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Preface 

Land and water are two main resources on earth for the survival of human habitat, 
natural plant growth and wildlife habitat. Mismanagement of land resources and 
scarcity of water resources day by day affects the sustainable development of any 
region. Therefore, it is necessary to preserve, control and maintain these resources 
through improved engineering practices. The semi-arid region is the median of arid 
and humid region and somewhat characteristics of other two regions. The interven-
tions in semi-arid regions can also be an alternate solution to arid and humid region. 
Semi-arid regions of earth are today suffering from a lack of sustainable water and 
groundwater. There is a growing demand world wide for sustainable watershed devel-
opment, management and planning. The demand is more significant in the rain-fed 
and drought-prone area of earth surface, where watershed management is poorer and 
groundwater is limited. 

In the present text, an attempt has been made to provide comprehensive coverage 
of surface and groundwater resources development and management in semi-arid 
region. The book covers the management of surface and groundwater using new 
engineering applications in two sections. The first section is about sustainable surface 
and groundwater development and hydrological systems. The sections deal about 
applications of the remote sensing, machine learning, GIS techniques and modelling 
used for the surface and groundwater resources and management. The chapters are 
received from different Scientists, Professors, Researchers, Post-doctoral researchers 
and Post-graduate students from all over the world. 
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Abstract Evapotranspiration (ET) is an important component of the water cycle and 
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resources rely on reliable estimates of agricultural water consumption. It leads
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to establishing a sustainable water balance, mitigates the consequences of water 
scarcity, and prevents the waste and overuse of scarce water resources. An accu-
rate assessment of ET is important to improve water use efficiency and sustainable 
water management in agriculture because ET is a primary consumer of irrigation 
water and precipitation in agricultural landscapes. To increase the accuracy of ET 
calculation in agricultural water management, precision and digital agricultural tech-
nologies, cutting-edge approaches such as satellite data, remote sensing technology, 
and machine learning algorithms would be useful. This chapter examines the effective 
approaches used in estimating ET for agricultural water management and provides 
a summary of the technical advances made in the methodologies currently in use. It 
also identifies potential enhancements that could be made to boost the precision of 
ET estimation and achieve precise agricultural water management. 

Keywords Remote sensing ·Water resources management · Evapotranspiration ·
Machine learning algorithms · Challenges and solutions ·Mitigation and adaptation 

1 Introduction 

Weather, climate, and soil moisture are only a few of the dynamic and complicated 
environmental elements that greatly impact agricultural production. These circum-
stances have limited control over the processes and cannot be foreseencompletely 
(van Mourik et al. 2021). Irrigation can boost agricultural productivity and income 
compared to rain-fed agriculture (Jaramillo et al. 2020; Vanschoenwinkel and Van 
Passel 2018). Furthermore, irrigated agriculture is dependable and provides a wider 
range of crops with higher value (Asmamaw et al. 2021). Furthermore, irrigated 
agriculture uses 20% of all cultivated lands, produces 40% of the world’s crops, 
and significantly contributes to food security globally (Meybeck and Redfern 2016; 
Zongo et al. 2022). In 2016, agriculture used around 92% of the freshwater with-
drawn globally (World Bank 2022). In 2050, the Food and Agriculture Organization 
(FAO) predicted an 11% increase in water demand for agriculture (Bruinsma 2009). 
De Fraiture et al. (2010) concluded in their research that water resources could be 
sufficient till 2050 if water usage properly manage and mitigation strategies will 
apply to reduce risk in agriculture sector by controlling green land into urbanization 
(Liu et al. 2022). 

Water is considered the most crucial resource in agriculture (Chartzoulakis and 
Bertaki 2015). As the world’s population is expected to increase, agriculture will 
require more food and water (Boretti and Rosa 2019; Islam and Karim 2019; OECD 
2013). Chartzoulakis (Chartzoulakis and Bertaki 2015) indicated that less than 65 
percent of the applied water is actually used by crops, demonstrating irrigation’s poor 
efficiency in the agricultural sector. Additionally, the majority of water extraction 
worldwide roughly 70% is used for irrigation, which has been emphasized as the main 
driver for water depletion in most regions (Aryalekshmi et al. 2021). Domestic, indus-
trial, and energy-generating uses of water are further strained for various reasons,
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such as recreation and cultural enhancement and the protection of ecosystems and the 
environment (Karimi and Bastiaanssen 2015). Extensive research revealed that poor 
and inappropriate water management was to blame for the water shortages in several 
areas (Entezari et al. 2019). Sustainable water resource management in agriculture 
can be achieved by supporting farmers using water-saving techniques and putting 
legal restrictions on water allocations in place. However, water management in the 
agricultural sector is a crucial issue that technological improvements can assist in 
resolving in comparison to other issues (Pande et al. 2023a). 

Currently, enterprises and infrastructure building can now make more money 
economically from a water investment than from agriculture. The production from 
irrigated agriculture is anticipated to increase greatly while utilizing less water in 
the future (de Jong et al. 2021). The escalating demand for water requires more 
efficient procedures to satisfy it while meeting the finite resources’ constraints. In 
many river basins, water resource management plans prioritize cutting back on water 
use without sacrificing agricultural productivity (Sun et al. 2017). In this case, it is 
possible to use water-conserving irrigation methods and tools. For instance, alternate 
wetting and drying (AWD) and semi-dry culture (SDC) can both conserve up to 50% 
of water when compared to standard irrigation approaches (Enriquez et al. 2021; 
Wang et al. 2018). A significant amount of agricultural water is lost as evapotranspi-
ration. It is important to use in-situ plants and soil measurements (e.g., soil moisture, 
plant moisture, soil and plant physical parameters) to estimate actual crop water 
requirements based on evapotranspiration (Altobelli et al. 2016). Most of the water 
from semi-arid cultivated regions is lost through evapotranspiration (ET) (Eliades 
et al. 2022; Liou and Kar 2014). Understanding how ET affects the water budget 
is important for managing water resources, forest development and the diversity of 
species, the production of sustainable crops, the safety of our food supply, and the 
stability of society (Althoff et al. 2019; de Jong et al. 2021; Karimi and Bastiaanssen 
2015; Moiwo and Tao 2015; Stefanidis and Alexandridis 2021; Zongo et al. 2022). 
It should be mentioned that more effective ET-reduction strategies must be imple-
mented to ensure a sustainable and efficient approach to water use (Reyes-Gonzalez 
2017; Zheng et al. 2020). These measures will balance water distribution between 
industries, households, ecosystems, and agriculture (Afzaal et al. 2020; Bogawski  
and Bednorz 2014; Moiwo and Tao 2015; Wang et al. 2012). 

