
Fast First-Order Masked NTTRU

Daniel Heinz1,2(B) and Gabi Dreo Rodosek1

1 Research Institute CODE, Universität der Bundeswehr München,
85577 Neubiberg, Germany

{Daniel.Heinz,Gabi.Dreo}@unibw.de
2 Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany

Abstract. Even though Kyber is the lattice-based KEM selected for
standardization by NIST, NTRU and its variants are still of great rele-
vance to several practical applications. This is why we want to shed light
on the side-channel resilience of NTTRU, which is a very fast variant
of NTRU designed to use the Number-Theoretic Transform. It outper-
forms NTRU-HRSS significantly in an unprotected context, which raises
the question of whether this performance advantage holds when side-
channel attacks have to be considered.

To answer that, we present the first masked implementation of
NTTRU optimized for first-order. To achieve a fast performance, we
present a table-based approach for the masked sampler and the modulus
conversion, similar to the A2B conversion proposed by Debraize in 2012.
The modulus conversion is also applicable to other NTRU variants. Due
to its usage in NTTRU, we present a fully first-order masked SHA512
implementation based on A2B and B2A conversions. We come to the
conclusion that performance is heavily impacted by the SHA2 family
in masked implementations and strongly encourage the employment of
SHA3 in these cases. This result is also of relevance for the 90s/AES
variants of the NIST standardization candidates Kyber and Dilithium.

We achieve a performance of the NTTRU-SHA3 of around 3.1 mil-
lion cycles on the ARM Cortex M4. Finally, we show that our proposed
methods provide side-channel security in practice by employing the well
established TVLA methodology.

Keywords: Lattice-based cryptography · NTRU · NTTRU · DPA ·
Countermeasure · Masking · ARM Cortex M4

1 Introduction

In recent years, post-quantum cryptography has seen increased research atten-
tion as classic public-key cryptographic solutions could be broken by advanced
quantum computers using Shor’s algorithm [1]. During the NIST standard-
ization process [2], several quantum-resistant schemes have been proposed to
make secured key exchanges possible even when large-scale quantum computers
become available. The schemes are based on different mathematical problems.
Among the lattice-based candidates, Kyber [3], Saber [4], and NTRU [5,6] were
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 127–148, 2023.
https://doi.org/10.1007/978-3-031-29497-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_7

128 D. Heinz and G. Dreo Rodosek

part of the final round of the NIST standardization process. For instance, NTRU
is a cryptosystem that makes use of structured lattices to exchange keys in a
‘quantum secure’ way. An advantage of schemes based on structured lattices are
their comparatively small key sizes. Additionally, encryption and decryption can
often be performed faster than in traditional RSA or EC-based schemes [7].

Despite ciphertext, public key, and secret key being almost of the same size
as in Kyber, in general, NTRU-based schemes perform better in terms of speed
during encryption and decryption. Additionally, NTRU-based ciphertexts only
consist of one element which is of advantage when a zero-knowledge proof of the
honest generation of the ciphertext is needed [7]. Even though NTRU and its
variants were not standardized, NTRU is still a very important cryptosystem. An
important example is the OpenSSH [8] program that includes an implementation
of NTRUprime since April 2022. Additionally, Google has recently announced
to use NTRU-HRSS for their internal encryption-in-transit protocol ALTS [9].
This shows that alternatives to the NIST competition are of great relevance for
practical applications.

In lattice-based algorithms, the speed of polynomial multiplication is one of
the bottlenecks. Depending on the modulus of the underlying algebraic ring,
various schemes tackle this issue differently. The key encapsulation mechanism
(KEM) Saber [4], for instance, makes use of a combination of Toom-Cook, school-
book, and Karatsuba multiplication whereas Kyber’s parameter set [3] allows
fast multiplication using the Number-Theoretic Transform (NTT).

The NTT approach for polynomial multiplication is especially fast in dimen-
sions that are a power of two. Kyber solves this issue by using a matrix/vector
structure with multiple polynomials of dimension 28. To obtain a security level
of 128 bits, the dimension of the ring is, according to current security analy-
sis, required to be around 700 to 800 [10]. NTRU-based schemes do not use a
matrix/vector structure and, thus, secret key, public key and ciphertext only
consist of one polynomial. As there exists no power of two in the 128 bit security
range between 700 and 800, the most efficient NTT technique is not applica-
ble for NTRU with this security parameter. This might be the reason why an
NTRU-based scheme that makes use of NTTs was not part of the NIST stan-
dardization process. The authors of [7] propose a specific parameter set to use
the NTT approach in the NTRU scheme to gain additional performance gains
and call their scheme NTTRU. The authors consider it at least as secure as
the corresponding NTRU-HRSS variant that was part of the third round of the
NIST competition. Therefore, it is worth taking a closer look at the so-called
NTTRU.

Due to its good performance, NTTRU is a potential candidate to be used
on embedded devices. Naturally, embedded devices are exposed to a large num-
ber of physical attacks such as fault attacks or side-channel attacks as first
demonstrated by Kocher et al. [11]. Thus, it is crucial to secure cryptographic
schemes against these threats. Correlation between power consumption or elec-
tromagnetic radiation and secret intermediate values can be counteracted by
the so-called masking countermeasure where each sensitive variable is split into

Fast First-Order Masked NTTRU 129

several randomized shares. Each share is then processed separately from a secret
intermediate value. Some of the PQC lattice-based candidates have already seen
increased research attention in this regard. For Kyber [12–14] and Saber [15,16]
first- and higher-order masked implementations exist. Recently, a masked higher-
order implementation of NTRU-HRSS has been proposed [17]. However, no first-
order optimized version of NTRU has been published. We aim at closing the gap
with our work.

