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Abstract Smart urban metabolism is a contemporary conception of urban 
metabolism which includes modern-day technologies dealing with the complex 
challenges of growing smart cities. Traditionally, urban metabolism deals with the 
influx-efflux of energy and flow of materials through urban space. However, with the 
growing needs of smart cities, these flow patterns are transiting as a complex network 
and are subject to interdisciplinary understanding. Furthermore, data availability is a 
major challenge faced by city planners due to the lack of data inventories and appro-
priate data management solutions to handle massive datasets, arising from these 
complex flow patterns. This is ensuing to inefficient adaptation of urban metabolism 
approaches, especially in developing economies. Thus, the situation remains grave 
when it comes to resource management of a smart city, and how urban areas may 
additionally deal with intricate issues like climate change when they are striving 
to understand their own material and energy cycling. In this chapter, we therefore, 
discuss how technologies like machine learning can equip urban metabolism, for 
its transition to “Smart Urban Metabolism.” The chapter presents use of technolo-
gies like big-data and machine learning, as effective methodologies to channelize 
and manage heterogeneous multidimensional datasets, adoption of practices, devel-
oping self-learning machine learning models, and gain novel insights via predictive 
analytics, in “Smart Urban Metabolism.” Precisely, for urban planners, the “Smart 
Urban Metabolism” can potentially be an effective approach for identifying complex 
issues in the flow patterns of energy and material in an urban space. This approach 
is a step toward sustainable city development. 
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16.1 Introduction 

Urban metabolism is a mandatory concept for growing cities to understand the 
complex network of urban needs and their resource allocation. However, with the 
expansion of cities, augmented urban needs, urban mining, and resource manage-
ment comes huge multifaceted data to manage, along with its dynamism. The initial 
concept of urban metabolism can be traced back to the nineteenth century (Wolman 
1965; Odum 1996). In the current era, it is best defined to be, “a concept in which 
the city is using the biological notion referring to the internal processes by which 
living organisms maintain a continuous exchange of matter and energy with their 
environment to enable operation, growth, and reproduction” (Céspedes Restrepo 
and Morales-Pinzón 2018). Globally, the cities cover < 2% of the Earth’s surface, 
however, consume ~78% of the energy (food, construction minerals, metals, etc.) 
including the energy consumption demands to generate these resources (Ulgiati and 
Zucaro 2019). Moreover, cities offer citizens with new opportunities for business, 
social security, education, and health services, that requires vast resource flows, 
within and outside the city boundaries. This exchange of energy and materials, to 
satisfy human settlement and sustenance, gets most often translated into environ-
mental stress posing impacts as micro as locally in the city and as huge as at global 
scale, due to lack of resource channelization. The majority of the world’s economic 
activities are concentrated in urban areas, generating 80% of the global gross domestic 
product (GDP), which demands a greater part of this energy consumption to support 
these economic activities (Ferrão and Fernández 2013; UN-Habitat 2022). 

With every fold increase in the population, migration, economic growth, and social 
changes, the resource metabolism pattern/trend will change, and therefore, with 
changing urban configurations, urban metabolism alone is not sufficient to understand 
and address the challenges of today’s cities or urban areas. Thus, cities need smart 
planning and a smart system leading to “Smart Urban Metabolism” (SUM) to grow 
smart in its functioning. SUM is a contemporary conception of urban metabolism 
which includes modern-day technologies like big-data machine learning, etc., that 
aids in dealing with the complex data challenges of growing smart cities. Although 
urbanization and globalization have been accelerated by technological advance-
ments, however, to attain urban sustainability (UN Sustainable Developmental Goal 
(SDG) 11—sustainable cities and communities) (United Nations 2015), we also need 
to consider environmental, social, and economical challenges as precedence. This 
will help to assess the complexity of urban metabolic processes/systems/services 
for sustainable human settlement. Therefore, digitalization of urban material-energy 
flow patterns has become a priority for the development of urban settlements; and 
consequently, the concept of SUM will play a key role in achieving the objective 
(Caragliu et al. 2009; Dameri 2013; De Jong et al. 2015; Yu and Xu 2018). 