This chapter aims to investigate the effective methods for estimating ET for agri-
cultural water management; provide a summary of the technical advances made in the 
methodologies currently in use such as Remote Sensing (RS), Geographical Infor-
mation System (GIS) and Artificial Intelligence (AI); identify potential improve-
ments that could be implemented to improve the accuracy of ET estimation and 
achieve precise agricultural water management; demonstrate the potential benefits 
of technological advancement and future opportunities for sustainable agriculture.
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2 Importance of Evapotranspiration in Water Resource 
Management 

Evapotranspiration (ET), which combines evaporation and transpiration, is actu-
ally the absorption of water by plants from the zone of the root. Evaporation is 
the vaporization of water or soil from the surface as shown in Fig. 1. Agricultural 
decision support tools such as precipitation and ET, a measure of climate, repre-
sent regional climates. The ET monitors the amount of water required for efficient 
water management while also assisting with surface energy balance (Bogawski and 
Bednorz 2014; Wang et al. 2012). It is becoming more difficult to conserve water in 
irrigation scheduling while water productivity is increasing, both globally and locally 
(Krishna 2019). One of the key problems in river basin hydrology is estimating the 
local ET (Karimi and Bastiaanssen 2015). Li et al. (2009) estimated that 60% or more 
of the typical precipitation would contain ET from the ground surface. ET may be 
used to measure plant water tension since, for vegetated fields, the rates at which the 
vegetation absorbs water are the same (Islam and Karim 2019) A decrease in water 
resources could have a negative impact on the harvest because there are not enough 
water allocations, endangering food security. The water management system needs 
to be optimized in this context and properly estimate evapotranspiration (Reyes-
Gonzalez 2017). According to Krishna (Hao et al. 2022), it is essential to estimate 
ET precisely because knowing and measuring the factors affecting ET is necessary 
to clarify the ambiguities in the hydrologic cycle’s behavior in response to climate 
change. Well-founded ET estimates are required to control the irrigation system’s 
components; they considerthe size and power of canals, dams, and pumps because 
ET plays an important role in water balance at all scales, from individual plots to 
global plots systems (Kharrou et al. 2021). 

Fig. 1 Conceptual diagram 
of near-surface hydrology, 
showing evapotranspiration, 
evaporation, transpiration, 
runoff, and recharge 
processes (source Buttar 
et al. 2018)
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The evaporation process allows the hydrosphere, atmosphere, and biosphere to 
exchange energy continuously (Krishna 2019; Wang et al. 2012). Because it is a 
dynamic metric, the crop water need should consider water flows, stocks, and vari-
ations over time. Since all measurements require enough hardware and sensors for 
dependable monitoring and data logging, they can all be challenging (Calera et al. 
2017). The ET mechanism significantly aids in the return of moisture to the atmo-
sphere (Karimi and Bastiaanssen 2015). Moiwo and Tao (2015) reported that precip-
itation, which accounts for 39.0% of ET is by far the largest contributor, irrigation 
(24.7%) and soil water (36.3%) are next, after analyzing the respective contributions 
of the three water supply sources to ET. Water moves from the seas to the atmo-
sphere to the continents and back to the oceans across and under the land surface, 
as seen in Fig. 2. The numbers in parentheses after the different water forms (such 
as ice) indicate their volumes in millions of cubic kilometers, whereas the numbers 
after the processes (such as precipitation) indicate their fluxes in millions of cubic 
kilometers of water each year. Moreover, ET is necessary for all aspects of produc-
tivity in the environment (Liu and El-Kassaby 2018). In most cases, the vegetation’s 
heterogeneity influences ET estimation, which is made more difficult during periods 
of dynamic flux following irrigation and precipitation (de Andrade et al. 2021; Geli  
et al. 2019; Gowda et al. 2007; Wang et al. 2012). 

Fig. 2 Representation of surface hydrological cycle (source Encyclopædia Britannica)
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2.1 Water Resource Management and Climate Change 

Agriculture is a highly vulnerable and affected sector by climate change and fluc-
tuations. According to research from the Food and Agriculture Organization (FAO) 
and the Intergovernmental Panel on Climate Change (IPCC), agriculture is one of 
the most susceptible to climate change, particularly in developing nations. Due to 
current advanced technologies, drones can now be used as part of an Innovative 
Agriculture Meteorological Methodology for the Precise and Real-Time Estimation 
of Crop Water (Alexandris et al. 2021). This has caused worries among the scientific 
community. Climate change will have a variety of complex implications in agricul-
ture and water resources (Sun et al. 2018). The soil’s water balance will be affected 
by a changing climate, which will change how much water evaporates and tran-
spires. Significant changes in agricultural productivity, water availability and quality 
variations, frequent and severe floods, and droughts are only a few of the effects 
(Hardelin and Lankoski 2015). Climate change adaptation and mitigation impact 
agricultural water consumption, especially when it comes to water reuse, increased 
water efficiency, and agricultural water conservation (Bhakta et al. 2019). Lopez 
et al. (2022) has developed a sustainable water management plan to reduce extensive 
groundwater extraction from irrigated agriculture and guarantee that water manage-
ment policies comply with sustainable water usage and storage under various climate 
change scenarios (Fig. 3). 