Contributions. In this work, we present the first first-order masked implementa-
tion of NTTRU. We employ the first-order masking technique in the complete
scheme. Hereby, we propose a new table-based method for a first-order secured
modulus conversion. We emphasize that this technique is potentially applicable
to all other NTRU variants. Subsequently, we present a first-order masked imple-
mentation of the SHA2-512 algorithm based on fast table-based conversions,
because it is an important building block of NTTRU, and a new table-based
sampling technique. We provide detailed performance numbers on the different
components and conclude that the SHA2 family is significantly more expensive
to protect with masking compared to the SHA3 family. This result is also of
great interest when taking a look at the 90s/AES versions of the NIST selected
algorithms Kyber and Dilithium. We verify the results using the state-of-the-art
TVLA methodology for our newly proposed components. Finally, we propose a
slightly adapted version of NTTRU that achieves a cycle count for decapsula-
tion of around 3.1 million cycles on the ARM Cortex-M4 even without assembler
optimized code for the ARM Cortex-M4. This is about a factor of ten faster than
the first-order cycle count for NTRU-HRSS on the ARM Cortex M3 [17].

2 Preliminaries

In this section, we present the preliminaries of masking the NTTRU scheme.

2.1 Notation

For any prime q and a polynomial f , we denote Rq as the polynomial ring
Zq[X]/(f) where Zq denotes the quotient ring Z/qZ. Polynomials in Rq are
denoted as lowercase letters. The NTT transform of a polynomial a is repre-
sented as â and the base multiplication in the NTT domain (not necessarily
coefficientwise) is denoted as ◦. The i-th coefficient of a polynomial p is denoted
as p[i]. Given a distribution χ, we use x ← χ to mean x is sampled according to
the distribution χ. For a polynomial, this is adjusted such that p ← χn where
n − 1 is the degree of the polynomial. We denote the modular reduction of x to
the domain [−(q − 1)/2, (q − 1)/2] as x mod ±q.

We denote the j-th share of a shared variable x(·) as x(j), whereas the
unshared variable itself is denoted as x. Concatenation is represented as ||.

130 D. Heinz and G. Dreo Rodosek

2.2 The Number-Theoretic Transform

A common solution to make fast arithmetic in lattice-based solutions possible
is the usage of the Number-Theoretic Transform (NTT). It is based on the
Chinese Remainder Theorem For a prime q and a polynomial f that factors into
the product f = gh with g and h relatively prime, the isomorphism

Zq[X]/(f) ∼= Zq[X]/(g) × Zq[X]/(h) (1)

is valid. Apparently, it is possible to compute a linear operation in the two factor
rings and invert the result back to the original ring. If the map and inverse
map to the smaller factor rings can be computed efficiently, it is possible that
this approach is more efficient than the simple computation in the main ring
Zq[X]/(f).

2.3 NTTRU

In the final round of the NIST standardization process [2] two NTRU-based
schemes were present. Both, NTRU [6] and NTRUprime [18] make use of poly-
nomial arithmetic. The discerning feature of NTRUprime is that it deliberately
avoids cyclotomic rings. In [7], Lyubashevsky and Seiler propose a specific param-
eter set to optimize NTRU for NTT-based multiplication. In contrast to both
finalists, a decryption error can occur when using this parameter set. However, in
[7], it is proven that the resulting IND-CCA2 KEM is still appropriately secure.
The authors additionally state that their scheme is at least as secure as NTRU-
HRSS as they use the same error distribution while increasing the ring dimension
and decreasing the modulus. It is not possible to give a formal security reduction
because of the different rings. According to their findings, this results in a major
speed-up of the scheme. We give an overview of the underlying OW-CPA secure
encryption scheme in Algorithms 1–3.

Algorithm 1: NTTRU.KeyGen

Output: Key Pair (sk, pk)
1 f ′ ← β768

2

2 f ← 3f ′ + 1
3 f̂ ← NTT (f)
4 g ← β768

2

5 3̂g ← NTT (3g)
6 if f is not invertible: restart
7 ĥ ← 3̂g ◦ f̂−1

8 return (sk = f̂ , pk = ĥ)

Algorithm 2: NTTRU.Encrypt

Input: message m, randomness
r, public key ĥ

Output: ciphertext ĉ
1 r̂ ← NTT (r)
2 m̂ ← NTT (m)
3 v̂ ← r̂ ◦ ĥ
4 return ĉ := v̂ + m̂

The FO-Transform. The direct usage of these algorithms results in a scheme
that is not resilient against chosen-ciphertext attacks. To counter these attacks
the NTTRU scheme introduces a re-encryption step. The decrypted message is

Fast First-Order Masked NTTRU 131

Algorithm 3: NTTRU.Decrypt

Input: ciphertext ĉ, secret key f̂
Output: message m

1 m̂ ← ĉ ◦ f̂
2 return m := INTT (m̂) mod ±3

re-encrypted and the resulting ciphertext is compared with the input ciphertext.
The approach was first proposed at Crypto ’99 by Fujisaki and Okamoto [19].
The transformed algorithm is shown in Algorithm 4. In contrast to the OW-CPA
version, the randomness for (re-)encrypting is not sampled completely at random
but derived deterministically from the message to encrypt. This way, any wrongly
decrypted message results in different randomness and consequently completely
randomizes the re-encrypted ciphertext. The comparison at the end will fail
and the wrongly decrypted message will not be the output. The algorithm will
return 0. In this context, we write HDR to denote a cryptographic hash function
that generates elements according to the distribution DR with an input seed m.
The hash HR produces elements uniformly at random in R. In the context of
NTTRU, HDR is initialized as

HDR = (AES256ctr(SHA512(m), nonce)) (2)

where AES256ctr is the AES256 in counter mode with a key derived from the
hash SHA512 [20] of m and a nonce. We describe the symmetric algorithms and
the sampling algorithm in the next sections.

