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Abstract. Side-channel leakage assessment is an essential tool in the
security evaluation of new chip designs. Pre-silicon side-channel analy-
sis tools have made significant progress in delivering assessment results
early in the chip design flow. However, a gap remains with actual imple-
mentations where measurements are affected by noise and distortions.
These measurement imperfections degrade the assessment of the physi-
cal prototype and may lead to false negatives. In this contribution, we
present a transfer learning technique to improve the assessment of physical
prototypes using pre-silicon side-channel leakage simulation of the same
implementation. The noiseless simulation traces are used for initial pro-
filing to train a convolutional neural network (CNN). The trained CNN
is then used in the assessment of measured traces. We apply this idea to
Ascon and Xoodyak, two different sponge-based cryptographic primi-
tives proposed in the NIST Lightweight Crypto competition. The target
platform is a software implementation on a RISC-V (RV32IMC) micro-
controller realized using 180 nm CMOS technology. Side-channel leakage
is first captured using gate-level power simulation and then measured
from a chip prototype of the same design. We investigate different side-
channel analysis strategies under simulated and measured scenarios and
demonstrate that, in each case, machine-learning-based side-channel leak-
age assessment outperforms other profiled and non-profiled analysis. How-
ever, using the proposed transfer learning technique, we can improve the
side-channel leakage assessment even further. With the proposed trans-
fer learning technique, we need approximately 2.87 less measured traces
compared to the previous best profiled attack. We conclude that the pro-
posed transfer learning using pre-silicon leakage models can improve the
side channel leakage assessment of post-silicon implementations.
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1 Introduction

Side-channel leakage assessment, a critical step in the security evaluation of
an IC, quantifies the amount of side-channel leakage from the implementation.
There are multiple methodologies to characterize side-channel leakage of a cryp-
tographic implementation [15]. However, all of them rely on data measurements.
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Fig. 1. Post-silicon leakage assessment can be improved with transfer learning from a
pre-silicon leakage model.

This practical aspect of measurement requires engineering skills as well as insight
into the cipher design, the target hardware technology, and the methodology of
trace measurement. Practical side-channel measurement also faces challenges of
reproducibility, because IC performance characteristics and power consumption
are affected by voltage and temperature. For example, a side-channel campaign
that gathers millions of traces takes days or even weeks to complete, requiring
environmental controls on the test setup.

Pre-Silicon Side-Channel Leakage Assessment. During the design of a new
IC, side-channel leakage assessment (SLA) can be directly implemented on the
design descriptions of the hardware or the firmware [5]. A designer then uses
simulation to create power traces for a design. Pre-silicon power simulation is
noiseless and does not suffer from the imperfections suffered by physical mea-
surement. In contrast to traditional SLA pre-silicon SLA is implemented in a
white-box scenario with full knowledge of the design implementation details.
Thus, pre-silicon SLA helps a designer to understand the weak parts of a design
before committing it to silicon. In addition, pre-silicon SLA is able to support
root-cause analysis of side-channel leakage to the single gate or the single instruc-
tion [12].

Improving Post-Silicon Side-Channel Leakage Assessment. In this con-
tribution, we investigate how pre-silicon design knowledge can be applied to
improve post-silicon SLA. We want to use the knowledge of simulated side-
channel leakage properties on the evaluation of measured side-channel leakage.
So far, this problem was studied only as a cross-device attack between different
physical implementations [8,22]. Instead, we are using a portability threat model
[16] from simulation to implementation. Architectural abstracts as a predictive
leakage model were explored in PARAM [1] and ROSITA [19].

Figure 1 shows our strategy which makes use of deep learning. A pre-silicon
leakage assessment uses simulated power traces to map design-intrinsic leakage
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properties into a CNN. The simulated traces are noiseless and without distor-
tion. A post-silicon leakage assessment of the same design uses measured power
traces to map design-intrinsic leakage properties to a threat model. Measured
power traces may be corrupted by noise and measurement parasitics. Because of
these distortions, the post-silicon CNN has a harder time to learn the intrinsic
leakage properties of the design. To improve the post-silicon training, we apply
a transfer learning technique, which carries over some of the properties of the
pre-silicon CNN to the post-silicon CNN. Earlier work in transfer learning to
support the portability threat model was presented by Thapar et al. for the
case of cross-FPGA analysis [21], and by Paguada et al. as a generic toolbox
for deep-learning based side-channel analysis [14]. We believe our work is the
first to demonstrate the use of transfer learning techniques for SLA between the
pre-silicon (simulated) and post-silicon (measured) environment.