It is obvious that more energy will be available to generate more evaporation due 
to the expected increase in air temperature. Unfortunately, for instance, water reuse, 
increased water efficiency, and agricultural water conservation are all impacted by 
climate change adaptation and mitigation of the use of water in agriculture (Bhakta 
et al. 2019). Lopez et al. (2022) has suggested a sustainable water management plan

Fig. 3 Sustainable use of the groundwater resource (source Gallardo 2019) 
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to reduce the amount of groundwater significantly removed from irrigated agricul-
ture and ensure that water management policies follow sustainable water usage and 
storage under various climate change scenarios (Pande et al. 2023b). The decreas-
ingprecipitation and rising temperatures will have a negatively impact on crop yields 
and outputs. To avoid water shortages caused by climate change, it is essential to 
understand evapotranspiration’s function (Lopez et al. 2022). Entezari et al. (2019) 
introduced air–water harvesting technology (AWH) to encourage sustainable agricul-
ture. In addition, they examined the possibility of recycling evapotranspiration water 
within greenhouses to acquire liquid water in arid or desert environments. Based on 
the Global Climate Model (GCM) composite forecasts, Xing-Guo (Bhatt & Hossain 
2019) showed that there had been a substantial change in the climate over the past 
60 years in the study region. Across all three scenarios, regional average ET increased 
by 6–10% more in the 2050s than in the 1990s, and that increase would be more 
pronounced in the twenty-first century. However, local variations are not sufficiently 
taken into account by GCMs. The climate change impact on water availability has 
been studied using Regional Climate Models (RCM) (Mo et al. 2017; Olmos Gimenez 
and García-Galiano 2018; Stefanidis 2021), and researchers have discussed the model 
resolution effect on forecast accuracy. According to Salman (Tolika et al. 2016), crop 
water demand and climatic water availability (CWA) vary spatiotemporally based 
on long-term rainfall and temperature data. The study findings indicated that rising 
temperatures contribute to increased evapotranspiration, which raises crop water 
needs significantly and reduces water availability in a particular climate (Fig. 4). 

Fig. 4 Climate resilient 
water management (source 
Will Bugler 2020)
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2.2 Role in Water Resource Management of Accurate ET 
Estimation 

Smart farming uses cutting-edge technology to improve plant growth conditions 
(MacPherson et al. 2022). The smart agriculture concept involves crop monitoring 
through optimization and automation to some extent. A digital agriculture system 
incorporates web-based data platforms and analytics combined with quality, efficient, 
and productive farm processes; this is an application of “Quality and Efficient Agri-
culture” (Salman et al. 2020). Data management in digital agriculture involves big 
data analysis. Insufficient mobile cellular infrastructure and facilities are hindered by 
a lack of key technologies (MacPherson et al. 2022) and the fact that agriculture is 
not usually practiced in most countries, putting digitization into practice is difficult. 
Negative effects, such as profits loss, environment contamination, and leaching of 
nutrient are caused by geomorphology, soil properties, crop development phases, 
and other agronomic parameters. Nevertheless, traditional farming systems fail to 
account for the heterogeneity in agricultural areas (Boretti and Rosa 2019). On the 
other hand, precision agriculture makes use of spatially distributed data, precise 
data processing, and reliable decision-making tools. The use of harvest monitoring, 
variable-rate irrigation technology (VRT), GIS, remote sensing, and the Global Navi-
gation Satellite System (GNSS) are just a few of the technologies incorporated into 
precision agriculture (Kingra et al. 2016). 

ET plays a crucial role in precision farming. An accurate ET computation is 
required to comprehend water balances, hydrological processes, climate change, and 
ecosystem activities. Evapotranspiration is the biggest obstacle to agricultural water 
management. Accurate ET calculations are required for drought monitoring, evalu-
ating hydrological models, forecasting the weather, and predicting forest fires (Kingra 
et al. 2016). For precise management and conservation of agricultural water, crop 
water requirements are essential since irrigation water cannot completely meet agri-
cultural demands (Djaman et al. 2018). Indeed, evapotranspiration must be measured 
precisely to make an accurate estimation of crop water requirements. Koech and 
Langat (2018) emphasized the need for water-efficient technologies and techniques 
for agriculture to have sustainable water sources. Additionally, Blatchford (Blatch-
ford et al. 2019) measures crop water productivity (CWP) using digital technolo-
gies to gauge how effectively agriculture uses water. Since precision agriculture 
incorporates monitoring, measuring, and responding to variability in field equip-
ment that monitors and measures crops, it expects to lower cultivation costs, opti-
mize resource use, and increase efficiency through real-time data transmitted via 
the sensors attached to the farm (Mavridou et al. 2019). Irrigated agriculture is more 
productive in semi-arid and desert regions due to precision agriculture applications. A 
drip irrigation technique as shown in Fig. 5 used in agriculture field which can reduce 
runoff and percolation losses and improve water use efficiency (Shanmugapriya et al. 
2019).
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Fig. 5 Use of drip irrigation system in agricultural field 

2.3 Quantitative ET Estimation: Current Perspective 

In the twenty-first century, it was widely believed that advances in ET technology 
were still utilized more frequently for research than for practical applications. In 
recent years, the use of spatial science tools in agriculture, such as satellite technology 
and remote sensing, has risen substantially. It offers an effective and inexpensive treat-
ment for strategies for field measurements. Typically, field sensors advise inputs and 
manage the appropriate amounts of nutrients and water. GPS receivers can capture 
the spatial variability of these needs (Kingra et al. 2016). Consequently, future auto-
mated farm management will extensively use agricultural automation systems and 
technologies. Technologies such as deep learning and spectral analysis fall into this 
category (Tian et al. 2020). Systems for automating agriculture can be made more 
cost-effective, dependable, and stable with computer vision enhanced by artificial 
intelligence (AI) (Tian et al. 2020). The ET database’s availability with open access 
will help future ET-based agriculture water management research. Numerous orga-
nizations are developing this idea, including the Chinese Academy of Sciences, the 
US Geological Survey, the US Department of Agriculture, and the Commonwealth 
Science and Industrial Research Organization of Australia. It is difficult to estimate 
evapotranspiration precisely. Nonetheless, it is necessary to develop and implement 
irrigation systems and water management (Liakos et al. 2018). Although the uniden-
tified water traverses the water balancing method in this approach, the boundary 
contributes to an error in estimating evapotranspiration. 