Algorithm 4: CCA.NTTRU.Decrypt
Input: ciphertext c, secret key f
Output: shared key k

1 m ← NTTRU.Decrypt(c, sk)
2 seed ← HDR(m)
3 r ← Sampler(seed)
4 if c �= NTTRU.Encrypt(m, r, pk) then
5 return k ← 0
6 return k ← HK(m)

2.4 Symmetric Primitives

SHA512. The FO-Transform and, hence, the hash function are an essential
part of all CCA secured lattice-based schemes. As the input to the hash is the
decrypted message, even a small error in the decryption (e.g. a chosen ciphertext
input or an effective fault attack) will result in a completely randomized hash

132 D. Heinz and G. Dreo Rodosek

value and, thus, in a shared key k = 0. In the NTTRU case, SHA512 [20] is
used. In the presence of quantum computers, the preimage security of hashes is
halved. The SHA512 algorithm [20] is part of the SHA2 family and operates on
512-bit blocks. The used functions are defined as

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) (3)
Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) (4)

Σ0(x) = S28(x) ⊕ S34(x) ⊕ S39(x) (5)

Σ1(x) = S14(x) ⊕ S18(x) ⊕ S41(x) (6)

σ0(x) = S1(x) ⊕ S8(x) ⊕ R7(x) (7)

σ1(x) = S19(x) ⊕ S61(x) ⊕ R6(x) (8)

In this definition, Sn(x) denotes a shift to the right of x by n bits and Rn denotes
a rotation to the right of x by n bits. In contrast to SHA256, for SHA512 the state
variables are of size 64-bit. After one block of the message has been processed, the
values resulting from the compression function are added to the state variables
and reduced modulo 264. After processing the last block, the hash is obtained
by simple concatenation of the eight state variables. The resulting output has a
length of 64 bytes.

Keccak. Another symmetric primitive that is frequently used in lattice-based
schemes is called Keccak. In 2015, Keccak won the SHA3 competition and
became the successor of the SHA2 family. Similar to SHA2, the SHA3 family
consists of several functions with different output lengths. The SHA3 standard
is derived from special parametrization of the Keccak function. The state size is
fixed to 1600 bits and the number of rounds is fixed to 24. Within the function
f , the state vector of 1600 bits is processed in several rounds. Within each round
of f , several subfunctions are called:

– θ takes two columns in the three-dimensional arranged state and the target
bit as input and xor’s the parity of the two columns onto the target bit,

– ρ and π rearrange the positions of the bits within the state,
– χ is the non-linear operation that is using the negation function, the boolean

and function, and an xor operation, and
– ι which xor’s the state vector with a round constant in each round.

Note, that none of these subfunctions requires an arithmetic operation.

2.5 Sampling Algorithms

In some lattice-based schemes, e.g. Kyber and NTRU, the output of the pseu-
dorandom function (PRF) requires additional processing to follow a binomial
distribution but the PRF outputs uniformly distributed bits. The uniformly
random bitstream can, however, be used as an input to the centered binomial
sampler. To obtain such a distribution in the domain [−η, η], Kyber uses 2η

Fast First-Order Masked NTTRU 133

independent one-bit variables and starts by adding the first η variables and the
next η variables. Then one of the two sums is subtracted from the other one.
Thus, the coefficient c ∈ [−η, η] is calculated as

c =
η−1∑

i=0

bi −
η−1∑

i=0

bi+η. (9)

NTTRU requires an additional modular reduction to obtain random coefficients
in [−1, 1]. The NTTRU reference implementation calculates each coefficient by

c = (b1 + b2) − (b3 + b4) mod 3. (10)

The sampling operation in NTTRU is realized by a lookup table. Both of the
sums can take three values, resulting in nine possible outcomes for the coefficient
and the table entries. In NTTRU, the authors additionally simplify the approach
by directly using the table-based approach on the four input bits. In practice,
the table can be realized by a 32-bit variable that stores all the 24 possibilities
in {0, 1, 2} and is shifted by twice the value of the four input bits. Since the
distribution is symmetric around zero, it is even possible to only use a 16-bit
variable as a lookup table and directly shift by the number obtained from the
four concatenated input bits, resulting in

c = (L >> (b1‖b2‖b3‖b4)) ∧ 0x3 − 1 (11)

with L = 0xA815.

2.6 Side-Channel Attacks and Protection

In recent years methods like Simple Power Analysis (SPA) [21] and Differential
Power Analysis (DPA) [11] have seen increased focus for post-quantum schemes.
Several attacks on (protected) lattice-based schemes have been proposed using
power or timing side-channels [22–26]. The attacks include side-channel assisted
CCA attacks where the information from the re-encryption step of the FO-
Transform is used for secret recovery [27,28]. Therefore, it is crucial to protect
not only the decryption but also the re-encryption step with appropriate coun-
termeasures.

In practice, the most well-known countermeasure is called masking [29].
Secret variables are split into two or more randomized shares. One can choose
between arithmetic masking, where the secret s is split into two shares such that
s = s1 + s2 (mod q) and Boolean masking resulting in a sharing s1, s2 such that
s = s1⊕s2. In lattice-based cryptography, both possibilities are frequently used in
conjunction. Different parts of the decapsulation work more efficiently on either
arithmetic or Boolean masking. Therefore, methods to securely convert from one
to the other exist [30,31]. Masked implementations of Saber [15,16], Kyber [12–
14] and, recently, NTRU-HRSS [17] were proposed. However, no detailed analysis
for first-order protection of NTTRU has been performed.

134 D. Heinz and G. Dreo Rodosek

3 Side-Channel Protection of NTTRU

In this section, we will go through the primitives used in NTTRU and provide
a first-order masking scheme for each function. This is visualized in Fig. 1. It
shows how the two input shares of the secret s1 and s2 as well as the unmasked
input ciphertext c and public key pk are processed in the algorithm. The masked
functions are presented in chronological order from the input secret s1 and s2.

s1

s2

c

pk

unpac k

unpac k

·

·

INTT

INTT

mod3
pack
short SHA512 AES256

CTR CBD

NTT

NTT

NTT

NTT

·

·
+

+=

Fig. 1. Masked Decapsulation of NTTRU. Boolean shared data paths in dashed lines.
Arithmetically shared data paths in solid lines. Non-linear functions in yellow. (Color
figure online)

Masked Unpacking. The first function to encounter that works on secret data
is the unpacking function. In our work, we directly store the generated secret
key in arithmetic sharing on the device as in most use cases key generation
is performed on the same platform. Hence, we do not need a so-called B2Aq

conversion. Such a conversion is quite expensive in terms of cycle counts. The
approach is possible because the unpacking function does not compress the secret
key. Thus, an arithmetic sharing requires the same amount of memory as a
“packed” secret key.