Use Scenario. Since our proposed transfer learning for SLA assumes that both
the design files and the physical implementation of a design are available, we
motivate the practical meaning of this assumption. First, we observe that for
new designs, the pre-silicon design phase always transitions into a post-silicon
phase after tape-out. Hence, it is helpful to transfer the pre-silicon SLA results
to the chip prototype evaluation, for the same reason pre-silicon test vectors are
beneficial to test the prototype’s functionality.

Second, intellectual property modules for cryptography can benefit from a
mechanism to transfer side-channel leakage properties from design to implemen-
tation. In current practice, only high-level (algorithmic) leakage models, such
as the Hamming Distance on a specific intermediate variable, capture the side-
channel leakage properties of an intellectual property (IP) module. In contrast,
our pre-silicon CNN is developed from gate-level power simulation and reflects
the specific leakage characteristics in much greater detail. This model is, there-
fore, of practical use to the system integrator of the IP module.

Hence, we see the practical use of the proposed SLA for both in-house IC
design and external IP modules. Finally, we emphasize that the proposed tech-
nique is an SLA method and not an attack method; the assumption that an
attacker needs access to detailed design information is too impractical.

Analysis Targets. In our experiments with side-channel leakage assessment, we
target Ascon [9] and Xoodyak [7], two sponge-based ciphers that have been
proposed as part of the NIST Lightweight Crypto competition. In contrast to
standard block-ciphers, only a limited number of side-channel analysis have been
published on sponge-based ciphers.

– A Differential Power Analysis (DPA) on Ascon was demonstrated by Samwel
on a Spartan-6 FPGA and required around 40K traces [18]. A machine-
learning based attack by Ramazanpour on Ascon required around 24K traces
on a Artix-7 FPGA [17].

– A simulated CPA on Xoodyak was demonstrated by Batina et al. using 30K
traces [2].

In our work we substantially improve upon these earlier results and find a correct
key within a few hundred traces. The authors of Xoodyak argue that the design
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has several built-in features against DPA, including slow absorption of the nonce,
key rolling, and ratchetting of the internal state [7]. Our assessment only assumes
that the Xoodyak design can be restarted, each time with a different controlled
nonce.

We use a software implementation of Ascon and Xoodyak on RISC-V
(RV32IMC) processor implemented in 180nm CMOS standard cells with on-chip
memory. Because this chip is an in-house design, we have access to the netlist of
the chip and we can establish a precise cycle-by-cycle correspondence between
gate-level simulated (pre-silicon) and measured (post-silicon) power traces.

To evaluate the SLA on our Ascon and Xoodyak implementations, we use a
combination of non-profiled and profiled techniques [15]. In addition to the pro-
posed transfer-learning technique, we use signal-to-noise ratio (SNR) analysis,
correlation power analysis (CPA), template attack (TA) and standard deep learn-
ing analysis with a CNN. We measure the efficiency of the SLA through the key
rank or the measurements to disclosure (MTD) for a known key. We acknowledge
that test vector leakage assessment (TVLA) is a popular side-channel leakage
assessment technique, but we use an assessment that also shows how efficiently
the key can be recovered (which is not possible using TVLA alone).

Contributions of the Paper. We perform side-channel leakage trace collection
for Ascon and Xoodyak using power simulation (pre-silicon) and measurement
(post-silicon). We then present a side-channel leakage assessment using SNR,
CPA, TA and CNN. For each case, we compare the pre-silicon simulation result
to the post-silicon measurement result. We present a novel transfer learning
technique from the pre-silicon threat model to the post-silicon threat model to
improve the deep learning assessment. We analyze the assessment complexity
and time complexity for all of the above cases.

Organization of the Paper. In Sect. 2 we summarize the implementation
details of Ascon and Xoodyak for the RISC-V processor. Section 3 presents a
traditional side-channel vulnerability analysis of Ascon and Xoodyak in terms
of SNR, CPA and TA. Section 4 describes the CNN assessment and our new
transfer learning technique. Section 5 summarizes and analysis the experimental
results. We then conclude the paper in Sect. 6.

