chain CommonsCollections5, already
part of ysoserial before our work. Therefore, the novelty of CommonsCollections7
consists of the trigger made of the first five methods in the chain, up to the
invocation of the gadget with entry point LazyMap.get.

While the potential exploitability of the chain was confirmed by our Analyzer,
we still had to build the code for the exploit. To trigger the method sequence
leading to the invocation of LazyMap.get starting from Hashtable, we built an
hashtable containing two instances of the LazyMap gadget object we wanted to
reuse, with the aim of triggering comparison between the two in the hashtable
upon the insertion of the second. This comparison would force the call to equals
on the LazyMap, which calls method get and triggers the gadget.

We discovered that inserting the same object twice in the hashtable was not
sufficient, as the duplicate would be recognized right away without the need of
any comparison with the objects already present in the hashtable. Therefore,
we fabricated two different instances of the LazyMap, but with colliding hashes.
This was possible because it is extremely easy to obtain colliding object hashes
in Java, as the hashing mechanism has not been designed for security purposes
and does not make use of any cryptographic hash function. In the specific case
of LazyMap, the hash of the entire object is calculated from the hashes of the
objects in the map. Therefore, it was sufficient for us to make the keys of the
LazyMap gadgets collide. In particular, we chose colliding String objects "yy"
and "zZ".

At this point, the LazyMap objects can be inserted in the Hashtable, which
will be then serialized. When deserialized, the reconstruction of the hashtable via
its custom readObject method will insert the two objects. The insertion of the
second will trigger a comparison with the first because of the colliding hashes,
starting the rest of the chain as seen above. This manual design enabled us to
transform the chain found by our framework into a fully functional deserialization
exploit.

CommonsCollections8. The payload CommonsCollections8 has an interest-
ing property that differentiates it from all other previous Commons Collections
payloads: its entry point (i.e. the serializable class TreeBag) is part of the library
itself, while all other known chains have entry points in standard Java classes
found in the JRE. The payload CommonsCollections8 [16] generates the follow-
ing stacktrace:

org.apache.commons.collections4.bag.TreeBag.readObject

collections4.bag.AbstractMapBag.doReadObject

java.util.TreeMap.put

java.util.TreeMap.compare

collections4.comparators.TransformingComparator.compare

collections4.functors.InvokerTransformer.transform

java.lang.reflect.Method.invoke
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sun.reflect.DelegatingMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke

sun.reflect.NativeMethodAccessorImpl.invoke0

com.sun.org.apache.xalan.(...).TemplatesImpl.newTransformer

... (TemplatesImpl gadget)

java.lang.Runtime.exec

This chain starts in the TreeBag class and leads to the execution of the
Runtime.exec method, triggering the vulnerability in the Commons Collections
4.0 package. The contribution of this chain, like the previous one (Sect. 1.1),
consists of spotting a new entry point.

The payload is composed by a TreeBag object built with a comparator of
the type TransformingComparator and populated with a TemplatesImpl object
from the ysoserial repository. During the deserialization process, the TreeBag
class builds a new TreeMap object containing the attacker’s comparator and
passes it to the AbstractMapBag.doReadObject method as a parameter. At
this point, the put method is invoked on the map object received as parameter,
triggering the compare method call on the unsafe comparator. Starting from
the transform method, the following operations that lead to the execution of
arbitrary code are managed by the gadget from ysoserial.
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Abstract. Due to the increasingly evolved attacks on the Internet, espe-
cially IoT, 5G, and vehicle networking, a robust Network Intrusion Detec-
tion System (NIDS) has gained increasing attention from academic and
industrial communities. Anomaly-based intrusion detection algorithms
aim to detect unexpected deviations in the expected network behaviour,
thus detecting unknown or novel attacks compared to signature-based
methods. Deep Anomaly Detection (DAD) technologies have attracted
much attention for their ability to detect unknown attacks without man-
ually building the traffic behaviours profile. However, low recall rates
and high dependencies on data labels still hinder the development of
DAD technologies. Inspired by the successes of Generative Adversar-
ial Networks (GANs) for detecting anomalies in the area of Computer
Vision and Images, we have proposed a deep end-to-end architecture
called FlowADGAN for detecting anomalies in NIDS. Unlike traditional
GAN-based NIDS methods that usually construct Generator (G) and
Discriminator (D) based on vanilla GAN, the proposed architecture is
composed of a flow encoder-decoder-encoder for G, and a flow encoder
for D. FlowADGAN can learn a latent flow feature space of G so that
the latent space better captures the normality underlying the network
traffic data. We conduct several experimental comparisons with existing
machine learning algorithms like One-Class SVM, LOF, and PCA and
existing deep learning methods, including AutoEncoder and VAE, on
three public datasets, NSL-KDD CICIDS2017 and UNSW-NB15. The
evaluation results show that FlowADGAN can significantly improve the
performance of the anomaly-based NIDS.
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1 Introduction

With the rapid advancement in the Internet, especially IoT, 5G and vehicle net-
working, cyber security has gained increasing attention of both the academic
and industrial community, which has motivated many researchers to design and
develop effective Network Intrusion Detection systems (NIDS). Generally, intru-
sion detection technologies fall into two genres: misuse-based detection (also
known as signature-based detection) and anomaly-based detection (also known
as behavior-based detection). Misuse-based detection systems can identify known
attacks based on the predefined signatures effectively and efficiently. These
approaches usually score high detection capabilities and low false-positive rates
when facing known attacks [10]. However, frequent manual signature mainte-
nance by security experts is required. However, even more importantly, they
cannot effectively adapt the evolving attacks like zero-day attacks, which are
novel attacks that cannot be matched to the known patterns [26]. Correspond-
ingly, anomaly-based IDSs can capture any deviation from characteristics of nor-
mal network behavior to mitigate the problem above. These deviations are called
anomalies [8]. Therefore, they are more suitable for detecting unknown or novel
attacks than misuse-based approaches. It is worth mentioning that anomaly-
based detection algorithms highly depend on the ability to characterize expected
and, consequently, anomalous behaviors. Hence, anomaly-based algorithms usu-
ally suffer from high false alarms than misuse-based methods.

Many Machine Learning (ML) algorithms have been employed for developing
Anomaly Detection (AD) models, such as Clustering, Neighbor-based, Density-
based, Statistical, Angle-based, and Classification-based [2,33]. Nonetheless, there
are many challenges for ML-based AD algorithms. First, network traffic data is
complex, high dimensional, and non-linear. Second, normal network behaviour
evolves rapidly. Third, the notion of anomaly is subjective and depends on the
application domain and context. And then, anomaly labels are rare, usually
done by human experts manually. Finally, the boundary between normal and
anomalies is often not precise [8]. Fortunately, as a revolutionary, innovative
paradigm, Deep Learning (DL) has gained great success in computer vision,
image and speech. DL leverages automatic feature learning to achieve better
performance, avoiding task-specific engineering and lots of prior knowledge, and
thus, become popular now.

Recently, Deep Anomaly Detection (DAD) technologies have attracted much
attention for their ability to detect unknown attacks without manually build-
ing the traffic behaviors profile [21]. This technique automatically learns hier-
archical discriminative features from historical traffic data of massive normal
traffic and minimal anomalous traffic, reducing network traffic complexity and
discovering implicit correlations between data without human intervention. In
addition, DAD is more robust in detecting zero-day attacks and adapting to
evolving systems. Nonetheless, DAD technologies still are more or less limited
by the following challenges [22]: (1) low anomaly detection recall due to the lack
of well-designed DL models and threshold selection algorithms, (2) high depen-
dence on anomalous traffic data labels, (3)detecting traffic behavior deviations
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is challenging, as the boundary between normal and anomalous traffic is often
not clear and precise. The last one is the interpretability of DL models to make
the AD algorithms trustworthy.

As a promising paradigm, Generative Adversarial Network (GAN) has been
applied in video generation, image captioning and text translation with its excel-
lent automatic features extraction by adversarial learning. Subsequently, the
GAN-based anomaly detection technique emerges quickly as one popular DAD
approach, which generally aims to learn a latent feature space of a generative
network G so that the latent space well captures the normality underlying the
given data. The anomaly score is defined by the residual between the actual
instance and the generated one [29].

This paper proposed a GAN-based AD algorithm named FlowADGAN using
adversarial learning to learn the underlying distribution of the network flow
data. Structurally, the model is constructed using a convolutional encoder and a
deconvolutional decoder. Then we select the three most representative datasets
and validate the superiority of the designed model compared to the other five
methods under the three datasets. The last and the main contribution of this
paper is:

1. FlowADGAN uses an internal structure of an adversarial production network
consisting of three convolutional encoders and a deconvolution decoder. The
hidden vector computed by two encoders can represent the normal network
flow features well, with better results than the traditional GAN methods.

2. This algorithm proposes an anomaly detection algorithm based on improved
threshold selection. The algorithm can reasonably obtain the normal and
abnormal flow boundary using the kernel function and set it as the threshold.

3. FlowADGAN exploits a flow-encoder to transform the original feature space
into a more condensed and semantically rich embedding space. In this space,
the model structure implements the function of reconstructing the aggregated
features of the network, which applies to many different feature datasets and
has good scalability.

4. Three network traffic dataset comparison experiments evaluate the proposed
method, achieving good results.

2 Related Works

2.1 Review of Anomaly Detection Algorithms

The first wave of Anomaly Detection Algorithms was on the basis of ML
algorithms, which can be divided into six families: [11]: Clustering [30],
Neighbor-based [31], Density-based [5], Statistical [14], Angle-based [13], and
Classification-based [4,16]. However, the first wave posed several challenges: (1)
low recall rate, (2) high-dimensional or not-independent data, (3) data efficient
learning of normality/abnormality; (4) noise resillient.

The second wave is based on DL algorithms since 2015 due to the supe-
rior performance applied in the area of Computer Vison/Image/Speech. We can
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simply summarize three apparent trends: (1) more novel and advanced DL algo-
rithms are adopted, such as MLP/CNN/AE/RNN even GAN/GNN etc. (2)
learning methods adopted by DL models are gradually from supervised to semi-
supervised, weak-supervised and unsupervised learning. (3) the anomaly score
learning approaches are moving from separately learning to end-to-end including
more precise threshold selection algorithms.