3.1 Table-Based Masking of Modulus Conversion

A major challenge in masking NTTRU as well as NTRU is the masking of the
modulus conversion. Concretely, it is required to mask the operation

(x mod ±q) mod ±3.

The challenge is, that different representatives of x mod q lead to different results
when reduced modulo 3. In the NTTRU reference implementation [7], the input
to the mod 3 function, is an output from the inverse NTT. This means that
the coefficients are distributed in [−(q − 1), (q − 1)] because of the used Barrett
reductions.

Fast First-Order Masked NTTRU 135

In the unmasked constant-time implementation, the correct representative of
x mod ±q is found by first retrieving the most significant bit of x. In case x is
negative and, therefore, the most significant bit is 1, x is increased by q. This
conditional addition is the most challenging part in the masked implementation.
The result is a value in [0, q−1] which is then subtracted by q−1

2 . The procedure
is repeated with the exception of the subtraction of the last constant. With a
final subtraction of q+1

2 the original value modulo q is restored and the domain
of the coefficient is then in [− q−1

2 , q−1
2].

We present an approach that incorporates the reduction to the correct rep-
resentative mod±q and the reduction modulo 3 in a table-based approach. In
our first-order masked approach, we first reduce each share to the domain
[− q−1

2 , q−1
2] as previously presented, then we compute the A2B conversion of

the shared coefficient a(·) as proposed by Debraize [32] and later improved by
Van Beirendonck et al. [33] and then extract the most significant bits of both
shares. We obtain a boolean sharing b(·) of the most significant bit. We then
generate a random input mask bit r1 and a random output mask r2 in [0, q − 1].
Then our lookup table is initialized for r1 = 0:

– The first entry corresponds to the most significant bit being zero. The coeffi-
cient a is positive and we require a sharing of zero to be added to a. Conse-
quently, the entry is the inverted output mask r2.

– The second entry corresponds to the most significant bit being equal to one.
The coefficient a is negative and does require the addition of q. Thus, the
entry is initialized as q − r2.

Apparently, if r1 = 1 the table entries are initialized the other way around. We
present the function in Algorithm 5.

Algorithm 5: Initialization of LUT
Input: Random bit r1, random output mask r2 ∈ [0, q − 1]
Output: Table T [2]

1 T [0 ⊕ r1] ← −r2
2 T [1 ⊕ r1] ← q − r2
3 return T

After the initialization of the table, both shares are combined carefully with
the random bit r1 by an xor operation. The helper variable with two shares
is initialized with h(·) = (r2, T [r1 ⊕ b(0) ⊕ b(1)]). Finally, sharewise addition of
a(·) + h(·) yields the arithmetically shared value in [0, q − 1]. We repeat this
procedure once after the subtraction of q−1

2 . Finally, both shares are reduced
modulo 3. We show the procedure in Algorithm 6.

136 D. Heinz and G. Dreo Rodosek

Algorithm 6: Masked Conversion to Modulo 3

Input: Shared coefficient a(·) with unmasked coefficients in [−(q − 1), q − 1]
Output: Shared coefficient a(·) mod 3 with unmasked coefficients in [−1, 1]

1 //Conditionally add q

2 h(·) ← A2B(a(·))
3 b(·) ← MSB(h(·))
4 Sample random bit r1, random r2 ∈ [0, q − 1]

5 val ← r1 ⊕ b(0) ⊕ b(1)

6 h(0) ← r2

7 h(1) ← T [val]

8 a(·) ← a(·) + h(·)

9 //Always subtract

10 a(0) ← a(0) − (q − 1)/2
11 //Conditionally add q

12 h(·) ← A2B(a(·))
13 b(·) ← MSB(h(·))
14 Sample random bit r1, random r2 ∈ [0, q − 1]

15 val ← r1 ⊕ b(0) ⊕ b(1)

16 h(0) ← r2

17 h(1) ← T [val]

18 a(·) ← a(·) + h(·)

19 //Always subtract

20 a(0) ← a(0) − (q + 1)/2
21 //Now reduce modulo 3 sharewise

22 a(·) ← a(·) mod 3

23 return a(·)

3.2 Masked Packing

To save memory, each coefficient of the message polynomial, which only requires
two bits, is not stored in a full 16-bit variable. Instead, each coefficient is con-
catenated in an array of 96 bytes which is later used as an input for the symmet-
ric primitives. This is the reason why the correct representative of x mod 3 is
important. In contrast to the arithmetic modulo 3, for an input to the SHA512
112 = −1 	= 2 = 102. According to the specification of NTTRU, coefficients
of the polynomial are in the domain [−1, 1] whereas the concatenated message
is obtained by shifting the interval by one to [0, 2]. Consequently, we propose
to combine both steps efficiently in one table for the first-order masked app-
roach. Instead of only calculating the entries of the table as a Boolean sharing
of the arithmetically shared value a, we provide the Boolean sharing for a + 1.
In contrast to any higher-order compatible A2B conversion, we do not need a
costly Boolean adder on the shares. For each coefficient, we refresh the mask-
ing with new random values. Concatenation of the Boolean shared values works
sharewise.

Fast First-Order Masked NTTRU 137

3.3 Protected SHA512 and AES256-CTR

In this section, we provide details on how to protect the symmetric primitives
from DPA attacks.

a b c d B2A + A2B e f g h

Σ0(a)
Maj(a, b, c) Σ1(e) Ch(e, f, g) B2A

B2AB2AB2AB2A

++++

A2B

Fig. 2. Masked SHA512 Compression function with conversions in place.

