
Elif Bilge Kavun
Michael Pehl (Eds.)

LN
CS

 1
39

79 Constructive 
Side-Channel Analysis 
and Secure Design
14th International Workshop, COSADE 2023 
Munich, Germany, April 3–4, 2023 
Proceedings



Lecture Notes in Computer Science 13979
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Elif Bilge Kavun · Michael Pehl
Editors

Constructive
Side-Channel Analysis
and Secure Design
14th International Workshop, COSADE 2023
Munich, Germany, April 3–4, 2023
Proceedings



Editors
Elif Bilge Kavun
University of Passau
Passau, Germany

Michael Pehl
Technical University of Munich
Munich, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-29496-9 ISBN 978-3-031-29497-6 (eBook)
https://doi.org/10.1007/978-3-031-29497-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3193-8440
https://orcid.org/0000-0001-6100-7714
https://doi.org/10.1007/978-3-031-29497-6


Preface

The 14th International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE 2023), was held in Garching near Munich, Germany, during April
3–4, 2023. The series of COSADEworkshops started in 2010. COSADEprovides awell-
established international platform for researchers, academics, and industry participants
to present current research topics in implementation attacks, efficient and secureHW/SW
implementations, implementation attack-resilient architectures and schemes, hardware-
intrinsic security, secure design and evaluation, practical attacks, test platforms, and
open benchmarks.

COSADE 2023 was organized by the Technical University Munich and the Fraun-
hofer Institute for Applied and Integrated Security. This year, the workshop received 28
papers from authors of 15 countries. Each of the submissions was reviewed in an anony-
mous double-blind peer review process by three to four Program Committee members.
Overall, the 40 Program Committee members and the 13 sub-reviewers provided 95
reviews. The Program Committee comprised of international experts from academia
and industry with strong backgrounds in hardware-related attacks, secure implementa-
tions, and secure design, from 17 countries. From the 28 papers, 12 were accepted after
the review process, which corresponds to an acceptance rate of approximately 43%. The
selected works are contained within these proceedings and were presented as part of the
program of COSADE 2023. We thank the Program Committee members as well as the
sub-reviewers for their efforts in reviewing, assessing, and discussing the submissions.

In addition to the 12 presentations on regular papers, COSADE 2023 comprised
two keynotes and three invited talks. The first keynote “Lightweight Authenticated
Encryption” was given by Florian Mendel. It discussed countermeasures against side-
channel attacks in the context of lightweight authenticated encryption using two exam-
ples: Ascon, an algorithm that – at the time of the conference – was recently selected
by NIST for standardization for lightweight cryptography, and ISAP, an authenticated
encryption scheme, which is based on the Ascon permutation and incorporates ideas
from leakage-resilient cryptography to address certain side-channels attacks already on
the model level. The second keynote “Recent Developments on Threshold Implementa-
tions” was given by Siemen Dhooghe. It discussed the application of threshold imple-
mentations from first to higher-order security in settings from software to hardware. The
three invited talks highlighted the industrial perspective on real-world security. They
were given by Wei Cheng from Secure-IC, Pierre-Yvan Liardet from eShard, and Marc
Wittemann from Riscure. The first talk entitled “PQC-Ready Securyzr: A Full-Fledged
Integrated Secure Element Complying with PQC Requirements in Terms of Firmware
Management and Cryptographic Services” unveiled Secure-IC’s PQC-ready Securyzr,
an integrated secure element that provides platform security and user services that are
100% compliant with the CNSA 2.0 cipher suite. The second talk with the title “SOC:
Spot the Odd Circuit” presented fault injection and side-channel attacks in the context of
complex system-on-chip architectures. The third talk with the title “Riscure Vision on



vi Preface

Post Quantum Cryptography” discussed how to get security assurance given the com-
plexity and variety of side channel and fault injection threats. We thank the speakers for
their valuable contributions to COSADE 2023.

We would like to thank the Steering Committee, Jean-Luc Danger and Werner
Schindler, and the General Chair, Georg Sigl. In particular, we want to thank the
team members from the Fraunhofer Institute for Applied and Integrated Security and
the Technical University of Munich, for the great preparation and implementation of
the conference in Munich. We are very grateful for the financial support received
from our generous sponsors eShard, Giesecke+Devrient, NewAE, Riscure, Secure-IC,
ALPhANOV, Infineon, PQShield, and Siemens. Last but not least we want to thank the
authors: Without your valuable research and submissions, COSADE 2023 would not
have been possible.

April 2023 Elif Bilge Kavun
Michael Pehl



Organization

Steering Committee

Jean-Luc Danger Télécom ParisTech, France
Werner Schindler Bundesamt für Sicherheit in der

Informationstechnik (BSI), Germany

General Chair

Georg Sigl Technical University of Munich, Germany,
and Fraunhofer Institute for Applied and
Integrated Security, Germany

Program Committee Chairs

Elif Bilge Kavun University of Passau, Germany
Michael Pehl Technical University of Munich, Germany

Program Committee

Elham Amini Technische Universität Berlin, Germany
Tolga Arul University of Passau, Germany
Josep Balasch KU Leuven, Belgium
Alessandro Barenghi Politecnico di Milano, Italy
Shivam Bhasin Nanyang Technological University, Singapore
Jakub Breier Silicon Austria Labs, Austria
Olivier Bronchain NXP Belgium, Belgium
Chitchanok Chuengsatiansup University of Adelaide, Australia
Fabrizio De Santis Siemens AG, Germany
Daniel Dinu Intel Corporation, USA
Jean-Max Dutertre Ecole des Mines de Saint-Étienne, France
Wieland Fischer Infineon Technologies AG, Germany
Fatemeh Ganji Worcester Polytechnic Institute, USA
Johann Heyszl Google, Germany
Naofumi Homma Tohoku University, Japan



viii Organization

Vincent Immler Oregon State University, USA
Kimmo Järvinen Xiphera Ltd., Finland
Jens-Peter Kaps George Mason University, USA
Juliane Krämer University of Regensburg, Germany
Victor Lomne NinjaLab, France
Patrick Longa Microsoft, USA
Roel Maes Intrinsic-ID, The Netherlands
Dominik Merli Augsburg University of Applied Sciences,

Germany
Thorben Moos Université catholique de Louvain, Belgium
Ralph Nyberg Infineon Technologies AG, Germany
Colin O’Flynn NewAE Technology Inc., Canada
Daniel Page University of Bristol, UK
Samuel Pagliarini Tallinn University of Technology, Estonia
Stjepan Picek Radboud University, The Netherlands
Chester Rebeiro Indian Institute of Technology Madras, India
Francesco Regazzoni University of Amsterdam, The Netherlands, and

Università della Svizzera italiana, Switzerland
Debapriya Basu Roy Indian Institute of Technology Kanpur, India
Pascal Sasdrich Ruhr University Bochum, Germany
Tobias Schneider NXP Semiconductors, Austria
Sujoy Sinha Roy Graz University of Technology, Austria
Marc Stöttinger RheinMain University of Applied Sciences,

Germany
Ruggero Susella STMicroelectronics, Italy
Lennert Wouters KU Leuven, Belgium
Tolga Yalçın Qualcomm Technologies Inc., USA
Fan Zhang Zhejiang University, China

Additional Reviewers

Luke Parkhurst Beckwith
Vinod CM
Songqiao Cui
Samed Düzlü
Keerthi Kamalakshan
Felix Klement
Peter Knauer

Marina Krcek

Gnanambikai Krishnakumar

Michael X. Lyons

Florian Stolz

Patrick Struck

Trevor Yap



Contents

Fault-Injection Analyses and Countermeasures

SAMVA: Static Analysis for Multi-fault Attack Paths Determination . . . . . . . . . . 3
Antoine Gicquel, Damien Hardy, Karine Heydemann,
and Erven Rohou

Efficient Attack-Surface Exploration for Electromagnetic Fault Injection . . . . . . 23
Daniele Antonio Emanuele Carta, Vittorio Zaccaria,
Gabriele Quagliarella, and Maria Chiara Molteni

A CCFI Verification Scheme Based on the RISC-V Trace Encoder . . . . . . . . . . . . 42
Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud,
and Jean-Max Dutertre

Side-Channel Analyses and Countermeasures

ASCA vs. SASCA: A Closer Look at the AES Key Schedule . . . . . . . . . . . . . . . . 65
Emanuele Strieder, Manuel Ilg, Johann Heyszl, Florian Unterstein,
and Silvan Streit

Removing the Field Size Loss from Duc et al.’s Conjectured Bound
for Masked Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Julien Béguinot, Wei Cheng, Sylvain Guilley, Yi Liu, Loïc Masure,
Olivier Rioul, and François-Xavier Standaert

Improving Side-channel Leakage Assessment Using Pre-silicon Leakage
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Dillibabu Shanmugam and Patrick Schaumont

Attacks on PQC and Countermeasures

Fast First-Order Masked NTTRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Daniel Heinz and Gabi Dreo Rodosek

On the Feasibility of Single-Trace Attacks on the Gaussian Sampler Using
a CDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Soundes Marzougui, Ievgen Kabin, Juliane Krämer, Thomas Aulbach,
and Jean-Pierre Seifert



x Contents

Punctured Syndrome Decoding Problem: Efficient Side-Channel Attacks
Against Classic McEliece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Vincent Grosso, Pierre-Louis Cayrel, Brice Colombier,
and Vlad-Florin Drăgoi

Analyses and Tools

Energy Consumption of Protected Cryptographic Hardware Cores:
An Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Aein Rezaei Shahmirzadi, Thorben Moos, and Amir Moradi

Whiteboxgrind – Automated Analysis of Whitebox Cryptography . . . . . . . . . . . . 221
Tobias Holl, Katharina Bogad, and Michael Gruber

White-Box Cryptography with Global Device Binding
from Message-Recoverable Signatures and Token-Based Obfuscation . . . . . . . . . 241

Shashank Agrawal, Estuardo Alpírez Bock, Yilei Chen,
and Gaven Watson

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



Fault-Injection Analyses
and Countermeasures



SAMVA: Static Analysis for Multi-fault
Attack Paths Determination

Antoine Gicquel1(B) , Damien Hardy1, Karine Heydemann2,3 ,
and Erven Rohou1

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
{antoine.gicquel,damien.hardy,erven.rohou}@irisa.fr,
{antoine.gicquel,damien.hardy,erven.rohou}@inria.fr
2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France

karine.heydemann@lip6.fr
3 Thales DIS, Meyreuil, France

Abstract. Multi-fault injection attacks are powerful since they allow
to bypass software security mechanisms of embedded devices. Assessing
the vulnerability of an application while considering multiple faults with
various effects is an open problem due to the size of the fault space to
explore. We propose SAMVA, a framework for efficiently searching vul-
nerabilities of applications in presence of multiple instruction-skip faults
with various widths. SAMVA relies solely on static analysis to determine
attack paths in a binary code. It is configurable with the fault injection
capacity of the attacker and the attacker’s objective. We evaluate the
proposed approach on eight PIN verification programs containing var-
ious software countermeasures. Our framework finds numerous attack
paths, even for the most hardened version, in very limited time.

Keywords: Fault Injection Attack · Multi-fault · Static Analysis

1 Introduction

Fault injection attacks are a major concern for embedded systems since they
allow an attacker to overcome security mechanisms in order to retrieve secret
data or take over a device. To inject a fault, a physical perturbation must be
introduced in the circuit during the execution of the target program. Litera-
ture covers various means of injection [26], such as laser beams, electromagnetic
pulses, voltage or clock glitching. Throughout a fault propagation mechanism,
perturbations introduced at the hardware level impact the nominal execution of
the running program, corrupting variables, control-flow of the program, or both.

To protect against fault injections, several countermeasures have been pro-
posed. At software level, they often rely on redundancy [23]: sensitive checks or
computations are duplicated; constant values are encoded such that it is diffi-
cult to change their value consistently. Also, some variables are added in order to
monitor the executed path and check its validity with respect to the original pro-
gram [13]. As a consequence, attackers must inject multiple faults and/or faults
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-29497-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_1&domain=pdf
http://orcid.org/0000-0003-4734-6466
http://orcid.org/0000-0003-2092-924X
http://orcid.org/0000-0002-8060-8360
https://doi.org/10.1007/978-3-031-29497-6_1


4 A. Gicquel et al.

that impact several consecutive instructions in order to bypass countermeasures
and reach their objectives. Recent works have shown that it is possible to inject
multiple faults [7] (i.e. at different instants) and to corrupt several consecutive
instructions [5,6,8,11,15,20]. Faults can have a width varying from a few up to
more than one hundred consecutively executed instructions. Therefore, multiple
and wide faults are now considered as a real threat and system security against
fault attacks must be evaluated considering such attacker capacity.

Security assessment eventually relies on real fault injection campaigns. How-
ever, some analysis dedicated to the discovery of attack paths is often used as an
early security evaluation process, i.e. before the final system is available. More-
over, concerning real fault injection campaigns, there is also a need to determine
potential attack paths in order to reduce the time needed to prepare an attack.
While there exist several approaches to help designers and evaluators to find
attack paths, they are often limited by the combinatorial explosion that arises
when considering either large applications, or multiple faults with variable widths
or different effects. Existing approaches typically make use of fault simulation
[22], symbolic execution [18] or model checking [4]. As a consequence, we believe
there is a need for a new kind of approaches able to scale with the multiplicity
and width of faults as well as the size of the target application.

In this paper, we go in this direction by proposing an approach only based on
static analysis to determine the possible attack paths when considering multi-
ple faults with various widths. Our framework named SAMVA implements this
analysis, it quantifies the vulnerability of a binary code, for example, on the
basis of the minimum number of faults necessary to perform an exploit or the
characteristics of the required faults.

Our approach works at the binary-level. We currently supports Arm binaries
and instruction-skip like faults. In addition to the binary, SAMVA takes as input
the attacker’s capacity as well as their goal. The goal is expressed with a list of
code addresses – mandatory steps to reach their objective, that must be executed
– and a set of code addresses that must never be executed – corresponding to
attack detection. Attacker capacity describes the possible number of faults as well
as their possible widths. The static analysis is based on a path search heuristic
in a graph representing the program and the effect of potential faults. The found
candidate paths are analyzed in order to determine when and which faults to
inject in order to make the attack path feasible. The analysis outputs the set of
paths that meet user-specified fault injection constraints. We evaluate SAMVA
on eight variations of PIN verification from the FISSC suite [9] while considering
different attacker capacities. We verify the validity of the attacks paths found
by SAMVA with a fault simulator based on the gem5 [2]. We show that SAMVA
is able to find in all implementations, even the most hardened, when and which
faults to inject in order to reach an objective. Furthermore, we show that the
required time to find attack paths is kept low even when considering hardened
applications and a large set of potential effects of fault injections.

The threat model is introduced in Sect. 2. Section 3 depicts the core of our
analysis for the search of attack paths. Our experimental setup and results are
discussed in Sect. 4. We review related work in Sect. 5. Section 6 concludes.



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 5

2 Threat Model

Since the seminal paper of Boneh et al. in 1997 [3], a lot of research has been
conducted around fault injection. While some research works demonstrate the
feasibility to retrieve sensitive data or to take over a device, some others aim
at characterizing fault injection effects in order to better harden target systems.
Fault effects can be modeled at different levels (logical level, RTL, assembly
code, source code) using a bottom-up approach. A lot of research works have
focused on the modelling of fault injection effects at ISA-level. Fault injections
can lead to several effects at this level such as an instruction replacement or the
frequent special case of an instruction skip [1,16,25]. While these papers report
single fault effects, recent works show that one fault injection or complex fault
injection means can lead to the corruption of several consecutive instructions.
Electromagnetic pulses can lead to the replay or the skip of several consecutive
instructions, from two up to a dozen [5,15,19,20]. Laser-based fault injection
techniques can also lead to the skip of few chosen instructions [8] or of a vari-
able number of consecutive instructions, from 1 to 300 depending on the laser
pulse duration [11]. Multiple instruction skips, from a few chosen ones up to
almost one hundred, can also be achieved using cheaper injection means such as
clock glitching [6]. Instruction skip is a fault model that encompasses many fault
effects, such as instruction replacement with another one that does not alter the
execution, the replay of idempotent instructions, the replacement of the desti-
nation register of an instruction with a dead register, etc. It is powerful as it
allows to easily corrupt the control flow of the execution. Moreover, injecting
multiple instruction-skip faults allows an adversary to combine their effects to
realize even more powerful attacks: Péneau et al. [17] show that if precise and
numerous instruction skips can be injected, a binary program can be attacked in
many ways. They show that NOP-oriented programming is Turing-complete. In
this paper, we consider an attacker able to inject multiple and precise faults that
finally result in skipping the execution of one or several consecutive instructions.
The distance between two fault injections, the minimal and maximal number of
instructions that are skipped with one fault injection all depend on the injection
mean. We then consider them as input of the proposed analysis.

3 Method

We first provide an overview of the approach implemented in SAMVA. Then,
we detail the modeling of faults effects on the binary and finally the proposed
static analysis to determine the location of faults to be injected at run-time.

3.1 Overview

Figure 1 gives an overview of the whole analysis dedicated to the search of attack
paths. The analysis takes as inputs the binary, the objective of the attacker and
the attacker’s capacity. The output of SAMVA is a list of up to N attack paths,



6 A. Gicquel et al.

N being defined by the user. An attack path contains the position of the required
faults with their corresponding width (thereafter denoted fw) that need to be
dynamically injected at run-time to achieve the attacker objective.

The objective of the attacker, denoted as exploit specifications in Fig. 1, are
composed of (1) an ordered list of code locations that must all be reached during
the execution in the specified order. This list composed of start addresses of
straight-line code is referred to as the targeted basic blocks; (2) a set of code
locations that must not be executed, for example it can correspond to code
related to fault attack detection. This set is referred to as forbidden basic blocks.

The capacity of the attacker is expressed using three fault parameters (cf.
Fig. 1): (1) fw min indicates the minimal number of instructions skipped by one
fault injection; (2) fw max gives the maximal number of instructions skipped; (3)
f min dist expresses the minimal number of instructions executed between two
fault injections as imposed by the injection means. As an example, the setup
of Dutertre et al. [11] (cf. Sect. 2) would be reflected by setting fw min=1 and
fw max=300. The f min dist would be set according to the frequency of the
targeted processor and the reloading time of the fault injection setup.

First, the analysis automatically generates the control-flow graph (CFG) of
the binary. A CFG is composed of basic blocks (BB) defined as a maximal
length sequence of straight-line (i.e. branch-free) code. Basic blocks are linked
with oriented edges to represent all possible execution paths of the program. The
CFG is extended and annotated to reflect the effects of possible fault injections,
noted hereafter ECFG. Then, potential attack paths are computed using the
ECFG as well as the attacker objective. Finally, the analysis infers a set of
attack paths that meet the attacker capacity. Each output attack path takes the
form of a list of BB with the faults to inject (location, width) in the instruction
trace generated by the execution of all the instructions of the BB list.

3.2 Fault Effects Modeling

Our approach implemented in SAMVA starts with the CFG of the binary pro-
gram which characterizes all the possible execution paths in the absence of
attack. We call it the nominal CFG in the remainder. It can be obtained by
static analysis or a combination of static and symbolic analysis. In SAMVA, we
use the angr framework [21] to build it. The ability to skip the execution of
chosen instructions allows an attacker to alter the control-flow of a program in a
way to force an existing execution path, or to create a new one. We model such
potential effects of instruction skips by generating an ECFG from the nominal
CFG. This step is independent of the attacker as it models all potential fault
effects without considering the attacker capacity. In the following, we detail the
two transformations performed on the nominal CFG to generate the ECFG that
is later used by our attack paths finding heuristic.

Hijacked Control-Flow Modeling. Being able to skip the execution of branch
instructions enables an attacker to force the execution of the instructions which
are located in memory right after these branch instructions.



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 7

foo:
0x104dc push {fp}
…
0x104f4 bx lr
B1: (main)
0x104f8:      push    {fp, lr}
0x104fc:      add    fp, sp, #4
0x10500:     sub    sp, sp, #8
0x10504:     mov    r3, #0
0x10508:     str    r3, [fp, #-8]
0x1050c:     bl    104dc <foo>
B2:
0x10510:     str    r0, [fp, #-12]
0x10514:     ldr    r3, [fp, #-12]
0x10518:     cmp    r3, #4
0x1051c:     bgt    10530

B3:
0x10520:     ldr    r3, [fp, #-8]
0x10524:     add    r3, r3, #1
0x10528:     str    r3, [fp, #-8]
0x1052c:     b    1053c
B4:
0x10530:     ldr    r3, [fp, #-8]
0x10534:     sub    r3, r3, #1
0x10538:     str    r3, [fp, #-8]
B5:
0x1053c:     mov    r3, #0
0x10540:     mov    r0, r3
0x10544:     sub    sp, fp, #4
0x10548:     pop    {fp, pc}

B1

B2

B3

B4

B5

foo

B1

B2

B3

B4

B5

foonnnnns

    n…s

nnnnne

n…e

nnns

nnns

nnnn

nnne

0x104F8: neutral
0x104FC: neutral
0x10500: neutral
0x10504: neutral
0x10508: neutral
0x1050C: skip
0x10510: skip
0x10514: skip
0x10518: skip
0x1051C: skip
0x10520: skip
0x10524: skip
0x10528: skip
0x1052C: skip
0x10530: neutral
0x10534: neutral
0x10538: neutral

Path: B1→B2→B3→B4→B5

Attack path 1: B1→B2→B3→B4→B5 | 1 faults (at 0x1050C with width of 9)
Attack path 2: B1→foo→B2→B3→B4→B5 | 1 faults (at 0x1051C with width of 5)
Attack path 3: B1→B2→B3→B5 | 2 faults (at 0x1050C with width of 5; at 0x1052C with width of 1)
…
Attack path N: Basic Blocks | Faults

St
at

ic
 A

na
ly

si
s

In
pu

t
O

ut
pu

t

● Exploit specifications
○ List of targeted Basic Blocks
○ Set of forbidden Basic Blocks

● Fault parameters
○ fw_min
○ fw_max
○ fw_min_dist

● N: Maximum number of attack paths

P th B1 B2

SAMVA

ECFG   Attack paths findingCFG

B5 | 1 f lt ( t 0 1050C ith idth
Attack path

Binary file Configuration file

Fig. 1. Platform overview. In the code example, the targeted BB are [B1, B2, B5] and
the set of forbidden BB is empty. Some found attack paths are given to illustrate the
output format.

For the case of unconditional jump, we can choose to execute or to skip it.
This allows an attacker to continue the execution with the instruction that comes
after the jump instruction, according to the memory layout. The previously
impossible control-flow is illustrated in Fig. 1 by the insertion of a new edge
between B1 and B2 in the ECFG.

Concerning the skipping of a conditional branch, it forces the execution of
the instruction that comes after the branch instruction, which corresponds to
the case where the condition does not hold. As SAMVA currently does not rely
on any dataflow analysis, and as each branch outcome must be statically known
to compute feasible paths, the conditional jumps must always be skipped. As a
consequence, the edges corresponding to the taken branches are removed of the
ECFG. In the ECFG example in Fig. 1, the edge from B2 to B4 has been removed.
Nonetheless, it is still possible, using several instruction skips, to execute the



8 A. Gicquel et al.

target BB of the conditional branch if it is placed further in the memory layout.
In the ECFG in Fig. 1, an attacker would have to skip the branch at the end of
both B2 and B3 to reach B4 from B2.

A limitation of our approach only based on control flow analysis and instruc-
tion skipping is that we cannot manage backward conditional branches, i.e. forc-
ing the execution of the target BB of a conditional branch when this BB is at
a lower address in the memory layout. This requires a data-flow analysis, to
determine if it is feasible using only instruction-skip faults to force the condition
to hold, or if this requires a fault outside our fault model (e.g. branch condition
inversion). We keep as future work the study of data-flow analysis in presence
of instruction-skip faults to force a backward conditional jump.

Edges Annotations. This second step annotates the ECFG’s edges to reflect
if the corresponding control flow results from a fault injection on the branch
instruction of the source BB of the edge or not. To define the edge annotation,
we consider the following instruction types:

– execute (e) is the type of the instructions that must be executed;
– skip (s) is the type of the instructions that must be skipped;
– neutral (n) is the type of instructions that can either be skipped or executed

without affecting the control flow at the end of their basic block.

Every instruction of a BB is typed. The neutral type leaves room for posi-
tioning the fault injection according to the attacker capacity. Based on this
instruction type, an edge annotation can be derived by typing, in order, each
instruction of its source BB. Branch instructions are always typed as either skip
or execute to reflect the condition under which the edge must be followed during
the execution. By default, all other instructions of a basic block are typed as
neutral. These edge annotations are also illustrated in Fig. 1.

While this is enough for our attack paths finding heuristic, we refine the
typing strategy to avoid source of crashes when performing an attack. In fact,
inconsistent stack pointer updates during the execution may lead to a crash
of the attacked program. Moreover, inconsistent return address can make the
execution deviate from the expected execution path. As a consequence, we add
the two following typing rules:

– R1: Execution of stack pointer updates. Instructions writing into the stack
pointer register (SP register), such as push and pop instructions, are always
typed as execute. This guarantees that the memory allocated for the stack
is subsequently deallocated. For Arm architectures, the return from a callee
function to its caller uses a unique instruction, a pop pc instruction or equiv-
alent, to retrieve the return address on the stack, to update the stack pointer
and finally to return to the caller function. As the execution of pop instruc-
tions is forced by this typing rule, this ensures that a function call is either
skipped or the return to the caller will be correctly executed.

– R2: Execution of function returns using the link register. In case of leaf func-
tion, the link register lr, set by the call instruction bl, may be directly used



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 9

for returning to the caller, i.e. using a bx lr instruction or equivalent. This
happens when the link register lr is not saved on the stack due to low register
pressure. This additional rule types as execute all the bx lr instructions. As
a consequence, a leaf function that does not save the link register on the stack
is either skipped or the return to the caller will be correctly executed.

3.3 Attack Paths Finding

In this section, we present our heuristic for finding attack paths. We first explore
the ECFG to generate a set of paths that are compliant with the attacker objec-
tive. These paths must contain the target basic blocks in the order specified
by the user and must not contain any forbidden basic blocks. Edge annotations
present on each path are then used to determine the position and the width
of fault injections to perform while conforming with the instruction types. The
position and the width of fault injections must be valid according to the attacker
capacity given as input to the analysis.

Candidate Paths Generation. A set of candidate paths is generated by
exploring the ECFG. Such paths must reach, in the correct order, the BB speci-
fied in the attacker objective and avoid the forbidden BB. Additionally, an ideal
candidate path should allow an easy fault injection positioning by spacing out
the execute and skip instructions, and reduce the number of fault injections by
favoring neutral and execute instructions. Therefore, we associate to each edge
of the ECFG a cost depending on its annotation.

– Cost = 1: if instructions are all typed as neutral ;
– Cost = 2: if instructions are only typed as neutral or execute;
– Cost = 3: if instructions are only typed as neutral or skip;
– Cost = 4: if there are some instructions typed as skip and some other ones

typed as execute.

This weighing policy hints the path search at finding more feasible attack paths.
Thus, for each pair of successive basic blocks in the list of targeted basic blocks,
a temporary set of paths is retrieved using the shortest paths algorithm [24]
according to edge weights. The complexity to find the K first shortest paths in
a CFG containing NBB basic blocks is then O(KNBB

3).
The final set of complete candidate paths Pcandidate paths passing through all

the basic blocks specified in the attacker objective is then generated by making
the Cartesian product of the temporary sets. We iteratively combine the sets
corresponding to consecutive basic blocks and retain the K paths with the least
costs. This final set is composed of candidate paths that do not ensure the
possibility of the fault injection positioning according to the attacker capacity.
The next step aims at finding a valid set of fault injections to perform to make
a candidate path an attack path.

Fault Injection Positioning. The determination of fault injections to perform
in order to make feasible a given candidate path is based on the instructions
types retrieved on the edges annotations and the attacker capacity. For a given



10 A. Gicquel et al.

candidate path, we build a so-called “execution trace” which is a list of pairs
〈instruction address, instruction type〉. The fault injection positioning aims at
finding the position and width of faults to inject such that instructions typed as
skip are covered by a fault and instructions typed as execute are outside of any
fault. Instructions typed as neutral can be covered by a fault or not.

The width of any injected fault must be included in [fw min, fw max]. As a
consequence, there are potentially a lot of possibilities for the fault injection
position and width as shown in Fig. 2. Nevertheless, the distance between two
consecutive faults must be at least equal to the minimal distance f min dist.
Computing the whole set of possible fault positions and widths is not realistic,
as a consequence we use a two-step approach to determine a fixed-size set of
solutions: (i) we first use simple rules to quickly determine when there is no
valid solution for the fault positioning based on the distance between instructions
(ii) then, the set of remaining fault configurations (i.e. position and width) is
explored using a backtracking algorithm in order to find a valid configuration
that make feasible a candidate path.

0x01077C 0x010780 0x010784 0x01078C 0x010790 0x010794 0x010798 0x01079C 0x0107A0 0x0107A4

neutral neutral neutral neutral skip skip neutral neutral neutral neutral

Minimum width
Maximum width

Fig. 2. Example of fault positioning on trace with fw min = 3, fw max = 5

Unsolvability Verification. We use the following straightforward rules to quickly
detect the unsolvability of the fault positioning problem on an execution trace:

– If there is at least one instruction typed as skip between two instructions i0
and i1 typed as execute, then the distance between i0 and i1 must be greater
than or equal to fw min the minimal width of a fault. Otherwise, any fault
covering the instruction typed as skip would at least impact i0 or i1, and so
the fault positioning problem is unsolvable;

– If there is at least one instruction typed as execute between two instructions i0
and i1 typed as skip, then the distance between i0 and i1 must be greater than
or equal to f min dist the minimal distance between two faults. Otherwise,
the fault positioning problem is unsolvable.

Backtracking Algorithm. The algorithm attempts to place faults in order to cover
all the instructions typed as skip in a trace or to prove the invalidity of the attack
path. Thus, we try to build a solution, consisting in a list of faults each having
a position and a width. Additionally, these faults must respect the fault width
constraints (fw min, fw max) and respect the distance between each other (i.e.
meet the minimal distance requirement fw min dist).

A solution is built incrementally with a backtracking approach using recur-
sion. Algorithm 1 gives an overview of our implementation. First, the position of



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 11

Algorithm 1. Fault positioning algorithm using backtracking
function fault positioning(trace, f candidates, f params)

next pos ← find next skip(trace, f candidates)
if next pos = ∅ then

return True
for fw ∈ range(f params.fw max, f params.fw min, -1) do

for pos ∈ range(next pos, next pos - fw, -1) do
fault ← <pos, fw>
if is valid(fault, trace, f candidates, f params) then

f candidates.push(fault)
if fault positioning(trace, f candidates, fault params) then

return True
else

candidate faults.pop()

return False

the next instruction typed as skip that is not yet covered by a fault is retrieved
in the execution trace. Then, we vary the width and position of the fault in order
to find a valid fault configuration.

To determine if a candidate fault configuration is valid, the following prop-
erties are verified:

– The fault position must fit in the trace, i.e. taking care of the trace bounds;
– The fault must not cover any instruction typed as execute;
– The fault must not overlap with the previous fault (if any) and their distance

must be greater than the minimal distance between two faults.

The recursive calls stop when a final solution meeting all the constraints
and covering all the instructions typed as skip is obtained. This happens when
the function find next skip no longer finds any uncovered instruction typed
as skip. During this process if we discover that the current solution will not
be valid, we backtrack, i.e. we go back to the previous step by removing the
last validated fault and try another fault configuration instead. Backtracking
algorithms use the depth-first search method. In order to minimize the number
of faults necessary to perform the attack, we first explore, as visible in the loops
order, the possible positions starting from the one of the instruction to cover
and then vary its width, starting with the widest one.

For the sake of performance, we do some optimizations to reduce the space
of possible fault configurations. First, when validating a position of a fault, we
also check if there is any instruction typed as skip further in the trace at a
distance of less than fw min dist that would be covered by a conflicting fault.
Consequently, even if the configuration of the fault is valid with the already
chosen faults, it is rejected to avoid useless recursive calls.

Additionally, we decompose our execution trace into several sub-traces that
are then handled independently. We apply a cut in the execution trace when
(1) two instructions typed as skip are separated only by instructions typed as



12 A. Gicquel et al.

neutral, and (2) the distance between these two instructions is larger than twice
the maximal fault width plus the minimal distance between two faults.

Fault Trimming. Our fault positioning algorithm tries to make the faults as
large as possible in order to reduce their number. It can therefore find valid
solutions that nonetheless cover unnecessarily instructions typed as neutral. For
this reason, we apply a last pass that shortens the width of the faults when
possible. It shifts the beginning and the end of a fault towards the first and the
last instruction typed as skip while meeting the constraint of the minimal fault
width (fw min). We thus obtain smaller faults, potentially easier to achieve, and
which reduce the risk of skipping critical instructions.

4 Experimentation

In this section, we evaluate the effectiveness of SAMVA. We first present the
experimental setup comprising the targeted applications, the considered attacker
capacity and our evaluation methodology. Then, we discuss the results.

4.1 Experimental Setup

Benchmarks. We evaluate our analysis on all PIN verification programs from
the FISCC project [9]. This software collection contains eight implementations
of VerifyPIN, one naive implementation, as illustrated in Lst. 1 and seven other
implementations containing different set of countermeasures. The PIN code ver-
ification programs compare a user-provided PIN and the card PIN using the
function byteArrayCompare. The variable g authenticated is set according to
its result. The number of tries is controlled by the variable g ptc, initially set to
3 and decremented after each failed authentication attempt. Authentication is
no longer permitted if g ptc reaches zero, in order to avoid brute-forcing the PIN
code. For protected implementations, i.e. version higher than V0, a fault handler
is called when an attack is detected by a countermeasure. The fault handler sets
to true a variable added to any protected version and named g countermeasure.
In the end, the evaluator is able to know afterward if the attack has been detected
by the countermeasures. The implemented countermeasures are described below.
Table 1 reports the countermeasures implemented in each VerifyPIN version as
well as the number of instructions, BB and edges in the ECFG considered in the
analysis at the binary level.

– Hardened Booleans (HB): Booleans are encoded with two constants, instead
of 0 and 1, which are less sensitive to fault injection;

– Step counter (SC): some variables called step counters are added to the code
in order to protect against attacks disrupting the control flow integrity. The
number of loop iterations is checked at the loop exit in versions V2 to V5. All
the statements and control flow constructs are protected using such variables
in version V7;



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 13

– Inlined calls (IC): function calls are inlined in order to prevent the skip of
the call. This also reduces the attack surface as there is no more instructions
to pass parameters to the calls;

– Backup copy (BC): the number of remaining attempts is duplicated to pre-
vent single fault attacks from targeting the attempt counter;

– Double test (DT): the call to the function verifying the PIN codes and all
the tests are duplicated to prevent a single fault from bypassing them.

The objective of an attacker is to obtain an authentication without knowing
the user PIN and without triggering any countermeasures. As a consequence,
our analysis searches for the faults enabling to hijack the control-flow of the
program in order to execute the authentication code (lines 4 and 5) without
executing any attack detection. For the experiments, we manually retrieve the
targeted and forbidden basic blocks for each implementation of VerifyPIN. The
attacks start at the beginning of the verification function and then we define
the targeted BBs as a list containing: the BB setting g authenticated at true,
possibly the BB setting g ptc at 3 if this code is not included in the previous
BB, and finally the BB in then main function that comes right after the call to
VerifyPIN. The set of forbidden BB only includes the BB calling the detection
function that sets the g countermeasure variable.

The eight versions of VerifyPIN are compiled for Arm Thumb instruction set
architecture (ARMv7-M). The cross-compiler used is GNU GCC gnueabi version
8.5.0. We deactivate all compiler optimizations (-O0) to avoid the alteration of
the software countermeasures, as well as the use of predicated instructions that
are not yet supported in SAMVA.

Listing 1. Source code of Verify

PIN without countermeasures (V0)

1 g_authenticated = 0;

2 if(g_ptc > 0) {

3 if(byteArrayCompare(...))

{

4 g_ptc = 3;

5 g_authenticated = 1;

6 } else {

7 g_ptc--;

8 }

9 }

Table 1. VerifyPIN suite description with
the included countermeasures, their number
of instructions, BB and ECFG edges (+ edges
added to original CFG) at binary level

HB SC IC DT BC #Instr #BB #Edges

V0 142 24 46 (+12)

V1 � 162 30 57 (+15)

V2 � � 172 32 58 (+15)

V3 � � � 158 30 54 (+13)

V4 � � � � 221 41 79 (+20)

V5 � � � 241 47 87 (+22)

V6 � � � 177 36 68 (+17)

V7 � � � � 306 66 140 (+38)

Fault Injection Parameters. For each implementation of VerifyPIN, we
consider various fault injection parameters corresponding to various attacker
capacities. We vary the width of the possible faults (using the fault parameters
fw min and fw max) as well as the minimal distance between two consecutive
faults (using the parameter named fw min dist). Our objective is to observe
the sensitivity of the included countermeasures to the fault injection parameters
required to perform an attack.



14 A. Gicquel et al.

Let W be the set of possible fault width values measured in number of instruc-
tions. It is defined as: W : = {1} ⋃{2n : n ∈ N | n ≤ 32}. Thus, the minimum
width varies over 1 and all even numbers between 2 to 64; the maximum width
varies over the minimal width and all even numbers between 2 to 64 as well,
such that: {(fw min, fw max) ∈ W ×W | fw min ≤ fw max}. Finally, the minimal
distance, in number of instructions, between two fault injections varies over all
the power of 2, such that: fw min dist ∈ {2n : n ∈ N | n ≤ 5}.

Moreover, we run SAMVA on all the versions of VerifyPIN considering
instruction typing strategies (cf. Sect. 3.2). We pick three different strategies
as follows: a first default one, denoted default, without any additional typing
rule; a second one featuring the R1 rule that forces the execution of stack pointer
updates; a third one, denoted R1 + R2, that applies both R1 and R2 rules.

In summary, we test SAMVA on a total of 3366 distinct fault parameters, on
each of the eight binary files, for each of the three instruction typing strategies,
with fault trimming enabled and disabled.

Fig. 3. Decision tree for attack results classification

Evaluation Methodology. We iterate through the possible fault parameters
and binaries as described previously. For a given couple of binary and fault
parameters, we strive to generate a set of N distinct attack paths. In our exper-
iments, N equals 30, meaning that we expect to obtain up to 30 attacks paths,
depending on the possibilities offered by the instructions used and the binary
layout. The evaluation methodology followed to assess the results is depicted on
Fig. 3. We classify the results as explained below.

The set of attack paths found by the analysis can be empty if our analysis
does not find any candidate attack path for certain fault parameters (class “No
path” ). Additionally, the fault parameters may not fit the binary if fw min,
the minimal fault width, is greater than the number of instructions distancing
the starting point and the first targeted instruction of the attack (class “Early
rejection” ), since the execution of targeted BB is mandatory.

Otherwise, if the resulting set is not empty, the attack paths are validated
by simulation of the instruction-skip fault model. The simulator used in our



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 15

experiment is a modified version of gem5 [2] which is able to skip the execu-
tion of chosen instructions in a specified order of occurrence. It takes as input
the binary program under analysis and the faults that must be injected for
achieving an attack path. Once the simulation terminates, without reporting
a crash, we first check the output containing the VerifyPIN variables. If the
g authenticated is set to true, g ptc equals 3 and g countermeasure stays at
false, the authentication has been granted (node “Auth OK”). In this case, the
execution trace resulting from the simulation and the one intended by the anal-
ysis are compared in order to make sure they match (class “Attack OK” ). We
stop iterating the set of attack paths after the first successful simulated attack.
In the case of a simulation crash or if we did not get authenticated at the end of
the simulation (node “Auth KO”), the simulated and expected execution traces
are also analyzed. When they do not match, we determine the reason of the crash
or of the divergence of control-flow respectively (classes “LR KO”, “Stack KO”
or “Load/Store KO”). The result is orange-colored (node “Crash” and “Wrong
control-flow” ). Finally, we also measure the failure of our analysis for two par-
ticular cases (class “Analysis KO” ). The first one is when the authentication
fails despite the matching of the execution traces and the expected authentica-
tion by the analysis. The second case is when we get authenticated but the traces
do not match. These cases are sanity checks only, which should not happen. We
did not encounter them in our experiments.

4.2 Experimental Results

Attack Path Evaluation Results. Experiments aim to measure the effective-
ness of SAMVA in finding attack paths in the different benchmarks according
to the different typing instruction strategies. We consider three strategies with
and without fault trimming. Figure 4 shows the classification of the evaluation
outcomes. The first row represents the results for the three strategies without
the fault trimming and the second one with trimming.

First of all, we are able to find many attack paths in all cases. The main dif-
ference between the default strategy and the other ones preserving the execution
of stack pointer updates is the higher number of crashes during the simulation
using the default strategy. However, fault trimming seems to sensibly mitigate
the number of crashes by reducing the number of instructions that must be
skipped, meaning, it reduces the risk of skipping an instruction that is neces-
sary for the execution of the program such as memory allocation for the stack.
Nonetheless, fault trimming has only an impact when no instruction typing rule
is enabled. Otherwise, the strategies guarantee the execution of some instruc-
tions reducing the number of crashes. Finally, the R1 + R2 strategy finds fewer
attack paths. This reduced number of attack paths can be explained by the con-
straints induced by the instruction typing rules, resulting in a more difficult fault
positioning. However, found attack paths lead to fewer crashes. This means that
the few attack paths found are more prone to be effective. Remaining crashes are
solely caused by invalid memory access due to instruction skips. To load or store
a value, the address location is usually stored in a register that is defined before



16 A. Gicquel et al.

Fig. 4. Results classification of attack path searches

by one or multiple instructions. If one of these instructions is skipped, then an
illegal access can cause a crash. Future work will study data-flow analysis to
handle these cases.

Fault Injection Parameters Study. An alternative manner of representing
the results for the eight binaries is depicted on Fig. 5, which shows the classifica-
tion of the analysis outcomes according to the considered three fault parameters
(fw min, fw max, fw min dist). As expected, the general pattern that we can
observe is that the smaller fw min and fw min dist are, the larger the fw max
is, the more possibilities to find attack paths which result in successful attacks.
We can see that versions V1, V2 and V5 have similar results to V0, meaning
that the implemented countermeasures have only limited effect against multiple
skips. We can also see that in V4 and V6, the distance between two faults is
the main factor for the realization of the attack. This can be explained by the
necessity to make several faults if fw max does not allow to make a sufficiently
large fault. Finally for V7, we only find few configurations that lead to successful
attacks. The fine-grained control-flow integrity countermeasure included in this
version forces to skip several small sets of instructions and thus require a higher
precision to inject the faults.



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 17

Fig. 5. Outcomes of every tested configuration, per VerifyPIN version, using the R1

strategy and fault trimming enabled

Characteristics of Successful Fault Configurations. We now study the
characteristic of the fault configurations that lead to successful attacks. Since
the strategy featuring the additional typing rule R1 along with the fault trim-
ming gives the highest number of successful attack paths, we base our study on
its evaluation results. Figure 7 presents the number of faults required for each
successful attacks. Our results show that versions from V0 to V3, V5 and V6 can be
attacked with a single fault. Version V4 can be attacked with at least two faults
and V7 requires at least three faults. The instruction typing obtained for a given
attack path is responsible for the minimum number of faults. For instance, if two
instructions are typed as skip with an instruction typed as execute in between,
then two faults are necessary. Depending on the code layout and instructions
induced by the countermeasures, the attack path may contain such constraints,
resulting in a higher number of faults required for the V4 and V7.

To better understand the effects of instruction typing on the fault positioning,
Fig. 6 represents the characteristic of the faults on an attack path. These dif-
ferent attack paths can report identical control-flow, although we can see some
patterns. Taking the V0 as an example, we can notice that according to the
fault injection parameters, SAMVA can choose to make one long fault to cover
all the instructions typed skip or to make several smaller faults to cover them



18 A. Gicquel et al.

Fig. 6. Unique attacks found for each version of VerifyPIN. Each attack is represented
horizontally. The x-axis represents time (more precisely consecutively executed instruc-
tions). Each segment denotes a fault whose width is the length. For example, V1 can
be attacked with a single fault of width 12 (bottom segment ranging from x = 10 to
x = 22); but also with four narrower faults shown at y = 41: a fault ranging from x
= 10 to x = 15 followed by tree faults of width 3 at times x = 23, x = 33, and x =
43. Attacks are sorted vertically by their number of faults: fewer faults at the bottom,
more towards the top.

individually. For some attacks, the BB restoring the variable g ptc to its initial
value and the BB turning g authenticated to true may be different. As a result,
we get mandatory checkpoints in the control-flow, which graphically manifests
as a column in the figures, because no fault is allowed to cover this section of
the attack path. Finally, we consider only fully predictable paths in our analysis.
Since we do not use data-flow analysis, we hijack conditional jumps that do not
necessarily require a fault. For instance, at the beginning of the VerifyPIN func-
tion the value of g ptc is checked and must be greater than zero, as depicted
in Lst. 1 (line 2). As we consider only one try, during the attack this condition
always holds. In consequence, the branch instructions related to this check add
unnecessary constraints by adding an instruction typed as skip and result in
more faults than really required.



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 19

Fig. 7. Number of faults needed for
each successful attack found for each
version of VerifyPIN, using the strat-
egy R1 with fault trimming enabled

Fig. 8. Time needed to generate the
paths, for each considered fault param-
eter and per VerifyPIN, using the strat-
egy R1 with fault trimming enabled

Execution Time. We measure the execution time of our framework in order
to assess its performance. Figure 8 represents the time that our analysis took to
find up to 30 distinct attack paths for each version of VerifyPIN and for each
parameter configuration. These results do not include the simulation time. The
strategy used for these measurements is the typing rule R1 with fault trimming
enabled. We ran our benchmarks on a Xeon Gold 5218 CPU at 2.3 GHz featuring
32 physical cores, on which independent instances of SAMVA are launched. Each
instance of SAMVA is sequential, hence the times reported are independent of
the parallelism of the server. We obtain relatively short analysis times, most of
the results are under the threshold of half a second. For the V4 and V7 versions,
we can notice that the analysis times can rise significantly, up to 109 s and this
can be explained by the usage of the fault positioning algorithm which uses
backtracking. Indeed, the major part of the analysis time is actually spent in
this algorithm and according to the typing of the instructions, we may need to
backtrack a lot to prove the non-feasibility of an attack path.

5 Related Work

In order to help both security evaluators and countermeasure designers, different
vulnerability and attack path search tools have been proposed.

Potet et al. [18] propose Lazart, a tool based on the modification of the CFG
at LLVM-IR level to establish using symbolic execution the absence of attacks
only based on multiple branch inversions. While convenient to early analyze
the effectiveness of software countermeasures, this solution does not consider
the binary layout and so requires a companion analysis at binary level. While
the authors do not report the time required by the analysis, this approach is
intrinsically limited by the symbolic execution engine that faces path or state
explosion in case of complex applications with symbolic inputs which impact
memory accesses or control flow.



20 A. Gicquel et al.

Bréjon et al. [4] propose the framework RobustB that uses formal verification
through SMT solving to find vulnerabilities in binary code. The considered faults
are either a single instruction skip or a single register corruption. The reported
verification times on the same benchmarks range from few minutes up to few
hours without details. We can however say that our approach is more efficient
as it requires less than two minutes in the worst case, and our attacker model
encompasses the single instruction-skip fault model.

Given-Wilson et al. [12] also propose an automated approach based on formal
verification to find vulnerabilities against fault attacks at binary code level. The
approach only considers permanent faults that are reflected in code mutants that
are then given to a model checker. This approach must then produce as many
code mutants as the number of fault configurations to explore. This would not
scale to multiple faults with various widths.

Werner et al. [22] extend the CELTIC simulation-based framework in order
to search for attack paths considering up to two faults. Considered fault models
are inferred from real experiments, as previously proposed by Dureuil et al. [10],
and the whole approach enables to select fault injection parameters. As other
simulation-based approach [14], it is however limited in the number of faults that
can be injected. While simulation is better suited than formal approaches for
analyzing large applications, the fault configurations space grows exponentially
when considering multiple faults with variable width. The convergence towards
successful fault configurations is dependent on the exploration strategy of the
fault configurations space. To the best of our knowledge, there is currently no
simulation-based approach able to consider a large number of such faults.

In summary, we believe that, even if only instruction-skip faults are supported
yet, SAMVA, which is only based on static analysis, is the first tool able to search
for multiple faults with variable width that leads to successful attacks.

6 Conclusion

In this paper, we propose SAMVA, a framework for assessing vulnerabilities of
a program binary against multiple instruction-skip attacks. SAMVA is based on
purely static analysis. We evaluate our approach by determining the required
faults to attack eight versions of PIN code verification programs hardened by
various countermeasures against faults. In our experiments, we explore numerous
fault injection capabilities and the results show the capacities of SAMVA to find
successful attack paths, even for the most hardened implementations. We also
report that our approach scales well, making it an effective way to explore a
wide range of fault configurations in limited time.

Future work will consider the extension of our threat model by integrating
instruction-replay for our fault positioning. Additionally, we plan to link the
attacks found by analysis with fault injection means to conduct physical attacks
in order to validate experimentally the found attacks. This will make the bridge
between our fault analysis and their realizations.



SAMVA: Static Analysis for Multi-fault Attack Paths Determination 21

Acknowledgements. This study is partially funded by the ANR within the frame-
work of the PIA EUR CyberSchool project (ANR-18-EURE-0004) and by Région Bre-
tagne.

References

1. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: FDTC. IEEE Computer
Society (2011)

2. Binkert, N.L., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

4. Bréjon, J.B., Heydemann, K., Encrenaz, E., Meunier, Q., Vu, S.T.: Fault attack
vulnerability assessment of binary code. In: CS2. ACM (2019)

5. Bukasa, S.K., Lashermes, R., Lanet, J.L., Legay, A.: Let’s shock our IoT’s heart:
ARMv7-M under (fault) attacks. In: ARES 2018. ACM (2018)

6. Claudepierre, L., Péneau, P.Y., Hardy, D., Rohou, E.: TRAITOR: a low-cost eval-
uation platform for multifault injection. In: ASSS. ACM (2021)

7. Colombier, B., et al.: Multi-spot laser fault injection setup: new possibilities for
fault injection attacks. In: Grosso, V. (eds.) Smart Card Research and Advanced
Applications. CARDIS 2021. LNCS, vol. 13173. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-97348-3 9

8. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger, J.L.:
Laser-induced single-bit faults in flash memory: instructions corruption on a 32-bit
microcontroller. In: IEEE HOST. IEEE (2019)

9. Dureuil, L., Petiot, G., Potet, M.-L., Le, T.-H., Crohen, A., de Choudens, P.:
FISSC: a fault injection and simulation secure collection. In: Skavhaug, A., Guio-
chet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 3–11. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 1

10. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 7

11. Dutertre, J.-M., Riom, T., Potin, O., Rigaud, J.-B.: Experimental analysis of the
laser-induced instruction skip fault model. In: Askarov, A., Hansen, R.R., Rafnsson,
W. (eds.) NordSec 2019. LNCS, vol. 11875, pp. 221–237. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35055-0 14

12. Given-Wilson, T., Heuser, A., Jafri, N., Legay, A.: An automated and scalable
formal process for detecting fault injection vulnerabilities in binaries. Concurr.
Comput. Pract. Exp. 31(23), e4794 (2019)

13. Heydemann, K., Lalande, J.F., Berthomé, P.: Formally verified software coun-
termeasures for control-flow integrity of smart card C code. Comput. Secur. 85,
202–224 (2019)

14. Hoffmann, M., Schellenberg, F., Paar, C.: ARMORY: fully automated and exhaus-
tive fault simulation on ARM-M binaries. IEEE Trans. Inf. Forensics Secur. 16,
1058–1073 (2021)

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-030-97348-3_9
https://doi.org/10.1007/978-3-030-97348-3_9
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1007/978-3-030-35055-0_14


22 A. Gicquel et al.

15. Menu, A., Dutertre, J.M., Potin, O., Rigaud, J.B., Danger, J.L.: Experimental
analysis of the electromagnetic instruction skip fault model. In: DTIS. IEEE (2020)

16. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: FDTC.
IEEE Computer Society (2013)

17. Péneau, P.Y., Claudepierre, L., Hardy, D., Rohou, E.: NOP-oriented programming:
should we care? In: SILM EuroS&P Workshops. IEEE (2020)

18. Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: A symbolic approach for
evaluation the robustness of secured codes against control flow injections. In: ICST.
IEEE Computer Society (2014)

19. Proy, J., Heydemann, K., Berzati, A., Majéric, F., Cohen, A.: A first ISA-level char-
acterization of EM pulse effects on superscalar microarchitectures: a secure software
perspective. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES. ACM (2019)

20. Rivière, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache of ARMv7-M architectures. In: HOST.
IEEE Computer Society (2015)

21. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy, SP. IEEE Computer
Society (2016)

22. Werner, V., Maingault, L., Potet, M.L.: An end-to-end approach for multi-fault
attack vulnerability assessment. In: FDTC 2020. IEEE (2020)

23. Witteman, M., Oostdijk, M.: Secure application programming in the pres-
ence of side channel attacks (2008). https://www.riscure.com/publication/secure-
application-programming-presence-side-channel-attacks/

24. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11),
712–716 (1971)

25. Yuce, B., Ghalaty, N.F., Santapuri, H., Deshpande, C., Patrick, C., Schaumont, P.:
Software fault resistance is futile: Effective single-glitch attacks. In: FDTC. IEEE
Computer Society (2016)

26. Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded soft-
ware: threats, design, and evaluation. J. Hardw. Syst. Secur. 2(2), 111–130 (2018)

https://www.riscure.com/publication/secure-application-programming-presence-side-channel-attacks/
https://www.riscure.com/publication/secure-application-programming-presence-side-channel-attacks/


Efficient Attack-Surface Exploration
for Electromagnetic Fault Injection

Daniele Antonio Emanuele Carta3 , Vittorio Zaccaria2 ,
Gabriele Quagliarella4, and Maria Chiara Molteni1(B)

1 Security Pattern, Mazzano, Italy
m.molteni@securitypattern.com

2 Politecnico di Milano, Milan, Italy
vittorio.zaccaria@polimi.it

3 STMicroelectronics, Via Camillo Olivetti 2, 20864 Agrate Brianza, Italy
daniele.carta@st.com

4 Nozomi Networks, Via Maria Ghioldi-Schweizer 2, 6850 Mendrisio, Switzerland

gabriele.quagliarella@nozominetworks.com

Abstract. Electromagnetic Fault Injection is a physical attack that
aims to disrupt the operation of hardware circuits to bypass existing
confidentiality and integrity protections. The success probability of the
attack depends, among other things, on many different variables such as
the probe used to inject the pulse, its position, the pulse intensity, and
duration. The number of such parameter combinations and the stochastic
nature of the induced faults make a comprehensive search of the param-
eter space impractical. However, it is of utmost importance for hardware
circuit manufacturers to identify these vulnerability points efficiently and
introduce countermeasures to mitigate them.

This work presents a methodology to efficiently identify the subre-
gion of the attack parameter space that maximizes the occurrence of a
informative fault. The idea of this work consists in applying a multi-
dimensional bisection method and exploiting the equilibrium between a
pulse that is too strong and one that is too weak to produce a disrup-
tion on the circuit’s operation. We show that such a methodology can
outperform existing methods on a concrete, state-of-the-art embedded
multicore platform.

Keywords: Electromagnetic Fault Injection · Parameters Search ·
Optimization · Methodology · Fault Model · System on Chip

1 Introduction

Today, System-on-Chips (SoCs) are increasingly used for sensitive tasks such as
secure payments, critical infrastructure management, and other mission critical
applications characterized by confidentiality and integrity constraints. However,

D. A. E. Carta and G. Quagliarella completed this work while at Security Pattern.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 23–41, 2023.
https://doi.org/10.1007/978-3-031-29497-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_2&domain=pdf
http://orcid.org/0000-0001-7053-3695
http://orcid.org/0000-0001-5685-9795
http://orcid.org/0000-0003-2901-2972
https://doi.org/10.1007/978-3-031-29497-6_2


24 D. A. E. Carta et al.

SoCs are complex architectures that might present a vast attack surface, which is
difficult to protect. For this reason, they are increasingly equipped with Trusted
Execution Environments (TEEs), which are small, isolated processing environ-
ments whose attack surface is more easily under control.

Ensuring a completely safe TEE is not a simple task, as the boomerang attack
has shown [12]; However, even if the attack surface could be reduced to zero, fault
injection (FI) could still be used to force the system to work outside its nominal
conditions and expose otherwise absent vulnerabilities, perhaps justifying such
an increase in research efforts.

Fault injection is all about disrupting the nominal operation of a circuit by
invalidating design-time assumptions around the environment. A successful injec-
tion could be used to trigger instruction execution skips or corruption in working
data with obvious consequences1; In fact, one of the most defining aspects of FI
is the need to have physical access to the target2. Injection can be performed
in several ways that vary in terms of equipment cost and robustness, e.g. alter-
ing the working temperature of the system, the clock signal, the power supply,
and/or the system internal signals. The latter effect could be induced through
either microprobing, a coherent light source (if the circuit has been decapped),
or by injecting electromagnetic pulses (EMFI).

EMFI is particularly interesting because it represents a potentially cheaper
alternative than other methods (see the ChipShouter project [17]). However, its
cost vs. performance trade-off is characterized by less precise control over the
fault injection position (with respect to optical or microprobing attacks) and
the significant range of equipment configurations that can be used to perform
it, such as the electromagnetic probe position, the voltage, the intensity, etc.,
which we call the attack surface.

This work stems from our efforts to overcome what we believe are the two
limits of conventional approaches, i.e.,

– Using trial and error tests with the risk of leaving out interesting exploitable
points [20], and

– Targeting the identification of a single (X,Y ) faulty point by adopting some
sort of occurrence ratio with the side effect of reducing fault differentiation [8].

This work proposes a target-agnostic methodology to efficiently search the
EMFI attack surface for potentially exploitable configurations. We overcome
the inherent limits of an exhaustive search (which is unfeasible) and a random
search (which is suboptimal) by addressing, through a multidimensional bisec-
tion method, the probe position problem and the pulse configuration problem.

This paper is structured as follows. Section 2 introduces the state-of-the-
art EMFI attacks to facilitate understanding of the motivation and problem
statement of this work. Section 3 introduces the actual methodology, which is
then validated by appropriate experimentation in Sect. 4. Section 5 concludes
the paper with an outline of possible future work.
1 Being able to skip a branch instruction could, for example, bypass security checks.
2 This is not a requirement as some fault-injection attacks might work even remotely

(e.g., clkscrew [22] and rowhammer).



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 25

2 State of the Art

Research efforts on EMFI have focused on understanding its effects (inference of
the fault model), improving fault success rates, and building/validating attacks.
The last two challenges are based on the tooling to perform the EMFI and the
development of methodologies that integrate it with the fault model, a particular
methodological issue being the exploration of the attack surface. When dealing
with EMFI against programmable microcontrollers (MCU), we can identify a
broad division between practical approaches, targeting FPGA or ASIC SoCs,
and methodological contributions, summarized in Table 1.

Table 1. Summary of the state-of-the-art for EMFI .

Type Year Work Target

MCU 2013 Moro et al. [16] ARM Cortex-M3

2017 Ordas et al. [19] Xilinx Spartan 3-1000
ARM Cortex-M4

2019 Menu et al. [15] Atmel SAM3X8E
ARM Cortex-M3

Dumont et al. [4] Custom designed

2021 Dutertre et al. [6] ATmega328P

SoC 2014 Hummel [10] ARM Cortex-A8

2017 Ang et al. [3] Cisco 8861 IP Phone
Broadcom BCM11123 SoC

2019 Proy et al. [20] ARM Cortex-A9

Trouchkine et al. [23] ARM BCM2837x86 Intel
Core i3-6100T

2020 Gaine et al. [8] ARM Cortex-A53

2022 Kuhnapfel et al. [11] x86 AMD Ryzen 5 2600

Methods 2013 Omarouayache et al. [18] Probes

Carpi et al. [2] Smartcards

2019 Madau et al. [13] ARM Cortex-M3 ARM
Cortex-M4

Maldini et al. [14] ARM Cortex-M4

2022 Gaine et al. [9] Probes

2.1 EMFI on MCUs and FPGAs

FPGA technology, due to its lower clock frequency and hardware complexity,
was a great starting point for white-box analysis of EMFI effects. For example,
Moro et al. [16] have built an RTL model that predicted timing constraint vio-
lations on flash memory bus transfers. Their experiments (on a 56 MHz FPGA



26 D. A. E. Carta et al.

target) confirmed that an attacker could corrupt instructions fetched from mem-
ory. Similarly, Ordas et al. [19] have introduced a more refined model, which takes
into account the corruption of internal registers’ (flip-flop) data, essentially mak-
ing it independent of the clock frequency. With a similar white-box approach,
Menu et al. [15] derive a model that explains the corruption of data fetches
from flash memory. Other researchers [4] have provided evidence and theoretical
justification for a successful EMFI with pulses that are shorter than the target
clock cycle. For example, Dutertre et al. [6] have introduced an instruction skip
model that shows 100% repeatability on a single precise instruction that could
be extended to deal with more than one instruction in different moments.

2.2 EMFI on ASIC SoCs

Commercial ASIC-based SoCs (generally based on application-class MPUs)
introduce a whole new level of complexity in fault modeling. Researchers can-
not apply white-box approaches anymore, as they do not control the underlying
technology, and have to work with clock frequencies higher than their FPGA
counterparts which makes synchronization difficult. Hummel et al. [10] is one of
the first approaches in this field to successfully deal with a precise synchroniza-
tion between raised exceptions and pulse timing. Ang et al. [3] try to overcome
the synchronization problem by employing a second-order EMFI attack, which
consists of attacking a secondary component to affect the primary target (by
targeting an external DRAM running at a 40 MHz clock to disrupt the execu-
tion of the faster processor). This and other approaches, such as Kuhnapfel et
al. [11], are characterized by relatively low-cost equipment ranging from $350 to
$7000. Other works resorted to trial-and-error approaches to explain faults at
higher levels. Proy et al. [20] (inspired by Dereuil et al. [5]) are among the first
to define a CPU fault model based on the Instruction Set Architecture, while
Trouchkine et al. [23] try to explain faults using architectural features such as
register, pipeline, MMU, and caches. Finally, Gaine et al. [8] present an interest-
ing hybrid approach consisting of privilege escalation in a Linux environment;
here the target is a 1.2 GHz mobile SoC for which they have a white-box view.
They are the first to introduce the concept of crash susceptibility, which we will
exploit in the remainder of this work. However, they were unable to carry out
the planned attack in a real-world scenario due to serious timing-synchronization
issues with the fast target.

2.3 Existing Methodologies

Methodological approaches are more interested in maximizing the amount of
information that can be obtained from an experimentation campaign than in
a successful exploit. In fact, there is an overall underrated aspect of fault
injection, that is, how and where to reliably reproduce a fault in the first
place. The probe reliability and selection problem, originally addressed by
Omarouayache et al. [18] is less difficult today than it was 10 years ago. Toolkit
producers such as NewAE, eShard, Riscure and other vendors commercialize



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 27

state-of-the-art probes with their offerings (whose accuracy obviously depends
on the cost). However, identification and exploration of the configuration setup
for fault injection is still in its infancy, although initial steps were proposed in
2013 by Carpi et al. [2] in the field of Voltage Fault Injection. They address the
problem of identifying the subspace of the duration and intensity values of pulses
that could produce an actual fault using a two-step process, that is, trying to
optimize the parameters separately. Maldini et al. [14] bring this work to EMFI
through an evolutionary algorithm that tries to find the optimal geometric and
pulse intensity values that maximize fault occurrence ratio while keeping some
of the configuration fixed (pulse duration). Madau et al. [13] offer an alterna-
tive methodology to locate the best areas to obtain unexpected behaviors on
the surface of the chip; Each surface point, starting from a predefined grid, is
rated using a susceptibility criterion that requires measuring electromagnetic
emissions. In its testing environment, the criterion has efficiently led to the iden-
tification of 50% of the surface that produces a covering of 80% of the faulty
surface. However, the susceptibility criterion requires expensive equipment to
measure electromagnetic emissions. Furthermore, the criterion test is performed
with a fixed pulse intensity and duration, while different durations and intensities
could provide different results.

The current state of affairs is not satisfactory for several reasons. First of all,
each of the above approaches has a set of setup variables which are fixed to some
value perhaps identified through trial and error. This is done, of course, to limit
the complexity of the analysis of the attack surface, but could leave some inter-
esting exploitable points out of scope. Our work aims to provide a methodology
that starts with instruments and setup capabilities and leaves nothing behind
without an explanation.

Second, most of the existing approaches adopt some sort of occurrence ratio
as a maximization objective to find a single (X,Y ) chip surface coordinate.
Instead, we aim to derive multiple points of the attack surface to enhance fault
differentiation in the hope that non-frequent faults are more informative.

Third, as suggested by other authors [2], there are better strategies than ran-
dom search [21] to improve both efficiency and efficacy. In fact, probe movement
associated with random search introduces too much error and should be reduced
as much as possible. However, so far, there has been no clear indication on how
probe coordinates should be explored.

3 Methodology

We assume a controller/target evaluation setup such as the one represented
in Fig. 1. The controller is responsible for guiding the injection probe on the
target by modifying the coordinates (X,Y ) of the probe, the intensity V and
the duration d of the square pulse. Each injection of faults is modeled as a
function EMFI(X,Y, V, d) with three possible outcomes, similarly to [14]:

– OK: the target output is as expected.
– KO: the target locks up, freezes, resets, or does not produce a result.



28 D. A. E. Carta et al.

Fig. 1. Flowchart of evaluating the outcome of a single EMFI. A FAULT may be
exploitable or not depending on the path that lead to it. Exploitable FAULTs follow
the dotted arrow path, and Non-exploitable FAULTs follow the dashed arrow path.

– FAULT: anything else; this is the most rare behavior and is divided further
into:

• Informative: the FAULT that does not prevent the code under test from
reaching its end, but does not show expected values.

• Noninformative: any other FAULT such as processor exceptions of any kind.

Since EMFI is a probabilistic attack, we will need to work with statis-
tics associated with n fault injections, which will provide, for each outcome
o ∈ {OK, KO, FAULT}, its probability Po(X,Y, V, d, n). The problem is to efficiently
identify the subregion of the attack space X × Y × V × d that maximizes prob-
ability PFAULT for each coordinate that meets a susceptibility criterion, without
resorting to a random search.

The proposed methodology is based on the idea that PFAULT is non-negligible
where POK and PKO balance out. In fact, we rely on the idea that a pulse “too weak”
(POK � PKO) is not sufficient to cause the target fault. At the same time, a pulse
that is “too strong” (PKO � POK) may disturb execution too much. Our strategy
is carried out in two steps: 1) reducing the physical surface of the target (X,Y ) to
only points susceptible to faults (susceptible surface search), and 2) identifying
the intensity V and duration d of the pulse through a multidimensional bisection
algorithm [1] (coordinate search). The methodology, shown in Fig. 2, is agnostic
to the target architecture and relies only on the observability of an outcome,
which could be a led lighting up or a log message from a debug console. The two
methodological steps are outlined in the following two subsections.



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 29

Fig. 2. Flowchart of the proposed search methodology.

3.1 Susceptible Surface Search

The search for the susceptible area (Fig. 2, A) consists of first defining a grid
G of coordinates and the maximum intensity and duration of the pulse. This is
done by measuring the spatial dimensions of the target Xmin, Ymin,Xmax, Ymax,
choosing a grid step according to the precision of the probe positioning mech-
anism and defining the maximum value of intensity Vmax and duration dmax

exactly below the values that risk damaging the target.
Then, evaluate

EMFI(Xi, Yj , Vmax, dmax)

on each point of the grid G and for a number of experiments n̄ to derive the
subset of “susceptible” surface points (S), i.e., those points that show at least
some KO or FAULT result:

S(G) = {(X̄, Ȳ )|(X̄, Ȳ ) ∈ G ∧
PKO(X̄, Ȳ , Vmax, dmax, n̄) + PFAULT(X̄, Ȳ , Vmax, dmax, n̄) > 0}

If no susceptible points are found, run the procedure again on a grid with a
smaller step, higher intensity, and/or duration of the pulse.



