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Abstract An accurate estimation of aquifer parameters is important for effective 
groundwater management and future scenario prediction. These parameters are 
mostly obtained through different time-consuming and cumbersome field pumping 
tests. The inverse problem is a recently developed widely accepted mathematical 
approach to obtain the representative optimal aquifer parameters, particularly in 
large heterogeneous aquifer systems. For the inverse problem solution, the simula-
tion–optimization (SO) model approach has been effectively used. The efficiency of 
these SO models depends mainly on two factors like, the accuracy of the simulation 
model and the ability of the optimization algorithm to explore the solution space. 
In this study, we selected the combination of two simulation models (i.e., FEM and 
Meshfree method) and four optimization algorithms (i.e., Particle Swarm Optimiza-
tion (PSO), Differential Evolution (DE), a hybrid version of DE and PSO (DE-PSO) 
and Co-variance Matrix Adaptation Evolution Strategy (CMA-ES)) which resulted 
into the development of total eight number of SO models. These models are success-
fully applied to a synthetic confined aquifer problem. The obtained results showed the 
better performance of the Mfree-CMA-ES compared to its other counterparts like: 
FEM-DE, Mfree-DE, FEM-PSO, Mfree-PSO, FEM-CMA-ES and Mfree-DE-PSO 
in terms of convergence and a higher degree of unanimity with the known values of 
transmissivity and hydraulic conductivity. 
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1 Introduction 

Groundwater is a significant natural resource in India, accounting for 45% of urban 
water supply, 85% of rural water supply, and 62% of irrigation demand (The 
Comptroller and Auditor General of India 2021). However, as a result of unchecked 
pumping, groundwater levels have recently plummeted in several parts of the world. 
The same trend can be seen in India, where a World Bank report predicted that in 15– 
20 years, 60% of Indian aquifers would be in unsafe conditions due to unchecked 
groundwater over-exploitation (The World Bank 2009). The best possible use of 
groundwater should thus be a priority for ensuring its sustainability, and strict 
adherence to groundwater management policies is required to achieve this goal. 

Groundwater management policies are chosen in accordance with an anticipated 
future scenario for groundwater. The temporal variations in groundwater head are 
estimated by simulating groundwater governing flow equations with various numer-
ical techniques such as the finite difference method (FDM), meshfree method (Mfree; 
Patel and Rastogi 2017) and the finite element method (FEM). These groundwater 
simulation models rely heavily on the accuracy of estimated aquifer parameters like 
hydraulic conductivity, transmissivity, and storage coefficient. As a result, accurate 
estimation of aquifer parameters is critical, which indirectly aids in the formulation 
of groundwater management policies (Thangarajan 2007). In-situ tests or graphical 
matching-based pumping tests are commonly used to estimate these aquifer param-
eters. The former tests are limited to homogeneous and isotropic aquifer domains 
and are based on governing equations with closed-form solutions (Theis, 1935). 
Aside from that, these pumping-based methods necessitate nearly 24–72 h of nonstop 
pumping in order to collect the data required for graphical matching, which is an 
inefficient and time-consuming solution (Michael 2009). As a result, researchers 
frequently employ a purely mathematical process known as inverse groundwater 
modelling. Simulation-optimization (SO) is a commonly used approach to solve 
these inverse problems. The SO approach assigns distributed parameters to a mathe-
matical model with known boundary conditions in such a way that the error between 
observed and simulated state variables is minimised (Lakshmi Prasad and Rastogi 
2001). This entire process is an optimization process in which aquifer parameters 
are decision variables, least square difference is the objective function, and possible 
parameter limits are the constraints. 

According to Mahinthakumar and Sayeed (2005), the optimization methods used 
in the SO approach are broadly classified as derivative-based and non-derivative-
based optimization. In the former, a derivative of the objective function improves 
the initial guess of parameters until the required objective function value is obtained. 
Previous research on inverse groundwater modelling demonstrated that the objec-
tive functions for parameter estimation problems are discrete, have multiple optima, 
and are non-convex. Because these objective function-related peculiarities cannot be 
addressed by derivative-based local optima methods and have a higher likelihood 
of becoming stuck in local minima, population-based stochastic search methods
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were introduced to inverse problems. These methods are non-derivative based opti-
mization methods that do not require an initial guess of the parameter to be esti-
mated. Global stochastic population-based metaheuristic optimizations have gradu-
ally replaced traditional numerical optimization methods in the SO approach due to 
their superior ability to handle discrete problems. By solving the inverse groundwater 
problem, these characteristics of metaheuristics-based optimization are successfully 
explored. Ant colony optimization (ACO; Abbaspour et al. 2001), Particle swarm 
optimization (PSO; Ch and Mathur 2012), differential evolution (DE; Rastogi et al. 
2014), and, cat swarm optimization (CSO; Thomas et al. 2018), among others, are 
examples of this class of optimization that have been successfully applied to estimate 
aquifer parameters. However, these optimization methods have their own limitations. 
For example, DE explores the space with a higher multiplicity, making it more suscep-
tible to unstable convergence (Wu et al. 2011); PSO typically becomes stuck to the 
previous best value (pbest), and eventually all remaining particles begin to follow 
it, resulting in a suboptimal solution (Jiang et al., 2010). Above all, the accuracy 
of the previously discussed heuristic-based global search methods is highly depen-
dent on their manually adjusted control parameters. The control parameters of various 
popular and traditional metaheuristic algorithms are problem specific, and their tuned 
values are obtained after numerous model runs, which is the main reason for the 
higher model run cost. The Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES) developed by Hansen (2006) is a quasi-parameter free global stochastic 
optimization algorithm in which population size is the only parameter that must be 
tuned. As a result, it may be a viable option to replace the existing optimization 
model with CMA-ES optimization in the parameter estimation problem. 