SHA512. In NTTRU, the decrypted message is input to the SHA2-512 hashing
function. Due to performance reasons, SHA2 is chosen over SHA3. The drawback
of this choice becomes apparent when the masking technique is applied to the
hashing algorithm. The SHA2 standard combines arithmetic operations modulo
264 with bitwise Boolean operations. Thus, for masking SHA512, we have two
options:

– Usage of A2B conversions: Boolean functions operate on Boolean shares, and
arithmetic functions on arithmetic shares. The conversion is performed, if
necessary, in between the functions.

– Usage of Boolean Adders: no arithmetic shares are used, and arithmetic addi-
tions modulo 264 are performed on boolean shares using specific algorithms.

We evaluated both strategies for the first-order implementation and present
the chosen strategy in this section. For the first case, we adapt the compression
function to include A2B conversions, as proposed by Debraize [32] and later
improved by Van Beirendonck [33], and B2A conversions are realized as pre-
sented by Goubin [30]. The performance of this approach (only 7 cycles per B2A
conversion) is especially beneficial to the first-order implementation. The result-
ing flow is shown in Fig. 2. In the latter case, we refer to the control flow of the
compression function from Fig. 2 without the conversions. Instead of additions
modulo 264, we use an algorithm based on Goubin’s Theorem and in detail ana-
lyzed by Coron et al. [34]. Its runtime dependency on the number of bits is rather
disadvantageous for SHA512 as it operates on 64 bit variables. For the first-order
case, the table-based approach combined with Goubins B2A conversion turns out
to be preferable in terms of runtime.

In both cases - using boolean adder or conversions - the only part that remains
to be masked is the non-linear And. This operation cannot be realized sharewise
and, thus, is realized as presented in [34].

138 D. Heinz and G. Dreo Rodosek

AES256-CTR. In this work, we additionally adapted an open-source masked
implementation of AES, as it is an essential part of the seed generation for
the coefficient sampling. For AES128 in counter mode, several masked solutions
exist [35–37]. All of these implementations do not mask the key expansion func-
tion as the expanded shared key is often assumed to be stored on the chip. In our
implementation, this is not possible. The SHA512 hash value of the decrypted
message is serving as the key and still has to be expanded. Since the AES was not
the primary focus of this work, we adapted an open-source portable C implemen-
tation that already masks the key expansion for AES128 and uses the bitslicing
technique [35]. To make their concept compatible to our approach, we first stored
the last 32 bytes of the output of the SHA512 function in a bitsliced manner.
We adjusted the key schedule function of the AES128 to match the AES256
specification and added four more rounds to the update function. The key is
updated at the end of each round to obtain the next subkey from the previous
subkey. As a message, the increasing nonce for each block combined with a zero-
padded IV is used. Finally, the output is restored from the bitsliced variables
and used as a pseudorandom input to the polynomial sampler of the NTTRU
re-encryption. The results are not particularly optimized concerning cycle counts
but still give an upper bound of the cycles needed for symmetric seed expansion.
We emphasize that there is still a lot of performance to be gained when applying
the several (architecture-specific) optimization techniques as presented, e.g., by
Schwabe et al. [36].

3.4 Table-Based Masking of Coefficient Sampling

As described in Sect. 2.5, the sampling in NTTRU is slightly different to Kyber
due to the additional modular reduction step. The output of the sampler is in
the domain [−1, 1] but has to be masked arithmetically modq. In our masked
approach, we first compute the table by computing a masked result for all possi-
ble 16 unmasked input values. This is shown in Algorithm 7. The second share of
the table is a random value rout ∈ Rq that is equal for all outcomes. To minimize
the size of the table, we additionally assume one share of the input to be random
but identical rin for all inputs.

Algorithm 7: Initialization of LUT for first order CBD sampling in the
domain [−1, 1]
Input: Random input mask rin ∈ [0, 15], Random output mask rout ∈ [0, q − 1]
Output: Table T [16]

1 val ← 0
2 while val < 16 do
3 T [val] ← (0xA815 >> (val ⊕ rin) ∧ 0x3) + q − 1 − rout mod q
4 val ← val + 1

5 end
6 return T [16]

Fast First-Order Masked NTTRU 139

During the online phase (Algorithm 8), we remask each coefficient to take
rin as one Boolean share. The other share is an input to the lookup table.
The table gives a randomized output in Rq that, together with the random but
fixed value rout, is equivalent to the arithmetic masking of the sampled value
obtained from a centered binomial distribution modulo 3. Note that the sampling
technique provides an implicit B2Aq conversion. Finally, we remask the output
for each coefficient. This approach does obviously not defend against horizontal
attacks. Several other countermeasures, especially table-based approaches, face
this issue. Yet, they can be used with additional countermeasures, e.g. shuffling
or RNR [38,39], in place. This is out of scope of this paper and is an interesting
direction for future work.

Algorithm 8: First order sampling in the domain [−1, 1] based on LUT

Input: Shared buffer buf (·)[N/2]
Output: Shared polynomial a(·)[N] with N coefficients

1 generate randomness r ∈ [0, q − 1], s ∈ [0, 15]
2 initialize sampling table with rin = s, rout = r
3 i ← 0
4 while i < N/2 do

5 h ← buf (1)[i] ⊕ (s << 4 ∨ s)

6 h ← h ⊕ buf (0)[i]
7 generate randomness rnd ∈ [0, q − 1]

8 a(0)[2i] ← rnd

9 a(1)[2i] ← (T [h ∧ 0xF] − rnd + r) mod q
10 generate randomness rnd ∈ [0, q − 1]

11 a(0)[2i + 1] ← rnd

12 a(1)[2i + 1] ← (T [h >> 4] − rnd + r) mod q
13 i ← i + 1

14 end

15 return a(·)[N]

3.5 Masked Comparison

Comparing the original ciphertext to the re-encrypted ciphertext at the end
of the FO-Transform (cf. Sect. 2.3) has to be appropriately protected as well
because any leakage point in this function can compromise the security of the
complete scheme [24,27]. The first approach to do so was proposed by Oder
et al. [40]. They separately compare the public input ciphertext parts c1, c2 with
their re-encrypted counterparts c̃1, c̃2. The methodology requires one randomized
share c̃