The concept of SUM was proposed to deal with the constraints of urban 
metabolism (Bibri and Krogstie 2020). Furthermore, this advanced concept inte-
grates both urban smart configuration and urban metabolism, emphasizing both the 
aspects in a holistic manner (Kitchin et al. 2015; Vinod Kumar and Dahiya 2017;
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Macke et al. 2019). In recent years, the assessment of some city’s (like Copenhagen, 
Singapore, Melbourne, etc.) utility services have been equipped with smart solutions, 
for example, real-time monitoring stations supported by big-data and participatory 
planning scheme—to augment urban service provisioning (i.e., with respect to water, 
waste, energy, emissions management, etc.) (Bettencourt 2014; Yigitcanlar et al. 
2019). Within such a framework, local authorities, urban utility service providers, 
academics and research centers, manufacturers and companies, NGOs, and so on are 
required to work in synergy and actively (Paskaleva 2009; Longa 2011; Glazebrook 
and Newman 2018). Therefore, integrating natural and artificial intelligence into a 
unified and coherent multi-facet structure has become a priority and essential for 
policymakers globally. And thus, the urban data collected from real-time monitoring 
stations and analyzing them using big-data, machine learning, etc., would benefit in 
establishing an improved understanding of the city’s key functions and performances 
(Bibri and Krogstie 2020). 

Sustainable urban metabolism (SUM) study is a hybrid methodology and multi-
dimensional in approach that involves economic and social perspectives of cities, 
environmental challenges, and technological options to deal with them together in 
harmony to develop smart and sustainable cities (Goal 11 of the United Nations 2030 
Agenda for Sustainable Development encompasses targets to “make cities and human 
settlements safe, resilient and sustainable”) (United Nations 2015). This distinc-
tive character makes SUM a strategic tool to assist urban policymakers, resource 
managers, and city planners. Aiding urban metabolism with big-data technologies 
and machine learning (Fig. 16.1) would therefore enable to adopt a data-driven 
methodology and build up knowledge from the systems investigation in an iterative 
way. 

Fig. 16.1 Modern technology like big-data technologies and machine learning can aid landscaping 
urban metabolism into smart urban metabolism, and thus, assisting the city planners in policy 
formulation considering the future demands
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Data are everywhere and growing in terms of volume, velocity, and variety, which 
cannot be handled with traditional data processing software, and therefore, is called 
as the big-data where the volume, velocity, and variety are referred to as the 3Vs of 
big-data. Estimates suggest, that currently, 2.5 quintillion bytes of data are generated 
globally every day, which will rise to 463 exabytes by 2025 (Vuleta 2021). And, there-
fore, big-data technologies have a huge role to play in managing as well as equipping 
us with the right tools to analyze these datasets for purposes like mining non-trivial 
patterns, classification, prediction or forecasting, etc. In SUM too, for transforming an 
“urban area” into a “smart urban area,” big-data and the associated technologies hold 
the key to planning, policy formulation, implementation, and governance (Kandt 
and Batty 2021). As it encapsulates the computing power to capture and process 
the real-time data (from components of an urban system like transportation, water 
consumption, electricity consumption, etc.), and store it historically, also provides 
with power to detect patterns or make predictions in real time, augmenting the quick 
decision-making capabilities. 

On the other hand, machine learning (ML) provides the extension leading to estab-
lishing the analytics component of big-data technologies. ML has been at the forefront 
since the 1960s, with an aim of designing machines (i.e., computer programs) that 
can mimic human intelligence (Samuel 1959). The objective set for its development 
was to attain the computational capabilities for extracting patterns from datasets, 
making inferences, and using them for decision-making, which is difficult to be 
achieved from the prevailing statistical methods (Sengupta 2021). In the 1990s, Tom 
Mitchell defined, ML as “a computer program learning from experience ‘E’ with 
respect to some class of tasks ‘T’ and performance measure ‘P,’ if its performance 
at tasks in ‘T’ as measured by ‘P,’ improves with experience ‘E’” (Mitchell 1997). 
However, functionally in simplistic terms, ML is said to be enabling a computer 
program (compounding the powers of computer science, mathematics, and statistics) 
to learn from the data, for example, a computer program recommending products 
to a customer based on shopping preference along with additional parameters like 
purchase history, geographical location, ethnic origin, age, gender, occupation, etc. 
Similarly, in terms of urban metabolism, prediction of future electricity consumption, 
and water consumption, waste generation pattern can be acquired based on house-
hold parameters like socio-economic diversity, and goods’ consumption pattern. In 
both these situations, the computer program is learning from the available data, and 
its prediction performance improves as more data are made available to it. 