Table 1. A summary of works on ML/DL based AD method

Reference Family Classifier learning style Model Input Datasets Anomaly Score

Li et al. [15] OCSVM unsupervised flow features 1999 DARPA classification

Camacho et al. [7] PCA semi-supervised flow features private RE

Paulauskas et al. [23] LOF unsupervised flow features private density deviation

AutoIDS [12] cascading AE semi-supervised flow features NSL-KDD/private RE

Kitsune [19] ensemble AE unsupervised flow features private RE

Pratomo et al. [24] AE semi-supervised byte frequency UNSW-NB15 z-score

Zavrak et al. [36] AE/VAE semi-supervised flow features CICIDS2017 RE/RP(Reconstruct Prob)

CANnolo [17] LSTM-AE semi-supervised byte sequence Alfa Romeo RE/Mahalanobis distance

MENSA [32] AE-GAN semi-supervised flow features MTU adversarial loss

Akcay et al. [3] DL(cov-GAN) semi-supervised Images CIFAR10,MINST discriminative loss

2.2 Deep Anomaly Detection Algorithms in IDS

Deep Anomaly Detection (DAD) techniques for short, aims at learning hierar-
chical discriminative features or anomaly score via deep neural networks for the
sake of anomaly detection. In summary, there are two main genres applied in
DAD-based IDS: AE-based and GAN-based, which will be introduced in detail
as following subsections. We summarize some related works on ML/DL based
AD methods listed in Table 1.

Autoencoder-Based AD Methods in IDS. As a popular deep structure for
AD, AE and its genres have played a very important role during this decades.
M.Gharib et al. [12] presented AutoIDS, a network anomaly detector by cascad-
ing a sparse AE and AE to increase accuracy and decrease the time complexity,
in which anomalous flows are distinguished from normal ones by the first detec-
tor and the second one is only used for difficult samples that the first detector is
not confident about. Y.Mirsky et al. [18] proposed a plug and play NIDS called
Kitsune which utilised an ensemble of AEs to collectively detect anomalous
traffic on the local network in an unsupervised online manner. The evaluations
showed that Kitsune can detect various attacks with a performance compara-
ble to offline anomaly detectors, even on a Raspberry PI. S.Zavrak et al. [35]
applied AE and VAE to detect anomalous network traffic from flow-based data.
The experimental results show that VAE outperforms AE and One-Class SVM
on CICIDS2017 dataset. B.Abolhasanzadeh et al. [1] proposed an AE based IDS
approach from the point of view of dimensionality reduction to detect anomalous
network behavior.

In summary, The AE family has several advantages: the methods are simple,
easy to design and general for different data types.
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GAN-Based AD Methods in IDS. GAN-based anomaly detection methods
are generally used to learn the latent feature space by adversarial learning of G
(Generative Network) and D (Discriminative Network) so that the latent space
can capture the normality of the given data well. Schlegl [29] proposed AnoGAN,
a deep convolutional GAN to learn multiple normal anatomical variants, accom-
panied by a new anomaly scoring scheme based on a mapping from image space
to latent space. Zenati [37] utilizes a recently developed GAN model for anomaly
detection and achieves state-of-the-art performance on image and NIDS datasets.
Subsequently, Schlegl [28] proposed fast AnoGAN (f-AnoGAN), a GAN-based
semi-supervised learning method that can identify anomalous images and frag-
ments. Akcay [3] introduced a new anomaly detection model called GANomaly
that uses conditional GAN (CGAN) to jointly learn the generation of high-
dimensional image space and inference of the latent space with given conditions.

However, the algorithm is only applicable to images as the input of the model,
which can not fit the feature information of the traffic well. In short, GAN
models [9] have shown excellent ability in generating actual instances, especially
on image/video data. However, the currently GAN-based AD methods still have
the following limitations. Firstly, most existing GAN-based AD models are only
suitable for images/videos, not for network traffic. Secondly, existing GAN-based
AD algorithms are not capable of extracting and retaining network information
well when mapping high-dimensional network traffic features to low-dimensional
features, which resulting in a weak ability to represent features in the mapping
of normal network data to low dimensional latent features, hence, leading to a
poorly discriminative ability for network anomalies.

3 Methodology

3.1 FlowADGAN Model Design

Figure 1 illustrates an overview of our method and architecture. Figure 2 shows
the model parameters and output in the encoder and decoder.

The generator learns the normal network flow representation and reconstructs
the input network flow through the Encoder and Decoder networks.

Consider that a data set Dtrain contains K normal flow characteristic records,
Dtrain = {x1, . . . , xk}. We use normal flow characteristic records to train the
GAN network.

At the same time, we construct a test data set Dtest = {(x1, y1) , . . . , (xj , yj)},
where yi belongs to the label of network traffic, yi ∈ 0, 1. Dtest contains M normal
test samples and N malicious test samples, (M � N).

Our goal is to model and learn internal characteristics from Dtrain, and
then identify abnormal Data in Dtest. The FlowADGAN algorithm learns the
distribution of normal traffic and minimizes the abnormal fraction S(x). When
a given test sample is encountered, its S(x) is calculated. If S(x)> the threshold,
it is considered an abnormal flow.
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Fig. 1. Workflow of our method and model architecture.

Learning a Fast Mapping from Flow Features to Encodings in the
Subspace. Flow-encoder is very important in the input part and is the main
contribution of this paper; it can be applied to a variety of different network
traffic data. Furthermore, the model will uniformly map the multi-dimensional
feature space to the 32-dimensional feature space (v) when inputting network
flow features to obtain aggregated features. The model uses a learnable linear
layer as the feature mapping function φ. Weight matrix parameters W ∈ R

d×D

are used to obtain a new embedding stream feature space with powerful represen-
tation capabilities. A simple linear transformation can also ensure the scalability
of the model. The data object x is transferred to a new embedding space through
the feature mapping function φ(x), as follows:

φ(x) =

⎡
⎢⎢⎣
W(1, 1)x(1) + W(1, 2)x(2) + · · · + W(1,D)x(D)
W(2, 1)x(1) + W(2, 2)x(2) + · · · + W(2,D)x(D)

. . .
W(d, 1)x(1) + W(d, 2)x(2) + · · · + W(d,D)x(D)

⎤
⎥⎥⎦ (1)

where w(i, j) represents the element in the i − th row and j − th column of the
matrix w, and x(i) represents the i− th element of the vector x. Each dimension
can be regarded as a linear pattern (combination) of the original feature space.
The mapping function φ(x) will effectively aggregate the network flow features
into a new embedded flow space v and then pass it to the generator coding
network (GE) for spatial mapping.

Using Cov-Encoder in Subspace. The flow embedding space newly gener-
ated in GE uses a convolutional layer and performs Batch Normalization (BN)
and function activation LeakyReLU() respectively. By compressing the embed-
ded flow space v into a hidden space z, the dimensionality of v is reduced. At
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the same time, the model obtains the most representative hidden features. z is
also called the hidden feature of x, Z ∈ R

d. Assuming that its dimension is the
smallest, the space can best reflect the features of x. The specific convolution
process is as follows 2(a):

Z =
x − Ê[x]√

ˆVar[x] + ε

(2)

Using CovTran-Decoder in Latent Vector. The decoder part of the gen-
erator (G) uses the architecture of the DCGAN generator [25] and the network
feature dimension backtracking module. The former uses a convolutional trans-
posed layer, an activation function (ReLU) and batch normalization (BN). Tanh
layer is added at the end to decode the hidden space into the generated embed-
ding space. The specific parameters of the decoder are shown in Fig. 2(b). This
method reconstructs the hidden space z and reconstructs the flow v as v̂. On
this basis, the dimensionality is expanded using linear changes through the map-
ping function ψ(x) to become a new space x̂. The whole process is called spatial
backtracking, where v̂= GE(z).

ψ(x) =

⎡
⎢⎢⎣
W(1, 1)v(1) + W(1, 2)v(2) + · · · + W(1,D)v(D)
W(2, 1)v(1) + W(2, 2)v(2) + · · · + W(2,D)v(D)

· · ·
W(d, 1)v(1) + W(d, 2)v(2) + · · · + W(d,D)v(D)

⎤
⎥⎥⎦ (3)

Using Cov-Encoder in Reconstructed Network Flows. In this part, the
model compresses the flow data space v̂ reconstructed by the neural network.
v̂ reconstruct the flow space compression to find its characteristics, specifically
expressed: ẑ = E(v̂). The dimension of the hidden space vector ẑ is the same
as the dimension of z so that the distance can be calculated later. This sub-
network is special in the proposed method, where it can represent the hidden
features in the reconstruction space. Unlike previous methods, [36] based on
VAE, the distance between the latent space and the original stream data space
is minimized by hiding features. The sub-network GE minimizes the distance
through parameterized explicit learning.

Discrimination Between Generated Flows and Real Flows. The goal is
to classify input x and output as true or false respectively. This sub-network is
a standard discriminator network introduced in DCGAN.

3.2 FlowADGAN Pipeline

From Fig. 1, the formal principle of this sub-network is as follows: The generator
G first reads the input network flow feature data x, where x ∈ R | (w× featural
of network flow) and forwards it to a layer of dimensional compression fully
connected v, and then passes it to the code Network GE. Using a convolutional
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layer, and then performing batch norm and activation function, respectively, the
dimension of v is reduced by compressing it into a vector z. z is also called
the hidden feature of network flow. These characteristics best represent normal
network flow. The decoder part of the generator network G uses a ConvTranspose
layer, activation functions ReLU , and batch quota together with a tanh layer
at the end. This method scales the vector z and reconstructs the flow v as v̂.
Finally, the potential network embedded traffic space is restored to a network
space with the exact dimensions as the input.

The second sub-network is the Encoder, which compresses the network flow
data v̂ reconstructed by the neural network. GE is compressed downward to v̂,
and its characteristic representation ẑ = E(v̂) is found. The dimension of the
vector ẑ is the same as the dimension of z so that the distance can be calculated
later. The third sub-network is the discriminator network D, whose goal is to
classify input x and output x̂ as true or false, respectively.

