
Whiteboxgrind – Automated Analysis
of Whitebox Cryptography

Tobias Holl1, Katharina Bogad2, and Michael Gruber3(B)

1 Ruhr-Universität Bochum, Bochum, Germany
tobias.holl@rub.de

2 Fraunhofer Institute for Applied and Integrated Security, Garching, Germany
katharina.bogad@aisec.fraunhofer.de

3 Chair of Security in Information Technology,
Technical University of Munich, Munich, Germany

m.gruber@tum.de

Abstract. Digital intellectual property is often protected by encrypting
the data up to the point of use. Whitebox cryptography is an attempt
to provide users with the ability to decrypt that data without actually
revealing the key by embedding the key inside a cryptographic implemen-
tation. In this work, we design and implement Whiteboxgrind, a fast,
fully automated toolchain that obtains execution traces from whitebox
implementations and applies DCA to recover the hidden embedded keys.
To evaluate Whiteboxgrind, we analysed whiteboxes of the CHES Whi-
bOx 2019 competition, and found Whiteboxgrind to provide a signifi-
cant performance improvement over the state-of-the-art tooling, enabling
attacks that were previously infeasible due to memory constraints. Fur-
thermore, we provide Whiteboxgrind’s source code.

Keywords: Whitebox · Differential Computation Analysis · Side
Channel Analysis · CHES WhibOx

1 Introduction

When modern software needs to protect data from unauthorized access, cryp-
tography is the only feasible solution. While encrypted communications gener-
ally allow for some form of key exchange or agreement, protecting data at rest
requires storing an encryption key somewhere. This is easy if the software runs in
a trusted environment (e.g. in a Trusted Platform Module (TPM) or on a corpo-
rate server), but not so straightforward in other cases (e.g. on devices controlled
by end users).

So-called whitebox implementations combine a cryptographic algorithm with
a fixed key, and add additional layers of obfuscation to hide the key from the user.
Therefore, whitebox implementations violate Kerckhoffs’s principle by design.
Usually, these “whiteboxes” are used when the goal is to shield data or code
from inspection by a potential adversary in an untrusted ecosystem (i.e. the
user and their device respectively). This includes Digital Rights Management
(DRM), but is also found as a hardening mechanism against manipulation in
other software that deals with confidential information (e.g. banking apps) [14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 221–240, 2023.
https://doi.org/10.1007/978-3-031-29497-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_11

222 T. Holl et al.

The name whitebox cryptography already betrays that such a system is inher-
ently insecure: Since all internal details are observable, it is always theoretically
possible (though not always practically feasible) to reconstruct both the secret
key and the cryptographic algorithm. Instead of preventing decryption entirely,
whitebox cryptography can only serve as an obfuscation mechanism that dis-
courages or delays a potential attacker by increasing the cost of an attack.

The straightforward approach to extract the key from a whitebox is direct
reverse engineering. However, modern whiteboxes are sufficiently obfuscated to
make this an extremely tedious and challenging task: Layers of obfuscation can
be applied automatically, inflating the amount of code and data a reverse engi-
neer needs to examine, while an attacker must manually understand and deob-
fuscate each layer.

Apart from glaring vulnerabilities in the cryptography itself, it is also essen-
tially impossible to successfully attack such a system by merely observing and
controlling its inputs and outputs, as modern cryptosystems are highly resistant
to such attacks by design: For a cryptosystem to be considered even adequate, we
generally require them to be resistant against both chosen-plaintext and (adap-
tive) chosen-ciphertext attacks [17], where attackers are able to make arbitrary
queries to an encryption and decryption oracle—much like an attacker that only
uses a whitebox implementation, but does not analyze its internals.

However, implementations of cryptosystems can still leak information due to
a side-channel. By analyzing the time taken for a cryptographic operation (a
timing attack), or the power consumed by the device during that time (e.g. via
Differential Power Analysis (DPA) [19]), it can sometimes be possible to extract
the key from a whitebox system. An active attacker that is able to manipulate
the internal state of the cryptosystem while it is running has even more options
(e.g. Fault Injection Analysis (FIA), where deviations in the output caused by
a manipulation of internal state are analyzed).

In embedded systems, hardware protection mechanisms can require attackers
who try to mount such an attack to make a significant upfront investment into
specialized equipment. Software-only whiteboxes cannot rely on such hardening
approaches: Since we can fully control the environment in which they are exe-
cuted, it becomes much easier to isolate the whitebox implementation from the
rest of the system. Sources of randomness which would ordinarily be used to
hide internal values from an observer can easily be replaced with a determin-
stic stream of numbers. Here, hardware implementations can rely on a Crypto-
graphically secure Random Number Generator (CSRNG) that is much harder
to manipulate or replace. For software, we additionally have access to a large
set of introspection tools such as debuggers and emulators that can be used to
examine the internal workings of the whitebox in detail. This also means that
side-channel attacks can be mounted not just on physical observations such as
time and power consumption, but also on the internal behavior of the program
during execution. The state-of-the-art equivalent to DPA for such whiteboxes
is Differential Computation Analysis (DCA), which instead of deriving leakage
information from the power consumption directly uses values extracted from
traces of the program’s execution [3,4]. Because these types of attacks require

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 223

large amounts of data obtained by continuously observating the whitebox imple-
mentation, they generally require some level of automation to be feasible.