In this paper, we proposed a novel approach to estimate aquifer parameters by 
combining the multiquadric-based Mfree approach with CMA-ES optimization. It 
is anticipated that this coupling will enhance the estimation of aquifer parameters, 
particularly in regional aquifer systems. Here, the Mfree is able to produce accurate 
head values (Patel et al. 2022), and CMA-ES optimization achieves objective function 
convergence faster with fewer generations, so this ultimate combination as a SO 
model yields accurate aquifer parameter values. 

2 Materials and Methods 

2.1 Mfree Based Groundwater Simulation Model 

The groundwater flow governing equation for confined aquifer for the transient 
condition, including variabilities like anisotropy, non-homogeneity, areal recharge 
including pumping or draft or both is represented as Willis and Yeh (1987): 
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With an initial condition as: 

H (x, y, 0) = H0(x, y) x, y ∈ Ω (2) 

The constant groundwater head (Dirichlet boundary) and boundary flux (Neumann 
boundary) are described as following: 

H (x, y, t) = H1(x, y, t) x, y ∈ ∂Ω1 (3) 

T
(
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= q2(x, y, t) x, y ∈ ∂Ω2 (4) 

where H (x, y, t) is the groundwater head (m); T , transmissivity (m2/day); Tx and Ty 

are transmissivity values along principal axes (m2/day); S, storativity (dimension-
less); Qw, source (−) or sink (+) term (m/day);

(
xp, yp

)
, ,coordinate for the well 

location (m); δ, Dirac delta function with the property that if x = xp and y = yp then 
δ = 1 else δ = 0; R, areal- recharge (m/day); t , time (day); H0, initial known ground-
water head distribution (m); H1, known groundwater head values at the boundary 
(m); q2, known boundary flux (m3/day/m);

(
lx , ly

)
, direction cosine of the outward 

normal at certain node on Neumann boundary (dimensionless);Ω, the computational 
domain; ∂Ω, the boundary ∂Ω1 ∪ ∂Ω2 = ∂Ω of computational domain; and

(
∂ 
∂n

)
, 

the normal derivative. 
Using the global-collocation based Mfree method (Patel and Rastogi 2017) the  

governing groundwater flow Eq. (1) is approximated by scattered data interpolation, 
which is explained as follows: 
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where φ j is a matrix of basis or shape function. Multiquadric is used as a shape func-

tion and can be express as (Hardy 1971) φ j (x, y) = 
/

(x − x j )2 + (y − y j )2 + C2 
s ;{(

x j , y j
)}N 

j=1 are coordinates of N collocation nodes in Ω. Cs is a free param-
eter referred as shape parameter (Cheng et al. 2003) given as Cs = αsds , where 
αs is support size for radial basis function (dimensionless) and ds is the nodal 
spacing. Nodal spacing (Liu and Gu 2005) for two- dimensional case is computed 
as: ds =

√
A 

( √N−1) (where A, is an area of the whole computational domain and N
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is the total number of nodes distributed over the domain). The optimum value of 
αs is known by performing numerous simulation on different benchmark problems. 
Liu and Gu (2005) suggested that the value between 2–3 is giving good results for a 
variety of problems. 

2.2 Inverse Groundwater Modelling: As an Optimization 
Problem Using SO Approach 

The inverse model generates initial natural guesses of upper and lower bounds of 
aquifer parameters based on random numbers. These values are used as input for 
the simulation model, which calculates the aquifer state variables. To calculate the 
objective function, the observed values are compared to the calculated values at 
the observation well location. If the termination criteria is met, the initial guess 
will be the optimum aquifer parameters; if not, the optimization model will modify 
previous input parameter values until the required termination criteria is met, and 
the corresponding modified input parameter will be the optimum aquifer parameters. 
Minimizing the fitting error between observed and simulated aquifer state variables 
at specific monitoring well locations yields the representative optimal parameter 
values. Because the fitting error-based objective function is nonlinear (NL) and non-
continuous, it cannot be expressed explicitly in terms of decision variables (i.e. 
aquifer parameters). This study’s objective function is the sum of squared differences 
(SSD), which can be expressed as: 

Min  E(P) = βl,t

ΣL 

l=1

Σtt 

t=t0

[
Hobs 
l,t − Hsim 

l,t (P)
]2 

(6) 

Subjected to: 

