
Shaoying Liu
Zhenhua Duan
Ai Liu (Eds.)

LN
CS

 1
38

54

Structured Object-Oriented
Formal Language and Method
11th International Workshop, SOFL+MSVL 2022
Madrid, Spain, October 24, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13854
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Shaoying Liu · Zhenhua Duan · Ai Liu
Editors

Structured Object-Oriented
Formal Language and Method
11th International Workshop, SOFL+MSVL 2022
Madrid, Spain, October 24, 2022
Revised Selected Papers

Editors
Shaoying Liu
Hiroshima University
Hiroshima, Japan

Ai Liu
Hiroshima University
Hiroshima, Japan

Zhenhua Duan
Xidian University
Xi’an, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-29475-4 ISBN 978-3-031-29476-1 (eBook)
https://doi.org/10.1007/978-3-031-29476-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-29476-1

Preface

Formal engineering methods aim to take advantage of formal methods to improve the
effectiveness and efficiency of conventional software engineering technologies used
in practice. As a specific formal engineering method, the Structured Object-Oriented
Formal Language (SOFL) and the related SOFL method have demonstrated how this
goal can be achieved by providing a comprehensible specification language, functional
scenario-based modeling, verification, and validation techniques, and efficient tool sup-
port through appropriate integrations of formal techniques and software engineering
techniques. Meanwhile, the Modeling, Simulation and Verification Language (MSVL)
offers a parallel programming language and a supporting toolkit MSV that enable us to
model, simulate, and verify systems rigorously. In spite of the progress we have made
in these two different but related approaches, challenges still remain for further research
in order to fulfill our ultimate goals.

Following the success of the previous SOFL+MSVL workshops, the 11th interna-
tional workshop on SOFL+MSVL 2022 was jointly organized online by Shaoying Liu’s
research group at Hiroshima University, Japan and Zhenhua Duan’s research group at
Xidian University, China as a satellite event of ICFEM 2022 organized in Madrid, Spain
during October 24–27, 2022. The aim of the workshop was to bring together industrial,
academic, and government experts and practitioners of SOFL, MSVL, or other formal
engineering methods to communicate and to exchange ideas. The workshop attracted
26 submissions on Model Checking, Markov Decision Processes, Model Analysis, For-
mal Specification, Verification, Testing, Algorithms, and Tool Implementation. Each
submission was carefully reviewed by the program committee based on its technical
quality, relevance, significance, and clarity. As the result, 12 papers were accepted for
publication in the workshop proceedings and the acceptance rate is approximately 46%.

We would like to thank the ICFEM 2022 organizers for their support for the organi-
zation of the workshop and all the PC members for their great efforts and cooperation in
reviewing and selecting the submitted papers. We would also like to thank the keynote
speaker Prof. ShinNakajima for his inspiring talk and all the participants for attending the
presentation sessions and actively joining the discussions at the workshop. Finally, our
gratitude goes to the editors of Springer for their continuous support in the publication
of the workshop proceedings.

October 2022 Shaoying Liu
Zhenhua Duan

Ai Liu

Organization

Program Chairs

Shaoying Liu Hiroshima University, Japan
Zhenhua Duan Xidian University, China
Ai Liu Hiroshima University, Japan

Program Committee

Yuting Chen Shanghai Jiao Tong University, China
Busalire Emeka Hosei University, Japan
Kazuhiro Ogata JAIST, Japan
Xinfeng Shu Xi’an University of Posts and

Telecommunications, China
Rong Wang Galileo Co. Ltd., Japan
Xi Wang Shanghai University, China
Xiaobing Wang Xidian University, China
Bin Yu Xidian University, China
Zhen You Jiangxi Normal University, China

Risks Management Around Machine Learning Software
(Keynote Speech)

Shin Nakajima

Abstract.As widely recognized, quality issues of machine learning soft-
ware become amajor concern, because such software systems are embed-
ded in social infrastructure, which motivates research activities to apply
Software Engineering practices to the machine learning software devel-
opment. In early days, the test oracle problem was addressed in view of
testing baseline functionalities such as model accuracy or model robust-
ness; metamorphic testing with carefully generated fuzz is found useful.
Later, the ethical aspects, fairness and privacy, are considered mandatory,
and the quality assurance activities put focus more on data modeling with
posteriori testing of fairness or privacy. Those quality characteristics are
more or less inconsistent and thus need a thorough study of the trade-off
between them. To work on the issues, a multi-layered quality model is
introduced together with both technical and non-technical ways for the
quality management. All these mitigate risks that machine learning soft-
ware may bring about. Moreover, machine learning software is subject to
laws or regulations, which may incur risks affecting the machine learning
innovation. The riskmanagement ofmachine learning softwaremust con-
sider all these aspects, from the baseline functionalities to the ethical and
lawful aspects. This talk sketches recent activities on the quality assur-
ance of machine learning software, primarily viewed from the AIQM
(Artificial Intelligence Quality Management), a joint industry-academia-
government project in Japan, and some of the legal issues with regard to
European GDPR and AI-ACT, or domestic IPR in Japan.

Contents

Model Checking and Markov Decision Process

Formal Derivation and Verification of Critical Path Algorithm for Directed
Acyclic Graph . 3

Zhen You, Xinwu Yi, Jinyun Xue, Hongwen Hu, Jiewen Huang,
and Zhuo Cheng

An Approach of Transforming Non-Markovian Reward to Markovian
Reward . 12

Ruixuan Miao, Xu Lu, and Jin Cui

A JPSL Based Model Checking Approach for Java Programs 30
XinFeng Shu, YanLin Li, and WeiRan Gao

Model Analysis and Tool Implementation

Implementation of Matlab matfun Toolkit Based on MSVL 53
Xueqing Feng, Nan Zhang, and Zhenhua Duan

Extending Visibly Pushdown Automata over Multi-matching Nested
Relations . 59

Jin Liu, Yeqiu Xiao, Haiyang Wang, and Wensheng Wang

Schedulability Analysis of Rate-Monotonic Algorithm on Concurrent
Execution of Digraph Real-Time Tasks . 70

Jin Cui, Xu Lu, Guangliang Yu, and Bin Yu

Formal Specification and Testing

Formalization of Natural Language into PPTL Specification via Neural
Machine Translation . 79

Chunyi Li, Jiajun Chang, Xiaobing Wang, Liang Zhao, and Wenjie Mao

Testing Program Segments to Detect Runtime Exceptions in Java 93
Lei Rao, Shaoying Liu, and Ai Liu

xii Contents

Inferring Exact Domains to Efficiently Generate Valid Test Cases
via Testing . 106

Chu Chen, Xuan Wang, Pinghong Ren, Zhenhua Duan, Cong Tian,
Xu Lu, and Bin Yu

Algorithms and Verification

Testing and Verifying the Security of COVID-19 CT Images Deep
Learning System with Adversarial Attack . 119

Yang Li and Shaoying Liu

Verifying and Improving Neural Networks Using Testing-Based Formal
Verification . 126

Haiyi Liu, Shaoying Liu, Ai Liu, Dingbang Fang, and Guangquan Xu

Alternating Projection Temporal Epistemic Logic . 142
Haiyang Wang, Jin Liu, and Jing Liu

Author Index . 151

Model Checking and Markov Decision
Process

Formal Derivation and Verification of Critical
Path Algorithm for Directed Acyclic Graph

Zhen You1,2, Xinwu Yi1,2,3(B), Jinyun Xue1,2, Hongwen Hu1,2,3, Jiewen Huang4,
and Zhuo Cheng1,2

1 State International S&T Cooperation Base of Networked Supporting Software,
Jiangxi Normal University, Nanchang 330022, China

mandalore@jxnu.edu.cn
2 Provincial Key Lab of High-Performance Computing, Jiangxi Normal University,

Nanchang 330022, China
3 Computer Information Engineering School, Jiangxi Normal University,

Nanchang 330022, China
4 Jiangxi Provincial Education Examination Authority, Nanchang 330008, China

Abstract. Graph structure is widely used in network design, path planning, rela-
tional processing, electronic circuit design, andpower grid tidemanagement.How-
ever, the complexity and variety of relationships between different data objects
create difficulties in the derivation of graph algorithms, the correctness of algo-
rithms cannot be easily guaranteed in some complex problems. In this paper, we
formally derive the loop invariant of critical path by using the new definition and
new strategies of loop invariant in PARmethod. Furthermore, the Apla abstraction
algorithm program is designed, and the executable code is generated by the PAR
platform. Finally, the correctness of the algorithm is proved by using the Dijkstra’s
weakest precondition method. The critical path is a typical dynamic programming
problem. The recursive relation of the critical path can be automatically detected
when the loop invariant is derived by using the PAR method, and the reliability of
the Apla algorithm program is ensured by using the formal verification technique.
The formal derivation and verification of the critical path algorithm in this paper
can be extended to solve other dynamic programming type problems.

Keywords: Critical path · DAG · Dynamic programming · PAR method ·
Dijkstra’s weakest precondition method

1 Introduction

Directed Acyclic Graph (DAG) is a kind of important and traditional nonlinear data
structure in graph theory. DAG can be used to describe the construction process of a
project, and DAG critical path algorithm can estimate the minimum time necessary to
complete the project. When a DAG is used in a computer to describe the construction
process of a project, the minimum time necessary to complete the project is equal to the
length of the critical path from the source to the sink in the DAG. Here the path length
is the sum of the durations of the activities on the path, the sum of the weights on each

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 3–11, 2023.
https://doi.org/10.1007/978-3-031-29476-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_1

4 Z. You et al.

directed edge. The path with the critical path length is called the critical path. Estimat-
ing the minimum time necessary for the completion of the entire project is actually a
requirement for the critical path in the activity on edge network.

The development of graph algorithms can be implemented by either non-formal or
formal methods. It has been proven that the correctness of an algorithmic program can be
logically guaranteed by a formal derivation or formal verification of the program using
mathematical methods [1]. The solution of critical path problems usually uses dynamic
programming algorithms, and the most creative step of dynamic programming is to
find recursive relation. Non-formal methods such as partition method, greedy method,
dynamic programming method, backtracking method, branch-and-bound method can
solve many practical problems, but they do not have effective methods and techniques
to guarantee its effectiveness and correctness. Article [2] finds recursive relational equa-
tions using dynamic programming, but does not use formal methods for derivation and
verification to guarantee the correctness of the algorithm.The book [3] represents compu-
tational derivation steps for the largest sub-paragraph sum problem in terms of program
statutes, highlighting the typical steps involved in program derivation sessions. Kourie
[3] devised a style of program development based on constructive correctness that com-
bines the Guarded Command Language of Dijkstra and Morgan’s refined evolutionary
rules.

In this paper, we use the PARmethod to formally derive the loop invariant of critical
path algorithm based on the recurrence relation of the problem solution sequence, and
then we design an abstract Apla algorithm program and formally verify it by using
Dijkstra’s weakest precondition method. Finally, the verified Apla algorithm program
can be automatically transformed into executable code in PAR platform. This complete
process of formal derivation and verification achieves the reliability of graph structure
algorithms, the derived loop invariant can be quickly found to the recursive relation of
the dynamic programming problem, and the generation of concrete executable programs
from the abstract Apla program can improve the efficiency of the algorithm.

2 PAR Method and PAR Platform

PAR method was proposed by Prof. Xue in 1997 [4], and it was basically a unified
and systematic method called Partition and Recur for developing efficient and correct
algorithmic programs. The PAR method is guided by program correctness proofs and
predicate calculus theory such as predicate logic, Floyd’s inductive assertion method,
Dijkstra’s weakest predicate and Hoare’s axiomatic semantics, and makes full use of
data abstraction and functional abstraction method to provide formal and automated
support for the algorithm design of software development. The approach covers several
known algorithm design techniques, including dynamic programming, greedy method,
enumeration, divide and conquer method.

PAR method defines two support languages: Radl (algorithm and statute description
language) and Apla (abstract programming language). PAR method and PAR platform
include new definition of loop invariant its two development strategies and generator
such as Apla2C++ Generator, Apla2Java Generator, Apla2C# Generator.

Apla modeling language is based-object abstract programming language, and it fully
supports abstract data types, which also defines common data types as predefined data

Formal Derivation and Verification of Critical Path 5

types. Apla abstract program could be translated some executable code, such as Java,
C++ by using some generator tools of PAR Platform.

Until now, our research group have already successfully applied PAR method and
PAR platform to solve lots of problem, including unified recurrence relations expression
for three kinds of binary tree traversal [5], distributed virtual reality [6], information
system [7].

In the following sections of the paper, we develop loop invariant [8] and derivate
and proof algorithm based on Dijkstra’s weakest precondition method [9, 10] and our
loop invariant development strategies of the PAR method [11]. Meanwhile, the abstract
programming language Apla [8] will be applied to write directed acyclic graph critical
path programs, all of them could be translated into executable C++ or Java program.

3 Formal Derivation of Critical Path Algorithm

This section is the main work of our paper. In this section, we formally derived and
verified the algorithmic program of DAG’s critical path.

3.1 Describing Formal Specification

W is the weight matrix of the graph, where unreachable means -1; L[i][j] records the
critical path from i to j that passes through some vertices in “1, 2,…,m”. The start vertex
of graph is labeled 1, the end vertex is labeled n, and the remaining vertices are labeled
2,3,…n-1. Introduce three variables i, j and m to represent the vertices inside the graph.
There are the pre and post assertions described by algebraic.

PRE − conditionQ : (′′i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n : L[i][j] = W[i]
[
j
]
) ∧ k = 1 (1)

POST − condition R : L[1][n] = (MAX m : 1 ≤ m ≤ n : L[1][m] + L[m][n] (2)

3.2 Dividing the Problem

For all nodes i and j, the subproblem with problem size k records the critical path from
i to j that passes through some vertices in “1,2,…,k”. The original problem of size k is
decomposed into subproblems of size k-1, then into subproblems of size k-2, and the
above steps are repeated until the subproblem of size 1.

3.3 Constructing Recursive Relation

Define the function F(k) to represent all the critical paths from i to j in the record graph
that pass through some vertices in “1,2,…,k”.

F(k) = (′′i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n : L[i]
[
j
] = (MAX m : 1 ≤ m ≤ k : L[i][m] + L[m]

[
j
]
)) (3)

F(k − 1) = (′′i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n : L[i][j] = (MAX m : 1 ≤ m ≤ k − 1 : L[i][m] + L[m]
[
j
]
))

(4)

6 Z. You et al.

Initial state:

F(1) = (′′i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n : L[i][j] = W[i]
[
j
]
) (5)

The above of expression L[i][j] = W[i][j] describe that the critical path from i to j
that does not pass through any node is equal to W[i][j].

Terminal state:

F(n) = (′′i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n : L[i][j] = (MAX m : 1 ≤ m ≤ k : L[i][m] + L[m]
[
j
]
)) (6)

The terminal expression describe that all the critical paths from i to j pass through
some vertices in “1,2,…,n”.

Based on the relationship (3) and relationship (4), we derive the recursive relation
as follow.

F(k) = max
(
F(k − 1), L[i][k] + L[k]

[
j
])

(7)

3.4 Writing Radl Algorithm

Radl (Recurrence-base algorithm design language) is a custom generic statute and algo-
rithm description language. Its main function is to describe the statute of the problem,
transformation rules and description for the algorithm, consisting of two parts: algorithm
statute language and algorithm description language. According to the recursive relation,
we divide recursive relation the algorithm as follows.

Radl algorithm
ALGORITHM: critical_path

{|[var i, j, k:integer]|Q R }

BEGIN: k=1++1; i=1++1; j=1++1;

(∀i,j: 1≤i≤n 1≤j≤n:L[i][j]=MAX(m, 1≤m≤k: L[i][m]+L[m][j]))

TERMINATION:k=n

RECUR F(k)= max(F(k-1), L[i][k]+L[k][j])

END

3.5 Developing Apla Program

The Apla programming language of PAR is an abstract programming language with
a generalization mechanism that enables algorithmic program formal development of
algorithmic programs. Based on the formal derivation above, we use Apla to design an
algorithm for critical path.

Formal Derivation and Verification of Critical Path 7

Apla Program Code
program Critical_Path;

const n=8; var i,j,k:integer; W, L:array[0..n,array[0..n,integer]];

begin

writeln("Input adjacency matrix values");

i:=1;

do i≤n→j:=1; do j≤n →read(W[i][j]);L[i][j]:=W[i][j]; j:=j+1; od;

i:=i+1;

od; k:=1;

do k≤n → i:=1;

do i≤n→j:=1;

do j≤n →if (L[i][j]<L[i][k]+L[k][j])→

L[i][j]:=L[i][k]+L[k][j]; fi; j:=j+1;

od; i:=i+1;

od; k:=k+1;

od;

writeln("Critical path length:",L[1][n]);

end.

4 Formal Verification of Critical Path Algorithm

PARcan derive the loop invariant with the help of the new definition of the cycle invariant
and two new strategies. High-efficiency and correctness are two features of algorithmic
program.

4.1 Developing Loop Invariants

A loop invariant is generally considered to be “a predicate that is true before and after
each execution of the loop”. The development of loop invariants is a key technique for
formal program derivation and correctness proofs, and is one of the most creative efforts
in the field of algorithmic programming. The PAR approach proposes a new definition
of loop invariants and new strategies for developing loop invariants [11].

Definition 4.1 [for the loop invariant]
Given loop DO and its set A of all loop variables. An assertion which reflects variation
law of each element of A, and is invariably true before and after each iteration is called
invariant loop DO.
Strategy 4.1 [for the existing algorithmic program]
Based on the Verification Conditions of Loop Program Correctness, investigate the pre-
conditionQ(A) of the loop and assertion R(Y)AND R(X)AND R(Z)ANDNOT B on the
termination, analyze background knowledge, mathematical properties of the problem to
be solved by the program and the properties of the program itself, describe the variation
laws of all loop variables by induction reasoning. The laws are needed loop invariants.
Strategy 4.2 [for not developed algorithmic program]
Investigate the pre and post condition as well as the mathematical properties of the
problem, use the design techniques of efficient algorithm to determine general strategy
of solving the problem (in most cases, to determine the recurrence relation of problem-
solving sequence) and all needed variables, describe the variation laws of each variable.

8 Z. You et al.

The laws are needs loop invariants; if the number of the sub-solutions in the recurrence
relation is more than 1, one sequence variable which will be used as a stack or a set
variable must be added and content of the sequence is defined recursively.

Based on the above strategy, we can easily derive the loop invariant ρ and boundary
function τ.

{ ρ (∀m:1≤m≤k: F(m)=max(F(m-1), L[i][m]+L[m][j]))}

{ τ: n-k+1 }

4.2 Verifying Correctness of the Loop Statements in the Apla Program

Because there is do statement in the program, in order to prove {Q}do{R} is right, five
theorems’ expressions of Dijkstra’s weakest precondition to prove loop statement should
be verified.

Theorem-WP1:Q ⇒ ρ;
Theorem-WP2:ρ∧C => WP(“S”, ρ);
Theorem-WP3:ρ∧¬Guard ⇒ R;
Theorem-WP4:ρ∧Guard ⇒ τ>0;
Theorem-WP5:ρ∧Ci ⇒ WP (“τ1:=τ;S” ,τ<τ1);

(1) Proving Theorem-WP1

Formal Derivation and Verification of Critical Path 9

(2) Proving Theorem-WP2

(3) Proving Theorem-WP3

(4) Proving Theorem-WP4

10 Z. You et al.

(5) Proving Theorem-WP5

5 Conclusion and Future Work

The dynamic programming method is a common algorithm design technique for solving
optimization problems. The solution of the critical path problem satisfies the optimality
principle, so it can be solved by the dynamic programming method, but the dynamic
programming solution relies on the programmer’s creative mind, and the PAR method
solves the process with the idea of formal derivation and verification. The article [12]
represent an approach for the transformational development of efficient imperative net-
work algorithms is presented which is based on Möller’s algebra of formal languages. It
contains a very flexiblemethodology that contemplates the description of a rather general
derivation method. However, it does not have a unified formal method for derivation to
improve efficiency, and there is no verification of the algorithm to guarantee its correct-
ness. Kourie’s program development [3] starts with formal statutes of the problem and
gradually refining the statutes into code. The difficulty of its derivation process is that
the derivation of these algorithms is based on loop invariants whose loop invariants are
obtained by speculation at the beginning of the derivation. However, the development
of loop invariants is a difficult aspect of loop programs [13].

The main purpose of this paper is to derive and verify the algorithm for the critical
path of DAG by using PAR method and Dijkstra’s weakest precondition method. It is
evidenced that developing a loop invariant by using our PARMethod has the advantages
of improving the efficiency and reliability of critical path algorithm.This paper is a typical
useful application of PAR in solving dynamic programming. ThePARmethod can also be
extended to solve other dynamic programming problems such as matrix concatenation
problem, longest common subsequence problem, knapsack problem, optimal binary
search tree problems. In the near future, the Isabelle Theorem Prover can be used to
assist the verification and reduce the workload of manual proofs.

Acknowledgement. This work was funded by Projects of Jiangxi Provincial Nature Science
Foundation (Grant No.20212BAB202018), Provincial Virtual Simulation Experiment Education
Project of JiangxiEducationDepartment (GrantNo.2020–2-0048) and theScience andTechnology
Research Project of Jiangxi Province Educational Department (Grant No. GJJ210333).

Formal Derivation and Verification of Critical Path 11

References

1. Michael, J.B., Dinolt, G.W., Drusinsky, D.: Open questions in formal methods. Computer
53(5), 81–84 (2020)

2. Malde, K., Giegerich, R.: Calculating PSSM probabilities with lazy dynamic programming.
J. Funct. Program. 16(1), 75–81 (2006)

3. Derrick, G. Bruce, W.: The Correctness-by-Construction Approach to Programming.
Springer, Berlin, Heidelberg (2012)

4. Xue, J.: A unified approach for developing efficient algorithm of programs. J. Comput. Sci.
Technol. 12(4), 314–329 (1997)

5. You, Z., Xue, J., Zuo, Z.: Unified formal derivation and automatic verification of three binary-
tree traversal non-recursive algorithms. Cluster Comput. 19(4), 2145–2156 (2016)

6. Zhen, Y., et al.: A multiplayer virtual intelligent system based on distributed virtual reality.
Int. J. Pattern Recogn. Artif. Intell. 35(14), 2159050, 1–21 (2021)

7. Xue, J., Cheng, Z., Yang, Q.: Methodology and platform of IS code generation. In: ICBDM
2020: 2020 International Conference on Big Data in Management, pp. 49–57 (2020)

8. Jinyun, X.: PAR method: abstract programming language apla. Technical report. Key Labo-
ratory of high performance computing technology. Jiangxi Normal University (in Chinese)
(2001)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
10. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, New

York (1989)
11. Jinyun, X.: Two new strategies for developing loop invariants and their applications. J.

Comput. Sci. Technol. 8(2), 147–154 (1993). (in Chinese)
12. Durán, J.E.: Transformational derivation of greedy network algorithms from descriptive spec-

ifications. In: Boiten, E.A., Möller, B. (eds.) Mathematics of Program Construction. MPC
2002. Lecture Notes in Computer Science, vol. 2386, pp. 40–67. Springer, Berlin, Heidelberg
(2002). https://doi.org/10.1007/3-540-45442-X_5

13. Si, X. Dai, H., Raghothaman, M.: Learning loop invariants for program verification. Neural
Inf. Process. Syst. (2018)

14. Fowler, M., Kraemer, E., Sitaraman, M.: Tool-aided loop invariant development: insights into
student conceptions and difficulties. In: ITiCSE 2021: 26th ACM Conference on Innovation
and Technology in Computer Science Education, pp. 387–393. ACM (2021)

https://doi.org/10.1007/3-540-45442-X_5

An Approach of Transforming Non-Markovian
Reward to Markovian Reward

Ruixuan Miao1, Xu Lu1(B), and Jin Cui2

1 Institute of Computing Theory and Technology and State Key Laboratory of Integrated
Services Networks, Xidian University, Xi’an, People’s Republic of China

xlu@xidian.edu.cn
2 School of Computer Science, Xi’an Shiyou University, Xi’an, People’s Republic of China

Abstract. In many decision-making problems, a rational reward function is
required, which can correctly guide agents to make ideal operations. For example,
an intelligent robot needs to check its power before sweeping. This kind of reward
functions involves historical states, rather than a single current state. It is referred
to as non-Markovian reward. However, state-of-the-art MDP (Markov Decision
Process) planners only support Markovian reward. In this paper, we present an
approach to transform non-Markovian reward expressed in LTLf (Linear Tempo-
ral Logic over Finite Traces) into Markovian reward. LTLf is converted into an
automaton which is compiled to standard MDP model. Then the reward function
of the model is further optimized through reward shaping in order to speed up
planning. The reshaped reward function can be exploited by MDP planners to
guide search and produce good training results. Finally, experiments with aug-
mented International Probabilistic Planning Competition (IPPC) domain demon-
strates the effectiveness and feasibility of our approach, especially the reshaped
reward function can significantly improve the performance of planners.

Keywords: Non-Markovian Reward · Reward Shaping · MDP · Temporal Logic

1 Introduction

Markov Decision Process (MDP) is now widely accepted as the preferred model for
decision-theoretic planning problems. In MDP, agents typically receive positive and
negative rewards based on their current state. For example, an intelligent robot needs
to check its power before sweeping whenever receiving a sweeping command. The
rewards of a decision process depend on the sequence of states rather than the current
state is called Non-Markovian Reward Decision Process (NMRDP). An NMRDP can be
specified by many kinds of formal languages such as temporal logics. Linear Temporal
Logic (LTL) over infinite traces is originally proposed in Computer Science and used

This research is supported by National Natural Science Foundation of China (61806158); China
Postdoctoral Science Foundation (2019T120881, 2018M643585); Fundamental Research Funds
for the Central Universities (XJS220304); Special scientific Research Project of Education
Department of Shaanxi Province (21JK0844)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 12–29, 2023.
https://doi.org/10.1007/978-3-031-29476-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_2

An Approach of Transforming Non-Markovian Reward to Markovian Reward 13

in formal verification. As a variant of LTL, LTL over Finite Traces (LTLf) is a formal
language which is more attractive in AI scenarios focusing on finite behaviors, such as
planning, plan constraints and user preferences [1]. Here we use LTLf to specify non-
Markovian rewards. Moreover, LTLf formulas can be transformed to corresponding
Deterministic Finite Automata (DFA) theoretically.

In MDP, the goal is to find the best solution to maximize the rewards. RDDL (Rela-
tional Dynamic Diagram Language) is designed to compactly support the representation
of awide range of relationalMDPand efficient simulation of these problems [2]. It is well
suited to design domains of MDP that are probabilistically complex. Current state-of-
the-art MDP planners are based on heuristic search and variants of the upper confidence
bounds applied to trees (UCT) algorithm [2]. However, these planners struggle with non-
Markovian reward since they only support traditional Markov property. Non-Markovian
rewards do not provide sufficient guidance for these planners, thus causing relatively
myopic lookahead. Back to the example of sweeping robot, traditional probabilistic
planning systems can generate good-quality solutions to MDP described by RDDL [2].
However, they cannot make sure a solution conforming to the correct order of actions
sweeping and checking its power.

Previous work proposes Truncated Linear Temporal Logic (TLTL) as a specification
language to specify complex rules the robot should follow. The work also proposes a
RL approach to learn tasks expressed as TLTL formulae that generates a reward func-
tion towards fulfilling that specification. The proposed RL approach is demonstrated
in a toast-placing task learned by a Baxter robot [3]. Reward Machine is a type of
finite state machine that supports the specification of reward functions while exposing
reward function structure to the learner and supporting decomposition. Recent study
proposes Q-Learning for Reward Machines (QRM), which appropriately decomposes
the RewardMachine and uses off-policy Q-learning to simultaneously learn sub-policies
for the different components. QRM can exploit a Reward Machine’s internal structure
to decompose the problem and improve sample efficiency. In that study, experiments
in three domains demonstrate that QRM can be effectively applied in both discrete and
continuous environments and can find optimal policies in cases [4].

Our concern in the paper is to specify and effectively exploit non-Markovian rewards
in MDP. Our contribution is: we propose a novel approach to transform non-Markovian
rewards specified by LTLf to Markovian rewards, and the former is converted into DFA
in advance. Moreover, we use reward shaping techniques based on DFA in order to
improve the efficiency of reinforcement learning. We demonstrate the feasibility of the
approach by providing empirical evaluations on the International Probabilistic Planning
Competition (IPPC) benchmark domains.

The remainder of the paper is organized as follows: we introduce the mathematical
definitions used in this paper in Sect. 2. In Sect. 3, we present an approach of transform-
ing non-Markovian rewards to Markovian rewards. In Sect. 4 we provide experimental
results with detailed analysis to show the feasibility of our approach. Finally, Sect. 5
concludes with remarks about future work.

14 R. Miao et al.

2 Background

2.1 Linear Temporal Logic Over Finite Traces

LTL Is a compelling language which provides an intuitive but accurate representation for
expressing temporal properties over infinite sequences of states [11]. LTLf is a variant of
LTL and concentrates on expressing temporal properties over finite sequence of states.
Let Prop be the set of propositions. An LTLf formula ϕ is defined as follows:

ϕ :=True|False|p|¬ϕ|ϕ1 ∧ ϕ2|Oϕ|ϕ1Uϕ2

where p ∈ Prop is an atomic proposition, O (next) and U (until) are temporal operators.
LTLf is extended with the modality final to specify properties that hold in the final state
of the trace. Other propositional and temporal operators are derived on the basis. For
example, ♦ (eventually), � (always), R (release) and • (weak-next) defined by:

♦ϕ ≡ TUϕ

�ϕ ≡ ¬ϕ♦¬ϕ

ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2)

•ϕ ≡ final ∨ Oϕ

LTLf are interpreted over finite traces of propositional states, σ = s1...sn, where
each si is a set of propositions that are true in si. We say that σ satisfies LTLf formula
ϕ, denoted σ |� ϕ, when σ, 0 |� ϕ, where:

σ, i |� True, every state satisfies True.
σ, i |� False, every state falsifies False.
σ, i |� p, for each p ∈ Prop iff si |� p.
σ, i |� ¬ϕ iff σ, i |� ϕ does not hold.
σ, i |� ϕ1 ∧ ϕ2 iff σ, i |� ϕ1 and σ, i |� ϕ2.
σ, i |� Oϕ iff i < n and σ, (i + 1) |� ϕ.
σ, i |� ϕ1Uϕ2 iff there exists a i ≤ j ≤ n such that σ, j |� ϕ2, and σ, k |� ϕ1, for

each i ≤ k ≤ j.
We explain the meaning of the basic temporal operators below.
➀ Oϕ says that ϕ holds at the next instant.
➁ ϕ1Uϕ2 says that at some future instant ϕ1 will hold and until that instant ϕ2 holds.
➂ ♦ϕ says that ϕ will eventually hold before the last instant.
➃ �ϕ says that from the current instant till the last instant ϕ will always hold.
➄ •ϕ says that ϕ need to hold in the next instant if such next instant exists.
➅ ϕ1Rϕ2 says that ϕ2 must be true until and including the instant where ϕ1 first

becomes true; if ϕ1 never becomes true, ϕ2 must remain true.

An Approach of Transforming Non-Markovian Reward to Markovian Reward 15

2.2 Markov Decision Process

MDP is a classical mathematical description of sequential decision problems. It is
widely used in applications where an autonomous agent is influencing its surrounding
environment through actions [5].

An MDP is a tuple M =< S,A,P,R,T , γ, s0 >, where S is a finite set of states; A
is a finite set of actions; P(s, a, s′) is the probability of reaching s′ from the state s by
applying the action a; R : S × A × S → R is a reward function; T ∈ N is the horizon;
γ ∈ (0, 1] is the discount factor; s0 ∈ S is the initial state. The state transitions of an
MDP satisfy the Markov property which is defined as follows:

Prob[st+1|st] = Prob[st+1|s1 . . . st]
where st ∈ S is a state at instant t. This definition means that the next state depends only
on the current state.

A stationary policy for an MDP is a function π : S → A, where π(s) ∈ A is the
action to be executed in state s. The value of the policy in state s at instant t, noted Vπ (s),
is the sum of the expected future rewards over the horizon T − t, discounted by how far
into the future they occur:

Vπ (s) = E[
T−1∑

i=t

γ tR(st, π(st), st+1)|st = s]

In MDP, the value of a policy π is the value Vπ (s0), and the larger this value, the
better the policy [6]. An optimal policy for an MDP over horizon T with initial state s0
satisfies π∗ = argmaxπVπ (s0).

The purpose of solving MDP is to choose the optimal policy π that will maximize
the sum of rewards. There are many MDP planners which can generate good-quality
solutions such as mGPT [7], PILOT [8], PROST [9] and A2C-Plan [10]. Among these,
PROST is one of the most famous MDP planners, which is a Monte-Carlo sampling
algorithm based on UCT and heuristic search. PROST can compute which action to take
in the current state, execute that action and update the current state according to the
outcome. The input language of Prost is RDDL.

2.3 Deterministic Finite Automata

In the theory of computation, a branch of theoretical computer science, DFA is a finite-
state machine that accepts or rejects a given string of symbols, by running through a
state sequence uniquely determined by the string [12]. Upon inputting a symbol, a DFA
jumps deterministically from one state to another by transition.

Definition: A DFA is a tuple Aϕ =< Q, �, δ, q0,F >, where Q is a finite set of states;
� is a finite set of input alphabet; δ : Q × � → Q is a transition function; q0 ∈ Q is an
initial state of DFA; and F ⊆ Q is a set of accepting states of DFA. Let σ = s1s2...sn
be a string over the alphabet �. The automaton Aϕ accepts the string σ if a sequence of
states q0q1...qn exists in Q with the following conditions:

16 R. Miao et al.

1. qi+1 = δ(qi, si+1), fori = 0, 1, ..., n − 1
2. qn ∈ F

In words, the automaton Aϕ starts at the initial state q0. The first condition says that
given each character of string σ , Aϕ will transform from state to state according to the
transition function δ. The second condition says that the last input of the string σ causes
the automaton to halt in one of the accepting states. Otherwise, the automaton Aϕ rejects
the string σ .

3 Transforming NMRDP to MDP

3.1 Non-Markovian Reward

Compared with Markov reward, the only difference of non-Markovian reward is that
the reward function of non-Markovian reward is determined by a series of historical
states. Therefore, we define NMRDP to generalize the MDP model by allowing reward
functions to describe the history of visited states [13].

Definition: An NMRDP is a tuple M =< S,A,P,R,T , γ, s0 >, where S, A, P, T , γ
and s0 are the same as MDP. The only difference is that the reward function of NMRDP
is R : S∗ → R, where S∗ is a sequence of states. The function says that non-Markovian
reward (which is a real number) is determined by a sequence of states.

In this paper, we use a group of pairs R = {(ϕi : ri)|1 ≤ i ≤ n} to describe the
reward function of NMRDP, where each ϕi is an LTLf formula and eachri ∈ R, resulting
in Temporally-Extended Reward Function (TERF) [14].

Example 1: We will show a TERF as an example. Suppose that there is a robot who
needs to check whether the electricity is sufficient before sweeping the floor. The corre-
sponding TERF is defined as (ϕ : r). We can define the reward r as 100 and such task
can be expressed by LTLf formula:

ϕ = (♦sweep) ∧ (¬sweep U check_electricity)

The key idea of the approach is to transform NMRDP M with TERF R = {(ϕi :
ri)|1 ≤ i ≤ n} to MDP M

′
based on DFA. The approach comprises three steps.

Step1. Transform Each ϕi of TERF into a DFA Aϕ .
Step2. Construct an MDP M

′
from NMRDP M and the DFA Aϕ .

Step3. Optimize the reward function of MDP M
′
.

In what follows, we elaborate on each step using the example of sweeping robot.

An Approach of Transforming Non-Markovian Reward to Markovian Reward 17

3.2 Transforming each ϕi of TERF into a DFA

In step 1, we transform each tuple (ϕ : r) in TERF into a tuple (Aϕ : r), where Aϕ is a
DFAcorresponding toLTLf formulaϕ. The approach can alsowork for rewards specified
by other dialects of LTL with finite semantic models, where there is a corresponding
automata representation. For example, PLTL can be transformed to NBA (that can be
determined to a DFA) [15].

Example 2: As defined
in Example 1, TERF is (ϕ = (♦sweep) ∧ (¬sweep U check_electricity) : 100). We
can construct a DFA forϕ, which is shown as follows:

Fig. 1. DFA for ϕ

Automata states are represented by nodes, and transitions are represented by arcs in
the figure. The double-ringed node indicates the accepting state. From Fig. 1, we can
see that state q4 is an accepting state. Moreover, once state q3 holds there is no chance
to transfer to state q4, hence state q3 is an error state. If the final state of a sequence of
states is state q4, then ϕ is satisfied.

3.3 Constructing an MDP from TERF and DFA

In step 2, we construct an MDP by augmenting extra propositions with respect to DFA,
making it possible for the reward functions to becomeMarkovian. In the compiledMDP,
each state in DFA corresponds to an extra proposition, which reflects the changes of the
states of DFA. We should note that there are two groups of propositions in the generated
MDP, the propositions generated by the automata states and the original propositions of
NMRDP. The other thing we need to do is to compile the reward function into an MDP
model. Table 1 contains technical details of the compilation.

18 R. Miao et al.

Table 1. Details of the Compilation

Original NMRDP Compiled MDP

Initial
state

s0 s
′
0 =
s0 ∪ ⋃

(ϕ:r)∈R{fq0 |q0 is the initial state of DFA}
Successor
state
axioms

next(p) ↔ (�+
p) ∨ (p ∧ ¬�−

p) next(p) ↔ (�+
p) ∨ (p ∧ ¬�−

p)

next(fq) ↔ (�+
fq

) ∨ (fq ∧ ¬�−
fq

)

Reward
function

R = {(ϕi : ri)}i=1...n R
′ = ∑

(ϕ:r)∈R
∑

q∈Aϕ∧ q is accepting stateriτfq

Discount
factor

γ γ

Horizon T T

Dynamics of the compiled MDP is based on those of the original NMRDP. For each
q ∈ Aϕ , where Aϕ is the DFA of ϕ in the pair (ϕ : r), we introduce a proposition fq. p
is a propositional variable and next(p) indicates the truth value of p in the next instant.
Likewise, next(fq) is the truth value of fq in the next instant. The function �+

p and �+
fq

(resp. �−
p and �−

fq
) are propositional formulas describing the conditions under which p

and fq are made true (resp. false). On one hand, �+
p makes p true in the next instant. On

the other hand, when p is true and �−
p dose not hold, p is true in the next instant. Finally

in the definition of R
′
, which is the reward function of MDP, τfq is the indicator function

which evaluates to 1 when fq is true, and 0 otherwise.
In the compiled MDP, the execution of actions simulates the stochastic transition

model in NMRDP to update the proposition p. Meanwhile the propositions representing
the states of DFAs are updated to simulate the transitions of each automatonAϕ . Then the
agent collects rewards upon satisfaction of each LTLf formula ϕ in the compiled MDP
(agent gets rewards when reaching any accepting state of automaton Aϕ). The discount
and the horizon remain the same as NMRDP. In each step, the original propositions have
the same changes in NMRDP and MDP.