2 Preliminaries

In this section, we define the metrics used for SLA, and we describe to test setup
of pre- and post-silicon SLA.

2.1 Side-channel Leakage Assessment Metrics

We rely on the following well known metrics [15].

– The SNR for simulated SLA is defined as the ratio of the data variance to
the algorithmic noise variance, whereas the SNR for measured SLA is defined
as the ratio of the data variance to the algorithmic and measurement noise
variance.
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Fig. 2. Implementation flow and test set-up for Pre- and Post-Silicon side channel
leakage assessment.

– The key rank of a key k ε Km is defined as the number of keys with a
probability greater than k [13]. In SLA, the key rank of the known key k0
reflects how much information is disclosed under a given assessment method.

– MTD denotes the number of traces required to reduce the key rank of a known
key k0 to 1.

– Pearson’s Correlation coefficient is used to correlate measured and hypothet-
ically modelled power consumption (Pmsd and Phyp) and compute a correla-
tion for each key k. In SLA, the MTD is reached when the known key k0’s
correlation coefficient becomes maximal among all k ε Km.

2.2 Target Platform for SLA

The transfer learning is based on the combination of pre-silicon simulation results
with post-silicon measurements of the same design. The target is a small SoC
based on the open-source PicoRV RISC-V core. The chip uses 180nm TSMC
standard cells and includes 64 KB of on-chip RAM to hold variables. The instruc-
tions are fetched from an off-chip serial flash chip (QSPI). For this implementa-
tion, we have created an SLA flow that can analyze the implementation either in
pre-silicon context starting from the design files, or else in post-silicon context
starting from a prototype chip implementation (Fig. 2). Both flows lead to traces
that can be compared regardless of their origin. The simulation and measure-
ment setup use a common chip clock (20 MHz) and a common power sample rate
clock (50 MHz).

Pre-Silicon SLA Flow. In a pre-silicon setting, power-based side-channel leak-
age is simulated on a post-synthesis netlist of the design. Initially, we write
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the target as a C program for the PicoRV core, and compile the program
using riscv32-unknown-elf-gcc (v 10.2.0) compiler without optimization into
a binary image. The design is then simulated at gate-level accuracy while collect-
ing toggle traces (VCD) for every net. We then use Cadence Joules (RTL Power
Solution, Version v20.11-s001 1) and a Skywater 130nm standard cell library to
compute frame-based power estimation for the complete netlist using the toggle
traces and the post-synthesis netlist. This simulation and power estimation is
repeated for every test vector in the side-channel measurement campaign.

Post-Silicon SLA Flow. In a post-silicon setting, the same binary is run on
the actual chip while we captured power-based side-channel leakage through a
Lecroy Waverunner 7 oscilloscope. We filtered the side channel leakage signal
using a 100 KHz - 30 MHz minicircuits bandpass filter before digitizing. To mark
the region of interest for side-channel analysis, we instrumented the C program
with GPIO triggers. The same method is used for simulation so that all traces
can be aligned.

On the SLA Accuracy of Gate-Level Power Simulation. A power simula-
tion is never fully accurate, so an important question relates to the similarity of
simulated and measured power traces. Indeed, a power simulation must make a
trade-off between the simulation accuracy and the simulation speed of a model.
By increasing modeling detail, the estimated power consumption will be a better
approximation of the physical power consumption, while the power simulation
speed will drastically decrease. Side-channel leakage originates from any data-
dependency in the power consumption. As we go down in abstraction level from
RTL to transistor, each new abstraction level uncovers additional dependencies.
For example, gate-level power models can capture gate drive strength, static
power leakage, and IR-drop effects, all of which are invisible at the RTL power
model yet contribute data-dependent power dissipation. We rely on gate-level
power modeling but accept that some power details, such as parasitic coupling,
will be ignored by the simulation. At the time of writing, transistor-level power
simulation of a complete cryptographic side-channel assessment cannot yet be
completed using a reasonable amount of design power [20].

3 Traditional Side-Channel Vulnerability Analysis

In this section, we capture the SLA of Ascon and Xoodyak using common side-
channel leakage assessment tools. We use the analysis of the SNR to establish
the leakage point of interest for each target. Then, we perform a CPA and a TA.