Plb 
i ≤ Pi ≤ Pub 

i (7) 

where E(P) represents objective function to be minimized; Hsim 
l,t is calculated ground-

water head at observation well l at time t with parameter (P) as input [L]; Hobs 
l,t is 

observed groundwater head at observation well l at time t [L]; Pi is aquifer parameter 
at zone i; L is total number of observation wells; t0 and tt are beginning and ending 
time of observations [day]; lb and ub are the superscripts representing the lower and 
upper bounds on the parameters and βl,t ∈ [0, 1] is the weighing coefficient whose 
value is chosen according to confidence on measured groundwater head at a certain 
observation well location.
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3 Optimization Models 

A number of population-based global metaheuristic optimizations (i.e., DE, PSO and 
CMA-ES) have been successfully applied to the varieties of groundwater problems 
such as aquifer parameter estimation, groundwater management problems, pollutant 
source detection, and many others. Since DE and PSO are commonly used in this 
class of problems, they are not discussed in depth; however, CMA-ES optimization, 
which is relatively new, has been extensively discussed. 

3.1 Working of CMA-ES Optimization 

CMA-ES belongs to the family of evolutionary algorithm, like GA and mimics the 
characteristics of Darwin’s evolution theory. To generate new candidate solutions, 
a typical CMA-ES employs initialization, evaluation, and mutation (selection with 
recombination) operators. Like other stochastic search methods in the evolutionary 
strategy (ES), the possible solution is known as individuals. Mutation is a main 
step to generate the new individuals by adding the random vector from multivariate 
random distribution to parent vector. In CMA-ES, the possible solution moves with 
in the fitness landscape by rotating and scaling of the covariance matrix. This whole 
procedure is controlled by different strategy parameters which also evolve with each 
generation (Bayer and Finkel 2007) and hence there is no need to pre-calibrate 
them as they update themselves by utilizing the internal mechanism of CMA-ES. 
Eventually this iterative updation of covariance matrix leads the individual towards 
the convergence at an optimum value. Here it is noteworthy that CMA-ES uses the 
information of number of previous generations (called as evolution path) instead of 
only the last one (Bayer and Finkel 2004). 

4 Initialization 

In CMA-ES, new search points within the fitness landscape is produced by multi-
variate normal distribution. The equation to produce the sampling point is represented 
as (Hansen 2006): 

pg+1 
k ∼ N

[
mg ,

(
σ g

)2 
, Cg

]
where k  = 1, 2...λ (8) 

The equation further simplified as: 

pg+1 
k ∼ mg + σ g N

[
0, Cg

] ∼ mg + σ g Bg Dg 
N[0, I ] (9)
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where λ represent population size or total number of search points generated by 
multivariate distribution; g is generation number; pg+1 

k ∈ Rn is kth member of 
population from g + 1 generation; mg ∈ Rn is mean value of pg; σ g ∈ R+ is overall 
standard deviation or step size at generation g; Cg ∈ Rn×n is covariance matrix at 
generation g; Bg ∈ Rn represents eigenvectors of Cg and Dg ∈ Rn×n is diagonal 
matrix of eigenvalues of Cg . 

4.1 Selection and Recombination for Calculation of Mean 
Vector 

After generation, all λ vectors (population) are evaluated based on the problem 
specific objective function. Subsequently, μ (≤λ) numbers of best parental vectors 
are selected from total λ vectors. This selection may be random or based on evaluated 
fitness value of each vector. Later these selected μ vectors recombined together and its 
weighted (based on fitness) mean vector is calculated using weighted recombination 
(represented by μw, λ-CMA-ES). This operation keeps the mean vector nearer to 
better individuals. This entire procedure is mathematically expressed as (Hansen 
2006): 

mg+1 =
Σμ 

i=1wi p
g+1 
iΣμ 

i=1wi 
(10) 

where wi=1:μ
(=ln(μ + 1) − ln

(Σμ 
i=1i

))
represents weight coefficient for recombi-

nation of μ selected vectors; μ (≤ λ) is size of parent population and calculated 
as λ 

2 where λ = 4 + 3logD (here D is number of parameter or dimension of the 

problem); pg+1 
i is ith individual out of pg+1 

1 ....pg+1 
λ ; i : λ denotes the index of ith 

ranked individual with E
(
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1:λ

)
≺ E

(
pg+1 
2:λ

)
≺ ......E

(
pg+1 

λ:λ
)
where E is objective 

function to minimize. 
Equation (10) implements recombination by taking weighted sum of μ individuals 

and selection by choosing μ ≤ λ and assigning different weights wi. 