Contribution. In this work, we propose an automatic approach to efficiently
collect and filter execution traces of whitebox implementations. In particular,
we make the following contributions: We construct a fast tracer using Valgrind’s
[24] just-in-time-compilation abilities. We design a novel trace storage format
that enables both fast processing and space-efficient storage. We implement our
approach in Whiteboxgrind, a fully automated parallel DCA attack toolchain
(trace collection, filtering, and the DCA), and benchmark it on several sub-
missions to the 2019 CHES WhibOx contest [7]. While we target AES in this
paper, the tracing and filtering stages of Whiteboxgrind generalize to arbi-
trary whitebox implementations; only the implementation of the attack itself
needs to be adapted to the targeted cryptosystem. Also, we provide White-
boxgrind’s source code1.

2 Related Work

There are several other tools that attempt to perform side-channel attacks on
whitebox cryptography:

Frameworks. Bos et al. [4], and Bock et al. [3] propose similar instrumentation-
based approaches for tracing and applying Differential Computation Analysis
(DCA), but without discussing any strategies to handle the vast amounts of
data generated by their approaches. Both approaches are based on the idea of
instrumenting the implementation with Valgrind [24] and recording the execu-
tion. Additionally, the same tooling can be used to perform FIA, though there is
some difficulty in identifying the correct time and place at which a fault should
be injected.

Sample Reduction. In order to reduce the amount of data that needs to be
processed, Breunesse et al. introduced Conditional Sample Reduction (CSR)
[5]. Our solution is less aggressive in discarding samples and cannot remove
“superfluous” traces. We instead opt for an approach with much lower memory
requirements that also requires less knowledge about the target implementation.
We discuss the differences in more detail in Sect. 4.4.

Attack Tools. Finally, there are generic side-channel attack tools that process
traces from arbitrary sources (if they can be brought into the right format).
Examples include LASCAR [20] and QSCAT [13].

3 Background

We focus mainly on attacks against whitebox implementations of the Advanced
Encryption Standard (AES). In the following, we briefly introduce the structure
of AES and the main concepts behind DCA, including its application to AES,
and discuss various ways to obtain program traces.
1 https://gitlab.lrz.de/tueisec/whiteboxgrind.

https://gitlab.lrz.de/tueisec/whiteboxgrind

224 T. Holl et al.

3.1 Advanced Encryption Standard

The AES [12] is a 128-bit block cipher based on a substitution-permutation
network (SPN). Like most block ciphers, it is composed of several near-identical
rounds which consist from the following functions:

AddRoundKey adds the current round key k(i) to the state by a simple bit-
wise XOR (⊕). This is equivalent to an element-wise addition in GF (28).

SubBytes is a nonlinear byte-wise substitution where each byte ai of the state
is substituted via a constant look-up table to the output byte bi = S[ai]. The
S-Box is carefully designed to make AES more resistant against various kinds of
attacks [9], including differential and linear cryptanalysis [2,22].

ShiftRows is a simple permutation of the bytes. When considering the state’s
16 bytes as elements of a matrix in GF (28)4×4 (stored in column-major order),
each row is rotated to the left one element further than the previous row, with
the first row not being modified at all. This ensures that localized state changes
propagate quickly to all state bytes (a desirable property for ciphers known as
diffusion) [9,10,25].

MixColumns has a similar purpose by applying a linear transformation in
GF (28) to the individual columns of the same matrix.

3.2 Whitebox Cryptography

Cryptographic implementations where the key is configurable first derive the
round keys k(i) from the cipher key k using the AES key schedule. In whitebox
implementations, on the other hand, the key schedule is usually done in advance
(since the key is already known at compile time) and is not present in the final
implementation. Since the keys are fixed, the individual components of each
round can be combined into a single table lookup (known as a T-box) [9]. If this
lookup also includes the key addition, the values stored in the table can reveal
the round key. To avoid this, internal encodings apply transformations to the
input and output of such a table (or more generally of any internal operation).
External encodings are similar, except that the transformations are applied to
the plaintexts and ciphertexts outside the encryption algorithm [8,21]. Usually,
additional obfuscation is then applied to further hide the round keys from an
observer.

3.3 Correlation Power Analysis

Differential Power Analysis (DPA) is a type of power analysis based on parti-
tioning which was proposed in 1999 by Kocher et al. [19]. Brier et al. proposed
a similar approach called Correlation Power Analysis (CPA) which uses corre-
lation as a distinguisher in 2004 [6]. For a CPA attack, the power profile of a
cryptographic operation is measured multiple times, e.g., in the context of AES
different plaintexts with the same key. Subsequently, an intermediate value t,

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 225

which depends on known values, and an unknown part (a single byte) of the
key is chosen. A possible intermediate value t during the AES-encryption is
the output of a first round’s S-box. The intermediate value t is calculated as
t = S(k(0)0 ⊕ p0) for all key hypotheses of the key byte k

(0)
0 The correlation of

all key hypotheses with the measured power traces can be calculated after the
application of a power model to the intermediate value. For the CPA of AES the
intermediate value’s Hamming Weight (HW) is commonly used as power model
as it requires no prior knowledge about the state. The correct key byte is then
determined by the hypothesis that yields the highest absolute correlation value.
The principles of DPA were applied to whitebox cryptography by Bos et al. [4].
In the context of whitebox cryptography, DPA is referred to as DCA.