(0)
1 to be subtracted from the public ciphertext c1 yielding a randomized

value. In case that c1 = c̃
(0)
1 + c̃

(1)
1 it is also true that H(c1− c̃

(0)
1) = H(c̃(1)1). If the

re-encrypted ciphertext is different, the hash values yield different results. Thus,
the result of H(c1 − c̃11) ⊕ H(c̃21) does not leak any secret information. It yields

140 D. Heinz and G. Dreo Rodosek

zero if the ciphertext parts are equal and a random number if they are not equal.
The major drawback of this method is that it can not be used for higher orders.
Additionally, this method is susceptible to the same attack vector as the higher-
order compatible work by Bache et al. [41] as demonstrated by Bhasin et al. [27]
in 2021. The partial unmasking of ciphertexts allows an attacker to distinguish
between crafted ciphertexts that are re-encrypted identically or completely dif-
ferent depending on the error that was added to a valid ciphertext. In [15], the
hash-based approach is taken and the two ciphertext parts are combined into one
hash. Still, internally a Keccak-based hash is split up into multiple parts. The
attack by D’Anvers et al. [42] makes use of this property. They propose another
fast higher-order compatible comparison algorithm that incorporates the idea of
[41] without partially unmasking the ciphertext. The algorithm outperforms the
solution by [13], which compares uncompressed coefficients for second and higher
orders. In line with the findings of [43] and the previously presented first-order
optimized A2B and B2A conversions, we choose the so-called “simple” approach
from [43, Algorithm 7] for our masked comparison.

3.6 Keccak (SHA3) as a Speed-Up

In this section, we propose a faster alternative to the presented NTTRU scheme
when masking is in place. As described in Sect. 2.4 the SHA3 standard can
replace the SHA2 functions without loss of security and offers the advantage
of the underlying function Keccak does not need any arithmetic operations to
compute the hash value. This is especially beneficial to any masked implemen-
tation because any masking conversion, especially at higher orders, requires a
large computational overhead. In detail, the runtime is of magnitude O(n2k) [34]
for a k bit variable in n shares. As SHA512 operates on 64 bit variables, this is a
very costly operation that should be avoided if possible. In Keccak, all variables
are shared in Boolean domain and the non-linear χ step is very efficient to mask
as it includes only one AND operation. Although SHA2 seems to be the faster
method of hashing with no side-channel countermeasures in place, as the authors
of NTTRU state, it is recommended to use the SHA3 option when side-channel
security has to be considered.

4 Evaluation

4.1 Performance Evaluation

In this work, we mostly use adapted code from the reference implementation [7]
written in C. We also make use of a masked AES128 [35] in C. It has to be
emphasized that most of the base code has a lot of potential in terms of per-
formance. Furthermore, we build some functions on the fixed A2B conversion
by Van Beirendonck et al. [33] which is optimized for the Cortex-M4 in terms
of side-channel leakage. Additionally, we use the first-order implementation of
Keccak for the SHA3 and SHAKE functions presented in [44]. A Cortex-M4

Fast First-Order Masked NTTRU 141

optimized implementation might lead to a faster first-order masked scheme than
Kyber on this platform.

We measured the performance of our masked primitives on an ARM Cortex
M4 mounted on an STM32F407G-DISC1 board offering up to 192 kByte of
RAM. This environment was chosen as it is also the base microcontroller for
the PQM4 project [45] for post-quantum algorithms. This is also why a lot
of highly optimized code such as the masked assembler SHA3 already exists
for this platform. Additionally, many masked implementations,e.g. of Kyber or
Saber, exist for the ARM Cortex M4 leading to direct comparability of NTTRU
with the NIST finalists. For our benchmarks, we set the clock frequency to 24
MHz. To improve the comparability between platforms we excluded cycle counts
required for the randomness generation. For our evaluation, we did not use the
onboard TRNG of the STM32F407-DISC1 board and opted for a pseudorandom
number generator in software to generate the required masks. This enables easier
debugging across several chips. As the development environment, we used the
Keil Toolchain MDK Plus 5.29/µ Vision 5.29 with the ARM Compiler Version
5. The code size of our masked NTTRU decapsulation implementation is around
18 kB and the RAM requirement is around 77 kB.

Table 1. CCA2-secure decapsulation cycle counts for different masked lattice-based
schemes.

Scheme CPU Cycles ×103 Cycles ×103

Masked Unmasked

Saber [15] Cortex M4 2833 774

Kyber768 [12] Cortex M4 2978 783

NTRU [17] Cortex M3 32 472 10 508

NTTRU (This work) Cortex M4 9448 796

NTTRU-SHA3 (This work) Cortex M4 3119

We give a comparison of performance numbers in Table 1. Using a state-of-
the-art masked implementation of the SHA3-512 [44] and additionally replacing
the non-optimized AES256 with the SHAKE256 option, we achieve a perfor-
mance number for the first-order implementation of NTTRU that is in the mag-
nitude of the NIST standardization candidate Kyber. We additionally give more
in-depth performance numbers in Table 2. Once again, we emphasize that the
polynomial arithmetic functions are not optimized for the ARM Cortex M4.

4.2 Side-Channel Evaluation

In this section, we show that our proposed techniques indeed fulfill the require-
ment of practical first-order security. We used the ChipWhisperer Lite Board
with an STM32F303 providing an ARM Cortex M4 core running at 7.37 MHz.