4.2 Adapting the Covariance Matrix 

According to Eq. (9), covariance matrix and step size are the other terms which 
are need to be estimated. Initially, the covariance matrix is estimated from single 
population and one generation. This matrix further needs to be modified because it 
is considered as unreliable due to its small population size by adaptation procedure. 
Further inclusion of successive step size also enhances the estimation of covariance 
matrix.
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4.3 Estimating Covariance Matrix 

According to the assumption by Hansen (2006), population contains enough infor-
mation to estimate a covariance matrix. The covariance matrix can be estimated using 
generated sample population, pg+1 

1 , pg+1 
2 .......pg+1 

λ as: 

Cg+1 
emp =

1 

λ − 1
Σλ 

i=1

(
pg+1 
i − 

1 

ë

Σλ 

j=1 
pg+1 
j

)(
pg+1 
i − 

1 

ë

Σλ 

j=1 
pg+1 
j

)T 

(11) 

Here Cg+1 is unbiased estimator of covariance matrix by assuming pg+1 
i is randomly 

distributed using normal distribution. Since it is based on the population of single 
generation we will try to further modify it to include the effect of previous generation 
as: 

Cg+1 
λ = 

1 

λ

Σλ 

i=1

(
pg+1 
i − mg

)(
pg+1 
i − mg

)T 
(12) 

The above equation represents an unbiased maximum likelihood estimator of 
covariance matrix. Here we can see the difference between Eqs. (11) and (12) in terms  
of mean value. In first one the mean value is calculated from actually realized sample 
while in second it is true mean value of gth population distribution. Subsequently, 
Eq. (11) represents the deviation within the sampled points while in Eq. (12) it is  
within the sampled steps. Hence Eq. (12) is more prominent representation of adapted 
covariance matrix. 

For further improvement in Eq. (12) weightage (similar as mean) can be given to 
better to more successful μ vectors and can be represented as: 

Cg+1 
μ = 

μΣ
i=1 

wi

(
pg+1 
i :λ − mg

)(
pg+1 
i :λ − mg

)T 
(13) 

To maintain a reliable estimation of covariance matrix, variance effective selection 
mass μe f  f

(
=[Σμ 

i=1wi 
2
]−1

)
should be large enough get condition smaller than 10. 

To avoid this restriction the upcoming next step modification is essential. 

4.4 Rank-µ Update 

Large population helps to estimate reliable values of covariance matrix but it will also 
increase the number of generation to achieve convergence criteria. As current form 
of Eq. (13) is not capable to estimate Cg+1 value, therefore as a remedy, information 
from previous generation is added. Mathematically, it can be presented as:
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Cg+1 = 1 

g + 1
Σg 

i=0 

1(
σ i

)2 Ci+1 
μ (14) 

It is further modified by assigning different weight to different generation which 
is known as learning rate. Then Cg+1 reads: 

Cg+1 = (1 − ccov)Cg + ccov 
1 

(σ g)2 
Cg+1 

= (1 − ccov)Cg + ccov
Σμ 

i=1 
wi O P

(
pg+1 
i :λ − mg 

σ g

_
(15) 

where c(∈ [0, 1]) is learning rate for updating the covariance matrix. If ccov is 1 then 
no information from previous generation will be incorporated and it is zero then 
learning take place; OP denotes the outer product of a vector by itself. Here it is 
noteworthy that covariance matrix is initiated as identity matrix (i.e. C0 = I). 

As sum of the outer product in Eq. (14) is of rank  μ, therefore, this modification 
for covariance is called as rank-μ-update. 

The value of ccov is very crucial for rank-μ-updation. Small value of ccov leads 
towards slow convergence, while large value leads to premature convergence. Hansen 
(2006) applied CMA-ES on different classical optimization problem and found that 
ccov is only dependent on dimension of the problem and suggested an approximated 
value as μe f  f  /D. 

4.5 Cummulation: Utilizing the Evolution Path 

In Eq. (15) a term of outer product doesn’t use sign information, as OP(x) = xxT = 
OP(−x). Therefore, a concept of evolution path in which represents sequence of 
steps and the strategy over number of generation is introduced. It is expressed in 
terms of sum of consecutive steps and its summation is called as cummulation. For 
example, an evolution path of three steps can be constructed by the sum as: 

mg+1 − mg 

σ g
+ 

mg − mg−1 

σ g−1
+ 

mg−1 − mg−2 

σ g−2 
(16) 

Similar as Eq.  (15) using the exponential smoothing Eq. (16) can be utilized to 
write an expression for evolution path of generation (g + 1) for covariance matrix 
as (Hansen 2006): 

pg+1 
c = (1 − cc)pg c +

√
cc(2 − cc)μe f  f  

mg+1 − mg 

óg 
(17)
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where pg c ∈ Rn is evolution path at gth generation;
√
cc(2 − cc)μe f  f  is a normalize 

constant for pg c 
If cc = 1 and μe f  f  = 1, then pg+1 

c = p
g+1 
1:λ −mg 

σ g 

pg+1 
c ∼ N(0, C) (18) 

If 

pg+1 
c ∼ 

pg+1 
1:λ − mg 

σ g
∼ N(0, C) for all i = 1,2...,μ (19) 

In Eq. (17) 

(1 − cc)2 +
√
cc(2 − cc)μe f  f  

2 = 1 
μΣ
i=1 

wi N(0, C) ∼ 1 √
μeff 

N(0, C) 
(20) 

Now utilizing the concept of evolution of path in Eq. (15) the ultimate equation 
can be read as: 

Cg+1 = (1 − ccov)Cg + ccov p
g+1 
c pg+1T 

c (21) 

Empirical value of learning rate for rank-1-update of C, (ccov) and time cummu-
lation of C (cc) are respectively 2 

D2 and 4 
D provides optimal value of covariance 

matrix. 