3.3 Algorithm

We assume that when anomaly flow passes through the generator. The gener-
ator cannot reconstruct the abnormal flow, and This is because the network
is trained on normal samples, and its parameterized modelling is not suitable
for generating abnormal samples. The reconstruction failure v̂ means that the
encoder network GE(v̂) cannot be mapped to a vector ẑ typically, resulting in
an abnormal distance between z and ẑ. See details for Algorithm 1 .

Algorithm 1: Unsupervised anomaly detection algorithm based on
FlowADGAN

input : Normal real data, Xτ = {x0, x1, x2, . . . . . . xn} is the stream feature vector of the first
network data stream, i is the number of iterations, N is the total number of training sets. m is
the size of mini batch.

1 Use the generative network to calculate fake flow, v and v̂;
2 for i ← 1 to N do
3 Enter the real network traffic into the discriminator to determine the (pred − real);
4 this →FindCompress(z = φ(x));
5 this →FindCompress(z = GE(v));
6 this →FindCompress(v̂ = GD(z));
7 this →FindCompress(x̂ = ψ(v̂));
8 this →FindCompress(ẑ = GE(v̂));
9 Send the fake flow generated by the generator to the discriminator to get the (pred − fake);

10 Lossadv = Ex∼pX
‖f(x) − Ex∼pX

f (G(x)‖2 ;

11 Losscon = Ex∼pX‖x − G(x)‖1 ;

12 Losshiddenloss = Ex∼pX

∥
∥GE(x) − E(G(x))

∥
∥
2 ;

13 Loss = wadvLossadv + wconLosscon + whiddenLosshidden ;
14 Update parameters ;
15 Start the backward by BCELoss in the discriminator and get errord ;
16 Update parameters ;

The loss function of the discriminator is defined as follows:

Lossadv = Ex∼pX
‖f(x) − Ex∼pX

f (G(x)‖2 (4)

However, since there is only adversarial loss, the generator is not optimized to
learn contextual information about the input data. The loss functions of normal
flow and generated flow are defined as follows:
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Losscon = Ex∼pX
‖x − G(x)‖1 (5)

In this paper, an additional loss is added to constrain the two hidden vectors.
The loss function is used to minimize the distance between two hidden vectors.
The definition of this function is as follows:

Losshidden = Ex∼pX
‖GE(x) − E(G(x))‖2 (6)

We construct the overall function by adjusting the weight parameters. Details
as follows:

Loss = wadvLossadv + wconLosscon + whiddenLosshidden (7)

Fig. 2. The parameter of FlowADGAN.

3.4 Anomaly Scores

The anomaly score calculation method in this paper uses formula 1 to calculate
the anomaly of network traffic for scoring. Therefore, for a test sample x, anomaly
score A(x) is defined as:

S(x) = ‖GE(φ(x)) − GE(v̂)‖1 (8)
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In order to choose a suitable threshold, we need to normalize the anomaly
scores of a single test sample x in the test set, thus generating a set anomaly S.
Threrefore, we apply S(x) mapping to anomaly scores at [0, 1].

Si =
Si − Smin(x)

Smax(x) − Smin(x)
(9)

3.5 Threshold Selection

The threshold selection method is as follows. The first is the choice of validation
set data. The experiment selects a certain proportion of normal and malicious
traffic in an orderly manner. Then, the validation set is fed into the anomaly
detection model. Calculate the reconstruction distance of each normal flow sam-
ple and malicious flow sample in the validation set according to the formulas
9 and 8. Finally, the probability density and kernel function 13 are obtained
according to the reconstruction distance of the verification set, and the thresh-
old is determined.

In validation set, there are n abnormal scores as follows: {S1, S2, . . . , Sn}.
Assume that the cumulative distribution function of the sample data is F(x).

F (xi−1 < x < xi) =
∫ xi

xi−1

f(x)dx (10)

And the probability density function is f(x):

f (xi) = lim
h→0

F (xi + h) − F (xi − h)
2h

(11)

Introduce the empirical distribution function of the cumulative distribution
function and substitute this function into f(x):

f (xi) = lim
h→0

1
2nh

n∑
i=1

1xi−h≤xj≤xi+h (12)

After determining h, f(x) can be transformed into:

f(x) =
1

2nh

n∑
i=1

1x−h≤xi≤x+h =
1

2nh

n∑
i=1

K

( |x − xi|
h

)
(13)

Through the kernel density function, we calculate the two functions of normal
traffic and malicious traffic respectively, and get the intersection. Turn the inter-
section into a threshold.
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4 Evaluation

In this section, we evaluate FlowADGAN in terms of its detection and run-time
performance. We will describe the data sets and experimental setup and then
finally demonstrate our evaluation results.

4.1 Evaluation Settings and Chosen Datasets

The data sets we select need to meet the experimental requirement. As the three
classic NIDS data sets, NSL-KDD [27], CICIDS2017, and UNSW-NB15 [20] are
desirable. In addition, as the benchmark data sets, their experimental evaluation
results are of great significance.

The experimental environment is AMD Ryzen 3600, 16GB RAM, NVIDIA
GTX 1660, CUDA 7.5, CDNN10.5. In this paper, Python3 is the primary pro-
gramming language.

The following is a description of the evaluation index system: precision,
Recall, F1, Accuracy and AUC as evaluation metrics.

Marc avg means that each type of sample is given equal weight. For example,
in this article, the Macro Average accuracy index p is defined as:

P =
Pnormal + Pmalware

2
(14)

Weighted avg is to use the proportion of the sample size of each category in
the total number of samples in all categories as the weight. For example, in this
article, the Weighted Average accuracy index p is defined as:

P =
Nnormal

Nnormal + Nmalware
∗ Pnormal +

Nmalware

Nnormal + Nmalware
∗ Pmalware (15)

If time-related metrics (detection time/exection time) are not considered, it
can be explained that these are all dependent on hardware resources.

4.2 Ablation Study

We first do an ablation study using the UNSW-NB15 dataset in this subsection.
Table 2 shows that if the model aggregates the flow features first, the rep-

resentative elements will be represented as a matrix in the subspace. Then the
spatial mapping will be performed. From F1, the results may not be suitable if
only the module used for image anomaly detection is directly migrated to detect
network traffic. The weighted average of F1 for the model with the aggregated
feature module is 0.4334 higher, and the AUC is increased by 0.0646. Therefore,
the module designed in this paper can significantly improve network flow feature
detection performance.
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Table 2. Module comparison of improved
models

Model Progressive Original Aggregation of Features

Precision weighted avg 0.7647 0.9877

marc avg 0.6890 0.5072

Recall weighted avg 0.3852 0.5004

marc avg 0.5063 0.6827

F1 weighted avg 0.2236 0.6570

marc avg 0.2881 0.3482

AUC 0.7808 0.8454

Table 3. GAN compared in three
Datasets

Model(AUC) NB15 CICIDS NSL-KDD

FlowADGAN 0.8454 0.7461 0.9810

f-anogan 0.7215 0.6929 0.9572

EGBAD 0.5638 0.7365 0.9372

The experiment compares the model designed with recent models based on
GAN to detect anomaly flows in a network environment in a comprehensive
manner. Since models need to be evaluated globally, AUC has become a lead-
ing model evaluation indicator. FlowADGAN performs better than the other
two models in the Table 3. On the UNSW-NB15 data set, the AUC value of
this model reaches 0.8454, which is 0.1239 higher than f-anogan. Our model
proposed is more effective than EGBAD. The CICIDS2017 data set has a vast
amount of data. Therefore, with sufficient training, although the AUC value of
FlowADGAN is the highest, the difference between the three types of gan models
is not significant. Also, on the NSL-KDD data set, the model proposed in this
paper has a higher AUC than the other two models. From an overall point of
view, this model works best. Therefore, we can conclude that the FlowADGAN
model clusters the features before inputting the features, which can refine the
feature form of the data and, at the same time, use the loss function to opti-
mize and constrain the hidden features. In the next stage of comparison, we use
FlowADGAN as the representative of the GAN series model to compare with
other family’s algorithm models.

4.3 Performance Evaluation

(a) CI-CIDS2017 (b) UNSW-NB15 (c) NSL-KDD

Fig. 3. ROC of Anomaly Detection Algorithms

This experiment selects representative algorithm data sets for testing in different
algorithm families. In Table 3(c), as AUC is the overall indicator of the evaluation
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model, we can see that the algorithm proposed in this article has a better effect
on each data set than other algorithms. As shown in Fig. 3(b), in the NSL-KDD
data set, although FlowADGAN shows the best effect, it is not much different
from other algorithms. Since the NSL-KDD data set was constructed earlier,
the flow of this data set does not have the timeliness of the current network.
At the same time, the network flow under this data set is relatively simple.
Therefore, each model can learn its characteristics and achieve better results.
Our algorithm shows stable performance on the UNSW-NB15 and CICIDS2017
data sets. From Fig. 3(a), its AUC value of 0.8454 is second only to the first
LOF. This algorithm can better learn data distribution under the condition of
three constraint functions and a small training sample size simultaneously. The
CICIDS2017 data set is the latest data set of the three data sets, and it is
also the most extensive data set. This data set fully shows the characteristics
of different models. The deep learning model also exerts its advantages. From
Fig. 3(a), the AUC value of the deep learning model exceeds 0.73, while other
machine learning algorithms are between 0.5 and 0.6. Thus, the FlowADGAN
proposed in this article is still in a leading position in deep learning algorithms.

Table 4. Evaluation results.

