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Preface

The International Symposium on Ubiquitous Networking (UNet) is an international
scientific event that highlights new trends and findings in hot topics related to ubiquitous
computing/networking. UNet’22 was held in a hybrid mode on October 25–27, in the
fascinating city of Montréal, Canada.

Ubiquitous networks sustain development of numerous paradigms/technologies such
as distributed ambient intelligence, Internet of Things, Tactile Internet, Internet of Skills,
context-awareness, cloud computing, wearable devices, and future mobile networking
(e.g., B5G and 6G). Various domains are then impacted by such a system: security and
monitoring, energy efficiency and environment protection, e-health, precision agricul-
ture, intelligent transportation, homecare (e.g., for elderly and disabled people), etc.
Communication in such a system has to cope with many constraints (e.g., limited-
capacity resources, energy depletion, strong fluctuations of traffic, real-time constraints,
dynamic network topology, radio link breakage, interference, etc.) and has to meet the
new application requirements. Ubiquitous systems bring many promising paradigms
aiming to deliver significantly higher capacity to meet the huge growth of mobile data
traffic and to accommodate efficiently dense and ultra-dense systems.A crucial challenge
is that ubiquitous networks should be engineered to better support existing and emerging
applications including broadband multimedia, machine-to-machine applications, Inter-
net of Things, sensors and RFID technologies. Many of these systems require strin-
gent Quality of Service including better latency, reliability, higher spectral and energy
efficiency, but also some Quality of Experience and Quality of Context constraints.

The UNet conference series is a forum that brings together researchers and prac-
titioners from academia and industry to discuss recent developments in pervasive and
ubiquitous networks. This conference series provides a venue to exchange ideas, discuss
solutions, debate identified challenges, and share experiences among researchers and
professionals. UNet aims also to promote adoption of new methodologies and to pro-
vide the participants with advanced and innovative tools able to catch the fundamental
dynamics of the underlying complex interactions (e.g., game theory, Mechanism Design
theory,Learning theory, SDRplatforms, etc.). Papers describingoriginal researchonboth
theoretical and practical aspects of pervasive computing and future mobile computing
(e.g., 5G, 6G, AI-driven communications, IoT, TI, etc.) were invited for submission to
UNet’22.



Message from the General Chairs

On behalf of the organizing committee, it is our great pleasure to welcome you to
the proceedings of the 2022 8th International Conference on Ubiquitous Networking
(UNet’22), which was held in a hybrid mode, on October 25–27, 2022.

The UNet conference series is a forum that aims to bring together researchers and
practitioners from academia and industry to discuss recent developments in pervasive
systems and ubiquitous networks. This conference series provides a venue to exchange
ideas, shape future systems, discuss solutions, debate identified challenges, and share
experiences among researchers and professionals. UNet aims also to promote adoption of
newmethodologies and provide the participants with advanced and innovative tools able
to catch the fundamental dynamics of the underlying complex interactions (e.g., artificial
intelligence, game theory, mechanism design, learning theory, SDR platforms, etc.).
Papers describing original research on both theoretical and practical aspects of pervasive
computing and future mobile computing (e.g., 5G, 6G, AI-driven communications, IoT,
TI, etc.) were invited for submission to UNet’22.

Technically sponsored by Springer Nature, and co-organized by LATECE Labo-
ratory, NEST Research Group, STARACOM, and Université de Québec à Montréal,
the 2022 UNet follows seven successful events held virtually, and in-person in France,
Tunisia, and Morocco. Over the past editions, the reputation of UNet has rapidly grown
and the conference has become one of themost respected venues in the field of ubiquitous
networking and pervasive systems.

The conference would not have been possible without the enthusiastic and hard work
of a few colleagues. We would like to express our appreciation to the Technical Program
Chairs, EssaidSabir, FranciscoFalcone, andWessamAjib, for their valuable contribution
in building the high-quality conference program. We also thank the track Chairs and all
the organizing committee members. Such an event relies on the commitment and the
contributions of many volunteers, and we would like to acknowledge the efforts of our
TPC members for their invaluable help in the review process. We are also grateful to all
the authors who contributed to the conference with their work.

Special thanks to our Keynote Speakers, the best in their respective fields, Carla
FabianaChiasserini,HalimYanikomeroglu,MurielMédard,MérouaneDebbah,Gerhard
Fettweis, and Francisco Falcone, for sharing their expert views on current hot research
topics. We also would like to thank Hamidou Tembine for the outstanding tutorial he
delivered at UNet 2022.

We hope that you enjoyed the rich program we have built this year, that you made
the most out of your participation, and that you will come back to UNet for many years
to come!

October 2022 Halima Elbiaze
Mohamed Sadik



Message from the TPC Chairs

It is with great pleasure that wewelcome you to the proceedings of the 2022 International
Conference on Ubiquitous Networking (UNet’22), held in hybrid mode. You will find
an interesting technical program of 5 technical tracks reporting on recent advances in
ubiquitous communication technologies and networking; tactile internet and internet of
things; mobile edge networking and fog-cloud computing; artificial intelligence-driven
communications; and data engineering, cyber security, and pervasive services.

UNet 2022 featured 6 keynote speeches delivered by world-class experts, shedding
light on the future 6G mobile standard, novel 6G enablers, global connectivity, AI-
driven communications for 6G, Internet of everything, and smart cities. Moreover, an
exciting tutorial covering the new trends of data-driven mean-field theory for ultra-dense
networks and ubiquitous systems was also delivered.

In this edition, the UNet conference received 43 submitted manuscripts from 24
countries, out of which 17 papers were selected to be included in the final program with
an acceptance rate of 39%. The proceedings also include 4 invited papers from experts
in ubiquitous computing. The selection of the program of UNet’22 was possible in the
first place thanks to the thorough review performed by our TPC committee members.
Overall, the average quality of the submission has respected the fairly high standards
of the event. The selection process, we believe, has been conducted in a rigorous and
fair manner. More specifically, each paper received at least 2 independent reviews made
by TPC members, taking into consideration the quality of presentation, the technical
soundness, the novelty, and the originality of the manuscripts. The evaluation scale for
each aspect of the evaluation was set to range from 1 to 5.

Building this excellent program would not have been possible without the dedi-
cation and the hard work of the different Chairs, the Keynote Speakers, the Tutorial
Speakers, and all the Technical Program Committee members. We grasp the opportunity
to acknowledge their valuable work, and sincerely thank them for their help in ensuring
that UNet’22 will be remembered as a high-quality event.

We hope that you enjoyed this edition’s technical program, and we were pleased to
e-meet you during the conference.

October 2022 Essaid Sabir
Francisco Falcone

Wessam Ajib
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Making Machine Learning Sustainable

Carla Fabiana Chiasserini

Abstract. While Machine Learning has become pervasive as an essential
component of many network services and user applications, its energy
cost is often difficult to cope with. It is thus critical to improve the sus-
tainability of Machine Learning by reducing its resource demand. This
talk tackles this issue while focusing on the emerging approach of Dis-
tributedMachine Learning. In particular, wewill discuss both the benefits
and the challenges posed by Distributed Learning, and the solutions to
minimize the energy cost of this approach while fulfilling the perfor-
mance requirements of a learning process, in terms of learning quality
and time. The talk will also discuss Machine Learning model compres-
sion as a promising solution to energy saving as well as to the need for
the reuse of computing resources. By leveraging model compression, it
is indeed possible not only to tune the network and computing resources
to the learning requirements, but also to tailor a Machine Learning model
around the available resources.

Dr. Carla Fabiana Chiasserini is Full Professor at
Politecnico di Torino, Italy, and a Research Associate
with the Italian National Research Council (CNR) and the
National Inter-University Consortium for Telecommunica-
tions (CNIT). She was a Visiting Researcher at UC San
Diego (1998–2003), and a Visiting Professor at Monash
University (2012 and 2016) and at Technische Univer-
sität Berlin (2021 and 2022). She is a Fellow of the IEEE
and a Senior Member of ACM. Her research interests
include NextG Networks, Edge Computing, Networking
for Machine Learning, and Connected Vehicles. She has
published over 350 journal articles and refereed conference
papers, and she has received several awards for her scien-
tific work. Currently, she serves as Editor-in-Chief of the
Computer Communications journal and as Editor-at-Large
of the IEEE/ACMTransactions onNetworking.Carla is also
a member of the Steering Committee of the IEEE Transac-
tions on Network Science and Engineering and of the ACM
MobiHoc conference. She has served for several years on
the Editorial Board of such journals as the IEEE Transac-
tions on Wireless Networks and the IEEE Transactions on
Mobile Computing, and she has been Co-Guest Editor of a



xviii C. F. Chiasserini

number of journal special issues. Carla is/has been involved
in many national and international research projects, either
as a coordinator or a PI. For more information, please refer
to:

https://www.det.polito.it/personale/scheda/(nominativo)/
carla.chiasserini
https://scholar.google.com/citations?user=np0OO24AA
AAJ&hl=en

https://www.det.polito.it/personale/scheda/(nominativo)/carla.chiasserini
https://scholar.google.com/citations?user=np0OO24AAAAJ&amp;hl=en


Stratospheric Networks of the Future: It Is More
than Connectivity

Halim Yanikomeroglu

Abstract. In this talk, a forward-looking wireless infrastructure will be
presented which includes a new stratospheric access & computing layer
composed of HAPS (high-altitude platform station) constellations posi-
tioned in the stratosphere, 20 km above the ground, in addition to the
legacy terrestrial layer and the emerging satellite layer. With its bird’s-
eye and almost-line-of-sight view of an entire metropolitan area, a HAPS
is more than a base station in the air; it is a new architecture paradigm
with access, transport, and core network functionalities for integrated
connectivity, computing, sensing, positioning, navigation, and surveil-
lance, towards enabling a variety of use-cases in an agile, smart, and
sustainable manner for smart cities and societies of the future.

Dr. Halim Yanikomeroglu (FIEEE, FEIC, FCAE) is a
Professor at Carleton University. He received his Ph.D.
from the University of Toronto in 1998. He contributed
to 4G/5G technologies and standards; his research focus
in recent years includes 6G/beyond-6G, non-terrestrial net-
works (NTN), and future wireless infrastructure. His exten-
sive collaboration with industry resulted in 39 granted
patents. He supervised or hosted in his lab around 170
postgraduate researchers. He co-authored IEEE papers with
faculty members in 80+ universities in 25 countries. He
has given around 110 invited seminars, keynotes, tutori-
als, and panel talks in the last five years. He is a Fellow
of IEEE, Engineering Institute of Canada (EIC), and Cana-
dian Academy of Engineering (CAE), and an IEEE Distin-
guished Speaker for Communications Society and Vehic-
ular Technology Society. Dr. Yanikomeroglu serves as the
Chair of the Steering Committee of IEEE’s flagship wire-
less event,Wireless Communications andNetworking Con-
ference (WCNC). He has served as the General Chair and
Technical Program Chair of several leading international
IEEE conferences. He has received several awards for his
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research, teaching, and service, including IEEE ComSoc
Fred W. Ellersick Prize (2021), IEEE VTS Stuart Meyer
Memorial Award (2020), IEEE ComSoc Wireless Commu-
nications Technical Committee Recognition Award (2018),
and a number of best paper awards.



Guessing Random Additive Noise Decoding (GRAND)
or How to Stop Worrying About Error-Correcting Code

Design

Muriel Médard

Abstract. To maintain data integrity in the face of network unreliabil-
ity, systems rely on error-correcting codes. System standardization, such
as has been occurring for 5G, is predicated on co-designing these error-
correcting codes and,most importantly, their generally complexdecoders,
into efficient, dedicated and customized chips. In this talk, we show that
this assumption is not necessary and is has been leading to significant per-
formance loss. We describe “Guessing Random Additive Noise Decod-
ing,” or GRAND, by Duffy, Médard and their research groups, which
renders universal, optimal, code-agnostic decoding possible for low to
moderate redundancy settings.

Moreover, recent workwithYazicigil and her group has demonstrated
that such decoding can be implemented with extremely low latency in sil-
icon. GRAND enables a new exploration of codes, in and of themselves,
independently of tailored decoders, over a rich family of code designs,
including random ones. Surprisingly, even the simplest code construc-
tions, such as those used merely for error checking, match or markedly
outperform state-of-the-art codeswhen optimally decodedwithGRAND.
Without the need for highly tailored codes and bespoke decoders, we can
envisage using GRAND to avoid the issue of limited and sub-optimal
code choices that 5G encountered, and instead have an open platform for
coding and decoding.

Muriel Médard is the Cecil H. and Ida Green Professor in
the Electrical Engineering and Computer Science (EECS)
Department at MIT, where she leads the Network Coding
and Reliable Communications Group in the Research Labo-
ratory of Electronics. She obtained three Bachelor’s degrees
(EECS 1989, Mathematics 1989 and Humanities 1991), as
well as her M.S. (1991) and Sc.D (1995), all fromMIT. She
is a Member of the US National Academy of Engineering
(elected 2020), a Fellow of the US National Academy of
Inventors (elected 2018), American Academy of Arts and
Sciences (elected 2021), and a Fellow of the Institute of
Electrical and Electronics Engineers (elected 2008). Muriel
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was elected president of the IEEE Information Theory Soci-
ety in 2012, and served on its board of governors for eleven
years. She holds an Honorary Doctorate from the Technical
University of Munich (2020).

She was co-winner of the MIT 2004 Harold E. Egerton
Faculty Achievement Award and was named a Gilbreth
Lecturer by the US National Academy of Engineering in
2007. She received the 2017 IEEE Communications Soci-
ety Edwin Howard Armstrong Achievement Award and the
2016 IEEEVehicular Technology James EvansAvant Garde
Award. She received the 2019 Best Paper award for IEEE
Transactions onNetworkScience andEngineering, the 2018
ACMSIGCOMMTest of TimePaperAward, the 2009 IEEE
Communication Society and Information Theory Society
Joint Paper Award, the 2009William R. Bennett Prize in the
Field of Communications Networking, the 2002 IEEE Leon
K. Kirchmayer Prize Paper Award, as well as eight confer-
ence paper awards.Most of her prize papers are co-authored
with students from her group.

She has served as technical program committee co-chair
of ISIT (twice), CoNext,WiOpt,WCNC and of manywork-
shops. She has chaired the IEEE Medals committee, and
served as member and chair of many committees, includ-
ing as inaugural chair of the Millie Dresselhaus Medal. She
was Editor in Chief of the IEEE Journal on Selected Areas
in Communications and has served as editor or guest editor
of many IEEE publications, including the IEEE Transac-
tions on Information Theory, the IEEE Journal of Light-
wave Technology, and the IEEE Transactions on Informa-
tion Forensics and Security. She was a member of the inau-
gural steering committees for the IEEETransactions onNet-
work Science and for the IEEE Journal on Selected Areas
in Information Theory.

Muriel received the inaugural 2013 MIT EECS Grad-
uate Student Association Mentor Award, voted by the stu-
dents. She set up theWomen in Information Theory Society
(WithITS) and the Information Theory Society Mentoring
Program, forwhich shewas recognizedwith the 2017Aaron
Wyner Distinguished Service Award. She served as under-
graduate Faculty in Residence for seven years in two MIT
dormitories (2002–2007). Shewas elected by the faculty and
served as member and later chair of the MIT Faculty Com-
mittee on Student Life and as inaugural chair of the MIT
Faculty Committee on Campus Planning. She was chair of
the InstituteCommittee onStudentLife. Shewas recognized
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as a Siemens Outstanding Mentor (2004) for her work with
High School students. Since 2015 she has served on the
Board of Trustees of the International School of Boston, for
which she is treasurer.

She has over fifty US and international patents awarded,
the vast majority of which have been licensed or acquired.
For technology transfer, she has co-founded two companies,
CodeOn, for which she consults, and Steinwurf, for which
she is Chief Scientist.

Muriel has supervised over 40 masters students, over 20
doctoral students and over 25 postdoctoral fellows.



Exploring the Union of AI and 6G

Mérouane Debbah

Abstract. Fueled by the availability of more data and computing power,
recent breakthroughs in cloud-based machine learning (ML) have trans-
formed every aspect of our lives, from face recognition and medical diag-
nosis to natural language processing.However, classicalMLexerts severe
demands in terms of energy, memory and computing resources, limit-
ing their adoption for resource-constrained edge devices. The new breed
of intelligent devices requires a novel paradigm change calling for dis-
tributed, low-latency and reliable ML at the wireless network edge. This
talk will explore the potential of the Mobile AI paradigm to unlock the
full potential of 5G and beyond.

Dr. Mérouane Debbah is Chief Researcher at the Tech-
nology Innovation Institute in Abu Dhabi. He is a Pro-
fessor at CentraleSupélec and an Adjunct Professor with
the Department of Machine Learning at the Mohamed Bin
Zayed University of Artificial Intelligence. He received
the M.Sc. and Ph.D. degrees from the Ecole Normale
Supérieure Paris-Saclay, France. He was with Motorola
Labs, Saclay, France, from 1999 to 2002, and also with the
Vienna Research Center for Telecommunications, Vienna,
Austria, until 2003. From 2003 to 2007, he was an Assis-
tant Professor with the Mobile Communications Depart-
ment, Institut Eurecom, Sophia Antipolis, France. In 2007,
he was appointed Full Professor at CentraleSupélec, Gif-
sur-Yvette, France.

From 2007 to 2014, he was the Director of the Alcatel-
Lucent Chair on Flexible Radio. From 2014 to 2021, he
was Vice-President of the Huawei France Research Center.
He was jointly the director of the Mathematical and Algo-
rithmic Sciences Lab as well as the director of the Lagrange
Mathematical andComputingResearchCenter. Since 2021,
he has led the AI & Digital Science Research centers at
the Technology Innovation Institute. He has managed 8
EU projects and more than 24 national and international
projects. His research interests lie in fundamental mathe-
matics, algorithms, statistics, information, and communi-
cation sciences research. He is an IEEE Fellow, a WWRF
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Fellow, a Eurasip Fellow, an AAIA Fellow, an Institut Louis
Bachelier Fellow and a Membre émérite SEE. He was a
recipient of the ERC Grant MORE (Advanced Mathemat-
ical Tools for Complex Network Engineering) from 2012
to 2017. He was a recipient of the Mario Boella Award in
2005, the IEEE Glavieux Prize Award in 2011, the Qual-
comm Innovation Prize Award in 2012, the 2019 IEEE
Radio Communications Committee Technical Recognition
Award and the 2020 SEE Blondel Medal. He has received
more than 20 best paper awards, among which the 2007
IEEE GLOBECOM Best Paper Award, the Wi-Opt 2009
Best Paper Award, the 2010 Newcom++ Best Paper Award,
the WUN CogCom Best Paper 2012 and 2013 Award, the
2014 WCNC Best Paper Award, the 2015 ICC Best Paper
Award, the 2015 IEEE Communications Society Leonard
G. Abraham Prize, the 2015 IEEE Communications Soci-
ety Fred W. Ellersick Prize, the 2016 IEEE Communica-
tions Society Best Tutorial Paper Award, the 2016 European
Wireless Best Paper Award, the 2017 Eurasip Best Paper
Award, the 2018 IEEE Marconi Prize Paper Award, the
2019 IEEE Communications Society Young Author Best
Paper Award, the 2021 Eurasip Best Paper Award, the 2021
IEEEMarconi Prize Paper Award, the 2022 IEEE Commu-
nications Society Outstanding Paper Award, the 2022 ICC
Best Paper Award as well as the Valuetools 2007, Value-
tools 2008, CrownCom 2009, Valuetools 2012, SAM 2014,
and 2017 IEEE Sweden VT-COM-IT Joint Chapter best
student paper awards. He is an Associate Editor-in-Chief of
the journal Random Matrix: Theory and Applications. He
was an Associate Area Editor and Senior Area Editor of the
IEEE Transactions on Signal Processing from 2011 to 2013
and from 2013 to 2014, respectively. From 2021 to 2022, he
serves as an IEEE Signal Processing Society Distinguished
Industry Speaker.



Thoughts and Possible Advancements on 4 Thrusts for 6G

Gerhard Fettweis

Abstract. Even though 6G is 8 years away, many seem to try to pin down
exact features and specifications already today. This leads to some inter-
esting statements, also made by large corporate players. Just one example
is the statement that 6G will require a 10× improvement in spectral effi-
ciency while simultaneously achieving at least a 10× improvement in
energy efficiency. No theory is yet known to show how this could be
achievable. In the end, operators will need to earn money providing a
new level of services at a cost-level which makes these services afford-
able for mass market consumers. Therefore, here we rather want to ask
the questionwhich thrust of improvement couldmake sense, andwhy.We
then give some possible ways forward. The 4 thrusts for improvements
discussed are: trustworthiness, energy efficiency, cost, and new function-
ality. If we truly believe that 6G will provide an infrastructure for Tactile
Internet remote-controlled personal mobile robotic and XR applications,
we need lower-cost, energy efficient, and trustworthy networks that inte-
grate joint communications & sensing. Can this be realistically achieved
without infringing physics or theoretic bounds?
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The Role of Communications as Enablers
for Achievement of Sustainable Development Goals
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Abstract. In order to cope with global challenges humanity is facing
in terms of climate change, sustainability and governance, the UN has
established the roadmap for years to come on the pillars of the Sustain-
ableDevelopmentGoals (SDG).Among the different aspects and specific
goals specifiedwithin the SDGs, providing resilient and adaptive commu-
nication technologies is key towards their achievement. In this presenta-
tion, an overview of capabilities and challenges related to communication
technologies with a specific focus on wireless communications will be
discussed, with applications related to the scope of implementing context
aware environments in Smart Cities and Smart Regions, thus enabling the
advancement of several SDGs.
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Abstract.Breakthroughs inmachine learning (ML) and particularly deep
learning have transformed all aspects of our lives, including face recogni-
tion, medical diagnosis, and natural language processing. This progress
has been fueled mainly by the availability of more data and more com-
puting power. However, the current premise in classical ML is based on
a single node in a centralized and remote data center with full access to
a global dataset and a massive amount of storage and computing. Nev-
ertheless, the advent of a new breed of intelligent devices ranging from
drones to self-driving vehicles, makes cloud-based ML inadequate. This
talk will present the vision of distributed edge intelligence featuring key
enablers, architectures, algorithms and some recent results.
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On the Influence of Microscopic Mobility
in Modelling Pedestrian Communication
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Abstract. In the recent past, wireless network simulations involving
pedestrians are getting increasing attention within the research com-
munity. Examples are crowd networking, pedestrian communication via
Sidelink/D2D, wireless contact tracing to fight the Covid-19 pandemic or
the evaluation of Intelligent Transportation Systems (ITS) for the pro-
tection of Vulnerable Road Users (VRUs). Since in general the mobile
communication depends on the position of the pedestrians, their mobil-
ity needs to be modeled. Often simplified mobility models such as the
random-waypoint or cellular automata based models are used.

However, for ad hoc networks and Inter-Vehicular Communication
(IVC), it is well-known that a detailed model for the microscopic mobility
has a strong influence – which is why state-of-the-art simulation frame-
works for IVC often combine vehicular mobility and network simulators.
Therefore, this paper investigates to what extent a detailed modelling of
the pedestrian mobility on an operational level influences the results of
Pedestrian-to-X Communication (P2X) and its applications.

We model P2X scenarios within the open-source coupled simulation
environment CrowNet. It enables us to simulate the identical P2X sce-
nario while varying the pedestrian mobility simulator as well as the used
model. Two communication scenarios (pedestrian to server via 5G New
Radio, pedestrian to pedestrian via PC5 Sidelink) are investigated in
different mobility scenarios. Initial results demonstrate that time- and
location-dependent factors represented by detailed microscopic mobility
models can have a significant influence on the results of wireless com-
munication simulations, indicating a need for more detailed pedestrian
mobility models in particular for scenarios with pedestrian crowds.

Keywords: pedestrian communication · wireless network simulation ·
coupled simulation · mobility model
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1 Introduction

For wireless communication in general, the local situation of a node, such as
the attenuation of the signal or interference, depends on time and position, i.e.
the channel is time-variant and location-dependent. Simulations of wireless net-
works must therefore model the position of a wireless node. For mobile wireless
networks, such as networks based on Inter-Vehicle Communication (IVC), this
is usually achieved by applying a suitable mobility model. Since modelling the
mobility at a sufficiently high level of detail is often not trivial, a commonly used
approach is to couple a wireless network simulation modelling the communica-
tion aspects with a mobility simulator. In case of vehicular networks, it often is
a traffic simulator such as SUMO [15].

Motivated by new application areas such as crowd sensing and networking,
wireless contact tracing to fight against the Covid-19 pandemic or Intelligent
Transportation Systems (ITS) protocols for the protection of Vulnerable Road
Users (VRUs), wireless network simulations of scenarios involving pedestrians
are getting more attention within the research community. For example, for
VRU protection, suitable message formats such as the VRU Awareness Messages
(VAM) [6] were recently standardized and are considered in industry forums such
as the 5G Automotive Association (5GAA). As a consequence, also the research
in this area gained momentum, e.g. to evaluate the impact of VAM generation
rate adaptation on the awareness of VRUs [14]. In order to evaluate the potential
of these new message formats and protocols, wireless network simulations are the
typical method.

In all these simulations, the mobility of pedestrians needs to be modeled.
Traditionally, very simplified mobility models such as the linear mobility model
or the random-waypoint model [10] have been used, e.g. for the evaluation of
communication in cellular networks. However, these simplified models do not
model the movement of individual pedestrians in detail. Therefore, in order
to be able to model the interaction among pedestrians or between pedestrians
and vehicles, traffic simulators such as SUMO model pedestrian mobility more
precisely, so that the situation at a crossing can be simulated [4].

However, in the research field of pedestrian dynamics, much more detailed
mobility models are known. These models, which are also called pedestrian locomo-
tion models in pedestrian dynamics, are able to model typical movement patterns
of pedestrians and their behavior more realistically but usually at a higher com-
putational cost. Examples are the gradient navigation model [3], the Social Force
Model (SFM) [7] or the Optimal Steps Model (OSM) [21]. These are applied in
research using dedicated simulators such as JuPedSim or Vadere1 [12].

The main motivation for this paper is therefore, to investigate to what extent
results of pedestrian communication simulations – such as the number of received
packets or communication delays – are influenced by a more detailed modelling of
the pedestrian mobility on a microscopic level based on models from pedestrian
dynamics.

1 https://www.jupedsim.org/; https://www.vadere.org/.

https://www.jupedsim.org/
https://www.vadere.org/
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The main contributions of this paper are:

1. Based on metrics such as the number of received packets and the observed
Signal-to-Interference-and-Noise Ratio (SINR), we present wireless network
simulations for a simple and a more complex pedestrian communication sce-
nario, applying mobility models with varying level of detail. The results pro-
vide insights on the influence of microscopic pedestrian mobility models in
these scenarios.

2. The scenarios are furthermore evaluated in a server-based variant applying 5G
New Radio (NR) and a direct-communication (sidelink) variant. The results
indicate that the influence of the mobility model also depends on the appli-
cation and the underlying pedestrian communication paradigm.

3. In our simulative evaluation, we illustrate how open-source components can
be used to implement pedestrian communication simulations with detailed
pedestrian mobility models, such as OSM or SFM. The simulation framework
as well as the settings for reproducing the presented results ares publicly
available and can serve as a basis for future research in related areas.

The rest of the paper is structured as follows: First, we give an overview
of related work in pedestrian communication, microscopic pedestrian mobility
models and simulator coupling in Sect. 2. Afterwards, the simulation concept,
scenarios and metrics are presented in Sect. 3. A detailed description of the
simulation parameters and the coupled simulation framework follows in Sect. 4.
Sect. 5 presents the simulation results. Sect. 6 concludes the paper with a short
summary.

2 Related Work

It is a well-established fact that performance results of wireless communication
system simulations can change drastically when the mobility model is varied
[2,9]. For example, already two decades ago, Camp et al. [2] presented a survey
of mobility models for ad hoc networks including simulation results demonstrat-
ing the influence of simple mobility models such as the Random Waypoint or
Random Walk models. For pedestrian mobility, this was confirmed by Helgason
et al. in [8] where the commercial mobility simulator Legion Studio was used to
model pedestrian mobility at the operational level. They also showed that often
accurately capturing the scenario is more important than a detailed estimation
of the input mobility parameters. However, it has to be noted that [8] first
assumes a very generic model of the physical layer using abstract performance
metrics such as contact time and rate that is later-on extended to a simplified
Bluetooth model but never models higher networking layers. Therefore, it is not
clear if their findings would also apply to metrics on higher layers or pedestrian
communication applications.

Hess et al. present a detailed survey on human mobility modeling in [9] that
also takes models from pedestrian dynamics such as the Social Force Model
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(SFM) [7] into account. The survey includes recommendations for engineering
new mobility models but does not consider the influence of different mobility
models on wireless networks and their metrics.

A specific application of pedestrian communication is content distribution
within a local area, for which a pedestrian mobility model is presented in [25].
However, it does not take interaction among pedestrians into account and con-
cludes that for higher densities the assumption of uncorrelated speeds of pedes-
trians does not hold. To overcome this limitation, it suggests to use a model
from pedestrian dynamics, such as SFM [7], for future work.

A number of other works consider pedestrian mobility on higher levels, such
as the tactical level. For example, Vogt et al. [24] consider the aspect of desti-
nation selection and path finding in their model. More recently, deep learning
approaches have also been applied to model pedestrian flows and trajectories.
An overview can be found in [16]. These higher levels of pedestrian mobility are
out-of-scope for our paper since we focus on the influence of the operational level
of pedestrian mobility.

Regarding the practical aspect of including detailed microscopic mobility
models in wireless network simulations, as required for the simulative evaluation
in this paper, related work exists mainly in the area of vehicular communication:
Realistically modelling the microscopic mobility of vehicles is complex and not
feasible in typical simulators for wireless networks such as ns-3 or OMNeT++.
Therefore, state-of-the-art frameworks such as veins [23] couple network simula-
tors with dedicated vehicular mobility simulators such as SUMO via the Traffic
Control Interface (TraCI) [26].

Recently, SUMO has been extended to model pedestrian mobility [4]. Fur-
thermore, dedicated pedestrian dynamics simulators such as Vadere [12] are
available. Therefore, an approach for coupling pedestrian mobility and network
simulation has been proposed in a previous paper [19] and since then has been
significantly extended, as described in Sect. 4.

3 Scenarios

In order to evaluate the influence of detailed microscopic mobility models on
cellular 5G NR and sidelink communication simulations, we define two scenarios
where several pedestrians are closely located: a crowded sidewalk and a bottle-
neck scenario. The underlying assumption is that a microscopic mobility model
becomes more relevant when the mobility of a person is influenced by others, e.g.
in a blocking situation. In contrast, in a situation where a single person walks
alone on a sidewalk, the mobility model has a low influence since in this case the
person simply moves with the desired velocity.

Pedestrian Mobility in SUMO. [13] The traffic simulator SUMO models sidewalks
as a special type of lane where only pedestrians are allowed. A lane is a polyline
with a specific width. SUMO supports a nonInteracting and a striping pedestrian
model: In nonInteracting pedestrians walk at a fixed speed and are not influenced
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by other pedestrians, whereas in striping the lane is divided in stripes of a pre-
defined width (default in SUMO: 0.65 m). Pedestrians try to occupy the right-
most stripe. In case a stripe is occupied by a slower or oncoming person, a
pedestrian changes to a different stripe if sufficient space is available. Otherwise,
i.e. if all stripes are occupied, the pedestrian slows down. In the following, striping
is used in order to take interaction among pedestrians into account.

Pedestrian Mobility in Vadere. [11] In contrast to SUMO, the focus of Vadere
is pedestrian dynamics. Thus, it supports a wider range of detailed pedestrian
mobility or locomotion models, e.g. behavior heuristics, gradient navigation or
SFM. A popular and well-established locomotion model, which is used in the fol-
lowing, is the Optimal Steps Model (OSM) [11,22]. It models pedestrian mobility
as a series of discrete footsteps. The model chooses the next footstep of a per-
son by optimizing the utility within a circle around its current position. The
radius of the step circle is correlated to the free-flow speed of the pedestrian.
Utility values are based on floor fields which combine attraction (i.e. getting
closer to a target location) with repulsion (obstacles, other pedestrians). Thus,
in crowded situations pedestrians decrease their step-length and thereby deceler-
ate. Furthermore, virtual pedestrians in OSM try to maintain a certain distance
to others. The strength of this desire is regulated through parameters [11], such
as the intimate space width.

3.1 Scenario A: Crowded Sidewalk

This scenario models a crowded sidewalk: At simulation time t0 = 0s, a group
of pedestrians starts walking on a straight sidewalk towards a destination 400 m
away. An example for this situation would be a bus stop where a group of people
gets out of the bus or sidewalk next to a subway station where a train arrived. The
simulation ends at te = 600 s, a time at which all pedestrians have reached the
destination. The rationale why this scenario was chosen is that in this crowded
situation, the way in which inter-action among pedestrians is handled in the
different microscopic mobility models is suspected to be relevant. Furthermore,
the different degrees of freedom which a pedestrian has in the mobility models
could be relevant. Both could lead to differences in pedestrian mobility and, as
a consequence, on the observed pedestrian communication.

Due to the different ways in which the local environment is modeled in SUMO
and Vadere, the sidewalk is represented by specific structures in each mobility
simulator. Figure 1a shows the sidewalk in Vadere: On the floor field, the area in
which pedestrians can move (i.e. the sidewalk itself) is limited by one obstacle
on the left and one on the right side. The starting point is represented by the
green square and the destination by the orange square. The distance between
the obstacles is 2.50 m and the width of what a persona considers as intimate
space is set to 0.65 m.

The corresponding model in SUMO is shown in Fig. 1b. As pedestrians move
in SUMO only on roads or sidewalks, there is no need to limit their degree of
freedom additionally by using obstacles. The starting point is the top red dot
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and the exit point the bottom red dot. The length and width of the sidewalk
are set to the same values as in Vadere. For the width of a single stripe of the
sidewalk, the default value of 0.65 m is kept since it is already identical to the
intimate space configured in Vadere.

Fig. 1. Sidewalk model (Scenario A).

3.2 Scenario B: Bottleneck

The second scenario models a situation, where a group of pedestrians needs to
go through a narrow entrance, as it occurs, for example, when entering a soccer
stadium, metro station or theater. The scenario covers a distance of 370 m, the
narrow entrance is located at a distance of 280 m (measured from the starting
point, see Fig. 2). (We choose a cone shaped bottleneck, because SUMO’s stripe
model limits the type of structures that can be captured. While the shape of
the bottleneck is a little unusual, it still covers the characteristics that we want
to investigate: a crowd of pedestrians who are funneled through a small opening
and thus have to interact.)

After passing the narrow entrance, the pedestrians spread out to five different
target locations at a distance of 190 m measured from the entrance. Since the
total number of modeled pedestrians is chosen to be a multiple of five, the same
number of pedestrians walks towards each target location. Hereby, we model the
fact that usually after passing the entrance of a location, the different groups of
persons will walk to different locations inside.

In Vadere, this bottleneck scenario is modeled as follows (see Fig. 2a): At each
of the five pedestrian source locations (green), the same number of pedestrians
is generated at the start time of the simulation. Each pedestrian is also assigned
one of the target locations (orange) which it walks towards. Narrowing obstacles
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(grey walls) limit the horizontal space from 20.0 m at the start to 2.5 m at the
narrow entrance. As a result, Vadere generates a floor field which first attracts
the pedestrians to the narrow entrance (single orange square in the middle),
afterwards each pedestrian is attracted by the corresponding target location.

In SUMO, due to the completely different approach for modeling pedestrian
mobility, a different way of modeling the scenario needs to be used (Fig. 2b):
As pedestrians in SUMO are only moving on roads or sidewalks (and not freely
as they do in Vadere), the bottleneck is modeled through road segments getting
thinner in their width. The narrow entrance, modeled with the same position and
width as within Vadere, is created by using five road segments which stepwise
reduce the width from 20.0 m at the start to 2.5 m at the narrow entrance. At
the end of the bottleneck, the pedestrians are routed to five different target
locations, analogously to the model in Vadere.

Fig. 2. Bottleneck model (Scenario B). (Color figure online)

3.3 Pedestrian Communication

From the technical point of view, a wide range of options is available in order
to implement the information dissemination among pedestrians: Different radio
access technologies such as GSM, UMTS, LTE, 5G can be applied. Communi-
cation can be performed via a server on the Internet (as it is done for typical
smartphone apps today), via WLAN and in near future also via Sidelink of
the 4G/5G cellular standards [1], just to name a few. In the paper, a typical
centralized, server-based and a direct, decentralized variant are evaluated.

Centralized, Server-Based Pedestrian Communication via 5G NR (P2P-CS): In
this variant, we model information dissemination via HTTP, TCP, IP with a
backend server - as it is typical for mobile applications today. For the wireless
communication, a 5G Standalone (SA) cellular network with New Radio (NR)
is assumed (refer to Sect. 4 for parameters).
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Direct Pedestrian-to-Pedestrian Communication via Sidelink (P2P-SL): P2P-
SL assumes a completely different communication pattern, as it would occur
in future for example mobile sensing or cooperative awareness applications [5].
Applications on the smartphone of a pedestrian send multicast data packets with
(sensor) data via Sidelink to all other pedestrians in the local area. Neither a
communication infrastructure nor a centralized server is required, since multicast
data transmission via UDP and Sidelink (PC5 interface) is applied.

Metrics: The mobility model possibly influences the behavior on all layers of the
protocol stack. However, in order to limit the complexity of this study, we need
to restrict ourselves to a very limited subset in this paper. As a typical met-
ric on the lower network layers, the average number of received MAC packets
and the observed Signal-to-Interference-and-Noise Ratio (SINR) on the uplink
is selected. As a metric on transportation/application layer, the average number
of messages and the per-packet delay is measured: in case of P2P-CS commu-
nication, the number of messages delivered by TCP was evaluated; for P2P-SL
communication, the delay between packet transmission at the source and recep-
tion at the application layer of a receiving pedestrian is measured.

4 Simulative Evaluation

In order to evaluate the influence of the microscopic mobility model on pedestrian
communication, the scenarios defined in Sect. 3.1 and 3.2 were modeled and
evaluated in the open-source simulation framework CrowNet2. It is based on
OMNeT++ with INET and combines the system-level mobile network models
of Simu5G [17] with pedestrian mobility models in Vadere and SUMO.

Since SUMO as well as Vadere can be controlled via Traffic Control Interface
(TraCI) [19,26], CrowNet allows us to run exactly the same communication
models with different microscopic mobility models. For the unified integration
of the mobility simulation in CrowNet, the V2X simulation framework Artery
[18] was extended to support pedestrian simulation based on Vadere.

Wireless communication is modeled in OMNeT++ with INET and Simu5G
frameworks identically and independently of the microscopic mobility model that
is used. The eNB/gNB is placed at position (300 m; 300 m) for all scenarios. For
P2P-SL (sidelink), a cellular eNB and a core network consisting of PGW and a
router is modeled. In the P2P-CS variant which assumes 5G NR communication,
the gNB and a minimal core network with UPF, iUPF, a router and a HTTP
server is modeled. All modifications as well as the simulation scripts to reproduce
our results are available in the CrowNet repository.3

4.1 Simulation Parameters

Running the combined simulations requires setting the parameters for the com-
munication and mobility models. Table 1 lists the parameters for the micro-
2 https://crownet.org.
3 https://github.com/roVer-HM/crownet/tree/pub mobmod unet22.

https://crownet.org
https://github.com/roVer-HM/crownet/tree/pub_mobmod_unet22
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scopic pedestrian mobility models. For Vadere (middle in Table 1), the pedes-
trian potential intimate space width models the size of the space that virtual
pedestrians consider as intimate and reserved to family. The potential personal
space width models the size of the space that virtual persons consider als per-
sonal and reserved to friends. The intimate space factor is used to calibrate the
strength of the desire to keep personal space free. Whenever a parameter rele-
vant for both models, we set it to the same value (Table 1, top). Table 2 lists the
most relevant parameters for the communication models in INET and Simu5G.

Table 1. Parameters for pedestrian mobility models: in both models (top), specific for
Vadere (middle), specific for SUMO (bottom).

Symbol Value Description

Nped 30 number of pedestrians in scenario

μs 1.34 ms−1 mean of ped. speed-distribution [20,27]

σs 0.26 ms−1 std. dev. of ped. speed-distribution [20,27]

smin 0.5 ms−1 minimum speed of pedestrian [27]

smax 2.5 ms−1 maximum speed of pedestrian [27]

rped 0.2 m pedestrian radius

wint 0.65 m ped. potential intimate space width

wpers 1.2 m ped. potential personal space width

fint 1.2 intimate space factor

wstripe 0.65 m stripe width (sidewalk)

Varied Parameters. Since we assume that the effect of the microscopic mobility
model on the metrics defined in Sect. 3.3 is likely to increase with the intensity of
pedestrian communication, we vary the communication load. For sidelink com-
munication (P2P-SL) in the scenarios, we therefore vary the inter-transmission
interval Sp,app in the range of 10 ms (i.e. high load) to 100 ms (i.e. low load)
while keeping the packet size constant. Since for the server-based HTTP com-
munication (P2P-CS), setting the packet (segment) size on the application layer
would have no effect since it is a result of the TCP model, we vary the HTTP
response size Sres in the range of 10 kB to 100 kB. Usually, increasing Sres leads
to more traffic and a higher load – however, the congestion control mechanisms
implemented in TCP will adapt the rate in congested situations.

For each of the two scenarios and the two mobility models, ten different
parameter settings with ten repetitions each were simulated, i.e. 2x2x10x10 =
400 simulations were run. For each simulation, a new random seed was chosen.
Since a simulation with Nped = 30 pedestrians takes approx. 4.5 h to simulate
the scenario duration of 600 s, this is a compromise between accuracy and run
time.
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Table 2. Parameters for communication model.

Symbol Value Description

B 7 EUTRA FDD Band

(UL 2500-2570 MHz MHz, DL 2620-2690MHz MHz)

NRB 6 number of resource blocks (P2P-SL)

ccqi 7 Channel Quality Indicator (P2P-SL only)

DRLC UM RLC type (UM: unacknowledged mode)

SMAC 5 MB max. queue size on MAC layer of eNB/gNB

Sp,app 300 B UDP payload (P2P-SL)

Tp,app 10..100 ms inter-transmission time (P2P-SL)

Sreq 350 B mean request size (exp. dist, P2P-CS)

Sres 10..100 kB mean response size (exp. dist, P2P-CS)

5 Results

In the following, we present results for the two mobility scenarios (Sect. 3) in
combination with the two communication variants (P2P-SL and P2P-CS, see
Sect. 3.3) regarding the metrics defined in Sect. 3.3. If not mentioned otherwise,
plots show the arithmetic mean of all nodes in all simulation repetitions and
error bars indicate the standard deviation.

Fig. 3. Results for Sidewalk (Scenario A) with Nped = 30 persons.

Figure 3 shows the results for the Sidewalk (Scenario A): For multicast
sidelink communication, the number of received packets on the MAC layer is sim-
ilar for both microscopic mobility models as long as the packet inter-transmission
time Tp,app is larger than 50 ms (Fig. 3a). With decreasing Tp,app (i.e. increas-
ing load), the difference is more significant. For Tp,app = 40 ms, the number of
received packets differs by more than 25%. This is likely to be caused by the
fact that in this case the network is near an overload condition (where network
behavior changes), making the positions of the pedestrians (and thus the influ-
ence of the mobility model) more relevant. In general, the number of received
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packets is higher when pedestrian mobility is modeled by OSM (Vadere) com-
pared to striping (SUMO) in this scenario. At the application layer (see Fig. 3b),
the impact of the mobility model is much less visible – in particular for low load
(Tp,app exceeding 40 ms).

For server-based pedestrian communications via TCP, the observations are
similar: In this case we use the average Signal-to-Interference-plus-Noise (SINR)
as a metric on the lower layer, since the number of transmitted packets is dynam-
ically controlled by TCP. Again, while metrics on the lower layer differ (Fig. 3c),
the influence of the mobility model is low on the application layer (Fig. 3d) –
in particular for low load (e.g. Sres less than 60 kB). Furthermore, the average
number of received data packets on the application layer is higher in case of
OSM although the SINR is lower. This seems counterintuitive at first. However,
investigating the positions of pedestrians in detail for an example simulation
(Fig. 5), it becomes visible that for OSM the pedestrians have a tendency to
move slower to the end of the corridor compared to striping. This could be
caused by the additional degrees of freedom in OSM (persons can make steps in
different directions within the corridor of 0.65 m whereas in striping they move
always straight to the end of the corridor). Therefore, the pedestrians are within
range of the base station for a longer time allowing them to receive more packets
– overcompensating the lower SNIR.

In order to confirm the assumption that the differences in the results are
caused by the different approaches for modelling pedestrian interaction in
crowded situations (e.g. choosing the next step in OSM/Vadere vs. being on
a stripe in SUMO), we simulate the same scenario with only Nped = 2 pedes-
trians. In this case, almost no mobility interaction between pedestrians occurs
and the applied microscopic model should have less influence on our metrics.
This is confirmed by the results in Fig. 4. Neither the metric on the link layer
(Fig. 4a) nor on the application layer (Fig. 4b) show a significant influence of the
pedestrian mobility model when only two pedestrians are present in the scenario.

Fig. 4. Sidewalk (Scenario A) with Nped = 2 persons.

For the Bottleneck scenario (Scen. B, see Sect. 3.2), the results in Fig. 6 con-
firm the effects observed in Scenario A: The impact of the microscopic mobility
model is higher on lower networking layers (Fig. 6a, 6c) compared to the effects
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Fig. 5. Example for pedestrian positions (Scen. A, Smp. 1).

on the application layer (Fig. 6b, 6d). However, compared to the crowed Side-
walk scenario, the influence seems to be slightly reduced, in particular in the
P2P-CS variant on the application layer (Fig. 6d). A possible explanation is that
for the bottleneck itself the inter-action between pedestrians is similar for both
models: the pedestrians are standing in front of the bottleneck, with a distance
corresponding to the intimate space width (OSM/Vadere) or stripe width (strip-
ing/SUMO).

Fig. 6. Results for Bottleneck (Scenario B).

In order to illustrate the differences in the resulting positions of pedestrians,
Fig. 7 and Fig. 8 plot the positions at different points in time. Here, it seems
that the higher degree of freedom in OSM allows pedestrians to form a more
compact group (at T = 100 s), to pass the bottleneck more quickly and to spread
in a wider range of directions after passing the bottleneck (at T = 300 s).

Figure 9 additionally shows results for the end-to-end delay of device-to-
device communication (D2D via sidelink, P2P-SL) measured on the application
layer. This delay can vary over several orders of magnitude: In situations with
low communication load when sufficient resources on the sidelink are available
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Fig. 7. SUMO: Example for positions in Bottleneck scenario (Scen. B, Smp. 1).

Fig. 8. Vadere: Example for positions in Bottleneck scenario (Scen. B, Smp. 1).

(Fig. 9b), whenever the mobile device of a pedestrian has data to transmit, it
requests resources on the sidelink at the eNB, receives a corresponding grant
with low delay and transmits its data. Thus, the resulting delay is dominated
by the delay for getting the resource grant and transmitting the data. Queuing
only rarely occurs and thus the resulting delay is in the order of milliseconds.
On the other hand in overload conditions (Fig. 9a, Tp,app = 30 ms), the mobile
device does not get sufficient resources to transmit all available data packets
- the packets are queued and due to the queuing delay the total delay can
increase up to the order of tens of seconds. While this basic effect is visible
for both microscopic mobility models and the total end-to-end delay is similar
for Tp,app = 30 ms as well as for Tp,app ≥ 60 ms, the delays for situations where
overload only partially occurs (inter-TX time Tp,app ∈ {40 ms, 50 ms}) varies
significantly for the two microscopic mobility models. A likely reason is that
due to the differences in modelling interaction between pedestrians, in strip-
ing/SUMO the overload conditions occurs earlier at more locations within the
network compared to OSM/Vadere.
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Fig. 9. Delay for P2P-SL in Bottleneck (Scen. B).

6 Conclusion

In this paper, we investigated the influence of microscopic mobility models for
pedestrians within two scenarios: a crowded sidewalk and a bottleneck situation.
The results indicate that in crowed situations the mobility model has a signifi-
cant influence on metrics such as the number of received packets or the SINR.
On lower layers of the networking stack (e.g. the link layer) the influence is more
distinct, whereas on higher layers such as the application layer it is less visible.
Furthermore, we considered direct communication via sidelink and server-based
communication via 5G NR. Within both scenarios, the sidelink communication
is more affected by the mobility model than the server-based cellular communi-
cation.

While the results of these two example scenarios cannot be generalized, they
illustrate the need for detailed pedestrian mobility models when evaluating pro-
tocols and applications for pedestrian communication. This does not necessarily
mean that these models have to be implemented within the communication simu-
lator – a coupling as already know from inter-vehicular communication is also an
option and open-source frameworks for this are available. In future work, we will
investigate a wider range of scenarios including vehicles and public transport.
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Abstract. This paper depicts a compact monopole tri-band coplanar antennawith
aL shape parasitic element. Themonopole antenna consists of a I-shaped resonator
connected over aM-shaped resonator, with a circular ground plane, and a coplanar
waveguide (CPW) feedline. The overall size proposed design is 9 mm × 9 mm
× 0.127 mm on a Rogers RT5880 material with a loss tangent of tanδ = 0.0009.
The reflection coefficient S11 remains less than −10 dB for 28 GHz, 38 GHz and
61.5 GHz, with a VSWR< 1.7. The gain of an antenna are 1.365 dB, 3.147 dB and
4.520 dB for 28, 38, and 61 GHz respectively. The proposed design provides a tri-
band antenna design with enhanced bandwidth up to 4GHz, a compact dimension,
and a feasible solution for future 5G millimeter-wave communication.

1 Introduction

Millimeter-wave (mm-wave) front end circuits have created enormous attention in high
speed, short range 5G wireless applications over the last few years. Researchers are
giving substantial efforts for the development as well as for the standardization of active
and passive devices at the unlicensed spectrum (60 GHz) ranging from 38 GHz to
66 GHz where an efficient antenna with enhanced bandwidth is a major component
of such systems. With the rapid rise of IoT based devices in recent years, the demand
for 5G applications has increased. The traditional communication system’s spectrum
constraints led to research on 5G communication at frequencies of 28, 38, 60, 71–76,
and 81–86GHz.However,mm-wave is not only advantageous for its tremendous amount
of bandwidth, it is also great for high speed data transmission, high definition picture
quality and video streaming [1, 2]. Conversely, mm-wave has some issues to deal with
regarding sensitivity to blockage, directivity and high propagation loss. Therefore, it sets
new challenges for architecture and infrastructure for Mm-wave communication [3].

In terms of novel ideas, researchers have offered many strategies to expand the use of
the 5G spectrum. For example, T-slotted microstrip patch antenna for 5G WiFi network
of 60 GHz frequency is used to improve the WiFi system data transmission rate [4].
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The wearable Mm-wave Triband Antenna embedded on a smart watch for wearable IoT
applications. Biomedical telemetry antennas are designed to allowdoctors to receive data
from patients. Moreover, they can be used for tablets endoscopic, pacers, cardioverter-
defibrillators, devices for retinal implants and blood glucose [5]. A compact size low-
profile ultra-wideband antenna operating at 28 GHz with a bandwidth of 4.47 GHz
was reported in [6]. A fully integrated mm-wave multi beam phased array antenna was
analyzed in [7]. In [8] the antenna deals with the polarization and beam scanning ability
for mm-wave application. The antenna consists of switchable rejection band capabilities
designed to reduce interference from other wireless devices working at 3.37 and ends
at 27.71 GHz. The alternating state in the resonator was achieved by using two inserted
parallel PIN diodes [9]. A complex microstrip phased array antenna operating at 28
GHz was constructed with a capacitive via fences to reduce the size of the element, to
improve the beamwidth of the antenna. AU-shaped decoupling structure was introduced
between the antenna elements to reduce mutual coupling and to minimize the overall
size of the antenna [10]. The array antennas in [11] are co-designed with an aperture
transmission line so that the overall antenna element receives RF signals. However, the
antenna operates at a licensed 5G mm-wave spectrum of 24.25–27 GHz. A compact
coplanar waveguide (CPW) technique is used to enhance the bandwidth of a Multi-
Input-Multi-Output (MIMO) antenna. The antenna design is perfect for ultra wideband
wireless communication and portable devices [12]. To resolve aerodynamic issues and
the connection loss between the IC chip and antenna band in the mm-wave 5G band,
was designed in [13]. The fabricated antenna covers 0.84–1.89 GHz, 2.39–5.12 GHz
for LTE/Sub-6 GHz 5G bands, 28.2–32.1 GHz and 33.7–34.9 GHz for the mm-wave
communication. The gain of 28 GHz is about 10.95dBi. Therefore, the antenna design
stands out to be a good candidate for future V2X (vehicle-to-everything) applications. In
reference [14] a dual-band, single-feed mmwave antenna with circular polarization is
proposed for 5G communication.

In this paper, a compact co-planar waveguide (CPW) fed mm-wave tri-band antenna
for future 5G communication is presented. With a bandwidth of 4 GHz, this tri-band
antenna is suitable for multiband operation in 5G communication. The proposed antenna
has a compact in design, large bandwidth, and has multiband feature. The suggested
antenna is composed of low-cost Rogers RT 5880 material and overall size of 9 mm ×
9 mm × 0.127 mm.
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Fig. 1. Front view (a) and rear view (b) of the proposed mm-wave tri-band antenna.

2 Antenna Configuration

A compact CPW fed tri-band monopole antenna has been designed for 5G communica-
tion, sized at 9 mm× 9 mm× 0.127 mmwhich is presented in Fig. 1. The basic antenna
consists of a 50� CPW feedline, circular ground plane, and a rectangular resonating
patch. The width and length of the actual rectangular patch are calculated using Eq. (1)
and (2).

Wp = co
2fo

√
2

1 + εr
Wp = co

2fo

√
2

1 + εr
(1)

Lp = co
1

2fo
√

εreff
Lp = co

1

2fo
√

εreff
− 2�Lp�Lp (2)

To achieve compact size with multiband as well as to keep the value of reflection
coefficient, S11 less than -10dB with high gain have become the main focus of our
research work. In addition, a coplanar waveguide technique with circular ground plane,
rectangular slot and parasitic elements are used to achievemultiband operation. Themain
radiating element is tapered at the top and at the bottom to shift the radiation towards the
desired band for 5G communication as well as to achieve desired frequency bands i.e.,
28 GHz and 38 GHz and 61.5 GHz keeping the overall size of the antenna compact. Two
L shaped parasitic elements are added to the antenna design to improve overall radiation
pattern. The proposed design is made up of three layers: a circular ground plane of height
0.035 mm, a low-cost 0.127 mm-thick (Sh) Rogers RT5880 substrate (εr = 2.20 and tanδ
= 0.0009), and a radiating patch of 0.035 mm thickness. The radiating patch is trimmed
to a unique form to enable multiband operation. The parasitic element is then truncated
from the radiating patch to smooth and enhance the radiation pattern while maintaining
a small size for the final design. However, the optimized values of the proposed antenna
are summarized in Table 1.
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Table 1. Optimized Parameters of the Proposed Design

Dimension Value
(mm)

Dimension Value
(mm)

Sw 9 L4 0.70

Sl 9 L5 2.38

g 8.80 W1 0.63

Pl 4 W2 1.13

Mt 0.035 W3 1.00

Mw 0.3945 W4 0.80

L1 0.44 W5 0.80

L2 0.20 W6 0.95

L3 0.60 W7 4.20

3 Simulated Results and Analysis

The simulated reflection co-efficient (S11) is presented in Fig. 2. Where it is clear that
for 28 GHz, 38 GHz and for 61 GHz S11 remains at – 17 dB, -11.9 dB and -23.7 dB
respectively with a wideband operation at 28 and 61.5 GHz with bandwidth of 4 GHz
which are ideal frequency for the 5G communication. Moreover, in all desired frequency
rangeVSWRremain less than 2 depicted in Fig. 3. The gain of the of the designed antenna
gradually increasing with increasing the frequency starting from the 1.365 dB, 3.147 dB
and 4.520 dB for the 28 GHz, 38 GHz and 61 GHz respectively. Additionally, although
for the 28 GHz directivity was 4.355 dBi with the increasing the frequency directivity
peaks at 8.026 dBi. The maximum gain over frequency plot and the overall efficiency vs
frequency of the proposed antenna have been presented in Fig. 4 and Fig. 5 respectively.

Fig. 2. Simulated result of reflection coefficient, S11 of the proposed mm-wave tri-band antenna
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Fig. 3. VSWR reading of the proposed tri-band mm-wave antenna showing the reading below
1.7 for 28 GHz, 38 GHz and 61 GHz.

Fig. 4. Maximum gain over frequency for the designed tri-band antenna.

Fig. 5. Efficiency Vs frequency graph for the designed tri-band antenna.



24 G. K. Dey et al.

Fig. 6. Three-dimensional gain plots of the design antenna at (a) 28 GHz, (b) 38 GHz and (c)
61 GHz

Three-dimensional gain plots are presented in Fig. 6 where we have achieved maxi-
mum 4.52 dB gain at 61GHz for the proposed tri-band mm-wave antenna with different
patterns which degrades it from a general tri-band antenna. However, the current density
of the tri-band antenna is presented in Fig. 7. By using the current density, we can find
out the resonating elements inside the patch antenna as well as assist us to realize the
direction of the flow of current inside the antenna.

Fig. 7. Surface current distribution of the design antenna at (a) 28 GHz, (b) 38 GHz and (c)
61 GHz.

In 28 GHz the maximum current distribution is on the microstrip line and bottom of
the radiating patch. In 38 GHz current distribution extends upto the top of the radiating
patch and lastly in 61.5 GHz the maximum current distribution is towards almost whole
area of M-shaped resonator, microstrip line and slightly lower part of the I-shaped
resonator.

Table 2 shows the comparative analysis of the antenna dimension,material, frequency
and gain of the proposed design with the reference antenna. It is shown that the all the
reference design used Rogers RT 5880 material except for one in [14] which achieves
to work on 5G single band with a gain of 5.32 dB. However, from [15] to [16] all the
reference antenna is working in multiband operation but not on the desired band for
mmwave frequency. In [17] a good antenna gain is spotted but still not functioning on
the desired 5Gmmwave band. However, our proposed design is performing inmultiband
suitable for 5G communication and the overall gain of the antenna gradually increases
with the increase in frequency.
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Table 2. Comparative Analaysis With Previous Research

Reference Antenna Dimensions
(mm2)

Substrate
Material

Frequency
(GHz)

Gain
(dB)

[15] 5.5 × 4.35 FR-4 28 5.32

[16] 10 × 10 Rogers RT 5880 26, 35, 50 3.5–7.5

[17] 14 × 12 Rogers RT
5880

28, 38 1.27, 1.83

[18] 7.2 × 5 Rogers RT
5880

37, 54 5.5–6

Proposed design 9 × 9 Rogers RT 5880 28, 38, 61.5 1.37, 3.15, 4.52

4 Conclusion

The design and simulated result of a CPW fed tri-band antenna is presented for future
5G communication. The proposed antenna works as a tri-band antenna at 28 GHz, 38
GHz and 61.5 GHz in the 5G millimeter wave frequency band with enhanced gain and
efficiency as the frequency increases. The antenna is compact in size and can be easily
fabricated inside 5G devices for wireless communication with a wideband operation at
28 GHz and 61.5 GHz with bandwidth of 4 GHz. Thus, the proposed triband antenna is
a perfect candidate for 5G communication.
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Abstract. In contrast with previous cellular systems standard, 5G wire-
less communications are much more suited to the remote control physical
systems (e.g., cars, drones, robots). In this new setting, it becomes rele-
vant to revisit the problem of wireless transmit power control and make
it more goal-oriented, the goal being to minimize a given controlled sys-
tem final performance metric. This work precisely aims at designing the
transmit power algorithm so as to find a tradeoff between the system
energy and communication energy. This paper focuses on the case of
vector linear dynamical systems subject to additive perturbation when
communications between the system controllers and the systems to be
controlled are subject to packet erasures. Even for the single system case,
the corresponding optimization problem is not trivial but turns out to be
solvable iteratively. For the multiple system case, we propose a transmit
power control algorithm which is generally suboptimal but has the virtue
of being distributed and performing better than power control strategies
that are usually implemented for controlled systems.

Keywords: Slow power control · Energy-efficiency · Linear systems
with perturbations

1 Introduction

The dominant paradigm in system control theory is to assume that information
exchanges between the controller(s) and the system(s) to be controlled are per-
fect. When information exchanges occur over wireless channels, in the case of
remote control, this assumption may be questionable and even not realistic at
all. This is one of the reasons why there is an active research area at the inter-
face between control theory and wireless communications. Among representative
research works of this approach, we can quote the following papers [1,3–6,10,12].

The problem of imperfect communication between the various components
of a system is addressed in [6]. In [3], the problem of imperfect feedback is con-
sidered when the feedback channel noise is caused by the quantization of trans-
mitted data. In [10], it is shown how a finite communication data rate impacts
the controller design. The impact of fast fading wireless channel fluctuations on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Sabir et al. (Eds.): UNet 2022, LNCS 13853, pp. 27–40, 2023.
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the control design has been addressed, e.g., in [4,12], and [1]. The coexistence
of several controlled systems sharing the same communication channel prone to
interference is considered in [5].