4.6 Combining Rank-µ Update and Commulation 

Now by combining Eqs. (15) and (16) the ultimate equation for covariance matrix 
is: 

Cg+1 = (1 − ccov)Cg + 
ccov 
μcov 

pg+1 
c pg+1T 

c◟ ◝◜ ◞
rank−1 update  

+ccov

(
1 − 

1 

μcov

)

× 
μΣ
i=1 

Wi

(
pg+1 
i :λ − mg 

σ g

_(
pg+1 
i :λ − mg 

σ g

_T

◟ ◝◜ ◞
rank−μ update  

(22) 

Where μcov ≥ 1 and μcov = μe f  f  .
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The rank-one-update part of Eq. (22) uses the information of correlation between 
generations using evolution path while rank-μ-update uses the information within 
the population to reach optimal value of covariance matrix. 

4.7 Step Size Control 

Similar to covariance matrix, step size also utilizes an evolution path (sum of succes-
sive steps). To define the length of step size as ‘long’ or ‘short’, the length of evolution 
path is compared with its expected length under selection. 

The conjugate evolution path for step size is defined as (based on exponentially 
smoothed sum): 

pg+1 
σ = (1 − cσ ) pg c +

√
cσ (2 − cσ )μe f  f  C

g 
−1 
2 m

g+1 − mg 

σ g 
(23) 

The updation of step size based on the comparison of ||pg+1 
σ || with its expected 

length E||N(0, I )||, and can be represented mathematically as: 

σ g+1 = σ g exp

(
cσ 

dσ

(
||pg+1 

σ ||
E||N(0, I )|| − 1

__
(24) 

where σ g+1 is global step size; E||N(0, I )|| is expectation of Euclidean norm 

of a N(0, I ) distributed random vector
(
= 

√
D
(
1 − 1 

4D + 1 
21D2

))
; dσ is damping 

parameter
(= 4 D

)
and Cσ is backward time horizon of evolution path

(
=1 + 

/
μe f  f  

D

)
. 

5 Results and Discussion 

5.1 Problem Description: Synthetic Confined Rectangular 
Problem 

A confined hypothetic problem (6 km × 6 km) similar to Carrera and Neuman (1986) 
is selected in this study as shown in Fig. 1. Here, the assumed distance between two 
consecutive nodes is 1000 malong X and Y-directions. This rectangular confined 
region has an area of 36 sq. km. which is bounded by two impervious, a constant 
head and one inflow boundaries. The northern part of the aquifer is getting areal 
recharge at the rate of 0.15 × 10–3 m/d (AR-1) and 0.25 × 10–3 m/d (AR-2) through 
two distinct aquitard-layers. This aquifer is assumed to have three zones of known 
transmissivity values varying within the range of 5 to 150 m2/d. An inflow rate of
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Fig. 1 Synthetic confined aquifer domain showing zonation pattern (indexed in red), boundary 
conditions and two areal recharge regions 

0.25 m3/d/m across the western boundary is also considered. A uniform storage 
coefficient value for entire aquifer region is assumed as 0.001. 

5.2 Model Input 

For testing of all the developed SO models, the known transmissivity values of 
selected rectangular confined synthetic problem are considered to be unknown. The 
objective here is to determine the transmissivity values using known data i.e. stora-
tivity, boundary conditions and zonation pattern by minimizing the error between 
observed and simulated head values at certain monitoring well locations. The inputs 
in terms of predefined upper and lower limits of unknown aquifer parameters are 
kept between 1 to 150 m2/day. 

FEM and Mfree simulators are used to estimate the head values by discretizing 
entire domain using uniformly distributed 49 nodes and 72 triangular elements. In 
case of FEM simulator, the coordinates of distributed nodes and elemental area are 
used to form various element-based coefficient matrices which are further assembled 
to form a global coefficient of matrix. On the other hand, the estimated value of 
average nodal distance (ds) and shape parameter value (αs) are utilized to calculate 
the elements of shape parameter which eventually forms a coefficient matrix in Mfee 
simulator Eq. (5). In this synthetic problem, the estimated value of ds is 1000 m. Since 
Mfree model is successfully applied on different synthetic problems with αs as 3, the 
same is adopted for present case also. Total 49 nodes as shown in Fig. 1 are used. 
Flux vector contains the known values like inflow flux and constant groundwater head 
values. Using both the simulators (i.e. FEM and Mfree) model runs are performed 
for 25 days as total simulation period with 1 day as time-step size.
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Table 1 The range and calibrated values of control parameters used in the DE, PSO and DE-PSO 
based SO models for synthetic aquifer problem 

Control parameter Suggested range Calibrated value Optimization method 

Population size (N) 50 

Mutation weighing 
factor (F) 

0.3–0.5 0.4 DE DE-PSO 

Crossover rate (Cr) 0.8–1 0.8 

Inertia weight (ω) 0.8–0.3 Linearly varying 
from 0.8 to 0.2 

PSO 

Acceleration constants 
(C1 = C2) 

1.5–2 1.8 

5.3 Parameter Setting for Developed SO Models 

In the developed SO models, the population evolution guides the ultimate algo-
rithm towards the optima. This navigation is controlled by certain problem depen-
dent parameters allied to that specific optimization models. These problem specific 
parameters are needed to be tuned or estimate empirically which are discussed in the 
upcoming sub-sections. 