30 D. A. E. Carta et al.

3.2 Coordinate Search

This phase of the methodology (Fig. 2, B) is based on the idea that PFAULT is non-
negligible where POK and PKO balance out. In practice, we formalize the coordinate
search problem by finding the root of the following equation for susceptible points
S(G) and a fixed number of experiments n̄:

E(V, d) = {PKO(X̄, Ȳ , V, d, n̄) − POK(X̄, Ȳ , V, d, n̄) � 0, (X̄, Ȳ ) ∈ S(G)} (1)

Note that the above equation potentially defines a line in the (V, d) space
that is the solution of interest. To optimally search for this line, we assume that
the function E is smooth, that is, small changes in (V, d) bring small changes to
E and that it increases monotonically with V and d. These conditions allow for
the use of a proper adaptation of the multidimensional bisection3 Algorithm [1],
which will allow the identification of rectangular regions that contain the target
line (V, d). Each such rectangular region is called “bracketing rectangle” and is
such that at least two of its vertices i, j trigger a sign difference for E greater
than 2ε, ε ≥ 0, where ε is a control parameter of the bisection method4:

E(Vi, di) < −ε ∧ E(Vj , dj) > ε (2)

The algorithm starts by considering the coordinates of a rectangular region
of the space (see Fig. 3)

R = {(Vmin, dmin), (Vmax, dmin), (Vmax, dmax), (Vmin, dmax)}

If the rectangle is bracketing, then it is divided into 4 equal subrectangles;
the search is then repeated for those subrectangles that are bracketing until
a maximum number of iterations is reached or there are no more bracketing
rectangles.

The maximum number of iterations Imax is given by the discrete nature of
the parameters V and d:

Imax = min

(⌊
log2

(
Vmax − Vmin

Vstep

)⌋
,

⌊
log2

(
dmax − dmin

dstep

)⌋)
(3)

where Vstep and dstep are determined by the precision of the equipment / setup.
In the worst-case scenario (that is, a function with roots right above the

bottom left perimeter of the initial bracketing rectangle) and at iteration I, the

3 Conditions must be interpreted as sufficient as the bisection algorithm we are refer-
ring to can be applied to non-monotone functions as well by using a neighbor search.

4 It is an indirect stop criterion for the bisection method. The higher ε, the lower the
bar will be set to recognize the rectangles as bracketing rectangles, and thus continue
the search.



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 31

Fig. 3. Example iterations (0 to 3) of the Bi-dimensional bisection with ε = 0. Vertices
with E > 0 are highlighted in orange, those with E < 0 are highlighted in blue, while
bracketing rectangles are highlighted in red. In iteration 1 the top right rectangle is
not bracketing since it has no vertex V with E(V, d) < 0. (Color figure online)
Note that measurement units for X and Y axis are different (Volts vs nanoseconds).

bisection algorithm must evaluate 2I+2 − 3 vertices n̄ times; thus, we obtain the
following bound for the number of experiments N :

N ≤ 4n̄ +

(
Imax∑
I=1

2I+2 − 3

)
n̄ (4)

4 Experimental Validation

This section presents an experimental validation of the methodology presented
in the previous section. We will introduce the setup of the injection platform and
the target, as well as a qualitative and quantitative evaluation of the efficacy in
identifying informative faults.

The hardware and software components of our setup are built around the
ChipShouter platform for a comprehensive budget of less than 5Ke (excluding
oscilloscope) and a standard laptop used to control the following parameters (see
Fig. 4):

– Duration of d pulse injection to as low as 10 ns, through an Artix-7 35T Arty
at 100 MHz

– (X,Y ) position of the fault injection probe, through a 3d printer with a 0.1
mm resolution

– Intensity V of the pulse (directly on the ChipShouter).

The setting allows us to produce pulses with d ranging from 10 to 600 ns with
a 10 ns resolution and V ranging from 150 to 500 V, with a 1 V resolution. To
control the platform, we used the following software tools:

– Raiden [7], an open source FPGA project to handle the delay between the
target and the pulse triggers. It also controls the duration of the trigger,
allowing the pulse to last a fixed number of clock cycles. Finally, it resets the
target to perform new experiments.



32 D. A. E. Carta et al.

Fig. 4. Chipshouter (A), Oscilloscope (B), Target (C), 3D printer (D), Voltage trans-
lator (E) and FPGA (F).

– OctoPrint, a 3D-printer control application.
– A Python app that orchestrates Raiden, Octoprint, and the ChipShouter

APIs to configure and collect the target output through a serial interface.

The target is an ARMv7 dual core, dual issue SoC that mounts a Cortex A7
with eight pipeline stages with data and instruction caches disabled. It runs at
600 MHz and does not perform any speculative execution. The chip has not been
decapped, and we do not have information on the internal layout. The target
has a serial port that is used by the central workstation to read the output of
the experiments performed on it. The chosen target offers a standard procedure
for building and deploying everything necessary for a robust and secure boot
chain. We position our victim code in the First Stage Boot Loader (FSBL) of
Trusted Firmware-A. Putting the victim code at this point in the boot-chain
simplifies the collection and interpretation of the results; in particular, the code
runs on a single core and allows us to minimize the time window for testing.
We focus on the first core because it is the most interesting target for attackers;



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 33

indeed, it is responsible for the execution of security sensitive operations, such as
authenticating boot-loader images. We expect that enabling the cache, MMU,
and second core, along with other unutilized components, would increase the
attack surface and the complexity of the analysis.

The victim code has a standard template; the initial part of the template
triggers the pulse through a GPIO pin:

;Pulse trigger
bl set_gpio
mov r0, #89 ; 0x59
bl clk_enable
ldr r3, [pc, #124] ; address for gpio high
movs r2, #128 ; 0x80
str r2, [r3, #0] ; set gpio high

It then initializes each register from r0 to r12 to a unique value
(r0=0x41414141, r1=0x42424242 ... r12=0x53535353) to recognize any unex-
pected/random change in its content:

;Register initialisation
mov.w r0, #1094795585 ; 0x41414141
mov.w r1, #1111638594 ; 0x42424242
...
mov.w ip, #1397969747 ; 0x53535353

The actual victim code (which belongs to a class of codes introduced in
the following) is then executed, followed by a print, on the serial port, of the
architectural state.

The code has a size limitation because it has to fit into the internal SRAM,
according to the FSBL platform guidelines. The size of the FSBL image allows
enough instructions to hit after accounting for the actual delay between the
GPIO high instruction and the actual arrival of the electromagnetic pulse.

We designed the victim code snippets to stress the three main microarchi-
tectural blocks of the processor: the arithmetic units, the memory subsystem
(load/store unit), and the branching unit. The snippets have been designed to
allow one to hit the same instruction independently of the time of arrival of the
pulse. For this reason, they correspond to the repetition of the same instruction.
In particular, we used:

– A sequence of NOPs; since NOPs do not change the architectural state, any
observed change in the state itself could be attributed to an effect of EMFI.

– A sequence of ADDs which increment register r0 by one. Since NOPs could be
optimized away by the core micro-architecture, we also try with instructions
that update just a small portion of the architectural state and cannot be
disregarded.

– A sequence of LDRs instructions to characterize the potential effects on the
memory interface.



34 D. A. E. Carta et al.

– A single bne instruction that jumps to itself. This snippet (called Loop in
the following) does not produce any output, and its OK and KO behaviors are
indistinguishable.

4.1 Trigger and Timing Synchronization

We achieve synchronization between the pulse and the victim code through a
GPIO pin that is controlled directly by the victim. Figure 5 shows the view,
captured via oscilloscope, of the timing of the signals involved.

First, the victim sets the GPIO to high (Fig. 5,A); in turn, this triggers
the ChipShouter (Fig. 5,B), and finally the actual electromagnetic pulse is pro-
duced (Fig. 5,C). (Figure 5,D) is the actual amount of time that occurs between
the victim’s trigger instruction and the actual impact on the execution of the
instructions (Fig. 5, F). The ChipShouter delay is less than 100 ns (Fig. 5, E).

Fig. 5. Timing synchronization scheme from the oscilloscope perspective. The horizon-
tal steps of the grid represent a period of 200 ns.

4.2 Surface Search

The surface mapping is performed using a 1 mm grid step. Given that the edge of
the square chip surface is 13 mm, the resulting grid G corresponds to 169 points.
According to the previous description, we used a Vmax at 500 V, a duration of
dmax = 600 ns (which is the maximum available on the ChipShouter as of 2022)
and a number of experiments per point n̄ = 8.



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 35

First, we performed a surface search using the NOP victim code. The overall
resulting dimension of the susceptible sub-grid S(G) is 42, that is, 25.8% of the
entire grid (see Fig. 6a). In this phase, we observed very few FAULTs, and the
majority of experiments were KO. The victim code ADD behaves similarly (see
Fig. 6b). Interestingly, the FAULTs are located on the perimeter of the KO subgrid
and are essentially exceptions. We also found a case where a faulty behavior
did not trigger an exception, i.e., the value of a register in the computation was
modified and the computation reached the end. The victim code LDR behaves
similarly (see Fig. 6c) to the other two with exceptions classified as link register
abort (LRABT), and Data Abort. The Loop victim code is more difficult to char-
acterize, as one can only observe either exceptions or sudden control changes
that force the CPU out of the loop. Even in this case, we observed the FAULTs
on the perimeter of the previous susceptible surface.

Fig. 6. Surface search for different code snippets executions. Each point coordinate is
evaluated 8 times at max intensity and duration of the pulse.

4.3 Coordinate Search

We sampled a few points within the subgrid S(G) by using ε = 0, thus forcing the
maximum iterations of the bisection method to I = 5. The algorithm converged
towards PFAULT ranging from 30% to 80%. Once the bisection converged, some
coordinates of S(G) showed very different (V, d) profiles, which appeared even
before reaching the maximum I, as Fig. 7 shows. In particular, some points
produced a high probability of fault in the upper right quadrant (Fig. 7a), while
some others were characterized by a very low maximum probability in the lower
left quadrant (Fig. 7b), which incidentally goes against some results reported
earlier [8]. We do not have conclusive explanations for this conflicting behavior,
which, we think, could be better explained with a decapped chip.

Figure 8a shows all coordinates tested with the maximum PFAULT obtained; By
comparison, Fig. 8b shows the results obtained when both S(G) and bisection
are replaced by random sampling. Given the striking difference in precision, we



36 D. A. E. Carta et al.

Fig. 7. Coordinate search. Each point evaluation corresponds to 10 experiments. The
color of the round points represents the E value (range [−1, +1]) for the configuration.
The color of the stars represents max PFAULT achieved for the configuration.

Fig. 8. Validation tests on susceptibility criterion.

further investigated the efficacy of the random search at some coordinates in
S(G) comparing it with the bisection method (Figs. 9 and 10), using as many
random experiments as the amount needed for the four bisection iterations. The
proposed bisection method obtained a number of faults that is almost triple the
random one.



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 37

Fig. 9. Validation tests on coordinate (4,8). 960 experiments per Random and Bisection
search.

On a selected subset of coordinates, we evaluated the importance of the
threshold ε in Eq. 2. We expected that the lower the threshold, the closer we get
to the roots of the E function in Eq. 1, and potentially the higher the probability
of a fault. Figure 11 shows a perceived almost linear relationship between the two.

4.4 Testing a Fault Model

The previous methodology allowed us to identify some potential coordinates of
interest to be further investigated. Although the following is outside the scope
of the methodology, we report some results of this additional investigation. In
particular, we focus on the ADD victim code. Recall that the ADD victim code is
composed of an unrolled loop of ADD instructions that increment the r0 register
by a deterministic amount. Inspecting some of the sensible coordinates, we found
that the final value of the r0 register was off by a small margin relative to the
expected value, indicating a potential instruction skip. These coordinates are
characterized by a low PFAULT (thus potentially discarded by other approaches);
one of them, in particular, shows 166 total FAULTs, of which 154 are noninfor-
mative, 5 reflect the skip of two instructions, and 7 the skip of a single one.
We tried, in the same coordinates, a different snippet (SUB) and we obtained a
similar behavior.

It is well known that instruction skips, when applied to branch instructions,
might be the most dangerous exploitable effect. In fact, you could skip complete
security checks by skipping a branch. We thus tried a snippet consisting of a
branch jumping on itself; after 59 experiments using random values over the
(V, d) domain, we have obtained the result that the loop was effectively broken
(for 455 V and 200 ns of duration). We were able to reproduce this fault with
a probability of 2.2%. Even if these results might seem promising, we must
underline that it is extremely difficult to target a single branch instruction in a
realistic setting (i.e. one that does not jump to itself all the time).



38 D. A. E. Carta et al.

Fig. 10. Comparison between bisection and random search upon a fixed coordinate.
Number of total Faults per experiments performed. Upon experiments intervals [0, 40],
[40, 90], [90, 220], [220, 470] and [470, 960] execute iterations from 0 to 4.

Fig. 11. Fault probability relationship with achieved |E|

What is thus the effectiveness of the equipment in targeting a single instruc-
tion on a 600 MHZ processor? To answer this question, we relied on a particular
victim snippet of a single ADD and several NOPs surrounding it. We then observed
the address reported by the LRABT exceptions that we have induced by vary-
ing the timing offset of the pulse (see Fig. 12). Some experiments allowed us to
determine (by linear regression on the reported addresses) what was the most
likely offset to skip the victim ADD. However, even concentrating on that offset,
we have found that on average we were producing exceptions both before and
after ADD and never ADD itself. Our conclusion is that the current equipment does
not provide adequate accuracy when targeting a single instruction.



Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 39

Fig. 12. Varying the timing offset allows to target a range of instruction addresses.
The predicted address for the pulse offset 4284 ns was the victim ADD but we were not
able to make it skip, almost all experiments impacting either before or after it.

5 Conclusion and Future Work

In this work, we presented a general methodology to identify possible EMFI
attack coordinates in a large parameter space. The methodology does not dis-
card any point that could produce a fault (i.e., it has high coverage) and has
been proven to reduce the search space in a specific use case by five times. In
particular, on configurations that balance PKO and POK, we were able to produce
faults with an average probability of 26.7% in all susceptible coordinates, some
coordinates reaching 97.6%. The proposed bisection method has found a number
of faults that is 3 times higher than a random search on selected coordinates and
corroborates our idea that fault points lie at the equilibrium between OK and KO
points. The present approach is slower than [14], but is applicable to a complex,
high performance chip not intended for attack purposes. In contrast to [8], we
have found that the most sensitive spots did not correspond to high occurrence
ratios or informative faults. We acknowledge that there are still some additional
parameters to be thoroughly examined, such as the probe’s angle, type, size, and
winding, which were fixed to conventional state-of-the-art values in the present
study; we plan to address this issue in future work. Furthermore, the number of
experiments was chosen taking into account the overall time budget assigned to
the analysis, but there may be different methods. On a different note, we plan
to address branch and load/store instructions more thoroughly. Lastly, the con-
clusions that were drawn from the analysis carried out on a single target board
may be limited, yet the results obtained on a complex board are indicative of
the potential of the methodology.



40 D. A. E. Carta et al.

Acknowledgments. Funded by the European Union under grant agreement no.
101070008. Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible for them.

References

1. Bachrathy, D., Stépán, G.: Bisection method in higher dimensions and the effi-
ciency number. Periodica polytechnica. Mech. Eng. 56, 81–86 (2012). https://doi.
org/10.3311/pp.me.2012-2.01

2. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

3. Cui, A., Housley, R.: BADFET: defeating modern secure boot using Second-Order
pulsed electromagnetic fault injection. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Association, Vancouver, BC (2017). https://
www.usenix.org/conference/woot17/workshop-program/presentation/cui

4. Dumont, M., Lisart, M., Maurine, P.: Modeling and simulating electromagnetic
fault injection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(4), 680–
693 (2021). https://doi.org/10.1109/TCAD.2020.3003287

5. Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédière, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107–124.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2 7

6. Dutertre, J.M., Menu, A., Potin, O., Rigaud, J.B., Danger, J.L.: Experimental
analysis of the electromagnetic instruction skip fault model and consequences
for software countermeasures. Microelectron. Reliability 121, 114133 (2021).
https://doi.org/10.1016/j.microrel.2021.114133. https://www.sciencedirect.com/
science/article/pii/S0026271421000998

7. Wypych, G., Laurie, A.: Raiden github repository. https://github.com/IBM/raiden
(2020)

8. Gaine, C., Aboulkassimi, D., Pontié, S., Nikolovski, J.P., Dutertre, J.M.: Elec-
tromagnetic fault injection as a new forensic approach for SoCs. In: 2020 IEEE
International Workshop on Information Forensics and Security (WIFS), pp. 1–6
(2020). https://doi.org/10.1109/WIFS49906.2020.9360902

9. Gaine, C., Nikolovski, J.P., Aboulkassimi, D., Dutertre, J.M.: New probe design for
hardware characterization by electromagnetic fault injection. In: 2022 International
Symposium on Electromagnetic Compatibility - EMC Europe, pp. 299–304 (2022).
https://doi.org/10.1109/EMCEurope51680.2022.9901104

10. Hummel, T.: Exploring effects of electromagnetic fault injection on a 32-bit high
speed embedded device microprocessor, Master’s thesis, University of Twente
(2014)

11. Kühnapfel, N., Buhren, R., Jacob, H.N., Krachenfels, T., Werling, C., Seifert, J.P.:
EM-fault it yourself: Building a replicable EMFI setup for desktop and server
hardware. arXiv preprint arXiv:2209.09835 (2022)

https://doi.org/10.3311/pp.me.2012-2.01
https://doi.org/10.3311/pp.me.2012-2.01
https://doi.org/10.1007/978-3-319-08302-5_16
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://doi.org/10.1109/TCAD.2020.3003287
https://doi.org/10.1007/978-3-319-31271-2_7
https://doi.org/10.1016/j.microrel.2021.114133
https://www.sciencedirect.com/science/article/pii/S0026271421000998
https://www.sciencedirect.com/science/article/pii/S0026271421000998
https://github.com/IBM/raiden
https://doi.org/10.1109/WIFS49906.2020.9360902
https://doi.org/10.1109/EMCEurope51680.2022.9901104
http://arxiv.org/abs/2209.09835


Efficient Attack-Surface Exploration for Electromagnetic Fault Injection 41

12. Machiry, A., et al.: BOOMERANG: exploiting the semantic gap in trusted execu-
tion environments. In: NDSS (2017)

13. Madau, M.: A methodology to localise EMFI areas on Microcontrollers, Theses,
Université Montpellier (2019). https://tel.archives-ouvertes.fr/tel-02478873

14. Maldini, A., Samwel, N., Picek, S., Batina, L.: Optimizing electromagnetic fault
injection with genetic algorithms. In: Breier, J., Hou, X., Bhasin, S. (eds.) Auto-
mated Methods in Cryptographic Fault Analysis, pp. 281–300. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11333-9 13

15. Menu, A., Bhasin, S., Dutertre, J.M., Rigaud, J.B., Danger, J.L.: Precise spatio-
temporal electromagnetic fault injections on data transfers. In: 2019 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1–8. IEEE (2019)

16. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88 (2013).
https://doi.org/10.1109/FDTC.2013.9

17. NewAE: Chipshouter github repository. https://github.com/newaetech/ChipSHO
UTER (2019)

18. Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic
Microprobe design for EM fault attack. In: EMC EUROPE: Electromagnetic Com-
patibility. EMC EUROPE, Bruges, Belgium (2013). https://hal.archives-ouvertes.
fr/hal-01893856

19. Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection: the
curse of flip-flops. J. Cryptogr. Eng. 7(3), 183–197 (2016). https://doi.org/10.1007/
s13389-016-0128-3

20. Proy, J., Heydemann, K., Berzati, A., Majéric, F., Cohen, A.: A first ISA-level char-
acterization of em pulse effects on superscalar microarchitectures: a secure software
perspective. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, pp. 1–10 (2019)

21. Raelize: Qualcomm IPQ40xx: Breaking into QSEE using fault injection. https://
raelize.com/blog/qualcomm-ipq40xx-breaking-into-qsee-using-fault-injection
(2021)

22. Tang, A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: exposing the perils of
{Security-Oblivious} energy management. In: 26th USENIX Security Symposium
(USENIX Security 17), pp. 1057–1074 (2017)

23. Trouchkine, T., Bouffard, G., Clédière, J.: Fault injection characterization on mod-
ern CPUs. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024,
pp. 123–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4 8

https://tel.archives-ouvertes.fr/tel-02478873
https://doi.org/10.1007/978-3-030-11333-9_13
https://doi.org/10.1109/FDTC.2013.9
https://github.com/newaetech/ChipSHOUTER
https://github.com/newaetech/ChipSHOUTER
https://hal.archives-ouvertes.fr/hal-01893856
https://hal.archives-ouvertes.fr/hal-01893856
https://doi.org/10.1007/s13389-016-0128-3
https://doi.org/10.1007/s13389-016-0128-3
https://raelize.com/blog/qualcomm-ipq40xx-breaking-into-qsee-using-fault-injection
https://raelize.com/blog/qualcomm-ipq40xx-breaking-into-qsee-using-fault-injection
https://doi.org/10.1007/978-3-030-41702-4_8


A CCFI Verification Scheme Based
on the RISC-V Trace Encoder

Anthony Zgheib(B), Olivier Potin, Jean-Baptiste Rigaud,
and Jean-Max Dutertre

Mines Saint-Etienne, CEA, Leti, Centre CMP, 13541 Gardanne, France
{zgheib,olivier.potin,rigaud,dutertre}@emse.fr

Abstract. Control-Flow Integrity (CFI) is used to check at runtime
that a program’s execution path follows its corresponding Control-Flow
Graph (CFG) and is not altered by software or physical attacks. In addi-
tion to the CFI’s features, the Code and Control-Flow Integrity (CCFI)
verifies the integrity of the executed program code. This paper presents
a CCFI verification system for programs executed on RISC-V cores. Our
solution is built upon the RISC-V Trace Encoder (TE) that provides
information about the execution path of the user’s program. An evolu-
tion of the TE specifications and additional logic have made it possible
to monitor the integrity of a program control flow and of all the executed
instructions. We implemented this approach on a RISC-V core and simu-
lated its efficiency against Fault Injection Attacks. Its average hardware
area and memory overheads are equal to 27.9% and 6.25% respectively.
Compared to existing CCFI solutions, our methodology does not modify
the user code, the RISC-V compiler or the core’s pipeline.

Keywords: RISC-V · Trace Encoder · CFI · CCFI · FIA

1 Introduction

Fault Injection Attacks (FIA) are effective threats that can alter the intended
behavior of a program running on a processor. The most common FIA techniques
are described in [3]. These attacks could lead to skipping or corrupting a vulner-
able instruction in the user application code, in order to bypass system security
features [19] (e.g. bypassing a PIN code [12]). Against these attacks, Control-Flow
Integrity (CFI) [1] verification schemes are used to verify that a program is cor-
rectly executed during runtime. It checks that its execution follows a path known to
be correct in the application Control Flow Graph (CFG). ThisCFG can be drawn
by statically analyzing the source code of the program (if all destinations can be
computed during the compilation process). Note that indirect jump destinations
in a program may not be predicted at compilation time, in this case the generation
of the graph is difficult. The CFG represents the valid control flow changes in a
normal program execution [8]. However, attacks made on instructions/operations
within the user code are not always detected by CFI solutions, such as changing an
addition of two values into a subtraction (if no violation of the CFG is induced).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 42–61, 2023.
https://doi.org/10.1007/978-3-031-29497-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_3


A CCFI Verification Scheme Based on the RISC-V Trace Encoder 43

Code and Control-Flow Integrity (CCFI) countermeasures are designed to verify
at runtime, in addition to CFI, the integrity of the executed user code. With this
check, the entire code is protected against FIA not only the discontinuity instruc-
tions (monitored by CFI).

Contributions. Our work contributes to the CCFI state-of-the-art by adding a
solution that does not require any code or compiler modification. In addition, no
core nor Instruction Set Architecture (ISA) extension are made. Our solution
consists in adding an additional verification system to the RISC-V core [2].
It detects software or physical attacks that derive the program CFG from its
normal behavior. This graph is formed from all known destinations of the binary
code. Therefore, our solution does not cover forward edge attacks (faults on
indirect jump destinations that are not precisely known at binary level) nor
attacks injected on data (register or memory). Our verification system is based
on the RISC-V Trace Encoder (TE) [18]. To the best of our knowledge, this is
the first solution that uses the RISC-V TE for CCFI verification.

Organization. Our paper is divided as follows: Sect. 2 provides insights on
existing CCFI solutions. Sections 3 and 4 describe our CCFI methodology and
countermeasure. Section 5 shows its effectiveness against simulated FIA. Sec-
tions 6 and 7 report the hardware requirements and the discussion about our
solution. Finally, we conclude our paper in the last Section.

2 Related Work

In this section, the most relevant CCFI verification solutions are presented.
Some countermeasures ensure both the integrity and confidentiality of the user
code by encrypting the code instructions and deciphering it at runtime. From
this category, we can cite SOFIA [7]. It is a hardware-based security architecture
that protects the software integrity, performs CFI, prevents execution of tam-
pered code and enforces copyright protection. This countermeasure is added by
extending the processor. In another perspective, other countermeasures modify
the user code and compiler to insert dedicated CCFI instructions. Werner et
al. [21] designed SCFP, a solution that guarantees the confidentiality of a soft-
ware IP and its authentic execution on a microcontroller. It covers code reuse,
code injection and fault attacks on the code and control flow. The SCI-FI [4]
solution belongs also to this category. It is designed for control signal, code
and CFI verification. It protects against FIA. The verification process is trig-
gered by dedicated and customized instructions added by extending the RISC-V
ISA. Another approach is to connect external blocks to the processor without
extending the ISA to verify the program CCFI like the solution presented in
CCFI-Cache [6] and ATRIUM [22]. Danger et al., in [6], developed a hardware
based solution that verifies code and CFG, ensures protection against cyber and
physical attacks. It covers backward edges and forward edges in certain cases—
when the indirect jump targets a destination address not pointing to a begin-
ning of a Basic Block (BB), detected by checking the StartBB label—, code and



44 A. Zgheib et al.

fault injection. ATRIUM is a runtime attestation scheme targeting ”bare metal”
embedded systems software that works in parallel to the processor. It ensures
CFI and instruction integrity. This solution covers code injection, code reuse,
hardware fault attacks on instructions and TOCTOU (Time Of Check Time Of
Use) attacks [20]. The previous countermeasures have an impact on the runtime
of the programs. Except ATRIUM, these solutions require user code modifica-
tion to ensure CCFI verification. Table 1 summarizes the average overhead costs
of these countermeasures in terms of code size, performance and hardware area
compared to our solution whose overhead is detailed in Sect. 6. In the following
sections, we describe a new CCFI scheme that keeps unchanged the user code,
compilation process and core design.

Table 1. State-of-the-art solutions average overhead costs.

Solution SOFIA [7] SCFP [21] SCI-FI [4] CCFI-Cache [6] ATRIUM [22] This Work

Code Size (%) 141 19.8 25.4 <30 0 0

Performance (%) 110 9.1 17.5 32 <22.7 0

Hardware Area (%) 28.2 N/A <23.8 10 <20 27.9

TV BRAM Size (%) 0 0 0 0 0 6.25

3 CCFI Methodology

Our CCFI verification methodology is divided into 3 steps:

1. The static analysis of the binary code to obtain its CFG.
2. The generation of metadata related to the discontinuity instructions and Basic

Blocks (BB, cf. Sect. 3.2 for definition).
3. The addition of an external hardware module - the Trace Verifier (TV) - to

proceed to the CCFI verification.

Each step is described in detail in the next sections.

3.1 Static Analysis

A custom program has been developed to analyse statically the user’s binary
code in order to derive its CFG. This program is independent and is not part of
the RISC-V toolchain backend. It only requires the binary file containing the pro-
gram instructions. The CFG shows all the legitimate paths that a program could
follow. From this analysis, all discontinuity instructions are reported. They refer
to direct jumps—Jump (J) and Jump And Link (JAL) instructions—, branch
and return instructions. Algorithm 1 illustrates the pseudo-code of the static
analysis process used to build the program CFG. The application reports for
each discontinuity instruction the address(es) of the next attempted discontinu-
ity instruction(s). For a branch instruction, two addresses are reported: the first
when the branch is taken and the second when the branch is not taken. In our



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 45

Algorithm 1. CFG Generation
Require: Binary Code
Ensure: Discontinuity instructions with their Basic Blocks ( cf. Sect. 3.2 for

definition)
for i ← program.begin to program.end do

#Discontinuity on Branch, Jump, or Return
if discontinuity instruction then

#Default Report
report address at i;
report instruction at i;
if branch instruction then

report next discontinuity′s address when branch taken;
report next discontinuity′s address when branch non taken;

else if jump instruction then
report next discontinuity′s address when call;
report return address # equal to jump address + 4

else if return instruction then
report address and instruction;

end if
end if

end for

strategy, indirect jumps represented by the Jump And Link Register (JALR)
instructions are not considered. These instructions involve the code’s program
counter (PC) to jump to a destination whose address is calculated according to
the content of a register and a value contained in its binary instruction. This
register’s content is not known at the time of the static analysis. However, the
possible addresses can be guessed by parsing the code to form an array of pos-
sible destinations. This strategy complicates the control flow schemes to check
for a correct destination. To allow easy and accurate extraction of the CFG,
Gonzalvez et al. [11] proposed two modified ISAs by removing indirect jumps
from a program. In our case, we dedicate our approach to cover the CCFI for
programs that do not contain indirect jumps. We further discuss in Sect. 7 how
these jumps could be treated as a further work.

3.2 Metadata Generation

From the discontinuity instructions of the CFG, metadata are generated consti-
tuting the CFG’s map. Each data element contains the discontinuity instruction,
its address and the index (address in the memory) of the following discontinuity.
These instructions delimit a Basic Block (BB): a set of successive instructions
for which execution is done consecutively and in order. A BB starts with the first



46 A. Zgheib et al.

instruction following a discontinuity instruction until the next discontinuity. In
addition to the information stored in the data elements, hash signatures of BBs
are calculated. A hash signature computation is made on the binary value of all
the 32-bit length instructions of a BB using a Multiple-Input Signature Register
(MISR) mechanism [9]. A 32-bit MISR module offers a better protection (a small
aliasing probability [15]) than a 32-bit CRC module or a 32-bit hash function
against collisions. The computation starts from the BB first instruction until the
end of the BB for which the signature is generated. This signature is stored along
with the discontinuity instruction pointing to the address of the BB first instruc-
tion. A runtime verification of this signature is bound to check the integrity of
the executed instructions. Figure 1 illustrates an example of four BBs delimited
by jump (j), branch if not equal to zero (bnez), jump and link (jal)
and ret (return) instructions with their metadata. For example, the hash sig-
nature of “Basic Block 2”, delimited by the addresses 0x374 and 0x380, is stored
with the discontinuity instruction pointing to the starting address of this block
- instruction j 374 at address 0x328. For a function call using JAL instruction,
its return address reported by Algorithm 1 is used to delimit the BB formed
by the instructions after its return till the next discontinuity. The instruction
jal ra,308 at address 0x3a8 in Fig. 1 illustrates this case. Its corresponding
metadata contains (see index 40), its address, the instruction and the index 3B
of the next discontinuity instruction, the expected signature of “Basic Block 1”
(BB starting with the instruction after the jump) and the expected signature
of “Basic Block 4” (representing the BB after the return starting at address
0x3ac). A stored signature is a prediction of the correct BB signature when
executed on core. A recalculation of the BB signature is done at runtime and an
additional hardware module - the Trace Verifier (TV) - is in charge of comparing
it with the metadata (stored in a memory).

Fig. 1. Generated metadata content.



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 47

3.3 Trace Verifier

The TV is an additional hardware module (cf. Fig. 2, bottom). It receives, at
runtime, information about the execution path followed by the program. These
information are reported by the RISC-V Trace Encoder (TE) [18]. Based on
the CFG metadata (cf. Sect. 3.2), the TV checks that the execution path of
the program is included in its CFG. It also ensures the integrity of the user
application code as a security propriety by verifying the BB signatures. An
alarm is raised if a CFG derivation has been detected. The following section
describes in more details our countermeasure.

4 Proposed CCFI Solution

4.1 Trace Encoder

Overview. The TE is a RISC-V hardware module [18]. It is an execution flow
tracer that compresses at runtime the sequence of discontinuity instructions
executed by the RISC-V core into trace packets. These packets sent to a debug
tool allow developers to check the path followed by the program. By having
access to the program binary, developers can reconstruct the program flow as
depicted in Fig. 2 (top). This module alone is used for debugging purposes and
allows neither CFI nor CCFI verification. The TE has a 3-stage pipeline to
store the current (I), previous (I-1) and next (I+1) instructions [18]. Based on
these three instructions, a packet defined by the TE standard [18] containing
information about the path followed by the program since the last sent packet
is emitted to an external debugging tool. It is emitted after fulfilling one of
the seven conditions described in the TE specifications [18]. These conditions
are related to the state of the core (context, privilege, exception) or to the
instructions executed (first executed, discontinuity instructions, etc.). We briefly
describe three of these conditions below that led in the verification of CCFI.

Fig. 2. A schematic of the RISC-V + TE (top), and its extension to ensure CCFI
verification (bottom).



48 A. Zgheib et al.

The other four conditions involve reporting the state of the core (as defined
above), which does not cover the verification of CCFI but can be used to handle
interruptions or core’s exceptions. A packet is sent:

– Based on the previous instruction (I-1):
a) An instruction with an unpredictable PC discontinuity is executed. This

type refers to instructions applying a change to the PC whose offset could
not be determined from the compiled code such as return instructions. To
be able to follow the program path, the TE reports these discontinuities
in form of trace packets. Hence, in its current configuration, it does not
send a packet after each discontinuity instruction.

– Based on the current executed instruction (I):
b) A first qualified instruction which refers to the first instruction executed

in a program’s code.
c) The TE branch map is full (number of branches = 31, a packet is issued

to clear its branch map) or it has a misprediction case (when branch
predictor enabled).

Depending on these conditions, a packet is sent with a specific format identifier
[18]. Referring to this standard, four packet formats are defined:

– Format 0 is used to send optional efficiency extensions (such as the number
of correctly predicted branches) when the core’s branch prediction module is
enabled. In our research, we based our CCFI solution while this module is
disabled. A discussion about CCFI verification with this module active could
be found in Sect. 7.

– Format 1 reports a branch information when the TE branch counter reaches
its maximum value (31 branches). Or, when an address needs to be reported
and there has been at least one branch since the previous packet. This format
only contains branch information.

– Format 2 reports only the address of an instruction when no branch infor-
mation need to be reported (for example, executing only a return instruction
after the last packet sent).

– Format 3 is used for synchronization, reporting context and supporting infor-
mation.

An example of a Format 1 packet is illustrated below.

– PACKET 1:
• branches: n
• branch map: n map
• absolute address: PC

This packet is sent after executing a discontinuity instruction satisfying the first
condition a. The unpredictability imposes the sending of a packet in order not
to lose the thread of the program executed flow. This packet indicates that n
branches have been executed since the last sent packet. It also mentions the
branch map (bit vector where taken/not taken status of each branch is stored
chronologically) and address of the executed instruction after the discontinuity.



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 49

CFI. A prior work [23] exploits the TE in order to verify the CFI of a program
executed on a RISC-V core. This design allows the detection of CFG integrity
violations. Two CFI verification approaches were proposed. The first approach
is consistent with the TE standard [18]. With this approach, only instruction
skip on discontinuity instructions and backward edge attacks are detected. The
second approach suggests an enrichment of the standard in order to detect more
threat models. A packet is sent after each executed discontinuity instruction
and not just after the unpredictable ones as in the first approach. This packet
contains the address of the following executed instruction and more information
depending on (I-1), (I) and (I+1) instructions. This permits to detect in addition
to the previous threats, any corruption of a discontinuity instruction.

CCFI. Our paper contributes in extending the work of [23], by additionally
adding a new functionality to the TE - thanks to its open-source specifications
- to work in the CCFI verification mode. A hash signature computation is done
on each BB in order to protect the entire code against FIA and not only the
discontinuity instructions as in the CFI mode. The end of a BB is identified
when a discontinuity instruction is executed. As for the CFI enhanced mode, a
packet is sent after each discontinuity instruction. The BB generated signature
is included in this packet with the information it sends originally. As an example,
a Format 1 packet in CCFI configuration is enhanced as shown below.

– PACKET 1:
• branches: n
• branch map: n map
• absolute address: PC
• Signature sent: Computed Hash Signature

Figure 2 (bottom) illustrates the circuit for CCFI verification. It is composed of
the TV, its memory containing the static metadata and the signature computa-
tion module (BB hash computation) in the TE.

4.2 Trace Verifier Hardware Description

As depicted in the bottom part of Fig. 2, our verification system is constituted
by a memory (Trace Verifier Memory) and its core part (Trace Verifier).

TV Memory. The produced metadata are stored in a dedicated memory—
Random Access Memory (RAM)—as illustrated in Fig. 2. Referring to Fig. 1,
at index 3B, the 32-bit jump instruction j 374 is stored with its 32-bit
address 0x328, the 12-bit index of next discontinuity and the 32-bit signature
0xDD6294B1 of the following BB. In case of a branch instruction (e.g. at index
3E), two 32-bit hash signature values are stored referring to the two possible
branches. In total, each discontinuity instruction requires 140-bit of metadata.



50 A. Zgheib et al.

TV Architecture. Figure 3 shows the architecture of our TV. It is composed
of configurables modules (FIFO and LIFO), a Finite State Machine (FSM) and
several processes. The verification process starts when it receives a packet from
the TE that activates its FSM (1). Meanwhile, the packet is stored in a FIFO
and will be acquired by the FSM (2). Subsequently, it is decoded in order to
extract the reported address and signature (3). In case of a packet reporting the
execution of a branch instruction, the branch and branch map are also extracted.
Having the packet information, a navigation through the RAM metadata is done
to constitute the path followed by the program and the expected hash signature
(4). The last step of the FSM is to check the address stored in the packet against
the static address computed from the navigation process and also compare the
reported hash signature to the calculated signature (5). If the addresses and/or
signatures are not equal, an error flag is raised. The process of resilience is not
discussed here. This error could be treated as a software exception or hardware
interruption with a dedicated process or as a message sent to the user.

Fig. 3. Architecture of the TV.

TV FSM. The five steps listed in the TV Architecture are explicitly repre-
sented in Fig. 4. The TV is in an idle state until it receives a packet from the
TE. Then, this packet is decoded to check its format—this refers to step 2 in
Fig. 3. Step 3—Packet extraction process—is divided into 2 sequential FSM
states (which requires 2 clock cycles). In the first state, the packet format is
read. Then in the second state, the format-related fields are extracted (branch,
address, signature). For instance, referring to Fig. 1 at index 3E and after the
execution of the branch instruction 0xFA0796E3, a Format 1 packet is reported
indicating if the branch is taken or not. In case of a taken branch, the BRAM
index will point to 3C and the branch address is extracted from the metadata
binary instruction. In the other case, the index will be incremented by 1 to reach



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 51

Fig. 4. FSM of the TV.

the index 3F which refers to the next planned discontinuity in the code. This
corresponds to step 4. In the step 5, the TE content is verified by comparing the
metadata extracted address to the TE reported address. The expected signature
for the actual BB (contained within the previous metadata instruction) is also
compared to the hash signature reported by the TE. The communication with
the LIFO representing the “Shadow Stack” of our TV (cf. Fig. 3) is done when
the BRAM navigation process points to a call or return instruction. After the
FSM state TE fields extraction, the next state will depend on the type of
the pointed instruction in the BRAM. We can distinguish 3 categories:

– Function call (JAL instruction): In this case, the next FSM state Push
LIFO stores the instruction index in the LIFO module. Additionally, the call
address and expected signature are extracted.

– Return instruction: The last call index stored in the LIFO is retrieved
via the state Pull LIFO. The TV adds four to the retrieved call address in
order to get the return address of the called function. It also increments the
BRAM index by one to point to the discontinuity instruction following the call
via steps Update Return Address and Get Return Metadata. The second
signature stored at the call index corresponds to the expected signature for
the BB executed after the return (as illustrated in Sect. 3.2). This signature
is also extracted to be verified in the Verify state.

– Branch or Jump (J) instruction: The address and signature from the
metadata are extracted in the state Get Metadata.



52 A. Zgheib et al.

As an example, we refer to a function call in Fig. 1. The call instruction jal
ra,308 pushes the index 40 into the LIFO. After the execution of the return
instruction at address 0x390, the index is extracted from the LIFO, and then the
return address is calculated by adding four to the call address 0x3a8+4, which is
equal to 0x3ac. In addition, the BRAM index points to the call’s index 40 incre-
mented by one referring to the next planned discontinuity at index 41. At the
verification step, the calculated address 0x3ac is compared to the TE reported
address in addition to the signatures. The expected signature for the actual BB
is extracted from the previous discontinuity metadata (the branch instruction
at address 0x380). It is equal to 0x18D05141 if the branch is taken (0x041CAA95
if not). The verification process requires six clock cycles to verify the content
of a packet and eight cycles when the instruction fetched from the BRAM is a
return instruction. The two additional cycles are needed to calculate the return
address and the following discontinuity index based on the call index stored in
the LIFO via steps Update Return Address and Get Return Metadata.

5 FIA on a Memcmp Application Code

In this work, we address the protection of programs executed on a RISC-V
core. Our CCFI solution detects attacks that divert the program CFG from its
normal behavior. We consider that the attacker is able to alter the contents of
the instruction memory by physical means (e.g. by laser injection at the reading
of instructions from the memory [5]) as a single fault attack. We assume that the
metadata stored in the memory of the TV cannot be modified by the attacker
in order to defeat our countermeasure. Performing combined bit flips (multiple
fault context) on the code execution and metadata content—contained in the
TV—is a very complex fault hypothesis. This requires the attacker to:

– Know the MISR polynome to calculate a signature of the modified code.
– Inject multiple faults on the RISC-V architecture and the TV memory.

As illustration, this section demonstrates the detection of a FIA (physical
attack) targeting a vulnerable instruction of a non protected comparison func-
tion Memcmp. It also outlines how our CCFI verification solution detects this
attack.

Memcmp. It compares the values of two arrays. Its C function is shown in
Fig. 5. The parameter n specifies the number of values to compare from src1
and src2 arrays. If no difference is reported between their elements, a value
of 0 is returned. Otherwise, the difference of the first two different elements is
returned.

FIA Scenario. An attacker might be interested in altering the result of this
function. A fault could be injected to point that there is no difference while two
different arrays are compared (e.g. a hash signature checking in an authentication



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 53

Fig. 5. Memcmp C Code.

process). This is possible by faulting the n value in the while condition (cf.
Fig. 5). This condition checks that the number of values to compare n is greater
than 0. It allows to enter the loop and to compare values from both arrays. Then,
the value of n is decremented. The assembly code in charge of this operation is
shown in Fig. 6. The instruction at address 0x374 retrieves the n value from the
processor stack and store it in the a5 register. At address 0x380, a comparison
of the a5 content with zero is done to decide if the program enters the while
loop. If a5 content is different than zero, a comparison of array values is done.

FIA Setup. The code analysis of the unprotected Memcmp function leads to
vulnerabilities, one of which is found at the instruction lw a5,4(sp) (cf. Fig. 6).
A fault transforming this instruction to li a5,0 (0x00000793) writes in the a5
register the value 0. This is a complex fault that requires 4 bit flips. However,
the FIA state-of-the-art proves that it is possible [5]. Based on this attack, the
correct value of n is not retrieved from the stack. A comparison of the a5 content
with zero is done at address 0x380. In this case, the branch if not equal to
zero (bnez) condition is not fulfilled and the branch is not taken because n=0.
Therefore, no comparison of values is done. The Memcmp function returns zero
reporting that there are no differences between the two arrays even though they

Fig. 6. Memcmp Assembly Code



54 A. Zgheib et al.

are different. This attack could not be detected by pure CFI solutions, but rather
by CCFI countermeasures checking the integrity of the code.

CCFI Verification. After executing the discontinuity instruction at address
0x380, a packet is sent by the TE. Figure 7 illustrates the faultless packet and the
packet content if the FIA is done on the lw instruction. Referring to the attack
scenario described in the FIA setup, corrupting the lw instruction generates a
different hash signature at the end of the BB. We have simulated this fault attack
by modifying the binary instruction at memory level. Figure 8 shows a simula-
tion of the packet emission due to execution of the bnez instruction. The TE
awaits the execution of two more instructions after the branch in order to have a
visibility on the last three executed instructions to be able to generate a packet
as discussed in Sect. 4.1. We present in Fig. 9 a simulation of the verification of
the concerned packet. The enumerated FSM steps (as described in Fig. 4) lead
to the integrity verification of the BB. As the signature of the faulted execution
0xDF6B9431 is different from the signature 0xDD6294B1 expected by the TV (cf.
the correct one also in Fig. 1), the TV raises an error flag. Therefore, the FIA
is detected. A comparison of our solution with the CCFI state-of-art solutions
and the CFI solution of [23] could be found in Table 2. Compared to [23], our
solution covers the integrity of the code. ATRIUM [22] has similar CCFI char-
acteristics. However, it locks the processor if the hash of the current instruction
block is not completed and a new block arrives (28 cycles are required to hash a
block). The generated signature is sent at the end of the code region chosen by
the trusted verifier vrf for remote CCFI verification. Our hash module requires
only one cycle to compute the signature of an instruction and does not interfere
with the core’s activity. Compared to the CCFI related works, our solution does

Fig. 7. FIA impact on the sent packet content.

Fig. 8. Simulation of a packet emission due to the execution of the bnez instruction.



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 55

Fig. 9. Simulation of a packet’s verification by the TV.

not impact the execution runtime of the user application code. Table 1 shows
the overheads of these countermeasures compared to our solution which has no
impact on the user code (size or execution time). It is a hardware verification
method that neither modifies the RISC-V pipeline nor the compiler.

6 Hardware Metrics

All our simulations target the Artix-7 Field-Programmable Gate Array (FPGA)
embedded on a Nexys video board. This FPGA contains 33,650 logic slices.
Each slice is composed of four 6-input LUTs, 8 flip-flops, multiplexers and carry
units. A description of the hardware requirements of our system in terms of slice
is provided in the following parts.

Table 2. Comparison of our solution with related works

Solution SOFIA [7] SCFP [21] SCI-FI [4] CCFI-Cache [6] ATRIUM [22] TE-CFI [23] This Work

No User Code Modification ✗ ✗ ✗ ✗ ✓ ✓ ✔

No Compiler Modification ✓ ✗ ✗ ✗ ✓ ✓ ✔

No Pipeline Modification ✗ ✗ ✗ ✓ ✓ ✓ ✔

No Performance Overhead ✗ ✗ ✗ ✗ ✗ ✓ ✔

Backward Edge Protection ✓ ✓ ✓ ✓ ✓ ✓ ✔

Forward Edge Protection ✗ ✓ ✗ (✗) ✗ ✗ ✘

Code Integrity ✓ ✓ ✓ ✓ ✓ ✗ ✔

Code Confidentiality ✓ ✓ ✗ ✗ ✗ ✗ ✘

6.1 Target Core

Our CCFI solution is implemented on an IBEX core [13]. It is a 32-bit open
source RISC-V, low power core with a 2-stage pipeline suitable for IOT appli-
cations. Its area cost is equal to 645 slices. As our solution is independent of
the chosen RISC-V core, it can be implemented on any core compatible with
the TE. For instance, our TV could also be applied to the CV32E40P, a 32-bit
4-stage RISC-V core [14]. Its core implementation requires 1171 slices.



56 A. Zgheib et al.

6.2 Trace Encoder

The TE module is extracted from the pulp-platform project [17]. Its implementa-
tion needs 239 slices. To verify the CCFI of a program, we made an enhancement
to the standard in a way to send a packet after each discontinuity instruction
including the signature of the executed BB. This enhancement and the addi-
tional signature module cost 62 slices while respecting the retro-compatibility
of the TE. It can run in a normal [18] or CFI/CCFI mode. Note that, the 32-bit
hash signature computation module is designed to compute the signature of an
instruction in one cycle. In total, the TE requires 301 slices.

6.3 Trace Verifier Components

The TV is divided in 3 parts: its memory to store the static metadata—
implemented as a Block Random Access Memory (BRAM) on FPGA, its core
and its configurable block (FIFO and LIFO modules).

BRAM. Our CCFI solution was tested on several benchmarks from Pulpino
project [16], Embench-IOT benchmarks [10] and some classic ones. These bench-
marks were compiled with the RV32IM base instruction set and into 3 compila-
tion optimizations level: O1 for the basic level, O2 for the advanced level and
O3 for the highest possible optimization level. As an illustration, Fig. 10 shows
the ratio between the generated metadata and code size for the 3 optimiza-
tion levels. The Metadata-Code size ratio ranges from 15% and 55%. The small
benchmark codes have the highest ratio (e.g. the Memcpy and Memcmp codes). The
BRAM is designed with a single read port model. The writing of the metadata
is done upstream of the code execution. We have chosen the index width of the
BRAM memory to be 12. This value delimit the depth of the metadata memory
to 212 = 4096 lines. To give an order of magnitude, the “nshichneu” code from
Embench-IOT [10] contained the most discontinuity instructions. In total, 1188
lines (discontinuities) were needed for a optimization in O1. With this configu-
ration, the memory implementation requires only 16 BRAM blocks without
additional slices. This represents the maximum hardware utilization for the sim-
ulated benchmarks. Each benchmark code was loaded into a 256-block BRAM
memory connected to the IBEX. Our metadata were intentionally stored in an
external RAM attached to the standalone TV to not modify the program code
and its memory. Therefore, the BRAM metadata overhead is equal to 6.25%
for a 12-bit BRAM TV index. This overhead could be considered as a code size
overhead if the metadata were stored in the code memory. However, the TV area
cost decreases by removing its BRAM.



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 57

Fig. 10. Ratio between the metadata vs code size.

TV Core. It is composed of the FSM and processes. It requires 170 slices and
could run in CFI or CCFI mode. A TE configuration packet initiates, at startup,
the verification mode.

TV Configurable Block. It represents the LIFO (shadow stack) and FIFOs
for storing the packets and discontinuity instructions. Their sizes are dependent
of the running application and could be configured to a specific application.
However, in the evaluation phase of our approach, we have chosen sufficiently
large sizes to simulate all the targeted benchmarks for an FPGA or even ASIC
implementation. Note that the instructions FIFO (cf. Fig. 3) is only used in the
CFI mode. As a consequence, a comparison between discontinuity and meta-
data instructions is performed for a given address to only check the integrity of
the executed discontinuity instruction. In the CCFI mode, each identified BB
containing a set of instructions ends with a discontinuity instruction. Therefore,
a corruption of the discontinuity affects the computed hash signature. A FIA on
the analyzed BB is detected by comparing the computed and metadata signa-
tures. In this mode, the instruction FIFO is useless. As illustration of the con-
figurable block requirements, Fig. 11 shows the FIFO and LIFO depths to store
data for the compiled benchmarks with the O2 optimization on a log scale. The
maximum FIFO and LIFO depths are respectively 153 and 9. Each application
requires a different depth depending on the number of discontinuities/packets
sent and the size of the BBs. The verification latency becomes important when
packets are sent simultaneously and could not be verified by the TV on the fly.
We discuss in Sect. 7 the reason behind this accumulation of packets. In order to
have a generic solution compatible with more complex benchmarks and to avoid



58 A. Zgheib et al.

the overflow phenomenon, the FIFO and LIFO are designed to store 512 and 16
values respectively. Their implementations require respectively 12 and 3 slices.
The overall area cost of the TE optimization (62 slices, cf. Sect. 6.2) and TV
(185 slices) is equal to 247 slices. We have simulated the benchmarks used by
[23] and an 12-bit index was enough to point all their discontinuity instructions.
Therefore, compared to the TE-based CFI solution of [23] which only adds 17%
in terms of slices over the IBEX + TE requirements, our solution requires 27.9%.
The area overhead is due to the additional slices required by our TV to work in
the CFI or CCFI mode. It is also related to store 2*32 extra signature bits for
each discontinuity instruction and their verification process.

7 Discussion

Our TV does CCFI verification at runtime after receiving a packet from the
TE. It needs 6 to 8 clock cycles to process a packet (cf. Sect. 4.2) concurrently
to the program execution. The verification latency becomes significant when dis-
continuity instructions follow each other with fewer clock cycles than is required
to process successive packets by the TV (6 clock cycles). Therefore, an increase
in the FIFO depth is mandatory when a packet is issued after a BB execution
containing less than 6 non-multi-cycle instructions. These executions send pack-
ets simultaneously. To process all of these packets, the FIFO is required to store
them. Figure 11 illustrates the packet accumulations which induces a latency to
verify all of them. The FIFO is used in order not to stall the processor while
a packet is being verified. However, in order to reduce the hardware impact, it
is possible to remove the FIFO. As a result, the processor will be stalled when
the packet is received to complete its verification. Thus, performance overheads
would be considered. The depth of the FIFO can be calculated statically by
analyzing the binary code of an application. This can be done by counting the

Fig. 11. FIFO and LIFO depths for programs compiled with O2 optimization.



A CCFI Verification Scheme Based on the RISC-V Trace Encoder 59

instructions formed by all BB and comparing the count to the number of FSM
states. In the case of a parameter-conditioned loop containing fewer clock cycles
than the FSM check cycles, the user can predict the number for that loop by
analyzing the code to correctly increment the FIFO depth. Additionally, our
verification is based on the static metadata. Indirect calls destinations are not
known from the static analysis and then not covered in our solution. However,
these calls emit a packet after their execution. To treat these instructions, we
can wait for the packet sent after the one related to the indirect call. Having
instruction and packet information, a navigation through the metadata could be
done in order to find the discontinuity address and resume verification. Another
perspective is to avoid these calls by modifying the user code or the compiler.
In addition, our experiments covered the CCFI of all the user code. Referring
to Sect. 5, an illustration of how the Memcmp code integrity has been protected
against FIA. This code represents relatively simple control flows. For a complex
firmware, the designer may need to cover just a sensitive section of the code (e.g.
authentication function). It could be done by using the TE filter (cf. Chapter 5 of
the TE standard [18]). It allows to specify the lower and higher addresses where
packets need to be generated. Activating this functionality reduces drastically
static data size and TV configurable modules area cost. This is due to the fact
that there is less metadata in the TV’s memory related just to this function. In
our core implementation, the branch prediction feature was disabled. Enabling
this option emits a specific packet after a discontinuity instruction with content
defined by the TE standard. The TV could be enhanced to operate in this mode
for CCFI verification. This is a perspective of our work.

8 Conclusion

In this paper, we propose a CCFI verification system based on the RISC-V
Trace Encoder, a debug feature that allows to capture the execution path of
a program. An additional feature is added to the TE mechanism in order to
work in the CCFI mode. We demonstrate how discontinuity instructions and
BB are protected against FIA. The comparison of a computed signature of a
BB at runtime with a pre-calculated signature guarantees the integrity property
of a program’s code. Compared to state-of-the-art solutions, our countermeasure
does not generate performance overheads. Only hardware overheads are reported.
Its implementation modifies neither the RISC-V compiler nor the user code
nor the core’s architecture. It is a modular, non-invasive and does not depend
of the RISC-V core. In our future work, we aim to verify that the executed
BB instructions are also unaltered within the core’s pipeline. This is known as
verifying the Control Flow and Execution Integrity (CFEI) of the program.



60 A. Zgheib et al.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(1),
1–40 (2009)

2. Asanović, K., Patterson, D.A.: Instruction sets should be free: the case for RISC-
V. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-146 (2014)

3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

4. Chamelot, T., Couroussé, D., Heydemann, K.: Sci-fi: control signal code and control
flow integrity against fault injection attacks. In: 2022 Design, Automation & Test
in Europe Conference & Exhibition, pp. 556–559. IEEE (2022)

5. Colombier, B., et al.: Multi-spot laser fault injection setup: new possibilities for
fault injection attacks. In: Grosso, V. (eds.) Smart Card Research and Advanced
Applications. CARDIS 2021. LNCS, vol. 13173, pp. 151–166. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-97348-3 9

6. Danger, J.L., et al.: CCFI-Cache: a transparent and flexible hardware protection
for code and control-flow integrity. In: 2018 21st Euromicro Conference on Digital
System Design (DSD), pp. 529–536. IEEE (2018)

7. De Clercq, R., Götzfried, J., Übler, D., Maene, P., Verbauwhede, I.: Sofia: software
and control flow integrity architecture. Comput. Security 68, 16–35 (2017)

8. De Clercq, R., Verbauwhede, I.: A survey of hardware-based control flow integrity
(CFI). arXiv preprint arXiv:1706.07257 (2017)

9. Elguibaly, F., El-Kharashi, M.W.: Multiple-input signature registers: an improved
design. In: 1997 IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987–1997, vol.
2, pp. 519–522. IEEE (1997)

10. EmbenchTM: Open benchmarks for embedded platforms (2021). https://github.
com/embench/embench-iot

11. Gonzalvez, A., Lashermes, R.: A case against indirect jumps for secure programs.
In: Proceedings of the 9th Workshop on Software Security, Protection, and Reverse
Engineering, pp. 1–10 (2019)

12. Kiaei, P., Breunesse, C.B., Ahmadi, M., Schaumont, P., Van Woudenberg, J.:
Rewrite to reinforce: rewriting the binary to apply countermeasures against fault
injection. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp.
319–324. IEEE (2021)

13. Lowrisc: Ibex documentation (2021). https://ibex-core.readthedocs.io/en/latest
14. OpenHW Group: Cv32e40p (2022). https://github.com/openhwgroup/cv32e40p
15. Pradhan, D.K., Gupta, S.K., Karpovsky, M.G.: Aliasing probability for multiple

input signature analyzer. IEEE Trans. Comput. 39(4), 586–591 (1990)
16. PULP-platform: PULPino: A small single-core RISC-V SOC (2019). https://

github.com/pulp-platform/pulpino
17. PULP-platform: Trace debugger for RISC-V core (2020). https://github.com/

pulp-platform/trace debugger
18. RISC-V International: efficient trace for RISC-V (2020). https://github.com/riscv/

riscv-trace-spec
19. Timmers, N., Spruyt, A., Witteman, M.: Controlling pc on arm using fault

injection. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 25–35. IEEE (2016)

https://doi.org/10.1007/978-3-030-97348-3_9
http://arxiv.org/abs/1706.07257
https://github.com/embench/embench-iot
https://github.com/embench/embench-iot
https://ibex-core.readthedocs.io/en/latest
https://github.com/openhwgroup/cv32e40p
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/trace_debugger
https://github.com/pulp-platform/trace_debugger
https://github.com/riscv/riscv-trace-spec
https://github.com/riscv/riscv-trace-spec


A CCFI Verification Scheme Based on the RISC-V Trace Encoder 61

20. Wei, J., Pu, C.: Tocttou vulnerabilities in unix-style file systems: an anatomical
study. FAST 5, 12 (2005)

21. Werner, M., Unterluggauer, T., Schaffenrath, D., Mangard, S.: Sponge-based
control-flow protection for IoT devices. In: 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 214–226. IEEE (2018)

22. Zeitouni, S., et al.: Atrium: Runtime attestation resilient under memory attacks. In:
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 384–391. IEEE (2017)

23. Zgheib, A., Potin, O., Rigaud, J.B., Dutertre, J.M.: A CFI verification system based
on the RISC-V instruction trace encoder. In: 2022 25th Euromicro Conference on
Digital System Design (DSD). IEEE (2022)



Side-Channel Analyses
and Countermeasures



ASCA vs. SASCA
A Closer Look at the AES Key Schedule

Emanuele Strieder1(B) , Manuel Ilg1, Johann Heyszl1,3,
Florian Unterstein2 , and Silvan Streit1

1 Fraunhofer Institute for Applied and Integrated Security (AISEC),
Lichtenbergstraße 11, 85748 Garching near by Munich, Germany

{emanuele.strieder,manuel.ilg,johann.heyszl,
silvan.streit}@aisec.fraunhofer.de

2 Infineon Technologies AG, Munich, Germany
florian.unterstein@infineon.com
3 Google GmbH, Munich, Germany

johannheyszl@google.com

Abstract. We compare two key recovery methods for single trace
attacks on the AES key schedule. The 2018 CHES capture-the-flag (CTF)
challenge which includes an unprotected key schedule raises the ques-
tion, which method performs best during key recovery: Soft Analyti-
cal Side-Channel Attacks (SASCAs) or Algebraic Side-Channel Attacks
(ASCAs). SASCAs as well as ASCAs exploit knowledge about the
attacked algorithm by leakage recombination and allow for a compu-
tationally efficient key recovery based on e.g. Hamming Weight (HW)
leakage. We use Belief Propagation (BP), which is the most popular
choice for SASCA and a SAT solver as an ASCA algorithm. In this work
we attack real traces of the CTF challenge to demonstrate the limita-
tions of SASCAs while handling the XOR operation. We exemplify that
SASCAs may not always be the most favorable solution. The compari-
son is solidified by evaluating the success rate of SASCAs and ASCAs
with simulated HW leakage on varying noise levels. During attacks on
the AES key schedule the convergence of BP is not only graph depen-
dent but data dependent. Further, we discuss possible graph clusters
and adaptations of the input distributions to mitigate the influence of
the XOR operations and increase the success rate of BP. All experiments
are compared against equivalent SAT solver approaches. Based on our
results we propose a combination of brute-force and BP to level the per-
formance of the SAT solver and BP. Apart from this, we address unsolved
questions regarding the benefit of an early break of BP and point out
implementation details which lead to a better success rate.

Keywords: SASCA · ASCA · Belief propagation · SAT · AES · Key
schedule · Key expansion

J. Heyszl and F. Unterstein—Work was done while the author was at Fraunhofer
AISEC.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 65–85, 2023.
https://doi.org/10.1007/978-3-031-29497-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_4&domain=pdf
http://orcid.org/0000-0003-0204-3234
http://orcid.org/0000-0002-8384-2021
http://orcid.org/0000-0002-5822-2402
https://doi.org/10.1007/978-3-031-29497-6_4


66 E. Strieder et al.

1 Introduction

Algebraic Side-Channel Attacks (ASCAs) as published by Renauld et al. [25] as
well as Soft Analytical Side-Channel Attacks (SASCAs) as published by Veyrat-
Charvillon et al. [30] are key recovery methods. ASCA as well as SASCA can be
seen as a bridge between cryptanalysis and side-channel analysis (SCA). They
utilize the knowledge about an attacked algorithm to recombine noisy leakage
samples taken from different intermediate values of one attack trace. Noisy leak-
age can have many reasons like countermeasures, imprecise leakage models, tech-
nology architectures or the algorithm itself.

One example is the AES key schedule, which derives round keys during an
AES encryption or decryption. For a given key, the key schedule only computes a
fixed set of intermediate values. Therefore, the data complexity during an attack
is inherently one and dedicated attacks are difficult as no differential leakage
with varying inputs can be exploited. Profiled SCAs can exploit such leakages.
Typically, profiled SCAs use leakage models like the HW model to closely match
the physical processes causing the leakage. Most of the time, this results in
information loss and the extractable information is insufficient to recover the key
without additional measures, e.g. brute-force. Hence, it is beneficial to target as
many intermediate values as possible during an attack on the AES key schedule,
i.e. not only the original key or one single round key. The challenge then remains
in combining those multiple results in a meaningful way.

The 2018 CHES CTF challenge contains an AES implementation that
includes a reasonably protected main data-path and an unprotected key schedule
that ultimately allows successful key recovery. The challenge led to multiple con-
tributions proposing different solving strategies. Damm et al. [8] use Gaussian
Template Attacks (TAs) to recover the HWs of the round key bytes. To recover
the master key they implement a smart brute-force algorithm introduced by
VanLaven et al. [29], which is specially tailored to HW leakage. However, this
algorithm can only tolerate a very limited amount of faulty results, i.e. results
where HWs are not determined correctly, which is a major drawback. Gohr
et al. [10] propose a different approach employing a Residual Neural Network
(ResNet) to extract the HWs. They then use a SAT solver to combine the HW
leakages of the intermediate values to recover the master key.

Apart from the CTF challenge, Bouder et al. [5] employ for the first time a
factor graph of the AES key schedule and BP to recombine leakage of key bytes
extracted from the AES data path. The proposed attack exploits differential leak-
age between the output of the mix-column operation and the sub-byte output.
They claim this intermediate leakage can be extracted using a non-profiled SCA.
They additionally simulate the performance of BP using HW leakage in a multi-
trace setting starting with 100 attack traces. Bouder et al. [5] do not mention any
possible alterations of the factor graph or adaptations of the input data to enhance
the convergence of BP. Their results lack information about single-trace attacks
and the noise levels may not be representative for real-world attacks. Further, they
do not discuss any data dependency and use the average rank as success metric
which merely yields any interpretable information in this context.



ASCA vs. SASCA 67

These examples raise the question, which key recovery method performs best
for single-trace attacks on the AES key schedule: SASCAs versus ASCAs. Both
methods are contrasted by Grosso et al. [12] in a general way. Grosso et al.
specifically discusses the problem of XOR operations which are a major problem
for all mentioned key recovery methods. The XOR operation has two inputs and
if one is close to uniform information from the second input cannot propagate
(cf. [11]). Nevertheless, Grosso et al. concluded that SASCA is the favorable
solution. Our contribution reevaluates this question in the specific setting of
the AES key schedule which is build mainly from XOR operations. This work
demonstrates, that SASCA is not always the most favorable choice.

Green et al. [11] investigates different graphs for the AES data path and
circumvents the key schedule because of the mass of XOR operations. They
note, that the convergence of BP is mainly graph and less data dependent. We
show, that this is not always the case. Guo et al. [13] investigate SASCA in-depth
and show the close connection of SASCA with coding theory.

There are several recent applications of BP: Kannwischer et al. as well as
You et al. [18,31] successfully attack software implementations of Keccak. Pri-
mas et al. and Pessl et al. [20,23] attack a software implementation of the Num-
ber Theoretic Transform (NTT) using BP with a single trace. Pessl et al. [20]
combine factor nodes avoiding short loops to improve the performance of their
attack. Hamburg et al. [14] use BP in combination with a chosen-ciphertext
attack (CCA) on the NTT used in multiple PQ algorithms. Hermelink et al. [17]
introduce a shuffle node which increases the performance of BP against shuffled
input. Hermelink et al. [16] introduce a fault attack on the Fujisaka-Okamoto
transform which is possible by solving a system of inequalities using BP.

For a more thorough discussion about ASCA we refer to Carlet et al. [6] and
Renauld et al. [26]. Applications of ASCA can be found in Bettale et al. [4] and
Adomnicai et al. [2].

Contribution. We investigate the performance of SASCA and ASCA in the
specific setting of the AES key schedule. The AES key schedule is of special
interest as it poses a major challenge due to many XOR operations (cf. [11,12]).
Each XOR operation has two input distributions and hinders the information
flow. The contribution has two major parts: We first analyze the 2018 CHES CTF
challenge which includes an unprotected AES-128 key schedule. We perform TAs
with and without linear discriminant analysis (LDA) on the provided traces and
compare these results with the state-of-the-art which uses a Machine Learning
(ML)-based approach. Afterwards, we apply BP and a SAT solver to reduce
HW leakage to value leakage during the key recovery phase. This case study
exemplifies, that SASCA may not be the most favorable solution if only key
byte leakage is present.

Therefore, we secondly evaluate the success rates of SASCA and ASCA while
exploiting simulated HW leakage of an AES key schedule in single trace attacks.



68 E. Strieder et al.

We demonstrate that BP’s convergence is more data dependent than graph
dependent in this setting. Further, we discuss different graph clustering possibil-
ities to mitigate the influence of the data dependency and increase the success
rate of BP. Dropouts as well as constraining the input distribution to the top-2
results are investigated. All experiments are contrasted with comparable SAT
solver approaches. The contribution addresses unsolved questions regarding the
benefit of an early break, sub-graph convergence and implementation details.
Finally, we propose a new solving strategy that extends BP using a brute-force
step, leveling the success rates of SAT solving and BP.

2 Preliminaries

2.1 AES Key Schedule

AES is a symmetric block cipher with a number of security levels. The 2018
CHES CTF challenge uses a 128-bit version, which we focus on in this con-
tribution. However, all findings are transferable because the key schedules of
the different variants use mainly the same operations but a different number of
rounds. AES-128 uses a key schedule with 10 rounds. In each round, a 16-byte
round-key is generated based on the master key. Therefore, in total, there are 176
key bytes for a full key schedule. Each round consists of one rotation operation,
XOR and sub-byte operations and the addition of fixed round constants defined
in the standard [28]. A graph-based representation of one AES key schedule
round is given in Fig. 1.

2.2 2018 CHES CTF Challenge

One part of the 2018 CHES CTF contest is an attack on an AES-128 implemen-
tation using ML. The challenge includes three training datasets, each containing
10k power traces with random plaintext and random key from three different
devices. A fourth dataset with random plaintext and a fixed key is intended
for validation during the profiling phase. The challenge is to extract a correct
key candidate from two additional attack datasets, 5 and 6, with 1000 traces
each. Dataset 5 was captured from a device also used during the creation of one
training dataset and dataset 6 was captured from an unseen device. We concen-
trate on dataset 6 because it was identified as the harder challenge and can be
considered the worst-case scenario for an attacker (cf. [8–10]).