3.1 Results Summary

Table 1 summarizes the results for all assessment techniques investigated in this
contribution, including a non-profiled technique (CPA) and several profiled tech-
niques (TA, CNN). For each of Ascon and Xoodyak, we analyze three cases:
SLA using simulated traces, SLA using measured traces, and SLA with the pro-
posed transfer learning technique (TL). We will elaborate on individual result
entries in the following subsections.
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Table 1. Assessment using MTD metric for all targets. The number of traces shown
is the average needed to retrieve a key byte. For profiled attacks, the number of traces
used for profiling are listed separately.

Primitive SLA flow CPA TA CNN

MTD Profiling
(x 1,000)

MTD Profiling
(x 1,000)

MTD

ASCON Simulated 8 9 2 9 2

Measured 2,000 90 573 90 500

TL – – – 19 176

Xoodyak Simulated 91 19 84 19 60

Measured 700k 90 520 90 490

TL – – – 60 170

3.2 Traditional SLA on ASCON

Ascon ASCON-128 is an authenticated-encryption with associated-data primi-
tive which is selected as a finalist in the NIST Lightweight Cryptography compe-
tition [10]. ASCON-128 is a duplex-sponge-based construction with four phases
of operation: initialization, associated data, plaintext/ciphertext, and finaliza-
tion. All phases use the same permutation function which includes a constant
addition, a substitution layer, and a linear layer. ASCON-128 has 320 bits of
state, divided into five double words that hold the 64-bit initialization vector
(X0), the 128-bit key (X1,X2) and the 128-bit nonce (X3,X4) respectively.

In Ascon’s SLA we aim to demonstrate that the 128-bit key can be recovered
at a given number of traces. The controlled variable, required to drive differential
power analysis, is the nonce (X3,X4). We focus on the non-linear operations in
the S-box of Ascon that compute X1 and X4, as expressed in the following
Boolean equations. In these equations, the nonce is loaded in (X3,X4) and the
key is loaded in (X1,X2).

X4 = (X4 ⊕ X3) ⊕ ((255 ⊕ (X0 ⊕ X4))&X1)
X1 = ((X1 ⊕ ((255 ⊕ (X2 ⊕ X1))&X3))

⊕ ((X0 ⊕ X4) ⊕ ((255 ⊕ X1)&(X2 ⊕ X1))))
(1)

The target implementation of Ascon is an 8-bit reference implementation
in software. Listing 1.1 shows the assembly code to compute X4 as a byte-
wise operation. The point where key and control inputs merge is sensitive to
side-channel leakage. The and operation on line 16 is the first line where that
happens. Subsequent operations, such as on line 18 and 20, are potential targets
as well. To understand which of these operations is the best candidate to mount
a CPA, we perform SNR analysis on 500 simulated traces (Fig. 3, top) [15]. This
analysis shows that the store instruction contributes a greater data-dependent
power variation and, therefore, is the proper target for the side-channel leakage
assessment.
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Fig. 3. SNR Analysis of X4: (top) SNR on 500 simulated traces to identify leaky
instructions (bottom) SNR on 2K simulated traces (black) and 200K measured traces
(grey) to estimate illustrate by practical measurement. (Color figure online)

Ascon SNR Analysis. The SNR analysis of Fig. 3, top, demonstrates an impor-
tant major advantage of simulation-based traces, namely the absence of measure-
ment noise. Figure 3, bottom, compares the SNR of 2K simulated traces to the
SNR of 200K measured traces. Both the measured and simulated traces are
aligned by making use of a GPIO trigger in the real and simulated Ascon soft-
ware. The range of the X axis is roughly equivalent to the execution of Listing 1.
The X axis spans 640 sample points, which corresponds to 12.8 μs or 256 cycles.
The simulated SNR shows two sharp peaks corresponding to the memory-store
operation (Fig. 3, top). However, the SNR on measured traces is much noisier
and shows leakage over the last 64 samples of the curve. We attribute these
extra leaky points to measurement noise, trigger signal jitter, and possibly an
unexplained effect from the off-chip QSPI flash.

Ascon Correlation Power Analysis. Fig. 4 shows the outcome of CPA on
Ascon for both a simulated assessment (black) and a measured assessment
(grey). Both cases converge at the same key value, although the simulated CPA
requires only 8 traces while the measured CPA needs 2,000 traces (Table 1).