3.4 Program Tracing

Program traces are a useful tool in software analysis that allow us to draw
conclusions about the underlying software’s behavior (even if not much about
the program is known, e.g. [11]). This means that there are quite a few different
approaches by which we can obtain them:

Full Emulation. The idea behind fully emulating software is simple: we model
hardware behavior as accurately as possible, and then simply run the software
under analysis in the emulator. This allows us to observe all the internals of
a program without having to understand it before. Constructing the emulator
is a painstaking process, but only needs to be done once for a specific piece
of hardware, and while the result is usually quite slow in terms of real-time
performance, the data obtained is as close to the ground truth as one can get if
the emulator is constructed accurately. Unfortunately, the performance penalty
is usually quite severe, which is a problem for analyses like DCA that require
multiple execution traces.

Hooking. A much faster approach is to identify locations of interest in the
program and modify the code at those locations to emit tracing events. However,
accurately modifying the program without accidentally damaging functionality
or missing out on some events can be difficult (especially if the implementation
is one that hardened against reverse-engineering, like the ones we are dealing
with in this work).

Debugger-Based Tracing. Another common way to follow the execution of
a program is to use a debugger’s single-step feature: The debugger repeatedly
signals the operating system to execute a single instruction at a time, after which
control returns to the debugger, which can then inspect registers and memory.
Here, we run into the opposite problem of the emulator: After an instruction has
been executed, we need to understand which changes it made. Additionally, the
frequent context switches between debugger and target come with a significant
performance penalty.

Hardware-Based Tracing. Some modern processors have features that allow
constructing execution traces directly in the CPU. These features generally have

226 T. Holl et al.

low runtime overhead and access to ground-truth information, which are par-
ticularly desirable features for a program tracer. Unfortunately, they are often
limited in scope (e.g. Intel’s processor trace feature [15] only records control flow
events, so the exact execution flow needs to be reconstructed after-the-fact, and
information on memory accesses is missing entirely). Additionally, hardware-
based tracing cannot usually intercept sources of nondeterminism (e.g. system
calls), so elements from other tracing methods (debugging or hooking) will need
to be borrowed—alongside their disadvantages.

Lifting and JIT. A good compromise between the previous approaches is based
on just-in-time compilation (JIT). The idea is to analyze a chunk of code that is
about to be executed, lift it to an intermediate representation (IR) by carefully
breaking down the CPU instructions into smaller operations, insert the code
that logs the appropriate events, and then compile it back down to native code
that is then executed. This lifting operation can be slow, but if pieces of code are
executed multiple times, the results can be cached. Because the event logging
is embedded directly into the native code, no expensive callbacks or context
switches are necessary while the code is executing.

4 Whiteboxgrind

In the following, we describe our approach to efficiently trace and attack white-
box implementations, which we implemented in our Whiteboxgrind toolchain.

4.1 Trace Acquisition

We use a custom tool for the Valgrind framework [24] in order to obtain execution
traces of a target whitebox when invoked with different inputs. It records every
instruction executed during the cryptographic operation alongside all memory
accesses.

We chose to base our tracer on Valgrind instead of one of the other approaches
described in Sect. 3.4 for performance reasons: For every original instruction, at
least one of our hooks is called to generate the instruction trace, plus hooks for
every memory access. If the hooks are not implemented natively or not embedded
directly into the execution stream, each hook invocation comes with a significant
performance penalty.

Valgrind also uses a JIT-based approach, but allows us to manipulate the gen-
erated code on a lower level: When a basic block starts executing, Valgrind lifts
it to its VEX IR by representing each instruction as a series of IR instructions,
with particularly complex operations represented by calls to helper functions.
Figure 1 shows how an example function is translated to VEX. On this inter-
mediate representation, the active tool can perform arbitrary transformations.
In Whiteboxgrind, we use this to insert our own instrumentation steps. Once
control returns to Valgrind, the IR is compiled back down to native code and
executed.

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 227

Fig. 1. Example of the translation between source code, AMD64 assembly code, and
the VEX IR

During instrumentation, we insert code to emit a program counter trace
event on every Ist IMark statement (which marks the start of a new instruction,
hence the name), and a memory access event whenever the statement type or the
type of a subexpression indicates that a memory access will take place. Within
subexpressions, only memory reads can occur (Iex Load). An example of this is
the statement in Fig. 1c that is highlighted in green. We also log a memory read
on Ist LoadG statements if the associated guard condition is satisfied. Memory
writes (Ist Store or Ist StoreG with a guard condition) and compare-and-
swap instructions (Ist CAS) are tracked separately. Beyond that, we need to
handle calls to external helper functions that VEX inserts for more complicated
instructions (Ist Dirty) and load-linked/store-conditional (LLSC) statements
(Ist LLSC), both of which helpfully track their memory side effects in the VEX
statement structure.

For all events, we store the value of the current instruction pointer or pro-
gram counter. For memory accesses, we additionally store the target memory
address, the value that is read or written, and the size or “width” of that value.
Valgrind additionally provides us with the endianness of the access, though on
most architectures this value is a constant. For compare-and-swap instructions,
we store both the old value that is read for the comparison and the new value
which is written if the comparison succeeds. Because we may later want to syn-
chronize between the different types of events, each event is accompanied by an
index that counts up as events are emitted, regardless of type.

In order to avoid tracing all of the target binary, we support isolating the
encryption or decryption function. Depending on the scenario, this is done either
using Valgrind’s client requests, which allow the program under analysis to indi-
cate to the tracer to start and stop tracing2, or by starting and stopping tracing
at user-provided addresses.

Between these points, the tracer ensures that execution of the traced binary
is deterministic: System calls and other non-deterministic instructions such as
rdtsc (returning the current processor timestamp) and rdrand (returning a
random value) are reported to the user for manual patching, and can generally
be replaced with “normal” instructions that return a constant value instead.