2.3 Profiled Side-Channel Attacks

Profiled SCAs derive a profile that models the data dependency of traces as
closely as possible. These profiles allow for attacks with a very low number
of side-channel traces. Profiled SCAs are considered the most powerful attacks
because noise as well as data are modeled at the same time. In extreme cases,
only a single trace is sufficient to extract enough information to compromise a
device. Two different profiling methods have been used while attacking the 2018
CHES CTF contest:



ASCA vs. SASCA 69

Gaussian Template Attacks. One of the most frequently used profiled SCA
method are Gaussian TAs. As all profiling attacks TAs consist of at least two
stages: profiling and attack. The profiling step, in most cases, requires either the
full control of an adversary over the target device or a copy of the target device.
During profiling, a large number of side-channel traces are captured while the
algorithm is executed with random input. The traces are grouped using a leakage
model of the target intermediate value - e.g. the HW of a key byte of the AES
key schedule or the HW of the output of a sub-byte operation. For each group
g, a mean vector μg and a covariance matrix Σg are derived. The mean vector
and the covariance matrix parametrize the Gaussian leakage distribution for the
respective group, the chosen intermediate value and leakage model. During the
attack phase the likelihood is computed with which n traces ti are fitting each
of the groups:

sg =
n∏

i=1

N (ti,μg,Σg),

where sg is called score value. In this work, the groups are all possible HWs of
an 8-bit value: g ∈ {0, 1, . . . , 8} and the number of traces is n = 1 since the data
complexity of the AES key schedule is inherently one (cf. Sect. 2.1). For a more
in-depth description of TAs, we refer to Chari et al. [7] or Rechberger et al. [24].

Machine Learning Attacks. In recent years many Deep Neural Network
(DNN)-based approaches have been investigated for leakage extraction (cf.
[10,21]). The variety of ML-based approaches is manifold, but CNN-based
approaches are dominating because of their benefits with respect to shift invari-
ance. Gohr et al. [10] were one of the first to use a ResNet to guess all key bytes
of the AES key schedule. ResNets have the advantage of mitigating the vanishing
gradient problem [15]. For a detailed explanation of Gohr et al.’s approach, we
refer to the original publication [10]. Instead of treating the leakage as a classi-
fication task, Gohr et al. are handling it as a regression problem. Therefore, the
network returns a real-valued number xk ∈ [0, 8] rather than probabilities for
each HW of each key byte. In order to use the outputs in SASCA methods like
BP we transform the outputs as follows: Let s be a vector that holds a score
value for each possible HW and let xk be the output of the ResNet for a key
byte k. We set all values of the vector to 0 except for s�x� and s�x�, because
the network does not output any information except for the adjacent HWs. The
probabilities for the adjacent HWs s�x� and s�x� evaluate to:

s�x� =

{
x mod 1 if (x mod 1) ≥ 0.5
1 − (x mod 1) if (x mod 1) < 0.5

and

s�x� =

{
x mod 1 if (x mod 1) < 0.5
1 − (x mod 1) if (x mod 1) ≥ 0.5.



70 E. Strieder et al.

Dimensionality Reduction. Each trace in the CTF datasets has 650k sam-
ples. It is impractical to use all sample points because of the limited number of
traces in the training sets and the curse of dimensionality, which has a negative
effect on the learnability of a dataset during the training of a Neural Network
(NN) and on the size of the covariance matrix for TAs. Therefore, Gohr et al. use
only every 100th sample point [10]. In case of TAs, we employ the correlation-
based approach of Durvaux et al. [9] with a threshold of ρ = 0.04. We additionally
performed TAs with the prior application of LDA. We kept all eigenvalues, which
explained 99% of the data.

2.4 ASCA and SAT

ASCA is a combination of SCA and cryptanalysis. The coarse idea of ASCA
is the creation of a system of equations that models the target algorithm while
constraining the solution space with side-channel information (cf. Bard et al.
[3]). SAT solvers are one type of possible solver. However, other solver strategies
could be employed in ASCA, too. Following the approach of Gohr et al. [10]
we use CryptoMiniSat for the SAT solving step. It performs superiorly over
other SAT solvers in the context of cryptographic algorithms. It was developed
by Soos et al. [27] and uses e.g. Gaussian elimination, conflict-driven solving,
backtracking-based and depth-first search algorithms to mitigate the problems
of classical SAT solvers with huge numbers of XOR equations.

Transformation and Dropout. The SAT solver uses clauses in conjunctive
normal norm (CNF) to model and constrain the AES key schedule. Each vari-
able in a clause is called literate (e.g. for an 8-bit value there are 8 literates).
The number of clauses and literates is a limiting factor in SAT solving, because
it increases the computational costs (cf. [27]). A CNF is a conjunction of dis-
junctions and each algorithm can be transformed as such. For example, a XOR
operation in CNF is given by:

(¬x0 ∨ x1 ∨ x2) ∧ (x0 ∨ ¬x1 ∨ x2) ∧
(x0 ∨ x1 ∨ ¬x2) ∧ (¬x0 ∨ ¬x1 ∨ ¬x2).

Constraining clauses are created by adding all CNFs of an intermediate value
that do not result in the expected HW. If, for example, HWs 0 and 8 are to
be excluded and the byte value constraints literates are x0−7, the constraining
clauses are as follows:

(x0 ∨ x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7) ∧
(¬x0 ∨ ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7).

Gohr et al.’s SAT solver approach drops a number of constraint clauses randomly
to mitigate the influence of errors in the input distribution. We decided on 100
tries for each SAT experiment and a dropout rate of 10%. The influence of the
dropout rate will be discussed in Sect. 3.3. Since the number of clauses is a



ASCA vs. SASCA 71

limiting factor in SAT solving, only the top-x results of the marginal probability
distributions are used. The transformation of HW into constraining clauses is
performed as: Let s be a vector which holds a score or probability value for each
possible HW of an intermediate value. The top-x HW values with the highest
score or probability are chosen from s.

2.5 SASCA and Belief Propagation

BP is a message-passing algorithm that infers information about marginal prob-
ability distributions using a bipartite factor graph. The marginals are computed
efficiently by exchanging messages. Let P (x) be a function of x, where x is a set
of N random variables x ≡ {xn}Nn=1. We define P (x) as a product of M func-
tions fm(xm) where each function uses a subset xm of x. In the case of SASCA,
the initial prior distributions for each xm are the score values extracted from
attack traces. The goal of BP is to calculate the marginals

Zn(xn) =
∑

{xn′ },n′ �=n

P (x)

or the normalized version. Variables are modeled as variable nodes and their
pair-wise relations as factor nodes. These nodes are structured in a factor graph
reflecting the attacked algorithm. BP performs the inference of the marginals
efficiently by iteratively exchanging messages between the nodes. BP defines
two types of messages. The variable-to-factor message is defined as:

un→m(xn) =
∏

m′∈M(n)\{m}
vm′→n(xn),

and the factor-to-variable messages as:

vm→n(xn) =
∑

xm\n

⎛

⎝fm(xm)
∏

n′∈N (m)\m
un′→m(xn′)

⎞

⎠ .

The algorithm exchanges messages until the algorithm is converged or another
break condition is reached. The belief or marginal distributions Zn at each vari-
able node can be calculated by

Zn(xn) =
∏

m∈M(n)

vm→n(xn).

All factor graphs in this contribution are based on the AES Furious imple-
mentation [1] which was also used in the 2018 CHES CTF contest. Each variable
node holds a prior distribution, which contains 256 probabilities for each possible
value of an 8-bit value. Hence, each factor node operates with input vectors of
the same dimensions. In the following, the basic graph is described and possible
graph reductions are illustrated.



72 E. Strieder et al.

Fig. 1. Basic factor graph of one round of the AES key schedule.

Basic Graph. The basic factor graph of one round of the AES key schedule
is shown in Fig. 1. Circles represent variable nodes and rectangles factor nodes.
There are three basic factor types: XOR ( + ), Sub-Byte ( S ) and the
addition of the round-dependent RCon value ( C ). Each variable node repre-
sents a marginal distribution of an intermediate value, derived by e.g. a profiled
SCA. The AES-128 key schedule expands the master key to round keys using 10
rounds.

Reduced Graphs. Figure 1 illustrates the optimal leakage situation: For each
key byte as well as for each intermediate value, a marginal distribution could
be extracted from the side-channel traces. In general, this is rarely the case.
Depending on the extracted marginals, variable nodes can be removed and factor
nodes can be combined. Figure 2 shows the first reduction. The distribution of
the intermediate value after the RCon operation is removed and the factor node
is concatenated with the XOR operation. This graph implies that an estimate
e.g. HW leakage of the output of the sub-byte operations is known. Figure 3
presents the second reduction. By concatenation of the sub-byte with the RCon
and the XOR operation included in the mix column path the variable node of
the sub-byte output is excluded. This graph would be used if only key byte
leakage could be extracted. The choice of which factor graph is used, depends
on the ability to extract an estimate of the intermediate values. Therefore, these
representations show only two basic alterations. Many other alterations could be
devised.



ASCA vs. SASCA 73

Fig. 2. Reduced factor graph of one round of the AES key schedule. The reduction is
achieved by concatenation the SubBytes and the RCon operation.

Fig. 3. Reduced factor graph of one round of the AES key schedule. The reduction is
achieved by concatenation of the SubBytes, RCon and XOR operations.

2.6 Leakage Model and Simulation

We used simulations to investigate the key recovery algorithms in the specific
use case of a single trace attack against the AES key schedule for different noise
levels and multiple keys. If not stated differently, all simulations assume an 8-bit
HW leakage. Most simulations are testing different normally distributed noise
levels which we control by the standard deviation σ. Following [14,17] and [20]
we derive a noisy HW by:

h′ $←− HW (v) + N (0, σ), (1)

where the function HW (·) sums the number of bits in v’s binary representation
which are non-zero. We then create a Gaussian distribution around h′, N (h′, σ)
and derive noisy samples for each possible HW emulating a template attack.
The resulting probability vector was additionally multiplied by the probability
of observing the respective HW to mitigate the bias of a HW distribution.

3 Results

The result section is divided into two parts: We first analyze the results of two
profiled attack paths on the 2018 CHES CTF challenge. The score values are
utilized to create a preliminary understanding of how well BP and the SAT
solver perform in this setting. The results are indecisive and do not allow a



74 E. Strieder et al.

clear statement. Therefore, the results are complemented by simulated leakage
distributions in the second part. We show that the performance of BP without
any adaptations is worse compared to the SAT solver approach. Based on ideas
used in the SAT solver approach, graph alterations as well as adaptations of
the initial priors to improve the success rate of BP are discussed. We finally
propose a combination of brute-force and BP which levels the performance of
both approaches.

3.1 Case Study: 2018 CHES CTF

As introduced in Sect. 2.2 the 2018 CHES CTF challenge consists of three train-
ings datasets, one validation dataset and two datasets containing one non-
portability and one portability challenge. We concentrate on the portability
dataset which includes 1000 attack traces from an unseen device. The portability
dataset was identified as the harder challenge for an attacker (cf. Sect. 2.2).

Deriving Score Values. Multiple teams have used comparable strategies to
solve the challenge (cf. [8–10]). All teams use the divide-and-conquer approach
by extracting HW leakages for every key byte using profiled SCA attacks. The
resulting score values are used in the key recovery phase to find the value of the
correct master key. Gohr et al. [10] use a ResNet and Damm et al. [8] use TAs
in combination with LDA for dimensional reduction. We re-generated the HWs
of the 176 key bytes using the published and already trained ResNet of Gohr et
al. [10] for all 1000 attack traces. Additionally, we performed our own TAs with
and without LDA on the 1000 traces. All attacks are using first order leakage.

Table 1. Cumulative distributions of the number of traces which had none or less-or-
equal than 1, 2, 3 or 4 false top-2 HW guesses after each respective attack path. The
absolute number of traces contained in attack set 6 is 1000 and the total number of
key bytes which have been guessed 176. Only single-trace attacks are considered.

Number of false top-2 guesses

0 ≤1 ≤2 ≤3 ≤4

ResNet [10] 7.4% 24.3% 43.0% 61.9% 76.0%

Template [8] 0.0% 0.1% 0.6% 2.1% 4.7%

Template (this work) 0.0% 0.3% 0.6% 1.8% 3.3%

Following the evaluation of Damm et al. as well as Gohr et al., Table 1 shows
the cumulative distribution of the number of traces that had none or less-or-
equal than 1, 2, 3 or 4 false top-2 HW guesses after each respective attack path.
A top-2 error is the event that the correct HW guess has neither the highest nor
the second-highest likelihood. Table 1 indicates that our TAs reach comparable
results as Damm et al. [8]. Slight differences could be a result from numerical



ASCA vs. SASCA 75

variations. Based on TAs not a single set of score values could be created that
has no top-2 error. The ResNet approach reaches superior results, yielding 74
out of 1000 score sets with no top-2 error. We further analyzed this behavior
by plotting the standard deviation from the correct value for all 176 key bytes.
Figure 4 shows the standard deviation for the three profiling methods: ResNet,
LDA combined with TA and TA without LDA. The results indicate that the
ResNet is out-performing TAs and LDA-TA with an average standard deviation
of σ̄ResNet = 0.58 compared to σ̄TA = 0.83 and σ̄LDA-TA = 0.82. Yet, there is no
explanation for this discrepancy and we consider this as future research.

Fig. 4. Standard deviation of all 176 key bytes based on 1000 attacked traces using
three profiling methods. Left: ResNet by Gohr et al., middle: LDA combined with TA,
right: and only TA.

Key Recovery. We performed key recovery attacks on the extracted score sets
using a SAT solver and BP with the factor graph presented in Fig. 3. Table 2
shows the success rates of both methods using the HW results of Gohr’s ResNet
(σ̄ResNet = 0.58) and our TAs (σ̄TA = 0.83). The results of the TAs with LDA
did not yield better results than the TAs alone. Table 2 indicates that the SAT
solver leads more often to the correct key than BP while using the HW results
of the ResNet. When using the HW results of the TA, BP’s performance is
slightly better than the performance of the SAT solver. This is interesting and
one explanation could be the respective concrete distributions of bad HW guesses
and good HW guesses (cf. Fig. 4). Although the success rates are very low, each
combination has a non-zero probability of successfully recovering the correct key
candidate when using all 1000 independent traces. All in all, the results on the
real traces yield no decisive answer to the question of which method performs
better. We attacked only two unevenly distributed noise levels and only one fixed
master key. Therefore, we continued with simulations.



76 E. Strieder et al.

Table 2. Success rate of recovering the correct key based on HW leakage using 1000
attack traces. The HWs have been generated by Gohr’s ResNet [10] and own TAs. The
SAT solver leads more often to the correct key than BP using the HW results of the
ResNet. When using the HW results of the TA, BP’s performance is slightly better.

SAT BP

ResNet (σ̄ResNet = 0.58) [10] 0.270 0.002

Template (σ̄TA = 0.83) 0.001 0.016

3.2 Simulations

We used simulations to substantiate the results of the case study by diversifying
the master keys and investigating multiple noise levels instead of only two. If not
stated otherwise, we used the HW leakage simulations as presented in Sect. 2.6.
Each experiment was performed on randomly chosen but fixed AES-128 keys.
As discussed in Sect. 2.4 the SAT solver approach uses dropouts, includes only
the top-2 results and utilizes a number of sub-algorithms. For BP, we performed
some preliminary experiments to decide on implementation choices.

BP Implementation Details. There are some implementation choices for BP
that cannot be answered generally. This includes the number of iterations and
the choice of a number space in which all mathematical operations are performed.
The AES key schedule has a cyclic graph. BP is not guaranteed to converge for
cyclic graphs (cf. [19]). Therefore, and to reduce the run time of BP an iteration
limit has to be found. We performed preliminary experiments using samples of
random AES keys with perfect HW leakage and a graph that relies only on key
byte leakage. Perfect HW leakage is defined by a probability of 1 divided by
the number of occurrences of the HW for the values with the correct HW at
each variable node. To determine the optimal number of iterations, we run each
experiment 1000 times. More than 95% of keys that converged did so within 100
iterations. In rare cases, BP took 800 iterations until it converged, which could
of course be even higher. If this behavior occurs, BP oscillates until it converges
within 20 to 50 iterations without any noticeable linear decline beforehand. There
was no experiment in which BP converged to a wrong key. Hence, we used 100
iterations as an upper bound for all further experiments. We evaluated all BP
experiments using the histogram-based key rank estimation of Poussier et al.
[22]. This algorithm estimates a rank for the master key based on the rank of
the 16 key bytes, which is faster than key enumeration. The key rank estimate is
calculated after each iteration and is used to introduce an early break condition,
allowing for faster simulation cycles. If the differences between the estimated key
ranks is smaller than ε = 0.01 for 10 successive iterations, BP is stopped early.
Key rank estimation is only applicable if the target key is known and hence
is not usable for an actual attacker. Additional experiments showed a more
stable convergence if all calculations were performed in log space. Therefore all



ASCA vs. SASCA 77

mathematical operations are performed in this spaces which is not always the
best choice with regard to computational performance. All experiments were
implemented in Python 3.

Fig. 5. Comparison of the success rates of inferring the correct AES-128 key bytes
using the SAT solver approach with top-2 results or BP while inserting the full prob-
ability distributions or also with the limitation to the top-2 results. Each success rate
is calculated by using 100 randomly chosen keys and noise sampled as described in
Sect. 2.6.

Baseline Simulation Results. Figure 5 depicts a comparison of the success
rates of a SAT solver experiment set and two BP experiment sets. Each data
point is based on 100 randomly chosen master keys. The SAT solver approach
uses only the top-2 HW results of each score vector while ignoring the likeli-
hood. Each of the top-2 HWs will be factored in equally by constrain clauses.
There are two reasons why the SAT solver is only using top-2 results: First, the
computational complexity increases with a larger number of constrain clauses.
Second, a system of equations that is constrained by more equally likely constrain
clauses could result in more conflicts and the system of equations could finally
be unsolvable. BP however, allows for a more inbound representation because
each value has a probability according to its HW likelihood in the respective
score vector. This fits with the output of a TA. Hence, BP could be perceived as
the best solution without information loss. Figure 5 shows however, that this is
not the case. In this setting, the SAT solver outperforms BP, achieving ≈100%
success rate in the noise-free case and better performance for higher noise levels.
We compare this with two BP experiment sets. One uses the full probability
distribution as prior information and the second uses only the top-2 results. In
the noise-free case, BP has a success rate of ≈30% of converging to the correct
master key. BP achieves a slightly better performance from σ ≥ 0.2 onwards
when using the top-2 HWs. However, the influence is minor compared to the
SAT solver results. In the following, different adaptations of the BP approach
are presented to mitigate the discrepancy between the SAT solver and BP.

Round Sub-graphs. The round function of the AES key schedule is invertible,
i.e., every round key can be transferred back into the master key. Therefore, it
is enough to infer one of the 10 round keys to recalculated the master key.



78 E. Strieder et al.

We ran preliminary BP experiments on successful keys and discovered that a
minimum of 4 AES key schedule rounds are required to successfully converge
to a correct value. If the HW prior distributions of all 176 key bytes can be
extracted using a SCA, it is possible to create 36 sub-graphs with a minimum
distance of 4 successive rounds. If one out of the 36 graphs converges, a solution
is found. The idea behind this method is that any prior distribution that could
be wrong or noisy is taken out, so it cannot affect the convergence. Figure 6
shows on the left results for the BP experiments and on the right results for
the SAT solver. As expected, the success rates of both methods are increased
by inferring sub keys. The success rate of BP in the noise-free case increased by
≈50% reaching ≈45%. For the SAT solver, the noise tolerance increased by 0.1.

Fig. 6. Comparison of the success rates of inferring the correct AES-128 key bytes
using a graph which uses all 176 key bytes at once (Round 0–10) and the success rate
when using 36 possible sub-graphs that only use a subset of the 176 once at a time
(Round Combination). Each success rate is calculated by using 100 random chosen
keys. Left: BP results, right: SAT solver results.

Fig. 7. Comparison between the success rates of the SAT solver approach and BP
while using additional leakage of the output of the sub-byte operation. Each data
point includes 100 different AES keys. Left: All HWs are used at once (Rounds 0–10).
Right: All round combinations are evaluated separately (cf. Sect. 3.2).

Adding Sub-byte Leakage. We have shown that a graph-dependent adapta-
tion of the factor graph increased the performance of BP by ≈50%. Nevertheless,
the performance of the SAT solver is still superior. Therefore, the next step was
an adaptation of the input data. The SAT solver uses a system of equations for



ASCA vs. SASCA 79

modeling the AES key schedule, including the sub-byte operations. The used
factor graph shown in Fig. 3, which was used during the preceding experiments,
includes the sub-byte operation only in combination with the RCon and the XOR
operations. We changed the graph according to Fig. 2, which implies leakage of
the output of the sub-byte operations. To have a fair comparison, we added
constraining clauses for the sub-byte output values to the SAT solver. Figure 7
shows results that compare the success rates of the SAT solver approach and BP
while exploiting the additional leakage of the output of the sub-byte operations.
On the left side of Fig. 7, experiments that only included rounds 0–10 are shown.
The SAT solver approach still extracts the correct AES key with a probability
≈100% up to a sigma level of 0.3. From 0.3 on, the success rate declines to 2% at
σ = 0.5. BP starts with an overall success rate of 81% and reaches its minimum
success rate of 5% at σ = 0.6. On the right side of Fig. 7 experiments are depicted
that employ round combinations as discussed in Sect. 3.2 in combination with
the addition of sub-byte output leakage. In this setting, the simulated results of
BP are performing slightly better than the results of the SAT solver.

Table 3. Success rate of recovering the correct key based on HW leakage of 1000 single
trace attacks utilizing TAs.

SAT BP

Key byte 0.001 0.016

Key byte + Sub-byte 0.000 0.193

Sub-byte Leakage - 2018 CHES CTF. Encouraged by these results, we per-
formed an additional point-of-interest search on the traces of the CTF challenge
and could detect leakage of the outputs of the sub-byte operations. Indeed, we
could extract the leakage by using additional TAs for all of the 40 sub-byte out-
puts. Table 3 shows the results of recovering the correct key based on the HW
leakage of 1000 single trace attacks utilizing TAs with solely key byte leakage
and key byte leakage plus sub-byte output leakage. Although the SAT solver
could derive one master key from 1000 score sets with only key byte leakage,
it could not derive any when sub-byte output leakage was added. On the other
side, the performance of BP is heavily improved by adding the sub-byte output
leakage, with 193 key recoveries out of 1000 score sets. This indicates that, given
the sub-byte output leakage is present, BP is more noise-tolerant. The reason for
this behavior could be that if the HW of the input and the HW of the output of
a sub-byte operation are known, on average 70% of the 256 possible values can
be ruled out. Compared to that, if the correct HWs of the two inputs and the
output of a XOR operation are known, only 53% of the 256 possible values of
the output can be ruled out.



80 E. Strieder et al.

Combining BP and Brute-Force. It was shown that sub-byte output leakage
improves the performance of BP for attacks on the AES key schedule. However,
this implies that this leakage has to be present and exploitable by a SCA. If this
leakage is not present, we propose to brute-force the HWs of the sub-byte output
based on the adjacent key byte leakages. We have discussed that the information
contained in the sub-graphs of the AES key schedule is enough to converge to the
correct solution. The minimum number of key schedule rounds that still show
convergence is 4. A 4-round sub-graph contains 12 sub byte outputs (cf. Fig. 2).
Each of these sub-byte nodes has 9 possible HW solutions. This would result in
912 possible combinations. However, the 9 HWs can be constrained by using the
priors of adjacent variable nodes. On the left side of Fig. 8 the message flow to
estimate the HWs at the artificial sub-byte node (dashed) is shown. The initial
priors of the adjacent key bytes are transmitted through the factor nodes. The
resulting probability vector at the sub-byte node contains probabilities for each
of the 256 possible values. These values have to be transformed back to HW
leakage. The values are ranked based on their probability and unlikely values
are dropped. The remaining values are translated to HW and the likelihood
for each HW is calculated based on the number of occurrences. The result is
a HW distribution that ranks each HW for the artificially introduced sub-byte
operation and excludes unlikely HWs based on adjacent variable nodes. This is
done for each of the 12 artificial sub-byte variable nodes. A correct set of sub-
byte output HWs will lead to a better convergence (cf. Sect. 3.2). We estimated
the remaining brute-force complexity shown in Fig. 8 using the rank estimation
algorithm of Poussier et al. [22]. The remaining key rank lies between 19 and 25
keys for all tested noise levels, which can be brute-forced.

k0

k̂0

k13+ | C Ssb1

u
k0

u k̂ 0

v+|C vS uk13

Fig. 8. Left: Message flow to estimate artificially estimated sub-byte leakage. Right:
Remaining mean rank for 12 artificially added sub-byte output nodes based on 100
keys.

3.3 Dropouts and Early Break

The Influence of Dropouts. The SAT solver approach uses dropouts to mit-
igate the influence of erroneous top-2 guesses. Each experiment consists of 100
tries while randomly dropping constraining clauses. The left side of Fig. 9 shows
the influence of this approach. It compares the success rates for the SAT solver



ASCA vs. SASCA 81

Fig. 9. Comparison approaches with a dropout rate of 0% and 10%. The experiments
have been performed without key bytes leakage.

approach with a dropout rate of 0% and 10% of the HW side-channel informa-
tion. The results indicate that the success rate of the SAT solver is generally
better, with a dropout rate of 10%. We transferred this approach to BP by
assigning uniformly distributed priors to 10% randomly chosen variable nodes
and performing 100 tries. Figure 9 shows a comparison of the success rates using
solely key byte leakage and a dropout rate of 0% and 10%. Also for BP, this
improves the success rate to 60%.

Fig. 10. Left: Four example traces showing the development of the percentage of cor-
rectly inferred variable nodes within 100 iterations for non-converging BP runs. The
percentage is calculated based on the maximum number of correctly inferred nodes for
each attempt. Right: Mean trace of the percentage of correct inferred variable nodes
within 100 iterations for 30000 non-converging BP runs.

Number of Correct Nodes. BP is not guaranteed to converge for cyclic
graphs. An open research question is whether it is possible to stop a non-
converging BP run and use the probabilities (cf. Kannwischer et al. [18]). Finding
such a fixed iteration implies the existence of a sweet spot where the number of
correctly inferred nodes reaches a maximum. We investigated this by tracking
the number of correctly inferred variable nodes in all BP runs. Correctly inferred
means that the correct value has the highest probability at the respective vari-
able node. On the left of Fig. 10, four examples of the development of the number



82 E. Strieder et al.

of correct nodes within 100 iterations are depicted. The percentage of correct
nodes is calculated based on the highest number of correct nodes reached in this
attempt. The four example traces indicate that there might be no sweet spot.
Some traces reach their maximum in the first 10 iterations, some later, some
reach it multiple times, some only once. On the right of Fig. 10, the mean trace
of the development of the percentage of correct nodes for 30000 non-converged
attempts within 100 iterations is shown. The highest percentage of correctly
inferred nodes (≈70%) is achieved after 25 iterations on average. This could
be considered a sweet spot for this implementation. For now we cannot answer
the question how to use these non-converged probability distributions and will
consider this as future work.

4 Conclusion

We have analyzed SASCA as well as ASCA in the specific setting of the AES
key schedule. The AES key schedule consists mainly of XOR operations, which
hinder the flow of information. It was shown that, given only key byte leakage,
SAT solving is the better choice. BP, however, outperforms the SAT solver if
the output of the sub-byte operation leaks HWs. We discussed multiple possi-
ble graph-related as well as prior-related adaptations for BP to reach similar
results as the SAT solver. We used real traces as well as simulations to substan-
tiate the findings. Finally, results show that an early break for non-converged
graphs could be a viable next step in improving BP. All in all, plain BP as a
SASCA method should not be considered the most favorable key recovery app-
roach under each condition. We have introduced a feasible combination of BP
and brute-force to level the performance of BP and the SAT solver in the key
byte setting. A further inclusion of sub-algorithms of SAT-solving into BP could
be a viable next research step to combine the best of both worlds. The presented
comparison can serve as a starting point to analyze key recovery methods in
the broader context of other block ciphers, including substitution-permutation
networks, Feistel and LS-based ciphers. The success of these methods depends
on a variety of parameters, such as the leakage distribution, graph clustering
possibilities, implementation details like the construction of confusion layers or
register width and many others. We therefore consider the question of predicting
which method works best for other ciphers an open research question.

Acknowledgements. This work was supported by the German Ministry of Edu-
cation, Research and Technology in the context of the project Aquorypt (reference
numbers 16KIS1018).

References

1. AES Furious. http://point-at-infinity.org/avraes/
2. Adomnicai, A., Masson, L., Fournier, J.J.A.: Practical algebraic side-channel

attacks against ACORN. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp.
325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 20

http://point-at-infinity.org/avraes/
https://doi.org/10.1007/978-3-030-12146-4_20


ASCA vs. SASCA 83

3. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
sat-solvers. IACR Cryptology ePrint Archive, p. 24 (2007). http://eprint.iacr.org/
2007/024

4. Bettale, L., Dottax, E., Ramphort, M.: Algebraic side-channel attacks on masked
implementations of AES. In: Samarati, P., Obaidat, M.S. (eds.) Proceedings of
the 15th International Joint Conference on e-Business and Telecommunications,
ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal, 26-28 July 2018, pp. 424–
435. SciTePress (2018). https://doi.org/10.5220/0006869504240435

5. Le Bouder, H., Lashermes, R., Linge, Y., Thomas, G., Zie, J.-Y.: A multi-round
side channel attack on AES using belief propagation. In: Cuppens, F., Wang, L.,
Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol.
10128, pp. 199–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51966-1 13

6. Carlet, C., Faugère, J., Goyet, C., Renault, G.: Analysis of the algebraic side chan-
nel attack. J. Cryptogr. Eng. 2(1), 45–62 (2012). https://doi.org/10.1007/s13389-
012-0028-0

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Damm, T., Freud, S., Klein, D.: Dissecting the CHES 2018 AES challenge. IACR
Cryptol. ePrint Arch. p. 783 (2019), https://eprint.iacr.org/2019/783

9. Gohr, A., Jacob, S., Schindler, W.: CHES 2018 side channel contest CTF - solution
of the AES challenges. IACR Cryptology ePrint Archive, vol. 2019, p. 94 (2019).
https://eprint.iacr.org/2019/094

10. Gohr, A., Jacob, S., Schindler, W.: Efficient solutions of the CHES 2018 AES
challenge using deep residual neural networks and knowledge distillation on adver-
sarial examples. IACR Cryptology ePrint Archive, vol. 2020, p. 165 (2020). https://
eprint.iacr.org/2020/165

11. Green, J., Roy, A., Oswald, E.: A systematic study of the impact of graphical
models on inference-based attacks on AES. In: Bilgin, B., Fischer, J.-B. (eds.)
CARDIS 2018. LNCS, vol. 11389, pp. 18–34. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-15462-2 2

12. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48800-3 12

13. Guo, Q., Grosso, V., Standaert, F., Bronchain, O.: Modeling soft analytical side-
channel attacks from a coding theory viewpoint. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(4), 209–238 (2020). https://doi.org/10.13154/tches.v2020.i4.
209-238

14. Hamburg, M., et al.: Chosen ciphertext k-trace attacks on masked CCA2 secure
kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 88–113 (2021).
https://doi.org/10.46586/tches.v2021.i4.88-113

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.90

http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2007/024
https://doi.org/10.5220/0006869504240435
https://doi.org/10.1007/978-3-319-51966-1_13
https://doi.org/10.1007/978-3-319-51966-1_13
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/3-540-36400-5_3
https://eprint.iacr.org/2019/783
https://eprint.iacr.org/2019/094
https://eprint.iacr.org/2020/165
https://eprint.iacr.org/2020/165
https://doi.org/10.1007/978-3-030-15462-2_2
https://doi.org/10.1007/978-3-030-15462-2_2
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.1109/CVPR.2016.90


84 E. Strieder et al.

16. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on Kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021.
LNCS, vol. 13143, pp. 311–334. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92518-5 15

17. Hermelink, J., Streit, S., Strieder, E., Thieme, K.: Adapting belief propagation
to counter shuffling of NTTs. IACR Cryptology ePrint Archive, p. 555 (2022).
https://eprint.iacr.org/2022/555

18. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on keccak. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 243–268 (2020). https://doi.org/
10.13154/tches.v2020.i3.243-268

19. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

20. Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 130–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 7

21. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: deep learning-based physi-
cal side-channel analysis. IACR Cryptology ePrint Archive, p. 1092 (2021). https://
eprint.iacr.org/2021/1092

22. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

23. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 25

24. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

25. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

26. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 8

27. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

28. of Standards, N.I., Technology: advanced encryption standard. Technical report,
Department of Commerce, Federal Information Processing Standards Publications
(FIPS PUBS) 197, 2001, U.S., Washington, D.C. (2001). https://doi.org/10.6028/
nist.fips.197

29. VanLaven, J., Brehob, M., Compton, K.J.: Side channel analysis, fault injection
and applications - a computationally feasible SPA attack on AES VIA optimized
search. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) SEC 2005. IAICT,
vol. 181, pp. 577–588. Springer, Boston, MA (2005). https://doi.org/10.1007/0-
387-25660-1 38

https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://eprint.iacr.org/2022/555
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://eprint.iacr.org/2021/1092
https://eprint.iacr.org/2021/1092
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-540-31815-6_35
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.1007/0-387-25660-1_38
https://doi.org/10.1007/0-387-25660-1_38


ASCA vs. SASCA 85

30. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45611-8 15

31. You, S., Kuhn, M.G.: Single-trace fragment template attack on a 32-bit imple-
mentation of keccak. In: Grosso, V., Pöppelmann, T. (eds.) CARDIS 2021. LNCS,
vol. 13173, pp. 3–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
97348-3 1

https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-030-97348-3_1
https://doi.org/10.1007/978-3-030-97348-3_1


Removing the Field Size Loss
from Duc et al.’s Conjectured Bound

for Masked Encodings

Julien Béguinot1, Wei Cheng1,2, Sylvain Guilley1,2, Yi Liu1, Loïc Masure3(B),
Olivier Rioul1, and François-Xavier Standaert3

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
2 Secure-IC, Paris, France

3 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
loic.masure@uclouvain.be

Abstract. At Eurocrypt 2015, Duc et al. conjectured that the suc-
cess rate of a side-channel attack targeting an intermediate computation
encoded in a linear secret-sharing, a.k.a. masking with d+1 shares, could
be inferred by measuring the mutual information between the leakage and
each share separately. This way, security bounds can be derived without
having to mount the complete attack. So far, the best proven bounds for
masked encodings were nearly tight with the conjecture, up to a constant
factor overhead equal to the field size, which may still give loose security
guarantees compared to actual attacks. In this paper, we improve upon
the state-of-the-art bounds by removing the field size loss, in the cases
of Boolean masking and arithmetic masking modulo a power of two. As
an example, when masking in the AES field, our new bound outperforms
the former ones by a factor 256. Moreover, we provide theoretical hints
that similar results could hold for masking in other fields as well.

1 Introduction

If Side-Chanel Analysis (SCA) may be considered as a critical threat against
the security of cryptography on embedded devices, it is no longer a fatality.
Over the past decades, the masking counter-measure [4,13] has gained more and
more success among designers and developers, both from an implementation
and from a theoretical point of view. Masking can be seen as a linear secret
sharing applied on each intermediate computation in the implementation of a
cryptographic primitive that depends on some secret. In a nutshell, masking
increases the attack complexity of any SCA adversary exponentially fast with
the number of shares — provided that the leakages are sufficiently noisy and
independent — while increasing the runtime and memory overhead at most
quadratically [14]. This makes masking a theoretically sound counter-measure.

The Evaluation Challenge. Despite these achievements, the evaluation of
a protected implementation remains cluttered by various technical and even
conceptual difficulties. One way for evaluators to assess the security level of an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 86–104, 2023.
https://doi.org/10.1007/978-3-031-29497-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_5


Removing the Field Size Loss from Duc et al.’s 87

implementation is to mount some known end-to-end attacks and to infer some
security level based on the outcomes of these attacks. Nevertheless, this relies
on the assumption that the attacks mounted by the evaluators could depict
well the optimal attacks that any adversary could realize. As an example, if for
masking with two shares, end-to-end attacks using Deep Learning (DL) depict
well optimal attacks [2,19], it is no longer true when masking uses more shares [3,
21]. This could result in a false sense of security, and leaves the developers in
an uncomfortable situation where implementations become increasingly hard to
evaluate as their security level increases.

The Paradigm of Worst-Case Attacks. One way to circumvent this issue
is to consider attacks in a so-called worst-case evaluation setting [1]. The core
idea is to apply Kerckhoff’s principles to side-channel security, by granting all
the knowledge of the target to the adversary, e.g., the random nonces used
during the encryption, except the knowledge of the secret to guess. This way,
the evaluator can efficiently profile the target implementation in order to (more)
easily mount online attacks that approach the optimal ones. She can also analyze
the leakage of the shares independently, in order to take advantage of masking
security proofs to bound the security level under some assumptions.

Indeed, a series of theoretical works on masking allow to bound the amount
of information leaked by a masked secret, depending on the amount of infor-
mation leaked by each share separately, under the assumption that the shares’
leakages are independent. Such bounds can be expressed, e.g., in terms of the
Mutual Information (MI), and then in turn be translated in terms of the Suc-
cess Rate (SR) of any attack, as shown by Duc et al. at Eurocrypt 2015 [9].
Nevertheless, most of the current masking security proofs provide conservative
bounds, possibly due to technical artifacts. In particular, they generally require
more noise and more shares than expected by the best known attacks in order
to reach a given security level [8,11,23,24].

Duc et al.’s Conjecture. Confronting this observation with empirical evi-
dences, Duc et al. conjectured that the required number of queries to the target
device needed to recover the target secret of a SCA is inversely proportional to
the product of the MIs of each share [9]:

Na(SR) ≈ f(SR)
∏d

i=0 MI(Yi;Li)
,

where d stands for the masking order,1 and f is a “small constant depending on
the target SR” [10, p. 1279]. Later at Ches 2019, Chérisey et al. bounded this
constant based on the entropy of the target secret [7].

Due to its practical relevance, this conjecture recently gained attraction with
two independent and simultaneous works by Ito et al. [16] at CCS 2022 and
by Masure et al. [22] at CARDIS 2022. Using different approaches, both works

1 i.e., the number of shares is d + 1 if the independence assumption is met.



88 J. Béguinot et al.

prove a nearly-tight version of Duc et al.’s conjecture for masked encodings, up
to a constant factor equal to the field size M of the encoding.

This represents a significant improvement with respect to the previous proved
bounds — e.g., O(

Md
)

in Duc et al.’s proof [9], which additionally suffers from
a reduced noise amplification rate. But it remains loose compared to empirical
attacks performed against implementations of concrete ciphers like the Advanced
Encryption Standard (AES). At a high level, Ito et al. and Masure et al.’s
approaches used some back and forth between the MI and other metrics, such
as the Total Variation (TV) [22] or the Euclidean Norm (EN) [16], in order
to state noise amplification lemmata.2 If these conversions taken separately are
tight, their combination introduces an O(M) overhead, leading to the question
whether tighter bounds could be proved, on which we focus.

Our Contribution. In this paper, we positively address the latter question,
by removing this field size loss for masked encodings. At a high level, we do
that by working directly with noisy leakages, without relying on reductions to
more abstract (e.g., random probing) leakage models. Technically, our approach
consists in stating the amplification lemma directly in terms of the MI, without
any lossy conversion to other statistical distances. This idea is implemented using
a result from Information Theory called Mrs. Gerber’s Lemma (MGL) [5,17].
The MGL allows us to bound the MI between the secret and the whole leakage
by a function of the MIs between each share and their corresponding leakage.
Moreover, the bound given by the MGL is proved to be tight, in the sense that
there exists some leakage distributions for which the inequality from the MGL
is actually an equality. The only limitation compared to the previous works is
that our bound only works for fields whose size is a power of 2. Thankfully,
this limitation is not prohibitive, since our result covers, e.g., Boolean masking
or arithmetic masking modulo 2n. Nevertheless, we argue at the end of this
paper that similar results could also be obtained in different fields, whose size is
not necessarily a power of 2. More generally, and since our results are for now
specialized to masked encodings, it remains a natural question whether they
generalize to computation, as also conjectured by Duc. et al. [9].

2 Statement of the Problem

We start the paper by stating the problem under consideration, before providing
the solution in Sect. 3, and discussing some perspectives in Sect. 4.

2.1 Notations and Background

Side-Channel Attack. Let (Y,⊕) be a group of finite order, denoted by M .
Let K ∈ Y be the secret key chunk to guess. To this end, we consider that

2 e.g., Young-Minkowski’s convolution inequality for the TV [22] or Plancherel’s for-
mula combined with the convolution theorem for the EN [16].



Removing the Field Size Loss from Duc et al.’s 89

the adversary knows a sequence of Na plaintexts {P}Na
, and can observe the

sequence of leakages {L}Na
associated to the corresponding intermediate compu-

tations {Y = C(K,P)}Na
. Based on this side-channel information, the adversary

returns a key guess K̂. We define the Success Rate (SR) as SR = Pr
(
K = K̂

)
.

Since the SR increases when the number of observed traces Na increases as well,
we next define the quantity Na(SR,Y) as the minimal number of leakage traces
required for any adversary to reach a success rate at least SR.

Masking. In order to protect cryptographic secrets against side-channel leak-
age, we consider the intermediate computation Y — assumed to be uniformly
distributed — to be masked.3 Let Y0, . . . ,Yd be d + 1 random variables out
of which d are uniformly drawn from Y, that we call the shares, and denote
by Y = Y0 ⊕ . . . ⊕ Yd the random variable to protect, that we call the secret.
Concretely, for each trace L = (L0, . . . ,Ld), the adversary observes a leakage Li,
whose distribution conditionally to Yi is independent of all the other random
variables. In our setting, we assume that an evaluator has been able to charac-
terize the amount of uncertainty about Yi that has been removed by observing
Li, measured in terms of the MI, whose definition is recalled hereafter.

Definition 1 (Mutual Information). Let p,m be two Probability Mass Func-
tion (p.m.f.) over the finite set Y. 4 We denote by DKL(p ‖ m) the Kullback -
Leibler (KL) divergence between p and m:

DKL(p ‖ m) =
∑

y∈Y
p(y) log2

(
p(y)
m(y)

)

. (1)

Then, we define the Mutual Information (MI) between a discrete random variable
Y and a continuous random vector L as follows:

MI(Y;L) = E
L

[
DKL

(
pY | L

∥
∥
∥ pY

)]
, (2)

where pY and pY | L respectively denote the Probability Mass Function (p.m.f.)
of Y and the p.m.f. of Y given a realization l of the random vector L, with the
expectation taken over L.

In the remaining of this paper, we will assume that for each share Yi and its
corresponding sub-leakage Li, we have a bound MI(Yi;Li) ≤ δi. Intuitively, the
lower the δi, the less informative the leakages, and the lower the SR. Moreover,
we do not focus on the potential implementation overhead of masking in this
paper — that could grow quadratically in memory and runtime [15] — to only
focus on the security aspect of the counter-measure.
3 For cryptographic reasons, the vast majority of the intermediate computations are

uniformly distributed, including the inputs and outputs of Sbox — provided that
the plaintext and the key are uniformly distributed as well. The only non-uniform
intermediate computations of a block cipher may be the potential intermediate cal-
culations of an Sbox.

4 We assume without loss of generality that m has full support over Y.



90 J. Béguinot et al.

2.2 Problem and Conjecture

The problem that we consider here is to obtain upper bounds of the shape:

Na(SR,Y) ≥ f(SR,Y)
∏d

i=0(δi/τ)r
, (3)

where f(SR,Y) is a constant, τ is the so-called noise threshold, i.e., the maximum
amount of leakage that can leak such that the masking counter-measure remains
sound and r is the amplification rate. Duc et al. [9] conjectured that Na satisfies
an upper bound of the shape of Eq. 3, where τ ≈ 1 and r = 1.

A Reduction to Mutual Information Maximization. At Ches 2019,
Chérisey et al. have shown that Na can be linked to the MI as follows:

Na(SR,Y) ≥ f(SR,Y)
MI(Y;L)

, (4)

where f is a known, computable function of SR that can be bounded based on
the entropy of Y so that f(SR,Y) = O(log(M)) [7]. In other words, it is possible
to reduce the problem of bounding the security level of masked implementation
to the problem of bounding the MI:

max
Pr(Li | Yi),i∈�0,d�

MI(Y;L)

s.t. MI(Yi;Li) ≤ δi

. (5)

Following the previous conjecture, we expect that MI(Y;L) ≈ ∏d
i=0(δi/τ)r is a

valid upper bound for this problem, where τ ≈ 1, and r = 1, whereas it could so
far only be proven that MI(Y;L) ≈ M

∏d
i=0(δi/τ).

We note that the optimization defined in Eq. 5 is convex, with convex con-
straints, as stated hereafter.5

Proposition 1. The optimization problem defined in Eq. 5 is convex.

Proof. Let l be fixed. The mapping

Pr(Y0 | L0 = l0) , . . . ,Pr(Yd | Ld = ld) �→ Pr(Y | L = l)

is a convolution product [21, Prop. 1] so it is (d+1)-linear, and thereby convex.
Hence, since the mapping Pr(Y | L = l) �→ −H(Y | L = l) is also convex, the
composition of both mappings remains convex. Since Pr(Y | L) �→ −H(Y | L)
is the expectation of the latter composed mappings, it remains convex. Adding
H(Y) = log2(M) keeps the convexity property unchanged. 
�
As a result of this convexity, the optimal solution to the optimization of Eq. 5 is
necessarily such that for each i ∈ �0, d�, we have MI(Yi;Li) = δi.
5 The interested reader may find a similar convexity result, stated in terms of statistical

distance, in the works of Dziembowski et al. [12, Cor. 2].



Removing the Field Size Loss from Duc et al.’s 91

Serial vs. Parallel Leakages. In this section, we have implicitly assumed
that the leakages occured in serial, which mostly depicts what could happen in
a software implementation. We stress that our results may also extend without
loss of generality to leakages occuring in parallel, e.g., leakages of the form L =
L0 + . . . + Ld, provided that the independence assumption remains verified. It
suffices to reduce to the serial case, thanks to the Data Processing Inequality
(DPI):

MI(Y;L0 + . . . + Ld) ≤ MI(Y;L0, . . . ,Ld) .

3 A Proof Without Field Size Loss

We now provide our main result, namely we give a solution to the optimiza-
tion problem stated in Eq. 5. Compared to previous works, we introduce a mild
additional assumption on the group Y, namely that its order is a power of two.
Nevertheless, this assumption covers Boolean masking and arithmetic masking
modulo 2n. To this end, we need to introduce some definitions.

3.1 Introducing Mrs. Gerber’s Lemma

We first recall the definition of the entropy for a binary random variable.

Definition 2 (Binary Entropy). Let

Hb : [0, 1] −→ [0, 1]
p �−→ −p log2(p) − (1 − p) log2(1 − p)

be the binary entropy function.Let H−1
b : [0, 1] �→ [

0, 1
2

]
be the inverse of Hb

restricted to
[
0, 1

2

]
.

Likewise, we introduce the convolution for a binary random variable.

Definition 3 (Binary Convolution �). Let

� : [0, 1]2 −→ [0, 1]
x, y �−→ (1 − x)y + x(1 − y).

Note that when � is iterated, it can be replaced by a product, as stated next.

Proposition 2 (Iterated Star for Bias). For x0, . . . , xd ∈ [0, 1], the � opera-
tions can be mapped into a product for operands in the form of a bias as follows

d
�

i=0

(
1
2

− xi

)

=
1
2

− 2d
d∏

i=0

xi.

Proof. This is proved by induction on d. 
�



92 J. Béguinot et al.

Definition 4 (Mrs. Gerber’s functions). For any positive integers n, p, let
fH,2n : [0, 1]p+1 → [0, 1] be the function defined by

fH,2n(x0, . . . , xp) = Hb

(
p
�

i=0
H−1

b (xi)
)

.

Moreover, we also define the function fMI,2n : [0, 1]p+1 → [0, 1] as

fMI,2n(δ0, . . . , δp) = 1 − fH,2n(1 − δ0, . . . , 1 − δp) .

Remark 1. The function fMI is decreasing with respect to each of its inputs, and
is equal to 0 when every δi = 0.

We are now equipped to introduce the technical lemma that will set the
ground for our result, namely the so-called MGL. MGL has been first established
by Wyner and Ziv [30] for a two-element group Y, but it has been extended to
any Abelian group whose order is a power of two by Jog and Anantharam [17].

Theorem 1 (Mrs. Gerber’s Lemma [17, Thm. V.1, Claim V.1]). Let
(Y,⊕) be any Abelian group of order M = 2n. Let Y0, . . . ,Yd be d+1 independent
Y-valued random variables with side information L0, . . . ,Ld. We assume that
conditionally to Yi, Li is independent of any other random variable. Define
xi = H(Yi | Li), and without loss of generality assume that x0 ≥ . . . ≥ xd. Let
k =

⌊
x0

⌋
and p = max {i |�xi
 ≥ k }, then

k + fH,2n(x0 − k, . . . , xp − k) ≤ H(Y0 ⊕ . . . ⊕ Yd | L0, . . . ,Ld) . (6)

Proof. Let us denote Y = Y0 ⊕ . . . ⊕ Yd for short, and for any i ∈ �0, d�, let
Xi(l) = H(Yi | Li = l), such that E

Li

[Xi(Li)] = xi. Moreover, notice that by

assumption, all the Xi(Li) are mutually independent.
Jog and Anantharam claim [17, Thm. V.1] that for a fixed leakage l =

(l0, . . . , ld), we have

ϕ(X0(l0) . . . ,Xd(ld)) ≤ H(Y | L = l) ,

for some function ϕ that is convex with respect to each variable, when the remain-
ing are kept fixed [17, Cor. V.1]. Combining this property with the independence
of the Xi(Li), we may apply Jensen’s inequality d + 1 times:

ϕ(x0, . . . , xd) ≤ E
l
[ϕ(X0(l0) . . . ,Xd(ld))] ≤ E

l
[H(Y | L = l)] = H(Y | L) .

Finally, replacing ϕ by its expression from [17, Thm. 5.1] results in Eq. 6. 
�
Remark 2. In this paper, for better readability, all the logarithms are taken in
base 2, but all the results we rely on have been established with logarithms in
natural base. Thankfully, the proof of the MGL for M = 2 can be straightfor-
wardly extended to logarithms in any base [5, Thm. 1]. Likewise, all the technical
results used in Jog and Anantharam’s proof remain insensitive to the base, as
they essentially involve computing ratios of logarithms [17, Sec. 2].



Removing the Field Size Loss from Duc et al.’s 93

3.2 Application of Mrs. Gerber’s Lemma to Masking

Using the MGL, we prove the following upper bound on the side-channel infor-
mation leaked by a masked encoding.
Corollary 1 (Security of Masking). Let M = 2n and d be a positive integer.
Let Y0, . . . ,Yd be a (d + 1)-sharing of the uniform random variable Y and L =
(L0, . . . ,Ld) be such that, conditionally to Yi, the variable Li is independent of
the others. For all i ∈ �0, d�, define MI(Yi;Li) = δi, and assume without loss of
generality that there is a positive integer p such that for all i ≤ p, δi ≤ 1 and for
all i > p, δi ≥ 1. Then

MI(Y;L) ≤ fMI,2n(δ0, . . . , δp) . (7)

Proof. We upper-bound MI(Y;L) = H(Y) − H(Y | L) = n − H(Y | L) by
lower-bounding H(Y | L), using Theorem 1.

H(Y | L) = H(Y0 ⊕ . . . ⊕ Yd | L)
≥ n − 1 + fH,2n(H(Y0 | L0) − (n − 1), . . . ,H(Yp | Lp) − (n − 1))
= n − 1 + fH,2n(1 − MI(Y0;L0) , . . . , 1 − MI(Yp;Lp))
= n − fMI,2n(MI(Y0;L0) , . . . ,MI(Yp;Lp))


�

3.3 Comparison with Former Upper Bounds

The removal of the field size loss in Theorem 1 is illustrated by Fig. 1. The
graph depicts the upper bounds on MI(Y;L) (in bits) with respect to the noise
parameter δ — assuming that the δi are all equal. The dotted curves correspond
to the bounds given by Masure et al. [22]6 for different masking orders, whereas
the dashed curves are obtained with our new bound. It can for example be
noticed that for d = 1 and δi = 2−7, the bound from Ito et al. and Masure et al.
[22] is roughly equal to 2−5, whereas our upper bound is less than 2−12, meaning
that the gain is roughly 212−5 which corresponds to half the field size. A similar
factor is observed for larger d values.

We also add the following proposition (proven in Appendix) that gives a more
intuitive view of our results and makes the removal of the field size loss explicit.

Proposition 3 (Approximation in 0). The Taylor expansion of the MGL
function is the following:

fMI,2n(δ0, . . . , δd) = η
d∏

i=0

δi

η
+ o

(
d∏

i=0

δi

)

, (8)

where η = (2 ln 2)−1 ≈ 0.72.

6 We have afterwards noticed that the proof of Masure et al.’s bound [22, Prop. 2,
Thm. 3] was suboptimal, so the bound of Masure et al. is actually slightly better
than Ito et al.’s one by a factor 1

2
. That is why in the remaining of this paper, we

mainly compare against the bound of Masure et al..



94 J. Béguinot et al.

Fig. 1. Illustration of Eq. 1 for M = 256 (e.g., the AES S-box).

We note that the η parameter does not exactly correspond to the noise rate τ of
Subsect. 2.2, since it depends on the noise level. But for high noise levels, where
the first-order Taylor expansion is accurate, its value of 0.72 corresponds to the
noise threshold in the CCS 2022 and the CARDIS 2022 papers.7

3.4 The MGL: Tighter or Tight?

We have shown in Subsect. 3.3 that our upper bound obtained from the MGL
is tighter than the one achieved by Ito et al. [16] and Masure et al. [22]. We
may therefore wonder to what extent the new MI upper bound is tight. In other
words, are there some leakage models such that the MI between the secret and
the leakage of all shares equals the MGL function. In this respect, Jog and
Anantharam’s results could be interpreted as the fact that the bound given by
the MGL is at least locally tight, as stated hereafter.

Proposition 4 ([17, Thm. 5.1]). For all (x0, . . . , xd) ∈ [0, n]d+1, there exists
a leakage distribution (L | Y) such that:

1. For all i ∈ �0, d�, we have H(Yi | Li = li) = δi and
2. H(Y | L = (l0, . . . , ld)) = k + fH,2n(x0 − k, . . . , xp − k) ,

where k and p are the parameters defined in Theorem 1.

In other words, without further assumption on the leakage model, the bound
given by the MGL is the best possible. We next investigate whether it is actually
tight for practically-relevant leakage functions by confronting the bounds from

7 For low noise levels, it gets gradually closer to one, but this gain has limited practical
relevance since masking only provides high security with sufficient noise.



Removing the Field Size Loss from Duc et al.’s 95

the MGL to the direct computation of the MI for a shared secret. For this
purpose, we assume that each share leaks a deterministic function of its value
with an additive Gaussian noise, similarly to the experiments conducted by Ito et
al. [16, Sect. 7.1] and Masure et al. [22, Sect. 3.1]. In particular, we consider two
deterministic leakages, namely the Least Significant Bit (l.s.b.) of the share, or its
Hamming weight. The MI is estimated with Monte-Carlo methods by sampling
Nv = 10, 000 leakages. Then, for each simulated leakage, the conditional p.m.f.
can be exactly computed using a Soft-Analytical SCA (SASCA) [28].8

The results are depicted in Fig. 2, for Boolean sharings with 2 shares and
3 shares, and for l.s.b. (Figs. 2a, 2b) and Hamming weight leakages (Figs. 2a,
2b). Each plot depicts the MI of the secret, depending on the variance σ2 of
the additive Gaussian noise. As one can observe on Fig. 2a and Fig. 2b, the
bounds obtained by the MGL, depicted in dashed curves, are tight with the
plain curves computed from the SASCA for the l.s.b. leakage model. However,
for the Hamming weight leakage model, we observe a gap between our upper
bound and the ground truth. Moreover, the gap between the dashed curve and
the plain curve in Fig. 2d seems wider than the one in Fig. 2c. This shows that the
Hamming weight leakage model does not verify Proposition 4. The combination
of these observations confirms that no significant improvements of the bound can
be obtained without making additional assumptions on the leakage function.

3.5 Linking the MI with the Success Rate

Having upper bounded the MI between the secret and one side-channel trace,
we may then lower bound the required number of queries for any SCA adversary,
by leveraging Chérisey et al.’s f(SR,Y) function, as stated hereafter.

Corollary 2. In the same setting as in Corollary 1,

Na(SR) ≥ f(SR,Y)
fMI,2n(δ0, . . . , δp)

· (9)

Proof. Combining Corollary 1 with Eq. 4. 
�
We compare this approach with a simulated SASCA attack on Fig. 3, for the two
leakage models investigated in Subsect. 3.4. The plain curves denote the attack
complexity obtained from a key recovery. There, the success rate is estimated
with re-sampling from a validation set of Nv = 10, 000 traces. More precisely,
the Nv validations traces are re-shuffled between 100 and 1, 000 times to emulate
different attack sets. While this method is prone to be biased when Na is close to
Nv, the method remains sound if the success rate converged towards 1 within Nv

traces, as it cancels the bias.9 The dotted green curves correspond to Eq. 4 where
the direct estimation of the MI between the shared secret and the leakage of the
shares (from Fig. 2) is used. The dashed red curves correspond to the bound

8 https://scalib.readthedocs.io/en/latest/index.html.
9 This condition is verified retrospectively on Fig. 3.

https://scalib.readthedocs.io/en/latest/index.html


96 J. Béguinot et al.

Fig. 2. MI in function of the Gaussian noise variance σ2, for n = 8 bits.

given by Eq. 9. One can notice that the plain curves and the dotted curves are
always close to each other, meaning that Chérisey et al.’s function is reasonably
tight in our context. Moreover, similarly to what was noticed in Subsect. 3.4,
the bound provided by Eq. 9 is tight for the l.s.b. leakage model, but remains
non-tight for the HW leakage model.



Removing the Field Size Loss from Duc et al.’s 97

Fig. 3. Extending MI bounds to concrete security bounds.

4 On the Dependence of the Group Structure

In our previous derivations, we assume that the field in which masking is applied
is a power of two. Since this is the only limitation compared to the results of
Ito et al. [16] and Masure et al. [22], we finally discuss whether this additional
assumption is crucial. To this end, we show that Masure et al.’s approach using
Pinsker [6, Lemma 11.6.1] and reverse Pinsker [26, Theorem 1] inequalities can
be improved using the theory of majorization [20].

In a nutshell, majorization can be seen as a partial order relationship on
p.m.f.’s quantifying “how spread out” a p.m.f. is, compared to another. The



98 J. Béguinot et al.

Fig. 4. Cα for M = 16, 32. The two black dashed horizontal lines are at Cα = logM
and Cα = 2M . The dashed vertical line is at α = log(M log M)

2 log(M−1)
and distinguishes two

regimes for Cα, a logarithmic one and a polynomial one.

most spread out p.m.f. is the uniform distribution, so it can be used to assess
how close to uniform a given p.m.f. is. Hereupon, Rioul recently characterized
optimal Pinsker-like and reversed Pinsker-like inequalities [25]. While the opti-
mal Pinsker inequality does not improve upon Pinsker’s inequality, the optimal
reverse Pinsker does improve it. Leveraging this improvement, the results of
Masure et al. [22] are refined for arbitrary field size, as stated hereafter.

Theorem 2 (Informal). Let Y be a group of order M , and Y,L denote the
joint distribution of a d + 1-shared secret and its corresponding leakage. Let
τ = (2 log(2))−1 ≈ 0.72, and let P = 1

4

∏d
i=0 MI(Yi;Li) τ−1. Then, for any

α ∈ [0, 1], there exists a constant Cα ∈ [log2(M), 2M ] such that

MI(Y;L) ≤ CαPα . (10)

In particular, for α = 1
2 , we have

MI(Y;L) ≤ log(M)
(

1 +
1
M

)

P 1/2 . (11)

The bounds in Theorem 2 — whose formal statement is given and proven in
Appendix — are not as tight as the ones from Corollary 1 but hold for any field
size M , which makes them interesting when M is not a power of two.

Figure 4 depicts the range of Cα depending on α. It illustrates that there is
a trade-off between the constant factor overhead Cα and the effective number
of shares α · (d + 1). Overall, this provides good hints towards the conjectured
absence of constant factor overhead in non-binary fields, and opens some per-
spectives towards a formal proof of the masked encoding bound in this context.



Removing the Field Size Loss from Duc et al.’s 99

5 Conclusion and Perspectives

From a practical perspective, our work contributes to formalizing the soundness
of so-called shortcut evaluations, where the security level of an implementation
protected with higher-order masking is assessed based on the security of its
individual shares. By performing our proofs directly with noisy leakages, we
show that such shortcuts are actually tight for masked encodings.

As mentioned in introduction, a natural extension of this work is to explore
the tightness of bounds for masked computations (e.g., multiplications) and not
only encodings. Besides, our results of Subsect. 3.4 show that while the bound we
provide is locally tight (i.e., tight for some leakage functions), it is not tight for
other practically-relevant leakage functions like the Hamming weight one (and,
in general, for leakage functions having preimages of different sizes). It could
therefore be interesting to study whether a mild characterization of the leakages
could be used to improve the shortcut evaluation of masking for these functions.
Another possible track of research is to study whether improved connections
between the mutual information and the success rate can be obtained: despite
the bounds of Subsect. 3.5 already give good evaluations, there remains a small
gap that could possibly be removed (e.g., taking advantage of other information
theoretic metrics like the Alpha-Information [18]). Eventually, yet another ques-
tion is whether these bounds, for now studied in a known (random) plaintext
context cover adaptive chosen-plaintext side-channel attacks [29]?

Acknowledgments. François-Xavier Standaert is a Senior Research Associate of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in
part by the ERC project number 724725 (acronym SWORD). This work has also
partly benefited from the bilateral MESRI-BMBF project “APRIORI” from the ANR
cybersecurity 2020 call. The authors also acknowledge financial support from the French
national Bank (BPI) under Securyzr-V grant (Contract DOS0144216/00), a RISC-V
centric platform integrating security co-processors.

A Proof of Proposition 3

MI(Y ;L) ≤ 1 − Hb

(
1
2

− 2d
d∏

i=0

(
1
2

− H−1
b

(
1 − MI(Yi;L)

)
))

=
2 log(e)

4

d∏

i=0

4(
1
2

− H−1
b (1 − MI(Li;Yi)))2

+ o

( d∏

i=0

4(
1
2

− H−1
b (1 − MI(Li;Yi)))2

)

=
2 log(e)

4

d∏

i=0

4
MI(Li;Yi)
2 log e

+ o

( d∏

i=0

4
MI(Li;Yi)
2 log e

)



100 J. Béguinot et al.

That it under normalized form

MI(Y ;L) ≤ log(e)
2

d∏

i=0

MI(Li;Yi)
2

log e
+ o

( d∏

i=0

MI(Li;Yi)
)

= η

d∏

i=0

MI(Li;Yi)
η

+ o

( d∏

i=0

MI(Li;Yi)
)

.

B Technical Statements and Proofs from Sect. 4

Proposition 5 (Optimal Reversed Pinsker). Let fopt be the optimal reverse
Pinsker inequality, i.e.,

fopt :
[
0, 1

M

] −→ R+

Δ �−→ 1
M ((1 + MΔ) log(1 + MΔ)

+((1 − Δ)M − L) log((1 − Δ)M − L)) (12)

where L = �M(1 − Δ)
. For all p.m.f. P we have DKL(P ‖ U) ≤ fopt(Δ(P,U)).

Proof. By applying the entropy which is Schur-concave to Eqn. 51 in [25]. We
factor − logM in each term of the inequality to obtain Prop. 5. 
�
Theorem 3 (Formal version of Theorem 2). Let H be the class of function
that is lower bounded by fopt, concave when composed with a square root and
increasing. Let P = 1

4

∏d
i=0 C MI(Yi;Li), we have

MI(Y ;L) ≤ inf
f∈H

(f ◦ √ )(P ). (13)

Let Cα = supΔ∈]0,1− 1
M ] f

∗(Δ)Δ−2α = maxΔ=k/M,k∈{1,...M−1} f∗(Δ)Δ−2α.
We have

MI(Y ;L) ≤ min
(

log(1 + M2(4
1
M − 1)P ), (

1
M

+
√

P ) log(1 + M
√

P )
)

(14)

≤ inf
α∈[0,1]

Cα · Pα (15)

≤ log(M)(1 +
1
M

) · P
1
2 . (16)

Remark 3. The infinum in Eqn. 13 can be computed with the Legendre-Fenchel
transform f �→ f∗ (i.e. f∗(p) = supx{px − f(x)}). Indeed, it is given by Δ �→
−(−fopt ◦ √·)∗∗(Δ2) by applying Thm. 10 in [27].

The different inequalities are shown in Fig. 5. f1 is the best for Δ ≤ 1/M and
else f2 is the best. Eqn. 16 shows that if we reduce the security exponent to 1

2
we can obtain a mild (logarithmic) dependency in the field size.



Removing the Field Size Loss from Duc et al.’s 101

Fig. 5. Illustration of the inequalities for M = 16. Pinsker is the dashed blue line.
The classical reverse Pinsker is the orange line. The optimal reverse Pinsker fopt is the
green curve. The dotted curve is f2 and the red curve f1. (Color figure online)

Proof. All derivations of [22] hold for f ∈ H which shows Eqn. 13. Indeed,

KL(Y |L||U) ≤ fopt(Δ) Prop. 5
≤ f(Δ) fopt ≤ f

≤ f(
1
2

d∏

i=0

2Δ((Yi|Li);U)) XOR Lemma

= (f ◦ √·)(1
4

d∏

i=0

4Δ((Yi|Li);U))2

≤ (f ◦ √·)(1
4

d∏

i=0

C KL(Yi|Li||U)) Pinsker

Since (f ◦ √·) is concave, we apply Jensen inequality and take the expectation
to obtain the desired inequality. The expectation of the product is simplified to
the product of the expectations by independence of the terms. Let f1 : Δ �→
log(1 + M2(4

1
M − 1)Δ2) ≈ MCΔ2 and f2 : Δ �→ (Δ + 1

M ) log(1 + MΔ). We
show that f1 and f2 are in H. For f2 it is clear since f2 is f∗ where we removed
the negative 1/M periodic term. f1 is clearly concave in Δ2 and increasing.
To ensure that f1 ≥ fopt we consider the case of equality in 1

M . This imposes
log(1 + βMM−2) = 2

M where βM = M2(4
1
M − 1). For Δ ≤ 1

M , Mfopt(Δ) =
(1+MΔ) log(1+MΔ)+ (1−MΔ) log(1−MΔ) ≤ 2

M log(1+M2Δ2) by Jensen
in equality. This upper bound of fopt is a lower bound of f1. Since log is increasing
the inequality holds if and only if 1+ βMΔ2 ≥ (1+M2Δ2)

2
M . Equality holds in

0 and 1/M and we show that the derivative of the difference is increasing then
decreasing. The derivative is given by 2Δ(βM − 2M(1 + M2Δ2)

2
M −1) and its

sign is given by βM − 2M(1 + M2Δ2)
2
M −1. This quantity is positive in 0 and



102 J. Béguinot et al.

monotonically decreasing hence the result. It remains to prove the inequality for
Δ ≥ 1

M . To do so, we show that f1(Δ) ≥ log(1 + MΔ) ≥ 1+MΔ
M log(1 + MΔ).