The power model of the CPA is the Hamming Weight of X4, whose update
depends on both the lower half of the secret key K1 and the controlled nonce.
Specifically, with i representing the test vector index, and j denoting the key
byte index 0 to 7, we find the following power model.

Xi,j
k = (N2i,j ⊕ N1i,j) ⊕ ((255 ⊕ (IV i,j ⊕ N2i,j))&K1i,jk )

Phyp = HW [(Xi,j
k )]

(2)

The correlation of the power model with the power traces then leads to the
value of K1. After K1 is found, its value is used to mount a CPA on the value of
X1 which combines both the upper half K2 and the lower half K1 of the secret
key. This leads to the value of K2.
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Listing 1.1. Portion of the SBOX computation of Ascon. Instructions highlighted in
blue are potential targets for CPA.

1 lui a5 ,0 x30005

2 addi a5 ,a5 ,8

3 li a4 ,1

4 sw a4 ,0(a5) // GPIO trigger up

5 lbu a4 ,-52(s0)

6 lbu a5 ,-60(s0)

7 xor a5 ,a5 ,a4 // a4 <- X3^X4

8 andi a4 ,a5 ,255

9 lbu a3 ,-28(s0)

10 lbu a5 ,-52(s0)

11 xor a5 ,a5 ,a3 // a5 <- (X4^X0)

12 andi a5 ,a5 ,255

13 not a5 ,a5 // a5 <- (255^( X4^X0))

14 andi a3 ,a5 ,25

15 lbu a5 ,-36(s0)

16 and a5,a5,a3 // a5 <- (255^( X4^X0))&X1

17 andi a5 ,a5 ,255

18 xor a5,a5,a4 // a5 <- (X3^X4 )^(255^( X4^X0))&X1

19 andi a5 ,a5 ,255

20 sb a5,-52(s0) // store X4

21 lui a5 ,0 x3000

22 addi a5 ,a5 ,8

23 sw zero ,0(a5) // GPIO trigger down

Ascon Template Attack. A template attack is a well known profiled attack [6].
It uses a profiling phase to compute a template, a set of probability distributions
that describe how the power traces vary for many different keys. Then, in the
testing phase, it estimates the probability distribution of the target and finds the
best matching distribution from the template. This leads to the unknown key.
The template is computed over a limited number of point of interest (POI) in
the trace. In our Ascon Template Attack, we select 15 POIs among 640 possible
trace points. We build the profile on the Hamming Weight of X4, computing the
mean and covariance matrix for each Hamming Weight Value. Because of the
profiling phase, a template attack can outperform a CPA. Table 1 demonstrates
that the Ascon key is extracted using just 2 simulated power traces, or 573
measured power traces.

3.3 Traditional SLA on XOODYAK

Xoodyak is an authenticated-encryption with associated-data primitive which
is also selected as a finalist in the NIST Lightweight Cryptography Competition
[7]. Like Ascon, Xoodyak is based on duplex-sponge construction which allows
its use in multiple symmetric-key applications. The Xoodyak design is inspired
by the Keccak round permutation. The assessment target in Xoodyak is the θ
function which adds the key K, the nonce N and a counter C as X = K⊕N ⊕C.
In this expression, the nonce and the counter are the controlled variables. The
assessment of Xoodyak is harder than that of Ascon for two reasons. First, the
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Fig. 4. Ascon: Correlation Power Analysis on simulated (black) and measured (grey)
traces. (Color figure online)

XOR operation which combines the controlled variables with the key is linear.
Since A⊕B = Ā⊕ B̄, this leads to so-called ghost-peaks of equally-likely keys in
the assessment [4]. Second, our specific implementation of Xoodyak is imple-
mented on a 32-bit wordlength which combines 4 different key bytes in a single
32-bit RISCV instruction. Hence, the Xoodyak traces will have a higher level of
algorithmic noise. Listing 2 shows the relevant portion of the Xoodyak imple-
mentation under consideration for SLA. The xor operation on line 7 is a potential
target, as well as the dependent xor on line 9 and the store-word instruction on
line 10.