Numerous studies have demonstrated the importance of water balance in esti-
mating evapotranspiration. According to Nolz (2016), an enhanced sensor arrange-
ment system would help detect these motions by gaining a deeper understanding 
of the existence and movement of subsoil and groundwater. Traditional ET esti-
mating procedures utilize external measurements; several factors are considered 
when calculating the leaf’s surface roughness, vapor pressure, wind speed, temper-
ature, and gas concentrations (CO2, water vapor) (Ghiat et al. 2021; Maina et al.
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2014; Subedi and Chávez 2015). On expansive terrain, it is challenging to measure 
these features; consequently, extrapolation or interpolation must be used to approxi-
mate them (Abdollahnejad et al. 2018; Li et al.  2009). Empirical approaches have the 
advantage of reducing calculation time and the number of ground-based observations 
across regions with high variability. Still, they have the disadvantage of requiring 
fewer ground-based observations in homogeneous areas. There is a possibility that 
it may not work properly depending upon the ground surface characteristics. The 
Priestley-Taylor model, the Stanghellini model, and the Hargreaves-Samani model 
are additional models to the Penman–Monteith equation included in Ghiat’s list of 
models (Ghiat et al. 2021). Ghiat et al. (2021) also mentions the Stanghellini equa-
tion. Nonetheless, empirical constants integration in empirical models leads to an 
overestimation of ET. Despite their sometimes high data requirements, physically 
based analytical approaches can provide ET estimates that are in good agreement 
with measurements (An 2011; Ghiat et al. 2021). Examples of field scale measure-
ment techniques include scintillometers, Bowen meters, lysimeters, conventional soil 
water balance, eddy covariance systems, and others (Blatchford et al. 2019; Ghiat 
et al. 2021; Karimi and Bastiaanssen 2015). In some cases, installing infrastructure 
across the entire watershed may not be feasible financially. Most experts believe that 
FAO’s Penman–Monteith model is the best technique for determining crop coefficient 
(K), thereby making ET the most accurate becauseit performs with precise lysimeter 
observations (Ghiat et al. 2021; Maina et al. 2014). Subedi and Chávez (2015) and 
Maina et al. (2014) indicated that Penman–Monteith equation is the most frequent 
approach for determining ET. Despite the unquestionable accuracy of the aerody-
namic terms of the Penman–Monteith equation, one of its major challenges remains 
is the computation of the canopy surface resistance (Meraz-Maldonado and Flores-
Magdaleno 2019; Zhao et al. 2020). Therefore, accurate surface resistance estimation 
requires more attention. Subedi and Chávez (2015) emphasized that the Penman– 
Monteith equation under an advective state is flawed because it cannot account for the 
horizontal passage of perfect sensible heat flow. Without good meteorological data, 
the Penman–Monteith method cannot be employed. A comparison of the Penman– 
Monteith method with five other temperature-based methods (Hargreaves-Samani, 
Blaney-Riddle, and Thornthwaite, Hamon) can be found in Lang et al. (2017) and 
three radiation-based approaches on an annual and seasonal scale (Makkink, Abtew, 
and Priestley-Taylor). The most important finding of the study was that strategies for 
PET estimation based on radiation performed better than those based on temperature. 
The Abtew method is suited for warm, low-latitude locations, whereas the Makkink 
method is suitable for regions with complicated geographical features. Using para-
metric PET estimation based on radiation, Tegos et al. (2022) proposesa brand new, 
extremely precise method. This model’s only downside is that it must be calibrated 
locally to perform for similar watersheds. Although it is also highly accurate it is time 
consuming and expensive to measure evapotranspiration in the field with a lysimeter 
experiment. Therefore, climatological data is usually used to predict ET. Numerous 
experts evaluated ET estimation methods for different case studies based on radia-
tion and temperature. In addition, multiple researchers have successfully predicted 
the spatial and temporal distribution of ET using cutting-edge machine learning and
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Fig. 6 LULC mapping using machine learning and remote sensing methods (source Wang et al. 
2022) 

remote sensing methods (Bhakta et al. 2019). Wang et al. (2022) explored cutting-
edge machine learning and remote sensing methods as shown in Fig. 5 to investigate 
land use and land changes (LULC) (Fig. 6). 

In agricultural research, numerous meteorological elements, physio-chemical 
variables, and soil features are utilized to make changes (Alvino and Marino 2017; 
Blatchford et al. 2019; Calera et al. 2017; Shanmugapriya et al. 2019; Zeyliger 
and Ermolaeva 2021). Due to the expanded availability of EO data and remote 
sensing technology, global PET datasets can now be developed using monthly remote 
temperature measurements (Tegos et al. 2022). Agricultural growth monitoring and 
crop classification can also be performed utilizing crop productivity season remote 
sensing analyses. As a result, remote sensing technologies coupled with GPS and 
the effectiveness of agricultural activities can be increased with GIS, such as esti-
mating the size of fields. Assessing soil fertility and moisture levels, determining 
crop stress, tracking disease and pest spread, and forecasting droughts and floods 
are overwhelming topics (Chen et al. 2019; Meybeck and Redfern 2016; Nsiah et al. 
2021; Pereira et al. 2015; Shanmugapriya et al. 2019). 

Reyes-Gonzalez (2017) used ML as an effective tool for assessing evapotranspi-
ration and agricultural water demand, emphasizing satellite-based remote sensing. 
They have investigated fundamental components that regulate meteorological obser-
vations, crop data, and geohydraulic features that will affect ET rates, in addition
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to weather, crop, and soil factors. In addition, because of the regional variety of 
these features, the projected ET values vary with climate and plant growth phases 
throughout space and time. Due to difficulties with ground measurements, there is an 
often overlooked aspect of spatial ET modeling when it comes to water accounting. 
Wu et al. (2020) observed this. For this reason, satellite images are a powerful tool 
for documenting the spatial and temporal variability of Earth’s atmosphere (Corbari 
et al. 2020). 

According to Stisen et al. (2021) research, remote sensing technology has evolved 
substantially in recent years, allowing for more precise ET mapping. As a cost-
effective and reliable method of estimating ET for most places where data scarcity is 
prevalent, remote sensing can replace field-based measurement methods (Ma et al. 
2018; Nsiah et al. 2021; Sadras et al. 2015). Political factors may also limit the 
accessibility of bigger catchment measures (such as transboundary river basins). 
These problems can be resolved using satellite-based indirect measurements at high 
temporal frequencies (Singh et al. 2022). The levels of water stress can be predicted 
remotely using thermal infrared imaging. As a result, thermal infrared remote sensing 
is often used to model surface energy balances. However, the land surface temperature 
(LST) data provided by satellites is a strong component of these models (Corbari 
et al. 2020). Wagle and Gowda (2019) investigated and analyzed energy balance 
models with one and two sources. 