Model Dataset Precision Recall F1 Accuracy AUC

weighted avg marc avg weighted avg marc avg weighted avg marc avg

OCSVM CICIDS2017 0.9831 0.5031 0.5545 0.5773 0.7044 0.3686 0.5545 0.6341

NSL-KDD 0.9899 0.5433 0.9059 0.9050 0.9423 0.5550 0.9059 0.9680

UNSW-NB15 0.9831 0.5058 0.7730 0.6039 0.8631 0.4538 0.7730 0.8339

PCA CICIDS2017 0.9806 0.5081 0.9866 0.5030 0.9836 0.5037 0.9866 0.6795

NSL-KDD 0.9901 0.5422 0.9015 0.9106 0.9398 0.5519 0.9015 0.9603

UNSW-NB15 0.9831 0.5067 0.8014 0.6077 0.8808 0.4643 0.8014 0.5904

LOF CICIDS2017 0.9814 0.5418 0.9882 0.5100 0.9846 0.5149 0.9882 0.5483

NSL-KDD 0.9893 0.5336 0.8816 0.8768 0.9285 0.5319 0.8816 0.9118

UNSW-NB15 0.9879 0.5242 0.8573 0.8113 0.9144 0.5092 0.8573 0.8775

AE CICIDS2017 0.9848 0.5132 0.8385 0.6823 0.9032 0.4859 0.8385 0.7357

NSL-KDD 0.9902 0.5154 0.6952 0.8392 0.8106 0.4392 0.6952 0.9628

UNSW-NB15 0.9753 0.4968 0.1969 0.4495 0.3181 0.1691 0.1969 0.5456

VAE CICIDS2017 0.9841 0.5420 0.9614 0.6447 0.9720 0.5610 0.9614 0.7475

NSL-KDD 0.9903 0.5511 0.9192 0.9236 0.9499 0.5714 0.9192 0.9706

UNSW-NB15 0.9832 0.5154 0.9125 0.6206 0.9453 0.5111 0.9125 0.6455

FlowADGAN CICIDS2017 0.9850 0.5135 0.8379 0.6877 0.9029 0.4863 0.8379 0.7461

NSL-KDD 0.9904 0.5256 0.8211 0.8998 0.8928 0.4993 0.8211 0.9810

UNSW-NB15 0.9877 0.5072 0.5004 0.6827 0.6570 0.3482 0.5004 0.8454

Next, we compare different family algorithms on each data set. Since the two
data sets of CICIDS2017 and UNSW-NB15 are representative, we use bar graphs
4(a) and 4(b) to show the performance of each model under these two data sets.
In the field of anomaly detection, the model will have the problem of judging
benign samples as malicious. However, we believe that the problem of the model
judging malicious samples as benign samples is more serious. Therefore, the
number of false flows determined as proper flows should be as small as possible.
So we need to consider that the benign accuracy rate and the negative recall
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Fig. 4. Metric scores of Anomaly Detection Algorithms

rate have great weight. This experiment shows the weighted average precision
rate and the macro average recall rate.

FlowADGANs’ accuracy rate exceeds 98% mainly because the ratio of normal
flow to malicious flow in the training set is 100:1. Therefore, most of the normal
flow can be well-identified. Their accuracy rates are high. On the other hand, the
recall rate is lower in each data set. The reason is that too much malicious flow
is identified as normal flow. Therefore, whether anomaly detection can detect
anomalous flow, the recall index is essential. It can be seen from Fig. 4(a) that
on the CICIDS2017 data set, as a representative of deep learning algorithms, the
FlowADGAN recall rate is higher than other algorithms. Therefore, the model
has a relatively strong ability to detect abnormal flow.

In addition, on the UNSW-NB15 data set, the density-based outlier algorithm
LOF performed extremely abnormally. The LOF algorithm compares the density
of the sample points around two sample points [6]. Therefore, LOF has more
advantages in learning small-scale data samples. However, the algorithm will be
more unstable when converting data sets or increasing the size. See from the
Fig. 4(b), on the CICIDS2017 data set, the AUC value of LOF is only 0.5483,
indicating that the model is not practical. Therefore, the effect of encountering
unknown flow may not be good.

4.4 Experiment Discussion

In this experiment, we select two newer data sets, and box plots show the abnor-
mal scores of each type of malicious flow. Figure 5 demonstrates that the model
does not have a good recognition effect on Exploits, Fuzzers, and Reconnais-
sance. Fuzzers are an attack that attempts to suspend programs or networks by
providing randomly generated data. Reconnaissance is an attack that includes
all attacks that can simulate information gathering. Both types of attacks are
generated by simulation, which is inherently random. Therefore, the character-
istics of these two types of flow are similar to normal flow, and it is difficult for
the model to distinguish them. Exploits are vulnerability attacks. The attacker
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Fig. 5. Box-line figure of malicious flow classification.

knows the security issues in the operating system or software and exploits this
knowledge by exploiting the vulnerability. The flow of these vulnerabilities is
generated along with the flow of software applications. Therefore, the flow char-
acteristics of these vulnerabilities are similar to the typical flow characteristics
in the software operation process, which makes the model difficult to identify.
Attacks like Heartbleed are loopholes in the ssh protocol, and there are too few
samples available for testing. Therefore, the recognition effect of FlowADGAN is
not good. On the data set UNSW-NB15, the model in this article has too little
normal sample training, so the abnormal score of normal flow will be slightly
higher than the CICIDS2017 data set. Brute-force cracking of this type of attack
is often through repeated trial and error by enumerating exhaustive methods.
Therefore, there will be apparent manifestations in features such as flow duration
that allow the model to distinguish the difference from the normal flow easily.

Fig. 6. Visualization of hidden vectors.
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Based on the Fig. 6, we select a ratio of 100:1 between normal and malicious
flow. The FlowADGAN model can distinguish the flow well. In the last part of the
experiment, we also performed model interpretability work on the UNSW-NB15
dataset. We use the ATON [34] method to explain the outlier results of anomaly
detection. The ATON algorithm is used for post-mortem interpretation. It puts
the abnormal data that has been obtained into the ATON algorithm, thereby
explaining the contribution of each feature under the modified model and data
set. The figure below shows that features such as sttl and ct-srv-dst play a more
important role in the model.

Fig. 7. Interpretation of the model and important features in UNSW-NB15

5 Conclusion

In this paper, we propose a FlowADGAN anomaly detection algorithm to solve
the problem of complex network structure and the inability to identify new mali-
cious attacks. The model creatively proposes a practical aggregation module that
can be applied to data features of different dimensions as input. At the same
time, the module can aggregate the autocorrelation features and then carry out
the convolution coding, which can retain the abnormal feature information to a
greater extent. The algorithm directly learns the spatial features after aggrega-
tion, completes the spatial backtracking, and forms multiple constraints, which
enhances the stability of the model and facilitates training. Many experiments
show that FlowADGAN performs better than other traditional algorithms on
public intrusion detection data sets NSL-KDD, UNSW-NB15 and CICIDS2017.

However, research on unsupervised flow detection algorithms is rare and
immature. Although unsupervised algorithms have made some achievements in
this paper, there is still much room for improvement. In the future, we still have
much work to do to improve the intrusion detection model.
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Abstract. Consent originated in the 1800s to protect incarcerated prisoners
against unwanted medical treatment and was later formalized in the Nuremberg
Code in response to harmful medical experiments that was conducted on pris-
oners of war during World War II. These co-called ethical principles was later
reinforced and extended to protect the control and decisional power that individ-
uals need over their bodies in The Belmont Report. Today these ethical consent
principles are codified in laws such as the GDPR. Considering that these ethical
consent principles was developed around biomedical treatments and experiments,
it begs the question whether these same principles are still relevant and can be
successfully applied in a digital environment. This paper critically considers the
application of the original ethical consent principles in the digital age and high-
lights certain critical challenges. The aim of the paper is to draw attention to the
fact that the concept of consent and whether it can still be applied ethically in
a digital environment must be considered first before digital consent models or
consent automation tools are developed, because such a consideration will have
a critical impact on how these tools must be developed to remain, not only legal,
but also ethical and subsequently sustainable.

Keywords: Legal consent · Ethical consent · Digital consent · Origins of
biomedical consent · Relevance of consent

1 The Origins of Consent

1.1 From Biomedical Treatment to Clinical Research

The first legally binding obligation to obtain informed consent for medical treatment
was contained in a directive issued by the Prussian Minister of Interior Affairs in 1892
which directed that tuberculosis treatment may not be administered against the will of
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the patient (in this specific case incarcerated patients) [1]. After the Neisser-case1 in
1900 a further directive prohibited the participation of minors or non-competent people
from non-therapeutic clinical research and demanded that clinicians obtain “unambigu-
ous consent” after possible negative consequences of the study have been disclosed to
potential participants [1].

Thefirst internationally recognized informed consent guideline as it is knownand still
applied today is contained in The Nuremberg Code that was handed down by the court
after the prosecution of Nazi medical doctors for their involvement in controversial and
harmful research activities conducted on concentration campprisoners duringWorldWar
II [2]. This code emphasized the voluntary nature of consent and stated that “any element
of force, fraud, deceit, duress, overreaching,” “constraint” or “coercion” are strictly
forbidden in the context of consent [2]. This code further defined consent by stating that
the “individual who initiates, directs or engages in the experiment” must also provide
participants with “sufficient knowledge and comprehension about the elements” of the
study such as the nature, duration, purpose, method, and meaning of the experiment,
including information about any expected inconveniences, hazards, and effects – and
that this duty cannot be delegated to anybody else [2].

But these information requirementswere soon disregarded by doctorswho conducted
longitudinal Syphilis studies on patients who were completely unaware of the fact that
they were part of a study that lasted from 1932–1972 [3]. To further establish informed
consent practices and to protect an individual’s ability to exercise control and decisional
power over his or her body the Belmont Report was issued as an outcry against the
paternalistic practices that dominated doctor–patient relationships in the 1900s, includ-
ing ongoing abuses of people participating in biomedical research with the goal to enable
individuals to exercise control and decisional power over their bodies [4].

The main aim of the development of these consent instruments was to protect people
who found themselves in a situation where they may suffer possible harm, if they con-
tinue to engage in a certain relationship with another, because of not having sufficient
information to help him or her to decide for themselves whether they want to continue in
these circumstances. This information deficiency caused a power imbalance that opens
possibilities for exploitation or harm. Today power and informational imbalances persist,
but are we now urged to consider the relevance of consent in view of the nature of digi-
tal technologies and how these technologies can be used to give control and decisional
power back to internet users.