Xoodyak SNR Analysis. Because a single execution of Listing 2 computes on
four different key bytes, one can compute four different SNR curves for a single
set of power traces. Figure 5a shows the SNR on 10K simulated traces. Its X-
axis corresponds roughly to the execution of Listing 2, and we find that leakage
is concentrated in a few power samples. Similar to the analysis on Ascon, we
find the store-word instruction to be a dominant contributor to data-dependent
power dissipation. The same SNR curve is also computed on 1500K measured
traces as shown in Fig. 5b. Using a common GPIO trigger, we are able to align
the SNR analysis of the simulated traces to the measured traces. Because of the
high level of algorithmic noise, the resulting SNR is extremely noisy. We mark
the last 100 samples of the measurement window as containing leaky samples in
SLA.

Xoodyak Correlation Power Analysis. Xoodyak’s CPA uses a Hamming
Weight power model on P i,j

x , where x denotes a word index range from 0 to 3, i
represents the test vector, and j denotes the key byte index range from 0 to 3.
P i,j
x , depends on the lower half of the secret key Ki,j

x , the controlled nonce N i,j
x

and counter value Ci,j
x . We find the following power model.
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Listing 1.2. Portion of the θ computation of Xoodyak. Instructions highlighted in
blue are potential targets for CPA.

1 lui a5 ,0x3000

2 addi a5 ,a5 ,8

3 li a4 ,1

4 sw a4 ,0(a5) // GPIO trigger up

5 lw a4 ,-24(s0)

6 lw a5 ,-20(s0)

7 xor a5,a5,a4 // a5 <- K[0:3]^N[0:3]

8 lw a4 ,-28(s0)

9 xor a5,a5,a4 // a5 <- K[0:3]^N[0:3]^C[0:3]

10 sw a5,-24(s0) // store X

11 lui a5 ,0x3000

12 addi a5 ,a5 ,8

13 sw zero ,0(a5) // GPIO trigger down

HW [P i,j
x ] = HW [Ki,j

x ⊕ N i,j
x ⊕ Ci,j

x ] (3)

Correlating the power model and the power traces yields the subkey of K0.
Figure 6 shows a correlation plot of the Xoodyak CPA. Two peaks are found,
one on the true key byte (253) and one on the complementary key byte (2).
Both the simulated and measured correlation plot are similar, even though the
measured plot requires 700K traces due to the noisy SNR.

Xoodyak Template Attack. The template attack on Xoodyak proceeds as
on Ascon, and builds the template on the Hamming Weight of the θ function
output. Table 1 shows that the key is extracted on 84 simulated power traces or
520 measured power traces.

4 Deep Learning Assisted Side Channel Analysis

We now develop the transfer learning technique as an extension of deep learning
based side-channel vulnerability analysis.

4.1 Deep Learning SLA on ASCON

Ascon CNN Development. The network architecture and hyperparameter
selection play an important role in successful adversarial threat modeling [16].
The CNN for a single Ascon keybyte consists of a feature extractor and a 256-
class classifier. The input to the CNN is a window of 64 power samples, selected
through the SNR analysis of Fig. 3, bottom. A convolutional layer extracts spe-
cific features, similar to POIs, from the power samples. Next, the dense layers
map the variation within and across different traces into a set of 256 probabilities.
Batch normalization transforms the output of a previous layer by subtracting
the batch mean and dividing by the batch standard deviation. Dropouts are
used to randomly turn off a percentage of the network’s neurons in order to
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Fig. 5. Xoodyak: (a) SNR on 10K simulated traces (b) SNR on 1500K measured
traces

Fig. 6. Xoodyak: Correlation Power Analysis on simulated (black) and measured
(grey) traces. (Color figure online)

improve the model’s learning. Figure 7 shows our network and its hyperparam-
eters. We adopted the ASCAD network [3] and optimized it for Ascon using
random search over the hyperparameters provided in Table 2. The resulting sim-



Assessment with Pre-silicon Leakage Models 117

Table 2. Hyperparameter search space for ASCON CNN. We selected the best hyper-
parameter (fit) through exhaustive search of the search space.

Hyperparameter Ranges

Min Max Fit

Batch size 50 200 50

Convolution layers 1 5 1

Kernel size 1 11 3

Stride 1 4 1

Dense layers 1 3 2

Neurons 10 256 64

Learning rate 0.00001 0.001 0.001

Epochs 50 500 200

Drop out 10% 30% 30%

Options Fit

Pooling type (Average,Max) Average

Optimizer (Adam, RMSprop) Adam

Activation function (ReLU,SeLU) ReLU

Fig. 7. ASCON: Convolutional Neural Network architecture for adversarial threat
model of simulated and measured traces

ulated model has an accuracy of 94%, whereas the measured model and transfer
learning model are close to each other (82% and 81% respectively).