In the present paper, in contrast with the existing literature, the main tech-
nical focus is not on the system controller but on the control of the wireless
transmit power implemented at the system side for reporting its state to the
controller through a wireless feedback channel. This scenario may be of interest,
e.g., in the remote control of ground or aerial drones, when the control input is
evaluated by a remote controller from measurements of the state of the drone that
are transmitted over a wireless channel. What characterizes the power approach
taken in this paper is as follows. First, the transmit power is adapted to the wire-
less feedback channel statistics and the system state (which is multidimensional
and not merely scalar as [11]). Second, the objective pursued consists of a com-
bination of a system control objective and a communication objective (namely,
the wireless transmission energy); managing the wireless transmit power is both
relevant in terms of consumed energy and electromagnetic pollution. Third, this
adaptation is performed in the presence of an additive perturbation on the (lin-
ear) system dynamics and a multiplicative noise for the wireless feedback channel
(which corresponds to data packet erasures). Fourth, the case of multiple con-
trolled systems whose communications may interfere is considered (in contrast
with [11] where there is only one controlled system). This complete framework
has not been addressed yet in the literature.

Good representatives of the closest literature are give by references [2,7,13]
where the authors also assume a multiplicative noise model for the communica-
tion channel but do not focus on the wireless transmit power control problem
by both pursuing a system control objective and a wireless transmission energy
objective. Rather, the cited papers focus on a system control-theoretic problem
namely system stability.

The present paper is structured as follows. In Sect. 2, the technical problem
to be solved is formulated. Determining the best power control policy is shown
to amount to solving a non-trivial multilinear problem. To solve it, we resort to
an iterative search technique described in Sect. 3. Section 4 addresses of several
controlled systems with interfering communication. Then, in Sect. 5, we conduct
a numerical performance analysis to illustrate the benefits of controlling properly
the wireless transmit power. Conclusions and perspectives are provided in Sect. 6.

2 Problem Formulation

A general distributed multi-controller or multi-agent system is shown in Fig. 1.
The signals (output and control signal) are transmitted wirelessly and assume to
exploit the same radio resources (same frequency band, same time frame...). The
received signals are corrupted by noise coming from the communication channel
and by interference coming from the other controller-system or controller-agent
pairs.
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Fig. 1. General remotely controlled distributed multi-agents system

We assume that the communication from a controller to a controlled sys-
tem or agent is perfect and focus on the communication from the agent to the
controller. The architecture of the overall system is shown in Fig. 2.

Fig. 2. Communication and control setup

Consider a discrete-time overall system consisting of N agent-controller pairs.
We assume that the evolution of the state xi ∈ R

ni
x of the i-th agent, i =

1, . . . , N , is described by the following discrete-time state equation

xi (t + 1) = Aixi (t) + Biui (t) + di (t) , (1)

where t ∈ {1, ..., T}, T � 1, Ai ∈ R
ni

x×ni
x , Bi ∈ R

ni
x×ni

u , and ui (t) ∈ R
ni

u is the
control input, di (t) ∼ Nni

x
(0,Σdi

) is the perturbation assumed independent of
xi (t).

At each discrete time instant t, the i-th agent measures its state via the
following measurement equation

yi (t) = Cixi (t) , (2)
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where Ci ∈ R
ni

y×ni
x . The measured state is then sent with transmit power pi (t)

to the i-th remote controller. From the received measurement vector ŷi (t), the
controller for the i-th agent evaluates a control input ûi (t) fed back to the
agent. The vector of transmit powers is p1:N (t) = (p1 (t) , p2 (t) , . . . , pN (t))T .
The effect of interference between the different communication links is modeled
as

ŷi (t) = yi (t) zi (t) (3)

where zi (t) ∼ Ber (πi (p1:N (t))) follows a Bernoulli random variable with param-
eter πi (p1:N (t)), denoted by πi (t) in what follows. The parameter

πi (t) = Pr (SINR � γi)
= Pr [zi (t) = 1] ,

(4)

determines the success rate of the communication, where γi is the signal-to-noise
plus interference ratio (SINR) threshold for the i-th decoder. In general, πi (t)
depends on pj (t) , j = 1, . . . , N . This accounts for the fact that the transmitted
signal has to be received with a sufficiently high SINR to allow error-free decod-
ing, in which case zi (t) = 1. If the received signal is too noisy or subject to too
much interference to be decoded correctly then zi (t) = 0.

Assuming that zi (t) is known at the receiver (e.g., by using a classical cyclic
redundancy check procedure), while zi (t) = 1, we consider a static feedback
with control input evaluated as

ui (t) = Kiŷi (t)
= KiCixi (t) zi (t)

(5)

where Ki ∈ R
ni

u×ni
y . When zi (t) = 0, the receiver cannot decode correctly and

the transmitted control input is ui (t) = 0 as in [8,9].
For each agent i = 1, . . . , N , assuming that xi (1) ∼ Nni

x
(0,Σxi

) and consid-
ering a finite control horizon T , our aim in what follows is to find, a transmission
power policy p1:Ti = (pi (1) , pi (2) , . . . , pi (T ))T , that minimizes the expected
cost

J
1:T

i

(

p1:Ti

)

= Ez1:T
i ,d1:T

i

[

T
∑

t=1

(

xT
i (t)Qixi (t) + uT

i (t)Riui (t) + pi (t)
)

]

(6)

under transmission powers bounded by P i
max

0 � pi (t) � P i
max, t = 1, . . . , T. (7)

In (6), Qi and Ri are two symmetric positive definite matrices, and the expec-
tation Ez1:T

i ,d1:T
i

[·] is performed with respect to zi (1) . . . zi (T ), which depends on
the transmission power policies of all agents and with respect to di (1) , . . . ,di (T ).
The cost J

1:T

i comprises three terms. The two first terms correspond to the sys-
tem control energy whereas the last term Ez1:T

i ,d1:T
i

[

∑T
t=1 pi(t)

]

represents the
expected communication energy for transmitting T packets to control the dynam-
ical system. This cost only assumes statistical knowledge of the quantities at hand
and in particular only the channel distribution information (CDI) is required.
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3 Full Analysis of the Point-to-Point Communication

In this section we focus on a single system controller communicating with a given
dynamical system. To lighten presentation, the system index i is omitted. In this
setting, it is possible to derive the power control policy that implements the best
tradeoff between the system control cost and the communication cost. To simplify
the optimization problem analysis, we assume a Rayleigh fading communication
channel model with average gain g. When a message is transmitted with transmit
power p, the probability of receiving a packet successfully π (p) can thus be
expressed as:

π (p) = Pr [SNR � γ]

Pr
[gp

σ2
� γ

]

,
(8)

where g is the channel gain at time t, σ2 the variance of some white Gaussian
channel noise, and γ the SNR threshold which guarantees a correct reception.
Then

π (p) =
∫ +∞

γσ2
p

1
g

exp
(

−g

g

)

dg

=e− γσ2

pg .

(9)

The above relation between π and p represents a change of variable which is very
convenient for the analysis of the considered optimization problem.

Using (1), (2), and (5), one can expand x (t + 1) , t � 1 as follows

x (t + 1)
=Ax (t) + Bu (t) + d (t)
= (A + BKCz (t))x (t) + d (t)

=
t

∏

�=1

(A + BKCz (�))x (1) +
t

∑

�=1

t
∏

r=�+1

(A + BKCz (r))d (�)

(10)

where, by convention
∏t

r=t+1 (A + BKCz (r)) = 1. Consequently, x (t) depends
on the initial state value x (1), the indicators of successful communication
z (1) , . . . , z (t − 1), and the noise realizations d (1) , . . . ,d (t − 1).

One can now reformulate in a convenient manner the problem with (6), (11)
and (10) and provide the following results.

Proposition 1. Denoting π1:T = (π (1) , ..., π (T ))T, the problem of minimizing
J
1:T (

p1:T
)

with respect to p1:T under the power constraint (11) can be reformu-
lated as

min
π1:T

C (

π1:T
)

s.t. − γσ2

g ln π (t)
− Pmax � 0, t = 1 . . . T.

(11)
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where

C
(
π1:T

)
= vecT (Σx) vec

(
Q + π (1)CT KTRKC

)
+

vecT (Σx)Ez1:T

[
vec

(
T∑

t=2

(
Θ1:t−1

)T
(
Q + z2 (t)CT KT RKC

) (
Θ1:t−1

)
)]

+

vecT (Σd)Ez2:T

[
T∑

t=2

t−1∑
i=1

(
Θi+1:t−1

)T ⊗ (
Θi+1:t−1

)T
vec

(
Q + z2 (t)CT KT RKC

)]

−
T∑

t=1

γσ2

g lnπ (t)

is multilinear, ⊗ indicates Kronecker product, and

Θt:�−1 =
�−1
∏

j=t

(A + z (j)BKC) .

This means that the tradeoff optimization problem (11) is neither convex
nor concave, and generally not quasiconvex. Finding π1:T is thus not a trivial
task. Interestingly, the problem has a recursive structure that can be exploited
to determine the best sequence of transmit powers, as explained next.

Indeed, one can decompose (6) as follows.

J
1:T (

p1:T
)

=Ez1:T d1:T

[

T
∑

t=1

(

xT (t)Qx (t) + uT (t)Ru (t) + p (t)
)

]

=Ez1:T d1:T

[

t−1
∑

�=1

(

xT (�)Qx (�) + uT (�)Ru (�) + p (�)
)

T
∑

�=t

(

xT (�)Qx (�) + uT (�)Ru (�) + p (�)
)

]

=J
1:t−1 (

p1:t−1
)

+ J
′t:T (

p1:T
)

,

(12)

where

J
1:t−1 (

p1:t−1
)

= Ez1:t−1d1:t−1

[

t−1
∑

�=1

(

xT (�)Qx (�) + uT (�)Ru (�) + p (�)
)

]

and

J
′t:T (

p1:T
)

= Ez1:T d1:T

[

T
∑

�=t

(

xT (�)Qx (�) + uT (�)Ru (�) + p (�)
)

]

.

One can observe that J
1:t−1 (

p1:t−1
)

is independent of p (t). Proposition 2,

in what follows, separates the term containing p (t) (or π (t)) from J
′t:T (

p1:T
)

.
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Proposition 2. J
′t:T (

p1:T
)

can be expressed as

J
′t:T (

p1:T
)

=Ez1:t−1d1:t−1

[

xT (t) ⊗ xT (t)
]

V
(

pt:T
)

+ vecT (Σd) V s

(

pt+1:T
)

+
T

∑

�=t

p (�) ,
(13)

where for all t < T
V

(

pt:T
)

= Ezt:T

[

V
(

pt:T
)]

V
(

pt:T
)

=vec
(

Q + z2 (t)CT KT RKC+
T

∑

�=t+1

(

Θt:�−1
)T (

Q + z2 (�)CT KT RKC
) (

Θt:�−1
)

)

,

and for all t < T − 1

V s

(

pt+1:T
)

= Ezt+1:T

[

Vs

(

pt+1:T
)]

Vs

(

pt+1:T
)

=
T

∑

�=t+1

�−1
∑

i=t

(

Θi+1:�−1
)T ⊗

(

Θi+1:�−1
)T

vec
(

Q + z2 (�)CT KT RKC
)

Furthermore, V
(

pt:T
)

and V s

(

pt+1:T
)

can be evaluated by Proposition 3.

Proposition 3. V
(

pt:T
)

and V s

(

pt+1:T
)

can be evaluated using the following
backward recursions

V
(

pt:T
)

=Ez(t)

[

vec
(

Q + z2 (t)CT KTRKC
)]

+

Ez(t)

[

(A + z (t)BKC)T ⊗ (A + z (t)BKC)T
]

V
(

pt+1:T
)

for all t � T − 1 and

V s

(

pt:T
)

= V
(

pt:T
)

+ V s

(

pt+1:T
)

for all t � T − 2.

Considering the transmission power pT minimizing (6), these backward recur-
sions are initialized by Proposition 4.

Proposition 4. The transmission power p (T ) at time T minimizing (6) is
p (T ) = 0 and leads to

V (p (T )) = vec (Q)

and
V s (p (T )) = vec (Q) .
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We can then determine π (t) minimizing (6) when π (t′) is fixed for all t′ =
1, . . . , T, t �= t′. This is shown in Proposition 5.

Proposition 5. Assume a Rayleigh fading law with mean g for gt. Consider
some t ∈ {1, . . . , T − 1} and assume that π(t′) is fixed for all t′ = 1 . . . , T, t′ �= t.
The value of π(t) minimizing (6) with the constraint (11) is either π(t) = 0 or

π(t) = min
(

e− γσ2

Pmaxg , π0

)

, where π0 is such that e−2 < π0 and

Ez1:t−1d1:t−1

[

xT (t) ⊗ xT (t)
] ∂

∂π(t)
V (pt:T ) +

γσ2

π0 ln2 π0g
= 0.

Consider a transmission power policy p1:T
(0)

and its corresponding π1:T (0)
.

From Proposition 5, for all t = 1, . . . , T , one can obtain

π (t)� = arg min
π(t)∈I

C
(

π (1)(0) , . . . , π (t − 1)(0) , π (t) , π (t + 1)(0) , . . . , π (T )(0)
)

where I =
{

0,min
(

e− γσ2

Pmaxg , π0

)}

. The set

P =
{[

π (1)�
, π (2)(0) , . . . , π (T )(0)

]

, . . . ,
[

π (1)(0) , . . . , π (T − 1)(0) , π (T )�
]}

of associated success vectors is obtained. The vector

π1:T (1)
= arg min

π1:T ∈P
C (π1:T )

and the associated transmission power policy p1:T
(1)

provides a reduced cost. The
above process may be repeated. Algorithm 1 summarizes the proposed iterative
optimization process. Implementing this algorithm allows one to determine the
transmit power control policy that realizes the best tradeoff between system
control energy and communication energy.

4 Analysis of Multiple Controller Systems

In this section, we assume the presence of multiple controller-system pairs. The
cost function for the controller-system pair i ∈ {1, ..., N} is defined by Equation
(6). As explained in the previous section, the relation between the transmit power
and the packet success probability allows one to simplify the minimization of the
cost function. This is why it is also used in the case of N agents or controllers.
When N agents share the same interference channel, for the i-th agent, the
success rate is

πi (p1, . . . , pN ) = Pr [zi = 1 | p1, . . . , pN ]
= Pr [SINRi � γi] .
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Algorithm 1. Transmission power optimization
Input: Time horizon T , Σx, A, B, K, C, Q, R, Σd;

Initialization: p (1)(0) = . . . p (T )(0) = 0, k = 1;
Output: Power policy p1:T ;

while k �kmax do
for t = T : −1 : 1 do

Using p (1)(k−1) , . . . , p (T )(k−1), (9), and V (pT ) = vec (Q), determine V
(
pt:T

)

by backward recursion using Proposition 3;
end for
for t = 1 : T do

From p (t − 1)(k−1) and E
[
xT (t − 1) ⊗ xT (t − 1)

]
, evaluate E

[
xT (t) ⊗ xT (t)

]

using (10);

Determine the minimum of ∂J
∂π(t)

obtained at π (t) = min

(
e−2, e

− γσ2
Pmaxg

)
;

if ∂J
∂π(t)

∣∣
∣
π(t)

< 0 then

Determine π0 and its corresponding power p0 using (9);

Determine π(t)∗ ∈
{

0, min

(
π0, e

− γσ2
Pmaxg

)}
minimizing the cost;

Determine the power p (t)∗ corresponding to π (t)∗ using (9);
else

p (t)∗ = p (t)(k−1);
end if

end for[
p (1)(k) , . . . , p (T )(k)

]
is one of the element of P =

{
[p (1)∗ , p (2)(k−1) , . . . , p (T )(k−1)] ,. . . , [p (1)(k−1) , p (2)(k−1) , . . . , p (T )∗]

}

that minimizes the cost (6)
end while

Considering a Rayleigh-fading interference channel model between the
transmitter-receiver pairs, and assuming that agent j transmits with a power
pj , the SINR experienced by the i-th agent is

SINRi =
pigii

σ2
i +

∑

j �=i pjgji
(14)

where gji (t) is the channel gain from controller j to agent i, with mean value
gji.

In the case of N = 2 agents, it is possible to express the probability of
success as stated in the next proposition. When N > 2, the latter quantity can
be evaluated using Monte-Carlo draws, may be learnt or obtained using real
measurements.

Proposition 6. Consider N = 2 agents, transmitting at time t at a power pi

and pj over a Rayleigh-fading interference channel with channel gain with mean
value gii, gji, and white Gaussian noise with variance σ2

i . Considering the SINR
threshold γi for the i-th agent, its success probability is
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πi (pi, pj) =
(

1 +
γigji

gii

pj

pi

)−1

exp

⎛

⎝−
γiσ

2
i

gii

pi

⎞

⎠ . (15)

As in the single agent case, one can reformulate the problem as

min
π1:T

i

Ci

(

π1:T
i

)

s.t. πi (t) − πPmax � 0, t = 1 . . . T
(16)

where

πPmax =
(

1 +
γigji

gii

pj

Pmax

)−1

exp

⎛

⎝−
γiσ

2
i

gii

Pmax

⎞

⎠ .

As in Sect. 3, one can obtain

J
′t:T
i

(

p1:Ti ; p1:Tj

)

=Ez1:t−1
i d1:t−1

i

[

xT
i (t) ⊗ xT

i (t)
]

V i

(

pt:T
i ; pt:T

j

)

+ vecT (Σdi
) V si

(

pt+1:T
i ; pt+1:T

j

)

+
T

∑

�=t

pi (�) ,
(17)

Furthermore V i

(

pt:T
i ; pt:T

j

)

and V si

(

pt+1:T
i ; pt+1:T

j

)

can be evaluated and
initialized as in Sect. 3.

To minimize (6), consider the derivative of J
1:T

i

(

p1:Ti ; p1:Tj

)

∂J
1:T
i

(
p1:Ti ; p1:Tj

)

∂pi (t)
=E

z1:T
i d1:T−1

i

[
xT

i (t) ⊗ xT
i (t)

] ∂

∂pi (t)

(
V i

(
pt:T

i ; pt:T
j

))

=E
z1:T

i d1:T−1
i

[
xT

i (t) ⊗ xT
i (t)

]
×

(
vec

(
CT

i KT
i RiKiCi

)
+

(
AT

i ⊗
(
CT

i KT
i BT

i

)
+

(
CT

i KT
i BT

i

)
⊗ AT

i +
(
CT

i KT
i BT

i

)
⊗

(
CT

i KT
i BT

i

))

V i

(
pt+1:T

i

))
× ∂πi (t)

∂pi (t)
− 1

(18)

In the case of multiple agents, the reference is present, leading to a more
complicated expression of the success rate whose derivative with respect to pi is

∂πi

∂pi
=

γigiigjipjpi + γiσ
2
i

(

giipi + γigjipj

)

(

giipi + γigjipj

)2
pi

exp
(

−γiσ
2
i

giipi

)

. (19)

Searching the minimum value of J
1:T

i

(

p1:Ti ; p1:Tj

)

considering the second-order
derivative of πi with respect to pi is not trivial. A sub-optimal method is proposed
in what follows.

The best situation when agent i is sending the measurement signal, corre-
sponds to the no interference case when pj = 0. In that case, Proposition 5
may be used. Searching the minimum value of (6) can then be performed using
Algorithm 2, which involves Algorithm 1.
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Algorithm 2. Transmission power allocation for the two-agent case
Input: Time horizon T , Σxi , Ai, Bi, Ki, Ci, Qi, Ri, Σdi , i ∈ {1, 2};

Initialization: pi (1)(0) = . . . pi (T )(0) = 0, i ∈ {1, 2}, k = 1;
Output: Power policy p1:T

i ;
while k �kmax do

Evaluate p1 (1)(k) , . . . , p1 (T )(k) using pi (1)(k−1) , . . . , pi (T )(k−1) , i ∈ {1, 2} and
Algorithm 1
Evaluate p2 (1)(k) , . . . , p2 (T )(k) using p1 (1)(k) , . . . , p1 (T )(k), p2 (1)(k−1),. . . ,

p2 (T )(k−1) and Algorithm 1
end while

5 Numerical Analysis

First, the impact of the state perturbation d (t) is analyzed in the single agent
case. For that purpose, consider a dynamical system where nx = ny = nu = 2,

A =
(

1.1 0
0 1.1

)

, −B = Q = R = Σx =
(

1 0
0 1

)

, KC =
(

1.8 0
0 0.9

)

,Σd =

σd ∗
(

1 0
0 1

)

and Pmax = 3.

Fig. 3. Obtained transmission power policy for different values of σd of the state per-
turbation, when T = 30

From Fig. 3, we observe that the need for communication increases as the
value of σd increases. That is due to the fact that a larger value of σd indicates
a stronger perturbation leading to a more perturbed system.

Considering σd = 0.05, Fig. 4 shows the average cost J
1:T

over 10000 real-
izations with different power control policies: transmission at full power Pmax

(conventional policy for closed loop systems); send nothing (open loop policy);
transmit according to the proposed algorithm. The proposed algorithm has a
similar average cost to open loop policy when T � 5. The reason for this is that
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the system is sufficiently close to dynamical equilibrium within this time horizon,
making communication useless. But when T > 5, the proposed algorithm yields
a better performance compared to other policies.

To analyse the performance of the proposed algorithm for multiple agents,
consider two agent-controller pairs with the same parameters as in the single
agent case. The result is shown in Fig. 5. The proposed algorithm performs much
better than other power policy. As the time horizon increases, the open loop
policy becomes less efficient. When T � 12, the average cost of the open loop
policy for one agent is larger than the sum of the average costs J

1:T

1 +J
1:T

2 using
the proposed algorithm.

0 5 10 15 20 25 30
100

101

102

103

104

Fig. 4. Impact of the choice of the power control policy on the average cost J
1:T

for
different time horizons T

0 5 10 15 20 25 30
100

101

102

103

104

Fig. 5. Impact of the choice of the power control policy: For T = 30 using the proposed
policy allows the combined cost to be divided by 50.
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6 Conclusion

In contrast with the conventional power control literature and the system con-
trol literature, the problem of wireless transmit power control consider both
the system control energy and the communication energy. The benefits of our
approach is shown for controlling vector linear dynamical systems both in the
presence of additive dynamical perturbations and communication packet losses.
In the case of a single controller-system pair, we show how to determine the
best power control policy. For the case of multiple pairs, partial but encourag-
ing results are provided. To provide concrete figures, it is seen that our joint
approach may allow the combined cost to be divided by factors as large as 50
for typical simulation settings. The present work would need to be deepened by
assuming the distributed nature of the decisions, typically by resorting to game-
theoretical tools to come up with fully distributed and reconfigurable transmit
power policies.

Acknowledgements. This work was fully supported by the RTE-CentraleSupelec
Chair.
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Abstract. Second order statistical moments of the temporal spectrum of scattered
ordinary and extraordinary electromagnetic waves in the equatorial ionosphere are
considered analytically and numerically using geometrical optics approximation
and random transport equation. Broadening of this spectrum and shift of its max-
imum of these waves are analyzed. Investigations are carried out for different
distances outside of a plasma slab and different frequencies of electron density
pulsations. Statistical moments contain anisotropic coefficient of elongated plas-
monic structures, tilt angle of these structures with respect to the external magnetic
field, conductivity and velocity of a plasma stream. These factors have an influ-
ence on the evaluation of the temporal spectrum varying propagation distances
traveling by these waves in the turbulent terrestrial ionosphere. Precursors of scat-
tered extraordinary waves is observed for the extraordinary wave in a plasma slab,
a new double-humped effect is revealed. Numerical calculations are carried out
using ground-based radar systems and satellites observation data.

Keywords: Ionosphere · Statistical moments · Temporal spectrum

1 Introduction

Theoretical investigations and observations of the statistical characteristics of scattered
radio waves in the terrestrial ionosphere is important in many practical applications [1–
3]. Fluctuations in signal power and phase often accompany radio wave propagation
over earth-space paths as a result of inhomogeneities in the ionospheric electron density.
Conductivity has an influence on the statistical moments of radio waves propagating in
the ionosphere.

Peculiarities of the spatial spectrum of electromagnetic waves propagating in
F-region of the polar ionosphere were considered in [4–9] using the geometrical
optics approximation and modify smooth perturbation method. It was shown [10] that
anisotropic conductivity has a substantial influence on the statistical characteristics of the
temporal spectrum in the polar ionosphere. Spatial-temporal fluctuations of electron den-
sity irregularities, anisotropy and the tilt angle of elongated ionospheric plasmonic struc-
tures with respect to the geomagnetic lines of forces growth intensity of the frequency
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fluctuations of scattered electromagnetic waves. Multiple scattered effects of waves are
revealed more strongly when secondary waves with close frequencies propagate in a
narrow spatial angle near the direction of an initial wave.

Currently equatorial ionosphere is of great interest. Statistical characteristics of elec-
tromagnetic waves scattered in this region were not considered till now. Ionospheric
conductivity is one of the important parameters playing a key role in the ionospheric
transport mechanism and in dynamics of irregularities having different spatial scales.
Harmonic waves scattered on these irregularities become nonharmonic. Spectral lines
broaden and the features of the temporal spectrum modify. Spread of the temporal spec-
trum is connectedwith quasi-random ionospheric irregularities, and shift of itsmaximum
is associated with the relative motion of the ionospheric plasma.

This paper addresses transformation of the temporal spectrum of both the ordinary
(O-wave) and extraordinary (E-wave) electromagnetic waves in the equatorial iono-
sphere with smoothly-varying ionospheric irregularities. We will use four-dimensional
WKB (Wentzel-Kramers-Brillouin)method and stochastic transfer equation for the com-
plex frequency investigating the influence of an absorption and anisotropy on the sta-
tistical characteristics of electromagnetic waves in the turbulent collision conductive
magnetized plasma. Broadening and shift of the maximum of the temporal spectrum
of scattered waves contains anisotropy parameters: geomagnetic field, velocity of a
plasma flow, Hall’s, Pedersen and longitudinal conductivities, anisotropy coefficient of
elongated plasmonic structures and tilt angle of these irregularities with respect to the
external magnetic field.

The problem is formulated in Sect. 2, where the second order statistical moments
describing the broadening of the temporal spectrumand the displacement of itsmaximum
is derived analytically applying the eikonal equation and the stochastic transport equation
for the complex frequency. Numerical calculations are carried out in Sect. 3 applying
the experimental data. Conclusions are made in Sect. 4.

2 Statistical Moments of the Temporal Spectrum

Integrated and asymptotic methods are traditional instruments studying propagation and
scattering of electromagnetic waves in the turbulent plasma. The geometrical optics
method, which is the most developed and proved both theoretically and experimentally,
approximately describes wave fields of short (2–40MHz) radio waves propagation in the
Earth ionosphere with smoothly spatial-temporal irregularities [1–3, 11]. This method
contains the condition, when the characteristic spatial scale of electron density irregular-
ities exceeds the wavelength of an incident electromagnetic wave, l >> λ. In this case
only forward scattering is important and the WKB solution is valid for the wave propa-
gation. The phase satisfies the eikonal equation for a normal wave c2k2 = ω2N 2(ω, k,
pi), here k(r, t) = −∇ ϕ, ω(r, t) = ∂ϕ/∂ t are the local wave vector and the frequency,
respectively, which are slowly-varying functions of position and time; pi is an arbitrary
parameter characterizing turbulent plasma; N 2(ω, k) is the complex refraction index
of a normal wave, c is the speed of light. In general case eikonal equation is nonlin-
ear differential equation for the eikonal ϕ(r, t). Therefore, it’s convenient to consider
stochastic transport equation for both the frequency ω(r, t) and wave vector [12, 13]
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are random function of the spatial coordinates and time. Electron concentration contains
constant and fluctuating terms which is a random function of position and time n(r,
t) = n0 + n1(r, t), | n1| << n 0. Taking into account complexity of refraction index
N (r, t) = N0(r, t) − i N1(r, t) we can investigate statistical moments of the frequency
fluctuations of a scattered electromagnetic wave in the equatorial ionosphere.

In the equatorial ionosphere the external magnetic field is directed along the Y-axis.
In this case components of the complex permittivity tensor are: ε̃xx = ε̃zz = ε⊥−i ( σ̃⊥+
s g ), ε̃xz = − s æ δ + i ( σ̃H + æ ), ε̃yy = ( ε⊥ + p0 u )− i (σ̃|| + s v ), ε̃xx = ε̃zz ,
ε̃zx = − ε̃xz , εxy = εyx = εyz = εzy = 0; here: p0 = v/(1− u), g = p0 (1+ u)/(1− u),
δ = 2/(1 − u), g1 = (3 − u)/(1 − u), æ= p0

√
u. Nondimensional magneto-ionic

parameters of the ionosphere plasma v(r) = ω2
p/ω

2 and u = (e H0/me cω)2 contains

plasma frequency ωp(r) = [
4πNe(r) e2/me

]1/ 2 and the electron gyro frequency. The
normalized conductivity tensor σ̃ = 4 π σ̂/k0 c of ionospheric plasma for equatorial
latitude [14] contains the Hall’s σH , Pedersen σ⊥ and longitudinal σ|| conductivities:

σH = e2 ne

(
ωe

me (ν2e+ω2
e )

− ωi
mi (ν

2
in+ω2

i )

)
,

σ⊥ = e2 ne

(
νe

me (ν2e+ω2
e )

+ νi
mi (ν

2
in+ω2

i )

)
, σ|| = e2 ne

(
1

me νe
+ 1

mm νin

)

here: k0 = ω0/c, e and me are the charge and mass of an electron, νe = νe n + νi n is the
effective collision frequency of electrons with other plasma particles; ω e and ω i are the
electron and ion gyrofrequencies.

Complex refractive index N of the conductive collision ionospheric magnetized
plasma in the equatorial region of the terrestrial atmosphere at s �= 0, σ̃ij �= 0 and
s << εij , σ̃ij is as follows:

N (n, ω) = N0(n0,ω) − i N1(n,ω), (1)

here:N0 = √
(r + R0)/2,N1 = √

(r − R0)/2,R0 = 1−2 (T1T0−T2 ψ2)/(T 2
1 +T 2

2 )r =√
R2
0 + R2

1, D1 = √
(r1 + B)/2, R1 = 2 (T2T0 + T1 ψ2)/(T 2

1 + T 2
2 ), T1 = A ± D1

T2 = ψ4 ± D2, r1 = √
B2 + C2, D2 = √

(r1 − B)/2, T0 = p0 v(1 − v) + ψ1,
B = p20

[
u2 sin4 θ + 4 u (1 − v)2 cos2 θ

] + ( ψ5 − ψ7), 1 = σ̃ 2⊥ + σ̃ 2
H + 2 æ σ̃H ,

C = ψ6−ψ8,ψ4 = 2−2(σ̃⊥ sin2 θ + σ̃|| cos2 θ),ψ1 = 1(sin2 θ −ε||)+ σ̃|| σ̃⊥.
(1 + cos2 θ − 2ε⊥ ε||), ψ2 = σ̃⊥ sin2 θ + σ̃|| cos2 θ − 2 + σ̃|| ( ε2⊥ − æ2 −

1)+ 2 ε|| ε⊥ σ̃⊥, 2 = 2 ε⊥ σ̃⊥ sin2 θ + (ε|| σ̃⊥ + ε⊥ σ̃||) (1 + cos2 θ), c = (1 − v).
[ (1 − v)2 − u ] (1 − u)−1, b = [

2 (1 − v)2 − 2 u + v u (1 + cos2 θ)
]

(1 − u)−1,
A = p0.

[ 2 (1− v)− u sin2 θ ] +ψ3, a = 1− p0 (1− u cos2 θ ), ψ3 = 1 sin2 θ + σ̃|| σ̃⊥.
(1 + cos2 θ), ψ6 = 22

[
1 sin2 θ + σ̃|| σ̃⊥ (1 + cos2 θ) − b

]
, ψ5 = 2

1 sin
4 θ +

σ̃ 2|| σ̃ 2⊥ (1 + cos2 θ)2 + 21 σ̃|| σ̃⊥ sin2 θ (1 + cos2 θ) − 2 b
[
1 sin2 θ + σ̃|| σ̃⊥ (1 +

cos2 θ)
]
.
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3 = ( σ̃⊥ sin2 θ+σ̃|| cos2 θ)
[
2 ε|| ε⊥ σ̃⊥+σ̃|| (ε2⊥−æ2−1)

]
,ψ7 = 4

[
3 +a ε||

(1+2 ε⊥ σ̃|| σ̃⊥)
]
,ψ8 = a

[
2 ε|| ε⊥ σ̃⊥+σ̃|| (ε2⊥−æ2−1)

]+ ( σ̃⊥ sin2 θ + σ̃|| ·
cos2 θ)

[
c− ε|| (1 + 2 ε⊥ σ̃|| σ̃⊥)

]
; upper sign corresponds to the O-wave, lower sign –

to the E-wave; θ is the angle between the H0 and k0 vectors. For the collisionless and
nonconductive turbulent plasma we obtain the well-known formula [15].

As is well-known [1–3, 13], at propagation of a radio signal in a randomly non-
stationary plasma, theDoppler shift is small comparedwith the transmitter frequency and
the spectrumbroadens. Quantitative estimation of the frequency fluctuations is important
as the broadening of a spectrum limits resolution of a Doppler method studying structure
of the receiving signal. On the other hand, measuring the width of Doppler spectrum,
it is possible to solve the revers tasks receiving the information of statistical properties
of plasma. The ratios connecting changes of frequency with the parameters of moving
plasma irregularities it’s necessary application of the statistical methods as the tool of the
solution of direct and reverse problems of radio waves propagation in a non-stationary
plasma.

For an arbitrary spatial-temporal dispersion in the geometrical optics approxima-
tion neglecting polarization effects, wave frequency satisfies the stochastic differential
transport equation [12, 13]:

(
∂

∂ t
+ (ugr ∇

)
ω = − ω u

c

∑ ∂ N

∂ pi

∂ pi
∂ t

, (2)

where: Vg = ( dω/dk )pi is the group velocity of the wave.
Correlation function and the variance of the frequency fluctuations are the important

statistical characteristics specifying for a nonstationary plasma. They determine the
broadening of the temporal spectrum in the turbulent plasma and can be measured by
experiment. Applying Eq. (2) in the first order approximation the frequency fluctuation
satisfies the stochastic transport differential equation:

From Eq. (2) follows stochastic differential equation for the frequency fluctuation:

∂ ω1

∂ y
+ 1

Vg

∂ ω1

∂ t
= − ω0

Vg ∂ (N ω0/∂ ω0)

∂ N

∂ n0

∂ n 1

∂ t
, (3)

where:Vg = c[∂ (N ω)/ ∂ ω]−1 is the local group velocity of an unperturbed wave
propagating along the Y-axis in a conductive collision absorptive magnetized plasma.
In the anisotropic absorbing plasma of the direction of group speed and a wave vector
cannot coincide. In the absence of the spatial dispersion the energy flux coincides with
the group velocity Vg , it also coincides with the direction of an average Poynting vector.
However, conductivity of plasma can lead to the opposite directions of the Poynting’s
vector and a wave vector, and, hence, the group velocity will become negative.

For the solution of Eq. (3) we will apply the Fourier transform

ω1(r, t) =
∞∫

−∞
d ν � (r, ν) exp( i ν t ).
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At the observation point beyond a plasma slab y > L we obtain:

�(ρ⊥, y, ν) = k0 ν ( δ2 − i δ1 ) exp
[

ν
c q0 (δ0 − i ) y

] L∫

0
dζ n1 (ρ⊥, ζ , ν)

exp
[

ν
c q0 (− δ0 + i ) ζ

]
,

(4)

where: q0 = N0 + ω0 ∂N0/∂ω, δ1 = ∂N0/∂n0, δ0 = (N1 + ω0 ∂ N1/∂ ω0)/q0,

δ2 = ∂N1/∂n0; δ1 = 1
4N0

[ (
R0
r1

+ 1
)

∂ R0
∂ n0

+ 1
r1

R1
∂ R1
∂ n0

]
, δ2 = 1

4N1

[ (
R0
r1

− 1
)

··
∂ R0
∂ n0

+ 1
r1

R1
∂R1
∂n0

]
, ρ⊥ = { x, z }.

Re �2 = 2π k20 L ( δ21 − δ22)

∞∫

− ∞
dν ν2 Wn

(
ρ⊥ = 0,

ν

c
q0, ν

)
, (5)

where the asterisk designate complex conjugate, k⊥ = ( kx, kz), ky = ν q0/c. The
temporal spectrum can be written as:

� = �1 + �2. (6)

Broadening of the temporal power spectrum � ≡ < ω2
1 > /ω2

0 can be easily
measured by experiment; �1 ≡ < ω1 ω∗

1 > / 2 ω2
0 �2 ≡ Re < ω1 ω1 > / 2 ω2

0. The
fact that violation of coherence of the field in the media with large-scale irregularities
is connected generally with the phase fluctuations gives the grounds to consider that
dispersion of frequency < ω2

1 > of a wave keeps the sense and in the presence of
diffraction. Diffraction can exert the influence on variance of the frequency fluctuations
only in Fraunhofer’s zonewith respect to the spatial scale of irregularities l at (y/k0 l2) 	
1. Physically this can be explained from the fact that the waves scattered under a big
angle attenuate faster along a Y axis.

3 Numerical Calculations

Experimental investigations ofDoppler frequency displacement of the ionospheric signal
show that index of the power-law spectrum is in the interval 3.8 ≤ p ≤ 4.6. In numer-
ical calculations we use p ≈ 4 [16]. Ground-based radar systems and remote sensing
observations show that plasmonic structures are elongated along the geomagnetic lines
of forces; transversal scale of these irregularities varies in the range of 100–500, the
magnitude of drift velocity was within the limits 65− 270 m/s (the typical velocities of
ionospheric motions V0 = 60 ÷ 100 m/s, velocity 100 m/s is used in numerical calcu-
lations. Power-law spectral index is within the limit p = 1.4 ÷ 4.8 applying the “Sura”
heating facility working in the frequency band of 4.7 ÷ 9 MHz [17].

Measurements at Kingston (Jamaica) show that the irregularities between heights of
153 and 617 km leading to the scintillation are moving along the magnetic lines of forces
field lines in the F–region [18]. Inclination angle of the elongated plasmonic structures
approximately is 160. The anisotropic spectral features in the F–region is defined for the
Gaussian and power-law spectra. For F region large scale sizes irregularities (∼ 10 km)
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become unstable, and dissipate their energy by generating small sized irregularities, as
is the case in turbulence. In the equatorial region the large-scale irregularities are most
likely produced by convective electric field.

An RH-560 rocket flight studying the spread of electron density irregularities in F
region show that electron density irregularities were present continuously between 150
and257m.Experimental observation show that small-scale electrondensity irregularities
have linear scale in the interval from 20 m up to 200 m corresponding to the anisotropic
Gaussian spectrum.

We will use the spatial-temporal spectrum of electron density irregularities [20]:

Vn(k, ν) = σ 2
n

16π2

l3||
χ2

{
1+l2⊥[k2x +( ν q0/c)2]+l2|| k2z

} 2 exp

(
− k2x l

2⊥
4 − m2

0
k2y l

2||
4 −

− m1
kz l||
4 ν T − m2

ν2T 2

4

)
exp

(
− k2x l

2⊥
4 − m2

0
k2y l

2||
4 − m1

kz l||
4 ν T − m2

ν2T 2

4

) (7)

where:ζ = 1 + τ 2 (l∗/l⊥)2, p2 = (sin2 α + χ2 cos2 α)/χ2, c0 = ( 1/ζ ) + p2 Q2
3/Q

2
0

m2 = c0 + p2 q20 τ 20 /Q2
0, Q3 = τ/(ζ p2), Q0 = [ 1 − τ/(2ζ ) ] 1/2, Q1 = (χ2 − 1)τ

sin α cosα/χ2 p2, l∗ = l⊥ l|| (l2⊥ sin2 α + l2|| cos2 α )− 1/2, m2
0 = a0 − 1/( p2 χ2),

τ = V0 T/l||, b0 = (Q1/ζ ) − p2 Q2 Q3/Q2
0, b0 = (Q1/ζ ) − p2 Q2 Q3/Q2

0,
Q2 = ( χ2 − 1 ) sin α cosα/(sin2 α + χ2 cos2 α) − ( τ Q1/ζ p2 ), τ0 = l||/c T ,
a0 = (Q2

1/ζ ) + p2(Q2
2/Q

2
0 ).

Elongated electron density irregularities have the anisotropy factor χ = l||/l⊥ con-
taining both longitudinal and transversal scales with respect to the geomagnetic lines of
forces; α is the inclination angle of these irregularities with respect to the geomagnetic
lines of forces. Anisotropy of the shape of irregularities is connected with the diffusion in
the field align and field perpendicular directions; T = l/V is the characteristic temporal
scale of electron density fluctuations.

Substituting (8) into Eqs. (5) and (6) we obtain the broadening of the temporal
spectrum of scattered ordinary and extraordinary waves in the equatorial ionosphere:

�1 = σ 2
n

8π
(δ21 + δ22)

ξ2

τ0 q0 δ0
√

p1
1

(ω0 T )2

∞∫
− ∞

d η
η

[
1+

(
1+ 4

χ2
p23
p21

)
τ 20 q20 η2

]2

exp

{
− η2

4

[
1 + 4 q20 τ 20

(
p2
4 − p23

p21

)]} {
exp

[
2 q0 δ0 τ0

L
l||

y
L η

]
−

− exp
[
2 q0 δ0 τ0

( y
L − 1

)
η
] }

,

(8)

�2 = σ 2
n

4
( δ21 − δ22)

ξ2

χ (ω0 T )2
√

p1

L

l||

∞∫

− ∞
d η

η2

[
1 +

(
1 + 4

χ2
p23
p21

)
τ 20 q20 η2

]2

exp

(
− η2

4

)

(9)

These second order statistical moments are valid for both absorbing, and of active
media. This effect is connected with the amplification of the frequency along the external
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geomagnetic field [13], but also amplify. The modulator in our case is a turbulent plasma
layer.

Numerical calculations are carried out for an incident wave with frequency 3 MHz.
Ionospheric parameters: u = 0.22, v = 0.28, k0 = 6.28 · 10− 2 m−1.

Fig. 1. Three dimensional temporal spectrum

Figure 1 illustrates three-dimensional temporal spectrum vs. dimensionless fre-
quency ((ν0/ω0) ∼ 10− 3 and distance parameters (y/L) = 0 ÷ 1 in the plasma
slab. Frequency of an incident wave on three orders exceeds the frequency of turbu-
lent plasma pulsations. Anisotropy factor of elongated plasmonic structures χ = 7, tilt
angle α = 100, thickness of a slab ten times exceeds longitudinal characteristic spatial
scale of electron density fluctuations,ξ = k0 l|| = 10.

Curves describing appearance of the precursor in the temporal spectrum for E-wave
as a function of dimensionless distance parameter (y/L) = 0÷ 18 are plotted on Fig. 2.
Anisotropy factor χ = 25, non-dimensional frequency parameter is in the interval
( ν0/ω0 ) = 2.4·10− 4÷1·10− 5,(L/l||) = 10. Precursor arises near the plasma boundary
and gradually is disappeared transferring its energy to the main part of the spectrum.
Increasing a tilt angle in the interval 50 ≤ α ≤ 150 broadening of the temporal spectrum
of E-wave decreases two times and its maximum shifts to the right. For large-scale
irregularities ξ = 890, at α = 120, varying anisotropy factor in the interval 8 ≤ χ ≤ 15,
all curves have the same maximum at ( y/L) = 10.

Figure 3 shows evolution of the temporal spectrum for scattered O-wave in the
equatorial turbulent plasma for different anisotropy factor χ at ξ = 890,α = 300.
Contrary to the previous case, broadening of O-wave precursor is small near the plasma
boundary and in the main part of the temporal spectrum it increases in proportion of the
anisotropic factor, at ( ν0/ω0 ) = 3 · 10−4 ÷ 1 · 10−5. Numerical calculations show that
at χ = 25 and small tilt angle α ≈ 50 maximum of the temporal spectrum of O-wave
displaces to the left. Hence, shift of maximums of the temporal spectrum for the O-
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Fig. 2. Formation of precursors in the plasma slab for the E-wave.

and E- electromagnetic waves in the equatorial ionosphere have an opposite direction.
For E-wave at fixed inclination angle α = 40, ξ = 50 varying anisotropy factor in the
interval 4 ≤ χ ≤ 14 maximum of the spectrum increases six times and shift to the left
four times.

Fig. 3. Evolution of the precursor in plasma slab for O-wave

Figure 4 depicts the broadening of the temporal spectrum and shift of its maximum
for scattered O-wave in the equatorial ionosphere as a function of non-dimensional fre-
quency parameter ((ν0/ω0) ∼ 10− 3 at the inclination angle α = 60 varying anisotropy
factor 10 ≤ χ ≤ 15. In this case frequency of turbulent pulsations broadens of the
spectrum two times and its maximum displaces to the right two times, while in this case
no observed displacement of maximum in E-wave temporal spectrum.
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Fig. 4. Broadening of the tmporal spectrum vs. nondimensional frequency parameter for the
O-wave

4 Numerical Calculations

Analytical calculation and numerical simulations of the temporal spectrum of scattered
electromagnetic waves propagation in the equatorial ionosphere were carried out. Index
of refraction for this region of the terrestrial atmosphere has been obtained for the first
time. Statistical characteristics of the temporal spectrum (broadening and displacement
of its maximum) of scattered ordinary and extraordinary electromagnetic waves propa-
gating in the conductive collision magnetized plasma are investigated in the geometrical
optics approximation using the stochastic transport equation for the frequency fluctua-
tion. Experimentally measuring second order statistical moments: correlation function
and the variance of the frequency fluctuations characterizing the broadening of the tem-
poral spectrum and shift of its maximum has been obtained for the arbitrary correlation
function of electron density fluctuations.

At numerical calculations we use experimental data of the turbulent conductive colli-
sion magnetized plasma: plasma flow velocity, anisotropy factor and dip angle of prolate
electron density irregularities with respect to the external magnetic field. Investigation
show that the anisotropy factor and inclination angle of electron density irregularities
have a substantial influence on the broadening of the temporal power spectrum and shift
of its maximum of a scattered O- and E- waves in the equatorial ionosphere. New double
humped effect has been revealed arises in the temporal spectrum of scattered O-wave in
the equatorial region, contrary to the polar ionosphere. Shift of maximums of the tem-
poral spectrum for the O- and E- electromagnetic waves have the opposite directions.
Diffraction effects have the greatest influence on the variance of the frequency in the
nonstationary plasma at longitudinal propagation, when the absorption is essential.

Investigation of the observing statisticalmoments by satellite and ground-based radar
systems yields the useful information of electron density irregularities in the ionospheric
plasma. Relevance of a research is defined by active use of electromagnetic waves of
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short-wave band in the antenna equipment, for providing a long-distance radio communi-
cation, radio navigation, a radar-location, and also studying of structure of an ionosphere
- the upper atmosphere of Earth by methods of remote sensing and a radio tomography.
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Georgia (SRNSFG), grant NRG-21-316 “Investigation of the statistical characteristics of scattered
electromagnetic waves in the terrestrial atmosphere and application”.
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Abstract. This paper jointly studies the fairness and efficient trajectory
design problem for facilitating ultra-reliable and low latency communica-
tions (URLLC) in unmanned aerial vehicle (UAV)-enabled mobile edge
computing (MEC) systems, in the context of sixth-generation (6G) net-
works. In this regard, a fixed-wing UAV is equipped with an aerial server,
and it is programmed to collect critical task allocation data from Internet
of things (IoT) devices deployed on the ground. To prolong the opera-
tional time of the ground IoT devices, we aim to minimize the maximum
energy consumption among the ground IoT devices. Furthermore, due
to the non-convexity of the original problem, we use successive convex
approximations (SCA) to divide the original problem into two convex
sub-problems. To this end, we propose an iterative sub-optimal joint
fairness and trajectory design algorithm (JFTDA), which is numerically
shown to yield fair data allocation for task offloading and comparable
energy consumption among all the ground IoT devices to that of dif-
ferent deployment scenarios. Lastly, the proposed JFTDA also yields a
decoding error probability of less than 10−5 ensuring URLLC for the
UAV-enabled MEC systems.

Keywords: URLLC · UAV-enabled MEC · fairness · trajectory design

1 Introduction

The sixth-generation (6G) networks are envisioned to provide wireless connec-
tivity to ground Internet of things (IoT) devices, enabling a wide array of

mission-critical applications including tactical communications, intelligent trans-
portation systems, factory automation, telemedicine, as well as unmanned aerial
vehicles (UAVs) control and non-payload communications (CNPC) [10]. More-
over, these mission-critical applications are facilitated by ultra-reliable and low
latency communications (URLLC) services offered by the 6G networks requir-
ing reliability and latency-centric designs instead of throughput-centric designs
prevalent in previous mobile generation technologies [1]. Furthermore, subject to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the considered mission-critical application, URLLC aims to achieve ultra-high
reliability of 10−5 and a latency of 1 ms by using short blocklength data pack-
ets. In this regard, URLLC uses the short blocklength equation, which is the
penalized form of Shannon’s capacity equation based on the strong law of large
numbers [5,6,8]. This poses a dual challenge for network and system designers
as reliability and latency are on two opposite ends of the spectrum, and the
short blocklength equation is neither convex nor concave with respect to (wrt)
transmit power and the blocklength [9,11,12]. Additionally, IoT devices have
limited memory resources and thus, cannot execute computationally intensive
tasks such as required by frequent mission-critical updates, functional status of
factory apparatus, essential vitals of a soldier in a warzone, or a critical patient
under medical observation. Resultantly, mobile edge computing (MEC) systems
have emerged to remedy these issues. Due to the critical nature of the aforemen-
tioned applications, traditional fixed edge servers installed at the terrestrial base
stations (BSs) are undesirable, and a new paradigm is needed. Consequently,
UAV-enabled MEC has gained traction owing to flexible mobility and favorable
line-of-sight (LoS) communication links compared to terrestrial BSs [2].

Recently, the research community has made a valiant effort to study the
intricated problems of resource allocation, trajectory design, and task schedul-
ing in UAV-enabled MEC systems. In [3], the authors studied task offloading,
intending to minimize the energy consumption on the UAV side. The authors
jointly optimized user transmit power, task load allocation, and the UAV tra-
jectory to achieve this goal. To this end, the authors proposed the so-called
Dinkelbach algorithm to tackle the formulated non-convex problem. Similarly,
in [4], the authors proposed a reflective intelligent surface (RIS)-assisted UAV
for MEC to address the blockage caused by ground obstacles leading to poor
quality-of-service (QoS) in terms of higher latency. In this regard, the authors
addressed the problem using successive convex approximations (SCA). Com-
parably, in [7], the authors investigated multi-UAV-assisted multiaccess MEC
systems. Moreover, the authors jointly optimized user transmit power, band-
width allocation, UAVs trajectories, and data allocation. Nonetheless, in these
works, the authors did not consider a joint resource allocation, i.e., fairness in
data allocation and trajectory design framework for facilitating URLLC systems
utilizing short blocklength data packets, essential for fully exploiting the benefits
of UAV-enabled MEC, especially for 6G networks. To this end, in this paper, we
study the problem of minimizing the maximum energy consumption by jointly
designing fair data allocation among IoT devices and efficient trajectory design
for the UAV hovering above them in the service area. Furthermore, we utilize
successive convex approximations (SCA) to decompose the original non-convex
problem into two convex sub-problems. Additionally, we utilize successive con-
vex approximations (SCA) to decompose the original non-convex problem into
two convex sub-problems. In this regard, we propose an iterative sub-optimal
joint fairness and trajectory design algorithm (JFTDA) to tackle the original
non-convex problem. Finally, we show that our proposed JFTDA optimizes tra-
jectory, ensures fair data allocation, yields comparable results to distinct deploy-
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ment scenarios as well as gives a decoding error probability of less than 10−5,
which establishes URLLC for the UAV-enabled MEC systems.

2 System Model and Problem Formulation

As illustrated in Fig. 1, we assume an aerial MEC system primarily composed of
a fixed-wing UAV, which is equipped with an on board aerial computing server
as well as a total of K IoT devices, which are denoted by K = {1, 2, . . . , K}
deployed on the ground. During a time horizon T of finite duration, each IoT
device denoted by k performs partial task offloading, such that the task data in
bits is independent and the computing server executes it at the UAV side. With-
out loss of generality, we assume that the location of IoT devices on the ground
is fixed within the time horizon T . Moreover, we divide T into N time slots,
such that the size of each time slot is denoted by δ = T/N , where δ is infinites-
imal such that the UAV location is fixed during each δ. Furthermore, each k is
allocated equal bandwidth B and it uses orthogonal frequency division multiple
access (OFDMA) to offload the task data represented by Akn

Δ= (Dkn,Xkn) to
the UAV. Additionally, each IoT device k in the n-th time slot has input-data
represented by Dkn (bits) as well as the required amount of task data of IoT
device k is Dreq

k (bits). Similarly, the computing intensity required by each IoT
device k in the n-th time slot is given as Xkn (CPU cycles per bit). Now, we
assume that each IoT device k on the ground is located at wk = [wk1, wk2, 0]T ,
∀k ∈ K in a three-dimensional (3D) cartesian coordinate system, whereas the
UAV is located at qn = [qn1, qn2,H]T , ∀n ∈ N in the n-th time slot, where H
is fixed. Likewise, each IoT device k in the n-th time slot transmits with a fixed
power given as pkn, whereas the velocity of the UAV in the n-th time slot is
represented by vn. In this regard, we set up UAV mobility constraints to bound
the UAV in the service area, which are as follows

Fig. 1. Illustration of facilitating URLLC in UAV-enabled MEC system
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C1 :

⎧
⎪⎨
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qN+1 = qf ,

vn =
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δ
, ∀n ∈ N ,

(1)

where qi and qf denote the initial as well as the final locations of UAV, respec-
tively. Moreover, we assume that a line-of-sight link dominates the ground-to-
UAV channels. Furthermore, according to [6], the short blocklength transmission
rate of the IoT device k in the n-th slot is given by

Rkn = B log2 (1 + Skn) − B

ln 2

√
V(Skn)

Mkn
· P (εkn),

V(Skn) = 1 − 1
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,
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2π

∞∫
x

e− t2
2 dt,

Here, the term Skn means signal-to-noise ratio (SNR), σ2 is the noise power, and
β0 represents channel power gain at a reference distance of 1 m. Moreover, the
terms εkn � εmax and Mkn � Mmax, and gkn represent decoding error proba-
bility, blocklength, and the channel gain between the UAV and the IoT device k
in the n-th slot. Furthermore, the function V(Skn) represents channel dispersion
and P (εkn) is a composite Gaussian Q-function. Additionally, by following the
work of [2], we can write the short blocklength transmission rate as

Rkn = B · Dkn

Mkn
, (3)

Similarly, using (2) and (3), we can express the error probability in blocklength
as

εkn(Skn, Mkn) = Q

(
ln 2√V(Skn)

·
[
log2 (1 + Skn) · √Mkn

− Dkn√Mkn

])
. (4)

Likewise, according to [2–4], the task delay and energy consumption of each IoT
device k in the n-th slot on the ground are given by

Tkn =
Dkn

Rkn
+

Xkn Dkn

fkn
=

Mkn

B
+

Xkn Dkn

fkn
,

Ekn = pkn
Dkn

Rkn
= pkn

Mkn

B
,

(5)
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where fkn (CPU cycles per second) denotes the computing rate of each IoT device
k in the n-th slot. Additionally, we assume that the delay at the computing server
is negligible. In order to guarantee min-max fairness among all the IoT devices
deployed on the ground, we seek to minimize the maximum energy consumption
of all the deployed IoT devices on the ground by jointly tackling the optimization
of the fairness of the data allocation and the UAV’s trajectory. Therefore, the
formulated optimization problem is given as

P1 : min
Dkn,Mkn,qn

max
k

{
N∑

n=1

Ekn

}

(6a)

s.t. C1. (6b)
Tkn � δ, ∀k ∈ K, ∀n ∈ N , (6c)
‖vn‖2 � Vmax, ∀n ∈ N , (6d)
‖vn‖2 � Vmin, ∀n ∈ N , (6e)
N∑

n=1

Dkn = Dreq
k , ∀k ∈ K, (6f)

εkn(Skn,Mkn) � εmax, ∀k ∈ K, ∀n ∈ N . (6g)

where Vmax and Vmin as the name suggests, denote the maximum and mini-
mum velocity of the UAV. Here, constraint (6b) represents the UAV’s mobility
constraints given in (1), constraint (6c) guarantees that task delays for all IoT
devices in each of the time slots do not exceed the size of each slot denoted by
δ, constraints (6d) and (6e) ensures that the UAV’s velocity should be greater
than the minimum, while less than maximum velocity during its flight opera-
tion. Similarly, constraint (6f) represents the constraint of data allocation for
each task, and constraint (6g) guarantees high reliability. It is worth mentioning
that P1 is challenging to solve since (6c), (6e), and (6g) are non-convex. Now,
we aim to divide P1 into two convex sub-problems by performing successive
convex approximations (SCA). Consequently, we expand P1 by expanding the
objective function (6a) and the constraints (6c) and (6g) as follows

P2 : min
Dkn,Mkn,q[n]

max
k

1

B

N∑
n=1

pknMkn, (7a)

s.t. C1. (7b)
Mkn

B
+

XknDkn

fkn
� δ, ∀k ∈ K, ∀n ∈ N , (7c)

‖vn‖2 � Vmax, ∀n ∈ N , (7d)
‖vn‖2 � Vmin, ∀n ∈ N , (7e)
N∑

n=1

Dkn = Dreq
k , ∀k ∈ K, (7f)

Q

(
ln 2 · αkn√V(Skn)

)
� εmax, ∀k ∈ K, ∀n ∈ N . (7g)
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where αkn =
[

log2 (1 + Skn) ·
√

Mkn − Dkn√
Mkn

]

. Moreover, since Q(x) is a

monotonically decreasing function, hence the same holds true for the inverse
function P (y). Therefore, the following inequalities hold

Q(x) � y, x � P (y). (8)

Therefore, in terms of (7g)

ln 2√V(Skn)
·
[
log2 (1 + Skn) · √Mkn − Dkn√Mkn

]
� P (εmax) ,

∀k ∈ K, ∀n ∈ N , (9)

Since, H is a large value1 thus, the inequality Skn � γkn

H2 can be considered
small. Resultantly, we can use the following approximations

ln (1 + Skn) ≈ Skn,

V (Skn) = 1 −
(
1 − Skn + S2

kn − . . .
)2

,

≈ 1 − (1 − 2Skn) ,

= 2Skn,

(10)

Now, we rewrite the inequality in (9) as follows

ln 2√
2Skn

·
[
Skn

ln 2
·
√

Mkn − Dkn√
Mkn

]

� P (εmax) ,

1√
2SknMkn

· [SknMkn − ln 2 · Dkn] � P (εmax) ,

SknMkn − ln 2 · Dkn � P (εmax) ·
√

2SknMkn,

SknMkn −
√

2P (εmax) ·
√

SknMkn − ln 2 · Dkn � 0.

(11)

Thereafter, we focus of the left side of the inequality in (11). Moreover, we
assume that

x =
√

SknMkn, (12)

Then, we have
x2 −

√
2P (εmax) · x − ln 2 · Dkn = 0, (13)

which has two roots represented by

x =
√

2P (εmax) ±
√

2P 2 (εmax) + 4 ln 2 · Dkn

2
, (14)

Since, Dkn � 0, then only positive root is considered for further analysis. Con-
sequently, the minimal positive solution of inequality x2 −

√
2P (εmax) ·x− ln 2 ·

1 According to 3GPP release 15, UAV height is set to be reasonably large such that it
is flying at a height of at least 80 m, where there is a 100% probability of achieving
LoS.
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Dkn � 0 is the positive root given in (14). Furthermore, the blocklength Mkn

in (12) takes the form

Mkn =
x2

Skn

= ‖qn−wk‖2

γkn
·

(√
2P (εmax)+

√
2P 2(εmax)+4 ln 2·Dkn

)2

4 ,

= ‖qn−wk‖2

γkn
·
[
ρkn + ζkn

]
,

(15)

where ρkn = P 2 (εmax)+ln 2 ·Dkn and ζkn = P (εmax)
√

P 2 (εmax) + 2 ln 2 · Dkn.
It is worth mentioning that (15) is optimal and a feasible solution exists, as we
aim to minimize all Mkn in P2. Here, objective function (7a) can be rewritten
as

O1 = min
Dkn,q[n]

max
k

1
B

N∑

n=1

pkn
‖qn − wk‖2

γkn
·
[
ρkn + ζkn

]
, (16)

Furthermore, by combining (7c) and (15), we have

‖qn − wk‖2

Bγkn
· (P 2(εmax) + ln 2 · Dkn + P (εmax)

√
P 2(εmax) + 2 ln 2 · Dkn)

)
+

XknDkn

fkn
� δ, (17)

Additionally, after a few mathematical manipulations, we get

(‖qn − wk‖2

Bγkn
· ln 2 +

Xkn

fkn

)
· Dkn +

‖qn − wk‖2

Bγkn
· P (εmax)

√
P 2 (εmax) + 2 ln 2 · Dkn � δ − ‖qn − wk‖2

Bγkn
· P 2 (εmax) . (18)

It is noteworthy that (18) is non-convex with respect to Dkn. As such, to solve
this problem, we use the constant local value Dlocal

kn instead of Dkn. Hence, we
have

C2 =

(
‖qn − wk‖2

Bγkn
· ln 2 +

Xkn

fkn

)

· Dkn � δ − ‖qn − wk‖2

Bγkn

·
(

P 2 (εmax) + P (εmax)
√

P 2 (εmax) + 2 ln 2 · Dlocal
kn

)

. (19)

Similarly, we convert (6e) to the convex form. As such, it could be represented
as ∥

∥v[n]

∥
∥2

2
� V 2

min, (20)
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For any given local point vlocal
[n] in the feasible domain,

d2‖v[n]‖2

2
dv2

[n]
> 0, hence it

is convex. Resultantly, we take the inequality based on the first-order Taylor
expansion as follows

∥∥v[n]

∥∥2

2
�

∥∥∥vlocal
[n]

∥∥∥2

2
+ 2

(
vlocal
[n]

)T

·
(
v[n] − vlocal

[n]

)
,

C4 =
∥∥∥vlocal

[n]

∥∥∥2

2
+ 2

(
vlocal
[n]

)T

·
(
v[n] − vlocal

[n]

)
� Vmin, ∀n ∈ N ,

(21)

Thus, the problem P2 can be reformulated as

P3 : O1, (22a)
s.t. C1, (22b)

C2, (22c)
∥
∥v[n]

∥
∥
2

� Vmax, ∀n ∈ N , (22d)

C4, (22e)
N∑

n=1

Dkn = Dreq
k , ∀k ∈ K, (22f)

Still, P3 is difficult to solve since objective function (22a) as well as (22c) are
non-convex wrt Dkn and qn simultaneously. Consequently, we aim to replace P3
problem by dividing it into two sub-problems. As such, the two convex objective
functions can be written as

O2 = min
Dkn

max
k

1
B

N∑

n=1

pkn
‖qn − wk‖2

γkn
·
[
ρkn + ζkn

]
, (23)

O3 = min
q[n]

max
k

1
B

N∑

n=1

pkn
‖qn − wk‖2

γkn
·
[
ρkn + ζkn

]
, (24)

Resultantly, the two sub-problems can now be written as

P3.1 : O2, (25a)
s.t. C2, (25b)

N∑

n=1

Dkn = Dreq
k , ∀k ∈ K, (25c)

P3.2 : O3, (26a)
s.t. C1, (26b)

∥
∥v[n]

∥
∥
2

� Vmax, ∀n ∈ N , (26c)

C4, (26d)

Finally, we obtained P3.1 and P3.2, which are two convex optimization prob-
lems. In this regard, P3.1 solves the fairness in data allocation problem and
P3.2 solves the trajectory design problem.
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3 Proposed Approach

As discussed earlier, P1 is difficult to solve due to the non-convexity of its con-
straints, and thus it is difficult to obtain a globally optimal solution. Therefore,
based on our analysis, we rigorously transform P1 into two convex sub-problems
of P3.1 and P3.2. After that, we propose a sub-optimal joint fairness and tra-
jectory design algorithm (JFTDA) to tackle the aforementioned sub-problems.