Example 3: We construct an MDP M
′
from the DFA shown in Example 2. There are

four introduced propositions {fq1, fq2 , fq3 , fq4} corresponding to the four nodes (fq1 is
in the initial state). The successor state axioms for the four propositions are defined as
follows:

next(fq1) ↔ (f q1 ∧ ¬check_electricity ∧ ¬sweep)

next(fq2) ↔ (
fq1 ∧ check_electricity ∧ ¬sweep

) ∨ (
fq2 ∧ ¬sweep

)

next(fq3) ↔ (fq1 ∧ sweep ∧ ¬check_electricity) ∨ fq3

An Approach of Transforming Non-Markovian Reward to Markovian Reward 19

next(fq4) ↔ (fq1 ∧ check_electricity ∧ sweep) ∨ (fq2 ∧ sweep) ∨ fq4

We can simply define the reward function as R = 100τfq4 . In this example, the
solution of the agent is to check the power before sweeping the floor, so the state transition
order of DFA should be q1 → · · · → q1 → q2 → · · · → q2 → q4 or q1 → · · · →
q1 → q4.

3.4 Optimizing the Reward Function of MDP

When the size of the DFA is large, the corresponding compiled MDP model is also
large. Therefore, it is difficult for an MDP planner to solve that model. Reward
shaping is a common technique in MDP which aims to improve searching by trans-
forming the reward function [11]. The transformed reward functions have the form:
R

′
(s, a, s

′
) = R(s, a, s

′
) + F(s, a, s

′
), where R is the original reward function and F is

the shaping reward function. The intuition behind reward shaping is that by increasing
(resp. Decreasing) the rewards in states that lead to other high-value (resp. Low-value)
states, MDP planners can generate good-quality solutions.

We can guide agents by defining reshaping functions in order to increase the effec-
tiveness of search and the quality of solutions. Nevertheless, some arbitrary shaping
reward functions that can take some “bugs” may mislead the agent into learning sub-
optimal policies. For example, if there is a sequence of states s1...sn that can make
the agent travel through them in a cycle (s1 → s2 → · · · → sn), and gain positive
rewards from the sum of shaping reward functions (F(s1, a1, s2)+F(s2, a2, s3)+· · ·+
F(sn−1, an−1, sn)+F(sn, an, s1)) > 0, the agent may “distracted” from the optimal pol-
icy and repeatedly go round the circle. In what follows, we introduce a shaping reward
function:

F
(
s, a, s

′) = γρ
(
s
′) − ρ(s)

where ρ : S → R is the potential function of state s; γ is the discount factor of MDP; s
is a state of MDP; s

′
is the next state of s after applying a; a is an action of MDP.

If F(s, a, s
′
) is chosen from a restricted class of potential-based shaping reward

functions defined as F(s, a, s
′
) = γρ(s

′
) − ρ(s), then this guarantees preservation

of optimal and near-optimal policies [16]. The reason why the preservation of near-
optimality is desirable since it provides guarantees for suboptimal solutions obtained by
state-of-the-art heuristic search approximate approaches.

For the structure of the compiledMDP,we can exploit the propositions corresponding
to DFA to design shaping reward functions. Concretely, the potential function ρ(s) is
decomposed to the sum of potential functions β : Prop → R of fq (which holds in s).
Then ρ(s) has the form as follows:

ρ(s) =
∑

fq∈s,,q∈Qβ(fq)

Because two consecutive states are used in the shaping reward function F(s, a, s
′
),

we need to record the values of the automata propositions in the previous instant. Accord-
ingly, we augment the compiled MDP with additional propositions prev_fq for each fq.

20 R. Miao et al.

The value of prev_f q is updated with respect to the successor state axioms:

next(prev_f q) ↔ fq

Therefore, the shaping reward function can be instantiated into the following form:

F
(
s, a, s

′) = γ
∑

fq∈s,q∈Qβ
(
fq

) −
∑

prev_f q∈s,q∈Q
β
(
prev_f q

)

Example 4: In the example of the sweeping robot, the potential function β serves posi-
tive rewards when fq2 or fq4 hold and serves negative reward when fq3 holds.We can opti-
mize the reward function by assigning potentialsβ(fq1) = 0,β(fq2) = 50,β(fq3) = −50,
β(fq4) = 100. The closer to the accepting state, the higher the potential value. We can
get the reward function after reward shaping:

R
′ = 100τfq4 + γ (50τfq2 − 50τfq3 + 100τfq4) − (50τprev_f q2 − 50τprev_f q3 + 100τprev_f q4)

4 Empirical Evaluation

In this section, we show the feasibility of the approach through experiments over MDP
problems from IPPC. We replace the Markovian rewards by TERFs and use differ-
ent configurations of PROST as the MDP planner including IPPC 2011, IPPC 2014
and UCTSTAR. Experiments are conducted on a laptop running Ubuntu 20.04 (virtual
machine) on an Intel(R) Core (TM) i7-8570H CPU 2.20GHZ and 8GB of RAM. The
upper bound of used memory for PROST is 250Mb. We set the number of training trials
to 30.

The literature [11] also provides an approach to achieve non-Markovian rewards by
embedding it into MDPmodel. It transforms the non-Markovian rewards to correspond-
ing DFA and add propositions to simulate the transitions of DFA. The main difference
between their approach and ours is the embedding method. It divides each time step
into three modes: world , sync and reward . In world mode, an action from the NMRDP
is applied. In sync mode, the automata states are synchronized according to the transi-
tions of the automata, and the assignment of reward is delayed to reward mode. Three
additional propositions control the alternation among three modes.

4.1 Academic Advising

Problem Description
Wemodify the academic-advising domain from benchmarks of IPPC. This problem is to
train the agent to pass courses in a correct order. Some of these courses have prerequisite
courses, and the pass of prerequisite courses will increase the probability of the pass of
these courses. In addition, some of these courses are required to be passed. The agent’s
action is taking a course. It can select several courses in an instant, and the number
of selected courses is determined by the maximum number of actions. After a course

An Approach of Transforming Non-Markovian Reward to Markovian Reward 21

is selected, it has a certain probability to pass. The agent’s task is to pass all required
courses within a finite horizon and must pass all corresponding prerequisite courses
before passing them. From this problem description we can get a non-Markovian reward
function for each required course specified by LTLf formula:

ϕc = ♦(passed(c)) ∧ �(
∧

c′ (taken(c) ∧ prereq(c
′
, c)) → passed(c

′
))

where c is a required course, prereq(c
′
, c) holds when course c

′
is the prerequi-

site of course c. The agent is given a reward upon the completion of a required
course in the correct order of its prerequisite courses. We define the TERF as
{(ϕc : 1)|c is a required course}.

Experimental Process
DFA Transformation: The first step of this approach is to convert the LTLf formula ϕc

to DFA which is shown in Fig. 2:

Fig. 2. DFA for ϕc

From Fig. 2, we can see that the state q3 is an accepting state and the state q1 is the
initial state. moreover, once state q2 holds there is no chance to transfer to state q3, hence
state q2 is an error state. The only correct state transition process of the DFA should be
q1 → · · · → q1 → q3.

Constructing MDP: For all states of DFA ϕc, we add three propositions f cq1 , f
c
q2 and

f cq3 . Following the compilation rules, we can get the successor state axioms of three
propositions for each course from ϕc.

next(f cq1) ↔ f cq1 ∧ (¬passed(c) ∧
∧

c
′
for prereq(c′

,c)
taken(c) → passed(c

′
))

next(f cq2) ↔ (f cq1 ∧ (taken(c) ∧
∨

c′ forprereq(c′
,c)

¬passed(c
′
))) ∨ f cq2

∨ (f cq3 ∧ (taken(c) ∧
∨

c′ for prereq(c′
,c)

¬passed(c
′
)))

next(f cq3) ↔ (f cq1 ∧ (passed(c) ∧
∧

c′ forprereq(c′
,c)

(taken(c) → passed(c
′
))))

22 R. Miao et al.

∨ (f cq3 ∧ (¬taken(c) ∨
∧

c′ for prereq(c′
,c)
passed(c

′
)))

The reward function is defined as:

R =
∑

c is a required course
τf cq3

Optimizing reward function: According to our approach, three propositions
{prev_f cq1, prev_f

c
q2 , prev_f

c
q3} for each course c need to be augmented.We can optimize

the reward function by assigning potentials β(f cq1) = 2, β(f cq2) = −50, β(f cq3) = 50.
Then we can define the shaping reward function as:

R
′ =

∑
c is a required course

τf cq3
+ γ (2τf cq1 − 50τf cq2

+ 50τf cq3) − (2τprev_f cq1 − 50τprev_f cq2 + 50τprev_f cq3)

Evaluation of Experimental Results
In this experiment we conduct with several modified instances of benchmark problems
and different configurations of PROST. Each instance is named p_N_R_C, where N
is the total number of courses, R is the number of required courses, and C is the total
number of prerequisites for all required courses. For each instance written in RDDL,
we compile the corresponding non-Markovian reward function described in the previous
subsection intoMDP. Due to the different complexity of instances, the more complex the
instance, the longer horizon, with the range between [20, 80]. The number of trails (over
30 trials) that achieved the non-Markovian reward with and without reward shaping is
shown in Table 2. The running time in seconds for each instance (over 30 trials) is shown
in Table 3.

Table 2. Experimental Results for Successful Trials

Planner Instance

IPPC 2014 IPPC 2011 UCTSTAR

No RS RS No RS RS No RS RS

p_10_3_6 30 30 30 30 30 30

p_10_7_15 29 30 29 30 28 30

p_15_4_3 29 30 29 30 27 28

p_15_7_16 3 30 2 29 1 27

p_20_8_14 2 26 2 28 0 27

p_20_10_23 0 27 0 27 0 26

(continued)

An Approach of Transforming Non-Markovian Reward to Markovian Reward 23

Table 2. (continued)

Planner Instance

IPPC 2014 IPPC 2011 UCTSTAR

No RS RS No RS RS No RS RS

p_25_8_15 0 28 0 26 0 28

p_25_9_22 0 27 0 27 0 27

p_30_11_19 0 26 0 28 0 27

Table 3. Experimental Results for Running Time

Instance Planner

IPPC 2014 IPPC 2011 UCTSTAR

No RS RS No RS RS No RS RS

p_10_3_6 349.9 347.9 351.4 348.8 346.2 344.3

p_10_7_15 290.2 262.2 292.6 264.7 277.0 271.4

p_15_4_3 481.4 473.9 479.2 473.1 488.4 477.9

p_15_7_16 513.4 468.4 474.0 465.9 492.3 471.5

p_20_8_14 1073.6 1035.6 1077.2 1040.8 1062.7 1041.3

p_20_10_23 1029.7 964.5 1039.8 966.9 1001.8 961.1

p_25_8_15 2217.8 2152.4 2267.1 2144.8 2280.6 2155.7

p_25_9_22 2318.0 2187.6 2389.8 2190.3 2339.6 2191.5

p_30_11_19 2322.9 2189.7 2344.6 2192.4 2403.5 2194.4

The first column of the Table 2 and Table 3 lists all instances. Each row records
the number of successful trails of the corresponding instance by different planners. The
results are divided into two groups, with or without reward shaping (No RS and RS).
Better results aremarked in bold for each planner. InTable 2, since the first three instances
are relatively simple, the successful trails are all close to 30. However, for other complex
instances, the success rate is very low (zero or near zero) without reward shaping, while
the successful trails with reward shaping are all close to 30.

We can see that the state-of-the-artMDP planners struggle to generate good solutions
in the compiled MDP without reward shaping. They are only able to solve the instances
that are relatively simple. The lack of guidance causesMDP planners myopic lookahead.
We note that there is an abrupt decrease in the performance for complex instances since
the size of compiled MDP is large. Without reward shaping, MDP planners are forced
to expand a large-size search tree for compiled MDPs, either the restricted memory is
run out or search depth exceeds the horizon. Moreover, due to the fact that planners
can only obtain rewards when the proposition representing the accepting state holds,
and the look ahead cannot serve any useful information (close to blind search). Reward

24 R. Miao et al.

shaping can provide guidance (immediate rewards) for planners when DFAs transform
from one state to another. The closer a state to (resp. far away) an accepting state, the
more positive (resp. negative) rewards are obtained. Therefore, these rewards can serve
abundant information to make planners achieve the non-Markovian reward.

In Table 3, the running time of RS is shorter than No RS for all instances. As the
complexity of the instance becomes higher, the running time is shortened even more.We
can infer that RS is helpful for guiding the search. In general, the average running time
is reduced by 4.97% for IPPC 2014, 4.88% for IPPC 2011 and 3.95% for UCTSTAR.

Table 4. Experimental Results for Different Approaches

Instance Approach

IPPC 2014

Running Time (s) Successful Trials Length

A1 A2 A1 A2 A1 A2

p_10_3_6 347.9 459.9 30 30 6.6 11.4

p_10_7_15 262.2 366.8 30 27 12.7 13.1

p_15_4_3 473.9 525.9 30 27 9 15.2

p_15_7_16 468.4 798.9 30 27 22.1 25.6

p_20_8_14 1035.6 1154.5 26 26 28.9 33.2

p_20_10_23 964.5 1119.5 27 24 22.4 26.5

p_25_8_15 2152.4 2336.4 28 25 35.1 41.89

p_25_9_22 2187.6 2467.9 27 0 39 ×
p_30_11_19 2189.7 2458.1 26 0 43.2 ×

Finally, we compare our approach (A1) with that of [11] (A2) in Table 4. The column
“Length”means the average length of the solutions in 30 trials. The selectedMDPplanner
is IPPC 2014. Compared to A2, A1 does not need to divide each time step into three
different modes. Therefore, the horizon and the solutions of A2 are both tripled so that
the search tree is far larger to a great extent. Although A2 has triple horizon, only one
third of actions (which are applied in world mode) are related to the solution. Other
actions are used to synchronize the transitions of DFA and assign the reward. Table 4
compares running time, successful trials and quality of solutions for A1 and A2. For all
instances, the experimental results of A1 are better than A2. In the last two instances, the
excessively long horizon prevents the planner from finding the solutions via A2, hence
the step of solutions is marked as ×. But the successful trials for A1 are still close to
30. The running time of A1 is 178.41 s less than that of A2 on average. Comparing the
quality, the average length of solutions for A2 is 4.17 steps more than that for A1.

Remarkably, the successful trials are increased and running time is decreased after
optimizing the reward function. Hence reward shaping can enhance the performance
of MDP planners to achieve the non-Markovian reward. Furthermore, our approach is
better than [11] in the metrics of running time, successful trails and quality of solutions.

An Approach of Transforming Non-Markovian Reward to Markovian Reward 25

4.2 Triangle Tireworld

Problem Description
Weconduct second experimentwith amodification of the triangle-tireworld domain from
[17]. The basic idea is that a car can move between different kinds of locations (white
or black) via roads, with the task being to move car from ‘start’ to ‘goal’. Moreover, the
car must move between black and white locations in turn (‘black’ to ‘white’ or ‘white’
to ‘black’) until arriving at ‘goal’. There is a chance of getting a flat tire (which need to
be fixed in the next instant) for each move. A visual representation of this problem is
shown in Fig. 3.

Fig. 3. Visual Representation of Modified Triangle Tireworld

From the problem description above we can define the non-Markovian reward
specified by LTLf formula:

ϕcar = �((black ∧ ¬goal) → O(¬black)) ∧ �((¬black ∧ ¬goal) → O(black)) ∧ ♦(goal)

where black means the car is in a black location and goal means the car has arrived at
‘goal’. We define the TERF {(ϕcar, 100)}.

Experimental Process
DFATransformation: The correspondingDFAAϕcar for ϕcar is shown as follows (Fig. 4):

Constructing MDP: We augment extra propositions {fq1 , fq2 , fq3 , fq4 , fq5} corre-
sponding to the states of Aϕcar {q1, q2, q3, q4, q5}. According to Aϕcar , the successor
state axioms of these propositions and the reward function can be defined.

next(fq1) = false

next
(
fq2

) = (fq1 ∧ ¬goal ∧ ¬black) ∨ (fq3 ∧ ¬goal ∧ ¬black) ∨ (fq4 ∧ ¬goal ∧ ¬black)

next
(
fq3

) = (fq1 ∧ goal) ∨ (fq2 ∧ goal ∧ black) ∨ (fq4 ∧ goal ∧ ¬black)

next
(
fq4

) = (fq1 ∧ ¬goal ∧ black) ∨ (
fq3 ∧ ¬goal ∧ black

) ∨ (fq2 ∧ ¬goal ∧ black)

26 R. Miao et al.

Fig. 4. DFA for ϕcar

next
(
fq5

) = (fq2 ∧ ¬black) ∨ (fq4 ∧ black) ∨ (fq5)

Rcar = 100 × τ fq3

Optimizing reward function: From Fig. 3, we note that q3 is an accepting state
and q1 is the initial state. Once q5 holds, there is no chance for Aϕcar to transform
toq3, hence q5 is an error state. The correct state transition process of the DFA should
beq1 → q2 → q4 → q2 → q4 → · · · → q2 → q4 → q3. According to our
approach, propositions {prev_fq1, prev_fq2 , prev_fq3} need to be augmented. We can
optimize the reward function by assigning potentialsβ

(
fq1

) = 0, β
(
fq2

) = 500, β
(
fq3

) =
1000, β

(
fq4

) = 500, β
(
fq5

) = 0. Then the shaping reward function can be defined as:

R
′
car = 100 × τ fq3

+ γ
(
500 × fq2 + 1000 × fq3 + 500 × fq4

)

− (500 × τprev_f q2
+ 1000 × τprev_f q3

+ 500 × τprev_f q4
)

Evaluation of Experimental Results
The planners we use are the same as the first experiment. Each instance is named p_L_R,
where L is the number of locations and R is the number of roads. There are different hori-
zons (the range is [10, 20]) for different instances. Experimental results are summarized
in Table 5, Table 6 and Table 7.

An Approach of Transforming Non-Markovian Reward to Markovian Reward 27

Table 5. Experimental Results for Successful Trials

Instance Planner

IPPC 2014 IPPC 2011 UCTSTAR

No RS RS No RS RS No RS RS

p_6_8 30 30 30 30 30 30

p_15_24 30 30 30 30 30 30

p_28_66 30 30 30 30 30 30

p_45_80 0 30 0 30 0 30

p_66_160 0 30 0 30 0 30

Table 6. Experimental Results for Running Time

Instance Planner

IPPC 2014 IPPC 2011 UCTSTAR

No RS RS No RS RS No RS RS

p_6_8 2.21 2.20 272.65 273.04 1.62 2.16

p_15_24 6.25 6.67 275.39 257.89 6.27 6.64

p_28_66 108.28 105.68 459.86 459.62 106.10 106.35

p_45_80 538.36 569.68 915.42 907.18 565.39 584.21

p_66_160 1049.7 1052.74 1477.2 1440.8 1062.7 1041.3

Table 7. Experimental Results for Different Approaches

Instance Approach

IPPC 2014

Running Time (s) Successful Trials

A1 A2 A1 A2

p_6_8 2.20 6.28 30 30

p_15_24 6.67 16.92 30 27

p_28_66 105.68 108.86 30 24

p_45_80 569.68 663.42 30 27

p_66_160 1052.74 1382.01 26 23

From Table 5, we note that PROST solve the former three instances which are
relatively simplewithout reward shapingwhile solving all instanceswith reward shaping.
Obviously, reward shaping can effectively guide search for MDP planners. In Table 7,

28 R. Miao et al.

the running time via A1 is shorter than that via A2 in all instances. In this experiment,
we do not compare the length of solutions since every instance has only one solution.

Overall, results of the second experiment are basically consistent with the first.
The comparison between RS and No RS shows that reward shaping can improve the
performance. The successful trials of RS is 30 in all instances, while that of No RS is
0 in the last two instances. But the running time of the two approaches is at the same
level. Moreover, Table 7 indicates the results of A1 are better than A2 in all instances.

5 Summary and Discussion

NMRDP provides a powerful framework for modelling decision-making problems with
historical behavior-based rewards. In this paper, we propose an approach to achieve non-
Markovian rewards which is specified by temporal logic LTLf . In particular, we propose
an embedding method to transform the non-Markovian reward into Markovian rewards
which can be solved by off-the-shelf MDP planners. Finally, we show the feasibility of
this approach through experiments over MDP benchmarks from IPPC. The proposed
approach will also work for other rewards specified in any formal language for which
there is a corresponding automata form such as finite variant of Past LTL (PLTL) [18] and
Golog [19]. In the future, we will extend our approach to deep reinforcement learning.

References

1. Li, J., Pu, G., Zhang, Y., et al.: Sat-based explicit ltlf satisfiability checking. Artif. Intell. 289,
103369 (2020)

2. Sanner, S.: Relational dynamic influence diagram language (RDDL): Language description.
Unpublished ms. Australian National University 32, 27 (2010)

3. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3834–
3839. IEEE (2017)

4. Icarte, R.T., Klassen, T., Valenzano, R., et al.: Using reward machines for high-level task
specification and decomposition in reinforcement learning. In: International Conference on
Machine Learning. PMLR, pp. 2107–2116 (2018)

5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley 2014)

6. Thiébaux, S., Kabanza, F., Slanley, J.: Anytime state-based solution methods for decision
processes with non-Markovian rewards. arXiv preprint arXiv:1301.0606, 2012

7. Bonet, B., Geffner, H.: mGPT: a probabilistic planner based on heuristic search. J. Artif.
Intell. Res. 24, 933–944 (2005)

8. Pulver, H., Eiras, F., Carozza, L., et al.: PILOT: Efficient planning by imitation learning and
optimisation for safe autonomous driving. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1442–1449. IEEE (2021)

9. Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: Twenty-Second
International Conference on Automated Planning and Scheduling (2012)

10. Geißer, F., Speck, D., Keller, T.: An analysis of the probabilistic track of the IPC 2018. In:
ICAPS 2019Workshop on the International Planning Competition (WIPC), pp. 27–35 (2019)

11. Camacho, A., Chen, O., Sanner, S., et al.: Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In: GoalsRL, a Workshop Collocated with
ICML/IJCAI/AAMAS (2018)

http://arxiv.org/abs/1301.0606

An Approach of Transforming Non-Markovian Reward to Markovian Reward 29

12. Lucas, S.M., Reynolds, T.J.: Learning deterministic finite automata with a smart state labeling
evolutionary algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1063–1074 (2005)

13. Brafman, R., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-Markovian rewards. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

14. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations: Theory
and application to reward shaping. Icml 99, 278–287 (1999)

15. Sohrabi, S., Baier, J.A., Mcilraith, S.A.: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence Preferred Explanations: Theory and Generation via Planning (2014)

16. Ng, A.Y., Harada, D., Russell, S.: Theory and application to reward shaping. In: Proceedings
of the Sixteenth International Conference on Machine Learning (1999)

17. Little, I., Thiebaux, S.: Probabilistic planning vs. replanning. In: ICAPS Workshop on IPC:
Past, Present and Future (2007)

18. Bacchus, F., Boutilier, C., Grove, A.: Rewarding behaviors. In: Proceedings of the National
Conference on Artificial Intelligence, pp. 1160–1167 (1996)

19. Levesque, H.J., Reiter, R., Lespérance, Y., et al.: GOLOG: a logic programming language for
dynamic domains. J. Logic Program. 31(1–3), 59–83 (1997)

A JPSL Based Model Checking Approach
for Java Programs

XinFeng Shu(B), YanLin Li, and WeiRan Gao

School of Computer Science and Technology, Xi’an University of Posts
and Telecommunications, Xi’an 710061, China

shuxf@xupt.edu.cn

Abstract. In order to verify the correctness of Java programs, a model
checking approach that accurately verifies the properties of Java is advo-
cated. To this end, an algorithm is defined to use (Java Property Spec-
ification Language, JPSL) to accurately describe the properties of Java
programs to be verified and convert them into automata, then use the
On-The-Fly strategy to design algorithm to verify the object-oriented
abstract syntax tree constructed by Java programs, which in turn can
be verified with the model checking tool JMC. In addition, an example is
given to illustrate how the method works. This method makes full use of
the precise constraint ability of JPSL properties on the property range
and the advantages of the On-The-Fly strategy.

Keywords: JPSL · Java · Program verification · Model checking

1 Introduction

As the main software development language and theory in the software industry
in the past two decades, The Java programming language and its theory have
always been the focus of attention of practitioners in the software industry. Java
object-oriented methods and design patterns have been widely used in artificial
intelligence frameworks, databases, distributed large-scale software systems, etc.
With the increasing structural complexity of Java large-scale software systems,
how to ensure the security, reliability, and correctness of such systems Sexuality
is an important issue of academic concern.

Software testing [1] is the mainstream verification method in the field of
software verification. This method has great advantages, but it is also limited
by the fact that the affections of the test depends entirely on the design of the
test cases. The scale of modern software is getting bigger and bigger, and it
is developing towards the trend of hardware dependence, distribution and high
concurrency. The runtime status of such systems cannot be determined, and
software testing cannot meet the verification requirements of such software.

This research is supported by the Key Research and Development Projects of Shaanxi
Province (No. 2020GY-210), and the Equipment Pre-research Key Laboratory Foun-
dation (No. JZX7Y202001SY000901).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 30–49, 2023.
https://doi.org/10.1007/978-3-031-29476-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_3

A JPSL Based Model Checking Approach for Java Programs 31

Different from software testing methods, formal methods [1–5] use mathemat-
ical methods to model the system and the expected properties of the system,
then use mathematical derivation and logical operations to prove whether the
system satisfies the expected properties. The biggest difference between formal
methods and software testing is to use mathematical derivation to prove the
verification process, the verification process has strict theoretical support. Some
formal methods can also locate the path of system errors in a more detailed
and dynamic manner in the process of software design and implementation, and
ensure the correctness of the software in time, without the need for software
testing after a certain unit of the software or the entire system has been fully
implemented. Verify that the system or a unit has no errors. Formal verification
technology is based on mathematical reasoning, which can cover all possible
paths of the system during verification, so this method has a good effect on
making up for the deficiencies of software testing.

Model checking is one of the main methods of formal methods. During veri-
fication, a finite state transition model S of the system to be verified needs to be
established first, and the properties to be verified are described as temporal logic
formula F , and then the algorithm is automatically passed with the support of
model checking tools. Exhaustively traverse the execution path of the system S
to detect whether the property F holds, and if the property does not hold, a
counterexample path can be given to help engineers and technicians locate and
debug errors. Model checking has been applied to the analysis and verification of
computer hardware, communication protocols, control systems, security authen-
tication protocols, etc., and has achieved remarkable success, and has radiated
from academia to industry. The great advantage of model checking is that it
automates the validation process.

Program verification mainly uses traditional model checking tools such as
SPIN [6] or NuSMV [7]. During verification, it is necessary to convert the Java
source program into SPIN’s Promela [8] model or NuSMV’s SMV [9] model, and
describe the properties to be verified. Then verify the logic formulas such as
Linear-time Temporal Logic (LTL) [10] or Computation Tree Logic (Computa-
tion Tree Logic, CTL) [11]. Because the model description strategy of Promela
and SMV is very different from the Java source code, the model conversion pro-
cess often needs to be done manually. As the software system becomes more and
more complex and the expressive ability of modeling languages such as Promela
and SMV is limited, it is difficult to ensure the consistency between the abstract
model of the model checking system and the original software design.

At the same time, since the system modeling languages of model checking
tools are all specific scripting languages, e.g., Promela and MSV of such as
SPIN and NuMSV respectively, engineers and technicians need to be proficient
in this language to conduct system modeling, and the built model does not have
intuitive visibility and is complex. System modeling is very difficult, and it is
difficult to ensure the correctness of the model itself. In addition, the descrip-
tion of the properties to be verified mainly uses logical formulas such as LTL
and CTL, and engineers and technicians are still required to be proficient in
the syntax and semantics of the corresponding logic system, and combine the

32 X. Shu et al.

established abstract model of the system to be verified with the properties to
be verified in the Java source code. And there is a lack of a special property
description method suitable for engineers and technicians to directly describe
the object-oriented software code. Therefore, it is urgent to design a new Java
model checking method.

In order to solve the problems existing in the existing model checking methods
in modeling and describing the properties of Java program systems, and verifying
requirements, an algorithm is defined to use JPSL to accurately describe the
properties of Java programs to be verified and convert them into automata, then
use the On-The-Fly strategy to design algorithm to verify the object-oriented
abstract syntax tree constructed by Java programs. which in turn can be verified
with the model checking tool JMC. In addition, an example is given to illustrate
how the method works. This method makes full use of the precise constraint
ability of JPSL properties on the property range and the advantages of the
On-The-Fly strategy.

The rest of this paper is organized as follows. In the next section, a brief
introduction to the Java language and the Java Property Specific Language are
given. In Sect. 3, the transformation from JPSL properties to automata and the
algorithm of model checking for automata constructed from JPSL properties
and object-oriented syntax trees constructed by Java programs based on the
On-The-Fly strategy are introduced. In Sect. 4, an example is given to illustrate
how the JMC model checker based on this method works. Finally, conclusions
are given in Sect. 5.

2 Preliminaries

2.1 Java Property Specific Language

The basic grammatical components of JPSL [12] include class attributes, method
parameters, local variables, or first-order logic formulas formed. With specific
labels and sentence patterns (JPSL keywords), classes are described by adding
labels to program codes. Class , methods, program code fragments, and state-
ments and temporal characteristics that need to be satisfied at a particular
position. The following introduces the specific definitions of the JPSL language.
Table 1 shows the JPSL recursive definitions. The JPSL statement is marked
in the Java source program in the form of property//@JPSL (...), JPSL Prop
is the time series property expression; Pred is the relational expression com-
posed of Exp; Exp is the arithmetic operation expression composed of Java class
attributes and variables.

Class statements, function statements, and code statements of JPSL are
marked with //@JPSL (content=“JPSL Prop”) before classes, functions, and
code statements; code segment statements are marked by //@JPSL (content=
“SEC BEGIN JPSL Prop ”)...// @JPSL (content=“SEC END”) contains the
constraint code segment; the position of the statement property marker is before
any statement in the program method code. All four types of statements support
describing the temporal property of program execution.

A JPSL Based Model Checking Approach for Java Programs 33

Table 1. JPSL Definitions

Types Symbols definitions

Statements JPSL Stmt ::= //@JPSL (content=“JPSL Prop”)
|//@JPSL (content=“SEC BEGIN
JPSL Prop”). . .
// @JPSL (content=“SEC END”)

Properties JPSL Prop ::= Pred | SEQ(JPSL Prop1, . . . , JPSL Propn)
| REPEAT(JPSL Prop) | SOMETIMES
(JPSL Prop)
| ALWAYS (JPSL Prop) | PRE (Pred) | POST
(Pred)
| JPSL Prop1 and JPSL Prop2

Predicate Pred ::= Exp1(< | <= | == | > | >=)Exp2 | !Pred |
Pred1 || Pred2 | Pred1 &&Pred2

Expression Exp ::= const | v | obj.attr | this.attr | class.attr | Exp1
(+ | – ||/|%) Exp2

2.2 Labeled Normal Form Graph

Labeled Normal Form Graph (LNFG) is an important tool to solve the problem
of satisfiability determination of propositional projection temporal logic formula,
and it is a special form of automaton. References [14,15] have proved that any
propositional projection temporal logic formula P can be equivalently trans-
formed into a Label Normal Form, V n0

j=1 (pej ∧ ε)∨V n
i=1 (pci ∧ ◦Pi), in which the

pej and pci is a state formula composed of atomic formulas; the successor formula
called is a general propositional projection temporal sequence. logical formula.
Using the LNFG of propositional projection temporal logic, the successor formu-
las of and are continuously expanded, so that the LNFG expansion relationship
of P and the successor formula constitutes a directed graph, namely LNFG.

The LNFG of formula P is a quadruple G = (CL(P), EL(P), v0, Vf), where
CL(P) is the vertex set, EL(P) is the arc set, and v0 ∈ CL(P) is The initial
vertex named P , Vf is the set of two-tuples formed by the vertex and the label.
Each vertex in CL(P) is a propositional projection temporal logic formula; the
arc from vertex R is a triple 〈R, rs, Q〉; for any vertex R ∈ CL(P), let the
LNFG of R be V n0

j=1 (rej ∧ ε) ∨ V n
i=1 (rci ∧ ◦Ri), then ε ∈ CL(P) and for every

1 ≤ j ≤ n0, there is ε ∈ CL(P) and Ki ∈ Z(1 ≤ i ≤ n) for every 1 ≤ i ≤ n;
vertices in Vf and their labels are described as two-tuples (Q,K1, . . . ,Kn), where
Ki ∈ Z(1 ≤ i ≤ n) is an integer that identifies the Chop expansion cycle.

Based on the LNFG technique, it has been proved that P is satisfiable if and
only if the LNFG of P either has a finitely acceptable path from the initial vertex
P to the vertex, or there exists an infinite path from the initial vertex P Accept-
able path, all vertices in the infinite loop that it eventually falls into cannot
have the same label (that is, an acceptable cycle), thus solving the satisfiability

34 X. Shu et al.

judgment of the propositional projection temporal logic formula. The relevant
proof details and judgment algorithm are shown in the literature [14,15].

For example, the LNFG of the propositional projection temporal logic for-
mula p; q is shown in Fig. 1. The initial vertex is represented by two concentric
circles, and the vertex is a black solid circle. The formula is satisfiable because
there are several finitely acceptable paths from the initial vertex p; q to the ver-
tex, and there is an infinitely acceptable path from the initial vertex p; q and
looping down to the vertex true. There is also an infinite path that falls into
the vertex true; q and performs an infinite loop, but since the only vertex in the
loop is marked with 1, it is not a valid infinitely acceptable path.

Fig. 1. LNFG of PPTL formula p; q

In essence, the LNFG can be regarded as a special automaton that can accept
completely regular languages. The vertex ε is the acceptance condition for the
automaton to accept finite strings, and the acceptable cycles on the connected
component vertices are the acceptance conditions for infinite strings. The LNFG
can be equivalently transformed into an extended Büchi automaton [15]. For the
convenience of describing the model checking algorithm, in the following, the
LNFG is directly referred to as an automaton.

2.3 JPSL to PPTL

The grammatical structure of commonly used sequential logic LTL, CTL, etc.
is complex, and the semantics are difficult to be understood and mastered by
engineers, which increases the difficulty of model checking. In order to solve
this problem, the properties to be verified are described by directly embedding
the JPSL language into the Java program, which is convenient for engineers
to verify the properties of the program. JPSL [12] has four types of properties,
namely class properties, function properties, and statement properties. Fragment
properties, sentence properties. According to the requirements, different types
of JPSL properties are used to mark the source program, which can realize the
refined verification of model checking, especially whether the part of the program
satisfies the expected properties can be verified.

A JPSL Based Model Checking Approach for Java Programs 35

This section designs the rules of JPSL annotation, and provides the accurate
annotation method of JPSL in Java programs, including the annotation position
and annotation form, combined with case descriptions, the annotation rules are
as follows:

Annotation Rule 1: After describing the properties of all objects of a class
from creation to destruction, use JPSL statements to describe them, and anno-
tate them in the Java source code before the corresponding class definitions,
referred to as “class properties”.

Labeling Rule 2: Describe the properties of a function during execution using
JPSL statements, and annotate them in the Java source code with comments
before the corresponding function definition, referred to as “function properties”.

Annotation Rule 3: Describe the properties of a code fragment in a function
during execution using JPSL statements, and annotate it in the Java source code
with comments on the start and end statements of the corresponding statement
fragment, referred to as “code segment”;

Labeling Rule 4: Describe the properties of a statement in the function before
the execution period, using JPSL statements, and annotate them on the corre-
sponding statement nodes in the Java source code by way of comments, referred
to as “statement properties”.

The model checking technology studied in this paper constructs a LNFG
structure for PPTL [19] formulas. First, it is necessary to convert the JPSL
statements suitable for the description of the properties of Java source programs
into PPTL formulas. This section analyzes and designs this process and defines a
conversion algorithm. Implement JPSL statement to PPTL formula conversion.

The conversion strategy is to convert the JPSL property statement into the
PPTL time series property formula. For the predicate formula in the formula, due
to its indeterminacy, PPTL replaces the predicate formula with a new and unique
atomic proposition, and constructs the state transition arc as The automaton
structure of atomic propositions or atomic propositional formulas, using the map
two-tuple structure is the set of atomic proposition descriptions of the atomic
propositions contained in the PPTL formulas and the predicate formulas they
represent, the JPSL formulas can be processed recursively using a recursive algo-
rithm until complete conversion For the PPTL formula, the recursively designed
transformation strategy is as follows.

(1) For the predicate formula e1[< | <= | == | > | >=]e2, the map is
(p, {p : e1[< | <= | == | > | >=]e2});

(2) For the property statement SEQ (Prop1, ...,Propn), convert Propn to
(pptl prop1, ...,pptl propn,map1), and pptl prop1 to (pptl prop1)+, the
atomic proposition description set map is map1 ∪ . . . ∪ mapn;

(3) For the property statement REPEAT (Prop1), convert Prop1 to
(pptl prop1, map1), convert pptl prop1 to (pptl prop1)+, and the atomic
proposition indicates that the set map is map1;

(4) For the property statement SOMETIMES (Prop1), convert Prop1 to
(pptl prop1,map1), convert pptl prop1 to pptl prop1, and the atomic
proposition description set map is map1;

36 X. Shu et al.

(5) For the property statement ALWAYS (Prop1), convert Prop1 to
(pptl prop1, map1), convert pptl prop1 to pptl prop1, and the atomic
proposition description set map is map1;

(6) For the property statement PRE (Prop1), convert Prop1 to (pptl prop1,
map1), convert pptl prop1 to pptl prop1, and the atomic proposition indi-
cates that the set map is map1;

(7) For the property statement POST (Prop1), convert Prop1 to (pptl prop1,
map1), convert pptl prop1 to (ε → pptlprop1), and the atomic proposition
indicates that the set map is map1;

(8) For the property statement !Prop1, convert Prop1 to (pptl prop1,map1),
convert pptl prop1 to ¬pptl prop, and the atomic proposition indicates that
the set map is map1;

(9) For the property statement Prop1&&Prop2, convert Prop1 and Prop2 into
(pptl prop1,map1), (pptl prop2,map2), the semantic conversion result is
pptl prop1 ∧ pptl prop2, and the atomic proposition description set map is
map1map2;

(10) For the property statement Prop1||Prop2, convert Prop1 and Prop2 into
(pptl Prop 1,map1), (pptl Prop2,map2), the semantic conversion result is
pptl Prop1 ∨pptl Prop2, and the atomic proposition description set map is
map1map2;

The technology described in the previous content converts the JPSL state-
ment into the corresponding PPTL formula, but PPTL cannot directly enter
the model checking. Based on the model checking algorithm idea of automata,
in the Java model checking technology, the PPTL formula needs to be negated
and constructed as a non-automatic machine of properties.