5.4 DE, PSO and DE-PSO Based Model Setting 

The heuristic algorithms are dependent on various weighting factors for their best 
performance, which are commonly known as control parameters. These control 
parameters are fine-tuned to extract the best performance prior to their application. 
In the whole study, the possible range of DE based control parameters is inves-
tigated based on the literature of Storn and Price (1997) and Price et al. (2005). 
Similarly for PSO parameters, the range proposed by Eberhart and Kennedy (1995) 
and Kennedy and Eberhart (2010) are explored for their optimum values. For DE-
PSO, the appropriate tuned control parameter values of both the individual heuristic 
are used directly. The optimum values of these control parameters for DE, PSO and 
DE-PSO are presented in Table 1. 

5.5 CMA-ES Based Model Setting 

The main strength of CMA-ES optimization lies on the capacity of self-adaption 
with each generation (Bayer et al. 2009). Unlike pre-calibrated control parameters 
of prior discussed metaheuristics, the strategy parameters of CMA-ES are calculated 
by certain empirical formulae. These parameters are obtained by researchers after
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Table 2 The empirical equation and estimated values of control parameters used in the CMA-ES 
based SO models for synthetic aquifer problem 

Control parameter Equation Estimated value 

Population size (λ) 
λ = 4 +3logD 
where D =Problem dimension 

8 

Parent population (μ) μ= λ 
2 4 

Time const. for cummulation of C (Cc) Cc= 4 
D +4 0.5 

Damping parameter for cummulation of σ 
(dσ) 

dσ 1 

numerous past experiments on different classical benchmark problems. Some of these 
like λ, μ and cc are function of dimension of the problem. Remaining parameters like 
ccov, cμ and cσ adapt their values based on rank- μ-update with cummulation, and 
vary with the progress of each generation. The calculated value of CMA-ES strategy 
parameters for rectangular synthetic confined problem is presented in Table 2. 

5.6 Comparative Performance of Results Obtained Through 
the Developed SO Models 

Using the prior-tuned values of optimization specific parameters, all the developed 
SO models i.e. FEM-DE, FEM-PSO, FEM-DE-PSO, FEM-CMA-ES, Mfree-DE, 
Mfree-PSO, Mfree-DE-PSO and Mfree-CMA-ES are applied to selected rectangular 
synthetic problem. The obtained results are presented in terms of a convergence graph 
as shown in Fig. 2. It is visible that Mfree-CMA-ES produces best convergence 
with lowest value of objective function as compared to others. It takes nearly 153 
generations to get steady global convergence of all 4 transmissivity values. The 
second-best performer is Mfree-DE-PSO which tries to explore the solution space 
intensely by switching between DE and PSO phases hence at initial stage some 
oscillation is observed in the fitness function (Fig. 2). It can be seen in convergence 
graph that individual versions of selected optimizations i.e. DE and PSO lagged 
behind their hybrid version due to lack of multiplicity after certain generations. 
Use of MQ based Mfree simulator with different optimizations also strengthened 
the solution-space exploration capacity of a SO model due to its higher accuracy 
compared to conventional FEM simulator. It also compels the specific SO model to 
explore the solution space faster with less number of generations.

Apart from functional evaluation, computational time is also an important criterion 
to judge the performance of a SO model. The time required to perform one iteration 
of all the developed models is presented in Table 3. It concludes that Mfree-CMA-
ES is a better performing algorithm due self-adaptive internal mechanism. On the 
contrary, DE-PSO model consumes slightly higher time as population generated on
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Fig. 2 The variation of objective function with iteration using eight different SO models for 
synthetic confined aquifer problem

each iteration is passed to DE and PSO phase in series manner for objective function 
evaluation. 

In above described discussion, for all the analysis the SSD (Eq. 6) is used as an  
objective function. The results obtained are presented in Table 4 and reaffirms the 
superiority of Mfree-CMA-ES over other seven models.

As all these SO models are random number based stochastic search methods 
therefore each model run is performed 10 times and its mean value is taken as 
representative zonal transmissivity value as shown in Fig. 3 and Table 5. It was  
showed greater agreement with real value in all the developed eight models.

Table 3 Time needed to 
complete one iteration of the 
synthetic confined aquifer 
problem utilising eight 
developed SO models 

SI. no SO model Time required for one generation 
(sec.) 