2 We use this feature in combination with a custom harness for our evaluation in
Sect. 5, where the encryption function is provided directly.

228 T. Holl et al.

This means that the resulting traces can be compared across executions: The
only reason why traces can differ from each other is that each run of the whitebox
is provided with different inputs.

For convenience, Whiteboxgrind comes with a wrapper tool that manages
the individual runs of the tracer. In particular, it takes care of input genera-
tion, configuring the tracer appropriately, collecting the trace events (via a Unix
domain socket connected to the tracer), and finally storing the results.

4.2 Trace Storage

The traces generated in the previous step can be quite large (cf. Section 5). In
order to perform further processing within reasonable limits on runtime and
memory use, we need to store traces in a compressed format that still allows fast
parallel access.

Unfortunately, existing formats either do not fully meet these requirements
(e.g. the default implementation of HDF5 requires high-overhead locking to
operate in a threadsafe manner, and the ParallelHDF5 variant only supports
multi-processing rather than multithreading [26]), or are not designed with mul-
tidimensional data in mind (libraries such as fst [18] focus explicitly on two-
dimensional data, while our traces—a matrix3 of structured trace events with
multiple attributes as described in Sect. 4.1—are essentially three-dimensional).

Therefore, we designed the y5 file format to address these shortcomings and
enable efficient processing of our traces. Below, we briefly explain each of the
design goals we considered during the development of the y5 file format, and
how we achieved them.

Support for Trace Transposition. Throughout our pipeline, we want to be
able to process traces in parallel. Both during sample reduction (cf. Sect. 4.4)
and in the actual attack (cf. Sect. 4.6), operations work on a set of matching
samples, one from each trace. In a traditional storage format, this would mean
storing the matrix of traces in column-major order (so that we can sequentially
read columns of matching samples from the file). However, to create such a
file, we would need to produce all traces at the same time, and ensure that
all tracers generate events in a synchronized fashion, because it is impossible
to know ahead of time how large each trace will be. This would significantly
impact tracer performance and resource usage. Instead, our tracing framework
stores one trace after the other (with traces as rows), and we transpose the
matrix during the first sample reduction step in order to then be able to write
processed columns of matching samples (turning traces into columns). Figure 2
shows how the dimensions of the data in a y5 file change during processing. The
file format needs to accommodate this matrix transposition.

Compression. Memory and control flow traces both contain highly redundant
information. Values may be read multiple times, loops mean the same instruc-
tions occur repeatedly, and because Valgrind does not implement Address Space

3 Initially, each row of the matrix contains a full trace of the program.

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 229

Fig. 2. Transposition of traces during processing.

Layout Randomization (ASLR), memory addresses all share similar prefixes and
remain the same across traces. To reduce the size of our traces while stored
on disk, we need to compress the data in a way that ensures fast compression
and decompression as well as significant size reduction. We use Google’s Brotli
compression algorithm [1] at a medium compression level to achieve a trade-off
between these two goals. Each row, regardless of whether that represents a full
trace or an aligned set of samples across all traces, is compressed separately
to allow independent decompression without having to first process additional
rows.

Fast Seeking. While it is useful to be able to decompress each row separately,
we still need to locate the start of the row in the file. To do this, we prefix each
row with its compressed size. This means we can easily skip each row during
processing. However, this still makes seeking to the nth row a slow operation on
larger trace files with many rows. In addition to the row headers, we maintain a
fixed-size Table of Contents (TOC) at the start of the file4. Initially (while the
number of rows r is less than the number of entries t in the table), each row has
its own TOC entry. As more rows are added, entry t starts representing row 2r,
then 4r and so on. This allows us to fairly swiftly skip a large part of the file
before following the row headers to finally locate a target row.

Low Memory Footprint. Most software relies on a common file processing
paradigm: read the compressed data into a buffer, decompress it into another
buffer, and then process the data in that buffer. Because the operating system
already caches the compressed file contents in memory, this pairing of read-
ing and decompressing essentially stores the file contents in memory twice. We
instead rely on a streaming approach: We directly map a segment5 of the com-
pressed file into memory. Then, as data is requested for processing, we extend
that segment at the end (to be able to decompress more of the file), while
shrinking it from the front to remove already-decompressed parts from memory.
Because of this, we only keep a fixed amount of compressed data in RAM, and
the user can manage how much of the decompressed data they want to request
at any given time.
4 In our implementation, the size is configurable, but only at the time the file is created.
5 The size of this segment is configurable to make parallel processing less memory-

intensive, while optimizing single-threaded performance by reducing the number of
mapping requests that need to be made.

230 T. Holl et al.

Support for Parallel Access. Writing to a file in parallel without knowing
the size in advance is essentially impossible, because the offsets at which each
thread should write are not known ahead of time. On the other hand, reading
files in parallel is only limited by the fact that the storage device usually does
not support parallel access. Here, the fact that we also need to decompress
the data means that even though the device may need to serialize our access
requests, the subsequent decompression of different rows can be performed in
parallel, which significantly improves read speeds. Using memory-mapped IO is
very helpful here, because this allows us to maintain multiple windows into the
file at different offsets, while normal file descriptor-based APIs expect there to
be a single canonical offset into a file at which reading is performed.