Algorithm 1: Joint fairness and trajectory design Algorithm (JFTDA) to
facilitate URLLC in UAV-enabled MEC
1 Initialize {qn, Dkn, MaxEnergy}0.

2 Set j = 1, vlocal
n = v0

n, and a tolerance ε = 10−4. while

|MaxEnergyj − MaxEnergyj−1| � ε do
3 Solve P3.1 with given qj

n, MaxEnergyj = MaxEnergy∗ and obtain the
optimal solutions denoted by D∗

kn and MaxEnergy∗

4 Solve P3.2 with given Dl
kn and obtain the optimal solutions denoted by q∗

n,
MaxEnergy∗

5 Set j = j + 1, and {qn, Dkn}j = {q∗
n, D∗

kn}
6 end
7 Return an optimized solution

It is worth mentioning that P3.1 has a higher computational complexity than
P3.2. In this regard, P3.1 contains K+KN linear constraints and KN variables.
Resultantly, the complexity of P3.1 is O

(
K3N3

)
, which is the complexity of

Algorithm 1.

4 Simulation Results and Discussion

In this section, we set the parameters as K = 8 IoT devices, N = 80, T = 16 s,
δ = T/N = 1/5, B = 400 MHz, H = 100 m, Vmin = 3 m/s, Vmax = 50 m/s,
β0 = 140 dB, fkn = 1.2 Gcps, Dreq

k = 2 MBits, and pkn = 15 dBm, ∀k ∈ K;
∀n ∈ N , εmax = 10−5, and σ2 = 5 dBm2. To verify the efficacy of our proposed
JFTDA, we use two different trajectory cases, i.e., Case I and Case II. In this
regard, the initial positions of Case I and Case II are both the same, which
is (−50; 0; 100). In contrast, the final positions of Case I and Case II are dif-
ferent, which are (50; 100; 100) and (−50; 0; 100), respectively. Additionally, the
proposed algorithm for the aforementioned UAV trajectory cases is compared
with different deployment scenarios based on random placement of IoT devices
in the service area and an algorithm based on the lower bound of the maximal
energy consumption. Figure 2(a) shows that for Case I, the UAV has a uniform
trajectory for all the IoT devices placed in the service area. Initially, the UAV

2 All simulations are performed on the MATLAB R2018a.
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Fig. 2. (a) UAV trajectories (b) Data allocation versus total time slots (c) UAV dis-
tance versus total time slots (d) Comparison of algorithm with different deployment
scenarios.

is moving steadily but it slows down its speed during the middle part of the
trajectory. The reason behind this phenomenon is that during the middle tra-
jectory there exists a minimal distance between the UAV and all the IoT devices
compared to the start or the end of the trajectory specifically for Case I. Conse-
quently, the IoT devices energy consumption can be reduced. Comparably, Case
II forms a butterfly shaped UAV trajectory that is also uniform in nature same
as the Case I. Thus, the two optimized trajectories for both cases account for
fair data allocation among the IoT devices in the service area. Moreover, taking
the advantage of uniform trajectory, Fig. 2(b) only shows odd numbered IoT
devices as the even numbered IoT devices will have similar results. By simulta-
neously viewing both Fig. 2(b) and Fig. 2(c) it can be observed that the task
data allocation is not inversely proportional to the distance existing between
the UAV and the odd numbered IoT device. This happens to guarantee fairness
among IoT devices as transmitted data becomes greater or smaller so does the
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Fig. 3. Decoding error probability versus the blocklength.

distance in a few time slots. As mentioned before, to illustrate the execution
of our proposed algorithm, we make its relevant comparisons with other deploy-
ment scenarios. In this regard, “Random IoTs” deployment scenario as the name
suggests considers IoT devices that are deployed randomly inside the rectangle,
whereas “Regular IoTs” represents the proposed algorithm considering uniform
placement of IoT devices over each side of the rectangle, as seen in Fig. 2(d).
Furthermore, we change the distance between the UAV and the IoT device to its
minimal reachable value H. For this case we obtain lower bound of the maximal
energy consumption, which can be mathematically represented as

σ2

β0B

N∑

n=1

Dkn · H2 =
σ2H2

β0B
· Dreq

k � σ2H2

β0B
· max

k
Dreq

k . (27)

It is observed that the proposed algorithm denoted by “Regular IoTs” consume
less energy than “Random IoTs” for each of the two considered UAV trajectories.
In contrast, the proposed algorithm i.e., Regular IoTs, consumes more energy
when compared to lower bound of the maximal energy consumption which rep-
resents the lowest possible values of energy for a given amount of transmitted
data, which intuitively makes sense. Finally, Fig. 3 shows decoding error prob-
ability versus the blocklength graph by varying the UAV height from 80 m to
100 m. Generally, it is observed that when UAV is flying at 80 m the decoding
error is smaller compared to when UAV flies at 100 m. Additionally, for larger
blocklenghts, the three considered heights yield a decoding error of less than
10−5 thus, guaranteeing URLLC for the given UAV-enabled MEC system.
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5 Conclusions

In this paper, we introduced the problem of minimizing the maximum energy
consumption of IoT devices communicating critical task allocation data with
a UAV-enabled MEC system operating under URLLC. The goal was to per-
form fair data allocation and ensure efficient trajectory design. To achieve this
goal, we optimized the UAV mobility, data allocation, and decoding error con-
straints based on our proposed JFTDA. Simulation results show that our pro-
posed algorithm optimizes the trajectory, guarantees fair data allocation among
the IoT devices and yields comparable results to distinct deployment scenarios.
Lastly, for different UAV heights and blocklengths, the proposed algorithm gives
a decoding error probability of less than 10−5 therefore, guaranteeing URLLC
for the considered UAV-enabled MEC system.

Acknowledgement. This work was supported by Mitacs/Ultra Intelligence & Com-
munications through project IT25839 and the National Natural Sciences and Engineer-
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Abstract. Improving network capacity and reliability while decreasing
delay and providing acceptable QoS in 5G wireless networks are one of
the most challenging drawbacks to solve nowadays. In this paper, we pro-
pose a joint algorithm for resource allocation and power control based on
a Stackelberg game considering a heterogeneous network (HetNet) with
several small base stations deployed in the coverage area of one macro-
cell coexisting with multiple device-to-device communications. Small BS
and D2D are introduced in mobile communications to improve spectral
efficiency and avoid or reduce the interference caused between layers.

Hybrid Access small cells grant access to public users in order to
offload traffic from the macrocell. Furthermore, D2D allows direct con-
nection between two devices without connection to the macro base sta-
tion, releasing resources in the macrocell. To estimate the power that
must be transmitted by mutual agreement such as that interference is
minimized, we propose to use a game that is solved in a Stackelberg
equilibrium and that also ensures that the D2D communication contin-
ues with an optimal transmission power. Simulation results show that
the proposed model reduces interference in the HetNets while increasing
the network throughput.

Keywords: 5G · HetNets · Hybrid access smallcells · D2D ·
Stackelberg game

1 Introduction

With 5G technology, the number of mobile users and the demand for resources
are expected to increase rapidly. Accordingly, Heterogeneous Networks (HetNets)
and Device-to-Device (D2D) communications are one of the promising technolo-
gies to cope with these issues. Three-tier heterogeneous networks consisting of
small base stations (SBS) deployment and D2D communications help to offload
traffic from macro base stations (MBS). We identify the advantages and disad-
vantages of integrating D2D communications into HetNets and propose possible
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solutions. If the gains from such integration are to be maximized, interference
avoidance is a motivating factor in this research through radio resource manage-
ment. Thus, it is important to properly allocate resources to ensure reliability,
increase data rate and capacity in heterogeneous cellular networks.

The vast majority of previous resources allocation approaches consider the
HetNet either with only SBSs or only D2D communications. In our research,
we consider a three-tier network, which means the interaction of MBSs with
SBSs and the great contribution of D2D communications and propose a resource
allocation model using Stackelberg game. Previous studies using this game con-
sidered the configuration of leader, leader, follower for MBS, SBS and D2D,
respectively, which limits the performance of the HetNet. In addition, the dis-
tances of D2D pairs are fixed and the access mode for femto BSs are only closed
or open. Unlike previous related work, we propose to use the configuration as
leader, follower, follower for MBS, SBS and D2D, respectively.

Unlike prior research works, we perform the pairing of D2D users based on
the distance that initially exists between macrocell user equipments (MUES).
In addition, we consider the hybrid access smallcells mode where MUES can be
granted service from them whenever they are within the coverage area of the
SBS. Given all these considerations and due to the number of iterations per-
formed by the computer, we have considered implementing a heuristic algorithm
in order to reduce the computational cost. We also take into account the interfer-
ence caused by a D2D user equipment DTx, MUEs and a femo user equipment
(SUE) in heterogeneous uplink networks, as well as co-tier and cross-tier inter-
ference in order to improve the performance of D2D communications. Hence,
our solution consists of three components. First, D2D pairing is performed by
comparing minor distances. Secondly, we propose an approach to formulate the
resource allocation problem through utility function optimization while guaran-
teeing the Quality of Service (QoS) for different type of users. Third, a power
control algorithm based on a Stackelberg game with a leader-follower-follower
scheme is proposed to maximize the utility of the macro BS, the small BSs and
the D2D links.

The main contributions of this work are: i) an iterative algorithm for the
allocation of power to D2D transmitters, SUEs and HMUEs and ii) a Stackelberg
game with a leader-follower-follower scheme to improve the throughput in a
three-tier network.

The remaining of the paper is organized as follow: Sect. 2 presents the related
work while Sect. 3 describes the system model and problem formulation. Section 4
presents the components of the resource allocation and power control approach.
The simulation scenario and numerical results are presented in Sect. 5. Finally,
Sect. 6 concludes the research work.

2 Related Work

This section presents a brief summary of the related research work focused on
resource allocation in heterogeneous networks taking into account different opti-
mization approaches. HetNets are attractive because they can increase mobile
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network capacity and reduce the communication problems considering several
available access technology. A heterogeneous network consists of multiple radio
access technologies, architectures, transmission solutions, and several base sta-
tions with different transmission power or coverage area. In particular, we review
the resource allocation approaches proposed for Hetnet such as two-tier networks
(i.e. macro-small cell networks) with D2D communications.

2.1 Resource Allocation for Macro-Small Cell Networks

The problem of resource allocation has been addressed in several previous works.
For example, the authors addressed the resource optimization problem using Lin-
ear Programming to solve the BS selection together with the resource allocation
taking into account the spectrum partitioning and spectrum sharing respectively
in [3,6]. Other alternative optimization tools that use Genetic Algorithm and
Particle Swarm Optimization are presented in [5,12] respectively. These prior
works showed that these two optimization techniques find a satisfying near-to-
optimal solution with reduced running time than the optimal resource alloca-
tion model. In [4], a clustering technique was proposed to keep the traffic load
balanced among the established clusters together with the distributed Weighted
Water Filling based resource allocation algorithm. In addition, it was shown that
the load balanced clustering outperforms the clustering based on the interference
levels. Considering the cluster formation, several algorithms from game theory
were investigated to solve the resource allocation problem between the macro-
cell and smallcell (SC) clusters in [15–17] to reduce the inter-cluster interference
while guaranteeing the stability of the clusters. To reduce the interference, an
approach based on stackelberg game was proposed in [2] where the macro BS
is the leader and the SCs are the followers. In this case, the leader issues the
price of interference charged to the followers to maximize its own profit and the
followers choose the strategies to maximize their payoffs (e.g. difference between
the capacity and the cost of the interference paid to the leader). In [20], the
authors proposed a prediction model for the interference such as this prediction
value can be used to improve the resource allocation. In [11], a pricing incen-
tive mechanism is proposed to encourage SBSs to adopt a hybrid access strategy
while receiving profits from the MBS in order to maximize downlink transmission
rates for users between two-tier smallcell networks and macrocells.

2.2 Resource Allocation for D2D Communication

The resource allocation problem for D2D-enabled networks has been previously
investigated by the research community [21]. Due to the large computational
complexity to allocated resources in a D2D-enabled cellular network, the vast
majority of the related work investigates a single-cell scenario for the theoreti-
cal analysis with several assumptions such as an advanced interference mitiga-
tion schemes on top of the per-cell allocation algorithms [19]. For instance, the
authors of [1] propose a centralized resource allocation scheme to minimize the
total power consumption. In [8], it was proposed a heuristic proportional fair
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scheduling, with at most one cellular and one D2D communication per channel.
In [7], a suboptimal model for multi-cell D2D underlaid cellular networks was
proposed, adopting exclusion regions around the BSs to mitigate cochannel inter-
ference. In [13], the problem of wireless resource virtualization with D2D com-
munication underlaying the LTE network was formulated. Their results showed
that wireless resource virtualization increased the system throughput. Also, D2D
communication helped mitigate the effect of worsening channel conditions. More-
over, the heuristic algorithm achieved close to optimal performance while having
a much lower computational complexity.

2.3 Resource Allocation Considering a Macro-Small Cell Network
Together with D2D Communications

In [9], a Stackelberg game framework was presented for power allocation of D2D
communication and SBSs in a heterogeneous network. The authors of [10] pro-
posed a Stackelberg game framework for joint power control, channel allocation
and scheduling of D2D communication in heterogeneous macrocell-small cell net-
work system (leader, follower, follower). In [14], a dynamic two leader-multiple
follower Stackelberg game was proposed for resource allocation in heterogeneous
three-tier D2D networks. The authors of [18] investigated resource allocation for
D2D communications sharing uplink resources in a fully loaded cellular network
in order to maximize the overall throughput while ensuring the QoS requirements
of both celullar users and D2D users.

3 System Model

We consider the uplink communications of a Macro cell/Small cell/D2D system
in a single cell with one MBS in the center and N orthogonal MUEs evenly
located in the cell, where the uplink signal links are indicated by solid arrows
while the interference signal links are denoted by dotted arrows, as shown in
Fig. 1. In addition, several small cells and D2D pairs are located in the same cell,
each of the D2D pairs consist of a transmitter D2DTx and a receiver D2DRx.
The small cells are assumed to be round with one SBS in the center and several
SUEs and hybrid user equipments (HMUEs) evenly located within it in order
to simulate a dense heterogeneous network. There are four types of users UEs:
MUEs, SUEs, D2Ds, and HMUEs. Each SBS serves at least one SUE and one
HMUE in its coverage area when provisioned with the hybrid access strategy.
The MUE that is served by the SBS is called HMUE. SUE and HMUE in SBSi

(i ∈ 1, 2, ... , N) are expressed as SUEi and HMUEi, respectively. The MBS
and SBS can be operated within regions of radius Rm and Rf , respectively. No
active user is assumed to be in the overlap region between any two SBSs, and
only one channel is assumed to be allocated to users. Hence, N SUEs share the
same channel.
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Fig. 1. Heterogeneous network.

3.1 Problem Formulation

In order to perform the power allocation, the average channel gain for each user
has to be determined. Therefore, the average channel gain between D2DTxi and
D2DRxj is given by

f i,j =

{
Kfimin(D−αf0

i,j , 1), i = j, i, j > 0
Kf0min(D1−αf0

i,j , 1), i �= j, i, j > 0
(1)

The average channel gain between SUEi and SBSj , i, j ∈ I = (1, 2, ..., N) can
be estimated using Eq. 2

gi,j =

{
KfiR

−β
f , i = j > 0

Kf0W
2min(D−αf0

i,j , 1), i �= j, i, j > 0
(2)

while the average channel gain between HMUEi and SBSj is given by

hi,j =

{
KfiR

−β
f , i = j > 0

Kf0W
2min(D1−αf0

i,j , 1), i �= j, i, j > 0
(3)

where Kfi is the fixed loss between either SUEi or HMUEi to its own base
station, Kf0 is the fixed loss between a SBS or MBS and other user, and f is the
carrier frequency. β, α0, and αf0 are path loss exponents for indoor, outdoor,
and indoor-to-outdoor, respectively, and W is a specific value to simulate the
loss during indoor-outdoor propagation. The distances between a BS and a user
are defined by Di,j as shown in the Table 1.

It should be noticed that the subscripts i, j refer to receiver i and transmitter
j, respectively, where i = j indicates that the transmitter, i.e. SBS, and the
receiver including SUE and HMUE, are in the same small cell otherwise i �= j.
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Table 1. Notation of the distances between a BS and a user.

Name Description

D1i,j Distance between SBSj and HMUEi

Di,0 Distance between the MBS and SUEi

D1i,0 Distance between the MBS and HMUEi

D2i,0 Distance between the MBS and D2Di

Di,d Distance between the D2Di and HMUEi

D1j, m Distance between SBSj and D2Di

D2j, m Distance between SBSj and MUEm

D20,m Distance between MBS and MUEm

If the MUE is served by the MBS, then, the channel gain is defined by Eq. 4,
while Eq. 5 represents the average channel gain between HMUEi and D2DRxj .

hi,0 = Kf0Wmin(D−αf0
i,0 , 1), j = 0, i > 0 (4)

hi,d = Kf0Wmin(D−αf0
i,d , 1), j = 0, i > 0 (5)

gi,0 denotes the average channel gain between the SUEi and MBS while
gi,d denotes the average channel gain between the SUEi, D2DRxj , which are
represented by Eqs. 6 and 7, respectively.

gi,0 = Kf0Wmin(D−αf0
i,0 , 1), j = 0, i > 0 (6)

gi,d = Kf0Wmin(D2−αf0
0,m , 1), j = 0 (7)

The average channel gain between the D2DTxi and the MBS, gd,0, and between
the D2DTxd and the FBSj , gd,j , are denoted by Eqs. 8 and 9, respectively.

gd,0 = Kf0min(D2−αf0
i,0 , 1), j = 0, i > 0 (8)

gd,j = Kf0Wmin(D1−αf0
j,m , 1), j > 0 (9)

On the other hand, gm,j denotes the average channel between the MUEm and
the SBSj (Eq. 10), gm,d defines the average channel between the MUEm and the
D2DRxd (Eq. 11), and gm,0 represents the average channel between the MUEm

and MBS (Eq. 12).

gm,j = Kf0Wmin(D2−αf0
j,m , 1), j > 0 (10)

gm,d = Kf0min(D−αf0
i,0 , 1), j = 0, i > 0 (11)

gm,0 = K0min(D2−α0
0,m , 1), j = 0 (12)

The fixed decibel propagation loss between the MUE and the MBS is given
as K0 = 30 log 10(f) - 71 dB. When the current communication environment
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is considered, the signal link is susceptible to the influence of the environment.
In this paper, we consider that the uncertainties of the signal links, and the
signal link gains are defined as fi,i = G1fi,i, gi,i = G2gi,i, hi,i = G3hi,i, and
g0,m = G4gm,0, where G1, G2, G3, and G4 are assumed to be exponentially
distributed by a unit-mean Rayleigh fading model.

The received SINR at D2D pair using the same channel is expressed as:

γd,d =
pdG1fi,i

phhi,d + psgi,d +
∑N

j=1,j �=i pdf ij + σ2
(13)

pd is the transmission power of the D2D and σ2 denotes the background noise
power. In this paper, the background noise power σ2 received at every user is
assumed to be the same.

Since the SBSi provides services to SUEs and HMUEs, the SINR for these
users are given by Eqs. 14 and 15, respectively.

γs,i =
psG2gi,i∑N

j=1,j �=i psgi,j + σ2 + pdgd,j + pmgm,j + phhi,i

(14)

γh,i =
phG3hi,i∑N

j=1,j �=i phhi,j + σ2 + pdgd,j + pmgm,j + psgi,i

(15)

where ps is the transmission power of SUEi, pm is the transmission power of the
MUEi, and ph is the transmission power of the HMUEi. Similarly, the SINR
between MUE m and the MBS is defined as

γm
M =

pmG4gm,0

phhi,0 + psgi,0 + pdgd,0 + σ2
(16)

3.2 Utility Function

The channel rate ri for user i can be estimated using its respective SINR (e.g.
γ):

ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log2(1 + γd,d), for D2D user i
log2(1 + γM

m ), for MUE i
log2(1 + γs,i), for SUE i
log2(1 + γh,i), for HMUE i

(17)

As D2D communication and small cell communication take place underlaying
the primary cellular network, the goal of this work is on the power control and
scheduling of the D2D, SUEs and HMUEs users, while the transmit power and
channel of MUEs are assumed to be fixed. The interference from D2D/Small
cell system to the cellular system should be limited. Thus, the transmit power
of the D2D, SUEs and HMUEs users should be properly controlled. This section
focuses on the behavior of a one-leader-three followers. First, the power allocation
problem using Stackelberg game based scheme formulation, then the optimal
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transmit power of D2D Tx, SUE and HMUE is obtained, and the optimal price
for MUEs. Leader and followers share the same channel resource, the leader
owns the channel resource and it can charge the followers some fees for using
the channel. In order to maximize its own profit, the leader establishes a set of
prices for the followers in order to limit the interference caused by the followers
on the same band to protect itself. Thus the leader has an incentive to share
the channel with the followers if it is profitable. Given the charging price, the
followers can choose the optimal transmit power to maximize their payoffs.

For the followers, the utility is its throughput performance minus the cost
it pays for using the channel. The utility functions of the three followers are
described in Eqs. 18, 19 and 20.

Ud2di
= ri − m1pd × gm,d (18)

USUEi
= ri − m2ps × gm,j (19)

UHMUEi
= ri − m3ph × gm,j (20)

where m1, m2, and m3 are the charging prices of the D2DTx, SUE, and HMUE,
respectively. The utility of the leader can be defined as its own throughput
performance plus the revenue it earns from the followers, see Eq. 21.

UMUEi
= ri + m1pdβ1gm,d + m2psβ2gm,j + m3phβ3gm,j (21)

where β1, β2 are β3 are scale factors to denote the ratio of the leaders gain and
the followers payment (β1 > 0, β2 > 0, β3 > 0).

3.3 Optimization Problem

A Stackelberg game is used to formulate the power control and nonuniform price
bargaining problem in three-tier macro-small cell networks and D2D communi-
cations. In the Stackelberg game, one player is chosen as the leader, while the
remaining players participate as followers. The leader first declares and imple-
ments his strategy, and then the followers respond accordingly. The optimization
problem of the followers-level are to set proper transmit power to maximize its
utility:

max Ud2di
, USUEi

, UHMUEi

s.t. pdmin < pd < pdmax

psmin < ps < psmax

phmin < ph < phmax

(22)

The optimization problem of the leader-level game is to establish a set of
charging prices that maximize its utility:

max UMUEi

s.t. pmmin < pm < pmmax
(23)

where pdmin, psmin, phmin, pmmin, are the minimum transmit power of D2D
Tx, SUE, HMUE, and MUE, respectively, which must guarantee the QoS of
users.
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3.4 Game Analysis

The best response of the followers are derived by solving Eq. 24:

∂Ud2d

∂pd
= 0,

∂USUE

∂ps
= 0,

∂UHMUE

∂ph
= 0 (24)

The best transmit power of the followers are defined by Eqs. 25, 26 and 27:

p∗
d =

1
ln2m1 gm,d

− hi,d + gi,d + f i,j + σ2

f i,i

(25)

p∗
s =

1
ln2m2 gm,j

− gi,j + gd,j + hi.i + σ2

gi,i

(26)

p∗
h =

1
ln2m3 gm,j

− hi,j + gi,j + gi,i + σ2

hi,i

(27)

Substituting the follower’s strategy into the leader’s utility function:

UMUEi
= rm

M + m1p
∗
dβ1gm,d + m2p

∗
sβ2gm,j + m3p

∗
hβ3gm,j (28)

The best price is derived by solving:

∂UMUE

∂m1
= 0,

∂UMUE

∂m2
= 0,

∂UMUE

∂m3
= 0 (29)

Then:
∂2UMUE

∂m1
2 ,

∂2UMUE

∂m2
2 ,

∂2UMUE

∂m3
2 (30)

The solution is:

m∗
1 =

f i,i

gm,dβ1ln2(hi,d + gi,d + f i,j + σ2)
− 1

pmgm,0ln2
(31)

m∗
2 =

gi,i

gm,jβ2ln2(gi,j + gd,j + hi,j + σ2)
− 1

psgi,j ln2
(32)

m∗
3 =

hi,i

gm,jβ3ln2(hi,j + gi,j + gi,i + σ2)
− 1

phhi,j ln2
(33)

4 Joint Resource Allocation and Power Control

When optimal m∗
1 is calculated the MBS should know the instantaneous infor-

mation about m2 and m3. Similarly, in order to calculate the optimal m∗
2, the

MBS should know the instantaneous information about m1 and m3. Finally,
the m∗

3 is calculated and the MBS should know the instantaneous information
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about m1 and m2. The updating of the MBS’s price can be described by a vector
equality of the form:

m = Hx(m) (34)

where x = 1-d2d, 2-SUE, 3-HMUE, m = m1,m2,m3. The leader would obtain
the optimal price for the followers, which will maximize its utility.

m(t + 1) = H(m(t)) (35)

The Iterative Power Allocation Algorithm (IPAA) is presented in Algo-
rithm 1. The strategies adopted by the leader and his followers come to an
agreement for the balance of the Stackelberg game. This equilibrium is obtained
through a self-optimization that ensures that none of the players deviate from
achieving an optimal point.

Algorithm 1. IPAA
1: Given CSI, TTI t.
2: Initialize the transmit powers p and the prices m.
3: Given the scale factor β1, β2, β3.
4: Calculate the optimal prices m∗

1, m∗
2, m∗

3.
5: Calculate the optimal transmit powers p∗

d, p∗
s , p∗

h.

5 Simulation Results

In this section, the performance of the proposed model is shown in terms of
users transmitted power and data rate, interference levels, network throughput,
and running times of the algorithm. In addition, the results were compared with
two benchmark models described in Sect. 3. The simulations were carried out
using MATLAB by adopting a realistic LTE on an Intel(R) Core(TM) i7-5500U
CPU@2.40 GHz with 8 GB RAM. The system parameters are summarized in
Table 2.

5.1 Simulation Scenario

The simulated scenario consists of several MUE, SUE, and HMUE users. Fur-
thermore, 50 small cells were deployed in an area of one macrocell, as shown in
Fig. 2. The available spectrum is split between the macro-tier and the femto-tier
to avoid the cross-tier interference.

5.2 Numerical Results

In this section, we present and analyze the results obtained with the Matlab
simulations. Figures 3a and 3b present the convergence of transmit powers for
D2DTx, SUE and HMUE users. It can be observed that the proposed scheme has
fast convergence since it takes less than 3 iterations. Figure 4a shows the CDF
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Table 2. System parameters

Parameter Value Units

Rm 500 m

Rf 25 m

D2D distance 0–10 m

Maximum transmit power of the followers 2 W

Transmit power of the leader 2 W

Noise spectral density −174 dBm/Hz

Bandwidth 200 KHz

β1, β2, β3 1, 3, 5 –

Fig. 2. Simulation scenario

(a) D2D (b) SUEs and HMUEs

Fig. 3. Transmit power vs iterations
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(a) Power (b) Interference

Fig. 4. Power and Interference for small cell users and D2D users

Fig. 5. Rate distribution

of SUE and D2DTx transmit power and Fig. 4b show the interferences with and
without IPAA. The follower will use higher transmit power, besides, it can be
observed that the transmit power of D2DTx is smaller than SUE.

The performance of the IPAA algorithm is presented in Fig. 6, which works
with leader, follower, follower. In can be seen that this algorithm improves with
respect to the algorithm that is implemented as leader, leader, follower. Further-
more, it is observed that the proposed algorithm improves the data rate to the
results obtained if no power optimization is implemented (Fig. 5).

Figure 6 shows the network throughput for the proposed model with or with-
out IPAA. It can be noticed that the throughput is enhanced when using IPAA.
In this case, throughput stability is also achieved thanks to the power control
that is implementing enabling the reduction of interference levels. The running
times for an heuristic algorithm and a BIP (Binary Integer Programming) algo-
rithm were estimated as 0.011 s and 0.047 s, respectively, which represents a
reduction of 76.6% for the heuristic algorithm.
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Fig. 6. Network throughput comparison for models

6 Conclusions

In this paper, we presented an optimal solution for Stackelberg equilibrium and
proposed an iterative heuristic algorithm to allocate power for D2D transmitters,
SUEs and HMUEs in uplink communications. Simulation results allowed us to
validate the solution, demonstrating that the proposed method can effectively
improve the network throughput and users’ data rate. In fact, the interference is
also reduced by means of the Stackelberg game. As future work, we will carry out
a similar study for downlink communications taking into account the incentive
mechanisms for SBS to work in hybrid mode in HetNets and to investigate the
use of Graph Neural Networks (GNN) to improve resource allocation and power
control for HetNets.
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Abstract. Two novel mechanisms are introduced to take advantage
of network coding in TCP (Transmission Control Protocol), namely:
TCP with Network-Coded Window Transformation (TCP-NWT) and
TCP-NWT augmented with dynamic loss prediction, called Predictive-
Network-Coding (TCP-PNC). TCP-NWT uses network coding to handle
packet losses without retransmissions. TCP-PNC predicts the expected
loss-ratio on an ongoing basis during the course of a TCP-NWT ses-
sion, which in turn changes the number of network coded packets that
are transmitted. These mechanisms result in a more efficient use of
network-coded packet transmissions in TCP. Simulation results indicate
a throughput increase of more than 22% compared to TCP in scenarios
involving dynamic changes in loss ratios in the midst of a TCP session.

Keywords: TCP · Real-time · Network-Coding

1 Introduction

Many of the current network-coding enhancements used in TCP use a prede-
termined loss-ratio for computing the amount of redundancy to be introduced
with additional network-coded packets, which is fixed for the duration of a TCP
session. This is a significant limitation, because of two key reasons. First, the
proliferation of different types of mobile end devices and ubiquitous wireless
last-mile access has resulted in dynamic transient fluctuations of packet-loss
ratios in the midst of an ongoing TCP session that need not reflect any real
network congestion. This renders the use of a predetermined loss-ratio through-
out a TCP session ineffective. Second, end user applications require continuous
availability of services, service providers need to attain the most efficient use of
the available bandwidth over wired or wireless links, and more and more end
users are mobile. Some applications need real-time reliable data delivery with
predictable upper-bounds on data delivery. Hence, the static loss-ratio approach
used in prior enhancements of TCP based on network coding must be revisited
to account for the fact that a given TCP session may have varying loss-ratios
during the course of its session. Section 2 provides a survey of related work that
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reveals that prior TCP variants based on network coding have relied on a static
loss-ratio. The closest approach to our work is the Vegas Loss Predictor [10],
which is implemented at the Network Coding layer (between Layer 4 and Layer
3) [13] to know when the network experiences congestion; however, the RTT
(round trip time) values used do not factor in the additional time incurred due
to potential link-layer retransmissions in last-mile wireless-links, which we try
to incorporate in our work.

This paper introduces a new approach to detect the network health in a
network-coding enabled TCP session and then predicts the expected loss-ratio
and adapts to it by generating network-coded data to proactively compensate
for the expected data loss. The proposed approach is particularly attractive for
deployments of 5G networks and beyond, because it easily accommodates the
use of heterogeneous transmission media, mobile end-nodes and comes very close
to guaranteed data delivery in real-time with most optimal usage of network
resources.

Section 3 describes TCP with Network-Coded Window Transformation
(TCP-NWT) and Sect. 4 describes TCP-NWT with Predictive-Loss-Ratio,
namely Predictive Network Coding (TCP-PNC). TCP-NWT proactively
addresses packet losses without re-transmissions, while ensuring that all TCP
session metrics are suitably transformed and passed back to the original TCP
stack. This is accomplished by transforming the original TCP sliding window
into another sliding window comprising of Network Coded data segments. TCP-
PNC improves on TCP-NWT by dynamically predicting the expected loss-ratio
on an ongoing basis during the course of a TCP session. This ensures that the
optimal amount of network coded packets are transmitted.

Section 5 describes the results of simulations conducted with TCP-NWT and
with other deployed TCP versions including TCP-Cubic and Sect. 6 outlines and
compares the results observed. Section 7 concludes the paper.

2 Related Work

The use of network coding (NC) in TCP has been an area of active research. A
comparative study of the actual approaches can be found in [8]. We only outline
some of the most salient aspects and issues with these approaches.

TCP/NC [13] uses a new interpretation of acknowledgments (ACK), the
sink acknowledges every linear combination of packets that reveals one unit
of new information, even if it does not reveal an original packet immediately.
This scheme has the property that packet losses are essentially masked from the
congestion control algorithm. Therefore, this algorithm reacts to packet drops in
a smooth manner, resulting in an effective approach for congestion control over
networks involving lossy links. However, packet losses due to congestion are also
masked in this approach and therefore effective flow-control is inhibited.

A redundancy adaptation scheme for network coding in TCP Vegas [10] uses
loss predictor to decide whether the network is congested based on rate estima-
tors [2,7,14]. The Vegas Loss Predictor is implemented at the Network Coding
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layer, between the network and transport layers, to know when the network expe-
riences congestion and to adjust accordingly as in [2]. However, the RTT values
used do not factor in the additional time incurred due to potential link-layer
retransmissions in last-mile wireless-links. The effectiveness of NC has been ana-
lyzed by multiple authors [1,5,13]. The results indicate that NC does not provide
big performance gains if it used below the transport layer in conjunction with a
standard TCP implementation, as messages need to be delayed in a buffer to be
able to encode them. The RTT is increased at each hop, and TCP interprets the
RTT increases as a sign of congestion and reduces the transmission rate, which
prevents the effective use of the transmission medium.

In summary, TCP has been augmented with a modular NC sub-layer to facil-
itate quick and easy adoption. However, that has resulted in many of the core
intrinsic TCP session parameters and metrics like RTT and packet throughput
not being accurately captured to reflect the exact status of the network along
with introduction of additional delays. In this work, we ensure these metrics
are accurately captured and relayed back to the transport layer and also opti-
mal amount of network coded segments are generated with minimal additional
introduction of delays.

3 TCP-NWT

TCP-NWT is a TCP congestion window transformation protocol which trans-
forms the original TCP sliding congestion window with data segments into a new
TCP congestion window comprising of network coded data segments. On the
receiver side, on detecting the receipt of a TCP-NWT network coded segment,
TCP-NWT window transformation protocol transforms the TCP-NWT receiver
window into the corresponding original TCP receiver window comprising of the
original TCP data segments generated by decoding the received group of coded
TCP segments. Additionally, we propose a novel mechanism for processing of
the acknowledgment packets so that the path metrics like RTT measurements
by the TCP-NWT network coded segments are accurately relayed back to the
original TCP. The design of TCP-NWT assumes a fixed loss-ratio and its speci-
fication consists of: (a) The TCP packet header augmentation needed to support
network coding, (b) the available choice of coefficients values supported by our
design and (c) the enumeration of the permitted group sizes.

We have taken an example to illustrate how TCP-NWT transformation works
on group size of 1, which provides sufficient insight and clarity as to how it would
work on larger group sizes. Encoding, decoding as well as processing of acknowl-
edgments including relaying of the observed network health through RTT back
to original TCP window are elaborated in great detail. A key consideration
in our approach has been to keep the computation overhead of generating the
network coded segments for transmission at the sender side as well as the subse-
quent decoding at the receiver side to bare minimal, as we are targeting mobile
end-nodes which have significant computing, memory and in many cases power
constraints.
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We augment the TCP header with a new Boolean field indicating if its a
header of an TCP-NWT segment. The group-number corresponding to this
coded segment as well as the RLC coefficients used to generate this, namely
CE1, CE2 and so on, also need to be included in the header. Figure 1 illustrates
the new proposed TCP-NWT packet header. The first 20 bytes of the TCP
header are always used in TCP-NWT. The options field is of variable size and it
starts from the 6th row and can go up to 40 bytes. We use the TCP Option Kind
number 25 [6,11]. The newly introduced TCP options field entries to support
NWT are: (a) kind equal to 25 (8 bits); (b) length in bytes (8 bits); (c) net-
work coded :1 (8 bits); (d) group size equal to 1, 2, 4 or 8 (8 bits); (e) group id:
Grp Seq Num (32 bits); and (f) CEi equal to 1, 2, 4, 8, 16 /or 32 with i = 1 to
32 (6 unique values can be represented by 3 bits, however we have allocated 4
bits for each CE).

The group sizes permitted are 1 or 2 or 4 or 8. The permitted coefficients are
one of six values namely 1, 2, 4, 8, 16 or 32, which ensures that multiplication
with these coefficients is simply a bit-shifting operation and thus incurs minimal
computation overhead. The group size indicates the number of segments, from
the original non-coded data segments, which are combined (added) together after
being multiplied by one of the random linear coefficients listed below, to generate
the required number of coded segments. In the example below in Fig. 2, a fixed
loss-ratio is assumed and the entire set of segments 4 in the initial group from
Original TCP sliding window are coded using random coefficients to generate
5 coded segments for the 15% loss-ratio scenario. These are placed in the new
TCP-NWT window.

Table 1. Definitions

Abbreviations Definitions

RLC Random linear coefficients

Orig-Grp-size Number of segments in a group in Original TCP Window

grp sz Number of segments in current group in Original TCP Window

group id ID corresponding to an entire group used to generate coded segments

Grp Seq Num The group id from where coded segment got generated

RLC grp packets Random Linear Coded Pkts of a group

Coded-Grp-size Number of coded segments generated from the group in Original TCP Window

WLR Worst Case Loss Ratio

Di Datagrami in Original TCP window

CDi CodedDatagrami in TCP-NWT window

CE1, CE2..CE16 Random Linear Coefficient (RLC)1, RLC2... RLC16

SRTT Smoothed Round Trip Time

RTTVAR Round Trip Time Variation

SRTT8.1 Smoothed Round Trip Time for CD8.1 in TCP-NWT

RTTVAR8.1 Round Trip Time Variation for CD8.1 in TCP-NWT

SRTT8 Smoothed Round Trip Time for Group 8 in original TCP window

RTTVAR8 Round Trip Time Variation for Group 8 in original TCP window

RTO Round Trip Timeout

R Initial Round Trip Time Measurement

R’ Next Round Trip Time Measurement
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Fig. 1. TCP-NWT Packet header

Fig. 2. Network coding
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TCP-NWT Protocol Description

Each generated RLC segment has the following additional fields:

1. Orig-Grp-size: (≤ 16) permitted values in our design: 1 or 2 or 4 or 8.
2. List of RLC coefficents: the number of these coefficients is exactly equal to

the Orig-Grp-size, listed above.
3. Unique Group ID: Group Sequence number for each group (similar to the

sequence number for individual packets) and is common for all members of
a group. The random linear codes used for generating each of the new coded
packets are always a unique tuple of dimension Orig-Grp-size (max possible
is 8)

4. Coded-Grp-size = Orig-Grp-size/(1 - WLR)

Group Size 1. Figure 3 depicts the scenario where a group contains just a
single TCP segment.

Fig. 3. Group Size 1

Sending Side. When there is a single segment in the sliding window and there
are no other data/segments queuing in from higher layers for this TCP session,
then group size (Orig-Grp-size) is set to 1. Depending on the loss-ratio, the num-
ber of coded segments generated could range from 2 to possibly 4. In the above
example, the network coding group-id is 8 and the number of coded segments
generated has been chosen to 4.



88 R. Srinivasan and J. J. Garcia-Luna-Aceves

Fig. 4. Group Size 1: Coded Datagram 8.1’s TCP Header

The relevant portions of the modified TCP header for network coded segment
using a coefficient of 2 is depictedin Fig. 5.

Fig. 5. Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting

As can be seen a simple left shift of all the contents by 1 bit results in
generation of the coded data. Similarly simple left shifts of all the contents by
2/3/4 bits results in generation of the corresponding coded data for coefficients
of 4/8/16.

Receiving Side Group Size 1. The Fig. 6 depicts the receive mechanism when
there is a single segment.

Fig. 6. Group Size 1 RX

Receipt of any one coded segment suffices to recompute the original segment,
by a simple bit shift operation to the right according the value of the CE1. If
CE1 = 2, right shift by 1 bit, if CE1 = 4, right shift by 2 bits, if CE1 = 8,
right shift by 3 bits and if CE1 = 16, right shift by 4 bits to generate original
Segment D1.
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Acknowledgement for Group Size 1. The receipt of an ACK for any one
coded segment in a group of size of one confirms receipt of the data for that
group. One of the contributions of this work is ensuring that the health of the
network is captured accurately and relayed back as-is to the higher layer by the
combined TCP stack. To compute the current RTO, a TCP sender maintains two
state variables, SRTT and RTTVAR. We compute the RTO at the end of receipt
of acknowledgement for each of the four coded segments transmitted using the
exact method outlined in RFC-2988 [9]. When the first RTT measurement R is
made, the host updates SRRT, SRRT and RTO as follows:
SRTT ← R; RTTVAR ← R/2
RTO ← SRTT + max (G, K*RTTVAR); where K = 4

For each subsequent RTT measurement R’ in a given NC group, the sender
updates RTTVAR and SRTT for TCP-NWT window, as follows till measure-
ments for all coded segments are completed.

RTTVAR8.1←(1-beta)*RTTVAR8 + beta* | SRTT - R8.1’ |
SRTT8.1 ← (1 - alpha) * SRTT8 + alpha * R8.1’
RTTVAR8.2 ←(1 - beta)*RTTVAR8.1 +

beta * | SRTT8.1 - R8.2’ |
SRTT8.2 ← (1 - alpha) * SRTT8.1 + alpha * R8.2’
RTTVAR8.3 ← (1 - beta) * RTTVAR8.2 + beta * | SRTT8.2 - R8.3’ |
SRTT8.3 ← (1 - alpha) * SRTT8.2 + alpha * R8.3’
RTTVAR8.4 ← (1 - beta) * RTTVAR8.3 + beta * | SRTT8.3 - R8.4’ |
SRTT8.4 ← (1 - alpha) * SRTT8.3 + alpha * R8.4’
RTTVAR9 ← RTTVAR8.4

SRTT9 ← SRTT8.4

The RTTVAR and SRRT corresponding to CD8.4 from TCP-NWT window
are then assigned to the updated RTTVAR and SRRT corresponding to com-
pletion of successful transmission of D1 and receipt of ACK. The computation
mechanism for other group sizes on both sending and receiving side are similar
to that for group size 1.

Algorithm - TCP-NWT. We state the algorithm for encoding a group of
segments and the algorithm for decoding a group of segments below. Once the
receiver has received sufficient number of coded segments for a group, equal to
the size of the group, the decoding steps are initiated. We use the Gaussian-
elimination [4] procedure for solving a system of linear equations to decode and
arrive at the original data sent.
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Algorithm 1. encode(group)
1: Determine the group (group id) of the set of packets to be encoded.
2: Size of the group, grp sz;
3: Initialize the group seq num for each individual packet within the group to

the group id of this group.
4: Based on LR (Loss Ratio), determine the number of encoded packets to be

generated: numEncoded
5: for i = 1; i ≤ numEncoded; i ++ do
6: Determine the unique set of NC Coefficients Tuples: CE[1], CE[2], · · · ,

CE[numEncoded]
/* (based on the group id and group seq num for each encoded packet to
be generated.) */

7: Clear RLC PAC[i];
8: Compute the contents of the coded packet.
9: for j =1 ; j ≤ grp sz; j++ do

10: RLC PAC[i] = RLC PAC[i] + CE[i][j] × PAC[j]
11: end for
12: Populate the packet hdr of RLC PAC[i] with the the NC Coefficients used

to generate it;
13: Upload RLC PAC[i] the newly generated coded packet into new

TCP NWT window.
14: end for

Algorithm 2. decode(group)
1: while TCP Session is still active do
2: Wait for the receipt of a packet. if times out waiting, quit;
3: Determine the group (group id ) of the received segment.
4: Determine the group Size of the group, grp sz;
5: Determine if there is already a sink created to gather all segments of this

group.
6: if not, create a new sink for this group and initialize grp rcv cnt, group

receive count to 1;
7: Check if grp sz for this group equals grp rcv cnt for this sink
8: if yes pass the set of packets to the GaussianElimination function, which

will return the original segments of this group.
9: end while
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4 TCP-PNC

Based on the current dynamically estimated loss-ratio of the network at a given
point in time and using a new enhanced approach based off [15], the number
of network coded data packets (n) to be generated from an initial dataset (m)
of data packets is computed. We evaluate the dynamic loss ratio as indicated
below:

Fig. 7. Dynamic loss-ratio prediction

Loss-Ratio for different range of the time periods “M” starting from 2 to
about 32 is computed in every measurement period tm. Let lM (k) be the packet
loss ratio of the k-th measurement, which is calculated as the number of dropped
packets over the total number of packets arrived during the latest M periods (see
Eq. 1); where Nd(k) is the number of packets dropped in the k-th measurement
period, and Na(k) is the number of packets arrived in the k-th measurement
period.

lM (k) =

(
M−1∑
i=0

Nd(k − i)
)

(
M−1∑
i=0

Na(k − i)
) , M = 2, 3, 4, · · · , 32 (1)

In real scenario M can be any value ≥ 0:

M = 0, LR(k) = l0(k) (2)

M = 1, LR(k) =
l0(k) + 2−1l1(k)

20 + 2−1
(3)

M = 2, LR(k) =
l0(k) + 2−1l1(k) + 2−2l2(k)

20 + 2−1 + 2−2
(4)

LR(k) =

20 × l0(k) + 2−1 × l1(k) + 2−2 × l2(k) + · · ·
+2−n × ln(k)

20 + 2−1 + 2−2 + · · · + 2−n
(5)
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4.1 TCP-PNC Predictive Network Coding - Protocol Description
by Example

Fig. 8. An example of dynamic loss-ratio prediction

We are taking an actual example in order to succinctly illustrate our proposed
mechanism for dynamically arriving at the predicted loss at the next upcoming
time interval. Value of M determines the number of time periods over which the
loss ratio is computed. We are proposing here of assigning a weight of 1 for loss
ratio l0(k), 2−1 for l1(k), 2−2 for l2(k) and so on, to ensure the data comprising
just the immediate past is given a higher importance compared to the data
corresponding to a slightly larger duration from the past. In the above example,
we have taken the actual data which indicates that in the k-th measurement, out
of 4 packets sent, 2 are successfully received and acknowledged. In the (k+1)th
measurement, out of 4 packets sent, 3 are successfully received and acknowledged.

M = 0; l0(k − 1) =
3
4

= 0.75; LR(k − 1) =
1 ∗ l0(k − 1)

1
= 0.75 (6)

M = 0; l0(k) =
2
4

= 0.5 (7)

M = 1; l1(k) =
3 + 2
4 + 4

=
5
8

= 0.625 (8)

LR(k) =
1 ∗ l0(k) + (1/2) ∗ l1(k)

1 + 1/2
= 0.54 (9)

M = 0; l0(k + 1) =
3
4

= 0.75 (10)
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M = 1; l1(k + 1) =
3 + 2
4 + 4

=
5
8

= 0.625 (11)

M = 2; l2(k + 1) =
3 + 2 + 3
4 + 4 + 4

=
8
12

= 0.67 (12)

LR(k + 1) =
1 ∗ l0(k + 1) + (1/2) ∗ l1(k + 1) + (1/4) ∗ l2(k + 1)

1 + 1/2 + 1/4
= 0.70 (13)

Expected Dynamic Loss Ratio: Using LR(k − 1),LR(k), and LR(k + 1) we
try to predict the PLR Predicted loss Ratio at the next three time intervals
PLR(k+2), PLR(K+3), PLR(k+4) using following simple mechanisms. We do
a linear extrapolation of the Observed loss ratio values at (k) and (k+1) to
arrive at PLR(k+2). LR(K) is 0.54 and LR(K+1) is 0.70 and therefore initial
estimate for PLR(k+2) is 0.90. However since in our example we are sending 4
segments in a timeslot, the actual possible values for l0(k + 2) are 0, 0.25, 0.5,
0.75 and 1. Since our initial estimate of 0.90 is between 0.75 and 1, we would
take the lower of the two namely 0.75 as the PLR(k+2). Similarly taking the
values of OLR(K+1) and PLR(k+2) and doing a similar linear extrapolation we
estimate PLR(K+3), which in our example turns out to be 0.75. Similarly taking
PLR(k+2) and PLR(K+3) we estimate PLR(k+4), which also turns out to be
0.75. Next we try to predict the Worst case loss-ratio by taking the minimum of
the observed loss ratio in the last two measurement periods and the predicted
loss ratio in the upcoming two measurement periods:

MIN(LR(k), LR(k + 1), PLR(k = 2)PLR(K = 3)PLR(k = 4)), namely
MIN(0.54, 0.70, 0.75, 0.75, 0.75), which is 0.54. This is closest to 0.5, which
would be the worst case loss-ratio in the above example. For a given session,
at every 2 secs interval the Observed Loss Ratio (OLR) is computed and saved
in a LossRatioTable for last hour (array size is 3600/2 = 1800). Using the past
saved values of the observed loss ratio - along with currently observed loss ratio
extrapolation of the gradient/trend and prediction of the PLR (Predicted Loss
Ratio) values for the next 3 time periods is done. Based on this trend, the
MIN (OLR(t0-4), OLR(t0-2), PLR(t0), PLR(t0+2), PLR(t0+4)) is chosen as the
WLR(t0) potential Worst-case Loss Ratio scenario to be addressed while deriving
the number of RLC (Random Linear Coded) TCP datagrams. Coded Grp size
= Orig Grp size/(WLR).

5 Testing and Simulation

We evaluated the performance of TCP-WSC using discrete-event simulation.
The NS-2 simulator [12] was used. NS-2 [12] provides substantial support for
simulation of TCP, Routing, and Multicast Protocols over wired and wireless
(local and satellite) networks. The TCP implementation was modified to support
the new proposed protocols.
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Fig. 9. TCP-NWT with No-Loss

Fig. 10. TCP-NWT with 20%Loss

Fig. 11. TCP-NWT with 40%Loss
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Fig. 12. TCP-NWT with 50%Loss

Numerous scenarios and options were tried out to truly validate the gains
and benefits of the proposed approach here.

As very succinctly evident in the results of the simulation, the performance
has been maintained at the same level despite varying levels of errors, all the way
from 20% loss in Fig. 10, 40% loss in Fig. 11 and finally even with 50% loss as seen
in the Fig. 12. Comparing these with the loss-less scenario in Fig. 9, clearly shows
we can guarantee performance and throughput despite level of errors/losses with
one big CAVEAT to remember, namely: these errors are ONLY due to wireless
link-layer errors and NOT due to a true congestion per-se in the network. The
above results were with TCP-NWT Only, without the predictive dynamic Loss-
ratio incorporated.

The Simulation Scenario with TCP-PNC, which comprises TCP-NWT and
additionally incorporates the Predictive loss Ratio.

This section describes simulations from 4 scenarios - 2 each with

a. standard TCP ns-2 [12] new Reno
(i) Using a wireless topology with an almost lossless wireless link
(ii) Using the same wireless topology with a substantial lossy wireless link at

both the wireless end-nodes
b. standard TCP ns-2 [12] new Reno implementation modified with our proposed

enhancements for networks with wireless end-nodes.
(a) Using the same wireless topology with an almost lossless wireless link
(b) Using the same wireless topology with a substantial lossy wireless link

(10% and subsequently 20%)

6 Results

There was an improvement in overall throughput observed with the new imple-
mentation - especially as transmission errors (link-layer losses) increase. Com-
parative results with TCP Cubic as well as TCP newReno [3] show that our
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Fig. 13. Cubic vs New Reno vs TCP-PNC - 10% loss

Fig. 14. TCP-PNC - Throughput Comparison with no loss vs 20% loss

Fig. 15. Cubic vs New Reno vs TCP-PNC- 20% loss

Predictive Network Coding TCP-PNC provides a significantly higher through-
put of about 22%. The results clearly demonstrate that dynamic adjustment of
amount of additional network coded segments being generated based on accu-
rate prediction of the loss-ratio results in a much more optimal effective usage
of the network resources as well as ensuring minimizing retransmission for lost
segments, thus significantly improving throughput.
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7 Conclusion and Future Work

The prediction of the loss ratio proposed in this paper constitutes a solution
based on rudimentary machine learning. This is a nascent area with the poten-
tial for much more innovations based on proactive response based on machine-
learning techniques, and there could be many more ways to predict the loss-ratio
more accurately. Saving past TCP sessions metrics and parameters is another
promising way to predict the current expected network behaviour for the same
destinations.
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Abstract. The congestion-control mechanisms currently implemented
in different variants of the Transmission Control Protocol (TCP) do not
account for the possibility that an inherent topology change is the cause
of changes in the perceived end-to-end round-trip time (RTT) in a TCP
session, rather than network congestion. This results in low throughput
and inefficient use of the available bandwidth. We introduce TCP-RTA
(TCP Real-time Topology Adaptiveness), a TCP variant that dynam-
ically detects a topology change and in real-time adapts to an appro-
priate congestion-control strategy in order to maximize the effective use
of the total available bandwidth. Simulation results indicate a through-
put increase of more than 35% in scenarios involving dynamic topology
changes in the midst of a TCP session.

Keywords: TCP · Real-time · Congestion-Control

1 Introduction

The congestion-control mechanisms that are used in the Transmission Control
Protocol (TCP) today are not able to detect changes in the underlying topol-
ogy that lead to drastic changes in the round-trip time (RTT) experienced in
a TCP session. Instead, TCP senders interpret such changes as the presence
of congestion. Furthermore, current TCP implementations reply on a specific
congestion-control strategy that is fixed for the duration of a TCP session. This
is rapidly becoming a major limitation of TCP in today’s Internet, because of
two key factors. First, the proliferation of very different types of transmission
media that have disparate bandwidth-delay products and reliability renders the
use of a single congestion-control strategy that is unaware of the impact of the
underlying topology on the delays of TCP sessions highly ineffective. Second, end
user applications and deployment scenarios including Anglova [15] require con-
tinuous availability of services, service providers need to attain the most efficient
use of the available bandwidth over wired or wireless links, and more and more
end users are mobile. Hence, the original approach used in TCP of interpreting
increases in delay as the ensuing of congestion must be revisited to account for
the fact that a given TCP session may use different types of transmission media
as end users move and different transmission media are used as a result.
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The key contribution of this paper is the introduction of a new approach
to congestion-control in TCP that chooses an apt congestion-control algorithm
depending on the perceived use of different underlying transmission media result-
ing from changes in the measured RTT within ongoing TCP sessions. The app-
roach uses a congestion-control algorithm that is best suited for a given range
of RTT values and switches among different algorithms as needed. This is par-
ticularly relevant for the support of TCP sessions involving end-devices that
are mobile during the midst of an ongoing TCP session. In addition, the pro-
posed approach to congestion control in TCP is particularly attractive for future
deployments of 5G networks and beyond, because it easily accommodates the
use of heterogeneous transmission media.

Section 2 discusses related work. As our survey of prior variants of TCP
reveals, TCP variants in the past have relied on a single congestion-control algo-
rithm. The closest approach to our work is D-TCP (Dynamic TCP) [22], wherein
the bandwidth-delay product is dynamically computed and a congestion metric
derived off this computation. This is then used to determine the response of the
congestion control algorithm to increase/decrease the congestion window dur-
ing the RTT update and loss detection. However, this is done within a single
algorithm and it is not very robust.

Section 3 presents the approach and architecture of TCP-RTA (TCP with
Real-Time Topology Adaptiveness). TCP-RTA is a new TCP variant with a
comprehensive set of enhancements, specific for dynamically detecting topology
changes and according adapting to an appropriate congestion control strategy.

Based on various studies of observed RTT for various underlying network
topologies [29], we categorize the initial starting topology of a new TCP session
being initiated based on the observed RTT values during the initial three-way
handshake. Thereafter the RTT values are monitored and anytime three consecu-
tive RTTs change and in the range of a different underlying topology, TCP-RTA
dynamically enables a change to the corresponding specific congestion-control
strategy for the newely perceived topology. This ensures that the ongoing TCP
session has the best congestion-control strategy in place. TCP-RTA explicitly
invokes separate congestion-congestion control algorithms for each of the spe-
cific topologies perceived through the RTT measurements.

Section 4 describes the results of simulations conducted with TCP-RTA and
with other deployed TCP versions including TCP Cubic and Sect. 5 outlines and
compares the results observed. Section 6 concludes the paper.

2 Related Work

Outlined below is a survey of the various current deployed versions of TCP and
the way they handle the introduction of wireless links.

A comparative study of the actual approaches used in the different TCP
implementations can be found in the paper titled “A Comparative Analysis
of TCP Tahoe, Reno, New-Reno, SACK and Vegas” [11]. There are several
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TCP implementations including [26] Tahoe [20], Reno [19], New-Reno [13], TCP-
SACK [24], TCP-Vegas [6], TCP-Jersey [31], TCP-DCR [5], TCP Santa Cruz
[25] which address various short-comings in TCP implementations.

For high-speed network requirements, the following TCP variants have been
proposed including FAST [16], HSTCP [12], STCP [23] TCPNewReno [13],
CUBIC [17], SQRT TCP [18], TCP-Westwood [10], BIC TCP [32] Binary
Increase Congestion control, CUBIC [17], TCP-Illinois [21], TCP-Hybla [8],
YeAH-TCP [1], Compound TCP (CTCP) [30], BBR [9].

Mobile end-devices may undergo underlying topology changes during the
course of an ongoing TCP session, simply due to their physical movement. The
resultant changes observed in end-end packet Round-Trip-Time would get mis-
interpreted as a congestion in the network by existing TCP implementations.

For completeness, would like to mention that RFC1185 and RFC1123 were
among the initiatives to enable TCP extensions for high speed networks provid-
ing for scaled windows and timestamps.

The approaches proposed to improve TCP performance over networks with
wireless links can be divided into two major categories, namely: those that work
at the transport level, and others that work at the link level.

Transport level proposals include Explicit Bad State Notification (EBSN) [3],
Freeze-TCP [14], Indirect-TCP (I- TCP) [2], Snoop [4], fast-retransmission [7].

Snoop [4] is a well-known link level proposal. In this scheme, the base station
sniffs the link interface for any TCP segments destined for the mobile host, and
buffers them if buffer space is available. Segments are forwarded to the mobile
host only if the base station deems it necessary.

In WTCP [28] the base station is involved in the TCP connection. WTCP
[28] requires no modification to the TCP code that runs in the mobile host or
the fixed host. Based on duplicate acknowledgment or timeout, the base sta-
tion locally retransmits lost segments. In case of timeout, by quickly reducing
the transmission window, potentially wasteful wireless transmission is avoided
and the interference with other channels is reduced. Also WTCP [28] hides the
wireless link errors from the source by effectively subtracting the residence time
of the segment at the WTCP [28] buffer from the RTT value computed at the
source, thus the RTT computation excludes wireless link layer retransmission
delays.

Prior work related to our specific proposal here, includes D-TCP Dynamic
TCP [22] Congestion Control Algorithm for Next Generation Mobile Networks,
wherein Bandwidth-Delay product is dynamically computed and a congestion
metric derived off this computation, which is used to determine the response
of the congestion control algorithm to increase/decrease the CWND during the
RTT update and loss detection. Thus only a single parameter is being dynami-
cally modified and the underlying Congestion Control algorithm is the same for
all scenarios and through the life-cycle of the current session and thereafter till
the TCP stack is changed.

In this work, we are proposing TCP-RTA, which dynamically recognizing
potential underlying topology change in the end-end path of the current TCP
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session and transitioning and thus adapting in real-time, to the apt congestion
control algorithm applicable for this updated new topology, experienced by the
TCP Session.

3 TCP-RTA Approach and Architecture

In this section, we elaborate on TCP-RTA (TCP with Real-time Topology Adap-
tiveness), which comprises numerous enhancements to maximize the throughput
of TCP sessions, particularly in hybrid 5G networks with wireless interfaces,
which experience a topology change in the midst of an ongoing TCP session.