Ascon Transfer Learning. We now apply transfer learning and demonstrate a
reduction in learning time as well as in assessment effort. The idea is to transfer a
part of the pre-silicon threat model to the post-silicon threat model. Post-silicon
traces are noisy, which means that a large amount of traces are needed to learn
the threat model at a high learning cost. Pre-silicon simulations are slow, but
the pre-silicon traces are noiseless and a threat model can be learned from them
quickly using much fewer traces.
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Fig. 8. Transfer Learning: (1) training from simulated traces, (2) transfer learning on
measured traces keeping the convolutional layer frozen, and (3) assessment using the
transfer-learned CNN.

Table 3. Three test cases are investigated over simulated and transfer learning models.
For each test case, corresponding simulated model weights are used for transfer learning

Primitive SLA of Sbox X4 Simulated Transfer

Profiling
(x 1,000)

MTD Accuracy Profiling
(x 1,000)

MTD Accuracy

ASCON Test case 1 5 11 94% 19 191 80%

Test case 2 10 2 94% 40 176 81%

Test case 3 20 2 94% 60 162 82%

Figure 8 illustrates the proposed transfer learning. First, we perform deep
learning SCA on the simulated traces to identify the architecture, hyperparam-
eters and weights. Next, we continue learning with these parameters on the
measured traces. In the second phase, the convolutional layer remains frozen.
This keeps the feature extraction layer unchanged, while the other layers main-
tain trainable parameters for the classification. Finally, we perform assessment
on the measured traces using this new network created from transfer learning.

Table 3 represents the number of profiled traces against the number of test
traces (MTD) for the CNN on simulated and transfer learning on measured
traces. Here, three test cases are used to demonstrate different trade-offs between
profile learning and testing. In the Table 4, we calculated the number of test
traces against the number of profiled traces for measured traces. Using transfer

Table 4. On average, transfer learning model requires 1.97 times less profiling traces
and 2.85 times less testing traces compare to measured learning model

Primitive SLA of Sbox X4 Measured

Profiling (x 1,000) MTD Accuracy

ASCON Test case 1 45 521 80%

Test case 2 90 491 82%

Test case 3 100 490 82%
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Table 5. Two test cases are investigated over simulated and transfer learning models.
For each test case, corresponding simulated model weights are used for transfer learning

Primitive SLA of Linear(θ) Simulated Transfer

Profiling
(x 1,000)

MTD Accuracy Profiling
(x 1,000)

MTD Accuracy

Xoodyak Test case 1 18 56 93% 45 160 80%

Test case 2 19 60 94% 60 170 81%

Table 6. On average, transfer learning model requires 2.87 times less testing traces
compare to measured learning model

Primitive SLA of Linear (θ) Measured

Profiling (x 1,000) MTD Accuracy

Xoodyak Test case 1 80 486 81%

Test case 2 90 494 83%

learning, we obtain faster learning because we need to process fewer traces.
Moreover, we need fewer test traces to assess the design. Overall, the accuracy
for simulated, transfer and measured are 94%, 81% and 82% respectively.

Figure 9 displays 16 subplots corresponding to the 16 key bytes of ASCON.
Each subplot represents convergence of the key rank of the measured and transfer
learning model. A major rank comparison between the transfer and the measured
learning model in the convergence region shows that the model on measured
traces lags by 42 ranks on average. This indicates that transfer learning models
provide a gain of 5 to 6 bits in guessing entropy.

4.2 Deep Learning SLA on XOODYAK

Xoodyak CNN development We adopted the same architecture as in Fig. 7
with the following changes. First, all layers use batch normalization and dropout
(0.3). Second, the learning rate is fine-tuned to 0.0001.

Xoodyak Transfer Learning. Table 5 compares the CNN performance for
simulated and transfer learning on measured traces. From Table 6, it is clear
that, transfer learning model (TL) requires 1.61 and 2.88 times less profile and
test traces compare to measured model (CNN). Once again, transfer learning
achieves faster learning and shorter evaluation.