1 Albert Neisser (1855–1916) was a Prussian professor of dermatology and venerology at the
University of Breslau, who conducted clinical studies on the treatment of syphilis. For the
development of an effective vaccination he injected patients (mostly sexual workers), admitted
with other medical conditions, with a cell-free serum. The vaccination, after a public outcry
on approx. 600 cases collected by a psychiatrist Albert Moll, was deemed as ‘unsuccessful.’
In 1898 the Royal Disciplinary Court condemned the activities of Neisser. The main argument
was not the questionable scientific background of the studies but the lack of consent from the
patients.
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1.2 Consent as Legal Right

Informed consent requirements are now codified in law. The General Data Protection
Regulation (GDPR) states specifically that natural persons “should have control of their
own personal data” [5]. However, the GDPR took a human rights approach to privacy,
leaving the technical and administrative aspects of how to implement the envisioned
consent requirements behind. In this context, it strives to provide the individual with
greater control and autonomy over his or her decision-making power when it entails
their personal information, whilst placing more emphasis on the obligations of the data
controller to operate in a transparent and lawful manner [6]. In addition, the GDPR
requires from the data controller to provide the data subject with a bunch of information
as listed in Articles 13 and 14 of the GDPR to enable the data subject to adequately
assess the circumstances and consequences of the data processing activity they are about
to give their consent to [7]. Up to this point the goals and ambitions of the GDPR seems
to be aligned with the ethical consent principles of the Nuremberg Code and Belmont
Report. However, it also seems, as will be discussed below, that too much emphasize is
increasingly being placed on the legal requirements of consent, as opposed to the ethical
principles of consent and what consent is supposed to achieve in society. One of the
differentiating factors between ethical and legal consent is the issue of comprehension,
and this is where ethical consent principles supplement the legal requirements of consent
as stated in the GDPR. The Nuremberg Code, including ethical guidelines following
thereafter, such as the Belmont Report, Declaration of Helsinki, and guidelines issued by
the Council for International Organizations andMedical Sciences (CIOMS), specifically
provide those participants should not only be provided with “sufficient knowledge” or
information, but that participants’ “comprehension about the elements” of the studymust
also be ensured [2]. The CIOMS guidelines, for example, places specific emphasize
on the capacity of the patient to consideration information with reference to his or
her age, maturity, and cognitive ability, because these factors may directly impact a
patient’s ability to understand information, which consequently influences whether his
consent can be considered to be ethical based on his comprehension of the information
[31]. Although the GDPR makes reference to the concept of understanding, as part
of the principle of transparency of an individual’s right to information, this concept
is only described to the extent that information must be “concise, easily accessible,
and easy to understand” [32]. However, this principle does not seem to impose on
the data controller the same obligation as the above ethical guidelines imposes on the
biomedical researcher to ensure that the data subject fully comprehend the information
given to the participant prior to providing consent, failing which such consent will be
deemed unethical. For consent to be considered legally valid in terms of the GDPR,
consent must be “freely given, specific, informed, and unambiguous” with no mention
of the ethical obligation to ensure comprehension of the information by the data subject
[33]. In essence legal consent only requires the provision of the listed information to
an individual and that consent be expressed by such individual, whilst ethical consent
requires the extra condition of ensuring that the participant truly understand information
before consenting.
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1.3 Ethical v Legal Consent

The authoritative authors on consent ethics, Beauchamp and Childress, distinguish
between three elements of informed consent: 1) consent threshold elements that include
competence and voluntariness; 2) information elements such as disclosure, provision
of recommendations, and understanding; and 3) consent elements such as decision and
authorization [8]. From this it is clear that ethical consent entails a much richer engage-
ment with the data subject than legal consent. Ethical consent requires that an individual
truly understand or comprehend information that is given to him or her, as opposed
to merely being provided with information (albeit in an easy-to-understand format), as
legally required, and that an individual is afforded sufficient time to consider such infor-
mation to enable the individual to make a truly considered, informed, and subsequent
autonomous decision.

Unfortunately, consent processes in the digital world frequently fail to live up to these
underlying ethical values that justified its creation in the first place. In case of medical
treatment patients have to sign a consent form before surgery can start and after they
were made to understand the risks and consequences involved in such surgery, which
may allow a patient to rather forego the surgery if the patient deems the risks too high.
Patients may seek a second, or even a third opinion from various medical practitioners
specializing in the same field as the one in which the patient requires treatment before
making a final decision. In these circumstances is may be reasonably acceptable, based
on standardized specialist training which medical specialists undergo, to expect that
certain medical specialists should be able to provide certain standard services related
to their specialist field, such as thoracic surgery. A second or third opinion may thus
relate to a practitioner’s success record with a specific treatment regime, whether the
patient finds personal rapport with a certain practitioner, or whether the patient trust the
practitioner more than others and is thus more accepting of his or her advice. But in the
digital world a user often has to consent to certain privacy agreements to access specific
digital platforms or services in a fairly take-it-or-leave-it approach, which platforms
increasingly collect and use users’ personal information for covert purposes, making
consent unethical, illegal, and futile [9]. Although it may be argued that users, like
patients, also have the option to forego using a specific application, or rather consider
using other applications or websites, it is often the case that users want to use a specific
application, such as Twitter of Facebook, because of their network, scale, functions,
and the fact that most of the user’s contacts are also using this specific application. In
these circumstances the user is either forced to consent to whatever terms and conditions
the specific platform offers, or face being excluded from accessing it, while different
social media applications may not offer the same network of possible contacts, scale, or
functions.

Digital consent processes usually only disclose the potential uses the company has
for an individual’s personal data, as opposed to empower the individual to consider his or
her options and control the use of their personal information. While this may be legally
valid consent, it fails to live up to consent’s ethical goals. Considering the origins of
consent, as discussed above, consent is supposed to transform the relationship between an
individual in an informationally vulnerable position, and someone in an informationally
powerful position, into a more balanced relationship with regards to power by improving
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information equality. In case of digital consent processes, a gap opens up between legally
valid consent and this ethically or morally transformative consent. Because of the purely
techno-legal approach to online consenting, digital consent has been repeatedly criticized
as being an “unworkable, empty procedural act” [9]. Everyone is so busy automating
and digitizing existing consent concepts and models that nobody questions whether
the original concept of consent for medical treatment and research is still relevant,
or whether it is still applicable in the digital world. For us to take full advantage of
emerging technologies, we need to consciously integrate ethics and moral philosophy,
in addition to other relevant disciplines, into the implementation of digital consenting
by critically reconsidering some foundational ethical and moral concepts. As a moral
concept consent plays a morally transformative role in interpersonal interactions as
discussed above. In the medical context, the informational gap that exist between the
doctor or clinical researcher and patient or participant, which gap could be narrowed by
the provision of information to the patient or participant to enable them to understand
the risks and consequences involved to the extent that they feel satisfied enough to
make an informed choice. However, in the digital world it is questionable how this
knowledge gap can be bridged with the provision of more information to the online
user, considering that in this context even the informational gaps between computer
scientists and software engineers grows larger by the day, including the informational
gaps between the creators of algorithms and theirAI creations. In an effort to complywith
the transparency requirements that is not only foundational to ethical consent, but also
required in terms of the GDPR, digital information exchange is based on notifications
when information of users is electronically collected and used, which notification also
provide the user with a choice of whether to accept or reject the collection and use as
suggested by this digital information exchange [10]. However, due to the unpredictability
or unimaginable use of data by AI systems, these technologies exacerbate existing legal-
ethical issues with online consent [11].

Almost based on the same principle of transformative consent and the rebalancing of
informational inequalities, Miller and Wertheimer also refers to the cooperative nature
of consent in which there are “fair and predictable standards underlying the consent
transaction for both the consenter and consentee” [12]. They emphasize the bilateral
nature of the consent transaction as if consent is a commercial transaction between
two contracting parties. In this context if may be the case that the concept of consent
has evolved to more resemble commercial transactions in which contracting parties
must mutually agree on the terms and conditions of the transaction, including their
respective performances in terms of the agreement for the agreement and subsequent
transaction to be legal. Consent as “digital transaction” considered in this context may
differ from consent that was given by individuals for medical treatment or research
in which the patient or participant agreed to be subjected to certain activities, such as
surgery or experimentation, without them having to perform something in return to the
doctor or researcher. In contrast, so-called digital consent transactions are increasingly
concluded between online platforms or service providers and users which entail not only
users’ permission to be subjected to certain activities without any counter performance,
but consent in these cases are the legal basis for the collection of users’ personal or
behavioral information. Accordingly users do counter perform like a contract party as
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opposed to only permitting to be subjected to activities performed on them by a third
party. Considering the interests of both online parties, the legal obligation of transparency
that is placed on the data processor in terms of the GDPR, as well as the ethical goals
to ensure the rebalance of power through information exchange becomes critical when
the consenter and consentee look more and more like contracting parties with legally
enforceable rights and obligations that flows from the terms and conditions contained
in the agreement between them. The difference between consent and a contract always
needs explanation, but unfortunately falls outside the scope of this article, save to say
that this evolution of consent increases the demands for transparent information that is
fully comprehended by the consenter.

Related to the idea that consent is a transaction that requires the cooperation and
effective communication of the rights and obligations between the consenter and con-
sentee is the issue that it is common to perpetuate on-line consent and that the consent
transaction may subsequently not be a once-off transaction. Due to the nature of users’
continuous interaction with on-line platforms, such as their social media use, these dig-
ital transactions will have to be ongoing over an extended period of time to effectively
account for the new information that is collected from on-line users each time they access
and use these platforms. This is remarkably different from obtaining consent in amedical
treatment context where the patient gives consent for a specific and singular treatment
plan or medical action. A single consent or permission for this type of “transaction” is
thus sufficient, as opposed to the perpetuating nature of the digital consent transaction.

2 Digital Consent

Robust ethical digital consent seems realistically speaking almost impossible to achieve.
In addition, many of the privacy debates are heavily influenced by socio-technical, eco-
nomic and even political cultures. For example, Yao-Huai found that contemporary
notions of privacy in China constitute a combination of traditional Chinese emphases
on the importance of the family as well as the state in which scenario privacy is justified
as an instrumental good, and a more Western orientated individual rights such as the
right to privacy where privacy is considered to be an intrinsic good [13]. Warf also found
China, Burma/Myanmar, Vietnam and Iran to be the countries in the world with the most
severe internet censorship across the globe, with countries such as Russia, Belarus, Pak-
istan, and the Arab world following shortly behind them [14]. Governmental influenced
concepts of privacy and internet censorship directly and negatively affects people’s right
to autonomously choose their interactions or so-called digital consent transactions with
and on the internet. The process of standardizing digital consent is similarly influenced
by social and political dimensions. To prevent the prioritization of one cultural view
above another any standardization proposal must acknowledge and accommodate dif-
ferences in cultural dimensions of informational privacy and consenting [15]. In this
regard the current one size fits all consent mechanisms found in the digital world does
not appreciate these cultural differences and how it affects consenting interfaces.