Finally we need to convert the PPTL formula to LNFG and input it as a
property automaton into the model checking algorithm, the algorithm for con-
verting the PPTL formula to LNFG has been given and proved in the literature
[14,15].

2.4 Java Source Code to OOAST

OOAST [16] is used to represent the semantic and syntactic content of object-
oriented programs, and its structure is shown in Fig. 2. Among them, each class
node ClassNode contains three kinds of nodes, Parent, Attributes and Functions.
The Parent node points to its parent node, the Attributes node points to the
class attribute attr node, and the Functions node points to the method node
fun.

(1) Class node: This node is a class node in the syntax tree, such as ClassNode 1
to ClassNode n in Fig. 2. This node stores the serial number of the symbol
table pointed to by the class name, which can be used to obtain the basic
information of the class in the symbol table. In addition, the class node also
stores the information of its associated Parent, Attributes, and Functions
nodes.

A JPSL Based Model Checking Approach for Java Programs 37

Fig. 2. Object-Oriented Abstract Syntax Tree Structure

(2) Parent node: This node is associated with its corresponding parent class
node, and can obtain its parent class information, including the parent class
attribute and method information inherited in the subclass. Other relation-
ships between classes can also be directly converted to corresponding class
attributes.

(3) Attributes node: This node is associated with the attribute node of the
class, and can obtain all attribute information content of the class to which
it belongs. In order to clearly represent the content of the attribute, the
structure of the attr attribute node pointed to by Attributes in Fig. 2 can
also only be saved The attribute name, and the type and initial value of
the attribute are directly stored in the character table corresponding to the
serial number of the attribute name.

(4) Functions node: This node is associated with the method node of the class,
and can obtain all method information of the class to which it belongs. Due
to the complex logical relationship in the method statement, the method
statement structure can be converted into the Hierarchical Syntax Chart
HSC (Hierarchical Syntax Chart HSC) [16] structure shown in Fig. 2, and
its specific structure is shown in Fig. 3.

(5) JPSL node: This node is associated with class nodes, method nodes, and
statement nodes according to different requirements, and can obtain JPSL
content and constraint scope, indicating the expected properties of the code
within the constraint scope of this property.

To create the OOAST for the given Java program, we first need to perform
lexical parsing of the program with the lexical and syntax analysis tool JavaCC.
With the tool, we only need to give the lexical and syntax rules of the subset of
Java language, the lexical and syntax analyzer written in pure Java code can be
automatically generated.algo Then we employee the analyzer to process the Java
program, and all the syntax elements of the program can be recognized, such

38 X. Shu et al.

Fig. 3. HSC Structure Diagram

as classes, date types, attributes, member functions, etc. Based on the analysis
result, it is not hard to write the rithm to create the OOAST, so the details are
omitted here.

2.5 Multi-property Verification Problems

In order to realize the refined verification of the programs in the JPSL scope,
the constraint range of the JPSL properties is solved according to its type.
Since multiple JPSL properties may be marked in the Java program system
participating in model checking, and even multiple JPSL properties may be
marked in one Java class. In most practical application scenarios, in order to
improve efficiency and save time, it is impossible to verify only one property at
a time. Therefore, the Java model checking process should deal with the cases
of multiproperty verification needs.

In order to solve the situation of multi-property verification, a container
structure is used to store the completely finite automata and constraint ranges
constructed by all JPSL properties into the same memory. The state on the above
triggers the start position of the constraint range in the container. According to
the start position, the non-automatic machine of the properties is located in the
container, and the model checking of this properties is started. After repeated
research and trade-offs, this design method is conducive to resource utilization
and facilitates algorithm design.

Then define the LNFGSet<(LNFG, prop start, prop end)> container to
store the properties of JPSL constructs, non-automatic LNFG and JPSL prop-
erties constrain the start and end positions, and use the properties of JPSL
constructs in Sect. 3 to replace JPSL properties stored in JPSLSet. The position
of the object can easily complete the construction of the above container, and
the specific definition is given below.

Definition 1. When the original JPSL constraint range is from the start posi-
tion of the source program to the end position, that is, the JPSL two-tuple
is (jpsl, start: end), and the non-automatic property constructed by the JPSL
statement is LNFG, then construct a JPSL property and its Label the range to

A JPSL Based Model Checking Approach for Java Programs 39

the property non-automatic constraint two-tuple(LNFG,prop start:prop end),
where prop start =start,prop end=end, and all property non-automatic con-
straint two-tuple (LNFG, prop start, prop end) in the Java program to be
verified stored in the set of non-automatic constraint two-tuples of properties
LNFGSet<(LNFG,prop start,Prop end)>.

When interpreting and executing the system model OOAST, each interpre-
tation executes a statement, and the statement position is used to match all the
two-tuple prop start in the LNFGSet. If the current statement corresponds to
the prop start position, the model checking of this property is started, and the
system model is interpreted and executed. When the position of the statement
corresponds to the position of prop end, the verification of this property ends,
and the system gives the verification result. Use LNFGSet to store the property
non-automata of all JPSL property transformations and their bounded scope in
the Java source code.

2.6 Model-Checking with On-The-Fly Strategy

The property construction and system modeling of Java program model checking
are ready. In the model checking verification stage, the object-oriented abstract
syntax tree and the property non-automatic machine are input into the model
checking algorithm to realize the verification.

During model checking, the On-The-Fly strategy [17] is used to provide
dynamic construction for the system model, and after executing a part of the
system model, the result after execution is obtained, the system state is con-
structed from the result, and then the system state is used to correspond to a
certain non-automatic properties. The state is negotiated, and the satisfiability
is judged. After a state no longer participates in the intersection operation, the
memory of the state is recovered, and the number of system operations is always
kept at a low scale, which also improves the efficiency of the algorithm. The Java
model checking algorithm described in this paper is shown in Fig. 4.

When interpreting the execution system model, each interpreting and execut-
ing a single complete statement node of the abstract syntax tree constructs the
system state for its result, and matches the prop start and prop end positions in
the property non-automatic constraint two-tuple set LNFGSet by the position
of the interpreting execution, Locate the non-automatic machine of properties
that should participate in the model checking operation. Starting from the ini-
tial state, perform a model checking and intersection operation between the
system state and the corresponding state of the non-automatic machine of this
property, and construct the resulting automaton according to the result of the
intersection operation. The non-automatic machine uses the node pointer to con-
tinuously search for the ejected arc, advances to the new arc, obtains the new
non-automatic machine state from the new arc, continues to perform the inter-
section operation or ends the program as required, recovers the memory created
by the interpretation and execution system model and releases the path whose
properties are established by the operation occupies the memory.

40 X. Shu et al.

Fig. 4. Strategy of Java model checking algorithm

The algorithm for dynamically interpreting and executing OOAST in the
algorithm flow is as follows:

Algorithm 1: Dynamic Executing OOAST. The algorithm traverses the
entire syntax tree in pre-order starting from the root node of OOAST, deter-
mines the node type when accessing each node, and specifies the corresponding
interpretation and execution rules.

(1) For the specified entry function Function node, select the first child node of
the current node to start interpretation and execution.

(2) For a common statement node, the successor node of the current node is
selected as the next statement node to be executed.

(3) For the if statement node, calculate the value of the conditional expression
in the if statement, and select the first node corresponding to the YES and
NO branches according to the true or false results as the next statement
node to be executed.

(4) For the while statement node, calculate the value of the conditional expres-
sion in the while statement, if the result is true, select the first node of the
YES branch as the next node to be executed, otherwise select the successor
node of the while loop as the next node to be executed statement node.

(5) For the function call statement node, after calculating the value of each
actual parameter expression and assigning it to the corresponding function
formal parameter, the first statement of the called function is used as the
next statement node to be executed.

A JPSL Based Model Checking Approach for Java Programs 41

(6) For variable assignment, declaration node, and object creation statement
node, it is interpreted and executed according to the infix operation mode.

(7) For expression operations, infix operations are generally used in combination
with operator priorities to perform expression operations.

(8) For special expression operations, specify special processing rules, such as
j − −, convert them to j = j − 1, and then perform infix operations on
them. Interpret and execute each statement node of the syntax tree accord-
ing to the rules. The values in the variable stack and object heap change
synchronously with the interpretation and execution, and save the result of
continuously updating the memory reference to the variable stack and object
heap. In the process of interpreting and executing OOAST, the system state
is constructed and then the model checking and intersection operation is
performed. The two are triggering conditions for each other and call each
other to complete.

The second part of the model checking process in Fig. 4 is to compute the
intersect state of result automata. For each node of OOAST, its correspond-
ing line number in the source program is stored. When the OOAST statement
is interpreted and executed, it is judged whether there are one or more non-
automatic machine two-tuples in LNFGSet according to the statement position
rowID stored by the node. The prop start or prop end of (LNFG, prop start,
prop end) are equal to it. If rowi is equal to prop start, the model checking pro-
cess ModelChecking (vs, h, LNFG) of the LNFG is triggered. If rowid is equal to
prop end, the model checking process of the LNFG ends and outputs the model
checking result of this property.

Algorithm 2: Computing the Result Automata. The function Mod-
elChecking(vs,h,LNFG) begins after a statement on OOAST is interpreted and
executed. At this time, the variable stack and the object heap are updated syn-
chronously, and the value of the variable stack and the object heap is recorded
as rstn, and the With the execution of OOAST, n = 1, 2, 3, 4..., until the end
of the OOAST interpretation and execution, the data is continuously updated
during the execution to form a system state sequence.

(1) Use the Z3 [18] solver to perform the intersection operation between the
initial system state rst0 within the property constraint range and the initial
state <state0, p0, state1> of the property non-automatic machine LNFG.

(2) If the Z3 solver obtains the SAT result, it is proved that the system can
accept this state of the non-automatic automaton LNFG, and use the initial
system state rst0 to construct the arc <stmt0, rst0, stmt1> and the arc
of the non-automaton LNFG < state0, p0, state1> is constructed as an
arc <<stmt0,state0 >, rst0, <stmt1, state1 >> on the result automaton
rstLNFG, and <stmt1,state1 > is pressed into cursorStack to turn (4).

(3) If the Z3 solver obtains the UNSAT result, it proves that the state on the non-
automatic machine of this property is the unacceptable state of the system.
At this time, backtracking is required, and the top element <stmtx, statex>
of the backtracking stack is taken out to judge the path from near to far.

42 X. Shu et al.

Whether the searched node has other unsearched paths <state1,p1,state2 >,
use the intersection operation of <state1,p1,state2 > and rst1. According to
the operation result, execute (2) or (3), if the intersection of the unsearched
path of the backtracking path node and rst1 always results in UNSAT, until
the node on the backtracking path no longer has any unsearched path, go
to (8) .

(4) Advance the LNFG node pointer to the next state, take out the arcs <state2,
p2, state3 > emitted by the next state and the state rstn updated after the
OOAST interpretation is executed, and use the Z3 solver to start within
the constraint range of this property The system state rstn performs the
intersection operation with <state2, p2, state3 >, and executes (2) or (3)
respectively according to the operation result. When the LNFG node pointer
advances to the termination state of LNFG, or the position of the statement
executed by OOAST interpretation triggers the current property The posi-
tion of prop end that is not constrained by an automaton, turn (5) or (6) or
(7) according to the execution of the algorithm.

(5) The LNFG node pointer is advanced to the termination state of LNFG, and
the OOAST interpretation and execution just ends, the output verification
result is that the system does not meet the expected property, and the
counter-example path is prompted according to the content of the result
automaton.

(6) The LNFG node pointer is not advanced to the termination state of LNFG,
and the OOAST interpretation and execution within the property constraint
ends, the output verification result is that the system does not meet the
expected property, and the counterexample path is prompted according to
the content of the result automaton.

(7) The LNFG node pointer is advanced to the LNFG termination state, and the
OOAST interpretation and execution within the constraint is not completed,
the output verification result is that the system does not meet the expected
property, and the counterexample path is prompted according to the content
of the result automaton.

(8) The output verification result is that the system satisfies the expected prop-
erty.

The above model checking operations (1)-(8) is completed using Fig. 5.

2.7 Counter Example Path

In Algorithm 2, for the operation whose intersection result is SAT, the result
automaton will be dynamically expanded using the corresponding state of the
system state rstn and the non-automatic machine LNFG, because the result
automaton and the set of counterexample paths are independent structures, and
the result of SAT or UNSAT is obtained. There are different situations when
there are different situations, and this section explains its decision rules in detail.

(1) The resulting automaton is composed of multiple arcs connected end to
end, and has a starting state and an ending state. The type of the resulting

A JPSL Based Model Checking Approach for Java Programs 43

Fig. 5. Algorithm flowchart of Java model checking algorithm

automaton arc is <[stmtx, statex], rstn, [stmty, statey]>, where [stmtx, statex]
and [stmty, statey] represent, and stmtx and qx represent the statements and
properties in the syntax tree, respectively. For the state node in the automaton,
during the intersection operation, since the intersection result is SAT, the stmtx
and statex states are merged, rstn represents the content on the arc, and the
arc on the automaton represents <[stmtx, statex], rstn, [stmty, statey]>, [stmtx,
statex] state is migrated to [stmty, statey] state through statement execution
result rstn, the state sequence in the counter example path set is <[stmtx, statex],
rstn,[stmty, statey], rstn+1, [stmtz, statez]>.

(2) If the Z3 solver determines the satisfiability of <stmtx, rstn, stmty> and
the arc <statex, pn, statey> of the non-automatic machine LNFG, there are
two cases, one of which is that the property is not The state on the automaton
LNFG is an acceptable state of the system, which satisfies the dynamic expansion
result automaton condition; the other is that there is an infinitely acceptable
condition c of LNFG that satisfies c is included in the union sset of the states on
all automata. The following definitions describe the conditions for dynamically
expanding the resulting automata to construct counterexample paths.

Definition 2. Condition of dynamic expansion result automaton rstLNFG, con-
struct counterexample path condition:

Condition 1: If state [stmt1, state1] and arc<[stmt0, state0], rst, [stmt1,
stateSet1]>, calculate the union sset of all states on the path from state [stmt1,
state1] to state [stmtx, statex] in rstLNFG, if there is an infinite receiving con-
dition c of LNFG in LNFGSet that satisfies csset, it will backtrack to the top of

44 X. Shu et al.

the stack Element [stmt, stateSet] is popped, and state [stmt, stateSet] and its
associated arc are removed from rstLNFG. If the backtracking stack is still not
empty after the element is popped out of the stack, continue to perform model
checking and intersection operation on the unsearched arc state and the system
state ejected from the top node of the backtracking stack stack.

Condition 2: If condition 1 does not hold, add a new state [stmt1, state1] to
the state set Q of rstLNFG, and add a new arc <[stmt0, stateSet0], rst, [stmt1,
state1]> to the transition set. If there is a finitely acceptable state (that is,
state1� F) in the LNFGSet with a non-automatic two-tuple (LNFG, start:end)
that satisfies stmt1 equal to end and state1 is LNFG, the state sequence in the
backtracking stack is added to the set of counterexample paths. CountExam-
PathSet. Push state [stmt1, state1] onto the backtrack stack.

3 Case Study

In following, we give an example to illustrate how our method works in verifying
a Java program. A small storage-type electric water heater, the critical temper-
ature is 50 ◦C, the preset temperature is 75 ◦C, the water storage capacity is
80L, and the critical water level is 20L. When the water temperature is lower
than 50 ◦C and the water level is greater than 20L, the water heater starts to
heat until the water temperature reaches the preset temperature (75 ◦C for a
fixed temperature), and when the temperature drops by 5 ◦C, it enters the heat-
ing state; when the water level is lower than 20L, the automatic water injection
mode is turned on. Until maximum capacity is reached; cycle sequentially.

System properties are annotated in Java code through JPSL statements. As
Follows, the problem is structured into three classes, namely the System class,
the Water class, and the Heater class. The electric water heater is abstracted into
the System class, and there are two member variables under the class, namely
Heater and Water objects. Using the constructor of the System class can control
the changes of the heater and water volume in the water heater, and realize the
hot water function of the water heater. The property of the system is described
using JPSL statements as follows:

(1) if the software designer needs the properties to be verified, it means that
the water level of the water heater can never be lower than 20L. Before
definition.

(2) if the software designer needs to verify the properties to indicate that the
total water volume in the electric water heater is between 20L and 80L, the
description is JPSL statement @JPSL PRE(watrt.vol>=20&&water.vol<=
80), marked before the System() function declaration.

(3) if the software designer needs to verify the properties to indicate that the
state of the electric water heater is always in repeated heating and non-
heating, the start and end positions of the Heater function are marked
with the start and end of the JPSL code segment respectively. Comments,
described as @JPSL REPEAT(state=0, state=1), are marked before the first
statement of the code segment and after the last statement.

A JPSL Based Model Checking Approach for Java Programs 45

pub l i c c l a s s Water {
int vo l = 0 ;
int temper = 0 ;
Water water ;
Water () {} ;

}
pub l i c c l a s s Heater {

int mintemper = 50 ;
int maxtemper = 75 ;
int s t a t e = 0 ;
Heater (Water water) {

//@JPSL(content = ‘ ‘SEC BEGIN REPEAT(s t a t e =0, s t a t e =1) ’ ’)
i f (water . temper<t h i s . mintemper) {

t h i s . s t a t e = 1 ;
water . temper = water . temper+1;
i f (water . temper != t h i s . maxtemper)

{
t h i s . s t a t e = 0 ;

} else {
water . temper= water . temper+1;

}
} else {

water . temper=water . temper−5;
water . vo l = water . vol −2;
//@JPSL(content = ‘ ‘SEC END ’ ’)

}
}

}
}
//@JPSL(content = ‘ ‘ALWAYS(! (water . vo l <20)) ’ ’)
pub l i c c l a s s System {

Water water ;
Heater heater ;

//@JPSL(content = ‘ ‘PRE(water . vo l>=20&&water . vo l <=80) ’ ’)
System () {

t h i s . water = new Water () ;
t h i s . water . vo l = 10 ;
t h i s . heate r=new Heater (t h i s . water) ;

}
}

The constructor System() of the System class is the execution entry function
of the electric water heater. The constructor of the Heater object is executed
this.Heater = new Heater(this.water), and is marked with the JPSL code seg-
ment property statement @JPSL SEC BEGIN REPEAT(state=0, state=1) and
the annotation @JPSL SEC END A property of the code segment in the func-
tion, indicating that the statement segment keeps the state of the electric water
heater in repeated heating and non-heating.

46 X. Shu et al.

Fig. 6. The OOAST structure constructed by JMC

Fig. 7. The logical structure of OOAST

Then, use the JMC tool to perform lexical and syntactic analysis on the Java
program marked with JPSL, construct an object-oriented abstract syntax tree
with additional JPSL properties, and perform complete and consistent verifica-
tion. The abstract syntax tree constructed in this case using the JMC tool is
shown in the Fig. 6, the OOAST logical structure is shown in Fig. 7.

A JPSL Based Model Checking Approach for Java Programs 47

Next, convert each JPSL statement in the OOAST into a PPTL property
formula two-tuple (pptl prop, map), and construct the corresponding property
non-automaton LNFG after negating the PPTL formula pptl prop.

Taking the JPSL properties marked on the System class as an example, the
original JPSL properties are:

@JPSL ALWAYS(!(water.vol < 20))

After conversion, the 2-tuple of the PPTL property formula is:

(�(¬p), p : water.vol < 20)

Among them, �(¬p) is the PPTL property formula obtained by conversion,
and the atomic proposition p represents the predicate formula water.vol<20.
Negate the PPTL property formula �(¬p) to be ♦p, and construct a prop-
erty non-automatic machine G = (CL(P), EL(P), v0, V f) as shown in Fig. 8,
where CL(P) = {q1, q2, q3, q4}, EL(P) = {< q1, true, q2 >,< q2, true, q2 >
,< q2, p, q3 >,< q3, true, q4 >,< q3, true, q4 > . < q1, p, q4 >,< q4, true, q4 >},
q1, {(q2)[1], (q3)[−1], (q4[1])}}, the properties of non-automatic machines constru
cted using JMC are shown in Fig. 8.

Fig. 8. Non-Automata by JMC

Finally, run the JMC tool to execute OOAST to dynamically generate the
system states, and compute the intersection automata with the LNFG of the
JPSL statement according to its constraint range. The final result is shown in
Fig. 9. There is an acceptable path in the automaton, the system does not meet
the expected properties, the system is insecure, and an error occurs from the
first line of the source program. The water heater filling procedure described
by the current model cannot meet the minimum water requirement of 20L for
heating mode.

48 X. Shu et al.

Fig. 9. Verification result and counterexample path

4 Conclusion

In this paper, we propose a new method that uses JPSL properties to precisely
constrain the expected properties of the system, uses the abstract syntax tree
constructed by the Java source program as the system model, and incorporates
the two into the model checking process based on the On-The-Fly strategy. Com-
pared to the existing model checking methods of Java programs, JPSL can easily
be mastered by software engineers to specify the system properties while pro-
gramming, and helps to advocate the model checking approach to the industry.

References

1. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University
Press (2008)

2. Shu, X., Duan, Z., Hongwei, D.: A decision procedure and complete axiomatization
for projection temporal logic. Theor. Comput. Sci. 819, 50–84 (2020)

3. Wolper, P.: The Meaning of “Formal.” Int. J. Softw. Tools Technol. Transfer 1(1-2),
6–8 (1997)

4. Wing, J., Woodcock, J.: The first world congress on formal methods in the devel-
opment of computing systems. Form Aspects Comput. 12, 145–146 (2000)

5. Dodani, M.: Formal methods for object-oriented software engineering. Ann. Softw.
Eng. 2, 121–160 (1996)

6. Kammüller, F.: Formal modeling and analysis with humans in infrastructures for
IoT health care systems. In: Tryfonas, T. (ed.) HAS 2017. LNCS, vol. 10292, pp.
339–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58460-7 24

7. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In:
Handbook of Model Checking, pp. 1–26. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-10575-8 1

https://doi.org/10.1007/978-3-319-58460-7_24
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1

A JPSL Based Model Checking Approach for Java Programs 49

8. Baier, C., Haverkort, B.R., Hermanns, H., et al.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software Eng. 29(06), 524–541 (2003)

9. Cui, J., Duan, Z., Tian, C., Hongwei, D.: A novel approach to modeling and verify-
ing real-time systems for high reliability. IEEE Trans. Reliability 67(02), 481–493
(2018)

10. Probst, C.W., Kammüller, F., Hansen, R.R.: Formal modelling and analysis of
socio-technical systems. Lect. Notes Comput. Sci. 9560, 54–73 (2015)

11. Liu, W.W., Song, F., Zhang, T.H.R., et al.: Verifying ReLU neural networks from
a model checking perspective. J. Comput. Sci. Technol. 35, 1365–1381 (2020)

12. Li, X.: Research on technologies of model checking Java program with MSVL and
JPSL, Master Thesis, Xi’an University of Posts and Telecommunications (2021)

13. Arnold, K., Gosling, J., Holmes, D.: Java programming language (4th Edition).
Addison-Wesley Professional (2005)

14. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theoret.
Comput. Sci. 609, 544–560 (2016)

15. Shu, X., Zhang, N.: An efficient decision procedure for propositional projection
temporal logic. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS,
vol. 11653, pp. 503–515. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26176-4 42

16. Shu, X., Luo, N., Wang, B., Wang, X., Zhao, L.: Model checking java programs
with MSVL. In: Duan, Z., Liu, S., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2018.
LNCS, vol. 11392, pp. 89–107. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13651-2 6

17. Ben-Ari, M.: On-the-fly garbage collection: new algorithms inspired by program
proofs. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp.
14–22. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0012753

18. Mcmillan, K.L.: Interpolants from Z3 proofs. In: 2011 International Conference on
Formal Methods in Computer-aided Design (FMCAD) Inc, pp. 19–27 (2011)

19. Shu, X., Zhang, N., Wang, X., Zhao, L.: Efficient decision procedure for proposi-
tional projection temporal logic. Theor. Comput. Sci. 838, 1–16 (2020)

https://doi.org/10.1007/978-3-030-26176-4_42
https://doi.org/10.1007/978-3-030-26176-4_42
https://doi.org/10.1007/978-3-030-13651-2_6
https://doi.org/10.1007/978-3-030-13651-2_6
https://doi.org/10.1007/BFb0012753

Model Analysis and Tool
Implementation

Implementation of Matlab matfun Toolkit Based
on MSVL

Xueqing Feng, Nan Zhang(B), and Zhenhua Duan(B)

Institute of Computing Theory and Technology, ISN Laboratory, Xidian University,
Xi’an 710071, China

{xueqingfeng,nanzhang}@xidian.edu.cn, zhhduan@mail.xidian.edu.cn

Abstract. The matfun toolkit of the scientific computing software Matlab con-
tains more than 40 commonly used matrix computing related functions, which
have important applications in artificial intelligence, big data and other fields.
This paper makes use of the modeling, simulation and verification language
MSVL to imitate all basic functions in the matfun function library, and gives sev-
eral representative function algorithms and implementation details. Finally we
use these functions to design and implement a practical application.

Keywords: Matlab · Linear Algebra · matfun Toolkit · MSVL · Simulation ·
Application

1 Introduction

Matlab is a software widely used in scientific computing. It has dozens of toolkits,
among which matfun (matrix and numerical linear algebra function library) contains
more than forty functions commonly used in matrix operations, including the famil-
iar functions of basic matrix operations (rank, det, inv, etc.), and some more complex
functions for extracting matrix features (lu, eig, svd, etc.). These functions are widely
used in many fields related to numerical computing. However, because Matlab software
has certain intellectual property, therefore, it is necessary for us to develop a software
toolkit with similar functions and have its own intellectual property.

MSVL is a modeling, simulation, and verification language that can be used to
model, simulate, and verify hardware and software systems. It can be used to verifyWeb
services, Petri nets, C programs, concurrent systems, and virtual memory management
systems.

The reason why we choose MSVL as the language to implement Matlab functions
is two-fold: (1) MSVL can be used to implement and verify functions in Matlab; (2)
The developed applications using the new Matlab could also be verified in a convenient
way.

The contributions of the paper are as follows: (1) We use the simulation function
of MSVL to implement the matfun toolkit, including forty functions of five modules
i.e. matrix analysis, linear equations, eigenvalues and singular values, matrix functions,

The research is supported by the National Natural Science Foundation of China under Grant No.
61133001, 61572386, 61420106004 and 91418201.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 53–58, 2023.
https://doi.org/10.1007/978-3-031-29476-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_4

54 X. Feng et al.

and decomposition tools. (2) Implemented Principal Component Analysis (PCA) appli-
cations in the field of machine learning using the developed toolkit.

The rest of the paper is organized as follows: in the next section, the MSVL lan-
guage is briefly introduced; the five modules in matfun toolkit and the main functions of
each module are described. Then, a practical application of matrix computing using the
functional design is implemented in Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 The Design and Implementation of Matfun Toolkit

2.1 MSVL

MSVL (Modeling, Simulation, Verification Language) [1,2] is a parallel logic program-
ming language that can be used to model, simulate, and verify hardware and software
systems. It can be used to verify Web services, Petri nets, C programs, concurrent sys-
tems, virtual memory management systems, etc. MSVL is based on PTL (Projection
Temporal Logic) [3–7].

MSVL can be compiled and executed as well as interpreted in a convenient way. In
this paper, MSVL compiler (MC II) is used to execute MSVL programs [8].

2.2 Function Implementation Method

2.2.1 Matfun
The manfun toolkit in Matlab includes five modules: matrix analysis, linear equations,
eigenvalues and singular values, matrix functions and decomposition tools. Each mod-
ule consists of several main functions and some sub-functions encapsulated by the main
functions. In the following, we will specifically introduce the approaches of implement-
ing the main functions in each module and the relationship between some relevant func-
tions and the main functions (Fig. 1).

2.2.2 The Main Functions of Five Modules
The most important function in the matrix analysis module is rref (Gaussian elimina-
tion method), which can clearly show some characteristics of the matrix, such as the
solution of the equation system, by reducing the matrix to the simplest row. Based on
the rref function, rank (the rank of the matrix), det (the determinant) and so on can be
implemented.

The main functions of the linear equation module include / and \ (linear equation
solving), inv (matrix inverse), pinv(matrix pseudo-inverse) [9], lu (matrix lu decomposi-
tion), qr (orthogonal triangular decomposition). / and \ are unique symbols for solving
linear equations in Matlab, representing right division and left division, respectively.
Right division means solving linear equations xA=B and left division means solving
linear equations Ax =B. The inv is a row reduction based on Gaussian elimination. The
lu decomposition is an important decomposition, which can decompose the matrix A
into an upper triangular matrix U and a permuted lower triangular matrix L, so that
A =L *U [10]. The qr decomposition of the matrix decomposes the matrix A into the

Implementation of Matlab matfun Toolkit Based on MSVL 55

Fig. 1. matfun

form of A=Q*R, where Q is an orthogonal matrix, and R is an upper triangular matrix
whose main diagonal elements are positive.

The main functions of the Eigenvalues and Singular Values module are eig (eigen-
values and eigenvectors), svd (singular value decomposition) [11]. There are many ways
to decompose eigenvalues. The method used in this paper is qr iteration. The calculation
method of eigenvectors uses the definition of eigenvectors Ax = λx, and the eigenvec-
tors can be obtained according to the eigenvalues. The expression of svd decomposition
is A = UΣV T , where Σ is all zero except for the elements on the main diagonal, and
each element on the main diagonal is called a singular value [12].

56 X. Feng et al.

The main function of the matrix function module is the solution of the matrix index.
Three methods are used in this paper, namely Padé approximation [13,14], Taylor series
approximation, and eigenvalues and eigenvectors [15,16].

The main function in the decomposition tool module is planerot (Given’s plane rota-
tion), the expression is [G, y] = planerot(x), where x is a column vector containing
two components, and a 2 ∗ 2 orthogonal matrix G is obtained, such that y = G ∗ x and
y(2) = 0 [17].

Fig. 2. qr decomposition

Fig. 3. Eigenvalue Decomposition

2.2.3 Example of Function Implementation
The qr decomposition uses Gram-Schmidt Orthogonalization [18]. The orthogonaliza-
tion process is to convert any group of bases in the Euclidean space into a standard
orthogonal base, and the generated standard orthogonal base is the Q matrix, and the R
matrix can be used in the orthogonalization process calculate (Fig. 2).

The calculation of the eigenvalues is based on an iterative qr decomposition [19]
(Fig. 3).

Implementation of Matlab matfun Toolkit Based on MSVL 57

3 Application of PCA Implementation

In many fields of research and applications, it is usually necessary to observe data con-
taining multiple variables, and to collect a large amount of data to analyze and find
rules. Although large data sets containing multivariate will provide rich information for
research and application, it also increases the workload of data collection. Therefore,
it is necessary to find a reasonable method to reduce the loss of information as much
as possible while to reduce the indicators to be analyzed, so as to achieve the purpose
of comprehensive analysis of the collected data. Since there is a certain correlation
between the variables, it can be considered to change the closely related variables into
as few new variables as possible, so that these new variables are uncorrelated in pairs,
then less comprehensive indicators can be used to represent them respectively. Various
types of information that exist in each variable. Principal component analysis (PCA) is
used for dimensionality reduction of such data [20].

The main method of PCA is to map the n-dimensional features to the new k-
dimensional orthogonal features, so the k-dimensional features reconstructed on the
basis of the original n-dimensional features. The k-dimensional orthogonal features are
called principal components.

PCA can be implemented through a covariance matrix based on eigenvalue decom-
position. For example, it is necessary to reduce the dataset X = {x1, x2, · · · , xn} to k
dimensions. The specific method is as follows:

(1) De-average (decentralization)
(2) Calculate the covariance matrix 1

nXXT

(3) Use eigenvalue decomposition (eig function) to calculate the eigenvalues and eigen-
vectors of the covariance matrix 1

nXXT

(4) Select the largest k eigenvalues, and use the corresponding k eigenvectors as row
vectors to form an eigenvector matrix P

(5) Convert the data to a new space Y = P ∗ X constructed by k eigenvectors

Assuming that the matrix

[−1 −1 0 2 0
−2 0 0 1 1

]
, the matrix after PCA dimension reduc-

tion given by the MSVL compiler is
[

−3√
2

−1√
2

0 3√
2

−1√
2

]
, indicating that the original

two lines of data have been reduced to one line (Fig. 4).

Fig. 4. Application of PCA Implementation

58 X. Feng et al.

4 Conclusion

In this paper, the functions in the matfun toolkit in Matlab are implemented by using
MSVL language. The principles of the functions are studied, and the realization meth-
ods are presented. The functional capabilities are shown by implementing the com-
monly used dimensionality reduction method Principal Component Analysis (PCA).

References

1. Moszkowski, B.C.: Executing Temporal Logic Programs. Cambridge University Press, Cam-
bridge (1986)

2. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2005)
3. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal

logic with infinite models. Acta Informatica 45(1), 43–78 (2008)
4. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Pro-

gram. 70(1), 31–61 (2008)
5. Duan, Z., Tian, C.: A practical decision procedure for propositional projection temporal logic

with infinite models. Theor. Comput. Sci. 554, 169–190 (2014)
6. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL. Sci. China

Inf. Sci. 59(11), 1–3 (2016)
7. Zhang, N., Duan, Z., Tian, C.: A mechanism of function calls in MSVL. Theor. Comput. Sci.

654, 11–25 (2016)
8. Peng, Y., Duan, Z., Zhang, N.: Design and Implementation of MSVL Compiler Based on

Normal Form. Xidian University (2022)
9. Pseudo-inverse Matrix. https://www.jianshu.com/p/609fa0cce409
10. Xu, D., Meng, X.: Matlab Function Library Query Dictionary. Document (2006). https://

ww2.mathworks.cn/help/matlab/index.html
11. Singular Value Decomposition. https://zhuanlan.zhihu.com/p/29846048
12. Golub, G.H., Van Loan, C.F.: Matrix Computations, Sections 6.5.2-6.5.3, 4th edn., pp. 335–

338. Johns Hopkins University Press, Baltimore (2013)
13. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM

J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)
14. Matrix Computations. Posts and Telecom Press (2014)
15. Golub, G.H., Van Loan, C.F.: Matrix Computation, p. 384. Johns Hopkins University Press,

Baltimore (1983)
16. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix.

SIAM Rev. 20, 801–836 (1978). Reprinted and updated as Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix, Twenty-Five Years Later? SIAM Review 45, 2003, pp.
3–49

17. Givens Transform. https://www.cnblogs.com/reasno/p/9643529.html
18. Matlab Document. https://ww2.mathworks.cn/help/matlab/index.html
19. Linear Algebra and Its Application. China Machine Press (2020)
20. Detailed Explanation of the Principle of Principal Component Analysis (PCA). https://

zhuanlan.zhihu.com/p/37777074

https://www.jianshu.com/p/609fa0cce409
https://ww2.mathworks.cn/help/matlab/index.html
https://ww2.mathworks.cn/help/matlab/index.html
https://zhuanlan.zhihu.com/p/29846048
https://www.cnblogs.com/reasno/p/9643529.html
https://ww2.mathworks.cn/help/matlab/index.html
https://zhuanlan.zhihu.com/p/37777074
https://zhuanlan.zhihu.com/p/37777074

Extending Visibly Pushdown Automata
over Multi-matching Nested Relations

Jin Liu1, Yeqiu Xiao1, Haiyang Wang1, and Wensheng Wang2(B)

1 Shaanxi Key Laboratory for Network Computing and Security Technology,
School of Computer Science and Engineering, Xi’an University of Technology,

Xi’an 710048, China
2 Institute of Computing Theory and Technology and ISN Laboratory,

School of Computer Science and Technology, Xidian University,
Xi’an 710071, China

wwsheng889@163.com

Abstract. Visibly Pushdown Automata (VPAs) are a subclass of push-
down automata, which can be well applied as specification formalism for
verification and the model for XML streams process. The input alphabet
is partitioned into three disjoint sets: call, internal and return symbols,
which can determine a push, pop or no stack operation taken by VPAs
respectively. Hence, the matchings of push (call) and pop (return) make
languages with matching nested relations accepted. Nevertheless, it is
limited to one-to-one matching. In this paper, we extend the model of
VPAs over multi-matching nested relations. By a subdivision for call and
return symbols, inner-calls and inner-returns are obatined to discrim-
inate a one-to-n or n-to-one matching relation. Then, Multi-matching
Visibly Pushdown Automata (MVPA) are formally defined whose stack
behavior is achieved by setting a guard in the stack, which can guar-
antee whether a one-to-n or n-to-one matching nested relation is read
without confusion. Each nondeterministic multi-matching visibly push-
down automaton is demonstrated to be transformed into a deterministic
one. Moreover, the symbolic version of multi-matching visibly pushdown
automata is proposed when the input alphabet is given by a Boolean
algebra where there is an infinite domain.

Keywords: multi-matching nested relation · visibly pushdown
automata · one-to-n · n-to-one · symbolic automata

1 Introduction

A model of nested words is proposed for describing the data with a dual linear-
hierarchical structure [1]. A nested word consists of a linear sequence of positions,
calls, internals and returns, augmented with matching relations connecting from
calls to returns. Visibly Pushdown Automata (VPAs) are proposed over nested

This research is supported by the NSFC Grant Nos. 62202371 and 61902312.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 59–69, 2023.
https://doi.org/10.1007/978-3-031-29476-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_5

60 J. Liu et al.

words by Alur in [2] as a subclass of Pushdown Automata (PDAs) [3]. VPAs
are well applied as the automaton model for processing XML streams [4,5] and
specification formalism for verification [6,7]. The key character is that the alpha-
bet in VPAs is partitioned into three disjoint sets of call, internal, and return
symbols. Based on the partition, VPAs can push symbols into the stack by read-
ing a call, pop the top of the stack by a return, and via an internal, VPAs only
modify the state with the stack unchanged. Hence, this setting makes the stack
behavior visible. In classical automata theory, there are two basic assumptions: a
finite state space and a finite alphabet. The concept of automata with predicates
instead of concrete symbols was first mentioned in [8] and was first discussed in
[9] in the context of natural language processing. Accordingly, Symbolic Visibly
Pushdown Automata (SVPAs) are proposed as an executable model for nested
words over infinite alphabets [10], which are further applied in XML processing
and program trace analysis [11].