Consequently, with the growing data in different realms, as well as the introduction 
of big-data technologies, the evolution of ML, and advancements in computing tech-
niques (like, as parallel or distributed computing), their applicability has augmented 
across domains, ranging from art, health care, humanities, social science, to more 
philosophical and ethical studies. Similarly, they are also changing the way cities 
are evolving, bringing in historical and real-time data as well as multiple time scales 
to be considered, raising the prospects of making them smart and sustainable. And 
therefore, understanding the conventional urban metabolism with technologies like 
big-data technologies and ML to attain smartness in a city’s functioning, provides a 
greater opportunity for urban functions like the flow pattern of energy and materials
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Fig. 16.2 Challenges and opportunities for smart urban metabolism (SUM) 

to be assessed through a data-driven lens. Maintaining the urban ecosystem services 
is vital to sustainable urban development, emphasizing urban system resilience and 
ensuring public health and well-being. Thus, SUM is the answer to today’s urban 
complexities by building the capacities of urban planners to sustainably design and 
plan for smart city infrastructure and services. 

16.2 Barriers and Opportunities of Smart Urban 
Metabolism (SUM) 

SUM faces several challenges to be adopted by the urban planners (Fig. 16.2); 
however, at the same time, the complex system in an urban area provides with 
opportunity to be adapted for future city planning. 

16.3 Population and Smart Urban Metabolism Challenges 

Better lifestyles and increased job opportunities are driving the population toward 
cities. And therefore, more and more migration is resulting in augmented resource 
demand followed by a fold increase in the waste production (with every unit increase 
in the resource demand and consumption, the waste production escalates, establishing 
a direct relationship between migration and waste production). This is usually an 
outcome of a lack of adequate knowledge about the pattern a particular city shows 
with respect to its relationship between the population influx rate and urban utili-
ties demand and consecutively waste emerging out from the metabolism of these 
resources (Demaria and Schindler 2016; Facchini et al. 2017; Ipsen et al. 2019). 
However, the lack of comprehension of urban planners is mainly because they are not
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well equipped to recognize and analyze the fluctuating urban complexities (energy 
and material flows). To address this, technologies like big-data, machine learning, 
etc., which have the capability to handle huge datasets, assess and predict are required 
to give an idea about a particular or several aspects of a city (Shahrokni et al. 2015). 
The implementation of SUM cannot achieve success unless the city planners enhance 
their capacity to accommodate the migration and its associated aspects into the urban 
utility service planning and provisioning (Lyons et al. 2018). This is vital because 
people are at the core of driving a city’s fate by determining the metabolic flow of 
materials and energy and guiding the GDP growth, which has a direct impact on the 
city’s future progression. 

16.4 Resource Management 

Urban metabolism is gaining popularity among urban policymakers, managers, and 
planners in one hand. However, because of the large range of indicators in this frame-
work, on the other hand, often is cumbersome for them to choose the right ones for 
developing, monitoring, and evaluating the metabolic pathways. For this, the stan-
dardized framework of the urban indicators can provide a greater opportunity to assist 
the urban planners. ISO 37120 defines urban indicators as quantitative, qualitative, or 
descriptive measures that provide pattern and trends for a complex system (Interna-
tional Organization for Standardization 2018). Like, the city indicators can be used 
to estimate the forte and drawbacks of any city (Purnomo and Prabowo 2016). These 
performance indicators can assist in recognizing critical areas demanding consider-
ation and also the ones performing good (McCool and Stankey 2004). And they can 
be combined to set a ranking system, that could be used as a tool to measure the 
competitiveness of any city system, communicate its marketing strategy, and set up 
an interactive and responsive city administration (Yu and Xu 2018). A few of these 
key indicators comes from: (a) The “Key Performance Indicators for Sustainable 
Digital Multiservice Cities” ETSI framework identifies 73 city indicators, (b) ISO 
37122 provides a complete set of indicators and methodologies to support policy-
makers, and (c) ISO 37123 on resilient cities is a tool to monitor progress toward a 
resilient city (Attmsdmc 2017; International Organization for Standardization 2019a, 
b). Furthermore, the studies on Smart Cities and Communities add to the knowledge 
in the context of smart urban metabolism (International Telecommunication Union 
2016a). Also, the UNECE-ITU “Smart Sustainable indicators” framework (Table 
16.1) established by the UN in association with the International Telecommunica-
tion Union, and others evaluate the urban smartness and the metabolism pathways of 
urban energy and material flow to comply with the Sustainable Development Goals 
(United Nations Economic Commission for Europe (UNECE) 2015).