Agricultural and food security are negatively impacted by climate change when 
ET is not calculated accurately based on ET’s geographic spread, plant water status, 
reflection, thermal radiance, and vegetation index coefficients (Caldwell et al. 2017; 
Calera et al. 2017). Vegetation index coefficients should be utilized in crop water 
status studies based on reflectance, thermal radiance, and vegetation index coeffi-
cients. According to Alvino, crop-water condition and yield are positively correlated 
and argued for a larger emphasis on remote sensing research to boost agricultural 
output. As these techniques grow more user-friendly, remote sensing enables the 
mapping of extraterrestrial life with unparalleled precision and little effort (Caldwell 
et al. 2017). Remote sensing data and crop coefficients (Kc) are combined to estimate 
actual ET (Calera et al. 2017). Reflectance-based models are capable of estimating 
potential crop transpiration. According to Reyes-González findings (Reyes-González 
et al. 2018), on regional and field scales, ET maps can be generated using remotely 
sensed multispectral vegetation indices. Moreover, their results showed seasonal 
water consumption variations may be reduced by 18% if irrigation programs incor-
porate ET estimation (Reyes-González et al. 2018). Remote sensing applications use 
digital infrared thermography to measure the temperature of the canopy for early 
diagnosis of agricultural water stress and water conservation through site-specific 
irrigation control. Combining satellite information, mobile devices, and a web-GIS 
platform, IrriSatSMS is a system developed by the CSIRO of Australia to manage 
irrigation water (Calera et al. 2017). Remote sensing techniques, such as unmanned 
aircraft systems (UAS) and wireless soil moisture sensors, are indispensable in preci-
sion agriculture (Alvino and Marino 2017), which enables the monitoring of soil 
moisture levels and plant growth to enhance the effectiveness of irrigation manage-
ment at specific locations. These methodologies are capable of assessing the state
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of soil moisture and certain physical properties, as well as harvest prediction, crop 
water conditions, canopy status, and pest infestations (Neupane and Guo 2019). It is 
more practical to monitor unmeasured watersheds using remote sensing. According 
to Andriambeloson r, wind speed, air temperature, and humidity should be measured 
precisely remotely as part of the energy balance equation. As another challenge, 
the airspace between the surface of the earth and satellite sensors disturbs satellite 
radiometers, reducing the precision of measurements (Li et al. 2009). ET measure-
ments are strongly influenced by solar radiation and temperature but have a very low 
correlation with them (An 2011). ET governs wind velocity and relative humidity. 
The exchange of materials and energy between plants and the atmosphere. Thus, plant 
development and yield are highly dependent on ET. Using the most recent remote 
sensing techniques, it is possible to monitor agricultural performance with excel-
lent spatial and temporal accuracy (Blatchford et al. 2019). Using remote sensing, 
Karimi and Bastiaanssen (2015) discovered that 95% precision could be achieved in 
estimating evapotranspiration based on actual rainfall, precipitation, and land use. In 
addition, they emphasized the necessity for further research into multiple space-borne 
sensors for geographical land cover and precipitation mapping. Machine learning 
algorithms have enabled machine vision technologies to be deployed in agriculture 
that accurately evaluate huge amounts of data (Jing et al. 2019; Mavridou et al. 
2019). Assuming an energy balance at the surface, various algorithms and functions 
for using satellite observations to estimate the actual ET have developed in recent 
years. Soil moisture information, which can be gathered using thermal or microwave 
measurements, is essential to determining ET. Microwave measurements have the 
great advantage of being usable in various circumstances and at varying spatial 
resolutions (Karimi and Bastiaanssen 2015). Energy is consumed during the evapo-
ration process. A lower canopy surface temperature can be achieved by increasing 
evapotranspiration (Jones et al. 2018). Using this methodology, evapotranspiration 
and drought stress have been calculated in agricultural water management using 
ground-based thermal remote sensing (Singh et al. 2022; Winbourne et al. 2020). On 
agricultural lands, monitoring canopy surface temperature is difficult because of the 
varied and distributed canopy cover. To ensure that uniform croplands are monitored, 
thermal remote sensing sensors are largely used on the ground. Yet modern thermal 
cameras offer accurate canopy surface temperatures while minimizing background 
and soil noise, making them useful for various crops. The leaf water potential or leaf 
stomatal conductance is often estimated in advanced irrigation scheduling to deter-
mine plant water status (Spohrer et al. 2010). Infrared thermography (IRT) is a prac-
tical non-contact method for calculating the relationship between transpiration and 
stomata opening and leaf temperature. Therefore, it is possible to glean information 
about the physiological health of all crops in the field from an increased leaf cluster. 
Nevertheless, leaf temperature is dependenton additional elements. Thermography-
based water status assessments can be impacted by factors including air temperature, 
radiation, humidity, and wind speed (Spohrer et al. 2010). By using sophisticated 
methods for ET estimation, such as remote sensing and satellite technology, one can 
improve agricultural water management significantly and with greater precision.
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3 Directions for Future Research 

The potential and usefulness of the present evapotranspiration estimating systems, 
as well as a number of their shortcomings, will be shown by examining the method-
ologies of Agricultural water management and ET estimations as stated in the 
literature. Findings from ET modeling have only recently begun to be applied in 
the field (Howell 1996; Pereira et al. 1996). However, the majority of agricultural 
regions around the world have adopted the most contemporary scientific discoveries 
(Bhattarai and Wagle 2021; Sattari et al. 2021). Surface variables, geographical and 
temporal data scales, land surface fluxes, validations of modeled latent heat fluxes, 
and proximate meteorological information acquisition are all part of the physical 
interpretation of surface variables and land surface fluxes are major obstacles to 
using remote sensing techniques to estimate ET. It is notable that ET should be 
physically estimated as an energy variable, not immediately observed from space. 