3.1 TCP-RTA Approach

There are proven very well performing and optimized congestion-control custom
strategies for specific environments as exemplified by some of the TCP vari-
ants including, for example, TCP Hybla [8] for satellite links, HSTCP [12] for
networks with a large bandwidth-delay product along with low-latency, as well
as some generic TCP variants like TCP NewReno [13], among others. We are
proposing a new mechanism, wherein we leverage apriori categorized values of
some of the ranges of TCP parameters (example RTT), as corresponding to a
particular underlying nature of the environment (Topology). We use the above
information to help identify the actual environment encountered by a TCP Ses-
sion at any given point during the course of the given session. On detection of
a significant consistent change in our TCP session parameters of interest (RTT
in our scenario), which definitively point to a topology/environment change we
transition over completely to the custom congestion control strategy, which is apt
for the transitioned environment/topology. An example would be a significant
consistent increase in RTT would imply a change of the environment to a “satel-
lite - very low speed link” from a regular environment. Our mechanism would
respond as follows: Starting with default TCP NewReno [13], on detection of the
significant consistent RTT increase pointing to a transition to a path involving a
satellite, we initiate a switch over of the congestion-control algorithm from that
of TCP NewReno’s [13] congestion-control algorithm to that of TCP-Hybla’s [8]
congestion control algorithm.

3.2 TCP-RTA Architecture

TCP-RTA uses the following high-level approach to effect the transition across
congestion control algorithms. We dynamically adapt the congestion control
strategy as enumerated below.

For any TCP session, it starts with a default configuration including a con-
gestion control strategy, which we have chosen as that of TCP NewReno for
our study and simulation. To clarify, this default TCP configuration can be any
variant of TCP which is apt for the environment of the TCP session, as it is
established. One of the proposed enhancements that is envisaged in future is
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the inclusion of negotiation and convergence on the apt initial default configura-
tion in TCP’s initial 3-way handshake protocol. Comparing the observed RTT
during the initial 3-way handshake, with the corresponding default RTT thresh-
olds for each environment, we arrive at the nature of the underlying topology
and accordingly configure the default initial configuration of the TCP session.
For our default TCP NewReno configuration, the RTT-threshold is accordingly
initialized to 300 ms. In our dynamic TCP-RTA algorithm, we keep track of
the last three observed RTT at any point in time: RTT-Current, RTT-Prev and
RTT-Prev-Prev.

Table 1. Definitions

Variable Definition

RTT Round Trip Time (implies end-end)
RTT-Current RTT for the most recent segment
RTT-Prev RTT for the segment prior to the last segment (prior segment)
RTT-Prev-Prev RTT for the segment prior to the prior segment

The salient steps in our proposed approach are:

1. The above 3 variables are initialized at the start of a session to the default-
RTT-threshold (300ms in our environment).

2. After receipt of every acknowledgement and the corresponding immediate
computation of the observed RTT (RTT-new), we update the value of

i RTT-Prev-Prev with RTT-Prev
ii RTT-Prev with RTT-Current
iii RTT-Current with RTT-new

3. if the three observed values of RTT are all above 800 ms, we infer that there
must have been an underlying topology change and based on some of the
observed RTT times for TCP sessions going over a satellite link [8], we infer
that a topology change has happened and the path now involves a satellite
link. Hence we initiate a change in the congestion control strategy which is
more apt for the newly observed dynamically changed environment, wherein
the TCP session now includes a path through a significantly larger delay
(typically attributed to a satellite link), namely TCP Hybla [8].

4. If only one or two of the observed values are above the 800 ms threshold
and subsequently the RTT comes back to prior regular values, then these
transients are ignored and the congestion control strategy is left unchanged.

5. The above steps are repeated till the end of the TCP session, with an addi-
tional check happening after every update to the observed RTT. If we find
that the last three observed RTT values are all below RTT-threshold for a
non-satellite link, which we have chosen as 300 ms based on reported obser-
vations in [8], we revert back the congestion control strategy to that of TCP
NewReno.
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The high level algorithm below clearly depicts the control flow of the newly
proposed dynamic TCP-RTA and its congestion control strategy.

Algorithm 1. TCP-RTA-Overview
1: Def RTT TCP NEWRENO = 500
2: Def RTT TCP HYBLA = 800
3: m adaptiveAlgProg = TCP NEWRENO
4: RTT-Current = Def RTT TCP NEWRENO
5: RTT-Prev = Def RTT TCP NEWRENO
6: RTT-Prev-Prev = Def RTT TCP NEWRENO

do
7: if (m adaptiveAlg == TCP NEWRENO) then
8: if ((RTT-Current > Def RTT TCP HYBLA) &&

(RTT-Prev > Def RTT TCP HYBLA) &&
(RTT-Prev-Prev > Def RTT TCP HYBLA)) then

9: m adaptiveAlg = TCP HYBLA;
10: end if
11: else if (m adaptiveAlg == TCP HYBLA) then
12: if ((RTT-Current < Def RTT TCP NEWRENO) &&

(RTT-Prev > Def RTT TCP NEWRENO) &&
(RTT-Prev-Prev > Def RTT TCP NEWRENO)) then

13: m adaptiveAlg = TCP NEWRENO;
14: end if
15: end if
16: wait till next ACK recd;
17: RTT-new = ComputeNewRTT();
18: RTT-Prev-Prev = RTT-Prev;
19: RTT-Prev = RTT-Current;
20: RTT-Current = RTT-new;

while (TCP Session is still active)

The main underlying premise is that if there is a distinct change suddenly
observed in the RTT and that change is consistently maintained for at least 3
consecutive segments back to back without any packet loss, then we predict the
cause of such a change should be an underlying topology change rather than a
sporadic congestion in the network.

Since TCP does not know whether a delayed ACK is caused by a congestion
experienced by a segment or possibly a topology change, it waits for a small
number of additional ACKs to be received. It is assumed that if there is just a
temporary increase in RTT, there will be typically one or two delayed ACKs at
most, before either the RTT returns to prior normal values or it increases more
and possibly ending in a timeout and a packet drop. The underlying premise
is that any network congestion scenario is not a stable condition and thus a
transitory state, which would quickly either return to normalcy or become worse.



104 R. Srinivasan and J. J. Garcia-Luna-Aceves

So, if there are 3 or more ACKs consistently delayed by similar value and received
in a row, then we presume it is a strong indication that the segments are most
probably using a new stable path(topology) with a new different (increased or
decreased) RTT.

We ensure the hand-off happens seamlessly across from the current conges-
tion control strategy to the appropriate target congestion control strategy for
the newly identified topology to which the network has transition to. This is
particularly very relevant for mobile end-nodes which are ubiquitous with the
proliferation of the 5G technology.

As part of our proposed TCP-RTA approach, we also ensure that our adaptive
congestion control strategy does not respond to any sporadic one-off drastic
different behaviour in the TCP parameters in any significant manner. Another
significant aspect of our proposed approach is that one-off sporadic changes are
not even passed onto TCP congestion control mechanism, so effectively it acts
like a low-pass filter preventing these exceptions from impacting the parameters
impacting the throughput and performance of the TCP session.

Detailed algorithm outlined below spell out the steps. We did experiment
with having same threshold for transition across different Congestion Control
Strategies as well as having a common gray area, whose thresholds had to be
crossed clearly by the parameter (RTT) used to identify topology change.

Algorithm 2. TCP-RTA::SlowStart
1: input Ptr SocketState, segmentsAcked
2: if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP NEWRENO) then
3: sndCwnd = tcb→ m cWnd;
4: tcb→m cWnd = min((sndCwnd+(segmentsAcked*tcb

→m segmentSize)),tcb →m ssThresh);
5: return segmentsAcked-((tcb →m cWnd-sndCwnd)/tcb

→m segmentSize);
6: else if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP HYBLA) then
7: /* slow start
8: INC = 2ρ - 1 */
9: increment = pow(2, m ρ) - 1.0;

10: incr = increment*tcb→m segmentSize;
11: tcb→m cWnd = min (tcb→m cWnd + incr, tcb→m ssThresh);
12: return segmentsAcked - 1;
13: end if
14: return 0;

TCP-RTA incorporates the following additional list of enhancements:

1. Slow Start Enhancement in TCP NewReno, cwnd is increased by one
segment per acknowledgment. In TCP-RTA, cwnd is changed to SegAcked *
Segment size. (similar to Cubic [17])
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Algorithm 3. TCP-RTA::CongestionAvoidance
1: input‘ Ptr SocketState, segmentsAcked
2: if (segmentsAcked > 0 && m adaptiveAlg == TCP HYBLA) then
3: INC = ρ2/W
4: segCwnd = tcb → GetCwndInSegments ();
5: increment = std::pow (m ρ, 2)/static cast<double> (segCwnd);
6: m cWndCnt += increment;
7: segmentsAcked -= 1;
8: end if
9: if (segmentsAcked > 0 && m adaptiveAlg == TCP NEWRENO) then

10: if (m adaptiveAlgProg �= ALOG INPROGRESS) then
11: w = tcb → m cWnd/tcb → m segmentSize;
12: if (w == 0) then
13: w = 1;
14: end if
15: if (m cWndCnt ≥ w) then
16: m cWndCnt = 0;
17: tcb → m cWnd += tcb → m segmentSize;
18: end if
19: m cWndCnt += segmentsAcked;
20: if (m cWndCnt ≥ w) then
21: delta = m cWndCnt/w;
22: m cWndCnt -= delta * w;
23: tcb → m cWnd += delta * tcb → m segmentSize;
24: end if
25: end if
26: else
27: m adaptiveAlgProgCnt–;
28: tcb → m cWnd = m bd/tcb → m segmentSize;
29: end if
30: if (m cWndCnt ≥ 1.0 && m adaptiveAlg == TCP HYBLA) then
31: inc = m cWndCnt;
32: m cWndCnt -= inc;
33: if (m adaptiveAlgProg �= ALOG INPROGRESS) then
34: tcb → m cWnd += inc * tcb → m segmentSize;
35: end if
36: else
37: tcb → m cWnd = m bd/tcb → m segmentSize;
38: end if
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2. Congestion Avoidance Enhancement In TCP NewReno, cwnd is
increased by (1/cwnd). In TCP-RTA, the following changes are introduced:
In congestion avoidance phase, the number of bytes that have been ACKed
at the TCP sender side are stored in a ‘bytes acked’ variable in the TCP
control block. When ‘bytes acked’ becomes greater than or equal to the value
of the cwnd, ‘bytes acked’ is reduced by the value of cwnd. Next, cwnd is
incremented by a full-sized segment (SMSS). (Similar to Linux Reno [19]
implementation)

3. On Fast restransmit, we update ssthresh to half of current cwnd: ssthresh =
bytesinflight/2; In order to recover faster, it is enhanced as follows: sstresh =
(bytesInFlight * 2) /3.

4. Default boost of a factor of 10 (constant) of the Bandwidth*Delay product
while switching from LAN to Satellite and vice versa.

We have not impacted or changed any of the fairness with respect to other
TCP co-existing as the underlying congestion control strategy adopted by us is
that of TCP-Hybla, when the topology change is detected through a consistent
increase in RTT. The fairness of TCP-Hybla and earlier that of TCP NewReno
has been already established and proven and thus its applicable here as well.
Even in the transition from congestion control strategies from TCP-Hybla to
TCP NewReno, the only change is our non-responsiveness to transients and
that too for only 3 segments. Thus fairness is guaranteed.

4 Testing and Simulation

We evaluated the performance of TCP-RTA using NS-3 discrete-event simulator.
NS-3 provides substantial support for simulation of TCP, Routing, and Multi-
cast Protocols over wired and wireless (local and satellite) networks. The TCP
implementation was modified to support the new proposed protocol including
several of the enhancements listed earlier.

Numerous scenarios and options were tried out to truly validate the gains
and benefits of the proposed approach here. After close analysis of the various
findings, decided to use TCP NewReno and TCP-Hybla to simulate and study
the behaviour for the quite significantly impactful change of a topology going
through a local LAN in a home office or a corporate network to a data path
involving a satellite for wireless inducing a very highly significant additional delay
in the observed RTT. We observed the behaviour during the initial slow-start
phase of the TCP-session as well as subsequently in the congestion avoidance
phase as well. The throughput was observed across the above phases and during
the transition of the “underlying topology”. Consistently we have seen that TCP-
RTA outperforms the others significantly in every one of the phases and across
all topology transitions.

As the results below succinctly indicate we do see a very clear increase in
the CWND size on transition to satellite environment. We have used NS3 for
our simulation and have injected a significant delay from time t = 5 secs to time
t = 15 secs to simulate a transition to a satellite back-haul and a subsequent
transition back from it.



TCP-RTA 107

Fig. 1. CWND - TCP-RTA vs TCP Hybla vs TCP NewReno

5 Results

For our simulation studies here, we have earmarked RTT values, consistently
observed in the range upwards of 800 ms to denote an environment/topology
with a satellite backhaul. Similarly we have earmarked RTT values, consistently
observed in the range downwards of 800 ms for one set of experiments and for
others used a lower value 500 ms, to denote a environment/topology without a
satellite backhaul. Later various other RTT ranges could be added as needed
to correspond to specific topology/environments, for which we have an specific
apt TCP variant with its own congestion control algorithm, which provides the
best optimal bandwidth usage and performance for that environment. It can be
observed from the results that there is a significant boost in the Congestion win-
dow size when the transition to a satellite link happens, with its corresponding
increase in the Bandwidth X Delay product as can be seen in the Fig. 4. Similarly
it can be observed in the optimal efficient usage of the network bandwidth close
to 33% increase on the average across many simulation scenarios. However for
the very specific transitory phase to a satellite link as seen in Fig. 6 the through-
put increase is almost double that of TCP Hybla as well as TCP NewReno. This
work can be further extrapolated and we do not have to restrict ourselves to the
specific topologies depicted here and the transitions between them.
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Fig. 2. TX - TCP-RTA vs TCP Hybla vs TCP NewReno

Fig. 3. CWND before transition to satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno
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Fig. 4. CWND after transition to Satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno

Fig. 5. CWND after transition from Satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno
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Fig. 6. TX after transition from Satellite - TCP-RTA vs TCP Hybla vs TCP NewReno

6 Conclusion and Future Work

TCP-RTA provides a framework and mechanism to leverage the “apt” conges-
tion control strategy for a given dynamic scenario, thus ensuring we are at all
times using the network in the most optimal efficient manner. The underlying
design and approach used in TCP-RTA lends itself to seamlessly incorporate
other specific scenarios and the dynamic transition to the corresponding conges-
tion control strategy. Currently the mechanism used to detect “topology change”
in our work has been RTT and the RTT variations with time. However, our app-
roach does not preclude other usage of any other metrics or a combination of
metrics to identify and determine any significant network change. To scale our
work further, our framework proposed here would permit the use of machine
learning techniques to predict impending topology and environment changes, so
that an apt congestion control strategy can be dynamically invoked in real-time
to ensure continuous ubiquitous efficient usage of network resources and band-
width at all times. Future work, could involve using TCP-RTA in tandem with
ECN [27] to clearly differentiate between longer RTTs due to real congestion
versus due to topology change. Additional possible future work could be vali-
dating topology change if a consistent hop-count change is observed from prior
values.
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Abstract. In this paper, we present a dynamic storage extension scheme for
docker containers. In the current implementation of docker containers, in the case
that the default storage of a container runs out of space in the middle of application
executions, those applications would abruptly stop to execute, leading to either
application restart or data loss. Our proposed scheme can prevent such a harmful
situation from taking place, by providing I/O redirection to rio_DSA extended stor-
age in the overlay filesystem. We evaluated the performance of rio_DSA by using
IOzone and FIO benchmarks, and showed that our scheme performedwell without
causing any malicious effect in I/O performance. Moreover, we can observe that
the performance potential due to leveraging high-speed I/Odevices, such asNVMe
SSD, can be preserved as it is in the existing docker container implementation.

Keywords: Rio_DSA · Docker container · I/O redirection · Overlay filesystem ·
Storage extension

1 Introduction

Container-based virtualization [1–5] is becoming popular in the cloud computing envi-
ronment because of its strong advantage of the lightweight deployment compared to
hypervisor-based virtualization [6, 7]. The capability of virtualizing all host resources,
such as network port or host’s backing filesystem, by sharing the host kernel with
small overhead makes it possible for containers to be an alternative to hypervisor-based
virtualization [8, 9].

However, with docker, a representative container-based virtualization, computing
resources assigned to containers are provided by user specification at creation time. Such
a resource allocation method can incur a critical problem, in the case that applications
running on top of docker containers generate a large-scale data enough to exceed the
storage capacity allocated at docker creation time.

In the existing implementation of docker containers, if applications executing on a
container generate a large-scale data exceeding the storage capacity given at container
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creation time, the application executionwould abruptly stop, leading to either application
restart or data loss. In this case, it is not possible to increase the storage capacity of
running containers unless otherwise stopped application executions. As a result, user
should terminate application executions on the problematic container and increase the
disk capacity size based on the inaccurate user prediction about future storage usage.

In this paper, we present a dynamic storage extension scheme for docker contain-
ers, called rio_DSA (Redirecting IO for Dynamic Storage Allocation on Docker Con-
tainer). In our scheme, the initial storage capacity of docker container can dynamically
be extended, bymonitoring the storage usage in real-time. Once the initial storage capac-
ity of a docker runs out of space, switching to rio_DSA extended storage can be done
without causing any execution stop or data loss.

The rest of this paper is organized as follows. In Sect. 2, we discuss related works and
in Sect. 3, we present the design and implementation of rio_DSA. Section 4 discusses
the performance evaluation of rio_DSA, by using two benchmarks, IOzone and FIO, and
Sect. 5 concludes.

2 Related Works

Achieving multi-tenancy via virtualization is an essential aspect in recent data centers.
Traditionally, hypervisor-based virtualization [6] has commonly been used by emulating
a virtual computer equipped with virtual peripheral devices. Although such a virtual-
ization provides a desirable, isolated application executions while effectively managing
resources [7], it could suffer from heavy overhead due to multiple s/w layers between
guest operating system, hypervisor and host operating system. Because of such draw-
backs, a relatively new scheme of container-based virtualization is receiving strong
attention in IT community.

The container-based virtualization, such as Linux containers (LXC) or docker, shares
most of software and hardware components with host operating system, while isolat-
ing application executions by utilizing host operating system features, such as cgroups
and namespaces. Especially, docker is a cross-platform container scheme whose main
components are composed of containers, images and registries [14].

In the docker container, overlay filesystem [15, 16] is used for effectively sharing files
through the copy-on-write mechanism [12, 13]. The overlay provides two directories,
lower (read-only) and upper (writable), and merges those two to transparently export
files to users on top of containers. Also, the storage capacity per container is statically be
determined at creation time, not being able to change during the container running period.
Since such a static storage allocation per container can run out of space with a large-scale
data being generated in application executions, there should a way of avoiding such a
lack of storage capacity per container. In this paper, we address this issue by proposing
an efficient way of dynamically extending the storage capacity per container.

As docker containers are becoming popularized, several researches have been done
to analyze the strengths by contrasting to hypervisor [10, 11]. They showed that the
major features impacting performance difference between containers and VMs are I/O
and OS interaction while consuming extra cycles for each I/O. [11] showed that the
performance interference of containers is higher than that of VMs because hypervisors
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support more robust isolated virtualization even though such an effectiveness in disk I/O
is mitigated due to the shared I/O path among VMs.

For the fast container startup, [2] implemented a docker storage driver, called slacker,
to delay pulling per-container image data until actually needed, by providing all container
image data on NFS server to be shared by all daemons. [13] proposed a prefetching
method that brings up the image files to the upper layer in advance to reduce the copy-up
cost.

3 Implementation Details

3.1 System Architecture

Fig. 1. rio_DSA structure.

The objective of rio_DSA is to dynamically extend the storage capacity of docker
container so that the abrupt execution stop due to the lack of the available storage space
would not take place. In this paper, the initial storage size of a container given at creation
time is referred as the default container storage and the additional storage size assigned
by our scheme is referred as the rio_DSA extended storage.

The data movement between the default container storage and rio_DSA extended
storage is transparently performed to users without causing any changes in applications.
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Moreover, we attempt to leverage the performance potential of NVMe SSD by utilizing
it as rio_DSA extended storage.

Figure 1 illustrates an overall structure of rio_DSA. The structure is composed of
four components. The daemon process responsible for collecting the container states,
such as execution or creation states and disk quota allocated at the creation time. The
rio_DSA kernel module plays an intermediate role between background daemon and
storage provisioning process executing on the user address space, while transmitting
signals implying the existence of a new container between the daemon process and the
storage provisioning process.

The storage provisioning module takes care of mapping rio_DSA layer of I/O mod-
ule in the overlay filesystem to the associated partition of rio_DSA extended storage.
Also, it provides the monitoring statuses of both storages to appropriately redirect data
movement, according to the available storage capacity. Finally, it receives the signal indi-
cating the existence of a new container and fills the storage metadata with the necessary
information to be used by multiple modules of rio_DSA.

Besides, there are two kinds of main metadata to be used for rio_DSA components:
storage metadata to be used for the storage monitoring and partition mapping, and
directory metadata containing the information about I/O redirection in the overlay.

When a new container is created, rio_DSA kernel module receives the necessary
information about its default storage and then stores it to the storage metadata, such
as quota-id, container id and device. It also sends rio_DSA signal to the provisioning
module to notify the new container creation.

Upon receiving the signal, the provisioning module accesses the storage metadata,
to leverage them to partition rio_DSA extended storage and map it to the host mount
directory. Moreover, it periodically monitors the remaining capacity of the default stor-
age, in order to redirect the I/O path to rio_DSA extended storage in the overlay, in the
case that the available default storage capacity drops below the threshold value.

Rio_DSA I/O module is integrated with I/O path of overlay filesystem. Besides the
existing upper and lower layers, it provides onemore layer, called rio_DSA layer between
two layers, to forward data to rio_DSA extended storage based on the monitoring status
of the default storage. Also, it maintains rio_DSA directory metadata to map rio_DSA
directory to the associated extended partition on the host, along with I/O redirection.

3.2 Providing Rio_DSA Extended Storage

Table 1. rio_DSA storage metadata.

Type Value Description

unsigned int id quota ID

char con_path container path

char special backingFSBlockDev
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Table 1 shows rio_DSA storage metadata to be received from the daemon upon the
new container creation. The rio_DSA kernel module makes it possible that both daemon
and provisioning processes can communicate the necessary information in real-time via
system calls, to monitor the corresponding container storage states. Further, it sends a
creation signal to the provisioning process to make it access the storage metadata.

There are two main roles for the provisioning module. Before creating containers at
host, it first divides the NVMe SSD-based rio_DSA storage into the desirable number
of partitions, and maps it to the host mount directory. In the case that more partitions
are needed as the number of containers increases, rio_DSA checks the available storage
space in rio_DSA extended storage and then allocates more partitions to deal with such
a situation. Also, it defines the signal call function being executed on the creation signal
receipt from the kernel module.

Second, the provisioning module accesses the storage metadata via system calls
to leverage them for periodically checking the default storage status of the associated
container.When the storage usage exceeds 85%of the total capacity, it instructs rio_DSA
I/O module to redirect I/O path to rio_DSA extended storage in overlay file system.

3.3 Rio_DSA I/O Module in Overlay Filesystem

Analyzing Overlay Filesystem for rio_DSA Integration
The I/O module of rio_DSA has been implemented in the overlay filesystem, to move
I/O path of a container where the application executes to the corresponding rio_DSA
partition, if necessary. We briefly take a look at the overlay structure, before going into
the details of rio_DSA I/O module.

When user creates a new container, the docker daemon issues a mount command on
the overlay filesystem, such as mount -t overlay overlay -o lowerdisk = lower/, upperdir
= upper/, workdir=work/ merged. In the overlay filesystem, multiple functions, includ-
ing ovl_parse_opt, ovl_get_upper, ovl_get_workdir and ovl_get_lowerstack, are exe-
cuted to separate the directory path of upper and lower directories and to bring the real
dentries of both directories from the backing filesystem on the host, leading to map them
to the associated inodes of the overlay filesystem.

Two major directories are associated to a container in the overlay filesystem: the
lower directory is the read-only and the upper directory is the writable. Both directories
are merged in the merged directory to be exported to users on the container.

In the case of write operations, the file of interest in the lower directory is copied
to the upper directory, called copy-up operation, and the duplicated file in the upper
directory is overwritten. In the case of creating a new file, the overlay can create the
new one in the upper directory since the lower directory is the read-only and cannot be
modified.

Figure 2 represents the steps for organizing upper and lower directories at the con-
tainer start time. When the container starts to execute, the files residing in the upper
and lower directories are traced while mapping their fake inodes to the corresponding
dentries of the host upper and lower directories. This is because the file operations tak-
ing place in the overlay filesystem can easily map to the real dentries of the backing
filesystem via their fake inodes in the overlay.
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Fig. 2. Steps for organizing upper and lower directories in the overlay filesystem

In the case that a file write operation issues on the container, the file data is stored in
the upper layer mapped to the upper directory of the host. To keep the existing directory
hierarchy, overlay first searches for the parent directory of the new file in the lower
directory. If the parent exists in the lower directory, the overlay performs the copy-up
operation to duplicate the same directory hierarchy to the upper layer, and then creates
the new file below the parent.

For each file and directory of the overlay filesystem, there exists the fake dentry and
real dentry information. In the file write, the overlay first accesses the fake dentry of
the new file to bring the real dentry of the parent and searches for the real dentry of
the new file by referring to the real parent dentry, dentry of the new file and its length.
This information is transferred to the backing filesystem on host where the real file write
operation takes place.

Implementing rio_DSA I/O Module
When a new container is created, rio_DSA makes an additional entry in the directory
metadata, pointing to rio_DSA directory mapped to the corresponding extended storage
in the host. Figure 3 shows an example of rio_DSA directorymetadata for two containers,
whose IDs are 7cfe…33f3 and 1007…75a2, and their directories mapped at host are
/root/…/rio_DSA_1 and /root/…/rio_DSA_2, respectively.

The check flag of the directory metadata is modified by the provisioning process,
according to the available capacity of the container default storage. If the remaining
storage size of the container drops below the threshold, the check flag of the directory
metadata is switched to the redirection value, leading to switching I/O path in the overlay
from the default directory to rio_DSA directory, while reflecting the modification to the
entity on the associated overlay inode.

In Fig. 3, the I/O path of the second container is currently redirected to rio_DSA
extended storage, but that of the first container keeps the default container storage. The
change is also reflected on the overlay inode. At container start time, it checks if the
container is already existed. If so, the information about the current I/O path resided in
the directory metadata is accessed and added in the overlay inode:

For the directory traversal to write a file, rio_DSA first checks to see if the desirable
directory resides in the upper directory and if so, the associated dentry is stored in
memory (page cache). If it does not exist, the search goes to the next rio_DSA layer. In
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Fig. 3. Rio_DSA directory metadata

Fig. 4. Inode Modification for rio_DSA

Fig. 5. File write operation in rio_DSA

case of the default container implementation, only upper and lower layers are examined
to find the directory of interest. In rio_DSA, however, one more layer between upper and
lower layers exists to support I/O path redirection (Fig. 4).

The steps for the traversal as follows: Let D be the directory of interest.

1. Check the upper layer to see if D exists. If so, save its dentry,../upper/D, in page
cache

2. Otherwise, check rio_DSA layer for D existence. If so, save its dentry,../rio_DSA/D,
in page cache
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3. Check the lower layer for D if not found in step 2. If D is found in this layer, save
its dentry,../lower/D, in page cache

If D is not found until step 3, rio_DSA performs the creation function, as can be seen
in Fig. 5. If the parent directory of a new file does not exist in the upper directory, it first
performs the copy-up operation to duplicate the parent directory of the lower directory
to the upper directory and the rio_DSA directory, unlike the existing operation where
the directory is coped from lower layer to upper layer only.

In Fig. 5, the parent directory, dir3, of two new files, file1 and file2, is copied from
lower layer to both upper layer and rio_DSA layer. Since at the time of writing file2, I/O
redirection is instructed due to the lack of the available default storage capacity, file2 is
created at rio_DSA layer, but in case of writing file1, the default upper layer is used for
writing the file. Also, the actual file data is stored in either the container’s default storage
or rio_DSA extended storage, according to the redirection path.

It is noted that nomatter in which layer those files are written, the directory hierarchy
of those files is exposed under the same parent, dir3, at user side, indicating that I/O
redirection is transparently performed to users.

4 Performance Evaluation

Weexecuted the performance evaluation of rio_DSAby using a host server equippedwith
Intel® Xeon® CPU E5-2609 1.70 GHz, 16 GB of RAM, 2TB of Toshiba HDWD120
and Samsung 1TB of PCI-e NVMe SSD. We also used IOzone and FIO benchmarks
for the evaluation. The OS installed on the server was CentOS Linux 7 and the backing
filesystem was xfs. The containers used for the evaluation share the server resources.
We tested the storage space extensibility facilitating rio_DSA extended storage, in case
of the lack of the default storage size of docker containers.

Figure 6 represents I/O throughput of IOzone, while 4 GB and 8 GB of files are
repeatedly written to the container storage. In this experiment, we restricted the default
storage size of rio_DSA containers to 1 GB for convenience, while varying the disk
type of its extended storage to HDD, SSD and NVMe SSD (labelled as HDD, SSD and
NVMe SSD in Fig. 6, respectively).

Since the default storage size is constrained to 1 GB, writing 4 GB and 8 GB of files
repeatedly facilitates rio_DSA extended storage after the default storage size exceeds
the threshold. We compared the performance of rio_DSA with the original container
(labelled as Original HDD in Fig. 6) where the large storage size is assigned to the
original container enough to store those files without causing storage space shortage.

As can be seen the figure, the read performance of either Read or Random Read does
not reveal much difference between original container and rio_DSA container. However,
in thewrite performance,we can observemuchdifference betweenboth containers. Since
NVMe SSD reveals the highest I/O throughput, we recommend leveraging NVMe SSD
as rio_DSA extended storage.

Moreover, as can be seen in Fig. 6, utilizing rio_DSA has little performance effect
compared to the original case equipped with the same type of disk (HDD and Original
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Fig. 6. I/O performance comparison using IOzone. The original (HDD) denotes the case that
sufficient default storage space is given to the container. The remaining three cases (HDD, SSD,
NVMeSSD) are I/O performances of rio_DSA where the three devices mentioned imply the disk
type of its extended storage.

Fig. 7. Comparison based on the disk space availability between original case and rio_DSA

HDD), but rather guarantees to keep up with almost the same I/O performance when
sufficient default storage space is given to the container.

Figure 7 represents the comparison of storage availability between the original con-
tainer where the default storage space is not enough to accommodate application data
beinggenerated on the container and rio_DSA containerwhere rio_DSA extended storage
is installed, besides the same size of the default storage space as in the original container.
In both cases, we constrained the default storage size to 1 GB for convenience.

As can be seen in Fig. 7, in the original container, if the data to be written to storage
becomes larger than 1 GB, the I/O performance rapidly drops due to the lack of storage
space. However, in rio_DSA container, even in the case of continuously writing 1 GB
of file data, rio_DSA shows little performance degradation (or even higher with NVMe
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SSD), demonstrating the successful storage extension in rio_DSA, in the case that the
default storage of the container is completely full of data.

Fig. 8. I/O throughput using IOzone as a function of execution time. Original container implies
that sufficient storage space is provided to the container so that no lack of storage capacity occurs.
Rio_DSA container is the one equipped with the extended storage. In rio_DSA container, the label
of Default implies the default storage and the one of Spare does rio_DSA extended storage where
its disk type varies from HDD to NVMe SSD.

Figure 8 represents the performance comparison between the original container
where 10GBof the default storage space is given to the container and rio_DSA container.
In the original container, writing 8 GB of files does not cause any lack of storage space.
The other three graphs show I/O performances of rio_DSA where the extended storage
of rio_DSA varies between HDD, SSD and NVMe SSD. Since the default storage size
of rio_DSA container is restricted to 1 GB, continuously writing 8 GB of data causes
I/O redirection to rio_DSA extended storage to safely store file data.

In the performance, the performance behavior of between the original container and
the rio_DSA whose extended storage uses the same HDD shows almost the same I/O
performance, implying that successful switching of data reservoir to rio_DSA extended
storage has been taken place. If NVMe SSD is utilized as its extended storage, higher
I/O performance can be obtained due to its performance potential.

Figure 9 represents I/O throughput of FIO benchmark while varying rio_DSA
extended storage between HDD, SSD and NVMe SSD. In this experiment, we exe-
cuted FIO for 6 h. In the meantime, because of the lack of the default storage space, the
switching to rio_DSA extended storage has been occurred.

As can be seen in the figure, if the disk type of the default storage and the one of
rio_DSA extended storage are the same, little performance turbulence due to the storage



Rio_DSA: Redirecting I/O Scheme 123

Fig. 9. I/O throughput of rio_DSA using FIO as a function of execution time.

switching takes place, like observed in IOzone. On the contrary, leveraging SSD and
NVMe SSD as rio_DSA extended storage shows higher performance than writing to the
default storage because of their performance superiority.

According to the experiment, we can conclude that switching the data reservoir to
rio_DSA extended storage because of the need for extending the container storage does
not exacerbate I/O performance. Rather, utilizing rio_DSA extended storage guarantees
the disk availability even in the case that the default storage of a container runs out of
space. Also, the performance advantage to be obtained by accommodating either SSD
or NVMe as its extended storage remains the same.

Fig. 10. IOPS of rio_DSA using FIO while varying the extended storage type

Figure 10 shows IOPSof rio_DSAwith FIO,while changing the disk type of rio_DSA
extended storage. We can observe the same performance behavior to Fig. 9, producing
little performance fluctuation with the same disk type between the default storage and
rio_DSA extended one. Moreover, the performance potential with SSD and NVMe SSD
can be preserved with little overhead in rio_DSA storage switching.
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5 Conclusion

In this paper,wepresent rio_DSA schemeaiming at guaranteeing the storage extensibility
of containers, in the case that the default storage capacity given at container creation
time runs out of space. In the current container implementation, if the default storage of
a container runs out of space in the middle of application executions, those applications
would abruptly stop to execute, leading to either application restart or data loss. The
rio_DSA can prevent such a harmful situation from taking place, by supporting I/O
redirection to rio_DSA extended storage in the overlay filesystem.

In order for redirecting I/O path to the extended storage, rio_DSA creates an addi-
tional writable layer in the overlay, except for the existing upper and lower layers, and
switches the data storage path to the extended storage, in the case that the lack of default
storage takes place.

We evaluated the performance of rio_DSA by using IOzone and FIO benchmarks. In
the evaluation, we can observe that switching data path to rio_DSA extended storage can
be performed without causing any malicious effect in I/O performance. Furthermore,
the performance potential to be obtained by leveraging high-speed I/O devices, such
as NVMe SSD, is also observed in rio_DSA as it is in the existing (original) container
implementation. We will evaluate rio_DSA with more applications and benchmarks to
verify its effectiveness.
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Abstract. Wireless communications have affected our lifestyle in the
last decades. It is helpful to improve quality of life for communities. Com-
munications among vehicles usually take place in vehicular ad-hoc net-
works (VANETs). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications are aspects of communications in the transporta-
tion which are growing rapidly. They can play a pivotal role in the trans-
portation field. Management of traffic lights (TLs) is crucial to control
traffic flow especially at an intersection. The goal of this paper is to
manage the TLs at an intersection when an emergency vehicle (EV)
is approaching. First, we simulate an intersection which includes TLs
via simulation of urban mobility (SUMO). Later, we simulate VANETs
communication to manage the TLs at the intersection when the EV is
coming with the help of objective modular network testbed in C++
(OMNeT++) and vehicles in network simulation (Veins). Finally, the
impact of V2I communication on delivery efficiency of the emergency
service is investigated. Simulation results show an improvement in deliv-
ery efficiency of the emergency service.

Keywords: VANETs · SUMO · OMNeT++ · Veins · IEEE 802.11p ·
vehicle-to-infrastructure communications (v2i) · emergency vehicle
(ev) · traffic lights (tls) · vehicle-to-vehicle communications (v2v)

1 Introduction

Increasing number of vehicles has caused more traffic jams especially at cross-
roads during the recent years. Traffic jams at the intersection may cause many
problems and increase response time specifically for EVs such as ambulance, res-
cue truck, etc. To control the intersection, the advent of TLs has really helped
to increase the traffic performance. Management of the traffic flow at an inter-
section can increase delivery efficiency of the emergency services. It has been
demonstrated that human errors have a pivotal role in road accidents by 75%
[1,2]. It is obvious that an EV should arrive at the location immediately.

Testing new technologies in a real world is expensive and not safe. Besides, it
is difficult to repeat the experiment and control the conditions in the real world
for repetition, so simulation would have some benefits in this regard. Typical
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E. Sabir et al. (Eds.): UNet 2022, LNCS 13853, pp. 129–137, 2023.
https://doi.org/10.1007/978-3-031-29419-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29419-8_10&domain=pdf
http://orcid.org/0000-0003-0329-8140
http://orcid.org/0000-0001-7867-9680
https://doi.org/10.1007/978-3-031-29419-8_10


130 A. Izadi et al.

Fig. 1. DSRC channel spectrum in the U.S.

application of VANETs-based communications are EV warning or accident alert
[2,3]. VANETs-based communications have been regulated in the IEEE-802.11p
standard [1].

Dedicated short range communication (DSRC) was developed to add wire-
less access in vehicular environment and support vehicle-to-everything (V2X)
communications. DSRC works using a 75 MHz spectrum in 5.9 GHz frequency
band in the United States while in Europe and Japan it performs on a 30 MHz
spectrum in the 5.8 GHz band. It can prepare services to both V2V and V2I up
to 1 km and supports data rate of up to 27 Mbps [4,5]. The spectrum of DSRC
is divided into seven 10 MHz channels with a 5 MHz guard band at the low part.
Pairs of 10 MHz channels can also be combined to a 20 MHz channel. The United
States federal communication commission (FCC) has nominated each channel
as either service channel (SCH) or as control channel (CCH). The CCH notion
labels one channel (channel number 178) in the U.S. as a “rendezvous” channel.
The U.S. FCC has nominated channel 172 specially for V2V safety communica-
tions and accident avoidance, mitigation, safety of life and property applications
[6]. DSRC band plan is illustrated in Fig. 1. DSRC stack depicts standards for
layers: physical (PHY), data link (including MAC layer), network/transport and
application layers. At the PHY and MAC layers, DSRC exploits IEEE 802.11p.
In the middle, a suite of standards defined by 1609 working group are applied.
At the top, the SAE J2735 defines a set of message formats that support a
diversity of vehicle-based applications. The most prominent of all is the basic
safety message (BSM) which transfers vehicle state information. BSM messages
contain position, sender speed and channel number (CCH 178) [6].

One of the goals of this research is to decrease the response time which is
one of the crucial issues for an EV especially in large cities with heavy traffic
jams. The EV must travel through the intersection without any problem and
delay. One of the solutions involves the construction of new infrastructure. This
solution is very costly and requires huge investments. However, new technologies
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such as V2I and VANETs are cost-effective solutions to control traffic flow and
manage TLs at the intersections [7,8].

The remainder of the paper is organized as follows. Section 2 is about the
current state of the art. Section 3 deals with the frameworks that have been
used for the simulation and our implementation. Results are evaluated in Sect. 4,
where the impact of TLs on travel time of an EV by VANETs is assessed. Finally,
a conclusion and future work are provided in the last section.

2 State of the Art

Jayaraj et al. [9] proposed an automatic green light during traffic flow for an
EV in a specific route using SUMO and NS-2. It showed a traffic scenario where
there was signalling transmission between the EV and other vehicles or TLs.
When the TL received the message from the EV, it needed to alter from red to
green. The green signal was maintained for that lane or road till that particular
vehicle passed. The idea served to improve the network efficiency where there
was minimum loss of data packets and minimum end-to-end delay. Authors in
[10] discussed about the system design of an EV warning system called SafeS-
mart using V2I communications. A primary model of the system was tested and
simulated including EVs and TLs. System performance was examined to com-
pare the travel times for EVs in normal traffic with the time when the system is
in use. System results provided EVs with a faster and safer path from one point
to another, mostly in traffic jam scenarios where other drivers might not have
enough space to clear the path for the EV.

Furthermore, Padmapriya et al. [11] adopted an EV transit approach (EVTA)
associated with the road side unit (RSU) and traffic management center (TMC)
for transport of EVs. Accurate location of the EVs were offered by both GPS
and Kalman Algorithm (KA) to the EVTA. The proposed approach aimed to
minimize the travel time of the EVs to reach the hospital with the concerted
effort of the RSU and TMC. Simulation results confirmed that geographical
parameters prepared by GPS are continuous. However, mentioned parameters
provided by KA are 5% more authentic than GPS method. In a research project
by Noori et al. [2], conducted for Cologne city in Germany, 20 EVs were involved
in the simulation. In the experiments, authors aimed to analyze the response
time and delay of the waiting vehicles at red light when TL status changed
to green for an EV 50 m, 300 m and 5 km away from the crossroad. In case of
50 m, response time showed the highest value, but the waiting time for the other
vehicles remained minimum in the junction. However, 5 km distance from the
intersection experienced the lowest response time and the highest waiting time
for other vehicles.

Moreover, Obrusnik et al. [12] utilized a new method for EV preemption
at a signalized intersection. Simulation was conducted for a part of Brno City
in Czech Republic. V2I communications were used to estimate the number of
vehicles in the queue and a mathematical model was used to clear the queue of
vehicles. There existed three simulations in different modes as follows. First, EV
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had no preference on the TLs. Second, EV was broadcasting preemption request
after crossing a specific distance from the intersection. Third, EV was propagat-
ing its location and the TL controller decides about starting time of the prefer-
ence based on actual traffic situation. Varga et al. [13] devised a feasible archi-
tecture for V2X communication centric TL controller. Their solution employed
regulated C-ITS messaging techniques and helped vehicles to base their junc-
tion crossing measures on actual information coming from the infrastructure.
A controller was also involved to make its decision on applicable information
coming from vehicles. To implement the introduced V2X communication-centric
controller system, five elements were designed, i.e. a Java-based STLM module,
Commsignia RSU, Raspberry PI 2, NETIO equipment and TLs.

3 Simulation

We have benefited from SUMO as an open source traffic simulator [14],
OMNeT++ and Veins [15] to simulate VANET-based TLs management. SUMO
simulates traffic flow, vehicles and TLs while OMNeT++ handles wireless com-
munications between nodes such as EV and the RSU. Veins bidirectionally con-
nects SUMO and OMNet++ via a TCP socket. Traffic simulation starts in
SUMO and OMNeT++ acts as a network simulator. Then, OMNeT++ con-
siders all vehicles as nodes and simulates the scenario. When a change happens
in OMNeT++, Veins is able to apply that in SUMO accordingly [16,17]. For
instance, when EV sends its message to the RSU and asks for changing the state
of the TL, transferring this request to SUMO to change the state of the TL is
carried out by Veins. A disadvantage of Veins is that it only recognizes vehicles
in OMNeT++. Therefore, TL also is considered as a node.

Forty conventional vehicles are inserted in a four-leg intersection and start
traveling on four 400 m road length as depicted in Fig. 2. There are no commu-
nications between vehicles and the RSU. On the other hand, a connected EV is
inserted on the perpendicular road and travels downward broadcasting a BSM
once per second to the RSU. When it arrives at 300 m distance from the inter-
section and the BSM is received by the RSU, then TLs change their state to
green for the EV and red for the other road. Ten seconds after EV has crossed
the intersection, status of the TLs return to the previous status. Basically, state
of the TLs change every 15 s from red to green and vice versa, also there is three
seconds yellow state in between. Signal propagation conditions inherit from free
space model. Main parameters of the simulation are shown in the Table 1. Algo-
rithms 1 and 2 feature the behavior of EV and the RSU in sending and receiving
the BSM respectively.

Algorithm 1. EV in sending state
1: Input: State of the vehicle
2: Output: BSM
3: Broadcast BSM every 1 s
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Fig. 2. Intersection layout

Table 1. Simulation parameters

Parameters Values

Tx Power 20 mW

Bit Rate 6 Mbps

RSU Beacon Interval 1 s

Channel Number 178

Road Length 4 × 400 m

TLs green phase duration 15 s

Vehicle speed 70 km/h

4 Evaluation of Results

4.1 BSM Message

BSM is one of the message types for V2X communications that we have used in
this simulation. It is transmitted over DSRC and it is suitable for low latency
and localized broadcast which is required in V2X safety applications. Connected
V2X safety applications are generated around SAE J2735 BSM [18]. Number
of sent and received BSM messages are derived from OMNeT++. Totally, 21
BSM messages were disseminated by EV and 20 BSM messages were received
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Algorithm 2. RSU in receiving state
1: Input: BSM
2: Output: TL state change
3: Retrieve mobility information from the BSM
4: if Distance to intersection == 300 then
5: Change TLs state to green for EV
6: Change TLs state to red for other vehicles
7: if EV crossing time == 10 s then
8: Change TLs state to green for other vehicles
9: end if

10: end if

Fig. 3. Number of sent and received BSM messages

by the RSU. Success ratio of packet delivery exhibited 95.2%. Number of sent
and received BSM messages are shown in Fig. 3.

4.2 Travel Time

Travel time of EV is a crucial factor in saving human lives. Figure 4 shows the
comparison of average travel time for EV and some vehicles traveling ahead
of the EV in traditional and connected intersections. Average travel time of
EV and cars demonstrated 34 and 35 s in a traditional intersection respectively.
However, their travel time improved to 21 and 22 s in the intersection where
EV was connected to the TLs. Figure 4 manifested lower EV travel time at a
connected intersection compared to the traditional one. This implies that in the
connected intersection, EV could constantly pass through the intersection while
in the other scenario EV along with other leading vehicles had to stop behind
the TLs for some time. Furthermore, connected intersection hugely enhanced the
average travel time of the vehicles ahead of the EV. This occurred due to the EV
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Fig. 4. Travel time of the vehicles (s)

Fig. 5. Speed comparison of vehicles (km/h)

that altered the TLs state to green in advance such that they could continuously
travel through the intersection together with the EV.

4.3 Vehicles Speed

Speed comparison of the EV and some other vehicles are in traditional and
connected intersections are illustrated in Fig. 5. As mentioned before, EV and
leading vehicles cross the intersection continuously in a connected intersection
that results in higher average speed. On the other hand, in a traditional inter-
section, EV is blocked by some cars which greatly decreases its average speed.
Besides, vehicles traveling in front of the EV also experienced lower average
speed as they stopped at the intersection entrance due to the red TLs.
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5 Conclusions

In this paper, we compared travel time and speed of a EV between a traditional
intersection and a connected one. Our goal was to control TLs when an EV
is approaching to reduce response time for the EV. We used SUMO for the
traffic simulation and OMNeT++ for the network simulation. Also, we benefited
from Veins to be able to connect two mobility and wireless network simulators
together. Communication was based on DSRC helping EVs to communicate with
the RSU. EV broadcast BSM messages to the RSU which is located near the
intersection. Later, it signals the TL to change its state to green for the road that
the EV is coming. Based on the simulation, after changing the state of the TL,
EV can cross the intersection continuously. Therefore, EV could travel through
the intersection without facing any problem. Simulation showed a decreased
response time and an improved delivery efficiency of the EV as well as the
leading vehicles. Future work includes a simulation of a train and controlling a
TL at the junction.
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Abstract. In this paper, we study the problem of optimizing the perfor-
mance of vehicle-to-everything (V2X) using deep reinforcement learning
techniques while sharing the spectrum between vehicle-to-infrastructure
(V2I) links and vehicle-to-vulnerable road users (V2VRU) links in Cel-
lular V2X (C-V2X). The objective is to protect VRU by improving the
performance of V2VRU communications while maximizing the perfor-
mance of V2I communications. Specifically, we formulate a spectrum
sharing optimization problem with a two-objective function where the
first objective is to improve the packet reception ratio (PRR) of VRU,
whereas the second objective is to maximize the data rate of V2I com-
munication links. To solve this challenging problem, we propose a deep
reinforcement learning algorithm. A single agent controlling the vehic-
ular network observes the environment and takes decisions accordingly
by appropriately selecting the spectrum sub-bands and the transmis-
sion power levels. The simulation results show that the proposed scheme
attains high performance compared to baseline solutions and solves the
trade-off between maximizing the data rates of the vehicle users (V2I
links) and improving the PRR of the V2VRU links.

Keywords: Vehicular communications · vulnerable road users · Deep
Reinforcement · spectrum sharing · optimization

1 Introduction

Vehicular-to-everything (V2X) communication is considered one of the key pil-
lars of future generations of wireless networks. It offers diverse services ranging
from infotainment services to safety services, such as road safety, ubiquitous
Internet access, traffic efficiency, etc. The 3rd Generation Partnership Project
(3GPP) organization and other industries have already started working to pro-
vide V2X communication and improve its services [1–4].
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In this paper, we design a spectrum sharing strategy for vehicular networks
that includes vulnerable road users (VRU) and non-VRU that supports differ-
ent connectivity such as vehicle-to-VRU (V2VRU) and vehicle-to-infrastructure
(V2I) connectivity [5]. The V2VRU communication concerns the links among
vehicles and VRU, whereas the V2I communication concerns the links between
vehicles and infrastructures such as roadside units (RSU). As discussed in 3GPP
for V2V [2], the V2VRU communication is established on a side-link radio inter-
face (called PC5), but the V2I communication is established on a cellular radio
interface (called Uu).

The use case proposed in this paper consists of supporting two different
services: (1) application or infotainment services for high data rate V2X com-
munication and (2) advanced driving for high-reliability V2X communication.
Our supported use case aims to serve two types of vehicular users: non-VRU
(or simply vehicle users) and VRU, such as pedestrians, cyclists, etc. VRUs are
particularly important to protect since pedestrians account for over 21% of road
fatalities and motorcycles, bicycles and scooters over 26% [5,6]. VRUs are gen-
erally unpredictable in their movements and are not always visible in a line of
sight manner to other non-VRU, which makes the propagation characteristics
of V2VRU communication different from classical V2V or V2I communication.
To support this use case, we aim (1) to maximize the data rate of non-VRU
(V2I communications) and at the same time (2) to improve the packet reception
ratio (PRR) of VRU while allocating the shared spectrum between both types
of road users. This paper chooses pedestrians as our VRU, so we use vehicle-to-
pedestrians (V2P) as our V2VRU communication.

1.1 Related Works

Although many research efforts have been made to solve the resource allocation
problem in V2V communication [7–12], only few papers discussed V2VRU com-
munication to protect VRU, even though the number of road fatalities for VRU
is high. The authors in [13] investigate the performance radio access technol-
ogy (RAT) standards IEEE 802.11p, 802.11bd, 4G LTE-V2X and 5G NR-V2X
for V2VRU communication. Each RAT complies with the safety applications
requirements, with 20–100 ms latency and 0.5–700 Mbps throughput. We want
to improve the performance of the V2VRU communication links; hence it can
also improve the protection of VRU.

The authors in [14] proposed resource sharing as a multi-agent reinforcement
learning problem, where multiple V2V links reuse the frequency spectrum occu-
pied with the V2I links. Several vehicles connected with V2V links act as an
agent that observes the environment and learns to improve the spectrum and
power allocation. We were inspired by this approach for our V2VRU commu-
nications, where we need to consider that the VRU channel model is different
from the V2V and V2I channel models.

In [15] the authors studied the problem of network slicing to optimize the
resource allocation problem in V2X communication while optimizing the cover-
age area of vehicles, transmission power, and RB allocation. The objective of the
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problem is to maximize the number of two types of packets: infotainment pack-
ets and safety packets. The authors proposed a multi-agent deep reinforcement
learning approach to solve the problem. The difference between this work and
ours is that we consider spectrum sharing as well as V2VRU communication.

The authors in [16] proposed the channel model for vehicle-to-pedestrians
(V2P) communication in three main scenarios, i.e., 1) the vehicle to static pedes-
trian, 2) vehicle to moving pedestrian, and 3) vehicle to pedestrians with crowd
shadowing scenarios. We used the findings of this paper to model the V2P chan-
nel in our work.

Fig. 1. An illustrative system of V2X networks consists of V2I and V2P links and its
interference signal. The V2I links are preoccupied the spectrum bands and the V2P
links will have a spectrum sharing with the V2I link.

2 System Model

We consider a vehicular network composed of a set of vehicles (non-VRU) and a
pedestrian as our VRU. The vehicular network operates in a geographical zone
covered by a cellular network (e.g., LTE or 5G), where a RSU is present to
serve the road users. We consider two kinds of communications where vehicles
communicate with the RSU (also known as V2I communication) and non-VRU
that communicate with pedestrian (also known as V2VRU communication). We
assume that there are m V2I links as well as n V2VRU links. The illustration of
V2X communication using spectrum sharing between V2I and V2VRU (or V2P)
links can be seen in Fig. 1.

The Mode 4 defined in cellular V2X communication is considered where all
the vehicular users (VRU and non-VRU) share a pool of radio resources of V2I
communication from which they must select appropriate resources to communi-
cate between each other for the V2VRU communication. The overlap between
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V2I resources and V2VRU resources can help in improving the spectral efficiency
provided that the resources are optimally allocated. That is, interference caused
by V2VRU should be carefully managed to improve the performance of both
V2I and V2VRU communications.

As done in [14], we assume that the resources allocated to the V2I communi-
cation are assumed to be orthogonal among each other so that the interference
is neglected in the V2I communication. In other words, V2I link i = 1, · · · ,m is
assumed to communicate over the spectrum sub-band i. The main challenge is
thus how to share the spectrum sub-band i = 1, · · · ,m between the V2I commu-
nication and the V2VRU so that the data rate of the V2I communication and
the packet reception rate (PRR) of the V2VRU communication are maximized.

Note that each sub-band is defined simply as a set of consecutive sub-carriers
that are grouped together. Here, orthogonal frequency division multiplexing
(OFDM) is used as in [14] to transform the frequency selective channels into
a set of parallel flat channels over multiple sub-carriers. It is further assumed
that the channel fading is constant over the same sub-band but varies indepen-
dently from one sub-band to another.

Once a V2VRU link j is allocated sub-band i = 1, · · · ,m, its channel power
gain is given by:

gij,j = PLj,jjh
i
j,j , (1)

where PLj,j is the large-scale fading that includes path-loss and shadowing prop-
agation effects. It mainly depends on the distance of the V2VRU link j. The
small-scale fading is denoted by hi

j,j , which is frequency-dependent and gener-
ally assumed to follow an exponential distribution. However, in this work, the
propagation characteristics of V2VRU link j is modeled differently to capture
the effect of VRU.

The channel power gain over the V2I link i is denoted as gii,0 (between the
transmitter of link i and the RSU denoted by 0), which includes small-scale and
large-scale fading as in (1). (The superscript i denotes the sub-band i allocated
to V2P link i.)

There are three types of interference in our system model.

– V2I-to-V2VRU interference: The interference caused by V2I link i on the
V2VRU link j (after allocating sub-band i to link j) is denoted by Ii0,j =
pig

i
0,j . Here, gi0,j denotes the channel power gain between the transmitter of

the V2I link i and the receiver of the V2VRU link j over sub-band i.
– V2VRU-to-V2VRU interference: The interference caused by other V2VRU

link j′ on V2VRU j when both links are allocated sub-band i is denoted
by Iij′,j = pij′gij′,j . Here, gij′,j denotes the channel power gain between the
transmitter of the V2VRU link j′ and the receiver of the V2VRU link j over
sub-band i.

– V2VRU-to-V2I interference: The interference caused by V2VRU link j on the
RSU when the V2VRU link j is allocated sub-band i is denoted by Iij,0 =
pijg

i
j,0. Here, gij,0 denotes the channel power gain between the transmitter of

the V2VRU link j and the receiver of the V2I link i over sub-band i.
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All channel power interference discussed previously are assumed to be defined
similarly to (1). The model of our wireless channel of the V2I and the V2VRU
are given respectively in [2] and [16].

On the one hand, the data rate of the V2I link i (over sub-band i) is given
as:

Ri = B lg
(
1 + SINRi

)
, (2)

where B is the bandwidth of each sub-band and SINRi is given in the following
equation:

SINRi =
pig

i
i,0

σ2 +
∑

j xi
jI

i
j,0

, (3)

where the denominator in (3) contains the noise over sub-band i and the interfer-
ence coming from all other V2VRU links j that are transmitting over sub-band
i as well. The variables xi

j are used to denote whether sub-band i is allocated to
the V2VRU link j or not. The transmission power of the transmitter in the V2I
link i is denoted as pi (constant) and the transmission power of the transmitter
in the V2VRU link j over sub-band i is denoted as pij (variables).

On the other hand, the data rate of the V2VRU link j (over sub-band i, i.e.,
xi
j = 1) is given as:

Ri
j = B lg

(
1 + SINRi

j

)
, (4)

where SINRi
j is given in the following equation:

SINRi
j =

pijg
i
j,j

σ2 + Ii0,j +
∑

j′ �=j xi
j′Iij′,j

, (5)

where the denominator in (5) contains the noise over sub-band i and the interfer-
ence coming from all other V2VRU links j′ that are transmitting over sub-band
i as well as from the transmitter of the V2I link i. To protect VRU from acci-
dent and other fatalities, we have to guarantee a reliable communication for the
safety-critical message exchanged over the V2VRU links. For this reason, we use
the performance metric called packet reception rate (PRR) [14] which mainly
measure how much safety packets are delivered during a defined time window.
Mathematically, the PRR is defined as [14]:

Pr
[ T∑

t=1

m∑

i=1

xi
jR

i
j(t) ≥ γj/δT

]
,∀ V2VRU link j, (6)

where T denotes a defined period of time during which the packet of the V2VRU
link j should be transmitted and γj is the size of the safety packet of the V2VRU
link j. The variable δT denotes the channel coherence time. We added the time
index t to the notation of the data rate of the V2VRU link j over sub-band i,
Ri

j(t), to denote the data rate at each time instant t (each coherence time-slot).
We used Pr[·] to denote the probability function.
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3 Problem Formulation

In this paper, the objective is to maximize the data rate of the V2I links as well
as the packet reception rate of the V2VRU links. This problem is formulated as
follows:

Problem 1.

maximize
x,p

α
∑

i

Ri + β

n∑

j=1

Pr
[ T∑

t=1

m∑

i=1

xi
jR

i
j(t) ≥ γj/δT

]
(7)

subject to xi
j ∈ {0, 1}, pij ≥ 0∀i, j, (8)
m∑

i=1

xi
j ≤ 1,∀j, (9)

m∑

i=1

pij ≤ p̄j ,∀j. (10)

The variable x is a matrix notation for the binary variables xi
j for the sub-band

allocation whereas the variable p is a matrix notation for the real variables pij
for the power allocation. Constraints (9) guarantee that each V2VRU link is
allocated at most one sub-band i. Constraints (10) guarantee that each V2VRU
link j is allocated a maximum transmission power p̄j over all its allocated sub-
bands. The parameters α and β are used to weigh the two-objective function to
make it unit-less.

Problem (1) is challenging to solve due to the non-convexity of the objective
function. To efficiently solve it, we propose a machine learning approach based
on single-agent deep reinforcement learning (SARL).

4 Proposed Solution

In this section, we describe our proposed SARL approach. First, we describe the
agent, the action and the state spaces, and the transition probability function.
Then, we describe the algorithm.

The DRL agent is implemented in the RSU. This means that it is a central-
ized agent that observes the initially unknown vehicular environment and col-
lects information to take actions accordingly. The agent exchanges information
between non-VRU and VRU using dedicated wireless channels without excessive
overheads.

The state space is roughly the vehicular network. More precisely, at each
coherence time instant t, a state st is observed. The state st is generally unknown
and includes channel conditions of all vehicles, vehicle movements, radio access
information such as transmission power and spectrum allocation, etc. The DRL
agent can extract useful information from this unknown state st through an
observation function that maps each unknown state st into a well-defined and
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known observation variable ot. The observation ot includes the channel power
gains gij , gi,0 as well as the interference Iij,0, Iij′,j , and Ii0,j . It also includes the
sum of interference illustrated in the SINR formulas in (3) and (5). Finally, we
add to the observation ot the variables γr

j and T r = T − t which denote the
remaining number of bits of V2VRU’s j packet and the remaining time interval.
Note that, we can, for simplicity, exchange the st and the ot notations.

The action space includes the sub-band spectrum allocation as well as the
transmission power levels. We assume a set of P transmission power levels from
which each V2VRU link can choose. Thus an action at time instant t is given
by at = [(p1(t), x1(t)), · · · , (pj(t), xj(t)), · · · , (pn(t), xn(t))]� which is a vector of
length n—the number of V2VRU links. Each element of the vector at at time
instant t is a pair (pj(t), xj(t)) of transmission power levels pj(t) ∈ {1, 2, · · · , P}∪
{0} and of sub-band allocation xj(t) ∈ {1, 2, · · · ,m}. The power level 0 indicates
no transmission and xj(t) = i indicates that the V2VRU link j is allocated the
sub-band i at time instant t.

The reward of the DRL agent is chosen to reflect the objective function in
problem (1). That is, given the current state st, the reward of the DRL agent is
given as η1 > 0 or 0 < η2 � η1. The value of η1 (resp. η2) denotes the number
of V2VRU links that terminated transmitting (still transmitting) their safety
packets. In this way, we encourage the DRL agent to accumulate as large reward
as possible by serving V2VRU links and finishing successfully their safety packet
transmissions.