Nevertheless, the models above are limited to describe only one-to-one match-
ing structures. If a call (resp. return) is matched with multiple returns (resp.
calls), a one-to-n (resp. n-to-one) multi-matching nested relation is obtained. By
introducing a tagged alphabet, multi-matching nested words are defined where
symbols can be calls, inner-calls, internals, inner-returns and returns. Multi-
matching Nested Traceable Automata (MNTAs) are proposed to describe the
languages of multi-matching nested words [12–14], which is an variant of Trace-
able Automata (TAs) and VPAs. In a MNTA, both of states and input symbols,
which are recorded in the stack, are utilized to determine the subsequent tran-
sitions together. For a call, the current input symbol and state are pushed into
the stack, while for a return they are popped. Note that the automaton traces
back to the state which is popped then. As for inner-calls and inner-returns, the
top stack is updated besides state transfer.

However, natural nondeterminization exists in MNTAs if there are several
calls at a state. Suppose two calls ăa and ăb can be read at a state q, one
cannot construct a MNTA such that ăa is certain to read indeed ahead of ăb.
In addition, the characteristic that a state is pushed at a call and finally traced
back upon a return makes MNTAs accept languages always beyond a single
multi-matching nested relation. With this motivation, we loosen the restriction
on stack behavior of MNTAs by eliminating the record of states from the stack.
Only symbols are recorded as a guard during transitions. Accordingly, Multi-
matching Visibly Pushdown Automata (MVPAs) are proposed as a new model
for describing multi-matching nested words. And nondeterministic MVPAs are
as expressive as deterministic ones. In addition, if the input alphabet is given
by a Boolean algebra where there is an infinite domain, symbolic version of
multi-matching visibly pushdown automata is formally proposed.

The rest of paper is organized as follows. In Sect. 2, we revisit the definitions of
multi-matching nested relations and its linear word encoding. Section 3 extends
visibly pushdown automata over multi-matching relations. Multi-matching vis-
ibly pushdown automata are formally defined. Besides, a deterministic MVPA
can be constructed for a nondeterministic one. When the input alphabet is given

Extending Visibly Pushdown Automata 61

by a Boolean algebra where there is an infinite domain, symbolic version of multi-
matching visibly pushdown automata is proposed in Sect. 4. Finally, conclusions
are drawn in Sect. 5.

2 Preliminaries

In this section, we first recall the concept of multi-matching nested relations. By
linear word encodings, multi-matching nested languages can be obtained.

2.1 Multi-matching Nested Relation

Given a linear sequence, the positions are divided into calls, internals and
returns. To realize n-to-one and one-to-n matchings, inner-call and inner-return
are introduced. Hence, n-to-one matching relation can be achieved by a call,
multiple inner-calls and a return, while one-to-n by a call, multiple inner-returns
and a return. Suppose pending edges are indicated by edges starting at ´8 and
edges ending at `8. Assume that ´8 ă i, j ă `8 for integers i and j.

Definition 1 (Multi-matching Nested Relation). A multi-matching
nested relation �̇ of length m, m ě 0, is a subset of {´8, 1, 2, · · · ,m} ˆ
{1, 2, · · · ,m, `8} such that for any i�̇j, i′�̇j′, (i) nesting edges go only
forward(i ă j); (ii) nesting edges do not cross(i ă i′ ď j ă j′ does not hold);
(iii) only one end of a nesting edge can be shared with others.

For i�̇j, i, j are denoted as a call and a return respectively. Specifically, if
j “ `8, i is called a pending call while j is denoted a pending return if i “ ´8.
Suppose there are n different nesting edges sharing the same call i, namely i�̇jk,
where 1 ď k ď n and 1 ď i ă j1 ă j2 ă · · · ă jn ď m. Among them, i�̇jn is the
outermost nesting edge. By contrast, for each inner nesting edge, jh is identified
as an inner-return where 1 ď h ă n. Similarly, for n different nesting edges
sharing the same return j, namely ik�̇j, where 1 ď i1 ă i2 ă · · · ă in ă j ď m,
each ih, 1 ă h ď n, is identified as an inner-return. A position is an internal if
it is neither a call (resp. inner-call) nor a return (resp. inner-return). A multi-
matching nested relation is well-matched if there is no pending call or pending
return.

2.2 Word Encoding

Given a multi-matching nested relation, a word can be obtained by assigning
each position with a symbol. To distinguish different position categories, a tagged
alphabet Σ̂ “ Σc Y Σ̇c Y Σi Y Σ̇r Y Σr is introduced, where Σc “ {ăa1|a1 P Σ},
Σ̇c “ {ăȧ2|a2 P Σ}, Σi “ Σ, Σ̇r “ {ȧ3

ą|a3 P Σ} and Σr “ {a4
ą|a4 P Σ} are the

symbols of call, inner-call, internal, inner-return and return, respectively. Σ is a
normal alphabet. Note that ăa1, ăȧ2, ȧ3

ą and a4
ą are indicated to be matched if

and only if a1 “ a2 “ a3 “ a4.
The set of all multi-matching nested words over Σ̂ are denoted as MNW(Σ̂).

Note that due to the requirement of symbol matching, it can be obtained
MNW(Σ̂) Ă Σ̂∗.

62 J. Liu et al.

3 Multi-matching Visibly Pushdown Automata

3.1 Model

Definition 2 (Multi-matching Visibly Pushdown Automata, MVPA).
A multi-matching visibly pushdown automaton is a tuple M “ (Q,Q0, F, Σ̂, Γ, δ),
where

• Q, Q0 Ď Q, F Ď Q are finite sets of states, initial states, final states respec-
tively;

• Σ̂ “ Σc YΣ̇c YΣi YΣ̇r YΣr is a finite set of input symbols, where Σc, Σ̇c, Σi,
Σ̇r and Σr denote call, inner-call, internal, inner-return and return symbols,
respectively;

• Γ Ď (Σc Y Σ̇c Y Σ̇r) ˆ Ξ Y {K} is a finite set of stack elements including a
special bottom-of-stack symbol K, where Ξ is a finite alphabet; and

• δ is a finite set of transitions consisting of the following four parts:

δc Ď Q ˆ Σc ˆ Q ˆ (Σc ˆ Ξ)
δi Ď Q ˆ Σi ˆ Q

δu Ď Q ˆ Γ ˆ (Σ̇c Y Σ̇r) ˆ Q ˆ Γ

δr Ď Q ˆ Γ ˆ Σr ˆ Q

The transitions in M can be classified into four categories. Let q, q′ P Q,
γ, γ′ P Γ , ăa P Σc, ăȧ P Σ̇c, i P Σi, ȧą P Σ̇r and aą P Σr. For convenience, we use
notation a/b to denote a or b.

1. call transition (push transition): (q, ăa, q′, ăaξ) P δc

When reading a call ăa at state q, M turns to state q′, meanwhile both the
call ăa and the symbol ξ P Ξ are pushed into the stack.

2. internal transition: (q, i, q′) P δi

For an internal i, the operation is similar to the usual finite automata, M
only updates the state from q to q′ without the stack modified.

3. update transition: (q, γ, x, q′, γ′) P δu

(a) Upon an inner-call x “ ăȧ, it is noteworthy that the symbol of the top
stack must be ăa or ăȧ stating that it is the same as or matched with
the input symbol. Then, the state is updated to q′ and the top of the
stack modifies from γ “ ăaξ/ăȧξ to γ′ “ ăȧξ′ where ξ, ξ′ P Ξ. Hence, this
transition is denoted as a call update one.

(b) As for an inner-return x “ ȧą, it is similar to the case of inner-calls.
Besides M turns to q′, the top of the stack is modified from γ1 “ ăaξ/ȧąξ
to γ2 “ ȧąξ′ where ξ, ξ′ P Ξ.

4. return transition (pop transition): (q, γ, aą, q′) P δr

(a) In a return transition with the input return aą, suppose that the top of
the stack is γ “ xξ. Symbol x can only be one of ăa, ăȧ or ȧą, since x
must be matched with aą. Then M turns to q′ and γ is popped.

(b) In particularly, when the stack is empty, i.e. γ “ K, only the state is
updated and the stack remains unchanged.

Extending Visibly Pushdown Automata 63

Formally, a stack σ is a finite word over the set Γ . All stacks constitute the
set St “ (Γ\{K})∗ · {K}. Let |σ| stand for the length of σ. Especially, when
σ “ K, |σ| “ 0; otherwise |σ| ą 0.

A configuration of M is a pair (q, σ) where q P Q and σ P St. Given a word
w “ w1w2 · · · wn with multi-matching nest relations, w can be accepted by M
if there exists a run of M on w. A run ρ is defined as a non-empty sequence
of configurations, i.e. ρ “ (q0, σ0)

w1→́ (q1, σ1)
w2→́ · · · wn´́→ (qn, σn), where q0 P Q0

is an initial state and σ0 “ K. ρ is accepted by M if qn P F is a final state
and σn P (Σc ˆ Ξ)∗ · {K}. In another word, when M terminates, no inner-call or
inner-return symbols are allowed to exist in the stack, since only well-matched or
pending calls/returns are considered. The case of a call and multiple inner-calls
without a return (or multiple inner-returns and a return without a call) is illegal.
The set of multi-matching nested words that are accepted by M constitutes the
language L(M).

3.2 Determinization

Given a multi-matching visibly pushdown automaton M “ (Q, q0, F, Σ̂, Γ, δ), M
is called to be deterministic if q0 is the unique initial state in M . Besides, for
each transition q P Q, γ P Γ and x P Σ̂, there is at most one transition for
δ(q, γ, x).

As shown in [2], the main idea of transformation from a nondeterministic
MVPA to an equivalent deterministic one is the subset construction with call
transitions postponed handling. To do this, two components S and R are intro-
duced, where S is a set of summary edges that keeps track of what transitions
are possible from a call transition to a matched return one, and R is a set of
reachable states by using the summary information. However, in MVPAs, update
transitions require special treatments.

Let w “ w1
ăaw2xw3 accepted by a MVPA M , where w1, w2 and w3 are well-

matched words where there are no pending calls or returns. One can construct
an equivalent deterministic MVPA. After reading call ăa, the stack of M is now
(ăa�S1, R1�)K and M turns to state �S,R�. All possible pairs (q, q′) are included
in S1 such that M can get on w1 from q with empty stack K to q′ with empty
stack K. R1 contains all reachable states by M from any initial state on w1.
Then, several situations are taken into consideration.

1. If x P Σc is a new call, the stack then is (x�S2, R2�)(ăa�S1, R1�)K. S2 contains
all pairs such that the stack of M updates from ăaξK to ăaξK. R2 records
reachable states by M on w2.

2. When x “ ăȧ P Σ̇c is an inner-call, the stack is updated to (ăȧ�S′
1, R1�)K.

Then S′
1 “ S1 Y {q, q′} where (q, q′) records the summary such that M can

get from q with ăaξK to q′ with ăȧξK.
3. On the basis of the second case, suppose the inner symbol x is read for the

second time, namely w “ w1
ăaw2xw3x. Similarly, the new updated stack is

(ăȧ�S′′
1 , R1�)K. S′′

1 “ S′
1 Y{q, q′} where (q, q′) records the summary such that

M can get w2 from q with ăȧξK to q′ with ăȧξK.

64 J. Liu et al.

4. When the matched return aą is read with x be inner-call ăȧ, that means the
word is w “ w1

ăaw2
ăȧw3a

ą. ăȧ�S′′
1 , R1� is popped. And state is updated by

using the current summaries S′′
1 and S along with a call transition on ăa, a

call update transition on ăȧ and a return transition on aą.

Note that the treatment for an inner-return is similar to the analysis above
for an inner-call. Accordingly, we present the determinization procedure in detail
as below.

Theorem 1. Given a multi-matching visibly pushdown automaton M , an equiv-
alent deterministic one MD can be constructed such that they can accept the same
language, i.e. L(M) “ L(MD).

Proof. For a multi-matching visibly pushdown automaton M “ (Q,Q0, F, Σ̂,
Γ, δ), one can acquire an equivalent deterministic one MD “ (Q′, Q′

0, F
′, Σ̂,

Γ ′, δ′) according to the following constructions.
First, the set of states in MD is expanded as the set Q′ “ 2QˆQ ˆ2Q. The set

2QˆQ, denoted by S, records the summary edges within a multi-matching nested
relation accepted by M , i.e. from a call to an inner-call/inner-return/return
or from an inner-call (resp. inner-return) to an inner-call/return (resp. inner-
return/return), while a reachable state set can be calculated by 2Q, called R.
For convenience and clarity, we denote Q′ “ �S,R�.

Let IdX indicate the set {(q, q)|q P X}. Then, the set of initial states can
be obtained as Q′

0 “ {�IdQ, Q0�}. A state �S,R� is a final one if qf P R where
qf P F . Hence, F ′ “ {�S,R�|R X F ‰ H}.

For the set of stack elements, let Γ ′ “ {Σc Y Σ̇c Y Σ̇r} ˆ S ˆ R where
Ξ “ S ˆ R.

For each symbol x P Σ̂, the top of stack γ′ P Γ ′ and state �S,R� P Q′, the
set of transitions δ′ is constructed as follows:

Call. When x “ ăa P Σc is a call, one can construct a call transition (�S,R�, ăa,
�IdR′ , R′�, ăa�S,R�) P δ′

c where

R′ “ {q′ | Dq P R, ξ P Ξ, s.t. (q, ăa, q′, ăaξ) P δc}.

Internal. For an internal x “ i P Σi, there is a transition (�S,R�, i, �, S′, R′�) P
δ′
i where

S′ “ {(q, q′) | Dq′′ s.t. (q, q′′) P S and (q′′, i, q′) P δi},

R′ “ {q′ | Dq P R s.t. (q, i, q′) P δi}.

Update. There are two cases for inner symbols.
– Call Update. With regard to an inner-call x “ ăȧ P Σ̇c, one can

construct (�S,R�, ăa�S1, R1�/ăȧ�S1, R1�, ăȧ, �IdR′ , R′�, ăȧ�S2, R2�) P δ′
u

where

R′ “ {q′ | Dq P R, ξ, ξ′ P Ξ, s.t. (q, ăaξ/ăȧξ, q′, ăȧξ′) P δu},

S2 “ S1 Y S,

R2 “ R1.

Extending Visibly Pushdown Automata 65

The pair (q, q′) P S records the summary such that M can get after a
call or call update transition, in which the state is updated to state q
with stack γ “ ăaξ/ăȧξ, to a call update transition from q′ with stack
γ′ “ ăȧξ′.

– Return Update. Similarly, when x “ ȧą P Σ̇r, (�S,R�, ăa�S′′,
R′′�/ȧą�S′′, R′′�, ȧą, �IdR′ , R′�, ȧą�S′′, R′′�) P δ′

u can be constructed,
where

R′ “ {q′ | Dq P R, ξ, ξ′ P Ξ, s.t. (q, ăaξ/ȧąξ, q′, ȧąξ′) P δu},

S2 “ S1 Y S,

R2 “ R1.

Return. When a return x “ aą is read, any type of call, inner-call, inner-return
or return symbol can be met at the top of the stack since they are all matched
with x. Especially, the stack can also be empty. Hence, four cases are taken
into consideration as follows. Suppose the return transition is constructed as
(�S,R�, y�S′′, R′′�, aą, �S′, R′�) P δ′

r. Update is a set of state pairs in S.
– If y “ ăa, let

Update “ {(q, q′) | Dq1, q2 P Q, ξ P Ξ s.t. (q, ăa, q1,
ăaξ) P δc, (q1, q2) P S

and (q2, ăaξ, aą, q′) P δr}.

Then the two components of the state (S′, R′) satisfy conditions

S′ “ {(q, q′) | Dp s.t. (q, p) P S′′ and (p, q′) P Update)}
R′ “ {q′ | Dq s.t. q P R′′ and (q, q′) P Update}.

In this case, the matching nested relation has only a one-to-one matching
structure.

– When y “ ăȧ, it indicates that an n-to-one matching relation is currently
read. The set Update is defined as:

Update “ {(q0, q) | Dq P Q, (qi, q
′
i) P S′′, (qS , q′

S) P S, ξ, ξ′ P Ξ, 0 ď i ď n,

n ě 1, s.t. (q′
0,

ăa, q1,
ăaξ) P δc(i “ 0),

(q′
i,

ăaξ/ăȧξ, ăȧ, qi`1,
ăȧξ′) P δu(0 ă i ă n),

(q′
n, ăȧξ, ăȧ, qS , ăaξ′) P δu,

(q′
S , ăȧξ, aą, q) P δr}.

The value of n needs to be larger than 1, since in this case, there is at least
one call update transition in the run from a call transition to a return
transition. Based on Update, the state (S′, R′) is calculated by:

S′ “ {(q, q′) | Dp s.t. (q, p) P S′′ and (p, q′) P Update)
R′ “ {q′ | Dq s.t. q P R′′ and (q, q′) P Update}}

66 J. Liu et al.

– For y “ ȧą, it is similar to the case of a call update transition. One can
easily acquire each component by

Update “ {(q0, q) | Dq P Q, (qi, q
′
i) P S′′, (qS , q′

S) P S, ξ, ξ′ P Ξ, 0 ď i ď n,

n ě 1, s.t. (q′
0,

ăa, q1,
ăaξ) P δc(i “ 0),

(q′
i,

ăaξ/ȧąξ, ăȧ, qi`1, ȧ
ąξ′) P δu(0 ă i ă n),

(q′
n, ȧąξ, ȧą, qS , ȧąξ′) P δu,

(q′
S , ȧąξ, aą, q) P δr},

S′ “ {(q, q′) | Dp s.t. (q, p) P S′′ and (p, q′) P Update)
R′ “ {q′ | Dq s.t. q P R′′ and (q, q′) P Update}}

– If the stack is empty, then (�S,R�, K, aą, �S′, R′�) P δ′
r where

S′ “ {(q, q′) |Dq′′ s.t. (q′′, K, aą, q′) P δr}
R′ “ {q′ | Dq P R s.t. (q, K, aą, q′) P δr}.

4 Symbolic Multi-matching Visibly Pushdown Automata

In this section, the definitions of symbolic alphabets are presented first. Then
symbolic multi-matching visibly pushdown automata are formally defined.

4.1 Notations

The conventional notations of symbolic visibly pushdown automata is used in
[10,11]. First, let symbol Ψ be a label theory including a recursively enumerable
set of formulas. Ψ is closed under Boolean operations. Notation Px(Ψ) represents
the set of unary predicates in Ψ where the subscript x is set as the unique free
variable in Px(Ψ). Similarly, Px,y(Ψ) signifies the set of binary predicates where
there are only two free variables x and y. For two predicates ϕ1 and ϕ2, we can
obtain that:

1. if ϕ1, ϕ2 P Px(Ψ), ϕ1 ∧ ϕ2 and ¬ϕ1 P Px(Ψ) are also both unary predicates;
2. if ϕ1 P Px(Ψ) Y Px,y(Ψ) and ϕ2 P Px,y(Ψ), ϕ1 ∧ ϕ2 and ¬ϕ2 P Px,y(Ψ) are

both binary predicates.

We define IsSat(ϕ) as the satisfiability of the predicate ϕ P Px(Ψ). ϕ is satisfi-
able, if there exists a witness a such that ϕ is true when variable x is substituted
by a, i.e. vϕ[x/a]w=true. Similarly, when ϕ P Px,y(Ψ), vϕ[x/a, y/b]w=true when
x and y are substituted by a and b respectively. If for each predicate ϕ P Ψ , it is
decidable to check whether IsSat(ϕ) is true or not, then we say the label theory
Ψ is decidable.

Extending Visibly Pushdown Automata 67

4.2 Model

Next we propose the model of symbolic multi-matching visibly pushdown
automata which is defined as follows.

Definition 3 (Symbolic Multi-matching Visibly Pushdown Automata,
SMVPA). A symbolic multi-matching visibly pushdown automaton is a tuple
M “ (Q,Q0, F, Σ̂, Γ, Ψ, δ), where

1. Q is a finite set of states;
2. Q0 Ď Q is the set of initial states;
3. F Ď Q is the set of final states;
4. Σ̂ “ Σc Y Σ̇c Y Σi Y Σ̇r Y Σr is a finite set of input symbols;
5. Γ Ď (Σc Y Σ̇c Y Σ̇r) ˆ Ξ Y {K} is a finite set of stack elements including a

special bottom-of-stack symbol K;
6. Ψ is a label theory; and
7. δ “ δc Y δi Y δu Y δr is the set of transitions consisting of four parts:

δc Ď Q ˆ Px ˆ Q ˆ Γ

δi Ď Q ˆ Px ˆ Q

δu Ď Q ˆ Γ ˆ Px,y ˆ Q ˆ Γ

δr Ď Q ˆ Γ ˆ Px,y ˆ Q

A configuration of M is a pair (q, σ) where q P Q and σ P St. Given a word
w “ w1w2 · · · wn with multi-matching nest relations, w can be accepted by M

if there exists a run of M on w. A run ρ is defined as a non-empty sequence of
configurations, i.e. ρ “ (q0, σ0)

w1´́→
ϕ1

(q1, σ1)
w2´́→
ϕ2

· · · wn´́→
ϕn

(qn, σn), where q0 P Q0

is an initial state and γ0 “ K. For 0 ă i ď n, each configuration (qi, σi), where
qi P Q and γi P Γ , satisfies one of the following cases:

1. call if wi “ ăa is a call, there is (qi´1, ϕi, qi, wiξ) P δc where wi P vϕiw,
ϕi P Px and σi “ wiξ · σi´1;

2. internal if wi “ i is an internal, there is (qi´1, ϕi, qi) P δi where wi P vϕiw,
ϕi P Px and σi “ σi´1;

3. update
(a) if wi “ ăȧ is an inner-call, there is (qi´1, γi´1, ϕi, qi, γi) P δu where

(wi´1, wi) P vϕiw, ϕi P Px,y, σi´1 “ ăaξσ′/ăȧξσ′, σi “ ăȧξσ′ and σ′ P St;
(b) it is similar for an inner-return wi “ ȧą. The difference is that σi´1 “

ăaξσ′/ȧąξσ′ and σi “ ȧąξσ′;
4. return

(a) with regarding to a return wi “ aą, there is (qi´1, γi´1, ϕi, qi) P δr where
(wi´1, wi) P vϕiw, ϕi P Px,y σi´1 “ ăaξσ′/ăȧξσ′ and σi “ ăȧξσ′;

(b) specifically, when the stack is empty, i.e. (qi´1, K, ϕi, qi) P δr, there is
σi´1 “ σi “ K, wi P vϕiw, and ϕi P Px.

68 J. Liu et al.

A run ρ “ (q0, σ0)
w1´́→
ϕ1

(q1, σ1)
w2´́→
ϕ2

· · · wn´́→
ϕn

(qn, σn) is accepted by M if

qn P F is a final state and σn P (Σc ˆ Ξ)∗ · {K}.
Given a symbolic multi-matching visibly pushdown automaton M, M is called

to be deterministic if q0 is the unique initial state in M, besides, the transition
set δ satisfies the following conditions:

1. for any two call transitions (q1, ϕ1, q
′
1, γ1) P δc and (q2, ϕ2, q

′
2, γ2) P δc: if

q1 “ q2 and IsSat(ϕ1 ∧ ϕ2), there is q′
1 “ q′

2 and γ1 “ γ2;
2. for any two internal transitions (q1, ϕ1, q

′
1) P δi and (q2, ϕ2, q

′
2) P δi: if q1 “ q2

and IsSat(ϕ1 ∧ ϕ2), there is q′
1 “ q′

2;
3. for any two call/return update transitions (q1, γ1, ϕ1, q

′
1, γ

′
1) P δu and (q2, γ2,

ϕ2, q
′
2, γ

′
2) P δu: if q1 “ q2, γ1 “ γ2 and IsSat(ϕ1 ∧ ϕ2), q′

1 “ q′
2 and γ′

1 “ γ′
2

hold;
4. for any two return transitions (q1, γ1, ϕ1, q

′
1) P δu and (q2, γ2, ϕ2, q

′
2) P δu: if

q1 “ q2, γ1 “ γ2 and IsSat(ϕ1 ∧ ϕ2), there is q′
1 “ q′

2; especially, if the stack
is empty, the difference from the former case is that γ1 “ γ2 “ K.

5 Conclusion

In this paper, we extend the model of visibly pushdown automata over multi-
matching nested relations. Different categories of transitions are determined
according to a fixed partition of input tagged alphabet. Then, languages with
one-to-one, one-to-n and n-to-one relations can be described. Besides, each non-
deterministic multi-matching visibly pushdown automaton is demonstrated to
be transformed into a deterministic one. In addition, if the input alphabet is
given by a Boolean algebra where there is an infinite domain, symbolic ver-
sion of multi-matching visibly pushdown automata is formally proposed. In the
future, we will further investigate the closure properties and decision problems
of multi-matching visibly pushdown automata and the symbolic version. More-
over, how visibly pushdown automata over multi-matching nested relations can
be well applied in more fields are further explored.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM (JACM)
56(3), 1–43 (2009)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 202–211
(2004)

3. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Pearson Education, London (2000). ISBN
0-201-44124-1

4. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: Proceedings of the 16th International Conference on World
Wide Web (WWW 2007), 1053C1062 (2007)

Extending Visibly Pushdown Automata 69

5. Debarbieux, D., Gauwin, O., Niehren, J., et al.: Early nested word automata for
XPath query answering on XML streams. Theor. Comput. Sci. 578, 100–125 (2015)

6. Chaudhuri, S., Alur, R.: Instrumenting C programs with nested word monitors. In:
International SPIN Workshop on Model Checking of Software, pp. 279–283 (2007)

7. Driscoll, E., Thakur, A., Reps, T.: OpenNWA: a nested-word automaton library.
In: International Conference on Computer Aided Verification, pp. 665–671 (2012)

8. Watson, B.W.: Implementing and using finite automata toolkits. In: Extended
Finite State Models of Language, pp. 19–36. Cambridge University Press, New
York (1999)

9. van Noord, G., Gerdemann, D.: Finite state transducers with predicates and iden-
tities. Grammars 4(3), 263–286 (2001)

10. D’Antoni, L., Alur, R.: Symbolic visibly pushdown automata. In: International
Conference on Computer Aided Verification (CAV 2014), pp. 209–225 (2014)

11. Margus, V., Pieter, H., Benjamin, L., et al.: Symbolic finite state transducers:
algorithms and applications. In: Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2012), pp.
137–150 (2012)

12. Liu, J.. Duan, Z., Tian, C.: Transforming multi-matching nested traceable
automata to multi-matching nested expressions. In: Proceedings of the 14th Inter-
national Conference on Combinatorial Optimization and Applications (COCOA
2020), pp. 320–333 (2020)

13. Liu, J., Duan, Z., Tian, C.: Multi-matching nested relations. Theor. Comput. Sci.
854, 77–93 (2021)

14. Liu, J., Duan, Z., Tian, C.: Multi-matching nested languages. Chin. J. Electron.
31(1), 137–145 (2022)

Schedulability Analysis of
Rate-Monotonic Algorithm on

Concurrent Execution of Digraph
Real-Time Tasks

Jin Cui1(B), Xu Lu2, Guangliang Yu3, and Bin Yu2

1 Xi’an Shiyou University, Xi’an 710065, People’s Republic of China
cuijin xd@126.com

2 ICTT and ISN Laboratory Xidian University, Xi’an 710071,
People’s Republic of China

{xulu,yubin}@mail.xidian.edu.cn
3 Beijing Institute of Control Engineering, Beijing 100190, People’s Republic of China

ygl 222@126.com

Abstract. Rate-monotonic algorithm is a classical algorithm for
scheduling periodical tasks. Lots of work has been carried out to ana-
lyze the schedulability of RMS algorithm. While most of the work focus
on the classical Liu and Layland task model. In this paper, we propose
an approach to testing the schedulability of RMS algorithm on digraph
task models. Our approach has higher efficiency since we just analyze
schedulability of subtasks in the scheduling point set of one time interval
rather than all possible cases.

Keywords: Schedulability analysis · Digraph real-time tasks ·
Rate-monotonic algorithm · Real-time systems · Concurrent execution

1 Introduction

In real-time systems, concurrent execution of multi-tasks with static priorities is
common. Tasks are scheduled according to the pre-assigned priority during the
execution process. RMS (Rate-monotonic Scheduling) algorithm is a classical
static priority scheduling algorithm for periodic tasks. The priorities of tasks
are assigned according to their periods and a task with smaller period runs in a
higher priority. RMS algorithm was proposed by Liu and Layland in 1973 and
shown to be optimum among all fixed priority scheduling algorithms.

Different formal models have been proposed to represent the running of tasks
in real-time systems. The formal models include Liu and Lanyland model [1],
the sporadic tasks model [2], multiframe (MF) model [3], generalized multiframe
(GMF) model [4], and digraph task model [5,6]. In the digraph task model,
vertices represent subtasks and edges indicating the control flow among subtasks.

This research is supported by Special Scientific Research Project No. 21JK0844 of
Education Department of Shaanxi Province.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 70–76, 2023.
https://doi.org/10.1007/978-3-031-29476-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_6

Schedulability Analysis of Rate-Monotonic Algorithm 71

Analyzing the schedulability of concurrent execution of multi-tasks in digraph
models is an important work in the design stage of real-time systems.

Schedulability of different task models have been studied where the first work
is carried out by Liu and Layland in 1973. Liu and Layland focus on periodic
tasks with hard deadlines being equal to the task periods [1], they derive the
optimal static priority scheduling algorithm: rate-monotonic scheduling (RMS)
algorithm. They proved that using RMS, the periodic task set of size n will be
able to meet all deadlines all of the time if the total utilization is not greater
than n(2(1/n) − 1), a quantity which decreases monotonically from 0.83 when
n = 2 to loge2 = 0.693 as n → ∞.

Based on the theoretical results of Liu and Layland, several approaches for
deciding the feasibility of periodic tasks are proposed, such as response time
analysis [7,8], scheduling point analysis [9,10], and model checking approach
[11–13]. By means of calculating the processor demand, researchers in [14] give a
necessary and sufficient condition for deciding the feasibility of Liu and Layland
task model scheduled using RMS algorithm. John Lehoczky et al calculate the
processor demand at the time points where tasks are released.

In [15,16], feasibility analysis of recurring real-time task model is studied
for static priority scheduling. In [15], the request bound function and demand
bound function for each digraph task are used to test whether a digraph task
is schedulable or not. In [16], the schedulability of a task is tested using the
request function defined for each path of a digraph task. And the critical request
function is searched to test whether a digraph task is schedulable. The work in
[15,16] is similar to ours from two aspects: on one hand, we all focus on static
priority digraph tasks; on the other hand, the request function is used in all
approaches.

In this paper, we study the schedulability of RMS algorithm on digraph real-
time tasks. Our request function is defined for a subtask of digraph task. And we
just check the scheduling points of all cases for a critical instant of each subtask.
Suppose that d denotes the relative deadline of a subtask, we can limit the time
interval to the first d time units and just check the scheduling points in the first
d time units. Thus our approach has the advantage of higher efficiency.

The remainder of the paper is organized as follows. The next section gives
an introduction to the digraph real-time task model, which is followed by the
schedulability analysis process in Sect. 3. Finally, conclusions and future work
are drawn in Sect. 4.

2 The Digraph Task Model

A digraph task T is denoted as a directed graph G(T) = <V,E>, the set of
vertices V = {v1, . . . , vn} represents the subtasks of T . Each vertices vi is labeled
with an ordered pair 〈e(vi), d(vi)〉 with e(vi) and d(vi) being its execution time
and deadline respectively. Each edge (u, v) is labeled with a positive real number
p(u, v) for the minimum inter-release separation time, which means that when
task T is started, v is released p(u, v) time units right after u is released. G(T)

72 J. Cui et al.

may have a source vertex v and a sink vertex v′, which means that a complete
execution of task T starts from v and ends when v′ finishes its execution. Figure 1
shows an example of a digraph task containing six subtasks.

v1

v3

v2

v4

v6v5
<2,6> 8

<1,6>

<3,6>

<2,6> <1,4>

<3,7>

8

15

13

10

8

12

Fig. 1. Digraph task T : an example with six different subtasks

An execution of a task T corresponds to a potentially infinite path π =
(π1, π2, . . .) in G(T). Each visit to a vertex along a path of G(T) triggers the
release of a subtask. For a path π, the number of vertices is denoted as |π|, π1

is called the initial vertex and π|π| the final or last vertex. Further, we use π(i,j)

to denote a sub-path of π and π(i,j) = (πi, πi+1, . . . , πj) with, 1 ≤ i ≤ j ≤ |π|.
For a path π, we define the following notations:

len(πi, πj)
def=

∑j−1
l=i p(πl, πl+1)

el(πi, πj)
def=

∑j
l=i e(πl)

dl(πi, πj)
def= len(πi, πj) + d(πj)

Actually, len(πi, πj) denotes the absolute release time of πj in path π with
the assumption that πi is released at t = 0; el(πi, πj) means the time require-
ment for executing the sub-path π(i,j) of π; and dl(πi, πj) means the absolute
deadline for executing the sub-path π(i,j) of π. When i = 1, len(πi, πj), el(πi, πj)
and dl(πi, πj) can also be written as len(πj), el(πj) and dl(πj) respectively for
simplicity.

Assume v1 is a source node of G(T), π = (v1, . . . , v1) is an execution path of
G(T), and v1 dose not occur in π except for the initial and final position, then
we say path π is a cycle of G(T) and len(π|π|) is called the period of the cycle.
For example, in Fig. 1, π = (v1, v2, v3, v4, v6, v1) and π′ = (v1, v2, v5, v6, v1) are
cycles of task T , the periods of π and π′ are len(π|π|) = 49 and len(π′

|π′|) = 45
respectively. Moreover, if G(T) has only one cycle, we call len(π|π|) is the period
of T . In the rest of the paper, we mainly focus on digraph tasks with only one
cycle.

A digraph task system τ = {T1, . . . , Tn} consists of n independent tasks.
We assume Ti has mi subtasks, and denote its j-th subtask as vij or Tij for
1 ≤ i ≤ n, 1 ≤ j ≤ mi alternatively in the rest of the paper.

Schedulability Analysis of Rate-Monotonic Algorithm 73

3 Schedulability Analysis for Digraph Task Models

RMS algorithm is a classical scheduling algorithm for periodic tasks. It was
proposed by Liu and Layland in 1973 and shown to be optimum among all fixed
priority scheduling algorithms. In this paper, we generalize RMS algorithm to
schedule digraph tasks with only one cycle. Thus, for a digraph task system
τ = {T1, . . . , Tn}, the priorities of tasks are assigned according to their periods
and a task with smaller period runs in a higher priority.

Critical Instant. A digraph task consists of one or more subtasks. A release of a
subtask generates a job of that subtask. For digraph tasks with one cycle, jobs of
each subtask are released periodically. In a digraph task system τ = {T1, . . . , Tn},
we say task Ti is scheduable if and only if all of its subtask Tij are schedulable.
In digraph task Ti, a subtask Tij is schedulable if and only if all jobs released
by Tij are schedulable. In other word, if there exists one job of a subtask Tij

violates its deadline, then Tij is unschedulable, which indicates task Ti as well
as digraph task system τ is unschedulable. The definition as well as a theorem
of the critical instant for a subtask is given as follows.

Definition 1 (Critical Instant). A critical instant for a subtask is defined to
be a time instant at which a request for that subtask will have the largest response
time.

Theorem 1. A critical instant for any subtask occurs only when the subtask is
requested simultaneously with requests from all higher priority subtasks.

It is obvious that the schedulability of a digraph task T depends on the
schedulability of its subtasks. Thus the key is to determine whether each subtask
in a digraph task is schedulable separately, which is equivalent to determine
whether all jobs of a subtask violates their deadline or not. We only need to
consider whether the job of a subtask in the worst case violates its deadline or
not. From Theorem 1, we can infer that the worst case for a subtask occurs when
it is requested simultaneously with requests from all higher priority subtasks.
Actually, at most one subtask of a higher priority task is released at each time
point, which leads to that the number of cases for a critical instant of a subtask
is multiplies of the number of subtasks in each higher priority tasks. Thus we
need to further find out the worst case from these cases. For example, in a
digraph real-time system τ , we assume that T1, . . . , Ti are the tasks with higher
priority than T , and a subtask v in T is released at time point t = 0. Assume
v1s1 , . . . , visi

are subtasks of T1, . . . , Ti respectively. The time instant when v is
released simultaneously with v1s1 , . . . , visi

is a critical instant of v. If T1, . . . , Ti

has m1, . . . , mi subtask respectively, then there may be m1m2 . . . mi cases occurs
at a critical instant of v. We need to find out the worst case where the response
time for v is the maximum from the m1m2 . . . mi cases.

Request Bound Function. Let v be a subtask in T and the execution time
and deadline of s v is c and d respectively. Request bound function rfv(t) means
the number of time requested to execute subtask v at time point t. It can also

74 J. Cui et al.

be seen as the workload of the processor at time point t. The request bound
function rfv(t) which corresponds to execute subtask v during time interval
[0, d] consists of the request bound c of v as well as the interference it encounters
due to higher priority tasks T1, . . . , Ti. Note that v is released simultaneously
with one of subtasks in T1, . . . , Ti respectively. Theorem 2 shows how to define
request bound function rfv(t) for v in the digraph task system τ . The correctness
of the definition is also proved.

Theorem 2

rfv(t) = c +
i∑

j=1

(� t

pj
�cj + el(vj

sj
, . . . , vj

xj
))

where sj , xj are numbers of subtasks in Tj, sj , xj ∈ {1, 2, . . . ,mj}; vj
sj

is the sub-
task in Tj that is released simultaneously with subtask v in T ; len(vj

sj
, . . . , vj

xj
) ≤

t % pj < len(vj
sj

, . . . , vj
xj+1).