For a better understanding of seasonal fluctuations, studies of phenology, plant 
cover, and water movement from the land are required. Advanced space-borne obser-
vational equipment and remote sensing methods are employed to quantify energy 
flows into the atmosphere at the top and estimate ET. No precise measurements 
of the energy flow on the earth’s surface have been developed. According to Ustin 
and Middleton (2021), the qualitative data gleaned from optical, thermal, radar, and 
LiDAR imaging is expected to close this gap over the next couple of decades. Jing 
et al. (2019) has pointed out that it does not matter how climates and terrains differ in 
land surface features; no standard model could be utilized to calculate the ET using 
satellite data. For an accurate ET estimation in future applications, the relationship 
between distributed hydrological modeling and remote sensing should be strength-
ened (Mhawej et al. 2020). Higher-resolution input data are also necessary because 
they must direct satellite-based ET measurements for managing water resources 
and conducting hydrological research (Karimi and Bastiaanssen 2015). Accuracy is 
also improved by using machine learning algorithms to analyze massive amounts of 
observable data. Future research methodologies should modify existing methodolo-
gies and consider the possibility of a changing climate (Krishna 2019; Mhawej et al.  
2020). 

4 Conclusions 

An accurate water usage assessment of agricultural areas is necessary for planning, 
managing, and controlling agricultural water resources. Water shortages affect agri-
cultural growth, harvest, and ultimately, food scarcity. Evapotranspiration (ET) is 
the main cause of water loss in agricultural areas. Utilizing more efficient ET reduc-
tion techniques is essential for efficient and sustainable water management in agri-
cultural settings. The air temperature is also projected to increase due to climate
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change. Thus, more evaporation will take place when more energy becomes acces-
sible. Consequently, maximizing agricultural water efficiency and putting long-term 
water management techniques in place should be based on an accurate estimation of 
ET. Taking into account these specifics, our comprehensive review focuses on the 
technical development of accurate ET measuring methods and approaches, as well as 
the identification of more efficient ET reduction strategies which hinder crop growth. 
These are the two primary approaches that are available in the literature. It is critical 
that the ET estimation be accurate in order to precisely manage agricultural water. 
It was also found that more research is required to detect energy interactions and to 
bridge the knowledge and technological gaps. There are many unknowns regarding 
our understanding of energy exchange during different crop growth phases. The 
ET assessment is more accurate due to the use of digital and precision agriculture 
technologies. The use of innovative techniques, such as the application of machine 
learning algorithms, remote sensing, and satellite technology to analyze the data used 
in ET estimation, has improved agricultural water management. 
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Study of Burhanpur Watershed 
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Abstract Morphometric analysis of watershed is quantitative representation of its 
drainage network based on topography of a landform. Morphometric analysis-based 
basin attributes provide insights on drainage behavior of watershed and strengthen 
watershed planning, environmental monitoring and basin management activities. In 
broad categories these attributes are categorized as linear (length related), areal (area 
and shape related), and relief (elevation related) aspects of watershed. In this study 
Burhanpur watershed, upper part of Tapi river basin, has been selected for detailed 
morphometric analysis using Remote Sensing (RS) data and Geographic Informa-
tion Systems (GIS) technology. The study examines about 10,585 km2 drainage 
area for linear, arial and relief aspects of Burhanpur watershed. The values for: linear 
aspects (Stream order, Stream length ratio, Length of overland flow etc.), arial aspect 
(Drainage density, Form factor, Circulatory ratio etc.) and relief aspect (Rugged-
ness number, Relief ratio etc.) were recorded after analysis. This study improves 
the understanding of drainage characteristics and stream pattern of selected water-
shed and reflects potential of RS and GIS for land and water resource conservation 
and management with in watershed. Further study recommends the way forward in 
research at study area. 
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1 Introduction 

A watershed is an area which contributes the total runoff as a response to rainfall 
event(s) to a single common outlet point for disposal. Often it is considered similar 
to a drainage basin or a catchment area to a reservoir. As watershed is an integrated 
form of natural resources i.e., land, water, and vegetation, study of watershed and 
management of its natural resources is crucial for attaining the environmental sustain-
ability (Sangma and Guru 2020; Patel et al. 2021; Kumar et al. 2021a). Watershed 
topography and drainage network, being the most delicate components of a land-
scape, greatly influences both structure and fluvial dynamics of watershed. River’s 
flow pattern and drainage systems are dynamic in nature, changing over time and 
space as a result of a variety of factors such as regional geology, structural elements, 
vegetation, and soils (Rekha et al. 2011). Poor watershed conditions like excessive 
runoff generation, increased soil erosion, poor infiltration conditions, drought and 
floods can be overcome by a well-planned managemental techniques (Choudhari 
et al. 2018). Such strategies suitably provide optimal utilization of resources without 
any degradation and loss in sustainability (Arvind et al. 2018; Bajirao et al. 2019). 
In this direction the characteristics of watershed (topographical, climatic, and hydro-
logic) and related processes must be understood qualitatively as well as quantitatively 
by the decision-makers (Singh et al. 2021). 

Geomorphometry is the mathematical analysis of the earth’s surface that describes 
its topographic reliefs and drainage behavior (Pakhmode et al. 2003). According 
to Rastogi and Sharma (1976), a number of hydrologic phenomena are associated 
with the physiographic features of watersheds. Several morphometric parameters 
(belonging to linear, arial and relief aspects) were derived (Horton 1932, 1945; Smith 
1950; Miller 1953; Schumm 1956; Hadley and Schumm 1961; Strahler 1964; Faniran 
1968) and used by researches in the geomorphometric studied of watershed (Nooka 
Ratnam et al., 2005; Mesa  2006 and Ozdemir and Bird 2009). 

1.1 Role of RS and GIS 

Initiation of morphometric research began in the middle of the twentieth century 
using a traditional methodology based on hand assessments of topographic maps 
(Schumm 1956). However, the traditional method of assessing river morphology is 
a labor-intensive and time consuming (Pande and Moharir 2017). On the other hand, 
with the development of geospatial and computational technology and accessibility 
of remotely sensed data it is now much easier to undertake exact and precise assess-
ments with lesser time and resources. When topographic surveys are not feasible or 
area which are not accessible satellite terrain data such as Digital Elevation Models 
(DEM) are useful for geomorphometric parameterization of a watershed. DEMs 
give continuous data, and are simple to integrate into Geographical Information 
Systems (GIS) (Moore et al. 1991; Patel et al. 2022). Senthamizhan et al. (2016)
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used satellite data and GIS technologies in morphometrics for constructing watershed 
management studies. To calculate morphometric parameters in the sub-basin suscep-
tible to both erosion and sedimentation, a combined approach employing toposheet, 
remotely sensed digital elevation model, and morphometric ArcGIS toolbox has 
been utilized Singh et al. (2021). Moreover, RS ang GIS alone are the advance tools 
capable to study and manage natural resources (Kushwaha et al. 2022a; Machiwal 
et al. 2022; Dhaloiya et al. 2022). 