Figure 3 shows the layout of a y5 file. Fields that are fixed at file creation time
are hatched, the others can change as more data is added to the file. Each row
represents eight bytes of data; multi-byte fields are packed in little-endian format
for faster processing on x86 CPUs (i.e. most commonly available hardware).
We provide a C++ library for UNIX-like systems6 as well as low-level Python
bindings using pybind11 [16] in order to interface with existing software.

Fig. 3. Structure of a y5 file.

4.3 Parallel Architecture

Each of our tools consumes a y5 file. Depending on the input format and use case,
we read either chunks of rows or chunks of columns in parallel by distributing
the individual compressed rows into a thread pool. The task scheduler in charge
of reading collects the decompressed data and passes it along to a processing
pipeline.
6 We are not aware of any constraints that would make a native Windows imple-

mentation impossible, but do not currently support Windows’ memory-mapped IO
functions.

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 231

Each pipeline step takes place in a separate thread, optionally distributing
parallel implementations of “slow” tasks (including any processing step that
needs to iterate over the individual trace events in the data) to a thread pool
that can scale to an arbitrary number of CPUs. By transferring data ownership
directly, we can avoid expensive locking operations.

Finally, any output chunks are written back to a y5 file. To ensure proper
ordering, each chunk is accompanied by its index. In the (rare) case that chunks
do arrive out of order, later chunks are held back until the missing chunk arrives.
To limit total memory consumption caused by uneven processing speeds (e.g. if
reading is faster than the processing, the chunks would “pile up” while waiting
for that stage of the pipeline to clear up), we restrict the total number of chunks
in processing at any given point in time.

4.4 Sample Reduction

Obfuscation measures in whitebox implementations can inflate the total number
of instructions and memory accesses significantly, especially if—as in [7]—it is
specifically designed to resist analysis. This intentionally added complexity helps
defend against manual reverse-engineering efforts and seriously harms the ability
of automated tooling to process the entire implementation, both in terms of code
analysis (e.g. for decompilation) and with regards to the traces that we use. In
essence, we have too much data to efficiently perform the attacks described in
Sect. 3.3. To reduce the size of the traces that we analyze, we can rely on two
observations:

Non-data-dependent Events. First, trace events that remain the same
(including the value that is read or written in a memory access) along all recorded
traces usually do not depend on the input data7. We can discard these events.

Repeated Events. Second, repeated occurrences of the same set of trace events
across all traces (e.g. repeated memory reads from the same address without the
value being modified inbetween) can be deduplicated, since the attacks do not
take structures across multiple trace events into account. This is equivalent to
the duplicate column removal described in [5].

If the traces are properly aligned (i.e. there is no data-dependent execution
that causes the same part of the cryptographic algorithm to yield a variable
number of trace events depending on the input), both of these cases can be
filtered out8. For non-aligned traces (e.g. where the length of the trace depends
on the input), more sophisticated filtering approaches are needed. We do not
currently handle non-aligned traces.

Whiteboxgrind uses separate tools to remove events that match either of
the two criteria described above.
7 Assuming a random distribution of inputs, the probability of this not being the case

is generally low in terms of the number of traces.
8 This is not always the case. However, data-dependent execution that depends on

intermediate values directly leaks information about those values, which can then
be used for similar attacks. Whiteboxgrind does not currently implement this.

232 T. Holl et al.

To reduce the number of passes over the raw data, we first remove non-data-
dependent events during the initial transposition step described in Sect. 4.2.
Unlike Conditional Sample Reduction (CSR) [5], we do not attempt to remove
“superfluous” traces that will not yield additional information during the attack
stage: CSR partitions the trace matrix into groups depending on which input
values can result in the value found in a specific observation. Then, samples
that observe inconsistent (i.e. different) values for the same partial input can be
discarded. Similarly, traces with inputs in the same partition can be dedupli-
cated. However, this requires the user to select a partitioning function/bit mask
to choose relevant input bits, and has a O(n) memory requirement (linear in
the trace size), which can become prohibitive for the lengths involved in our
evaluation (see Sect. 5). Instead, we filter out samples where the value does not
depend on any of the input bits. Problems with random masking can be avoided
by substituting random sources with constant values (by intercepting system
calls and relevant machine code instructions such as rdrand in the tracer).

Perfectly identifying repeated events for deduplication in theory requires us
to keep the entire set of known events in memory (which is infeasible given the
size of some of our traces) or to repeatedly search the events we have already
emitted (at an unacceptable O(n2) complexity). Instead, we use a hash-table-
based least-recently used (LRU) cache that can grow up to a fixed size, letting
us efficiently identify duplicates that are “close enough” to each other in time9.
Because the attacks implemented by Whiteboxgrind act on individual sam-
ples, non-removed duplicates increase the execution time of the subsequent steps,
but do not impact the final result [5].

4.5 Visualization

Understanding the internal structure of a whitebox implementation from a pro-
gram trace by hand is difficult without some form of visualization. Plotting the
program counter over time in a scatter plot reveals how the code is structured,
and doing the same for memory accesses reveals the layout of the data (both of
the intermediate values and of constants such as S- or T-boxes).

During our research, we observed that the traces generated by Whitebox-
grind can be too large to comfortably load into RAM and visualize even after
sample reduction10. To remedy the situation, we implemented a renderer on
steroids that uses the DirectX Direct2D API [23] to draw the trace diagram.

Further than using a GPU to render the plot, we also introduced algorithmic
optimizations. Traditional rendering programs usually scale the data in a lossless
way to the screen, compressing neighbouring points together until all data fits
into the available space. This results in a high-quality, high-accuraccy plot of

9 A randomized cache eviction policy would allow us to remove further events without
increasing the cache size, but the added reduction in event count we observed during
our evaluation using this policy (even repeatedly) was marginal.