142 D. Heinz and G. Dreo Rodosek

Table 2. Cycle Counts for the masked components of NTTRU

Function Cycle count Factor

Unmasked 1st order

poly unpack uniform (19 396) 0 n.a.

ntru decrypt 241 164 749 966 ×3.1

polynomial arithmetic 436 214

poly crepmod3 313 713

poly pack short 4170 96 261 ×23

SHA512 27 305 4 359 092 ×159

crypto stream (AES) 24 028 2 808 228 ×116

ntru encrypt 436 570 962 539 ×2.2

poly short 106 277

polynomial arithmetic 856 212

comparison 4998 423 309 ×84.7

crypto kem dec 796 712 9 448 510 ×11.9

The sampling rate is four times the clock speed, resulting in 29 MS/s. An advan-
tage of the CWLite board is the synchronized sample and device clock. It is
relatively easy to capture small differences in power traces because the traces
are perfectly aligned [46]. This lowers the amount of required power traces to
detect possible leakage. A disadvantage lies in the small buffer size of around
24, 400 samples. We circumvented this issue by capturing only small building
blocks of the algorithm independently. For the ChipWhisperer evaluation, we
compiled our code using arm-none-eabi-gcc version 10.3.1. We show that
our approaches do not have any obvious leakage points when implemented in
practice. We applied the so-called non-specific t-test methodology by Schneider
and Moradi [47] to do so. The inputs to the functions are either from a specific
fixed ciphertext or a completely randomized ciphertext. We denote the set of
traces obtained from function calls with fixed input as S1 and the set of traces
obtained from random inputs as S0. Sample sizes n0,n1, standard deviations
s0, s1 and sample means μ0, μ1 are denoted accordingly. At every point in time,
we calculate the t-test statistic

t =
μ0 − μ1√

s2
0

n0
+ s2

1
n1

(12)

The methodology by [47] requires a higher t value than 4.5 to correctly reject the
hypothesis that both sets are not distinguishable with the confidence of around
99.999%. Thus, in a first-order secure implementation, all absolute values should
be smaller than 4.5.

The first target is the table-based modulus conversion (Sect. 3.1). We
adjusted our implementation slightly by generating the required random num-

Fast First-Order Masked NTTRU 143

0 2000
Samples

−250

0
t-
st
at
is
ti
c

(a) RNG disabled (1000 traces)

0 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) RNG enabled (10 000 traces)

Fig. 3. t-statistic of the masked modulus conversion. Red lines indicate the threshold
of 4.5. (Color figure online)

bers in advance. The generation is due to the rejection sampling modq not con-
stant time and would make our t-test useless. It is also not necessary to cap-
ture the complete conversion of the polynomial. It is sufficient to capture the
conversion of only one coefficient as the conversion of all other coefficients is
independent and redundant. Our first measurement was taken with the random
number generator disabled. Thus, all masks are zero and the values are processed
unmasked. In a correct setup of the side-channel setup, one should be able to
see a lot of leaking points in this implementation. Therefore, Fig. 3a verifies our
correct setup. Even with only 1000 traces several very high t-values can be seen.

We then activated our pseudorandom number generator. The obtained t-test
values are visualized in Fig. 3b. We can see that even with 20000 traces and
a sampling rate of four times per clock cycle no leakage peaks can be identi-
fied. Note that the hardened implementation requires a few minor tweaks and
carefully crafted assembly routines to counter microarchitectural leakage.

0 1000
Samples

−25

0

t-
st
at
is
ti
c

(a) RNG disabled (1000 traces)

0 1000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) RNG enabled (20 000 traces)

Fig. 4. t-statistic of the masked coefficient sampler. Red lines indicate the threshold of
4.5. (Color figure online)

For the sampling technique (Sect. 3.4), we performed a similar evaluation.
We obtained the t-statistics visualized in Fig. 4a. The single leakage peak in the
unmasked implementation stems from the assignment of the table value to the

144 D. Heinz and G. Dreo Rodosek

second share of the coefficient. This corresponds to line 8 in Algorithm 8. The
huge part without leakage corresponds to the generation of the table which is
independent of the secret information. We can not identify leakage peaks with
RNG enabled and the amount of 20000 traces and, thus, conclude that our
implementation does not contain any obvious first-order leakage points.

In this work, we additionally presented a first-order masked SHA512
(Sect. 3.3). For the sake of simplicity, we evaluate only the non-linear choice
(ch) and majority (maj) functions in this chapter. The functions that can be
calculated on each share separately are easy to mask in practice with appro-
priate microarchitectural countermeasures in place, e.g. clearing registers or the
ALU [33]. We show the results in Fig. 5.

0 1000 2000
Samples

−500

0

t-
st
at
is
ti
c

(a) ch function 1000 traces).

0 1000 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) ch function (RNG on, 20 000 traces).

0 2000
Samples

−500

0

t-
st
at
is
ti
c

0 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

Fig. 5. t-statistic of SHA512 functions. Red lines indicate the threshold of 4.5. (Color
figure online)

5 Conclusion

The results once again show that a large performance gap between unprotected
and protected implementations may more or less strongly impede the applica-
bility of a scheme. As the first-order masking countermeasure can be seen as
a minimum requirement nowadays, one should, if possible, aim for the usage
of functions with minimal cost when masked. In detail, we strongly encourage
the usage of SHA3 functions. As we have shown, their behavior with respect
to additive and boolean masking allows NTTRU to be competitive among the
first-order masked lattice-based schemes without reducing its security level. A
lot of potential is additionally hidden in an optimized version of the NTT for

Fast First-Order Masked NTTRU 145

the Cortex M4 which is already available for Kyber. Such further optimizations
combined with our proposed NTTRU-SHA3, might outperform masked imple-
mentations of the NIST finalists significantly on ARM Cortex-M4.