Since log is increasing it is enough to have 1 + βMΔ2 ≥ 1 + MΔ that is Δ ≥
M/βM i.e., 4

1
M − 1 ≥ 1

M . This holds since ex − 1 ≥ x by convexity of the
exponential. This shows that f1 ∈ H and Eqn. 14 is proved. Let Hpoly = {fα :
Δ �→ CαΔ2α|α ∈ [0, 1]}, we show that Hpoly ⊂ H. Functions Hpoly are concave
when composed with a square root since α ≤ 1, increasing since α ≥ 0 and lower
bounded by fopt by definition of Cα. This proves Eqn. 15. To prove Eqn. 16
we observe that C0 = log(M), Cα is continuous and increasing in α. Consider
the values of Δ for which the sup in the definition of Cα is reached. Since fopt
is square-root convex in the intervals [k/M, (k + 1)/M ] and Δ �→ CαΔ2α is
square-root concave we can only have equality in k+1

M . This shows that Cα =
maxΔ=k/M,k∈{1,...M−1} f∗(Δ)Δ−2α. We verify that the maximum is reached in
1− 1/M when α = 1

2 . The ratio of the sequence f∗(k/M)( k
M )−2α is larger than

1 which proves Eqn. 16. 
�

References

1. Azouaoui, M., et al.: A systematic appraisal of side channel evaluation strategies.
In: van der Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS,
vol. 12529, pp. 46–66. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64357-7_3

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Crypt. Eng. 10(2),
163–188 (2019). https://doi.org/10.1007/s13389-019-00220-8

3. Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(2), 1–
25 (2020). https://doi.org/10.13154/tches.v2020.i2.1-25, https://tches.iacr.org/
index.php/TCHES/article/view/8542

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1_26

5. Cheng, F.: Generalization of Mrs. Gerber’s lemma. Commun. Inf. Syst. 14(2),
79–86 (2014). https://doi.org/10.4310/cis.2014.v14.n2.a1

6. Cover, T.M., Thomas, J.A.: Elements of information theory (2 ed.). Wiley (2006)
7. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most suc-

cessful. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(2), 49–79 (2019). https://doi.org/10.13154/tches.v2019.i2.49-79, https://
tches.iacr.org/index.php/TCHES/article/view/7385

8. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5_24

9. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_16

https://doi.org/10.1007/978-3-030-64357-7_3
https://doi.org/10.1007/978-3-030-64357-7_3
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.13154/tches.v2020.i2.1-25
https://tches.iacr.org/index.php/TCHES/article/view/8542
https://tches.iacr.org/index.php/TCHES/article/view/8542
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.4310/cis.2014.v14.n2.a1
https://doi.org/10.13154/tches.v2019.i2.49-79
https://tches.iacr.org/index.php/TCHES/article/view/7385
https://tches.iacr.org/index.php/TCHES/article/view/7385
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16


Removing the Field Size Loss from Duc et al.’s 103

10. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete (or
how to evaluate the security of any leaking device), extended version. J. Crypt.
32(4), 1263–1297 (2018). https://doi.org/10.1007/s00145-018-9277-0

11. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_6

12. Dziembowski, S., Faust, S., Skórski, M.: Optimal amplification of noisy leakages.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 291–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_11

13. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–
172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

16. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7–11, 2022. pp. 1521–1535. ACM (2022). https://
doi.org/10.1145/3548606.3560579

17. Jog, V.S.: The entropy power inequality and Mrs. gerber’s lemma for groups of
order 2n. IEEE Trans. Inf. Theory 60(7), 3773–3786 (2014). https://doi.org/10.
1109/TIT.2014.2317692

18. Liu, Y., Cheng, W., Guilley, S., Rioul, O.: On conditional alpha-information and
its application to side-channel analysis. In: ITW, pp. 1–6. IEEE (2021)

19. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-49445-6_1

20. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and
its applications. Springer Series in Statistics (1980)

21. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what you already
know scheme-aware modeling for profiling side-channel analysis against masking.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 32–59 (2023). https://doi.
org/10.46586/tches.v2023.i1.32-59

22. Masure, L., Rioul, O., Standaert, F.X.: A nearly tight proof of Duc et al’.s con-
jectured security bound for masked implementations. In: Buhan, I., Schneider, T.
(eds.) Smart Card Research and Advanced Applications, pp. 69–81. Springer Inter-
national Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-25319-5_4

23. Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on
a rényi day. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 683–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7_24

24. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9_9

https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-662-49099-0_11
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1109/TIT.2014.2317692
https://doi.org/10.1109/TIT.2014.2317692
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.1007/978-3-031-25319-5_4
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9


104 J. Béguinot et al.

25. Rioul, O.: What is randomness? The interplay between alpha entropies, total
variation and guessing. Phys. Sci. Forum 5(1) (2022). https://doi.org/10.3390/
psf2022005030, https://www.mdpi.com/2673-9984/5/1/30

26. Sason, I., Verdú, S.: Upper bounds on the relative entropy and Rényi divergence as
a function of total variation distance for finite alphabets. In: 2015 IEEE Information
Theory Workshop - Fall (ITW), Jeju Island, South Korea, October 11–15, 2015,
pp. 214–218. IEEE (2015). https://doi.org/10.1109/ITWF.2015.7360766

27. Touchette, H.: Legendre-Fenchel transforms in a nutshell (2005). https://
www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-
transform-1.pdf

28. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8_15

29. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel
attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_12

30. Wyner, A.D., Ziv, J.: A theorem on the entropy of certain binary sequences and
applications-I. IEEE Trans. Inf. Theory 19, 769–772 (1973)

https://doi.org/10.3390/psf2022005030
https://doi.org/10.3390/psf2022005030
https://www.mdpi.com/2673-9984/5/1/30
https://doi.org/10.1109/ITWF.2015.7360766
https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-transform-1.pdf
https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-transform-1.pdf
https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-transform-1.pdf
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-642-13708-2_12


Improving Side-channel Leakage
Assessment Using Pre-silicon Leakage

Models

Dillibabu Shanmugam(B) and Patrick Schaumont

Worcester Polytechnic Institute, Worcester, MA 01609, USA
{dshanmugam,pschaumont}@wpi.edu

Abstract. Side-channel leakage assessment is an essential tool in the
security evaluation of new chip designs. Pre-silicon side-channel analy-
sis tools have made significant progress in delivering assessment results
early in the chip design flow. However, a gap remains with actual imple-
mentations where measurements are affected by noise and distortions.
These measurement imperfections degrade the assessment of the physi-
cal prototype and may lead to false negatives. In this contribution, we
present a transfer learning technique to improve the assessment of physical
prototypes using pre-silicon side-channel leakage simulation of the same
implementation. The noiseless simulation traces are used for initial pro-
filing to train a convolutional neural network (CNN). The trained CNN
is then used in the assessment of measured traces. We apply this idea to
Ascon and Xoodyak, two different sponge-based cryptographic primi-
tives proposed in the NIST Lightweight Crypto competition. The target
platform is a software implementation on a RISC-V (RV32IMC) micro-
controller realized using 180 nm CMOS technology. Side-channel leakage
is first captured using gate-level power simulation and then measured
from a chip prototype of the same design. We investigate different side-
channel analysis strategies under simulated and measured scenarios and
demonstrate that, in each case, machine-learning-based side-channel leak-
age assessment outperforms other profiled and non-profiled analysis. How-
ever, using the proposed transfer learning technique, we can improve the
side-channel leakage assessment even further. With the proposed trans-
fer learning technique, we need approximately 2.87 less measured traces
compared to the previous best profiled attack. We conclude that the pro-
posed transfer learning using pre-silicon leakage models can improve the
side channel leakage assessment of post-silicon implementations.

Keywords: Transfer learning · Ascon · Xoodyak

1 Introduction

Side-channel leakage assessment, a critical step in the security evaluation of
an IC, quantifies the amount of side-channel leakage from the implementation.
There are multiple methodologies to characterize side-channel leakage of a cryp-
tographic implementation [15]. However, all of them rely on data measurements.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 105–124, 2023.
https://doi.org/10.1007/978-3-031-29497-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_6


106 D. Shanmugam and P. Schaumont

Design
Model

Power Sim

Convolu onal
Neural Network

IC

Power Meas
• Intrinsics • Intrinsics

• Noise
• Parasi cs

Transfer
Learning

Pre-silicon Leakage Assessment Post-silicon Leakage Assessment

Build

Convolu onal
Neural Network

Fig. 1. Post-silicon leakage assessment can be improved with transfer learning from a
pre-silicon leakage model.

This practical aspect of measurement requires engineering skills as well as insight
into the cipher design, the target hardware technology, and the methodology of
trace measurement. Practical side-channel measurement also faces challenges of
reproducibility, because IC performance characteristics and power consumption
are affected by voltage and temperature. For example, a side-channel campaign
that gathers millions of traces takes days or even weeks to complete, requiring
environmental controls on the test setup.

Pre-Silicon Side-Channel Leakage Assessment. During the design of a new
IC, side-channel leakage assessment (SLA) can be directly implemented on the
design descriptions of the hardware or the firmware [5]. A designer then uses
simulation to create power traces for a design. Pre-silicon power simulation is
noiseless and does not suffer from the imperfections suffered by physical mea-
surement. In contrast to traditional SLA pre-silicon SLA is implemented in a
white-box scenario with full knowledge of the design implementation details.
Thus, pre-silicon SLA helps a designer to understand the weak parts of a design
before committing it to silicon. In addition, pre-silicon SLA is able to support
root-cause analysis of side-channel leakage to the single gate or the single instruc-
tion [12].

Improving Post-Silicon Side-Channel Leakage Assessment. In this con-
tribution, we investigate how pre-silicon design knowledge can be applied to
improve post-silicon SLA. We want to use the knowledge of simulated side-
channel leakage properties on the evaluation of measured side-channel leakage.
So far, this problem was studied only as a cross-device attack between different
physical implementations [8,22]. Instead, we are using a portability threat model
[16] from simulation to implementation. Architectural abstracts as a predictive
leakage model were explored in PARAM [1] and ROSITA [19].

Figure 1 shows our strategy which makes use of deep learning. A pre-silicon
leakage assessment uses simulated power traces to map design-intrinsic leakage



Assessment with Pre-silicon Leakage Models 107

properties into a CNN. The simulated traces are noiseless and without distor-
tion. A post-silicon leakage assessment of the same design uses measured power
traces to map design-intrinsic leakage properties to a threat model. Measured
power traces may be corrupted by noise and measurement parasitics. Because of
these distortions, the post-silicon CNN has a harder time to learn the intrinsic
leakage properties of the design. To improve the post-silicon training, we apply
a transfer learning technique, which carries over some of the properties of the
pre-silicon CNN to the post-silicon CNN. Earlier work in transfer learning to
support the portability threat model was presented by Thapar et al. for the
case of cross-FPGA analysis [21], and by Paguada et al. as a generic toolbox
for deep-learning based side-channel analysis [14]. We believe our work is the
first to demonstrate the use of transfer learning techniques for SLA between the
pre-silicon (simulated) and post-silicon (measured) environment.

Use Scenario. Since our proposed transfer learning for SLA assumes that both
the design files and the physical implementation of a design are available, we
motivate the practical meaning of this assumption. First, we observe that for
new designs, the pre-silicon design phase always transitions into a post-silicon
phase after tape-out. Hence, it is helpful to transfer the pre-silicon SLA results
to the chip prototype evaluation, for the same reason pre-silicon test vectors are
beneficial to test the prototype’s functionality.

Second, intellectual property modules for cryptography can benefit from a
mechanism to transfer side-channel leakage properties from design to implemen-
tation. In current practice, only high-level (algorithmic) leakage models, such
as the Hamming Distance on a specific intermediate variable, capture the side-
channel leakage properties of an intellectual property (IP) module. In contrast,
our pre-silicon CNN is developed from gate-level power simulation and reflects
the specific leakage characteristics in much greater detail. This model is, there-
fore, of practical use to the system integrator of the IP module.

Hence, we see the practical use of the proposed SLA for both in-house IC
design and external IP modules. Finally, we emphasize that the proposed tech-
nique is an SLA method and not an attack method; the assumption that an
attacker needs access to detailed design information is too impractical.

Analysis Targets. In our experiments with side-channel leakage assessment, we
target Ascon [9] and Xoodyak [7], two sponge-based ciphers that have been
proposed as part of the NIST Lightweight Crypto competition. In contrast to
standard block-ciphers, only a limited number of side-channel analysis have been
published on sponge-based ciphers.

– A Differential Power Analysis (DPA) on Ascon was demonstrated by Samwel
on a Spartan-6 FPGA and required around 40K traces [18]. A machine-
learning based attack by Ramazanpour on Ascon required around 24K traces
on a Artix-7 FPGA [17].

– A simulated CPA on Xoodyak was demonstrated by Batina et al. using 30K
traces [2].

In our work we substantially improve upon these earlier results and find a correct
key within a few hundred traces. The authors of Xoodyak argue that the design



108 D. Shanmugam and P. Schaumont

has several built-in features against DPA, including slow absorption of the nonce,
key rolling, and ratchetting of the internal state [7]. Our assessment only assumes
that the Xoodyak design can be restarted, each time with a different controlled
nonce.

We use a software implementation of Ascon and Xoodyak on RISC-V
(RV32IMC) processor implemented in 180nm CMOS standard cells with on-chip
memory. Because this chip is an in-house design, we have access to the netlist of
the chip and we can establish a precise cycle-by-cycle correspondence between
gate-level simulated (pre-silicon) and measured (post-silicon) power traces.

To evaluate the SLA on our Ascon and Xoodyak implementations, we use a
combination of non-profiled and profiled techniques [15]. In addition to the pro-
posed transfer-learning technique, we use signal-to-noise ratio (SNR) analysis,
correlation power analysis (CPA), template attack (TA) and standard deep learn-
ing analysis with a CNN. We measure the efficiency of the SLA through the key
rank or the measurements to disclosure (MTD) for a known key. We acknowledge
that test vector leakage assessment (TVLA) is a popular side-channel leakage
assessment technique, but we use an assessment that also shows how efficiently
the key can be recovered (which is not possible using TVLA alone).

Contributions of the Paper. We perform side-channel leakage trace collection
for Ascon and Xoodyak using power simulation (pre-silicon) and measurement
(post-silicon). We then present a side-channel leakage assessment using SNR,
CPA, TA and CNN. For each case, we compare the pre-silicon simulation result
to the post-silicon measurement result. We present a novel transfer learning
technique from the pre-silicon threat model to the post-silicon threat model to
improve the deep learning assessment. We analyze the assessment complexity
and time complexity for all of the above cases.

Organization of the Paper. In Sect. 2 we summarize the implementation
details of Ascon and Xoodyak for the RISC-V processor. Section 3 presents a
traditional side-channel vulnerability analysis of Ascon and Xoodyak in terms
of SNR, CPA and TA. Section 4 describes the CNN assessment and our new
transfer learning technique. Section 5 summarizes and analysis the experimental
results. We then conclude the paper in Sect. 6.

2 Preliminaries

In this section, we define the metrics used for SLA, and we describe to test setup
of pre- and post-silicon SLA.

2.1 Side-channel Leakage Assessment Metrics

We rely on the following well known metrics [15].

– The SNR for simulated SLA is defined as the ratio of the data variance to
the algorithmic noise variance, whereas the SNR for measured SLA is defined
as the ratio of the data variance to the algorithmic and measurement noise
variance.



Assessment with Pre-silicon Leakage Models 109

Logic Synthesis
(Cadence Genus)

ASCON/Xoodyak SWPICO Chip RTL

SW Compile

PICO Chip
Logic Simula on Test Vectors

PICO Chip
Execu on

Power Es ma on
(Cadence Joules)

Power
Measurement

Side Channel Leakage assessment
in terms of SNR, CPA, TA, CNN, and CNN+TL

20MHz PICO clk
50MHz Sample Rate

SW Binary

VCD
Netlist Ac vity

Es mated
Power Trace

Measured
Power Trace

HW Netlist

Post-silicon SLA FlowPre-silicon SLA Flow

Fig. 2. Implementation flow and test set-up for Pre- and Post-Silicon side channel
leakage assessment.

– The key rank of a key k ε Km is defined as the number of keys with a
probability greater than k [13]. In SLA, the key rank of the known key k0
reflects how much information is disclosed under a given assessment method.

– MTD denotes the number of traces required to reduce the key rank of a known
key k0 to 1.

– Pearson’s Correlation coefficient is used to correlate measured and hypothet-
ically modelled power consumption (Pmsd and Phyp) and compute a correla-
tion for each key k. In SLA, the MTD is reached when the known key k0’s
correlation coefficient becomes maximal among all k ε Km.

2.2 Target Platform for SLA

The transfer learning is based on the combination of pre-silicon simulation results
with post-silicon measurements of the same design. The target is a small SoC
based on the open-source PicoRV RISC-V core. The chip uses 180nm TSMC
standard cells and includes 64 KB of on-chip RAM to hold variables. The instruc-
tions are fetched from an off-chip serial flash chip (QSPI). For this implementa-
tion, we have created an SLA flow that can analyze the implementation either in
pre-silicon context starting from the design files, or else in post-silicon context
starting from a prototype chip implementation (Fig. 2). Both flows lead to traces
that can be compared regardless of their origin. The simulation and measure-
ment setup use a common chip clock (20 MHz) and a common power sample rate
clock (50 MHz).

Pre-Silicon SLA Flow. In a pre-silicon setting, power-based side-channel leak-
age is simulated on a post-synthesis netlist of the design. Initially, we write



110 D. Shanmugam and P. Schaumont

the target as a C program for the PicoRV core, and compile the program
using riscv32-unknown-elf-gcc (v 10.2.0) compiler without optimization into
a binary image. The design is then simulated at gate-level accuracy while collect-
ing toggle traces (VCD) for every net. We then use Cadence Joules (RTL Power
Solution, Version v20.11-s001 1) and a Skywater 130nm standard cell library to
compute frame-based power estimation for the complete netlist using the toggle
traces and the post-synthesis netlist. This simulation and power estimation is
repeated for every test vector in the side-channel measurement campaign.

Post-Silicon SLA Flow. In a post-silicon setting, the same binary is run on
the actual chip while we captured power-based side-channel leakage through a
Lecroy Waverunner 7 oscilloscope. We filtered the side channel leakage signal
using a 100 KHz - 30 MHz minicircuits bandpass filter before digitizing. To mark
the region of interest for side-channel analysis, we instrumented the C program
with GPIO triggers. The same method is used for simulation so that all traces
can be aligned.

On the SLA Accuracy of Gate-Level Power Simulation. A power simula-
tion is never fully accurate, so an important question relates to the similarity of
simulated and measured power traces. Indeed, a power simulation must make a
trade-off between the simulation accuracy and the simulation speed of a model.
By increasing modeling detail, the estimated power consumption will be a better
approximation of the physical power consumption, while the power simulation
speed will drastically decrease. Side-channel leakage originates from any data-
dependency in the power consumption. As we go down in abstraction level from
RTL to transistor, each new abstraction level uncovers additional dependencies.
For example, gate-level power models can capture gate drive strength, static
power leakage, and IR-drop effects, all of which are invisible at the RTL power
model yet contribute data-dependent power dissipation. We rely on gate-level
power modeling but accept that some power details, such as parasitic coupling,
will be ignored by the simulation. At the time of writing, transistor-level power
simulation of a complete cryptographic side-channel assessment cannot yet be
completed using a reasonable amount of design power [20].

3 Traditional Side-Channel Vulnerability Analysis

In this section, we capture the SLA of Ascon and Xoodyak using common side-
channel leakage assessment tools. We use the analysis of the SNR to establish
the leakage point of interest for each target. Then, we perform a CPA and a TA.

3.1 Results Summary

Table 1 summarizes the results for all assessment techniques investigated in this
contribution, including a non-profiled technique (CPA) and several profiled tech-
niques (TA, CNN). For each of Ascon and Xoodyak, we analyze three cases:
SLA using simulated traces, SLA using measured traces, and SLA with the pro-
posed transfer learning technique (TL). We will elaborate on individual result
entries in the following subsections.



Assessment with Pre-silicon Leakage Models 111

Table 1. Assessment using MTD metric for all targets. The number of traces shown
is the average needed to retrieve a key byte. For profiled attacks, the number of traces
used for profiling are listed separately.

Primitive SLA flow CPA TA CNN

MTD Profiling
(x 1,000)

MTD Profiling
(x 1,000)

MTD

ASCON Simulated 8 9 2 9 2

Measured 2,000 90 573 90 500

TL – – – 19 176

Xoodyak Simulated 91 19 84 19 60

Measured 700k 90 520 90 490

TL – – – 60 170

3.2 Traditional SLA on ASCON

Ascon ASCON-128 is an authenticated-encryption with associated-data primi-
tive which is selected as a finalist in the NIST Lightweight Cryptography compe-
tition [10]. ASCON-128 is a duplex-sponge-based construction with four phases
of operation: initialization, associated data, plaintext/ciphertext, and finaliza-
tion. All phases use the same permutation function which includes a constant
addition, a substitution layer, and a linear layer. ASCON-128 has 320 bits of
state, divided into five double words that hold the 64-bit initialization vector
(X0), the 128-bit key (X1,X2) and the 128-bit nonce (X3,X4) respectively.

In Ascon’s SLA we aim to demonstrate that the 128-bit key can be recovered
at a given number of traces. The controlled variable, required to drive differential
power analysis, is the nonce (X3,X4). We focus on the non-linear operations in
the S-box of Ascon that compute X1 and X4, as expressed in the following
Boolean equations. In these equations, the nonce is loaded in (X3,X4) and the
key is loaded in (X1,X2).

X4 = (X4 ⊕ X3) ⊕ ((255 ⊕ (X0 ⊕ X4))&X1)
X1 = ((X1 ⊕ ((255 ⊕ (X2 ⊕ X1))&X3))

⊕ ((X0 ⊕ X4) ⊕ ((255 ⊕ X1)&(X2 ⊕ X1))))
(1)

The target implementation of Ascon is an 8-bit reference implementation
in software. Listing 1.1 shows the assembly code to compute X4 as a byte-
wise operation. The point where key and control inputs merge is sensitive to
side-channel leakage. The and operation on line 16 is the first line where that
happens. Subsequent operations, such as on line 18 and 20, are potential targets
as well. To understand which of these operations is the best candidate to mount
a CPA, we perform SNR analysis on 500 simulated traces (Fig. 3, top) [15]. This
analysis shows that the store instruction contributes a greater data-dependent
power variation and, therefore, is the proper target for the side-channel leakage
assessment.



112 D. Shanmugam and P. Schaumont

Fig. 3. SNR Analysis of X4: (top) SNR on 500 simulated traces to identify leaky
instructions (bottom) SNR on 2K simulated traces (black) and 200K measured traces
(grey) to estimate illustrate by practical measurement. (Color figure online)

Ascon SNR Analysis. The SNR analysis of Fig. 3, top, demonstrates an impor-
tant major advantage of simulation-based traces, namely the absence of measure-
ment noise. Figure 3, bottom, compares the SNR of 2K simulated traces to the
SNR of 200K measured traces. Both the measured and simulated traces are
aligned by making use of a GPIO trigger in the real and simulated Ascon soft-
ware. The range of the X axis is roughly equivalent to the execution of Listing 1.
The X axis spans 640 sample points, which corresponds to 12.8 μs or 256 cycles.
The simulated SNR shows two sharp peaks corresponding to the memory-store
operation (Fig. 3, top). However, the SNR on measured traces is much noisier
and shows leakage over the last 64 samples of the curve. We attribute these
extra leaky points to measurement noise, trigger signal jitter, and possibly an
unexplained effect from the off-chip QSPI flash.

Ascon Correlation Power Analysis. Fig. 4 shows the outcome of CPA on
Ascon for both a simulated assessment (black) and a measured assessment
(grey). Both cases converge at the same key value, although the simulated CPA
requires only 8 traces while the measured CPA needs 2,000 traces (Table 1).

The power model of the CPA is the Hamming Weight of X4, whose update
depends on both the lower half of the secret key K1 and the controlled nonce.
Specifically, with i representing the test vector index, and j denoting the key
byte index 0 to 7, we find the following power model.

Xi,j
k = (N2i,j ⊕ N1i,j) ⊕ ((255 ⊕ (IV i,j ⊕ N2i,j))&K1i,jk )

Phyp = HW [(Xi,j
k )]

(2)

The correlation of the power model with the power traces then leads to the
value of K1. After K1 is found, its value is used to mount a CPA on the value of
X1 which combines both the upper half K2 and the lower half K1 of the secret
key. This leads to the value of K2.



Assessment with Pre-silicon Leakage Models 113

Listing 1.1. Portion of the SBOX computation of Ascon. Instructions highlighted in
blue are potential targets for CPA.

1 lui a5 ,0 x30005

2 addi a5 ,a5 ,8

3 li a4 ,1

4 sw a4 ,0(a5) // GPIO trigger up

5 lbu a4 ,-52(s0)

6 lbu a5 ,-60(s0)

7 xor a5 ,a5 ,a4 // a4 <- X3^X4

8 andi a4 ,a5 ,255

9 lbu a3 ,-28(s0)

10 lbu a5 ,-52(s0)

11 xor a5 ,a5 ,a3 // a5 <- (X4^X0)

12 andi a5 ,a5 ,255

13 not a5 ,a5 // a5 <- (255^( X4^X0))

14 andi a3 ,a5 ,25

15 lbu a5 ,-36(s0)

16 and a5,a5,a3 // a5 <- (255^( X4^X0))&X1

17 andi a5 ,a5 ,255

18 xor a5,a5,a4 // a5 <- (X3^X4 )^(255^( X4^X0))&X1

19 andi a5 ,a5 ,255

20 sb a5,-52(s0) // store X4

21 lui a5 ,0 x3000

22 addi a5 ,a5 ,8

23 sw zero ,0(a5) // GPIO trigger down

Ascon Template Attack. A template attack is a well known profiled attack [6].
It uses a profiling phase to compute a template, a set of probability distributions
that describe how the power traces vary for many different keys. Then, in the
testing phase, it estimates the probability distribution of the target and finds the
best matching distribution from the template. This leads to the unknown key.
The template is computed over a limited number of point of interest (POI) in
the trace. In our Ascon Template Attack, we select 15 POIs among 640 possible
trace points. We build the profile on the Hamming Weight of X4, computing the
mean and covariance matrix for each Hamming Weight Value. Because of the
profiling phase, a template attack can outperform a CPA. Table 1 demonstrates
that the Ascon key is extracted using just 2 simulated power traces, or 573
measured power traces.

3.3 Traditional SLA on XOODYAK

Xoodyak is an authenticated-encryption with associated-data primitive which
is also selected as a finalist in the NIST Lightweight Cryptography Competition
[7]. Like Ascon, Xoodyak is based on duplex-sponge construction which allows
its use in multiple symmetric-key applications. The Xoodyak design is inspired
by the Keccak round permutation. The assessment target in Xoodyak is the θ
function which adds the key K, the nonce N and a counter C as X = K⊕N ⊕C.
In this expression, the nonce and the counter are the controlled variables. The
assessment of Xoodyak is harder than that of Ascon for two reasons. First, the



114 D. Shanmugam and P. Schaumont

Fig. 4. Ascon: Correlation Power Analysis on simulated (black) and measured (grey)
traces. (Color figure online)

XOR operation which combines the controlled variables with the key is linear.
Since A⊕B = Ā⊕ B̄, this leads to so-called ghost-peaks of equally-likely keys in
the assessment [4]. Second, our specific implementation of Xoodyak is imple-
mented on a 32-bit wordlength which combines 4 different key bytes in a single
32-bit RISCV instruction. Hence, the Xoodyak traces will have a higher level of
algorithmic noise. Listing 2 shows the relevant portion of the Xoodyak imple-
mentation under consideration for SLA. The xor operation on line 7 is a potential
target, as well as the dependent xor on line 9 and the store-word instruction on
line 10.

Xoodyak SNR Analysis. Because a single execution of Listing 2 computes on
four different key bytes, one can compute four different SNR curves for a single
set of power traces. Figure 5a shows the SNR on 10K simulated traces. Its X-
axis corresponds roughly to the execution of Listing 2, and we find that leakage
is concentrated in a few power samples. Similar to the analysis on Ascon, we
find the store-word instruction to be a dominant contributor to data-dependent
power dissipation. The same SNR curve is also computed on 1500K measured
traces as shown in Fig. 5b. Using a common GPIO trigger, we are able to align
the SNR analysis of the simulated traces to the measured traces. Because of the
high level of algorithmic noise, the resulting SNR is extremely noisy. We mark
the last 100 samples of the measurement window as containing leaky samples in
SLA.

Xoodyak Correlation Power Analysis. Xoodyak’s CPA uses a Hamming
Weight power model on P i,j

x , where x denotes a word index range from 0 to 3, i
represents the test vector, and j denotes the key byte index range from 0 to 3.
P i,j
x , depends on the lower half of the secret key Ki,j

x , the controlled nonce N i,j
x

and counter value Ci,j
x . We find the following power model.



Assessment with Pre-silicon Leakage Models 115

Listing 1.2. Portion of the θ computation of Xoodyak. Instructions highlighted in
blue are potential targets for CPA.

1 lui a5 ,0x3000

2 addi a5 ,a5 ,8

3 li a4 ,1

4 sw a4 ,0(a5) // GPIO trigger up

5 lw a4 ,-24(s0)

6 lw a5 ,-20(s0)

7 xor a5,a5,a4 // a5 <- K[0:3]^N[0:3]

8 lw a4 ,-28(s0)

9 xor a5,a5,a4 // a5 <- K[0:3]^N[0:3]^C[0:3]

10 sw a5,-24(s0) // store X

11 lui a5 ,0x3000

12 addi a5 ,a5 ,8

13 sw zero ,0(a5) // GPIO trigger down

HW [P i,j
x ] = HW [Ki,j

x ⊕ N i,j
x ⊕ Ci,j

x ] (3)

Correlating the power model and the power traces yields the subkey of K0.
Figure 6 shows a correlation plot of the Xoodyak CPA. Two peaks are found,
one on the true key byte (253) and one on the complementary key byte (2).
Both the simulated and measured correlation plot are similar, even though the
measured plot requires 700K traces due to the noisy SNR.

Xoodyak Template Attack. The template attack on Xoodyak proceeds as
on Ascon, and builds the template on the Hamming Weight of the θ function
output. Table 1 shows that the key is extracted on 84 simulated power traces or
520 measured power traces.

4 Deep Learning Assisted Side Channel Analysis

We now develop the transfer learning technique as an extension of deep learning
based side-channel vulnerability analysis.

4.1 Deep Learning SLA on ASCON

Ascon CNN Development. The network architecture and hyperparameter
selection play an important role in successful adversarial threat modeling [16].
The CNN for a single Ascon keybyte consists of a feature extractor and a 256-
class classifier. The input to the CNN is a window of 64 power samples, selected
through the SNR analysis of Fig. 3, bottom. A convolutional layer extracts spe-
cific features, similar to POIs, from the power samples. Next, the dense layers
map the variation within and across different traces into a set of 256 probabilities.
Batch normalization transforms the output of a previous layer by subtracting
the batch mean and dividing by the batch standard deviation. Dropouts are
used to randomly turn off a percentage of the network’s neurons in order to



116 D. Shanmugam and P. Schaumont

Fig. 5. Xoodyak: (a) SNR on 10K simulated traces (b) SNR on 1500K measured
traces

Fig. 6. Xoodyak: Correlation Power Analysis on simulated (black) and measured
(grey) traces. (Color figure online)

improve the model’s learning. Figure 7 shows our network and its hyperparam-
eters. We adopted the ASCAD network [3] and optimized it for Ascon using
random search over the hyperparameters provided in Table 2. The resulting sim-



Assessment with Pre-silicon Leakage Models 117

Table 2. Hyperparameter search space for ASCON CNN. We selected the best hyper-
parameter (fit) through exhaustive search of the search space.

Hyperparameter Ranges

Min Max Fit

Batch size 50 200 50

Convolution layers 1 5 1

Kernel size 1 11 3

Stride 1 4 1

Dense layers 1 3 2

Neurons 10 256 64

Learning rate 0.00001 0.001 0.001

Epochs 50 500 200

Drop out 10% 30% 30%

Options Fit

Pooling type (Average,Max) Average

Optimizer (Adam, RMSprop) Adam

Activation function (ReLU,SeLU) ReLU

Fig. 7. ASCON: Convolutional Neural Network architecture for adversarial threat
model of simulated and measured traces

ulated model has an accuracy of 94%, whereas the measured model and transfer
learning model are close to each other (82% and 81% respectively).

Ascon Transfer Learning. We now apply transfer learning and demonstrate a
reduction in learning time as well as in assessment effort. The idea is to transfer a
part of the pre-silicon threat model to the post-silicon threat model. Post-silicon
traces are noisy, which means that a large amount of traces are needed to learn
the threat model at a high learning cost. Pre-silicon simulations are slow, but
the pre-silicon traces are noiseless and a threat model can be learned from them
quickly using much fewer traces.



118 D. Shanmugam and P. Schaumont

Fig. 8. Transfer Learning: (1) training from simulated traces, (2) transfer learning on
measured traces keeping the convolutional layer frozen, and (3) assessment using the
transfer-learned CNN.

Table 3. Three test cases are investigated over simulated and transfer learning models.
For each test case, corresponding simulated model weights are used for transfer learning

Primitive SLA of Sbox X4 Simulated Transfer

Profiling
(x 1,000)

MTD Accuracy Profiling
(x 1,000)

MTD Accuracy

ASCON Test case 1 5 11 94% 19 191 80%

Test case 2 10 2 94% 40 176 81%

Test case 3 20 2 94% 60 162 82%

Figure 8 illustrates the proposed transfer learning. First, we perform deep
learning SCA on the simulated traces to identify the architecture, hyperparam-
eters and weights. Next, we continue learning with these parameters on the
measured traces. In the second phase, the convolutional layer remains frozen.
This keeps the feature extraction layer unchanged, while the other layers main-
tain trainable parameters for the classification. Finally, we perform assessment
on the measured traces using this new network created from transfer learning.

Table 3 represents the number of profiled traces against the number of test
traces (MTD) for the CNN on simulated and transfer learning on measured
traces. Here, three test cases are used to demonstrate different trade-offs between
profile learning and testing. In the Table 4, we calculated the number of test
traces against the number of profiled traces for measured traces. Using transfer

Table 4. On average, transfer learning model requires 1.97 times less profiling traces
and 2.85 times less testing traces compare to measured learning model

Primitive SLA of Sbox X4 Measured

Profiling (x 1,000) MTD Accuracy

ASCON Test case 1 45 521 80%

Test case 2 90 491 82%

Test case 3 100 490 82%



Assessment with Pre-silicon Leakage Models 119

Table 5. Two test cases are investigated over simulated and transfer learning models.
For each test case, corresponding simulated model weights are used for transfer learning

Primitive SLA of Linear(θ) Simulated Transfer

Profiling
(x 1,000)

MTD Accuracy Profiling
(x 1,000)

MTD Accuracy

Xoodyak Test case 1 18 56 93% 45 160 80%

Test case 2 19 60 94% 60 170 81%

Table 6. On average, transfer learning model requires 2.87 times less testing traces
compare to measured learning model

Primitive SLA of Linear (θ) Measured

Profiling (x 1,000) MTD Accuracy

Xoodyak Test case 1 80 486 81%

Test case 2 90 494 83%

learning, we obtain faster learning because we need to process fewer traces.
Moreover, we need fewer test traces to assess the design. Overall, the accuracy
for simulated, transfer and measured are 94%, 81% and 82% respectively.

Figure 9 displays 16 subplots corresponding to the 16 key bytes of ASCON.
Each subplot represents convergence of the key rank of the measured and transfer
learning model. A major rank comparison between the transfer and the measured
learning model in the convergence region shows that the model on measured
traces lags by 42 ranks on average. This indicates that transfer learning models
provide a gain of 5 to 6 bits in guessing entropy.

4.2 Deep Learning SLA on XOODYAK

Xoodyak CNN development We adopted the same architecture as in Fig. 7
with the following changes. First, all layers use batch normalization and dropout
(0.3). Second, the learning rate is fine-tuned to 0.0001.

Xoodyak Transfer Learning. Table 5 compares the CNN performance for
simulated and transfer learning on measured traces. From Table 6, it is clear
that, transfer learning model (TL) requires 1.61 and 2.88 times less profile and
test traces compare to measured model (CNN). Once again, transfer learning
achieves faster learning and shorter evaluation.

Similar to ASCON, transfer learning model of Xoodyak converge 68 rank
faster compare to measured model as given in Fig. 10.

5 Analysis of Results

Finally, we compare the performance of the proposed transfer learning technique
to classic SLA as well as deep learning SLA.



120 D. Shanmugam and P. Schaumont

Fig. 9. The red color highlighted in the subplots indicates that there is a difference
in key byte rank between measured(CNN) and transfer(CNN+TL), when CNN+TL
converges to rank zero. (Color figure online)

Assessment Complexity. We summarize the experiments on transfer learning
with simulated traces as follows. First, it is clear that the proposed transfer
learning method outperforms all other assessment we tried. Table 7 expresses
the relative assessment gain over CPA. This is the ratio of the number of traces
required to reveal a key byte using a chosen assessment over the number of
traces required using CPA. For the transfer learning method, the gain goes up
to 4,100x for a noisy target. This is not unexpected since noisy traces are a



Assessment with Pre-silicon Leakage Models 121

Fig. 10. Xoodyak : Key rank converge of transfer learning (CNN+TL) is 68 ranks
faster than measured (CNN)

Table 7. Relative Assessment gain in number of traces, using Correlation Power Anal-
ysis as the reference. A Gain of N means that N times more traces are needed in CPA,
so higher is better. The transfer learning method outperforms the best template attack
as well as the measurement-only deep learning method.

Assessment Relative Assessment Gain on CPA

Ascon Xoodyak

CPA 1 1

Template Attack 3.4 1,300

CNN 4 1,400

CNN+TL 11.4 4,100

harder training target for the deep learning threat model. Second, it is clear
that the proposed transfer learning method is much less sensitive to distortions
from the measurement setup than any other attack. Table 8 expresses the relative
assessment loss for each assessment, which is measured as the increase in number
of traces for an attack when moving from simulated traces to measured traces.
The transfer learning method shows the lowest relative assessment loss among
all assessments.

Time Complexity. There are two dimensions in the analysis of time complex-
ity of the proposed technique. One dimension quantifies the difference between
simulating a power trace, versus capturing a power trace from a real chip. The
second dimension quantifies the cost of SLA on the collected power traces. We
perform all simulation and SLA experiments on an Intel Xeon Gold 6248 server.
The power simulation for one power trace of ASCON took approximately 5 min,
which can be shortened to 30 s per simulated trace by running 10 parallel simu-
lation threads. In contrast, capturing a trace took form a real chip took 0.15 s, so
that the measurement of traces is 200 times faster than their gate-level simula-
tion. Hence, we confirm that power simulation time remains a dominant portion



122 D. Shanmugam and P. Schaumont

Table 8. Relative assessment loss in number of traces, when comparing assessments
on simulated traces to assessments on measured traces. A Loss of N means that N
times more traces are needed on the measurements, and lower is better. The transfer
learning method outperforms all other methods for both Ascon and Xoodyak.

Assessment Relative Assessment Loss over Sim

Ascon Xoodyak

CPA 250 7600

Template Attack 136 6.2

CNN 250 8.2

CNN+TL 88 2.8

Table 9. Time complexity of all side-channel vulnerability analysis for ASCON. # =
number of traces needed, AT = Attack Time, LT = Learning Time.

Primitive SLA flow CPA TA CNN

# AT # LT AT # LT AT

ASCON Simulated 8 < 1m 9K 10m 5m 9K 50m 10m

Measured 2k < 10m 90K 30m 20m 90K 6hr 20m

TL – – – – – 19K 60m 15m

in data collection. Table 9 shows the time complexity of CPA, TA and CNN.
Each experiment lists the number of traces required and the associated learning
time and attack time. The assessment part of the transfer learning method is
competitive with traditional (measurement-based) CNN, as it completes the task
in 60+50 min as opposed to 6 h. Xoodyak has a similar pattern of time com-
plexity. Our machine learning experiments are running on a traditional CPU
configuration (without GPU), which makes them relatively slow compared to
some published results [11].

6 Conclusion

This work shows that transfer learning based side channel analysis on post-
silicon using a pre-silicon threat model. The proposed technique evaluates the
design by 2.87 times fewer traces compared to the Naive CNN technique. We
are considering further improvements to our method, such as using techniques
to understand and eliminate noise and distortions on measured traces. This
material is based upon work supported by the National Science Foundation
under Grant No. 1931639.



Assessment with Pre-silicon Leakage Models 123

References

1. Arsath K F, M., Ganesan, V., Bodduna, R., Rebeiro, C.: PARAM: a microprocessor
hardened for power side-channel attack resistance. In: 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 23–34 (2020).
https://doi.org/10.1109/HOST45689.2020.9300263

2. Batina, L., et al.: Side-Channel evaluation report on implementations of several
NIST LWC finalists (August 2022). https://hdl.handle.net/2066/253567

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Crypt. Eng. 10(2),
163–188 (2020)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Buhan, I., Batina, L., Yarom, Y., Schaumont, P.: SoK: design tools for side-channel-
aware implementations. In: Suga, Y., Sakurai, K., Ding, X., Sako, K. (eds.) ASIA
CCS 2022: ACM Asia Conference on Computer and Communications Security,
Nagasaki, Japan, 30 May 2022–3 June 2022, pp. 756–770. ACM (2022). https://
doi.org/10.1145/3488932.3517415

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
Lightweight Cryptographic Scheme. IACR Transactions on Symmetric Cryptology,
pp. 60–87 (2020)

8. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-DeepSCA:
cross-device deep learning side channel attack. In: Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02–06,
2019, p. 134. ACM (2019). https://doi.org/10.1145/3316781.3317934

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2.
Submission to Round 1 of the NIST lightweight cryptography project
(2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/ascon-spec.pdf

10. Gross, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Suit up!-made-to-measure
hardware implementations of ASCON. In: 2015 Euromicro Conference on Digital
System Design, pp. 645–652. IEEE (2015)

11. Ito, A., Saito, K., Ueno, R., Homma, N.: Imbalanced data problems in deep
learning-based side-channel attacks: analysis and solution. IEEE Trans. Inf. Foren-
sics Secur. 16, 3790–3802 (2021)

12. Kiaei, P., Schaumont, P.: SoC Root Canal! Root cause analysis of power side-
channel leakage in system-on-chip designs. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022(4), 751–773 (2022). https://doi.org/10.46586/tches.v2022.i4.751-773

13. Martin, D.P., Martinoli, M.: A note on key rank. Cryptology ePrint Archive, Paper
2018/614 (2018). https://eprint.iacr.org/2018/614

14. Paguada, S., Batina, L., Buhan, I., Armendariz, I.: Playing with blocks: toward
re-usable deep learning models for side-channel profiled attacks. IEEE Trans.
Inf. Forensics Secur. 17, 2835–2847 (2022). https://doi.org/10.1109/TIFS.2022.
3196273

15. Papagiannopoulos, K., Glamocanin, O., Azouaoui, M., Ros, D., Regazzoni, F.,
Stojilovic, M.: The side-channel metric cheat sheet. IACR Cryptol. ePrint Arch,
p. 253 (2022). https://eprint.iacr.org/2022/253

https://doi.org/10.1109/HOST45689.2020.9300263
https://hdl.handle.net/2066/253567
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1145/3488932.3517415
https://doi.org/10.1145/3488932.3517415
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1145/3316781.3317934
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://doi.org/10.46586/tches.v2022.i4.751-773
https://eprint.iacr.org/2018/614
https://doi.org/10.1109/TIFS.2022.3196273
https://doi.org/10.1109/TIFS.2022.3196273
https://eprint.iacr.org/2022/253


124 D. Shanmugam and P. Schaumont

16. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based
physical side-channel analysis. IACR Cryptol. ePrint Arch, p. 1092 (2021). https://
eprint.iacr.org/2021/1092

17. Ramezanpour, K., Abdulgadir, A., Diehl, W., Kaps, J.P., Ampadu, P.: Active and
passive side-channel key recovery attacks on ASCON. In: Proceedings of the NIST
Lightweight Cryptogr. Workshop, pp. 1–27 (2020)

18. Samwel, N., Daemen, J.: DPA on hardware implementations of Ascon and Keyak.
In: Proceedings of the Computing Frontiers Conference, pp. 415–424 (2017)

19. Shelton, M.A., Chmielewski, L., Samwel, N., Wagner, M., Batina, L., Yarom, Y.:
Rosita++: automatic higher-order leakage elimination from cryptographic code.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 685–699. CCS 2021, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3460120.3485380

20. Šijačić, D., Balasch, J., Yang, B., Ghosh, S., Verbauwhede, I.: Towards efficient and
automated side-channel evaluations at design time. J. Crypt. Eng. 10(4), 305–319
(2020). https://doi.org/10.1007/s13389-020-00233-8

21. Thapar, D., Alam, M., Mukhopadhyay, D.: Deep learning assisted cross-family
profiled side-channel attacks using transfer learning. In: 22nd International Sym-
posium on Quality Electronic Design, ISQED 2021, Santa Clara, CA, USA, April
7–9, 2021, pp. 178–185. IEEE (2021). https://doi.org/10.1109/ISQED51717.2021.
9424254

22. Wang, H., Brisfors, M., Forsmark, S., Dubrova, E.: How diversity affects deep-
learning side-channel attacks. In: Nurmi, J., Ellervee, P., Halonen, K., Röning,
J. (eds.) 2019 IEEE Nordic Circuits and Systems Conference, NORCAS 2019:
NORCHIP and International Symposium of System-on-Chip (SoC), Helsinki,
Finland, October 29–30, 2019, pp. 1–7. IEEE (2019). https://doi.org/10.1109/
NORCHIP.2019.8906945

https://eprint.iacr.org/2021/1092
https://eprint.iacr.org/2021/1092
https://doi.org/10.1145/3460120.3485380
https://doi.org/10.1007/s13389-020-00233-8
https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1109/ISQED51717.2021.9424254
https://doi.org/10.1109/NORCHIP.2019.8906945
https://doi.org/10.1109/NORCHIP.2019.8906945


Attacks on PQC and Countermeasures



Fast First-Order Masked NTTRU

Daniel Heinz1,2(B) and Gabi Dreo Rodosek1

1 Research Institute CODE, Universität der Bundeswehr München,
85577 Neubiberg, Germany

{Daniel.Heinz,Gabi.Dreo}@unibw.de
2 Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany

Abstract. Even though Kyber is the lattice-based KEM selected for
standardization by NIST, NTRU and its variants are still of great rele-
vance to several practical applications. This is why we want to shed light
on the side-channel resilience of NTTRU, which is a very fast variant
of NTRU designed to use the Number-Theoretic Transform. It outper-
forms NTRU-HRSS significantly in an unprotected context, which raises
the question of whether this performance advantage holds when side-
channel attacks have to be considered.

To answer that, we present the first masked implementation of
NTTRU optimized for first-order. To achieve a fast performance, we
present a table-based approach for the masked sampler and the modulus
conversion, similar to the A2B conversion proposed by Debraize in 2012.
The modulus conversion is also applicable to other NTRU variants. Due
to its usage in NTTRU, we present a fully first-order masked SHA512
implementation based on A2B and B2A conversions. We come to the
conclusion that performance is heavily impacted by the SHA2 family
in masked implementations and strongly encourage the employment of
SHA3 in these cases. This result is also of relevance for the 90s/AES
variants of the NIST standardization candidates Kyber and Dilithium.

We achieve a performance of the NTTRU-SHA3 of around 3.1 mil-
lion cycles on the ARM Cortex M4. Finally, we show that our proposed
methods provide side-channel security in practice by employing the well
established TVLA methodology.

Keywords: Lattice-based cryptography · NTRU · NTTRU · DPA ·
Countermeasure · Masking · ARM Cortex M4

1 Introduction

In recent years, post-quantum cryptography has seen increased research atten-
tion as classic public-key cryptographic solutions could be broken by advanced
quantum computers using Shor’s algorithm [1]. During the NIST standard-
ization process [2], several quantum-resistant schemes have been proposed to
make secured key exchanges possible even when large-scale quantum computers
become available. The schemes are based on different mathematical problems.
Among the lattice-based candidates, Kyber [3], Saber [4], and NTRU [5,6] were
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 127–148, 2023.
https://doi.org/10.1007/978-3-031-29497-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_7


128 D. Heinz and G. Dreo Rodosek

part of the final round of the NIST standardization process. For instance, NTRU
is a cryptosystem that makes use of structured lattices to exchange keys in a
‘quantum secure’ way. An advantage of schemes based on structured lattices are
their comparatively small key sizes. Additionally, encryption and decryption can
often be performed faster than in traditional RSA or EC-based schemes [7].

Despite ciphertext, public key, and secret key being almost of the same size
as in Kyber, in general, NTRU-based schemes perform better in terms of speed
during encryption and decryption. Additionally, NTRU-based ciphertexts only
consist of one element which is of advantage when a zero-knowledge proof of the
honest generation of the ciphertext is needed [7]. Even though NTRU and its
variants were not standardized, NTRU is still a very important cryptosystem. An
important example is the OpenSSH [8] program that includes an implementation
of NTRUprime since April 2022. Additionally, Google has recently announced
to use NTRU-HRSS for their internal encryption-in-transit protocol ALTS [9].
This shows that alternatives to the NIST competition are of great relevance for
practical applications.

In lattice-based algorithms, the speed of polynomial multiplication is one of
the bottlenecks. Depending on the modulus of the underlying algebraic ring,
various schemes tackle this issue differently. The key encapsulation mechanism
(KEM) Saber [4], for instance, makes use of a combination of Toom-Cook, school-
book, and Karatsuba multiplication whereas Kyber’s parameter set [3] allows
fast multiplication using the Number-Theoretic Transform (NTT).

The NTT approach for polynomial multiplication is especially fast in dimen-
sions that are a power of two. Kyber solves this issue by using a matrix/vector
structure with multiple polynomials of dimension 28. To obtain a security level
of 128 bits, the dimension of the ring is, according to current security analy-
sis, required to be around 700 to 800 [10]. NTRU-based schemes do not use a
matrix/vector structure and, thus, secret key, public key and ciphertext only
consist of one polynomial. As there exists no power of two in the 128 bit security
range between 700 and 800, the most efficient NTT technique is not applica-
ble for NTRU with this security parameter. This might be the reason why an
NTRU-based scheme that makes use of NTTs was not part of the NIST stan-
dardization process. The authors of [7] propose a specific parameter set to use
the NTT approach in the NTRU scheme to gain additional performance gains
and call their scheme NTTRU. The authors consider it at least as secure as
the corresponding NTRU-HRSS variant that was part of the third round of the
NIST competition. Therefore, it is worth taking a closer look at the so-called
NTTRU.

Due to its good performance, NTTRU is a potential candidate to be used
on embedded devices. Naturally, embedded devices are exposed to a large num-
ber of physical attacks such as fault attacks or side-channel attacks as first
demonstrated by Kocher et al. [11]. Thus, it is crucial to secure cryptographic
schemes against these threats. Correlation between power consumption or elec-
tromagnetic radiation and secret intermediate values can be counteracted by
the so-called masking countermeasure where each sensitive variable is split into



Fast First-Order Masked NTTRU 129

several randomized shares. Each share is then processed separately from a secret
intermediate value. Some of the PQC lattice-based candidates have already seen
increased research attention in this regard. For Kyber [12–14] and Saber [15,16]
first- and higher-order masked implementations exist. Recently, a masked higher-
order implementation of NTRU-HRSS has been proposed [17]. However, no first-
order optimized version of NTRU has been published. We aim at closing the gap
with our work.

Contributions. In this work, we present the first first-order masked implementa-
tion of NTTRU. We employ the first-order masking technique in the complete
scheme. Hereby, we propose a new table-based method for a first-order secured
modulus conversion. We emphasize that this technique is potentially applicable
to all other NTRU variants. Subsequently, we present a first-order masked imple-
mentation of the SHA2-512 algorithm based on fast table-based conversions,
because it is an important building block of NTTRU, and a new table-based
sampling technique. We provide detailed performance numbers on the different
components and conclude that the SHA2 family is significantly more expensive
to protect with masking compared to the SHA3 family. This result is also of
great interest when taking a look at the 90s/AES versions of the NIST selected
algorithms Kyber and Dilithium. We verify the results using the state-of-the-art
TVLA methodology for our newly proposed components. Finally, we propose a
slightly adapted version of NTTRU that achieves a cycle count for decapsula-
tion of around 3.1 million cycles on the ARM Cortex-M4 even without assembler
optimized code for the ARM Cortex-M4. This is about a factor of ten faster than
the first-order cycle count for NTRU-HRSS on the ARM Cortex M3 [17].

2 Preliminaries

In this section, we present the preliminaries of masking the NTTRU scheme.

2.1 Notation

For any prime q and a polynomial f , we denote Rq as the polynomial ring
Zq[X]/(f) where Zq denotes the quotient ring Z/qZ. Polynomials in Rq are
denoted as lowercase letters. The NTT transform of a polynomial a is repre-
sented as â and the base multiplication in the NTT domain (not necessarily
coefficientwise) is denoted as ◦. The i-th coefficient of a polynomial p is denoted
as p[i]. Given a distribution χ, we use x ← χ to mean x is sampled according to
the distribution χ. For a polynomial, this is adjusted such that p ← χn where
n − 1 is the degree of the polynomial. We denote the modular reduction of x to
the domain [−(q − 1)/2, (q − 1)/2] as x mod ±q.

We denote the j-th share of a shared variable x(·) as x(j), whereas the
unshared variable itself is denoted as x. Concatenation is represented as ||.



130 D. Heinz and G. Dreo Rodosek

2.2 The Number-Theoretic Transform

A common solution to make fast arithmetic in lattice-based solutions possible
is the usage of the Number-Theoretic Transform (NTT). It is based on the
Chinese Remainder Theorem For a prime q and a polynomial f that factors into
the product f = gh with g and h relatively prime, the isomorphism

Zq[X]/(f) ∼= Zq[X]/(g) × Zq[X]/(h) (1)

is valid. Apparently, it is possible to compute a linear operation in the two factor
rings and invert the result back to the original ring. If the map and inverse
map to the smaller factor rings can be computed efficiently, it is possible that
this approach is more efficient than the simple computation in the main ring
Zq[X]/(f).

2.3 NTTRU

In the final round of the NIST standardization process [2] two NTRU-based
schemes were present. Both, NTRU [6] and NTRUprime [18] make use of poly-
nomial arithmetic. The discerning feature of NTRUprime is that it deliberately
avoids cyclotomic rings. In [7], Lyubashevsky and Seiler propose a specific param-
eter set to optimize NTRU for NTT-based multiplication. In contrast to both
finalists, a decryption error can occur when using this parameter set. However, in
[7], it is proven that the resulting IND-CCA2 KEM is still appropriately secure.
The authors additionally state that their scheme is at least as secure as NTRU-
HRSS as they use the same error distribution while increasing the ring dimension
and decreasing the modulus. It is not possible to give a formal security reduction
because of the different rings. According to their findings, this results in a major
speed-up of the scheme. We give an overview of the underlying OW-CPA secure
encryption scheme in Algorithms 1–3.

Algorithm 1: NTTRU.KeyGen

Output: Key Pair (sk, pk)
1 f ′ ← β768

2

2 f ← 3f ′ + 1
3 f̂ ← NTT (f)
4 g ← β768

2

5 3̂g ← NTT (3g)
6 if f is not invertible: restart
7 ĥ ← 3̂g ◦ f̂−1

8 return (sk = f̂ , pk = ĥ)

Algorithm 2: NTTRU.Encrypt

Input: message m, randomness
r, public key ĥ

Output: ciphertext ĉ
1 r̂ ← NTT (r)
2 m̂ ← NTT (m)
3 v̂ ← r̂ ◦ ĥ
4 return ĉ := v̂ + m̂

The FO-Transform. The direct usage of these algorithms results in a scheme
that is not resilient against chosen-ciphertext attacks. To counter these attacks
the NTTRU scheme introduces a re-encryption step. The decrypted message is



Fast First-Order Masked NTTRU 131

Algorithm 3: NTTRU.Decrypt

Input: ciphertext ĉ, secret key f̂
Output: message m

1 m̂ ← ĉ ◦ f̂
2 return m := INTT (m̂) mod ±3

re-encrypted and the resulting ciphertext is compared with the input ciphertext.
The approach was first proposed at Crypto ’99 by Fujisaki and Okamoto [19].
The transformed algorithm is shown in Algorithm 4. In contrast to the OW-CPA
version, the randomness for (re-)encrypting is not sampled completely at random
but derived deterministically from the message to encrypt. This way, any wrongly
decrypted message results in different randomness and consequently completely
randomizes the re-encrypted ciphertext. The comparison at the end will fail
and the wrongly decrypted message will not be the output. The algorithm will
return 0. In this context, we write HDR to denote a cryptographic hash function
that generates elements according to the distribution DR with an input seed m.
The hash HR produces elements uniformly at random in R. In the context of
NTTRU, HDR is initialized as

HDR = (AES256ctr(SHA512(m), nonce)) (2)

where AES256ctr is the AES256 in counter mode with a key derived from the
hash SHA512 [20] of m and a nonce. We describe the symmetric algorithms and
the sampling algorithm in the next sections.

Algorithm 4: CCA.NTTRU.Decrypt
Input: ciphertext c, secret key f
Output: shared key k

1 m ← NTTRU.Decrypt(c, sk)
2 seed ← HDR(m)
3 r ← Sampler(seed)
4 if c �= NTTRU.Encrypt(m, r, pk) then
5 return k ← 0
6 return k ← HK(m)

2.4 Symmetric Primitives

SHA512. The FO-Transform and, hence, the hash function are an essential
part of all CCA secured lattice-based schemes. As the input to the hash is the
decrypted message, even a small error in the decryption (e.g. a chosen ciphertext
input or an effective fault attack) will result in a completely randomized hash



132 D. Heinz and G. Dreo Rodosek

value and, thus, in a shared key k = 0. In the NTTRU case, SHA512 [20] is
used. In the presence of quantum computers, the preimage security of hashes is
halved. The SHA512 algorithm [20] is part of the SHA2 family and operates on
512-bit blocks. The used functions are defined as

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) (3)
Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) (4)

Σ0(x) = S28(x) ⊕ S34(x) ⊕ S39(x) (5)

Σ1(x) = S14(x) ⊕ S18(x) ⊕ S41(x) (6)

σ0(x) = S1(x) ⊕ S8(x) ⊕ R7(x) (7)

σ1(x) = S19(x) ⊕ S61(x) ⊕ R6(x) (8)

In this definition, Sn(x) denotes a shift to the right of x by n bits and Rn denotes
a rotation to the right of x by n bits. In contrast to SHA256, for SHA512 the state
variables are of size 64-bit. After one block of the message has been processed, the
values resulting from the compression function are added to the state variables
and reduced modulo 264. After processing the last block, the hash is obtained
by simple concatenation of the eight state variables. The resulting output has a
length of 64 bytes.

Keccak. Another symmetric primitive that is frequently used in lattice-based
schemes is called Keccak. In 2015, Keccak won the SHA3 competition and
became the successor of the SHA2 family. Similar to SHA2, the SHA3 family
consists of several functions with different output lengths. The SHA3 standard
is derived from special parametrization of the Keccak function. The state size is
fixed to 1600 bits and the number of rounds is fixed to 24. Within the function
f , the state vector of 1600 bits is processed in several rounds. Within each round
of f , several subfunctions are called:

– θ takes two columns in the three-dimensional arranged state and the target
bit as input and xor’s the parity of the two columns onto the target bit,

– ρ and π rearrange the positions of the bits within the state,
– χ is the non-linear operation that is using the negation function, the boolean

and function, and an xor operation, and
– ι which xor’s the state vector with a round constant in each round.

Note, that none of these subfunctions requires an arithmetic operation.

2.5 Sampling Algorithms

In some lattice-based schemes, e.g. Kyber and NTRU, the output of the pseu-
dorandom function (PRF) requires additional processing to follow a binomial
distribution but the PRF outputs uniformly distributed bits. The uniformly
random bitstream can, however, be used as an input to the centered binomial
sampler. To obtain such a distribution in the domain [−η, η], Kyber uses 2η



Fast First-Order Masked NTTRU 133

independent one-bit variables and starts by adding the first η variables and the
next η variables. Then one of the two sums is subtracted from the other one.
Thus, the coefficient c ∈ [−η, η] is calculated as

c =
η−1∑

i=0

bi −
η−1∑

i=0

bi+η. (9)

NTTRU requires an additional modular reduction to obtain random coefficients
in [−1, 1]. The NTTRU reference implementation calculates each coefficient by

c = (b1 + b2) − (b3 + b4) mod 3. (10)

The sampling operation in NTTRU is realized by a lookup table. Both of the
sums can take three values, resulting in nine possible outcomes for the coefficient
and the table entries. In NTTRU, the authors additionally simplify the approach
by directly using the table-based approach on the four input bits. In practice,
the table can be realized by a 32-bit variable that stores all the 24 possibilities
in {0, 1, 2} and is shifted by twice the value of the four input bits. Since the
distribution is symmetric around zero, it is even possible to only use a 16-bit
variable as a lookup table and directly shift by the number obtained from the
four concatenated input bits, resulting in

c = (L >> (b1‖b2‖b3‖b4)) ∧ 0x3 − 1 (11)

with L = 0xA815.

2.6 Side-Channel Attacks and Protection

In recent years methods like Simple Power Analysis (SPA) [21] and Differential
Power Analysis (DPA) [11] have seen increased focus for post-quantum schemes.
Several attacks on (protected) lattice-based schemes have been proposed using
power or timing side-channels [22–26]. The attacks include side-channel assisted
CCA attacks where the information from the re-encryption step of the FO-
Transform is used for secret recovery [27,28]. Therefore, it is crucial to protect
not only the decryption but also the re-encryption step with appropriate coun-
termeasures.

In practice, the most well-known countermeasure is called masking [29].
Secret variables are split into two or more randomized shares. One can choose
between arithmetic masking, where the secret s is split into two shares such that
s = s1 + s2 (mod q) and Boolean masking resulting in a sharing s1, s2 such that
s = s1⊕s2. In lattice-based cryptography, both possibilities are frequently used in
conjunction. Different parts of the decapsulation work more efficiently on either
arithmetic or Boolean masking. Therefore, methods to securely convert from one
to the other exist [30,31]. Masked implementations of Saber [15,16], Kyber [12–
14] and, recently, NTRU-HRSS [17] were proposed. However, no detailed analysis
for first-order protection of NTTRU has been performed.



134 D. Heinz and G. Dreo Rodosek

3 Side-Channel Protection of NTTRU

In this section, we will go through the primitives used in NTTRU and provide
a first-order masking scheme for each function. This is visualized in Fig. 1. It
shows how the two input shares of the secret s1 and s2 as well as the unmasked
input ciphertext c and public key pk are processed in the algorithm. The masked
functions are presented in chronological order from the input secret s1 and s2.

s1

s2

c

pk

unpac k

unpac k

·

·

INTT

INTT

mod3
pack
short SHA512 AES256

CTR CBD

NTT

NTT

NTT

NTT

·

·
+

+=

Fig. 1. Masked Decapsulation of NTTRU. Boolean shared data paths in dashed lines.
Arithmetically shared data paths in solid lines. Non-linear functions in yellow. (Color
figure online)

Masked Unpacking. The first function to encounter that works on secret data
is the unpacking function. In our work, we directly store the generated secret
key in arithmetic sharing on the device as in most use cases key generation
is performed on the same platform. Hence, we do not need a so-called B2Aq

conversion. Such a conversion is quite expensive in terms of cycle counts. The
approach is possible because the unpacking function does not compress the secret
key. Thus, an arithmetic sharing requires the same amount of memory as a
“packed” secret key.

3.1 Table-Based Masking of Modulus Conversion

A major challenge in masking NTTRU as well as NTRU is the masking of the
modulus conversion. Concretely, it is required to mask the operation

(x mod ±q) mod ±3.

The challenge is, that different representatives of x mod q lead to different results
when reduced modulo 3. In the NTTRU reference implementation [7], the input
to the mod 3 function, is an output from the inverse NTT. This means that
the coefficients are distributed in [−(q − 1), (q − 1)] because of the used Barrett
reductions.



Fast First-Order Masked NTTRU 135

In the unmasked constant-time implementation, the correct representative of
x mod ±q is found by first retrieving the most significant bit of x. In case x is
negative and, therefore, the most significant bit is 1, x is increased by q. This
conditional addition is the most challenging part in the masked implementation.
The result is a value in [0, q−1] which is then subtracted by q−1

2 . The procedure
is repeated with the exception of the subtraction of the last constant. With a
final subtraction of q+1

2 the original value modulo q is restored and the domain
of the coefficient is then in [− q−1

2 , q−1
2 ].

We present an approach that incorporates the reduction to the correct rep-
resentative mod±q and the reduction modulo 3 in a table-based approach. In
our first-order masked approach, we first reduce each share to the domain
[− q−1

2 , q−1
2 ] as previously presented, then we compute the A2B conversion of

the shared coefficient a(·) as proposed by Debraize [32] and later improved by
Van Beirendonck et al. [33] and then extract the most significant bits of both
shares. We obtain a boolean sharing b(·) of the most significant bit. We then
generate a random input mask bit r1 and a random output mask r2 in [0, q − 1].
Then our lookup table is initialized for r1 = 0:

– The first entry corresponds to the most significant bit being zero. The coeffi-
cient a is positive and we require a sharing of zero to be added to a. Conse-
quently, the entry is the inverted output mask r2.

– The second entry corresponds to the most significant bit being equal to one.
The coefficient a is negative and does require the addition of q. Thus, the
entry is initialized as q − r2.

Apparently, if r1 = 1 the table entries are initialized the other way around. We
present the function in Algorithm 5.

Algorithm 5: Initialization of LUT
Input: Random bit r1, random output mask r2 ∈ [0, q − 1]
Output: Table T [2]

1 T [0 ⊕ r1] ← −r2
2 T [1 ⊕ r1] ← q − r2
3 return T

After the initialization of the table, both shares are combined carefully with
the random bit r1 by an xor operation. The helper variable with two shares
is initialized with h(·) = (r2, T [r1 ⊕ b(0) ⊕ b(1)]). Finally, sharewise addition of
a(·) + h(·) yields the arithmetically shared value in [0, q − 1]. We repeat this
procedure once after the subtraction of q−1

2 . Finally, both shares are reduced
modulo 3. We show the procedure in Algorithm 6.



136 D. Heinz and G. Dreo Rodosek

Algorithm 6: Masked Conversion to Modulo 3

Input: Shared coefficient a(·) with unmasked coefficients in [−(q − 1), q − 1]
Output: Shared coefficient a(·) mod 3 with unmasked coefficients in [−1, 1]

1 //Conditionally add q

2 h(·) ← A2B(a(·))
3 b(·) ← MSB(h(·))
4 Sample random bit r1, random r2 ∈ [0, q − 1]

5 val ← r1 ⊕ b(0) ⊕ b(1)

6 h(0) ← r2

7 h(1) ← T [val]

8 a(·) ← a(·) + h(·)

9 //Always subtract

10 a(0) ← a(0) − (q − 1)/2
11 //Conditionally add q

12 h(·) ← A2B(a(·))
13 b(·) ← MSB(h(·))
14 Sample random bit r1, random r2 ∈ [0, q − 1]

15 val ← r1 ⊕ b(0) ⊕ b(1)

16 h(0) ← r2

17 h(1) ← T [val]

18 a(·) ← a(·) + h(·)

19 //Always subtract

20 a(0) ← a(0) − (q + 1)/2
21 //Now reduce modulo 3 sharewise

22 a(·) ← a(·) mod 3

23 return a(·)

3.2 Masked Packing

To save memory, each coefficient of the message polynomial, which only requires
two bits, is not stored in a full 16-bit variable. Instead, each coefficient is con-
catenated in an array of 96 bytes which is later used as an input for the symmet-
ric primitives. This is the reason why the correct representative of x mod 3 is
important. In contrast to the arithmetic modulo 3, for an input to the SHA512
112 = −1 	= 2 = 102. According to the specification of NTTRU, coefficients
of the polynomial are in the domain [−1, 1] whereas the concatenated message
is obtained by shifting the interval by one to [0, 2]. Consequently, we propose
to combine both steps efficiently in one table for the first-order masked app-
roach. Instead of only calculating the entries of the table as a Boolean sharing
of the arithmetically shared value a, we provide the Boolean sharing for a + 1.
In contrast to any higher-order compatible A2B conversion, we do not need a
costly Boolean adder on the shares. For each coefficient, we refresh the mask-
ing with new random values. Concatenation of the Boolean shared values works
sharewise.



Fast First-Order Masked NTTRU 137

3.3 Protected SHA512 and AES256-CTR

In this section, we provide details on how to protect the symmetric primitives
from DPA attacks.

a b c d B2A + A2B e f g h

Σ0(a)
Maj(a, b, c) Σ1(e) Ch(e, f, g) B2A

B2AB2AB2AB2A

++++

A2B

Fig. 2. Masked SHA512 Compression function with conversions in place.

SHA512. In NTTRU, the decrypted message is input to the SHA2-512 hashing
function. Due to performance reasons, SHA2 is chosen over SHA3. The drawback
of this choice becomes apparent when the masking technique is applied to the
hashing algorithm. The SHA2 standard combines arithmetic operations modulo
264 with bitwise Boolean operations. Thus, for masking SHA512, we have two
options:

– Usage of A2B conversions: Boolean functions operate on Boolean shares, and
arithmetic functions on arithmetic shares. The conversion is performed, if
necessary, in between the functions.

– Usage of Boolean Adders: no arithmetic shares are used, and arithmetic addi-
tions modulo 264 are performed on boolean shares using specific algorithms.

We evaluated both strategies for the first-order implementation and present
the chosen strategy in this section. For the first case, we adapt the compression
function to include A2B conversions, as proposed by Debraize [32] and later
improved by Van Beirendonck [33], and B2A conversions are realized as pre-
sented by Goubin [30]. The performance of this approach (only 7 cycles per B2A
conversion) is especially beneficial to the first-order implementation. The result-
ing flow is shown in Fig. 2. In the latter case, we refer to the control flow of the
compression function from Fig. 2 without the conversions. Instead of additions
modulo 264, we use an algorithm based on Goubin’s Theorem and in detail ana-
lyzed by Coron et al. [34]. Its runtime dependency on the number of bits is rather
disadvantageous for SHA512 as it operates on 64 bit variables. For the first-order
case, the table-based approach combined with Goubins B2A conversion turns out
to be preferable in terms of runtime.

In both cases - using boolean adder or conversions - the only part that remains
to be masked is the non-linear And. This operation cannot be realized sharewise
and, thus, is realized as presented in [34].