Solove [16] identified threemain challenges to themanagement of digital information
using a consent model, which challenges we shall expand on below from an ethical
perspective.



The Relevance of Consent in the Digital Age 183

2.1 Habituation and Information Overload

It is impossible for users to read all the privacy notices and their terms and conditions
contained in the privacy policies they encounter on-line on a daily basis. Bravo-Lillo
et al. call this phenomenon “pop-up fatigue” or “habituation” to describe the tendency
of users to increasingly ignore relevant information in circumstances where they are
confronted with the same or similar conditions, such as cookie banners, repeatedly
over an extended period of time [17]. This habituative behavior towards online consent
forms is resulting in users only clicking through privacy and consent notices instead of
attentively reading and understanding the terms and condition to inform their consent
choices which calls into question whether the technical consent resulting from this
process is truly ethical [18]. Surprisingly very few differences have been found between
the use of online consent documents and paper based and personally distributed consent
documents. Varnhagen et al. suggested that researchers should not focus on the modality
of the consent documents, but rather on ways to encourage attentive engagement with
consent documents – whether on-line or not [19]. Even when information was presented
in text format Obar andOeldorf-Hirsch have shown that users often provide their consent
after only having skim-read or blatantly ignoring the information entirely, simply so
that they could access their desired service as soon as possible [25]. Considering that
both on-line as well as traditional paper-based consent forms lead to some degree of
habituation, it may be the case that the digital environment merely exaggerated the
problem of habituation that was initially triggered and given momentum by information
overload [20]. Schermer, Custers, and van derHof, also argues that information overload,
especially in the absence of meaningful choices (see Sect. 2.3 Action Futility below)
further leads to “consent desensitization” where users blindly consent to risks to which
they would not normally not consent to, but for their continuous exposure to consent
information overload [24].When it comes to consent in the digital world convenience is a
hugedriving factor [26], especiallywhenprivacy and consent notifications are considered
a nuisance or mistaken for the only gateway to gain access to a digital platform or service
[27].

Contrary to legal safeguards that apply to services offered to the general public,
such as aviation, the internet is run by a transnational private regime of multinational
bigtech companies, next to nation states who tries to govern the safety of their respective
citizens via a state-centric standard constitutional regulatory regime. Thus, to ensure
the safety of users using the internet in much the same way as aviation regulations, for
example, govern the safety of aircraft for the general public, the borderless and global
digital ecosystem of the internet requires a centralized and tailored digital constitution
to govern the internet independently from the many political, business, and financial
agendas of the current role players [34]. Only when users of the internet can enjoy a
broad spectrum of fundamental digital rights in terms of such a digital constitutional may
they enjoy protection from general risks and threats specific to the digital environment,
which will equally minimizing the risks exposed to when consenting. However, even this
idealistic framework of digital fundamental rights may still not excuse data controllers
from the ethical requirements of obtaining consent as discussed above.
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2.2 Consideration and Comprehension

The language used to communicate consent and privacy notifications is often unclear
and confusing to the extent that very few users may really understand the nature, extent
and reason of the information or digital services exchange that is set in motion through
their digital consent. As seen in the biomedical field, a proper consent process takes a
lot of time, effort and energy to allow a patient or participant to gain full understanding
on the level required for purposes of ethical consent. In this regard a study by Braddock
et al. reported a median consenting time of 16 min for orthopaedic surgery [21], whilst
consenting times for clinical trials has been established at around 30–60 min [22]. Con-
senting in the digital world usually requires a decision to be made in a very short period
of time, if not immediately, leaving very little to no time to carefully consider the con-
sequences of any decision. In addition comprehension of vaguely worded or inherently
consent notices may be even less among vulnerable populations such as children, users
with low digital literacy, users experiencing language and cultural diversity or obstacles,
the cognitively impaired, or users under extreme emotional distress [23].

2.3 Action Futility

Solove also argues that even if the above challenges in respect of habituation and informa-
tion overload, and the lack of time to adequately consider and comprehend information
were to be cleared out of the way, that any actions users may attempt to take will still be
futile [16]. Information exchange and comprehension that should serve as enablers of
users’ autonomy through decision making are seemingly impossible in the digital world
due to the lack of real control users have over the outcomes of their digital decisions. In
the absence of moral or ethical consent, as discussed above, and regardless of the fact
that such consent may be deemed legal, Solove considers this so-called “privacy self-
management” as meaningless [16], especially considering that the prevailing approach
to privacy merely attempts to protect an individual’s choice by remaining neutral on the
types of policies accepted. Nissenbaum and Barocas echo Solove’s opinion to the extent
that they also deem informed consent, if it was achievable, to be ineffective against con-
temporary information harms on the basis that modern data practices are premised on
future and unanticipated or unknown uses [9].

It is understandable that online platforms wish to create a smooth, irritation free user
experience for their users, but does it also seem that such an experience is not compatible
with ethical consent requirements due to the lack of adequate information exchanges
that will allow users to exercise well considered and autonomous consent [28]. Themore
‘seamless’ and enjoyable the experience for the user, the less likely they have contended
with complex information requiring them to make difficult choices [29]. Subsequently,
consent in the digital worldmay not provide the ‘safety self-management’ it is advocated
to provide [30].

3 Conclusion

The GDPR’s aim is to give control back to individuals over their own personal data.
However, by merely stating that it will try to achieve this by placing more emphasis
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on the obligations of the data controller to operate in a transparent and lawful manner
will definitely ensure legal consent, but not necessarily ethical consent and true individ-
ual control and autonomy as intended. Transparency is often implemented in practice
by simply providing online users with more and more information, leading to infor-
mation overload, habituation and desensitization, achieving the complete opposite of
the intended goal of transparency. However, these actions, and the subsequent consent
obtained as a result thereof, will be considered to be completely lawful as it ticks the
legal requirement of transparency. The GDPR is mute on any obligations of the data
controller to ensure that data subjects fully comprehend the information provided to
them, as is the case with biomedical treatment and clinical research consent.

Asdiscussed, ethical consent has the ability to transform themoral landscapebetween
two parties. However, if one of the parties is not even aware of this transformation
because his or her consent has been automated or “extracted” via digital consent tools,
the ethically envisioned transformation could not take place and will the consent also be
unethical. The overor hyper-automation of consent may thus undermine the control that
an individual may gain over his or her information which is a legally protected right in
terms of the GDPR and an essential element of any theory of consent.

Digital consent tools should thus aim to empower online users to better understand
notifications and what platforms intend to do with any personal information they col-
lect. Digital consent models should also aim to be interactive and able to engage with
users to answer their privacy or information sharing related questions. However, digital
consent models still only offer an initial, one-time conclusive consent in an information
environment that demands continual consent. Ongoing engagement with users should
be sought via a more cooperative model.

Authors such as Pöhls and Rakotondravony proposed some technical solutions to
enable users to control data collection in a smart device connected environment by rec-
ommending the use of physical kill switches, physical status indicators, and mixes of
switches and status indicators to “legally opt out of data collection dynamically due to
changes in the privacy-invasiveness tolerability of users due to changes in their situa-
tions” [35]. This concept of physically “refusing” consent and frustrating the subsequent
collection of data through visual, haptical, or audio feedback depends on the underlying
assumption that “the user understands what level of data collection means what level
of privacy-invasiveness” [35]. This assumption so clearly illustrates the misconception
of ethical consent in many of the technical solutions proposed for consent on the inter-
net, and the misunderstanding of legal versus ethical consent. The switches proposed by
Pöhls and Rakotondravony may be an effective technical means of physically preventing
further data collection through sensors connected to the Internet of Things (IoT), but
if these methods are offered as solutions to “Dynamic Consent: Physical Switches and
Feedback to Adjust Consent to IoT Data Collection” as the title of their paper suggests,
it clearly falls short of the ethical requirement of ensuring that users understand what
they are consenting to, based on their own assumption, quoted above.

Coming back to the Nuremberg Code and its emphasis on the voluntary nature of
consent and its prohibition of “any element of force, fraud, deceit, duress, overreaching,”
“constraint” or “coercion”, it is well worth mentioning that many of the digital consent
models seem to have embedded at least elements of force and over-reaching into their
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models, as discussed in Sects. 2.1, 2.2 and 2.3 above. This code further clearly places
the obligation to ensure that participants (users in the case of digital environments)
are provided with “sufficient knowledge and comprehension about the elements” of
the information provided on the “individual [digital platforms] who initiates, directs or
engages in the experiment [digital consent transaction]”. Ethically speaking the redesign
of digital consent models is the task of digital platform operators and data controllers,
with other words the parties with the knowledge about the functionalities of the platform,
how and what data it collects from users and more importantly how this data will be
used. It is thus the responsibility of the digital platform party to rebalance the current
informational inequities by redesigning digital consent models.

Interestingly enough, regardless of the existence of the Nurmeberg Code, doctors
still circumvented this code, which ignorance gave birth to The Belmont Report that
aimed to further establish and extend existing informed consent practices in an effort
to protect individual control and decisional power over his or her body. In this regard
the Belmont Report still protects the control and decisional power over people’s bodies,
but in the digital age people need control and decisional power over their personal
information as well, which may not be explicitly covered by The Belmont Repot or
Nuremberg Code. This begs the question whether another uprising must not give birth
to a new version or similar instrument as The Belmont Report that can again explicitly
and further establishes and extend existing consent principles to now also provide for
the ethical application of consent in the digital age and environment.