10 Existing tools generally insist on doing this; we can only speculate as to why this is
the case.

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 233

the data, that retains the full shape even if scaled down. For our use case, we
are only interested in the macro shape of the collected traces—consequently, we
can skip the expensive compression step under the assumption that trace entries
are indicative of their neighbours. Intutively, this is at least the case for the
program counter plot: While our data is in no form steady, we argue that within
basic execution blocks some properties of steadiness are retained (mainly, that
if no jump instruction is encountered the next instruction is neighbouring the
currently executed instruction).

Then, we can restrict loading to a subset of the whole data and assume that
the general shape of the plot remains unchanged. Implementation-wise, we realize
this by pre-computing the available space of the plot in pixels, and distributing
these pixels evenly across the time axis of the plot. We then use a windowing
approach to pan, zoom and scale the displayed data.

A drawback of this method is its inherent loss of some data. Unlike algorithms
based on compression, our plotter may miss spikes in execution, giving a false
impression of the overall shape if these spikes are small enough.

However, we argue that this is not a problem for our use-case. Our down-
sampling approach suppresses noise spikes if they are sufficiently small, but in
general preserves the overall shape of the plot. Barring sudden jumps, we intu-
itively compare our algorithm to audio recording with varying sample rates,
where sample rate reductions are audible, but even very low sample rates retain
enough information that a human can recognize a recording.

Furthermore, in our testing we found that while the plot-invisible noise might
be the parts we are interested in to recover the key, the plot is more meaningful
when applied to filtered data. With the accompanying reduction in overall plot
size, less down-sampling needs to be done for low zoom levels, which improves
the plots accuracy. Concerning the larger structures we are interested in (e.g. to
identify the different rounds in an AES implementation). We can see in Fig. 4
the internal structure of the distracted leavitt whitebox from [7]: there, six
separate loops (easily discernible from the image) of nine iterations each (note
the slightly larger distance between these iterations) process the current state in
four 32-bit blocks in a T-box-esque implementation.

4.6 Attack

Once the traces are pruned to a manageable size, Whiteboxgrind applies
a standard DCA approach to recover the key. We apply a leakage model (by
default, we use the HW, though this is easily replaced if desired) to the values
read from or written to memory by the whitebox and use the results as our
side-channel leakages.

Using a user-configurable selection function on either the plain- or cipher-
text of the values recorded alongside the traces (cf. Sect. 3.3), we compute the
hypothesis values H ∈ R

256×t (one value for each possible key byte and each of
the t program traces), and center the values around the origin hk = Hk − Hk

for each of the key byte values k = 0 . . . 255. This processing only needs to be
performed once for each attack run and can be done ahead of time.

234 T. Holl et al.

Fig. 4. Access patterns of the distracted leavitt whitebox from [7]

As chunks of traces arrive (cf. Sect. 4.3), we normalize each set of events in
parallel. Given our leakage matrix T ∈ R

s×t consisting of s samples across t
separate program traces11, we compute the centered values ti = Ti − Ti for
each sample, and the Euclidean norm ‖ti‖.

Now, computing the Pearson correlation coefficient between the hypotheses
obtained from the selection function and the leakage values from each of the
trace events is simple:

ri,k =
ti · hk

‖ti‖‖hk‖
It is sufficient to store argmaxk |ri,k| ∀i ∈ {0 . . . s} in order to obtain the

final key (of course, to compute the argmax value, we also need to store the
corresponding maximal |ri,k|). Because we want to allow for some visualization
of the correlation we instead store maxi |ri,k| ∀i ∈ {0 . . . s}, k ∈ {0 . . . 256} (at
processing-block-level resolution). If the attack is successful, the correct key byte
value should show a peak when plotting the 256 resulting correlation values.
Figure 5a shows such a case. Similarly, plotting the maximum correlation against
the index of the sample where it is obtained (Fig. 5b) shows where that key byte
is processed. In this case, we are targeting the first round.

Note that this deviates from the behavior of tools such as LASCAR [20],
which attempt to store the full matrix of all ri,k (which is, of course, subopti-
mal given the amount of data that needs to be processed). The impact of this
optimization is examined further in Sect. 5.

11 In practice, elements of T are of course not from R; rather, common Hamming
weight leakages are in Z/256Z, i.e. a single byte value—but after normalization,
they are treated as floating-point values. Mathematically, we assume they are in R,
and simply accept some small level of error in the practical computations.

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 235

Fig. 5. Correlation for key byte 0 of peaceful williams [7]

5 Evaluation

We evaluated Whiteboxgrind on a set of 7 whiteboxes with no data-dependent
execution from the 2019 CHES WhibOx contest [7] and a “textbook” reference
AES implementation with a hard-coded key that was not hardened against side-
channel attacks. For each implementation, we collected execution traces for the
same set of plaintexts that was randomly selected prior to the evaluation. For
this evaluation, we used the values that are read from memory (as opposed to
values written to memory or those involved in compare-and-swap operations, for
which we obtain separate traces) as our side-channel.

Table 1 shows the time taken by each of Whiteboxgrind’s individual tools
on the traces generated by the first 100 inputs to each of the targets alongside the
number of samples per trace in the resulting outputs. Note that this is generally
insufficient to perform a successful attack, but serves nicely to illustrate the
performance differences between approaches. We should note that while it is
possible to obtain traces in parallel and concatenate the y5 files afterwards, we
did not do this for this evaluation. All performance measurements were taken
on a machine with an AMD EPYC 7552 CPU with 96 threads and 1TB of total
RAM (at 3200 MT/s and CL22). To avoid high IO latencies on physical disk
accesses, we stored all data on a 300 GB RAM disk.