Proof: Since T1, . . . , Ti are tasks in τ with higher priorities than T , which may
interfere the execution of T . We can observe that at any time instance t, there
are � t

pj
� complete iterations of higher priority tasks that occupy � t

pj
�cj number

of processor time. In addition, jobs of Tjsj
, . . . , Tjxj

are also released during
the interval [� t

pj
�cj , t] that occupies el(vj

sj
, . . . , vj

xj
) number of processor time.

Therefore, at time instance t, the number of time requested to execute subtask
v in T is rfv(t) = c +

∑i
j=1(� t

pj
�cj + el(vj

sj
, . . . , vj

xj
)). �

From Theorem 2, we can see that the value of rfv(t) is affected by t and
sj , (j = 1, . . . , i). There are mj possible values for each sj , thus for rfv(t), there
are m1m2 . . . mi cases of combination for the value of sj with j = 1, . . . , i. To
test schedulability of subtask v in T , we consider each case separately using the
scheduling points test approach.

Scheduling Point Set. A scheduling point is a time instant at which there
exists a job of a subtask in higher priority tasks being released. The value of
rfv(t) changes only at the scheduling point, thus we just check t at all scheduling
point rather than all t ∈ [0, d].

Let SD be the set of time points at which jobs of subtasks in T1, . . . , Ti being
released in time interval [0, d]. We divide SD into two parts, one is SDI denoting
the scheduling points in time interval [0, � d

pj
� ·pj), and another is SDR denoting

the scheduling points in time interval [� d
pj

� · pj , t].
The path πj = (vsj

, v1+sj%mj
, . . . , v1+(sj+mj−2)%mj

, v1+(sj+mj−1)%mj
) is

a cycle of G(Tj) starts from vertex vsj
for each task Tj in T1, . . . , Ti. We

can see that there are aj = � d
pj

� complete cycles and one incomplete cycle
π′

j = (vsj
, . . . , vxj

) in time interval [0, d]. On the path π′′ = (πj)aj · π′
j ,

t ∈ {len(π′′(1)), . . . , len(π′′(|π′′|))} are the scheduling points for task Tj in time
interval [0, d], we denote the set as SDj . Thus it is not difficult to obtain that
SD = SD1 ∪ . . . ∪ SDi.

Schedulability Analysis of Rate-Monotonic Algorithm 75

For subtask v in T , with the concept of critical instant, request bound func-
tion, and scheduling point set, we obtain an approach to testing the scheduability
of v in T of digraph task system τ . We assume v’s execution time is c and its
deadline is d, the basic checking process is as follows: for each case of a criti-
cal instant, if ∃t ∈ SD, rfv(t) ≤ t holds, we say subtask v in T is schedulable;
otherwise, v in T is unschedulable. If v is unschedulable, the checking process
terminates; otherwise, we need to further check other cases until a case indicat-
ing that v is unscheduable or all cases are checked. If for all cases v is scheduable,
we say subtask v is schedulable, otherwise, v is unschedulable thus T as well as
the digraph system τ is unschedulable. To check whether T is schedulable, we
need to test whether each subtask in T is schedulable or not by repeating the
process above.

4 Conclusion and Future Work

This paper studies the schedulability of concurrent execution of multi-tasks in
digraph model using RMS algorithm. An efficient approach is provided to judge
the feasibility of concurrent digraph tasks with RMS algorithm. Our work focuses
on recurrent behaviour on single path, thus the branch structure is not consid-
ered. As a future work, we will consider complex structure of tasks for schedula-
bility analysis. And we also plan to implement a tool to decide the schedulability
of digraph task systems automatically.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

2. Mok, A.K.-L.: Fundamental design problems of distributed systems for the hard-
real-time environment. Ph.D. thesis, Massachusetts Institute of Technology (1983)

3. Moyo, N.T., Nicollet, E., Lafaye, F., Moy, C.: On schedulability analysis of non-
cyclic generalized multiframe tasks. In: 2010 22nd Euromicro Conference on Real-
Time Systems, pp. 271–278. IEEE (2010)

4. Baruah, S., Chen, D., Gorinsky, S., Mok, A.: Generalized multiframe tasks. Real-
Time Syst. 17(1), 5–22 (1999)

5. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
2011 17th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pp. 71–80. IEEE (2011)

6. Baruah, S.: The non-cyclic recurring real-time task model. In: 2010 31st IEEE
Real-Time Systems Symposium, pp. 173–182. IEEE (2010)

7. Baruah, S.K., Burns, A., Davis, R.I.: Response-time analysis for mixed criticality
systems. In: 2011 IEEE 32nd Real-Time Systems Symposium, pp. 34–43. IEEE
Computer Society (2011)

8. Nasri, M., Nelissen, G., Brandenburg, B.B.: Response-time analysis of limited-
preemptive parallel DAG tasks under global scheduling. In: 31st Conference on
Real-Time Systems, pp. 21–1 (2019)

9. Bini, E., Buttazzo, G.C.: Schedulability analysis of periodic fixed priority systems.
IEEE Trans. Comput. 53(11), 1462–1473 (2004)

76 J. Cui et al.

10. Anssi, S., Tucci-Piergiovanni, S., Kuntz, S., Gérard, S., Terrier, F.: Enabling
scheduling analysis for AUTOSAR systems. In: 2011 14th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing, pp. 152–159. IEEE (2011)

11. Cui, J., Duan, Z., Tian, C.: Model checking rate-monotonic scheduler with TMSVL.
In: 2014 19th International Conference on Engineering of Complex Computer Sys-
tems, pp. 202–205. IEEE (2014)

12. Cui, J., Cong, T., et al.: Verifying schedulability of tasks in ROS-based systems.
J. Comb. Optim. 37, 901–920 (2019)

13. Cui, J., Duan, Z., et al.: A novel approach to modeling and verifying real-time
systems for high reliability. IEEE Trans. Reliab. 67(2), 481–493 (2018)

14. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In: RTSS, vol. 89, pp. 166–171 (1989)

15. Baruah, S.K.: Dynamic-and static-priority scheduling of recurring real-time tasks.
Real-Time Syst. 24(1), 93–128 (2003)

16. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis of
static priorities. Real-Time Syst. 51(6), 639–674 (2015)

Formal Specification and Testing

Formalization of Natural Language into PPTL
Specification via Neural Machine Translation

Chunyi Li, Jiajun Chang, Xiaobing Wang(B), Liang Zhao, and Wenjie Mao

School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
{cyli_322,jjchang,wjmao}@stu.xidian.edu.cn,

xbwang@mail.xidian.edu.cn, lzhao@xidian.edu.cn

Abstract. Propositional Projection Temporal Logic (PPTL) has been widely
used in formal verification, and its expressiveness is suitable for the description
of security requirements. However, the expression and application of temporal
logic formulas rely on a strong mathematical background, which is difficult for
non-domain experts, thus bridging the chasm between natural language descrip-
tions and formal languages is urgently needed. This paper proposes an innovative
architecture for neural machine automatic translation named NL2PPTL, which
transforms natural language into PPTL specification via utilizing data prepro-
cessing, encoder-decoder network and stack sequentially. To evaluate the perfor-
mance of our method, the experimental verification is realized on real datasets.
The experiment conducted shows that our method has effectiveness on temporal
logic specification generation.

Keywords: Neural machine translation · Propositional projection temporal
logic · Formal specification · Formal verification

1 Introduction

In furtherance of ensuring the provision of highly reliable systems in industrial appli-
cations such as unmanned aerial vehicles [16], 5G [37], aerospace [3], military indus-
try [22], nuclear power [23], and autonomous driving [24], analysis and verification
of the security requirements have to be paid attention. In general, security require-
ments are described by informal natural language with ambiguity and contradiction,
which increases the possibility of causing unexpected dysfunction possibly. More
advanced approaches based on engineering security requirements, experts bring for-
ward many unified described language for engineers, such as linear-time temporal logic
(LTL) [21], computation tree logic(CTL) [9], scene description language (SDL) [11],
security requirement language (SRL) [1], PPTL [7], application vulnerability descrip-
tion language (AVDL) [28], etc. They can describe the global properties and behavior

Supported by National Natural Science Foundation of China (61972301, 61672403), Key
Research and Development Program of Shaanxi Province of China (2020GY-043), Shaanxi Inno-
vative Research Team for Key Science and Technology (2019TD-001), and Xi’an Science and
Technology Project (22GXFW0025).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 79–92, 2023.
https://doi.org/10.1007/978-3-031-29476-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_7

80 C. Li et al.

of the system abstractly. Especially, formal language theory has long employed in mod-
eling system behavior and describing temporal logic of system properties, which can
reduce errors by reducing ambiguity and imprecision and by making some instances
of inconsistency and incompleteness obvious [2]. In comparison to natural language,
the obvious advantages of PPTL are readily apparent: Firstly, PPTL can abstractly and
normatively describe and verify the behavior and performance of systems, for exam-
ple, security requirements in design and implementation of the software. Meanwhile,
mature formal tools have been developed based on PPTL, where the target language can
be analyzed directly. Next, It have been successfully used in scenarios such as model
checking, theorem proving and formal verification which improves the reliability and
safety of software [39,40]. Last but not least, PPTL has been proved to have the same
expressiveness as full regular expressions [31] and an efficient decision algorithm [27].
In specific, it integrates projection, temporal and classical logic, whose expressiveness
is more powerful than common logical language. However, in reality, the formal lan-
guage is not easy for non-professional experts.

By this motivation, the semi-automatic and automatic generation method for formal
description have been explored at least momentarily. Transforming natural language
text into machine understandable meaning representation (MR) [12], such as machine
executable language SQL, C/C++ and formal specification LTL, CTL. Igor Buzhin-
sky [5] assessed universal classifications which is roughly corresponds to rule-based
and statistical approaches in NLP. The first class is employing formal language the-
ory directly. Like some traditional methods, special transformation rules or expert tem-
plates are defined to generate the target language [30]. These ways are complicated and
require a lot of manual intervention by experts, so that the scope of the study is limited
by the number and description ability of templates. In order to improve the accuracy,
complex templates are proposed which lead to higher costs on demand analysis. The
generation performance is also limited by the enumeration schemes defined by experts,
which fundamentally cannot express the diversified requirements of systems. Inspired
by grammatical analysis in NLP, then structured English grammar [36] is proposed,
which includes common cases originally summarized by complex templates. Generally,
the advanced grammatical tagging technology is directly used, and tagging accuracy is
positively correlated with automatic conversion accuracy. With the rapid development
of NLP, this issue can be solved priority. The second class is statistical machine transla-
tion approaches. Motivated by developments in statistical machine methods, the trained
deep network is utilized to automatically construct generation rules [41]. Especially,
neural machine translation has gained in popularity. In such circumstances, translations
are not generated by prescriptive rules anymore, but relatively are generated on the basis
of statistical deep neural network models, whose parameters are trained on bilingual text
corpora [4]. In view of the fact that a logical formula is capably disposed to expressed
via a tree-like structure, so the sequence-to-tree method [19] or other constraint decod-
ing techniques [13] are the most suitable. Nevertheless, the generation quality requires
reliable datasets, a refined model and expert support, in the meantime, the over-fitting
problem and information loss are urgent to be solved.

In this paper, we propose an automatic generation method, which converts the natu-
ral language into PPTL through Seq2Seq (Sequence to Sequence) model. It encodes the

Formalization of Natural Language into PPTL Specification 81

text into a fixed vector and generates a prediction target logical fomula with the context
information. In specific, the existing PPTLGenerator tool [32] is used to create datasets
firstly during the data preprocessing, which converts the source natural language into
the corresponding target logic formula. Secondly, a specific encoder-decoder network
is constructed and trained with relatively few parameters and training instances. Specif-
ically, it compresses the input sequence into the fixed-length vector, and a parametric
model is fitted to generate the corresponding PPTL formula without nested relationships
via searching for maximizing conditional probabilities. Finally, the stack is utilized to
print out the complete PPTL formula with nested relationships through defining the pri-
ority of the symbols during pop operation. We summarize our contributions as follows:

(1) Our proposed method can neglect various sentence patterns compared to semantic
analysis, and effectively extract the temporal logic of security requirements.

(2) The productions is uncomplicated with demonstrating a good scalability, where the
encoder-decoder network can be replaced by other neural translation models.

(3) The generation of the PPTL specification builds a bridge between security require-
ments and formal methods. Compared with other logic description languages, the
generated PPTL specification has more powerful expression ability and richer
application scenarios.

(4) We comprehensively evaluate the effectiveness and efficiency of the method on
several requirements in various open-source practical applications.

This paper focuses on solving the above problems mentioned. The remainder of
this paper is organized as follows. Section 2 introduces the theoretical basis. Section 3
describes notations and discusses our proposed method. Section 4 presents the experi-
mental results. Section 5 discusses the related work. The conclusion and future works
are provided in Sect. 6.

2 Theoretical Basis

In this section, we first give the formal definitions of PPTL and then introduce the
notations of sentence element used in this paper, which are the basis of our research on
PPTL specification generation.

2.1 PPTL

PPTL is a temporal logic based on a sequence of states. It is an improvement on the
pioneer work of ITL (interval temporal logic), which extends interval temporal logic
from finite state interval to infinite. The core temporal operators are © (next) and prj
(projection).

(1) PPTL syntax

P = p|¬P | P1 ∧ P2 | © P |(P1, . . . , Pm)prjP (1)

Let Prop represent the set of atomic propositions where p denotes an atomic propo-
sition and p ∈ Prop. P , P1, . . . , Pm stand for PPTL formulas. If a formula without

82 C. Li et al.

temporal operators is called a state formula, otherwise a temporal formula. Simultane-
ously, some derived formulas and common temporal logic operators are given below,

where tt
def
= p ∨ ¬p and p1; p2 = (p1, p2) prj ε.

ε
def
= ¬ © tt ♦P

def
= tt;P

�P
def
= ¬♦¬P final(P)

def
= �(ε → P)

(2) PPTL semantics

(State): State s is defined as a mapping relation Prop → B between Prop and the
boolean set B = (true, false). The value of atomic proposition p in state s is recorded
as s[p]. If s[p] = true, it indicates that p is true on s, otherwise it is false.

(Interval): Interval σ denotes a sequence of s, the length of which is |σ|. σ is
divided into two types: finite interval and infinite interval. In specific, when a finite num-
ber of states exists in the interval, |σ| = c − 1 and c is the number of states. Otherwise,
when there are infinite states, |σ| = ω and ω is infinity. In order to express the two types
of interval uniformly, Let Nω represent N0 ∪ {ω}, where N0 is the set of non-negative
integers. Obviously ω = ω, any i ∈ N0 satisfies i < ω. Let � represents � −{(ω, ω)}
and σ = <s0, s1, . . . , s|σ|>, and it indicates that σ(i...j)(0 � i � j � |σ|) is the
subinterval of σ. Interval operator · can combine two intervals σ = <s0, s1, . . . , s|σ|>
and σ′ = <s′

0, s
′
1, . . . , s

′
|σ|> to σ · σ′ = <s0, s1, . . . , s|σ|, s′

0, s
′
1, . . . , s

′
|σ|> when σ is

finite.
(Interpretation): Interpretation I is defined by the triple (σ, k, j) to indicate the

interpretation of the PPTL formula, where k and j are integers which satisfy 0 � k �
j � |σ|. The satisfiable relationship | = between I and P is defined by induction as:

I| = p iff sk [p] = Ik
prop [p] = true

I| = ¬P iff I �= P
I| = P1 ∧ P2 iff I| = P1 and I| = P2

I| = ©P iff k < j and (σ, k + 1, j) | = P
I| = (P1, . . . , Pm) prjP
iff exist k = r0 � · · · � rm−1 � rm � j, (σ, rl−1, rl) | = Pl is tenable
for all 1 ≤ l ≤ m and (σ′, 0, |σ′|) | = P when :
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1, . . . , j)
(2) rm = j and σ′ = σ ↓ (r0, . . . , rh), 0 � h � m

2.2 PPTLGenerator

At present, only a few of the requirements are involved with open-source. Meanwhile,
the conversion of PPTL specification in manual manner is potentially highly cost-
effective. Hence, the scale and non-shared properties of datasets severely hinders the
extraction of specification using deep networks. To solve this issue, we borrow the tools
from previous work and convert the requirements into PPTL formulas as the target lan-
guage. In specific, the PPTLGenerator tool uses common NLP techniques including
part-of-speech tags (POS), the tool Stanford NLP, the language dictionary WordNet to

Formalization of Natural Language into PPTL Specification 83

achieve extraction of the PPTL formula. It is worth noting that the target language of
dataset used in this paper is interception from the postorder traversal of the syntax tree,
which specifically deletes the nested parentheses to maintain statement sequence in ref-
erence to infix expressions. For instance, brackets are temporarily discarded so as not
to affect the accuracy of Seq2Seq translation.

3 Neural Machine Translation

Traditional translation models based on statistics borrow typical n-gram models with
information seriously lost, while neural machine translation analyzes word embed-
ding representations. From the point of view of statistics, the conditional probabil-
ity of the target sentence y is maximized with a source sentence x given in neural
machine translation, namely stated argmaxyp(y|x), the framework of NL2PPTL is
shown in Fig. 1 including encoder network, decoder network, stack and GRU (Gated
Recurrent Unit) [6] modules. Firstly, we use an existing text corpus to convert each
text into a sequence of integer indices with corresponding vectors, all punctuation is
stripped by default, then a vectorized sequence of space-separated words is input into
the encoder-decoder network. With the purpose of effectively capture the semantic asso-
ciation between long sequences and alleviate the phenomenon of gradient explode or
gradient vanishing, GRU also known as gated recurrent unit structure, is introduced into

Embedding
layer

GRU GRU GRUHidden
layer

Semantic
vector GRU GRU GRU Hidden

layer

Embedding
layer

Stack

Encoder inputs Decoder inputs

 If manual_mode . manual_mode running .

 P && .

x1 x2 xn

y1 y2 ym

GRU

xt

yt

ht-1 ht

NL2PPTL Framework

Fig. 1. An instance is from the dataset. The source language is “If manual_mode is running and
start_auto_control_button is pressed, next auto_control_mode is running”., and the object lan-
guage is “manual_mode __ running && start_auto_control_button __ pressed implication then
auto_control_mode __ running”. Eventually, ((P)&&(Q))− > ()(R) is obtained through the
basic operation in stack.

84 C. Li et al.

our translation network, which is also a variant of traditional RNN (Recurrent Neural
Network) same as LSTM (Long Short-Term Memory). The output of the decoder is
pushed into the stack, then pop operation is performed to obtain the final PPTL specifi-
cation.

3.1 Encoder Network

The role of the encoder is to transform a variable-length input sequence into a fixed-
length semantic variable c. Our method integrates state-of-the-art third-party module
libraries and improves on the classic encoder-decoder architecture that exhibits great
advantage in several sequence-to-sequence applications. Then input sequence is solved
by the tokenizer module, then the occurrence of words is counted to generate a corpus-
driven dictionary to support the vector representation of text based on lexicographic
order, which is denoted as x = x1, x2, ..., xn. When the input sequence is completed,
the last hidden state c is retained. The hidden layer state hn at a certain time of the
encoder side is only related to the hidden state hn−1 at the previous time and the current
input xn, The formula is derived as follows:

hn = GRU(xn, hn−1) (2)

The GRU unit adaptively remembers and forgets its state according to the input
signal of the unit. We define j = 1, ...k represents the symbol that takes a value at
time n. In addition, the activation of the j-th hidden unit is computed by the following
equations. First, at time step n, the GRU unit no longer take the useless detected features
into consideration whenever the previous hidden state is analyzed thoughtfully, and
it implements a reset mechanism rj with Eq. (3). According to the model structure
diagram of GRU, the forward propagation formula is described as follows:

rj = σ
(
[Wrx]j + [Urhn−1]j + [br]j

)
(3)

where Wr, Ur and br matrices represent the weight parameters of the reset gate that will
be learned, [·] defines the j-th element of the hidden vector, σ is the logistic sigmoid
function, hn−1 means the state of the previous step, while x denotes input sequence
of the network. The update gate zj is developed to control the influence that the state
information of the previous moment makes on the current state. The value of the update
gate means the scale of the previous information brought in. Then with multiplied by
the weight matrix and the sigmoid function, the resulting value between [0, 1] can be
acquired.

zj = σ
(
[Wzx]j + [Uzhn−1]j + [bz]j

)
(4)

Then a new candidate set h̃j,n is computed according to the reset gate rj , which also
gets involved in controlling the balance among the input, memory and output value,
defined by the following equation.

h̃j,n = ψ
(
[Wx]j + [U(r � hn−1)]j + [bh]j

)
(5)

Formalization of Natural Language into PPTL Specification 85

where the hyperbolic tangent activation function ψ is applied, and � is a special multi-
plication of vectors element-wise multiplication. The final semantic vector c is derived
from the vector representation hj,n at the last time step n.

hj,n = zjhj,n−1 + (1 − zj)j h̃j,n (6)

3.2 Decoder Network

The output of the Decoder is a fixed-dimensional vector. Each embedding vector
matches to a corresponding word in the corpus-driven dictionary. Specifically, the prob-
ability of the target word is calculated referring to the similarity between the embed-
ding vectors. Finally, the fixed-length vector is converted into a variable length target
sequence y = y1, y2, ..., ym. Unlike previous classical statistical models that rely on
word frequency for prediction, our network pays more attention to the semantic and
syntactic features of sentences. So as to predict the output of the next moment m in
the sequence, the probability distribution model of the sequence is defined as the con-
ditional distribution p(ym|ym−1, ym−2, ..., y1) in the m time step, whose polynomial is
defined as follows:

p(yj,m|ym−1, ym−2, ..., y1, c) = Softmax(Whm + b) (7)

Dissimilar to the encoder, the information about the hidden layer state vector repre-
sentation c is stored in the sequence xn, xn−1, ..., x1, which encodes the entire input
sequence x. Therefore, the output of each moment maintaining the information of c
will be in consideration. The calculation of the hidden state on the decoder side is:

hm = GRU(hm−1, ym−1, c) (8)

p(yj,m) = Softmax(hm−1, ym−1, c) (9)

where p(yj,m) is the output of the decoder network at time step m, and the GRU unit is
also applied here. Meanwhile, the loss function of model training is:

loss = maxΘ
1
m

1∑
m

logp(ym|xn) (10)

It is worth noting that the output sequence y is not the ideal PPTL specification, which
will be pushed directly onto the stack in reverse order. Then, the priority of each tempo-
ral logic operator is defined, such as © (next) and <> (sometimes). When the operator
is popped, the previously popped word sequence is packed into independent proposi-
tional proposition like P,Q,R... nested by parentheses. Until the end-of-sentence sym-
bol pops up, the final PPTL formula is obtained.

4 Experiments

We firstly select five real-world security requirements to form a larger effective dataset.
Then PPTLGenerator is utilized to generate corresponding PPTL formulas. The pro-
cessed sentence patterns cover five temporal operators and basic sentence patterns. The
requirements are described as follows:

86 C. Li et al.

(1) CARA: The system detects the patient’s blood pressure, pulse and other vital signs
and makes a series of medical information prompt operations.

(2) ELEVATOR: The scene of the rescue robot used. The responsibility of the robot
is to find the injured and take them to the doctor’s position in the corresponding
department.

(3) ROBOT: The shopping apps, item handling apps, online booking apps, messaging
apps, and local bulletin board apps.

(4) TELEPROMISE: The rules for the operation of fixed lifting equipment on pre-
scribed floors.

(5) 3GPP: The 3rd generation partnership Project in technical specification group ser-
vices and system aspects for security architecture and procedures for 5G system
(Table 1 and Figs. 2, 3).

Table 1. Effective conversion in integrated datasets

Dataset Dataset size Successfully generated

CARA 67 51

ELEVATOR 16 16

ROBOT 76 54

TELEPROMISE 77 53

3GPP 11 9

Fig. 2. Data diversity in the training set Fig. 3. Data diversity in the validation set

As shown in the reference table, we used the PPTLGenerator tool to obtain 183
valid data. The quatity of data is not suitable for neural network training, but multiple
datasets are integrated with a certain diversity. We use a heat map to analyze the sim-
ilarity of its internal data, as shown in the figure below. In detail, the cosine similarity
is utilized to measure data diversity, and the threshold is set to 0.5. The implementation
results show that the similarity reaches 38% and 47% in the training set and validation
set respectively, which alleviates the degree of overfitting to a certain extent. Mean-
while, we increase the number of training epochs upto 4000 with 32 batch size and 256

Formalization of Natural Language into PPTL Specification 87

embedding size, and randomly divide the data set into nearly 2:8: a training set and a
validation set, which achieves a good performance with overfitting problem. The princi-
ple of complete matching is applied as an indicator, in other words, the source language
corresponds to the target language one-to-one, and the BLEU score [20] of successfully
translated PPTL is 0.6917 in our experiment. As an instance, the translation result and
the score of BLEU evaluation are put into github via randomly selecting 10 vaild data
in the validation result.1

Fig. 4. Training loss

Data in other experiment is selected from the open-source dataset a PROMISE
software engineering repository dataset made publicly available, in order to encourage
repeatable, verifiable, refutable, or improvable predictive models of software engineer-
ing. Among them, 625 pieces of data exist, of which 413 pieces of data have been
successfully converted into the target language in the dataset. The parameter design is
the same as that of the above experiment. Through our neural translation model, we
obtained a BLEU score of 0.5617.

The quantity of datasets we collect does not meet the requirements of neural net-
work training, so the data enhancement method (DA) [17] is adopted, which aims to
generate additional synthetic training data named eng − pptl in insufficient scenarios.
We adopt the method based on logic rules, with giving two proposition texts xa and
xb whose value are true, a new text x̃ can be generated by and operation. The method
based on data logic can ensure the effectiveness of the enhanced data. It can also be
considered as a part of the same distribution of the original data, which has similar
semantics in machine translation. Meanwhile, we also analyzed relevant datasets in the
field of neural network translation. In specific, we select three common languages with
their translation from tatoeba.org, the translation files of which are Chinese to English
named cmn − eng with 28447 data, French to English named fra − eng with 167138
data, and Spanish to English named spa−eng with 138437 data. Another experiment is

1 https://github.com/luoluohuaci/NL2PPTL_NMT.

https://github.com/luoluohuaci/NL2PPTL_NMT

88 C. Li et al.

showed in the Fig. 4 with the 128 batchsize and 100 epochs, we can observe that the loss
value of the synthetic text is smaller than other datasets due to the repeated occurrence
of some contents, which also makes our model reach the convergence state quickly. In
order to avoid the disappearance of the gradient, we use the random gradient strategy to
make the model still have small fluctuations in the convergence state. For convenience,
the obtained the BLEU scores [20] are shown in the table. The scoring strategy is more
favorable for matching successful long sentences, so the synthetic dataset eng − pptl
gets higher scores than other datasets derived from daily social statistics. At the same
time, affected by Chinese word segmentation and French punctuation separately, the
scores of the cmn − eng and fra − eng datasets are low (Table 2).

Table 2. Effective conversion in integrated datasets

Dataset Dataset size BLEU

cmn-eng 28447 0.324667

fra-eng 167138 0.372328

spa-eng 138437 0.564249

eng-pptl 36481 0.986467

5 Related Work

In this section, the current researches on the automatic conversion method for formal
representation generation are given, which mainly consist of automatic description gen-
eration. Finally, the value and advantages of our research are introduced.

In the field of automatically generated MR, the first method is to employ formal
language theory directly [5]. Leila Kosseim [30] et al. use a template to directly map
problems described in natural language to SQL statements through syntactic analy-
sis. Sourav Mandal [18] et al. propose a model to store the extracted information of
mathematical word problem content in a predefined template. Then, an object-oriented
paradigm is utilized to model the template, and form an automatic mapping to exe-
cutable Java code. Mller Wolfgang [10] et al. defined a formal specification template,
which can realize natural language text to CCTL (Clocked CTL), and gave a spec-
ification for generating clock CTL formulas for model checking. Hu Kai [14] et al.
design a set of code generation templates from AADL to the object platform, where
templates represent automatic code generation rules, and develop an automatic code
generation tool. The above-mentioned scholars have done lots of research on the auto-
matic generation of MR based on templates. The generation rules described in templates
are fixed, and the conversion efficiency is high. However, the content format is strictly
restricted. At the same time, the update and maintenance of the template requires a
lot of manpower. To further increase the flexibility of the conversion rules, some tech-
nologies combine with NLP and ML. Graham Neubig [35] et al. complete the task that
integrates external knowledge into the code generation process through data resam-
pling, pre-training and fine-tuning. Tom Mitchell [29] et al. analyze the structural rules

Formalization of Natural Language into PPTL Specification 89

in dialogue sequences contents, constructed text features with contextual information,
and apply a joint learning semantic parser to generate logical forms. The second method
is to employ statistical machine translation approaches. David Sheridan [25] et al. pro-
pose a decision tree-based supervised learning algorithm and a coverage-guided mining
algorithm to generate high-quality assertions. The verification engine cooperates with
experts to manually assist in screening accurate assertions. Matthias Scheutz et al. [15]
infer LTL formulas from the behavior trajectory of Markov’s decision-making process,
and solve the problem of multi-objective optimization in the LTL formula space. The
technology can be empirically inferred to generate rules without manual formulation.
Nevertheless, the quality of generation is affected by the degree of model training, reli-
able training datasets and expert support. At present, the problem of overfitting and
information loss in model training has not been resolved. In conclusion, translating
security requirements into PPTL is a challenge in requirements engineering and formal
methods. Such as it is the basis of requirements consistency analysis, because ontology
and attributes can be directly extracted from fine-grained PPTL specification. It is also
the basis of model checking because the security requirements must be expressed in
formal language. Our translation process [5] is based on parsing an NL requirement
according to a context free grammar, and constructing a temporal representation from
the binary tree.

Formal specification can be regard as target language with rigorous mathematical
argumentation, which ensures no logical problems in the security requirements. It con-
structs the requirements into formal logical formulas for verification. The PPTL formula
we choose is more expressive and gradually applied in the industry compared to other
formal languages, such as security protocols, control systems, and some conventional
software applications, such as currency transaction systems [34], safety-critical task
scheduling systems [39], blockchain systems [40], traffic light control systems [8], Petri
net [26] and other fields. Further, it is currently exploring potential applications such
as neural network verification [33] and big data processing [38]. Based on the formal
verification, our work realizes the automatic conversion of natural language to PPTL
logical formulas, and preliminary implement the symbol modelization in formal verifi-
cation work. In our paper, the machine translation model is used to realize the transfor-
mation from informal language to formal language, which can effectively improve the
efficiency of formal modeling, and promote the barrier-free communication between
people and machines, as well as make PPTL better applicable to various industries. In
the meantime, the self-learning process of neural network replaces the transformation
template and rules formulated by experts, which reduces the consumption of time and
space. However, unfortunately, more research is still needed for automatic transforma-
tion to specifications in neural networks. On the one hand, it is necessary to enrich and
share real datasets, and on the other hand, to explore the application of advanced mod-
els such as attention mechanism and transfer model in the transformation for informal
language to real language.

6 Conclusion

This paper attempts to propose an automatic generation method of natural language text
to PPTL temporal logic specification based on neural translation model. Meanwhile,

90 C. Li et al.

we conduct experimental analysis on various datasets. The results show that our method
can effectively generate temporal logic. In the future, we will introduce the Few-shot
Learning method to expand the dataset, and also consider the attention mechanism to
improve the accuracy of transformation.

References

1. Abie, H., Aredo, D.B., Kristoffersen, T., Mazaher, S., Raguin, T.: Integrating a security
requirement language with UML. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 350–364. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30187-5_25

2. Acharya, S., Mohanty, H., George, C.: Domain consistency in requirements specification. In:
Fifth International Conference on Quality Software (QSIC 2005), pp. 231–238. IEEE (2005)

3. Ameur, Y.A., Boniol, F., Wiels, V.: Toward a wider use of formal methods for aerospace
systems design and verification. Int. J. Softw. Tools Technol. Transf. 12(1), 1–7 (2010)

4. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural lan-
guage texts: State of the art and research directions. In: 26th International Symposium on
Temporal Representation and Reasoning (TIME 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2019)

5. Buzhinsky, I.: Formalization of natural language requirements into temporal logics: a survey.
In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, pp.
400–406. IEEE (2019)

6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078 (2014)

7. Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic
programming. Ph.D. thesis, Newcastle University (1996)

8. Duan, Z., Tian, C., Yang, M., He, J.: Bounded model checking for propositional projection
temporal logic. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 591–
602. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38768-5_52

9. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Inf. Control 61(3), 175–201
(1984)

10. Flake, S., Müller, W., Ruf, J.: Structured English for model checking specification. In:
MBMV, pp. 99–108 (2000)

11. Gong, Y., Chuan, C.H., Yongwei, Z., Sakauchi, M.: A generic video parsing system with a
scene description language (SDL). Real-Time Imaging 2(1), 45–59 (1996)

12. Guo, J., et al.: Towards complex text-to-SQL in cross-domain database with intermediate
representation. arXiv preprint arXiv:1905.08205 (2019)

13. Hsiung, E., et al.: Generalizing to new domains by mapping natural language to lifted LTL.
In: 2022 International Conference on Robotics and Automation (ICRA), pp. 3624–3630.
IEEE (2022)

14. Hu, K., Duan, Z., Wang, J., Gao, L., Shang, L.: Template-based AADL automatic code gen-
eration. Front. Comput. Sci. 13(4), 698–714 (2019)

15. Kasenberg, D., Scheutz, M.: Interpretable apprenticeship learning with temporal logic speci-
fications. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 4914–
4921. IEEE (2017)

16. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Nayyar, A.: Emerging use of UAV’s: secure com-
munication protocol issues and challenges. In: Drones in Smart-Cities, pp. 37–55. Elsevier
(2020)

https://doi.org/10.1007/978-3-540-30187-5_25
https://doi.org/10.1007/978-3-540-30187-5_25
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-642-38768-5_52
http://arxiv.org/abs/1905.08205

Formalization of Natural Language into PPTL Specification 91

17. Li, B., Hou, Y., Che, W.: Data augmentation approaches in natural language processing: a
survey. CoRR (2021)

18. Mandal, S., Naskar, S.K.: Natural language programing with automatic code generation
towards solving addition-subtraction word problems. In: Proceedings of the 14th Interna-
tional Conference on Natural Language Processing (ICON-2017), pp. 146–154 (2017)

19. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stan-
ford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

20. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation
of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311–318 (2002)

21. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)

22. Qureshi, Z.H.: Formal modelling and analysis of mission-critical software in military avion-
ics systems. In: Proceedings of the Eleventh Australian Workshop on Safety Critical Systems
and Software, vol. 69, pp. 67–77 (2007)

23. Sedo, S., Seong, P.H.: A comparative study of formal methods for safety critical software in
nuclear power plant. Nucl. Eng. Technol. 32(6), 537–548 (2000)

24. Seshia, S.A., Sadigh, D., Sastry, S.S.: Formal methods for semi-autonomous driving. In: 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–5. IEEE (2015)

25. Sheridan, D.: GoldMine: an integration of data mining and static analysis for automatic gen-
eration of hardware assertions (2011)

26. Shi, Y., Tian, C., Duan, Z., Zhou, M.: Model checking petri nets with MSVL. Inf. Sci. 363,
274–291 (2016)

27. Shu, X., Zhang, N., Wang, X., Zhao, L.: Efficient decision procedure for propositional pro-
jection temporal logic. Theor. Comput. Sci. 838, 1–16 (2020)

28. Specification, A., Bialkowski, J., Diaz, J., Buttner, A., Evan, M.R., Wittbold, J.: Application
vulnerability description (2004)

29. Srivastava, S., Azaria, A., Mitchell, T.M.: Parsing natural language conversations using con-
textual cues. In: IJCAI, pp. 4089–4095 (2017)

30. Stratica, N., Kosseim, L., Desai, B.C.: NLIDB templates for semantic parsing. In: Natural
Language Processing and Information Systems (2003)

31. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with star.
Theor. Comput. Sci. 412(18), 1729–1744 (2011)

32. Wang, X., Li, G., Li, C., Zhao, L., Shu, X.: Automatic generation of specification from
natural language based on temporal logic. In: Xue, J., Nagoya, F., Liu, S., Duan, Z. (eds.)
SOFL+MSVL 2020. LNCS, vol. 12723, pp. 154–171. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77474-5_11

33. Wang, X., Yang, K., Wang, Y., Zhao, L., Shu, X.: Towards formal verification of neural
networks: a temporal logic based framework. In: Miao, H., Tian, C., Liu, S., Duan, Z. (eds.)
SOFL+MSVL 2019. LNCS, vol. 12028, pp. 73–87. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-41418-4_6

34. Wang, X., Yang, X., Li, C.: A formal verification method for smart contract. In: 2020 7th
International Conference on Dependable Systems and their Applications (DSA), pp. 31–36.
IEEE (2020)

35. Xu, F.F., Jiang, Z., Yin, P., Vasilescu, B., Neubig, G.: Incorporating external knowl-
edge through pre-training for natural language to code generation. arXiv preprint
arXiv:2004.09015 (2020)

36. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in natural
languages. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1677–1682. IEEE (2015)

https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.1007/978-3-030-41418-4_6
https://doi.org/10.1007/978-3-030-41418-4_6
http://arxiv.org/abs/2004.09015

92 C. Li et al.

37. Zhang, J., Yang, L., Cao, W., Wang, Q.: Formal analysis of 5G EAP-TLS authentication
protocol using proverif. IEEE Access 8, 23674–23688 (2020)

38. Zhang, N., Wang, M., Duan, Z., Tian, C.: Verifying properties of mapreduce-based big data
processing. IEEE Trans. Reliab. (2020)

39. Zhang, N., Yang, M., Gu, B., Duan, Z., Tian, C.: Verifying safety critical task scheduling
systems in PPTL axiom system. J. Comb. Optim. 31(2), 577–603 (2016)

40. Zhu, W.: PPTL model checking for blockchains. In: 2020 IEEE 5th Information Technology
and Mechatronics Engineering Conference (ITOEC), pp. 792–795. IEEE (2020)

41. Zhu, Y., Zhang, Y., Yang, H., Wang, F.: GANCoder: an automatic natural language-to-
programming language translation approach based on GAN. In: Tang, J., Kan, M.-Y., Zhao,
D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 529–539. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_48

https://doi.org/10.1007/978-3-030-32236-6_48

Testing Program Segments to Detect Runtime
Exceptions in Java

Lei Rao , Shaoying Liu(B) , and Ai Liu

Graduate School of Advanced Science and Engineering, Hiroshima University,
Hiroshima 739-8511, Japan

sliu@hiroshima-u.ac.jp

Abstract. Runtime exceptions are difficult to be detected by static analysis tools
and their occurrences in runtime often cause software systems to crash or unex-
cepted termination. Therefore, it is necessary to detect the existence of runtime
exceptions in the program before it is executed. In this paper, we describe a novel
program segment testing technique for detecting potential occurrences of runtime
exceptions during the program construction process. Our testing technique is char-
acterized by three steps. The first step is to determine the target program segment
in which potential runtime exceptions may occur during the program execution.
The second step is to form an appropriate environment to test the program segment
by determining the values of the variables. The final step is to carry out the test-
ing and determine whether the runtime exceptions will occur and will be handled
properly during the system execution. This paper also presents a case study to
demonstrate that the technique is effective.