Solving the issue of ethical consent in the digitalworld is clearly complex andwill not
only be found in proposed technical solutions. This requires a much more fundamental
and conceptual approach. In this regard I think the following should be considered to
take us a few steps closer to finding a workable solution:

1. Digital constitution A digital constitution can return political concerns and per-
spectives, informed by economic and technical realities of the internet, back into
the governance of the internet, and ground the political struggle over the internet
explicitly in the fundamental rights of individuals;

2. Collective consent Considering that most, if not all, users of the internet can be ren-
dered vulnerable at some point in time by manipulating techniques or technologies,
a protecting authority that safeguards the interest of users as a collective should be
considered;

3. Digital literacy To bridge the digital divide, more effort must be put into digital
literacy to empower users through insight knowledge of how the internet works, its
role players, and the value and use of users’ data.
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Abstract. Honeywords are fictitious passwords inserted into databases
in order to identify password breaches. Producing honeywords that are
difficult to distinguish from actual passwords automatically is a sophisti-
cated task. We propose a honeyword generation technique (HGT) called
HoneyGAN and an evaluation metric based on representation learning
for measuring the indistinguishability of fake passwords, together with a
novel attack model for evaluating the efficiency of HGTs. We compare
HoneyGAN to state-of-the-art HGTs proposed in the literature using
both evaluation metrics and a human study. Our findings indicate that
HoneyGAN creates genuine-looking honeywords, leading to a low success
rate for knowledgeable attackers in identifying them. We also demon-
strate that our attack model is more capable of finding real passwords
among sets of honeywords compared to previous works.

Keywords: authentication · machine learning · honeywords

1 Introduction

Current password-based authentication systems store sensitive password files
that make them ideal targets for attackers because if successfully obtained and
cracked, an adversary may impersonate registered users undetectable [11]. To
effectively detect password leaks, Juels and Rivest [4] suggest that a website
could store decoy passwords, called honeywords, alongside real passwords in its
credential database, so that even if an attacker steals and reverts the password
file containing the users’ hashed passwords, they must still choose a real pass-
word from a set of k distinct sweetwords, where a real password and its associated
honeywords are referred to as sweetwords. The attacker’s use of a honeyword
could cause the website to become aware of the breach. Notably, honeywords
are only beneficial if they are difficult to distinguish from real-world passwords;
otherwise, a knowledgeable attacker may be able to recognize them and compro-
mise their security. Thus, when implementing this security feature into current
authentication systems, the honeyword generating technique is critical.

The following are the paper’s key contributions:
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– We propose HoneyGAN, an HGT leveraging a password guessing model called
GNPassGAN [14]. HoneyGAN can create passwords that seem legitimate and
could be used in a honeyword system to deceive attackers.

– We introduce two evaluation metrics for determining the indistinguishabil-
ity of honeywords and compare the honeywords generated by our technique
HoneyGAN to those generated by other two state-of-the-art HGTs in the lit-
erature, and so could reliably infer our framework’s true resistance to sophis-
ticated discriminating attackers.

– We conducted a human study via Amazon Mechanical Turk to test the dif-
ficulty of finding the real passwords in sets of honeywords created by our
HGT and other two state-of-the-art HGTs. Our findings are consistent with
the result of using the two evaluation metrics we proposed. To the best of
our knowledge, we are the first to conduct a research ethics-approved human
participant study related to honeywords.

– To encourage more research on this area and to improve reproducibility, we
have made the source code1 for HoneyGAN publicly available.

The remainder of the paper is structured as follows: Sect. 2 introduces Hon-
eyGAN, and two other HGTs for comparison. Section 3 is the HGTs evalua-
tion. Section 4 is the user study and Sect. 5 discusses the limitations and future
prospects of our study.

2 Honeyword Generation Techniques

2.1 HoneyGAN

GNPassGAN. Our HGT is inspired by a password guessing model GNPass-
GAN [14]. GNPassGAN is a GAN-based model that consists of a discriminator
(D) and a generator (G) that are both constructed using deep learning neural
networks. G takes as inputs noise or random features, learns the probability of
the input’s features, and creates data that follow the distribution of the input
data. While D gets both real passwords and samples generated by G and makes
every attempt to distinguish the two by calculating the conditional probability
of a sample being false (or real) given a set of inputs (or features). This cat-
and-mouse game forces D to extract vital information from the training data,
and each iteration brings G’s output closer to the distribution of real passwords,
improving the possibility of matching the passwords of real-world users. GNPass-
GAN also incorporates gradient normalization to boost its guessing capability.

GNPassGAN is adept at generating realistic passwords, with 12.65% of pass-
words created by GNPassGAN being confirmed to exist in real-world password
breaches (the Rockyou test set) [14], and the generated passwords that do not
match the test set are plausible candidates for human-generated passwords.
Because the primary challenge of honeyword creation is to develop indistinguish-
able decoy passwords that attackers cannot discern apart from genuine ones, the-
oretically, we reckon GNPassGAN can be employed for this purpose and demon-
strate it quantitatively in Sect. 3 and 4 via experiments. The main difference
1 https://github.com/fangyiyu/HoneyGAN.

https://github.com/fangyiyu/HoneyGAN
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between GNPassGAN and HoneyGAN is that GNPassGAN is used as a password
guessing tool in our work, and HoneyGAN is a HGT that utilizes only the gen-
erator of GNPassGAN to generate honeyword candidates, and further select the
passwords that are most similar to the real password as honeywords.

Text Similarity. Similarity between two strings is crucial in HGT since it
demonstrates the indistinguishability of a false password from a genuine one,
and is employed in both the honeyword creation and assessment processes. Typ-
ically, in natural language processing tasks, the distance/similarity of two strings
is determined as follows: the strings are converted to vectors using word embed-
ding techniques, and then the cosine similarity of the two vectors is calculated as
the distance. Here, the strings might be composed of letters, symbols, or num-
bers, similar to how passwords are composed. Popular word embedding methods
include Word2vec [6], FastText [1], and TF − IDF . While these techniques take
into account the semantic and syntactic meanings of a word/text, in our case,
the majority of passwords lack such meanings; hence, we choose the simplest but
still effective method of vectorization known as bag of words (BoW).

In BoW, the core premise is that documents are similar if they contain com-
parable information. We examine the histogram of the characters included inside
the strings, that is, each character count is considered as a feature. To be more
precise, we first count the unique characters and their occurrences in the two
strings being compared, then create a vector for each string with a length equal
to the number of unique characters the strings contain, assign the vector’s value
in the associated index to the character’s occurrences in each string, and finally
compute the cosine similarity of the two vectors by definition. Please note that
we do not consider the semantic connotations of passwords in this work.

Generate Honeywords with GNPassGAN. The following procedure
demonstrates how we generate honeywords using GNPassGAN. (1) GNPass-
GAN first needs to be trained on a password corpus, and we train GNPassGAN
for 200,000 iterations to get a thorough grasp of the construction pattern of pass-
words in the training dataset. (2) We use the GNPassGAN generator to produce
a file F containing 50,000 fake passwords as honeyword candidates. Notably,
F must be stored separately from the authentication system in a secure place.
(3) We compare each user’s true password to all fake passwords in F and cal-
culate text similarity scores. Here, we convert each password to a vector using
BoW and compute the cosine similarity of two passwords. (4) Finally, we assign
honeywords for a real password to the k − 1 most similar fake passwords in F .

2.2 Baseline Models

We utilize two models as comparisons in this work: chaffing-by-fasttext proposed
by Dioysiou et al. [2] and chaffing-by-tweaking proposed by Juels and Rivest [4].
We will use the term chaffing-by-fasttext and fasttext interchangeably, as well
as chaffing-by-tweaking and tweaking.

Chaffing-by-fasttext first trains the fasttext model with a real password cor-
pus, then fasttext generates vector representations of each password in the cor-
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pus. After training is complete, the trained model can be queried by providing
a real password as input and receiving a multi-dimensional vector representing
the provided password’s word embedding as a response. Finally, the top k − 1
closest neighbours according to cosine similarity are assigned as honeywords for
each password.

Notably, the technique’s primary weakness is that the produced honeywords
are all genuine passwords in the fasttext training dataset, which means that if
an attacker has access to the training dataset, the honeywords will be readily
discovered. Additionally, the size of the training data has a significant impact
on the quality of the honeywords created.

Chaffing-by-tweaking is an approach that mainly relies on random letter,
digit, and symbol substitution.

Honeyword examples generated by the three HGTs can be found in Table 1.

Table 1. Honeyword samples generated by the three HGTs compared in the paper
(HoneyGAN, fasttext and tweaking). Our password guessing model GNPassGAN and
the fasttext model have been trained on a subset of the Rockyou dataset.

Real Passwords deshaun96 dafnny 24 Shauni16!

HoneyGAN masdane69 andey124 nahuas11

sandesh89 badhyn24 hunhzan1

naueds09 maydona242 hanilin1

fasttext boedha21 snuffy22 muchluv!

cutechica1 Dushido07 cliffordx

felli1330 Dampire2 10.04.88

tweaking DeShauN37 dafnny=96 Shauni53+

deshaun87 dafNnY44 SHaunI73$

DesHaun56 dAfnny+47 SHaUnI73$

3 Evaluation

3.1 Datasets

We analyze HoneyGAN’s performance and compare it to the other two HGTs
using 13 datasets containing real-world passwords. Our password datasets
include over 828 million plain-text passwords and are derived from 13 differ-
ent online providers (can be found in Table 2). We analyze these datasets and
choose only passwords with a length of more than 8 characters, and we randomly
choose 10,000 authentic passwords from each disclosed dataset to facilitate the
assessment of the HGTs without sacrificing generality.

3.2 Internal Similarity Between Honeywords and Real Passwords

The primary goal of HGTs is to create indistinguishable fake passwords; that
is, the honeywords and their corresponding actual passwords are too close to be
differentiated. Consider passwords to be texts; we can determine the similarity
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of two passwords by comparing their text similarities. The greater the similarity
score, the more similar the two passwords are, and the more difficult it is to
distinguish them. We use the BoW metric to determine the similarity of two
words without considering the semantic and syntactic meanings.

However, this metric is based on the assumption that an attacker attempts to
differentiate real passwords using no resources. Indeed, they may have accessed
a large number of previously compromised password files from data breaches.
Because 40% of users reuse their passwords [7], more sophisticated attackers
would assault the sweetwords using these accessible passwords. As a result, we
develop an attack model as described in Sect. 3.3 and assess the resilience of the
HGTs based on the aforementioned assumption of attackers. The performance
of an HGT is then determined by combining these two evaluation metrics.

3.3 Attack Model: Normalized Top-SW

Our attack model, termed Normalized Top-SW is inspired by Wang et al.’s work
“Normalized Top-PW” [11], and operates as follows: 1) Consider a genuine pass-
word dataset (attack) obtained from a data breach, and the sweetword file (tar-
get). The attacker employs the BoW to vectorize all passwords and sweetwords.
2) The attacker calculates the cosine similarity between each sweetword in the
target file and all genuine passwords in the attack dataset, and then assigns the
maximum similarity score to the sweetword denoting the highest likelihood of
it being a true password. 3) The attacker tries the sweetwords of each user in
decreasing order of their scores. If the guessed sweetword is a valid password for
the associated user, then delete this user from the dataset; otherwise, set the
similarity of the guessed sweetword to 0 to prevent it from being tried again.