138 D. Heinz and G. Dreo Rodosek

AES256-CTR. In this work, we additionally adapted an open-source masked
implementation of AES, as it is an essential part of the seed generation for
the coefficient sampling. For AES128 in counter mode, several masked solutions
exist [35–37]. All of these implementations do not mask the key expansion func-
tion as the expanded shared key is often assumed to be stored on the chip. In our
implementation, this is not possible. The SHA512 hash value of the decrypted
message is serving as the key and still has to be expanded. Since the AES was not
the primary focus of this work, we adapted an open-source portable C implemen-
tation that already masks the key expansion for AES128 and uses the bitslicing
technique [35]. To make their concept compatible to our approach, we first stored
the last 32 bytes of the output of the SHA512 function in a bitsliced manner.
We adjusted the key schedule function of the AES128 to match the AES256
specification and added four more rounds to the update function. The key is
updated at the end of each round to obtain the next subkey from the previous
subkey. As a message, the increasing nonce for each block combined with a zero-
padded IV is used. Finally, the output is restored from the bitsliced variables
and used as a pseudorandom input to the polynomial sampler of the NTTRU
re-encryption. The results are not particularly optimized concerning cycle counts
but still give an upper bound of the cycles needed for symmetric seed expansion.
We emphasize that there is still a lot of performance to be gained when applying
the several (architecture-specific) optimization techniques as presented, e.g., by
Schwabe et al. [36].

3.4 Table-Based Masking of Coefficient Sampling

As described in Sect. 2.5, the sampling in NTTRU is slightly different to Kyber
due to the additional modular reduction step. The output of the sampler is in
the domain [−1, 1] but has to be masked arithmetically modq. In our masked
approach, we first compute the table by computing a masked result for all possi-
ble 16 unmasked input values. This is shown in Algorithm 7. The second share of
the table is a random value rout ∈ Rq that is equal for all outcomes. To minimize
the size of the table, we additionally assume one share of the input to be random
but identical rin for all inputs.

Algorithm 7: Initialization of LUT for first order CBD sampling in the
domain [−1, 1]
Input: Random input mask rin ∈ [0, 15], Random output mask rout ∈ [0, q − 1]
Output: Table T [16]

1 val ← 0
2 while val < 16 do
3 T [val] ← (0xA815 >> (val ⊕ rin) ∧ 0x3) + q − 1 − rout mod q
4 val ← val + 1

5 end
6 return T [16]



Fast First-Order Masked NTTRU 139

During the online phase (Algorithm 8), we remask each coefficient to take
rin as one Boolean share. The other share is an input to the lookup table.
The table gives a randomized output in Rq that, together with the random but
fixed value rout, is equivalent to the arithmetic masking of the sampled value
obtained from a centered binomial distribution modulo 3. Note that the sampling
technique provides an implicit B2Aq conversion. Finally, we remask the output
for each coefficient. This approach does obviously not defend against horizontal
attacks. Several other countermeasures, especially table-based approaches, face
this issue. Yet, they can be used with additional countermeasures, e.g. shuffling
or RNR [38,39], in place. This is out of scope of this paper and is an interesting
direction for future work.

Algorithm 8: First order sampling in the domain [−1, 1] based on LUT

Input: Shared buffer buf (·)[N/2]
Output: Shared polynomial a(·)[N ] with N coefficients

1 generate randomness r ∈ [0, q − 1], s ∈ [0, 15]
2 initialize sampling table with rin = s, rout = r
3 i ← 0
4 while i < N/2 do

5 h ← buf (1)[i] ⊕ (s << 4 ∨ s)

6 h ← h ⊕ buf (0)[i]
7 generate randomness rnd ∈ [0, q − 1]

8 a(0)[2i] ← rnd

9 a(1)[2i] ← (T [h ∧ 0xF ] − rnd + r) mod q
10 generate randomness rnd ∈ [0, q − 1]

11 a(0)[2i + 1] ← rnd

12 a(1)[2i + 1] ← (T [h >> 4] − rnd + r) mod q
13 i ← i + 1

14 end

15 return a(·)[N ]

3.5 Masked Comparison

Comparing the original ciphertext to the re-encrypted ciphertext at the end
of the FO-Transform (cf. Sect. 2.3) has to be appropriately protected as well
because any leakage point in this function can compromise the security of the
complete scheme [24,27]. The first approach to do so was proposed by Oder
et al. [40]. They separately compare the public input ciphertext parts c1, c2 with
their re-encrypted counterparts c̃1, c̃2. The methodology requires one randomized
share c̃

(0)
1 to be subtracted from the public ciphertext c1 yielding a randomized

value. In case that c1 = c̃
(0)
1 + c̃

(1)
1 it is also true that H(c1− c̃

(0)
1 ) = H(c̃(1)1 ). If the

re-encrypted ciphertext is different, the hash values yield different results. Thus,
the result of H(c1 − c̃11) ⊕ H(c̃21) does not leak any secret information. It yields



140 D. Heinz and G. Dreo Rodosek

zero if the ciphertext parts are equal and a random number if they are not equal.
The major drawback of this method is that it can not be used for higher orders.
Additionally, this method is susceptible to the same attack vector as the higher-
order compatible work by Bache et al. [41] as demonstrated by Bhasin et al. [27]
in 2021. The partial unmasking of ciphertexts allows an attacker to distinguish
between crafted ciphertexts that are re-encrypted identically or completely dif-
ferent depending on the error that was added to a valid ciphertext. In [15], the
hash-based approach is taken and the two ciphertext parts are combined into one
hash. Still, internally a Keccak-based hash is split up into multiple parts. The
attack by D’Anvers et al. [42] makes use of this property. They propose another
fast higher-order compatible comparison algorithm that incorporates the idea of
[41] without partially unmasking the ciphertext. The algorithm outperforms the
solution by [13], which compares uncompressed coefficients for second and higher
orders. In line with the findings of [43] and the previously presented first-order
optimized A2B and B2A conversions, we choose the so-called “simple” approach
from [43, Algorithm 7] for our masked comparison.

3.6 Keccak (SHA3) as a Speed-Up

In this section, we propose a faster alternative to the presented NTTRU scheme
when masking is in place. As described in Sect. 2.4 the SHA3 standard can
replace the SHA2 functions without loss of security and offers the advantage
of the underlying function Keccak does not need any arithmetic operations to
compute the hash value. This is especially beneficial to any masked implemen-
tation because any masking conversion, especially at higher orders, requires a
large computational overhead. In detail, the runtime is of magnitude O(n2k) [34]
for a k bit variable in n shares. As SHA512 operates on 64 bit variables, this is a
very costly operation that should be avoided if possible. In Keccak, all variables
are shared in Boolean domain and the non-linear χ step is very efficient to mask
as it includes only one AND operation. Although SHA2 seems to be the faster
method of hashing with no side-channel countermeasures in place, as the authors
of NTTRU state, it is recommended to use the SHA3 option when side-channel
security has to be considered.

4 Evaluation

4.1 Performance Evaluation

In this work, we mostly use adapted code from the reference implementation [7]
written in C. We also make use of a masked AES128 [35] in C. It has to be
emphasized that most of the base code has a lot of potential in terms of per-
formance. Furthermore, we build some functions on the fixed A2B conversion
by Van Beirendonck et al. [33] which is optimized for the Cortex-M4 in terms
of side-channel leakage. Additionally, we use the first-order implementation of
Keccak for the SHA3 and SHAKE functions presented in [44]. A Cortex-M4



Fast First-Order Masked NTTRU 141

optimized implementation might lead to a faster first-order masked scheme than
Kyber on this platform.

We measured the performance of our masked primitives on an ARM Cortex
M4 mounted on an STM32F407G-DISC1 board offering up to 192 kByte of
RAM. This environment was chosen as it is also the base microcontroller for
the PQM4 project [45] for post-quantum algorithms. This is also why a lot
of highly optimized code such as the masked assembler SHA3 already exists
for this platform. Additionally, many masked implementations,e.g. of Kyber or
Saber, exist for the ARM Cortex M4 leading to direct comparability of NTTRU
with the NIST finalists. For our benchmarks, we set the clock frequency to 24
MHz. To improve the comparability between platforms we excluded cycle counts
required for the randomness generation. For our evaluation, we did not use the
onboard TRNG of the STM32F407-DISC1 board and opted for a pseudorandom
number generator in software to generate the required masks. This enables easier
debugging across several chips. As the development environment, we used the
Keil Toolchain MDK Plus 5.29/µ Vision 5.29 with the ARM Compiler Version
5. The code size of our masked NTTRU decapsulation implementation is around
18 kB and the RAM requirement is around 77 kB.

Table 1. CCA2-secure decapsulation cycle counts for different masked lattice-based
schemes.

Scheme CPU Cycles ×103 Cycles ×103

Masked Unmasked

Saber [15] Cortex M4 2833 774

Kyber768 [12] Cortex M4 2978 783

NTRU [17] Cortex M3 32 472 10 508

NTTRU (This work) Cortex M4 9448 796

NTTRU-SHA3 (This work) Cortex M4 3119

We give a comparison of performance numbers in Table 1. Using a state-of-
the-art masked implementation of the SHA3-512 [44] and additionally replacing
the non-optimized AES256 with the SHAKE256 option, we achieve a perfor-
mance number for the first-order implementation of NTTRU that is in the mag-
nitude of the NIST standardization candidate Kyber. We additionally give more
in-depth performance numbers in Table 2. Once again, we emphasize that the
polynomial arithmetic functions are not optimized for the ARM Cortex M4.

4.2 Side-Channel Evaluation

In this section, we show that our proposed techniques indeed fulfill the require-
ment of practical first-order security. We used the ChipWhisperer Lite Board
with an STM32F303 providing an ARM Cortex M4 core running at 7.37 MHz.



142 D. Heinz and G. Dreo Rodosek

Table 2. Cycle Counts for the masked components of NTTRU

Function Cycle count Factor

Unmasked 1st order

poly unpack uniform (19 396) 0 n.a.

ntru decrypt 241 164 749 966 ×3.1

polynomial arithmetic 436 214

poly crepmod3 313 713

poly pack short 4170 96 261 ×23

SHA512 27 305 4 359 092 ×159

crypto stream (AES) 24 028 2 808 228 ×116

ntru encrypt 436 570 962 539 ×2.2

poly short 106 277

polynomial arithmetic 856 212

comparison 4998 423 309 ×84.7

crypto kem dec 796 712 9 448 510 ×11.9

The sampling rate is four times the clock speed, resulting in 29 MS/s. An advan-
tage of the CWLite board is the synchronized sample and device clock. It is
relatively easy to capture small differences in power traces because the traces
are perfectly aligned [46]. This lowers the amount of required power traces to
detect possible leakage. A disadvantage lies in the small buffer size of around
24, 400 samples. We circumvented this issue by capturing only small building
blocks of the algorithm independently. For the ChipWhisperer evaluation, we
compiled our code using arm-none-eabi-gcc version 10.3.1. We show that
our approaches do not have any obvious leakage points when implemented in
practice. We applied the so-called non-specific t-test methodology by Schneider
and Moradi [47] to do so. The inputs to the functions are either from a specific
fixed ciphertext or a completely randomized ciphertext. We denote the set of
traces obtained from function calls with fixed input as S1 and the set of traces
obtained from random inputs as S0. Sample sizes n0,n1, standard deviations
s0, s1 and sample means μ0, μ1 are denoted accordingly. At every point in time,
we calculate the t-test statistic

t =
μ0 − μ1√

s2
0

n0
+ s2

1
n1

(12)

The methodology by [47] requires a higher t value than 4.5 to correctly reject the
hypothesis that both sets are not distinguishable with the confidence of around
99.999%. Thus, in a first-order secure implementation, all absolute values should
be smaller than 4.5.

The first target is the table-based modulus conversion (Sect. 3.1). We
adjusted our implementation slightly by generating the required random num-



Fast First-Order Masked NTTRU 143

0 2000
Samples

−250

0
t-
st
at
is
ti
c

(a) RNG disabled ( 1000 traces)

0 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) RNG enabled ( 10 000 traces)

Fig. 3. t-statistic of the masked modulus conversion. Red lines indicate the threshold
of 4.5. (Color figure online)

bers in advance. The generation is due to the rejection sampling modq not con-
stant time and would make our t-test useless. It is also not necessary to cap-
ture the complete conversion of the polynomial. It is sufficient to capture the
conversion of only one coefficient as the conversion of all other coefficients is
independent and redundant. Our first measurement was taken with the random
number generator disabled. Thus, all masks are zero and the values are processed
unmasked. In a correct setup of the side-channel setup, one should be able to
see a lot of leaking points in this implementation. Therefore, Fig. 3a verifies our
correct setup. Even with only 1000 traces several very high t-values can be seen.

We then activated our pseudorandom number generator. The obtained t-test
values are visualized in Fig. 3b. We can see that even with 20000 traces and
a sampling rate of four times per clock cycle no leakage peaks can be identi-
fied. Note that the hardened implementation requires a few minor tweaks and
carefully crafted assembly routines to counter microarchitectural leakage.

0 1000
Samples

−25

0

t-
st
at
is
ti
c

(a) RNG disabled ( 1000 traces)

0 1000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) RNG enabled ( 20 000 traces)

Fig. 4. t-statistic of the masked coefficient sampler. Red lines indicate the threshold of
4.5. (Color figure online)

For the sampling technique (Sect. 3.4), we performed a similar evaluation.
We obtained the t-statistics visualized in Fig. 4a. The single leakage peak in the
unmasked implementation stems from the assignment of the table value to the



144 D. Heinz and G. Dreo Rodosek

second share of the coefficient. This corresponds to line 8 in Algorithm 8. The
huge part without leakage corresponds to the generation of the table which is
independent of the secret information. We can not identify leakage peaks with
RNG enabled and the amount of 20000 traces and, thus, conclude that our
implementation does not contain any obvious first-order leakage points.

In this work, we additionally presented a first-order masked SHA512
(Sect. 3.3). For the sake of simplicity, we evaluate only the non-linear choice
(ch) and majority (maj) functions in this chapter. The functions that can be
calculated on each share separately are easy to mask in practice with appro-
priate microarchitectural countermeasures in place, e.g. clearing registers or the
ALU [33]. We show the results in Fig. 5.

0 1000 2000
Samples

−500

0

t-
st
at
is
ti
c

(a) ch function 1000 traces).

0 1000 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

(b) ch function (RNG on, 20 000 traces).

0 2000
Samples

−500

0

t-
st
at
is
ti
c

0 2000
Samples

−2.5
0.0
2.5

t-
st
at
is
ti
c

Fig. 5. t-statistic of SHA512 functions. Red lines indicate the threshold of 4.5. (Color
figure online)

5 Conclusion

The results once again show that a large performance gap between unprotected
and protected implementations may more or less strongly impede the applica-
bility of a scheme. As the first-order masking countermeasure can be seen as
a minimum requirement nowadays, one should, if possible, aim for the usage
of functions with minimal cost when masked. In detail, we strongly encourage
the usage of SHA3 functions. As we have shown, their behavior with respect
to additive and boolean masking allows NTTRU to be competitive among the
first-order masked lattice-based schemes without reducing its security level. A
lot of potential is additionally hidden in an optimized version of the NTT for



Fast First-Order Masked NTTRU 145

the Cortex M4 which is already available for Kyber. Such further optimizations
combined with our proposed NTTRU-SHA3, might outperform masked imple-
mentations of the NIST finalists significantly on ARM Cortex-M4.

Acknowledgments. The authors would like to thank Thomas Pöppelmann and Peter
Pessl for their valuable feedback and discussions. This work was supported by the Ger-
man Federal Ministry of Education and Research (BMBF) under the project Aquorypt
(16KIS1017). Presented project results were partly supported by the project that has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 830927.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

2. National Institute of Standards and Technology. Announcing request for nomina-
tions for public-key post-quantum cryptographic algorithms (2016). https://csrc.
nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms

3. Avanzi, R., et al.: Crystals-kyber (version 3.02) - submission to round 3 of
the nist post-quantum project (2021). https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210804.pdf

4. Basso, A., et al.: SABER: Mod-LWR based KEM (round 3 submission) (2019).
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/submissions/SABER-Round3.zip

5. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

6. Chen, C., et al.: Ntru - algorithm specifications and supporting documentation
(2019). https://ntru.org/f/ntru-20190330.pdf

7. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019)

8. OpenSSH. Openssh release 9.0. https://www.openssh.com/txt/release-9.0.
Accessed 14 Nov 2022

9. ISE Crypto PQC working group. Securing tomorrow today: Why google
now protects its internal communications from quantum threats. https://
cloud.google.com/blog/products/identity-security/why-google-now-uses-post-
quantum-cryptography-for-internal-comms?hl=en. Accessed 21 November 22

10. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes! In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 19

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Heinz, D., et al.: First-order masked kyber on ARM cortex-m4. IACR Cryptol.
ePrint Arch., p. 58 (2022)

13. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 173–214 (2021)

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://doi.org/10.1007/BFb0054868
https://ntru.org/f/ntru-20190330.pdf
https://www.openssh.com/txt/release-9.0
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms?hl=en
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/3-540-48405-1_25


146 D. Heinz and G. Dreo Rodosek

14. Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-
quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
414–460 (2022)

15. Van Beirendonck, M., D’Anvers, J.-P., Karmakar, A., Balasch, J., Verbauwhede,
I.: A side-channel-resistant implementation of SABER. ACM J. Emerg. Technol.
Comput. Syst. 17(2), 10:1–10:26 (2021)

16. Kundu, S., D’Anvers, J.-P., Van Beirendonck, M., Karmakar, A., Verbauwhede, I.:
Higher-order masked saber. IACR Cryptol. ePrint Arch., p. 389 (2022)

17. Coron, J.-S., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of NTRU.
IACR Cryptol. ePrint Arch., p. 1188 (2022)

18. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
IACR Cryptol. ePrint Arch., p. 461 (2016)

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

20. National Institute of Standards and Technology. Secure hash standard (2015).
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

22. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021.
LNCS, vol. 13143, pp. 311–334. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92518-5 15

23. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 25

24. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 13

25. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
cca-secure lattice-based PKE and kems. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(3), 307–335 (2020)

26. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: Drop by drop you break the
rock - exploiting generic vulnerabilities in lattice-based pke/kems using em-based
physical attacks. IACR Cryptol. ePrint Arch., p. 549 (2020)

27. Bhasin, S., D’Anvers, J.-P., Heinz, D., Pöppelmann, T., Van Beirendonck, M.:
Attacking and defending masked polynomial comparison for lattice-based cryptog-
raphy. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 334–359 (2021)

28. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,
S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace attacks on masked
CCA2 secure kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 88–113
(2021)

29. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

https://doi.org/10.1007/3-540-48405-1_34
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26


Fast First-Order Masked NTTRU 147

30. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 2

31. Coron, J.-S., Tchulkine, A.: A new algorithm for switching from arithmetic to
boolean masking. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 89–97. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45238-6 8

32. Debraize, B.: Efficient and provably secure methods for switching from arithmetic
to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 107–121. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 7

33. Van Beirendonck, M., D’Anvers, J.-P., Verbauwhede, I.: Analysis and compari-
son of table-based arithmetic to boolean masking. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(3), 275–297 (2021)

34. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 11

35. Riou, S.: Masked bitsliced aes128. https://github.com/sebastien-riou/masked-bit-
sliced-aes-128. Accessed 27 Sept 2022

36. Schwabe, P., Stoffelen, K.: All the AES you need on cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 10

37. ANSSI LSC. Technical analysis of the masked aes implementation. https://github.
com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical
analysis.pdf. Accessed 21 Nov 2022

38. Zijlstra, T., Bigou, K., Tisserand, A.: FPGA implementation and comparison
of protections against SCAs for RLWE. In: Hao, F., Ruj, S., Sen Gupta, S.
(eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 535–555. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35423-7 27

39. Heinz, D., Pöppelmann, T.: Combined fault and DPA protection for lattice-based
cryptography. IACR Cryptol. ePrint Arch., p. 101 (2021)

40. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and
masked ring-lwe implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018)

41. Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-speed
masking for polynomial comparison in lattice-based kems. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 483–507 (2020)

42. D’Anvers, J.-P., Heinz, D., Pessl, P., Van Beirendonck, M., Verbauwhede, I.:
Higher-order masked ciphertext comparison for lattice-based cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2022(2), 115–139 (2022)

43. D’Anvers, J.-P., Van Beirendonck, M., Verbauwhede, I.: Revisiting higher-order
masked comparison for lattice-based cryptography: Algorithms and bit-sliced
implementations. IACR Cryptol. ePrint Arch., p. 110 (2022)

44. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak (2010)

45. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint Arch., p.
844 (2019)

https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-45238-6_8
https://doi.org/10.1007/978-3-540-45238-6_8
https://doi.org/10.1007/978-3-642-33027-8_7
https://doi.org/10.1007/978-3-642-33027-8_7
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://github.com/sebastien-riou/masked-bit-sliced-aes-128
https://github.com/sebastien-riou/masked-bit-sliced-aes-128
https://doi.org/10.1007/978-3-319-69453-5_10
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/doc/technical-report/technical_analysis.pdf
https://doi.org/10.1007/978-3-030-35423-7_27


148 D. Heinz and G. Dreo Rodosek

46. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

47. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17


On the Feasibility of Single-Trace Attacks
on the Gaussian Sampler Using a CDT

Soundes Marzougui1(B), Ievgen Kabin2, Juliane Krämer3, Thomas Aulbach3,
and Jean-Pierre Seifert1,4

1 Technische Universität Berlin, Berlin, Germany
soundes.marzougui@tu-berlin.de, Jean-Pierre.Seifert@external.telekom.de

2 IHP - Leibniz-Institut für innovative Mikroelektronik, Frankfurt, Germany
kabin@ihp-microelectronics.com

3 Universität Regensburg, Regensburg, Germany
{juliane.kraemer,thomas.aulbach}@ur.de

4 Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

Abstract. We present a single-trace attack against lattice-based KEMs
using the cumulative distribution table for Gaussian sampling and exe-
cute it in a real-world environment. Our analysis takes a single power
trace of the decapsulation algorithm as input and exploits leakage of the
Gaussian sampling subroutine to reveal the session key. We investigated
the feasibility of the attack on different boards and proved that the power
consumption traces become less informative with higher clock frequen-
cies. Therefore, we introduce a machine-learning denoising technique,
which enhances the accuracy of our attack and leverages its success rate
to 100%.

We accomplish the attack on FrodoKEM, a lattice-based KEM
and third-round alternate candidate. We execute it on a Cortex-M4
board equipped with an STM32F4 micro-controller clocked at different
frequencies.

Keywords: FrodoKEM · Gaussian sampler · Machine-learning ·
Post-quantum cryptography · Power analysis · Side-channel analysis

1 Introduction

Key encapsulation mechanisms (KEM) are widely adopted in Internet protocols
to establish a secure communication between two parties through the encryption
of the exchanged messages. Classical KEMs - relying on the intractability of fac-
torization or discrete-logarithm problems for large numbers - are considered to
be threatened by attacks with quantum computers [31] in the near future [21].
To address the potential threats from quantum attacks, the National Institute of
Standards and Technology (NIST) initiated a standardization process for post-
quantum schemes in 2016, i.e., for cryptographic schemes which are assumed
to be resistant towards attacks with quantum computers [23]. Post-quantum

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 149–169, 2023.
https://doi.org/10.1007/978-3-031-29497-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_8


150 S. Marzougui et al.

schemes can be categorized in five different families. Of the five, lattice-based
cryptography has received significant research traction in recent years. Lattice-
based cryptography consists of schemes whose security can be reduced to the
hardness of lattice problems, for instance, the shortest vector problem (SVP),
the closest vector problem (CVP), and the learning with errors (LWE) prob-
lem. Lattice-based schemes have increasingly attracted attention owing to their
balanced performance in terms of sizes and speed and have been studied for real-
world deployment [8,18,24,34]. In mid-2022, the NIST standardization process
reached the end of the third round and both signature schemes and KEMs have
been chosen for standardization.

FrodoKEM is a well-known lattice-based key encapsulation mechanism [4].
It was a third-round NIST alternate candidate and recommended by German
Federal Office for Information Security (BSI) [9] and the Netherlands National
Communications Security Agency (NBV) [1] for achieving quantum-safe commu-
nication. Moreover, FrodoKEM was optimized and included in different libraries
such as pqm4 [12] and liboqs [33].

Lattice-based KEMs in general and FrodoKEM in specific are considered to
be secure against quantum attacks [31]. However, their practical implementations
succumb to side-channel analysis where an adversary has access to the victim’s
device. Regarding this, one might ask whether it will be easier for an attacker
with access to a victim’s device to directly extract the session key instead of
performing a tedious side-channel analysis. For instance, an employee with the
knowledge of the device’s technical details can easily extract the secret key.
Hence, high-end data protection has become a common place standard for every
major business entity. Moreover, the session keys generated during cryptographic
processes should be secured even against the manufacturer itself, thus deeming
such processes ‘maker-proof’. Not just that, these session keys are protected by
being stored in trusted physical modules [28,35] which are tamper- and intrusion-
resistant, highly-trusted, and meet security standards and regulations used, e.g.,
in banking systems.

Given that, extracting the session key directly from the device is challenging.
Hence, most attacks target a vulnerable routine, extract sensitive information via
a side-channel analysis, and build the long-term secret key. With the knowledge
of the long-term secret key, the session key can be easily calculated by decrypting
the exchanged ciphertext.

For example, an attacker having access to a device can retrieve the secret key
by observing the power consumption, the drop of voltage, or timing variation.

Related Work: In [26], Ravi et al. identified vulnerabilities in the decapsulation
procedure, exploited them to gain information about the decrypted messages,
and recovered the long-term secret key within multiple side-channel information.
Another attack was proposed by Aysu et al. [3]. The attack targeted the matrix
and polynomial schoolbook multiplication used in these protocols. The crux of
their attack was to apply a horizontal attack that makes hypotheses on several
intermediate values within a single execution, all relating to the same long-term
secret, and combine their correlations for estimating the secret key. Despite the



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 151

fact that their attack needs a single trace, its success highly depends on the
accuracy of the used triggering techniques.

In [32], Bo-Yeon Sim et al. analyzed the message encoding operation in the
encapsulation phase of different lattice-based KEMs, i.e., CRYSTALS-KYBER,
SABER, and FrodoKEM, and obtained the session key with a single power
consumption trace [32]. Their experiments show that the success rate of the
attack for FrodoKEM can be low to 79%.

In [14], Kim et al. proposed a single trace attack against KEMs employing
the cumulative distribution table (CDT) for the error vector sampling. The CDT
sampler outputs a sample by sampling first a random value and iterating through
the CDT until the entry corresponding to the uniform random value is found.
Unlike most of attacks against KEMs in the literature, their attack reveals the
session key directly, without the need to obtain the long-term secret key. This
attack is convenient tract case ephemeral keys are used and can also be applied
to lattice-based encryption algorithms that use CDT for error sampling. The
purpose of their attack is to retrieve the sampled error and reduce each LWE
instance to a linear relation with the secret information.

In this paper, we investigate the practicability of the attack proposed in [14]
in real-world circumstances and provide a proof-of-concept implementation. For
that, we use different boards running on different frequencies. We perform our
side-channel analysis and show that as compared to the previous work of [14]
reading out the samples from a single power consumption trace of the FrodoKEM
decapsulation is not feasible. In fact, the measurement gets noisier and less
informative with higher frequency and different setup. As a solution, we employ
an offline-trained machine-learning classifier on a device similar to the victim’s,
intended to predict the Gaussian samples during the attack phase. Moreover, we
discuss the possible countermeasures to our attack based on literature work.

Contribution: In this paper, we investigate the feasibility of single-trace attacks
against KEMs using Gaussian sampling and present a full-key recovery for
FrodoKEM. We confirm the practicality of our full-key recovery attack target-
ing the NIST reference implementation and the optimized code of the pqm4
library for FrodoKEM when executed on a 32-bit Arm Cortex-M4 using machine-
learning filtering techniques. We prove that our attack is robust to real-world
conditions, such as noisy power measurements and high frequencies. The main
contributions of the paper are summarized as follows:

– Evaluation of the feasibility of a single-trace attack against FrodoKEM. Our
experimental setup relies on different realistic conditions: different clock fre-
quencies and different target boards.

– Proof-of-concept implementation of a single-trace attack against FrodoKEM.
– Deployment of machine-learning tools to retrieve the sensitive information in

case of noisy and/or less informative measurements.
– Discussion of a possible countermeasure implementation of Gaussian sampling

as suggested in the literature.



152 S. Marzougui et al.

Organization: The remainder of this paper is organized in six sections. In Sect. 2,
we give preliminaries on the FrodoKEM scheme and the Gaussian sampling.
Then, in Sect. 3, we present our experimental setup and the targeted implemen-
tations. In Sect. 4, we present a simple power analysis on the Gaussian sampling
routine. Subsequently, we present a detailed mathematical description of our
single trace power analysis attack in Sect. 5 and focus on the influence of the
introduced noise on the feasibility of our attack. Likewise, in Sect. 6, we describe
our machine-learning filtering techniques. We conclude the paper with Sect. 7
where we discuss the possible countermeasure and call attention to the urgent
need of further protection against single trace attacks targeting the Gaussian
sampler.

2 Background

2.1 Lattices

A lattice Λ is a discrete subgroup of R
n. Given m ≤ n linearly independent

vectors b1, ..., bm ∈ R
n, the lattice Λ(b1, ..., bm ) is the set of all integer linear

combinations of the bi ’s, i.e.,

Λ(b1, ..., bm ) =
{ m∑

i=1

xibi

∣∣∣ xi ∈ Z

}
,

where b1, ..., bm form a basis of Λ and m is the rank. In this paper, we consider
full-rank lattices, i.e., with m = n. An integer lattice is a lattice for which the
basis vectors are in Z

n. Usually, we consider elements modulo q, i.e., the basis
vectors and coefficients are taken from Zq.

2.2 Learning with Errors

The Learning with Errors problem (LWE), which is a generalization of the classic
Learning Parities with Noise problem, was introduced by Regev [27]. We explain
in the following the Learning with Errors problem.

Definition 1. Let n, q be positive integers, and let χ be a distribution over Z.
For s ∈ Z

n
q , the LWE distribution As,χ is the distribution over Zn

q × Zq obtained
by choosing a ∈ Z

n
q uniformly at random and an integer error e ∈ Z from χ.

The distribution outputs the pair (a, 〈a, s〉 + e mod q) ∈ Z
n
q × Zq.

There are two important computational LWE problems:

– The search problem is to recover the secret s ∈ Z
n
q given a certain number of

samples drawn from the LWE distribution As,χ.
– The decision problem is to distinguish a certain number of samples drawn

from the LWE distribution from uniformly random samples.



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 153

2.3 Gaussian Sampler and CDTs

Several lattice-based schemes use the discrete Gaussian distribution as error dis-
tribution χ in Definition 1. A centered discrete Gaussian distribution is used in
LWE to ensure that the noise added to the ciphertext is truly random and unbi-
ased, providing a secure and efficient encryption scheme. The discrete Gaussian
distribution over a lattice Λ is defined as

DΛ,σ(x) =
ρσ(x)∑

y∈Λ ρσ(y)
, (1)

where
ρσ(x) = e

−x2

2σ2 (2)

represents the continuous Gaussian function. When sampling from the positive
integers, we simply write D+

σ , which is defined accordingly by

D+
σ (x) =

ρσ(x)∑+∞
y=0 ρσ(y)

(3)

There are different generic ways to sample from a discrete Gaussian distribu-
tion. One of the approaches employs the CDT for sampling as in Algorithm 1.
First, the CDT ψ is precomputed using the cumulative distribution function
of D+

σ . The idea is that the sampler returns the index i of the table ψ, such that
ψ[i] < x ≤ ψ[i + 1], where x is generated uniformly from the interval that is
covered by the table. The parameter τ denotes the tail-cut and is chosen such
that the probability for drawing from outside the interval is negligible.

Algorithm 1. Gaussian Sampler using CDT
Require: CDT ψ of length l, following a distribution D+

σ , and having a tailcut τ
Ensure: Sampled value S following the targeted distribution Dσ

1: S ← 0
2: rnd ← [0,τσ) ∪ Z uniformly at random
3: sign ← [0,1] ∪ Z uniformly at random
4: for (i = 0 ; i < l − 1; i + +) do
5: S +=(ψ[i] − rnd) >> 15
6: end for
7: S ← ((−sign) ∧ S) + sign
8: return S



154 S. Marzougui et al.

2.4 Description of FrodoKEM

FrodoKEM is a lattice-based KEM with security based on the standard LWE
problem (i.e., not the ring version of the LWE problem). It is a conservative
design with security proofs. KEM’s are defined as a triple of algorithms (KeyGen,
Encaps, Decaps). KeyGen is the algorithm responsible for public and secret
key generation. The encapsulation algorithm Encaps generates a random key
k and encrypts it using the public key pk to create a ciphertext c and derive
a shared secret ss. The decapsulation algorithm Decaps decrypts c using the
secret key sk and returns the derived session key ss, or a random output in
case the re-encrypted ciphertext does not fully match the previous output of the
encapsulation algorithm.

We describe the decapsulation of FrodoKEM as it is the target of our attack,
see Algorithm 2. We introduce the following parameters:

– n, m̄, n̄ integer matrix dimensions with n ≡ 0 (mod 8)
– B is the number of the bits encoded in each matrix entry
– lenseedA

the bit length of seeds used for pseudorandom matrix generation
– lenseedS E

the bit length of seeds used for pseudorandom bit generation for
error sampling

– Gen pseudorandom matrix generation algorithm
– Tχ distribution table for sampling
– lens the length of the bit vector s used for pseudorandom shared secret

generation in the event of decapsulation failure
– lenz the bit length of seeds used for pseudorandom generation of seedSE

– lenk the bit length of intermediate shared secret k
– lenpkh the bit length of the hash of the public key
– lenss the bit length of shared secret ss

The decapsulation starts with the calculation of the matrix M . When sim-
plifying M , we can write it as

M = Encode(μ′) + S′E − E′S + E′′,

where S, S′, E, E′, and E′′ have small entries. Therefore, S′E−E′S+E′′ will
also result in a matrix with small entries, regarded as noise. The Decode (line
4, Algorithm 2) removes this noise and returns the seed μ′. The decapsulation
then continues by doing a reencryption and comparing the ciphertexts. If the
ciphertexts (line 16, Algorithm 2) are equal, the correct shared key ss is returned.



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 155

Algorithm 2. FrodoKEM Key Decapsulation according to [23]
Require: Ciphertext c1‖c2 ∈ {0, 1}(m̄.n+m̄.n̄)D, and secret key sk′ =

(s‖seedA ‖b,ST ,pkh) ∈ {0, 1}lens+lenseedA
+D.n.n̄ × Z

n̄×n
q × {0, 1}lenpkh

Ensure: Shared secret key ss ∈ {0, 1}lens s

1: B′ ← Unpack(c1)
2: C ← Unpack(c2)
3: Compute M ← C − B′S
4: Compute μ′ ← Decode(M )
5: Parse pk ← seedA ‖b
6: Generate pseudorandom values

seedS ′E ′‖k′ ← SHAKE(pkh‖μ′, lenseedS E + lenk )
7: Generate pseudorandom bit string

(r(0), r(1), . . . , r(2m̄n+m̄n−1)) ← SHAKE (0x96‖seedSE ′ , (2m̄n + m̄n).lenχ)
8: Sample error matrix S′ ← SampleMatrix(r(0), r(1), . . . , r(m̄n−1), m̄, n, Tχ)
9: Sample error matrix E′ ← SampleMatrix(r(m̄n), r(m̄n+1), . . . , r(2m̄n−1), m̄, n, Tχ)

10: Generate A ← Gen(seedA )
11: Compute B′′ ← S′A + E′

12: Sample error matrix E′′ ← SampleMatrix(r(2m̄n), . . . , r(2m̄n+m̄n−1), m̄, n̄, Tχ)
13: B ← Unpack(b, n, n̄)
14: Compute V ← S′B + E′′

15: Compute C ′ ← V + Encode(μ′)
16: if B′‖C = B′′‖C ′ then
17: return shared secret ss ← SHAKE (c1‖c2‖k′, lenss )
18: else
19: return shared secret ss ← SHAKE (c1‖c2‖s, lenss )
20: end if

3 Experimental Setup

In this section, we present the experimental setup used for our side-channel anal-
ysis. Our attack targets the implementations taken from the open-source pqm4
library [12], running on the ARM Cortex-M4 and Harvard micro-controllers1.

3.1 Implementations of FrodoKEM

The FrodoKEM source code [2] was provided as a portable C implementa-
tion. The reference implementation of FrodoKEM having the smallest parame-
ter set (frodokem640shake/frodokem640aes) requires almost a megabyte of RAM
(including messages and keys). This is mainly due to placing the entire matrix A
in RAM. For larger parameter sets, more memory will be required. Therefore, the
reference implementations are not suitable for the target platforms considered for
this attack (and less interesting as side-channel target anyway). The optimized
implementations provided by pqm4 reduce the memory consumption, however,
1 The implementation of our attack can be found at https://github.com/Soundes-M/

Soundes-M-FrodoKEMSingleTrace-/settings.

https://github.com/Soundes-M/Soundes-M-FrodoKEMSingleTrace-/settings
https://github.com/Soundes-M/Soundes-M-FrodoKEMSingleTrace-/settings


156 S. Marzougui et al.

the memory footprint remains large, and only the variant of NIST security level
I (frodokem640shake) fits on STM32F2 target platforms consuming 117 KB of
RAM (including messages and keys). The larger parameter sets of FrodoKEM
consume between 181 KB (frodokem976shake) and 298 KB (frodokem1344aes).
This is due to the fact that the implementations of the AES parameter sets of
FrodoKEM use more memory than their SHAKE counterparts, and, thus, exceed
our memory limits by far [13]. Additionally, pqm4 [12] includes M4-optimized
assembly implementations for frodokem640shake and frodokem640aes by [5]. It
speeds up the polynomial multiplication and decreases the stack memory con-
sumption [5]. In that context, we mount our attack against the optimized [12]
implementation of frodokem640shake.

3.2 Experimental Workbench

To record the traces for the attack, we used two different target boards, i.e., 8-bit
Harvard and 32-bit Cortex, mounted on a ChipWhisperer Lite CW308 UFO as
in Fig. 1. The ChipWhisperer is equipped with an analog-to-digital (ADC) which
converts the voltage input to a digital number representing the magnitude of the
voltage.

During recording, the ChipWhisperer and the micro-controller are synchro-
nized. The sampling rate of the analog-to-digital converter (ADC) was set to 4
samples/cycle with 10-bit resolution. We used a Python script running on the
PC to collect and store all relevant traces. We also used a high pass filter in the
first experiment to remove the low-frequency noise [10]. For higher frequency,
we used an external crystal Quarz oscillator.

The reason behind picking the two architectures 8-bit Harvard and 32-bit
Cortex is that we wanted to figure out the feasibility of the single trace attack
claimed in [14]. The findings in [14] need to be interpreted with cautions. In fact,
in [14], the authors used an 8-bit Harvard board equipped with an XMega micro-
controller which is especially common in educational embedded applications. In
contrast, in real world, Cortex-M boards have been embedded in tens of billions
of consumer devices.

Target Boards Setup. Our setup is composed of a CW308 UFO Board which is a
board suitable for attacking different sorts of embedded targets. The UFO board
has three 20-pin female headers into which the target board fits. They provide
both electrical and mechanical connections for the board. The pin 1 in the right
of the UFO board (Fig. 1) corresponds to the low-side shunt connection con-
nected to the SMA cable, which is a coaxial cable responsible for transmitting
the signal from the target board to the ChipWhisperer. The power consump-
tion measurements are obtained by measuring the voltage drop across the shunt
resistor.

2 We use in our experiments the STM32F4 target board which has 1 MB of Flash
memory and 192 KB of RAM.



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 157

Fig. 1. Experimental workbench used for our side-channel analysis; it contains two
target boards which can be mounted on the UFO board (red), a ChipWhisperer, an
external clock oscillator, and a USB cable. (Color figure online)

Clock Frequency Setup. The CW308 has a crystal oscillator driver, which allows
the attacker to drive the victim board through the use of an external crystal.
In other words, it is possible to generate any frequency by simply putting an
appropriate crystal (as shown in Fig. 1) into the socket. This step needs to be
followed by adjusting of the baudrate, and routing the specific crystal oscillator
to the victim external clock interface (CLKIN) using jumper J3.

4 Simple Side-Channel Analysis

4.1 Threat Model

Our threat model follows the power side-channel model of [19,20,22]. We assume
that an attacker has physical access to the victim’s device and is equipped with
a reasonable measurement setup that can synchronize the sampling rate within
the CPU clock period of the victim’s device such as the experimental setup
described in Sect. 3. The adversary in our model can record the power consump-
tion measurement of the key decapsulation (Algorithm 2).

Although we specify the points for our experiments where the execution
of the leaking routine (that is, the Gaussian sampling) starts in the power con-
sumption using triggering techniques, we note that for other devices, the attacker
might need engineering aspects of locating these cryptographic routine sub-traces
among the whole trace as explained in [6,11,37].

We indicate that our attack is a passive attack; by revealing the session key,
the adversary can also see the encrypted messages over a public channel and
has the public key of the victim which is stored in his certificate. However,
the adversary is not able to modify, drop, replay, or inject messages on the
public channel, nor use the retrieved session key to interact with the other party.
Basically, the attacker will be able only to decrypt the exchanged encrypted
messages between the two parties using the extracted session key.



158 S. Marzougui et al.

4.2 Single-Trace Attack on the Gaussian Sampler

In the FrodoKEM reference and optimized implementation [2,12], the values
are expressed in 16-bit integers, and nine bits are used for sampling. When the
value is negative and expressed in two’s complements, its significant bit is 1.

Listing 1.1. Gaussian Sampler Implementation in the reference and optimized imple-
mentation of FrodoKEM [2,12]

1 void f rodo sample n ( u in t 16 t ∗s , const s i z e t n) {
2 unsigned i n t i , j ;
3 f o r ( i = 0 ; i < n ; ++i ) {
4 u in t 16 t sample = 0 ;
5 u in t 16 t prnd = s [ i ] >> 1 ;
6 u in t 16 t s i gn = s [ i ] & 0x1 ;
7 f o r ( j = 0 ; j < ( unsigned i n t ) (CDF TABLE LEN − 1)
8 ; j++) {
9 sample += ( u in t 16 t ) (CDF TABLE[ j ] − prnd ) >> 15 ;

10 }
11 s [ i ] = ((− s i gn ) ˆ sample ) + s i gn ;
12 }
13 }

Hence, if the subtraction in line 9, Listing 1.1 yields a negative number, its most
significant bit is 1. When this number, expressed in 16 bits, is shifted to the
right, one is added to the value sample. However, if the subtraction outputs a
positive number, its most significant bit is 0. Owing to this, the value of sample
will not be incremented. By examining the power consumption trace during the
iteration through the CDT (Fig. 2(a)), we could distinguish between the addition
of zero and one.

After the iteration through the CDT, the sampler calculates a positive integer
called sample. Then, a bit-flipping operation is applied (line 11 in Listing 1.1). If
the sign bit is flipped and yields zero, then the sample’s sign remains the same.
Else, the sign is flipped. This can be observed clearly in Fig. 2(b).

Power Consumption Traces with Different Boards. We acknowledge that
the observations in Fig. 2 were already investigated by Kim and Hong in [14].
However, they are not always detectable, especially when taking the measure-
ments on boards with different architectures, such as Cortex-M4. We exemplify
this through the power consumption trace of one iteration through the CDT on
a Cortex-M4 equipped with an STM32F4 Micro-controller in Fig. 3. The results
presented in [14] do not apply to our setup. As in Fig. 3(a), one cannot differen-
tiate with the naked eye between the two colors corresponding to the addition
of zero and one. Surprisingly, the bit flipping is still vulnerable in this setup as
in Fig. 3(b).



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 159

Fig. 2. (a) shows overlapped power consumption measurements during the execution of
line 7–10 of Listing 1.1, while (b) shows overlapped power consumption measurements
during the sign bit flipping operation (line 11, Listing 1.1). Both measurements are
taken on an 8-bit Harvard board equipped with an XMega micro-controller; the red
color corresponds to the sampling of the value 0 in (a) and a flipped bit in (b), while
the blue color corresponds to the sampling of the value 1 in (a) and a non-flipped bit
in (b) (Color figure online)

Explanation. For each target, the C code gets compiled and outputs a binary.
The binaries corresponding to the compilation of the C code for different targets
are identical, however, they are meant to be executed on targets that are in
reality each very different from one another. Each target is a distinct collection
of millions of transistors. Hence, this explains the differences in the power con-
sumption traces, which are the measurement of the power consumed by these
millions of transistors. The feasibility of side-channel analysis against one board
does not imply necessarily its feasibility on other boards. In the following, we
present power consumption measurements on different boards having different
frequencies, and we show that the results in [14] do neither apply for all types
of boards nor for different clock frequencies.

Power Consumption Traces with Different Frequencies. We increased
the frequency from 7,327 MHz to 30 MHz and we took the power consumption
measurement as in Figs. 4 and 5. The red color corresponds to the power con-
sumption traces taken at a frequency of 7,327 MHz, while the blue color indicates
those taken at 30 MHz. When the chip is clocked at 7,327 MHz, we notice (as
in the randomly zoomed area in Figs. 4 and 5) that in every clock cycle there
are two high peaks. However, at a higher frequency we notice that only one
peak is occurring which minimized the fluctuation of the power consumption
measurement as compared to those taken at lower frequency.

Explanation: We explain this behaviour based on [17]. There are two peaks (at
the low frequency 7,327 MHz). The high peak occurs when the clock edge rises
from low to high, smaller peaks take place when the clock signal falls down. At a
higher clock frequency, the small peak fades or even vanishes as it overlaps with



160 S. Marzougui et al.

Fig. 3. (a) shows overlapped power consumption measurements during the execution of
line 7–11 of Listing 1.1, while (b) shows overlapped power consumption measurements
during the sign bit flipping operation (line 11, Listing 1.1). Both measurements are
taken on a Cortex-M4 equipped with an STM32F4 micro-controller; the red color
corresponds to the sampling of the value 0 in (a) and a flipped bit in (b), while the
blue color corresponds the sampling of the value 1 in (a) and a non-flipped bit in (b).
(Color figure online)

Fig. 4. Overlapped Power consumption measurement during the execution of line 9 of
Listing 1.1 on an 32-bit Cortex board equipped with an STM32F4 micro-controller for
two different clock frequencies

the highest peak. This yields a less informative measurement as the number of
peaks of the power consumption traces decreases with higher frequencies. To
this end, we came to the conclusion that single-trace attacks against the CDT
Gaussian sampler presented in [14] cannot be generalized to different boards and
different frequencies.

5 Description of the Attack and Error Tolerance

Once the victim starts executing the decapsulation algorithm, the attacker
records its power consumption. Then, the attacker can locate in the full-trace
the power consumption subtrace TS′ and TE′′ corresponding to the sampling of
S′ and E′′ as in Algorithm 2. The experimental setup is detailed in Sect. 3.

The first subtrace of the S′ sampling called TS′ is itself composed of 5120
subtraces, each corresponding to one iteration through the CDT. We call these



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 161

Fig. 5. Overlapped Power consumption measurement during the execution of line 9 of
Listing 1.1 on an 8-bit Harvard board equipped with an XMega micro-controller for
two different clock frequencies

subtraces TS′
i
, with 0 ≤ i < 5120. The attacker performs the side-channel analy-

sis (described in Sect. 4) of the collected subtraces to predict the Gaussian sam-
ples which are the 5120 entries of the matrix S′. We refer to those side-channel
analyses by the function side channel (line 4 and 7, Algorithm 3). Similarly, the
attacker gets the subtrace TE′′ corresponding to the sampling of the 64 entries
of the matrix E′′. Again, the attacker analyses each subtrace TE′′

j
to predict the

64 entries of the matrix E′′, where 0 ≤ j < 64.
Having the values of S′ and E′′, the attacker computes the matrix V as in

the decapsulation (Algorithm 2) through the following equation:

V = S′B + E′′ (4)

It is known from Algorithm 2 that:

C′ = V + Encode(μ′) (5)

Then, the attacker obtains the matrix Encode(μ′) by plugging Eq. 4 in Eq. 5 as
below.

C′ = S′B + E′′ + Encode(μ′) (6)

Note that Encode is a function that takes a bit strings of length l = B × m̄ × n̄
as input and encodes it to a matrix of m̄ × n̄ entries. We refer to [4] for more
details. The Eq. 6 gives the encoding of μ′.

Encode(μ′) = C′ − S′B − E′′ (7)

To obtain μ the attacker applies the Decode on the right side of the Eq. 7. Note
that Decode decodes an m-by-n matrix into a bit string of length B × m × n.
This means, it extracts B bits from each entry of the matrix. Hence, μ′ can be
written as:

μ′ = Decode(C′ − S′B − E′′) (8)

The attacker then calculates the session key ss. The attack is summarized in
Algorithm 3.



162 S. Marzougui et al.

Algorithm 3. Single Trace Attack
Require: Ciphertext c1‖c2 ∈ {0, 1}(m̄.n+m̄.n̄)D and power consumption traces

TS′ = (TS′0 , . . . , TS′
m̄n−1) and TE′′ = (TE′0 , . . . , TE′

m̄n̄−1)
Ensure: The session key ss
1: B′ ← Unpack(c1)
2: C ← Unpack(c2)
3: for i ∈ {0 . . . m̄n} do
4: S′

i ← side channel(TS′
i
)

5: end for
6: for i ∈ {0 . . . m̄n̄} do
7: E′′

i ← side channel(TE′′
i
)

8: end for
9: Compute V = S′B + E′′

10: Compute Encode(μ′) = C − V and get μ′ by applying Decode()
11: Generate pseudorandom values seedSE ′‖k′ ← SHAKE(pkh‖μ′, lenSE + lenk )
12: shared secret ss ← SHAKE (c1‖c2‖k′, lenss )
13: return ss

Noise Tolerance: We notice here that the noise on the samples E′′ does not
affect the correctness of the attack because the Decode() function rounds the
term C′ − S′B − E′′ to the (32 − B) most significant bits. Hence, the B least
significant bits -even when guessed wrong- do not have consequences on the value
μ′ (B is equal to 2 for the first security level of FrodoKEM).

On the other side, having an error on one coefficient of the matrix S′ will
propagate when this latter is multiplied by B and will result in different erro-
neous matrix entries. This error can be located in the first bits of the coefficients
of the resulting matrix (S′B) which will not be tolerated and result in a wrong
value of μ′. We include in the following section, a machine-learning side chan-
nel analysis technique that leverage the accuracy of the single trace attack and
enhance the attacker capability to retrieve the session key.

6 Machine-Learning Side-Channel Analysis

Side-channel experiments are usually carried out in careful and non-realistic
circumstances. For example, the noise is minimized by using noise filtering tech-
niques, or non-commercial prototype boards are targeted. This yields easy-to-
analyse power consumption traces. However, in reality the real-world conditions
such as noise can prohibit the attack as explained in Sect. 5. To tackle this
problem, we write the power consumption3 at a specific point of time as the
following:

P = Pop + Pdata + Pnoise + Pconst (9)

3 We mean here the power consumption of the device while running a cryptographic
operation.



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 163

The four entities Pop, Pdata, Pnoise, and Pconst are functions of time. The entities
Pop and Pdata are the power consumption depending on the executed operation
and the data, respectively. The entity Pnoise represents the noise added to the
power consumption measurement, and Pconst refers to constant power consump-
tion that occurs independently of the operation and the data.

Power analysis exploits the dependency between the power consumption and
the processed operation and data, i.e., Pop and Pdata. In Sect. 4.2, we figured
out two scenarios affecting the ability of an attacker to analyse the power con-
sumption traces. In the first scenario, the noise level is extremely high, i.e.,
Pnoise >> Pop + Pdata, which prevents the attacker from detecting the leak-
age. To characterize the added noise Pnoise, we recorded the power consumption
while running the Gaussian sampling with fixed input, i.e., fixed random num-
bers. This yields the repeated execution of the same instructions with the same
input data. We mounted this experiment with 1000 repetitions on each board.
From each of these traces we took always the sample with the same index (i.e.,
index 120) corresponding to the first point of interest (POI) in the power con-
sumption trace. With these points we computed the two histograms in Figs. 6
and 7.

For a low frequency, we point out that most of the points are concentrated
around zero. The shape of the histogram in Fig. 6 indicates that the points in
the power traces follow a Gaussian distribution. However, for higher frequency
the noise distribution tends to be uniform for a cortex M4 board. For an XMega
board, the added noise follows a multidimensional Gaussian distribution.

In the second scenario, the high frequency leads to flattening the power con-
sumption trace, i.e., Pop + Pdata ∼ constant (observations in Sect. 4.1 demon-
strate that with higher frequencies the power consumption becomes less infor-
mative) which can often decrease the capability of an attacker to retrieve the
intermediate sensitive data with the naked eye or even with differential power
analysis.

Fig. 6. Noise Distribution on POI when
the target board is clocked at 7 MHz

Fig. 7. Noise Distribution on POI when
the target board is clocked at 30MHz



164 S. Marzougui et al.

Therefore, in both scenarios, a single-trace attack against FrodoKEM as
in [14] could not be mounted in real circumstances. To tackle these challenges,
one way is to use a spectrum analyser which displays a spectrum of signal
amplitudes on different frequencies and determines the noise added to the signal
(power consumption of the device while running the cryptographic operation).
In view of the expensive price of a spectrum analyzer, other cheaper ways are
considered, e.g., template attacks based on a Gaussian assumption [7]. How-
ever, template attacks have been subject to much criticism [16]. First, template
attacks hold true only if the assumption on the noise distribution is correct.
This is not always fulfilled in a real-world scenario. Moreover, they are useful as
long as a limited number of points of interest can be identified in leakage traces
and contain most of the information. If the number of useless samples in leakage
traces increases and/or the size of the profiling set becomes too limited, the tem-
plate attacks are useless [16]. Instead, machine-learning side-channel analysis is
more powerful in this case.

We propose a machine-learning technique composed of two phases: a profiling
phase and an attack phase.

6.1 Profiling Phase

To prepare the profiling, we executed the Gaussian sampling process (Algo-
rithm 1) with random input.

The training of our neural network proceeds as follows. First, we prepare
traces of the execution of multiple iterations through the CDT during the Gaus-
sian sampling function with random input (lines 7–13, Listing 1.1). The output
of each CDT iteration (i.e., the Gaussian sample) is assigned as the label. With
the prepared traces and their corresponding labels, we can build a list of exam-
ples (x, y) ∈ R

t × Y , where x ∈ R
t are the power traces acting as the features,

and y ∈ Y are the Gaussian samples acting as the labels. We assume that x leaks
information about y. The list of these noisy examples (x, y) is split into training,
validation, and a test set of the Multi-Layer Perceptron (MLP) machine-learning
classifier.

We emphasize that the attacker should train a classifier for each board type
(i.e., Cortex-M4, Harvard) and frequency. According to [36], ignoring the board’s
specifics and diversity can easily lead to an overestimation of the classification
accuracy.

Tuning the hyper-parameters of our machine-learning model is of particular
importance because it influences the accuracy of the trained machine-learning
classifier, hence the practicability of our attack. There are often general heuris-
tics or rules of thumb for configuring hyper-parameters. However, a better app-
roach is to objectively search different values for model hyper-parameters and
choose a subset that maximizes the prediction accuracy of our classifier. The
so-called hyper-parameter optimization is available in the scikit-learn Python
machine-learning library [30]. The result of a hyper-parameter optimization is
a single set of well-performing hyper-parameters that is used to configure the
MLP classifiers.



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 165

We refer to each of our MLP classifiers as Classifier which is trained on traces
labeled by the output samples. We captured 20,000 power consumption traces.
We set 18,000 of them for training and testing and 2,000 for validation.

6.2 Attack Phase

Equipped with the trained MLP classifier, the attacker deduces information
about the samples from the power traces.

First, she (the attacker) lets the victim device run the decapsulation process.
Then, she extracts from the full power trace the parts of the trace corresponding
to the Gaussian sampling of the matrices S′ and E′′. Each of those traces, i.e., S′

and E′′ is split itself into snippets corresponding to the sampling of the matrix
entries. To this end, the attacker feeds those snippets to the classifier trained in
the profiling phase, and obtains a prediction of each entry in the matrices S′

and E′′.
Once the matrices S′ and E′′ are predicted by the attacker, this latter plugs

this information in Eq. 8 and calculates the value μ′ as described in Sect. 5.
Therefore, the session key can be calculated by hashing the value of μ′ con-
catenated with the public known values of the ciphertext, k′, and lenss as the
following: ss = SHAKE (c1‖c2‖k′, lenss).

7 Countermeasures and Conclusion

It is important to note that CDT is not the only method of sampling, with bino-
mial sampling being used in modern lattice-based schemes such as Kyber. Our
attack may potentially affect the binomial distribution as similar instructions are
executed, and we anticipate it to be even more efficient due to the fact that bino-
mial sampling counts the number of positive outcomes in binary experiments,
making bitwise operations more susceptible to attack through side-channel anal-
ysis. In the following, we discuss the possible countermeasures against the pro-
posed single-trace attack on the CDT sampler.

To avoid the presented single trace attack, the work [38] might be a coun-
termeasure. Instead of sampling directly from the target distribution Dσ, they
suggest to first start by generating a sample x from the base sampler D+

σ0
, where

σ0 =
√

1/2 ln (2).
Then, obtain the value yu uniformly at random from [0, · · · ,K − 1], and

compute z = yu + Kx, where K =
⌊

σ
σ0

+ 1
⌋

is a constant. Finally, a Bernoulli
rejection sampling with acceptance rate

p = exp (
−y(y + 2Kx)

2σ2
)

is applied to ensure that z follows the distribution D+
σ . In order to obtain also

negative samples, one can apply a random sign bit, but has to reject z = 0 with
probability 1/2.



166 S. Marzougui et al.

This countermeasure does protect against the proposed single-trace attack
for schemes having relatively high deviation. However, for FrodoKEM the target
standard deviation is σ = 2.8. Therefore, the value of K is small, i.e. K = 4. An
attacker still can get the samples with a precision K, since she is able to reveal
the value of x with the introduced single trace attack. She only misses out on the
value yu ∈ {0, · · · ,K −1}, when trying to recover the final sample z = yu +Kx.

One of the common countermeasures is masking. In [29] Schneider et al.
presented the first protected (masked) binomial sampler claimed to be secure
against side-channel adversaries of arbitrary order. First-order masking counter-
measures are not enough to protect against ML attacks. Leveraging the masking
order is needed but it yields a performance overhead memory and time-wise. The
first-order masking technique has been, however, broken by [22] using machine-
learning side-channel analysis.

Another countermeasure was suggested by [14], where a look-up table is used
for sampling. One samples a 16-bit integer, and uses it as the index of the look-
up table and outputs the corresponding table value (or the sample). However,
this countermeasure needs to store a big look-up table. For FrodoKEM-640, the
Gaussian sample does not exceed one byte, and the random values are 16-bit
precision, where the last significant bit is used for the sign. Hence, a table of size
216 bits is needed.

Additionally, one can perform the Fisher-Yates random shuffle (or Knuth
shuffle) [15] in order to mask the relationship between the side channel and the
secret information (the samples). Specifically, after sampling the matrices S′ and
E′′ their samples are shuffled. This countermeasure might be robust against our
attack, given that each session key is specific to a single session establishment.
However, in case the attacker succeeded to force the victim reusing the same
session key, the countermeasure of random shuffling is not secure anymore and
was proven to leak information [25]. An attacker needs a marginally larger, yet
still practical number of samples to rearrange the coordinates and undo the
shuffle.

To conclude, KEMs are important cryptographic routines for large-scale com-
munication protocols. As ephemeral secrets are used in these protocols, the risk of
being vulnerable to side-channel analysis can be underestimated. This is because
the chance of an attack being successful decreases when the same key is used
only once in a single execution of the scheme. In this paper, we validate that it is
indeed crucial to examine the vulnerability of these schemes against single-trace
attacks targeting the session key. As lattice-based key exchange protocols are
already deployed in practical applications, their side-channel evaluation should
play a role in the decision of their implementation choices. This paper exam-
ines the feasibility of side-channel analysis against KEMs using CDT Gaussian
sampling and proves that the latter is still vulnerable to machine-learning side-
channel attacks even in real-world circumstances. We demonstrate our results
using FrodoKEM as an example, which is a NIST alternate candidate from
the third round, and has been recommended by the German Federal Office
for Information Security (BSI) [9] and the Netherlands National Communica-



On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 167

tions Security Agency (NBV) [1] for achieving quantum-safe communication.
Our single-trace attack leads to the recovery of the complete session key.

Acknowledgment. The work described in this paper has been supported by the
German Federal Ministry of Education and Research (BMBF) under the project Full
Lifecycle Post-Quantum PKI - FLOQI (ID 16KIS1074) and under the project Aquorypt
(ID 16KIS1022).

References

1. Netherlands National Communications Security Agency. Prepare for the threat
of quantum-computers (2022). https://english.aivd.nl/publications/publications/
2022/01/18/prepare-for-the-threat-of-quantumcomputers

2. Alkim, F., et al.: Frodokem: learning with errors key encapsulation. Github.
https://github.com/microsoft/PQCrypto-LWEKE

3. Aydin, E., Aysu, A., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-
channel vulnerabilities of post-quantum key exchange and encapsulation protocols.
ACM Trans. Embed. Comput. Syst. 20(6), October 2021

4. Bos, J., et al.: Take off the ring! practical, quantum-secure key exchange from
lwe. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1006–1018 (2016)

5. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Fly, you fool!
faster frodo for the arm cortex-m4. Cryptology ePrint Archive (2018)

6. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-lwe
revisited, May 2016

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Bimodal lattice signature
scheme (bliss). https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

9. Federal Office for Information Security (BSI). Bsi tr-02102-1: “cryptographic mech-
anisms: Recommendations and key lengths” version: 2022–1, 2022. https://www.
bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/
TG02102/BSI-TR-02102-1.html

10. NewAE Technology Inc. https://www.mouser.com/datasheet/2/894/NAE-CW30
8-datasheet-1289269.pdf

11. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud, August 2016

12. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

13. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-m4. IACR Cryptol. ePrint Arch., p.
844 (2019)

14. Kim, S., Hong, S.: Single trace analysis on constant time cdt sampler and its
countermeasure. Appl. Sci. 8(10) (2018)

15. Knuth, D.E.: Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional (2014)

https://english.aivd.nl/publications/publications/2022/01/18/prepare-for-the-threat-of-quantumcomputers
https://english.aivd.nl/publications/publications/2022/01/18/prepare-for-the-threat-of-quantumcomputers
https://github.com/microsoft/PQCrypto-LWEKE
https://doi.org/10.1007/3-540-36400-5_3
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.mouser.com/datasheet/2/894/NAE-CW308-datasheet-1289269.pdf
https://www.mouser.com/datasheet/2/894/NAE-CW308-datasheet-1289269.pdf
https://github.com/mupq/pqm4


168 S. Marzougui et al.

16. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) Constructive Side-
Channel Analysis and Secure Design, pp. 20–33. Springer, Cham (2015)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer, Heidelberg (2007)

18. Marzougui, S., Krämer, J.: Post-quantum cryptography in embedded systems
(2019)

19. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.-P.: Profiling side-channel
attacks on dilithium: a small bit-fiddling leak breaks it all. Cryptology ePrint
Archive, Paper 2022/106, 2022. https://eprint.iacr.org/2022/106

20. Marzougui, S., Wisiol, N., Gersch, P., Krämer, J., Seifert, J.-P.: Machine-learning
side-channel attacks on the galactics constant-time implementation of bliss (2021)

21. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready?
IEEE Secur. Privacy 16(5), 38–41 (2018)

22. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
ind-cca secure saber kem implementation. IACR Trans. Cryptographic Hardware
Embedded Syst., 676–707 (2021)

23. National Institute of standards and technology. Nist pqc standardization process.
https://csrc.nist.gov/Projects/post-quantum-cryptography

24. Paul, S., Schick, F., Seedorf, J.: Tpm-based post-quantum cryptography: a case
study on quantum-resistant and mutually authenticated tls for iot environments.
In: The 16th International Conference on Availability, Reliability and Security,
ARES 2021. Association for Computing Machinery, New York (2021)

25. Pessl, P.: Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 153–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49890-4 9

26. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on cca-secure lattice-based pke and kems. IACR Trans. Cryptographic Hardware
Embedded Syst. 2020(3), 307–335 (2020)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), September 2009

28. Rhode and Schwarz. Kryptogeräte. https://www.rohde-schwarz.com/de/produk
te/aerospace-verteidigung-sicherheit/kryptogeraete 230846.html

29. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial
sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 18

30. Scikit learn. scikit-learn machine learning in python. https://scikit-learn.org/
stable/

31. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

32. Sim, B.-Y., et al.: Single-trace attacks on message encoding in lattice-based kems.
IEEE Access 8, 183175–183191 (2020)

33. Stebila, D., Mosca, M.: liboqs is an open source C library for quantum-safe cryp-
tographic algorithms., Cortex-M4. https://github.com/open-quantum-safe/liboqs

34. Ulitzsch, V.Q., Park, S., Marzougui, S., Seifert, J.-P.: A post-quantum secure sub-
scription concealed identifier for 6g. In: Proceedings of the 15th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec 2022, pp. 157–
168. Association for Computing Machinery, New York (2022)

https://eprint.iacr.org/2022/106
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-319-49890-4_9
https://doi.org/10.1007/978-3-319-49890-4_9
https://www.rohde-schwarz.com/de/produkte/aerospace-verteidigung-sicherheit/kryptogeraete_230846.html
https://www.rohde-schwarz.com/de/produkte/aerospace-verteidigung-sicherheit/kryptogeraete_230846.html
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/open-quantum-safe/liboqs


On the Feasibility of Single-Trace Attacks on the Gaussian Sampler 169

35. Utimaco. What is a hardware security module (hsm). https://utimaco.com/
de/produkte/technologien/hardware-security-modules/what-hardware-security-
module-hsm

36. Wang, H., Brisfors, M., Forsmark, S., Dubrova, E.: How diversity affects deep-
learning side-channel attacks. In: 2019 IEEE Nordic Circuits and Systems Con-
ference (NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC), pp. 1–7 (2019)

37. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS 2012, pp. 305–316. Association for
Computing Machinery, New York (2012)

38. Zhao, R.K., Steinfeld, R., Sakzad, A.: Facct: Fast, compact, and constant-time dis-
crete gaussian sampler over integers. IEEE Trans. Comput. 69(1), 126–137 (2020)

https://utimaco.com/de/produkte/technologien/hardware-security-modules/what-hardware-security-module-hsm
https://utimaco.com/de/produkte/technologien/hardware-security-modules/what-hardware-security-module-hsm
https://utimaco.com/de/produkte/technologien/hardware-security-modules/what-hardware-security-module-hsm


Punctured Syndrome Decoding Problem

Efficient Side-Channel Attacks Against Classic McEliece

Vincent Grosso1(B) , Pierre-Louis Cayrel1 , Brice Colombier1 ,
and Vlad-Florin Drăgoi2,3

1 Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France

vincent.grosso@univ-st-etienne.fr
2 Faculty of Exact Sciences, Aurel Vlaicu University, Arad, Romania

3 LITIS, University of Rouen Normandie, Saint-Etienne du Rouvray, France

Abstract. Among the fourth round finalists of the NIST post-quantum
cryptography standardization process for public-key encryption algo-
rithms and key encapsulation mechanisms, three rely on hard problems
from coding theory. Key encapsulation mechanisms are frequently used
in hybrid cryptographic systems: a public-key algorithm for key exchange
and a secret key algorithm for communication. A major point is thus the
initial key exchange that is performed thanks to a key encapsulation
mechanism. In this paper, we analyze side-channel vulnerabilities of the
key encapsulation mechanism implemented by the Classic McEliece cryp-
tosystem, whose security is based on the syndrome decoding problem.
We use side-channel leakages to reduce the complexity of the syndrome
decoding problem by reducing the length of the code considered. The
columns punctured from the original code reduce the complexity of a
hard problem from coding theory. This approach leads to efficient pro-
filed side-channel attacks that recover the session key with high success
rates, even in noisy scenarios.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Side-channel attacks

1 Introduction

Recent developments in quantum computing threaten classical public key cryp-
tography. Indeed, Shor’s algorithm [22] could be used to break public key schemes
such as RSA or Diffie-Hellman. Therefore, to prepare security in the quantum
computing era, in 2016, NIST launched a standardization process for post-
quantum cryptography standards to replace current public-key standards which
are vulnerable to quantum computing. In July 2022, the fourth round of the stan-
dardization process started. Among the four remaining candidates for public key
encryption algorithms and key encapsulation mechanisms, three are code-based
solutions: Classic McEliece [2], BIKE [3], and HQC [1].