1.2 Application of Morphometric Analysis 

Geo-morphometric analysis offers the way out to investigate the geometrical 
and drainage characteristics of watershed based on topography. This information 
becomes useful to study the ungauged watersheds where information on hydrology, 
geology, geomorphology, and soil is limited. Forecasting of other basin features such 
as travel time, time to peak, and severity of erosional processes can be performed 
using this technique (Romshoo et al. 2012; Puno and Puno 2019). Moreover, infor-
mation obtained from morphometric study of watersheds could be an important tool 
for managing water resources, preventing soil erosion, mapping landslide suscep-
tibility, assessing groundwater potential, and prioritizing watersheds (Kumar et al. 
2021b; Kushwaha et al. 2022b; Sharma et al. 2022). 

The geomorphometric analysis along with other supplemental data such as runoff, 
flooding, groundwater development, soil erosion, land use and cover, socioeconomic 
status of the local population etc. can be used to priorities sub-watersheds (Kumar 
et al. 2019). It is widely used to identify changes in characteristics of drainage 
basin, understand the several environmental issues at watershed (Mangan et al. 2019; 
Choudhari et al. 2018). In general, geomorphometric analysis gives suitable infor-
mation to understand the spatial and temporal behavior of watershed hydrology and 
related risks (Pande et al. 2018). Which are crucial for sustainable management and 
planning of natural resources (Karabulut and Özdemir 2019; Nitheshnirmal et al. 
2019). This study is conducted with the objective to examine watershed geomorpho-
metric characteristics using RS data and GIS technology for Burhanpur watershed 
at upper Tapi river in central India. Study quantifies the hydro-geo-morphic charac-
teristics of watershed to be used in further development of management strategies 
for the area against several degradation processes. The study discusses in detail 
the different morphometric parameters, process of their quantification and impor-
tance in the context of Burhanpur watershed. Considering the previous studies, this 
study delivers important insights for the scholars and decision makers of the similar 
research area.
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2 Materials and Methods 

2.1 Study Area: Geography and Environment 

The Tapi river system is one of the biggest west flowing river systems of peninsular 
India. The river originates from Multai a place of Madhya Pradesh passes through 
Maharashtra and falls in to the Arabian Sea near city of Surat, Gujarat. From origin 
to its mergence into sea it covers approx. 728 km of distance (https://indiawris.gov. 
in). The Tapi river system drains about total of 65,145 km2 area (second largest 
westward draining inter-state river basin) out of which roughly 16, 79 and 5% area 
falls in Madhya Pradesh, Maharashtra and Gujarat respectively (Fig. 1). 

The Part that is drained from Madhya Pradesh is the approximately half of Upper 
Tapi Basin. Burhanpur, being last district of Madhya Pradesh that is passed by Tapi 
river, is the outlet of the upper reach of Tapi river and a gauging station for flow 
measurement. Hance, this study considers Burhanpur as the outlet of watershed and 
distinguishes the study area as Burhanpur watershed. The river travels near about 
340 km from origin to reach the outlet at Burhanpur. The spatial extent of watershed 
expands from 75° 55' E to 78° 18' 14'' E longitude and from 21° 1' 51'' N to 22° 1'
52'' N latitude (Fig. 1). Within this extent the watershed covers about 10,585 km2 

area. Topographic elevation of the area varies from 188 to 1171 m (above Mean 
Sea Level). The area experiences the average annual rainfall of 900 mm. Study 
area is predominantly having clayey to loamy clayey soils (Chandra et al. 2016) and 
comprises agriculture, range lands, water bodies, barren land, built-up area and forest 
as main land uses types.

Fig. 1 Study area with DEM map and river reaches 

https://indiawris.gov.in
https://indiawris.gov.in
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2.2 Geo-morphometric Analysis: Parameter Quantification 

The present study quantifies the geo-morphometric parameters of Burhanpur water-
shed using Remote Sensing (RS) data and Geographical Information System (GIS). 
The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Digital Elevation 
Model (DEM) from USGS Earth Resources Observation and Science (EROS) Center 
archive was downloaded to get elevation and topography of study area (https://www. 
usgs.gov/). This RS data was used for delineation of watershed and morphometric 
analysis through Hydrology tool box and other spatial tools in ArcGIS (version 10.4) 
(Band 1986; Morris and Heerdegen 1988; Tarboton et al. 1991; Maidment 2002). In 
order to quantify the geomorphometry of watershed three different aspects: linear 
(length related), areal (area and shape related), and relief (elevation related) aspects 
were considered (Strahler 1964). The total 23 basic and derived aspects were analyzed 
to study the Burhanpur watershed as listed and described in Table 1. Linear aspect 
of watershed was determined using (i) Stream order (u), (ii) Stream length (Lu), (iii) 
Number of streams (Nu), (iv) Mean stream length (Lms) (v)  Stream length ratio (Rl), 
(vi) Bifurcation ratio (Rbf), (vii) Mean bifurcation ratio (Rbfm), (viii) Basin length 
(Lb), and (ix) Basin perimeter (P). Further areal aspect was analyzed through (i) 
Basin area (A), (ii) Drainage density (Dd), (iii) Stream frequency, (iv)  Form factor 
(Ff), (v) Shape factor (Fs), (vi) Circulatory ratio (Rc), (vii) Elongation ratio (Re), 
(viii) Constant of channel maintenance (C), (ix) Drainage texture (T), (x) Length of 
overland flow (Lg), and (xi) Texture ratio (T). Moreover, to study the morphometry 
through relief aspect the (i) Basin relief (H), (ii) Relief ratio (Rr), and (iii) Ruggedness 
number (Rn) were studied (Fig. 2 and Table 1).

In this study the linear, aerial, and relief aspects were quantified and analyzed 
based on the procedure suggested by Horton (1932) Horton (1945), Smith (1950), 
Miller (1953), Schumm (1956), Hadley and Schumm (1961), Strahler (1964), Faniran 
(1968), and followed by Nooka Ratnam et al. (2005), Mesa (2006) and Ozdemir and 
Bird (2009). 