The time taken for any operation generally scales with the size of the traces,
but the correlation is not fully linear. Besides the amount of data involved,
performance can also depend on other implementation characteristics (e.g. for
the tracer, some instructions are far less efficient after VEX translation than
others).

The initial 100 traces collected for our evaluation were sufficient to recover
the correct key from the unprotected reference implementation, but not from
any of the other implementations. For those implementations where collecting
traces was reasonably fast, we collected additional traces to prove the correctness
of our implementation. At 500 traces, we were also able to recover the key from
the (obfuscated) peaceful williams whitebox.

Additionally, we compared Whiteboxgrind’s runtime performance (again
at 100 traces) to that of the CPA implemented in LASCAR [20]. Figure 6 shows
the performance improvements we achieve over LASCAR’s implementation.

236 T. Holl et al.

Table 1. Whiteboxgrind performance (time and number of samples per trace) on
AES whiteboxes from [7]

Implementation Tracing Sample reduction Leakage Attack

Non-data-dependent Repeated

Reference 00:00:16 00:00:00 00:00:00 00:00:00 00:00:00

1191 992 992

distracted leavitt 00:00:36 00:00:02 00:00:02 00:00:01 00:00:03

26020 14113 13951

elegant turing 06:54:14 01:14:21 00:42:49 00:17:09 01:04:58

72928481 27971488 17215702

flamboyant engelbart 01:19:22 00:16:49 00:06:29 00:02:52 00:10:46

17232291 5733448 2981379

friendly edison 13:13:53 05:01:08 04:02:02 01:30:41 05:45:18

214383342 141535907 91556105

goofy archimedes 00:00:18 00:00:00 00:00:00 00:00:00 00:00:00

4412 2413 2386

goofy lichterman 05:56:55 00:55:13 00:35:22 00:13:27 00:52:04

53746357 21207273 12968282

peaceful williams 00:01:13 00:00:07 00:00:05 00:00:02 00:00:10

241761 57645 42525

Fig. 6. Performance of Whiteboxgrind’s CPA compared to LASCAR [20]

Finally, we analyzed the impact of our sample reduction strategies (cf.
Section 4.4) and of the data compression in the y5 file format (cf. Section 4.2):

On the WhibOx implementations [7], we observed a reduction in size of
between 29.27% (for friendly edison) and 76.16% (for peaceful williams)

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 237

by removing samples that do not differ between inputs, and up to 48.00% (for
flamboyant engelbart) by removing recurring samples. As an example, Fig. 7
shows how the two sample reduction steps affect the traces obtained from the
peaceful williams whitebox. peaceful williams implements AES by means
of a virtual machine that processes a hardcoded instruction stream. This is the
steadily rising line in Fig. 7a. Together with the line at the bottom (accesses to
a compiler-generated jump table), these accesses do not depend on the input,
and are filtered out.

Fig. 7. Sample reduction for peaceful williams [7]

Because the trace data is highly structured, y5’s compression was able to
reduce the total file size of all eight memory read traces from Table 1 before
sample reduction by 91.88% (from 2137 GiB to 174 GiB). On the transposed
traces after filtering, the compression ratio is similar (91.92%, from 123 GiB to
99 GiB). Only after the leakage is computed (where only a single byte is stored
per entry) does the average compression ratio drop below 90% (however, at that
point the amount of data is already significantly lower than at the start). Figure 8
shows the compression ratios after each processing step.

Fig. 8. Compression ratios using y5 on traced memory reads from Table 1.

238 T. Holl et al.

6 Discussion

We believe that Whiteboxgrind proves that a fully automated analysis of many
whitebox implementations is feasible given sufficient computing resources. Unless
an implementation is specifically hardened to avoid side-channel attacks based
on memory values (e.g. by relying on register values only, which can easily be
countered by adjusting our instrumentation strategy), it will usually be possible
to use the intermediate values observed to draw conclusions about the key that
is used. During our evaluation, we found that we were mostly constrained by
the time taken to obtain and process the large amounts of data included in our
traces. An attacker not constrained by research budgets will generally be able
to efficiently obtain more traces by applying more computational power—then,
the main performance constraint becomes the processing speed during sample
reduction. In practice, an attacker will also be able to select “interesting” parts
of the traces depending on the selection function (e.g. if targeting the first round,
one might only want to consider the first half of the trace) instead of processing
the entire trace, further speeding up subsequent processing steps. Generally, the
large variance between the different implementations stems from the different
obfuscation strategies chosen by these submissions.

One possible way to defeat the approach described in this work is to intro-
duce data-dependent execution that causes a misalignment between different
traces (if possible, without leaking intermediate values). This can be achieved
by explicit dependencies on the original plaintext, which does not need to be
kept secret. A more sophisticated approach to re-aligning the traces—perhaps
based on algorithms normally used for line-based text diffing, or those used for
other side-channel attacks (e.g. [27])—might enable successful attacks on those
obfuscation schemes.