Keywords: Fault Detection · Program Slicing · Software Testing · Runtime
Exceptions

1 Introduction

Software testing is an expensive and laborious endeavor, accounting for over 50% of
software developments costs and even more in critical systems [1, 2]. The purpose of
software testing is not only to detect defects and errors in the program, but also tomeasure
and evaluate software quality to provide robustness for the program under test. With the
increasing scale and complexity of software, it will inevitably lead to more and more
faults in the program, which brings a great burden to the testing work.

Exceptions in Java can be classified into two categories. One is checked exceptions,
and the other is runtime exceptions. Checked exceptions are those exceptions that are
explicitly thrown before the program is executed in response to unexpected situations at
runtime, and runtime exceptions are generated by the Java runtime environmentwhen the
program is running. Checked exceptions are detected by the compiler during program-
ming and forced to be handled, either caught with a try-catch statement or declared with
a throws clause to ensure that the program can still run normally when such exceptions
occur. Runtime exceptions only occur while a program is running. Therefore, our goal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 93–105, 2023.
https://doi.org/10.1007/978-3-031-29476-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_8&domain=pdf
http://orcid.org/0000-0001-6832-6347
http://orcid.org/0000-0002-6748-5052
http://orcid.org/0000-0001-8222-2157
https://doi.org/10.1007/978-3-031-29476-1_8

94 L. Rao et al.

is how to detect the existing or potential runtime exceptions in the program at compile
time. Common runtime exceptions are divided into three categories, including index
exceptions, such as an attempt to access an array element using an index that is out of
the boundary of the defined array; arithmetic exceptions, such as dividing by zero; and
pointer exceptions, such as trying to access an object through a null reference. Since
such exceptions are not required to be caught in Java, when they occur during execution,
there is no exception handler available to handle them, causing the program stops [3].

In order to avoid runtime exceptions during program execution, researchers adopted
various testing techniques and strategies to detect them at compile time. Software testing
keeps in line with its criticality in the pre- and post-development process makes it
something that should be catered with efficient strategies and techniques [4]. Common
software testing techniques includewhite-box testing [5], black-box testing [6] and grey-
box testing [7], etc., and software testing strategies include unit testing [8], integration
testing [9] and system testing [10] and so on. Nonetheless for each testing requirement,
we can find relatively suitable testing techniques and testing strategies, however, there
are still some defects in them. For example, it is difficult for system testing to accurately
perform the detection of specific exceptions. Unit testing lacks inter-procedural analysis,
resulting in system and integration errors that may be missed.

Therefore, on the basis of unit testing,we retain itsmodularity and automation advan-
tages, and propose a technique for testing program segments to detect the existing and
potential specific exceptions, which is called Program Segment Testing (PST). Specially,
our technique includes following functions: (1) automatically locate the statements that
may trigger specific exception in a program; (2) automatically identify all variables in
a segment, and slice all the fragments related to them in the program; (3) automatically
reassemble them into a segment, and test it in the context of the current program to
determine the occurrences of specific exceptions.

The remainder of the paper is outlined as follows. Section 2 introduces basic knowl-
edge for understanding our technique. Section 3 presents the method we propose in
detail. Section 4 applies our method to an example program to illustrate it. Section 5
compares our technique with related work. Section 6 concludes the paper and points out
future directions.

2 Preliminary

2.1 Arithmetic Exceptions in Java

Arithmetic exceptions are exceptions that are thrown when an error occurs in an arith-
metic, cast, or transformation operation. As shown in Fig. 1, in Java, arithmetic excep-
tions can be more specifically divided into three categories, including: DivideByZero
exception, NotFiniteNumber exception and Overflow exception.

Testing Program Segments to Detect Runtime Exceptions 95

Fig. 1. Arithmetic exceptions in Java

DivideByZero Exception
DivideByZero exception is an exception thrown when trying to divide an integer or
decimal value by zero. As can be seen from Fig. 2, since the value of b is 0, when we
want to output the value of a divided by b, the exception will be triggered at this time.

main () {

int a = 10;

int b = 0;

int c = a/b;

print(c);

}

Fig. 2. Example for DivideByZero exception

NotFiniteNumber Exception
NotFiniteNumber exception is an exception thrown when a floating-point value is pos-
itive infinity, negative infinity or not a number (NaN). In Java, this exception occurs in
operations on variables of type BigDecimal. As shown in Fig. 3, we use a variable a of
type BigDecimal divided by b and set to retain four digits after the decimal point. We
in turn set the rounding mode of the decimal point to UNNECESSARY, which asserts
that the requested operation has an exact result without the decimal point being rounded.
However, since the result is infinite at this time, the NotFiniteNumber exception will
occurs.

main () {

BigDecimal a = new BigDecimal (100);

BigDecimal b = new BigDecimal (13);

BigDecimal c = a.divide (b, 4, ROUND_UNNECESSARY);

print (c);

}

Fig. 3. Example for NotFiniteNumber exception

96 L. Rao et al.

Overflow Exception
Overflow exception is an exception raised when an arithmetic, cast, or transformation
operation performed in the checked context results in an overflow. In Java, the maximum
value of a variable of type byte is 127. In Fig. 4, we want to assign the value of adding the
variable a of type byte and variable b to the variable c of type byte. However, since 150
is greater than the boundary of the byte type, an overflow exception will be triggered.

main () {

byte a = 50;

byte b = 100;

byte c = a + b;

print c;

}

Fig. 4. Example for Overflow exception

2.2 System Dependency Graph

System Dependency Graph (SDG) is multigraph that maps control and data dependen-
cies between Java program statements. Statements are categorized according to whether
they contribute to the constructure (i.e. methods, classes) of the program or the behavior
(i.e. belong to a method body) of the program [11]. Each category has a different rep-
resentation on the graph. In short, SDG is a graph that captures all the data, control as
well as the inter-procedural dependencies present in a program. It consists of Procedure
Dependency Graphs (PDG) for each procedure present in the program, including the
main function. Various PDGs are linked together using auxiliary dependency edges.

An example program is given in Fig. 5 and its corresponding SDG is shown in Fig. 6.

main () {

int a = 1;

int b = 1;

int c = multiply (a, b);

print c;

}

int multiply (int a, int b){

int c = a * b;

return c;

}

Fig. 5. An example program

Testing Program Segments to Detect Runtime Exceptions 97

entry: main

a = 1b = 1

ain = a

bin = b

entry: multiply

multiply(a, b)

c = a * bb = bin

a = ain

c = cout

cout = c

Control Dependence

Data Dependence

Call

Summary Edge

Parameter-in,Parameter-out

Fig. 6. System dependency graph for program shown in Fig. 5

2.3 Program Slicing

Program slicing is the computation of the set of program statements, the result of which
is a program slice, which may affect the value of a certain point of interest, referred to
as a slicing criterion [12]. Program slicing is an effective technique for narrowing the
focus of attention to the relevant parts of a program. A slice consists of statements and
predicates that have influence on the variables at a program point.

1. read(n)

2. i := 1

3. sum := 0

4. product := 1

5. while i <= n do

6. sum := sum + 1

7. product := product * i

8. i := i + 1

9. write (sum)

10.write (product)

1. read(n)

2. i := 1

3.

4. product := 1

5. while i <= n do

6.

7. product := product * i

8. i := i + 1

9.

10.write (product)

static backward slice

Fig. 7. An example program for static backward slicing

Slicing techniques has evolved rapidly since it was originally defined byMarkWeiser
[12]. At first, slicing was just static, that is, only applied to the source code without other
information. Then, Bogdan Korel and Janusz Laski introduced dynamic slicing, which
applies to a specific execution of a program (for a given execution trace) [13].

For example, in static slicing, the slicing criterion has the form of <i, v> where i
the serial number of a statement in the program, and v is the variable set. We use <10,
product> to perform static backward slices on the program on the left in Fig. 7, and we
get the slice on the right.

98 L. Rao et al.

3 Methodology

The robustness of the programmeans that the program is not only correct, runs normally
and produces excepted results, but also reasonably deal with various exceptional situa-
tions outside the specification requirements. In order to improve the robustness, it means
that we must improve the exception handling ability of the program, that is, the written
code, such as a function, can appropriately process no matter what input is faced to
ensure that the program operate normally. Therefore, when reviewing code, in addition
to locating the existence of exceptions in the program, it is also necessary to point out
potential occurrences of exceptions so that programmers can optimize the code.

To this end, software testing has been accompanied by program development. More-
over, researchers have proposed various testing strategies, such as unit testing and system
testing, etc. Although they are effective in certain aspects, there are still many shortcom-
ings. First, one or a group of test sets usually cannot meet the testing requirements of all
exceptions at the same time, so we consider generating specific test set for each excep-
tion and test them separately. However, there is usually only a small part of the code
in a program that causes an exception to be triggered, and testing the entire program is
time-consuming and inefficient. So, can we intercept code fragments that may trigger
an exception and reassemble them for testing? In addition, can we achieve a prompt that
a line of code will trigger a specific exception during the programming process, so as to
achieve a “Correct-By-Construction” effect?

Program

Risky Statement

Risky StatementFault

 Localization

FragmentsProgram Slicing Tested Segment

Fragments

Risky Statement

Test Set

Test Result

Program Context

Fig. 8. Program Segment Testing

In order to solve the above problems, as shown in Fig. 8, we propose a Program
Segment Testing technique, which can automatically detect the existing and potential
runtime exceptions in the program.Meanwhile, to implement this technique, we give the
algorithm inAlgorithm1.First,we assume that using existing automatic fault localization
techniques [14], such as Tarantula [15], regular expressions [16], etc., to locate the
statements in the program that may trigger runtime exceptions, which are called Risky
Statements, and add them to the set RS. Next, for each statement in RS, it is necessary
to test and determine whether it will trigger a runtime exception or whether there is
a vulnerability that triggers a runtime exception caused by user input. Our technique
traverses all variables contained in a statement and add them to the collection VAR.
Then, for each variable, based on the SDG, it uses program slicing technique to slice
all fragments associated with this variable in the program, and combine them with the

Testing Program Segments to Detect Runtime Exceptions 99

statement into a segment for testing. Final, our technique tests each segment in the
context of the current program.

For each segment, if it does not contain any input from user to a variable, execute
the segment directly, and the test result will show whether there is an exception in the
program. Otherwise, it is necessary to generate specific test sets for the variables to
test. It should be noted that the specific meaning is to judge which exception it may
trigger according to the characteristics of the statement, so as to use the relevant testing
techniques and automatic test case generation technology to generate suitable test sets
[17, 18]. For example, the trigger of the DivideByZero exception must be the existence
of a division operation in the statement, so the motivation for test case generation is to
detect where the denominator may be equal to 0.

Algorithm 1 Semi-formal algorithm for Program Segment Testing

RS: A set of all statements that may trigger a specific exception in a program

SEG: A set of segments spliced from code fragments obtained by slicing the program

according to each statement in the RS collection

VAR: A set of all variables contained in each statement in the RS collection

Input: RS
Output: Test Result

begin
RS = {rs1, rs2, …, rsn} , SEG = , VAR = , i = 0

foreach rs in RS do
traverse all variables contained in it and add to VAR
foreach v in Var do

slice all fragments associated with v in program

segi = segi fragments

end loop
SEG = segi SEG
i++;

end loop

foreach seg in SEG do
if seg does not contain any input from user to a variable

 execute seg in the context of the current program and produce a test result

else
 generate specific test sets for variables to test and produce a test result

endif
end loop
end

100 L. Rao et al.

4 Case Study

In this paper, we use a simple case to illustrate the practical application of our method.

1. main () {

2. BigDecimal a, b, c;

3. int d, e, f, g;

4. a = new BigDecimal (100);

5. b = ? ;

6. d = 5 ;

7. e = ? ;

8. c = divide (a, b, e);

9. f = add (e);

10. g = square (d, f);

11.}

12. BigDecimal divide (BigDecimal a, BigDecimal b, int e) {

13. BigDecimal c = a.divide (b, e, RoundingMode.UNNECESSARY);

14. return c;

15.}

16. int add (int e) {

17. int f = e + 10;

18. return f;

19.}

20.int square (int d, int f) {

21. int g = Math.pow (d, f);

22. return g;

23.}

Fig. 9. A Java example program for illustrates arithmetic exception

Control Dependence

Data Dependence

Call

Summary Edge

Parameter-in,Parameter-out

entry: add

f = e +

10

fout = f

a = 100

b = ?

d = 5
e = ?

c = divide(a, b, e)

f = add (e)

g = square(d, f)ain = a

bin = b

ein = e
din = d

fin = f

entry: main

entry: divide

c = a.divide(b, e,

RoundingMode.UNNECESSARY)

e = ein

a = ain

b = bin

c = cout

entry: square

g = Math.pow(d, f)

gout = g
f = fin

d = din
f =fout

g = gout

cout = c

Fig. 10. System dependency graph for program shown in Fig. 9

Testing Program Segments to Detect Runtime Exceptions 101

The example program is given in Fig. 9 and its corresponding SDG is shown in
Fig. 10. It should be noted that for the purpose of simplifying the expression, we use “?”
in them to represent user input.

First of all, we can know from the fault localization technique that lines 13, 17,
and 21 have the risk of triggering arithmetic exceptions. Next, it is necessary to test
each statement separately to determine whether it triggers an arithmetic exception or a
vulnerability that triggers an arithmetic exception caused by user input in the context of
the program. The premise of testing is that there is a testable program, and operations
such as variable definition, initialization, and reference are indispensable, so it is essential
to intercept relevant code from other parts of the program. In addition, the root cause of
the arithmetic exception is that the variables in the statement take unexpected values, so
we can narrow the scope and only focus on the code related to all the variables in the
statement. Our technique uses program slicing technology to accomplish this operation
based on SDG.

We can see from the upper right corner of the Fig. 10 that SDG contains five differ-
ent edges, each representing a different meaning. Control dependence edges represent
control conditions on which the execution of a statement or expression depends; data
dependence edges represent flow of data between statements or expressions; a call edge
connects a call vertex to entry vertex of the called procedure’s PDG; parameter-in and
parameter-out edges represent parameter passing: parameter-in edges connect actual-in
and formal-in vertices, and parameter-out edges connect formal-out and actual-out ver-
tices. Somewhat special, SDG uses summary edges to explicitly represent the transitive
flow of dependence across call sites caused by data dependences, control dependences,
or both. That is, if the value associated with the actual-in vertex may affect the value
associated with the actual-out vertex, a summary edge will connect them [19]. As the
name implies, data dependence edges and parameter-in and parameter-out edges con-
tain the transmission of data in the program, and call edges specify the function call
relationship in the program. A risky statement corresponds to a certain vertex in the
SDG. In fact, the process of constructing a segment starts from this vertex, and finds all
vertexes related to it in the program through data dependencies edges, parameter-in and
parameter-out edges and call edges.

we use the dividemethodwith the variable a of typeBigDecimal to divide the variable
b, set to retain e digits after the decimal point, the rounding mode is UNNECESSARY,
and assign the obtained value to c. After traversing this statement, we can see that it
contains four variables a, b, c and e. Then, our technique uses <13, a>, <13, b>, <13,
c>, <13, e> as the slicing criterion to slice the program respectively to obtain the four
program fragments and combine them into a program segment in Fig. 11. This slicing
process is represented in the SDG as starting from the red vertex and finally tracing back
to the 5 blue vertexes in Fig. 10. From the characteristics of the statement, including the
division operation and rounding mode for decimal point, it can be concluded that this
statement may trigger the DivideByZero and NotFiniteNumber exceptions. In addition,
the segment contains user input, therefore, specific test cases need to be generated for
testing. For the DivideByZero exception, the goal of test cases generation is to make
the denominator 0. Obviously, the denominator is b, and the value of b is input by the
user, that is, the test case. When b is 0, the DivideByZero exception will be triggered.

102 L. Rao et al.

For the NotFiniteNumber exception, since the number of decimal points is set to retain
e and the rounding mode is UNNECESSARY, the goal of generating the test cases is
to make the digits after the decimal point of the operation result greater than e. When
the value of b is 3, the result is finite, so the exception fires. From the test results,
we can know that this statement has vulnerabilities that trigger the DivideByZero and
NotFiniteNumber exceptions. Therefore, it is necessary to remind the programmer to
use a try-catch statement to capture or declare with the throws clause to prevent the
program from being interrupted at runtime.

a = BigDecimal (100);

b = ?;

c = divide (a, b, e);

e = ?;

BigDecimal divide (BigDecimal a, BigDecimal b, int e) {

BigDecimal c = a.divide (b, e, RoundingMode.UNNECESSARY);

return c;

}

Fig. 11. Program segment obtained by slicing for the line 13

e = ?;

int add (int e){

int f = e + 10;

return f;

}

Fig. 12. Program segment obtained by slicing for the line 17

d = 5;

e = ?;

f = add (e);

int add (int e){

int f = e + 10;

return f;

}

int square (int d, int f){

int g = Math.pow (d, f);

return g;

}

Fig. 13. Program segment obtained by slicing for the line 21

Similar operations are performed on lines 17 and 21, and the obtained segments are
shown in Fig. 12 and Fig. 13 respectively. The final test results show that they do have
the vulnerability to trigger the overflow exception.

Testing Program Segments to Detect Runtime Exceptions 103

5 Related Work

Static Fault Detection Techniques: Static fault detection techniques are those applied
to source code to detect specific faults or vulnerabilities in the source code without
running the program. Based on data flow analysis, the author takes rules describing the
vulnerability patterns and the source code to detect locations and paths of the pattern
in the program [20]. However, there still remain many vulnerabilities that cannot be
designed as rules in their specification language they designed. It is a special case of
data flow analysis where any data coming from un-trusted sources, e.g., introduced by a
user, is a potential problem to the system, thus it is marked as tainted [21]. Tainted data
flow is monitored unless it is processed and changed to untainted. The disadvantage of
taint analysis is that less information is available about the true state of the program,
so information about possible execution path is necessarily less precise. In addition to
the shortcomings of these static fault detection techniques, static analysis also lacks
sufficient rigor, making it prone to a large number of false positives. However, PST
improves the accuracy of exception detection by testing the sliced code automatically
and pointing out the type and location of the existences or potential occurrences of
runtime exceptions in the program.

Automated Unit Testing: Unit testing is the inspection and validation of the smallest
testable unit in the program, which can be a class or a method. In order to automate the
generation of test cases and unrestricted the constraints imposed by specialized execution
platforms and resource constraints of embedded software on the application of concolic
testing to embedded software, Kim et al. developed CONcrete and symBOLic (CON-
BOL) testing framework to unit test large size industrial embedded software automati-
cally [22]. Additionally, also to implement automated unit testing of embedded software,
Christoph Luckeneder et al. analyzed an as-is workflow and proposed changes to the
workflow for reducing costs and time needed for performing unit tests [23]. Moreover,
they also presented an improved tool chain for supporting the test workflow. Although
unit testing makes it easy to test part of system without waiting for the availability of
other parts, it lacks inter-procedural analysis, and unit is tested separately, so it is diffi-
cult to catch all faults in the program, and integration errors are easily missed. However,
based on SDG, our method starts from each statement that may trigger an exception,
and uses program slicing to obtain a slice containing all program fragments that affect
the variables in the statement and perform specific tests separately, which improves the
accuracy and coverage of exception detection.

6 Conclusion and Future Work

Runtime exceptions are ubiquitous in programs and cannot be detected by the develop-
ment tool, resulting in the program to crash at runtime. In this paper, based on the idea
of Human-Machine Pair Programming proposed by Prof.Liu [24], we propose a novel
program segment testing technique which can detect the existence and potential occur-
rences of runtime exceptions during the program construction process and give prompts
to programmer. Our method starts from the statement that may trigger an exception, uses

104 L. Rao et al.

program slicing to slice all related fragments in the program, and reassemble them into
a segment. Then, according to the characteristics of the statement, specific test cases is
automatically generated, and the segment is tested in the context of the current program
to determine whether it has a fault or vulnerability that triggers a specific exception.

We apply our method to Java arithmetic exceptions. Narrow the focus of attention
to the relevant parts of a program by program slicing, so that a slice only consists of
statements and predicates that have influence on the variables at a risky statement. The
case study proves that the method is available. Our method preserves the advantages
of locality and automation of automatic unit testing, makes up for its lack of inter-
procedural analysis and other limitations, and achieves automatic and precise detection
of arithmetic exceptions.

As mentioned earlier, there are still some issues to be done. In addition to arithmetic
exception, runtime exception also includes index exception and pointer exception, etc.
Therefore, we will apply PST to more exceptions to improve the functionality of PST.
Then, another important work is to implement PST in software to assist programmers
to optimize the program.

References

1. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. JohnWiley & Sons (2011)
2. Sy, N.T., Deville, Y.: Automatic test data generation for programs with integer and float

variables, pp. 13–21. IEEE (2001)
3. https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
4. Jamil, M.A., Arif, M., Abubakar, N.S.A., Ahmad, A.: Software Testing Techniques: A

Literature Review, pp. 177–182. IEEE (2016)
5. Ostrand, T.: White-Box testing. In: Encyclopedia of Software Engineering (2002)
6. Beizer, B.: Black-Box Testing: Techniques for Functional Testing of Software and Systems.

John Wiley & Sons, Inc. (1995)
7. Dadeau, F., Peureux, F.: Grey-box Testing and Verification of Java/JML, pp. 298–303. IEEE

(2011)
8. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23, 22–29 (2006)
9. Jorgensen, P.C., Erickson, C.: Object-oriented integration testing. Commun. ACM 37, 30–38

(1994)
10. Borjesson, E., Feldt, R.: Automated system testing using visual GUI testing tools: a compar-

ative study in industry. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 350–359. IEEE (2012)

11. Walkinshaw, N., Roper,M.,Wood,M.: The Java SystemDependence Graph, pp. 55–64. IEEE
(2003)

12. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. (4) 352–357 (1984)
13. Agrawal, H., Horgan, J.R.: Dynamic program slicing. ACM SIGPlan Notices 25, 246–256

(1990)
14. Sinha, S., Shah, H., Görg, C., Jiang, S., Kim, M., Harrold, M.J.: Fault localization and repair

for Java runtime exceptions. In: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pp. 153–164 (2009)

15. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 273–282 (2005)

https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Testing Program Segments to Detect Runtime Exceptions 105

16. Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.P.: Automated fault localization using
potential invariants. arXiv preprint cs/0310040 (2003)

17. Edvardsson, J.: A survey on automatic test data generation. In: Proceedings of the 2nd
Conference on Computer Science and Engineering, pp. 21–28. Citeseer (1999)

18. Candea, G., Godefroid, P.: Automated software test generation: some challenges, solutions,
and recent advances. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science.
LNCS, vol. 10000, pp. 505–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91908-9_24

19. Sinha, S., Harrold, M.J., Rothermel, G.: System-dependence-graph-based slicing of pro-
grams with arbitrary interprocedural control flow. In: Proceedings of the 21st International
Conference on Software Engineering, pp. 432–441. IEEE (1999)

20. Kim,H., Choi, T.-H., Jung, S.-C.,Kim,H.-C., Lee,O.,Doh,K.-G.:Applying dataflowanalysis
to detecting software vulnerability. In: 2008 10th International Conference on Advanced
Communication Technology, pp. 255–258. IEEE (2008)

21. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static
analysis. In: USENIX Security Symposium, p. 18. (2005)

22. Kim, Y., Kim, Y., Kim, T., Lee, G., Jang, Y., Kim, M.: Automated unit testing of large
industrial embedded software using concolic testing. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 519–528. IEEE (2013)

23. Luckeneder, C., Kaindl, H., Korinek, M.: Automated Unit Testing inModel-based Embedded
Software Development, pp. 427–434 (2017)

24. Liu, S.: Software construction monitoring and predicting for human-machine pair program-
ming. In: Duan, Z., Liu, S., Tian, C., Nagoya, F. (eds.) SOFL+MSVL2018. LNCS, vol. 11392,
pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13651-2_1

https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-030-13651-2_1

Inferring Exact Domains to Efficiently
Generate Valid Test Cases via Testing

Chu Chen1, Xuan Wang1, Pinghong Ren1(B), Zhenhua Duan2, Cong Tian2,
Xu Lu2, and Bin Yu2

1 School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
rzqfnu@yeah.net

2 ICTT and ISN Laboratory, Xidian University, Xi’an, Shaanxi, China

Abstract. Documents on popular libraries such as pyOpenSSL do not
specify parameters’ domains precisely. Inexact domains hinder efficiently
generating valid test cases. In order to solve this problem, an approach
for inferring exact domains, namely IED, is put forward. IED starts from
crawling parameters’ data types from online official documents. Then,
IED conducts exception testing to find tight domains based on slack
domains of data types. Finally, IED attempts to detect the extensibility
of tight bounds and outputs exact domains. Based on IED, experiments
have been conducted on 29 basic parameters of application programming
interfaces of pyOpenSSL. Experimental results show that the inferred
exact domains vary dramatically even for the same data type and reduce
the original domains of data types significantly. Thus, IED is effective
and helpful in efficiently generating valid test cases.

Keywords: Infer · Exact Domain · Testing · Test cases

1 Introduction

Efficiently generating valid test cases is critical to testing approaches and
heavily depends on programming languages. However, documents on popular
libraries, e.g., pyOpenSSL [1], do not specify parameters’ domains precisely. The
lack of exact domains hampers researchers’ efforts to efficiently generate valid
test cases. For example, the types of the parameters version in the function
set_version(version) and serial in set_serial_number(serial) are specified as
“int” in the document of pyOpenSSL. It seems right for testers to pass any inte-
ger to both functions to generate test cases. Unfortunately, it is not the truth.

Supported by Shandong Provincial Natural Science Foundation under Grant
ZR2020MF030 and ZR2018PF007. Also, this work is supported by CERNET Inno-
vation Project under Grant NGII20190407, Fundamental Research Funds for the Cen-
tral Universities under Grant XJS210305, Natural Science Basic Research Program of
Shaanxi under Grant 2021JQ-208, and Natural Science Foundation of Xi’an University
of Technology under Grant 413619001.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 106–116, 2023.
https://doi.org/10.1007/978-3-031-29476-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_9

Inferring Exact Domains 107

The slack domains indicated by parameters’ data types result in producing a lot
of invalid test cases.

For purpose of efficiently generating valid test cases, we put forward an app-
roach for inferring exact domains (IED) which consists of three phases as follows.
First, IED crawls online official documents to obtain parameters’ data types. Sec-
ond, IED searches tight domains on the basis of slack bounds of data types via
exception testing. Finally, IED checks whether such tight bounds are extensible,
and outputs exact domains.

IED makes the following contributions: (1) IED conducts binary search to
concurrently find tight lower and upper bounds relative to slack bounds of data
types via exception testing; (2) IED detects the extensibility of tight bounds and
determines practical tight bounds; and (3) Most exact domains inferred by IED
are very small proper subsets of slack domains of data types and help testers
efficiently generate valid test cases.

The remainder is arranged as follows. The next section introduces knowledge
related to IED. Then, the approach namely IED and experiments are present
in Sects. 3 and 4, respectively. Related work is summarized in Sect. 5. Finally,
conclusion is made in Sect. 6.

2 Preliminaries

Our approach, namely IED, will be illustrated with its application in a popular
library named pyOpenSSL, which is frequently employed to generate X.509 cer-
tificates i.e., test cases of certificate validation. Therefore, X.509 certificates and
their generation are briefly introduced for a better understanding of the intuition
and effectiveness of IED.

2.1 X.509 Certificate

An X.509 certificate is a signed data structure that binds a public key to a
person, computer, or organization. Thus, X.509 certificates are mainly used in
the Secure Sockets Layer or Transport Layer Security (SSL/TLS) protocol [6,9]
and implementations. As Fig. 1 shows, an X.509 certificate consists of a sequence
of three required parts [2]:

(1) tbsCertificate, which is composed of ten fields i.e., version, serial number,
signature, validity, issuer, issuer unique identifier, subject, subject unique
identifier, subject public key info, and extensions;

(2) signature algorithm, which is an identifier of a signature algorithm employed
by a certification authority to sign a certificate; and

(3) signature value, which is a digital signature of a certificate.

Generally, the three parts i.e., tbsCertificate, signature algorithm, and sig-
nature value are necessary. Fields such as issuer/subject unique identifier and
extensions are optional.

108 C. Chen et al.

tbsCertificate

version

serial number

signature

validity (notBefore, notAfter)

issuer

issuer unique identifier

subject

subject unique identifier

subject public key info

extensions

signature algorithm

signature value

Fig. 1. Basic structure of an X.509 certificate

2.2 Certificate Generation

Certificate generation employs application programming interfaces (APIs) to set
values for fields shown in Fig. 1 and then sign certificates. Thus, it is critical to
certificate generation whether APIs are used correctly or not. APIs have various
parameters and each parameter has one data type, which is generally described
in official documents related to APIs. However, domains specified by data types
may not be exact and inexact domains possibly mislead testers. If testers pass
invalid values to arguments, APIs are used incorrectly and test cases are not
generated. If the incorrect usage of APIs frequently happens, the efficiency of
certificate generation is affected. Hence, it is significant to obtain exact domains
of parameters.

3 Inferring Exact Domains via Testing

IED starts by crawling official documents related to APIs to obtain data types
of parameters. Based on slack bounds indicated by data types, IED conducts
concurrent binary search and exception testing to find tight domains. Finally,
IED checks the extensibility of tight bounds and outputs practical tight bounds
i.e., exact domains.

3.1 Obtaining Data Types of Parameters

Generally, widely-used libraries offer online official documents related to APIs.
Algorithm 1 crawls such documents and obtain data types of parameters. Line
2 of Algorithm 1 employs a crawler function to get contents of online official
documents. Then, Lines 3–4 and 5–6 leverage regular expressions to extract

Inferring Exact Domains 109

static and dynamic typed APIs and data types of parameters, respectively. For
static typed libraries, APIs are described in the form of funcName(DataType1
parameter1,/; . . .) or funcName(parameter1:DataType1,/; . . .). Thus, it is easy
to leverage regular expressions to extract triples in the form of <API, parameter
name, data type>. For dynamic typed libraries, APIs are described in the form
of funcName(parameter1, . . .) followed by the explanation of parameters’ data
type. Therefore, data types of parameters are extracted from such explanations.
Finally, Line 7 of Algorithm 1 returns {< API, parameter, data type >}, in
which the second element is one parameter of the first element i.e., API and the
third element indicates the parameter’s data type. If the number of APIs is x
and the average number of parameters of each API is y, the number of triples
returned by Algorithm 1 is x · y.

Algorithm 1. Obtaining data types of parameters
Input: Online official documents
Output: APIs and their parameters’ data types
1: ret ← ∅; � initialize the variable ‘ret’ which is a set of <API, parameter, data

type>
2: con ← funcCrawler(documents); � crawl online official documents
3: if APIs are static typed then � case: funcName(int p1, ...)
4: ret ← funcReStaticType(con);
5: else � case: funcName(p1, ...)
6: ret ← funcReDynamicType(con);
7: end if
8: return ret;

With these data types of parameters, slack domains are obtained according to
the programming language specifications and x64/x86 architectures. For exam-
ple, one popular data type named “int” of the Python programming language
in x64 ranges from −∞ to ∞, where the symbols −∞ and ∞ denote bounds
depending on the memory size of a host machine. Based on slack domains, tight
domains will be inferred by IED in the following sub-sections.

3.2 Inferring Tight Domains

An element in slack domains is invalid if it triggers an exception after it is passed
to an API. Such elements should be removed from slack domains to obtain tight
domains. Algorithm 2 presents the method for inferring tight domains from slack
domains of popular data types such as “int” and “string” in most programming
languages.

Lines 1–5 of Algorithm 2 obtain a set of legal symbols. The function named
validator in Line 3 is customized by testers. For example, testers of certificate
validation in SSL/TLS implementations employ functions to generate certificates
as the validator. For some types such as “string”, the set of legal symbols is used
in slack lower/upper bounds in Line 6.

110 C. Chen et al.

Algorithm 2. Inferring a tight domain from a slack domain
Input: A parameter denoted by par and its slack domain denoted by [slackLowerBound,

slackUpperBound]
Output: A tight domain denoted by [tightLowerBound, tightUpperBound]
1: legalSymbolSet = ∅; � legalSymbolSet stores a set of legal symbols
2: for all c ∈ symbolSet do � symbolSet is a set of symbols in the slack domain
3: if validator(par, c∗) then � c*: any element of the Kleen closure of {c}
4: legalSymbolSet ← legalSymbolSet ∪ {c};
5: continue;
6: end if

7: end for

8: lower, upper ← slackLowerBound, slackUpperBound w.r.t. legalSymbolSet;

9: tightLowerBound, tightUpperBound ← None, None; � tight bounds are not found

10: while lower ≤ upper do

11: if tightLowerBound �= None and tightUpperBound �= None then

12: return tightLowerBound, tightUpperBound;
13: else � tight bounds have not been found

14: mid ← mean(lower, upper);

15: midSuccessor ← successor(mid); � mid’s successor

16: midPredecessor ← predecessor(mid); � mid’s predecessor

17: if validator(par, lower) and validator(par, upper) then

18: if tightLowerBound == None then

19: tightLowerBound ← lower; � tight lower bound is found

20: end if

21: if tightUpperBound == None then

22: tightUpperBound ← upper; � tight upper bound is found

23: end if

24: else if validator(par, lower) then

25: if tightLowerBound == None then

26: tightLowerBound ← lower; � tight lower bound is found

27: end if

28: if validator(par, mid) then

29: if validator(par, midSuccessor) then

30: lower ← midSuccessor;

31: upper ← predecessor(upper);

32: else

33: tightUpperBound ← mid; � tight upper bound is found

34: end if

35: else

36: if validator(par, midPredecessor) then

37: tightUpperBound ← midPredecessor;

38: else

39: upper ← midPredecessor;

40: end if

41: end if

42: else if validator(par, upper) then

43: if tightUpperBound == None then

44: tightUpperBound ← upper; � tight upper bound is found

45: end if

46: if validator(par, mid) then

47: if validator(par, midPredecessor) then

48: upper ← midPredecessor;

49: else

50: tightLowerBound ← mid; � tight lower bound is found

51: end if

52: else

53: if validator(par, midSuccessor) then

54: tightLowerBound ← midSuccessor; � tight lower bound is found

55: else

56: lower ← midSuccessor;

57: end if

58: end if

59: else � prepare for the next search

60: lower ← successor(lower);

61: upper ← predecessor(upper);

62: end if

63: end if

64: end while

Inferring Exact Domains 111

Based on the set of legal symbols, Lines 7–49 of Algorithm 2 conduct a current
binary search to find tight lower and upper bounds. The tightLowerBound or
tightUpperBound can be set if and only if it is None (Lines 7, 9, 16, 18, 21, and
35). Line 12 computes the arithmetic mean of lower and upper. For “string”,
mid is the length mean power of elements in the set of legal symbols. The
functions successor and predecessor in Lines 13 and 14 represent a successor or
predecessor of mid. Lines 20–33 and Lines 34–46 are similar in procedures but
they search different bounds. Lines 47–49 increase lower and decrease upper for
the next search iteration.

3.3 Checking the Extensibility of Tight Bounds

Tight bounds found by Algorithm 2 constitute tight domains. If tight
lower/upper bounds are not identical to slack lower/upper bounds, practical
tight domains i.e., exact domains are found. Otherwise, Algorithm 3 checks the
extensibility of tight bounds to find practical tight domains.

Line 1 of Algorithm 3 sets the maximum time used in checking the extensi-
bility of tight bounds. Lines 4–12 look for a practical tight lower bound if a tight
lower bound is identical to a slack lower bound. Similarly, Lines 13–21 look for a
practical tight upper bound if a tight upper bound is identical to a slack upper
bound. The function remain in Lines 7 and 16 computes the remained time.
The explanation of functions successor and predecessor is the same to that of
Algorihtm 3. Finally, Line 22 outputs practical tight bounds.

4 Experiments

Based on the approach IED, experiments have been conducted. Experimental
settings and results are presented as follows.

4.1 Experimental Settings

The experimental hardware consists of an Intel i5-7200U CPU and 8GB RAM
while the operating system is Microsoft Windows 10 × 64. The supporting tools
for IED is implemented in Python 3.8 and the target library is pyOpenSSL
v22.0.0.

4.2 Parameters and Their Data Types

APIs whose parameters’ data type are related to “int” and “str” are obtained
from the official document of pyOpenSSL. Table 1 shows the detail. The slack
bounds of the types “int” and “str” in pyOpenSSL depend on the free memory
size of a host machine.

112 C. Chen et al.

Algorithm 3. Checking the extensibility of tight bounds
Input: A parameter denoted by par, slack bounds denoted by

[slackLowerBound, slackUpperBound], and tight bounds denoted by
[tightLowerBound, tightUpperBound]

Output: Practical tight bounds i.e., exact domains
1: MaxTime ← userDefinedT ime;
2: practicalT ightLowreBound ← tightLowerBound;
3: practicalT ightUppereBound ← tightUpperBound;
4: if slackLowerBound == tightLowerBound then
5: bound ← tightLowerBound;
6: ret ← “valid′′;
7: while ret and remain(MaxTime

2
) > 0 do

8: ret ← validator(par, bound);
9: if !ret then � An exception is triggered

10: practicalT ightLowerBound ← successor(bound);
11: break;
12: end if
13: bound ← predecessor(bound);
14: end while
15: end if
16: if slackUpperBound == tightUpperBound then
17: bound ← tightUpperBound;
18: ret ← “valid′′;
19: while ret and remain(MaxTime

2
) > 0 do

20: ret ← validator(par, bound);
21: if !ret then � An exception is triggered
22: practicalT ightUpperBound ← predecessor(bound);
23: break;
24: end if
25: bound ← successor(bound);
26: end while
27: end if
28: return practicalT ightLowerBound, practicalT ightUpperBound;

Table 1. APIs’ parameters and their data types

API Parameter Data type

set_version() version int
set_serial_number() serial int
get_issuer() C, ST, L, O, OU, CN, emailAddress, dnQualifier, title, SN, GN,

initials, pseudonym, generationQualifier, DC, street,
businessCategory, jurisdictionC, jurisdictionST, jurisdictionL,
postalAddress, postalCode, userid, uid, UID, serialNumber,
x500UniqueIdentifier

str

get_subject C, ST, L, O, OU, CN, emailAddress, dnQualifier, title, SN, GN,
initials, pseudonym, generationQualifier, DC, street,
businessCategory, jurisdictionC, jurisdictionST, jurisdictionL,
postalAddress, postalCode, userid, uid, UID, serialNumber,
x500UniqueIdentifier

str

Inferring Exact Domains 113

4.3 Exact Domains Inferred by IED

The data types of parameters version and serial of APIs set_version() and
set_serial_number() are “int”, and their slack domains are identical. However,
their exact domains inferred by IED are different from slack domains or each
other, as shown in Table 2.