All three proposals implement a solution for IND-CCA secure key exchange
using a Key Encapsulation Mechanism (KEM) [15]. KEMs are used to exchange
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 170–192, 2023.
https://doi.org/10.1007/978-3-031-29497-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_9&domain=pdf
http://orcid.org/0000-0002-3874-7527
http://orcid.org/0000-0002-6708-868X
http://orcid.org/0000-0002-6028-3028
http://orcid.org/0000-0002-8673-9097
https://doi.org/10.1007/978-3-031-29497-6_9


Punctured Syndrome Decoding Problem 171

private session key over an insecure channel using public cryptography scheme.
To avoid short message and padding issues while using public-key encryption
schemes, a key derivation function is used allowing to generate the message sent
in the right domain and using most of the time a hash function to derive a
uniform random looking secret key, assuming enough entropy in the original
message. The security of the private communication relies on the security of the
KEM, assuming that secure symmetric algorithms are used. Moreover KEM can
be seen as a key-exchange protocol in which only a single message is transmitted,
if one of the two parties knows the public key of the second party.

For both Classic McEliece and BIKE, the security of the KEM relies on
the hardness of the binary Syndrome Decoding Problem (SDP). Conversely, the
security of HQC essentially relies on the hardness of decoding a general linear
code. The binary SDP is an NP-hard problem stating the following. Knowing
a matrix H ∈ F

(n−k)×n
2 , an integer t ≤ n and a vector s∗ ∈ F

n−k
2 , it is difficult

to recover e ∈ F
n
2 such that He = s∗ and HW(e) = t. The vector s∗ is usually

referred to as the syndrome. In a KEM, the vector s∗ is sent, and the secret data
e is reconstructed by the recipient. Thus the encapsulation algorithm consists
of a matrix-vector multiplication. The difficulty of the problem depends on the
weight t of e. The problem is difficult when e is of sufficiently “low weight”.

Some of the best solutions to solve the binary SDP make use of the so-called
“information set decoding” strategy (ISD) [4,14,16,19,23]. The key idea is to
exploit the “low weight” property of e by selecting a sufficient number of columns
that do not operate in the computation of s∗. Afterwards, Gaussian elimination
can be performed on the other columns. However, selecting the columns is a
challenging phase.

A consequence of the NIST post-quantum cryptography standardization pro-
cess is to accelerate the development of implementations of code-based cryptog-
raphy algorithms [7,8,18,21]. In particular, Classic McEliece has been imple-
mented on 32-bit microprocessor ARM Cortex-M4 [7], with the limitation that
the public key must be stored in the flash memory, and on a Xlilinx Artix-7
FPGA [8]. Implementations on constrained platforms, such as micro-controllers
or FPGAs, also lead to physical attacks against different algorithms of code-
based cryptography [5,9,12,13]. For example, it has been shown that the session
key can be recovered by side-channel attacks with multiple observations during
the decapsulation process [13] or with a single observation during the encapsula-
tion process [9]. Colombier et al. demonstrated the effectiveness of their method
against an implementation on the Chipwhisperer platform, which is known to
allow for low-noise side-channel measurements. The efficiency of the proposed
method in a more noisy setting was later analyzed in [10].

The focus of this article is on Classic McEliece, in particular the matrix-vector
multiplication over F2 used in the syndrome computation. Conversely, BIKE uses
polynomial multiplication. Adaptations are needed to apply the attack against
other finalists but this is out of the scope of this article.

Contribution. This article exposes in details the inherent limitations of previ-
ously proposed side-channel attacks against Classic McEliece presented in [9].



172 V. Grosso et al.

In particular, we explain the performance degradation of the existing approach
when large noise levels are considered. Besides the intrinsic uncertainty of the
Hamming weight classifier, we show that, overall, it is mainly due to an accu-
mulation of errors in the way the integer syndrome is computed, as required
by the attack setting and explained below. We then present a new, more effi-
cient method that achieves better resistance against noise present in side-channel
traces by resorting to a more traditional divide-and-conquer approach.

This new method is a profiled side-channel attack against Niederreiter-like
constructions using packed matrix-vector multiplications, as used in the round
four finalist of the NIST standardization process Classic McEliece. Moreover,
we also study the feasibility of the proposed attacks against implementations
that use a larger register size, which is a clear trend in embedded software
implementations.

Organization. This article is organized as follows. Section 2 describes existing
message-recovery attacks on the packed matrix-vector multiplication as used for
the syndrome computation in the Classic McEliece cryptosystem. The inherent
limitations of these attacks, in particular when it comes to error propagation,
are detailed in Sect. 3. In Sect. 4, we introduce a divide-and-conquer strategy
that efficiently limits the propagation of errors. Experimental results are given
in Sect. 5 and we conclude in Sect. 6.

2 Message-Recovery Attacks on the Packed
Matrix-Vector Multiplication

This section introduces code-based KEMs and the target algorithm of the pro-
posed side-channel attack: Classic McEliece. In particular, we focus on the
matrix-vector multiplication performed during the encapsulation step. We also
present previous side-channel attacks that recover the shared session key.

Notations. The following notations are used in this article. A finite field is
denoted by F. Matrices and vectors are written in bold capital, respectively
small letters, e.g. a vector of length n is c = (c1, . . . , cn) and a k × n matrix
is H = (hi,j)(i,j)∈N∗

k×N∗
n
. Let Hi,(j−1)w+1:jw be the jth block of size w of the

ith row of the H matrix. The concatenation of the vectors a and b is written
as a ‖ b. The Hamming weight of a binary vector HW(e) is the number of its
non-zero coordinates. The Hamming distance between two vectors a and b is
written as HD(a, b).

2.1 Classic McEliece Encapsulation

Like others KEMs, Classic McEliece includes three operations: key generation,
encapsulation and decapsulation. We focus on the encapsulation step in this
work. This is detailed in Algorithm 1, where the target operation of the proposed
attack is annotated. This target operation performs a matrix-vector multiplica-
tion over F2 and its implementation is detailed in the next subsection.



Punctured Syndrome Decoding Problem 173

Algorithm 1. Classic McEliece encapsulation
1: function Encap(H)
2: Generate a uniform random vector e ∈ F

n
2 with HW(e) = t.

3: Compute C ← He � target operation
4: Compute K ← H(1 ‖ e ‖ C) � session key
5: return (C, K)

2.2 Packed Matrix-Vector Multiplication

Algorithm 2 shows the pseudo code of a software implementation of the matrix-
vector multiplication over F2. This implementation is referred to as “packed”
since multiple bits are stored together in the same machine word. The size of the
machine word w is a parameter in this algorithm. In the reference implemen-
tation of the Classic McEliece submission [2], w = 8. In the ARM Cortex-M4
implementation by Chen and Chou [7], w = 32. In the vectorized implementa-
tion of the Classic McEliece submission [2], w = 64. Boolean instructions then
operate over the full machine word to perform operations in parallel. That is the
key operation of the encapsulation step in the Classic McEliece KEM. As shown
in [9], the strongest side-channel leakage occurs for line 5, when the intermediate
variable b is updated by repeatedly adding the logical AND of a matrix entry
and a vector entry. To be able to refer to specific intermediate values later, we
write these intermediate variables as if they were stored in a matrix: bi,j . In
actual implementations, a single machine word is used.

Algorithm 2. Packed matrix-vector multiplication over F2

Require: A binary (n, n − k) matrix H , and a binary vector e of n elements, the
register size w (should be a power of 2)

Ensure: A binary vector s∗ = He
1: s∗ ← 0
2: for i ← 1 to (n − k) do
3: bi,0 ← 0
4: for j ← 1 to n

w
do

5: bi,j ← bi,j−1 ⊕ Hi,(j−1)w+1:jw ∧ ej

6: t ← w
2

7: while t > 0 do
8: bi, n

w
← bi, n

w
⊕ (bi, n

w
� t)

9: t ← t
2

10: s∗
� i

w 	 ← s∗
� i

w 	 ∨
((

bi, n
w

∧ 1
)

� (i mod w)
)

11: return s∗



174 V. Grosso et al.

2.3 Message Recovery Attack

We describe the method introduced in [9], to recover session keys on cryp-
tosystems based on the binary syndrome decoding problem. This attack uses
side-channel information obtained during the encapsulation step. The message
recovery attack is composed of four steps, which we describe hereafter.

1. Side-channel analysis: the goal of this first step is to estimate the Hamming
weight of the successive intermediate values of b during the matrix-vector
multiplication, as shown on line 5 in Algorithm 2. For the loop index i, j, we
denote by ˜HW(bi,j) the best guess for the Hamming weight of bi,j . In [9],
authors use a random-forest classifiers for this step, but other classifiers can
be used.

2. Derivation of the integer syndrome: with the Hamming weight information
obtained in the first step, the attacker may estimate the values of the syn-
drome s in N, in addition to the binary syndrome s∗ which is public. This is
done by summing the differences of the maximum of each value found in the
previous step, as detailed in Eq. (1).

1 ≤ i ≤ (n − k) s̃i =

n
w

∑

j=1

∣

∣

∣

˜HW(bi,j) − ˜HW(bi,j−1)
∣

∣

∣ (1)

This computation requires a good estimation of the Hamming weight of the
intermediate values. In addition, it only works under additional conditions
between bi,j and bi,j−1. If those conditions are not met, it can lead to derive
an erroneous value for the integer syndrome. We discuss these issues in more
details in Sect. 3.

3. Sort columns: the next step is to separate the columns into two sets. The first
set consists of the columns whose indexes are in the support of e. The second
set consists of the other columns. However, this separation is a difficult task.
In [9], authors compute a score for each column and sort columns according
to this score. The score for the column j, based on the work of Feige and
Lellouche [11], is defined in Eq. (2).

∀j ∈ �1, n�, ψj(s̃) = H.,j · s̃ + H .,j · s̃ (2)

where H is the complementary of the matrix Hand s̃ = t − s̃, where t is the
weight of e as dictated by the security parameters. In [10], the efficiency of
this score function is analyzed in the presence of errors.

4. Information Set Decoding: as shown in [10] the score function allows to effi-
ciently discriminate most of the columns in the support of e from other
columns even in the presence of noise. However, a few columns may still
be wrongly classified. In that case, the score function is used to provide a
“good” initial permutation for ISD methods.

This method achieves a good success rate in a realistic scenario with mea-
surements on a ChipWhisperer platform [17] for various sets of parameters.



Punctured Syndrome Decoding Problem 175

3 Limitation of the CDCG Method

In this section, we present errors that can appear in the method of [9] and
reduce the efficiency of the message recovery. We concentrate on side-channel
and recombination errors that lead to an incorrect syndrome in N, i.e., the two
first steps presented in Sect. 2.3. Eventually, we discuss the impact of such errors
on scores output by the ψ score function [11].

3.1 Side-Channel Analysis Error

We first try to identify how side-channel analysis errors alter the estimation of the
syndrome s in N. Due to their nature and noise in measurements, side-channel
attacks can output guesses that are not the targeted sensitive information used
in the implementation.

We say that the side-channel distinguisher makes an error if the highest guess
score does not correspond to the Hamming weight of the actual computation:
˜HW(bi,j) �= HW(bi,j). We may rewrite the faulty guess as:

˜HW(bi,j) = HW(bi,j) + εi,j ,

with εi,j �= 0.
Due to the leakage model, the error is generally small: εi,j ∈ {−1, 1} The

Hamming weight guess is the real Hamming weight plus or minus one. In practice,
we observe on real traces that the error is small for template and random forests
when used as side-channel distinguishers.

If the side-channel distinguisher made some errors for the value in row i and
column j then the estimated syndrome in N will be flawed in the ith position.
This is clear when considering how the ith component of s is derived from the
Hamming weight of the intermediate values:

s̃i =

n
w

∑

j=1

|˜HW(bi,j−1) − ˜HW(bi,j)|

=

n
w

∑

j=1

|HW(bi,j−1) − HW(bi,j)| + εsi
, (3)

where εsi
comes from the side-channel error on the ith syndrome entry.

This εi,j value actually appears in two Hamming distances: for j and j − 1.
As a consequence, the recombination step given in Eq. (3) amplifies the side
channel noise.

Remark: s̃i corresponds to the number of transitions between ˜HW(bi,j−1) and
˜HW(bi,j) for j going from 1 to n/w.

Example 1. For a given row i, let HW(bi,.) = (0, 0, 1, 1, 1, 2, 1, 1) be the error-free
sequence of Hamming weights of the intermediate values. Then, the estimation



176 V. Grosso et al.

part should give a guess value of s̃i = 3. Indeed, there are 3 transitions 0 →
1, 1 → 2 and 2 → 1.

Depending on where the error εi,j appears, the consequence on the s̃i value
differs.

– Let’s assume we observe ˜HW(bi,.) = (0, 1, 1, 1, 1, 2, 1, 1), εi,1 = +1 affects
HW(bi,1). We derive s̃i = 3 and therefore εsi

= 0
– Let’s assume we observe ˜HW(bi,.) = (0, 0, 1, 1, 1, 1, 1, 1), εi,5 = −1 affects

HW(bi,5). We derive s̃i = 1 and therefore εsi
= −2

– Let’s assume we observe ˜HW(bi,.) = (0, 0, 1, 1, 1, 2, 1, 2), εi,7 = +1 affects
HW(bi,7). We derive s̃i = 4 and therefore εsi

= 1

As shown in the example, a negative or null impact on the estimation of
the integer syndrome entry can happen. However, these cases occur with low
probability.

The side-channel error is directly linked to the accuracy of the side-channel
distinguisher. Indeed, the accuracy corresponds to the probability of a correct
guess. We see that, with high probability, any wrong guess of the side-channel
distinguisher will lead to an overestimation of the syndrome entry.

3.2 “Double-Cancellation” Error

Another error that can appear, as already discussed in [9], was called the “dou-
ble cancellation” issue. We recall the problem briefly. We are interested in the
successive Hamming weights of the partial matrix-vector product. However, the
observations we get are the successive Hamming weight of the b value in line 5
of Algorithm 2. Thus, in the CDCG method, the values we are interested in are
estimated with the following approximation of the Hamming distance from the
Hamming weight:

HD(a, b) � |HW(a) − HW(b)|.
With this approximation, the 2HW(b ∧ ¬(a)) part of the Hamming distance
computation is omitted. In our case, we know that both vectors a and b are
close due to the low weight of the input vector. Indeed, if we look at Line 5
in Algorithm 2, we can notice that in our case, we can consider one vector a
to be random, but the second is of the form b = a ⊕ c, with c of low weight.
Indeed c corresponds to the bitwise AND between a vector that looks random,
a sub-group of columns of a line of the matrix H, that is indistinguishable from
a random matrix, and a subpart of the vector e of low weight c = Hi,j ∧ ej . In
particular, HW(c) ≥ 2 implies HW(e) ≥ 2.

The following theorem gives the weight distribution of the blocks.

Theorem 1. Let n, t, w be strictly positive integers with t < n and w divides n.
Let Xi be a discrete random variable denoting the number of blocks of weight i of
a binary string of length n and Hamming weight t, where each block has length

w. For any 2 ≤ j ≤ w let αj ∈ {0, . . . , t} satisfying
j

∑

�=1

�α� = t. Then



Punctured Syndrome Decoding Problem 177

Pr(Xj = αj , . . . , X2 = α2,X1 = α1) =

( n
w

α1,...,αj

)

(

n
t

)

j
∏

�=1

(

w

�

)α�

, (4)

where
( n

w
α1,...,αj

)

denotes the multinomial coefficient.

Corollary 1. The probability that the maximum weight is 1 equals
wt(

n
w
t )

(n
t)

.

Moreover, for t = o(n) when n → ∞ the probability that the weights of the
blocks are at most 1 can be approximated by

e
− (w−1)t2

2n

(
1+

(w+1)t
3n +

(w2+w+1)t2

6n2 +O
(

t5

n4

))
.

In particular, using only the first term in the exponent for block sizes w ∈
{8, 32, 64} gives e− 7t2

2n , e− 31t2
2n and e− 63t2

2n .

Remark 1. In the case of Classic McEliece, we have t = O( n
log2 n ), which implies

that the probability of having only weights 0 and 1 blocks is roughly e
−c n

log22 n ,
where c is a constant related to the block size w.

One can deduce that the probability of having at least one block of weight
2 is extremely high. This result implies that the CDCG method has a very high
probability of underestimating the Hamming weights. One can notice, as shown
in Table 1a, that for block sizes greater or equal to 32, the probability of having
only blocks of weight 0 and 1 is extremely small. For w = 8 the weight of the
blocks is with high probability at most 2. This shows that it is highly probable
that at least one word of the e vector will lead to a recombination error, which
will affect the estimated syndrome. We also know that in such a case, all wrong
estimated values are underestimated.

Having many blocks of weight strictly greater than 1 increases the estima-
tion error. Therefore, determining the expected number of such blocks would be
useful.

In Table 1b, we compute a lower bound on the expected value of the number
of such blocks. Notice that for w = 8 the number of blocks having weight larger
than or equal to 2 is indeed, extremely small. Hence in such a scenario, the
syndrome estimation should be rather close to the exact value. On the opposite,
for w = 64 around 30% of the blocks are of Hamming weight greater than or
equal to 2. As we shall see, large values of w have a devastating impact on the
success probability of the CDCG method.

3.3 Dependent Error

In Sect. 3.2, we showed that it is highly probable that we have a block of the
vector with Hamming weight greater than 1. These blocks are problematic since
they will impact approximately one-fourth of the Hamming weight estimation
for the considered block.



178 V. Grosso et al.

Table 1. Weight of blocks ej for Classic McEliece parameters: probability of the
maximum weight and lower bound on the average number of blocks with weights larger
than or equal to 2.

(a) Pr(max(HW(ej)))

w max (3488,64) (4608,96) (6688,128)

8

= 1 0.01378 0.00061 0.00012

≤ 2 0.873 0.767 0.739

≤ 3 0.997 0.993 0.992

≤ 4 0.999 0.999 0.999

≤ 5 0.999 0.999 0.999

32

= 1 8.69 × 10−11 7.59 × 10−19 3.1 × 10−22

≤ 2 0.0804 0.0077 0.0038

≤ 3 0.753 0.543 0.519

≤ 4 0.974 0.936 0.936

≤ 5 0.997 0.994 0.994

64

= 1 0 0 0

≤ 2 5.66 × 10−5 4.21 × 10−9 3.80 × 10−10

≤ 3 0.159 0.021 0.015

≤ 4 0.715 0.455 0.444

≤ 5 0.947 0.865 0.869

(b) |{j | HW(ej) ≥ 2}|/(n/w)

w (3488,64) (4608,96) (6688, 128)

8 3.8/436 6.4/576 7.9/836

32 12.6/109 20.0/144 25.9/209

64 17.1/54.5 24.2/72 31.7/105

Indeed, if HW(ej) = 2 and the Hi,j are random words, then approximately
one-fourth of the product for this word column has weight 2. Among this quarter,
half of them are underestimated with the approximation used in the CDCG
method if we consider a to be random. Hence, the double cancelation error will
impact several results and the error induces by a word of weight higher than 1
will lead to dependent errors on the different syndrome estimations.

3.4 Impact of the Error on the Score Computation

After the estimation step, the side-channel analysis error is increased. This error
is then propagated with the evaluation of the column score with the ψ function
from [11], as used in [9]. The score for the column j is defined as:

∀j ∈ �1, n�, ψj(s̃) = H.,j · s̃ + H .,j · s̃. (5)

Thus if, the ith coordinate of s̃ is incorrect, it will modify the score of the whole
column. If Hi,j = 1, then the left part (H.,j · s̃) is affected. In that case, the
score computed by ψ for the column i is the error-free score plus εj . If Hi,j = 0,
then the left part (H .,j · s̃) is affected. In that case, the score computed by ψ
for the column i is the error-free score minus εj .



Punctured Syndrome Decoding Problem 179

Therefore, any incorrect estimation during the side-channel analysis will
influence all the results and affect them differently depending on the value of the
bit in the H matrix. On average, half of the columns score will be over-evaluated
while the other half will be under-evaluated.

4 Error Propagation Limitation

This section presents a different message recovery attack against Niederreiter-like
schemes, that make use of a matrix-vector multiplication in F2. Our new method
does not require estimating the syndrome in N, as previously done in [5,9].
Moreover, it just looks at side-channel results locally and does not propagate
the error discussed in Sect. 3.

4.1 Punctured Matrices

In order to cope with the error propagation issue, we propose to use both the
incorrect and correct Hamming weight estimations to distinguish between blocks
of size w in the error vector where ej = 0 and ej �= 0. We recall that the attacker
has access to the estimations of the Hamming weight ˜HW(bi,j).

For simplification, we will denote wi,j = ˜HW(bi,j) and the matrix of esti-
mated weights W = (wi,j)1≤i≤n−k,1≤j≤ n

w
. The jth column vector of W is

wj ∈ N
n−k, more exactly, wj =

(

˜HW(b1,j), ˜HW(b2,j), . . . , ˜HW(bn−k,j)
)

. Algo-
rithm 3 below determines for which index j we have ej = 0.

Algorithm 3. Zero-Distinguisher

Require: W : Hamming weight guess for each intermediate value of the b value in
Algorithm 2 and a the estimate accuracy computed during profiling phase

Ensure: A set L of blocks to be punctured
1: L = {∅}
2: γ = (n − k)(1 − a2 − (1−a)2

2
) +

√
(2a2 + (1 − a)2)(n − k) log(n − k)

3: if HW(w1) ≤ (n − k)(1 − a) +
√

2a(n − k) log(n − k) then
4: L ← L ∪ {1}
5: for j ← 2 to n

w
do

6: if HW(wj − wj−1) ≤ γ then
7: L ← L ∪ {j}
8: return L

If ej = 0 then this implies that, bi,j = bi,j−1 for 2 ≤ i ≤ n − k. In other
words, for the first block, the estimated weight vector w1 should be equal to
zero if the estimation is perfect, and if the estimation is not perfect, depending
on the accuracy, the value of HW(w1) (number of coordinates different from
zero) should be rather small. For all the subsequent blocks, the condition ej = 0



180 V. Grosso et al.

Table 2. Distributions of the number of zeros in w1 and wj − wj−1.

HW(ej) = 0 HW(ej) = 1

n − k − HW(w1) B (n − k, a) B (
n − k, 1+a

4

)

n − k − HW(wj − wj−1) B
(
n − k, a2 + (1−a)2

2

)
B

(
n − k, 1+a2

4

)

implies that there should be no difference between wj and wj−1 if the Ham-
ming weight estimation is perfect. In the non-perfect case, the vector wj −wj−1

should have a small Hamming weight, that depends on the classification accu-
racy. The following theorem gives the necessary conditions on the accuracy a
for Algorithm 3 to successfully output a list of valid zero-weight blocks. In order
to distinguish between the case HW(ej) = 0 and HW(ej) = 1 we will use the
following procedure. Denote the random variable Xi = n − k − HW(wj −wj−1)
given HW(ej) = 0 and Yi = n − k − HW(wj − wj−1) given HW(ej) = 1 for
j ≥ 2 (for j = 1 use X1 = n − k − HW(w1)). Then we say that one distin-
guishes between Xj and Yj with high probability as long as Pr(Xj > Yj) is
close to 1. To achieve our goal we will use known results on bounding the tail
of binomial distribution and set up a threshold value β∗ that acts as an almost
perfect separation between the two distributions. More exactly, we will have that
Xj ≥ β∗ w.h.p. and Yj < β∗ w.h.p. This value β∗ will depend on the accuracy
parameter a.

Theorem 2. Assume that the errors are limited to a distance of 1 and
overestimation and underestimation are equally probable. Let Xj and Yj be
the random variables as previously defined. Let a1 > 1

3 + 40 log(n−k)
9(n−k) +

8
√
2
√

8 log(n−k)2+3(n−k) log(n−k)

9(n−k) and a2 ≥ 0.5 be a solution of the equation:

√

n − k

log(n − k)
=

4
5a2 − 4a + 1

(

√

(3a2 − 2a + 1) −
√

1 + a2

2

)

.

Then Pr(Xj > Yj) > 1 − 1
(n−k) − 1

eO((3a−1)(n−k)) as long as a > a1 for j = 1
and a > a2 for j ≥ 2.

Moreover, the threshold separation value between the distributions of n − k −
Xj and n − k − Yj equals (n − k)(1 − a) +

√

2a(n − k) log(n − k) for j = 1 and
(n − k)(1 − a2 − (1−a)2

2 ) +
√

(2a2 + (1 − a)2)(n − k) log(n − k) for j ≥ 2.

The proof of Theorem 2 is provided in the appendix. In Table 2, we illus-
trate the distributions of Xj and Yj . Some restrictions on the level of accu-
racy are to be examined in details. For example if a = 0.4 the distribution of
n−k −HW(wj −wj−1) is almost identical when HW(ej) = 0 and HW(ej) = 1.
The larger the difference between the parameters a (respectively a2 + (1−a)2

2 )
and 1+a

4 (respectively 1+a2

4 ) the better for the distinguisher. The one-distance



Punctured Syndrome Decoding Problem 181

error assumption is based on Hamming weight leakages with Gaussian noise and
assumes univariate attacks. Previous work show that for low-noise setting this
assumption can be fulfilled [20,26]

4.2 T-test Based Score

The method presented in the Sect. 4.1 is efficient when considering small regis-
ters, or equivalently small sub-matrices. However, as the register size increases,
the number of columns kept is too high to perform an efficient ISD. For that, we
propose a method to select a permutation for the ISD that can be used on the
full matrix or its punctured version. Our method is based on a T-test [24]. The
T-test is commonly used for leakage assessment to detect if side-channel traces
are dependent on a parameter. The traces are separated into two sets according
to the known value of a parameter which may have an influence on them. Here,
we use the T-test to identify which columns have an impact on the side-channel
traces difference.

To achieve this, for all groups of columns (depending on the implementation
and parameter w), we separate the rows into two multisets according to the
Hamming distance recovered during the side-channel attack (difference of the
Hamming weight), the first one S0 for Hamming distances equal to 0, the second
one S1 for the other cases. In an error-free scenario, two cases occur:

– All rows are in the same multiset (S0), which means that none of the columns
are used in the computation of the syndrome, and thus, the considered coor-
dinates of the vector e are zero.

– The rows are distributed in the two multisets. Hence some coordinates of e
are different from zero. We use a statistical test to determine which columns
have a different distribution in the two multisets. If the coordinate of e is
null, then the distribution should be similar in the two multisets, whereas if
the coordinate of e is not null S0 should contain rows with 0, and S1 should
contain rows with 1.

In order to deal with errors, either from side-channel analysis or recombi-
nation, we use a statistical test to deal with the misplacement of rows in the
multisets. The method is described in Algorithm 4. The next step is to use the
permutation obtained as an initial permutation for ISD-based methods.

5 Experimental Validation

In this section, we compare our method with the CDCG method in various set-
tings, to evaluate the different approaches in different case studies. In particular,
we want to illustrate the limitations of the CDCG method we described before
in Sect. 3. Our experimental validation confirms that our T-test-based approach
is better suited than the previous method in low and large noise settings. For
that, we consider simulation leakages and optimal template attacks [6], i.e. with
perfect modeling. We consider a leakage of the form Li,j = HW(bi,j)+N (0, σ2),



182 V. Grosso et al.

Algorithm 4. T-test based attacks
Require: W : Hamming weight guesses for each intermediate value of the b value in

Algorithm 2 and a binary (n, n − k) matrix H .
Ensure: A n-permutation φ (of the coordinates of the vector e).
1: for j ← 1 to n

w
do

2: (S0, S1) ← ({∅}, {∅})
3: for i ← 1 to n − k do � Separate columns according to side-channel analysis
4: if wi,j − wi,j−1 = 0 then
5: S0 ← S0 ∪ Hi,(j−1)w+1:jw

6: else
7: S1 ← S1 ∪ Hi,(j−1)w+1:jw

8: T-score[(j − 1)w + 1 : jw] ←T-test(S0 ∼ S1) � Perform feature selection

9: return φ ← argsort(T-score) � Sort in decreasing order

where the Hamming weight HW can be on w = 8, 32 or 64-bit values and the
noise variance σ2 affects the side-channel distinguisher accuracy. To estimate the
accuracy of the template attack, we use the 3-σ rule a � erf

(

1
2
√
2σ

)

, where erf
is the Gauss error function [25]. While this estimation may not be true for limit
case, i.e. HW(bi,j) = 0 or HW(bi,j) = w. We also evaluate the accuracy of the
distinguisher and the one observed in experimental results is close to the 3-σ rule
one. This is due to the fact that most of the values of HW(bi,j) are close to w

2 ,
and we consider a relatively low-noise case. Experiments confirm that the punc-
turing methods offer better results than the previous method for large registers
and/or high noise.

For reproducibility, the source code of the simulation is given in https://
github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git.

5.1 Punctured Matrices

In this experiment, we consider the selection method to reduce the ISD problem
via the method presented in Sect. 4.1. We arbitrary set to 240 binary operations
the maximum value of a computationally feasible attack. All the lower values
are part of the so-called computationally feasible zone.

The idea is to evaluate the resistance to noise of the selection method for
different register sizes. We simulate 100 experiments for the first and last set
of parameters of Classic McEliece (n, k, t) = (3488, 2720, 64) and (n, k, t) =
(8192, 6528, 128). The results are plotted in Fig. 1.

As expected for small register size w = 8 and high accuracy a = 0.92 (σ =
0.26), the punctured method allows for an effective discrimination of a sufficient
number of blocks of columns. Consequently, a simple Gaussian elimination is
sufficient to recover the syndrome up to σ < 0.29. When the noise variance
increases, a reduced syndrome decoding problem can be solved. However, the
number of columns kept becomes rapidly large, close to all the columns, and
requires too much computational power to mount a successful attack.

https://github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git
https://github.com/vingrosso/Side-channel-attacks-Classic-McEliece.git


Punctured Syndrome Decoding Problem 183

Fig. 1. Median number of columns selected with the punctured method. The hatching
zone corresponds to the computationally feasible zone.

For large registers (w = 32 and w = 64), each block kept adds 32 or 64
columns for only one or two selected columns. Hence, even for low noise and
high accuracy, the number of columns kept is too large and compromises the
success of an ISD attack.

For the set of parameters of Classic McEliece the length of the codes are
divided into a number of blocks n/w equal to [436, 576, 836, 1024] (for w =
8), [109, 144, 209, 256] (for w = 32) and [51, 72, 105, 128] (for w = 64). As for
the codimension of the code we obtain a number of blocks (n − k)/w equal to
[96, 156, 208, 208] (for w = 8), [24, 39, 52, 52] (for w = 32) and [12, 20, 26, 26] (for
w = 64).

Fig. 2. Two ISD variants on punctured matrices (w = 32).



184 V. Grosso et al.

In Fig. 2, we represent an estimated complexity of two ISD variants, Pra-
nge [19] and BJMM [4], when applied on punctured matrices. At each step, we
increase by one the number of blocks of size w = 32 that are to be removed.
Hence, we decrease the length of the matrix by 32, while keeping the same co-
dimension, i.e. n − k is constant. For example, the Prange variant applied on
n = 3488 with 80 punctured blocks, gives a complexity smaller than 230. In this
case, one has to remove 2560 columns out of the information set which is of size
k = 2720. The horizontal solid line at y = 40 points out a rough limit from
where ISD techniques become computationally feasible in practice. Computing
the intersection points of this line with the BJMM variants gives a number of
blocks to be punctured equal to [69, 89, 142, 189]. This implies that one needs to
distinguish [2208, 2848, 4544, 6048] columns, i.e. to select [1280, 1760, 2144, 2144]
columns. Represented as a factor, one has to select [1.66, 1.41, 1.28, 1.28] times
(n − k) columns to perform the BJMM attack with a time complexity of 240

binary operations.

5.2 Impact of the Side-Channel Distinguisher Accuracy

In this experiment, we evaluate the impact of the accuracy of the distinguisher on
the success of three methods: CDCG punctured, CDCG and T-test. We consider
Hamming weight 8-bit leakages, which means 0 ≤ HW(bi,j) ≤ 8, and we consider
different values of noise σ to modify the accuracy. We work with the first set
of parameters of Classic McEliece: (n, k, t) = (3488, 2720, 64). In Fig. 3, we can
notice that for every accuracy parameter evaluated, the T-test method achieves
a similar success rate, while the success rate of the CDCG method drops rapidly
when the accuracy decreases. Applying the score function ψ on the punctured
matrix does not help: the limit appears as early as for σ = 0.3 for punctured
matrices as shown in the experiments of Sect. 5.1.

As discussed in Sect. 3.1, this was expected since every side-channel error will
have an effect on the syndrome computation, and each incorrect coordinate in
the syndrome will have an impact on all the column scores. By contrast, side-
channel error in the proposed method will only alter the two columns where the
incorrect Hamming weight is used, and, thanks to the large number of rows, we
can correct this error efficiently.

In Fig. 4, we consider the T-test method only and look at the impact of
the accuracy value. As expected, the lower the accuracy, the less efficient the
methods. Finally we can notice that the size of the population in the T-test
method helps in the columns selection step. Indeed, when considering larger
parameter sets, the success rate increases.

5.3 Impact of the Register Size

In the next experiment, we highlight the recombination error discussed in
Sect. 3.2. As discussed in the previous section, the larger the register, the more
likely dependent errors are. Hence, we expect the success rate of all methods to
drop when larger registers are considered. We fix the accuracy at 0.99822 for a



Punctured Syndrome Decoding Problem 185

Fig. 3. Success rate of the three methods for 8-bit words and different noise levels.

Fig. 4. Success rate of the T-test method for w = 8 and different noise levels for two
Classic McEliece parameters sets.

noise level of σ = 0.16 that is close to the accuracy obtained on the real traces
used in [9].

In Fig. 5, as expected, the success rate of all three methods decreases when
larger registers sizes are considered. However, in all cases, the proposed T-test-



186 V. Grosso et al.

Fig. 5. Comparison of the three methods for different register sizes at noise level
σ = 0.16.

Fig. 6. Success rate of the T-test method for 32-bit and 64-bit words and different noise
levels with (n, k, t) = (3488, 2720, 64).

based method shows a better success rate than the CDCG method. We refer to
Sect. 3.3 for a more detailed explanation of the impact of the dependent error on
the CDCG method. The proposed method is also affected by larger register sizes,
especially when noise increase as shown in Fig. 6. For the noise levels considered



Punctured Syndrome Decoding Problem 187

in this figure, the punctured method does not manage to distinguish blocks with
ej = 0 and ej �= 0. Thus the T-test is the only solution when considering large
registers and “high” noise scenarios.

6 Conclusion

In this paper, we analyze and develop techniques to solve the syndrome decoding
problem with noisy information. In particular, we analyze some weaknesses of
the method proposed in [9]. The weaknesses are due to the redefinition of the
classical syndrome decoding problem into the integer syndrome decoding prob-
lem. We demonstrate that reformulating to integer syndrome decoding problem
propagate errors due to side-channel acquisition.

Next, we present two methods based on a divide-and-conquer approach, to
avoid the propagation of the error. The methods presented are based on the fact
that the distribution of the side-channel observations are different when a block
of the vector e is 0 or not. The first method characterizes the distributions of
the estimation according to the accuracy and finds the bound on the number of
coordinates equal to 0 to distinguish if the block of the vector e is 0 or not. The
second solution separate the rows of the matrix according to the side-channel
leakages and evaluate if the rows seems to follow a uniform distribution in the two
set or follow different distributions in the two sets. The analysis of the behavior
of the two distribution is performed with a T-test. This allows us to discriminate
inside the block which coordinate is more likely to follow a different distribution,
allowing for an even finer analysis than the first method.

We finally validate our approach with various experiments. Both methods
presented offer a better success rate than state-of-the-art attacks and the T-test
is generally more efficient when considering larger registers or a higher level of
noise. Compared with existing attack paths, this method cannot be used when
the attacker obtains an integer syndrome only, without partial information, as
done in [5]. In [9], the author suggests using masking as a countermeasure. An
interesting research direction would be to evaluate the efficiency of the different
approaches when masked implementations are considered.

All presented side-channel attack methods on KEM for code-based cryptog-
raphy so far exploit profiling. An interesting research direction could be to turn
these attacks into a non-profiled attack. Another path could be to adapt the
technique to different rings or fields rather than the binary field considered. The
specific structure of the public key in the BIKE cryptosystem, a quasi-cyclic
moderate density parity check matrix, is not exploited in this work and deserves
more investigations.

Acknowledgements. This work was funded by a French national grant managed
by the Agence Nationale de la Recherche (ANR): project PQ-TLS reference ANR-22-
PETQ-0008 through France 2023 program.



188 V. Grosso et al.

Appendix

Proof of Theorem 1

We deal here with a classical combinatorial urn process. It can be described as
follows. We place t balls into n

w urns, where the urns are labeled with respect to
the number of balls contained in the urn. Hence, we can have urns labeled with
integers from 0 to w. And we are interested in how many urns are labeled with
the integer j, where 1 ≤ j ≤ w. The number of possible (i2, . . . , ij) urns labeled
with (2, . . . , j) equals

( n
w

i2

)( n
w − i2

i3

)

. . .

( n
w − i2 − · · · − ij−1

ij

)

. (6)

As there are n
w − i2 − · · · − ij remaining urns, which are either labeled with 0

or with 1, and since there are a total of t balls from which 2i2 + · · · + jij where
already extracted, we can place the remaining balls in the remaining urns in
( n

w −i2−···−ij

t−2i2···−jij

)

possible ways. This makes a total of

( n
w

i2

)( n
w − i2

i3

)

. . .

( n
w − i2 − · · · − ij−1

ij

)( n
w − i2 − · · · − ij
t − 2i2 · · · − jij

)

=
( n

w

i1, . . . , ij

)

.

(7)
with i1 = t − 2i2 − . . . jij .

Now each urn labeled with j has
(

w
j

)

possible representatives. Thus, we can
deduce the number of positive cases which equal

( n
w

i1, . . . , ij

) j
∏

l=1

(

w

l

)il

.

Proof of Theorem 2

To prove Theorem 2 we will proceed step by step. We shall assume that errors
are limited to a distance of 1 and overestimation and underestimation are equally
probable, and the side-channel distinguisher accuracy equal to a.

Lemma 1. Given ej = 0 we have

Pr (w�,1 = 0) = a, ∀1 ≤ � ≤ n − k,

Pr (w�,j − w�,j−1 = 0) = a2 +
(1 − a)2

2
,∀1 ≤ � ≤ n − k,∀2 ≤ j ≤ n

w
.

Proof. By definition of a we have Pr(wj,1 = 0) = a,∀1 ≤ � ≤ n − k.
For the intermediate blocks Pr

(

w�,j − wb�,j−1 = 0
)

depends on the estima-
tions at step j−1 and j. So, either both estimations are correct, with probability
a2, or both estimations are overestimated (resp. underestimates), with probabil-
ity 1−a

2 .



Punctured Syndrome Decoding Problem 189

Corollary 2. Given ej = 0 we have HW(w1) ∼ n − k − B(n − k, a) and

HW(wj − wj−1) ∼ n − k − B
(

n − k, a2 + (1−a)2

2

)

.

Lemma 2. Given HW(ej) = 1 we have

Pr(w�,1 = 0) =
1 + a

4
, ∀1 ≤ � ≤ n − k,

Pr(w�,j − w�,j−1 = 0) =
1 + a2

4
, ∀1 ≤ � ≤ n − k, ∀2 ≤ j ≤ n

w
.

Proof. For the first block, without loss of generality, we assume that ej(i) = 1.
We have two cases to obtain w�,1 = 0.

1. The ith bit of the word of the matrix is 0, and we correctly estimate w�,1, the
probability is a

2 .
2. The ith bit of the word of the matrix is 1, and we underestimate w�,1, prob-

ability 1−a
4 .

For the intermediate blocks, without loss of generality, we assume ej(i) = 1.
Thus, we have two cases to obtain w�,j − w�,j−1 = 0.

1. The ith bit of the word of the matrix is 0, and we made the same error
on both evaluations for j and j − 1. Both correct, with probability a2

2 , both
underestimated, with probability

(

1−a
2

)2, similar for both overestimated, with
a probability

(

1−a
2

)2.
2. The ith bit of the word of the matrix is 1.

(a) The weight increases (resp. decreases), i.e. HW(b�,j) = HW(b�,j−1) + 1,
we correctly estimate w�,j but underestimate (resp. overestimate) w�,j−1

with a probability 1
2
1−a
2 a (resp. 1

2
1−a
2 a).

(b) Similarly, the error can be on w�,j overestimation or underestimation,
and the difference will be zero depending on the impact on the weight
modification, here also, we have two times probability of 1

2
1
2
1−a
2 a.

By summing all cases, we obtain the following:

Pr(˜HW(b�,j) − ˜HW(b�,j−1) = 0) =
a2

2
+

(

1 − a

2

)2

+ 4
(

1
4

1 − a

2
a

)

.

Corollary 3. Given HW(ej) = 1 we have HW(w1) ∼ n−k−B(n−k, 1+a
4 ) and

HW(wj − wj−1) ∼ n − k − B(n − k, 1+a2

4 ).

Proposition 1. Let a > 1
3 + 40 log(n−k)

9(n−k) + 8
√
2
√

8 log(n−k)2+3(n−k) log(n−k)

9(n−k) . Then,
Pr(X1 > Y1) ≥ 1 − 1

(n−k) − 1
eO((3a−1)(n−k)) .

Moreover when e1 = 0 we have HW(w1) ≤ (n − k)(1 − a) +
√

2a(n − k) log(n − k).



190 V. Grosso et al.

Proof. Let us first recall that X1 = n − k − HW(w1) given e1 = 0 and Y1 =
n−k −HW(w1) given HW(e1) = 1. Also, by Lemma 1 X1 ∼ B(n−k, a) and by
Lemma 2 Y1 ∼ B(n − k, 1+a

4 ). Let β∗ = (n − k) 1+a
4 + β. This value will act as

the separation between the distributions. More exactly we will require use the
fact that

Pr(X1 > Y1) ≥ Pr(X1 > (n − k)
1 + a

4
+ β) Pr(Y1 < (n − k)

1 + a

4
+ β). (8)

First we need to check the existence of such a value. For that we need to deter-
mine if such a positive integer β satisfying (n−k)1+a

4 +
√

(n − k) 1+a
2 log(n − k) ≤

(n−k)1+a
4 +β ≤ (n−k)a−√

2a(n − k) log(n − k) exists. By making the upper
bound and lower bound equal, we obtain the wanted condition on a. This also
implies that β < (n − k)3a−1

4 − √

2a(n − k) log(n − k).
Second, we will determine the probability in (8). Using Chernoff one gets

Pr(Y1 ≥ (n − k)
1 + a

4
+ β) ≤ e

− β2
1+a
2 (n−k)+β 2

3 (9)

Pr(X1 ≤ (n − k)
1 + a

4
+ β) ≤ e− ((n−k)a−(n−k) 1+a

4 −β)2

2a(n−k) (10)

Pr(X1 > Y1) ≥ 1 − e
− β2

1+a
2 (n−k)+β 2

3 − e− ((n−k) 3a−1
4 −β)2

2a(n−k) . (11)

Putting β = 3a−1
4 (n − k) − √

2a(n − k) log(n − k) in the previous equation
we deduce Pr(X1 > Y1) ≥ 1 − 1

elog(n−k) − 1
eO((3a−1)(n−k)) . The threshold value

equals, β∗ = (n − k)a − √

2a(n − k) log(n − k).

Proposition 2. Let a ≥ 0.5 be a solution of the equation
√

n − k

log(n − k)
=

4
5a2 − 4a + 1

(

√

(3a2 − 2a + 1) −
√

1 + a2

2

)

.

Then, Pr(X1 > Y1) ≥ 1− 1
(n−k) − 1

eO((3a−1)(n−k)) . Moreover, when ej = 0 we have

HW(wi−wi−1) ≤ (n−k)(1−a2− (1−a)2

2 )+
√

(2a2 + (1 − a)2)(n − k) log(n − k).

The proof of this Proposition is identical to the previous one.

References

1. Aguilar Melchor, C., et al.: HQC. Technical report, National Institute of
Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-
cryptography/round-4-submissions

2. Albrecht, M.R., et al.: Classic McEliece. Technical report, National Institute of
Standards and Technology (2022). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-4-submissions

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions


Punctured Syndrome Decoding Problem 191

3. Aragon, N., et al.: BIKE. Technical report, National Institute of Standards and
Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-4-submissions

4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in
2n/20: how 1+1=0 improves information set decoding. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

5. Cayrel, P.-L., Colombier, B., Drăgoi, V.-F., Menu, A., Bossuet, L.: Message-
recovery laser fault injection attack on the Classic McEliece cryptosystem. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp.
438–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 15

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Chen, M., Chou, T.: Classic McEliece on the ARM cortex-M4. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2021(3), 125–148 (2021). https://doi.org/10.46586/
tches.v2021.i3.125-148

8. Chen, P., et al.: Complete and improved FPGA implementation of Classic
McEliece. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(3), 71–113 (2022).
https://doi.org/10.46586/tches.v2022.i3.71-113

9. Colombier, B., Dragoi, V., Cayrel, P., Grosso, V.: Profiled side-channel attack
on cryptosystems based on the binary syndrome decoding problem. IEEE Trans.
Inf. Forensics Secur. 17, 3407–3420 (2022). https://doi.org/10.1109/TIFS.2022.
3198277

10. Dragoi, V., Colombier, B., Cayrel, P., Grosso, V.: Integer syndrome decoding in
the presence of noise. IACR Cryptol. ePrint Arch, p. 636 (2022). https://eprint.
iacr.org/2022/636

11. Feige, U., Lellouche, A.: Quantitative group testing and the rank of random matri-
ces. CoRR abs/2006.09074 (2020). https://arxiv.org/abs/2006.09074

12. Guo, Q., Johansson, A., Johansson, T.: A key-recovery side-channel attack on
Classic McEliece implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(4), 800–827 (2022). https://doi.org/10.46586/tches.v2022.i4.800-827

13. Lahr, N., Niederhagen, R., Petri, R., Samardjiska, S.: Side channel information set
decoding using iterative chunking. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 881–910. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 29

14. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-
8 25

15. Lucks, S.: A variant of the cramer-shoup cryptosystem for groups of unknown
order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 2

16. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

17. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-030-77886-6_15
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.46586/tches.v2021.i3.125-148
https://doi.org/10.46586/tches.v2021.i3.125-148
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.1109/TIFS.2022.3198277
https://doi.org/10.1109/TIFS.2022.3198277
https://eprint.iacr.org/2022/636
https://eprint.iacr.org/2022/636
https://arxiv.org/abs/2006.09074
https://doi.org/10.46586/tches.v2022.i4.800-827
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/978-3-030-64837-4_29
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-36178-2_2
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17


192 V. Grosso et al.

18. Pircher, S., Geier, J., Zeh, A., Mueller-Gritschneder, D.: Exploring the RISC-V
vector extension for the Classic McEliece post-quantum cryptosystem. In: 22nd
International Symposium on Quality Electronic Design, ISQED 2021, Santa Clara,
CA, USA, 7–9 April, 2021, pp. 401–407. IEEE (2021). https://doi.org/10.1109/
ISQED51717.2021.9424273

19. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

20. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

21. Roth, J., Karatsiolis, E., Krämer, J.: Classic McEliece implementation with low
memory footprint. In: Liardet, P.-Y., Mentens, N. (eds.) CARDIS 2020. LNCS,
vol. 12609, pp. 34–49. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
68487-7 3

22. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

23. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

24. Welch, B.L.: The generalization of ‘STUDENT’S’problem when several different
population variances are involved. Biometrika 34(1–2), 28–35 (1947)

25. Winters, R.: Practical Predictive Analytics. Packt Publishing, Birmingham, Eng-
land (2017). http://www.scholarvox.com/book/88842906

26. Zhang, Q., et al.: Side-channel attacks and countermeasures for identity-based
cryptographic algorithm SM9. Secur. Commun. Networks 2018, 9701756:1–
9701756:14 (2018). https://doi.org/10.1155/2018/9701756

https://doi.org/10.1109/ISQED51717.2021.9424273
https://doi.org/10.1109/ISQED51717.2021.9424273
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-030-68487-7_3
https://doi.org/10.1007/978-3-030-68487-7_3
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/BFb0019850
http://www.scholarvox.com/book/88842906
https://doi.org/10.1155/2018/9701756


Analyses and Tools



Energy Consumption of Protected
Cryptographic Hardware Cores

An Experimental Study

Aein Rezaei Shahmirzadi1(B) , Thorben Moos2 , and Amir Moradi1

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{aein.rezaeishahmirzadi,amir.moradi}@rub.de

2 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
thorben.moos@uclouvain.be

Abstract. The rapid deployment of the Internet of Things (IoT)
brought some interesting topics into the spotlight, one of which is low-
power design. IoT devices are usually deployed in environments where
access to an electricity network is not feasible and therefore have to be
supplied by a battery. Despite the limited energy budget in this setting,
many relevant applications require long device runtimes. Additionally, in
order to establish secure connections to other IoT devices, cryptographic
primitives are required to safely transmit data. Since the devices are
physically accessible, enabling adversaries to mount all sorts of physical
attacks, physically secure implementations are inevitable.

In this study, we evaluate the energy consumption of cryptographic
primitives on a custom 65 nm ASIC with different design architectures
ranging from unrolled to serialized implementation. In each design archi-
tecture, we compare the consumed energy of different crypto cores. We
also examine the energy consumption of different masking schemes up to
third-order secure realizations of various block ciphers. Further, in our
practical investigations, we explore the energy consumption overhead of
countermeasures against fault-injection attacks under different adversary
models providing the first practical results on real silicon for protected
implementations.

Keywords: Cryptographic implementation · Energy consumption ·
Masking · Countermeasures · ASIC

1 Introduction

Low energy consumption is one of the key factors when designing battery-
powered devices that are expected to operate for months or years without any
user intervention. One of the applications for such devices is in the Internet of
Things (IoT) where battery lifetime is an important criterion. Using crypto-
graphic primitives became mandatory in such networks to establish secure con-
nections for data transmission. With the increasing number of portable devices
which are highly limited with respect to resources, new block ciphers are being
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 195–220, 2023.
https://doi.org/10.1007/978-3-031-29497-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_10&domain=pdf
http://orcid.org/0000-0002-9549-268X
http://orcid.org/0000-0003-3809-9803
http://orcid.org/0000-0002-4032-7433
https://doi.org/10.1007/978-3-031-29497-6_10


196 A. Rezaei Shahmirzadi et al.

developed to ensure a low area footprint as well as low energy consumption [4].
In addition to the fulfillment of mathematical security requirements, the imple-
mentation of corresponding encryption/decryption functions should be physi-
cally secure as well since a legitimate user can also play the role of a physical
adversary. The crux of the matter is that an attacker can mount all kinds of
physical attacks when the device is in hand. This necessitates the use of coun-
termeasures in the implementation of cryptographic primitives to mitigate such
a vector of attacks.

There exists a considerable body of work on developing new block ciphers
that are optimized with respect to the chip area to fit in small embedded
devices. Several new algorithms have been proposed including mCrypton [35],
KATAN [20], LED [27], and PRESENT [15]. Other design goals include lower latency
in an unrolled architecture targeting applications such as memory encryption.
In this architecture, the entire encryption function is realized by a combina-
tional circuit performing the encryption in one clock cycle. Examples include
PRINCE [16], PRINCEv2 [17], MANTIS [8], QARMA [3], Orthros [6], and SPEEDY [34].
Several lightweight block ciphers have been proposed considering other imple-
mentation aspects. SKINNY [8] offers a balanced performance in software and
hardware while GIMLI [10] has been designed to be a cross-platform efficient per-
mutation. CRAFT [9] is efficient when fault protection is desired while MIDORI [4]
is optimized with respect to low energy consumption, which is a very important
factor in certain applications. MIDORI is the only block cipher designed for appli-
cations where energy consumption is the limiting factor. The authors reduced
the number of glitches in their construction caused by different delays at the
input of a combinational circuit. Based on simulation results, they concluded
that a round-based implemented design achieves the best energy performance in
MIDORI.

The influence of design architecture has been investigated in several stud-
ies [4,5,7,28], where the energy consumption of lightweight ciphers in different
architectures was compared. While the outcome of some publications is that
the round-based architecture has the best performance, the authors of [5] have
shown by simulation that in some cases the optimal solution is achieved when two
rounds in the implementation are combined. Moreover, it has been shown that
unrolled implementation of some lightweight block ciphers is the most energy-
efficient strategy in practice in certain scenarios [42].

With the increasing demand for physically secure implementations, the ques-
tion arises whether the energy consumption overhead is significant in prac-
tice when a countermeasure is employed and how to select the most energy-
efficient approach. There are few publications in that regard even in the simula-
tion domain. For example, the masked implementation of several Authenticated
Encryption with Associated Data (AEAD) constructions with three and four
shares has been studied in [18] by simulation. The authors concluded that energy
consumption increases in the number of shares, which is naturally true. However,
the study is limited to AEAD designs protected by the Threshold Implementa-
tion (TI) strategy with no real data on an Application Specific Integrated Circuit



Energy Consumption of Protected Cryptographic Hardware Cores 197

(ASIC) chip. Therefore, there is a gap in the open literature where only a few
countermeasures have been studied with respect to energy efficiency. Moreover,
most of the publications presented their result by simulation and no real mea-
surement in practice has been performed. We aim to address this gap in this
work by considering a wide range of protected designs including different mask-
ing schemes, hiding techniques, and fault countermeasures using a prototype
ASIC chip manufactured in 65 nm technology.

Our Contributions. In this paper, we measure the energy consumption of dif-
ferent cryptographic primitives in different architectures and with various coun-
termeasures on a 65 nm prototype ASIC chip. To this end, we investigate two
different approaches to perform the measurements and explain the engineering
challenges of each method due to small signals and high-frequency components.
We first examine unrolled implementations of almost all block ciphers optimized
for low latency with regard to their energy consumption. We proceed with mea-
suring the energy consumption of round-based constructions and assess the over-
head of using the WDDL logic style [50]. For the first time in the open literature,
we compare the energy consumption of first-order secure realizations of different
block ciphers where each algorithm is masked by different techniques such as
TI [38], CMS [41], etc. Moreover, we report the energy consumption overhead of
using the WDDL logic style in addition to masking techniques. We extend our
explorations to higher-order masking schemes which are required when a higher
level of security is desired. We also measure the energy consumption of code-
based fault-protected designs using error-correcting codes and demonstrate that
they potentially can outperform the majority voting approach even though they
have a higher area overhead. To the best of our knowledge, this work presents
the first practical investigation with respect to energy consumption for protected
designs using masking schemes, hiding techniques, and fault-protected designs.
In fact, the entire state of the art is based on simulations while we measure the
power consumption of different designs on real silicon providing more realistic
results.

2 Background

2.1 Design Architecture Effect on Energy Consumption

It has been shown that the architecture of an implementation has an impact on
its energy and power consumption [4,5,7,28,42]. The reason behind the differ-
ences is the depth of the circuit leading to more glitches. Glitches are a known
phenomenon in Complementary Metal Oxide Semiconductor (CMOS) circuits,
which are undesired signal transitions at the outputs of logic gates due to a mis-
match between the arrival time of multiple input signals. This phenomenon in a
combinational circuit increases the dynamic power consumption significantly, as
the logic gates need to charge and discharge their output capacitances multiple
times in each cycle. Since the higher depth of the circuit intensifies the effect
of glitches and thus the switching activities, unrolled implementations usually
have higher power consumption peaks. However, the output is ready after a



198 A. Rezaei Shahmirzadi et al.

short amount of time so the energy consumption can be lower than round-based
implementations, which is not always the case as shown in [42]. On the other
end, serial implementations have lower depth and lower area overhead but require
many more clock cycles to calculate the output. As a result, energy consump-
tion, which is the integral of power consumption over time, can be higher. For
instance, the authors of [7] compared serialized implementations with only one
S-box instance with round-based implementations in which a round function is
executed in one clock cycle. Based on simulation, they naturally concluded that
serialized implementations consume more energy.

The round function of a cipher can be instantiated r times and connected
sequentially to realize the construction of the cipher, which is called r-round
unrolled implementation. Subsequently, the key schedule should be unrolled if
necessary. The advantage of this approach is a higher throughput due to faster
computation in terms of clock cycles. For example, a block cipher with R rounds
provides the result in

⌈
R
r

⌉
clock cycles in an r-round unrolled construction.

However, as a disadvantage, this leads to higher area overhead and a circuit with
larger depth leading to more glitches and thus more significant power peaks. The
authors of [5] studied these different implementation strategies by estimating
the power consumption of each design using a power compiler after creating the
netlist. The authors found that implementing multiple rounds with a combina-
tional circuit, i.e., 2-round unrolled implementation, is the most energy-efficient
way for some block ciphers. It has also been demonstrated by simulation that
for some full AEAD circuits the optimal number can be even three, i.e., 3-round
unrolled implementation [18]. The authors also proposed a formal model for
energy consumption in any r-round unrolled block cipher implementation, but
it has been never verified in practice. Hence, it would be interesting to examine
this trade-off on real silicon. In this work, we take a look at different implementa-
tion strategies, including round-based, serialized, and unrolled implementations
which are the most common design architectures.

2.2 Masking

It has been shown that having physical access to a target device enables adver-
saries to recover secret information by monitoring its physical characteristics
such as the power consumption. After the seminal work by Kocher et al. [33]
known as Differential Power Analysis (DPA), the relevant scientific communi-
ties have dedicated a considerable body of research on improving the attack and
developing countermeasures. Due to its sound theoretical foundation, masking is
among the most commonly employed approaches to prevent Side-Channel Anal-
ysis (SCA) attacks in practice. Masking is a technique based on secret-sharing
schemes in which the sensitive values in the cipher are randomized to break the
relation between key-dependent intermediate values and the physical properties
of the underlying device.

In masking schemes, the key-dependent variables are split into several shares
and all computations are performed on shared data. Boolean masking is the most
popular approach where the XOR result of the shares yields the original data.



Energy Consumption of Protected Cryptographic Hardware Cores 199

TI [38] is the first strategy whose security is not jeopardized by glitches in hard-
ware platforms. Later, the technique has been extended to higher orders in [14]
where its limitations have been discussed in [40]. More recently, two separate
works [26,41] offered the same level of security with the minimum number of
input shares, which is not the case for TI. However, the masked circuit demands
for fresh randomness to maintain security. In [47,48] the randomness complexity
was reduced to realize the first- and second-order secure hardware implementa-
tions using two and three shares.

Due to the high computational complexity of formal verification of masked
circuits, several security notions for the secure composition of masked gadgets
have been proposed recently [21,29,30,32]. Employing the security notions helps
the design and verification of larger circuits usually at the cost of higher imple-
mentation costs due to conservative assumptions. The proposed gadgets are opti-
mized under several optimization metrics, e.g., randomness requirements, area
overhead, latency, etc. However, there is no investigation of the energy efficiency
of the designs in the open literature. We try to cover this gap in this work by
investigating the impact of masking schemes on energy consumption, which was
measured on a prototype ASIC chip.

2.3 Wave Dynamic Differential Logic (WDDL)

Wave Dynamic Differential Logic (WDDL) has been introduced in [50] to thwart
DPA. WDDL cells can be realized by existing standard cell libraries and can be
implemented on hardware platforms, including ASICs and FPGAs. This logic
style is meant to provide constant power consumption making it independent
of the processed data. A WDDL gate consists of a parallel combination of two
positive complementary gates. In the precharge phase, all complementary input
signals of the combinational WDDL cell are set to 0. Subsequently, the output of
every gate is set to 0 automatically. This 0 precharge value ripples through the
combinational logic creating a precharge wave. In the evaluation phase, input
signals are set to complementary values and the WDDL gate calculates a com-
plementary output.

It has been shown that WDDL does not provide provably-secure SCA pro-
tection even though it reduces the leakage [44]. The underlying reason is that
the requirements to have constant power consumption are not met in practice.
For example, it is essential that the gate always charges ideally a fixed amount of
capacitance to make the power consumption input independent. However, it is
almost impossible to have the same capacitive load in hardware platforms, even
when routing the dual signals identically, due to differences between standard
cells and due to process variation. Therefore, it has been used more as a hiding
countermeasure to mitigate attacks.

Due to the dual-rail fashion of WDDL, the area overhead is at least doubled
compared to a realization with traditional implementation approaches. More-
over, the latency of the design is also doubled in terms of clock cycles due to the
fact that the WDDL D-flip-flop consists of two stages of cascaded D-flip-flops.
In this work, we investigate the energy consumption overhead of this logic style
compared to CMOS circuits with equivalent functionality as well.



200 A. Rezaei Shahmirzadi et al.

2.4 Fault Attacks and Countermeasures

Fault attacks are a type of physical attack in which the attacker forces the target
device to operate on a non-regular condition. This can be done by laser beams for
more precise fault injections while less accurate ones can be induced by means of
clock glitches, voltage glitches, and electromagnetic pulses. Then, the attacker
analyzes the faulty or fault-free outcomes to recover the secret key.

Protection against fault attacks has been explored in prior studies by a great
number of publications, some focusing on avoiding faulty outputs, others on
correcting the induced faults. All proposed countermeasures utilize some sort of
redundancy, e.g., time, area, or information redundancy. A naive way to mitigate
fault attacks is to calculate the outcome twice followed by checking the consis-
tency of them [36]. More sophisticated approaches have been used in [2] where
the authors used code-based Concurrent Error Detection (CED). The authors
claim the detection of any bounded number of faults injected in any location of
the design implemented in hardware platforms. The crux of the matter is that all
detection-based countermeasures cannot provide any security against Statistical
Ineffective Fault Attacks (SIFAs) [24]. The authors of [49] addressed the issue
and extended the methodology to provide protection against SIFA using Error
Correcting Codes (ECCs). More recently, an approach based on both detect-
ing and correcting codes has been presented in [39] combining the principles
of [49] and [2]. In fact, depending on the employed code, the constructions guar-
antee the correction of up to tc faulty bits and the detection of td-bit faults given
that td > tc.

In this work, we study the methodology presented in [49] and [39] imple-
mented in a prototype ASIC. We report the energy consumption overhead of
the countermeasure compared to the unprotected one.

3 Measurement Methods

3.1 Measurement with Differential Oscilloscope Probe

The energy consumption of a circuit is determined by the current draw of the
circuit, the operating voltage, and the period of time the circuit is running. One
method to measure the energy consumption of an electrical circuit is to measure
the voltage V and the current I to estimate the power P = V I. The total energy
consumption can be straightforwardly computed as it is the integral of the power
over time.

E =
∫

t

P (t)dt =
∫

t

V (t)I(t)dt. (1)

An exemplary circuit for this measurement is demonstrated in Fig. 1. Measur-
ing Vchip is straightforward and can be done using a channel of an oscilloscope.
We should highlight that measuring Vchip is necessary to catch any fluctuation in
the actual voltage the chip is running on. Note that, the measurement should be
performed with DC coupling since the voltage variations over the shunt resistor
are very small compared to VDD. Measuring the current directly is more chal-
lenging and needs specific devices. We can use differential probes to estimate



Energy Consumption of Protected Cryptographic Hardware Cores 201

the current. Differential probes measure the voltage difference between any two
points in the circuit. We can use a differential probe to monitor the voltage drop
VR over a shunt resistor R using the second channel of the oscilloscope. Then,
the current can be calculated as I = VR

R .

Fig. 1. Schematic of differential probe measurement.

While this method is easy to set up, it demands for high requirements. In
small-size technologies, the propagation delay of a node is short leading to high-
frequency transitions in the circuit at the clock edges. Hence, the power consump-
tion of a modern ASIC design has short peaks as well as high amplitudes in the
high-frequency components. As a result, missing the high-frequency components
can lead to an inaccurate measurement. To measure the energy consumption pre-
cisely, the operating bandwidth of the differential probe should be high enough
to capture all voltage fluctuations over the shunt resistor (VR in Fig. 1). Since
these voltage variations are very small, the differential probe should ideally have
an advanced integrated amplifier. Moreover, the sampling frequency of the oscil-
loscope needs to be very high with enough bandwidth. All in all, a sophisticated
oscilloscope with high bandwidth differential probes is required to measure the
energy consumption accurately.

3.2 Capacitor Discharge Measurement

In this second method, we use the fact that a capacitor is able to store energy in
the electrical field between its plates. The energy remains in the capacitor when
the charged capacitor is disconnected from the power supply. The stored energy
E in a capacitor with the capacitance C can be calculated by measuring the
voltage V from the expression E = 1

2CV 2. Subsequently, the consumed energy
ΔE during encryption in a chip can be obtained by measuring the voltage drop
over the capacitor by

ΔE = Estart − Eend =
1
2
C(V 2

start − V 2
end). (2)



202 A. Rezaei Shahmirzadi et al.

We made use of a circuit similar to the one presented in [42] to measure the
energy consumption in this work. Borrowed from that, we briefly restate how we
use the circuit depicted in Fig. 2 to perform the energy measurement.

The circuit has two transistors to control the setup. Namely, when the tran-
sistors Q1 and Q2 are on, the capacitor is being charged and the chip is directly
supplied by the power supply. When the transistor Q1 is off and the transistor
Q2 is on, the capacitor and the chip are disconnected from the power supply
and the chip gets its power only from the capacitor. When both transistors are
off, the chip has no power and the capacitor keeps its charge with no influence
through the chip or the controller.

Fig. 2. Schematic of capacitor discharge measurement [42].

To perform an energy measurement, both control signals CHARGE and CUT OFF
are high at the beginning and all inputs are fed to the chip. Meanwhile, the
capacitor is being charged. Then, the clock is halted and CHARGE goes low to
disconnect the power supply from the capacitor and the chip. After making sure
that Q1 is switched off with enough delay, e.g., 400 ns, we start the encryption
by re-supplying the clock of the chip. When the encryption is done, the clock is
halted again and CUT OFF goes low to isolate the capacitor for the measurement.
This enables us to measure the capacitor voltage VC with an oscilloscope more
accurately as it is disconnected from the chip and the power supply. We should
highlight that all control signals should be synchronized with the chip to exclude
the influence of I/O activity. As an advantage, this method is not limited by the
bandwidth of the probes or the oscilloscope. We just require to measure the DC
level of VC with high accuracy (see Fig. 2).

4 Setup

The energy consumption measurements have been performed on a prototype
ASIC produced in a 65nm technology using a commercial standard cell library.
It consists of several cryptographic cores of different ciphers, some of which are
protected against SCA or fault attacks. There is a general control logic inside
the ASIC chip receiving all necessary inputs in a serial fashion and activates the
selected core to perform the encryption. Namely, all cores are clock gated and
only one core (together with its respective part of the clock tree) is active during



Energy Consumption of Protected Cryptographic Hardware Cores 203

the measurement. When the encryption is finished, the control logic observes
the ciphertext and sends it back serially as well. The cores and the I/O cells are
supplied from different voltages so that the I/O signals have a very low influence
on the measurement.

Fig. 3. Layout of the 65 nm ASIC and picture of the custom measurement board.

The ASIC is mounted on a custom measurement board where a Xilinx
ARTIX-7 FPGA is used for communication and control. Both the layout of
the chip and a picture of the measurement board are shown in Fig. 3. The target
chip power supply is isolated from the FPGA power supply and different voltage
regulators are used to supply the independent power regions on the board. There
is a 1Ω shunt resistor in the core power supply with corresponding SMA con-
nectors for measurement. The resistor can be replaced by the capacitor circuit
described in Sect. 3.2. The target is clocked at 12 MHz, and we utilized a 12-bit
Teledyne LeCroy Waverunner HRO 66Zi at the sampling rate of 2 GS/s in this
work.

4.1 Energy Reference

As stated, our prototype ASIC chip contains several cryptographic cores and
a general control logic that controls the cores, the Pseudo-Random Number
Generator (PRNG) circuit for randomness generation, and the transfer of the
plaintexts and ciphertexts. Since a single core is quite small compared to the
whole ASIC, the energy consumption of the control logic can be (much) higher
and should be excluded. Although all cores and PRNG circuitry are clock gated,
they still consume energy due to leakage currents, i.e., static power consumption.
We use the same approach presented in [42] to subtract the energy consumed
by other components. To this end, we activate no core and measure the energy
consumption in the same way as an encryption is measured, in order to achieve
the energy reference. In such a manner, we measured a baseline to cancel out
the influence of I/O activity, the control logic, and any other component.

The cores in the prototype chip are implemented with various architectures.
Hence, different ciphers have different numbers of rounds leading to different



204 A. Rezaei Shahmirzadi et al.

numbers of clock cycles required for the round-based implementations. We count
the latency of unrolled implementations as two clock cycles here, in the first
cycle the inputs are propagated to the combinational circuit and in the second
cycle the final result is saved in the output register. As a result, the energy
reference (the baseline) of different cores is varied. In other words, a higher
number of clock cycles leads to a higher energy overhead. To have an energy
reference for unrolled implementations, we measured the energy consumption for
two clock cycles exactly the same way that we measure the cores with unrolled
implementation. Namely, we follow exactly the same procedure of measuring
the core energy consumption, but we select no core (i.e., all clock gates for
the individual cores prevent propagation of the clock signal). The same holds
for round-based implementations. In this case, we performed the measurement
for 100 clock cycles in each round-based design to calculate the average energy
consumed per cycle. Then, we multiply the number of clock cycles required for
the cipher to compute the energy consumption. Again, to measure the energy
reference for round-based implementations, we performed the same procedure
while deactivating all cores.