The transition from one state to another is given by a probability distribu-
tion that gives how to transition from state st to state st+1, given action at, i.e.
Pr[st+1, rt+1|st, at] is the probability of moving to state st+1 from state st and
obtaining the reward rt+1 when taking action at. This probability distribution
depends on the dynamical vehicular environment including the channel condi-
tions and the vehicle mobility and it is generally hard to compute explicitly due
to the complex nature of the vehicular environment.

The proposed algorithm is based on deep-Q-learning (DQL). DQL combines
the well-known Q-learning method and deep neural networks. Q-learning creates
a table of state-action pairs called the Q-table and finds the best action given a
certain state using a greedy exploration approach, called ε-greedy, In ε-greedy, an
action is chosen at random with probability ε and the action that gives the best
reward is chosen otherwise. The drawback of Q-learning appears when the state
and action spaces become large. Also, once the size of the table grows very large,
many states will be very rarely visited, which deteriorates the learning strategy.

The key success of deep-Q-networks (DQN) is the use of experience replay
memory technique where the tuple of state, action, reward, and next state are
stored in a replay buffer. Next, the DRL agent samples from this replay buffer
to perform learning. DQL is a promising approach that can be used to solve the
curse of dimensionality in RL [15] by approximating the Q-table. We combine
DQN with independent Q-learning.

Initially, the experience replay memory and all parameters are initialized.
Then, the proposed algorithm SARL operates over a set of episodes. In each
episode, the DRL agent explores the action space using the ε-greedy policy.
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Table 1. Log-Distance Path Loss Parameters in V2I and V2P Based on Reference
[14,16]

V2X Types Parameters Values

V2I Link Path loss 128.1 dB
Path loss exponent 3.76
Shadowing standard deviation 8 dB
Break-point distance 50m

V2P scenario 1
(static pedestrian)

Path loss 46.77 dB

Path loss exponent 2.03
Shadowing standard deviation 3.20 dB

V2P scenario 2
(moving pedestrian)

Path loss 40 dB

Path loss exponent 2.44
Shadowing standard deviation 5.47 dB

V2P scenario 3
(crowded pedestrian)

Path loss 67 dB

Path loss exponent 1.26
Shadowing standard deviation 3.35 dB

Each episode e covers a time horizon of T time-slots. At the beginning of the
first time-slot, the starting state of the vehicular environment (initial positions
of the vehicles, of the pedestrians, etc.) is revealed to the DRL agent. For sub-
sequent time-slot t, the DRL agent chooses an action at for each V2VRU link,
according to the ε-greedy approach. In other words, the DRL agent chooses a
transmission power level and a sub-band for each V2VRU link j = 1, 2, · · · , n.
Once all V2VRU links have been allocated a transmission power level and a sub-
band, the DRL agent evaluates the reward function rt+1 based on the expres-
sion of (2) and (4). Next, each V2VRU link (each vehicle and pedestrian) moves,
according to its mobility model, and the next state is revealed to the DRL agent.
The resulting tuple (st,at, rt+1, st+1) is collected and is stored in the prioritized
experience replay memory of the DRL agent. This experience replay memory
is associated some positive priority weight. After a few episodes, a mini-batch
is sampled according to their priorities from the prioritized experience replay
memory. This mini-batch is used to update the DQN weight parameters using a
variant of the stochastic gradient descent algorithm to minimize the loss func-
tion. The loss function is given by the mean square error as follows:

∑

(st,at,rt+1,st+1)

(
rt+1 + γ max

a

(
Q(st+1, a;w−)

) − Q(st,at;w)
)2

, (11)

where the DQN is represented mathematically by the Q-function Q(st,at;w)
(the function that the DQL tries to approximate) and w− is the weight param-
eter of a duplicate copy of the original DQN (called the target DQN) that is
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created in order to update the original DQN from occasionally. The creation of
a target DQN is suggested by the quasi-static target network method [17] to set
the targets of the Q values.

5 Simulation Results

In this section, we present the simulation results of V2X spectrum sharing for
V2I links and V2VRU links using the proposed SARL. We built our simulation
using Python and TensorFlow software. For the evaluation methodology, we
used the urban crossing environment described by 3GPP, which gives the vehicle
mobility models, vehicle densities etc. [2]. We used previously reported channel
characterization to implement the V2VRU communications [16]. We used the
Rayleigh fast fading channel model and log-distance path loss model with log-
normal shadowing distribution. The budget time constraint T used for V2VRU
data packet transmissions is 100 ms, the time for path loss and shadowing update
is 100 ms, and the time for fast fading update is 1 ms. The simulation parameters
are listed in Table 1, which describes the channel models characterization for
both V2I and V2VRU links. Table 2 describes the major simulation parameters,
which are similar to those in [14]. For the V2VRU communication, where VRU

Table 2. Simulation Parameters Based on Reference [14]

Parameters Values

Number of vehicles 4
Carrier Frequency 5.9 GHz
Bandwidth 10 MHz
RSU or BS height 25 m
RSU or BS antenna gain 8 dBi
RSU or BS receiver noise figure 5 dB
Vehicle or VRU antenna height 1.5 m
Vehicle or VRU antenna gain 3 dBi
Vehicle or VRU receiver noise figure 9 dBm
Vehicle speed 10 m/s
V2I transmit power 23 dBm
V2P transmit power [23, 10, 5, −100] dBm
Noise power −114 dB
V2P Packet size [1..6] x 1 KB
Time constraint for V2P packet transmission 100 ms
Path loss and shadowing update Every 100 ms
Fast fading model Rayleigh fading
Fast fading update Every 1 ms
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is a pedestrian, we used three scenarios based on [16]: (1) vehicle-to-static-VRU,
(2) vehicle-to-moving-VRU, and (3) vehicle-to-VRU-with-crowd-shadowing.

The proposed DQN consists of 3 connected hidden layers with 500, 250, and
120 neurons. The DQN training lasts 3000 episodes. The packet size of VRU is
2 KB in the training phase, and it varies from 1 to 6 KB in the testing phase to
verify the robustness of the proposed SARL algorithm.

We compared the proposed SARL for V2I and V2VRU spectrum sharing
against the baseline of random resource allocation. The random baseline chooses
the spectrum sub-band and transmission power in a random fashion at each
time instant. We simulate 4 vehicles that are using 4 sub-bands where each sub-
band has a bandwidth of 1MHz. The transmission power for the V2VRU links
is predetermined using the value of [23, 15, 5,−100] dBm, while the transmission
power for V2I is fixed at 23 dBm. The value of −100 dBm is equivalent to 0 trans-
mission power. We also compared the proposed solution against another baseline
that used a fixed maximum transmission power for the V2P communication (23
dBm).

From Fig. 2, both the data rate and PRR decrease when the packet size
increases due to the time budget constraint. The larger packet size will need a
higher transmission power to improve the reception probability in the receiver
side, hence leading to a higher interference. As we can see from Fig. 2, our pro-
posed solution gave the best performance compared to the other baselines as
it gave higher data rates for V2I communication. It also gave around the same
performance for PRR of the Maximized V2P transmission power. However this
maximized V2P transmission power gives a higher value of interference, hence
reducing the data rate of V2I communication. In terms of performance metrics,
the proposed SARL algorithm gives better performance compared to the random
baseline. With a trained model using the packet size of 2 KB, we obtained 13%
improvement in the data rate and a4% improvement in PRR. Furthermore, the
proposed SARL shows a consistently better performance with different packet

Fig. 2. The performance of SARL, random baseline and maximum transmission power
for V2P (23 dBm) baseline in scenario 1 (Static Pedestrian).
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sizes. For the packet size of 1 KB, the data rate improved by 6% even if the PRR
did not improve significantly, while for the packet size of 6 KB, the data rate
improvement was 20% and the PRR performance improved by around 67%.

Fig. 3. The performance of SARL, random baseline and maximum transmission power
for V2P (23 dBm) baseline in scenario 2 (moving pedestrian).

From Fig. 3, we can see that the proposed SARL offers a better performance
for the scenario 2 which is spectrum sharing between V2I and V2VRU for the
moving pedestrian. In the training phase, for the packet size of 2 KB, the SARL
approach gives 12% improvement in data rate and 6% in PRR. For the smaller
packet size of 1 KB, the performance of PRR is almost the same, and the per-
formance of the data rate is improved by 5%; while for the larger packet size of
6 KB, the PRR improvement is 16% and the PRR performance is improved by
58%. The performance of the scenario 2 has the same results as in scenario 1,
where the maximized transmission power of 23 dBm for the V2P communication
gave around the same performance for the PRR of the proposed SARL solution.
However, it reduced the data rate performance of the V2I communication due
to the higher value of the interference.

Figure 4 shows the results for the scenario 3 which is the spectrum sharing
between V2I and V2VRU for the pedestrian with crowd shadowing. In the train-
ing phase, for the packet size of 2KB, the SARL approach gives 16% improvement
in data rate and 6% improvement of PRR. In the testing phase, for the smaller

Fig. 4. The performance of SARL, random baseline and maximum transmission power
for V2P (23 dBm) baseline in scenario 3 (crowded pedestrian).
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packet size of 1 KB, the data rate improved by 8% while the performance of the
PRR remained unchanged. While for the larger packet size of 6 KB, the data
rate improvement was 16% and the PRR performance was improved by 80%.
The data rate and PRR performances of the scenario 3 also gave the similar
results to scenarios 1 and 2, where the proposed SARL solution gave the best
performance and the maximized transmission power of the V2P communication
gave around the same performance for the PRR of the V2P communication, but
gave a reduced data rate for V2I communication due to high interference.

6 Conclusions

In this paper, we addressed the problem of optimizing the spectrum sharing of
the V2X communication by improving the PRR of V2VRU links, and maximiz-
ing the data rate of V2I links. We proposed a DRL approach for spectrum sharing
between V2I and V2VRU. A single-vehicle selects the spectrum sub-bands and
the transmission power based on the trained DQN using acquired information
from the environment. We compared our proposed model with a random baseline
that randomly chooses the spectrum and power transmission. We also compared
it with another baseline that uses the maximized transmission power of V2VRU
communication (23 dBm). Our simulation result showed a significant improve-
ment in the V2I data rate and V2VRU PRR for different VRU communication
scenarios. The improvement of PRR implies more reliable V2VRU communi-
cation, which int turn improves the reliability of safety applications intended
for VRU protection on the road. At the same time, the proposed SARL gave
better data rates for V2I communications, thus enabling better performance for
higher-data rate V2I-applications.
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Abstract. Swarms of unmanned aerial vehicles are increasingly being
utilized for a variety of operations. However, extremely variable envi-
ronmental circumstances alter their intra-UAV minimum safe distance,
resulting in collision, and those near swarm’s edge become increasingly
vulnerable to connectivity loss. Context-awareness as a strategy for
developing pervasive computing in UAVs is gaining popularity to tackle
these difficulties. A context awareness-based pervasive computing system
model is proposed in this research to improve the safety and connectivity
of individual UAVs in a swarm with their neighboring UAVs. To acquire
the contexts of different environments the following systems were utilized:
For physical, light intensity from real-time picture taken using camera;
for human, facial recognition algorithm; for UAV local ICT, the UAV’s
built-in CPU utilization percentage; for network ICT, wireless network
signal strength using received signal strength analysis. Following simula-
tion, we evaluated the accuracy, reaction time, and significant limits that
must be considered. Most situations were recognized with great accuracy,
ranging from 84.85% to 100%. On a machine with 16 GB of RAM and
a 64-bit operating system, the total system performance had an aver-
age reaction time of 2.15 s in a scenario where all contexts were used in
a prioritized manner. The environments under consideration, as well as
the kind of UAV and its internal hardware system processing capacity,
were determined to be key limits on the system’s performance. Analyz-
ing the proposed system’s application, a UAV swarm can complete tasks
without colliding while retaining intra-UAV connectivity by transmitting
information across a reliable communication network.

Keywords: Context-awareness · Unmanned Aerial Vehicles (UAV) ·
Swarm · Pervasive computing

1 Introduction

The fast development of unmanned aerial vehicles (UAVs) and its application
areas has piqued the interest of both academics and industry [7,10,12,14,15,17,
22,23]. Swarms of Unmanned Aerial Vehicles (UAVs) have been investigated for
a range of uses in recent years. The application areas include aerial photography,
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delivering goods, traffic management, serving as communication platform, mil-
itary missions, surveillance, monitoring, surveying, target tracking, search and
rescue missions, and entertainment. Soon, swarms of UAVs flying over national
airspace will play a key role in the deployment of increasingly sophisticated
applications and services [7]. To efficiently perform the assigned operations, a
stable flight environment is required. In addition, increased autonomy of a UAV
swarm in its operation will contribute to a faster response in its decision-making.
However, the amount of autonomy in most of the real life demonstrations of a
UAV swarm has been minimal [22,23,26].

Pervasive computing(ubiquitous computing), which is a developing trend of
embedding computational capacity into common items to make them efficiently
interact and execute valuable activities in a way that reduces human involve-
ment, substantially benefits these aims of stability and enhanced autonomy [6].
UAVs with pervasive computing capabilities are continually accessible and net-
worked. Delivering consistent adaptive behaviors and context-aware systems in a
vast volume of sensor data for services that need to enhance accuracy, precision,
and dynamism is the core challenge of ubiquitous computing. This research is
particularly interested in the use of context awareness as a method for the devel-
opment of ubiquitous computing in a UAV swarm application scenario.

Current UAV swarm demonstrations use one of two types of swarm com-
munication architecture. Infrastructure-based swarm architecture and ad-hoc
network-based architecture are the two types. In Infrastructure based swarm
communication architecture, a ground control station takes data from all UAVs
and coordinates the swarm by controlling each UAV independently [8]. On
the contrary, ad-hoc network-based architecture coordinates communication
amongst UAVs in a single network without the use of existing infrastructure
[18]. All UAVs in this type of ad-hoc network are connected in real time via
a communication network built between them. Because there is no need for
an infrastructure-based decision engine, direct communication between UAVs
drives decentralised decision-making [19]. For an effective decision making in
these kinds of ad-hoc networks, pervasive computing plays an important role.
As pervasive computing is a new paradigm in the realm of communication and
computing, large number of intelligent devices participate in acquiring data,
exchanging data, and making collaborative decisions.

This paper proposes, designs, and analyzes a MATLAB-based pervasive com-
puting system for acquiring and transmitting various types of context awareness
information between individual UAVs in a swarm in order to mitigate the effects
of sudden environmental changes the swarm may face during its mission. For
example, when a sudden turbulence occurs, an individual UAV detects its cur-
rent state and sends information to its neighbors about objects near collision,
its wireless connectivity being affected, its CPU usage level by other control
systems in it trying to stay in flight, etc. This research’s contribution is aimed
at achieving the stated sensing and communication, and also the full realization
and enhancement of intra-UAV connectivity and safety of a UAV swarm by use
of context awareness. Furthermore, it aids the development of autonomy in UAV
swarm decision-making under unknown environmental conditions.
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Fig. 1. UAV swarm system architecture [22]

The remainder of the paper is laid out as follows. A background about context
awareness and its different types is presented in Sect. 2. In Sect. 3, we describe the
main objective of the paper and associated system model. In relation to the sys-
tem model, Sect. 4 discusses the context acquiring, processing and transmission
processes. The findings and additional discussions of the proposed technology
are discussed in Sect. 5. Conclusions and recommendations for further study are
presented in Sect. 6.

2 Background

In human reasoning, context has an intuitive meaning [16]. The purpose of this
reasoning is to provide the system more flexibility and effective decision-making.
By supplying fresh information about UAVs or users and their surroundings,
context contributes to our understanding of “where, what, and who.” According
to [1], context is also defined as the interrelated conditions in which something
exists or occurs. The idea of contexts has been studied in several publications
[5,11,25]. Context-aware computing enables each UAV’s computing system flex-
ibility, agility, and autonomy. There are several types of context-awareness with
respect to intra-UAV communication: physical environment context, UAV ICT
environment context, human environment context, and so on. The primary forms
of context-awareness that are used in this study are given in the following sub-
sections.
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2.1 UAV’s Physical Environment Context-Awareness

The physical world around UAVs is influenced by factors like as position, timing,
warmth, precipitation, intensity of light level, wind velocity, moisture, and other
physical occurrences. In UAVs the context provider is a tiny sensor that observes
and measures variables in its present physical surroundings, such as tempera-
ture and humidity, and translates them into signals that computing systems can
understand. Cameras, thermometers, infrared sensors, smoke detectors, GPS
locators, microphones and other sensors are examples of these sensors. Further-
more, labeling physical things with identities, annotating things with physical
world states such as time and position, and automating physical object routing
help the pervasive computing system function in a safe and better-adapted man-
ner [9]. Using a Bluetooth device information may also be utilized for tagging
[24].

2.2 UAV ICT Environment Context

For successful intra-UAV swarm communication, a powerful communication net-
work and high-performance capability of UAV’s local ICT system is required.
Pervasive computing in UAVs consists of several ICT components, including as
the central processor unit (CPU), memory, power supply, wireless network, and
internet connection, whose performance has an influence on the entire computer
system [13]. It might, for example, comprise CPU load, memory utilization,
wireless network data rate, and so on.

2.3 Human Environment Context-Awareness

Human identity, social milieu, activity levels, prior knowledge of an environmen-
tal scenario, and other human related activities are among the contexts in this
type of context-awareness. Sensors such as accelerometers, physiological sensors,
and cameras are now becoming a rich source of these data in a variety of inter-
actions that may be gathered by measuring normal operations, calendar entries,
and so on. Human face recognition is employed in this research.

3 Objective and System Model

3.1 Objective

One of the main reasons why one or more UAVs in a swarm of UAVs lose
connectivity and safety is because of changes in highly variable environmental
parameters like wind. In a windy environment, UAVs in a swarm may collide,
and some near the swarm’s perimeter may lose communication, compromising
the overall goal of the swarm. As a result, those UAVs that are affected are in
a critical or abnormal conditions. Individual UAVs can be equipped with a sys-
tem that alerts them to nearby impediments, wireless network status, and the
condition of their local ICT system, among other things, to avoid the effects of
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the being in a critical condition. The main objective of this research paper is to
provide a context awareness based pervasive computing system model that pro-
vides individual UAVs with knowledge about their environment and increases
the effectiveness of the swarm’s decision making. The swarm as a whole can
make better decisions in avoiding the effects of environmental changes like wind
turbulence while maintaining safety and connectivity by using the information
obtained from each UAV’s pervasive system. This research also aims to demon-
strate how the proposed model works, as well as its applicability, accuracy, and
response rate. This is accomplished through the development and demonstration
of a MATLAB application.

3.2 System Model Formulation

Consider a UAV swarm sent to examine a densely populated metropolitan region
that encountered a dramatic change in wind speeds and turbulence. Individual
UAVs may collide with each other, nearby objects, or fall out of the swarm in this
situation, resulting in communication failure. However, if each UAV is equipped
with a system that is aware of its surroundings and communicates its status to
neighboring UAVs, collective action to prevent UAV loss and connectivity might
be undertaken.

Here, a system architecture of UAV swarm flying at lower altitudes, shown in
Fig. 1, where each UAV acquires context awareness data from different sensors
and communicates with each other for an effective decision making is consid-
ered. Algorithm 1 gives a level-0 depiction of the proposed system. In the con-
sidered system architecture, there are UAVs near collision and some to be out of
the connectivity range. These cases can be considered as physical environment
context and ICT environment context. By detecting nearby UAVs in the phys-
ical/human environment context awareness, a UAV can take measures to avoid
collision. Similarly, by understanding the communication network strength that
an individual UAV is receiving the swarm as a whole and the individual UAV
can make changes to the swarm formation, speed, and flight direction to keep
the individual UAV from loosing connectivity. To capture these environment
contexts, different approaches together with sensors are utilized.

The light intensity of the environment where the UAVs are flying is taken
into account to accurately depict the physical environment context surrounding
them. Because the image is already a measure of light intensity in the scene,
the light intensity could well be measured from a real-time image. The overall
light intensity of the UAV swarms flight path and immediate surroundings is
determined by taking the mean intensity of the image captured each step. The
light intensity data helps the UAVs avoid night time flights where vision through
the cameras is low or else gives a signal to deploy a headlight(or similar light
source) to get clear view of the surrounding, based upon the swarm mission.
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Algorithm 1: Context awareness based pervasive computing algorithm for
safe swarm operations
Result: Safe UAV Swarm
while Still flying do

i ← mean(light intensity realtime image) ;
j ← Boolean(objects detected by camera?);
k ← Percentage(CPU memory usage) ;
l ← Percentage(Network signal quality);
if i < imin then

Broadcast information to neighbor UAVs;
Abort mission due to low visibility;

else if j = True then
Broadcast information to neighbor UAVs;
Adjust UAV Speed based on relative location;
Move in the X or Y direction to avoid collision based on ;

else if k < kmin ∪ l < lmin then
Broadcast information to neighbor UAVs;
Adjust UAV Speed based towards strong signal;
Drop tasks with less priority;

else
Keep current flight path and speed ;

end

end

The ICT context was addressed in two ways. First is the UAV local ICT
system environment context which is presented measuring the CPU usage level
of the UAV. This information helps the neighboring UAV’s to share group level
tasks in case the UAV under consideration is in a higher busy state. The crit-
ical condition in a local ICT context is therefore defined us high CPU usage.
To get the usage information, we needed to tell MATLAB to instantiate a Sys-
tem.Diagnostics.PerformanceCounter object. This .net object neatly calculates
the CPU usage [4].

The next ICT environment context awareness is detecting the communication
network environment, which is implemented with the measurement of the network
signal strength. This information tells the UAV’s in the swarm if their neighboring
UAV is loosing communication or is in a weak signal spot relative in the swarm. As
shown in [20], the received signal strength indicator (RSSI) indicates the energy
measured from signal transmission. By using the formulas shown in [20], the signal
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strength is calculated and its value is shown in percentage. The path loss model
is as follows, which is measured at the real distance d(m).

P (d) = P (d0) − 10 ∗ n ∗ log(
d

d0
) − Xσ (1)

Fig. 2. The designed system’s process flow
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Here, P (d) indicates received signal strength when the measured real dis-
tance is d(m) while P (d0) indicates received signal strength when the reference
distance is d0, while Xσ ∼ N(0, σ2) is a cover factor. In a specific environment,
n indicates the path loss index. Receiver signal strength indicator (RSSI) is read
from the register RSSI VAI in the data packets which are received from sen-
sor receiving nodes of the user device. In MATLAB system(’netsh wlan show
network mode=bssid’) is executed to gain information about the network type,
authentication, encryption, basic service set identification(BSSID), signal, radio
type, channel, basic rates etc. BSSID gives the signal strength in percentage.
The network under consideration for this research is a Wifi network(Wireless
local area network).

A Facial recognition [3] function is used to detect the human environment.
vision.CascadeObjectDetector library is used to detect the location of a face
in a photo frame. The cascade object detector uses the Viola-Jones detection
algorithm and a trained classification model for detection [2]. The algorithm
used is developed by Paul Viola and Michael Jones. The algorithm demonstrated
a rapid and reliable face identification system that is 15 times faster than any
other methodology available at the time of release, with 95% accuracy at roughly
17 frames per second. By default, the detector is configured to detect faces, but
it can be configured for other object types. This context can been enhanced by
adding intelligence features through deep learning tools [21]. The working flow
of the system model is shown in Figs. 2 and 3.

4 Context Processing and Transmission in Simulation

The context acquisition in the application designed and developed begins as soon
as the UAV swarm takes to the air. Periodically, the UAV swarm will be checked
to see if it has arrived at its destination and should stop processing data if so.
As described in Algorithm 1, in flight, individual UAVs collect sensor data and
communicate with their neighbors in the swarm to make changes and decide
on a safer flight path. Inside individual UAVs context-awareness can be per-
formed independently or in a fashion that prioritizes one context over another.
MATLAB App Designer is also used to develop a text-based application for the
demonstration of the designed system in this research. In the simulation work,
the contexts under consideration are modeled as follows: for physical environ-
ment context, check light intensity taking a photograph using the camera and
calculating the intensity; for human environment context, check human face by
implementing the Face recognition algorithm of [3]; for UAV local ICT system
context awareness, check UAV CPU utilization by running the system diagnos-
tics performance counter; for network ICT context awareness, compute wireless
network signal strength using received signal strength based on path loss model.
Figure 4 shows the text-based demonstration of the designed context acquisi-
tion, processing and communication MATLAB application. The data collected
from the sensors and communicated between individual UAVs in a swarm are
represented with the text messages displayed on the app.
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Fig. 3. Interrupt routine of the designed system with context implementation that is
prioritized.
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Table 1. Analysis of results

Context environment Response Response Level of accuracy

rate speed

Physical only 0.96 s Fast Highly accurate

(98%)

Human only 1.03 s Moderate Moderate

(84.85%)

UAV local ICT 0.8 s Fast Highly accurate

System only (100%)

Network ICT only 0.92 s Fast Highly accurate

(100%)

All prioritized 2.15 s Slow Varying

(84.85%–100%)

5 Results

By combining the knowledge about swarm of UAVs with context-aware perva-
sive computing systems, we created a model that is can smoothly be integrated
to UAV’s internal frame and implemented on UAVs to perform an effective
thorough task. The simulation implementation of the system was successful and
well coordinated. A MATLAB application simulating and demonstrating several
context environments is provided in Fig. 4. The performance of these context-
aware systems is compared during simulation, as indicated in Table 1. When
simulated stand-alone, ICT and physical environment context detection systems
and sensors were fast to respond with high accuracy due to their low system
complexity. These systems performed Similarly, when compared to the others
based on performance, all ICT environment context detection algorithms per-
formed best, with object detection having the least best accuracy and longest
delay compared to the other individual systems. When simulating the combined
context awareness systems in a prioritized way, an average of 2.15 s delay on
the overall responsiveness of the system was recorded. The level of accuracy in
the prioritized context awareness gave us the same result in percentage accuracy
levels when considering each environment, which proved the repeatability of the
individual systems even if we used them in different combinations.

The device used to analyze this performance is an Intel Core i5-7200U CPU
with 16 GB RAM and a 64-bit operating system, which has different applica-
tions running on the background. The response time readings for a demonstrative
simulation is also provided in Table 1. The values of the response time and accu-
racy measures are an average value taken from 100 runs of the same system in
different environmental settings.
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Fig. 4. Text based MATLAB App demonstration of the proposed pervasive computing
system.

6 Conclusion and Future Directions

Pervasive computing is increasingly being used in different application areas
and is one of the main technologies that will continue in the future. One of
those application areas is in computing systems of UAVs. The design and simu-
lation of a MATLAB-based solution for effective context awareness in intra-UAV
swarm communication are described in this research study. The physical envi-
ronment, human environment, and ICT environment are all taken into account
for demonstration purposes. Even though the considered sensing systems and
their applications have been implemented individually in different projects and
researches, the suggested ubiquitous computing system’s integrated and priori-
tized implementation offers a promising benefit for intra-UAV safety in a swarm.
This work provides a way of implementation of pervasive computing in a UAV
swarm setting and can be used as a very effective way to enhance safety and
connectivity in a swarm.

6.1 Future Works

Future works will focus on real implementation and testing on two or more UAVs
in a distributed swarm computing environment. This incorporates designing a
printed circuit board that will accept all the inputs from different sensors and
execute possible actions, while its size should fit into the UAV frame space.
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The high response times can be enhanced by deploying the proposed pervasive
system on an application specific integrated circuit or field-programmable gate
array that can be integrated into the UAVs hardware. Sophisticated machine
learning techniques and the development of miniaturized sensing technology that
fits small-UAV frames can be used to improve the proposed system. In addition,
our next work will focus on choosing specific wireless communication network
choice based on the specific application area of the UAV swarm. Through these
implementations and parameter selections, future real time deployments and
tests will evaluate the effectiveness of the proposed approach and prove its cor-
rectness.

References

1. Context. https://www.merriam-webster.com/dictionary/context. Accessed 20 Mar
2022

2. Face detection and tracking using CamShift. https://www.mathworks.com/help/
vision/ug/face-detection-and-tracking-using-camshift.html. Accessed 26 Jan 2022

3. Matlab-deep-learning. https://github.com/matlab-deeplearning/mtcnn-face-
detection. Accessed 20 Oct 2022

4. Show CPU cores utilization in Matlab. https://stackoverflow.com/questions/
25950727/show-cpu-coresutilization-in-matlab. Accessed 22 Jan 2022

5. Abdelfattah, A.S., Abdelkader, T., EI-Horbaty, E.S.M.: Reliable web service con-
sumption through mobile cloud computing. In: Mobile Computing-Technology and
Applications. IntechOpen (2018)

6. Al-Muhtadi, J., Saleem, K., Al-Rabiaah, S., Imran, M., Gawanmeh, A., Rodrigues,
J.J.: A lightweight cyber security framework with context-awareness for pervasive
computing environments. Sustain. Urban Areas 66, 102610 (2021)

7. Argrow, B., et al.: The NCAR/EOL community workshop on unmanned aircraft
systems for atmospheric research. Ph.D. thesis, National Center for Atmospheric
Research (2017)

8. Bekmezci, I., Sahingoz, O.K., Temel, Ş: Flying ad-hoc networks (FANETs): a sur-
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Abstract. In this world of motorization, road accident is one of the
vital cause behind the death of many people. The impact of this hazard
is more evident in Bangladesh, especially in the capital city Dhaka. This
paper aspire to identify the most accident prone regions of Dhaka city
using Counter Propagation Network and portrays a comparative analy-
sis between Counter Propagation Network and K-means clustering. The
data for predictions has been provided by Accident Research Institute
(ARI) at Bangladesh University of Engineering and Technology (BUET).
For identification of most accident prone regions, K-means clustering and
Counter Propagation Network have been used.

Keywords: Clustering · Neural Networks · Artificial Intelligence

1 Introduction

Road accident is perhaps one of the most frequent and agitating situation in
Bangladesh. It can be defined as the collision of a vehicle with another vehicle,
human being, animal or stationary objects. According to Bangladesh police, in
the first eight months of 2021, a total of 3,502 people were killed and 3,479 sus-
tained injuries in 3,701 road accidents [1]. Dhaka, being the capital of Bangladesh
is an overpopulated city with high density which makes the scenario even worse
in the city due to sheer number of vehicles and people on the streets.

Although accident related researches have been conducted in other developed
countries, it is not that familiar in Bangladesh. Lately, some initiatives have
begun to conduct research works on road accident related events in Bangladesh
in order to tackle the issue. In our analysis, we have implemented and utilized
Counter Propagation Network, which is a neural network, to identify the most
accident-prone regions of Dhaka city and also provided a comparative analysis
of our model with K-means clustering to validate the accuracy of the neural
network. At last, a cluster map of Dhaka city identifying accident-prone regions
has been rendered.

The identification of these accident-prone regions is significant because the
government can design and develop an efficient system to monitor these regions
to reduce the number of accidents and also the general mass can be made aware
of these regions and can be provided with a safer route to travel to avoid these
highly accident prone regions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 Background

Since road accident is ubiquitous, the goal of our analysis is to determine the
most-accident prone regions of Dhaka city. To achieve this goal, at first we accu-
mulate the data and present it to the clustering models to segregate the clustered
regions. Then, based on the data, cluster with the most-accident prone regions
is recognized and points underlying the cluster can be acknowledged as our cov-
eted result. In our analysis, we have utilized some state-of-the-art validity indices
for the selection of hyper parameters and to validate the quality of clustering
algorithms. The indices are described below:

Silhouette Analysis: In Silhouette analysis [8], silhouette coefficient is mea-
sured for each point, which connotes how much close a point is to its assigned
cluster compared to other clusters. An average of all the silhouette coefficients
yield silhouette score for that value of k. The value of silhouette coefficient varies
between [-1,1]. It signifies how well the data point fits into the cluster, so a high
value manifest that it fits into the cluster satisfactorily and lower value depicts
the opposite. Silhouette coefficient for data point i ∈ CI (data point i in the
cluster CI) are:

(a) Compute a(i): Average distance of the point from the other points of the
same cluster.

(b) Compute b(i): Average distance of the point from all the points of the nearest
cluster (i.e., in any cluster of which i is not a member).

(c) Compute silhouette coefficient: It is calculated using the formula provided
below—

s(i) =
b(i) − a(i)

max(b(i), a(i))
(1)

Calinski-Harabasz Index: This index [5] is an approximation of the estimation
of how close a data point is to it’s centroid in comparison with the global centroid.
Here, two parameters are measured namely cohesion and separation. Cohesion
refers to the estimation of nearness of a data point to it’s centroid and the
calculation of separation is based on distance between the global centroid and
the cluster’s centroid. The mathematical formula can be depicted as follows: For
a dataset E of size N which has been clustered into k clusters, the Calinski-
Harabasz score s is:

s =
tr(Bk)
tr(Wk)

∗ N − k

k − 1
(2)

where tr(Bk) is the trace of the between group dispersion matrix and tr(Wk) is
the trace of the within-cluster dispersion matrix that can be defined by:

Wk =
k∑

q=1

∑

x∈Cq

(x − cq)(x − cq)T (3)

Bk =
k∑

q=1

nq(cq − cE)(cq − cE)T (4)
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where Cq is the set of points in cluster q, cq is the center of cluster q, cE is the
center of E and nq is the number of points in cluster q.

Davies-Bouldin Index: Davies-Bouldin index is another popular method for
evaluating how good the clustering has been, based on features inherent to the
dataset. For n dimensional points, if Ci be cluster of data points and Xj be an
n-dimensional feature vector assigned to Ci,

Si =

⎛

⎝ 1
Ti

∗
Ti∑

j=1

‖Xj − Aj‖qp

⎞

⎠
1/q

(5)

Here, Ti is size of the cluster i and Aj is the centroid of Ci. If q=1, then, Si is
the average distance between feature vectors in cluster i and the centroid of the
cluster. For q=2, it becomes a Euclidean distance function. If Dij is the within
cluster distance ratio for ith and jth cluster,

Dij =
di + dj

dij
(6)

where, di and dj is the distance between every data points in the clusters i
and j. And, dij is the Euclidean distance between centroids of two clusters. The
Davies-Bouldin Index [2], DB will be:-

DB =
1
N

∗
k∑

j=1

max
j �=i

Dij (7)

3 Related Works

Some promising works on road accidents have been conducted recently. Labuib
et al. [6] performed road accident analysis and predicted accident severity using
Decision Tree, K-Nearest Neighbors (KNN), Näıve Bayes and AdaBoost. They
classified the severity of accidents into four categories namely Fatal, Grievous,
Simple Injury and Motor collision where the best performance was achieved by
AdaBoost method. In another work [4], a deep learning model was trained on
historical crash data, road maps, satellite imagery and GPS to enable high-
resolution crash maps that could lead to safer roads. Siddiq et al. [9] use four
models such as Decision Tree, K-Nearest Neighbors (KNN), Näıve Bayes and
Logistic Regression to predict the death of road accidents in Bangladesh based
on the road crash data derived from the Prothom Alo newspaper.

4 Methodology

4.1 Data Characterization

In order to correctly identify the most accident prone regions, accident related
data of different regions of Dhaka is a prerequisite. For this purpose, the data
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has been collected in comma separated values format from Accident Research
Institute at Bangladesh University of Engineering and Technology. In this data-
set, Dhaka city is partitioned into 60 regions and accident related data for this
60 regions are available. There are about ten features in this dataset including
X and Y coordinates of the accident point and type of intersection of those
regions. But the irrelevant and the redundant features are ignored and only
four main features are considered for our analysis. The attribute considered for
incorporating into the model for each region includes:

Total Accidents: This attribute designate total number of accidents in that
region.

Fatal Accidents: This attribute denotes total number of accidents which
caused serious injury to one or more person.

Pedestrian Accidents: The number of accidents where pedestrian were
involved.

Pedestrian Fatal Accidents: This attribute denotes total number of accidents
where pedestrian had fatal injuries.

4.2 Model Depiction

In an effort to determine the most accident prone regions, two clustering methods
have been applied. The two methods are illustrated below:

4.2.1 K-means Clustering
K-means clustering is one of the most popular and simplest unsupervised algo-
rithm. This algorithm aspire to group the similar data points without perception
of the label and fathom the underlying patterns. To simply characterize, it is
the aggregation of similar data points. Given a target number k, it distributes
the points into k aggregates. The algorithm can be explained briefly as follows:

– Commencing from a random selection of centroids, iterate until a stable value
of centroids have been acquired.

– In each iteration, assign each data point to the nearest cluster or centroid and
calculate the new value of centroids averaging the values of the data points
affiliated to each centroid.

The initial selection of the values of the centroids are very crucial in pace of
the convergence of the values of the centroids. To this end, Forgy method [3] is
used here, which means the clusters are randomly assigned from the records, a
random cluster is designated to a record. Now, an important part of k-means
clustering is determining the value of k, what value of k will fit the data appro-
priately. For it’s determination, various methods and indices have been utilised.
One such method is the so-called Elbow method which is described as follows:

In Elbow method [10], value of k is varied within a particular range, here
1–15 and the value of sum of squared distance between each point and centroid
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of a cluster is estimated for each value of k. If we map k vs sum of squared
distance (Fig. 1a), then an elbow shape graph is witnessed. An analysis of the
graph portrays that, initially the value reduces rapidly with the increase of value
of k and after certain point, it becomes parallel to the X-axis. That certain point
correspond to the optimal value of k. Beside using elbow method, various other
validity indices has been used which are described in the following sections.

4.2.2 Counter Propagation Network
Counter Propagation Network is a neural network. A neural network is a system
under artificial intelligence which is meant to replicate and act like human brain.
A neural network consists of a number of layers of interconnected nodes which are
known as neurons. The first layer is the input layer, the last layer is the output
layer and there are some hidden layers of neurons. The network is trained on
some input, so that it can predict similar inputs correctly later as output. There
are some edges connecting neurons of one layer to the neurons of the next layer.
The edges have some values associated with them called weights based on which
computation are done in middle layers which helps to predict the output in the
final layer. First, the inputs are preprocessed and fed to the input layer. Then,
value at each neuron of next layer is computed by taking sum of product of
weight of incoming edges and value associated with neuron from the previous
layer corresponding to those edges. This value is added with a value associated
with each neuron called the bias and that value is then passed through a function
called activation function. The value of the activation function determines if the
neuron will be activated or not. The activated neurons transmits information
to the next neuron. This process continues throughout the hidden layers til
the output layer. In output layer, the values determines probability of each of
the possible output and the neuron with highest value determines the output.
This process is called forward propagation. Then the output of the last layer is
matched against actual output to determine error or how off the output result
is from actual output. This information is then fed in backward direction and
based on that, weights are adjusted. This process is backward propagation. In
this way by feeding a lot of inputs and continuous process of backward and
forward propagation repetitively for many times, the neural network is trained
until it can predict outputs against input properly.

For clustering here, we used Counter Propagation Network which has a strong
power of generalization. The number of neurons in the input layer equals the
number of features of the data, while number of neurons in the Kohonen layer
equals number of clusters we allow. We set the number of clusters equal to the
number of clusters for which we got best result using K-means clustering. For
our intended purpose, we only need first two layers that would help us to classify
the data points into clusters.

Each of the neurons in the middle layer has a connecting edge for each of the
neuron of the first layer. Each of the edges has a weight associated with them,
which influences the outcome of the clustering. The weights are set at random
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Fig. 1. Elbow method for K-means clustering and counter propagation network

initially and then they are trained in unsupervised learning method using real
life data.

Let’s say we have five features from our dataset. For a data point, x1, x2,
x3, x4, x5 be their values which are applied to the corresponding neurons in the
input layer. For a particular neuron (say Si,) of the second layer, the weights of
the edges connecting it with the five neurons of the input layer be w1j , w2j , w3j ,
w4j , w5j respectively. The output of that neuron Rj will be calculated as:

Rj =
∞∑

i=1

wi,j ∗ xi (8)

The neuron with highest associated output value, calculated in this fashion, will
be the “winner neuron” for the particular data point.

Next, the weight of edges between “winner neuron” and the neurons in the
first layer has to be updated by using the following formula:

wi,j = wi,j(old) + β ∗ (xi − wi,j(old))2 (9)

where, xi is the ith neuron in input layer and β is the learning rate.
We continued this process until the outcomes of the clustering converge [7].
While implementing it in code, the values of the features from the input

for all data points were scaled up. Otherwise, during the process of calculation,
difference between the data points with the centroids of the clusters becomes
very close to each other and the data points falls under one or two specific
clusters. The weights of the edges between the layers were set to same value.
The weights of the edges later adjusted according to the internal calculations
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during the clustering process as described above. The whole process of training
and clustering was run for large number of epochs (around four thousand times)
until the outcomes of the clustering process converged.

5 Experimental Results and Analysis

5.1 Selection of Number of Clusters

5.1.1 K-means Clustering
Inspection of the Silhouette Plot: To find the optimal value of number of
clusters k, we have used here silhouette analysis method. We pick a range of
values for k, which is 2–5 and calculate silhouette score and observe the outliers
and fluctuations.

– For k = 2 (Fig. 2), all the data points under cluster=1, have silhouette coeffi-
cient below average silhouette score and both the cluster have uneven thick-
ness, so it is a bad pick.

Fig. 2. Silhouette method analysis for K-means for k=2

Fig. 3. Silhouette method analysis for K-means for k=3
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Fig. 4. Silhouette method analysis for K-means for k=4

Fig. 5. Silhouette method analysis for K-means for k=5

– For k = 3 (Fig. 3), all the clusters have data points having silhouette coefficient
above average silhouette score and unevenness is somewhat less than that for
k=2.

– The silhouette plot for k = 4 (Fig. 4) shows that it is also a bad pick since all
points under cluster 2 lies below average silhouette score.

– The silhouette plot for k = 5 (Fig. 5) portrays that, cluster 4 has absolutely
zero points. Therefore, it is also considered a bad pick since higher number
of k is redundant.

Calinski-Harabasz Index: In our analysis, we computed the score of calinski-
harabasz index for value of k from 2 to 6 and higher value of this index connotes
the more optimal value of number of clusters. This is a representation of how
well the clusters are concentrated around the centroid and well detached the
clusters are. A table depicting the value of the score for cluster 2–6 is given in
(Table 1):
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Fig. 6. Silhouette method analysis using counter propagation network for k = 2

Davies-Bouldin Index: The Davis-Bouldin index score is calculated for value
of k from 2–6 and the lower the value of the score is, the more optimal the
selection of number of cluster is. The calculated value of the score for each k is
represented by a table given in (Table 1):

Table 1. Value of indices for K-means and CPN

Cluster K-means CPN

Calinski Harabasz score Davies Bouldin score Calinski Harabasz score Davies Bouldin score

2 126.75 0.488 172.95 0.42

3 122.96 0.66 160.72 0.61

4 148.21 0.68 90.98 0.96

5 146.1 0.56 110.72 0.95

6 152.2 0.72 90.02 1.14

5.1.2 Counter-Propagation Network
Inspection of the Silhouette Plot:

– For k = 2 (Fig. 6), all the data points under cluster=2, have silhouette coeffi-
cient below average silhouette score and both the cluster have uneven thick-
ness, so it is a bad pick

– For k = 3 (Fig. 7), all the clusters have data points having silhouette coefficient
above average silhouette score
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– The silhouette plot for k = 4 (Fig. 8), shows that it is also a bad pick since
all points under cluster 2 lies below average silhouette score.

– The silhouette plot for k = 5 (Fig. 9),portrays that, cluster 1 has all data
points below average silhouette score.

Calinski-Harabasz Index: As already described, the higher value of calinski-
harabasz index denotes the more optimal value of number of clusters, which
represents how well the clusters are concentrated around the centroid and well
detached the clusters are. A table depicting the value of the score for cluster 2–6
is given in (Table 1):

Davies-Bouldin Index: As it was said above, for Davies-Bouldin Index, the
lower the value of the score is, the more optimal the selection of number of
cluster is. The calculated value of the score for each k from 2–6 is represented
by the table given in (Table 1):

Fig. 7. Silhouette method analysis using counter propagation network for k = 3

Table 2. Comparison of validity index of K-means clustering and Counter Propagation
Network

Validity index Validity for K-means Validity for CPN

Silhouette Score 0.51 0.534

Calinski Harabasz Score 122.96 160.717

Davies Bouldin Score 0.66 0.611
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5.2 Comparative Analysis Between K-means Clustering and
Counter Propagation Network

The absence of target variable in unsupervised learning makes it challenging to
predict the accuracy of the clustering algorithm and perform comparative anal-
ysis between two or more clustering algorithms. To compare both the methods
depicted here, we have used some validity indices which can also be defined as
the measurement of similarity. The comparison is given in Table 2:

Based on all the indices and scores, 3 is nominated as the best choice for
selection of number of clusters for both the methods and here, we can easily
comprehend that, the value of the three scores are better for Counter Propaga-
tion Network method than that of K-means clustering.

To validate and compare the accuracy of two methods, we attached labels to
the dataset. The data points with total accident value from 0 to 4 were labelled
with ‘low risky’, the data points with total accident value ranging from 5 to 9
were labelled with ‘moderately risky’ and those with total accident value equal
or larger than 10 were labelled as ‘highly risky’. The outcome of the clustering
methods were then matched with the labels to see how many of them matched
for each method. The outcomes of the two methods is illustrated in Table 3:

Fig. 8. Silhouette method analysis using counter propagation network for k = 4

Table 3. Accuracy of K-means clustering and counter propagation network

Method Correctly classified Accuracy

K-means 53 88.33

Counter propagation network 56 93.33
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Fig. 9. Silhouette method analysis using counter propagation network for k = 5

Table 4. Number of data points in each cluster for K-means and CPN

Cluster region K-means CPN

Number of points Percentage Number of points Percentage

Low 37 61.67 33 55

Mid 18 30 21 35

High 5 8.33 6 10

5.3 Analysis of Data Points of K-means Clustering and Counter
Propagation Network

The total number of data points that fell in each cluster for both methods are
given below:

In K-means clustering (Table 4), a large number of regions falls in the low
accident prone region, which is about 61.67% and in mid about 30% and about
8.33% falls in high accident prone region which is our main concern.

In case of Counter Propagation Network (Table 4), the percentage of high
accident prone region is more than that of K-means which is 10% and in the low
and mid accident prone regions about 55% and 35%.
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6 Conclusion

The main purpose of this paper is to identify the most accident prone regions
of Dhaka city since the rise of the number of accidents is on the upsurge. We
have accomplished that using both the models depicted above. The Counter
Propagation Neural Network is more accurate and performed better than K-
Means clustering as we perceived in the comparison of both the methods on the
basis of validity indices and also on the basis of accuracy using a target value
based on consensus. A cluster map of Dhaka city identifying the most accident
prone regions using both the method is given in Figs. 10, 11, 12, and 13.

To conclude, this work can be extended to include other clustering techniques
and neural networks. Combination of region based crime-data with accident data
can be utilized to perform various analysis related to the safety of the roads.
For example, utilizing this result obtained, we can extend the work further to
find the safest possible routes within the city. It can be introduced as an extra
feature in determining the route during navigation in map-related apps which
will provide safety. Besides, the idea of a smart city is inconceivable without
the assurance of travel safety and for that purpose, identification of the most
and least prone regions of a city plays an indispensable role. On the other hand,
a smart city paradigm provides for copious information thus assisting in more
accurate prediction of the most accident prone regions.

Fig. 10. Cluster map of Dhaka city using K-means (Part-1)
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Fig. 11. Cluster map of Dhaka city using K-means (Part-2)

Fig. 12. Cluster map of Dhaka city using CPN (Part-1)
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Fig. 13. Cluster map of Dhaka city using CPN (Part-2)
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Abstract. This article explores the concepts of online protocol synthesis using
Reinforcement Learning (RL). The study is performed in the context of sen-
sor and IoT networks with ultra-low-complexity wireless transceivers. The paper
introduces the use of RL and Multi Arm Bandit (MAB), a specific type of RL,
for Medium Access Control (MAC) under different network and traffic condi-
tions. It then introduces a novel learning-based protocol synthesis framework that
addresses specific difficulties and limitations in medium access for both random
access and time-slotted networks. Themechanismdoes not rely on carrier-sensing,
network time-synchronization, collision detection, and other low-level complex
operations, thus making it ideal for ultra-simple transceiver hardware used in
resource-constrained sensor and IoT networks. Additionally, the ability of inde-
pendent protocol learning by the nodes makes the system robust and adaptive
to the changes in network and traffic conditions. It is shown that the nodes can
be trained to learn to avoid collisions, and to achieve network throughputs that
are comparable to ALOHA-based access protocols in sensor and IoT networks
with simplest transceiver hardware. It is also shown that using RL, it is feasible
to synthesize access protocols that can sustain network throughput at high traffic
loads, which is not feasible in the ALOHA-based systems. The system’s ability
to provide throughput fairness under network and traffic heterogeneities are also
experimentally demonstrated.

Index Terms: Reinforcement Learning · Multi-Armed Bandits · Sensor
Network · IoT · Medium Access Control · Resource Constrained Networks

1 Introduction

Traditionally, wireless network protocols are designed based on heuristics and past expe-
rience of human designers. Most of the well-known wireless access protocols such as
ALOHA, CSMA, and their derivatives including Bluetooth, Zigbee, and WiFi are prod-
ucts of such design processes [1, 2]. The choice of a network protocol is often steered
by the availability of transceiver level hardware support for carrier sensing, collision
detection, communication energy constraints, etc. In spite of their general success, these
approaches do underperform under certain topology and traffic load heterogeneities, and
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specialized prioritization requirements. For instance, in case of the well-knownALOHA
and SLOTTED-ALOHA MAC logics, a surge in network traffic can lead to a complete
throughput collapse caused by collision avalanches. Such phenomena are particularly
harmful for IoT and Sensor networks in which energy and other resource wastage can
be operationally detrimental. Such effects are aggravated for heterogeneous traffic and
topological diversities. Furthermore, topologically disadvantageous nodes in an arbi-
trary mesh network may not receive a fair share of bandwidth due to its disproportionate
collision experience. All these effects point to a need for alternative protocol design
approaches beyond the existing empirical designs.

To that end, Reinforcement Learning (RL) has been applied in the literature [3–14]
for protocol synthesis via online learning. A protocol constitutes inter-node transmis-
sion logic, which is modeled as a Multi-Agent Markov Decision Process (MA-MDP)
problem. Such MA-MDPs are then solved using an online temporal difference solution
approach, namely RL. The online learning ability of RL makes the nodes learn and
adapt to the best transmission logic (i.e., protocol) on the fly without a priori training.
Additionally, the multi-agent approach enables independent learning for the node, thus
making the solutions more robust and adaptive.

Fig. 1. System Level Architecture of an IoT Network with Embedded Learning Components

Such learning can be explored in two broad areas of MAC logics, namely, random
access and scheduled with time-slotting. While the first category including ALOHA,
CSMA, and their higher order derivatives can be synthesized using traditional RL [15],
for scheduled access such as TDMA would need a special class of RL without state
abstraction, known as Multi-Armed Bandits (MAB).
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The existing work in this area has the following limitations. First, most of the
RL solutions are centralized [5, 6] in which a single learning entity maintains current
network-level information and learns transmission policies for all the network nodes.
This entails frequent node-to-learner information and learner-to-node policy transfers,
requiring additional control plane bandwidth. Moreover, the learner requires to maintain
a network-scale learning tablewhich adds to its storage and computation expenses. These
bandwidth, storage, and single point of computation overheadsmake centralized learning
non-scalable and vulnerable to single point of failure. The secondmajor limitation is that
network and traffic heterogeneities and traffic prioritization are neglected in the existing
techniques [9]. This makes some of these approaches unsuitable in application-specific
networks with specialized network configurations and performance needs. Addition-
ally, many of the existing RL solutions assume non-sensor and IoT friendly complex
transceiver capabilities including carrier-sensing, collision detection in few cases, and
network time-synchronization for the MAB-based transmission scheduling.

This paper attempts to avoid those limitations using a novel RL and MAB-based
learning approach for synthesizing MAC logic. The key approach here is to leverage
interactive individual learning, where each node learns transmission policies indepen-
dently by observing the impacts of their RL/MAB transmission actions on collisions
experienced by all other nodes in the neighborhood. This is donewithout carrier-sensing,
collision detection, and time-synchronization, thusmaking it suitable for low-complexity
and resource-constrained networks. Specifically, the developed framework caters to two
broad classes of medium access schemes, viz, random access and scheduling-based.
It makes the nodes learn independently in order to attain and maintain the maximum
achievable throughput for random access, and to obtain a collision-free slot allocation
in scheduling-based approaches. Figure 1 shows a generalized system architecture of
the IoT network with the embedded learning components, where each IoT node acts as
a learning agent. With the long-term goal of developing a generalized learning frame-
work for protocol synthesis, this paper specifically demonstrates the concept of protocol
synthesis in resource-constrained networks with low-complex transceivers not relying
on aforementioned complex hardware requirements.

Specific contributions of this work are as follows. First, an online learning-based
framework is developed for minimizing packet collisions in resource-constrained net-
works with random access and scheduling-based Medium Access schemes. Second, a
novel slot-defragmentation mechanism is proposed for handling the trade-off between
learning convergence time and spectral usage efficiency in transmission scheduling in
networks without time synchronization. Third, the developed framework is decentral-
ized such that each node learns its own transmission schedule independently relying
only on localized neighborhood information. Finally, the developed learning framework
is functionally validated, and performance is evaluated under heterogeneous network
and traffic conditions with extensive simulation experiments.
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2 Related Works

Many Reinforcement Learning (RL) based approaches were proposed in the literature
for wireless MAC protocol synthesis. The paper in [3] uses RL for wireless sensor
network MAC to minimize energy expenditure while maximizing throughput. It works
with slotted time and uses stateless Q-learning for nodes to find collision-free trans-
mission slots. Q-learning-based protocols for resource allocation are also proposed in
[5, 10]. These mechanisms can learn and adapt with new and departing nodes while
maximizing throughput. Using carrier-sensing, the nodes learn to transmit/wait [10] or
to increase/decrease access contention window [5] to reduce collisions. The mechanism
in [4] uses RL for solving a Partially Observable Markov Decision Process (POMDP) in
order to minimize the interference amongst primary and secondary users in a cognitive
network.

Researchers have also used RL and its variants for slot scheduling in TDMA-based
MAC systems. An RL-based MAC protocol is proposed in [7], which improves net-
work throughput by reducing collisions in a time-synchronous slotted network. Using
stateless Q-learning nodes learn to transmit in collision-free slots. The mechanism in
[8] allows nodes to learn radio schedules based on instantaneous packet traffic load in
their immediate neighborhoods. The mechanism in [9] minimizes MAC layer energy
expenditure via RL-based learning. Such learned low-energy protocols with sleep/active
scheduling are claimed to be useful for high-density communication in wireless sensor
networks. A learning-based slot allocation scheme is developed in [12] for optimizing
energy and packet delay in large networks with high traffic loading. Another RL-based
congestion control scheme for satellite IoT networks is proposed in [13], where the aim
is to allocate channels efficiently in a TSCH network. The proposedmechanism relies on
centralized arbitration at a satellite. The framework presented in [14] uses Multi-Armed
Bandits (MAB) to learn an optimal back-off period in a contention-based time-slotted
underwater network. The objective is to simultaneously minimize collisions and energy
with the assistance of a centralized arbitration. Apart from the scalability issues of cen-
tralized RL approaches [16–18], the proposed policies require individual end nodes to
download learnt policies, thus requiring additional bandwidth/channel for such control
information sharing.

All these RL-based MAC frameworks rely on various combinations of underly-
ing hardware features such as time-slotting, time-synchronization, and carrier-sensing,
which can often be infeasible for ultra-resource-constrained sensor and IoT nodes. In this
paper, the main focus is to explore online learning using RL and its variants for networks
without such complex and energy-expensive features. The paper first demonstrates the
feasibility of these learning frameworks to maximize performance in networks using
random access schemes without time-slotting ability. It is shown how the maximum
network throughput can be achieved and maintained using RL with fair bandwidth share
for the nodes. Next, it shows how a stateless variant of RL can be used for collision-free
transmission slot scheduling without network time synchronization. This is done using a
slot defragmentation operation embedded with MAB components to reduce bandwidth
redundancy arising from slot allocation in the absence of network time synchroniza-
tion. To be noted, the framework proposed in this work is decentralized in the sense
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that all nodes learn the transmission schedule independently using localized network
information.

3 Network and Traffic Model

The network models considered in this paper are generalized multi-point to point with
arbitrary mesh topologies (Fig. 1) and traffic patterns. In order to understand and ana-
lyze the impacts of network information availability, both fully and partially connected
topologies are considered. For fully connected, each node can possess complete network-
wide information including congestion, throughput etc. For partially connected, a node
can possess only localized information within its neighborhood.

As for packet generation, constant packet rate and Poisson distributed packets have
been used. The MAC layer traffic load model is created such that a packet generated
from a node is sent to one of its uniformly randomly chosen 1-hop neighbors. This is
done on a packet-by-packet basis.

Networks without and with time slotting are investigated. In both cases, no network
time synchronization is assumed. As described later in Section V, the network model
includes the ability of piggybacking very low data-rate control information using parts of
the data packets. Such control information is used for local information sharing needed
by the RL learning.

4 Reinforcement Learning and Multi-armed Bandit

Reinforcement Learning (RL) is a model-free approach used to solve aMarkov Decision
Process (MDP) [15]. One of the commonly used RL techniques is a value-based tabular
update method known as Q-Learning. Each entry in the tableQ(s, a) is aQ-value repre-
senting the importance of taking an action a when the system is in state s. This table is
updated by taking repeated actions stochastically with a bias towards the action with the
highest Q-value, which is updated based on the acquired reward. For a received reward,
the Q-value for a state-action pair is updated using the Bellman’s temporal difference
equation [15]. A special class of RL problems for non-associative settings are known as
Multi-Armed Bandits (MAB), where there is no state abstraction and the agent’s goal is
to determine the best set of actions that would maximize its expected reward [15].

A variant of Q-table updates, used in multi-agent RL environments, known as Hys-
teretic Updates [15], is used in this work. Without knowing the actions taken by the rest
of the agents, each agent learns to achieve a coherent joint behavior by observing the
effects of its own actions on the system. The key challenge is that an agent’s cumulative
reward not only depends on its own actions, but also those of the others. Even if an
agent takes a good action, it may still receive a penalty because of other agents’ poor
actions. Hysteretic Learning addresses this by assigning less importance to penalties
as compared to the rewards by using two different learning rates. The higher learning
rate is used if an agent’s action produces desired beneficial effects. Otherwise, the lower
learning rate is used so that lesser importance is given to actions that are deemed suitable
by the agent but did not produce beneficial results probably due to unfavorable actions
taken by the other agents in the environment. This prevents the Q-values of good actions
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to go down, thus accelerating learning convergence. A detailed description of RL, MAB
and Hysteretic Learning can be found in [15] and [19].

5 Reinforcement Learning for Random Access MAC

5.1 Modeling Network Protocol Synthesis as MDP

Each network node acts as an independent RL agent and the wireless network acts as
the environment through which the agents interact via their actions. In what follows, it
is shown as to how node transmission behavior can be modeled as a Markov Decision
Process (MDP), and when the MDP is solved using RL, it can give rise to probabilis-
tic transmission strategies that represent a MAC protocol. The details of different RL
components are as follows.

Actions: An RL agent’s (i.e., a node) actions are represented by transmission prob-
abilities in the range [0, 1]. Meaning, the action defined by the probability p represents
a packet transmission with that probability. The probabilities are discretized at equal
intervals in order to keep the action space discrete. The interval size determines the
action space size, and the resulting RL performance and convergence properties. In this
work, the interval size of 0.05 is chosen empirically based on the performance and con-
vergence speed tradeoffs. The learning error, represented as the difference between the
throughput obtained via RL and that of a known benchmark, as described in the next
subsection goes down, and convergence time goes up with increase in the size of the
action space. The actions are selected following an ε-greedy exploration policy, where
the agents explore all the possible actions randomly with a probability ε, and take the
action based on the maximum Q-value with probability 1 − ε.

States: The state experienced by an agent/node is represented by the congestion
level it encounters. A node estimates its state during a learning epoch from the number of
packet collisions it experiences during the epoch. It is encoded as the collision probability
computed as the ratio of number of collided to transmitted packets. As done for the action
space, collision probabilities are also discretized into a fixed interval size (in range [0,
1]), which determines the state space size. There exists a tradeoff between learning
performance and convergence time for different state space sizes. A state space size of
5 has been chosen empirically for all presented results in this paper.

Reward: Since learning is node-independent and the nodes do not possess network-
wide information, the reward is decided based on a node’s localized information collected
in-band using piggybacking over the MAC layer PDUs.

Let si be the current throughput of node i and si→j be the portion of node i’s through-
put for which j (one-hop neighbor of i) is the intended receiver. Node j periodically
piggybacks si→j in its outgoingMAC layer PDUs.Node i then calculates its own through-
put si = ∑

∀1−hopneighborjsi→j, which it periodically piggybacks along with its one-hop
neighbors’ throughput sj in its outgoing PDUs.

Now, given that a node i knows its own throughput as well as its two-hop neigh-
bors’ throughput (i.e., si, sj), it calculates its localized neighborhood throughput as
Si = si + ∑

∀jsj. The packet transmissions from nodes that are within a 2-hop locality
can lead to collisions at the receiver. Thus, throughput of a node is affected by its all
2-hop neighborhood transmission policies and hence, 2-hop neighborhood throughput is
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considered for reward formulation. Using this information, a reward function is formu-
lated with the aim of maximizing network throughput while minimizing the deviation of
throughputs of each individual node. Thus, an action is rewarded if both the throughput
and fairness gradients as defined by �Si = Si(t) − Si(t − 1) and �f i = fi(t) − fi(t − 1)
respectively are positive. Here, fi is the fairness coefficient computed as:

fi(t) = −∑
∀k �=i|si(t) − sk(t)|, kε onehop neighborhood of i.

Thus, a temporal gradient-based reward is formulated as follows.