The exact domain of the parameter version, whose data type is “int”, is
[−231, 231 − 1]. Differently, the exact domain of the parameter serial_number,
whose data type is also “int”, is [0,∞], where the symbol ∞ denotes the practical
tight upper bound varies with the free memory size of a host machine.

Table 2. Tight bounds of int

Parameter Lower Upper

version −231 231 − 1

serial_number 0 ∞

Table 3. Illegal symbols of str

Parameter Illegal symbols

C } ! $ > ˜] # < % @ * \ ˆ / ? _ [" ; { & ‘ | \ t \ n \ r \ x0b \ x0c
ST \ | / ? < " * > \ t \ n \ r \ x0b \ x0c
L * ? > " / | \ t \ n \ r \ x0b \ x0c
O / > * < ? " | \ t \ n \ r \ x0b \ x0c
OU " * ? < / | \ t \ n \ r \ x0b \ x0c
CN < * > ? " / | \ t \ n \ r \ x0b \ x0c
emailAddress " / < ? > * | \ t \ n \ r \ x0b \ x0c
dnQualifier * & @ < ? ˜ ˆ } " % { / # \ ‘ [; ! _ >] $ | \ t \ n \ r \ x0b \ x0c
title / > < ? " * | \ t \ n \ r \ x0b \ x0c
SN < / " > ? * | \ t \ n \ r \ x0b \ x0c
GN ? > " / < * | \ t \ n \ r \ x0b \ x0c
initials * < " ? > / | \ t \ n \ r \ x0b \ x0c
pseudonym > " * ? < / | \ t \ n \ r \ x0b \ x0c
generationQualifier > * / " < ? | \ t \ n \ r \ x0b \ x0c
DC < / ? " * > | \ t \ n \ r \ x0b \ x0c
street * " > ? / < | \ t \ n \ r \ x0b \ x0c
businessCategory / * < " > ? | \ t \ n \ r \ x0b \ x0c
jurisdictionC , # ‘ % : ˆ . < &́ (@] _ $; ? } ˜ +) - / > = \ * " ! [{ | \ t \ n \ r \ x0b \ x0c
jurisdictionST \ / ? < * " > | \ t \ n \ r \ x0b \ x0c
jurisdictionL * " ? < / > \ t \ n \ r \ x0b \ x0c
postalAddress / \ < > " * ? | \ t \ n \ r \ x0b \ x0c
postalCode / \ ? * < " > | \ t \ n \ r \ x0b \ x0c
userid " < / \ * > ? | \ t \ n \ r \ x0b \ x0c
uid * ? \ " < > / | \ t \ n \ r \ x0b \ x0c
UID \ ? " / < > * | \ t \ n \ r \ x0b \ x0c
serialNumber / ˆ [\ _ ‘ $ < ; % ˜ " ! > ? { # *] } & | \ t \ n \ r \ x0b v x0c
x500UniqueIdentifier \ ? < > " | \ t \ n \ r \ x0b \ x0c

114 C. Chen et al.

For parameters whose data types are “str”, the exact domains given by IED
are shown in Tables 3 and 4. Table 3 lists illegal elements of “str” since legal
elements are so many. Table 4 shows the practical tight lower and upper bounds
i.e., the minimum and maximum length of a valid string consisting of legal
symbols. It can be found from Tables 3 and 4 that illegal symbols of different
parameters are various and practical tight bounds vary greatly.

Table 4. Tight bounds of str

Parameter String Length Parameter String Length
Lower Upper Lower Upper

C 2 2 ST 1 128
L 1 128 O 1 64
OU 1 64 CN 1 64
emailAddress 1 128 dnQualifier 0 240
titlestr 0 246 SN 1 249
GN 1 249 initials 0 243
pseudonym 0 242 generationQualifier 0 232
DC 1 249 street 0 245
businessCategory 0 235 jurisdictionC 2 2
jurisdictionST 0 237 jurisdictionL 0 238
postalAddress 0 238 postalCode 0 241
userid 0 245 uid 0 248
UID 0 248 SerialNumber 1 64
x500UniqueIdentifier 0 231 – – –

4.4 Evaluation

For parameters whose data types are “int”, Fig. 2 shows the evaluation of exact
domains and the benchmark is [−231, 231 − 1] which is frequently adopted by

Fig. 2. Evaluation of slack and tight domains of int

Inferring Exact Domains 115

testers. The exact domain of the parameter version is identical to the bench-
mark, resulting in helping testers avoid invalid domains [−∞,−231 − 1] and
[231,+∞]. The exact domain of the parameter serial_number is different from
the benchmark, resulting in helping testers avoid the invalid domain [−∞,−1].

For parameters whose data types are “str”, Fig. 3 shows the percentage of
legal characters. Thus, IED helps testers avoid 11%–27% symbols that will not
generate valid test cases. In consideration of practical tight bounds of “str” shown
in Table 4, IED improves the efficiency of generating valid test cases.

Fig. 3. Percentage of legal and illegal characters

5 Related Work

Frankencert [3] is proposed for the first time to test certificate validation logic
in SSL/TLS implementations and recombines the collected certificate compo-
nents to generate a new certificate. Mucert [5] uses the Markov Chain Monte
Carlo (MCMC) algorithm to diversify mutation certificates. NEZHA [7] directly
mutates the certificate files regardless of the certificate syntax. RFCcert [4,11]
assembles certificates depending on the rules extracted from Request for Com-
ments (RFCs). SADT [8] leverages a tree-based mutation to generate syntacti-
cally correct certificates. Work such as Frankencert requires the generation of
test cases, but they do not have a well-defined domain of parameters. The per-
formance of software testing heavily depends on the quality of the test cases,
especially when the target program requires highly structured input [10]. We

116 C. Chen et al.

propose the IED to accurately test the practical tight lower and upper bounds
of parameters’ domains. Therefore our work helps testers generate valid test
cases efficiently.

6 Conclusion

In this paper, we propose IED, a three-phase approach for inferring exact
domains. Based on IED, experiments are performed on pyOpenSSL, and exact
domains of parameters are obtained. Exact domains help testers efficiently gener-
ate valid test cases. The experimental results show the efficiency and effectiveness
of our approach.

Acknowledgements. All authors would like to express our thanks to anonymous
reviewers for their comments.

References

1. pyOpenSSL. https://pyOpenSSL.org/en/stable/api/crypto.html
2. Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S., Cooper, D.: Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (2008)

3. Brubaker, C., Jana, S., Ray, B., Khurshid, S., Shmatikov, V.: Using frankencerts
for automated adversarial testing of certificate validation in SSL/TLS implemen-
tations. In: 2014 IEEE Symposium on Security and Privacy, pp. 114–129 (2014)

4. Chen, C., Tian, C., Duan, Z., Zhao, L.: RFC-directed differential testing of certifi-
cate validation in SSL/TLS implementations. In: 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE), pp. 859–870 (2018)

5. Chen, Y., Su, Z.: Guided differential testing of certificate validation in SSL/TLS
implementations. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pp. 793–804. Association for Computing
Machinery, New York, NY, USA (2015)

6. Freier, A.O., Karlton, P., Kocher, P.C.: The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101 (2011)

7. Petsios, T., Tang, A., Stolfo, S., Keromytis, A.D., Jana, S.: NEZHA: efficient
domain-independent differential testing. In: 2017 IEEE Symposium on Security
and Privacy (SP), pp. 615–632 (2017)

8. Quan, L., Guo, Q., Chen, H., Xie, X., Li, X., Liu, Y., Hu, J.: SADT: syntax-aware
differential testing of certificate validation in SSL/TLS implementations. In: 2020
35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 524–535 (2020)

9. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018)

10. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization:
an empirical study. In: Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360), pp. 179–188 (1999)

11. Tian, C., Chen, C., Duan, Z., Zhao, L.: Differential testing of certificate validation
in SSL/TLS implementations: an RFC-guided approach. ACM Trans. Softw. Eng.
Methodol. 28(4) (2019)

https://pyOpenSSL.org/en/stable/api/crypto.html

Algorithms and Verification

Testing and Verifying the Security of COVID-19
CT Images Deep Learning System

with Adversarial Attack

Yang Li and Shaoying Liu(B)

Graduate School of Advanced Science and Engineering, Hiroshima University,
Hiroshima 739-8511, Japan

{liyangfly,sliu}@hiroshima-u.ac.jp

Abstract. The Coronavirus disease 2019 (COVID-19) is a pandemic that
occurred in December 2019 and spread globally. Most of the current research
is on how to apply deep learning to detect COVID-19, but little research has been
done on the security of COVID-19 deep learning systems. Therefore, we test and
verify the security of COVID-19 CT images deep learning system with adver-
sarial attack. Firstly, we build a deep learning system for recognizing COVID-19
CT images. Secondly, adding imperceptible disturbance to CT images will lead
to neural network classification errors. Finally, we discuss the application of for-
mal methods and formal verification to deep learning systems. We hope to draw
more attention from researchers to the application of formal methods and formal
verification to artificial intelligence.

Keywords: Adversarial attack · COVID-19 · Deep learning · Testing · Security ·
Formal methods

1 Introduction

COVID-19 has been a threat to the health of people around the world since its discovery.
It was declared a global pandemic by the World Health Organization on March 11,
2020 [1]. COVID-19 is an acute respiratory infection caused by a new coronavirus
SARS-CoV-2. Its clinical manifestations mainly include fever, cough, headache, loss
of sense of smell, etc. [2]. Currently, the clinical diagnosis of the virus is based on
patient epidemiology, clinical manifestations, chest CT and RT-PCR [3]. Chest CT, as
the primary tool for screening and diagnosis of COVID-19, can not only detect lesions
early but also stage themanifestation pattern of lesions, which can be classified into early,
progressive, regressive and heavy, and critical types according to the manifestation of
lesions on CT [4].

Since the emergence of COVID-19, there has been a great deal of research on it,
covering a variety of fields, such as biology, chemistry, medicine, and information sci-
ence [5–7]. Currently, there are many studies on the application of machine learning
in COVID-19 medical image recognition and detection [8]. Ezz El-Din Hemdan [9]
used deep network models with seven different architectures to classify X-ray images

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 119–125, 2023.
https://doi.org/10.1007/978-3-031-29476-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_10

120 Y. Li and S. Liu

of COVID-19 patients and normal patients. Yifan Jiang [10] proposes a CT image syn-
thesis approach based on a conditional generative adversarial network that can effec-
tively generate high-quality and realistic COVID-19 CT images for deep-learning-based
medical imaging tasks. However, However, there are few studies on the security of
COVID-19deep learning systems.

There is no doubt that deep learning has made remarkable achievements in many
fields, such as image recognition [11], object detection [12], and speech recognition
[13]. In addition, deep learning has led to breakthroughs in other fields, such as disease
prediction [14], protein structure modeling [15], and medical diagnosis [16]. Szegedy
et al. [17] first identified interesting weaknesses of deep neural networks in image clas-
sification. They showed that despite the high correctness rate, modern deep networks are
susceptible to attacks by adversarial samples. These adversarial samples are only very
slightly perturbed so much so that the human visual system cannot detect such perturba-
tions. Such an attack can cause the neural network to completely change its classification
of the pictures. In addition, the same perturbation can fool so many network models.
The far-reaching implications of such phenomena have attracted many researchers in
adversarial attack and deep learning security.

2 Adversarial Attack

2.1 The Concept of Generating Adversarial Sample

Adversarial samples are created by superimposing subtle changes on the original data
thatmake them acceptable to themachine learningmodel but imperceptible to the human
eye, thus causing the machine learning model to misjudge the input data. The adversarial
sample is defined mathematically as follows:

| ε | < δ and f (x + ε) ! = f (x)

The input data x, machine learning model f , the classification result is denoted by
f(x). Suppose there is a small perturbation ε such that f(x) is equal to f(x + ε), then x +
ε can be called an adversarial sample.

2.2 The Classification of Adversarial Sample Generation Methods

Optimization-Based Adversarial Sample Generation Algorithm. In the training
process, the loss function between the predicted and actual values of the sample data is
calculated, and then the parameters of the model are adjusted by the chain rule in the
backward transfer process to continuously reduce the value of the loss function, and the
parameters of each layer of the model are iteratively calculated to generate the adver-
sarial samples. Carlinr et al. [18] proposed a set of adversarial attack C&W based on
optimization, considering both high attack rejection rate and low adversarial disturbance.

Gradient-based Generation of Adversarial Sample. The gradient of the input data is
calculated first. Then the input data is updated step by step according to the meaning of
the loss function to obtain the adversarial sample, such as FGSM [19], Basic Iterative

Testing and Verifying the Security of COVID-19 CT Images 121

Method(BIM) [20], and PDG [21]. The specific form of the counter sample generated
by FGSM is as follows:

x∗ = x + ε · sign (∇x J (x, t))

The original sample is x, ε is the perturbation parameter, and∇x J(x,t) is the gradient,
and then the adversarial sample x ∗ is generated.

Generative Adversarial Sample Based on Generative Adversarial Network(GAN).
GAN was first proposed by Ian Goodfellow [22] in 2014 and consists of two sub-
networks, the Generator network (G) and the Discriminator network (D). The Generator
network optimizes itself so that the Discriminator network cannot be identified, and the
Discriminator network optimizes itself to make a more accurate judgment.

3 Experiment

3.1 Datasets

The CT images datasets in this paper were obtained from publicly available datasets
extracted from the medRxiv and bioRxiv preprints of COVID-19 by Xingyi Yang at the
University of California, San Diego [23]. These CT images datasets are anonymized
and can be applied to the study of COVID-19. The datasets contain 349 CT images that
tested positive for COVID-19 and 397 CT images that tested negative for COVID-19.
The datasets were divided into three categories: training set, validation set, and testing
set.

3.2 Deep Learning Model

ResNet is the ImageNet 2015 championmodel, which dramatically reduces the error rate
of previous models and has low complexity, new parameters, and small calculation [24].
We use the transfer learningmethod to construct theCOVID-19CT images deep learning
system using the pre-training model resnet50 and change the final full connection layer
to two classifications (COVID-19 CT images, normal CT images).

3.3 Adversarial Attack

To verify the security of the deep learningmodel based onCOVID-19CT images, we car-
ried out an anti-attack against it, that is, adding a slight disturbance that is imperceptible
to the naked eye into the images of the test set, causing the model to be misclassified. We
choose the FGSM algorithm based on gradient generation adversarial samples to attack
the trained model. In addition, we adjusted different epsilon to test their interference
with the model (Fig. 1).

122 Y. Li and S. Liu

Fig. 1. The adversarial attack against the COVID-19 CT images deep learning system

4 Discussion

4.1 Results of Experiment

The experimental results are shown in Table 1. Before the deep learning model was
attacked, the model’s accuracy reached 76.27%. However, we used white box attack
FGSM to attack the pre-trained deep learning model, which significantly reduced the
recognition accuracy of the model, indicating that the adversarial sample successfully
deceived the model, making the model unable to classify CT images correctly.

Table 1. Accuracy of the COVID-19 CT images deep learning model

Attack Accuracy

Original 76.27%

FSGM attack 1.02%

We attack themodel with the adversarial attack algorithm FGSM. The original image
with perturbation makes no difference to the naked eye but can make the deep learning
model misclassify. Figure 2 shows examples of CT images from the before and after
perturbation by the adversarial neural network. After slight perturbation of the original
image, we obtained adversarial image that could not be distinguished by the human eye.

We analyzed and studied the impact of adversarial samples on the accuracy of the
deep learning system based on COVID-19 CT images. Compared with previous studies
on COVID-19, previous studies on COVID-19 and deep learning mainly focus on how
to build a deep learning system with higher accuracy that can identify COVID-19 CT

Testing and Verifying the Security of COVID-19 CT Images 123

Fig. 2. Characteristic results of adversarial image

images, while our research focuses on testing and verifying the security of the deep
learning system based on COVID-19 CT images. We find that even subtle perturbation
that are hard to distinguish by the naked eyewill degrade the accuracy of the deep learning
image recognition system, which is more important for the judgment of medical images.

4.2 Formal Methods and Formal Verification

Machine learning, as represented by deep learning, has made great progress. But the
shortcomings of suchmethods are also increasingly prominent. In particular, these are the
most important issues: interpretability, generalization ability, robustness, and security.
The above problems faced in artificial intelligence systems have caused concerns. Formal
methods and formal verification are mainly applied in the field of software engineering,
which can solve the problem of software correctness from a mathematical point of view
at the root, thus saving a lot of work in code review, software testing, etc. Therefore,
how to apply formal methods and formal verification in the artificial intelligence field
and build verified artificial intelligence is a very meaningful topic.

For deep learning models, if we define the model system with formal methods, we
can make the model have better robustness (Fig. 3). For the training data, the data can
be defined and filtered by formal methods to remove some data that affect the model
in advance, and for the model, the network of the model can be defined and specified
by formal methods, and the adversarial samples can be used as test data to verify the
robustness and security of the model. Many studies have demonstrated that adversarial
attacks are a great threat to the security of deep learning systems, and ifwe use adversarial
samples to formalize the deep learning system in advance, thus potentially improving
the security and reliability of the system.

124 Y. Li and S. Liu

Fig. 3. The formal methods and formal verification with deep learning systems

5 Conclusion

There is no doubt that the use of deep learning in medical diagnosis is auspicious.
Artificial intelligence technology has also been contributing a lot to the rapid develop-
ment of medicine and health care. Then, the security of deep learning systems cannot
be ignored, especially in the medical field, people’s health is essential. In this article,
we test and verify the security of COVID-19 CT Images Deep Learning System with
adversarial attack, hoping to draw developers’ attention to the security and reliability of
deep learning systems, so that they can develop more secure and reliable deep learning
systems.

My future research will focus on how to use formal methods to define deep learning
systems, such as defining and verifying deep learning systems using formal methods to
improve the security and reliability of deep learning systems.

Acknowledgment. The work is supported partially by JST SPRING, Grant Number
JPMJSP2132.

References

1. Li, H., Liu, Z., Ge, J.: Scientific research progress of COVID-19/SARS-CoV-2 in the first five
months. J. Cell Mol. Med. 24(12), 6558–6570 (2020)

2. Ciotti, M., Ciccozzi, M., Terrinoni, A., et al.: The COVID-19 pandemic. Crit. Rev. Clin. Lab.
Sci. 57(6), 365–388 (2020)

3. Orooji, Y., et al.: An Overview on SARS-CoV-2 (COVID-19) and other human coron-
aviruses and their detection capability via amplification assay, chemical sensing, biosensing,
immunosensing, and clinical assays. Nano-Micro Lett. 13(1), 1–30 (2020). https://doi.org/
10.1007/s40820-020-00533-y

https://doi.org/10.1007/s40820-020-00533-y

Testing and Verifying the Security of COVID-19 CT Images 125

4. Fang, Y., Zhang, H., Xie, J., et al.: Sensitivity of chest CT for COVID-19: comparison to
RT-PCR. Radiology (2020)

5. Fields, B.K.K., Demirjian, N.L., Dadgar, H., et al.: Imaging of COVID-19: CT, MRI, and
PET. Sem. Nuclear Med. WB Saunders 51(4), 312–320 (2021)

6. Tian, X.L., Peng, M., Wang, H.P., et al.: The differential diagnosis for novel coronavirus
pneumonia and similar lung diseases in general hospitals. Chin. J. Tuberc. Respir. Dis. 43(5),
E035 (2020)

7. Kumar, A., Gupta, P.K., Srivastava, A.: A review ofmodern technologies for tackling COVID-
19 pandemic. Diab. Metab. Syndr. 14(4), 569–573 (2020)

8. Lalmuanawma, S., Hussain, J., Chhakchhuak, L.: Applications of machine learning and arti-
ficial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals
139, 110059 (2020)

9. Hemdan, E.E.D., Shouman, M.A., Karar, M.E.: Covidx-net: A framework of deep learning
classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055 (2020)

10. Jiang, Y., Chen, H., Loew, M., et al.: COVID-19 CT image synthesis with a conditional
generative adversarial network. IEEE J. Biomed. Health Inform. 25(2), 441–452 (2020)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: Unified, real-time
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788 (2016)

13. Nassif, A.B., Shahin, I., Attili, I., et al.: Speech recognition using deep neural networks: a
systematic review. IEEE Access 7, 19143–19165 (2019)

14. Yang, H.,Wei, Q., Li, D., et al.: Cancer classification based on chromatin accessibility profiles
with deep adversarial learning model. PLoS Comput. Biol. 16(11), e1008405 (2020)

15. Tunyasuvunakool, K., Adler, J., Wu, Z., et al.: Highly accurate protein structure prediction
for the human proteome. Nature 596(7873), 590–596 (2021)

16. Esteva, A., Kuprel, B., Novoa, R.A., et al.: Dermatologist-level classification of skin cancer
with deep neural networks. Nature 542, 115–118 (2017)

17. Szegedy, C., Zaremba,W., Sutskever, I., et al.: Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199 (2013)

18. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE
Symposium on Security and Privacy (sp). IEEE, pp. 39–57 (2017)

19. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

20. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint
arxiv:1611.01236 (2016)

21. Madry, A., Makelov, A., Schmidt, L., et al.: Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. Adv. Neural
Inf. Process. Syst. 27 (2014)

23. Zhao, J., Zhang, Y., He, X., et al.: Covid-CT-dataset: a CT scan dataset about covid-19. arXiv
preprint arXiv:2003.13865, 490 (2020)

24. He,K., Zhang,X., Ren, S., et al.:Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

http://arxiv.org/abs/2003.11055
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/2003.13865

Verifying and Improving Neural Networks
Using Testing-Based Formal Verification

Haiyi Liu1, Shaoying Liu1(B), Ai Liu1, Dingbang Fang1, and Guangquan Xu2

1 Graduate School of Advanced Science and Engineering, Hiroshima University,
Hiroshima 7398511, Japan

{sliu,liuai,fangdingbang}@hiroshima-u.ac.jp
2 School of Cybersecurity, College of Intelligence and Computing, Tianjin University,

Tianjin 300072, China
Losin@tju.edu.cn

Abstract. Neural networks have been widely used in safety-critical sys-
tems, but those safety-critical systems containing neural networks still
have security risks due to the existence of adversarial examples. The secu-
rity of neural networks can be ensured to some extent by verifying them.
However, since the verification of neural networks is a NP-hard problem,
it is still impossible to apply the verification algorithm to large-scale
neural networks. For this reason, we propose TBFV-INN, a new frame-
work for verification and improving neural networks. First, we propose a
testing-based neural network pruning algorithm, which obtains the exe-
cution path of each test case in the neural network by executing them.
Secondly, test-based neural network pruning divides the original neural
network into several sub neural networks. Finally, for divided sub neural
network, a verification algorithm is used to verify and construct the data
set to retrain the neural network, thus ensuring that each sub neural
network is reliable in a particular input-output interval. We show a case
study to demonstrate the feasibility of the framework.

Keywords: Neural network · Formal verification · Software test

1 Introduction

In recent years, neural networks have been increasingly used in security-critical
systems, such as autonomous driving [5], financial payments [8], and even avia-
tion scheduling systems [6]. At the same time, neural networks have also been
shown to be potentially vulnerable to elaborate adversarial example [25]. The
neural network verification algorithm [2] can use the given formal specification to
verify the neural network. Unfortunately, the neural network verification prob-
lem has been proved to be NP-hard [9], and the scale of existing neural networks
is still expanding.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 126–141, 2023.
https://doi.org/10.1007/978-3-031-29476-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_11

Verifying and Improving Neural Networks Using TBFV 127

In general, when engineers are faced with complex tasks, they tend to build
larger model structures based on experience, such as a larger number of layers of
neural networks containing a larger number of neurons per layer. The reason for
this is that larger neural network models are considered to be more expressive
and easier to train. However, this approach also brings redundancy in the model
structure, which poses a challenge to subsequently ensure the reliability of the
model. For example, when we want to verify the reliability of the model, since
the verification algorithm is usually NP-hard, a large number of redundant mod-
els will inevitably lead to time out. To alleviate the security problems caused
by large scale neural networks, some algorithms for fast search of neural net-
work adversarial examples have been proposed by the security community and
widely used in industry [10,14,20]. To reduce the complexity of neural network
adversarial examples search, some scholars have proposed pruning algorithms to
reduce the size of neural networks by reducing the redundant nodes in neural
networks [1,7], which facilitates the deployment of neural networks on the one
hand and the testing of neural networks on the other hand to make them more
stable. However, the problem of the above algorithms is that there is no formal
guarantee that the neural network is reliable under a certain input-output spec-
ification. On the other hand, the formal approach community is also trying to
improve the efficiency and scale of neural network verification through hardware
measures such as GPUs [23] and Parallel computing [24] etc. However, the speed
of verification is much slower than the growth of the number of neural network
participants.

In this paper, we propose a method to construct reliable neural networks
based on the combination of test and verification. Specifically, we have developed
two key techniques, the first one is called testing-based neural network pruning.
This technique first partitions the input and output space of the neural network
using the formal specification. The original input-output space is partitioned into
several subspaces, and then the training data set of the generated neural network
is mapped into each subspace. Finally, the training data set mapped into the
subspaces is used to prune the original neural network and generate a sub neural
network for each subspace. The second technique is called validation-based neural
network retraining, where formal validation of the subneural network is feasible
because the subneural network is smaller in size, and we adjust the subneural
network with retraining for counterexamples that exist in the subnetwork to
make it converge to reliability.

This paper mainly made the following contributions:

– We propose a neural network pruning technique based on formal specification
and testing. Several corresponding sub networks can be obtained from the
original neural network according to the formal specification.

– We design a verification based neural network retraining algorithm. Its core
technology is to construct training data sets through counterexamples. This
algorithm makes the retrained neural network more reliable.

128 H. Liu et al.

2 Preliminary

2.1 Principle of TBFV

The testing-based formal verification (TBFV) [11,12] is proposed to ensure the
correctness of all traversed program paths in traditional software. The first step
of TBFV is to generate a test case T based on the test condition in the formal
specification. The second step is to obtain a traversed program path by execut-
ing the test case T execution program P , where the path contains a series of
conditions. The third step is to verify the reliability of the path under the formal
specification by using symbol execution or hoare logic [17].

2.2 Interval Arithmetic and Symbolic Execution

Interval arithmetic is an effective way to improve the stability of a program.
Unlike algebraic operations with numbers as the object, the whole process of
interval arithmetic is based on the interval as the object of operation, and by
using the rules of interval arithmetic to abstract the rules of program operation,
the purpose of analysing the program is achieved. The definitions are as follows:

The given real number x, x ∈ R, if the condition x ≤ x is satisfied. Then the
set of closed bounded numbers. Then the set X = [x, x] = {x ∈ R | x ≤ x ≤
x} is called a bounded closed interval. If any two intervals X = [x, x] and
Y = [y, y] are given, Then the following operation holds on the interval.

X + Y = [x + y, x + y]

X − Y = [x − y, x − y]

X ∗ Y = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)]

if 0 /∈ [y, y], then X/Y = [x, x] ∗ [1/y, 1/y]

Symbolic execution is to use symbols to represent the input of programs,
symbolically simulate the execution of each program instruction, and interpret
it as a specific operation on symbolic values with semantic equivalence.

The formal specification of neural network input is usually expressed as a real
closed interval. For example, the input xi of the i-th neurons in the input layer
needs to satisfy xi ∈ [ai, bi] where interval [ai, bi] is given by formal specification,
which means that the input of the i-th neuron of the input layer must belong to
the range of this interval. When the symbol Xi is used to replace the interval of
the input layer given by the formal specification, we can get,

Xi = [ai, bi] i = 1, ..., n

where n is the number of neurons in the input layer. The process of forward
propagation of neural network which needs to be verified with symbol Xi is the
process of neural network symbol execution.

Verifying and Improving Neural Networks Using TBFV 129

2.3 Verification of Neural Networks

Deep neural network is a mapping in high-dimensional space, which can be
formally expressed as f : Rn → R

m. if there is a set of constraints φ which is
the precondition of f on R

n, and existence a set of constraints ϕ which is the
post condition of f on R

m. Then, the problem of neural network verification is
transformed into proving that ∀x ∈ R

n : φ(x) → ϕ(f(x)) is satisfied or not.

3 Background and Motivation

At present, how to design the structure of deep neural network for different
application scenarios is still an unsolved problem. Due to the lack of this design
specification, the redundancy of neural network is widespread. Redundancy may
improve the accuracy of neural network to a certain extent, but in most cases,
it can only increase the training cost and reasoning cost of the network, which
becomes particularly obvious in application scenarios such as edge computing,
embedded systems etc. To overcome the redundancy of neural network struc-
ture, pruning has become an essential technology for neural network training
and deployment. Because changes in the structure of neural networks usually
lead to changes in performance, neural network pruning contains two technical
challenges. The first is how to create rules to locate which neurons, or which
weights should be pruned. The second is how to ensure that the pruned neural
network is equivalent or similar to the original neural network.

3.1 Background

Up to now, there is still no formal specification to define the network structure, so
the industry will rely on experience to train redundant neural networks, and then
prune the redundant neural networks by sacrificing a certain accuracy. Existing
neural network pruning algorithms often use a large number of test cases to test
the trained neural network, and then prune the neural network according to
the rules of neuron activation or weight size. Then, the pruned neural network
is trained again. To achieve the same or even better effect on some test data
sets. But the problem of doing so is also obvious. The test data is discrete, so
the pruning algorithm driven by the test data can not guarantee that the two
neural networks are completely equivalent in the continuous interval, even if the
accuracy of the neural network in the test data set is exactly the same. For
example, two neural networks may have different adversarial examples.

If we want the accuracy of the pruned neural network to be completely con-
sistent with the original network, the execution path of the neural network for
each test case in the input space should be known. However, the sample size of
the input space to be tested to obtain the execution path is huge. Taking the
fully connected neural network as an example, it is assumed that the number of
neurons in the input layer is n and the input space of each neuron is m. Then it
takes mn test cases to obtain the neural network execution path corresponding

130 H. Liu et al.

to the input space through the test method. Even if we quantify the neural net-
work input, that is, m is represented by int8, mn tests may still be an impossible
task, and worse, n may also become larger with the development of training data
(for example, clearer training picture data is used in CV).

3.2 Motivation

Formal verification is a classic technology in software engineering. Recently, the
classical technology of formal verification has been applied to the verification
of neural networks which detailed description in Sect. 2.3. Because the neural
network is verified by analyzing the execution path of the program, intuitively,
we think it can promote the pruning of the neural network.

Formally, let the fully connected neural network be a directed graph G =<
V (G), E(G), ϕG >, where V (G) is the set of all neurons in the neural network,
E(G) is the set of all edges in the neural network. ϕG is a function from the
E(G) to the node ordered pair set, in short, it is the direction of edges in neural
networks. Furthermore, the pruning problem can be abstracted as finding the
sub-graph Gsub of graph G by using the formal verification algorithm. Specifi-
cally, we can delete some nodes and weights connected to nodes from V (G). We
denote the node that needs to be deleted as Vdel. The edge that needs to be
deleted can be denoted as Edel. Then, the sub-graph can be recorded as:

Gsub =< Vsub = V − Vdel, Esub = E − Edel >

After the above analysis, the neural network pruning problem is further trans-
formed into a search problem, that is, for each input interval of the formal
specification, find Gsub in G corresponding to this interval. However, the formal
verification of neural networks is a NP-hard problem. The simple use of con-
straint solving and symbolic execution will inevitably lead to the time out of
the verification algorithm when facing large-scale neural networks. In short, the
current pruning method has the following two problems. First, the testing-based
method can not guarantee the stability of the pruned neural network in the con-
tinuous interval. Second, the formal verification algorithm can ensure that the
neural network is reliable in the continuous input-output interval of the formal
specification, but how to use the verification algorithm to prune the neural net-
work within the feasible time is still a blank. These challenges motivate us to
combine the advantages of testing and verification to fill the gap of efficient for-
mal verification of neural networks. Therefore, we propose TBFV-INN, a neural
network pruning of testing-based formal verification.

4 Methodology

To solve the above challenges, we have introduced TBFV-INN. Section 4.1
presents an overview of TBFV-INN. There are detail about how to use test cases
to prune in Sect. 4.2. Then, Sect. 4.3 describes the process of formal verification
and retraining of neural networks in detail.

Verifying and Improving Neural Networks Using TBFV 131

Table 1. Definitions of common symbols in this paper.

Symbol Significance

NN = (V, E, W) Computational graph represented by triples
V The set of neurons
E The set of directed edges
W The set of directed edge weights
Di = [di, di] Closed interval of real numbers
I = {D1, D2, ...Dn} The set of Di

Ip = {Dp
1 , Dp

2 , ...Dp
n} The set of interval segmentation of each interval Di

Tc = {(x1, y1), ..., (xm, ym)} Training data set of neural network.
TDI = {x1, x2, ...xm} A set of inputs in a training dataset.
TDO = {y1, y2, ...ym} A set of outputs in a training dataset.
ISS A set is defined as an space segmentation of I

IS An element in ISS

Fo Output specification correspondence of NN on I

4.1 Overview

The overview of TBFV-INN is described in Fig. 1. The proposed method includes
three stages: testing-based neural network pruning, formal verification of sub
neural networks, search for counterexamples and retraining. The neural network
studied is a pretrained model in which the weight value has been trained.

The purpose of testing-based neural networks pruning is to reduce the scale
of neural networks. The test data set here can be generated based on formal
specification or using existing training data and testing data. By running the
test data, the execution path of the data in the given interval in the pre training
neural network can be obtained. Then, the path that the pre training neural
network does not execute in the specified interval is cut off to reduce the scale of
the neural network. In the second stage, symbolic interval analysis on the spec-
ified interval is carried out for the sub neural network. If the verification result
is satisfied, the stability of the sub neural network on the interval is guaranteed.
If it is unsatisfied, in the final stage, we will look for the counterexample of the
sub neural network and retrain the sub neural network on the specified interval.
In the following chapters, the technical details of each step will be described in
detail.

4.2 Testing-based Neural Networks Pruning

Space Segmentation. Here, we need to make an assumption, that is, all the
training data sets are consistent with the formal specification. This assumption
is reasonable because data that obviously does not conform to the formal spec-
ification should not be trained by the neural network. The pre training neural

132 H. Liu et al.

Fig. 1. An overview of TBFV-INN

network model (NN) obtains the weight from the training data set, and verifies
the validity of the weight in the test data set. After that, the execution path
of the neural network corresponding to each input is determined. Let’s give a
training set Tc = {(x1, y1), (x2, y2), ..., (xm, ym)}, where xi ∈ R

n, yi ∈ R
s.

Definition 1. Interval segmentation Let’s partition an interval Di into a set
of disjoint segmentations Dp

i = {D1
i ,D

2
i , ...D

s
i } where each Dj

i = [dji , dji) and
Dj

i is a sub interval of Di. In addition, |Dp
i | =

∑s
j=1 |Dj

i |. The set Dp
i is defined

as an interval segmentation of Di.

In the input layer of NN , the input range of each neuron corresponds to
the element in I. For example, if the number of neurons in the input layer is w,
then |I| = w. According to Definition 1, each interval in I can be divided. We
divide each element Di in I into s sub intervals on average. That is, ∀Di ∈ I s.t.
|Di| = s.

Definition 2. Space segmentation
Let the set I (multidimensional rectangle) be the input space of the NN . If

the interval segmentation is performed on each element of the set I, then the
set Ip = {Dp

1 ,D
p
2 , ...D

p
n} can be obtained. For all elements in Ip, a set ISS =

Dp
1×Dp

2 · · ·×Dp
n can be constructed by Cartesian product. The set ISS is defined

as an space segmentation of I.

We perform segmentation using Definition 2 on the input space of NN ,
denote as ISSI From the definition of formal specification, we can get:

∀xi ∈ TDI ,∃Is ∈ ISSI s.t. xi ∈ Is

That is, there is a function f : TDI → ISSI

Verifying and Improving Neural Networks Using TBFV 133

Figure 2 is a case study of test case segmentation for input space of neural
network. Let the input layer of neural network NN have three neurons and
|Dp

i | = 2 where i = 1, 2, 3, then input space segmentation can be represented
as a cube C in three dimensional space. The length, width and height of the
cube are |D1|, |D2| and |D3| respectively. The set composed of all sub cubes
is set ISSI . Firstly, the neural network input space is segmented by using the
segmentation criteria described in definition 2, as shown in sub Fig. 2(a). The
sub cubes in cube C are elements in ISSI . Secondly, each element in TDI is
mapped to different sub cubes, as shown in sub Fig. 2(b).

(a) Space segmentation (b) Mapping of test cases on Partitioned space

Fig. 2. Test case segmentation for input space of neural network

The execution path of IS on a neural network must be a sub graph of the
whole neural network. However, verifying the stability of large-scale neural net-
works over the input space ISS is very difficult and almost impossible to accom-
plish. Therefore, the approximation to find the ISS on the execution path of the
neural network is the next step to be solved. When the neural network forward
executes a test case in TDI , it can quickly get an accurate path. Therefore, we
run the test cases in IS, taking the concatenation of all paths to approximate
the execution path of the neural network on the IS space. Obviously, approxi-
mate paths are a subset of the real paths of IS on NN and do not guarantee
the stability of the sub-paths, for which we need to use verification methods,
which are described in detail in Sect. 4.3. Next, the algorithm for obtaining the
approximate path is described in detail.

First, let’s precisely define the execution path of each test case in IS on the
neural network computational graph.

Definition 3. Execution path of neural network
If the execution path of the neural network is recorded as computational graphs

G =< V (G), E(G), ϕG >, then, the execution path of a test case is the sub
graph gi =< V (gi), E(gi), ϕgi > of G. where V (gi) ⊂ V (G), E(gi) ⊂ E(G) and
ϕgi ⊂ ϕG.