Acknowledgments. The authors would like to thank Thomas Pöppelmann and Peter
Pessl for their valuable feedback and discussions. This work was supported by the Ger-
man Federal Ministry of Education and Research (BMBF) under the project Aquorypt
(16KIS1017). Presented project results were partly supported by the project that has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 830927.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

2. National Institute of Standards and Technology. Announcing request for nomina-
tions for public-key post-quantum cryptographic algorithms (2016). https://csrc.
nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms

3. Avanzi, R., et al.: Crystals-kyber (version 3.02) - submission to round 3 of
the nist post-quantum project (2021). https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210804.pdf

4. Basso, A., et al.: SABER: Mod-LWR based KEM (round 3 submission) (2019).
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/submissions/SABER-Round3.zip

5. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

6. Chen, C., et al.: Ntru - algorithm specifications and supporting documentation
(2019). https://ntru.org/f/ntru-20190330.pdf

7. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019)

8. OpenSSH. Openssh release 9.0. https://www.openssh.com/txt/release-9.0.
Accessed 14 Nov 2022

9. ISE Crypto PQC working group. Securing tomorrow today: Why google
now protects its internal communications from quantum threats. https://
cloud.google.com/blog/products/identity-security/why-google-now-uses-post-
quantum-cryptography-for-internal-comms?hl=en. Accessed 21 November 22

10. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes! In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 19

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Heinz, D., et al.: First-order masked kyber on ARM cortex-m4. IACR Cryptol.
ePrint Arch., p. 58 (2022)

13. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 173–214 (2021)

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://doi.org/10.1007/BFb0054868
https://ntru.org/f/ntru-20190330.pdf
https://www.openssh.com/txt/release-9.0
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/3-540-48405-1_25

146 D. Heinz and G. Dreo Rodosek

14. Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-
quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
414–460 (2022)

15. Van Beirendonck, M., D’Anvers, J.-P., Karmakar, A., Balasch, J., Verbauwhede,
I.: A side-channel-resistant implementation of SABER. ACM J. Emerg. Technol.
Comput. Syst. 17(2), 10:1–10:26 (2021)

16. Kundu, S., D’Anvers, J.-P., Van Beirendonck, M., Karmakar, A., Verbauwhede, I.:
Higher-order masked saber. IACR Cryptol. ePrint Arch., p. 389 (2022)

17. Coron, J.-S., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of NTRU.
IACR Cryptol. ePrint Arch., p. 1188 (2022)

18. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
IACR Cryptol. ePrint Arch., p. 461 (2016)

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

20. National Institute of Standards and Technology. Secure hash standard (2015).
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

22. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021.
LNCS, vol. 13143, pp. 311–334. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92518-5 15

23. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 25

24. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 13

25. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
cca-secure lattice-based PKE and kems. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(3), 307–335 (2020)

26. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: Drop by drop you break the
rock - exploiting generic vulnerabilities in lattice-based pke/kems using em-based
physical attacks. IACR Cryptol. ePrint Arch., p. 549 (2020)

27. Bhasin, S., D’Anvers, J.-P., Heinz, D., Pöppelmann, T., Van Beirendonck, M.:
Attacking and defending masked polynomial comparison for lattice-based cryptog-
raphy. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 334–359 (2021)

28. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,
S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace attacks on masked
CCA2 secure kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 88–113
(2021)

29. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

https://doi.org/10.1007/3-540-48405-1_34
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26

Fast First-Order Masked NTTRU 147

30. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 2

31. Coron, J.-S., Tchulkine, A.: A new algorithm for switching from arithmetic to
boolean masking. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 89–97. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45238-6 8

32. Debraize, B.: Efficient and provably secure methods for switching from arithmetic
to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 107–121. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 7

33. Van Beirendonck, M., D’Anvers, J.-P., Verbauwhede, I.: Analysis and compari-
son of table-based arithmetic to boolean masking. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(3), 275–297 (2021)

34. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 11

35. Riou, S.: Masked bitsliced aes128. https://github.com/sebastien-riou/masked-bit-
sliced-aes-128. Accessed 27 Sept 2022

36. Schwabe, P., Stoffelen, K.: All the AES you need on cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 10

37. ANSSI LSC. Technical analysis of the masked aes implementation. https://github.
com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical
analysis.pdf. Accessed 21 Nov 2022

38. Zijlstra, T., Bigou, K., Tisserand, A.: FPGA implementation and comparison
of protections against SCAs for RLWE. In: Hao, F., Ruj, S., Sen Gupta, S.
(eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 535–555. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35423-7 27

39. Heinz, D., Pöppelmann, T.: Combined fault and DPA protection for lattice-based
cryptography. IACR Cryptol. ePrint Arch., p. 101 (2021)

40. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and
masked ring-lwe implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018)

41. Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-speed
masking for polynomial comparison in lattice-based kems. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 483–507 (2020)

42. D’Anvers, J.-P., Heinz, D., Pessl, P., Van Beirendonck, M., Verbauwhede, I.:
Higher-order masked ciphertext comparison for lattice-based cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2022(2), 115–139 (2022)

43. D’Anvers, J.-P., Van Beirendonck, M., Verbauwhede, I.: Revisiting higher-order
masked comparison for lattice-based cryptography: Algorithms and bit-sliced
implementations. IACR Cryptol. ePrint Arch., p. 110 (2022)

44. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak (2010)

45. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint Arch., p.
844 (2019)

https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-45238-6_8
https://doi.org/10.1007/978-3-540-45238-6_8
https://doi.org/10.1007/978-3-642-33027-8_7
https://doi.org/10.1007/978-3-642-33027-8_7
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://github.com/sebastien-riou/masked-bit-sliced-aes-128
https://github.com/sebastien-riou/masked-bit-sliced-aes-128
https://doi.org/10.1007/978-3-319-69453-5_10
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://doi.org/10.1007/978-3-030-35423-7_27

148 D. Heinz and G. Dreo Rodosek

46. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

47. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17

	Fast First-Order Masked NTTRU
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Number-Theoretic Transform
	2.3 NTTRU
	2.4 Symmetric Primitives
	2.5 Sampling Algorithms
	2.6 Side-Channel Attacks and Protection

	3 Side-Channel Protection of NTTRU
	3.1 Table-Based Masking of Modulus Conversion
	3.2 Masked Packing
	3.3 Protected SHA512 and AES256-CTR
	3.4 Table-Based Masking of Coefficient Sampling
	3.5 Masked Comparison
	3.6 Keccak (SHA3) as a Speed-Up

	4 Evaluation
	4.1 Performance Evaluation
	4.2 Side-Channel Evaluation

	5 Conclusion
	References