1 FEM-DE 0.27 

2 FEM-PSO 0.28 

3 FEM-DE-PSO 2.96 

4 FEM-CMA-ES 0.06 

5 Mfree-DE 0.19 

6 Mfree-PSO 0.18 

7 Mfree-DE-PSO 2.75 

8 Mfree-CMA-ES 0.05 
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Table 4 Best solution 
obtained through eight 
different SO models based on 
SSD as an objective function 
on synthetic confined aquifer 
problem 

Algorithm Best solution (Lowest value of objective 
function) 

Sum of squared difference (SSD) (m) 

FEM-DE 0.001356 

FEM-PSO 0.9887 

FEM-DE-PSO 5.60E-06 

FEM-CMA-ES 3.50E-07 

Mfree-DE 0.000825 

Mfree-PSO 0.458387 

Mfree-DE-PSO 1.46E-08 

Mfree-CMA-ES 1.46E-08

Fig. 3 Average values of each parameter after 10 times model run by 8 different methods and their 
comparison with the known value

It is clearly evident from present study that all the developed models are able to 
estimate the aquifer parameter values. This selected problem is relatively small in 
dimension where parameter estimation using different SO models is fairly accurate 
and easy to implement.
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Table 5 Average values of each parameter after 10 times model run by 8 different methods 

SO models T1 T2 T3 T4 

FEM-DE 150.00 50.00 15.00 5.00 

FEM-PSO 150.00 50.00 15.00 5.00 

FEM-DE-PSO 151.49 49.29 14.93 4.94 

FEM-CMA-ES 150.29 49.98 15.00 4.98 

Mfree-DE 150.00 50.00 15.00 5.00 

Mfree-PSO 150.00 50.00 15.00 5.00 

Mfree-DE-PSO 151.49 49.29 14.93 4.94 

Mfree-CMA-ES 150.29 49.98 15.00 4.98 

Real value 150.00 50.00 15.00 5.00

6 Conclusions 

In this study eight different SO models are tested on a synthetic confined aquifer 
problem with known solution and found efficient and robust. Following are the 
conclusions that can be drawn from the present study: 

1. DE, PSO and DEPSO based SO models require tuning of control parameters 
before its application to the problems while CMA-ES based models are free 
from such a limitation. Therefore, the CMA-ES is more efficient and robust 
algorithm and highly suitable to field problems. 

2. Eight different combinations of SO models are applied to a synthetic confined 
aquifer problem. The obtain results proved that the developed CMA-ES based 
models are able to estimate the aquifer parameter values with the lowest value 
of objective function. 

3. In terms of objective function evaluation, the accuracy-wise general pattern is 
CMA-ES > DE-PSO > DE > PSO and for time consumption criteria the general 
sequence is CMA-ES < DE < PSO < DE < DE-PSO. 

References 

Abbaspour KC, Schulin R, van Genuchten MT (2001) Estimating unsaturated soil hydraulic param-
eters using ant colony optimization. Adv Water Res 24:827–841. https://doi.org/10.1016/S0309-
1708(01)00018-5 

Bayer P, Finkel M (2004) Evolutionary algorithms for the optimization of advective control of 
contaminated aquifer zones. Water Resour Res 40(6). http://doi.wiley.com/https://doi.org/10. 
1029/2003WR002675 

Bayer P, Finkel M (2007) Optimization of concentration control by evolution strategies: formulation, 
application, and assessment of remedial solutions. Water Resour Res 43(2): n/a-n/a. http://doi. 
wiley.com/https://doi.org/10.1029/2005WR004753

https://doi.org/10.1016/S0309-1708(01)00018-5
https://doi.org/10.1016/S0309-1708(01)00018-5
https://doi.org/10.1029/2003WR002675
https://doi.org/10.1029/2003WR002675
https://doi.org/10.1029/2005WR004753


134 S. Patel and T. I. Eldho

Bayer P, Duran E, Baumann R, Finkel M (2009) Optimized groundwater drawdown in a subsiding 
urban mining area. J Hydrol 365(1–2):95–104. http://linkinghub.elsevier.com/retrieve/pii/S00 
22169408005799 

Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state 
conditions: 2. uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227 

Ch S, Mathur S (2012) Particle swarm optimization trained neural network for aquifer parameter 
estimation. KSCE J Civ Eng 16:298–307. https://doi.org/10.1007/s12205-012-1452-5 

Cheng AHD, Golberg MA, Kansa EJ, Zammito G (2003) Exponential convergence and H-c multi-
quadric collocation method for partial differential equations. Numer Methods Part Differ Equ 
19(5):571–594 

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceed-
ings of the Sixth International Symposium on Micro Machine and Human Science IEEE; 39–43. 
https://doi.org/10.1109/MHS.1995.494215 

Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards a new evolutionary 
computation. Springer-Verlag, Berlin/Heidelberg, pp 75–102. http://arxiv.org/abs/1604.00772 

Hardy RL (1971) Multiquadric Equations of Topography and Other Irregular Surfaces. J Geophys 
Res 76(8):1905–1915. http://doi.wiley.com/https://doi.org/10.1029/JB076i008p01905. 