134 H. Liu et al.

Furthermore, a triplet can be constructed for each Test case and Test oracle.
The form is as follows:

{testCase} gi {testOracle}

In this paper, we take Argf(x) := {x| ∀x ∈ TDI : f(x) → IS} as test cases.
Homologous, we can also get test oracles Argf(y) := {y| ∀y ∈ TDO : f(y) →
IS}. Through a group of Argf(x) and Argf(y), we can get a series of execution
path {g1, g2, ...gt} belonging to IS. The execution path of IS in the neural
network is the pIS =

⋃t
1 gi. As shown in Fig. 3,

Fig. 3. Execution path generation on IS

Criteria for Generating Paths. The process of neural network executing a
test case is equivalent to the forward reasoning stage of neural network. At this
time, after receiving the input value, each neuron can output an activation value
through the calculation of the activation function. Formally, We can express the
process by Formula (1).

yj = f(
n∑

i=0

wixi − bias) (1)

where xi is the output of all neurons connected to the current neuron in the
previous layer. f is the activation function. yi is the output of the current neuron.

Verifying and Improving Neural Networks Using TBFV 135

Fig. 4. Schematic representation of ReLU neurons

It is critical to define threshold and generate test case path of neural network.
The absolute value of neuron output affects the input of the next layer of neurons.
When the absolute value of the output value of neurons is larger, the influence
on the input of neurons in the lower layer is larger, vice versa. Therefore, given
the threshold value α, When the absolute value of the output value of the neural
network is less than or equal to α, i.e. |yi| ≤ α, we consider that the test case has
not passed through the neuron. When generating the test case execution path,
we will delete the neuron and its associated weights. Figure 4 shows an example,
when α is equal to 0, the neuron is in an inactive state. We deleted the neuron
and the weights connected to it.

4.3 Formal Verification and Retraining of Neural Networks

In IS space, pIS is obtained by pruning the original neural network through the
testing-based pruning method. But pIS can only be stable in IS to a certain
extent. To understand the actual stability on pIS , strict formal verification is
required for pIS . We propose using symbolic execution to verify the reliability
of pIS , as the verification results may be satisfied or not satisfied, we further
proposed ensemble and retraining to deal with it.

Formally, after the input space ISI passes through the forward propagation of
the neural network pIS , its output must belong to Fo. We record the output space
of the neural network verification algorithm as FoV . If ∀e ∈ FoV , then e ∈ Fo.
We claim that pIS is a stable sub neural network of NN . If ∃e ∈ FoV s.t. e /∈
Fo then e is the counterexample. There are some counter examples to prove
that the entire sub neural network is unreliable in the formal specification. For
this reason, we propose V BRC, a verification based retraining algorithm using
counterexample data, which is also one of the core contributions of our article.
Firstly, we denote the counterexample data generated by the neural network
verification as C = {(xc

1, y
c
1), ..., (x

c
m, yc

m)}. Then, we denote all test cases in C
as the set CI , and all test oracles in C as the set CO. Since in the set C, the
input data CI belongs to ISI . However, CO is not part of Fo. Therefore, we

136 H. Liu et al.

need to assign a new label to each CO. Intuitively, if the two test cases are close
to each other, their outputs should also be similar. Based on this intuition, we
use the test case in ISI as the central point to perform unsupervised clustering
on the test cases CO. Furthermore, we perform label for each test case in CO.

Algorithm 1: Counterexample-based training data set construction
Input: TCIS : A set of test cases in IS

CI : A set of counterexamples in IS
Output: Training_data

1 y = NN(x)
// NN is a function of neural network forward reasoning

2 distance = L(x, y)
// Calculate the Euclidean distance between x and y

3 setofdis = setofdis(x, Y)
// The set of distances between point c and all points in set Y

4 Lable(x)
// The process of labeling some inputs.

5 Min(setofdis)
// Find the element closest to x in set Y .

6 for each c in CI do
7 for each t in TCIS do
8 distance(c, t) = L(NN(c), NN(t))
9 end

10 setofdis(c, TCIS)

11 end
12 for each c in CI do
13 w = Min(setofdis(c, TCIS))
14 Lable(c) = NN(w) + δ

15 end
16 return Training_data = (CI , Lable(CI));

Algorithm 1 describes the process of constructing a dataset based on the
counterexamples generated by verification. We calculate the distance from each
counterexample to the test case in is. Here, we choose Euclidean distance to
calculate the distance. Find the test case closest to the counterexample in the test
case, and then record the output of the counterexample as a, Here δ is a random
error. After adding the random error, the output of the counter example should
still belong to Fo. Follow the above steps to traverse all the counterexamples in
C, and construct the training data set training dataR that can be retraining.

5 Case Study

We use a three-layer fully connected neural network to explain the work flow of
the algorithm and deduce its effectiveness. It is a pre trained neural network,

Verifying and Improving Neural Networks Using TBFV 137

Fig. 5. Network structure of FN

named FN . In FN , the weight tensor from the input layer to the hidden layer
is denoted as A, and the weight tensor from the hidden layer to the output layer
is denoted as B.

A = [first − row, last − col]h1h2h3h41 − 11 − 1i1 − 11 − 11i2
B = [first − row, last − col]h1h2h3h41111o11111o2

where i1,2, h1,2,3,4 and o1,2 represents the marker of neurons in the input layer,
hidden layer and output layer, respectively. The network structure of FN can
be graphically represented as Fig. 5.

We formally specify the interval property of neural network using SOFL. It
is given in the listing 1.1.

1 process FN(i1:real ,i2:real) o1,o2:real
2 pre 2 ≤ i1 ≤ 4 and 2 ≤ i2 ≤ 4
3 post 6 ≤ o1 ≤ 8 and 6 ≤ o2 ≤ 8
4 end_process

Listing 1.1. The interval property of FN using SOFL

For the preconditions of the FN , D1 and D2 are divided into Dp
1 = {D1

1,D
2
1}

and Dp
2 = {D1

2,D
2
2} by definition 1, where D1

1 = [2, 3), D2
1 = [3, 4] and

D1
2 = [2, 3), D2

2 = [3, 4]. The set ISSI is the Cartesian product of Dp
1 and

Dp
2 . According to definition 2, we can get:

ISSI = {IS1 = {D1
1,D

1
2}, IS2 = {D1

1,D
2
2}, IS3 = {D2

1,D
1
2}, IS4 = {D2

1,D
2
2}}

The value interval is substituted into ISS, which can be expressed as:

IS1 = {[2, 3), [2, 3)} IS2 = {[2, 3), [3, 4]}

138 H. Liu et al.

Fig. 6. Execution paths on IS2 and IS3

IS3 = {[3, 4], [2, 3)} IS4 = {[3, 4], [3, 4]}
Next, we assign two test cases to each IS. See Table 2 for details. If a neuron

in FN is activated during the forward propagation of both test cases, the neuron
is marked with green. Red indicates that the neuron is not activated in both test
cases. If one test case activates the neuron and the other test case does not
activate the neuron, it is indicated in yellow.

Table 2. Test case corresponding to each ISI

ISSI Test case

IS1 = {[2, 3), [2, 3)} i1 = 2.0 i2 = 2.5

i1 = 2.5 i2 = 2.0

IS2 = {[2, 3), [3, 4]} i1 = 2.0 i2 = 3.0

i1 = 2.5 i2 = 4.0

IS3 = {[3, 4], [2, 3)} i1 = 3.0 i2 = 2.0

i1 = 4.0 i2 = 2.5

IS4 = {[3, 4], [3, 4]} i1 = 3.0 i2 = 4.0

i1 = 4.0 i2 = 3.0

Figure 6 is the execution path of test cases in IS2 and IS3, where the red
neurons are inactive neurons. When the neural network pruning is performed,
the neuron and its connected edges will be deleted. Since the test case execution
paths in IS2 and IS3 are the same, no neurons marked as yellow appear.

The difference is that in IS1 and IS4, as shown in Fig. 7, the execution paths
of the two test cases are different, and the neurons activate in different states
when different test cases are executed, and we mark this class of neurons as
yellow. Unlike the inactive neurons, such neurons will be retained in the pruning
of FN .

Finally, we will verify each sub neural network. This step is usually given to
the neural network verification tool. If there is a counterexample, the Algorithm
1 can be used to construct a retraining data set for the counterexample returned

Verifying and Improving Neural Networks Using TBFV 139

Fig. 7. Execution paths on IS1 and IS4

by the verifier. Specifically, we perform symbolic execution on FN , and then on
IS2, o1 = 2x, o2 = 2x, on IS3, the output is o1 = 2y, o2 = 2y. FN is reliable
on IS2 and IS3. However, when i1 = 2, i2 = 2 is executed on FN , the result is
o1 = 4 ≤ 6 and o2 = 4 ≤ 6. Therefore, we consider o1 = 4 ≤ 6 and o2 = 4 ≤ 6
as a counterexample. Using Algorithm 1, the counterexample is made into a
training set and the sub network is retrained.

6 Related Work

The application of traditional testing techniques and traditional verification tech-
niques to enhance the reliability of neural networks are two separate directions.
Since TBFV-INN is derived from traditional TBFV and combines both tech-
niques, we briefly review the existing work on testing and verification in deep
learning, as well as recent advances in TBFV.

Currently, the research of neural network testing mainly focuses on how to
attack and defend, that is, how to generate adversarial example and how to pre-
vent being attacked by it. Search-based methods such as FGSM, IGSM [4,10]
attack neural networks by searching for adversarial examples. Subsequently,
deepfool, JSMA [14,15] etc., have made different degrees of improvement in
search efficiency and approach. In the area of neural network defense testing,
the field is inspired by traditional software testing methods and proposes the
criterion of neuroncoverage [16]. Other works that use neuron coverage in differ-
ent dimensions to improve the robustness of neural networks include DeepGauge
[18], DeepConcolic [18] etc.

In terms of neural network verification, many scholars have proposed differ-
ent algorithms for neural network verification. Each algorithm tries to reduce
the output range of neural network as much as possible from the perspectives of
reachability, optimization and search. Optimization-based neural network verifi-
cation usually transforms the neural network into a constraint solving problem,
such as NSVerify [13], MIPVerify [19]. Reluplex [9] and Planet [3] et al. studied in
combining search and optimization like to improve the accuracy and efficiency of
verification. In addition, methods that combine search with Reachability include
Neurify [22] etc.

140 H. Liu et al.

Unlike the above work, we want to combine testing and verification to pro-
vide a method to verify and enhance the reliability of neural networks under a
formal specification. Similar to this in traditional software engineering research
are TBFV [12], TBFV-SE [21] etc.

7 Conclusion and Future Work

TBFV-INN is proposed as a method to verifying and improving neural networks.
In TBFV-INN, testing-based neural network pruning are introduced for reducing
the neural network neurons that need to be verified. Besides, A counterexample
based retraining data set construction method is proposed to improve the relia-
bility of neural networks. Our case study confirms the feasibility of TBFV-INN
to some extent.

In the further work, we will focus on the implementation of TBFV-INN
related tools and study the effectiveness of this method on large-scale neural
networks. Furthermore, to obtain a better space segmentation algorithm, we
will also focus on the relationship between space segmentation and the weights
of neural networks.

Acknowledgements. This work was supported by JST SPRING, Grant Number
JPMJSP2132.

References

1. Blalock, D., Gonzalez Ortiz, J.J., Frankle, J., Guttag, J.: What is the state of
neural network pruning? Proceed. Mach. Learn. Syst. 2, 129–146 (2020)

2. Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Advances in Neural Information
Processing Systems 31 (2018)

3. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. stat 1050, 20 (2015)

5. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning
techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020)

6. Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., Zhao, D.: Flight delay prediction based
on aviation big data and machine learning. IEEE Trans. Veh. Technol. 69(1), 140–
150 (2019)

7. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250 (2016)

8. Huang, A., Qiu, L., Li, Z.: Applying deep learning method in TVP-VAR model
under systematic financial risk monitoring and early warning. J. Comput. Appl.
Math. 382, 113065 (2021)

https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1607.03250

Verifying and Improving Neural Networks Using TBFV 141

9. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

10. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 (2016)

11. Liu, A., Liu, S.: Enhancing the capability of testing-based formal verification by
handling operations in software packages. IEEE Trans. Softw. Eng. 48, 304–324
(2022)

12. Liu, S.: Testing-based formal verification for theorems and its application in soft-
ware specification verification. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 112–129. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4_7

13. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351 (2017)

14. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

15. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-
posium on security and privacy (EuroS&P), pp. 372–387. IEEE (2016)

16. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18 (2017)

17. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science (SFCS 1976), pp. 109–121. IEEE
(1976)

18. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: DeepCon-
colic: testing and debugging deep neural networks. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pp. 111–114. IEEE (2019)

19. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

20. Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: attacks and defenses. stat 1050, 22 (2018)

21. Wang, R., Liu, S.: TBFV-SE: testing-based formal verification with symbolic exe-
cution. In: 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 59–66. IEEE (2018)

22. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31
(2018)

23. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. Adv. Neural. Inf. Process.
Syst. 34, 29909–29921 (2021)

24. Xu, K., et al.: Fast and complete: enabling complete neural network verification
with rapid and massively parallel incomplete verifiers. In: International Conference
on Learning Representation (ICLR) (2021)

25. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1611.01236
https://doi.org/10.1007/978-3-319-41135-4_7
https://doi.org/10.1007/978-3-319-41135-4_7
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1711.07356

Alternating Projection Temporal
Epistemic Logic

Haiyang Wang(B), Jin Liu, and Jing Liu

Xi’an University of Technology, Xi’an, China
hywang@xaut.edu.cn

Abstract. Model checking is an automatic technique used to verify the
properties of software and hardware systems. In the verification pro-
cess,the key problem is how to describe the properties of systems using
logical formulas accurately. The existing model checking methods based
on single logic can no longer meet the increasingly complex verification
requirements of Multi-agent systems (MASs) in the current intelligent
era. In the MASs, logics of knowledge (epistemic logics) have been advo-
cated for expressing properties. Temporal logic is used for reasoning the
correctness of systems and epistemic logic is used for reasoning the infor-
mation of systems. In order to reason the correctness and information of
systems simultaneously, the hybrid logic APTEL that integrating tem-
poral logic APTL and epistemic logic is proposed in this paper.

Keywords: Alternating Projection Temporal Logic · Epistemic Logic ·
Multi-agent System · Alternating Projection Temporal Epistemic Logic

1 Introduction

Since the mid 1980s, epistemic logics [1,2] have been increasingly advocated
in the formal specification of MASs [3], where they are used for reasoning the
information of systems. Model checking as an approach for verifying the proper-
ties of finite state systems has focussed predominantly on system specifications
expressed in temporal logic. The cases in point are linear temporal logic in the
case of SPIN and FORSPEC, branching temporal logic in the case of SMV. How-
ever, the model checking for epistemic logics has received comparatively little
attention.

In 1977, Pnueli introduced Linear Temporal Logic (LTL) [4] which is a linear
logic to specify and verify reactive systems. The universal quantification over
all computations is implicit in the LTL semantics. In 1980, Clarke and Emerson
introduced Computation Tree Logic (CTL) [4], which is a branching temporal
logic and allows the expression of properties of some or all computations of a
system. Interval Temporal Logic is also a useful formalism for specifying and

This research is supported by the NSFC Grant No. 61902312,62002290,62202371 and by
the Natural Science Basic Research Plan in Shaanxi Province of China No. 2022JZ-40.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, pp. 142–149, 2023.
https://doi.org/10.1007/978-3-031-29476-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29476-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-29476-1_12

Alternating Projection Temporal Epistemic Logic 143

verifying concurrent systems. Projection Temporal Logic (PTL) is an extension
of ITL. Alternative approaches have been involved and extended to logics such as
MAS logics which make them possible to verify a range of MAS against temporal
logics and modalities. For example, Alur et al. introduces Alternating-time Tem-
poral Logic (ATL) [5], which offers selective quantification over those paths that
are possible out-comes of games. Alternating Interval Temporal Logic (AITL)
and Alternating Projection Temporal Logic (APTL) [6,7] are the extensions of
Propositional ITL and PPTL [8–10], respectively. AITL and APTL are also log-
ics indispensable for the specification and verification of MAS. APTL is able to
not only express properties specified in classical temporal logic LTL, but also
express interval related sequential and periodical properties, as well as express
game related properties of open systems and MASs.

MAS is a novel distributed system, which is composed of multiple agents
interacting in a specific environment. MAS can describe a large and complex
system as a number of small and easy to manage systems that coordinate and
communication with each other to achieve their own goals or global goals. Thanks
to the strong adaptability and flexibility of MASs, they are widely used in intel-
ligent robots, traffic control, distributed prediction, monitoring and diagnosis,
distributed intelligent decision-making and virtual reality. Verifying the prop-
erties of MASs is one of the key problems in artificial intelligence research.
At present, the verification of MASs mostly uses temporal logic to formally
describe the properties of the system, and temporal logic does not have the abil-
ity to describe the epistemic properties of MASs. Therefore, the existing model
checking methods based on single logic can no longer meet the requirements of
MAS verification, so it is urgent to research on hybrid logic based verification
methods. Temporal logic is used for reasoning the correctness of systems and
epistemic logic is used for reasoning the information of systems. In order to rea-
son the correctness and information of MASs at the same time, some scholars
have fused temporal logic and epistemic logic to obtain a hybrid logic that can
simultaneously present the temporal and epistemic properties of the system. The
existing research on the integration of temporal logic and epistemic logic, the
expression ability of temporal logic LTL and CTL has limitations. In view of the
strong expressive ability of APTL, APTEL is obtained by combing APTL with
epistemic logic in this paper.

The next section presents preparatory knowledge. The hybrid logic APTEL
and some applications of APTEL are proposed in Sect. 3. Finally, conclusions
are drawn in Sect. 4.

2 Preparation

This section briefly introduces the alternating temporal logic APTL, the tempo-
ral logic of knowledge –Epistemic logic and the hybrid logic APTEL. For more
details on the semantics of Epistemic logic and APTL, refer to [6].

144 H. Wang et al.

2.1 Concurrent Game Structure and AETS

The semantics of APTL formulas are given in terms of Concurrent Game Struc-
tures (CGSs) [5]. A CGS is a tuple C = (P,A, S, S0, l,Δ, τ) where

– P is a finite nonempty set of atomic propositions;
– A is a finite set of agents;
– S is a finite nonempty set of states;
– S0 is a finite nonempty set of initial states;
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions;
– Δa(s) is a nonempty set of possible decisions for an agent a ∈ A at state s;

ΔA(s) = Δa1(s)×. . .×Δak(s) is a nonempty set of decision vectors for the set
of agents A = {a1, . . . , ak} ∈ 2A at state s; accordingly, ΔA(s) is simplified as
Δ(s) and denotes the decisions of all agents in A; and for a decision d ∈ Δ(s),
da denotes the decision of agent a within the decision d, and dA denotes the
decision of the set of agents A ⊆ A within d;

– For each state s ∈ S, d ∈ Δ(s), τ(s, d) maps s and a decision d of the agents
in A to a new state in S. Note that in a CGS, for a state s , each transition
is made by a decision d ∈ Δ(s) of all agents in A. In some cases, if we just
concern with the decisions of A ⊆ A without caring about the ones of other
agents, notation dA is used. Particularly, if A is a singleton, da is adopted.

The alternating transition relationship of a CGS is actually can be repre-
sented as T : S × P × 2A → B

+(S), where B
+(S) is a positive boolean formula.

For a given set S of states, the positive boolean formula B
+(S) is boolean formula

built from elements in S using ∧ and ∨. We say that S1 ⊆ S satisfies a formula
θ ∈ B

+(S) if the truth assignment that assigns true to the members of S1 and
false to the members of S/S1 satisfies θ. For example, suppose S = {s0, s1, s2},
the set {s0} and {s1, s2} both satisfy the formula s0 ∨s1 ∧s2, where the set {s1}
does not.

A path λ = s0, s1, . . . is a nonempty sequence of states, which can be finite
or infinite. Let r1, . . . , rk be integers (h ≥ 1) such that 0 = r1 ≤ . . . ≤
rh 	 |λ|. The projection of λ onto r1, . . . , rh is the path, λ ↓ (r1, . . . , rh) =
st1 , st2 , . . . , stl where t1, . . . , tl are obtained from r1, . . . , rh by deleting all dupli-
cates. t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For
example, s0, s1, s2, s3, s4 ↓ (0, 0, 2, 2, 2, 3) = s0, s2, s3.

Following the definition of CGS, we define a state s over P to be a mapping
from P to B = {true, false}, s : P → B. A path λ(s) starting from a state s
in a CGS satisfies the Epistemic logic formula or APTL formula P , denoted by
λ(s) |= P . A CGS C satisfies a formula P iff all of the paths starting from initial
states of the CGS satisfy the formula P , denoted by C |= P .

Alternating epistemic transition systems (AETS)-add epistemic accessibility
relations ∼1, . . . ,∼k⊆ S × S for expressing agents’ beliefs:

AS = (P,A, S, S0, l,Δ,∼1, . . . ,∼k, τ), where

∼a⊆ S × S an epistemic accessibility relation for each agent a ∈ A. We
require that each ∼a is an equivalence relation.

Alternating Projection Temporal Epistemic Logic 145

Epistemic Relations. If A ⊆ A, we denote the union of A’s accessibility
relations by ∼E

A, so ∼E
A= (

⋃
a∈A ∼a). Also, ∼C

A denote the transitive closure of
∼E

A. We will later use ∼C
A and ∼E

A to give a semantics to the common knowledge
and ”everyone knows” modalities in our logic.

2.2 Epistemic Logic

Epistemic logic is a modal logic of knowledge [3,11,12]. Epistemic modal logics
are widely recognised as having originated in the work of Jaakko Hintikka, a
philosopher who in the early 1960s showed how certain modal logics could be
used to formally capture some intuitions about the nature of knowledge. In
the 1980s, it was recognised that epistemic logics have an important role to
play in the theory of distributed systems. In particular, it was demonstrated
that epistemic logics can be used to formally express the desired behaviour of
protocols. For example, when specifying a communication protocol, it is quite
natural to wish to represent requirements such as “if process i knows that process
j has received packed m, then i should send packet m+1”. Using epistemic logic,
such requirements can be expressed both formally and naturally.

In addition to interest in the use of epistemic logics in the specification of
communicating systems, there has recently been interest in the use of knowledge
logics for directly programming systems. A knowledge-based program has the
general form:

case of
if K〈i〉ψ1 do act1

...
if K〈i〉ψn do actn

end case

The intuitive interpretation of such a program is that of a collection of rules;
the left-hand side of each rule represents a condition, expressed in epistemic logic,
of what an agent knows. If the condition is satisfied, then the corresponding
action is executed.

3 Alternating Projection Temporal Epistemic Logic

This subsection introduces the syntax, semantics and logic laws of APTEL.which
is a hybrid logic that integrating temporal logic APTL and epistemic logic.

3.1 APTEL Syntax

Let P be a finite set of atomic propositions and A a finite set of agents. The
formulas of APTEL are defined by the following grammar:

P :: = p | ¬P | P ∨ Q | ©〈A〉 P | (P1, · · · , Pm)prj〈A〉Q|K〈a〉P |E〈A〉P |C〈A〉P

146 H. Wang et al.

where p ∈ P, A ⊆ A, P1, · · · , Pm, P and Q are well-formed APTEL formulas.
©〈A〉 (next) and prj〈A〉 (projection) are basic temporal operators with a set of
agents. K〈a〉P , where a ∈ A is an agent,and P is a formula of APTEL. E〈A〉P
and C〈A〉P , where A ⊆ A is a set of agents, and P is a formula of APTEL. D〈A〉
(distributed knowledge) and C〈A〉 (common knowledge) are epistemic operators.
The epistemic logic D〈A〉P means the knowledge held by any agent in agent set
A makes P true. The epistemic logic C〈A〉P means the knowledge shared by
agents in agent set A makes P true.

An APTEL formula is called a state formula if it contains no temporal oper-
ators, otherwise a temporal formula. The abbreviations true, false, ∨, → and
↔ are defined as that in the classical propositional logic.

3.2 APTEL Semantics

The semantics of APTEL formulas is given in terms of AETS. An AETS is a
tuple AS = (P,A, S, S0, l,Δ,∼1, . . . ,∼k, τ).

Following the definition of AETS, we define a state s over P to be a mapping
from P to B = {true, false}, s : P → B. A computation λ(s) starting from a
state s in an AETS satisfies the APTEL formula P , denoted by λ(s) |= P . An
AETS AS satisfies an APTEL formula P iff all of the computations starting from
initial states of the AETS satisfy the APTEL formula P , denoted by AS |= P .

The relation |= is inductively defined as follows:

– λ(s) |= p for propositions p ∈ P, iff p ∈ l(s)
– λ(s) |= ¬P , iff λ(s) � P
– λ(s) |= P ∨ Q, iff λ(s) |= P or λ(s) |= Q
– λ(s) |= ©〈A〉P iff |λ(s)| ≥ 2, and there exists a strategy fA for the agents in

A, such that λ(s) ∈ out(s, fA), and λ(s)[1, |λ|] |= P
– λ(s) |= (P1, . . . , Pm)prj〈A〉Q iff there exists a strategy fA for the agents in A,

and λ(s) ∈ out(s, fA), and integers 0 = r0 ≤ r1 ≤ . . . ≤ rm ≤ |λ(s)| such that
λ(s)[ri−1, ri] |= Pi, 0 < i ≤ m and λ |= Q for one of the following λ:
(a) rm < |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) · λ(s)[rm + 1, . . . , |λ(s)|] or
(b) rm = |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) for some 0 ≤ h ≤ m

– λ(s) |= K〈a〉P iff for all s′ such that s ∼a s′ : λ(s′) |= P ;
– λ(s) |= E〈A〉P iff for all s′ such that s ∼E

A s′ : λ(s′) |= P ;
– λ(s) |= C〈A〉P iff for all s′ such that s ∼C

A s′ : λ(s′) |= P .

For every s, s′ such that s ∼a s′, it is required that da(s) = da(s′). da denotes
the decision of agent a within the decision d.

3.3 Applications of APTEL

We hope it is clear that APTEL is a succinct and expressive language for express-
ing complex properties of MAS.

Since APTEL is a suitable language to represent the properties of epistemics,
it is also convenient to analyse communication protocols. First, consider a system

Alternating Projection Temporal Epistemic Logic 147

containing a sender S, a receiver R, and an environment env through which
message are sent. Under certain fairness conditions (the environment does not
get rid of messages forever), we can express the fact that the environment cannot
prevent the sender from sending a message until it is received. Where Sm means
the sender S send a message.

�〈S〉Sm;〈R,S〉 K〈R〉m (1)

The formula (2) expresses the cooperative property that the environment env
can guarantee that the message Sm sent by the sender S eventually becomes
explicitly known by everyone in the receiver group R.

Sm → ♦〈R〉E〈R〉Sm (2)

Both as a pre- and as a post- condition, ignorance may be important. In
security protocols, where agents a1 and a2 share some common secret (a key for
instance), what we typically want as formula (3), expressing that a1 can send
private information to a2, without revealing the message to another agent agt:

(K〈a1〉ψ ∧ ¬K〈a2〉ψ ∧ ¬K〈agt〉ψ);〈〉 ♦〈a1,a2〉(K〈a1〉ψ ∧ K〈a2〉ψ ∧ ¬K〈agt〉ψ) (3)

Common knowledge C〈A〉 of a group A is also important. In particular, one
is interested in conditions that ensure that

C〈A〉X〈A〉ψ (X a temporal operator) (4)

Formula (4) expresses that common knowledge in the group A that it can
bring about X〈A〉ψ (next, or sometime, or prj, etc.). It is not clear at forehand
that we have a negative result about obtaining common knowledge, since it seems
we can model actions stronger than communication. For instance, we may have
knowledge-producing actions, and also common-knowledge producing actions,
like making an announcement. If a can make an announcement p, he can choose
a set of worlds in which the transitive closure of all the accessibility relations
only leads to p-worlds.

For a multi-agent system which contains agents a1, a2 and a3, agent a1 is
supposed to know whether ψ is satisfied or not, which is a common knowledge
and specified as K〈a1〉ψ∨K〈a1〉¬ψ. It is also a common knowledge that a1 always
tells the truth. If a1 knows ψ, we can model that a1 can tell the truth only to
a2, or to a2 and a3 separately, or he can announce ψ in public:

K〈a1〉ψ → ©〈a1〉(K〈a2〉ψ ∧ ¬K〈a3〉ψ) ∨ ©〈a1〉(K〈a2〉ψ ∧ K〈a3〉ψ ∧ ¬C〈a2,a3〉ψ)

∨ ©〈a1〉(C〈a2,a3〉ψ) (5)

Knowledge games can investigated as a particular way of learning in multi-
agent systems. Epistemic updates are interpreted in a simple card game, where
the aim of player a1 is to find out the decision d of cards. Then having a winning
strategy can be specified as

d → ♦〈a1〉(K〈a1〉d ∧
∧

a1 �=a2

¬K〈a2〉d) (6)

148 H. Wang et al.

The applicability of APTEL goes beyond epistemic updates (where epis-
temic post-conditions are the rule): knowledge also plays an important role
in pre-conditions, expressing knowledge-dependent abilities, as in (K〈a1〉ϕ1 ∧
K〈a2〉ϕ2) → ♦〈a1,a2〉ψ. Formula (7) expressing that if b knows that the combina-
tion of the safe is s, then he is able to open it, i.e. O, as long as the combination
remains unchanged.

K〈b〉(c = s) → (♦〈b〉O);〈b〉 ¬(c = s) (7)

Typically, when an agent makes strategic choices, both epistemic pre- and
post-conditions should be considered: a rational agent bases his choices upon his
knowledge, and will typically try to maximize his own knowledge, at the same
time minimize that of his competitors. Epistemic conditions are also needed in
security communication protocols, where an agent needs to know a secret key in
order to read a message, to obtain new knowledge.

4 Conclusion

This paper proposes a novel hybrid logic APTEL, that integrating temporal logic
APTL and epistemic logic. The syntax and semantics of APTEL are presented
and some applications of APTEL are also specified. In the future, the model
checking method of APTEL will be investigated.

References

1. Lomuscio, A, Raimondi, F.: Model checking knowledge, strategies, and games in
multi-agent systems. In: Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, ACM, 161–168 (2006)

2. Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT press,
Cambridge (1995)

3. Jamroga, W.: Some Remarks on Alternating Temporal Epistemic Logic. In: Pro-
ceedings of Formal Approaches to Multi-Agent Systems, FAMAS 2003, pp. 133–140
(2003)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

6. Wang, H., Duan, Z., Tian, C.: Symbolic model checking for alternating projection
temporal logic. In: Combinatorial Optimization and Applications - 9th Interna-
tional Conference, COCOA 2015, 18–20 December 2015, pp. 481–495. Proceedings.
Houston, TX, USA (2015)

7. Tian, C., Duan, Z.: Alternating interval based temporal logics. In: Dong, J.S.,
Zhu, H. (eds.)Proceedings of Formal Methods and Software Engineering (ICFEM
2010), LNCS6447, pp. 694–709. Springer, Cham 2010. https://doi.org/10.1007/
978-3-642-16901-4 45

8. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Inform. 45, 43–78 (2008)

https://doi.org/10.1007/978-3-642-16901-4_45
https://doi.org/10.1007/978-3-642-16901-4_45

Alternating Projection Temporal Epistemic Logic 149

9. Duan, Z., Tian, C.: A practical decision procedure for propositional projection
temporal logic with infinite models. Theoretical Comput. Sci. 554, 169–190 (2014)

10. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2005)

11. Hoek, W., Wooldridge, M.: Model checking knowledge and time. In: Proceedings
of the 9th International SPIN Workshop on Model Checking of Software (2002)

12. Novak, N.: Practical extraction of evidence terms from common-knowledge reason-
ing. Electron. Notes Theoretical Comput. Sci. 312, 143–160 (2015)

Author Index

C
Chang, Jiajun 79
Chen, Chu 106
Cheng, Zhuo 3
Cui, Jin 12, 70

D
Duan, Zhenhua 53, 106

F
Fang, Dingbang 126
Feng, Xueqing 53

G
Gao, WeiRan 30

H
Hu, Hongwen 3
Huang, Jiewen 3

L
Li, Chunyi 79
Li, Yang 119
Li, YanLin 30
Liu, Ai 93, 126
Liu, Haiyi 126
Liu, Jin 59, 142
Liu, Jing 142
Liu, Shaoying 93, 119, 126
Lu, Xu 12, 70, 106

M
Mao, Wenjie 79
Miao, Ruixuan 12

R
Rao, Lei 93
Ren, Pinghong 106

S
Shu, XinFeng 30

T
Tian, Cong 106

W
Wang, Haiyang 59, 142
Wang, Wensheng 59
Wang, Xiaobing 79
Wang, Xuan 106

X
Xiao, Yeqiu 59
Xu, Guangquan 126
Xue, Jinyun 3

Y
Yi, Xinwu 3
You, Zhen 3
Yu, Bin 70, 106
Yu, Guangliang 70

Z
Zhang, Nan 53
Zhao, Liang 79

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. Liu et al. (Eds.): SOFL+MSVL 2022, LNCS 13854, p. 151, 2023.
https://doi.org/10.1007/978-3-031-29476-1

https://doi.org/10.1007/978-3-031-29476-1

	 Preface
	 Organization
	 Risks Management Around Machine Learning Software (Keynote Speech)
	 Contents
	Model Checking and Markov Decision Process
	Formal Derivation and Verification of Critical Path Algorithm for Directed Acyclic Graph
	1 Introduction
	2 PAR Method and PAR Platform
	3 Formal Derivation of Critical Path Algorithm
	3.1 Describing Formal Specification
	3.2 Dividing the Problem
	3.3 Constructing Recursive Relation
	3.4 Writing Radl Algorithm
	3.5 Developing Apla Program

	4 Formal Verification of Critical Path Algorithm
	4.1 Developing Loop Invariants
	4.2 Verifying Correctness of the Loop Statements in the Apla Program

	5 Conclusion and Future Work
	References

	An Approach of Transforming Non-Markovian Reward to Markovian Reward
	1 Introduction
	2 Background
	2.1 Linear Temporal Logic Over Finite Traces
	2.2 Markov Decision Process
	2.3 Deterministic Finite Automata

	3 Transforming NMRDP to MDP
	3.1 Non-Markovian Reward
	3.2 Transforming each i of TERF into a DFA
	3.3 Constructing an MDP from TERF and DFA
	3.4 Optimizing the Reward Function of MDP

	4 Empirical Evaluation
	4.1 Academic Advising
	4.2 Triangle Tireworld

	5 Summary and Discussion
	References

	A JPSL Based Model Checking Approach for Java Programs
	1 Introduction
	2 Preliminaries
	2.1 Java Property Specific Language
	2.2 Labeled Normal Form Graph
	2.3 JPSL to PPTL
	2.4 Java Source Code to OOAST
	2.5 Multi-property Verification Problems
	2.6 Model-Checking with On-The-Fly Strategy
	2.7 Counter Example Path

	3 Case Study
	4 Conclusion
	References

	Model Analysis and Tool Implementation
	Implementation of Matlab matfun Toolkit Based on MSVL
	1 Introduction
	2 The Design and Implementation of Matfun Toolkit
	2.1 MSVL
	2.2 Function Implementation Method

	3 Application of PCA Implementation
	4 Conclusion
	References

	Extending Visibly Pushdown Automata over Multi-matching Nested Relations
	1 Introduction
	2 Preliminaries
	2.1 Multi-matching Nested Relation
	2.2 Word Encoding

	3 Multi-matching Visibly Pushdown Automata
	3.1 Model
	3.2 Determinization

	4 Symbolic Multi-matching Visibly Pushdown Automata
	4.1 Notations
	4.2 Model

	5 Conclusion
	References

	Schedulability Analysis of Rate-Monotonic Algorithm on Concurrent Execution of Digraph Real-Time Tasks
	1 Introduction
	2 The Digraph Task Model
	3 Schedulability Analysis for Digraph Task Models
	4 Conclusion and Future Work
	References

	Formal Specification and Testing
	Formalization of Natural Language into PPTL Specification via Neural Machine Translation
	1 Introduction
	2 Theoretical Basis
	2.1 PPTL
	2.2 PPTLGenerator

	3 Neural Machine Translation
	3.1 Encoder Network
	3.2 Decoder Network

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Testing Program Segments to Detect Runtime Exceptions in Java
	1 Introduction
	2 Preliminary
	2.1 Arithmetic Exceptions in Java
	2.2 System Dependency Graph
	2.3 Program Slicing

	3 Methodology
	4 Case Study
	5 Related Work
	6 Conclusion and Future Work
	References

	Inferring Exact Domains to Efficiently Generate Valid Test Cases via Testing
	1 Introduction
	2 Preliminaries
	2.1 X.509 Certificate
	2.2 Certificate Generation

	3 Inferring Exact Domains via Testing
	3.1 Obtaining Data Types of Parameters
	3.2 Inferring Tight Domains
	3.3 Checking the Extensibility of Tight Bounds

	4 Experiments
	4.1 Experimental Settings
	4.2 Parameters and Their Data Types
	4.3 Exact Domains Inferred by IED
	4.4 Evaluation

	5 Related Work
	6 Conclusion
	References

	Algorithms and Verification
	Testing and Verifying the Security of COVID-19 CT Images Deep Learning System with Adversarial Attack
	1 Introduction
	2 Adversarial Attack
	2.1 The Concept of Generating Adversarial Sample
	2.2 The Classification of Adversarial Sample Generation Methods

	3 Experiment
	3.1 Datasets
	3.2 Deep Learning Model
	3.3 Adversarial Attack

	4 Discussion
	4.1 Results of Experiment
	4.2 Formal Methods and Formal Verification

	5 Conclusion
	References

	Verifying and Improving Neural Networks Using Testing-Based Formal Verification
	1 Introduction
	2 Preliminary
	2.1 Principle of TBFV
	2.2 Interval Arithmetic and Symbolic Execution
	2.3 Verification of Neural Networks

	3 Background and Motivation
	3.1 Background
	3.2 Motivation

	4 Methodology
	4.1 Overview
	4.2 Testing-based Neural Networks Pruning
	4.3 Formal Verification and Retraining of Neural Networks

	5 Case Study
	6 Related Work
	7 Conclusion and Future Work
	References

	Alternating Projection Temporal Epistemic Logic
	1 Introduction
	2 Preparation
	2.1 Concurrent Game Structure and AETS
	2.2 Epistemic Logic

	3 Alternating Projection Temporal Epistemic Logic
	3.1 APTEL Syntax
	3.2 APTEL Semantics
	3.3 Applications of APTEL

	4 Conclusion
	References

	Author Index