4.2 Static Power and Frequency Impact

It is important to note that the cores being analyzed are clock-gated and not
power-gated. This means that even when the clock is off but power is supplied, all
cores are consuming energy due to leakage currents, which are a natural occur-
rence in any active circuit regardless of clock frequency or switching activity. Our
energy evaluation process eliminates a significant portion of the power consump-
tion resulting from leakage currents, since both the energy measurement and the
energy reference are affected by these currents (only some data-dependent differ-
ence remains). This is inevitable for our test chip and the chosen measurement
method. However, to not neglect the impact of the static power on the total
energy consumption we provide postlayout estimations of the static energy con-
sumed by each crypto core under typical operating conditions in AppendixB.
While the contribution of the static power consumption during active computa-
tion is barely noteworthy for frequencies in the MHz range and above (less than
1% under typical conditions), it can of course become the dominant source of
energy consumption over long time periods when the circuit is very rarely active
but always powered.

We would like to highlight that all measurements in this work have been
conducted at a constant 12 MHz clock frequency. This might beg the question
whether the results would change noticeably for different frequencies. However,
due to the fact that our measurement method removes the static power con-
sumption almost entirely and mostly captures the energy consumed through
switching activity, we do not anticipate any significant impact of the frequency
on the results. The delays, switching times and overall behavior of the gates and
circuits are unaffected by the time it takes until the next positive edge arrives.
Only when decreasing the clock period below the critical path delay, leading
to incorrect operation, the behavior would be affected. Other properties of the



Energy Consumption of Protected Cryptographic Hardware Cores 205

clock signal like its transition time, or global factors like the supply voltage or
temperature would indeed change the behavior and energy consumption. But
if the quality of the clock signal is stable and all outside factors are equal, the
frequency is not of primary importance for our measurements. The main factor
that changes with different frequencies is the run time of each implementation
and therefore the portion of the static power contribution during activity. Yet,
if the circuits are not power-gated but only clock-gated, like in our case, leakage
currents occur regardless of activity or not.

4.3 Energy Measurement Using Differential Probe

We used a LeCroy AP033 Active Differential Probe with 500 MHz bandwidth
to measure the voltage drop over the 1Ω shunt resistor enabling us to calculate
the current. The chip voltage Vchip (shown in Fig. 1) was measured directly by
connecting the chip power supply to the oscilloscope with an SMA-BNC coaxial
cable. We halted the clock before and after each cipher execution.

In this study, we conducted measurements using our method on two cryp-
tographic cores: unprotected round-based CRAFT [9] and its three-share first-
order masked implementation. We collected 10,000 measurements for each core.
The fluctuation of Vchip and VR are visible in our measurements, but the dif-
ference in energy consumption does not correspond to the size of the circuit.
Despite the masked implementation being larger with increased latency com-
pared to the unprotected one, we only observed an 80% increase in energy con-
sumption, which is much lower than expected. This discrepancy may be due to
either insufficient bandwidth of the differential probe or low sampling rate lead-
ing to undersampling. As a result, we re-conducted the measurements using the
capacitor discharge method detailed in Sect. 3.2.

4.4 Energy Measurement Using Capacitor

As mentioned in Sect. 3.2, the circuit has two transistors controlled by the FPGA
directly. The FPGA is also controlling the chip. Hence, all control signals are
synchronized with the ASIC chip. The clock was halted before and after each
cipher call to have a more accurate measurement. After monitoring the voltage
drop over the capacitor, we connect the chip to the power supply VDD, so we
were able to receive the ciphertext back. It implies that the transistors are fast
enough, and the internal state of the ASIC is unchanged during the transistors
activity switching between the capacitor and the power supply.

We measured the energy consumption of the two aforementioned implemen-
tations with this method. We have observed that the results are more in line with
our expectations demonstrating the setup is not limited by the bandwidth/sam-
pling frequency restrictions. Therefore, we used this method to perform the mea-
surements on all cores, reported in the next section.



206 A. Rezaei Shahmirzadi et al.

Table 1. Energy consumption of unrolled cipher implementations.

Design Block size Key size Energy/Enc Energy/bit

[bit] [bit] [pJ] [pJ]

PRINCE [16] 64 128 361.6 5.64

PRINCEv2 [17] 64 128 366.4 5.72

PRINCE+v2 [17] 64 128 373.5 5.84

MIDORI [4] 64 128 507.5 7.93

MANTIS [8] 64 128 471.6 7.37

QARMA7-64-σ0 [3] 64 128 572.1 8.94

QARMA7-64-σ1 [3] 64 128 593.6 9.27

QARMA7-64-σ2 [3] 64 128 655.8 10.25

Orthros [6] 128 128 966.4 7.54

SPEEDY-5-192 ENC [34] 192 192 598.4 3.12

SPEEDY-6-192 ENC [34] 192 192 792.0 4.12

SPEEDY-7-192 ENC [34] 192 192 916.2 4.77

SPEEDY-5-192 DEC [34] 192 192 1431.6 7.46

SPEEDY-6-192 DEC [34] 192 192 1910.3 9.95

SPEEDY-7-192 DEC [34] 192 192 2552.1 13.3

GIMLI [10] 384 384 811.1 2.11

5 Results

5.1 Unrolled Implementations

As the first case study, we investigate the energy consumption of unrolled imple-
mentations of various cryptographic algorithms. Unrolled implementations nat-
urally have a large area footprint and a high power consumption due to the large
number of glitches occurring (see [37] for an analysis of the glitching activity of
an unrolled PRINCE implementation). However, they should provide a low latency
making them a suitable option for high-performance applications like memory
encryption.

To perform the measurements, we fixed the key to a random value and
selected a plaintext randomly for each cipher call. We collected 10 000 mea-
surements from each core and used the average of the signals to calculate the
energy consumption. As stated, we did the same with selecting no core using the
same number of measurements to obtain the energy reference. Finally, we calcu-
lated the power consumption using Eq. 2. In the following, we briefly introduce
each block cipher implemented in our prototype ASIC chip.

PRINCE [16]. PRINCE is optimized with respect to latency in hardware plat-
forms making it suitable for real-time applications. An important feature of the
cipher is its minimal additional cost to realize both encryption and decryption in
hardware.



Energy Consumption of Protected Cryptographic Hardware Cores 207

PRINCEv2 and PRINCE+v2 [17]. PRINCEv2 is a block cipher based on PRINCE
featuring higher security margins without significantly increasing the implemen-
tation costs. In our chip, PRINCE and PRINCEv2 are additionally merged into a
combined PRINCE+v2 implementation, where a control signal is used to select
which cipher should be executed.

MIDORI [4]. MIDORI is a lightweight block cipher optimized with respect to energy
efficiency with no claim to provide a low-latency implementation in unrolled
fashion. Yet, its S-box is supposed to provide a low gate depth and therefore low
latency. Hence, an unrolled implementation of MIDORI-64 is implemented in our
prototype ASIC chip.

MANTIS [8]. MANTIS is a lightweight block cipher designed for low-latency appli-
cations. Unlike PRINCE, MANTIS is a tweakable block cipher. It uses the same
S-box used in MIDORI.

QARMA [3]. QARMA is a family of lightweight tweakable block ciphers targeted
at applications with low latency requirements. A variant of QARMA that sup-
ports block size of n bits with 2n bits of key and 2r + 2 rounds is denoted by
QARMAr-n. QARMA can use three S-Boxes, i.e., σ0, σ1, and σ2, where σ0 is the light-
est one. Qualcomm’s product security team designed this block cipher, which is
the standard block cipher used in the ARMv8.3-A ISA extensions for pointer
authentication [1,19].

Orthros [6]. Orthros is a 128-bit block pseudorandom function with a primary
focus on the latency of fully unrolled circuits. The round function is similar to
MIDORI with lower latency.

SPEEDY [34]. SPEEDY is a family of low-latency block ciphers with a high-speed
6-bit S-box in contrast to all aforementioned encryption primitives where a 4-bit
S-Box is used. An instance of this family with block and key size 6l bits iterat-
ing over r rounds is denoted by SPEEDY-r-6l. The encryption and decryption
functions are different and must be implemented separately.

GIMLI [10]. GIMLI is a 384-bit permutation designed to be a high-performance
as well as a high security cryptographic primitive. GIMLI is meant to be efficient
across different platforms, including ARM smartphone CPUs, ARM microcon-
trollers, FPGAs, ASICs, and so forth. The permutation can be used to build
tweakable block ciphers, stream ciphers, message-authentication codes, etc. The
authors also claimed the energy efficiency of their scheme in hardware platforms.

Table 1 lists all the energy consumption results of ciphers implemented in
unrolled fashion. We used the capacitor discharge method to measure the power
consumption using 10 000 measurements. As stated, the key is fixed to a random
value while the plaintext is selected randomly in each cipher call. The input and
output of each implementation are stored in registers and the results in Table 1
include the energy consumption of stores.

PRINCE has the lowest energy consumption per encryption making it suitable
for low-latency applications where low amounts of data need to be encrypted
once in a while. PRINCEv2 has a slightly larger energy consumption while having
higher security margins. It shows that the authors kept their promises and the



208 A. Rezaei Shahmirzadi et al.

overhead is not significant. PRINCE+v2 is basically a core containing both PRINCE
and PRINCEv2 where the user can choose between either of them to process the
given input. As expected, a slightly higher energy usage was measured as it
has additional multiplexers. Although MIDORI is not optimized for low latency
applications, the energy consumption is competitive compared to other designs.
Its S-box is optimized for low depth and energy efficiency making it a good
choice to design a low-latency cipher. MANTIS uses the same S-box as MIDORI
and is structurally similar to the PRINCE block cipher, but is tweakable. Even
though the energy consumption of MANTIS is less than MIDORI, the difference is
negligible. Orthros is also based on the MIDORI round function and the designers
revised it to achieve lower latency. It has a much higher energy consumption
compared to MIDORI and MANTIS but it also deals with larger block size. As a
result, energy consumption per bit is a fairer metric. Considering this metric, all
three mentioned designs have roughly the same energy consumption.

We measured three different variants of QARMA. Namely, all three S-boxes
(σ0, σ1, and σ2) have been used in an unrolled implementation while the num-
ber of rounds is fixed to sixteen. This highlights the effect of S-boxes on energy
consumption. As demonstrated in the table, σ0 has the lowest energy consump-
tion at the cost of lower security margins. The other two S-boxes σ1 and σ2

have better cryptographic properties with less energy efficiency, demonstrat-
ing a trade-off between security and energy consumption. SPEEDY offers differ-
ent variants with various block and key sizes iterating over several rounds. All
implemented designs have 192-bit block size and key size but with a different
number of rounds. Since the encryption and decryption functions are not the
same, its decryption was also implemented with different rounds. Looking at the
encryption function, the variant with the lowest number of rounds has better
energy efficiency as expected. As the number of rounds increases, the energy
consumption rises but offers better security margins. Even the variant with 7
rounds has the lowest energy consumption per bit compared to all above given
cipher cores. The decryption function, however, has a worse performance than
the encryption function and consumes more than double the energy. Since the
SPEDDY decryption is not nearly as efficient as the encryption, it is advisable to
use the encryption function of SPEEDY in modes of operation that require no
decryption routine, e.g., CTR, CMAC, and GCM, given that energy efficiency
is desired. As the last case study, we take a look at GIMLI. As stated, GIMLI is
a cross-platform permutation and has no key. To make an encryption using the
primitive, two different keys at the beginning and the end were added to the
state using Even-Mansour scheme [25]. As indicated in Table 1, it is the most
performant design in terms of energy consumption per bit making it a promising
choice in low-latency applications where lower energy consumption is required.
Particularly, if a large chunk of data needs to be encrypted. Concrete area and
critical path delay values for all implementations analyzed in this work are given
in AppendixB. Please note that the targeted clock frequency of the ASIC is
below 50 MHz and therefore does not effectively constrain the unrolled circuits,
leading to smaller area footprints but larger critical path delays compared to
high-performance comparisons presented in [34].



Energy Consumption of Protected Cryptographic Hardware Cores 209

Table 2. Energy consumption of round-based cipher implementations.

Design Block size Key size Latency Energy/cycle Energy/Enc Energy/bit

[bit] [bit] [cycles] [pJ] [pJ] [pJ]

AES [23] 128 128 11 3.53 38.9 0.30

CRAFT [9] 64 128 32 2.26 72.5 1.13

CRAFT WDDL [9] 64 128 64 7.32 468.4 7.32

5.2 Non-masked Round-Based Implementations

We proceed with measuring the energy consumption of two different block
ciphers, i.e., AES [23] and CRAFT [9], implemented following a round-based archi-
tecture. AES is the well-known standardized block cipher, which is widely applied
to industrial cryptographic solutions. CRAFT [9] is a tweakable lightweight block
cipher primarily focused on efficient protection against fault attacks. It uses the
same S-box as MIDORI. Unfortunately, only these two block ciphers were imple-
mented in the prototype ASIC chip. The WDDL realization of the cipher CRAFT
is also implemented in the chip.

To measure the energy consumption for each cipher, we performed the mea-
surements 10 000 times for 100 clock cycles while making sure that the cipher is
running on the chip. All the unprotected designs needed less than 100 clock cycles
to perform the encryption. Therefore, we let the design run for more rounds to
have a consistent result. Then, we calculate the average energy consumption per
clock cycle for each design. As a result, the energy consumption can be calcu-
lated based on the latency of each cipher, i.e., number of required clock cycles. As
stated before, we used the same number of measurements to compute the energy
reference. We make use of the same fashion for all round-based implementations
in the next sections.

The measured energy consumptions are reported in Table 2. AES has better
energy efficiency than CRAFT even though it has higher energy consumption per
clock cycle. CRAFT has lower area overhead and thus lower energy consumption
per cycle. However, it requires more rounds to perform the encryption resulting
in higher energy consumption per encryption. Moreover, AES deals with a larger
block size resulting in better performance in energy consumption per bit. Based
on the results, AES is a better choice for energy consumption efficiency given that
the higher area overhead is acceptable. Reducing the side-channel leakage using
WDDL method does not come for free; the design consumes roughly 6 times
more energy.

5.3 First-Order Secure Masked Implementations

We used the same procedure as in Sect. 5.2 to perform the measurements. All
first-order secure designs are fully pipelined, i.e., they can process multiple inputs
at each cipher call. To have a fair comparison, we filled the entire pipeline with
random inputs to measure the energy consumption. The energy consumption of
the different designs is listed in Table 3.



210 A. Rezaei Shahmirzadi et al.

Table 3. Energy consumption of first-order secure masked implementations.

Design #Block #Key Latency #P.a Rand. En./Encb En./P.c En./bitd

[bit] [bit] [cycles] [bit/cycle] [pJ] [pJ] [pJ]

CRAFT TIe [9] 64 128 64 2 0 867.8 433.9 6.8

CRAFT CMS [41] 64 128 128 4 0 2209.3 552.3 8.6

CRAFT NF [47] 64 128 64 2 0 763.3 381.6 6.0

CRAFT TI WDDLe [9] 64 128 128 2 0 4748.1 2374.1 37.1

CRAFT CMS WDDL [41] 64 128 256 4 0 12029.0 3007.3 47.0

CRAFT NF WDDL [47] 64 128 128 2 0 5453.3 2727 42.6

SKINNY HPC2 [21] 64 64 160 5 64 6226.8 1245.4 19.5

SKINNY HPC3 [30] 64 64 96 3 128 2596.6 865.5 13.5

SKINNY GHPC [32] 64 64 96 3 64 4654.6 1551.6 24.2

SKINNY GHPCLL [32] 64 64 64 2 1024 1439.7 1439.7 22.5

SKINNY COMAR [29] 64 64 544 17 6 54487.8 3205.2 50.1

PRESENT TIe [43] 64 128 64 2 0 1195.7 597.9 9.3

PRESENT NF [47] 64 128 656 1 0 4460.9 4460.9 69.7

AES [45] 128 128 216 1 8 8961.7 8961.7 70.0

KECCAK NF [48] 200 – 72 3 0 1995.3 665.1 10.0
aThe number of plaintexts that the design can process due to pipeline architecture.
bEnergy Consumption per Encryption.
cEnergy Consumption per Plaintext.
dEnergy Consumption per bit.
eWith 3 shares.

We should highlight that different cryptographic cores in our prototype chip
demand different numbers of fresh masks. Generating fresh randomness is a com-
plex issue in the open literature, as there is no universally accepted method for
secure and efficient generation yet. There are many open questions, such as the
most efficient True Random Number Generator (TRNG) design, its cost includ-
ing runtime testing and monitoring, the necessary entropy for an initial seed
passed to a PRNG, the concrete security requirements for PRNGs, the poten-
tial limitations of Linear Feedback Shift Registers (LFSRs) as PRNGs due to
their linear outputs, and the fault or SCA protection of the generators and so
on. Hence, we refrain from including the energy consumption associated with
concurrent random number generation for masking contexts in our results, as
the choices and assumptions we would need to make greatly affect the results.
However, we stress that the masked cores which require fresh randomness would
cause a larger energy consumption in practice than in our experiments. To pro-
vide an intuition for that we give two examples. In [13] a round-based AES-128 in
counter mode has been used to generate the required fresh randomness per cycle
from an initial seed. In [22] a round-reduced unrolled PRINCE version is employed
in output feedback mode for the same purpose. We know from Tables 1 and 2
that round-based AES and unrolled PRINCE consume about 0.3 and 5.6 pJ per
output bit produced, which already shows that the cost for generating masking
randomness can vary significantly. Yet, there are likely more efficient solutions
from an energy efficiency standpoint than using full block ciphers as PRNGs.



Energy Consumption of Protected Cryptographic Hardware Cores 211

We leave the concrete energy cost associated with randomness generation as a
topic for future research.

As the first case study in this section, we compare the energy consumption of
different first-order secure realizations of CARFT. In CRAFT TI design, the S-box is
decomposed into quadratic functions, each of which is masked using TI strategy
with three shares. To avoid the propagation of glitches, two register layers are
placed in the round function. Similar to CRAFT TI, the S-box is also decomposed
in CRAFT CMS design. However, each quadratic function is masked using two
shares based on Consolidating Masking Scheme (CMS) [41] forcing four layers of
register in the design. As shown in the Table 3, the energy consumption per input
of CRAFT TI [47] is lower even though more input shares are used. This highlights
that using a larger number of shares not necessarily leads to a higher energy
consumption. Following [47], the S-box is not decomposed in CRAFT NF and the
design is masked using two shares, which leads to lower energy consumption,
outperforming other designs. All three designs were also implemented by WDDL
logic style. Theoretically, all these masked WDDL designs are first-order secure
with lower higher-order leakage. As expected, the energy consumption is much
higher compared to the traditional standard style. However, CRAFT TI WDDL has
the best energy efficiency per plaintext even though it is a three-share design
using one extra share compared to the other two designs.

The next case study is based on the SKINNY block cipher and composable gad-
gets are used in all designs. As a matter of fact, all designs were implemented
in fully-pipeline round-based architecture. The first SKINNY design is based on
the second Hardware Private Circuits multiplication gadget (HPC2) presented
in [21]. Recently, the approach was optimized for low-latency application in [30]
called HPC3. As shown in Table 3, the design has better latency and also energy
consumption at the cost of higher randomness requirements. Generic Hardware
Private Circuit (GHPC) [32] is a framework to construct trivially composable
and secure hardware gadgets for arbitrary vectorial Boolean functions (not only
multiplication). Its low-latency variant GHPCLL has slightly better energy per-
formance than the GHPC. However, its randomness requirement is significantly
higher. The authors of [29] presented a methodology for achieving free com-
position of hardware gadgets to realize a first-order secure masked hardware
implementation of arbitrary function utilizing only six random bits in the entire
design. However, the cost of area overhead and latency is significantly higher
than other methodologies. Looking at Table 3, the energy consumption is also
the highest among all compatible cores. All in all, the HPC3 approach appears
to be the most energy-efficient, at least as long as the energy cost for randomness
generation is not considered (see discussion above).

The PRESENT TI is a fully-pipelined round-based implementation using three
shares with no fresh masks [43]. PRESENT NF is a two-share serial implementa-
tion that also requires no fresh randomness [47]. Contrary to PRESENT TI, the
S-box is not decomposed in PRESENT NF design. As one can see, the energy con-
sumption per plaintext and per bit are significantly higher in serial architecture
even though its area footprint is smaller and a lower number of shares is used.



212 A. Rezaei Shahmirzadi et al.

Table 4. Energy consumption of higher-order secure masked implementations.

Design #da1 #Block #Key Latency #P.b Rand. En./Encc En./P.d En./bite

[bit] [bit] [cycles] [bit/cycle] [pJ] [pJ] [pJ]

SKINNY NF [48] 2 64 64 128 4 128 4202.2 1050.6 16.4

SKINNY HPC2 [21] 2 64 64 160 5 192 10286.8 2057.4 32.1

SKINNY HPC3 [30] 2 64 64 96 3 384 4613.3 1537.8 24.0

SKINNY HPC2 [21] 3 64 64 160 5 384 15339.3 3067.9 47.9

SKINNY HPC3 [30] 3 64 64 96 3 768 6608.8 2202.9 34.4

PRESENT NF [48] 2 64 128 666 1 8 10546.6 10546.6 164.8

KECCAK NF [48] 2 200 – 72 3 0 3637.9 1212.6 18.2

LED [12] 2 64 128 64 2 384 7502.4 3751.2 117.2
aSecurity order, d + 1: number of shares.
bThe number of plaintexts that the design can process due to pipeline architecture.
cEnergy Consumption per Encryption.
dEnergy Consumption per Plaintext.
eEnergy Consumption per bit.

It clearly highlights the impact of the chosen architecture on the energy con-
sumption. Obviously, round-based architecture should be used in energy-critical
applications.

The implemented masked AES in the ASIC chip is based on the technique
presented in [46]. The technique primarily focused on optimizing the design on
FPGAs using Block RAMs (BRAMs). In the eprint version of the article [45], the
authors also provided a two-share byte-serial implementation of the design for
ASIC platforms. The energy consumption is high due to its byte-serial architec-
ture. It has almost the same energy consumption per bit as the nibble-serial
implementation of PRESENT demonstrating that changing the algorithm and
block size did not affect the energy consumption in this case. The last case
study is a two-share first-order secure version of KECCAK-200 presented in [48].
The energy consumption of the implementations is not the lowest but outper-
forms most of the designs. Overall, the CRAFT NF implementation has the best
energy performance out of all implemented first-order secure designs.

5.4 Higher-Order Secure Masked Implementations

In this section, we investigate the energy consumption of second- and third-order
secure implementations. All round-based designs are fully pipelined as well.

HPC2 [21] and HPC3 [30] are methodologies to achieve composable glitch-
robust provably-secure multiplication gadgets at arbitrary order. Thanks to the
gadgets’ trivial composition property, a complete block cipher can be protected
at any security order. Using AGEMA [31], second- and third-order secure SKINNY
designs have been constructed and implemented on our prototype ASIC chip
where the energy consumption results are listed in Table 4. As expected, second-
order secure implementations consume less energy, compared to the correspond-
ing third-order designs. Similar to first-order secure designs, HPC3 has bet-
ter energy efficiency at the cost of higher randomness requirements. Table 6 in



Energy Consumption of Protected Cryptographic Hardware Cores 213

Table 5. Energy consumption of CRAFT round-based implementations with fault
attack countermeasure.

Design #Red./Niba #Correction #Detection Latency En./Encb En./bitc

[bit] [bit] [bit] [cycles] [pJ] [pJ]

CRAFT [9] 0 0 0 32 72.5 1.13

CRAFT IC II [49] 3 1 0 32 146.4 2.29

CRAFT IC III [39] 4 1 2 32 223.1 3.49

CRAFT IC II [49] 7 2 0 32 464.1 7.25

CRAFT MVd [49] 8 1 0 32 217.5 3.39
aRedundancy size per nibble.
bEnergy Consumption per Encryption.
cEnergy Consumption per bit.
dEstimated from CRAFT

AppendixB provides more information about the concrete methods used to ver-
ify the security properties of each protected implementation in practice.

We should highlight that trivial composability is not a necessary condition for
probing security as shown in [21]. In other words, a masked design can be secure
while not following composability notions. Hence, there is a considerable body
of work to reduce the implementation cost of masked designs. One of the articles
on optimizing the randomness cost of second-order secure implementation is
presented in [48]. The authors introduced a methodology to realize a three-
share second-order secure masked implementation of quadratic functions with
no fresh masks. In this approach, the S-box is decomposed into several quadratic
functions and the second-order masked realization only requires fresh masks for
the decomposition, i.e., when masked masked quadratic functions are cascaded.
The randomness complexity and energy consumption of this approach appear
favorable compared to HPC2 and HPC3 methodologies for the SKINNY block
cipher (see Table 4).

Since the KECCAK S-box is quadratic, it demands no fresh randomness in the
chosen implementation and its energy consumption is 80% higher than the first-
order secure one (compare Table 4 and Table 3). PRESENT was also implemented
following a nibble-serial architecture similar to the first-order implementation.
Its energy consumption is more than double of the first-order secure one.

The next implementation is based on the methodology presented in [12] using
seven shares. As an advantage, the required fresh masks can stay fixed during the
execution of the cipher. Due to a high number of shares, the energy consumption
of the design is considerably high. The methodology was optimized later in [11]
but unfortunately, it was not implemented in our ASIC chip.

5.5 Fault Attack Countermeasure Implementations

In this section, we investigate the impact of fault countermeasures on the block
cipher CRAFT, which is optimized with respect to protection against Differen-
tial Fault Analysis (DFA). While detection-based countermeasures are prone



214 A. Rezaei Shahmirzadi et al.

to SIFA [24], correction-based countermeasures provide security at the cost of
higher implementation costs. One other solution is to use Majority Voting (MV),
where the cipher is instantiated 2tc + 1 number of times to correct up to tc bit
faults. Unfortunately, a design equipped with MV was not implemented in the
ASIC chip but we can estimate its energy consumption based on the unpro-
tected round-based implementation. To prevent SIFA against a single-bit fault,
3 instances of the cipher and an MV circuitry are required. This is referred to as
CRAFT MV in Table 5. Hence, the amount of energy consumption is expected
to be tripled at least. Looking at Table 5, the code-based methodology presented
in [49], i.e., CRAFT IC II, provides the same level of security as CRAFT MV with
less energy consumption even though higher area overhead compared to MV was
reported in [49]. This also highlights that the energy consumption of a design
with a higher area footprint can be more efficient. Integrating facilities to detect
two faulty bits and simultaneously correct one faulty bit at the cost of one
more bit redundancy per nibble, i.e., CRAFT IC III, approximately increases
the energy consumption by 52%. Protecting the block cipher by correcting two
faulty bits comes with significantly more energy consumption due to a higher
area overhead and the demand for a larger redundancy, i.e., 7 bits per nibble.

6 Conclusions

In this work, we investigated the energy consumption of various implemen-
tations of symmetric cryptographic primitives (mostly block ciphers), ranging
from unprotected implementations in round-based and unrolled architecture to
designs protected against side-channel analysis and fault-injection attacks. We
should highlight that this paper presents a practical energy measurement of pro-
tected designs for the first time in the open literature. In almost all previous
relevant articles, the exploration was limited to simulation using EDA tools.
However, in this study, we presented practical results of measuring the energy
consumption on a prototype ASIC chip manufactured in a 65 nm technology.

Our results indicate that unrolled implementation of a block cipher with a
higher block size can be beneficial as the energy consumption per bit can be
more efficient. We have demonstrated that the number of rounds has a huge
impact on the energy consumption in round-based implementations, e.g., AES
outperforms CRAFT whose S-box is optimized for lower energy consumption.
It has been also shown that WDDL logic style increases energy consumption
significantly in practice.

Measuring the energy consumption of first-order masked designs has illus-
trated that using a higher number of input shares does not necessarily lead to
higher energy consumption. Further, serial implementations show a consider-
ably larger energy consumption despite a smaller area footprint. The results for
higher-order secure implementations were in line with the expectations. In short,
higher orders of security also lead to a larger energy consumption in practice.
We also exhibited that manually-crafted optimized designs can outperform the
designs constructed by automated tools based on composable gadgets. More-
over, the results revealed that using code-based correction facilities to mitigate



Energy Consumption of Protected Cryptographic Hardware Cores 215

fault-injection attacks can outperform the majority voting approach in terms of
energy consumption while maintaining the same level of security.

In AppendixA we provide a list of links to repositories published by different
authors and corresponding to different academic publications which contain the
concrete RTL source code of many of the hardware cores analyzed in this work.

Acknowledgments. The work described in this paper has been supported in part
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and through the project
393207943 GreenSec, and by the European Union (EU) through the ERC project
724725 (acronym SWORD) and the Walloon Region through the FEDER project
USERMedia (convention number 501907-379156).

A List of Links for Open-Source Designs

1. https://github.com/Chair-for-Security-Engineering/SPEEDY: SPEEDY
2. https://github.com/subhadeep-banik/orthros: Orthros
3. https://gimli.cr.yp.to/impl.html: Gimli
4. https://github.com/hadipourh/AES-VHDL/tree/master/AES-ENC/RTL:

Unprotected round-based AES
5. https://github.com/emsec/ImpeccableCircuits/tree/master/CRAFT:

Unprotected round-based CRAFT and first-order secure CRAFT (CRAFT TI)
6. https://github.com/Chair-for-Security-Engineering/AES masked BRAM:

First-order Secure AES
7. https://github.com/Chair-for-Security-Engineering/NullFresh: First-order

secure CRAFT (CRAFT NF), First-order secure PRESENT (PRESENT NF)
8. https://github.com/Chair-for-Security-Engineering/NullFresh2: First- and

second-order secure KECCAK (KECCAK NF), Second-order secure PRESENT
(PRESENT NF), Second-order secure SKINNY (SKINNY NF)

9. https://github.com/Chair-for-Security-Engineering/AGEMA: First- and
second-order secure SKINNY (SKINNY HPC2, SKINNY HPC3, SKINNY GHPC,
SKINNY GHPCLL)

10. https://github.com/ChairImpSec/COMAR: SKINNY COMAR
11. https://github.com/emsec/ImpeccableCircuitsII: CRAFT IC II, CRAFT MV

https://github.com/Chair-for-Security-Engineering/SPEEDY
https://github.com/subhadeep-banik/orthros
https://gimli.cr.yp.to/impl.html
https://github.com/hadipourh/AES-VHDL/tree/master/AES-ENC/RTL
https://github.com/emsec/ImpeccableCircuits/tree/master/CRAFT
https://github.com/Chair-for-Security-Engineering/AES_masked_BRAM
https://github.com/Chair-for-Security-Engineering/NullFresh
https://github.com/Chair-for-Security-Engineering/NullFresh2
https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/ChairImpSec/COMAR
https://github.com/emsec/ImpeccableCircuitsII


216 A. Rezaei Shahmirzadi et al.

B Additional Postlayout Details

Table 6. Additional information about all cores.

Design Area Crit. Path Stat. En. Exp. Tool Comp.

[GE] [ns] [nJ/s] Ver.a Ver.b Gadg.c

PRINCE [16] 9340.00 11.67 486 – – –

PRINCEv2 [17] 9653.50 11.59 1120 – – –

PRINCE+v2 [17] 10464.50 11.88 808 – – –

MIDORI [4] 11300.25 11.84 1800 – – –

MANTIS [8] 13583.75 12.28 1730 – – –

QARMA7-64-σ0 [3] 13772.00 12.17 2150 – – –

QARMA7-64-σ1 [3] 14193.00 12.44 2880 – – –

QARMA7-64-σ2 [3] 15685.75 12.31 3120 – – –

Orthros [6] 32342.00 10.80 2160 – – –

SPEEDY-5-192 ENC [34] 25632.00 8.24 1750 – – –

SPEEDY-6-192 ENC [34] 30676.00 9.88 2040 – – –

SPEEDY-7-192 ENC [34] 35788.75 10.40 3770 – – –

SPEEDY-5-192 DEC [34] 52548.00 12.10 8530 – – –

SPEEDY-6-192 DEC [34] 62986.00 12.69 14500 – – –

SPEEDY-7-192 DEC [34] 74331.50 13.21 21000 – – –

GIMLI [10] 53829.75 8.85 1080 – – –

AES [23] 13939.25 0.58 480 – – –

CRAFT [9] 2089.25 0.20 34 – – –

CRAFT WDDL [9] 6557.50 0.25 191 – – –

CRAFT TI d=1 [9] 8923.25 0.20 280 ✓ ✗ ✗

CRAFT CMS d=1 [41] 8369.50 0.20 237 ✓ ✗ ✗

CRAFT NF d=1 [47] 8015.00 0.20 263 ✓ ✗ ✗

CRAFT TI WDDL d=1 [9] 30419.00 0.24 1070 ✗ ✗ ✗

CRAFT CMS WDDL d=1 [41] 36249.25 0.25 1080 ✗ ✗ ✗

CRAFT NF WDDL d=1 [47] 35283.00 0.25 1350 ✗ ✗ ✗

SKINNY HPC2 d=1 [21] 26128.00 1.41 900 ✓ ✗ ✓

SKINNY HPC3 d=1 [30] 15652.00 0.87 511 ✓ ✗ ✓

SKINNY GHPC d=1 [32] 30316.25 0.87 925 ✓ ✗ ✓

SKINNY GHPCLL d=1 [32] 21660.25 0.88 1010 ✓ ✗ ✓

SKINNY COMAR d=1 [29] 73446.00 1.38 2090 ✓ ✗ ✓

PRESENT TI d=1 [43] 12868.50 0.59 314 ✓ ✗ ✗

(continued)



Energy Consumption of Protected Cryptographic Hardware Cores 217

Table 6. (continued)

Design Area Crit. Path Stat. En. Exp. Tool Comp.

[GE] [ns] [nJ/s] Ver.a Ver.b Gadg.c

PRESENT NF d=1 [47] 6080.25 0.24 228 ✓ ✓ ✗

AES d=1 [45] 21915.75 1.16 775 ✓ ✗ ✗

KECCAK NF d=1 [48] 21008.00 0.75 694 ✓ ✓ ✗

SKINNY NF d=2 [48] 15648.00 0.45 475 ✓ ✗ ✗

SKINNY HPC2 d=2 [21] 45544.50 0.86 1730 ✓ ✗ ✓

SKINNY HPC3 d=2 [30] 26934.50 1.06 978 ✓ ✗ ✓

SKINNY HPC2 d=3 [21] 69054.00 1.34 2500 ✓ ✗ ✓

SKINNY HPC3 d=3 [30] 40878.25 0.83 1520 ✓ ✗ ✓

PRESENT NF d=2 [48] 11988.75 0.24 506 ✓ ✓ ✗

KECCAK NF d=2 [48] 35919.00 0.75 1430 ✓ ✓ ✗

LED d=2 [12] 37923.75 0.59 1600 ✗ ✗ ✗

CRAFT IC II r=3 [49] 6080.25 0.59 164 ✗ ✓ ✗

CRAFT IC III r=4 [39] 9278.25 0.20 397 ✗ ✓ ✗

CRAFT IC II r=7 [49] 22599.75 0.23 573 ✗ ✓ ✗
aThe conceptual security properties of the full implementation (i.e., the concrete
RTL code used) have been experimentally verified in a published article.
bThe conceptual security properties of the full implementation (i.e., the concrete
RTL code used) have been verified using a tool in a published article.
cThe implementation is composed entirely of provably composable gadgets and
the security properties of the individual gadgets have been exhaustively verified
using a tool in a published article.

References

1. Qualcomm Product Security. Pointer Authentication on ARMv8.3 - Design and
Analysis of the New Software Security Instructions. Technical report, January 2017.
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-arm
v83

2. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. IEEE Trans. Comput. 69(3), 361–376 (2020)

3. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

4. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

5. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp.
178–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 10

https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-31301-6_10


218 A. Rezaei Shahmirzadi et al.

6. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: a low-latency
PRF. IACR Trans. Symmetric Cryptol. 2021(1), 37–77 (2021)

7. Batina, L., et al.: Dietary recommendations for lightweight block ciphers: power,
energy and area analysis of recently developed architectures. In: Hutter, M.,
Schmidt, J.-M. (eds.) RFIDSec 2013. LNCS, vol. 8262, pp. 103–112. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41332-2 7

8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

9. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

10. Bernstein, D.J., et al.: Gimli?: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

11. Beyne, T., Dhooghe, S., Moradi, A., Shahmirzadi, A.R.: Cryptanalysis of effi-
cient masked ciphers: applications to low latency. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2022(1), 679–721 (2022)

12. Beyne, T., Dhooghe, S., Zhang, Z.: Cryptanalysis of masked ciphers: a not so ran-
dom idea. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp.
817–850. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 27

13. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6 17

14. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

15. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

16. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 14

17. Božilov, D., et al.: PRINCEv2 - more security for (almost) no overhead. In: Dunkel-
man, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp.
483–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0 19

18. Caforio, A., Balli, F., Banik, S.: Energy analysis of lightweight AEAD circuits. In:
Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp.
23–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5 2

19. Can, A., Krishnaswamy, A., Turner, R.: Code pointer authentication for hardware
flow control, uS Patent 9,514,305 (6 December2016)

20. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN—a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 20

https://doi.org/10.1007/978-3-642-41332-2_7
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-030-64837-4_27
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-65411-5_2
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-04138-9_20


Energy Consumption of Protected Cryptographic Hardware Cores 219

21. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: from
trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690
(2021)

22. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

23. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

24. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

25. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–161 (1997). https://doi.org/10.1007/
s001459900025

26. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Theory of Imple-
mentation Security - TIS@CCS 2016, p. 3. ACM (2016)

27. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

28. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green
cryptography: a comparison of lightweight ciphers from the energy viewpoint.
In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 23

29. Knichel, D., Moradi, A.: Composable gadgets with reused fresh masks first-order
probing-secure hardware circuits with only 6 fresh masks. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022(3), 114–140 (2022)

30. Knichel, D., Moradi, A.: Low-latency hardware private circuits. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, 7–11 November 2022, pp. 1799–1812. ACM
(2022)

31. Knichel, D., Moradi, A., Müller, N., Sasdrich, P.: Automated generation of masked
hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 589–629 (2022)

32. Knichel, D., Sasdrich, P., Moradi, A.: Generic hardware private circuits towards
automated generation of composable secure gadgets. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022(1), 323–344 (2022)

33. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

34. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021)

35. Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006). https://doi.org/
10.1007/11604938 19

https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-33027-8_23
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11604938_19
https://doi.org/10.1007/11604938_19


220 A. Rezaei Shahmirzadi et al.

36. Malkin, T.G., Standaert, F.-X., Yung, M.: A comparative cost/security analysis of
fault attack countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert,
J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 159–172. Springer, Heidelberg (2006).
https://doi.org/10.1007/11889700 15

37. Moos, T.: Unrolled cryptography on silicon: a physical security analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 416–442 (2020)

38. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

39. Rasoolzadeh, S., Shahmirzadi, A.R., Moradi, A.: Impeccable circuits III. In: IEEE
International Test Conference, ITC 2021, Anaheim, CA, USA, 10–15 October 2021,
pp. 163–169. IEEE (2021)

40. Reparaz, O.: A note on the security of higher-order threshold implementations.
IACR Cryptology ePrint Archive, vol. 2015, p. 1 (2015)

41. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

42. Richter, B., Moradi, A.: Lightweight ciphers on a 65 nm ASIC A comparative study
on energy consumption. In: 2020 IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2020, Limassol, Cyprus, 6–8 July 2020, pp. 530–535. IEEE (2020)

43. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to
tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 263–276. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31301-6 16

44. Selmane, N., Bhasin, S., Guilley, S., Graba, T., Danger, J.: WDDL is protected
against setup time violation attacks. In: Sixth International Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2009, Lausanne, Switzerland, 6
September 2009, pp. 73–83. IEEE Computer Society (2009)

45. Shahmirzadi, A.R., Bozilov, D., Moradi, A.: New first-order secure AES perfor-
mance records. IACR Cryptology ePrint Archive, p. 37 (2021)

46. Shahmirzadi, A.R., Bozilov, D., Moradi, A.: New first-order secure AES perfor-
mance records. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 304–327
(2021)

47. Shahmirzadi, A.R., Moradi, A.: Re-consolidating first-order masking schemes -
nullifying fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1),
305–342 (2020)

48. Shahmirzadi, A.R., Moradi, A.: Second-order SCA security with almost no fresh
randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 708–755
(2021)

49. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. In: DAC
2020, pp. 1–6. IEEE (2020)

50. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: 2004 Design, Automation and Test
in Europe Conference and Exposition (DATE 2004), 16–20 February 2004, Paris,
France, pp. 246–251. IEEE Computer Society (2004)

https://doi.org/10.1007/11889700_15
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-31301-6_16
https://doi.org/10.1007/978-3-319-31301-6_16


Whiteboxgrind – Automated Analysis
of Whitebox Cryptography

Tobias Holl1, Katharina Bogad2, and Michael Gruber3(B)

1 Ruhr-Universität Bochum, Bochum, Germany
tobias.holl@rub.de

2 Fraunhofer Institute for Applied and Integrated Security, Garching, Germany
katharina.bogad@aisec.fraunhofer.de

3 Chair of Security in Information Technology,
Technical University of Munich, Munich, Germany

m.gruber@tum.de

Abstract. Digital intellectual property is often protected by encrypting
the data up to the point of use. Whitebox cryptography is an attempt
to provide users with the ability to decrypt that data without actually
revealing the key by embedding the key inside a cryptographic implemen-
tation. In this work, we design and implement Whiteboxgrind, a fast,
fully automated toolchain that obtains execution traces from whitebox
implementations and applies DCA to recover the hidden embedded keys.
To evaluate Whiteboxgrind, we analysed whiteboxes of the CHES Whi-
bOx 2019 competition, and found Whiteboxgrind to provide a signifi-
cant performance improvement over the state-of-the-art tooling, enabling
attacks that were previously infeasible due to memory constraints. Fur-
thermore, we provide Whiteboxgrind’s source code.

Keywords: Whitebox · Differential Computation Analysis · Side
Channel Analysis · CHES WhibOx

1 Introduction

When modern software needs to protect data from unauthorized access, cryp-
tography is the only feasible solution. While encrypted communications gener-
ally allow for some form of key exchange or agreement, protecting data at rest
requires storing an encryption key somewhere. This is easy if the software runs in
a trusted environment (e.g. in a Trusted Platform Module (TPM) or on a corpo-
rate server), but not so straightforward in other cases (e.g. on devices controlled
by end users).

So-called whitebox implementations combine a cryptographic algorithm with
a fixed key, and add additional layers of obfuscation to hide the key from the user.
Therefore, whitebox implementations violate Kerckhoffs’s principle by design.
Usually, these “whiteboxes” are used when the goal is to shield data or code
from inspection by a potential adversary in an untrusted ecosystem (i.e. the
user and their device respectively). This includes Digital Rights Management
(DRM), but is also found as a hardening mechanism against manipulation in
other software that deals with confidential information (e.g. banking apps) [14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 221–240, 2023.
https://doi.org/10.1007/978-3-031-29497-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_11


222 T. Holl et al.

The name whitebox cryptography already betrays that such a system is inher-
ently insecure: Since all internal details are observable, it is always theoretically
possible (though not always practically feasible) to reconstruct both the secret
key and the cryptographic algorithm. Instead of preventing decryption entirely,
whitebox cryptography can only serve as an obfuscation mechanism that dis-
courages or delays a potential attacker by increasing the cost of an attack.

The straightforward approach to extract the key from a whitebox is direct
reverse engineering. However, modern whiteboxes are sufficiently obfuscated to
make this an extremely tedious and challenging task: Layers of obfuscation can
be applied automatically, inflating the amount of code and data a reverse engi-
neer needs to examine, while an attacker must manually understand and deob-
fuscate each layer.

Apart from glaring vulnerabilities in the cryptography itself, it is also essen-
tially impossible to successfully attack such a system by merely observing and
controlling its inputs and outputs, as modern cryptosystems are highly resistant
to such attacks by design: For a cryptosystem to be considered even adequate, we
generally require them to be resistant against both chosen-plaintext and (adap-
tive) chosen-ciphertext attacks [17], where attackers are able to make arbitrary
queries to an encryption and decryption oracle—much like an attacker that only
uses a whitebox implementation, but does not analyze its internals.

However, implementations of cryptosystems can still leak information due to
a side-channel. By analyzing the time taken for a cryptographic operation (a
timing attack), or the power consumed by the device during that time (e.g. via
Differential Power Analysis (DPA) [19]), it can sometimes be possible to extract
the key from a whitebox system. An active attacker that is able to manipulate
the internal state of the cryptosystem while it is running has even more options
(e.g. Fault Injection Analysis (FIA), where deviations in the output caused by
a manipulation of internal state are analyzed).

In embedded systems, hardware protection mechanisms can require attackers
who try to mount such an attack to make a significant upfront investment into
specialized equipment. Software-only whiteboxes cannot rely on such hardening
approaches: Since we can fully control the environment in which they are exe-
cuted, it becomes much easier to isolate the whitebox implementation from the
rest of the system. Sources of randomness which would ordinarily be used to
hide internal values from an observer can easily be replaced with a determin-
stic stream of numbers. Here, hardware implementations can rely on a Crypto-
graphically secure Random Number Generator (CSRNG) that is much harder
to manipulate or replace. For software, we additionally have access to a large
set of introspection tools such as debuggers and emulators that can be used to
examine the internal workings of the whitebox in detail. This also means that
side-channel attacks can be mounted not just on physical observations such as
time and power consumption, but also on the internal behavior of the program
during execution. The state-of-the-art equivalent to DPA for such whiteboxes
is Differential Computation Analysis (DCA), which instead of deriving leakage
information from the power consumption directly uses values extracted from
traces of the program’s execution [3,4]. Because these types of attacks require



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 223

large amounts of data obtained by continuously observating the whitebox imple-
mentation, they generally require some level of automation to be feasible.

Contribution. In this work, we propose an automatic approach to efficiently
collect and filter execution traces of whitebox implementations. In particular,
we make the following contributions: We construct a fast tracer using Valgrind’s
[24] just-in-time-compilation abilities. We design a novel trace storage format
that enables both fast processing and space-efficient storage. We implement our
approach in Whiteboxgrind, a fully automated parallel DCA attack toolchain
(trace collection, filtering, and the DCA), and benchmark it on several sub-
missions to the 2019 CHES WhibOx contest [7]. While we target AES in this
paper, the tracing and filtering stages of Whiteboxgrind generalize to arbi-
trary whitebox implementations; only the implementation of the attack itself
needs to be adapted to the targeted cryptosystem. Also, we provide White-
boxgrind’s source code1.

2 Related Work

There are several other tools that attempt to perform side-channel attacks on
whitebox cryptography:

Frameworks. Bos et al. [4], and Bock et al. [3] propose similar instrumentation-
based approaches for tracing and applying Differential Computation Analysis
(DCA), but without discussing any strategies to handle the vast amounts of
data generated by their approaches. Both approaches are based on the idea of
instrumenting the implementation with Valgrind [24] and recording the execu-
tion. Additionally, the same tooling can be used to perform FIA, though there is
some difficulty in identifying the correct time and place at which a fault should
be injected.

Sample Reduction. In order to reduce the amount of data that needs to be
processed, Breunesse et al. introduced Conditional Sample Reduction (CSR)
[5]. Our solution is less aggressive in discarding samples and cannot remove
“superfluous” traces. We instead opt for an approach with much lower memory
requirements that also requires less knowledge about the target implementation.
We discuss the differences in more detail in Sect. 4.4.

Attack Tools. Finally, there are generic side-channel attack tools that process
traces from arbitrary sources (if they can be brought into the right format).
Examples include LASCAR [20] and QSCAT [13].

3 Background

We focus mainly on attacks against whitebox implementations of the Advanced
Encryption Standard (AES). In the following, we briefly introduce the structure
of AES and the main concepts behind DCA, including its application to AES,
and discuss various ways to obtain program traces.
1 https://gitlab.lrz.de/tueisec/whiteboxgrind.

https://gitlab.lrz.de/tueisec/whiteboxgrind


224 T. Holl et al.

3.1 Advanced Encryption Standard

The AES [12] is a 128-bit block cipher based on a substitution-permutation
network (SPN). Like most block ciphers, it is composed of several near-identical
rounds which consist from the following functions:

AddRoundKey adds the current round key k(i) to the state by a simple bit-
wise XOR (⊕). This is equivalent to an element-wise addition in GF (28).

SubBytes is a nonlinear byte-wise substitution where each byte ai of the state
is substituted via a constant look-up table to the output byte bi = S[ai]. The
S-Box is carefully designed to make AES more resistant against various kinds of
attacks [9], including differential and linear cryptanalysis [2,22].

ShiftRows is a simple permutation of the bytes. When considering the state’s
16 bytes as elements of a matrix in GF (28)4×4 (stored in column-major order),
each row is rotated to the left one element further than the previous row, with
the first row not being modified at all. This ensures that localized state changes
propagate quickly to all state bytes (a desirable property for ciphers known as
diffusion) [9,10,25].

MixColumns has a similar purpose by applying a linear transformation in
GF (28) to the individual columns of the same matrix.

3.2 Whitebox Cryptography

Cryptographic implementations where the key is configurable first derive the
round keys k(i) from the cipher key k using the AES key schedule. In whitebox
implementations, on the other hand, the key schedule is usually done in advance
(since the key is already known at compile time) and is not present in the final
implementation. Since the keys are fixed, the individual components of each
round can be combined into a single table lookup (known as a T-box) [9]. If this
lookup also includes the key addition, the values stored in the table can reveal
the round key. To avoid this, internal encodings apply transformations to the
input and output of such a table (or more generally of any internal operation).
External encodings are similar, except that the transformations are applied to
the plaintexts and ciphertexts outside the encryption algorithm [8,21]. Usually,
additional obfuscation is then applied to further hide the round keys from an
observer.

3.3 Correlation Power Analysis

Differential Power Analysis (DPA) is a type of power analysis based on parti-
tioning which was proposed in 1999 by Kocher et al. [19]. Brier et al. proposed
a similar approach called Correlation Power Analysis (CPA) which uses corre-
lation as a distinguisher in 2004 [6]. For a CPA attack, the power profile of a
cryptographic operation is measured multiple times, e.g., in the context of AES
different plaintexts with the same key. Subsequently, an intermediate value t,



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 225

which depends on known values, and an unknown part (a single byte) of the
key is chosen. A possible intermediate value t during the AES-encryption is
the output of a first round’s S-box. The intermediate value t is calculated as
t = S(k(0)0 ⊕ p0) for all key hypotheses of the key byte k

(0)
0 The correlation of

all key hypotheses with the measured power traces can be calculated after the
application of a power model to the intermediate value. For the CPA of AES the
intermediate value’s Hamming Weight (HW) is commonly used as power model
as it requires no prior knowledge about the state. The correct key byte is then
determined by the hypothesis that yields the highest absolute correlation value.
The principles of DPA were applied to whitebox cryptography by Bos et al. [4].
In the context of whitebox cryptography, DPA is referred to as DCA.

3.4 Program Tracing

Program traces are a useful tool in software analysis that allow us to draw
conclusions about the underlying software’s behavior (even if not much about
the program is known, e.g. [11]). This means that there are quite a few different
approaches by which we can obtain them:

Full Emulation. The idea behind fully emulating software is simple: we model
hardware behavior as accurately as possible, and then simply run the software
under analysis in the emulator. This allows us to observe all the internals of
a program without having to understand it before. Constructing the emulator
is a painstaking process, but only needs to be done once for a specific piece
of hardware, and while the result is usually quite slow in terms of real-time
performance, the data obtained is as close to the ground truth as one can get if
the emulator is constructed accurately. Unfortunately, the performance penalty
is usually quite severe, which is a problem for analyses like DCA that require
multiple execution traces.

Hooking. A much faster approach is to identify locations of interest in the
program and modify the code at those locations to emit tracing events. However,
accurately modifying the program without accidentally damaging functionality
or missing out on some events can be difficult (especially if the implementation
is one that hardened against reverse-engineering, like the ones we are dealing
with in this work).

Debugger-Based Tracing. Another common way to follow the execution of
a program is to use a debugger’s single-step feature: The debugger repeatedly
signals the operating system to execute a single instruction at a time, after which
control returns to the debugger, which can then inspect registers and memory.
Here, we run into the opposite problem of the emulator: After an instruction has
been executed, we need to understand which changes it made. Additionally, the
frequent context switches between debugger and target come with a significant
performance penalty.

Hardware-Based Tracing. Some modern processors have features that allow
constructing execution traces directly in the CPU. These features generally have



226 T. Holl et al.

low runtime overhead and access to ground-truth information, which are par-
ticularly desirable features for a program tracer. Unfortunately, they are often
limited in scope (e.g. Intel’s processor trace feature [15] only records control flow
events, so the exact execution flow needs to be reconstructed after-the-fact, and
information on memory accesses is missing entirely). Additionally, hardware-
based tracing cannot usually intercept sources of nondeterminism (e.g. system
calls), so elements from other tracing methods (debugging or hooking) will need
to be borrowed—alongside their disadvantages.

Lifting and JIT. A good compromise between the previous approaches is based
on just-in-time compilation (JIT). The idea is to analyze a chunk of code that is
about to be executed, lift it to an intermediate representation (IR) by carefully
breaking down the CPU instructions into smaller operations, insert the code
that logs the appropriate events, and then compile it back down to native code
that is then executed. This lifting operation can be slow, but if pieces of code are
executed multiple times, the results can be cached. Because the event logging
is embedded directly into the native code, no expensive callbacks or context
switches are necessary while the code is executing.

4 Whiteboxgrind

In the following, we describe our approach to efficiently trace and attack white-
box implementations, which we implemented in our Whiteboxgrind toolchain.

4.1 Trace Acquisition

We use a custom tool for the Valgrind framework [24] in order to obtain execution
traces of a target whitebox when invoked with different inputs. It records every
instruction executed during the cryptographic operation alongside all memory
accesses.

We chose to base our tracer on Valgrind instead of one of the other approaches
described in Sect. 3.4 for performance reasons: For every original instruction, at
least one of our hooks is called to generate the instruction trace, plus hooks for
every memory access. If the hooks are not implemented natively or not embedded
directly into the execution stream, each hook invocation comes with a significant
performance penalty.

Valgrind also uses a JIT-based approach, but allows us to manipulate the gen-
erated code on a lower level: When a basic block starts executing, Valgrind lifts
it to its VEX IR by representing each instruction as a series of IR instructions,
with particularly complex operations represented by calls to helper functions.
Figure 1 shows how an example function is translated to VEX. On this inter-
mediate representation, the active tool can perform arbitrary transformations.
In Whiteboxgrind, we use this to insert our own instrumentation steps. Once
control returns to Valgrind, the IR is compiled back down to native code and
executed.



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 227

Fig. 1. Example of the translation between source code, AMD64 assembly code, and
the VEX IR

During instrumentation, we insert code to emit a program counter trace
event on every Ist IMark statement (which marks the start of a new instruction,
hence the name), and a memory access event whenever the statement type or the
type of a subexpression indicates that a memory access will take place. Within
subexpressions, only memory reads can occur (Iex Load). An example of this is
the statement in Fig. 1c that is highlighted in green. We also log a memory read
on Ist LoadG statements if the associated guard condition is satisfied. Memory
writes (Ist Store or Ist StoreG with a guard condition) and compare-and-
swap instructions (Ist CAS) are tracked separately. Beyond that, we need to
handle calls to external helper functions that VEX inserts for more complicated
instructions (Ist Dirty) and load-linked/store-conditional (LLSC) statements
(Ist LLSC), both of which helpfully track their memory side effects in the VEX
statement structure.

For all events, we store the value of the current instruction pointer or pro-
gram counter. For memory accesses, we additionally store the target memory
address, the value that is read or written, and the size or “width” of that value.
Valgrind additionally provides us with the endianness of the access, though on
most architectures this value is a constant. For compare-and-swap instructions,
we store both the old value that is read for the comparison and the new value
which is written if the comparison succeeds. Because we may later want to syn-
chronize between the different types of events, each event is accompanied by an
index that counts up as events are emitted, regardless of type.

In order to avoid tracing all of the target binary, we support isolating the
encryption or decryption function. Depending on the scenario, this is done either
using Valgrind’s client requests, which allow the program under analysis to indi-
cate to the tracer to start and stop tracing2, or by starting and stopping tracing
at user-provided addresses.

Between these points, the tracer ensures that execution of the traced binary
is deterministic: System calls and other non-deterministic instructions such as
rdtsc (returning the current processor timestamp) and rdrand (returning a
random value) are reported to the user for manual patching, and can generally
be replaced with “normal” instructions that return a constant value instead.

2 We use this feature in combination with a custom harness for our evaluation in
Sect. 5, where the encryption function is provided directly.



228 T. Holl et al.

This means that the resulting traces can be compared across executions: The
only reason why traces can differ from each other is that each run of the whitebox
is provided with different inputs.

For convenience, Whiteboxgrind comes with a wrapper tool that manages
the individual runs of the tracer. In particular, it takes care of input genera-
tion, configuring the tracer appropriately, collecting the trace events (via a Unix
domain socket connected to the tracer), and finally storing the results.

4.2 Trace Storage

The traces generated in the previous step can be quite large (cf. Section 5). In
order to perform further processing within reasonable limits on runtime and
memory use, we need to store traces in a compressed format that still allows fast
parallel access.

Unfortunately, existing formats either do not fully meet these requirements
(e.g. the default implementation of HDF5 requires high-overhead locking to
operate in a threadsafe manner, and the ParallelHDF5 variant only supports
multi-processing rather than multithreading [26]), or are not designed with mul-
tidimensional data in mind (libraries such as fst [18] focus explicitly on two-
dimensional data, while our traces—a matrix3 of structured trace events with
multiple attributes as described in Sect. 4.1—are essentially three-dimensional).

Therefore, we designed the y5 file format to address these shortcomings and
enable efficient processing of our traces. Below, we briefly explain each of the
design goals we considered during the development of the y5 file format, and
how we achieved them.

Support for Trace Transposition. Throughout our pipeline, we want to be
able to process traces in parallel. Both during sample reduction (cf. Sect. 4.4)
and in the actual attack (cf. Sect. 4.6), operations work on a set of matching
samples, one from each trace. In a traditional storage format, this would mean
storing the matrix of traces in column-major order (so that we can sequentially
read columns of matching samples from the file). However, to create such a
file, we would need to produce all traces at the same time, and ensure that
all tracers generate events in a synchronized fashion, because it is impossible
to know ahead of time how large each trace will be. This would significantly
impact tracer performance and resource usage. Instead, our tracing framework
stores one trace after the other (with traces as rows), and we transpose the
matrix during the first sample reduction step in order to then be able to write
processed columns of matching samples (turning traces into columns). Figure 2
shows how the dimensions of the data in a y5 file change during processing. The
file format needs to accommodate this matrix transposition.

Compression. Memory and control flow traces both contain highly redundant
information. Values may be read multiple times, loops mean the same instruc-
tions occur repeatedly, and because Valgrind does not implement Address Space

3 Initially, each row of the matrix contains a full trace of the program.



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 229

Fig. 2. Transposition of traces during processing.

Layout Randomization (ASLR), memory addresses all share similar prefixes and
remain the same across traces. To reduce the size of our traces while stored
on disk, we need to compress the data in a way that ensures fast compression
and decompression as well as significant size reduction. We use Google’s Brotli
compression algorithm [1] at a medium compression level to achieve a trade-off
between these two goals. Each row, regardless of whether that represents a full
trace or an aligned set of samples across all traces, is compressed separately
to allow independent decompression without having to first process additional
rows.

Fast Seeking. While it is useful to be able to decompress each row separately,
we still need to locate the start of the row in the file. To do this, we prefix each
row with its compressed size. This means we can easily skip each row during
processing. However, this still makes seeking to the nth row a slow operation on
larger trace files with many rows. In addition to the row headers, we maintain a
fixed-size Table of Contents (TOC) at the start of the file4. Initially (while the
number of rows r is less than the number of entries t in the table), each row has
its own TOC entry. As more rows are added, entry t starts representing row 2r,
then 4r and so on. This allows us to fairly swiftly skip a large part of the file
before following the row headers to finally locate a target row.

Low Memory Footprint. Most software relies on a common file processing
paradigm: read the compressed data into a buffer, decompress it into another
buffer, and then process the data in that buffer. Because the operating system
already caches the compressed file contents in memory, this pairing of read-
ing and decompressing essentially stores the file contents in memory twice. We
instead rely on a streaming approach: We directly map a segment5 of the com-
pressed file into memory. Then, as data is requested for processing, we extend
that segment at the end (to be able to decompress more of the file), while
shrinking it from the front to remove already-decompressed parts from memory.
Because of this, we only keep a fixed amount of compressed data in RAM, and
the user can manage how much of the decompressed data they want to request
at any given time.
4 In our implementation, the size is configurable, but only at the time the file is created.
5 The size of this segment is configurable to make parallel processing less memory-

intensive, while optimizing single-threaded performance by reducing the number of
mapping requests that need to be made.



230 T. Holl et al.

Support for Parallel Access. Writing to a file in parallel without knowing
the size in advance is essentially impossible, because the offsets at which each
thread should write are not known ahead of time. On the other hand, reading
files in parallel is only limited by the fact that the storage device usually does
not support parallel access. Here, the fact that we also need to decompress
the data means that even though the device may need to serialize our access
requests, the subsequent decompression of different rows can be performed in
parallel, which significantly improves read speeds. Using memory-mapped IO is
very helpful here, because this allows us to maintain multiple windows into the
file at different offsets, while normal file descriptor-based APIs expect there to
be a single canonical offset into a file at which reading is performed.

Figure 3 shows the layout of a y5 file. Fields that are fixed at file creation time
are hatched, the others can change as more data is added to the file. Each row
represents eight bytes of data; multi-byte fields are packed in little-endian format
for faster processing on x86 CPUs (i.e. most commonly available hardware).
We provide a C++ library for UNIX-like systems6 as well as low-level Python
bindings using pybind11 [16] in order to interface with existing software.

Fig. 3. Structure of a y5 file.

4.3 Parallel Architecture

Each of our tools consumes a y5 file. Depending on the input format and use case,
we read either chunks of rows or chunks of columns in parallel by distributing
the individual compressed rows into a thread pool. The task scheduler in charge
of reading collects the decompressed data and passes it along to a processing
pipeline.
6 We are not aware of any constraints that would make a native Windows imple-

mentation impossible, but do not currently support Windows’ memory-mapped IO
functions.



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 231

Each pipeline step takes place in a separate thread, optionally distributing
parallel implementations of “slow” tasks (including any processing step that
needs to iterate over the individual trace events in the data) to a thread pool
that can scale to an arbitrary number of CPUs. By transferring data ownership
directly, we can avoid expensive locking operations.

Finally, any output chunks are written back to a y5 file. To ensure proper
ordering, each chunk is accompanied by its index. In the (rare) case that chunks
do arrive out of order, later chunks are held back until the missing chunk arrives.
To limit total memory consumption caused by uneven processing speeds (e.g. if
reading is faster than the processing, the chunks would “pile up” while waiting
for that stage of the pipeline to clear up), we restrict the total number of chunks
in processing at any given point in time.

4.4 Sample Reduction

Obfuscation measures in whitebox implementations can inflate the total number
of instructions and memory accesses significantly, especially if—as in [7]—it is
specifically designed to resist analysis. This intentionally added complexity helps
defend against manual reverse-engineering efforts and seriously harms the ability
of automated tooling to process the entire implementation, both in terms of code
analysis (e.g. for decompilation) and with regards to the traces that we use. In
essence, we have too much data to efficiently perform the attacks described in
Sect. 3.3. To reduce the size of the traces that we analyze, we can rely on two
observations:

Non-data-dependent Events. First, trace events that remain the same
(including the value that is read or written in a memory access) along all recorded
traces usually do not depend on the input data7. We can discard these events.

Repeated Events. Second, repeated occurrences of the same set of trace events
across all traces (e.g. repeated memory reads from the same address without the
value being modified inbetween) can be deduplicated, since the attacks do not
take structures across multiple trace events into account. This is equivalent to
the duplicate column removal described in [5].

If the traces are properly aligned (i.e. there is no data-dependent execution
that causes the same part of the cryptographic algorithm to yield a variable
number of trace events depending on the input), both of these cases can be
filtered out8. For non-aligned traces (e.g. where the length of the trace depends
on the input), more sophisticated filtering approaches are needed. We do not
currently handle non-aligned traces.

Whiteboxgrind uses separate tools to remove events that match either of
the two criteria described above.
7 Assuming a random distribution of inputs, the probability of this not being the case

is generally low in terms of the number of traces.
8 This is not always the case. However, data-dependent execution that depends on

intermediate values directly leaks information about those values, which can then
be used for similar attacks. Whiteboxgrind does not currently implement this.



232 T. Holl et al.

To reduce the number of passes over the raw data, we first remove non-data-
dependent events during the initial transposition step described in Sect. 4.2.
Unlike Conditional Sample Reduction (CSR) [5], we do not attempt to remove
“superfluous” traces that will not yield additional information during the attack
stage: CSR partitions the trace matrix into groups depending on which input
values can result in the value found in a specific observation. Then, samples
that observe inconsistent (i.e. different) values for the same partial input can be
discarded. Similarly, traces with inputs in the same partition can be dedupli-
cated. However, this requires the user to select a partitioning function/bit mask
to choose relevant input bits, and has a O(n) memory requirement (linear in
the trace size), which can become prohibitive for the lengths involved in our
evaluation (see Sect. 5). Instead, we filter out samples where the value does not
depend on any of the input bits. Problems with random masking can be avoided
by substituting random sources with constant values (by intercepting system
calls and relevant machine code instructions such as rdrand in the tracer).

Perfectly identifying repeated events for deduplication in theory requires us
to keep the entire set of known events in memory (which is infeasible given the
size of some of our traces) or to repeatedly search the events we have already
emitted (at an unacceptable O(n2) complexity). Instead, we use a hash-table-
based least-recently used (LRU) cache that can grow up to a fixed size, letting
us efficiently identify duplicates that are “close enough” to each other in time9.
Because the attacks implemented by Whiteboxgrind act on individual sam-
ples, non-removed duplicates increase the execution time of the subsequent steps,
but do not impact the final result [5].

4.5 Visualization

Understanding the internal structure of a whitebox implementation from a pro-
gram trace by hand is difficult without some form of visualization. Plotting the
program counter over time in a scatter plot reveals how the code is structured,
and doing the same for memory accesses reveals the layout of the data (both of
the intermediate values and of constants such as S- or T-boxes).

During our research, we observed that the traces generated by Whitebox-
grind can be too large to comfortably load into RAM and visualize even after
sample reduction10. To remedy the situation, we implemented a renderer on
steroids that uses the DirectX Direct2D API [23] to draw the trace diagram.

Further than using a GPU to render the plot, we also introduced algorithmic
optimizations. Traditional rendering programs usually scale the data in a lossless
way to the screen, compressing neighbouring points together until all data fits
into the available space. This results in a high-quality, high-accuraccy plot of

9 A randomized cache eviction policy would allow us to remove further events without
increasing the cache size, but the added reduction in event count we observed during
our evaluation using this policy (even repeatedly) was marginal.

10 Existing tools generally insist on doing this; we can only speculate as to why this is
the case.



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 233

the data, that retains the full shape even if scaled down. For our use case, we
are only interested in the macro shape of the collected traces—consequently, we
can skip the expensive compression step under the assumption that trace entries
are indicative of their neighbours. Intutively, this is at least the case for the
program counter plot: While our data is in no form steady, we argue that within
basic execution blocks some properties of steadiness are retained (mainly, that
if no jump instruction is encountered the next instruction is neighbouring the
currently executed instruction).

Then, we can restrict loading to a subset of the whole data and assume that
the general shape of the plot remains unchanged. Implementation-wise, we realize
this by pre-computing the available space of the plot in pixels, and distributing
these pixels evenly across the time axis of the plot. We then use a windowing
approach to pan, zoom and scale the displayed data.

A drawback of this method is its inherent loss of some data. Unlike algorithms
based on compression, our plotter may miss spikes in execution, giving a false
impression of the overall shape if these spikes are small enough.

However, we argue that this is not a problem for our use-case. Our down-
sampling approach suppresses noise spikes if they are sufficiently small, but in
general preserves the overall shape of the plot. Barring sudden jumps, we intu-
itively compare our algorithm to audio recording with varying sample rates,
where sample rate reductions are audible, but even very low sample rates retain
enough information that a human can recognize a recording.

Furthermore, in our testing we found that while the plot-invisible noise might
be the parts we are interested in to recover the key, the plot is more meaningful
when applied to filtered data. With the accompanying reduction in overall plot
size, less down-sampling needs to be done for low zoom levels, which improves
the plots accuracy. Concerning the larger structures we are interested in (e.g. to
identify the different rounds in an AES implementation). We can see in Fig. 4
the internal structure of the distracted leavitt whitebox from [7]: there, six
separate loops (easily discernible from the image) of nine iterations each (note
the slightly larger distance between these iterations) process the current state in
four 32-bit blocks in a T-box-esque implementation.