Information communication technology (ICT) indicators for Smart Cities are 
prerequisite in planning system by cities to adopt. With huge city expansion to support 
fluctuating socioeconomic variabilities, the information system needs to be revisited,
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Table 16.1 List of resources for smart urban metabolism indicators 

Urban standards Functioning areas Sectors targeted Indicators Urban standards 

ISO/DIS 37123 Sustainable 
development 
indicators for 
resilient cities 

Economic, Social, 
Environment 

73 ISO/DIS 37123 

ISO 37122:2019 Sustainable 
development 
indicators for smart 
cities 

Economic, Social, 
Environment 

80 ISO 37122:2019 

ISO 37120:2018 Sustainable 
development 
indicators for city 
services and quality 
of life 

Economic, Social, 
Environment 

104 ISO 37120:2018 

UNECE - ITU Sustainable 
indicators for Smart 
Cities 

Economic, Social, 
Environment 

72 UNECE - ITU 

ETSI TS 103 463 Indicators for Smart 
sustainable cities 

Economic, Social, 
Environment 

76 ETSI TS 103 463 

ITU-T 
Y.4903/L.1603 

Indicators for smart 
cities to assess the 
achievement of 
SDGs 

Economic, Social, 
Environment 

52 ITU-T 
Y.4903/L.1603 

ITU-T 
Y.4902/L.1602 

ICT sustainability 
impacts indicators 
in Smart Cities 

Economic, Social, 
Environment 

30 ITU-T 
Y.4902/L.1602 

ITU-T 
Y.4901/L.1601 

ICT indicators for 
Smart Cities 

Economic, Social, 
Environment 

48 ITU-T 
Y.4901/L.1601 

Sources United Nations Economic Commission for Europe (UNECE) (2015), International 
Telecommunication Union (2016a, b, c, d), International Organization for Standardization (2018, 
2019a, b)

and the performance indicators designed to give a perfect overview for city plan-
ners to adapt (International Telecommunication Union 2016a, b). These indicators 
primarily include information about smart water meters for water supply monitoring 
and smart electricity meters to track electricity supply and demand-response penetra-
tion for electricity customers, access to household sanitation, solid waste collection, 
wastewater sewer connections, Internet access at households, public transportation 
network, traffic monitoring, etc. (International Telecommunication Union 2016a, b) 
(ITU 2016a, b). However, the corresponding data captured in response to these indi-
cators are massive and will further augment in the future with adding population 
and changing urban structure. Thus, here comes the vital role of technologies like 
big-data and machine learning to analyze the huge datasets and keep accessibility of 
the key indicator values and/or patterns handy for urban planners to plan and execute 
urban utility services.
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The advancement in technologies like big-data and machine learning will be 
beneficial in increasing our understanding of how eminently smart city operates and 
how can an emerging smart city adapt to sustain in long run. Literature shows the 
relationship between these technologies, however, smart decision-making is consid-
ered indirect and is usually been facilitated through social innovation (Mahmoud 
et al. 2022). Although machine learning and/or big data have not been used much in 
the public sector, or urban utility service provisioning but have a promising aspect 
to investigate technical, managerial, and policy challenges faced by cities today 
(Kankanhalli et al. 2019). Megacities require a resilient administrative configura-
tion to expediate synergistic working between the society and government to make 
better policy implementation and ease in smart decision-making (Torfing et al. 2012; 
Conway 2020). It necessitates integrating internal governance structures and estab-
lishing a public–private partnerships with external organizations (Meijer and Bolívar 
2015). Analytics and/or data-driven governance will not only equip cities to create 
smart services but would also be able to provide smart data inventory through sensors 
and synthesizing data for urban safety governance (Meijer and Thaens 2018). Like, 
during the COVID-19 pandemic, the entire world did inventory and synthesized data 
to fight against the Coronavirus (SARS-CoV2). One such successful enactment was 
put up by the South Korean government, which utilized data-driven technology for 
encouraging proactive information exchange and implementation of safety protocols 
among its citizens (Park et al. 2020). 

Moreover, the collective smart governance focusing on “Evolution hubs” by 
nurturing mutual information flow links between information centers, and research 
institutions can help in improving the social, economic, and ecological perfor-
mances of smart cities. For example, Amsterdam Smart City, which has a distinctive 
bonding between municipal administration, academics and research institutes, start-
up investors, entrepreneurs, private businesses, ordinary citizens, and other relative 
stakeholders knitted through a common thread of information flow. The data-driven 
technology plays a key role within this system in maintaining the “urban sustenance 
lab,” by smart data collecting, maintaining, storing, and synthesizing as per demand 
for future planning (Mora and Bolici 2017). One of the vital steps which Amsterdam 
adopts is engaging communities through the “Smart Citizen” program. It encourages 
the residents to participate as data representatives, demonstrating their knowledge 
of sustainability issues, whereas the data-driven technologies are the “Data Hub 
Manager.” This is one of the best examples exhibiting a collective contribution of 
humans with technology and ecology toward a city’s advancement as a smart city. 