7 Conclusion

In this work we examined whether it is possible to fully automate DCA against
whitebox implementations of AES. Of course, this involves making some trade-
offs with regard to performance and attack results. Notwithstanding these par-
ticularities, we achieved an attack speed increase of roughly a magnitude on
commodity hardware against a reference AES implementation. We stress that
this performance measurement needs to be taken with a grain of salt: for about
half of our whitebox samples, existing tooling yielded no result at all due to
practical space constraints. This work should be considered as yet another sign
that whitebox cryptography is a fundamentally broken approach: Given that
it is possible to fully automate key extraction for some of the less hardened
approaches, most implementations will not hold up to a dedicated attacker with
reverse engineering skills. We suspect that it will be possible to apply sufficient
obfuscation to make a fully automated approach infeasible to the point where
the tools need to be adjusted to the specific target by hand. However, real-world
implementations usually have to conform to more requirements than such theo-
retical designs, which means that the automated analysis approach presented in

Whiteboxgrind - Automated Analysis of Whitebox Cryptography 239

this work will still hold value for many such implementations. This also applies to
non-AES whiteboxes which are vulnerable to DCA-style attacks. Our method of
obtaining and filtering instruction traces does not assume any specifics about the
implementation under test, so that only minor modifications to the attack code
are required for Whiteboxgrind to support attacks on other cryptosystems.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions on the paper, as these helped us to improve it. This
work was partially funded by the German Federal Ministry of Education and Research
(BMBF) in the SIPSENSIN project under grant number 16KIS1663 and by the Ger-
man Research Foundation (DFG) under the Excellence Strategy - EXC 2092 CASA -
390781972. This work was done while Tobias Holl and Katharina Bogad were at the
Technical University of Munich.

References

1. Alakuijala, J., Szabadka, Z.: Brotli compressed data format. RFC 7932, July 2016
2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.

Cryptol. 4(1), 3–72 (1991)
3. Bock, E.A., et al.: White-box cryptography: don’t forget about grey-box attacks.

J. Cryptol. 32(4), 1095–1143 (2019)
4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:

hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

5. Breunesse, C.-B., Kizhvatov, I., Muijrers, R., Spruyt, A.: Towards fully automated
analysis of whiteboxes: perfect dimensionality reduction for perfect leakage. Cryp-
tology ePrint Archive, Report 2018/095 (2018). https://ia.cr/2018/095

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. CHES 2019. WhibOx contest, August 2019
8. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography

and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

9. Daemen, J., Rijmen, V.: The Rijndael Block Cipher. AES Proposal, March 1999
10. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-

tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

11. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan Zee (North) bridge: min-
ing memory accesses for introspection. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security - CCS 2013. ACM Press,
November 2013

12. Dworkin, M., et al.: Federal Information Processing Standards Publication 197:
Advanced Encryption Standard (AES), 2001-11-26 (2001)

13. “FdLSifu”. QSCAT – Qt Side Channel Analysis Tool. Online [retrieved 2022-04-28]
(2017–2021)

https://doi.org/10.1007/978-3-662-53140-2_11
https://ia.cr/2018/095
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-45325-3_20

240 T. Holl et al.

14. Haupert, V., Maier, D., Schneider, N., Kirsch, J., Müller, T.: Honey, I shrunk
your app security: the state of android app hardening. In: Giuffrida, C., Bardin,
S., Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 69–91. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93411-2 4

15. Intel Corporation: Intel R©Architecture Instruction Set Extensions Programming
Reference. Intel (2021)

16. Jakob, W., Rhinelander, J., Moldovan, D.: pybind11 - Seamless operability between
C++11 and Python (2017). https://github.com/pybind/pybind11

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 1st edn. Chapman &
Hall/CRC, Boca Raton (2008)

18. Klik, M., et al.: The FST format and FSTLIB library. [retrieved 2022-04-21], April
2019

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Donjon, L.: Lascar: donjon side channel library. [retrieved 2022–04-21], February
2019–2022

21. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box AES implemen-
tations. Cryptology ePrint Archive, Report 2013/455 (2013). https://ia.cr/2013/
455

22. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

23. Microsoft: Direct2d API. https://docs.microsoft.com/en-us/windows/win32/direc
t2d/direct2d-portal

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM SIGPLAN Not. 42(6), 89–100 (2007)

25. Shannon, C.: A Mathematical Theory of Cryptography. Memorandum, Bell Labo-
ratories, Murray Hill (1945)

26. The HDF Group: HDF5 Application Developer’s Guide. [retrieved 2021-10-07],
September 2019

27. Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., Sigl, G.: DATA -
differential address trace analysis: finding address-based Side-Channels in binaries.
In 27th USENIX Security Symposium (USENIX Security 2018), Baltimore, MD,
August 2018, pp. 603–620. USENIX Association (2018)

https://doi.org/10.1007/978-3-319-93411-2_4
https://github.com/pybind/pybind11
https://doi.org/10.1007/3-540-48405-1_25
https://ia.cr/2013/455
https://ia.cr/2013/455
https://doi.org/10.1007/3-540-47555-9_7
https://docs.microsoft.com/en-us/windows/win32/direct2d/direct2d-portal
https://docs.microsoft.com/en-us/windows/win32/direct2d/direct2d-portal

	Whiteboxgrind – Automated Analysis of Whitebox Cryptography
	1 Introduction
	2 Related Work
	3 Background
	3.1 Advanced Encryption Standard
	3.2 Whitebox Cryptography
	3.3 Correlation Power Analysis
	3.4 Program Tracing

	4 Whiteboxgrind
	4.1 Trace Acquisition
	4.2 Trace Storage
	4.3 Parallel Architecture
	4.4 Sample Reduction
	4.5 Visualization
	4.6 Attack

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