Similar to ASCON, transfer learning model of Xoodyak converge 68 rank
faster compare to measured model as given in Fig. 10.

5 Analysis of Results

Finally, we compare the performance of the proposed transfer learning technique
to classic SLA as well as deep learning SLA.
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Fig. 9. The red color highlighted in the subplots indicates that there is a difference
in key byte rank between measured(CNN) and transfer(CNN+TL), when CNN+TL
converges to rank zero. (Color figure online)

Assessment Complexity. We summarize the experiments on transfer learning
with simulated traces as follows. First, it is clear that the proposed transfer
learning method outperforms all other assessment we tried. Table 7 expresses
the relative assessment gain over CPA. This is the ratio of the number of traces
required to reveal a key byte using a chosen assessment over the number of
traces required using CPA. For the transfer learning method, the gain goes up
to 4,100x for a noisy target. This is not unexpected since noisy traces are a
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Fig. 10. Xoodyak : Key rank converge of transfer learning (CNN+TL) is 68 ranks
faster than measured (CNN)

Table 7. Relative Assessment gain in number of traces, using Correlation Power Anal-
ysis as the reference. A Gain of N means that N times more traces are needed in CPA,
so higher is better. The transfer learning method outperforms the best template attack
as well as the measurement-only deep learning method.

Assessment Relative Assessment Gain on CPA

Ascon Xoodyak

CPA 1 1

Template Attack 3.4 1,300

CNN 4 1,400

CNN+TL 11.4 4,100

harder training target for the deep learning threat model. Second, it is clear
that the proposed transfer learning method is much less sensitive to distortions
from the measurement setup than any other attack. Table 8 expresses the relative
assessment loss for each assessment, which is measured as the increase in number
of traces for an attack when moving from simulated traces to measured traces.
The transfer learning method shows the lowest relative assessment loss among
all assessments.

Time Complexity. There are two dimensions in the analysis of time complex-
ity of the proposed technique. One dimension quantifies the difference between
simulating a power trace, versus capturing a power trace from a real chip. The
second dimension quantifies the cost of SLA on the collected power traces. We
perform all simulation and SLA experiments on an Intel Xeon Gold 6248 server.
The power simulation for one power trace of ASCON took approximately 5 min,
which can be shortened to 30 s per simulated trace by running 10 parallel simu-
lation threads. In contrast, capturing a trace took form a real chip took 0.15 s, so
that the measurement of traces is 200 times faster than their gate-level simula-
tion. Hence, we confirm that power simulation time remains a dominant portion
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Table 8. Relative assessment loss in number of traces, when comparing assessments
on simulated traces to assessments on measured traces. A Loss of N means that N
times more traces are needed on the measurements, and lower is better. The transfer
learning method outperforms all other methods for both Ascon and Xoodyak.

Assessment Relative Assessment Loss over Sim

Ascon Xoodyak

CPA 250 7600

Template Attack 136 6.2

CNN 250 8.2

CNN+TL 88 2.8

Table 9. Time complexity of all side-channel vulnerability analysis for ASCON. # =
number of traces needed, AT = Attack Time, LT = Learning Time.

Primitive SLA flow CPA TA CNN

# AT # LT AT # LT AT

ASCON Simulated 8 < 1m 9K 10m 5m 9K 50m 10m

Measured 2k < 10m 90K 30m 20m 90K 6hr 20m

TL – – – – – 19K 60m 15m

in data collection. Table 9 shows the time complexity of CPA, TA and CNN.
Each experiment lists the number of traces required and the associated learning
time and attack time. The assessment part of the transfer learning method is
competitive with traditional (measurement-based) CNN, as it completes the task
in 60+50 min as opposed to 6 h. Xoodyak has a similar pattern of time com-
plexity. Our machine learning experiments are running on a traditional CPU
configuration (without GPU), which makes them relatively slow compared to
some published results [11].

6 Conclusion

This work shows that transfer learning based side channel analysis on post-
silicon using a pre-silicon threat model. The proposed technique evaluates the
design by 2.87 times fewer traces compared to the Naive CNN technique. We
are considering further improvements to our method, such as using techniques
to understand and eliminate noise and distortions on measured traces. This
material is based upon work supported by the National Science Foundation
under Grant No. 1931639.
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