16.5 Big-Data Technology and Smart Urban Metabolism 
(SUM) 

Big-data technology may be best defined as the software application(s) for extracting, 
processing, storing, and analyzing, massive datasets (structured, semi-structured, or
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Fig. 16.3 State-of-art big-data technologies—Apache Hadoop and Mongo DB are leading solu-
tions for storage purposes; KNIME and QlikView are among the best for data processing, while 
Qlik Sense provides cloud-based artificial intelligence (AI) integration platform; Apache Spark and 
Tableau software’s aid in analytics and visualization 

unstructured) which cannot be handled with the conventional software’s, to obtain 
knowledge. The topmost solutions frequently used for storage, processing, and anal-
ysis (using machine learning) of big-data are (Fig. 16.3)—Apache Hadoop and Spark, 
KNIME, MongoDB, QlikView, RapidMiner, and Tableau, which have been discussed 
in the next sub-section. 

16.6 Big-Data Solutions—Storage, Processing, and Analysis 

Apache Hadoop (https://hadoop.apache.org/) is open-source software, that provides a 
framework for large-scale distributed computing (most reliable storage and analysis) 
and has been implemented by companies like Facebook, LinkedIn, IBM, Microsoft, 
etc., to handle the massive data (Nandimath et al. 2013). In addition to, Spark (https:// 
spark.apache.org/) is one more noteworthy solution from Apache, which was devel-
oped considering the benefits of MapReduce (Dean and Ghemawat 2008). It provides 
an engine supporting data science and machine learning on single-node machines 
or clusters or on the cloud environment (Zaharia et al. 2016). MongoDB (https:// 
www.mongodb.com/) is another open-source platform that facilitates the manage-
ment of unstructured or semi-structured or volatile data (i.e., changes frequently) 
and has been adopted by companies like eBay, MetLife, Google, etc. It is a NoSQL

https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://www.mongodb.com/
https://www.mongodb.com/
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document-oriented database with an easy-to-set-up environment (Bradshaw et al. 
2019). 

To address the challenges with the processing of a large set of data into any 
of the storage solutions, data processing operations are required, i.e., commonly 
referred to as ETL (Extraction, Transformation, and Loading processes) program-
ming. KNIME (https://www.knime.com/) is a leading open-source software solution 
to provide these capabilities within the big-data structure (Jara et al. 2015). It provides 
an interactive framework that supports: merging and transforming data → modeling 
and visualizing → deploying and managing the model → interacting and adapting 
the model in the real world. Another leading solution available in the market for this 
objective is QlikView (https://www.qlik.com/us/products/qlikview). It is based on 
an associative analytics engine and centered on data modeling, that aids in deriving 
relationships between the data (Troyansky et al. 2015). Qlik has further boosted 
modern cloud-based analytics with Qlik Sense (https://www.qlik.com/us/products/ 
qlik-sense), which augments and enhances human intuition with AI-powered insights 
(Troyansky et al. 2015). This in turn would boost the transition from passive to active 
analytics for real-time collaboration and action. 

For analysis, besides Apache Spark, the most prominent software solutions for 
handling big-data are—RapidMiner and Tableau. RapidMiner (https://rapidminer. 
com/) is a powerful data tool for building predictive models with the support of 
machine learning (including deep learning) (Hofmann et al. 2016) and also supports 
the integration of the Apache Hadoop framework for storage purposes. Tableau 
(https://www.tableau.com/) is a leading data-driven business intelligence platform for 
forecasting, decision-making, and strategy implementation (Hoelscher and Mortimer 
2018). The major USP of this software is an easy-to-use interface for transforming the 
raw data into knowledge, without the requirement of any prior programming expe-
rience. Additionally, it includes commending in-built options supporting enhanced 
data visualization in the form of interactive dashboards (Nair et al. 2016). 