In our experiment, we determine the efficiency of HGTs by computing the
attacker’s success rate under various attempts T . More precisely, we count the
number of user accounts that are successfully cracked under varying T assign-
ments and divided by the total number of users to get the attack success rate.
We place all genuine passwords in the first column of the sweetword file for
the simplicity of evaluation; in practice, operators should shuffle the order of
sweetwords and securely keep the index of the real passwords.

3.4 Results

As recommended in [4], we assign k = 19 honeywords to each user and calculate
the internal similarity score for each sweetword file generated by the three HGTs.
Assume we are the Rockyou system operator and train our GNPassGAN and
fasttext on our own dataset (Rockyou) to create honeywords for our users. We
then attack the produced sweetword file using all other datasets in Table 2. For
each user, the attacker has T = 20 attempts.

Average Internal Similarity. As a result, the internal similarity score for hon-
eywords created by chaffing-by-GNPassGAN (HoneyGAN) is 0.8193, whereas
chaffing-by-fasttext is 0.2620, and chaffing-by-tweaking is 0.6270. These numbers
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Fig. 1. The Attack Success Rate by using the datasets in Table 2 (except for Rockyou
as it is the target file) to attack the sweetword file generated by the three HGTs under
the Normalized Top-SW attack. A line closer to the y-axis means the HGT is more
vulnerable to attacks. As a result, honeywords generated by chaffing-by-tweaking are
the easiest to attack, and by HoneyGAN are the hardest.

indicate that the honeywords created by HoneyGAN have the shortest average
distance to their corresponding genuine passwords, implying that they are more
similar to their true passwords and hence more difficult to differentiate.

Attack Success Rate (ASR). As illustrated in Fig. 1, under our Normalized
Top-SW attack, when all datasets except Rockyou (exclude it since it is the
target) are used as the attack dataset, we see the same pattern: we are able to
crack all users’ accounts in 4 attempts under the chaffing-by-tweaking condition,
in 11 attempts under the chaffing-by-fasttext condition, and in 14 attempts under
the HoneyGAN condition. Furthermore, 13 attempts are sufficient for the zynga
dataset under the HoneyGAN condition. As a result, honeywords formed by
tweaking are the simplest to discern, while those generated using HoneyGAN
are the most difficult.

We show the average attack success rate (AASR) in Table 2, where AASR =
1
20

∑20
i=1 ASR

(i). As can be seen in the table, an attacker could achieve a success
rate of around 60% when honeywords are created using HoneyGAN and 68%
when honeywords are generated using fasttext when given 20 attempts per user,
and it is statistically significant (p = 3.09 ∗ 10−12 for a one-tale t-test) that the
attack success rate is lower when attacking honeywords generated by HoneyGAN
than fasttext. Honeywords generated by tweaking is the most vulnerable with
more than 90% attack success rate. Furthermore, HoneyGAN can produce better
undetectable honeywords than fasttext and tweaking regardless of which dataset
is used as the resource for attacking.

HoneyGAN outperforms fastext and tweaking in terms of both average inter-
nal similarity and attack success rate, indicating that HoneyGAN-generated hon-
eywords are more similar to real passwords, therefore deceiving attackers and
reducing their attack success rate, and alerting honeycheck towards the password
breach.
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Table 2. The Average Attack Success Rate on the three HGTs when various attack
datasets with Rockyou as the target dataset are used. A number in bold indicates that
the relevant HGT performs the best.

Dataset Tweak FastText HoneyGAN

have-i-been-pwned-v2 0.9149 0.6863 0.5923

linkedin 0.9092 0.6863 0.5943

myspace 0.9279 0.6857 0.6090

youku 0.9072 0.6858 0.6090

zynga 0.9300 0.6907 0.6213

adultfriendfinder 0.9230 0.6902 0.6006

dubsmash 0.9229 0.6886 0.6138

last.fm (2016) 0.9226 0.6854 0.5880

chegg 0.9123 0.6888 0.6032

dropbox 0.9257 0.6928 0.6096

yahoo 0.9188 0.6881 0.5868

phpbb 0.9260 0.6855 0.5972

4 User Study

4.1 Study Design

We want to validate the hypothesis that individuals need more attempts to
correctly find the real password when honeywords are generated by HoneyGAN
than tweaking and fasttext.

We conducted a within-subjects experiment with 300 participants where each
person performed all three HGTs. In our experiment, we have one independent
variable: HGT type; three conditions: HoneyGAN, tweaking and fasttext ; and one
dependent variable: the number of attempts required to find the real password.
Our study was approved by the Research Ethics Board at our institution.

Similar to previous security-related studies [3,5,8,10], we recruited partici-
pants through Amazon Mechanical Turk (AMT), where we embedded a survey
designed on an online survey platform called Qualtrics. Qualified respondents
were encouraged to complete our survey. We imposed three requirements on
participants: (1) To avoid misunderstandings about our instructions, we need
participants to be proficient in English; hence, we required participants exclu-
sively from English-speaking countries including Canada, the US, the UK, and
Australia. (2) Participants should have general knowledge as to what secure pass-
words look like, and we would expect that normally people savvy in information
technology have such knowledge. So we only recruited those who self-identify
as having a job related to information technology. (3) Additionally, we aim to
include only individuals who accomplish high task quality on AMT, as mea-
sured by two AMT scores: the total number of approved Human Intelligence
Tasks (HITs) and the percentage of approved HITs. We selected individuals
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who have 1,000 or more approved HITs and a 90% or greater approval rate for
HITs.

Participants were required to answer 18 rank-order questions, which match 6
sets of honeyword samples produced from each of the three HGTs. Each question
has 19 honeywords and 1 real password. The order of the 20 sweetwords is ran-
domized. The participants were asked to sort the 20 sweetwords in each question
according to their level of confidence that the sweetword is a real password. We
compensated each participant with CAD$5.00 for completing the experiment,
and the compensation was prorated using the Ontario minimum wage at the
time of the study.

4.2 Results

Our analysis is based on the responses to our survey that each participant pro-
vided. We want to determine if there is a significant difference in the average
number of attempts required for users to properly guess the real password in the
HoneyGAN condition compared with the other two conditions.

Among all 300 responses, 7 responses were detected as robots by Qualtrics,
and we deleted these suspicious responses. The remaining 293 responses took
between 47 s and 211 min to complete. To ensure validity, we removed 13 of the
293 replies from participants who finished the exam in less than 3 min, as it is
possible that they were not concentrating. Additionally, we eliminated outliers
with completion time longer than 39 min and 30 s (boxplot maximum), leaving
us with 272 responses to analyze.

The average completion time for the remaining 272 surveys was 14 min with
58 s, with a standard deviation of 7.86 min. This would suggest that the remain-
ing participants were diligent in their responses.

We concatenated the responses for each HGT and got a dataset containing
three columns (the three HGTs), and 1632 (6 × 272) rows, where each value
represents the attempts needed to find the real password in one of the questions
in the corresponding HGT. Since our experiment is a within-group study with
non-uniform data, we used two-factor ANOVA without replication to examine
the effect that the HGTs have on attempts needed to find the real password. The
results indicated that the type of HGT resulted in statistically significant differ-
ences in the number of attempts required to find the real password (F(2, 3262) =
448.276, p ≤ 0.001). We also ran two paired-samples t-tests to examine if there
are significant differences between attempts required to find the real password
for HoneyGAN vs tweaking, and HoneyGAN vs fasttext. As a result of compar-
ing HoneyGAN and fasttext, the mean number of attempts required to find the
real password is 12.479 in the HoneyGAN condition, meaning that participants
require approximately 13 attempts to find the real password when HoneyGAN
generates the honeywords, compared to 6.734 when fasttext generates the hon-
eywords. And the result is statistically significant (t(1631) = 29.767, p ≤ 0.001).
A similar result can be found in the comparison of HoneyGAN vs tweaking : Hon-
eyGAN requires 12.479 attempts while tweaking requires 8.89 (t(1631)=16.948,
p ≤ 0.001).
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5 Discussion

In this section, we highlight the limitations and future work of our study.

Semantics in Passwords. One limitation of our study is that we did not
consider the semantic meanings of passwords. This is flawed when authentica-
tion systems incorporate passphrases to assist users in memorization [3,9]. A
passphrase, as opposed to a password, is typically a 4-to-10-word phrase, sen-
tence, or statement having semantic and grammatical connotations.

Targeted Attacks. For targeted attacks, attackers exploit users’ Personal Iden-
tifiable Information (PII) to guess passwords, which increases the likelihood of
users’ accounts being compromised. This is a critical problem because numerous
PII and passwords become widely accessible as a result of ongoing data breaches,
and people are used to create easy-to-remember passwords using their names,
birthdays, and their variants [12]. Once an attacker obtains users’ PII, and if
only one sweetword in a user’s sweetword list contains the user’s PII, it is highly
likely that this sweetword is the real password and others are fake.

To the best of our knowledge, Wang et al. [13] are the only ones that dis-
cuss how to generate honeywords that are resistant to targeted attacks. We are
currently investigating how to generate honeywords for the same purpose with
Natural Language Processing techniques.

6 Conclusions

In this paper, we propose HoneyGAN, an HGT built on top of GNPassGAN
that generates high-quality honeywords capable of luring attackers and detect-
ing password breaches. HoneyGAN can be easily integrated into any current
password-based authentication system. Additionally, we present internal text
similarity to assess the quality of honeywords and Normalized Top-SW, a hon-
eyword attack model that mimics the real-world attack situation and avoids any
ambiguity. We compare HoneyGAN’s performance to two state-of-the-art HGTs
using these two metrics, as well as a human study and discovered that Honey-
GAN is capable of creating more hard-to-find honeywords and decreasing the
success rate of sophisticated attackers. Furthermore, we demonstrated that our
attack model Normalized Top-SW is more effective than Normalized Top-PW
[11] in discovering real passwords.
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