4.6 Attack

Once the traces are pruned to a manageable size, Whiteboxgrind applies
a standard DCA approach to recover the key. We apply a leakage model (by
default, we use the HW, though this is easily replaced if desired) to the values
read from or written to memory by the whitebox and use the results as our
side-channel leakages.

Using a user-configurable selection function on either the plain- or cipher-
text of the values recorded alongside the traces (cf. Sect. 3.3), we compute the
hypothesis values H ∈ R

256×t (one value for each possible key byte and each of
the t program traces), and center the values around the origin hk = Hk − Hk

for each of the key byte values k = 0 . . . 255. This processing only needs to be
performed once for each attack run and can be done ahead of time.



234 T. Holl et al.

Fig. 4. Access patterns of the distracted leavitt whitebox from [7]

As chunks of traces arrive (cf. Sect. 4.3), we normalize each set of events in
parallel. Given our leakage matrix T ∈ R

s×t consisting of s samples across t
separate program traces11, we compute the centered values ti = Ti − Ti for
each sample, and the Euclidean norm ‖ti‖.

Now, computing the Pearson correlation coefficient between the hypotheses
obtained from the selection function and the leakage values from each of the
trace events is simple:

ri,k =
ti · hk

‖ti‖‖hk‖
It is sufficient to store argmaxk |ri,k| ∀i ∈ {0 . . . s} in order to obtain the

final key (of course, to compute the argmax value, we also need to store the
corresponding maximal |ri,k|). Because we want to allow for some visualization
of the correlation we instead store maxi |ri,k| ∀i ∈ {0 . . . s}, k ∈ {0 . . . 256} (at
processing-block-level resolution). If the attack is successful, the correct key byte
value should show a peak when plotting the 256 resulting correlation values.
Figure 5a shows such a case. Similarly, plotting the maximum correlation against
the index of the sample where it is obtained (Fig. 5b) shows where that key byte
is processed. In this case, we are targeting the first round.

Note that this deviates from the behavior of tools such as LASCAR [20],
which attempt to store the full matrix of all ri,k (which is, of course, subopti-
mal given the amount of data that needs to be processed). The impact of this
optimization is examined further in Sect. 5.

11 In practice, elements of T are of course not from R; rather, common Hamming
weight leakages are in Z/256Z, i.e. a single byte value—but after normalization,
they are treated as floating-point values. Mathematically, we assume they are in R,
and simply accept some small level of error in the practical computations.



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 235

Fig. 5. Correlation for key byte 0 of peaceful williams [7]

5 Evaluation

We evaluated Whiteboxgrind on a set of 7 whiteboxes with no data-dependent
execution from the 2019 CHES WhibOx contest [7] and a “textbook” reference
AES implementation with a hard-coded key that was not hardened against side-
channel attacks. For each implementation, we collected execution traces for the
same set of plaintexts that was randomly selected prior to the evaluation. For
this evaluation, we used the values that are read from memory (as opposed to
values written to memory or those involved in compare-and-swap operations, for
which we obtain separate traces) as our side-channel.

Table 1 shows the time taken by each of Whiteboxgrind’s individual tools
on the traces generated by the first 100 inputs to each of the targets alongside the
number of samples per trace in the resulting outputs. Note that this is generally
insufficient to perform a successful attack, but serves nicely to illustrate the
performance differences between approaches. We should note that while it is
possible to obtain traces in parallel and concatenate the y5 files afterwards, we
did not do this for this evaluation. All performance measurements were taken
on a machine with an AMD EPYC 7552 CPU with 96 threads and 1TB of total
RAM (at 3200 MT/s and CL22). To avoid high IO latencies on physical disk
accesses, we stored all data on a 300 GB RAM disk.

The time taken for any operation generally scales with the size of the traces,
but the correlation is not fully linear. Besides the amount of data involved,
performance can also depend on other implementation characteristics (e.g. for
the tracer, some instructions are far less efficient after VEX translation than
others).

The initial 100 traces collected for our evaluation were sufficient to recover
the correct key from the unprotected reference implementation, but not from
any of the other implementations. For those implementations where collecting
traces was reasonably fast, we collected additional traces to prove the correctness
of our implementation. At 500 traces, we were also able to recover the key from
the (obfuscated) peaceful williams whitebox.

Additionally, we compared Whiteboxgrind’s runtime performance (again
at 100 traces) to that of the CPA implemented in LASCAR [20]. Figure 6 shows
the performance improvements we achieve over LASCAR’s implementation.



236 T. Holl et al.

Table 1. Whiteboxgrind performance (time and number of samples per trace) on
AES whiteboxes from [7]

Implementation Tracing Sample reduction Leakage Attack

Non-data-dependent Repeated

Reference 00:00:16 00:00:00 00:00:00 00:00:00 00:00:00

1191 992 992

distracted leavitt 00:00:36 00:00:02 00:00:02 00:00:01 00:00:03

26020 14113 13951

elegant turing 06:54:14 01:14:21 00:42:49 00:17:09 01:04:58

72928481 27971488 17215702

flamboyant engelbart 01:19:22 00:16:49 00:06:29 00:02:52 00:10:46

17232291 5733448 2981379

friendly edison 13:13:53 05:01:08 04:02:02 01:30:41 05:45:18

214383342 141535907 91556105

goofy archimedes 00:00:18 00:00:00 00:00:00 00:00:00 00:00:00

4412 2413 2386

goofy lichterman 05:56:55 00:55:13 00:35:22 00:13:27 00:52:04

53746357 21207273 12968282

peaceful williams 00:01:13 00:00:07 00:00:05 00:00:02 00:00:10

241761 57645 42525

Fig. 6. Performance of Whiteboxgrind’s CPA compared to LASCAR [20]

Finally, we analyzed the impact of our sample reduction strategies (cf.
Section 4.4) and of the data compression in the y5 file format (cf. Section 4.2):

On the WhibOx implementations [7], we observed a reduction in size of
between 29.27% (for friendly edison) and 76.16% (for peaceful williams)



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 237

by removing samples that do not differ between inputs, and up to 48.00% (for
flamboyant engelbart) by removing recurring samples. As an example, Fig. 7
shows how the two sample reduction steps affect the traces obtained from the
peaceful williams whitebox. peaceful williams implements AES by means
of a virtual machine that processes a hardcoded instruction stream. This is the
steadily rising line in Fig. 7a. Together with the line at the bottom (accesses to
a compiler-generated jump table), these accesses do not depend on the input,
and are filtered out.

Fig. 7. Sample reduction for peaceful williams [7]

Because the trace data is highly structured, y5’s compression was able to
reduce the total file size of all eight memory read traces from Table 1 before
sample reduction by 91.88% (from 2137 GiB to 174 GiB). On the transposed
traces after filtering, the compression ratio is similar (91.92%, from 123 GiB to
99 GiB). Only after the leakage is computed (where only a single byte is stored
per entry) does the average compression ratio drop below 90% (however, at that
point the amount of data is already significantly lower than at the start). Figure 8
shows the compression ratios after each processing step.

Fig. 8. Compression ratios using y5 on traced memory reads from Table 1.



238 T. Holl et al.

6 Discussion

We believe that Whiteboxgrind proves that a fully automated analysis of many
whitebox implementations is feasible given sufficient computing resources. Unless
an implementation is specifically hardened to avoid side-channel attacks based
on memory values (e.g. by relying on register values only, which can easily be
countered by adjusting our instrumentation strategy), it will usually be possible
to use the intermediate values observed to draw conclusions about the key that
is used. During our evaluation, we found that we were mostly constrained by
the time taken to obtain and process the large amounts of data included in our
traces. An attacker not constrained by research budgets will generally be able
to efficiently obtain more traces by applying more computational power—then,
the main performance constraint becomes the processing speed during sample
reduction. In practice, an attacker will also be able to select “interesting” parts
of the traces depending on the selection function (e.g. if targeting the first round,
one might only want to consider the first half of the trace) instead of processing
the entire trace, further speeding up subsequent processing steps. Generally, the
large variance between the different implementations stems from the different
obfuscation strategies chosen by these submissions.

One possible way to defeat the approach described in this work is to intro-
duce data-dependent execution that causes a misalignment between different
traces (if possible, without leaking intermediate values). This can be achieved
by explicit dependencies on the original plaintext, which does not need to be
kept secret. A more sophisticated approach to re-aligning the traces—perhaps
based on algorithms normally used for line-based text diffing, or those used for
other side-channel attacks (e.g. [27])—might enable successful attacks on those
obfuscation schemes.

7 Conclusion

In this work we examined whether it is possible to fully automate DCA against
whitebox implementations of AES. Of course, this involves making some trade-
offs with regard to performance and attack results. Notwithstanding these par-
ticularities, we achieved an attack speed increase of roughly a magnitude on
commodity hardware against a reference AES implementation. We stress that
this performance measurement needs to be taken with a grain of salt: for about
half of our whitebox samples, existing tooling yielded no result at all due to
practical space constraints. This work should be considered as yet another sign
that whitebox cryptography is a fundamentally broken approach: Given that
it is possible to fully automate key extraction for some of the less hardened
approaches, most implementations will not hold up to a dedicated attacker with
reverse engineering skills. We suspect that it will be possible to apply sufficient
obfuscation to make a fully automated approach infeasible to the point where
the tools need to be adjusted to the specific target by hand. However, real-world
implementations usually have to conform to more requirements than such theo-
retical designs, which means that the automated analysis approach presented in



Whiteboxgrind - Automated Analysis of Whitebox Cryptography 239

this work will still hold value for many such implementations. This also applies to
non-AES whiteboxes which are vulnerable to DCA-style attacks. Our method of
obtaining and filtering instruction traces does not assume any specifics about the
implementation under test, so that only minor modifications to the attack code
are required for Whiteboxgrind to support attacks on other cryptosystems.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions on the paper, as these helped us to improve it. This
work was partially funded by the German Federal Ministry of Education and Research
(BMBF) in the SIPSENSIN project under grant number 16KIS1663 and by the Ger-
man Research Foundation (DFG) under the Excellence Strategy - EXC 2092 CASA -
390781972. This work was done while Tobias Holl and Katharina Bogad were at the
Technical University of Munich.

References

1. Alakuijala, J., Szabadka, Z.: Brotli compressed data format. RFC 7932, July 2016
2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.

Cryptol. 4(1), 3–72 (1991)
3. Bock, E.A., et al.: White-box cryptography: don’t forget about grey-box attacks.

J. Cryptol. 32(4), 1095–1143 (2019)
4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:

hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

5. Breunesse, C.-B., Kizhvatov, I., Muijrers, R., Spruyt, A.: Towards fully automated
analysis of whiteboxes: perfect dimensionality reduction for perfect leakage. Cryp-
tology ePrint Archive, Report 2018/095 (2018). https://ia.cr/2018/095

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. CHES 2019. WhibOx contest, August 2019
8. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography

and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

9. Daemen, J., Rijmen, V.: The Rijndael Block Cipher. AES Proposal, March 1999
10. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-

tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

11. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan Zee (North) bridge: min-
ing memory accesses for introspection. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security - CCS 2013. ACM Press,
November 2013

12. Dworkin, M., et al.: Federal Information Processing Standards Publication 197:
Advanced Encryption Standard (AES), 2001-11-26 (2001)

13. “FdLSifu”. QSCAT – Qt Side Channel Analysis Tool. Online [retrieved 2022-04-28]
(2017–2021)

https://doi.org/10.1007/978-3-662-53140-2_11
https://ia.cr/2018/095
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-45325-3_20


240 T. Holl et al.

14. Haupert, V., Maier, D., Schneider, N., Kirsch, J., Müller, T.: Honey, I shrunk
your app security: the state of android app hardening. In: Giuffrida, C., Bardin,
S., Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 69–91. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93411-2 4

15. Intel Corporation: Intel R©Architecture Instruction Set Extensions Programming
Reference. Intel (2021)

16. Jakob, W., Rhinelander, J., Moldovan, D.: pybind11 - Seamless operability between
C++11 and Python (2017). https://github.com/pybind/pybind11

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 1st edn. Chapman &
Hall/CRC, Boca Raton (2008)

18. Klik, M., et al.: The FST format and FSTLIB library. [retrieved 2022-04-21], April
2019

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

20. Donjon, L.: Lascar: donjon side channel library. [retrieved 2022–04-21], February
2019–2022

21. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box AES implemen-
tations. Cryptology ePrint Archive, Report 2013/455 (2013). https://ia.cr/2013/
455

22. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

23. Microsoft: Direct2d API. https://docs.microsoft.com/en-us/windows/win32/direc
t2d/direct2d-portal

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM SIGPLAN Not. 42(6), 89–100 (2007)

25. Shannon, C.: A Mathematical Theory of Cryptography. Memorandum, Bell Labo-
ratories, Murray Hill (1945)

26. The HDF Group: HDF5 Application Developer’s Guide. [retrieved 2021-10-07],
September 2019

27. Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., Sigl, G.: DATA -
differential address trace analysis: finding address-based Side-Channels in binaries.
In 27th USENIX Security Symposium (USENIX Security 2018), Baltimore, MD,
August 2018, pp. 603–620. USENIX Association (2018)

https://doi.org/10.1007/978-3-319-93411-2_4
https://github.com/pybind/pybind11
https://doi.org/10.1007/3-540-48405-1_25
https://ia.cr/2013/455
https://ia.cr/2013/455
https://doi.org/10.1007/3-540-47555-9_7
https://docs.microsoft.com/en-us/windows/win32/direct2d/direct2d-portal
https://docs.microsoft.com/en-us/windows/win32/direct2d/direct2d-portal


White-Box Cryptography with Global
Device Binding

from Message-Recoverable Signatures
and Token-Based Obfuscation

Shashank Agrawal1, Estuardo Alṕırez Bock2(B), Yilei Chen3,
and Gaven Watson4

1 Coinbase, San Francisco, USA
2 Xiphera LTD, Espoo, Finland

estuardo.alpirezbock@xiphera.com
3 Tsinghua University, Beijing, China

4 Meta, Menlo Park, USA

Abstract. Device binding for white-box cryptography ensures that a
white-box program is only executable on one specific device and is unus-
able elsewhere. In this paper we ask the following: is it possible to design
a global white-box program which is compiled once, but can be securely
shared with multiple users and bound to each of their devices? Acknowl-
edging this question, we define different flavours of security for such
global white-boxes and provide corresponding constructions.

We first consider families of strong global white-boxes which can be
securely distributed and bound to users’ devices without the need of shar-
ing secrets between compiling entities and users. We then show how such
strong global white-boxes can be constructed based on message recover-
able signatures (MRS). To this end, we introduce puncturable MRS which
we build based on puncturable pseudorandom functions and indistin-
guishability obfuscation. We later consider the use of Token-Based Obfus-
cation for constructing a simpler family of global white-boxes, and show
new ways of building white-box crypto, from more accepted assumptions
as previously considered in the literature.

Keywords: White-box crypto · Mobile payments · Device binding ·
Puncturable signatures with message recovery

1 Introduction

The white-box attack model considers adversaries with complete access to the
implementation code of a cryptographic program and with control of its exe-
cution environment. White-box cryptography was introduced in 2002 [11,12]
and finds its main use cases in Digital-Rights Management (DRM) and

This work was conducted while all authors were at VISA Research.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, pp. 241–261, 2023.
https://doi.org/10.1007/978-3-031-29497-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29497-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-29497-6_12


242 S. Agrawal et al.

mobile-payment applications [15,30].1 In both cases, standard symmetric encryp-
tion ciphers are implemented in a white-box fashion. However, it is not publicly
known how exactly the ciphers are implemented and which level of security they
actually achieve. The scientific community has proposed white-box designs for
DES [12,23] and AES [4,10,11,21,33], but all of these approaches have been
subject to key-extraction attacks (cf. [18,20,32] and [9,14,22,26,27]).

It remains an open question, whether one can construct a white-box imple-
mentation of DES or AES which remains secure against key-extraction attacks.
In practice, white-box designs remain robust for a certain period of time, and key
extraction is mitigated by periodically rotating the embedded keys and updat-
ing the white-box obfuscation. However, we should note that in the application
scenarios discussed above, white-box programs also implement countermeasures
against so called code-lifting attacks.

Code-Lifting Attacks and Device Binding. White-box programs may be suscep-
tible to code-lifting attacks, where, an adversary simply copies the execution
code of the program with its embedded secret key [31]. The adversary can then
run the code for his own purposes on any device or environment of his choice,
without needing to perform a key-extraction or reverse-engineering attack.

One approach to mitigate code-lifting attacks is to implement device binding
operations [5,15,29]. That is, the white-box programs are configured such that
they can only be executed on one specific device. In practice, device binding plays
an important role in combination with white-box cryptography for protecting
mobile payment applications, as recommended by EMVCo [15]. Device binding
can be implemented by having the white-box program verify a specific signature
provided by some trusted component or party. Alternatively, one can design a
white-box program which does not compute directly on raw inputs, but rather
on encoded inputs. The corresponding encoding algorithm can be extracted from
the secure hardware of a device. This encoding forces us thus to run our white-
box program in combination with that device.

It may seem counterintuitive to combine white-box cryptography with depen-
dency on some trusted hardware. However, in many environments the availability
of specific secure hardware and what algorithms they support may be somewhat
limited. For example, payment processes rely heavily on 3DES which has only
been supported in Android Keystore recently (since v9) and is not supported
by many secure elements. This is clearly an example where a device may have
trusted hardware available but it cannot provide the required cryptographic func-
tionality. One can view our approach of using both a trusted component and a
white-box obfuscation scheme as a means to bootstrap the limited functionality
of the trusted component to facilitate the secure computation of a complex func-
tionality. In addition it facilitates added crypto-agility, once secure hardware is
deployed it can be relatively hard to update with newer algorithms. By boot-
strapping with a white-box obfuscation scheme we can enable a secure hardware
deployment to support new and needed cryptographic schemes.

1 The extended version of this paper [1] provides a broad discussion on the role of
white-box cryptography in mobile payments.



White-Box Cryptography with Global Device Binding 243

Security definitions for white-box cryptography with device binding have
been presented in recent years [2,3]. The definitions in these works capture the
property that the corresponding programs only execute correctly in combina-
tion with one specific device and are otherwise useless, while preserving their
corresponding security properties. In the second work [3], the authors provide
feasibility results for white-boxed payment applications. Their constructions are
based on puncturable pseudorandom functions (PPRF) and indistinguishability
obfuscation (iO) [6].

1.1 Our Contributions

In this paper, we first make the observation that previous constructions for
device binding [2,3] necessitate that a unique white-box program is created for
each device. In this line, we ask the following question: is it possible to create a
single global white-box which can be distributed to multiple users and securely
bound to each user’s device? With such a construction, we aim to take further
steps towards more practical white-box approaches. Namely with a global white-
box, our compiler needs to generate only one white-box application and place it
directly in the cloud available for download (avoiding multiple expensive obfus-
cation operations). Such a setting stands in-line with traditional app stores and
does not necessitate any additional side-loading when downloading the program.

At a high-level we consider a global white-box compiler which will obfuscate
some function F . Generally, the function F corresponds to the description of a
program we wish to combine with a white-box decryption program. Our schemes
must satisfy two important properties: ensure the confidentiality of inputs to the
white-box (e.g. an encrypted stream in the case of DRM or a bank provided key
in the case of payments-also known as LUKs: limited use keys) and ensure that
the white-box can only be evaluated on inputs which have been “bound” to
a device’s trusted component. To capture these properties we introduce corre-
sponding notions of security for two classes of global white-box programs. On this
line, we give examples of how each class of global white-box can be constructed
by providing corresponding provably secure constructions.

1.2 Global White-Boxes

Ideally, we would like a software provider (or server) to compile a single white-
box program and upload it to the cloud. Any user who wants to acquire the
program can download it to their device. However upon download, the white-
box program should not (yet) be functional. Instead, the program should first
be properly enrolled and bound to a user’s device. This way we ensure that the
program is not subject to code-lifting attacks. Below we introduce two possible
ways of constructing global white-boxes with their corresponding enrollment
processes.



244 S. Agrawal et al.

HW(c)

c̃ ← Encode(es, c)

return c̃

WB(c̃)

c ← Decode(ds, c̃)

m ← Dec(k, c)

return m

Simple Case. First we consider a white-box which is com-
piled to only work on inputs which are encoded using some
secret key material. This key material is generated by the
server such that the corresponding decoding key can be
embedded when creating the white-box. A user can only
run this white-box if he obtains the corresponding encod-
ing key from the server. By securely storing this key in
the hardware of a user’s device, we ensure that use of the
white-box is bound to that device. The pseudocode on the
right describes how such a white-box program would work
in collaboration with the secure hardware, denoted here as HW. The secure hard-
ware takes as input a ciphertext that we wish to later decrypt with our white-box
program. HW encodes the ciphertext with the key it obtained from the server,
es, and obtains c̃. The white-box program has a decoding and a decryption
key embedded (ds and k) and it takes as input the encoded ciphertext c̃. The
white-box first decodes a ciphertext and then decrypts it.

Note that the white-box program needs to be obfuscated such that an adver-
sary is unable to separate the decoding and the decryption operations. This
makes it impossible for an adversary to run the white-box without access to a
hardware device with the corresponding encoding key. The scenario described
above achieves our initial goal of a global white-box as long as the encoding key
can be securely shared between the server and the devices.

Strong Case. A stronger approach is if each user makes use of their own
(unique) key for encoding inputs to the white-box. Here we additionally ensure
that even if a device’s trusted hardware is compromised this only affects the
binding of that device and no others, thus providing a stronger level of secu-
rity. To implement this approach we need a white-box which takes two encoded
inputs. One input is the ciphertext encoded via the secret key of the user’s hard-
ware. The other input is the corresponding decoding key of the user’s hardware,
but encoded via the server’s secret key. The white-box should first recover the
decoding key of the user and then use the recovered key to decode the encoded
ciphertext, as shown in the pseudocode below. Here dh is the decoding key of
the user’s hardware. The server encodes dh via the server’s secret key es. The
hardware encodes a ciphertext via the hardware’s secret key and returns c̃.

Server(dh)

d̃h ← Encode(es, dh)

return d̃h

HW(c)

c̃ ← Encode(eh, c)

return c̃

WB(d̃h, c̃)

dh ← Decode(ds, d̃h)

c ← Decode(dh, c̃)

m ← Dec(k, c)

return m

Here as before, the white-box program should be obfuscated such that an adver-
sary is unable to separate the decode and decryption algorithms. Note that if an
adversary copies the white-box, a ciphertext and the encoded key d̃h (or even
gains knowledge of the decoding keys ds and dh), the adversary is still unable to



White-Box Cryptography with Global Device Binding 245

correctly perform a decryption, unless he can access the corresponding hardware
in order to correctly encode the ciphertext.

We refer to the scenario described above as a strong global white-box. The idea
is that the white-box program will only output correct values if both its inputs
are provided consistently, i.e. if the encoded key d̃h is used in combination with
inputs encoded via the device holding dh. In what follows we explain how we can
construct white-boxes used in both global settings, starting with the stronger
one.

Message-Recoverable Signatures for Strong Global White-Boxes.
Message-recoverable signatures (MRS) were introduced by Bellare and Rog-
away [7]. Unlike traditional signature schemes, whose signing algorithm gen-
erates a signature for a particular message, an MRS signing algorithm embeds
the signature within the message. Additionally, an MRS scheme consists of a
recover algorithm which verifies the signature and returns the original message.
Security of MRS holds as long as an adversary is unable to forge a valid signed
message. The original benefit of using MRS as opposed to a traditional signature
is that it reduces the amount of data that must be sent between the signing and
the verifying entity. In [7], the authors show how MRS schemes can be derived
from RSA-based schemes.

As of today, MRS-inspired approaches are used in practice for implementing
device binding for white-box programs running on mobile phones with trusted
components [24]. In such approaches, the trusted component on a user’s phone
generates an RSA key pair and securely stores the secret key. The public key
is shared with the entity compiling the white-box program and the white-box
is compiled such that it has the public key embedded in it, together with a
symmetric decryption key. Whenever we want to decrypt a ciphertext, we first
sign it via the secret key stored in the trusted component. We then give this
signed ciphertext as input to the white-box, which first uses the public key to
recover the ciphertext before the final decryption with the symmetric key. Note
that given such a white-box program, it should be difficult for an adversary to
separate the message recovery from the decryption algorithm. Thus, the white-
box program (with the embedded public key) can only be used in the presence
of the trusted component which generates the signed ciphertexts.

By extending this approach, we can build a compiler which creates a sin-
gle white-box program that may be used by all legitimate users. This approach
would use two layers of message-recoverable signatures and the white-box pro-
gram would have the public key of the server and a symmetric decryption key
embedded. The first layer will use the embedded public key to recover the unique
public key of the user. The second layer will use that user’s public key to decode
the ciphertext. Thus ensuring the stricter requirement of per-device binding of a
strong global white-box. The use of MRS makes the enrollment process described
in the previous section easier, since no secrets need to be shared between the
server and the user.

In this paper we will build strong global white-boxes exactly as described
above. Our MRS scheme will be a puncturable MRS which we build based on
puncturable PRFs and iO. Our construction can then simply take the form of



246 S. Agrawal et al.

Dec(k∗,Rcvr(Rcvr(., .))), with a layer of obfuscation around it. Our construction
can be seen as a design outline for implementing such strong global white-boxes
in practice. Note however that in practice, we’d need to substitute the punc-
turable primitives and iO with more efficient, implementation-friendly primitives
and obfuscation schemes.

MRS vs Traditional Signatures. We note that device binding for white-box pro-
grams could also be implemented using a traditional signature scheme. In this
case instead of encoding the message we wish to compute via an MRS scheme,
the trusted component generates a separate signature for that specific message.
The white-box program would verify the signature and only proceed if the sig-
nature was valid. In this paper we choose to focus on the use of MRS in order to
validate and extend approaches used in practice [24]. Why such MRS-inspired
approaches are used in practice instead of traditional signature schemes is not
completely clear. In early white-box related works, it was proposed to make use
of external encodings for protecting white-box AES designs against code-lifting
attacks [11,25]. Here, external encodings refer to encodings provided by an exter-
nal source (e.g. a secure hardware), and the white-box program is designed such
that it computes correctly only on values encoded via that external source. The
approach of using MRS correlates with this proposal since we are using the secret
signing key as our encoding function and the public key embedded in the white-
box as a decoding function. Note that for such a design, the recover algorithm
can be simplified and does not really need to check for the validity of the signa-
ture. Instead, it can directly perform the decoding using the embedded public
key. If the input was not encoded or encoded using the wrong secret key, then the
output of the white-box will be anyway faulty (see Sect. 1.2). It is an interesting
question whether it is easier to obfuscate (in practice) a program which checks
for the validity of a signature (and then decrypts) or a program which decrypts
directly on encoded inputs.

Token-Based Obfuscation for (Simple) Global White-Boxes. TBO
allows to obfuscate any circuit (or program) and its security is achieved under the
restriction that the obfuscated circuit can only be executed for specific inputs:
the inputs for which a user obtains a token (see [17] for the definition of TBO).
A token-based obfuscation scheme is therefore defined in combination with a
token-generation algorithm, where the token generation key is created together
with the obfuscated program. We recall now that for achieving device-binding,
we want to generate a white-box program which can only be correctly executed
in combination with a specific trusted component. Here, token-based obfuscation
directly gives us the functionality and security we desire for our complete white-
box scheme when we place our token input generator directly on the trusted
component.

For context, consider the following simplified example. Let F be a pseudo-
random permutation with an embedded secret key, such that F (c) = x. Fur-
thermore, assume that we want to use this pseudorandom permutation as a
decryption function. That is, the input c corresponds to a ciphertext which



White-Box Cryptography with Global Device Binding 247

was generated for some message x via the inverse of F . We now obfuscate F
via token-based obfuscation: (O[F ],MSK) ←$ TBO.Obf(F ). We obtain thus a
program O[F ] which alone reveals nothing about F . O[F ] can be used for recov-
ering x only when we can obtain a valid token for the corresponding c value:
c̃ ←$ TBO.InpGen(MSK, c). Upon receiving c̃, a user can recover x via O[F ](c̃).
Thus, if we implement the token-generation algorithm within the trusted com-
ponent of a device, the obfuscated program becomes useful only if it has access
to that device, achieving thus the property of device binding. In the extended
version of this paper [1] we provide security notions for simple global white-boxes
and present provable secure constructions from TBO.

2 Preliminaries and Notation

a ← b denotes the assignment of a value b to a variable a. We denote by a ← A(b)
the execution of a deterministic algorithm A on input b to produce an output a.
a ←$ A(b) denotes the execution of a probabilistic algorithm A. We use square
brackets to denote a fixed value hard-coded into an algorithm, e.g. A[k] denotes
that the value k is hard-coded in the algorithm A. a‖b denotes the concatenation
of two values a and b, while |a| denotes the length of a value a. q ←$ Q denotes
the process of randomly sampling an element q from a set (or distribution) Q.

By 1λ we denote (the unary representation of) the security parameter, which
all algorithms receive as input. We write it explicitly for the algorithms which
only take the security parameter as input and leave it implicit for the rest. The
subscript to an adversary A denotes the class of oracles the adversary gets access
to in our security definitions. With ≈c we denote computationally indistinguisha-
bility.

Definition 1 (Obfuscation [6,19]). A probabilistic algorithm O is an obfusca-
tor for a class of circuit C if the following conditions hold:

– (Preservation of the function) For all inputs x, Pr[C(x) = O(C(x))] > 1 −
negl(λ).

– (Polynomially slowdown) There is a polynomial p s.t. |O(C)| < p(|C|).
– (Strong virtual black-box obfuscation) For any PPT adversary A, there is a

PPT simulator Sim s.t. for all C,
{A(1λ, O(C))

} ≈c

{
SimC(·)(1λ, |C|)

}
.

– (Indistinguishability obfuscation) For functionally equivalent circuits C0, C1,
with |C0| = |C1|, O(C0) ≈c O(C1).

Let us recall the definition of puncturable PRFs.

Definition 2 (Puncturable PRF [28]). Let l(λ) and m(λ) be the input and
output lengths. A family of puncturable pseudorandom functions G = {PPRF} is
given by a triple of efficient functions (Setup, Eval, Punc), where Setup(1λ) gen-
erates the key K, such that PPRF maps from {0, 1}l(λ) to {0, 1}m(λ); Eval(K,x)
takes a key K, an input x, outputs PPRF(K,x); Punc(K,x∗) takes a key K and
an input x∗, outputs a punctured key K{x∗}.



248 S. Agrawal et al.

It satisfies the following conditions:

Functionality Preserved over Unpunctured Points: For all x∗ and keys
K, if K{x∗} = Punc(K,x∗), then for all x �= x∗, PPRF(K,x) = PPRF(K{x∗}, x).

Pseudorandom on the Punctured Points: For every input x∗, the value of
F on x∗ is indistinguishable from random in the presence of the key punctured
at x∗. That is, the following two distributions are indistinguishable for every x∗:

(x∗,K{x∗}, GK(x∗)) and (x∗,K{x∗}, r∗) ,

where K is output by Setup(1λ), K{x∗} is output by Punc(K,x∗), and r∗ is
uniform in {0, 1}m(λ).

Theorem [28]. If one-way function exists, then for all length parameters l(λ),
m(λ), there is a puncturable PRF family that maps from l(λ) bits to m(λ) bits.

Definition 3 (Message recoverable signatures). A message-recoverable
signature (MRS) scheme is a tuple of three algorithms (KGen,Sig,Rcvr) such
that KGen and Sig are probabilistic polynomial-time algorithms (PPT) and Rcvr
is a deterministic polynomial-time algorithm and have the following syntax:

sk, pk ←$ KGen(1λ), m̃ ←$ Sig(sk,m), m|⊥ ← Rcvr(pk, m̃).

Moreover, this scheme is correct, if for all messages m ∈ {0, 1}∗,

Pr[Rcvr(pk,Sig(sk,m)) = m] = 1

where the probability is over the randomness of sk, pk ←$ KGen(1λ) and Sig.

For the security of MRS we consider a selective security definition where the
adversary is tasked with forging a valid signature for a randomly chosen message.
This notion aligns well with the use we want to give to MRS in this paper, since
we will use MRS to encode ciphertexts, which correspond to the encryption of
some content or randomly generated secret keys (see Sect. 1.2).

Definition 4. An MRS scheme is secure if for all PPT adversaries A, their
advantage

∣
∣
∣Pr

[
ExpunfA,MRS(1

λ) = 1
]∣∣
∣ is negligible.

ExpunfA,MRS(1
λ)

sk, pk ←$ KGen(1λ)

m∗ ←$ {0, 1}λ

m̃ ←$ AOSig(pk,m∗)

if m∗ = Rcvr(pk, m̃) win ← 1

return win

OSig(m)

if m �= m∗

m̃ ←$ Sig(sk,m)

return m̃



White-Box Cryptography with Global Device Binding 249

3 Strong Global White-Boxes

We next explain our setting where we consider a provider which creates an
obfuscated program (for some functionality F ) which will be distributed to a
collection of devices (also see Sects. 1.2 and 4 for more context). A user enrolls
his device by calling the trusted component and generating a secret-public key
pair and some ID value. The user then shares the public key and the ID with
the server. The server will generate a certificate based on this public key via
an MRS scheme: the server uses its secret key for signing the user’s public key.
Thus, we obtain a signed (or encoded) version of the user’s public key, denoted
cert, which is sent back to the user.

The provider generates and encrypts the inputs of the white-box program (e.g.
the DRM content or the limited use keys (LUKs) for payment) and sends the
corresponding ciphertexts to the user. For decrypting the ciphertexts, the user
first encodes them via his trusted component. The trusted component encodes the
ciphertexts via MRS, i.e. it signs them. The user now gives the encoded ciphertext
and the cert as inputs to the white-box program. The white-box program will first
recover (or decode) the user’s public key from the cert and then use that public
key to recover the original ciphertext, which afterwards will be decrypted.

Note that a user is only able to correctly run the white-box program if he (1)
obtains a legitimate cert and (2) encodes the input ciphertexts via the secret key
of its trusted component. Moreover the cert used must be an encoding, under the
secret key of the server, of the public key corresponding to the secret key used to
encode inputs to the white-box. Below we define the syntax of each algorithm.

Definition 5. A Strong Global White-box scheme sGW-Scheme consists of the
following algorithms

– A randomized compiler Comp which takes as input a function F ∈ F , with
syntax z ← F (x, y). The compiler returns a program WB and two randomly
generated keys rk and ek, i.e. (rk, ek,WB) ←$ Comp(F ).

– A probabilistic algorithm Init, which on input the security parameter, out-
puts the following values: a secret key sk, an associated public key pk and an
identifier ID, i.e. (sk, pk, ID) ←$ Init(1n).

– A probabilistic algorithm Enroll which takes as input a secret (registration)
key rk and a request message pk, and outputs an authenticated badge cert, i.e.
(cert) ←$ Enroll(rk, pk).

– A probabilistic algorithm Encrypt which takes as input a secret (encryption)
key ek, a value x, and an identifier ID, and outputs an encrypted message c,
i.e. c ←$ Encrypt(ek, x, ID).

– A probabilistic algorithm Encode which on input of a secret (binding/encoding)
key sk and a value c, and an identifier ID returns a value c̃, i.e. c̃ ←$

Encode(sk, c, ID).

Correctness states that for every genuine rk and pk, such that cert ←$ Enroll
(rk, pk), for every function F : X × Y → Z, for all x ∈ X , all y ∈ Y, we have

Pr[WB(Encode(sk,Encrypt(ek, x, ID)), cert, y) = F (x, y)] = 1,

where the probability is over the randomness of all algorithms and the corre-
sponding secret keys sk, ek, rk.



250 S. Agrawal et al.

Security Definitions. We first formalize the privacy property of an sGW-scheme
via the game depicted in Fig. 1. We recall that we could have two different types
of global white-boxes depending on the application we are considering. If the
global white-box is meant to decrypt broadcasted data, e.g. as in DRM applica-
tions, then all global white-boxes should be able to decrypt all values. In turn
if the white-boxes are used for payment applications, the inputs to the white-
boxes are user specific and the ciphertexts sent should only be decrypted by
one specific user. For our privacy game, we consider the case where information
is broadcast to all owners of white-boxes. Thus, we remark that one white-box
allows an adversary to decrypt any broadcasted value as long as he has access
to a registered hardware. This also implies that the encryptions are not user
specific. For this reason, we do not consider the ID values in this game (they will
become relevant for a later model). We now describe the security experiment.

The adversary is given access to several oracles which permit him to enroll
devices, receive encrypted inputs from the provider, and bind these to a legiti-
mately enrolled device. For the purposes of the experiment, we assume that the
trusted component cannot be impersonated (i.e. some secure attestation process
ensures the validity of pk submitted to the Enroll oracle). Note that the adversary
can run the white-box on any value c encoded via any device which has been
properly enrolled, and can enroll as many devices as he wants.2 The adversary
encodes values via the Encode oracle, which he queries with c and a public key
value pk which indicates which device he will use for encoding. Additionally, the
adversary is given access to a challenge oracle, to which he submits an input x.
As output, this oracle returns either the encryption of x or the encryption of a
random value r. The adversary wins the security experiment if he can distin-
guish between these values. Note that to prevent trivial attacks the adversary
cannot query the Encode oracle for values which were output by the challenge
oracle unless the encoding is meant to be done with a device which has not yet
been enrolled. This captures the property that the white-box program should
only work properly on inputs encoded via enrolled devices.

Definition 6 (Privacy). We say that a sGW-scheme is private if for all PPT
adversaries A playing the privacy game described in Fig. 1, the distinguishing
advantage Pr[ExpprivA (1n) = 1] − 1

2 is negligible.

An obfuscation scheme which satisfies the privacy notion above ensures that
an adversary cannot deduce the private input x shared by the provider. When
obfuscating a specific function F , what we actually wish to guarantee is that
the adversary cannot evaluate the function F on secret input x without using
a legitimate device enrolled with the provider. For instance when considering a

2 This capability is somewhat similar to the capability an adversary might have to
obtain re-compiled versions of a white-box program, introduced by Delerablée et al.
in [13] with respect to notions such as security against key extraction, one-wayness,
incompressibility and traceability. Each new white-box program is compiled based
on different randomness, but on the same secret key, allowing thus to decrypt or
encrypt the same values.



White-Box Cryptography with Global Device Binding 251

ExpprivA (1n)

b $ {0, 1}
F $ A(1n)

C,P ∅
(rk, ek,WB) $Comp(F )

b∗
$ AO(F,WB)

return (b∗ = b)

OInit()

(sk, pk) $ Init(1n)

SK[pk] sk

return pk

OEnroll(pk)

if SK[pk] �= ⊥ and pk /∈ P
cert $Enroll(rk, pk)

E[pk] 1

return cert

OEncrypt(x)

c $Encrypt(ek, x)

return c

OEncode(c, pk)

if c /∈ C or ⊥ E[pk]

sk SK[pk]

c̃ $Encode(sk, c)

P := P ∪ pk

return c̃

OChall(x)

r $ X
if b = 1

c $Encrypt(ek, x)

else

c $Encrypt(ek, r)

C := C ∪ c

return c

Fig. 1. Privacy ExpprivA (1n) security game.

mobile payment application, the function F we obfuscate is a message authenti-
cation code (MAC). Specifically, F (x, y) = MAC(x, y), where x is a limited-use
key (LUK) for the MAC, and y is the transaction data to be authenticated. Just
like for DRM, the Enroll process ensures that only legitimate users who have
registered their device are able to run WB correctly. Therefore, for use case such
as payments what we ultimately wish to ensure is that an adversary in unable
to forge the output of an obfuscated program.

An additional difference for mobile payments use case is that the gener-
ated ciphertexts should only be decrypted by one specific user. Otherwise, an
adversary could download the global white-box, enroll it, and then steal the
ciphertexts corresponding to some other user. Thus, the ciphertexts given to a
user need to somehow be linked with the user’s device, in such way that they
can only be decrypted if the white-box program is run on that one device. Below
we introduce our forgery security definition for strong global white-boxes. This
definition captures the property that an adversary should not be able to forge
valid outputs of the function F for ciphertexts which correspond to some other
user’s device.

The forgery security experiment and corresponding oracles are depicted in
Fig. 2. Unlike the privacy experiment, this notion is now parameterized by a
specific F . We need this restriction since otherwise, the adversary could choose
an F which computes values which are trivial to forge. An additional difference
is that we do not let the adversary choose the values to be encrypted by the
encryption oracle. This is because knowing a value x would trivially allow the
adversary to compute a valid output F (x, y) = z. Instead when the adversary
queries an encryption oracle, a value is generated at random, encrypted and



252 S. Agrawal et al.

then the ciphertext is given to the adversary. We note that this restriction seems
fair in this model. Namely in this use case, the encrypted values correspond to
key material which will later be used for authentication. Therefore, it is normal
to assume that these values will be generated at random and will initially be
unknown to a user or an adversary. Below we explain how the oracles are defined.

The Init oracle generates key material for a specific device. It also generates
an ID value which identifies the device (or the owner of that device). The Enroll
oracle is queried via a public key and its corresponding ID. This corresponds
to the device for which we wish to obtain a valid certificate in order to run the
white-box program on that device. The oracle returns a certificate specific for
that device. The Encrypt oracle is queried via a public key and its corresponding
ID. The oracle encrypts a randomly generated value according to the specific ID
provided by the adversary and keeps track of a list for the plaintext-ciphertext
pairs. Note that this ciphertext should only be decrypted correctly via the device
corresponding to the given ID.

The Encode oracle is queried by providing a ciphertext (together with its
corresponding ID) and a public key (together with its corresponding ID). That is,
when querying this oracle, we indicate which device we wish to use for encoding
the given ciphertext. If the device we mean to use has the same ID as the
ciphertext, then we store this ciphertext-public key pair in a set. Namely for
this pair, we know that the resulting encoding should be properly decoded by
the global white-box. Thus having such an encoded value would let the adversary
trivially generate a valid value z.

We now explain the winning conditions. The adversary outputs two tuples,
each relevant to one different winning condition. For the first tuple (z∗, c, y, pk),
the adversary wins if his given values compute to F (Dec(ek, c, ID), y) = z∗, as
long as one of the following holds: (1) The public key ID provided for the decryp-
tion of c, and c, were not used together for querying the Encode oracle; or, (2) the
device public key ID provided for the decryption of c has not been enrolled yet.
This captures the general property of device enrollment mentioned above. For
the second tuple (c∗, x∗), the adversary wins if the provided value c∗ corresponds
to a ciphertext encrypting x∗.

Alternative Winning Condition. With the second winning condition we wish to
capture that a value x is never leaked during its decryption and computation
with the white-box program. In practice, we usually obfuscate the complete
white-box program including function F and we wish to ensure the privacy of
such values x. Namely, if such values x are leaked, an adversary would have an
easier way of attacking a user’s application by simply observing how they are
once computed by the white-box, bypassing an adversary’s need to perform a
code-lifting attack. Note that without this second winning condition, a white-box
program which does not obfuscate F would be secure in the model.

Definition 7 (Forgery). We say that an sGW-scheme in combination with
some function F ∈ F is unforgeable if all PPT adversaries A have a negligible
probability of winning the ExpforgeryA,F (1n) game in Fig. 2.



White-Box Cryptography with Global Device Binding 253

ExpunfF,A(1n)

C ∅
(rk, ek,WB) $Comp(F )

(c, y, z∗, pk), (x∗, c∗) $ AO(F,WB)

pk||ID pk

x Dec(ek, c, ID)

if ((c, pk) /∈ C or ⊥ E[pk])

and F (x, y) = z∗

return 1

or if X[c∗] x∗

return 1

else return 0

OInit()

(sk, pk, ID) $ Init(1n)

pk pk||ID
SK[pk] sk

return pk

OEnroll(pk)

if SK[pk] �= ⊥
pk||ID pk

cert $Enroll(rk, pk)

E[pk] 1

return cert

OEncrypt(pk)

x $ X
pk||ID pk

c $Encrypt(ek, x, ID)

X[c] x

c c||ID
return c

OEncode(c, pk)

c||ID∗ c

pk||ID pk

if ID = ID∗

C := C ∪ (c, pk)

sk SK[pk]

c̃ $Encode(sk, c, ID)

return c̃

OVer(c, y, z, pk)

pk||ID pk

x Dec(ek, c, ID)

if F (x, y) = z

return 1

else return ⊥

Fig. 2. Forgery security game.

4 Message-Recoverable Signatures for sGW-Schemes

Enroll(sk1, pk2)

cert ←$ Sig(sk1, pk2)

return cert

Encode[sk2](c)

c̃ ←$ Sig(sk2, c)

return c̃

WB(cert, c̃)

pk2 ← Rcvr(pk1, cert)

c ← Rcvr(pk2, c̃)

m ← Dec(k, c)

return m

Our idea for constructing strong global white-boxes via
MRS consists on using two layers of recover algorithms
within our white-box program. The first layer will recover
the user’s public key, which has been signed by the
provider as a method of enrolling this device within the
system. The second recover algorithm uses the recov-
ered public key to recover the input which was signed by
the trusted component. Below we provide a pseudocode
description of the algorithms for the case that WB is a
white-box decryption program. Here, WB is bound to the
Encode component and can only be used correctly if the
corresponding pk2 has been signed by the Enroll algorithm.

In practice, we would instantiate such a construction
with, for instance, RSA for the public-key operations and
AES-based schemes for symmetric-key decryption. On top
of that, we would apply some efficient form of obfusca-
tion to the circuit describing WB to hide the symmetric
key k and to stop an adversary from separating the decryption program from
the recover algorithms. For our formal constructions, we use indistinguishability
obfuscation together with iO-friendly, puncturable pseudorandom functions and
puncturable message recoverable signatures, which we introduce below. Let us



254 S. Agrawal et al.

remark that we can also view the construction as using general-purpose obfus-
cation together with normal signature with message recovery (such as RSA),
since all the existing iO candidates can be viewed as candidate VBB obfuscators
except for the “self-referring” programs used as the counterexamples of VBB [6].
Such a view is also used in other works [16]. The use of puncturable signature
and other iO-friendly primitives is for achieving a feasibility result with provable
security guarantee.

Instantiating Our Construction via Puncturable MRS. We apply indistinguisha-
bility obfuscation to our circuit in order to achieve the desired security. Recall
that for iO, we need two circuits which are functional equivalent but differ in
their description. Specifically for a white-box design, our functional equivalent
circuits should differ on their sensitive information, ensuring that an adversary
is not able to extract that sensitive information from the obfuscated program.
Thus, we construct our circuit using puncturable primitives.

Puncturable signature schemes have been presented by both Bellare et al. [8],
and by Sahai and Waters [28] for short signatures. Both the schemes are based
on PPRFs and provide a public verification algorithm which lets a user verify
the validity of a signature. We next introduce puncturable message recovery sig-
nature schemes, which we construct via PPRFs and indistinguishability obfus-
cation. Our construction is inspired by the CCA-secure public-key encryption
scheme presented by Sahai and Waters [28, Section 5.3], but we swap the roles
of the encryption and decryption functions. That is, we use the secret keys of
PPRFs for signing messages and we create an obfuscated program, embedding
those keys, and treat it as the public key used for recovering the messages. With
our puncturable recover algorithms, we can construct our strong white-box pro-
gram of the form Dec(k∗,Rcvr2(Rcvr1(pk∗, ·)), resembling the pseudocode above,
and obfuscate it via iO.

Construction 1. Let PPRF be a secure puncturable PRF, let Setup denote an
algorithm choosing a punctured key, let G be a PRG and iO be an (indistin-
guishability) obfuscator. Then a signature scheme with message recovery MRS
can be constructed as follows:

C[K1,K2](m̃)

(t, c1, c2) ← m̃

if G(c2) =G(PPRF2(K2, t‖c1))
w ← PPRF1(K1, t)

m ← c1 ⊕ w

return m

else return ⊥

KGen(1λ)

K1 ←$ Setupg1(1
λ)

K2 ←$ Setupg2(1
λ)

sk ← (K1,K2)

pk←$iO(C[K1,K2])

return sk, pk

Sig(sk,m)

K1,K2 ← sk

r ←$ {0, 1}λ

t ← G(r)

w ← PPRF1(K1, t)

c1 ← m ⊕ w

c2 ←PPRF2(K2, t‖c1)
m̃ ← (t, c1, c2)

return m̃

Rcvr(m̃)

m←pk(m̃)

return m



White-Box Cryptography with Global Device Binding 255

Theorem 1. If iO is a secure indistinguishability obfuscator, PRG is a pseudo-
random generator and PPRF is a secure PPRF, then MRS is a secure signature
scheme with message recovery.

Proof. We first prove via a series of hybrids that this construction is a secure
MRS. We will go via a sequence of hybrids where we will show that an adver-
sary cannot forge a valid encoding for a randomly chosen message, even if the
adversary has access to the public (recovery) key.

Hybrid 0: The first hybrid corresponds to the unf security game described in
Definition 4. The keys sk, pk are generated according to the KGen algorithm. A
challenge oracle generates the challenge message m∗ at random.

Hybrid 1: The same as Hybrid 0 with the following changes: for some point z,
we generate the PRF value τ ← PPRF(K2, z). Then we puncture K2 on z and
obtain Kz

2 . We then consider the following C2 described below. C and C2 are
functional equivalent. This game hop reduces to iO security.

Hybrid 2: same as hybrid 3, but we substitute τ by a random value. Then
we query y ← G(τ) and we consider the circuit C3 described above. It is clear
that C2 and C3 are functional equivalent. This game hop reduces to the PPRF
security and iO security.

Hybrid 3: same as Hybrid 2, but we sample y at random: y ←$ {0, 1}2n. Then
we take the first bits of the value z which correspond to the value t used for
querying PPRF1. So we take t∗ ← z[t], and we puncture K1 on t∗, obtaining Kt∗

1 .
And now we compute w∗ ← PPRF1(K1, t

∗). Now we consider the circuit C4. It is
clear that C3 ≈ C4. This gamehop reduces to PRG- and iO security.

Finally, we can argue that with high probability the value y is outside of the
image of the PRG and we can substitute the output on the third line by an all
0 string. Thus showing that the adversary has no advantage of forging a valid
message. 	




256 S. Agrawal et al.

Remark: We could consider a security model specifying the puncturing security
of our MRS. The model would be the same as in Definition 4, but we would
additionally give the adversary the punctured signing key skm∗

. Such a model is
analogous to the selective unforgeability of puncturable digital signatures model
from [8]. In our case, the PPRF security ensures that the punctured signing key
does not give any additional advantage to the adversary. Note: for puncturing
we don’t only need to consider the challenge message, but also the randomness
used when signing that massage. To make the steps in the proof more smooth,
we could adapt our construction of the signing algorithm such that the random
value t is explicitly provided as input. In the security game, we would thus have
a value m∗||t∗ ←$ {0, 1}2n used as a challenge message and we would puncture
the signing key on it. Below we elaborate on the puncturing property of our
scheme.

Γ ′[c̃∗, pkc∗
1 , cert∗, pk∗,pk1

2 , c∗, v∗, ekr∗
, F ](cert, c̃, y)

1 : cert||pk1 ← cert

2 : c̃||c ← c̃

3 : if cert = cert∗ and G(pk1) = G(pk∗
1)

4 : pk1 ← pkc∗
1

5 : else if G(pk1) �= G(Rcvr(pk∗,pk1
2 , cert∗))

6 : return ⊥
7 : if c̃ = c̃∗ and G(c) = G(c∗)

8 : c ← c∗

9 : else if G(c) �= G(Rcvr(pk1, c̃))

10 : return ⊥
11 : else

12 : t, r ← c

13 : if r = r∗

14 : v ← v∗

15 : else

16 : v ← PPRF(ekr∗
, r)

17 : x ← t ⊕ v

18 : return F (x, y)

19 : else return ⊥

Puncturing the MRS Scheme.
We now explain how we
puncture our MRS scheme
on some input message m.
Let us assume that t∗

is the random value gen-
erated when signing the
message m∗. We calculate
w∗ ← PPRF(K1, t

∗), then
calculate c∗

1 ← m∗ ⊕
w∗. Now, we can say that
when we puncture MRS on
the input message m∗, we
puncture Sig by punctur-
ing the PPRF keys K1

on the point t∗ and K2

on the input t∗||c∗
1 respec-

tively. As a consequence,
the Recover algorithm is
punctured on the input
m̃ = t∗, c∗

1, c
∗
2, with c∗

2 =
PPRF(K2, t

∗||c∗
1). That is,

the recover algorithm can-
not verify and recover such
a message since the PPRF
on its second line cannot
calculate PPRF(K2, t

∗||c∗
1). We need to keep this observation in mind when prov-

ing security of our strong global white-boxes built from puncturable MRS. In
the construction, our white-boxes will use the puncturable recover algorithms.
We will argue that we puncture a specific input to the signing algorithm and we
will use its corresponding output in the hybrids.



White-Box Cryptography with Global Device Binding 257

Strong Global White-Box from Puncturable MRS. We now use our MRS con-
structed in the previous section for constructing strong global white-boxes. The
puncturing property of the MRS will allow us to use it in combination of iO and
prove its security. We first construct a strong global white-box which should be
secure in our privacy model.

Construction 2. Let (KGen,Sig,Rcvr) be a puncturable MRS, let PPRF be a
secure puncturable PRF, let G be a PRG and let iO be an indistinguishability
obfuscator.

Theorem 2. Let iO be a an indistinguishability obfuscator and let MRS be a
puncturable MRS scheme. Let PRG be a pseudorandom generator, and PPRF a
secure puncturable pseudorandom function. Then Construction 2 is a privacy-
secure sGW scheme.

Proof. We now go through a series of hybrids, where the first one corresponds
to our privacy game in Fig. 1. We recall that in this game, we care that the
adversary does not learn anything about the value x unless he has access to an
enrolled hardware device.

Hybrid 0: The keys ek, sk1, pk1, sk2 and pk2 are generated at random. Recall
that the keys (sk2, pk2), ek will be used for compiling the program. The outputs
of the Enroll, Init, Encrypt and Encode oracles are obtained in the same way
as described for the algorithms in Construction 2 with the corresponding names.
The challenge oracle generates the ciphertext z∗ by encrypting either a value x



258 S. Agrawal et al.

or r (depending on the bit value of b). The encryption is performed in the same
way as described for the Encrypt algorithm in Construction 2 and b is chosen at
random.

Hybrid 1: this hybrid is the same as Hybrid 0 except that we will puncture the
programs on the points defined as follows.

1. Let (sk1, pk1) be the secret-public key pair of the protected user and let
c̃∗ ←$ Sig(sk1, c∗) be the value generated by the Encode oracle when our user
queries it on c∗. We puncture sk1 on c∗ to get skc∗

1 ; as a consequence our
recover algorithm is punctured on c̃∗ and we refer to the punctured public
key as pkc∗

1

2. Let cert∗ be the value generated by our Enroll oracle when the user calls it on
pk∗

1. Let us thus puncture Sig on the input pk∗
1, obtaining thus the punctured

signing key rk∗
pk1

. As a consequence, our Recover program pk2 is punctured
on cert∗: pk∗,pk1

2

3. Let r∗ denote the value of r used when generating the challenge ciphertext
c∗ and let v∗ be PPRF(ek, r∗).

4. Let c∗ be (x ⊕ v∗, r∗) and puncture ek on r∗ and get ekr∗
.

5. Finally, generate the circuit Γ ′ as described above.

The circuits Γ and Γ ′ in Hybrids 0 and 1 are functionally equivalent and this
game hop reduces to iO security.

Remark: Note that in the circuit description of Γ ∗, the Recover algorithm on
line 9 is not using a punctured key. This has the following reasoning: if pk1 is
defined as in line 4, then the Recover algorithm in line 9 uses a punctured key.
In all other cases, the Recover algorithm uses a non-punctured key.

Hybrid 2: the same as Hybrid 1 with the following exceptions. We first replace
pk∗

1 with pk∗
1 ←$ {0, 1}λ. Then, we calculate h ←$ G(pk∗

1). We hardcode h in
Γ ′ and replace G(pk∗

1) by h on line 3. This game hop reduces to PPRF and
iO-security.

Hybrid 3: the same as Hybrid 2 with the following exceptions. We first replace
c∗ with c∗ ←$ {0, 1}λ. Then, we calculate h′ ←$ G(c∗). We hardcode h′ in Γ ′ and
replace G(c∗) by h′ on line 7. This game hop reduces to PPRF and iO-security.

Hybrid 4: the same as Hybrid 3 with the following exceptions. We sample
h′ ←$ {0, 1}2λ. Now note that with high probability h′ is outside of the image
of the PRG G. Thus, line 8 is no longer needed, since the check in line 7 will
only be satisfied with negligible probability. This game hop reduces to PRG and
iO-security.

Hybrid 5: the same as hybrid 4 with the following exception: we replace v∗ by
v∗ ←$ {0, 1}λ. This game hop reduces to PPRF security.

The fact that v∗ is random lets us x∗ is random for both cases b = 0 and
b = 1, and thus the adversary only has negligible probability of winning the
privacy game. 	




White-Box Cryptography with Global Device Binding 259

Note that this construction can be easily extended for user specific encryp-
tions, where the values c are only meant to be decrypted by one specific user.
We can prove the security of such a construction in the Forgery game from
Definition 7.

References

1. Agrawal, S., Bock, E.A., Chen, Y., Watson, G.: White-box cryptography with
global device binding from message-recoverable signatures and token-based obfus-
cation. Cryptology ePrint Archive, Paper 2021/767 (2021). https://eprint.iacr.org/
2021/767

2. Bock, E.A., Amadori, A., Brzuska, C., Michiels, W.: On the security goals of white-
box cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(2), 327–357
(2020)

3. Alpirez Bock, E., Brzuska, C., Fischlin, M., Janson, C., Michiels, W.: Security
reductions for white-box key-storage in mobile payments. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 221–252. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 8

4. Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J.
Commun. Netw. 18(3), 273–287 (2016)

5. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017)

6. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

7. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

8. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 792–821. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 28

9. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

10. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

11. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

12. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

https://eprint.iacr.org/2021/767
https://eprint.iacr.org/2021/767
https://doi.org/10.1007/978-3-030-64837-4_8
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1


260 S. Agrawal et al.

13. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 13

14. Derbez, P., Fouque, P.-A., Lambin, B., Minaud, B.: On recovering affine encod-
ings in white-box implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 121–149 (2018)

15. EMVCo: EMV mobile payment: software-based mobile payment security require-
ments (2019). https://www.emvco.com/wp-content/uploads/documents/EMVCo-
SBMP-16-G01-V1.2 SBMP Security Requirements.pdf

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: FOCS, pp. 404–413. IEEE Computer Society (2014)

17. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pp. 555–564. ACM (2013)

18. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

19. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 34

20. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 2

21. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

22. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

23. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box encoding. Cryptology ePrint Archive, Report 2004/025 (2004). http://
eprint.iacr.org/2004/025

24. Michiels, W.: Device binding from digital signatures. Personal Communication
25. Muir, J.A.: A tutorial on white-box AES. Cryptology ePrint Archive, Report

2013/104 (2013). http://eprint.iacr.org/2013/104
26. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box

AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

27. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

28. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/978-3-540-44993-5_2
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2013/104
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21


White-Box Cryptography with Global Device Binding 261

29. Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. Presentation at BlackHat Europe 2015 (2015). https://
www.blackhat.com/eu-15/briefings.html

30. Smart Card Alliance Mobile and NFC Council: Host card emulation 101. In: White
paper (2014). https://www.securetechalliance.org/wp-content/uploads/HCE-101-
WP-FINAL-081114-clean.pdf

31. Wyseur, B.: White-box cryptography. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, 2nd edn, pp. 1386–1387. Springer,
Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5 627

32. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

33. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd Inter-
national Conference on Computer Science and Its Applications, pp. 1–6. IEEE
Computer Society (2009)

https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html
https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf
https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf
https://doi.org/10.1007/978-1-4419-5906-5_627
https://doi.org/10.1007/978-3-540-77360-3_17


Author Index

A
Agrawal, Shashank 241
Alpírez Bock, Estuardo 241
Aulbach, Thomas 149

B
Béguinot, Julien 86
Bogad, Katharina 221

C
Carta, Daniele Antonio Emanuele 23
Cayrel, Pierre-Louis 170
Chen, Yilei 241
Cheng, Wei 86
Colombier, Brice 170

D
Drăgoi, Vlad-Florin 170
Dreo Rodosek, Gabi 127
Dutertre, Jean-Max 42

G
Gicquel, Antoine 3
Grosso, Vincent 170
Gruber, Michael 221
Guilley, Sylvain 86

H
Hardy, Damien 3
Heinz, Daniel 127
Heydemann, Karine 3
Heyszl, Johann 65
Holl, Tobias 221

I
Ilg, Manuel 65

K
Kabin, Ievgen 149
Krämer, Juliane 149

L
Liu, Yi 86

M
Marzougui, Soundes 149
Masure, Loïc 86
Molteni, Maria Chiara 23
Moos, Thorben 195
Moradi, Amir 195

P
Potin, Olivier 42

Q
Quagliarella, Gabriele 23

R
Rezaei Shahmirzadi, Aein 195
Rigaud, Jean-Baptiste 42
Rioul, Olivier 86
Rohou, Erven 3

S
Schaumont, Patrick 105
Seifert, Jean-Pierre 149
Shanmugam, Dillibabu 105
Standaert, François-Xavier 86
Streit, Silvan 65
Strieder, Emanuele 65

U
Unterstein, Florian 65

W
Watson, Gaven 241

Z
Zaccaria, Vittorio 23
Zgheib, Anthony 42

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
E. B. Kavun and M. Pehl (Eds.): COSADE 2023, LNCS 13979, p. 263, 2023.
https://doi.org/10.1007/978-3-031-29497-6

https://doi.org/10.1007/978-3-031-29497-6

	 Preface
	 Organization
	 Contents
	Fault-Injection Analyses and Countermeasures
	SAMVA: Static Analysis for Multi-fault Attack Paths Determination
	1 Introduction
	2 Threat Model
	3 Method
	3.1 Overview
	3.2 Fault Effects Modeling
	3.3 Attack Paths Finding

	4 Experimentation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Efficient Attack-Surface Exploration for Electromagnetic Fault Injection
	1 Introduction
	2 State of the Art
	2.1 EMFI on MCUs and FPGAs
	2.2 EMFI on ASIC SoCs
	2.3 Existing Methodologies

	3 Methodology
	3.1 Susceptible Surface Search
	3.2 Coordinate Search

	4 Experimental Validation
	4.1 Trigger and Timing Synchronization
	4.2 Surface Search
	4.3 Coordinate Search
	4.4 Testing a Fault Model

	5 Conclusion and Future Work
	References

	A CCFI Verification Scheme Based on the RISC-V Trace Encoder
	1 Introduction
	2 Related Work
	3 CCFI Methodology
	3.1 Static Analysis
	3.2 Metadata Generation
	3.3 Trace Verifier

	4 Proposed CCFI Solution
	4.1 Trace Encoder
	4.2 Trace Verifier Hardware Description

	5 FIA on a Memcmp Application Code
	6 Hardware Metrics
	6.1 Target Core
	6.2 Trace Encoder
	6.3 Trace Verifier Components

	7 Discussion
	8 Conclusion
	References

	Side-Channel Analyses and Countermeasures
	ASCA vs. SASCA
	1 Introduction
	2 Preliminaries
	2.1 AES Key Schedule
	2.2 2018 CHES CTF Challenge
	2.3 Profiled Side-Channel Attacks
	2.4 ASCA and SAT
	2.5 SASCA and Belief Propagation
	2.6 Leakage Model and Simulation

	3 Results
	3.1 Case Study: 2018 CHES CTF
	3.2 Simulations
	3.3 Dropouts and Early Break

	4 Conclusion
	References

	Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings
	1 Introduction
	2 Statement of the Problem
	2.1 Notations and Background
	2.2 Problem and Conjecture

	3 A Proof Without Field Size Loss
	3.1 Introducing Mrs. Gerber's Lemma
	3.2 Application of Mrs. Gerber's Lemma to Masking
	3.3 Comparison with Former Upper Bounds
	3.4 The MGL: Tighter or Tight?
	3.5 Linking the MI with the Success Rate

	4 On the Dependence of the Group Structure
	5 Conclusion and Perspectives
	A Proof of Proposition 3
	B Technical Statements and Proofs from Sect. 4
	References

	Improving Side-channel Leakage Assessment Using Pre-silicon Leakage Models
	1 Introduction
	2 Preliminaries
	2.1 Side-channel Leakage Assessment Metrics
	2.2 Target Platform for SLA

	3 Traditional Side-Channel Vulnerability Analysis
	3.1 Results Summary
	3.2 Traditional SLA on Ascon
	3.3 Traditional SLA on Xoodyak 

	4 Deep Learning Assisted Side Channel Analysis
	4.1 Deep Learning SLA on Ascon 
	4.2 Deep Learning SLA on Xoodyak 

	5 Analysis of Results
	6 Conclusion
	References

	Attacks on PQC and Countermeasures
	Fast First-Order Masked NTTRU
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Number-Theoretic Transform
	2.3 NTTRU
	2.4 Symmetric Primitives
	2.5 Sampling Algorithms
	2.6 Side-Channel Attacks and Protection

	3 Side-Channel Protection of NTTRU
	3.1 Table-Based Masking of Modulus Conversion
	3.2 Masked Packing
	3.3 Protected SHA512 and AES256-CTR
	3.4 Table-Based Masking of Coefficient Sampling
	3.5 Masked Comparison
	3.6 Keccak (SHA3) as a Speed-Up

	4 Evaluation
	4.1 Performance Evaluation
	4.2 Side-Channel Evaluation

	5 Conclusion
	References

	On the Feasibility of Single-Trace Attacks on the Gaussian Sampler Using a CDT
	1 Introduction
	2 Background
	2.1 Lattices
	2.2 Learning with Errors
	2.3 Gaussian Sampler and CDTs
	2.4 Description of FrodoKEM

	3 Experimental Setup
	3.1 Implementations of FrodoKEM
	3.2 Experimental Workbench

	4 Simple Side-Channel Analysis
	4.1 Threat Model
	4.2 Single-Trace Attack on the Gaussian Sampler

	5 Description of the Attack and Error Tolerance
	6 Machine-Learning Side-Channel Analysis
	6.1 Profiling Phase
	6.2 Attack Phase

	7 Countermeasures and Conclusion
	References

	Punctured Syndrome Decoding Problem
	1 Introduction
	2 Message-Recovery Attacks on the Packed Matrix-Vector Multiplication
	2.1 Classic McEliece Encapsulation
	2.2 Packed Matrix-Vector Multiplication
	2.3 Message Recovery Attack

	3 Limitation of the CDCG  Method
	3.1 Side-Channel Analysis Error
	3.2 ``Double-Cancellation'' Error
	3.3 Dependent Error
	3.4 Impact of the Error on the Score Computation

	4 Error Propagation Limitation
	4.1 Punctured Matrices
	4.2 T-test Based Score

	5 Experimental Validation
	5.1 Punctured Matrices
	5.2 Impact of the Side-Channel Distinguisher Accuracy
	5.3 Impact of the Register Size

	6 Conclusion
	References

	Analyses and Tools
	Energy Consumption of Protected Cryptographic Hardware Cores*6pt
	1 Introduction
	2 Background
	2.1 Design Architecture Effect on Energy Consumption
	2.2 Masking
	2.3 Wave Dynamic Differential Logic (WDDL)
	2.4 Fault Attacks and Countermeasures

	3 Measurement Methods
	3.1 Measurement with Differential Oscilloscope Probe
	3.2 Capacitor Discharge Measurement

	4 Setup
	4.1 Energy Reference
	4.2 Static Power and Frequency Impact
	4.3 Energy Measurement Using Differential Probe
	4.4 Energy Measurement Using Capacitor

	5 Results
	5.1 Unrolled Implementations
	5.2 Non-masked Round-Based Implementations
	5.3 First-Order Secure Masked Implementations
	5.4 Higher-Order Secure Masked Implementations
	5.5 Fault Attack Countermeasure Implementations

	6 Conclusions
	A  List of Links for Open-Source Designs
	B  Additional Postlayout Details
	References

	Whiteboxgrind – Automated Analysis of Whitebox Cryptography
	1 Introduction
	2 Related Work
	3 Background
	3.1 Advanced Encryption Standard
	3.2 Whitebox Cryptography
	3.3 Correlation Power Analysis
	3.4 Program Tracing

	4 Whiteboxgrind
	4.1 Trace Acquisition
	4.2 Trace Storage
	4.3 Parallel Architecture
	4.4 Sample Reduction
	4.5 Visualization
	4.6 Attack

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

	White-Box Cryptography with Global Device Binding from Message-Recoverable Signatures and Token-Based Obfuscation
	1 Introduction
	1.1 Our Contributions
	1.2 Global White-Boxes

	2 Preliminaries and Notation
	3 Strong Global White-Boxes
	4 Message-Recoverable Signatures for sGW-Schemes
	References

	Author Index