16.7 Role of Big-Data Solutions in Smart Urban 
Metabolism (SUM) 

In terms of SUM, core essence of smart cities is the integration among utility systems 
(like electricity, solid waste, water, wastewater, etc.) and capturing of the data being 
generated. Big-data technologies are therefore becoming a necessity for the efficient 
functioning of smart as well as sustainable conurbations. The benefit of this would 
be the granularity (household → street → Particular Area → Urban Area) of the vast 
urban information that can be further analyzed via techniques like machine learning. 
Thus, big data equipped SUM can propel opportunities to address local as well as 
global urbanization challenges, and robust policy formulation to attain the SDG’s. 

Big-data can play a key role in transforming the way cities are planned consid-
ering multiple time scales (Bibri and Krogstie 2020). A ~98% increase in recycling

https://www.knime.com/
https://www.qlik.com/us/products/qlikview
https://www.qlik.com/us/products/qlik-sense
https://www.qlik.com/us/products/qlik-sense
https://rapidminer.com/
https://rapidminer.com/
https://www.tableau.com/
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of food waste by South Korea is one of the landmark examples, which highlights 
how the use of a data-driven technology can make a greater impact. In Seoul alone, 
the implementation of “Smart Bins,” equipped with scales and radio frequency iden-
tification which could weigh the food waste as disposed, data in turn mapped to the 
citizen resident cards, have reduced food waste in the city by 47,000 tons (The World 
Economic Forum 2019). Another such example is the “city of sensors”—Singapore 
(Poon 2017). In 2014, ~1000 sensors were installed to capture data as part of the 
government’s initiative to transform Singapore to be the world’s first smart country 
under the “E3A” plan (Everyone, Everything, Everywhere, All the Time). The aim 
was to connect data from all aspects of urban life (traffic, infrastructure, etc.), with 
the data integrated among different departmental systems feeding into a central plat-
form (Poon 2017). The benefit of this was evident during the Covid surge in 2020, as 
Singapore was one of the first countries to develop a tracing app safeguarding public 
health (Lee and Lee 2020). 

So Bigdata Research Infrastructure, a pan-European initiative, provides services 
for obtaining, analyzing, and visualizing massive datasets for the ethically safe 
deployment of big-data analytics (Grossi et al. 2018). Furthermore, the emergence 
of a big-data platform like “Strategic Intelligence,” which brings in the latest global 
research and analysis from the leading research organizations, exploring and moni-
toring more than 100 global issues with tactical perceptions, is paving the way 
forward in this direction (The World Economic Forum). Symoto, an ongoing project 
of the Dutch firm—Except Integrated Sustainability, is another such encouraging 
prospective (Except Integrated Sustainability B.V.). It aims to build a software appli-
cation that would enable the development, simulation, and monitoring of large-
scale material and energy cycles, industrial symbiosis, and the circular economy. 
Thus, similar examples of system modelling and strategic decision making can be 
replicated worldwide to empower SUM and attain sustainable development globally. 

To summarize, a few of the key benefits which big-data technologies can offer for 
SUM: 

1. Federated and centralized data storage—for gathering time-centric data recorded 
by independent utilities, and then merging them at a granular level (each 
individual/customer) as a centralized storage system. 

2. Predictive analysis—for smart planning for basic utilities like water, electricity, 
traffic, etc. 

3. Temporal analytics—for future planning with every fold increase in population, 
the fold-change (increase/decrease) in demand for basic utilities. 

4. Mapping resources—considering the historical data, current demands, and future 
trends. 

5. Planning—devising energy-efficiency programs that aid in improving urban 
health and security. 

6. Cost optimization—in quantitative terms while planning and designing new 
infrastructure, toward smart and sustainable utility planning.
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7. Citizen engagement—promoting awareness, creativity, and innovation among 
the general populations to be the drivers of the change, as well as encouraging 
service providers with open data platforms. 

8. Aid policymakers—understand the present and future need for policy support in 
smart city infrastructure and enforce policies accordingly. 

16.8 Machine Learning (ML) and Its Role in the Smart 
Urban Metabolism (SUM) 

Machine learning (ML) primarily comprises learning algorithms (computer 
programs), which are used to analyze datasets (Fig. 16.4). It is applied to the input 
data, for predicting the corresponding output values or identifying patterns, or for 
grouping the data based on closest properties (for example, Euclidean distance), with 
an acceptable performance value which can be improvised based on experience. 