Ri(t) =
{ +50, �Si − εs > 0, �fi − εf > 0

− 50, otherwise
(1)

Here, coefficients εs and εf are used so that the agents don’t get stuck in a near optimal
solution. Experimentally chosen learning hyper-parameters are set to: Hysteretic Learn-
ing rates of 0.9 and 0.1, and a discount factor of 0.95.Using this reward arrangement, each
node independently learns a probabilistic transmission strategy such that the network
wide throughput is maximized while attempting to maintain node-level fair bandwidth
distribution. This behavior gives rise to the proposed RL-based Random Access MAC
(RRA-MAC) Protocol. Note that although each node independently learns transmission
policies, their learning process is mutually affected by the collisions caused by their
individual actions. A learning convergence in such situation is when all nodes are able
to choose the correct transmissions probabilities for given collisions in its up to 2-hop
neighborhood.

5.2 Results and Analysis

In this section we present the performance of RRA-MAC framework that uses RL to
solve network protocol modeled as a Markov Decision Process (MDP). In Fig. 2, the
performance of RRA-MAC is compared with the simplest known sensor/IoT random
access, namely ALOHA, that does not rely on complex hardware features including
carrier sensing and time-slotting. The figure shows performance for a 5-nodes partially-
connected topology in which nodes 1, 2, 3 and 4 form a square and node 5 is connected
only to node 4. The first observation is that unlike for ALOHA, RRA-MAC is able
to provide a fair bandwidth distribution for all five nodes. Since nodes 1, 3 and 5 are
topologically disadvantageous in that they experience higher collision rates compared
to nodes 2 and 4, with ALOHA those three nodes experience lower overall throughputs.
Such unfair access performance aggravates as traffic loading increases. The RL-based
RRA-MAC circumvents that by using a fairness-aware reward structure. This allows
the proposed learning-based mechanism to handle topological heterogeneity in a fair
manner.

The second notable observation is that unlike the ALOHA family of protocols, the
learning-based access can sustain high throughput at high loading conditions. With
ALOHA, excessive collisions bring sustainable throughput down beyond a critical load-
ing point. With RRA-MAC, this is avoided by the RL agents via learning to reduce
transmission probabilities (i.e., actions) in states that indicate increasing collisions in
the neighborhood. This causes theRRA-MAC throughput to be sustained at higher loads,
while maintaining node level throughput fairness.
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Fig. 2. RRA-MAC in a 5-node partially-connected topology and the learning convergence
behavior

Fig. 3. Performance of RRA-MAC for heterogeneous loading conditions
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Figure 2 also shows the learning convergence behavior for both network-wide and
individual throughputs for individual node load gi = 0.5, 1 ≤ i ≤ 5. Here, gi is
the application layer load (Erlangs) in node i. Post convergence, the nodes learn to
take actions so that network throughput (S) is maximized while maintaining fairness in
available bandwidth distribution.

Performance of RRA-MAC in a 3-nodes fully-connected topology for heterogeneous
traffic is shown in Fig. 3. With ALOHA access, there is a high variation of throughputs
among the three nodes for heterogeneous load distribution. In contrast, with RRA-MAC,
the differences in throughputs of individual nodes are significantly smaller. In each of the
three plots in Fig. 3, the loads from node-1 (g1) and node-2 (g2) are kept fixed at different
values, and the node-level throughput variations are observed for varying load fromnode-
3 (g3). These represent the scenarios: g1 ≤ g

∧

, g2 ≤ g
∧

, g1 ≤ g
∧

, g2 > g
∧

org1 > g
∧

, g2 ≤ g
∧

,
and g1 > g

∧

, g2 > g
∧

. It can be observed that with DRLI-MAC, the RL agents in nodes
learn to adjust the transmit probability such that the available wireless bandwidth is fairly
distributed. Also notable is the fact that the RRA-MAC logic can hold the maximum fair
throughput for higher network loads, even under heterogeneous loading conditions.

Fig. 4. Performance of RRA-MAC in fully-connected topology

The ability of the proposed mechanism to maximize and sustain network throughput
in a fair manner for fully-connected topologies is shown in Fig. 4. Throughput attained
using RRA-MAC increases, reaches a maximum and then sustains with increase in
network load. Figure 5 shows the ability of the RL-based protocol to adjust to dynamic
network conditions. The ability to adapt to time-varying network traffic is shown for
a 12-node partially connected topology in Fig. 5 (a). It can be observed that learning
adjustment to a change in network load is faster as compared to the initial convergence.
It is because, once a Q-table is learnt, the updated table maintains some information
regarding which actions are better at a particular state representing a certain collision
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probability. Hence, the learning agent already has certain level of intelligence regarding
the best sets of possible actions which helps it to converge quicker as compared to the
case of fresh random initialization of Q-values. This effect can be further investigated on
a dynamic node failure/node addition scenario as shown in Figs. 5 (b) and (c). While for
the node failure scenario, convergence is faster than that of fresh start due to the reasons
explained above, convergence does not speed up as much for the node additions. This is
because, on addition of a node, it has to start its learning from the scratch with random
initialization of Q-table, thus delaying the convergence.

Fig. 5. Adjustment to dynamic network conditions by RRA-MAC

Effects of Channel Unreliability: To understand the robustness of the learning-
based RRA-MAC to channel errors, performance was analyzed for different packet error
probabilities. For a 3-nodes fully connected topology, throughput ratio ( SRRA−MAC

SALOHA
) and

convergence timewere observed to be 1.83, 1.86, 1.82 and 6.5, 6.8 and 7.1 (×103 epochs)
for packet error probability values of 0%, 5% and 10% respectively. With increase in
packet error probability, a greater number of packets gets dropped. Thismakes each node
to requiremore learning epochs to get an estimate of the correct neighborhood throughput
to compute rewards and to update the Q-table values. Although the convergence slows
with more channel errors in general, the slowdown is acceptable for the practical range
of packet error probabilities (0−10%). Similarly, the post-convergence throughput ratio
remains in the same ballpark value for different values of packet error probabilities up
to 10%. This indicates that the impacts of channel errors on RRA-MAC are no worse
than those on the ALOHA protocol logic.
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To summarize, Reinforcement Learning for medium access in wireless network
can make nodes learn transmission policies in a cooperative manner in order to max-
imize throughput and fairness. This is achieved in a resource constrained system in
the absence of complex hardware support such as time-slotting, carrier-sensing, time-
synchronization, and collision detection, thus making it suitable for low-complexity IoT
and sensor nodes.

6 MAB for Time-Asynchronous TDMAMAC

In the presence of time slotting, MAC packet collisions can be largely avoided by
TDMA-based packet transmission scheduling. This section presents a learning mech-
anism towards that goal, specifically when network time-synchronization is not avail-
able. High resolution and accurate time-synchronization over wireless can be expensive,
especially in low-cost sensor and IoT nodes with limited processing and communication
resources. Moreover, performance of TDMAMAC protocols that rely on network time-
synchronization can be very sensitive to time-synchronization drifts. This section shows
howMAC layer packet scheduling can be learned in the absence of time-synchronization
using Multi-arm Bandit (MAB) techniques.

Since time is not synchronized, the scope of a node’s TDMA frame is strictly local. It
decides the start time of its own frame, and the end time is decided based on a predefined
frame duration, which is denoted by Tframe. The node does not know about the start times
of the other nodes’ frames. Within a frame, a node can schedule a packet transmission
only in certain discrete time instances away from its frame start time. The intervals
between those time instances are referred to as mini-slots, the duration of which is an
integer submultiple of the fixed size packet duration, and is equal at all nodes.

Fig. 6. Asynchronous frames in a 3-nodes fully-connected network
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This arrangement of mini-slot-based asynchronous TDMA is shown for a 3-node
fully connected network in Fig. 6. Frames of nodes 2 and 3 lag from that of 1 by δ2
and δ3 durations. Here, the frame size equals 7 mini-slots and a mini-slot is half of
packet duration. A node can select any of these 7 mini-slots within its frame as the
starting point of its packet transmission. The figure depicts a situation where for packet
transmissions, nodes 1, 2 and 3 select mini-slots 1, 5 and 2 respectively in their own
frames and periodically transmit in those mini-slots in subsequent frames. Packets from
nodes 1 and 3 collide because of their time-overlapped transmissions (indicated by red),
whereas packets from 2 are successfully transmitted.

The transmission scheduling problem in this context boils down for each node to be
able to choose a start-transmission mini-slot within its own frame, and that is without
colliding with other nodes. Such collision-free mini-slots should be selected locally at
each node in a fully independent manner without the help of any centralized allocation
coordinators and network time-synchronization. This is achieved by the framework com-
prising of two distinct components:MAB-learning-based slot (mini-slot) scheduling and
slot-defragmentation operation to minimize any bandwidth redundancy resulting from
the time-asynchronous scheduling by MAB. The entire flow is captured in Fig. 7.

This slot allocation problem can be modeled as a multi-Agent MAB. Each node in
this scenario acts as an independent ‘f -armed bandit’, where f is the frame size in number
of mini-slots. In other words, the action of an agent is to select a start-transmission mini-
slot in the frame. The MAB environment is the wireless network itself through which
the bandits interact via the selection of the arms (i.e., start-transmission mini-slots). The
reward is designed such that the bandit receives a reward of+1 if the packet transmission
in the selected mini-slot is successful. Else, a penalty of −1 is assigned.

Fig. 7. MAC slot scheduling in time-asynchronous networks using Multi-arm Bandit learning
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Using this MAB model, all nodes individually learn collision-free transmission
schedules in an independent manner. Figure 7 (Stage 1) shows the learning conver-
gence in a 3-node fully-connected network for a constant data rate λ = 1 packet per
frame per node, and the number of arms f = 4. Packet transmission dynamics by all
nodes are plotted in the figure with node 1’s frame as the frame of reference. Frames of
nodes 2 and 3 lag that of node 1 by 0.4τ and 0.75τ respectively, where τ represents the
packet duration. Note that while there are collisions initially, after learning convergence,
the nodes learn to select collision-free start-transmission mini-slots. Such learning takes
place without network time-synchronization.

Fig. 8. Convergence time variation with K

Since this framework requires each node to perform its own iterative search for
a collision free start-transmission mini-slot independently, short-term collisions and
scheduling deadlocks can occur. This can be mitigated by making frame size f larger
than the absolute needed minimum fmin in the presence of time-synchronization. This
leads to certain amount of bandwidth redundancy and is represented by a factor K,

defined as K = f
fmin

.
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1: Initialize:      // Number of micro-slot that node  has shifted; 
Status of the micro-slot search (1, , , 0) 

2: If (! Tx in the beginning of frame), do: 
3:        Shift to previous micro-slot 
4:
5:        Check Collision 
6: If (Collision TRUE):                                            
7:              Check action in the previous frame ( −1) 
8: If ( ): 
9:                        Shift to next micro-slot 
10:                        Check Collision 
11: If (Collision ==TRUE): 
12:                                 Shift to previous micro-slot 
13: End If
14: Else If ( _  ( )< _  ( −1)): 
15:                         Shift to next micro-slot 
16: End If
17:               Set 
18:               Piggyback 
19:               Check 
20: If (  ( − )) 
21:                    Find new frame size: 
22:
23:                    If ( ): 
24:
25:
26:                        Ignore all collisions 
27: End If
28: Else: 
29:                  Do Nothing 
30:                  Set 
31:                  Piggyback 
32:                  Check the value of , −
33: If  ( − ) 
34:                        Find new frame size: 
35:
36:
37:
38: End If
39: End If

Algorithm. 1. Defragmented Backshift 

This bandwidth redundancy factor plays a significant role in the MAB learning con-
vergence speed. This can be observed from Fig. 8, which shows that for a 20-node mesh
network, learning convergence speeds up with larger K . It is because with increase in
K, the number of feasible solutions of the MAB problem increases and hence the prob-
ability of finding a collision-free transmission strategy increases. Also, the convergence
speed is observed to be high with Hysteretic learning as compared with the classical
MAB update rule [11, 16]. This is achieved by giving less importance to penalties than
rewards in Hysteretic MAB as explained in Section IV.

As observed in Fig. 8, convergence of MAB learning speeds up with increased
bandwidth redundancy factor K . However, increased K leads to an increase in frame
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length which in turn increases bandwidth wastage. This redundancy can be mitigated by
the following slot defragmentation mechanism after the MAB learning converges.

Slot defragmentation is implemented by discretizing each mini-slot within a frame
into ‘s’ micro-slots. After MAB convergence, each node shifts its transmission by one
micro-slot back in time till it experiences a collision. Upon experiencing a collision, the
nodeundoes its previous shift action tofind anew transmissionmicro-slot. In thisway, the
nodes estimate the unused space in the frame and try to reduce it in a coordinatedmanner.
The logic for defragmented backshift executed by each node i is given in Algorithm 1.

This mechanism of defragmentation for a 3-node fully-connected network is shown
in Fig. 4 (Stage 2). It shows how the frame structure (with respect to node 1) evolves over
5 iterations of the defragmentation process for bandwidth redundancy factor K = 1.33
and 7 micro-slots (s = 7). Node 1 does not shift its transmission since it is transmitting
at the beginning of the frame. Nodes 2 and 3 backshift their transmissions by one micro-
slot per iteration. In iteration 2, nodes 1 and 2 experience collision. Hence node 2 undoes
its previous action by shifting by one-micro-slot forward in iteration 3. But node 1 does
nothing in iteration 3 since it experienced a collision without any micro-slot shift in
its previous frame. Similarly, nodes 2 and 3’s packets collide in iteration 4 because of
backshift operation of node 3. Node 3 shifts forward its transmission by one micro-slot
and knows that it has found its suitable transmission micro-slot. In this example, the
new frame size as shown in the figure reduces by 21% because of slot defragmentation.
This bandwidth redundancy left after slot defragmentation is due to the time lag existing
among the nodes resulting from the lack of network synchronization.

Fig. 9. Convergence time variation with K for fully connected networks

Once a node finds a stablemicro-slot, it piggybacks over data packets the information
about the number of micro-slots it has shifted (μ_shift) to find its final stable position.
Thus, a node i knows that its one-hop neighbors have found stable micro-slots. It then
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computes the new frame size by subtracting the maximum of the μ_shift values (i.e.,
received from its neighbors) from its current frame size.

Upon performing slot defragmentation in a 9-node fully-connected topology with
the bandwidth redundancy factor K set at 1.67, the bandwidth redundancy goes down
from 67% to 3.3%. The bandwidth redundancy of 3.3% at the end of defragmentation
is caused primarily by the temporal lags across the frame start times. Similarly, for a
partially connected topology shown in Fig. 9, for K = 2, bandwidth redundancy after
defragmentation reduced from 100% to 7.11%.

Figure 9 depicts the additive time for stage-1 MAB convergence and stage-2 defrag-
mentation convergence. Larger K values speed up MAB convergence while slowing
down the defragmentation process. The latter is because with a larger frame length, the
number of iterations that a node has to backshift its transmissionmicro-slot to find a suit-
able micro-slot increases. Thus, the search space to find the suitable transmit micro-slot
increases with K . As can be seen in Fig. 10, the total convergence duration (MAB and
slot defragmentation) initially goes down with increase in K, reaches a minimum, and
then goes up again. This is because for small K, MAB convergence time is significantly
higher than defragmentation convergence and hence the total convergence is largely
affected by the MAB learning convergence. However, for larger K values, defragmenta-
tion convergence time overpowers MAB convergence time, and thus, total convergence
time increases with K . These results indicate that an optimum value of K exists that
gives the minimum total convergence time of the proposed learning framework.

7 Summary and Conclusions

The concept of network protocol synthesis using RL andMAB is explored in this article.
Here,ReinforcementLearning (RL) andMulti-ArmedBandits (MAB)-based approaches
for wireless network protocol synthesis are summarized and a comprehensive distributed
RL andMAB-based framework is presented that can synthesizeMAC protocols for both
random access and time-slotted systems which can overcome the drawbacks of the exist-
ing approaches. One notable feature of the framework is that it does not rely on complex
hardware features such as collision detection, time synchronization, and carrier sens-
ing, thus making it suitable for ultra-resource constrained sensor and IoT nodes. The
learning-based framework allows nodes to learn in an independent manner to maximize
network throughput and to maintain fair bandwidth distribution, even in heterogeneous
network topologies and loading conditions. It is also shown how the developed mecha-
nism makes the IoT nodes learn transmission scheduling policies to avoid collisions in
a time-slotted system without network time-synchronization. Future work on this topic
includes exploring other access performance parameters of the protocol, such as, end-to-
end delay, energy efficiency etc. and generalizing the framework for protocol synthesis
in networks with or without any resource-constraints.
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Abstract. We present a Distributional Reinforcement Learning (DRL)
empowered downlink power control algorithm for voice over LTE
(VoLTE). We mainly focus on closed-loop power control with small cells
serving an indoor environment. We model the power control problem
using DRL to efficiently manage the uncertainty in the function approx-
imation process used to evaluate the power control decisions. The pro-
posed DRL-based power control algorithm greatly improves the per-
formance w.r.t. Fixed Power Allocation and Deep Q-Networks-based
approaches in terms of voice calls retainability.

Keywords: VoLTE · Distributional Reinforcement Learning · IQN ·
DQN · Artificial Intelligence

1 Introduction

Network parameterization and tuning precede the deployment of cellular base
stations and should be realized continuously as the requirements evolve. There-
fore, the performance and faults-related data are monitored to adapt the param-
eter settings and configuration of the network. These tasks shall take place auto-
matically using intelligent agents to allow radio engineers to reorient their time
towards other network operations and maintenance tasks.

Power Control (PC) is a key tuning and parameterization task that ewer
generations of telecommunication technologies such as 3G and 4G rely on to
cope with network faults/failures and transmission impairments. To this end, two
different modes are available. One is Open Loop Control (OLC), and the other
is Closed Loop Control (CLC). They differ in the use of feedback for adjusting
the transmit power level at the sender to meet operational requirements.
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Power control is exploited to provide applications using the wireless network
infrastructure with resiliency and minimize packet retransmission. The resiliency
is based on the received Signal to Interference plus Noise Ratio (SINR). This is
especially crucial for voice and low latency data transfer applications.

The authors of [2] propose a deep learning-based mechanism for power control
to manage radio resources in wireless communication. First, they use convolu-
tional time-series prediction to predict future SINRs. Then, power allocation is
realized, such as a threshold SINR is maintained to improve total power con-
sumption and energy efficiency. In [6], the authors propose an efficient link adap-
tive power control and allocation (LaPCA) to address the overused transmission
power of the cell. The objective is to balance energy efficiency with maintain-
ing a good QoS level. To realize this objective, they define the portion of cell
transmission power to be proportional to the volume of data flows going to
be transmitted as indicated by the scheduling process. The studied scenario is
modeled as a nonconvex optimization problem.

Two downlink scheduling algorithms using partial information on future
channel conditions are proposed in [10]. The scheduling allows power control
and channel allocation under an average power constraint.

In [8] a reinforcement learning based closed loop power control algorithm for
the downlink of VoLTE for small cells served indoor environment is proposed.
They prove that effective SINR due to neighboring cell failure is sufficient for
VoLTE power control purposes. Two performance metrics, namely: voice retain-
ability and mean opinion score, are used to prove the efficiency of the proposed
approach compared to fixed power allocation. In the same line of research, tuning
cellular network performance to face constantly occurring impairments improves
end users’ network reliability. The authors of [7] formulate cellular network per-
formance tuning using Deep Q-Networks. They propose a closed loop power
control algorithm for downlink voice over LTE (VoLTE) and a Self-Organizing
Network (SON) fault management one. The VoLTE power control is based on
reinforcement learning and adjusts the indoor base station transmit power to
meet a target SINR of user equipment. On the other hand, reinforcement learn-
ing is also used for SON fault management algorithm to enhance the performance
of an outdoor base station cluster.

Femtocells have been proposed to overcome indoor coverage issues and
improve macrocell efficiency. However, using femtocells in conjunction with a
macrocell introduce co-channel interference and decreases the network’s overall
capacity. In [11], a decentralized Q-learning algorithm with custom initialization
for femtocells sharing with macrocell is proposed. The proposed algorithm’s per-
formances are evaluated w.r.t. basic Q-learning algorithm, fixed power allocation,
and received power-based PC-both enhanced performance and convergence.

Small cells for indoor coverage are valuable for communication quality
improvement but produce intra-layer and inter-layer interference management
issues. In [4], Q-learning-based distributed and hybrid power control are inves-
tigated based on the communications environment characteristics. Energy effi-
ciency and user experience satisfaction are used as metrics for a benchmark with
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conventional scheduling methods are compared. Distributed Q-learning performs
better than local optimization, and hybrid Q-learning enhances global perfor-
mance.

Downlink power control is either static or dynamic. In static power control,
the Base Station (BS) transmit power parameters are configured on the basis of
cell reference power to meet coverage requirements. Whereas in dynamic power
control, feedback from the User Equipment (UE) is used to adaptively adjust
the BS transmit power.

In this paper, we propose to use Distributional Reinforcement Learning
(DRL) as a framework for online tuning of cellular networks when used for
voice applications in an indoor cellular network. We use the effective SINR as
an input to our proposed indoor power control module to optimize the received
power at UEs, as illustrated in Fig. 1. We use a distributional reinforcement
learning approach to implement the indoor power control module and test its
performance w.r.t. fixed power allocation and standard reinforcement learning
used in [8] and prove that it enhances hey performance metrics.

The paper is organized as follows: The studied system model is presented in
Sect. 2. We present a primer on Distributional Reinforcement Learning in Sect. 3.
Then, the proposed power control algorithm and the adopted performance metric
are discussed in Sect. 4. Finally, we show our results and conclusions in Sects. 5
and 6.

2 System Model

The studied system is inspired by [8] and comprises a radio environment where
VoLTE capable UEs are served by a base station. The UEs are subject to inter-
cell interference from adjacent cells. The second component of the system, is an
agent using distributional reinforcement learning to perform closed loop power
control to improve effective downlink SINR measured at the receiver.

Orthogonal Frequency-Division Multiplexing (OFDM) technology is used in
the studied indoor cellular cluster. The cluster is formed by one cell containing a
serving base station and adjacent cells with low-power nodes such as pico, femto,
and relay nodes. Each cell is modeled as a square of length L.

Let us denote by NUE , the number of UEs. Then, the received signal yt
i at

time t for an additive white Gaussian noise channel is:

yt
i = ht

is
t
i + nt, i = 1, 2, . . . NUE (1)

We suppose that the signal do not suffer frequency selective fading i.e., ht
i is a

single-tap channel coefficient, and nt is a Gaussian noise with mean 0 and vari-
ance σ2 (i.e., nt ∼ Norm(0, σ2). Also, UEs are distributed within cells according
to a homogeneous Poisson Point Process (PPP) [1] with intensity λ. The state
of the cellular cluster could be either normal or faulty. The different faults are
summarized in Table 1.

Without loss of generality, we assume that the indoor cluster contains NBS

base stations positioned at the origins of the cells. Base station 1 is the serving
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Table 1. Network actions

Action ν Definition

0 Cluster is normal.

1 Feeder fault alarm (3 dB loss of signal).

2 Neighboring cell down.

3 VSWR out of range alarm.

4 Feeder fault alarm cleared.

5 Neighboring cell up again.

6 VSWR back in range

one, and k1≤j≤NBS
is the proportion of users from the adjacent cells j whose

signals are transmitted on the same Physical Ressource Block (PRB) as the i-th
UE at Transmission Time Interval (TTI) t. The downlink SINR for the UE i at
TTI t is given by:

γt
i �

P t
UE,i

σ2 +
∑NBS

j=2 kjP t
UE,j

. (2)

where P t
UE,i is the received power for the allocated PRBs.

Our objective is to optimize the effective downlink received SINR for users
in the serving cell at a given TTI t, γ̄t expressed as follows

γ̄t � 10 log

(
1

NUE

NUE∑

i=1

γt
i

)

(dB) (3)

To achieve this objective, the proposed downlink power control module keeps
the downlink SINR at the receiver at γ̄target when the faults captured in ϕt

fault

occur. The PC module operates using a power control command ct and a repe-
tition factor ηt. The optimal values of these two parameters are learned using a
distributional reinforcement learning algorithm as illustrated in Fig. 1.

Fig. 1. Downlink power control module.

3 Distributional Reinforcement Learning Primer

We propose using a distributional reinforcement learning-based framework to
formulate the VoLTE closed loop PC problem. In this framework, the agent’s
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objective is to maintain SINR at a target effective SINR γ̄target when network
faults happen. To this end, at time t the environment (cluster) is in state s ∈ S,
the agent takes action a ∈ A. As a result, the state of the cluster changes to s

′

and the agent obtains a reward rs,a as illustrated in Fig. 2.

Fig. 2. Reinforcement learning elements.

The set of actions A = {0, 1, . . . , 4} with the associated power command c
and repetition factor η are shown in Table 2.

Table 2. Power Control Agent Actions

Action a PC action command (c) Repetition factor (η)

0 0 0

1 −1 3

2 −1 1

3 +1 1

4 +1 3

The cluster’s set of states S = {0, 1, 2} indicates how the BS’s transmit power
reacts to the action command C. The states are described as follows:

– State 0: Unchanged transmission power.
– State 1: Increased transmission power.
– State 2: Decreased transmission power.

Let Δγ̄t � γ̄t − γ̄t−1, we define the reward function rt
s,a at time t as follows:

rt
s,a �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rmin, γ̄t = γ̄target not feasible or t � τ

−1, Δγ̄t < 0
0, Δγ̄t = 0
1, Δγ̄t > 0
rmax, γ̄t = γ̄target

(4)

The optimal policy is learned through a proxy mapping that associates to
each state-action pair, a real value indicating how good (respectively, bad) is
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choosing action a at state s in terms of expected return. Thus mapping denoted
Q(s, a) is the Q-function. To derive the action-state value function Q(s, a) for all
possible state/action pairs, Tabular Q-Learning [12] is used. For problems with
large or continuous state/action spaces, the tabular approach fails due to the
curse of dimension. Thus, reinforcement learning approaches offer valuable help
in learning approximate action state value functions.

Model-free reinforcement learning algorithms can be classified into Policy
Optimization, Q-Learning, and hybrid. Q-Learning-based algorithms use expe-
rience collected by an agent through its interaction with the environment. The
policy mapping action to a state is learned through the maximization of the Q-
function Q(s, a) (i.e., state-action value function). The latter indicates the good-
ness of a state-action pair. This contrasts with on-policy reinforcement learning
algorithms, where a policy is updated via data collected by itself. It estimates
the return for state-action pairs assuming the current policy continues to be
followed.

Standard reinforcement learning algorithms, like Deep Q-Networks [5]
(DQN), optimize the expected total returns. However, averaging over random-
ness to estimate the value has many limitations. One of the major drawbacks is
that compressing a probability distribution to its first moment (i.e., expectation)
necessarily leads to information losses.

In distributional reinforcement learning [9] the probability distribution of
returns is learned instead of simply focusing on its expected value. This signifi-
cantly improves the agent’s performance and allows it to deal with the random-
ness of the environment more efficiently.

Q(s, a) = E [R(s, a) + γQ(s′, a′)] (5)

The Bellman equation (5) states that Q(s, a) the action-value of a state s
when action a is chosen and the new state is s′ is the sum of the immediate
reward plus the discounted sum of future action values.

Z(s, a) D= R(s, a) + γZ(s′, a′) (6)

Equation (6) is called the distributional Bellman equation. probability distri-
bution of returns Z is characterized by the interaction of three random variables:
the reward R, the next state-action (s, a′), and its random return Z(s′, a′). Note
that the operator D= stands for the equality between probability distributions.

Implicit Quantile Networks (IQN) [3] was proposed as a distributional rein-
forcement learning algorithm. It uses quantile regression to approximate the full
quantile function for the state-action return distribution. Also, it provides a large
class of risk-sensitive policies. IQN provides an effective way to learn an implicit
representation of the return distribution by reparameterizing a distribution over
the sample space.
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To solve the downlink PC problem, we consider an PC agent that chooses
a sequence PC commands c (i.e., actions) to face impairments ν ∈ N at each
time slot t. Unlike Fixed Power Allocation (FPA), the optimal PC commands
are learned through IQN. As a result , the effective downlink received SINR γ̄t

is either increased or decreased by a finite quantity Δγ̄t.

4 Power Control Algorithms and Performance Metrics

We will be using fixed power allocation as a baseline to benchmark reinforce-
ment learning-based PC frameworks (i.e., standard and distributional). FPA is
an open-loop PC algorithm that serves as a baseline for comparison. FPA is an
open-loop power allocation mechanism that distributes the transmit power PTX

equally over all NPRB available PRBs while respecting the cell’s maximum trans-
mission power Pmax

BS . The base station transmit power is expressed as follows:

P t
TX � Pmax

BS − 10 log NPRB (dBm) (7)

When a closed loop PC is used, the base station adjusts its transmit power
according to the UEs feedback (i.e., effective downlink received SINR γ̄t) at time
slot t. The adjustment is simply increasing (respectively, decreasing) the current
transmit power P t−1

TX using a PC command ct repeated ηt times.

P t
TX = min

(
Pmax
BS , P t−1

TX + ηtct
)

(dBm)

In episodic reinforcement learning, an agent interacts with an environment in
episodes of finite duration. For the PC problem for voice bearers, An episode is
a period of time in which an interaction between the agent and the environment
takes place. In our case, this period of time is τ = 20 TTIs is the AMR frame
duration.

To assess the performance of our proposed Distributional PC agent, We will
benchmark it with respect to other approaches using the call retainability metric.
Retainability is a function of the effective downlink SINR threshold γ̄min and is
computed during the final episode, where the agent has learned the optimal
policy:

Retainability �
τ − ∑τ

t=0 1(γ̄t≤γ̄min)

τ
. (8)

where 1(.) is the indicator function.

5 Simulation Results

We implemented IQN and DQN algorithms using the hyper-parameters summa-
rized in Table 3. We give all faults an equally likely chance of occurrence. Thus
the network performs reliably for 45% of the time. The initial effective downlink
SINR γ̄0 is 4 dB and the desired target effective SINR γ̄target is 6 dB.
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Fig. 3. Neural Networks Architectures.

To learn the optimal Q-function DQN uses the Q-network depicted in Fig. 3b.
The network comprises a sequence of three Fully connected layers followed by
ReLu activation functions. IQN uses a similar architecture with fewer neurons
for its linear layers. As Fig. 3 shows DQN uses 6, 4 folds the number of neurons
that IQN requires. Nevertheless, IQN exhibits higher performance as illustrated
by the conducted simulations.

Table 3. Reinforcement Learning algorithms Hyper-parameters

Parameter Value

Number of episodes Γ 707

One episode duration τ (ms) 20

Discount factor ψ 0.980

Learning rate α 0.001

The optimal Q (5) and Z (6) functions are learned after Γ episodes. At this
stage, the closed loop PC for both IQN and DQN performs better than FPA.
Figure 4 depicts the power command sequence for the episodes z = 462 for IQN
and z = 606 for DQN.

Figure 4 illustrates the power control sequence for the proposed solution
and the baselines (DQN and FPA, respectively). Unlike fixed power allocation
(FPA), both IQN and DQN-based closed loop power control sent several PCs
per transmit time interval (TTI) for the entire VoLTE frame. Also, we notice
that the same optimal sequence of PCs is learned by the two algorithms except
for TTIs 16 and 17. Nevertheless, IQN achieves higher retainability.
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Fig. 4. Power control (PC) sequence during the final episode Γ.

The retainability score benchmark is shown in Table 4. Retainability improves
when using adaptive power control as a consequence of maintaining the effective
downlink SINR closer to the target one as required by the formula (8). Our
proposed IQN-based PC solution enhances the retainability score and manages
to outperform the FPA and DQN-based solutions.

Table 4. Retainability for FPA, DQN, and IQN (Proposed).

FPA DQN IQN (Proposed)

55.00% 87.19% 92.22%

As illustrated in Fig. 5, both DQN and IQN closed-loop PC reaches the target
SINR using an optimal learned sequence of PCs. We also notice that the two
algorithms maintain the effective SINR at the same level for each TTI until
reaching the target SINR at TTI 16.

Fig. 5. Downlink SINR improvement vs. simulation time for IQN/DQN closed loop
power control and fixed power allocation (FPA)
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The proposed algorithm, both for IQN and DQN, reaches the target SINR,
while FPA does not. It is noteworthy to mention that while both algorithms (IQN
and DQN) reach the target SINR, our proposed IQN-based algorithm performs
better than DQN in terms of retainability.

6 Conclusion

We introduced downlink closed-loop power control using distributional reinforce-
ment learning, which improved VoLTE performance in a realistic indoor environ-
ment compared to the open-loop fixed power allocation power control and Deep
Q-Networks-based solution. The quality of experience was improved, as illus-
trated by the voice call retainability metric. Indeed, the distributional-based PC
allows maintaining the effective SINR closer to the target downlink SINR and
consequently prevents a voice call from dropping.
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University of Québec, Montréal, QC, Canada
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Abstract. A wireless sensor network (WSN) consists of a large number of
sensor nodes with limited battery lives that are dispersed geographically
to monitor events and gather information from a geographical area. On the
other hand, tactical WSNs are mission-critical WSNs that are used to sup-
port military operations, such as intrusion detection, battlefield surveil-
lance, and combat monitoring. Such networks are critical to the collection
of situational data on a battlefield for timely decision-making. Due to their
application area, tactical WSNs have unique challenges, not seen in com-
mercial WSNs, such as being targets for adversarial attacks. These chal-
lenges make packet routing in tactical WSNs a daunting task. In this arti-
cle, we propose a multi-agent Q-learning-based routing scheme for a tacti-
cal WSN consisting of static sensors and a mobile sink. Using the proposed
routing scheme, a learning agent (i.e., network node) adjusts its routing
policy according to the estimates of the Q-values of the available routes via
its neighbors. The Q-values capture the quickness, reliability, and energy
efficiency of the routes as a function of the number of hops to sink, the
one-hop delay, the energy cost of transmission, and the packet loss rate
of the neighbors. Simulation results demonstrate that, in comparison to a
baseline random hop selection scheme, the proposed scheme reduces the
packet loss rate and mean hop delay, and enhances energy efficiency in the
presence of jamming attacks.

Keywords: Routing · Wireless sensor networks · Tactical wireless
networks · Reinforcement learning · Jamming

1 Introduction

Tactical WSNs are specifically designed for military operations, including surveil-
lance and reconnaissance [1]. For instance, a tactical WSN is usually deployed
in a remote area to track the location of troops, monitor deployed systems, and
trigger alerts at a command-and-control (C&C) site when certain events occur.
The tactical WSN’s gateway, or sink, is the bridge between the tactical WSN and
the C&C site and serves as the destination for a sensor node’s packets. Routing
in WSNs refers to the process of finding a path to send packets from a source
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Sabir et al. (Eds.): UNet 2022, LNCS 13853, pp. 211–224, 2023.
https://doi.org/10.1007/978-3-031-29419-8_16
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node to the destination node, which can be based on the number of hops to sink.
Moreover, in network routing, hop count represents the number of intermediary
devices, a packet must traverse from a device in the network to the destination
node, e.g. a sink.

Tactical WSNs must operate for long periods of time and have adequate
network coverage. Besides, a tactical WSN is normally deployed in hostile envi-
ronments and is a target for adversarial attacks, such as jamming. In addition,
packet routing in tactical WSNs is constrained by bandwidth and energy limita-
tions of the sensor nodes. Therefore, to prolong the network’s lifetime, routing in
tactical WSNs should take into account the residual energy of the nodes [2]. In
this context, the energy cost of transmitting packets should be minimized taking
into account the distance between sensor nodes. Furthermore, the reliability of
routes in tactical WSNs is affected by inconspicuous adversarial attacks such as
jamming. Under these attacks, data transmission between the affected network
nodes may not be possible. Hence, an efficient routing protocol for tactical WSNs
should take into consideration the reliability of paths when forwarding packets to
minimize packet loss, frequent retransmissions, and the associated energy cost.

Due to the many-to-one communication nature of WSNs, sensor nodes that
are close to a static sink may experience faster energy depletion [3,4]. To avoid
this situtation and maintain adequate coverage, a tactical WSN may employ an
unmmaned ground vehicle (UGV) moving along the periphery of the network as a
mobile sink. For tactical WSNs with a mobile sink, the hop count from a device to
the sink varies according to the sink’s position. Consequently, there is uncertainty
regarding the optimal path for data routing due to the varying position of the
sink. The dynamic nature of a mobile sink-based tactical WSN creates the need
for an adaptive routing policy that finds reliable and energy efficient routes in
the presence of changing network conditions (i.e., links’ reliability, links’ delays,
expected number of hops to sink, and energy levels of nodes).

Reinforcement learning (RL) is a class of machine learning (ML) algorithms
in which an agent learns to maximize its long-term reward from the actions
taken in an environment. In particular, RL allows an agent to observe actions
and their rewards to determine its next action [5]. Through trial-and-error, the
agent learns from the system responses to previous actions to arrive at an optimal
decision policy that optimizes the target reward of the agent. Q-learning is an
RL algorithm that does not require a model of the environment and enables the
network nodes to adjust their routing strategies, according to the reinforcement
rewards (i.e., Q-values), to better adapt to the dynamic network conditions.
Hence, it was proposed as a promising routing technique for tactical WSNs [6].
The Q-value can be used as a measure of the usefulness of a routing action,
based on the obtained reward signals.

In this paper, we leverage multi-agent Q-learning to design an intelligent
routing protocol in which the next-hop selection is influenced by the delay and
reliability of a route as well as the energy cost of packet transmission via the
route. The neighboring agents (nodes) share knowledge about their locations,
residual energies, hop counts to sink, packet loss rates, and one-hop delays of



Reinforcement Learning Aided Routing in Tactical Wireless Sensor Networks 213

received packets. This allows the learning agents to learn an adaptive routing
policy using the Q-values of their neighboring nodes.

2 Related Works

In this section, we present related studies on routing in mobile-sink-based WSNs
in addition to RL-enabled routing techniques in traditional WSNs. Afterwards,
we discuss the related works on routing in tactical WSNs. We conclude this
section by highlighting our main contributions.

2.1 Traditional WSNs

The authors in [7] employed two mobile sinks to distribute the energy con-
sumption throughout the WSN and balance the network load. Additionally,
they arranged the network into cells and utilized the mobile sinks to gather
the data sensed by the nodes in these cells. Each cell is categorized as a single-
hop or a multi-hop cell, where the single-hop cells are one hop away from the
anchor points of the sink, and the multi-hop cells are more than one hop away.
Their proposed mobile-sink-based routing technique ensures that each half of
the network is covered by a sink, by controlling the mobility pattern of the
sinks. Similarly, the authors in [8] developed an energy-efficient routing scheme
that combines clustering and a mobile sink moving over a predefined trajectory.
Firstly, they divided the network area into clusters, where a cluster head (CH)
is selected based on its residual energy and the distance between the CH and a
source node. Afterwards, the members of a cluster select the routing path with
minimal energy consumption for data transmission to their corresponding CHs.
Furthermore, intercluster communication is enabled by a greedy algorithm, in
which the closest CH to the sink is selected as the leader to communicate with
the sink.

An integrated location service and routing (ILSR) scheme was proposed in
[9] to address the issues of geographic routing to a mobile sink in static WSNs.
Since geographic routing requires knowledge of the location of the destination,
there is a need to update and search for the location of the sink. ILSR updates
the sink’s location to neighboring sensors and sends location update messages to
a selected subset of nodes. On the other hand, the authors in [10] developed a
green routing protocol that minimizes the energy overhead of updating the sink’s
location and reduces the data delivery delay using an angle-based approach to
routing. The proposed routing scheme creates multiple rings in the sensor field
and limits the mobile sink location updates to the nodes belonging to the rings.
In a related article [11], the authors proposed a hierarchical routing scheme, in
which a virtual ring structure is established to deliver sink position updates to
sensor nodes from the ring with minimal overhead. In addition, anchor nodes are
selected along the sink path to relay sensor data from the normal sensor nodes
to the sink. Moreover, in [12], a virtual grid based hierarchical routing approach
was proposed for a mobile-sink-based WSN considering the delay requirements
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of applications. In this scheme, the data is routed from source nodes to sub sinks
and from sub sinks to the mobile sink. A sub sink collects sensed data from its
assigned grid and is visited by the mobile sink within a given time period. On
the other hand, the unvisited candidate sub sinks send their aggregated sensed
data to their nearest sub sinks via the available shortest routing paths. In this
scheme, the path to the mobile sink is chosen based on the hop counts and
data generation rates of the sensor nodes in order to meet the requirements of
delay-bound applications.

Aiming to optimize the network’s lifetime, the authors in [13] proposed a
Q-learning algorithm where the next-hop selection strategy is based on the link
distance between nodes, nodes’ residual energies, and the hop count to the sink.
In [14], the authors proposed a Q-learning-based energy-aware routing scheme
for WSNs involving data aggregation, in which optimal routing paths are selected
with regard to the degree of data aggregation of neighboring nodes. Moreover,
distributed RL was applied in [15] to optimize the lifetime and energy consump-
tion of WSNs, considering the distance between nodes, available energy, and hop
count to the sink. In addition, the authors in [16] presented a RL-based routing
protocol to reduce the length of routes and to improve energy consumption in
clustered WSNs involving sleep scheduling and controlled data transmissions.
Their protocol factored the residual energies of the neighboring nodes, their hop
counts to sink, and the distance between the current node and its neighboring
nodes into the optimal path selection problem. On the other hand, the authors
in [17] implemented a centralized routing protocol in a software-defined WSN,
where the sink, acting as the SDN controller, learns the routing table that min-
imizes the sensor nodes’ energy consumption by leveraging RL.

2.2 Tactical WSNs

Due to its critical role, the sink node is a prime target for attackers seeking to
destabilize the tactical WSN. To mitigate the vulnerability of the sink node in
tactical WSNs, the authors in [18] proposed a technique based on the modified
lightweight ad hoc on-demand next-generation reactive routing protocol. They
aimed to achieve sink node anonymity, without adding much system complexity
by having at least one of the nodes act as the sink node. Moreover, in [1],
an energy-efficient routing algorithm with zone clustering, where the nodes are
partitioned into specific zones while ensuring the availability of a nearby CH, was
presented. The proposed zone routing algorithm tactically controls the network
topology to increase the service life of the nodes. This enhances the collection of
situational data, which is crucial to tactical decision-making. On the other hand,
a shadow zone delay-aware routing (SZODAR) scheme for tactical undersea
acoustic sensor networks was proposed in [19]. A shadow zone is an area in a
wireless underwater sensor network (WUSN) where the signals from a source
cannot be received as a result of refraction. The proposed SZODAR scheme
finds reliable routes around shadow zones in WUSNs by changing the depth of
acoustic sensors to avoid the shadow zones of neighboring nodes.
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The preceding proposals for routing in tactical WSNs aimed at either attack-
resilience [18], energy-efficiency [1], or reliability [19]. Although the previous
RL-based studies have some relation to our work, they either did not consider
the reliability of the routes in their learning frameworks or only considered a
static-sink-based WSN. Unlike these past studies, we address energy-efficient
and reliable routing in tactical WSNs at the same time. In addition, we take
into account the delay of the routes and leverage multi-agent Q-learning to solve
the next-hop selection problem in a mobile-sink-based tactical WSN. By sharing
information about their packet loss rates, the nodes select neighbors with more
reliable forwarding links. Moreover, we demonstrate, via simulations, the ability
of our proposed routing scheme to withstand selective jamming attacks in a time
division multiple access (TDMA)-based tactical WSN.

Fig. 1. System model of the tactical wireless sensor network with a mobile sink.

3 System Model

We consider a tactical WSN consisting of sensors and a mobile sink. This network
can be represented as a graph G = (V,E), where each node is a vertex vi ∈ V
and each edge eij ∈ E is a bidirectional wireless communication channel between
a pair of nodes vi and vj . We analyze a single source node v0 ∈ V and the mobile
sink node D as the destination node. The task is to find the optimal path to
send data packets to the sink. Figure 1 depicts the architecture of the tactical
wireless sensor network.

We assume the sensor nodes can determine their geographic location using
global positioning system (i.e., GPS) and share it periodically using HELLO
packets. When the mobile sink changes its position, it broadcasts HELLO packets
for neighbor discovery to establish and confirm network adjacency. The transmis-
sion range of the sensor nodes is denoted by L. The mobile sink moves around
the periphery of the sensor network to gather sensory data. We consider the
mobile sink node as a UGV that moves between some pre-defined waypoints
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to execute the mission. Moreover, the nodes use point-to-point communication
links to send sensory data to the sinks, via multi-hop routing [20].

Each node in the network is allocated a fixed time slot based on the time
division multiple access (TDMA) protocol [21]. In our tactical WSN model with
|V | nodes, the TDMA frame is assumed to have |V | time slots, and each node is
assigned a unique slot. Thus, there are no collisions during transmissions. How-
ever, a selective jammer can monitor the communication of a potential victim
node and detect its receiving time slot, aiming to jam the slot while minimizing
the likelihood of being detected, and conserving as much energy as possible. Let
1/λ denote the time during which the jammer is in the ON state (transmits a
jamming signal) and 1/μ denote the OFF state (sleeping) time duration, where
μ and λ are the jammer’s wake-up and switch off rates, respectively [22].

3.1 Energy Model

An energy model is required to determine the amount of energy a sensor node
consumes while transmitting or receiving a certain amount of information. In
this study, we adopt the first-order radio model [13], a generally accepted energy
model for WSNs that assigns an energy cost-per-bit to collect, transmit, and
receive information. The model estimates the energy expended to send and
receive a K-bit packet over a distance d for both direct-path and multi-path
propagation.

According to the first-order radio model, the energy expended to transmit a
K-bit packet via direct path propagation is given by

ETX(K, d) = EelecK + εfsKd2, (1)

where Eelec denotes the energy consumed by the transmitter or receiver circuitry
to transmit or receive a unit of data, εfs is a constant corresponding to the
energy consumed by the transmitter amplifier to transmit a unit of data over a
unit distance. For multi-path propagation, the energy expended to transmit a
K-bit packet is given by

ETX(K, d) = EelecK + εmpKd4, (2)

where εmp is a constant relating to the energy consumed by the transmitter
amplifier to transmit a unit of data over a unit distance. Irrespective of the
nature of the propagation, the energy expended to receive a message of K bits
is given by

ERX(K) = EelecK (3)

3.2 RL-Based Routing Technique

In this section, we propose a Q-learning-aided routing scheme for tactical WSNs.
In the proposed RL framework, the Q-value is an estimation of the goodness of a
route, considering the expected number of hops to the mobile sink, the one-hop
delay, the energy cost of transmission, and the packet loss rate of the next hop.
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3.3 Reward Function

Considering the scenario where sensory data packets are sent from a given source
node toward the destination node (i.e., mobile sink) via multi-hop communica-
tion, the tactical WSN is viewed as an environment and each node in the network
represents an agent. Let Hj be the number of hops from the neighbor node nj to
the mobile sink D. We denote the set of candidate nodes to forward a packet at
node i as Fi. The forwarding set Fi is the set of neighbors of node i whose hop-
count to the sink is lower than that of node i (Hj < Hi). The reward obtained
by a node from the environment, after taking a routing action ai, is estimated
by

R(ai = nj) =

⎧
⎨

⎩

(1 − P l
jn)Rack − β

ETx
ij

Ei
, if ACK is received

−β
ETx

ij

Ei
, otherwise

(4)

where ETx
ij is the energy cost of packet transmission (in joules) from node i to

its neighbor node j, and Ei is the residual energy of node i. Moreover, β is a
weighting coefficient (i.e., a higher value for β puts more weight on the energy
cost), P l

jn is the average packet loss rate of the links between node j and its
neighbors (excluding node i), and Rack is given by

Rack =
1

Cij + E[Hj,D]
, (5)

where Rack is a measure of the route’s quickness, E[Hj,D] is the expected number
of hops from neighbor node nj ∈ Fi to the sink D, and Ci,j is the normalized
one-hop delay cost of the link between node i and its neighbor node j:

Ci,j =
ti,j − ti,min

ti,max − ti,min
(6)

where ti,j is the estimated one-hop delay from node i to node j. The one-hop
delay includes the waiting time for the data packet to reach the head of the trans-
mission queue at node j and the time needed by the medium access protocol to
deliver the packet to node j. ti,min and ti,max are the minimum and maximum
one-hop delays experienced by node i, respectively. When a node successfully
transmits a data packet to a neighbor, it receives an ACK packet containing
information about the neighbor’s residual energy, the one-hop delay, the num-
ber of hops from the neighbor to the sink, and the average packet loss rate of
the neighbor’s forwarding links. The node uses this information to estimate the
rewards obtained from routing actions and to update the Q-values of its neigh-
boring nodes in the neighbor table. Table 1 is a sample neighbor table of a node
vi with neighbors s1, s2, and s3.

3.4 Learning Framework

In the proposed RL framework, a learning agent learns from its routing actions to
find the most reliable, quickest, and most energy-efficient paths. Thus, the reward
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Table 1. An example of a neighbor table for node vi

vi s1 s2 s3

Location coordinates (10, 3) (15, 8) (20, 10)

Residual energy (joules) 0.4 0.45 0.38

Average packet loss rate 0.02 0.015 0.017

Normalized hop delay 0.13 0.19 0.14

Expected hop count to sink 5 3 4

Q-value 0.9 0.6 0.8

of a routing action is a combination of the speed, reliability, and energy cost of data
packet forwarding. At the initial stage of Q-learning, the agent only has knowledge
of the location of its neighboring nodes and the number of hops separating them
from the sink. Hence, prior to learning, the Q-values are initialized according to
Eq. 7:

Q0
i (nj) =

1
1 + H0

j,D

(7)

where Q0
i (nj) is the initial Q-value of neighbor nj and H0

j,D is the initial number
of hops from neighbor nj to the sink advertised during the network initialization
phase. Subsequently, the Q-value of neighbor nj is updated according to Eq. 8:

Qnew(nj) = Qold(nj) + αij (R(nj) + E [Qj(s′, a′)] − Qold(nj)) (8)

where Qold(nj) is the previous Q-value of neighbor nj , E [Qj(s′, a′)] is the
expected action-value of the next hop nj , and R(nj) is the reward obtained
by node vi for routing action nj . In other words, after choosing the neighbor nj

as the next hop, node i receives a reward and updates the Q-value of nj in the
neighbor table. αij is the learning rate at which the Q-value of the neighbor nj

is updated.

3.5 Next-Hop Selection

The Q-value captures the benefits (quickness and reliability) and penalties
(energy cost) of using a particular route. Thus, based on the Q-values of its
neighbors, node i computes a potential next-hop as

nq∗
j = argmaxnj

Q(nj) (9)

However, selecting the route with the highest Q-value may result in a sub-
optimal solution since other routes may yield better rewards as network con-
ditions change. Hence, a good routing policy strikes a balance between the
exploitation of best routes and the exploration of the available routes. Secondly,
selecting the neighbor with the highest Q-value may cause it to die out faster
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Algorithm 1: ERG Next-Hop Selection
Input: Q-values Q; Energy values Eres; epsilon ε; rho ρ
Result: Selected next-hop;
Function SELECT-NEXT-HOP (Q, Eres, ε, ρ) is
k ← uniform random number between 0 and 1
if k < ε then

nH
j ← random neighbor nj ;

else
k ← uniform random number between 0 and (1-ε)
if k < ρ then

nH
j ← argmaxnj Eres(n

H
j = nj);

else
nH
j ← argmaxnj Q(nH

j = nj);
end

end

due to the energy consumed to receive and transmit packets. Using the residual
energy values of its neighbors, node i may compute a potential next-hop as

ne∗
j = argmaxnj

Eres(nj) (10)

where Eres(nj) is the residual energy of node j.
In the search for optimal routes, we build on the ε-greedy exploration strat-

egy, which chooses an exploratory action with probability ε and a greedy action
with probability 1-ε [23]. We propose an ε-ρ-greedy exploration strategy to
accommodate the exploration of routes based on the neighbors’ residual energy
values. Accordingly, the next-hop selection is given by

nH
j =

⎧
⎪⎨

⎪⎩

nq∗
j with probability 1 − (1 − ε)ρ − ε

ne∗
j with probability (1 − ε)ρ

∀nj with probability ε

(11)

where ∀nj denotes any neighbor in the forwarding set |Fi| and ρ is a probability
measure which influences the selection of a neighbor based on the residual energy
values. Following the ε-ρ-greedy exploration strategy, the probability of selecting
the neighbor with the highest Q-value is given by:

P (nH
j = nq∗

j ) = 1 − (1 − ε)ρ − ε

(

1 − 1
|Fi|

)

(12)

where |Fi| is the number of neighbors of node i in its forwarding set Fi. Similarly,
the probability of selecting the neighbor with the highest residual energy is given
by:

P (nH
j = ne∗

j ) = (1 − ε)ρ +
ε

|Fi| (13)

Algorithm 1 describes the epsilon-rho-greedy (ERG) next-hop selection pro-
cedure for node i.
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Table 2. Simulation Parameters

Parameter Value

Transmit and receive energy constant Eelec 50 nJ/bit [1]

Transmit amplifier, multi-path propagation εmp 0.0013 pJ/bit/m4 [1]

Data packet size K 2000 bits [1]

Area dimensions 250× 250 m2

Number of nodes 150

Nodes’ transmission range L 50 m [24]

Maximal velocity of mobile sink vmax 20 ms−1 [25]

Learning rate αij 0.9

Exploration rate ε 0.075

Probability measure ρ 0.15

Weighting coefficient β 140

Jamming radius Jr 50 m

Jamming switch off rate λ 0.2 s−1

Packets generation rate 2 packets/s

Number of iterations 1000

Number of packets per iteration 100

3.6 Performance Evaluation

Simulation Scenario. The sensor nodes are uniformly distributed in an area of
size 250 × 250 m2, such that each node’s x and y coordinate is a random variable
between 0 and 250 m. Each node has an initial residual energy of 0.5 joules. The
energy they consume to transmit and receive packets is obtained from the first
order radio energy model [13], where the model’s parameters are given in Table 2.
The location coordinates of the sink node are ((250+δx), Y ), where δx is a small
distance (i.e., 10 m) and the value of Y is uniformly distributed over the interval
[0, 250] m. The sink node pauses for a time T = 5 s, then moves at a uniform
random velocity between 0 and vmax, where vmax is the maximal velocity. For
each iteration, a source node is randomly selected from the area, and the location
coordinates of the selective jammer are uniformly distributed between 0 and
250 m. In the active state, the jammer randomly selects a receiving node within
its radius Jr = 50 m to jam its transmission slot. Moreover, the links’ delays
are uniformly distributed in [0.005, 0.25] s. Following extensive simulations, the
optimal parameters for ε, ρ, β, and αij were obtained as 0.075, 0.15, 140, and 0.9,
respectively. We compare our proposed ERG next-hop selection scheme against
a random selection scheme as a benchmark. The considered benchmark scheme
randomly chooses the next-hop from a node’s forwarding set Fi.

Results and Discussion. Packet Loss Rate: Figure 2 shows the average packet
loss results for the ERG and random next-hop selection schemes. The results
indicate that ERG can overcome jamming and maintain a relatively low packet
loss rate. The ERG scheme penalizes a routing decision that does not yield an
ACK due to the signal jamming of the receiver’s time slot. Hence, ERG tends to
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Fig. 2. Average packet loss rate versus the wake-up rate of selective jammer μ for ERG
and random next-hop selection.

Fig. 3. Energy efficiency versus the wake-up rate of selective jammer μ for ERG and
random next-hop selection.

select hops with a higher chance of transmission success. Since all the neighbors
of the current node may not be in the jamming area, ERG routes packets to
the nodes outside the jamming area, considering their Q-values. In other words,
ERG selects the more reliable links for packet forwarding. Meanwhile, random
selection does not take the reliability of routes into account in the next-hop
selection. Consequently, it is unable to respond to a jamming attack, resulting
in a higher packet loss rate.
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Fig. 4. Mean hop delay versus the wake-up rate of selective jammer μ for ERG and
random next-hop selection.

Energy efficiency : The energy efficiency performance of the schemes are given
in Fig. 3. The energy efficiency is the ratio of the number of packets delivered to
the total energy consumed:

Energy efficiency =
Σ packetsuccess

Σ energy consumed
(14)

Due to its ability to find relatively reliable routes for packet forwarding, ERG
has a higher packet delivery rate. In addition, ERG selects a candidate next-hop,
taking into consideration the energy cost of packet transmissions. As a result, the
ERG next-hop selection strategy encourages the routing of packets via the closest
and most reliable neighbors. The combined effect of these factors produces a
better energy efficiency performance, compared to the random selection strategy.
Even though the random selection approach may balance the energy levels of
neighboring nodes, it wastes energy by sending packets through unreliable paths
subjected to signal jamming.

Hop delay : Figure 4 shows the average hop delay performance for the ERG and
random next-hop selection schemes. The results indicate that ERG maintains a
relatively low average hop delay, since it learns from the hop delays of previous
routing actions, which affect the Q-values of the routes. Hence, ERG tends to
send packets through the routes with lower delays. On the other hand, random
selection does not take the hop delays of routes into account in the next-hop
selection. Consequently, it is unable to overcome the impact of jamming attacks
on packet delays, leading to higher average hop delays for routing actions.
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4 Conclusion

In this paper, we presented a multi-agent Q-learning-based routing scheme for
tactical WSNs in which knowledge, such as the nodes’ residual energy, packet
loss rates, and the number of hops to the sink, is shared among neighboring
nodes. We evaluated the performance of the proposed scheme considering selec-
tive jamming attacks in a TDMA-based tactical WSN. Simulation results show
that the proposed ERG next-hop selection strategy can adapt to the jamming
rate and maintains a low packet loss rate and a low mean hop delay by selecting
hops with a high chance of transmission success, and a high energy efficiency by
routing packets via the closest and most reliable neighbors.