Jiang Y, Liu C, Huang C, Wu X (2010) Improved particle swarm algorithm for hydrological param-
eter optimization. Appl Math Comput 217(7):3207–3215. https://doi.org/10.1016/j.amc.2010. 
08.053 

Kennedy J, Eberhart R (2010) Particle swarm optimization. In: Proceedings of ICNN’95 -
International Conference on Neural Networks. IEEE, Piscataway, NJ, pp 1942–1948 

Lakshmi Prasad K, Rastogi AK (2001) Estimating net aquifer recharge and zonal hydraulic conduc-
tivity values for Mahi Right Bank Canal project area, India by genetic algorithm. J Hydrol 
243:149–161. https://doi.org/10.1016/S0022-1694(00)00364-4 

Liu GR, Gu Y (2005) An introduction to meshfree methods and their programming. Springer-Verlag, 
Berlin/Heidelberg. http://link.springer.com/https://doi.org/10.1007/1-4020-3468-7. 

Mahinthakumar G, Mohamed S (2005) Hybrid Genetic Algorithm—Local Search Methods for 
Solving Groundwater Source Identification Inverse Problems. J Water Res Planning Manag 
131(1):45–57. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:1(45) 

Michael AM (2009) Irrigation: theory and practice. Vikas Publishing House Pvt Limited 
Patel S, Rastogi AK (2017) Meshfree multiquadric solution for real field large heterogeneous aquifer 

system. Water Resour Manage 31(9):2869–2884 
Patel S, Eldho TI, Rastogi AK, Rabinovich A (2022) Groundwater parameter estimation using 

multiquadric-based meshfree simulation with covariance matrix adaptation evolution strategy 
optimization for a regional aquifer system. Hydrogeol J 30(7):2205–2221. https://doi.org/10. 
1007/s10040-022-02544-y 

Price K, Storn RM, Lampinen JA (2005) Differential Evolution. Springer-Verlag, Berlin/Heidelberg. 
https://doi.org/10.1007/3-540-31306-0 

Rastogi AK, Cyriac R, Munuswami V (2014) PSO and DE application in groundwater hydrology. 
LAP Lambert, Chisinau, Moldova 

Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global opti-
mization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:100 
8202821328 

Thangarajan M (2007) 1 National geophysical research institute, Hyderabad, India. In: Thangarajan 
M (ed) Groundwater resource evaluation, augmentation, contamination, restoration, modeling 
and management. Springer, Hyderabad 

The World Bank (2009) Deep wells and prudence: towards pragmatic action for addressing 
groundwater overexploitation in India. Washington 

Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate 
and duration of discharge of a well using ground-water storage. Trans Amer Geophys Union 
16(2):519–524. https://doi.org/10.1029/TR016i002p00519

http://linkinghub.elsevier.com/retrieve/pii/S0022169408005799
http://linkinghub.elsevier.com/retrieve/pii/S0022169408005799
https://doi.org/10.1007/s12205-012-1452-5
https://doi.org/10.1109/MHS.1995.494215
http://arxiv.org/abs/1604.00772
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1016/j.amc.2010.08.053
https://doi.org/10.1016/j.amc.2010.08.053
https://doi.org/10.1016/S0022-1694(00)00364-4
https://doi.org/10.1007/1-4020-3468-7
https://doi.org/10.1061/(ASCE)0733-9496(2005)131:1(45)
https://doi.org/10.1007/s10040-022-02544-y
https://doi.org/10.1007/s10040-022-02544-y
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1029/TR016i002p00519


Simulation–optimization Models for Aquifer Parameter Estimation 135

Thomas A, Majumdar P, Eldho TI, Rastogi AK (2018) Simulation optimization model for 
aquifer parameter estimation using coupled meshfree point collocation method and cat swarm 
optimization. Eng Anal Bound Elem 91:60–72. https://doi.org/10.1016/j.enganabound.2018. 
03.004 

Willis R, Yeh WW-G (1987) Groundwater systems planning and management. Prentice Hall Inc., 
Old Tappan 

Wu Y, Lee W, Chien C (2011) Modified the performance of differential evolution algorithm with dual 
evolution strategy. In: International Conference on Machine Learning and Computing IACSIT 
press: Singa, pp 57–63

https://doi.org/10.1016/j.enganabound.2018.03.004
https://doi.org/10.1016/j.enganabound.2018.03.004

	 Simulation–optimization Models for Aquifer Parameter Estimation
	1 Introduction
	2 Materials and Methods
	2.1 Mfree Based Groundwater Simulation Model
	2.2 Inverse Groundwater Modelling: As an Optimization Problem Using SO Approach

	3 Optimization Models
	3.1 Working of CMA-ES Optimization

	4 Initialization
	4.1 Selection and Recombination for Calculation of Mean Vector
	4.2 Adapting the Covariance Matrix
	4.3 Estimating Covariance Matrix
	4.4 Rank-μ Update
	4.5 Cummulation: Utilizing the Evolution Path
	4.6 Combining Rank-µ Update and Commulation
	4.7 Step Size Control

	5 Results and Discussion
	5.1 Problem Description: Synthetic Confined Rectangular Problem
	5.2 Model Input
	5.3 Parameter Setting for Developed SO Models
	5.4 DE, PSO and DE-PSO Based Model Setting
	5.5 CMA-ES Based Model Setting
	5.6 Comparative Performance of Results Obtained Through the Developed SO Models

	6 Conclusions
	References