The “supervised learning” algorithms (for example, classification, regression, etc.) 
are used for the datasets in which the class labels (i.e., labeled output) are known, 
based on which a learning function is obtained by approximating the function for 
mapping set of input features with the output (Caruana and Niculescu-Mizil 2006). 
While the “unsupervised learning” algorithms (for example, clustering, association 
rule mining, etc.) are used for datasets which do not have any class labels (i.e., 
no labeled outputs), and therefore, the aim of the learning function is to infer the 
organic construct (like grouping or precedence of occurrences) within a set of closest 
properties (Ghahramani 2004). In the third category of “semi-supervised” algorithms 
(for example, reinforcement learning, grey-box modeling), the learning function is 
trained on a dataset with few class labels and then uses the knowledge to label the 
unlabeled data points of the dataset (Sinha 2014).

Fig. 16.4 There are three types of learning algorithms based on which ML can be categorized as: 
supervised, unsupervised, and semi-supervised 
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16.9 Building a Machine Learning (ML) Model for SUM 

For building a robust ML model within a SUM environment (Fig. 16.5), the fore-
most step is to capture the data and store it historically in a big-data storage structure 
like Apache Spark or MongoDB (as discussed in the previous section). As the data 
sources are federated in nature (Architecture, Electricity, Traffic, Water, etc.), they 
can be stored in distinct data systems and/or maybe unified to be stored as a central-
ized system. In either case, the first step toward building an ML model would be 
preprocessing the data (i.e., preparing the data). This is an important step, as to 
ensure data are without any noise or bias. 

Preprocessing the data may involve all or either of the following:

1. Missing Values: This is one of the commonest problems with datasets and needs 
to be handled, as it can cause bias and/or reduce the overall performance of the 
model. Typically, two approaches are used to handle this problem—removing 
records (instances and/or features) with missing values and the imputation 
method (Manly and Wells 2015; Hegde et al. 2019). There are different imputa-
tion methods (examples—mean/median/mode, interpolation, nearest neighbor, 
maximum likelihood estimate, etc.) that can be used to replace the missing values 
(Newgard and Lewis 2015). Another approach can be using a learning algorithm 
(like Naïve Bayes, k-nearest neighbor) that supports datasets with missing values. 

2. Data Imbalance: This refers to the problem of class labels not represented equally 
in the dataset, which can introduce the problem of the model overfitting its predic-
tive capabilities. Most often, this is a common problem, as datasets do not have 
an equal number of instances for each class label (Thabtah et al. 2020). This 
can be handled during sampling of instances or while model evaluation using

Fig. 16.5 Schematic representation for building a ML model, considering federated data sources 
in an urban area 
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performance metrics (like balanced accuracy, Kappa value, receiver operating 
characteristic (ROC) curve) which consider imbalances of classes in the data or 
via techniques like grey-box modeling (Grau et al. 2016).

3. Data Scaling: In some cases, the features in the dataset may occur in different 
ranges or scales (for example, traffic movement may be measured in km/hour, 
whereas the electricity consumption in KWH) and therefore are not ideal to 
build a model (using algorithms like regression based, support vector machine 
(SVM), etc.) as this may impact its overall performance. In such scenarios, 
scaling methods are used to generalize the data points and minimize the difference 
among these features. The following methods are commonly used and recom-
mended for data scaling purposes—MaxAbs, MinMax, normalization, quantile 
transformation, robust scaling, and standardization (Ahsan et al. 2021). 

4. Feature Selection: Big-data imply a large number of features to be considered 
in the data to build a model, which would trigger the complexity of learning 
to grow exponentially and impact the overall performance of the model. The 
feature selection step helps to reduce the number of features, i.e., creates a subset 
of relevant features to build a model from the original set of features. There is 
supervised and unsupervised feature selection measure that can be applied as a 
filter (selected before the ML algorithm) or wrapper approach (selected as part 
of the ML algorithm) (Marsland 2009; Cai et al. 2018). 

5. Dimensionality Reduction: aims a similar focus as feature selection, however, 
the technique also helps to reduce the dimensional space of selected features 
(like generation of new synthetic features from a combination of the original 
features and then removing the least significant ones). This technique is also 
often used for data visualization for complex datasets having many features. 
Correlation, linear discriminant analysis (LDA), matrix factorization, and prin-
cipal component analysis (PCA) are some of the commonest methods used for 
the aforesaid process (Marsland 2009; Reddy et al. 2020). 