References

1. Thulasiraman, P., White, K.A.: Topology control of tactical wireless sensor net-
works using energy efficient zone routing. Digit. Commun. Netw. 2(1), 1–14 (2016)

2. Mutombo, V.K., Lee, S., Lee, J., Hong, J.: EER-RL: energy-efficient routing based
on reinforcement learning. Mob. Inf. Syst. 2021, 1–12 (2021)

3. Ghosh, N., Banerjee, I.: Application of mobile sink in wireless sensor networks.
In: 2018 10th International Conference on Communication Systems & Networks
(COMSNETS), pp. 507–509. IEEE, Bengaluru, India (2018)

4. Jain, S., Verma, R.K., Pattanaik, K.K., Shukla, A.: A survey on event-driven and
query-driven hierarchical routing protocols for mobile sink-based wireless sensor
networks. J. Supercomput. 78(9), 11492–11538 (2022)

5. Krishnan, M., Lim, Y.: Reinforcement learning-based dynamic routing using mobile
sink for data collection in WSNs and IoT applications. J. Netw. Comput. Appl.
194, 103223 (2021)

6. Keum, D., Ko, Y.B.: Trust-based intelligent routing protocol with q-learning for
mission-critical wireless sensor networks. Sensors 22(11), 3975 (2022)

7. Naghibi, M., Barati, H.: EGRPM: energy efficient geographic routing protocol
based on mobile sink in wireless sensor networks. Sustain. Comput. Inform. Syst.
25, 100377 (2020)

8. Wang, J., Gao, Y., Liu, W., Sangaiah, A.K., Kim, H.J.: Energy efficient routing
algorithm with mobile sink support for wireless sensor networks. Sensors 19(7),
1494 (2019)

9. Li, X., Yang, J., Nayak, A., Stojmenovic, I.: Localized geographic routing to a
mobile sink with guaranteed delivery in sensor networks. IEEE J. Sel. Areas Com-
mun. 30(9), 1719–1729 (2012)

10. Jain, S., Pattanaik, K.K., Verma, R.K., Bharti, S., Shukla, A.: Delay-aware green
routing for mobile-sink-based wireless sensor networks. IEEE Internet Things J.
8(6), 4882–4892 (2020)

11. Tunca, C., Isik, S., Donmez, M.Y., Ersoy, C.: Ring routing: an energy-efficient
routing protocol for wireless sensor networks with a mobile sink. IEEE Trans.
Mob. Comput. 14(9), 1947–1960 (2014)

12. Mitra, R., Sharma, S.: Proactive data routing using controlled mobility of a mobile
sink in wireless sensor networks. Comput. Electri. Eng. 70, 21–36 (2018)

13. Guo, W., Yan, C., Lu, T.: Optimizing the lifetime of wireless sensor networks
via reinforcement-learning-based routing. Int. J. Distrib. Sens. Netw. 15(2),
1550147719833541 (2019)



224 A. A. Okine et al.

14. Yun, W.K., Yoo, S.J.: Q-learning-based data-aggregation-aware energy-efficient
routing protocol for wireless sensor networks. IEEE Access 9, 10737–10750 (2021)

15. Bouzid, S. E., Serrestou, Y., Raoof, K., Omri, M. N.: Efficient routing protocol for
wireless sensor network based on reinforcement learning. In: 2020 5th International
Conference on Advanced Technologies for Signal and Image Processing (ATSIP),
pp. 1–5. IEEE, Sousse, Tunisia (2020)

16. Abadi, A.F.E., Asghari, S.A., Marvasti, M.B., Abaei, G., Nabavi, M., Savaria, Y.:
RLBEEP: Reinforcement-Learning-Based Energy Efficient Control and Routing
Protocol for Wireless Sensor Networks. IEEE Access 10, 44123–44135 (2022)

17. Obi, E., Mammeri, Z., Ochia, O. E.: A Lifetime-Aware Centralized Routing Proto-
col for Wireless Sensor Networks using Reinforcement Learning. In: 2021 17th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 363–368. IEEE, Bologna, Italy (2021)

18. Haakensen, T., Thulasiraman, P.: Enhancing sink node anonymity in tactical sensor
networks using a reactive routing protocol. In: 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference (UEMCON), pp.
115–121. IEEE, New York (2017)

19. Nguyen, S. T., Cayirci, E., Yan, L., Rong, C.: A shadow zone aware routing protocol
for tactical acoustic undersea surveillance networks. In: MILCOM 2009–2009 IEEE
Military Communications Conference, pp. 1–7. IEEE, Boston (2009)

20. Altowaijri, S.M.: Efficient next-hop selection in multi-hop routing for iot enabled
wireless sensor networks. Fut. Internet 14(2), 35 (2022)

21. Liu, Lei, Liu, Yiming, Wang, Zhaowei, Liu, Chunxu: Design of dynamic tdma
protocols for tactical data link. In: Li, Bo., Shu, Lei, Zeng, Deze (eds.) ChinaCom
2017. LNICST, vol. 236, pp. 166–175. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78130-3 18

22. Sheikholeslami, A., Pishro-Nik, H., Ghaderi, M., Goeckel, D.: On the impact of
dynamic jamming on end-to-end delay in linear wireless networks. In: 2014 48th
Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE,
Princeton, NJ (2014)

23. Majumdar, S., Trivisonno, R., Carle, G.: Understanding Exploration and Exploita-
tion of Q-Learning Agents in B5G Network Management. In: 2021 IEEE Globecom
Workshops (GC Wkshps), pp. 1–6. IEEE, Madrid (2021)

24. Gao, D., Liu, Y., Zhang, F., Song, J.: Anycast routing protocol for forest monitoring
in rechargeable wireless sensor networks. Int. J. Distrib. Sens. Netw. 9(12), 239860
(2013)

25. Wilson, Graeme N.., Ramirez-Serrano, Alejandro, Mustafa, Mahmoud, Davies,
Krispin A..: Velocity selection for high-speed ugvs in rough unknown terrains using
force prediction. In: Su, Chun-Yi., Rakheja, Subhash, Liu, Honghai (eds.) ICIRA
2012. LNCS (LNAI), vol. 7507, pp. 387–396. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33515-0 39

https://doi.org/10.1007/978-3-319-78130-3_18
https://doi.org/10.1007/978-3-319-78130-3_18
https://doi.org/10.1007/978-3-642-33515-0_39
https://doi.org/10.1007/978-3-642-33515-0_39


A Green and Scalable Clustering
for Massive IoT Sensors with Selective

Deactivation

Amine Faid1(B), Mohamed Sadik1, and Essaid Sabir1,2

1 NEST Research Group, LRI Lab, ENSEM, Hassan II University of Casablanca,
Casablanca, Morocco

{a.faid,m.sadik,e.sabir}@ensem.ac.ma
2 Department of Computer Science, University of Quebec at Montreal (UQAM),

Montreal, QC H2L 2C4,, Canada

Abstract. Wireless Sensor Networks (WSNs) play an important role in
the advancement of today’s internet of things (IoT) solutions. It allows
the possibility to overcome different classical challenges in the telecom-
munication domain with the latest modern solutions. Thus, allowing a
smooth technological transformation with unprecedented new use cases.
Therefore, fields such as healthcare, environment, and industrial use-
cases are the most demanding areas for implementing such technology.
However, WSN comes with several problems, limitations, and constraints
impacting its optimized deployment. The most popular dilemma are data
privacy, energy efficiency, and computation capabilities. In this paper,
we address the energy performance challenge through the design of an
enhanced algorithmic approach. We propose a multi-stage and energy-
aware clustering algorithm to enhance the energetic performance of wire-
less networks. The idea behind the proposed algorithm relies on the con-
tinuous on-boarding of wireless sensor nodes in different lifetime phases
for the progressive construction of a network. Throughout the phases, we
apply a k-medoids and LEACH protocols with a trade-off principle for
best network clustering. We compare the algorithm results to LEACH
protocol and our previous contributions. The extensive simulations have
shown a good energetic improvement in different metrics, such as energy
dissipation trends, first dead node, last dead node, network lifetime, and
energetic dissipation. The results show an improvement of 379% com-
pared to LEACH and 166% compared to K-medoids in terms of the
first dead node, while the network performance was enhanced by 379%
compared to LEACH and 166% compared to IHEE and 115% compared
EACA.

Keywords: IoT · WSN · D2D · M2M

1 Introduction

Nowadays, the extensive investment in technology’s key enablers allows the
creation of contemporary new services and new products within different
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areas. Healthcare, military, environment, and industry are the most demanding
domains for the new technologies’ applications, a demand that is justified by the
continuous increase in terms of complexity and the seamless emergence of new
business cases. Therefore, emerging technologies, such as the Internet of things
(IoT) have opened a new chapter in the ongoing evolution. IoT solutions become
key aspects in today’s world as they aren’t only guiding the technological evo-
lution path but they exceed that into enabling a smooth digital transformation
with significant impacts on human being life However, during the coronavirus
disease 2019 (COVID-19) period, the pandemic has shown how the global organi-
zations were unusually impacted based on their internal digital transformation’s
maturity [1]. Thus, a universal need for a global digital transformation has expo-
nentially emerged on the surface. Schools, companies, hospitals, and governments
have accelerated their technological innovation adoption more than ever through
new approaches for rebuilding their ways of working in a smart, innovative, and
sustainable way. IoT, as smart technology, allows the connection of everything at
any time and anywhere [2]. Its idea comprises the deployment of tiny connected
devices for day-to-day applications such as wireless sensing, cognitive monitor-
ing, automation, and actuation in respective application areas such as Massive
IoT, Broadband IoT, Critical IoT, and Industrial IoT. Meanwhile, IoT, like all
other innovation domains, comes with drawbacks in various fields. It presents
challenges such as privacy and trust, architecture and standards, and safety and
security. Additionally, a standalone IoT device is very limited in terms of capa-
bility, therefore limited resources for superior performance is always a complex
dilemma to overcome. Thus, the idea of geographical-based sub-networking has
captured the interest of different field players like researchers, and engineers.
IoT solutions can be deployed on top of Wireless Ad-hoc NETwork (WANET),
Mobile Ad hoc NETwork (MANET), or WSN to cover large areas.

WANET or MANET is a type of decentralized wireless network since it
does not rely on pre-existing communication infrastructures, such as routers
in wired networks or access points in managed wireless networks. Therefore,
each standalone node takes part in the overall network’s routing by forwarding
data to other neighbor nodes. The choice of which node to transmit data to
is decided dynamically, which depends on the network connection and routing
algorithm in use. Self-configuring and dynamic networks in which nodes are
free to roam around are known as ad-hoc networks. Without the complexity
of infrastructure development and maintenance, wireless sensor networks allow
devices to build and join wireless networks anywhere and whenever they choose.
General comparison between WSN and Ad-hoc networks is presented in Table 1.

WSN allows creating wirelessly connected nodes in open areas, which allows
the possibility to overcome the most known challenges, such as long distances,
restricted mobility, and high infrastructure costs [3]. It comprises a group of dif-
ferent standalone nodes in geographic space. Set of nodes that are heterogeneous
with limited hardware (HW) and software (SW) configurations. Although the
WSN technology is very popular, however, various limitations constrain the mas-
sive deployment of such a network, such as a network’s reliability, the return on
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Table 1. Comparison between WSN vs. Adhoc networks

Feature WSN Ad-hoc

Number of nodes Massive Medium

Deployment type Dense Scattered

Rate of failure Very high Very rare

Network topology Dynamic Static

Communication Mesh Point to point

Battery Not rechargeable Replaceable

Centric mode Based on data Based on address

Aggregation Possible Not suitable

Computational Limited Not limited

Data rate Lower Higher

Redundancy High Low

investment (ROI), the cost of deployment, etc. Thus, its penetration into devel-
oping countries remains very limited. Hence, the technological improvement of
this technology will lead directly to a positive economic impact on these coun-
tries. For these reasons, topics like wireless communication enhancement, energy
efficiency, and routing optimization are among the hot areas where studies are
continuously conducted to improve WSN efficiency. Because of the physical con-
straints, energy consumption remains one of the most challenging aspects of
WSN solutions. Various techniques and mechanisms have been presented in the
literature dealing with energy consumption on a different scale. Networks clus-
tering is a very well-known field that aims to optimize wireless networks into
physical or logical subnetworks.

2 Related Works

Many WSN routing algorithms have been developed to improve network perfor-
mance. The proposed protocols were based on different approaches and detailed
in different surveys. [4,5]. In order to tackle challenges such as localization,
deployment, routing, energy efficiency, etc. as depicted in Fig. 1. One of the most
used protocols for network construction is the hierarchical approach, which com-
bines cluster-based and grid-based methodologies. In a cluster-based strategy,
cluster formation can be centralized in the base station (BS) or decentralized
in the cluster heads (CHs). In the centralized approach, the BS performs the
clustering based on specified criteria such as Line of sight, quality of service,
sensitivity, etc. The centralized approach is particularly successful in terms of
energy management, with the added benefit of having a comprehensive view
of all network nodes and architecture. While, in the decentralized approach, it
is the CHs that perform distributed clustering based on a probabilistic algo-
rithm. Low-Energy Adaptive Clustering Hierarchy (LEACH), as introduced in
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Fig. 1. Wireless sensor network challenges and solutions.

[6], is indisputably the most famous protocol for WSN clustering. LEACH uses
low-cost, energy-efficient sensors to produce higher-quality clustering in wireless
networks. For a balanced energy distribution in the network, LEACH arranges
itself via adaptive clustering, cluster head rotation, and local computation. The
set-up phase and the steady-state phase are two crucial phases of LEACH. The
set-up phase, which aims to minimize overhead, is shorter than the steady-state
phase. The CH is typically chosen first in LEACH before the clusters are gener-
ated. Equation 1 illustrates LEACH’s overall structure. In LEACH, the cluster
is established once the cluster head has been chosen.

T (n) =

{
P

1−P(r mod ( 1
P )) , ∀n ∈ G

0, ∀n /∈ G (1)

where p represents the desired cluster heads’ percentage within the WSN. r
represents the current algorithm’s iteration. G represents the set of nodes that
weren’t elected as CH in the 1/P round.

In this work, we explore the advantages of using K-means clustering as a
non-metaheuristic algorithm for cluster formation. K-means idea is built around
forming clusters from the centroids that are selected before the cluster’s forma-
tion. The K-means algorithm calculates the range between every point in the
dataset and every one of the k selected points, then assigns the points to the k
point that is closest to them. The mean of all data contributing to the cluster
is then used to calculate the k point of the new cluster. The aim function for
k-means can be shown in the following equation:
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J =
Ck∑
i=1

Ci∑
j=1

d (xi, xj) (2)

In the literature, a modified k-means technique was suggested by the authors
in [7] to determine the ideal centroid and create clusters. They established only 3
clusters because the k value in this literature is 3, which may restrict scalability.
After identifying the three centroids, they perform several iterations until they
identify the best means. The final CH then chooses two additional CHs that
are closer to it to load, share, and reduce the energy consumption of a single
CH. The authors of [8] suggested a lifetime-enhanced cooperative data gather-
ing and relaying algorithm (LCDGRA) for event-driven monitoring applications.
Since it guarantees that the sensor node’s transmission distance and energy con-
sumption are optimized during the clustering phase, LCDGRA adopts Huffman
entropy coding in K-means clustering. In addition, the authors in [9] proposed
a nonuniform clustering routing technique based on a strengthened K-means
algorithm. To lessen the randomness of centroid selection based on a threshold
function, a clustering point selection method is included in the suggested app-
roach. To avoid blind iterations and quickly locate the centroid. The threshold
function is built using numerous nearby nodes and a few iterations. The K-
means method exhibits higher performance in terms of decreased energy usage,
balanced network, and increased network lifetime, as shown by the simulations
of the aforementioned research. Additionally, by utilizing an upgraded K-Means
method, the authors of [10] proposed an optimal Q-learning-based clustering
and load balancing technique. By taking into account throughput, end-to-end
delay, packet delivery ratio, and energy usage, the suggested Q-Learning-based
clustering algorithm maximizes the reward. Existing k-means-based clustering
algorithms were examined for performance and compared to the Q-learning algo-
rithm’s performance.

3 System Model

Since transmission dominates the WSN, we are particularly interested in how
much energy it uses in our work. We are relying on the most widely acknowledged
and applied model in the literature, the Radio energy model used in the LEACH.
The radio energy model for each sensor node is shown in Fig. 2. Wireless range
and energy are typically inversely correlated. The two main phenomena that
have a substantial impact on each node’s power usage during transmission are
free space and multi-path. Equations 3 and 4 are used to present the energy
consumption during transmission ETx(k, d) and reception ERx(k).

ETx(k, d) =
{

Eelec × k + εfs × k × d2, d < d0
Eelec × k + εmp × k × d4, d ≥ d0

(3)

ERx(k) = Eelec × k (4)
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Fig. 2. Energy consumption model.

In our testings, we deploy a WSN with N evenly dispersed heterogeneous
nodes that are randomly placed in a 100-by-100 m region. Identical properties,
such as GPS modules, battery modules, radio, etc. characterize the nodes. We
broke the network up into K clusters. A set of cluster member nodes charac-
terizes each cluster. In the same cluster, the K node, which plays the role of a
gateway, is recurrently chosen based on the node’s availability and the energy
threshold Et, as presented in Eq. 5. The K-node is considered the only valid
gateway for the entire K-cluster toward the BS. As a result, in each round, the
K node needs to be permanently connected to LEACH’s CHs. The K-cluster’s
CM nodes are disallowed from engaging other cluster nodes. Within each K-
cluster, m CHs are chosen for each round. The CHs make sure that local data
is collected from pertinent sensor nodes and sent to the corresponding k node.
Only the gateway can exchange messages with the chosen CHs and aggregate
the data before sending it to the sink. The BS is situated away from the study
space. When data is received, the BS saves it locally before sending it to the
cloud for remote management and control.

Et =
E

Eint
× 100% (5)

where Et is the initial energy of the wireless nodes in Joule. While E presents the
network’s mean energy at the current iteration. The calculated energy ratio in 5
shows how much the cluster mean energy differs from the nodes’ initial energy.
The result of this ratio serves as the primary parameter to specify the algo-
rithm’s energy threshold for choosing the subsequent K-cluster nodes. According
to Eq. 6, we suggest four levels of thresholds for our WSN algorithm: Eth1, Eth2,
Eth3, and Eth4. The levels are allocated to a set of the Et ranges.

Ethi = αi × Eint : i−1
100 < Et ≤ i∗25

100 (6)

where αi is the proportion of the starting energy associated with each Eti range,
and Ethi is the ith energy threshold.
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4 Proposed Algorithm

Our proposed algorithm is based on a multi-stage and energy-aware energy effi-
ciency in WSN for massive IoTs. We broke the algorithm down into 3 main phases
which are the ramp-up phase, the steady-phase, and the ramp-down phase. We
can illustrate the holistic view as in Fig. 3.

Fig. 3. Network’s multi-phases

The purpose behind the activation of the progressive nodes’ onboarding is to
limit the energy dissipation within the nodes due to the wireless communication
and to extend the network’s life. Deactivating nodes within the same Sensing
range and the continuous onboarding of these nodes will have minimal impact on
the quality of the collected data since the meteorological data is near constant at
the time. In Fig. 4, we can see that the random deployment of nodes may create
a state where several nodes are conducting the same sensing range.

4.1 Ramp-Up Phase

The first stage entails splitting the network into K sub-networks and regrouping
nodes under the K clusters. The procedure is carried out using a calculation
of Euclidean distance. The best K parameter for the network clustering is first
determined using the elbow technique, which forms the basis for the K choice,
and involves calculating the network Sum Squared Error (SSE) to various K
parameters. The following equation is used to determine the SSE:

SSEK =
∑
k∈K

∑
i∈Ck

d (xi, xk) (7)

K is the number of clusters found throughout each iteration. The set of k-
medoids points is called Ck. The collection of points called Cj is connected to
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Fig. 4. Random nodes’ deployment

each cluster of k. A cluster’s medoid point is xi, and cluster k’s xj is the cluster’s
xth point.

In contrast to K-means, the K-medoids algorithm chooses actual network
nodes from the network to serve as the network’s centroids. The cluster’s nodes
are chosen at random, and the distance between the chosen node and them is
calculated. The goal of the partition approach is to reduce the distance between
the chosen node and the cluster nodes. The equation shown below can express
the k-medoids formula:

Xmedoid =

⎧⎨
⎩ x=x1,x2,··· ,xn

n∑
i=1

d (x, xi) , ∀x ∈ G
0, ∀x /∈ G

(8)

where G is the set of nodes with energy E ¿ Ethi

The rump-up phase refers to the stage where the algorithm continuously
engages new nodes in the network. According to Fig. 5, the nodes’ onboarding is
done when the number of dead nodes Sn is reaching 33% compared to the initial
nodes.

4.2 Steady Phase

The clusters function as independent sub-networks. Once the network has been
divided, the k-medoids serve as a gateway, and LEACH begins grouping the sub-
networks into logical sub-clusters at each round. For better k-medoids rotation,
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Fig. 5. Flow chart of the proposed algorithm.
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the BS scans the network and changes the energy ratio threshold Et. The CHs
transfer data to the k-node after collecting data from their respective cluster
members (GW). The gateways transport data to the BS after condensing data
from the relevant CHs. Till all nodes are dead, the process is repeated. Thus,
steady-phase refers to the stage where operational nodes are stable and the
network is operational with 66% performance.

4.3 Ramp-Down Phase

Rump-down phase refers to the stage where 100% of the nodes are operational
within the network. In this phase, the algorithm disengages dead nodes without
being able to replace them with steady nodes. This is the phase where network
performance is declining and the number of operation nodes is on a continuous
decrease.

5 Simulations

For simulation, we consider a WSN with 100 nodes randomly placed in a 100
× 100 m2 space. We place the BS in a predetermined location that is outside
the WSN perimeter. The initial parameters of each node in the network are
the same. The data packets are 2000 bits in size (250Kbytes). According to the
elbow’s approach, the K parameter, which represents the number of clusters, is
fixed to 3. The energy thresholds’ fixed values for the network’s αi are 0%, 25%,
50%, and 75%. Each node has a starting energy of 0.5j. The likelihood that CH
will be elected is 20%. The Matlab 2022a environment is used to simulate the
system performance. We evaluate our approach with LEACH and K-medoids,
the primary referential algorithm in the literature and our previously improved
hybrid versions of K-means and Leach as presented in [11] and [12].

The suggested MSEA protocol was evaluated against the LEACH, IHEE,
and EACA protocols to confirm its energy efficiency. The illustration in Fig. 6
shows the performance in terms of the first dead node (FDN), the half-dead node
(HDN), and the last dead node (LDN). MSEA showed a good performance in
terms of FDN compared to LEACH and IHEE with 119% and 4% respectively.
Meanwhile, it shows a regression of -35% compared to EACA. However, when we
compare HDN and LDN metrics, our algorithms showed a high improvement. In
terms of HDN, the numbers were improved by 197% compared to LEACH, 36%
compared to IHEE, and 12% compared to EACA. Finally, for the LDN, another
high improvement in the performance was recorded, with increasing values of
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Fig. 6. Operational nodes per transmission.

Fig. 7. Rounds of the first, half, and last dead node.

379% compared to LEACH, 166% compared to IHEE, and 115% compared to
EACA. The rounds’ mapping is presented in Fig 7.

We illustrate energy dissipation and accumulative energy consumption in
Fig. 8 and Fig. 9. From the profile’s behavior, we can conclude that the proposed
approach balanced the energy consumption throughout the rounds, which allows
us to expand the network lifetime by avoiding the high consumption of power in
the wireless nodes.
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Fig. 8. Energy dissipation per round.

Fig. 9. Accumulative energy dissipation per round.

6 Conclusion

To improve the energetic performance of WSN for IoT, we suggested a multi-
stage, energy-aware clustering approach in this study. The principle of our
approach is based on integrating a distributed LEACH protocol and an opti-
mized centralized K-medoids algorithm for self-organizing networks. The method
deploys a dynamic threshold computation and configuration within the WSN
and a continual onboarding of wireless nodes in various life cycle phases for a
progressive creation of a network. This approach allows the protection of nodes’
resources, such as computation resources, battery, radio, etc. which leads to effi-
ciency improvement. When compared to LEACH and K-medoids, our approach
performs well in the simulation. The first dead node, the half-dead node, the last



A Green and Scalable Clustering for Massive IoT Sensors 237

dead node, and the trending of energy usage were used to compare performance.
To enhance our results and verify the validity of our methodology in large-scale
networks we will include additional metrics like entropy, latency, and throughput
in our next work.
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Abstract. Most Deep Learning techniques propose solutions against
Distributed Denial of Service (DDoS) attacks by leveraging network-
ing enhanced programming abilities. However, all these proposals lack
robustness since it struggles to cope with the false alarm rate, which is
the amount of normal traffic classified as not being normal. A former
work, called DeepDDoS, provides an Intrusion Prevention System (ISP)
that detects and mitigates, in real time fashion, DDoS attacks within
a healthcare-based IoT environment. However, rather than restricting
the access of a single malicious device, the authors define blocking rules
according to the entire subnet. In the event of a false positive decision,
DeepDDoS will actively interrupt normal activities that may impact real-
time patient data monitoring and consequently affect decision-making
with respect to critical healthcare IoT devices such as blood pressure,
blood sugar levels, oxygen, ECGs, etc. In this work, we take the advan-
tage of an extra pre-training step in Deep Belief Network (DBN) model
with a feed-forward backpropagation network to minimize the false posi-
tive rate (FPR) in cybersecurity concerns. Our obtained results show the
effectiveness of our hybrid proposition, called soft-DBN, that successfully
reduces FPR lower than 0.30%.

Keywords: Intrusion detection · Internet of Things · Hybrid Deep
Belief Network · Self-Security

1 Introduction

There is a blurring line between Intrusion Detection and Intrusion Prevention
Systems (IDS and IPS respectively). In fact, IDS monitors network traffic and
alerts security personnel upon discovery of an attack, whereas, IPS actively stops
the threat by maintaining an offensive action such as blocking or deletion. In a
production environment, an IPS will take initiatives that can cripple the entire
network when DDoS attacks occur. A potentially life-threatening event in a
medical environment if a bad prediction decision is made.

DDoS attacks attempt to target the server’s availability and impede the
ability of designated and authorized individuals to access resources. Previous
studies such as [1–8] tackle DDoS attack problems. However, the real challenge
besides attack detection systems is to maintain a consistently low false alarm
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Sabir et al. (Eds.): UNet 2022, LNCS 13853, pp. 241–252, 2023.
https://doi.org/10.1007/978-3-031-29419-8_18
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rate while performing in a real-time fashion. A state-of-the-art, DeepDDoS [5]
IPS, in its build-in mechanism, will block an entire network if ever a false alarm is
detected which could result in valuable data loss. A situation that can commonly
happen given the consequent false alarm rate of DeepDDoS (nearly 3.33%).

Deep Learning (DL) overcomes many of the traditional multilayer percep-
trons/artificial neural networks shortcomings regarding “local minima” that
comes from backpropagation. DBN is an important model in deep learning. With
it class of Restricted Boltzmann Machines (RBMs) methods, DBN has recently
gained popularity thanks to proposed results across a wide range of applications
as demonstrated in [9,10]. DBN is a probabilistic generator model consisting of
a series of (RBM ) units whose training and learning ability has allowed us to
reduce false alarms in the detection of DDoS cyberattack types. This paper pro-
poses an approach to reducing the false positive rate based on the hybrid Deep
Belief Network (DBN ) model between binary RBMs [11] and softmax layer with
sigmoid belief networks.

Firstly, RBMs are used to optimize the network parameters of the deep belief
network; extract feature vectors of DDoS time series data at the flow scale. Sec-
ondly, the RBM stack is combined with a softmax layer for prediction concerns.
The weights of the softmax layer are then refined using backpropagation for
classification purposes. The contributions of this paper are as follows:

– We propose new deep learning-based models, named soft-DBN, including a
hybrid DBN with multiple RBMs layers linked to a sigmoid neural network
to classify DDoS attack types.

– The features of the studied dataset are preprocessed mainly in three spe-
cific steps for the detection process fluency: Min-Max normalization, Equal
Width Discretization, and features extraction using a correlation-based Fea-
ture Selection algorithm.

– We provide a performance evaluation and comparative analysis of proposed
soft-DBN approach in DDoS attacks performing.

– The model’s performance is studied within binary classification type over an
up-to-date real traffic, CICDDoS2019.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 presents the proposed model architecture along with its practical opera-
tion, including the model training and optimization. Section 4 gives experimental
environment setup. Section 5 provides a comparative analysis of soft-DBN and
discusses obtained results. Finally, Sect. 6 concludes this paper.

2 Related Work

Various motivations have led to numerous proposals to optimize DDoS attack
detection efficiency. However, these approaches suffer from a high false positive
rate, which means classifying legitimate traffic data as potentially dangerous.

In [12], Ferrag et al. propose three deep learning-based IDS models, includ-
ing a CNN-based IDS model, a deep neural network-based IDS model, and a
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RNN-based IDS model to mitigate DDoS attacks in agriculture 4.0. The binary
and multiclass classification performances show that the CNN-based IDS model
outperforms with at least 99.92% of accuracy and a poor average false positive
rate up to 3, 13% depending on models.

A high accuracy IDS model based on DL is proposed by Manimurugan et al.
in [13]. Despite the obtained high-performance value (up to 96%), no false posi-
tive rate estimation, which is essential for medical decision-making, is given by
the authors. Latah et al. [6] propose an IDS system that achieves a false positive
rate of 3.99% while investigating the performance of the well-known anomaly-
based intrusion detection approaches over the NSL-KDD benchmark dataset.
Furthermore, a hybrid SDN-based approach tries to minimize false positive rate
in DoS attack detection [7]. Experimental results exhibit a FPR equals to 0.3%
with an accuracy of 91.27%. It is worth noticing that the accuracy rates is very
low according to previous work [5].

In [5], the authors propose an IPS, named DeepDDoS, that detects and miti-
gates DDoS attacks within software-defined healthcare IoT networks. DeepDDoS
with a high prediction ability of 98.8%, can forward any suspicious traffic through
the SDN control plan for mitigation decisions. However, DeepDDoS suffers from
high FPR.

In this work, we aim to minimize the FPR within a given intrusion detection
system by combining multiple RBMs layers and a neural network with backprop-
agation as parts of our new hybrid DBN model. Therefore, we address the false
positive rate reduction for DDoS attack types by using a hybrid DBN model
that proceeds feature selection and classification in a layer-by-layer fashion.

3 Proposed Hybrid DBN Model

3.1 Theoretical Aspect of DBN Model

The background regarding DBN is to solve “local minima” comes from backprop-
agation in artificial or perceptrons neural networks. As a solution, DBN adds a
pre-trained step to models before backpropagation. This extra step brings closer
to the solution’s “neighborhood” with some error rate which is reduced by using
backpropagation. Thus, DBN is partitioned between multiple layers of RBN to
pre-train the network and a fine-tuned process is performed by feed-forward
backpropagation network from binary output of RBM stacks.

The RBM mechanism mimics bipartite graph properties where processing
data consists of a single visible layer v called the input layer and a set of multiple
n-dimension h of hidden neurons where the model attempts to match these
entries to minimize system energy. The main purpose of the RBN process is to
reduce joint energy between visible and hidden layers based on the Bernoulli
distribution described by Eq. 1. The RBM admits no link between neurons of
the same layer, and thus, neurons of different layers are connected with the
weight matrix W that contains weight values between visible and hidden layers.
The term weight stands for interconnection between two consecutive input and
hidden layers. Table 1 gives Eq. 1 parameters nomenclature.
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Table 1. Key nomenclatures.

m The dimensions of the visible layers
n the dimensions of the hidden layers
b The bias vectors of m

c The bias vectors of n

Wij The connection between visible unit i and the hidden unit j

σ(x) = 1
1+exp(−x)

activation function (logistic-sigmoid function)

ci ei link capacity
bi Current bandwidth load on ei

ai Available bandwidth on ei

E(v, h) = −
m∑

i=1

bivi −
n∑

j=1

cjhj −
m∑

i=1

n∑

j=1

wijvihj (1)

Solving this problem amounts to finding an estimate of the conditional prob-
abilities (CP ) of the visible and hidden neurons. Hinton’s proposal [14], named
Contrastive Divergence (CD), allows to estimate the CP of visible and hidden
neurons either by using Eq. 2 or Eq. 3. The Eq. 2 gives the activation proba-
bility of the jth neural unit of layer h when v is known, while inversely, Eq. 3
refers to the activation probability of the ith neural unit of the visible layer v.
The parameters in Eq. 2 and Eq. 3 are well defined in Table 1. Each neuron in
each layer will be able to resolve its state value between 0 and 1 with probability
p. By using a few cycles of Markov Chain Monte Carlo (MCMC ) sampling, the
Hinton algorithm enables us to: (i) transform our training data (drawn from the
target distribution) into data drawn from the proposed distribution; (ii) provide
a sense of where the proposed distribution should evolve to better model training
data.

p(hi = 1|v) = σ(cj +
m∑

i=1

wijvi (2)

p(vi = 1h) = σ(bi +
n∑

j=1

wijhj (3)

3.2 Practical Aspect of the Proposed Hybrid Model

The multilayers RBM that composes DBN are used to train dataset layer-by-
layer. The training parameters values are used recursively between layers so that
output from the previous layer is refined as input for the next layer. Indeed, DBN
acts as a unsupervised learning model. A learning representation of input data is
then converted into a supervised prediction. Training RBM layers with a dataset
allows us to get model parameters. The training process is approximated based
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on CD algorithm and it also improves efficiency [15]. This paper first uses DBN
to extract the essential features from the CICDDoS2019 [16] by the training and
learning of RBM stacks. The abstract features gained from the training are then
used as the input to softmax layer. The softmax layer located at the top level
of our model is used to optimize RBMs processing results over backpropagation
for classification purposes. The proposed hybrid model is depicted in Fig. 1.

Fig. 1. soft-DBN architecture with 3 hidden layers

Figure 1 shows soft-DBN architecture, with n-dimensions hx hidden layers
connected by the weights matrix W (l) with l ∈ [1, L]. The parameter L stands
for the number of hidden layers. According to the soft-DBN training process,
the dataset is first unsupervised trained based on a greedy layer-wise approach.
Afterward, the supervised softmax layer performs a fine-tuned stage from the
DBN layer (upper RBM unit) for labeled sample feature enhancement. The
softmax layer is a sigmoid neural network attached at the top of our soft-DBN
model to perform classification after the DBN pre-training phase. It fine-tunes
the model using ADAM [17] optimization function through with a fixed learning
rate for each layer of the sigmoid neural network.

It is worth noticing that the soft-DBN process is twofold: (i) a feature extrac-
tion process using DBN pre-training phase; (ii) a DDoS attacks traffic classifica-
tion with softmax layer. Each of these folds has its own experimental parameters
that will be depicted in Sect. 4.2. Moreover, the proposed soft-DBN processing
steps are as follows:

1. Determination of DBN learning parameters (RBM layers). Initialize learning
rate and the number of iterations.

2. Use of the CD algorithm to pre-train each layer of RBM and find the optimal
initial weight of the network model. It prevents DBN from falling into the local
optimum during the training process. It also ensures optimal weight values for
each layer for features vector mapping. At the end of this pre-training phase,
features extraction and therefore, the reduction of the size of the dataset are
ensured. A features selection process will be detailed in Sect. 4.1.
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3. Determination of the softmax layer parameters. In soft-DBN processing steps,
the higher RBM layer output will be used as input to the softmax layer
training phase. The softmax layer training phase gives optimal parameters to
build our final prediction model.

4. Estimation of the best prediction model to adopt based on specified threshold
error rate.

It is worth noting that evaluating our model convergence speed is out of the
scope of this study. Accordingly, we investigate whether our hybrid soft-DBN
approaches that combine RBMs pre-training and softmax fine-tuning process
can minimize the false positive rate.

4 Experimental Setup

4.1 Data Preprocessing

The CICDDoS2019 raw dataset is an enhanced version of CICDDoS2017 [18]
with 50, 063, 112 records which covers respectively 50, 006, 249 instance of DDoS
attack traffic and 56, 863 instance of benign traffic. The CICDDoS2019 dataset
has globally 86 features. To be handled properly by the DL model, dataset must
be presented to the model in a specific form. This data preparation operation is
called preprocessing. The preprocessing tends to fit the dataset in the best range
within three major actions, each of them has its advantages; data normalization,
data discretization, and the features selection process.

Data normalization (known as standardization or feature scaling) is a main
step of data preprocessing in any ML model fitting. It transforms data in such a
way as to be dimensionless and/or have similar distributions. One of its advan-
tages is that it gives equal weight to all CICDDoS2019 features based on a fixed
range. In this work, the Min-Max normalization function is used to process the
conversion of our data samples. The Min-Max normalization is shown to be the
more efficient normalization approach [8] and it performs based on given Eq. 4.
It converts each value from σ to σ∗ that is suitable in the range of [A,B].

σ∗ =
σ − σmin

σmax − σmin
(4)

The discretization transform provides an automatic way to change a numeric
input variable to have a different data distribution, which in turn can be used
as input to a predictive model. It is also called a binning and can improve
the performance of some machine learning models for datasets by making the
probability distribution of numerical input variables discrete. Here, Equal Width
Discretization (EWD) is performed as a discretization function to transform a
continuous field to bins. In EWD, values for the variable are grouped together
into discrete bins. Each bin is assigned a unique integer so that the ordinal
relation between bins is kept. EWD has divided lines of numbers between V max
and V min at k intervals. The Eq. 5 defines the considered interval width in
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EWD. In Eq. 5, N denotes the interval and A and B are the lowest and highest
values of the features.

W =
B − A

N
(5)

rzc =
krzi√

k + k(k − 1)rii
(6)

In the features selection process, irrelevant and redundant features in the
dataset are removed. One of the advantages of this operation is the improve-
ment of prediction accuracy and redundancy avoidance, which moderate the
computational cost of modeling. While we are performing unsupervised learning
(DBN), Correlation-based Feature Selection (CFS ) is used to select a subset
of the input features from the dataset without considering target features and
removing redundant variables (correlation).

According to CFS, the target variable is removed since it keeps a strong
relationship with the other features. The evaluation of a subset rzc in CFS is
given by Eq. 6. Where rzi is the mean correlation between a feature subset and
an outside feature, and rii is the average feature-to-feature intercorrelation of a
feature subset containing k features.

4.2 Experimental Parameters

Soft-DBN is a deep learning model that connects three stacked RBMs and one
sigmoid neural network model. The experimental phase is twofold. In a pre-
training approach based on DBN layer processing with a batch of size 128, a
learning rate of 0.1, the bottommost RBM is trained with the original input
data with 50 epochs and 25 epochs for intermediate and top RBM.

After the RBMs training phase, the output of the last hidden layer of the
DBN is used for classification. Finally, soft-DBN can efficiently output the pre-
dicted probability value according to the softmax layer. In this classification
phase, the softmax layer performs a fine-tuning process for 20 epochs. Each
of the softmax layers’ learning rate is fixed to 0.001. To assess the robustness
of soft-DBN, 10 distinct executions of soft-DBN are performed with 10 different
DBN networks that differ according to the number of hidden neurons and layers.
The testbed results will be described in Sect. 5.

5 Experimental Results

5.1 Results

The experimental study assesses the performance of the proposed FPR mini-
mization system in terms of FPR values and “Accuracies” (Ac). The mathemat-
ical expressions of Ac and FPR metrics are computed as mentioned in Eq. 7
and Eq. 8 respectively.
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Table 2. Experimental results on different number of neurons and hidden layers

RBMHsize Average Accuracies (AAc) (%)
Soft-DBN DeepDDoS

#1. 500;200;50 94 97

#2. 500;200;200;50 98.42 92.57

#3. 500;200;200;200;50 98.67 98.77

#4. 500;500;500;500;50 97.20 98.63

#5. 1000;1000;50 96.33 97.51

#6. 1000;1000;1000;50 97 97.41

#7. 1000;1000;1000;1000;50 98.5 98.80

#8. 2000;2000;50 96.56 97

#9. 2000;2000;2000;50 97.63 98.40

#10.2000;2000;2000;2000;50 98.74 94.57

FPR refers to the number of nonattacking events incorrectly labeled as
attacks, or the number of falsely classified normal DDoS traffic instances while
the Ac indicates how close our model decision is to the actual true value. Ac mea-
surement is significant since it might be caused by various factors from defective
devices to human error [8,19].

Ac =
TP + TN

TP + TN + FP + FN
(7)

FPR =
FP

TN + FP
(8)

According to Eq. 7 and Eq. 8, TP indicates attack samples that are correctly
classified as an attack, whereas TN , the benign samples that are correctly clas-
sified as benign. FP refers to the benign samples that are incorrectly classified
as an attack; FN indicates the attack samples that are incorrectly classified as
benign.

Concerning evaluation, we varied the number of RBM hidden neurons and
layers to assess the soft-DBN robustness. We choose 10 random scenarios that
are evaluated 10 times. Table 2 depicts the “Average Accuracies” (AAc) values
according to the sets of performed simulations. For instance, each scenario is
illustrated by considering a fixed line from #1 to #10. In fact, the number of
RBM layers increases from 3 to 5 with different numbers of neurons within each
RBM layer. For instance, in Table 2, the line #1 shows the 3 layers whereas
the different values between semicolon’s exhibit the number of used neurons
within each layer. The minimum, the maximum and the average FPR values
were recorded in each of the 10 scenarios.

Figure 2 and Fig. 3 illustrate a comparative evaluation between soft-DBN
and DeepDDoS based on different scenarios, as illustrated in Table 2, and a
couple of metrics. Indeed, Fig. reffig:minMax(a) (respectively Fig. 2(b)) depict
the minimum FPR (respectively maximum FPR) obtained by considered 10
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simulations series for each scenario. The X-axis shows the number of scenarios
and the Y-axis the min, max, or average FPR according to selected figures
(Fig. 2, Fig. 3).

Fig. 2. Min and Max FPR values between soft-DBN and DeepDDoS under different
RBMs

Table 2 provides the AAc rate based on hidden RBMs layers and size
(RBMHsize) as well a comparative evaluation between soft-DBN and Deep-
DDoS over CICDDoS2019 dataset. Based on results in Table 2, Fig. 2 and
Fig. 3, one can observe that soft-DBN detection system achieves the best AFPR
(near 0.28%) with a minimum value of approximately 0.22% (Fig. 2 (a)) while
processing scenario 6. However, soft-DBN records the lowest accuracy values
compared to DeepDDoS [5]. Furthermore, DeepDDoS provides the highest accu-
racy rate compared to the proposed soft-DBN, nonetheless, the max AFPR in
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Fig. 3. Average FPR values between soft-DBN and DeepDDoS under different RBMs

(Fig. 3) is on average higher than 3.30%, and a maximum FPR value up to 4%
(Fig. 2 (b)) by considering the overall scenarios.

The best obtained mixed results (ACC − AFPR) can be deduced from
Table 2 and the average FPR values reported in Fig. 3. We can observe that
the best result given by DeepDDoS is the couple (97.41% − 2.40%) in line #6
of Table 2, while soft-DBN approach gives a lower FPR as well as a couple
of (97.00% − 0.28%). The best overall results were then obtained with 4 RBMs
with 1000 hidden units for the first 3 layers and the last one with 50 units as
denoted in line #6 of Table 2.

5.2 Discussions

The experimental results show the preeminence of proposed soft-DBN model.
Soft-DBN performs better than DeepDDoS while detecting DDoS attack types
in terms of minimizing FPR. The lines #2 and #4 in Table 2 and Fig. 3 show
best combined (AAc−AFPR) results for DeepDDoS, however, either the AFPR
is too high (line #4), or either the AAc value is too low compared to soft-DBN.
False alarms may be triggered in two ways: from network anomalies or raised
from a specific unusual, albeit legitimate traffic. The detection decision of IDS
comes from a short time (ms-scale) flow inspection, which can be not enough as
an expected batch of data for decision making. That is one of the weaknesses in
DeepDDoS [5].

Soft-DBN uses CFS to reduce the data dimension and the redundancy in
data. A processing that ensures a low false positive probability in undersam-
pling cases, and accordingly, an optimal size of data that will be needed for
decision making. In addition, the pre-training step is the main key that put us
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in the vicinity of the minimal solution (reducing error surface) and thus avoids
overfitting that can be caused by “local minima”. Afterward, this error rate is
considerably reduced by backpropagation steps.

False alarms can be also caused by the high packet loss rates in network com-
munication. We didn’t study this scenario because it assumed that this proba-
bility is extremely low [20]. Soft-DBN’s best setup seems to be the one with 4
RBMs described in line #6 of Table 2. By leveraging this specific implemen-
tation under 20 iterations, we note that soft-DBN converges less quickly than
DeepDDoS [5] after 8 epochs. DeepDDoS stays the most accurate technique
when globally considering all 20 iterations, however its high RPF rate makes it
a model to improve.

This paper also highlights the trade-off between obtaining a model with a
low FPR value and a model with low converge delay. This is certainly the result
of the significant training delay required by the model to concurrently deal with
both high sensitivity value and low false positive rate. Whatever, a long training
delay is a hindrance to real-time systems deployment.

6 Conclusion

In this paper, we proposed soft-DBN, a hybrid Deep Belief Networks app-
roach based on RBNs layers pre-training for feature extraction combined with
a sigmoid neural network attached at the top of RBM stack. Soft-DBN per-
forms DDoS attack prediction with a very low false positive rate. The empirical
experimental results over the most up-to-date publicly available dataset, CICD-
DoS2019, confirm the preeminence of soft-DBN as an IPS for DDoS attack type
detection. By so doing, it is possible to reduce the false positive rate and achieve
a high level of accuracy. It is shown that soft-DBN successfully minimized the
FPR from 3.33% to 0.28%. In addition, the soft-DBN build-in mechanism allows
using it also in classification and recognition problems. Furthermore, we agreed
that there is a trade-off between model convergence delay and low FPR, so we
believe that trying to break this trade-off is a path towards accurate and real-
time detection models.

We plan to estimate the model learning time depending on the number of
hidden nodes and different learning rates. It is important to gain insight into the
impact of the training phase on the real-time aspect of the detection model.
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Abstract. The threats posed by botnets are becoming a growing con-
cern as more and more computers are getting infected every day.
Although botnets can be detected from their behavioral patterns, the
margin in the behavior of the malicious traffic and the legitimate traffic
are diminishing with the advancement of the technologies as the mali-
cious traffics have learned to follow the behavioral patterns of benign
traffics. The detection of malicious traffic largely depends on the traffic
characteristics that are being used to feed the detection algorithm. Select-
ing the best features for effective botnet detection is still infancy and is
the main contribution of this paper. At the very beginning, we iterate
different features used for botnet detection process. Then we propose sev-
eral heuristics to select the best features from this handful set. Some pro-
posed heuristics are flat feature-based and some are group-based yield-
ing different levels of accuracy. We also analyze the time complexity of
each heuristic and provide a comprehensive performance comparison. As
working with all combinations of a large number of features is infeasible
and intractable, some proposed heuristics group the features based on
their similarity in patterns and check all combinations within the group
of small sizes, eventually improving the time complexity by a large mar-
gin. Through experiments, we show the efficacy of the proposed feature
selection heuristics. The result shows that some heuristics outperform
state-of-the-art feature selection algorithms.

1 Introduction

With the advancement of technology, security threat has become one of the
biggest concerns in cyberspace. The loss for Cyber-attack is projected to grow
up to USD 10.5 trillion by 2025 [13]. Network traffic generated by malicious enti-
ties in all types of networks is one of the major security concerns, and a major
research domain of the security community. One such malicious entity–the so-
called botnet–is a collection of Internet-connected devices used for infecting a
computer with malicious code under a common Command-and-Control infras-
tructure (C&C) [5]. Botnets are used for nefarious purposes such as accessing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Sabir et al. (Eds.): UNet 2022, LNCS 13853, pp. 253–266, 2023.
https://doi.org/10.1007/978-3-031-29419-8_19
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private sensitive information, spam, click fraud, extortion, identity theft and
large scale Denial of Service (DoS) attacks to deny legitimate users from access-
ing network resources [1,14].

Botnets are becoming sophisticated and diverse which is causing their detec-
tion a daunting task. Therefore, researchers and security experts are exploring
different approaches and techniques over the past decade. The most popular
botnet detection techniques are behaviour based, signature-based and anomaly
based. These detection techniques require detail knowledge of a bot to iden-
tify unexpected traffic behavior such as high latency, or unusual port activities
while actively monitoring a network. However, these techniques can detect only
known botnets [12]. Due to these limitations, machine learning-based techniques
have shown much promise to identify the bots. Many studies have found that
machine learning-based techniques can detect real-world botnets with a very low
false-positive rate [8,16].

Machine learning algorithms create a model by training with a dataset. Once
trained, they can decide on new or unseen data making them most appropriate
for detecting zero-day attacks. There are two popular approaches to ML-based
botnet detection, packet content based and network flow statistics based. IRC
botnets can be detected based on the packet content. However, if the packet
contents are encrypted then this approach becomes ineffective. In recent studies,
[19], network flow-based approach has been mostly used to detect botnets.

Machine learning techniques require a large amount of samples for training to
be effective. Despite using a quality dataset, the ML-algorithms may not perform
well due to the set of features they employ. A naive primary assumption is if
one can use more features then the detection rate and classification accuracy
might increase. With the reduced number of features it may not capture the
abnormal traffics correctly. However, the truth is there are some drawbacks of
using a large number of features. In one end, it increases the computational
complexity of the classification schemes. Some studies [15] find that in large scale
environment it can slow down the performance and optimal defense. In other end,
redundant or irrelevant features may reduce the accuracy and yield error-prone
results. If a feature set has a high internal accuracy with poor generalization,
it suffers with the over fitting problem. That is why feature selection is a very
challenging and a core aspect of any machine learning based approach. In order
to get more effective results, one need to feed only those features which are
really important. Feature selection techniques removes the irrelevant, redundant
features and select a better subset. Thus, it reduces the computational cost; the
model also becomes less complex and easy to interpret. Therefore, developing a
good feature selection algorithm for botnet detection could be extremely useful.

In this paper, we devise several feature selection heuristics to detect botnets
using machine learning. At first, we choose the commonly used state-of-the-art
suitable features and discuss their relevance, effectiveness and rational behind
their selection to detect botnets. We mainly focus on network flow-based fea-
tures as packets might be encrypted in some protocols. We propose five different
heuristics based on feature inclusion-exclusion techniques and perform a compar-
ative analysis of these methods. We experiment these methods on a well-known
comprehensive data set. We analyze these methods based on the performance
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metrics such as accuracy, detection rate and false alarm rate. We also calcu-
late the time complexity of each method. The result shows that the proposed
heuristics outperform state-of-the-art feature selection algorithms.

2 Literature Review

The state-of-the-art research works on botnet detection can be broadly classi-
fied into two categories. The first stream deals with devising botnet detection
algorithms and focus on improving their accuracy. The second stream deals with
different aspects of selecting features, devising novel feature selection algorithms
for improving the accuracy of the detection process that would run on top of the
selected features. Our work falls under the second stream.

Among the works under first stream, Choi et. al. [4] focus on botnet detection
using fundamental characteristics of the botnets. Chaudhary et. al. [3] propose
a detection model using a clustering algorithm. Stevanovic et al. [16] work with
categorizing the network-based and client-based approaches for botnet detection.
These works can again be broadly categorized into centralized, decentralized, and
protocol-independent approaches.

The centralized approaches mainly work with the packet-based features and
has a few real-time applications. Livadas et al. [11] propose an approach for IRC
botnet detection and show that the average bytes per second has a significant
impact on the results. The decentralized approaches mainly target P2P traffics.
Saad et. al. [15] focus on the feature selection for botnet detection and have
grouped a total of 17 features into flow-based and host-based groups. They show
that the flow based group helps to detect P2P traffics whereas the host-based
group is good at detecting C&C communication patterns. Zhao et. al. [23] work
with the same feature set but focusing on the machine learning techniques. They
show that using first packet size (FPS) and number of reconnect attempts, it
is possible to detect the botnets that the model has never seen before. Finally,
Protocol independent approaches find patterns in the behavior of bots that are
within the same bot network. Clustering analysis for this kind of traffic is per-
formed using BotMiner.

Among the works under second category, Beigi et. al. [2] propose the feature
grouping of 16 features and work on selecting one feature from each group and
achieve a detection rate of 69%. The proposed algorithm consists of two iterative
steps. In first step, the method does the backward group elimination to find out
the least contributing group. In the second step, it identifies the most contribut-
ing feature with best accuracy from the worst group and adds the feature in the
final feature set. Hossain et. al. [7] use a different set of features and increase the
detection rate upto 91% with high accuracy. They train a model using Multi-
layer Feed Forward Network (ANN). Their feature-set includes a total of 12
features by grouping them into 8 flow-based and 4 conversation-based features.

3 Features Description

The feature selection algorithms devised in this paper are initially fed with 15
relevant flow-based features. Each feature selection algorithm then generates a
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reduced number of features that are finally used for detecting botnets. In this
section, we discuss the rationales behind selecting those 15 flow-based features.

Total Number of Packets Exchanged - (PX). This is the summation of
the number of packets exchanged between a communicating pair within a time
window. In general case, bot communicates on the network continuously to keep
the connection alive like a heart-bit. So, it usually sends uniformed sized packets
continuously. Zhao et al. [22], shows that this feature has the higher discrimina-
tory power among the other features.

Number of Small Packets Exchanged - (NSP). Exchanging small packets
(typically 63 − 400 bytes) is a known behavior of botnet communications. Many
researches found this behavior useful for detecting botnets [2,10].

Percentage of Small Packets Exchanged - (PSP). In many studies, it is
shown that the percentage of small packets is significantly higher in P2P botnet
detection [10]. It is calculated as,

Percentage of small packets exchanged =
NSP

px
∗ 100

Ratio Between the Number of Incoming Packets Over the Number
of Outgoing packets - (IOPR). Some researches have shown that there is
a number of significant directional differences found between inbound and out-
bound traffics [9] and has been used to analyse and detect the botnet behavior
[2,15]. IOPR is calculated as,

IOPR =
Total backward packets

Total forward packets

Number of Reconnects - (Reconnect). Botnet performs frequent reconnec-
tions to disguise their flow behavior such as number of packets exchanged [17].

Flow Duration - (Duration). Duration is one of the most applied charac-
teristics used in machine learning algorithms for botnet detection [11,18] Many
malicious communications follow a certain type of flow duration e.g. weasel estab-
lishes brief connections, on the otherhand Palevo botnet and IRC botnets are
known to be chatty [2] yielding long duration.

Length of the First Packet - (FPS). The length of the first packet in the
flow can have an identical behavior in case of malicious communications. Many
studies have found this characteristic is useful to detect the botnets [15,23].

Total Number of Bytes - (TBT). Generally, botnet traffic’s communication
pattern is uniform. Some botnet uses fixed length command such as Weasel [6].
Similarity of the botnet traffics can be found out using this feature [15,23].

Average Payload Packet length - (APL). This is the mean of all the forward
packet lengths and backward packet lengths in a flow. It helps to find out the
similarity in botnet traffics.
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Total Number of Packets with the Same Length Over the Total Num-
ber of Packets - (DPL). This feature represents similar communication pat-
tern. Many studies have used this feature to distinguish specific protocols [6].
DPL is calculated as,

DPL =
Sum of the number of same length packets

Total number of packets

Standard Deviation of Packet Payload Length - (PV). Many studies
use standard deviation of all payload of the packets of a flow as a feature to
differentiate IRC traffic and non IRC traffic [22].

Average Bits-per-Second - (BS). Bits per second is a useful characteristic
to analyse the network traffic flows. Average bits-per-second has been used in
online botnet detection efficiently [21].

Average Packets-per-Second in a Time Window - (PS). In a particular
time window, packets per second shows the possibility of malicious communica-
tions. This feature is also used to detect IRC and non IRC traffic [11,21].

Average Inter Arrival Time of Packets - (AIT). AIT of the packets in a
flow is used to extract the similarity in botnet traffic.

Average Packets-per-Second - (PPS). This feature is also used to find the
similar network communications. PPS is calculated as,

PPS =
Total number of packets exchanged

∑
Flow Duration

4 Dataset

For training and testing our model, the “ISCX-Bot-2014 dataset” [20] has been
used. The train data size is 5.3 GB and test data size is 8.5 GB. 43.92% of training
data is malicious which contains seven types of the botnet and the remaining
56.08% is benign traffic. Neris (IRC), Rbot (IRC), Virut (HTTP), NSIS (P2P),
SMTP Spam (P2P), Zeus (P2P), Zeus control (C & C) botnets are used for
training purposes. On the other hand, 44.97% of test data is malicious flows
that contain 15 types of botnets and the remaining 55.03% contains normal
traffic. Neris (IRC), Rbot (IRC), Menti (IRC), Sogou (HTTP), Murlo (IRC),
Virut (HTTP), etc. botnets are used in the test data.

After extracting the features, we removed null values. There were no missing
values.

5 Feature Selection Algorithms

Initially, we select 15 potential features for botnet detection. However, all
features may not be (equally) useful for building a machine learning model.
Increased number of features also increases the complexity of the model and
might reduce the overall accuracy. That is why feature selection step is needed
to find the best set of features to build a better model. In fact, the feature selec-
tion methods eliminates one or more input attribute(s) which are less important
for the model, non-informative or redundant.
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Algorithm 1. Feature Inclusion
1: Input
2: Final feature set = ∅
3: Current feature set = ∅
4: Available feature set = {f1, f2, ..., fn}
5: Output: Final feature set

6: while detection rate is increasing do
7: for each feature fi ∈ Available feature set do
8: /* Best feature inclusion step */
9: Copy final feature set into current feature set

10: Add fi in the current feature set
11: Do experiment using current feature set, calculate accuracy (ai);
12: end for
13: Find maximum accuracy, amax which is achieved in the previous step. Sup-

pose fmax is the feature yielding the best accuracy, amax;
14: Add fmax in the final feature set
15: Remove fmax from the available feature set
16: Calculate detection rate
17: end while

5.1 Notations Used

In this study we use following notations throughout the paper.

– n = Number of total features in the dataset.
– m = Number of total groups of the features.
– k = Number of the features in the largest group.

5.2 Feature Inclusion Algorithm

This heuristic method (Algorithm 1) is based on forward feature selection. The
heuristic picks the first feature from the available features (all features are ini-
tially available) that maximizes the detection rate. After selecting that feature,
it is deleted from the available feature set and the procedure is repeated with
the remaining features but with the first selected feature already included in the
set. The process is repeated as long as the detection rate increases.

Complexity Analysis: Initially, all features are in the available feature set.
Statement 7 picks one feature at a time from the available feature set. Statements
7–12 runs

(
n
1

)
times. Statement 13 finds the maximum accuracy of previous step

which runs n times. Statements 14–16 take constant time to run. After complet-
ing first iteration, selected best feature is included in the final feature set and it
is excluded from the available feature set. So in the next iteration, Statements
7–12 run

(
(n−1)

1

)
times. Statement 13 also runs (n − 1) times. Therefore, the

complexity of the,
1st iteration, n + n = O(n)
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2nd iteration, (n − 1) + (n − 1) = O(n − 1)
n th iteration, (n − n + 1) + (n − n + 1) = O(1)
In worst case, the while loop in Line 6 runs n times yielding,

(n + (n − 1) + (n − 2) + ... + 1) =
n(n + 1)

2
= O(n2)

Therefore, the time complexity in worst case becomes O(n2).

5.3 Feature Exclusion Algorithm

This heuristic method performs backward feature elimination technique. This
method is presented in [7]. At first, all the features are included in the avail-
able feature set. Then the features are checked one at a time and the feature
that minimizes the detection rate most is selected for elimination. Once it is
removed from the set of available features, the whole process is repeated with
the remaining features. The process is repeated as long as the detection rate
increases. Algorithm 2 summarizes the process.

Complexity Analysis: Initially all features are in available feature set. State-
ment 5 picks one feature at a time from the available feature set. Statements
5–10 runs

(
n
1

)
times. Statement 11 finds the maximum accuracy of previous step

which runs n times. Statements 12–13 take constant time to run. After complet-
ing first iteration, selected worst feature is excluded from the available feature
set. So in next iteration, Statements 5–10 run

(
(n−1)

1

)
times. Statement 11 also

runs (n− 1) times. Therefore, the complexity of the 1st iteration, n+ n = O(n)
2nd iteration, (n − 1) + (n − 1) = O(n − 1)
n th iteration, (n − n + 1) + (n − n + 1) = O(1)
In worst case, the while loop in Line 4 runs n times yielding,

(n + (n − 1) + (n − 2) + ... + 1) =
n(n + 1)

2
= O(n2)

Therefore, the time complexity in worst case becomes O(n2). In wrapper
method, if we search the entire space of all possible combinations of features
then the process becomes almost infeasible if number of features is large. For
example, for 15 features, one need to consider 215 or 32768 different combina-
tions. In order to reduce the search space, in next three heuristics, we categorize
the features into four groups based on their relevance with each other as in [2].
Following is the list of groups:

– Byte-based: TBT, APL, DPL, PV
– Time-based: BS, PS, PPS, AIT
– Behavior-based: Reconnect, Duration, FPS
– Packet-based: PX, NSP, IOPR, PSP
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Algorithm 2. Feature Exclusion
1: Input

2: Available feature set = {f1, f2, ..., fn}
3: Output: Final feature set

4: while detection rate is increasing do
5: for each feature fi ∈ Available feature set do
6: /* Feature exclusion step */
7: exclude feature fi
8: Do experiment using all remaining features, calculate accuracy (ai);
9: Add fi in Available feature set

10: end for
11: Find maximum accuracy, amax which is achieved in the previous step. Let’s

consider fmax is the feature yielding worst accuracy, so it is selected for exclusion;
12: Remove fmax from available feature set
13: Calculate detection rate
14: end while

Algorithm 3. Feature Inclusion with Group Sequencing
1: Input

2: Current feature set = ∅
3: Output: Final feature set
4: Procedure: getSortedGroup

5: for each group gi ∈ (g1, g2, ...gm) do
6: include all features of gi in current feature set
7: Do experiment using current feature set, calculate accuracy (ai);
8: Include ai in current test accuracy
9: Exclude features of gi from current feature set

10: end for
11: /* Best to worst group */
12: Sort current test accuracy in descending order
13: Return sorted group set, gsort = {g1, g2, .., gm}
14: Procedure: getFinalFeatureSet

15: for each group gi ∈ gsort & detection rate increases do
16: Current features = ∅
17: Final feature set =∅
18: C is the set of combination of features of gi
19: for each combination cj in C do
20: /* Member inclusion step */
21: Add cj to current features set
22: Do experiment and calculate accuracy (aj);
23: Remove cj from Current features set
24: end for
25: Find maximum accuracy amax achieved in the previous step. Let’s consider

cmax is the combination of the best feature(s) in group gi. So, it is added to the
final feature set;

26: Calculate detection rate
27: end for
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Algorithm 4. Best Feature Combination from Worst Group
1: Input

2: Initialize all groups
3: Current feature set = set of all features
4: Final feature set = ∅
5: Detection rate is calculated by applying all features

6: Output: Final feature set

7: while detection rate is increasing do
8: for each group gi ∈ (g1, g2, .., gm) do
9: /* Group exclusion step */

10: Exclude all features of gi from current feature set
11: Do experiment using all remaining features (including final feature set),

calculate accuracy (ai);
12: Put back all features of gi in current feature set
13: end for
14: Find maximum accuracy, agmax achieved in the previous step. Let’s consider

gmax is the worst performing group so it is selected as the candidate for exclusion;
15: C is the set of combination of features of gmax

16: for each combination cj of C do
17: /* Member inclusion step */
18: Add cj and exclude remaining features of gmax;
19: Do experiment and calculate accuracy (aj);
20: end for
21: Find maximum accuracy afmax, achieved in the previous step. Let’s consider

cmax is the combination of the best feature(s) in group gmax. So, it is added to the
final feature set;

22: Calculate detection rate
23: end while

5.4 Feature Inclusion with Group Sequencing

This heuristic performs small-scale exhaustive feature selection. At first, features
are divided into m groups. Instead of picking groups one by one, we rank the
groups based on the detection rate they provide. Then, we select one group at
a time from the best to worst performing. Once a group is selected, we run
exhaustive feature selection technique by generating all possible combination of
features of the group. The best performing combination is added to the final
feature set and the process is repeated with the next best performing group
until the detection rate can not be increased any more. Algorithm 3 shows the
procedure in details.

Complexity Analysis. Procedure getSortedGroup has two steps. Statements
5–10 calculate the accuracy for each group which take m time. Then, it sorts
the groups based on the accuracy result which takes (mlog(m)) time. So this
procedure has a time complexity of m + (mlog(m)).
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For the procedure getFinalFeatureSet, Statement 18 generates all combina-
tion of features of a group. The total combinations is C(k, i) = 2k. Statements
19–24 run 2k times. Statement 25 finds the maximum accuracy of previous step.
So, it runs 2k times as well. Statement 26 takes constant time. This procedure
can run at most m times. So, Statements 15–26 runs m times in worst case
as we have m number of groups. Total time complexity of this algorithm is
(m + mlog(m)) + (m ∗ 2k) = m ∗ 2k Time complexity is O(m ∗ 2k) where the k
is the maximum number of features in the groups.

5.5 Best Features from Worst Group

In this heuristic, we use both backward feature elimination and exhaustive fea-
ture selection techniques in two steps. It starts with all features and remove
groups one by one to find out the least contributing group in the overall accu-
racy. After identifying the worst performing group it becomes the candidate for
group exclusion. Then next step is feature inclusion which exhaustively searches
from all possible combination of features of the candidate group that can pro-
vide the best overall accuracy. Thus, a set of the best feature(s) from the least
contributing group is selected and included in the final feature set. The process
is repeated and the procedure ends as soon as the detection rate gets decreased.