Once the data are prepared, it should be split into three parts—training, validation, 
and test sets (ideally, during the testing phase, the model should be benchmarked also 
with independent datasets) (Marsland 2009). To start with, 10% of this data should be 
split out as the “test set” (this sample of data is used to provide an unbiased evaluation 
of the final model) whereas the remaining dataset should be split-out into either 2:1 
or k-cross folds, for “training” (sample of the data used to train the model function) 
and “validation” (this sample of data is used to provide an unbiased evaluation of 
the model fit from the training set while tuning the model hyperparameters) sets, 
respectively (Mitchell 1997; Marsland 2009). 

Thereafter, an appropriate learning algorithm needs to be selected based on the task 
(like prediction, pattern identification, etc.). For example, neural network or SVM 
(both supervised learning) can be used for the prediction of energy consumption 
(Shapi et al. 2021). The “training” set should be used to train the model, followed 
by its “validation” with the validation set. Thereafter, the model should be tested 
upon the “test” set and/or benchmarked against independent datasets. Consequently, 
the optimized ML model can be implemented in the existing SUM ecosystem, for
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monitoring real-time activities or decision-making purposes, or the outcomes may 
be used by urban city managers (or the government) for planning, formulation, and 
implementation of new guidelines. 

16.10 Example of Machine Learning (ML) in Smart Urban 
Metabolism (SUM) 

We have made a basic understanding of how to build an ML model for the SUM 
ecosystem. Next, we discuss with an example how an ML model designed over a 
historical dataset can influence in transforming a city into a smart city. 

Water is one of the key urban utilities, and its responsible consumption is of 
utmost importance for smart cities in addressing sustainability challenges, like corre-
sponding energy consumption (Ghosh et al. 2016), which in turn may regulate the 
health service demands. In this work, Sengupta and Ghosh focused on looking at 
patterns between residential water consumption, wastewater discharge, and their 
impact on electricity consumption, with New Delhi (megacity) as a case study 
(Sengupta and Ghosh 2022). They analyzed the available data for the period 2001– 
2011 (Kennedy et al. 2015) using ML techniques enabling learning from the data. 
The predictor models were designed on two best-performing algorithms—logistic 
regression (generalized linear model) and neural network (a state-of-the-art tech-
nique for deep learning applications), using the MLR R-package (Rumelhart et al. 
1986; Bischl et al. 2016; Tolles and Meurer 2016). 

As the ROC curves (Fig. 16.6) and comparison of the performance measures 
(Table 16.2) between the two models demonstrate, model-A (based on logistic regres-
sion) outperformed model-B (based on the neural network). Using model-A, further 
analysis (Fig. 16.7) indicated, that there has been a two-fold increase in the electricity 
requirement with respect to water consumption and wastewater discharge. Such a 
model, when combined with socio-economic drivers and geographical details, has 
the potential to be used on a temporal scale to predict fold-change in the demands 
(water consumption, wastewater discharge, and corresponding electricity consump-
tion). Therefore, this can be a potential interest of application for the smart city 
planners, as these predictions can be used or further optimized, while designing the 
water and wastewater management infrastructures, toward a smart and sustainable 
utility planning.

Thus, such ML models can help focus on enhancing and maintaining urban health 
by smart planning of basic utility services like water and electricity. The findings may 
also target mitigating augmentation in residential electricity consumption caused due 
to coping strategies to deal with poor water and wastewater services. Such studies 
may also benefit policymakers to understand the present and future need for policy 
support in smart city infrastructure and enforce policies accordingly.
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Fig. 16.6 ROC (receiver operating characteristic curve) comparing the performance of the logistic 
regression and neural network models 

Table 16.2 Evaluation parameters for the two ML models 

Model Sensitivity 
(TPR) 

Specificity 
(TNR) 

False positive 
rate (FPR) 

False negative 
rate (FNR) 

Balanced 
accuracy 

MCC 

Logistic 
regression 

0.92 0.53 0.46 0.08 0.73 0.47 

Neural 
network 

0.67 0.60 0.40 0.33 0.63 0.27 

Fig. 16.7 Delhi—electricity consumption versus water consumption and wastewater volume 
(2001–2011)
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16.11 Conclusions 

The technologies discussed in this chapter are not the solitary solution to address the 
challenges in urban areas. However, they are certainly among the strongest tools to 
increase the efficacy of robust policy implementation and its effective maintenance by 
actively involving stakeholders through technology amalgamated with social inno-
vation. In conclusion, the combined approach of urban metabolism with advanced 
technologies like big-data and machine learning is the way forward that will be prin-
cipally beneficial in understanding the real-time city functions, as they can help urban 
city planners or governors to make smart decisions, support cities’ socioeconomic 
factors, as well as smart implementation and accomplishment of policies. 
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