Complexity Analysis: In Statement 8, each time one group is picked from
the available group set. So, in first iteration of the while loop, Statements 8–
13 run

(
m
1

)
times. Statement 14 finds the maximum accuracy of previous step.

If available group set is m then it takes m times. Statement 15 generates all
combination of feature sets of a group. In worst case, a group may have k fea-
tures. Then total features set will be C(k, i) = 2k. Statements 16–20 run 2k

times. Statement 21 finds the maximum accuracy of previous step. So, it runs 2k

times as well. Statement 22 takes constant time. After completing first iteration,
selected worst group is excluded from the available group set. So in the next
iteration, statement 8–13 run

(
(m−1)

1

)
times. Statement 14 also runs (m − 1)

times. Thus time complexity of the:-
1st iteration, m + m + 2k + 2k + 2k = O(m + 2k)
2nd iteration, (m − 1) + (m − 1) + 2k + 2k + 2k = O((m − 1) + 2k))
m th iteration, (m−m+1)+(m−m+1)+2k +2k +2k = O((m−m+1)+2k)).
The while loop in Statement 7 run at most m times. Statement 7–23 run m
times at most. So the algorithm runs (m ∗ (m + 2k)) times at most. Thus the
time complexity becomes O(m ∗ 2k) where the k is the maximum number of
features among all the groups.

5.6 Best Feature Combination from Best Group

In this heuristic again two steps are performed, one is the group inclusion and the
second is feature inclusion step. The algorithm starts with an empty feature set.
At first, forward feature selection technique is applied on the available groups
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to find out the best performing group. This best group is the candidate group
for the next step. Then exhaustive feature selection technique is applied on
the features of the candidate group. One by one combination of features of
the candidate group is included in the feature set and the overall accuracy is
calculated. After completing this step, a set of the best feature(s) from the best
group is selected. This selected feature (s) is included in the final feature set.
The procedure continues until the detection rate cannot be improved.

Complexity Analysis: In Statement 7, each time one group is picked from
the available group set. So, in first iteration, Statements 7–12 run

(
m
1

)
times.

Statement 13 finds the maximum accuracy of previous step. If available group
set is m then it takes m times. Statement 15 generates the combination of feature
set from all features of a group. In worst case, a group may have k features.
Then total features set will be C(k, i) = 2k. Statement 16–22 run 2k times.
Statement 23 finds the maximum accuracy of previous step. So, it runs 2k times
as well. Statements 14 and 24 take constant time. After completing first iteration,
selected best group is excluded from the available group set. So in next iteration,
statement 7–12 run

(
(m−1)

1

)
times. Statement 13 also runs (m − 1) times. Thus

the time complexity of,
1st iteration, m + m + 2k + 2k + 2k = O(m + 2k)
2nd iteration, (m − 1) + (m − 1) + 2k + 2k + 2k = O((m − 1) + 2k))
m th iteration, (m−m+1)+(m−m+1)+2k +2k +2k = O((m−m+1)+2k)).
The while loop in Line 6 can run at most m times. Statement 6–25 run m times
at most. So the algorithm runs (m ∗ (m + 2k)) times at most. Time complexity
is O(m ∗ 2k) where the k is the number of maximum features of the groups.

6 Experimental Results

In this section, we discuss about performance metrics and performance com-
parison of the five feature selection heuristics that we propose. Feature vectors
were extracted in the 60 s time windows as in Beigi et. al. [2] just to make two
algorithms comparable. The feature vectors were then passed to the detection
module where the decision tree model was applied

6.1 Performance Metrics

We consider four performance measures namely accuracy, detection rate, false
alarm and precision. Using four categories true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) the definition of four metrics
are as follows:

Accuracy. Accuracy is the ratio of correctly classified data over total input
samples. Accuracy = (TP+TN)

(TP+TN+FP+FN) .

Detection Rate (True Positive Rate). Detection rate is the proportion of
true positive over actual positive data. DetectionRate = (TP )

(TP+FN) .
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False Alarm. False alarm is the proportion of false positive & actual false data.
FalseAlarm = (FP )

(FP+TN)

Algorithm 5. Best Feature Combination from Best Group
1: Input

2: Available group set ={g1, .., gm}
3: Current feature set = ∅
4: Final feature set = ∅
5: Output: Final feature set

6: while detection rate is increasing do
7: for each group gi ∈ available group set do
8: /* Group inclusion step */
9: Copy Final feature set into Current feature set

10: Include features of gi in Current feature set
11: Do experiment using Current feature set, calculate accuracy (ai);
12: end for
13: Find maximum accuracy, agmax achieved in the previous step. Let’s con-

sider, gmax is the best performing group. So it is selected as the candidate group
for inclusion;

14: Exclude group gmax from Available group set
15: C is the set of combination of features of gmax

16: for each combination cj of C do
17: /* Member inclusion step */
18: Copy Final feature set into Current feature set
19: Add cj in Current feature set
20: Do experiment using Current feature set and calculate accuracy (aj);
21: Remove cj from the Current feature set
22: end for
23: Find maximum accuracy afmax which is achieved in the previous step. Let’s

consider cmax = {f1, ..fk} is the set of best feature(s) in group gmax. So it is added
to the Final feature set;

24: Calculate detection rate
25: end while

Precision. Precision is defined as, Precision = (TP )
(TP+FP )

In Table 1 we summarize the results of the five heuristics and compare their
performance with the result of Beigi et. al. [2]. Among the five heuristics, Best
Feature Combination from Worst Group (Algorithm 4) generates the best accu-
racy (80.07%) with least false alarm rate (13.53%) and best precision (80.79%),
whereas Feature inclusion heuristic (Algorithm 1) outperforms rest of the heuris-
tics in terms of detection rate (90.07%).

7 Discussion

Mainly, we try to propose different heuristics of selecting features and compare
them in term of complexity & performance. Our goal is to improve result than
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previous work [2]. All of our algorithms outperform Beigi et. al. [2] on the same
data set in terms of detection rate. On the other hand feature inclusion yields
best detection rate of 90.07% which also runs in polynomial time.

Table 1. Result Analysis of All Five Algorithm

Contributor Algorithm Selected features Accuracy (%) Detection
rate (%)

False alarm
rate (%)

Precision
(%)

This paper Feature Inclusion BS, TBT 74.23 90.07 38.28 65.03

This paper Feature exclusion DPL, Duration, FPS,
IOPR, NSP, PS, PX

70.16 77.86 35.92 63.14

This paper Feature Inclusion with
Group Sequencing

APL, DPL, IOPR,
TBT

65.48 76.52 14.73 77.83

This paper Best Feature
Combination from
Worst Group

APL, BS, DPL,
Duration, FPS, IOPR,
NSP, PSP, PV, PX,
Reconnect, TBT

80.07 72.0 13.53 80.79

This paper Best Feature
Combination from Best
Group

AIT, APL, DPL,
IOPR, TBT

78.58 72.17 16.34 77.73

Beigi et. al. [2] Group Based Feature
Selection

APL, IOPR, BS,
Duration

75 69 2.3 unknown

8 Conclusions

Machine learning provides viable solution for botnet detection. A good machine
learning-based solution detects botnets more accurately, triggers low false alarm
and runs in reasonable time. In this paper, we have considered all of these as
our major goals. We have also experimentally analyzed the features to find their
relevance in detecting malicious traffics. We proposed several heuristics to select
important features from the available feature set which in turn increases the accu-
racy and reduces the run time of a machine learning model. We have evaluated
the performance of the proposed methods and have reviewed other state-of-the-
art methods for botnet detection. Our selected feature set performs reasonably
well in the machine learning model for identifying the botnets.

Acknowledgement. The author acknowledges Bangladesh University of Engineering
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Abstract. Crop diseases are a considerable threat in the agricultural sector as they
adversely affect the production and quality of agricultural products, resulting in
heavy economic losses for both farmers and the country. Therefore, early identi-
fication and diagnosis of crop diseases at each stage of their lifespan is critical to
protect and maximize crop yields. In this paper, we have proposed a novel deep
learning model that utilizes the began to generate synthetic images of crop leaves
in order to improve the network generalizability. Thereafter, a hybrid InceptionV3
+ RF model is trained on real and synthetic images using transfer learning to
classify crop leaves images in ten categories.

Keywords: Boundary equilibrium generative adversarial network · Hybrid
InceptionV3-RF model · Classification accuracy

1 Introduction

Agriculture is the pillar of several nations. Due to global population growth, the demand
for agricultural production is surging. Tomeet this pressing need, it is mandatory to boost
agricultural productivity and protect cultivated crops. However, cultures are highly sus-
ceptible to various diseases owing to numerous pathogens existing in their environment.
Some of these agents are viruses, while others are fungi or bacteria (Lucas et al. 1992).
The untimely recognition of some viral diseases can have devastating effects on food
sustainability and decrease productivity by 10 to 95% (Shirahatti et al. 2018). There-
fore, early disease identification is crucial to prevent enormous losses and minimize the
overuse of pesticides, which can harm both human health as well as the environment.
In most cases, and notably in developing countries and on small farms, farmers still
identify crop diseases through the naked eye, relying on visual symptoms. This is very
time-consuming, laborious, and requires expertise in plant pathology (Liu et al. 2020).
Thus, this visual observation method is not convenient and feasible for big farms and
could even provide faulty predictions due to biased decisions (Singh and Misra 2017).
To this end, many researchers have developed numerous methods (Afifi et al. 2020;
Mugithe et al. 2020) based on computer vision, deep and machine learning to automate
the process of disease detection. Deep learning has revolutionized the field of computer
vision and is emerging as a mainstream tool for numerous applications. Popularized
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by supporting frameworks like TensorFlow (Abadi et al. 2016) and PyTorch (Paszke
et al. 2019), DL is advantageous as it abolishes the need for manual feature engineering
upon unstructured datasets. The classification layer of a deep learning model driven
by fully connected layers may lead to overfitting when fed with fewer data or even, in
most cases, these models demand needless use of computational power and resources,
which is not the case with classical machine learning algorithms. Hence, we leveraged
the advantages of DL and ML and mitigated the drawbacks of both techniques to obtain
more accurate and lower computational cost solutions by applying deep hybrid learning.
Generally, the performance of CNN architectures depends highly on the availability of
the training dataset. Collecting real crop leaf disease datasets is an intricate and costly
procedure that demands the collaboration of experts from different fields at contrasting
levels. Even though public datasets are available, most of them are still limited in size
and applicable to specific tasks. The employment of classical data augmentation has
been reported in various publications (Perez and Wang 2017) to expand the training set
and balance classes. Nevertheless, the diversity that can be obtained from such image
alterations (such as translation, rotation, scaling, and flipping) is relatively minor. This
drives us to use synthetic data, where the generated samples bring inmore variability and
can further enrich the dataset, to enhance the accuracy and recognition training process
as well as to reduce the imbalance.

Our motivation is to enhance the quality and performance of the identification model
as well as to strike a compromise between a lowmisclassification rate and high accuracy.
Therefore, we developed a novel deep hybrid learning-based framework to recognize
diseases in crops. This framework would assist farmers in the classification of diseases
affecting crops by simply grabbing an image of diseased leaves, rather than going through
expensive expert analysis. This hybridmodel consists of twomain parts; the InceptionV3
as a feature extractor and the random forest as a classifier.

The core contributions of this present study are presented below:

– Weaddress the problempersisting inGANs,WGANs, andC-GANs that consists of the
training stability and the visual quality of the generated images. Therefore, we applied
a new data augmentationmethod based onBEGAN that balances the generator and the
discriminator during training. This is a newway to control the trade-off between visual
quality and image diversity. Indeed, the discriminator used in BEGAN is implemented
like an auto-encoder, in a similar way to EBGAN. However, the difference lies in the
fact that BEGAN uses the Wasserstein distance to construct the loss function. So, it
is a simple combination of EBGAN and WGAN, but it yields a striking outcome.
Besides, the networks converge more regularly than earlier.

– The key contribution lies in developing a hybrid InceptionV3-RF model capable of
classifying leaf diseases affecting several crops while providing a better trade-off
between the highest accuracy and the lowest misclassification rate. It should be noted
that a typical InceptionV3 network uses an FC layer to make the final classification
decision. However, overfitting occurs, especially with inadequate samples, resulting
in an insufficiently robust and computationally demanding system. By using the RF
layer instead of the FC layer to make the final decision, the occurrence of overfitting
can be effectively mitigated to enhance the accuracy of crop identification further and
lessen the misclassification rate.
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The rest of this paper is arranged in the following manner: The second section
reviews the existing work in this field. Then, the third section reports the methodology
and materials needed to perform this study. Subsequently, the fourth section shows
the experimental results along with their detailed discussion, and eventually, the work
concludes with the fifth section, which addresses potential future directions for the
present work.

2 Related Work

Many researchers have encountered the problem of class imbalance owing to the scarcity
of disease lesions in real-world settings (Lu et al. 2022). So, in presence of unbalanced
data, machine learning-based algorithms tend to deal with minority samples as noise and
thenproduce a heavybias in favor of themajority class (Johnson andKhoshgoftaar 2019).
Moreover, these skewed distributions also result in failure to learn the true minority class
features due to the lack of representativeness. In this respect, this issue can be addressed
through two approaches, either to tackle it from an algorithmic perspective, by using a
heavier weight on the error term inside the loss function when the classifier misclassifies
the minority class samples (Zhou and Liu 2005), or by feeding the algorithm with the
prior class probabilities beforehand (Lawrence et al. 2012), or to address the problem
from a data perspective, by using sampling or synthesis techniques to generate or remove
samples for getting a balanced data distribution (Johnson and Khoshgoftaar 2019). We
are particularly interested in data-level solutions that perform on the training set and
modify its class distribution. As we aim to employ a hybrid deep learning-based model
that has the advantage of avoidingmanual feature extraction, embracing local connectiv-
ity and sharing of parameters, also drastically reducing the parameter number. Despite
the impressive results obtained by DL models in the field of modeling and analysis, it
has been firmly demonstrated that sourcing large-scale dataset is necessary to ensure
the performance of DL models or state-of-the-art machine learning models (Paullada
et al. 2021) while preventing overfitting. Some methods can solve overfitting problems,
such as dropout (Srivastava et al. 2014), early stopping, data augmentation, etc. Data
augmentation seeks to increase the dataset size (Kukačka et al., 2017). It is extensively
used in neural network training. There are presently two methods of data augmentation:
supervised as well as unsupervised (Shorten and Khoshgoftaar 2019). Unsupervised
data augmentation consists of learning the distribution that the data conform through
the model and randomly outputting the data that are consistent with the sample set dis-
tribution. The generator model is the most crucial technique in unsupervised learning
tasks. To date, the most popular models used are directed graphical models such as
Helmholtz machines (Dayan 2000), Deep Belief Networks (DBNs) (Hinton 2009) Vari-
ational Automatic Encoders (VAEs) (Kingma andWelling 2013), Autoregressivemodels
(AR) and Generative Adversarial Networks (GANs)(Goodfellow et al. 2014). Owing to
the GAN’s ability to adapt to the high-dimensional data distribution and outstanding
performance in generating images, the GAN is currently the leading and most promis-
ing method in the generation model. Nevertheless, GANs still encounter many unsolved
challenges: generally, they are notoriously tough to train, even with the application of
many tricks (Radford et al. 2015; Salimans et al. 2016). Balancing the convergence of
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the generator and discriminator is a daunting task: the discriminator usually wins much
more easily at the beginning of training (Goodfellow 2016). GANs are easily prone
to modal collapse, a failure state in which only one image is learned (Dumoulin et al.
2016). The repelling regularizer (Zhao et al. 2016) and heuristic regularizers like Batch
Discrimination (Salimans et al. 2016)) have been proposed to remedy this problem with
varying levels of success. Then, while the earliest variants of GANs did not have a
convergence measure, Wasserstein GANs (Dumoulin et al. 2016; Arjovsky et al. 2017)
(WGANs) have recently introduced a loss that also serves as a convergence measure. In
their implementation, it does so at the detriment of slow training, but with the advantage
of stability and greater mode coverage. Indeed, WGAN uses the DCGAN deep convolu-
tional architecture, which is proposed by (Radford et al. 2015). This model is employed
as the base architecture for many subsequent approaches to ensure stable training across
most settings.

3 Material and Methods

The following section will present the proposed method and discuss it. The functional
block diagram of the proposed method is illustrated in Fig. 1.

Fig. 1. Functional block diagram of BEGAN and hybrid InceptionV3-RF model.

Our proposed approach can be split into two parts: In the first one, synthetic images
have been produced by using BEGAN for data augmentation. In the second one, a novel
hybrid model has been developed for crop leaf disease classification in order to improve
classification accuracy and lower the misclassification rate. An in-depth description is
provided in the upcoming subsections.

3.1 Dataset

We opted for the PlantVillage open dataset (Hughes and Salathé, 2015), which contains
54,306 images of 14 crop leaf species and 38 disease kinds. We selected 13 types of
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crop leaves that exhibit a significant imbalance in the disease classes compared to the
healthy classes. The crop species on which we have worked are: blueberry, apple, corn,
cherry, grape, pepper, potato, peach, squash, raspberry, soybean, orange, and tomato.
These crop leaves are adversely affected by fungal, viral, and bacterial diseases. All leaf
images are taken on a similar grayish background. The size of the leaf images is 256 ×
256 pixels in RGB colors, whichwere captured under different weather conditions with a
standard camera. Therefore, contrast adjustment and background removal are necessary
to prevent any potential bias. It is noteworthy that the distribution of the images is uneven,
posing a problem of data imbalance, which we addressed by using the BEGAN model.

3.2 Addressing Unbalanced Data Problem by Generating Synthetic Data
with the Use of BEGAN

For the sake of preventing the network from overfitting, the Boundary Equilibrium
Generative Adversarial Network (BEGAN) is used as a data augmentation technique
to expand the dataset size. In GAN, conventional convolutional layers are employed to
build an image matrix using random noise. The GAN is made up of a discriminator
and a generator model. The generator’s work consists of producing fake images and the
discriminator’s work consists of distinguishing real images from fake ones. Both the
generator and the discriminator train simultaneously and attempt to outperform each
other. The discriminator ensures that the fake images generated by the generator are
as close as possible to the real ones. In our method, we employ an auto-encoder as
a discriminator as pioneered in EBGAN (Zhao et al. 2016). Considering that typical
GANs try to directly match the data distributions, our approach aims to match the loss
distributions of the autoencoders through a loss derived from the Wasserstein distance.
For this, we use a typical GAN objective with the insertion of an equilibrium term
to balance the discriminator and the generator. Our BEGAN model has a much easier
training procedure that uses a simpler neural network architecture than typical GAN
techniques.

Fig. 2. Dataflow chart of the BEGAN model.
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As shown in Fig. 2, we denote the generator by G with parameter θG , and the
discriminator by D with parameter θD whose input can be the real or generated samples
fromG and z stands for the initialized uniform random samples. For each training epoch,
the modeling goal is to minimize the error functions of D and G as well as to maximize
θD and θG . Also, BEGAN introduces as γ an equilibrium term to trade off the effort
allocated to the discriminator and generator. It is also denoted as the diversity ratio.
Smaller values of γ result in better sample quality but poorer diversity, because the
discriminator tends to focus more on the autoencoding of the real samples.

Lower Bound of the Wasserstein Distance for Autoencoders
We are interested in studying the effect of matching the error distribution instead of
directly matching the sample distribution. Firstly, we introduce the autoencoder loss,
followed by the computation of a lower bound of the Wasserstein distance between
the autoencoder loss distributions of forged and real samples. In the first instance, we
introduce the loss L : RNx → R

+ for training a pixelated autoencoder as:

L(ν) = |ν − D(ν)|ηwhere
⎧
⎨

⎩

D : RNx �→ R
Nx is the discriminator function

η ∈ {1, 2} stands for the target norm
v ∈ R

Nx is an example of dimensionNx

Consider μ1,2 as two autoencoder loss distributions, let �(μ1, μ2) be the coupling
set ofμ1andμ2aswellasletm12 ∈ Rbethei r corresponding means. The Wasserstein
distance is expressed as the following: W1(μ1, μ2) = inf

γ∈�(μ1,μ2)

E(x1,x2)∼γ [|x1 − x2|]
From Jensen’s inequality, we are able to derive a lower bound toW1(μ1, μ2) :

inf E[|x1 − x2|]inf |E[x1 − x2]| = |m1 − m2| (1)

Note that we seek to optimize a lower bound of the Wasserstein distance between the
loss distributions of the autoencoder and not between the distributions of the samples.

GAN Objective
The discriminator is designed to maximize Eq. 1 among the auto-encoder losses. Con-
sider μ1 as the loss distribution L(x), where x represents real samples. Then let μ2 be
the loss distribution L(G(z)),whereG : RNx → R

Nx denotes the generating function
and z ∈ [−1, 1]Nz are uniform random examples of dimension Nz.

As m1,m2 ∈ R
+ so there are just two possible solutions to maximize |m1 − m2|:

(a)

⎧
⎨

⎩

W1(μ1, μ2)m1 − m2

m1 → ∞
m2 → 0

or (b)

⎧
⎨

⎩

W1(μ1, μ2)m2 − m1

m1 → 0
m2 → ∞

We choose the solution (b) for our purpose because minimizing m1 naturally results
in auto-encoding of the real images. Given the generator and discriminator parameters
θG and θD, each being updated byminimizing the LG and LD losses, we state the problem
as the GAN objective, where zG and zD represent samples from z:θG and θD, each being
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updated byminimizing the LG and LD losses, we state the problem as theGANobjective,
where zG and zD represent samples from z:

{LD = L(x; θD) − L(G(zD; θG); θD) forθD
LG = −LD forθG

(2)

Throughout the following, we employ a shortened notation: L(.)= L(.; θD) and G(.)=
G(.; θG). Although this equation is similar to WGAN, it contains two significant
differences:

Firstly, we fit the distributions between losses, rather than samples. Secondly, the
discriminator is not explicitly required to be K-Lipschitz because the duality theorem of
Kantorovich and Rubinstein (Villani 2009) is not used. For approximating functions, it
is also necessary to consider the representation capabilities of each function D and G.

Equilibrium
Practically, it is very essential to keep the losses of the generator and the discriminator
in balance; we deem them to be in equilibrium when:

E[L(x)] = E[L(G(z))] (3)

In case we generate samples that are indistinguishable from true samples by the discrim-
inator, the distribution of their errors must be the same, along with their expected error.
Through this concept, we can strike a balance between the effort allocated to the gener-
ator and the discriminator so that neither gain against the other. To ease the equilibrium,
we can introduce a new hyper-parameter γ ∈ [0, 1] defined as follows:

γ = E[L(G(z))]
E[L(x)] (4)

The discriminator in our model has two concurrent objectives, to auto-encode the real
images as well as discriminate the real images from the spawned images.

Boundary Equilibrium GAN
BEGAN’s objective is:

⎧
⎨

⎩

LD = L(x) − kt · L(G(zD)) forθD
LG = L(G(zG)) forθG
kt+1 = kt + λk(γL(x) − L(G(zG))) foreachtrainingstept

We use the theory of proportional control to keep the equilibrium E[L(G(z))]= γ

E[L(x)]. This is realized by using a variable kt ∈ [0, 1] to monitor the importance given
to L(G(zG)) during the gradient descent. By default, we initialize k0= 0. λk equals the
proportional gain for k; in terms of machine learning, it refers to the learning rate for k.

We employed k = 0.001 in our experiments. During the early stages of training,
G is prone to generate data that is easy for the auto-encoder to reconstruct because the
generated data is near 0 and the distribution of the actual data has not yet been accurately
learned. This results in L(x)> L(G(zG)) at the beginning and this is maintained for the
entire training process by the equilibrium bound.
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3.3 Crop Foliar Disease Detection Using the InceptionV3-RF Hybrid Model

Our drivingmotivation is to enhance the quality and performance of the detectionmodel.
Indeed, the particularity of our study compared to other works is that we are not only
seeking a high accuracy but also investigating if the model has been able to identify
the disease successfully, i.e., the classifier may provide high accuracy, but at the same
time, the misclassification rate is also very elevated and unacceptable. For this reason,
we resort to the confusion matrix and we strive to lessen the false negative (FN), i.e. the
leaves that were classified as healthy but are actually diseased.

1) InceptionV3 architecture: Inception vNwas first introduced in theGoogLeNet archi-
tecture by (Szegedy et al., 2016) with N referring to the version number. (Szegedy
et al., 2016) proposed the InceptionV3 architecture, which provides updates to the
Inception module to similarly increase the accuracy of ImageNet classification. This
Inception module consists of convolutions, maximum pooling, medium pooling,
dropping, fully connected layers, and concatenations. Batch normalization is widely
used in the inceptionV3 and applied to the activation inputs.Weused the InceptionV3
model with pre-trained weights on the ImageNet dataset for comparison purposes.

2) Random Forest (RF): (Liu et al. 2012) is part of machine learning techniques for
solving classification and regression problems. It allows combining the concepts of
random subspaces and bagging and also performs training onmultiple decision trees
trained on slightly different data subsets.

3) Our proposed hybrid model: Accordingly, our hypothesis is to combine the incep-
tionV3 and random forest models, to take benefit of the high accuracy offered by the
InceptionV3 network and the lower FN afforded by the random forestmodel Figure 3
displays the InceptionV3-RF architecture in detail, including convolutional layers,
pooling layers, fully connected layers, and dropout. The network implementation
has one extra linear layer for linear activation. Inception’s convolution layers employ
rectified linear activations. The InceptionV3 features a receptive field of size 229
*229 in RGB color space with zero average. This paper investigates a customized
deep learningmethod of pixel-based crop disease classification, which is constrained
by the number of bands, so the convolutional filter width was set to 2. Subsequent 2
* 2 continuous convolutional kernels were chosen to substitute the largest convolu-
tional kernel to assure the enhancement of the network depth under the same insight.
In the InceptionV3 network structure combined with the random forest algorithm,
we tested the hyperparameters as well as picked the optimal values of the hyperpa-
rameters for the network training. The first convolution layer channel numbers were
measured equal to 32, 64, and 128, The optimal value for the first convolution layer
is 64. Throughout the training process, the pooling layers were set to “max-pooling"
using a window size of 2 * 2. Dropout is a regularization technique in which some
neurons are randomly discarded. The proportion of eliminated neurons was fixed at
50%. The InceptionV3 contains three fully connected layers at the output. The FC
layer output feature vector was pulled and placed into a random forest (RF) for clas-
sification. The hybrid InceptionV3-RF model used the high-dimensional features
extracted by Inception V3 and combined the advantages of RF to substitute the fully
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connected layer (FC) so as to make the ultimate decision. The model is trained on
40 epochs and yields an accuracy of 96,68%, as shown in Fig. 7.

4 Experimental Results

The present section covers the implementation details of our proposed method and the
analysis of the results. Two experimental sets have been conducted. Under the first
set of experiments, the BEGAN model has been trained on the training set for 10000
epochs to generate synthetic images of crop leaves for each category. The generator
and discriminator model weights were updated after each epoch so as to produce forged
images as closely as possible to the real images. At the completion of the network
training, we generated 9000 synthetic images of crop leaves from the BEGAN model.
Under the second set of experiments, the InceptionV3-RF hybrid model was trained on
both the original and synthetic training set.

4.1 Experimental Setup

The experiments were performed on Google Colaboratory and on a local HP pavilion
machine with 16 GB of RAM. The Colab gives access to speedy TPUs and runs on
Ubuntu 17.10 64-bit and is consisted of an Intel Xeon processor along with 13 GB
of RAM. It is powered by an NVIDIA Tesla K80 processor, 12 GB RAM, and 2496
CUDA. We ran the experiments in Python, using the PyTorch library, which carries
out automatic differentiation on dynamic computational graphs. Additionally, we used
the Colaboratory accelerated runtime TPU which is adequate not only for accelerating
operations such as deep learning but also for handling other GPU-centric apps. TPUs are
also deemed faster than GPUs, and each TPU brings up to 180 teraflops of floating-point
performance and 64 GB of memory with high bandwidth on a single card.

4.2 The Hyperparameters Selection for the BEGAN Training Aimed at Data
Augmentation

To obtain better performance, the hyperparameter choice is crucial. As such, the param-
eter values that we chose are based on either documented value in the published lit-
erature or on our empirical study. Due to the model’s ability to learn the features of
low-resolution images, we scaled the RGB images to 64 × 64 for computational cost
reduction. We trained the BEGAN model for 10000 epochs according to the loss func-
tion convergence, we experimented with different learning rates and 0.001 seems to be
a local optimal value. A similar empirical investigation prompted us to select 0.2 as the
dropout rate. The synthetic images generated by the BEGAN model are displayed in
Fig. 4.
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Fig. 3. Synthetic images generated by the BEGAN model.

Fig. 4. Sample input image (left) and background removal from the leaf (right).

4.3 Hyperparameters Selection for Training the Inceptionv3-RF Hybrid Model

Once the synthetic images were generated using BEGAN, we merged the two datasets
to feed our hybrid model for disease classification purposes. It should be noted that in
this study, we are dealing with a multi-classification task, which means that the model
can classify the disease species of each crop class. To speed up the network training,
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we preprocessed the images before introducing them to our hybrid model, by scaling
down the image size, and removing the leaf background as shown in Fig. 5. Then, we
introduced these images to both the hybrid model and the InceptionV3 architecture.
For benchmarking purposes, we have trained the InceptionV3 network and assessed its
performance to pinpoint its weaknesses, whichwe subsequently overcame by combining
this architecture with the RF, allowing us not only to improve the accuracy but also to
reduce the error rate in classifying diseased leaves. We have selected the SGD optimizer
with a learning rate equal to 0.001 and for the loss function,we have chosen cross-entropy
loss, which measures the performance of the model. Regarding the choice of the batch
size, we selected a batch size of 16, 32, 64, 128, and 256 to elaborate an experimental
comparison, since a small batch size enables the network to converge faster by updating
the parameters more frequently, but using a large batch size, we obtain higher gradient
confidence. Consequently, we adopt a batch size equal to 64 because when we tried
other batches, we found that the network loss oscillation fluctuated more. For classifier
training, we found that the classifiers converge after 40 epochs.

Fig. 5. Curve representing the accuracy value for the InceptionV3 architecture.

Therefore, we reported the performance of the trained classifiers over 40 epochs. So,
this configuration gave us an accuracy of 94.71% for InceptionV3 and 96.68% for the
hybrid InceptionV3-RF model as shown in Figs. 6 and 7 on our test set.
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Fig. 6. Curve representing the accuracy value for the hybrid InceptionV3-RF model.

Fig. 7. Curve representing the accuracy value for the hybrid InceptionV3-RF model.

4.4 Performance Measures

In thiswork, the confusionmatrixwas employed to thoroughly assess the results obtained
by the hybrid model. This confusion matrix data depicts the actual class in the samples
and one predicted by the InceptionV3-RF model. Generally, the four metrics comprise
true negatives (TN), true positives (TP), false positives (FP), and false negatives (FN).The
model performance was assessed based on certain statistical parameters of the confusion
matrix, such as accuracy, precision, precision, and F1-score. The performance evaluation
was done by running images from the validation set with their respective labels, which
had not previously been used for training. Table 1 provides the performance evaluation
formulas and the results attained by the models. According to Table 1, we can clearly
observe that the measurements of our proposed hybrid model have all been significantly
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improved to the InceptionV3 architecture. Note that we are extremely concerned about
the recall that calculates the ratio of true positives, meaning that if an infected leaf is
predicted to be healthy, then the consequences will be extremely severe if the leaf disease
is contagious. The values of all tested measures were greater than 94.34% To gain a
better grasp of the classification results, we have used the confusion matrix. Figures 8
and 9 present the confusionmatrix graphs of the twomodels. The abscissa in a confusion
matrix plot represents the predicted label and the ordinate represents the actual label. The
diagonal of the confusion matrix includes the correctly classified instance data, while
the values above and below the diagonal contain the incorrectly classified instances.
It is then possible to visually assess the models’ performance. By examining Fig. 9,
we can notice that several crop classes are generally correctly classified, however, the
InceptionV3 network failed to classify a few classes, where we observe soaring values
in the matrix, respectively: 173 images of squash leaves affected by powdery mildew are
predicted as healthy potato leaves, 128 corn leaf images affected by Northern leaf blight
are predicted to be of the class of corn leaf affected by Cercospora spot,115 images
of healthy potato leaves are classified as the cherry leaf affected by powdery mildew,
94 images of healthy blueberry leaves are predicted as the pepper leaf class, and 93
images of healthy cherry leaves are predicted as being from the class of healthy pepper
leaf and finally, 60 images of healthy cherry leaves are predicted as images of orange
leaves affected by Huanglongbing. So, with the aim of minimizing the error rate, we
combined this architecture with the Random Forest algorithm. According to Fig. 9, the
misclassified classes of 173, 128, 115, 94, 93 and 60 are respectively dropped to 15, 9, 0
(no misclassified image), 6, 0 and 0. Moreover, the confusion matrix in Fig. 9 reveals the
success of the proposed hybrid model for the majority of classes by showing outstanding
discrimination.

Table 1. The test set performance of the two models considered in this study.

Metrics Formula InceptionV3 InceptionV3-RF

Accuracy Noofcorrectpredictions
Totalnoofpredictions 94.71% 96.68%

Recall TP
TP+FN 94.34% 96.47%

Precision TP
TP+FP 94.47% 96.50%

F1-score 2 ∗ Precision∗Recall
Precision+Recall 94.35% 96.48%
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Fig. 8. Confusion matrix of InceptionV3.

Fig. 9. Confusion matrix of the hybrid InceptionV3-RF model.
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5 Discussion

In the present work, we conquered the class imbalanced dataset issue by generating
synthetic images through BEGAN network. This model balances the discriminator and
generator throughout the learning process. Moreover, it succeeds in striking a compro-
mise between visual quality and image diversity. Despite the progress made by BEGAN
in terms of image quality and convergence measurement, many problems remain and
need to be optimized. At lower γ values, the produced images appear uniform and
have many noisy regions, while at higher γ values, the generated images become more
diverse but the quality degrades. Another shortcoming of BEGANs is that the generator
is unable to learn features with low probability.We can proceed in our forthcomingwork,
by appending denoising loss to the discriminator in order to mitigate the noisy regions
in the generated images as well as to further improve diversity, we will introduce batch
normalization. Our results show that the BEGAN-based data augmentation method has
been able to attain a decent result in the PlantVillage dataset. Also, the effectiveness of
synthetic data augmentation using BEGAN can be tested on a large range of datasets
facing data scarcity and imbalance, i.e. when collecting a high number of data samples
is a daunting task. Nevertheless, the network capability remains insufficient when it
concerns images with intricate backgrounds. Consequently, our future work will con-
centrate on expanding the network parameters to enhance the fitting capacity, lower the
computational resources and produce images with higher resolution.

Besides, the experimental findings demonstrate the superiority of our proposed
hybrid model over the existing DL model, indeed, the combination of BEGAN with
hybrid deep learning has improved both the overall model accuracy, recall, and F1-
score and has decreased the miss-classification rate of diseases. The proposed approach
provides a better generalization.

6 Conclusion

In this study, a novel hybrid model was proposed by combining the InceptionV3 network
and random forest that utilizes BEGAN to generate synthetic images of crop leaves in
order to improve the network generalizability and accuracy as well as to lower the mis-
classification rate. The obtained results are very promising and largely demonstrate the
dominance of the DL method, in particular our proposed model, over the classical ML
algorithms. Nevertheless, the DLmethod also has some constraints, namely, it is manda-
tory to have a very powerful GPU/TPU for training since the CNN models take a long
time to be trained and can take from hours to days depending on the size of the dataset.
Therefore, to shorten the training time, we used a pre-trained InceptionV3 architecture.
Furthermore, combining the deep network and machine learning approaches requires
far fewer CPU resources and consumes roughly half of the memory bandwidth while
producing better models. So, in the future, a web application could be deployed with a
complete system consisting of server-side components containing a trained model with
features such as a display of recognized diseases in crops that can be applied in the field
for validation and testing. Furthermore, the application could provide a discussion forum
for agronomists and farmers to discuss treatments and pre cautions for the diseases they
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have encountered. Besides, we will endeavor to reduce the learning time, computational
complexity, and size of deepmodels for running them on embedded or mobile platforms.
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Platform” project funded by the Moroccan Ministry of Higher Education and Scientific Research
- National Centre for Scientific and Technical Research (NCSTR) (PPR2 project).

References

Abadi, M., et al.: {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2016)

Afifi, A., Alhumam, A., Abdelwahab, A.: Convolutional neural network for automatic identifica-
tion of plant diseases with limited data. Plants 10, 28 (2021). In: s Note: MDPI stays neutral
with regard to jurisdictional claims in … (2020)

Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. International
Conference on Machine Learning (2017)

Dayan, P.: Helmholtz machines and wake-sleep learning. In: Handbook of Brain Theory and
Neural Network, vol. 44, pp. 1–12. MIT Press, Cambridge, MA (2020)

Dumoulin, V., et al.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)
Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.

00160 (2016)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27(2014)
Hinton, G.E.: Deep belief networks. Scholarpedia 4(5), 5947 (2009)
Hughes, D., Salathé, M.: An open access repository of images on plant health to enable the

development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)
Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J Big Data

6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.

6114(2013)
Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy. arXiv preprint

arXiv:1710.10686 (2017)
Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior

class probabilities. In: Montavon, G., Orr, G.B., Müller, K. (eds.) Neural networks: Tricks of
the trade. LNCS, vol. 7700, pp. 295–309. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35289-8_19

Liu, L., et al.: A disease index for efficiently detecting wheat fusarium head blight using sentinel-2
multispectral imagery. IEEE Access 8, 52181–52191 (2020)

Liu, Y., Wang, Y., Zhang, J.: New machine learning algorithm: Random forest. In: International
Conference on Information Computing and Applications (2012)

Lu, Y., Chen, D., Olaniyi, E., Huang, Y.: Generative adversarial networks (GANs) for image
augmentation in agriculture: a systematic review. Comput. Electron. Agric. 200, 107208 (2022)

Lucas, G.B., Campbell, C.L., Lucas, L.T.: Causes of plant diseases. In: Introduction to Plant
Diseases, pp. 9–14. Springer, Boston (1992). https://doi.org/10.1007/978-1-4615-7294-7_2

Mugithe, P. K., Mudunuri, R. V., Rajasekar, B., Karthikeyan, S.: Image processing technique
for automatic detection of plant diseases and alerting system in agricultural farms. In: 2020
International Conference on Communication and Signal Processing (ICCSP)

Paszke, A., et al.: (2019). Pytorch: an imperative style, high-performance deep learning library.
In: 32nd Proceedings on Advances in Neural Information Processing Systems (2019)

http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1511.08060
https://doi.org/10.1186/s40537-019-0192-5
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1710.10686
https://doi.org/10.1007/978-3-642-35289-8_19
https://doi.org/10.1007/978-1-4615-7294-7_2


A Novel Hybrid Deep Learning Model 283

Paullada, A., Raji, I.D., Bender, E.M., Denton, E., Hanna, A.: Data and its (dis) contents: a survey
of dataset development and use in machine learning research. Patterns 2(11), 100336 (2021)

Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621(2017)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved tech-
niques for training GANs. In: 29th Proceedings on Advances in Neural Information Processing
Systems (2016)

Shirahatti, J., Patil, R., Akulwar, P.: A survey paper on plant disease identification using machine
learning approach. In: 2018 3rd International Conference on Communication and Electronics
Systems (ICCES) (2018)

Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big
Data 6(1), 1–48 (2019)

Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft
computing techniques. Inf. Processing Agric. 4(1), 41–49 (2017)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture
for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016)

Villani, C. (2009). Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2009) https://
doi.org/10.1007/978-3-540-71050-9

Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network (2016). arXiv
preprint arXiv:1609.03126

Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks withmethods addressing the class
imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2005)

http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1511.06434
https://doi.org/10.1007/978-3-540-71050-9
http://arxiv.org/abs/1609.03126


Multivariate Skewness and Kurtosis
for Detecting Wormhole Attack in VANETs

Souad Ajjaj1(B), Souad El Houssaini2, Mustapha Hain1,
and Mohammed-Alamine El Houssaini3

1 ENSAM, Hassan II University, Casablanca, Morocco
SOUAD.AJJAJ-ETU@etu.univh2c.ma

2 Department of Computer Science, Faculty of Sciences, Chouaib Doukkali University,
El Jadida, Morocco

elhoussaini.m@ucd.ac.ma
3 ESEF, Chouaib Doukkali University, El Jadida, Morocco

Abstract. Vehicular ad hoc networks (VANETs) represent an emergent variant of
mobile ad hoc networks (MANETs) where nodes are intelligent vehicles charac-
terized with high mobility, open and shared communications. In VANETs, routing
security attacks represent a real threat to the safety of passengers and materials.
Hence, the aim of this work is to present a novel approach for detecting malicious
behavior in VANET routing protocols based on multivariate statistical method
namely: the Mardia multivariate normality test. Our detection approach is as fol-
lows: first, we monitor the network traffic in real time by simulating two scenarios
of AODV routing protocol, one normal AODV without attacks and a second with
AODV Wormhole attack. The collected data is modeled by multivariate data sets
sampled at different times of the simulation and consisting of three main parame-
ters: throughput, packet drop ratio and routing overhead. Themardia’smultivariate
skewness and kurtosis are then computed to assess the normality assumption of
the multivariate datasets. Indeed, we compare multivariate skewness and kurtosis
values against theoretical values. The measurement of these statistics will allow
identifying the Wormhole attacker’s presence whenever these coefficients fall out
of the normal ranges. Simulations of both network and realistic mobility model
are ensured by the two simulators NS-3 and SUMO.

Our approach, which is implemented in the Matlab environment, provides
a real-time detection method that uses multivariate data to identify anomalous
behavior. As per our humble knowledge, our proposed approach is the first to use
multivariate normality tests to detect attacks in VANETs. It can then be applied to
any VANET routing protocol with no additional changes to the routing algorithm.

Keywords: VANETs · AODV · Wormhole attack · Mardia test

1 Introduction

Vehicular ad hoc networks (VANETs) are a sub-category of mobile ad hoc networks
(MANETs) where nodes are intelligent vehicles characterized with highly dynamic
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environment, open and shared communications. VANETs are currently one of the most
intensively studied domains in intelligent transportation systems (ITS) used to enhance
the traffic management systems. VANETs are deployed for various reasons including
minimizing the risk of car accidents, optimizing vehicle flows by reducing travel time
and avoiding traffic congestion situations. VANETs can also provide information and
entertainment applications to road users [1, 2]. However, their deployment is subjected
to a lot of vulnerabilities and security attacks because of the open and decentralized
communications. In this context, Wormhole attack is considered among the potential
threats to the network performances and safety of both lives and equipment [3, 4].
Hence, the purpose of this study is to provide a novel solution for mitigating routing
security attacks in VANETs particularly the occurrence of the Wormhole attack against
the AODV routing protocol [5] by applying multivariate statistical techniques, namely
the Mardia normality test [6, 7]. The first step in our detection approach is to create the
input data by monitoring network traffic over time and measuring three main parameters
namely throughput, dropped packets ratio, and overhead traffic ratio. The second step is
tomodel the collected data usingmultivariate data sets and fed them to the detection step.
The detection step distinguishes between normal and attack situation by continuously
checking the dataset’s conformity to the multivariate normality assumption. We used
Mardia’s multivariate skewness and kurtosis to assess the normality assumption of the
multivariate datasets. Indeed, we compute multivariate skewness and kurtosis values and
compare them against theoretical values. For skewness, the sample is from multivariate
normal distribution if the statistic value is less than critical value, while for kurtosis, the
sample is from normal distribution if the statistic value is between lower critical value
and upper critical value. The measurement of these statistics will allow identifying an
attacker’s presence whenever these coefficients fall out of the normal ranges.

To illustrate the practicability of the proposed approach, we implemented two sce-
narios of AODV routing protocol: one normal AODV with no attacks and a second with
AODV under Wormhole attack. VANET Simulations are carried out by considering two
simulators: the SUMO (Simulation of Urban Mobility) [8] road traffic generator and
the NS-3 network simulator [9]. SUMO is used to generate mobility trace files from
real-world maps extracted from OpenStreetMap. The network simulator NS-3 then uses
these trace files as input.

The results show that our approach, which is implemented in the Matlab [10] envi-
ronment, can detectWormhole attack in real time by consideringmultiple network traffic
characteristics simultaneously. It can further be applied to any VANET routing protocol
without making any additional changes in the routing algorithm. The simulation results
show that our approach requires fewer computational requirements while still being
capable of analyzing multiple network traffic characteristics simultaneously. As per our
humble knowledge, our proposed approach may provide a new solution for the detection
of routing security attacks in VANETs.

The remainder of the paper is organized as follows: the Wormhole attack against
AODV routing protocol is presented in Sect. 2. Recent state-of-the-art solutions to ensur-
ing secureAODVrouting protocol againstWormhole attack are given inSect. 2. Section 3
describes the proposed approach, while implementation details and evaluation results are
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provided in Sect. 4. Ongoing research issues and future research directions are released
in Sect. 5.

2 Wormhole Attack Against AODV Routing Protocol

2.1 AODV Routing Protocol

Ad hoc On Demand Distance Vector (AODV) is one of the reactive protocols wherein
routes are created only when demanded. The details of AODV functioning are explained
in [11]. AODV is based on three concepts which are the route discovery mechanism, the
route maintenance and the sequence number. In the route discovery process, the source
node broadcasts an RREQ (Route Request) message to all its neighboring nodes, this
message is relayed by the intermediate nodes until reaching the destination or an inter-
mediate node that has a valid route, then an RREP (Route Reply) message is unicasted
to the source node in the reverse path. The routing tables of each node are updated after
each retransmission of RREQ and RREP messages. In AODV route maintenance mech-
anism, nodes maintain only active routes, indeed a route is considered active as long as
packets are transmitted between nodes. Furthermore AODV uses the HELLO messages
to check connectivity of the routes. AODV employs the sequence numbers which are
time stamps that indicate the freshness of a route.

2.2 Wormhole Attack

Wormhole attack is another most severe attack that may occur against AODV routing
protocol in VANETs. It is carried out in a cooperative way, where a pair of attacker
nodes forms a private and virtual tunnel between them (at distant location) representing
themselves as neighbors. The goal is to change the network topology and misguide the
network traffic. There are two ways to implement the wormhole tunnel, either using an
out of band channel, such as a high power transmission signal, or an in band route
between the compromised nodes by incorporating other network nodes. The wormhole’s
operation is depicted in the diagram below (Fig. 1).

At the first end of the tunnel (E1), the malicious node captures the control packets,
encapsulates them and forwards them to the other colluding node at the second end of
the tunnel (E2). The latter opens the encapsulated packet and spreads it. The hop count
cannot be updated because of encapsulation, regardless of the number of hops between
them. Hence, attackers are directly connected with each other and can communicate at a
fast speed with less number of hops and less time in comparison to the other nodes. This
impacts the route chosenbetween source nodeS anddestination nodeD (seeFig. 1).Node
S receives two route replies, one with a path of 5-hops, D-N4-N3-N2-N1-S, and another
with a path of 3-hops, D-E2-E1-S. S and D choose this shortest path for communication.
As a result, the routing can be affected by the Wormhole nodes in a multitude of ways:
forward data packets back and forth to each other; drop, modify, or send data to a third
party for malicious purposes.
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Fig. 1. Description of the Wormhole attack against AODV routing protocol.

3 Related Works

Numerous solutions in the previous literature were designed to detect and mitigate the
Wormhole attack. For instance, researchers of [3] proposed a hybrid Wormhole attack
detection (HWAD) algorithm to detectWormhole attack based on round trip time (RTT),
its corresponding hop count, and packet delivery ratio (PDR) for in-band type of worm
hole attacks. Additionally, a solution for detecting out-of-band Wormholes is also pre-
sented based on transmission range between successive nodes. Further, the K-Means
clustering algorithm was performed to identify the threshold value in packet delivery
ratio employed for detection.

In the paper [12], a new version of AODV routing protocol labelled AOMDV (Ad
hoc On demand Multipath Distance Vector) is proposed. This version is based on RTT
(Round Trip Time) mechanism. Indeed, RTT is computed for each path connecting a
source to a destination. The presence of Wormhole attack is detected whenever the RTT
values exceeds a threshold value determined by incorporating the corresponding hop
count.

Authors of [13] suggested an approach based on Artificial Immune System (AIS)
to countermeasure Wormhole attack. The proposed approach is divided into two stages.
The first stage evaluates the safety of candidate routes using by employing a test packet
sent for each route and the destination is required to send a confirmation packet upon
receiving the test packet.As a result, if the route containsWormhole nodes, the packetwill
not arrive at its destination and the validation packet will not be received. In the second
stage, Wormhole attacks typically have a lower hop count when compared to actual
nodes. Hence, having a low hop count in a route increases the likelihood of pollution. In
terms of dropped packet count, packet loss ratio, throughput, packet delivery ratio, and
end-to-end delay, the proposed approach is compared to other previous approaches.

In the paper [14] a new method against wormhole attack in MANET is suggested
based on the generation of multiple paths between source and destination called ‘K’
using Ad-hoc on demand Multipath Distance Vector (AOMDV) routing protocol. The
source node determines the Wormhole attacked route by checking from the destination
two types of packets namely: the detection packet (DP) and feedback packet (FP). After
figuring out the attacked paths byWormhole, the source node will use the particle swarm
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optimization (PSO) algorithm to determine the best path taking into account the attacker
free paths. The data is then delivered to the destination through the best path.

Researchers in [15] proposed a new secure variant of AODV routing protocol called
MSADOV based on the mechanism of Quality of Service (QoS) for entire network to
detect the Wormhole attacks. The modified secure AODV uses the packet forward ratio
and round trip time to prevent theWormhole attack inMANET. In addition, the proposed
approach able to detect both active and passive attacks. Authors of [16] implemented a
new hybrid cryptography method to address challenges (security and energy consump-
tion) in MANET. The Hybrid algorithm makes use of MRSA and AES, to secure data
over the network and to increase the energy efficiency and improves network lifetime.

The paper [17] proposed Wormhole attack detection system using agent-based self-
protectivemethod for unmanned aerial vehicle networks (ASP-UAVN). The source node
will initiate route request (RREQ) to the destination to detect the existing routes. Then as
soon as the route reply (RREP) is received, a self-protective technique based on agents
and the knowledge base is employed to pick out the most secure route amongst different
routes and identify the attacking UAVsThis mechanism will protect the network against
Wormhole, selective forwarding and sink hole attacks.

4 Proposed Work

The current study aims at proposing a new method for detecting Wormhole attack in
VANETs by applying the multivariate normality test used mainly in statistics to test
whether the distribution of an observed dataset follow a multivariate normal distribution
and calculating the probability that a random variable underlying the dataset is normally
distributed. The most widely used multivariate normality tests include the Mardia test,
the Henze-Zirkler test and the Royston [6]. In our study, we employed the Mardia test
which makes use of two measures: multivariate skewness and multivariate kurtosis.

Consider a set of observations denoted by X, where each observation is described by
a row vector of p variables. The data set is thus represented by a matrix Xn × p (Eq. 1).

X =

⎡
⎢⎢⎣

x11 x12 · · ·
x21 . . . . . .

· · · · · · x1p
· · · · · · · · ·

. . . . . . . . .

xn1 · · · · · ·
· · · · · · . . .

· · · · · · xnp

⎤
⎥⎥⎦ (1)

Consider the matrix of centred data:

XC = (In − 1

n
1n)X (2)

And varaince covariance matrix:

S = 1

n
XC

tX C (3)

Let:

M = XCS
−1XC

t (4)
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M =

⎡
⎢⎢⎣

m11 . . .

. . . . . .

. . . m1n

. . . . . .

. . . . . .

mn1 . . .

. . . . . .

. . . mnn

⎤
⎥⎥⎦ (5)

Mardia (1970,1974, 1980) [7] defined multivariate skewness (γ1,p) and kurtosis (γ2,p)
measures of a p-variate normal distribution as follows:

γ1,p = 1

n2

n∑
i=1

n∑
j=1

mij
3 (6)

γ2,p = 1

n

n∑
i=1

mii
2 (7)

The test statistic n
6γ1,p for skewness, is approximately chi-square distributed with.

p(p + 1)(p + 2)/6 degrees of freedom.

n

6
γ1,p ∼ χ2(df ) (8)

df = p(p + 1)(p + 2)

6
(9)

For small samples (n < 20), Mardia (1974) introduced a corrected skewness statistic
(n*k/6)γ1,p, where:

k = (n + 1)(n + 3)(p + 1)

n(n + 1)(p + 1) − 6
(10)

This statistic is also distributed as chi-square with degrees of freedom p(p+ 1)(p+ 2)/6.

nk

6
γ1,p ∼ χ2(df ) (11)

Similarly, the test statistic for kurtosis, γ2,p is approximately normally distributed with
mean p(p + 2) and variance 8p(p + 2)/n.

[γ2,p − p(p + 2)]
√

n

8p(p + 2)
∼ N (0, 1) (12)

Our proposed detection approach allows identifying legitimate behavior from malicious
one by following the steps explained below and described in Fig. 2.

Thefirst step in ourmethod includes building the input data bymonitoring in real time
the vehicular network traffic. Thismonitoring system is deployed in every receiving node
and consists of themeasurements of three key trafficmetrics namely throughput, dropped
packets ratio and overhead traffic ratio. The output data gets updated continuously over
a certain time interval. The generated data is modeled by multivariate data sets sampled
at different times. The Mardia’s multivariate skewness and kurtosis is used to assess
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Fig. 2. Flow chart of the proposed Wormhole detection method

the normality assumption of the multivariate datasets. Indeed, we compute multivariate
skewness and kurtosis values and compare them against theoretical values. For skewness,
the sample is frommultivariate normal distribution if the statistic value is less thanUpper
critical value (USC), while for kurtosis, the sample is from normal distribution if the
statistic value is between lower critical value (LKC) and upper critical value (UKC).
Based on these measured statistics, a Wormhole attacker is detected whenever these
coefficients fall out of the normal ranges.

The values of both skewness and kurtosis will allow determining the probability that
an attacker is present or not, so that observations with skewness and kurtosis values
that fall out of the normal ranges representing the normal critical value will identify
an abnormal behavior. The critical values for skeweness and kurtosis are given in the
study[18].

If Skewcalculated ≤ USCandLKC ≤ Kurtcalculated ≤ UKC. where:
USC, LKC and UKC are respectively the Upper Skewness Critical, the Lower Kur-

tosis Critical, the Upper Kurtosis Critical, so the assumption of normality is approved
and consequently we can conclude the absence of malicious behavior. Otherwise, the
normality assumption is rejected and we detect the existence of Wormhole attack. A
notification is generated as soon as the multivariate skewness and kurtosis are not in the
normal critical ranges.

Our proposed approach has numerous advantages. First, the network traffic is mon-
itored in real time using small time intervals which very useful since time is a critical
factor in detecting incidents in the VANET networks.

Further, our approach lies on the multivariate concept, which is very useful in the
context of our study. The VANET network traffic must be characterized by more than
one parameter rather an individual one. In that regard, our approach has the capability
to identify legitimate behavior from malicious one based on multiple network charac-
teristics simultaneously. We involved three main important network metrics that have
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not been previously combined for Wormhole attack detection namely the throughput,
the dropped packets ratio and the overhead traffic ratio.

5 Implementation and Results

5.1 Simulation Setup

In our study, realistic VANET scenarios are simulated using two simulators: the road
traffic generator SUMO(Simulation ofUrbanMobility) and the network simulatorNS-3.

SUMO is a free, open and microscopic simulator implemented in C++. It is destined
to simulate unlimited network size and number of vehicles. SUMO provides the ability
to configure vehicle types, traffic lights, speeds, and multi-lane roads. It also supports
model lane changes and automatic traffic light schedule generation. SUMOalso supports
the import formats, such as OpenStreetMap.We executed a set of Python command lines
on SUMO in order to generate realistic vehicle trace files that are then used as an input
by the network simulator, NS-3.

In our study, we extracted the simulation zone from OpenStreetMap, which is a
map of the city of El Jadida in Morocco, as shown in Fig. 3. The generated.osm file is
connected to SUMO to generate the mobility.tcl file with details of each node (vehicle),
including the number of vehicles, position, speed, and direction.

Fig. 3. XML file of the Simulation zone from El Jadida city edited by SUMO

Based on Linux, the system is set up and configured in an Ubuntu environment. The
simulation parameters are shown in Table 1.

Our simulations are implemented using the version 3.29 of the simulation environ-
ment NS-3. The 802.11p standard is used on theMAC/PHY sub-layers, and the channels
are modelled using the YansWiFiChannel with friisLoss propagation model. The trans-
mit power is fixed at 33 dBm and the simulation runs for 100 s, distributing a total of
100 vehicles to the imported simulation zone. Ten source nodes simultaneously generate
traffic with fixed size packets of 1024 Bytes. Packets are routed using AODV routing
protocol. Further, User Datagram Protocol (UDP) is used as the transport layer protocol.
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Table 1. Simulation settings

N Parameter Value

1 Network simulator NS3.29

2 Mobility simulator SUMO-0.32.0

3 Propagation model Friis loss model

4 Number of vehicles 100

5 Wifi channel YansWifi

6 Mac and physic layer IEEE 802.11p

7 Transmission power 33 dbm

8 Simulation time 100 s

9 Packet size 1024 bytes

10 Routing protocol AODV

5.2 Results and Discussion

In this part, we consider two different scenarios of the AODV routing protocol (scenario
1 and 2):

Scenario 1: normal AODV with no attacks
In this case, the experiments are carried out in accordance with the simulation speci-

fications shown in Table 1. There are 100 vehicle nodes in total with 10 random source-
destination pairs. These pairs simultaneously produce CBR traffic with 1024-byte fixed-
size packets. The standard AODV routing protocol is used to route packets. Thus, no
Wormhole nodes has been taken, and all nodes are normal vehicles. The simulation was
set to run for a total of 100 s.

Scenario 2: AODV with Wormhole attack
In this simulation scenario, we implement two malicious nodes that act as two.
Wormhole attackers. The rest of the nodes are trustworthymachines that act normally

and send legitimate data to the other nodes in the network.
The steps described in the previous flowchart (Fig. 2) are executed and the multi-

variate skewness and kurtosis are computed accordingly. The following figures (Figs. 4
and 5) depict the results. These graphs display the curves produced after implementing
the suggested detection method in both scenarios 1 and 2.

Figure 4 depicts the results of applying our detection method to scenario 1(the
absence of Wormhole attack). This figure shows the plots of the calculated multivariate
skewness and kurtosis Thresholds used for attack detection corresponding to the critical
values of the Mardia’s multivariate skewness and kurtosis are also plotted.

From this figure, it is noticed that the multivariate skewness and kurtosis values start
with lower values in the then first seconds of the simulation. These values are logical
since theODV routing protocol uses the route discoverymechanism before launching the
data transmission. As the simulation advances, it can be seen that the overall skewness
and kurtosis of the multivariate data fall in the normal ranges at various times of the
simulation. For skewness, the values (Skew normal) are less than the upper critical value
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Fig. 4. Results of the multivariate skewness and kurtosis in the normal scenario (scenario 1)

(UCS), while for kurtosis, the values fall between the lower critical value (LCK) and the
upper critical value (UCK). These outcomes suggest that the multivariate skewness and
kurtosis without Wormhole attack confirm the multivariate normality assumption.

On the contrary, when the Wormhole attack is initiated in the network (scenario 2),
the computed values of the multivariate skewness and kurtosis fall out of the normal
ranges at various times of the simulation. The Fig. 5 bellow shows the results of these
calculations.

Based on Fig. 5, we note that in the beginning of the simulation, the values of both
multivariate skewness and kurtosis are approximatively very close to the normal critical
values. However, as we progress in the simulation, these values increase noticeably
and the overall skewness values exceed the upper critical values (UCS). Similarly, the
overall kurtosis values exceed the Upper Critical values (UCK) and fall below the lower
critical values (LCK). These results show that the data traffic collected at different times
including the three variables namely the throughput, dropped packets ratio and overhead
traffic ratio doesn’t follow a multivariate normal distribution. These findings imply the
rejection of the multivariate normality assumption and therefore prove the existence of
malicious behavior.
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Fig. 5. Results of the multivariate skewness and kurtosis with Wormhole attack (scenario 2)

6 Conclusion

In this paper, we suggested a new efficient and simple method to detect Wormhole attack
that affects the AODV routing protocol in VANETs by employing the concept of mul-
tivariate normality tests particularly the Mardia’s multivariate Skewness and Kurtosis.
The basis of our proposed approach is that malicious activities have traffic characteristics
that are significantly different from the normal ones. Thus, our approach is based on the
real time monitoring of the network traffic through the measurement of multiple net-
work characteristics simultaneously. We integrated three key network traffic parameters
that have not been previously considered simultaneously for Wormhole attack detection
mainly the throughput, the dropped packets ratio and the overhead traffic ratio. These
measurements are used to compute the Mardia’s skewness and kurtosis used for attack
detection. The values of these statistics will allow identifying the Wormhole attacker’s
presence whenever these coefficients fall out of the normal ranges. For skewness, the
normal values should be less than the upper critical value (UCS), while for kurtosis,
the values must fall between the lower critical value (LCK) and the upper critical value
(UCK).

To test the efficiency of our detection method, we simulated realistic scenarios using
SUMO and NS-3. Our approach implemented in the Matlab environment is capable of
identifying the abnormal behavior in a real time by involving multivariate data. It can
also be applied to any VANET routing protocol without requiring further modifications
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to the routing algorithm. The proposed detection method can be enhanced by integrating
other performance metrics and implementing a reaction scheme to countermeasure the
Wormhole attack.
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