3 Results and Discussion 

SRTM-DEM from USGS-EROS Center archive was downloaded to get elevation 
and topography of study at 30 × 30 m spatial resolution and used for the delineation 
of boundary and stream of the watershed. From the slop analysis of DEM is was 
found that the slope of DEM varies from 1 to 190% across watershed area (Fig. 3). 
The area near to the lower (west)-middle boundary of watershed is predominant with 
higher hill slope (>30%). Whereas the Eastern part of watershed (which is origin of 
Tapi river) is having lower slope value (<30%).

Figure 4 depicts the flow direction at the spatial resolution of 30 × 30 m derived 
from DEM. It was observed that flow is being directed in all the directions, however,

https://www.usgs.gov/
https://www.usgs.gov/
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Table 1 Aspect wise morphometric parameters 

Aspects Quantification Detail References 

Linear aspects: describe of arrangement of linear elements 

Stream order (u) Using GIS utility Hierarchical rank Strahler (1964) 

Stream length (Lu) Using GIS utility Length of uth order 
stream 

Horton (1945) 

Number of streams 
(Nu) 

Using GIS utility Total number of uth 
order stream 

Horton (1945), Strahler 
(1964) 

Mean stream length 
(Lms) 

Lms = Lu/Nu Unit length of uth order 
stream 

Strahler (1964) 

Stream length ratio 
(Rl) 

Rl = Lu/Lu-1 Horton postulated the 
constant values for this 
ration throughout the 
successive orders 

Horton (1945) 

Bifurcation ratio 
(Rbf) 

Rbf = Nu/Nu+1 Higher values indicate 
the rockey area with  
sleep slope with valleys 
in-between 

Horton (1932) 

Mean bifurcation 
ratio (Rbfm) 

The average of 
bifurcation ratios of all 
orders 

Schumm (1956) 

Basin length (Lb) Lb = 1.321A0.568 Nooka Ratnam et al. 
(2005) 

Basin perimeter (P) Using GIS utility Outer periphery of basin Schumn (1956) 

Aerial aspect: describe of arrangement of areal elements 

Basin area (A) Using GIS utility area bounded within the 
periphery of basin 

Strahler (1964) 

Drainage density 
(Dd) 

Dd = ΣLu/A The ratio between the 
total stream length of all 
(Dd) orders to the area 
of the basin 

Horton (1945) 

Stream frequency 
(Sf) 

Fs = ΣNu/A number of stream 
segments in unit area of 
watershed 

Horton (1945) 

Form factor (Ff) Ff = A/Lb 
2 It indicates the flow 

intensity of a basin of a 
defined area 

Horton (1932, 1945) 

Shape factor (Fs) Fs = Lb 
2/A Becomes greater than 1 

for basins which are 
elongated along some 
characteristic length of 
the basin and less than 1 
for basins which are 
perpendicular to this 
characteristic length 

Horton (1932)

(continued)
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Table 1 (continued)

Aspects Quantification Detail References

Circulatory ratio 
(Rc) 

Rc = 4πA/P2 It is influenced by the 
length and frequency of 
stream, geological 
structures, land use/ 
landcover, climate, relief 
and slope of the basin 

Miller (1953), Strahler 
(1964) 

Elongation ratio (Re) Re = 1.128
√
A/Lb A circular basin is more 

efficient in the discharge 
of runoff than an 
elongated basin 

Schumm (1956) 

Constant of channel 
maintenance (C) 

C = 1/Dd Drainage area needed to 
generate a unit length of 
stream 

Schumm (1956) 

Infiltration number 
(If) 

If = D × Fs It describes about the 
infiltration 
physiognomies of the 
basin area 

Faniran (1968) 

Length of overland 
flow (Lg) 

Lg = 1/2Dd It relates inversely to the 
average slope of the 
channel and is quite 
synonymous with the 
length of sheet flow to a 
large degree 

Horton (1945) 

Texture ratio (T) T = ΣNu/P The ratio between the 
total number of streams 
of all orders and 
perimeter of the basin 

Smith (1950) 

Relief aspect: describe of arrangement of elevation elements 

Basin relief (H) H = Hmax-Hmin It has significant role to 
understand landforms 
development, drainage 
development, surface 
and erosional properties 
of area 

Hadley and Schumm 
(1961) 

Relief ratio (Rr) Rr = H/L It indicates the overall 
steepness of a drainage 
basin and is an indicator 
of intensity of erosion 
processes operating on 
the slope of the basin 

Schumm (1956) 

Ruggedness number 
(Rn) 

Rn = (H × Dd)/K It is useful for steepness 
and slope of the 
drainage network 

Schumm (1956)
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Fig. 2 Conceptual process for watershed delineation and morphometric parameters analysis

Fig. 3 Slope map of Burhanpur watershed

the predominant direction is the West (16) with the 17.4% cells of DEM. This is 
followed by South (16.9%), North (15.9%) and East (11.3%).

The area of delineated watershed was 10,585 km2, which is further sub divided into 
18 sub-watersheds (Fig. 5). The maximum and minimum area of sub watershed are
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Fig. 4 Flow direction map of Burhanpur watershed

1670.3 km2 and 146 km2 for SW_0 and SW_7 respectively. Perimeter of 272.1 and 
79.8 km respectively.

The study area comes under the dendritic type drainage system which has 
widespread pattern of drainage. The network of tributes found to have highest order 
stream of 4th order (Table 2). Table 2 suitably depicts that delineated watershed 
consists 4 numbers of stream order starting from 1st order to 4th order. Total length 
of stream in the watershed was 2203.7 km for 281 numbers of streams. The largest 
sub-watershed (WS_0) covers total 43 streams (21—1st order, 10—2nd order, 11— 
3rd order, and 1—4th order) with stream length of 338.2 km (174.1 km—1st order, 
54.5 km—2nd order, 99.0 km—3rd order, and 10.6 km—4th order).

The perimeter of sub watersheds found to be of range between 78.6 and 272.1 km. 
The stream orders reflect the slope of watershed, usually 1st and 2nd order streams 
lie on steep slopes and delivers the flow to the next order stream. The length of stream 
characterizes the size of different components of drainage system. It was observed 
from the Table 2 that the watershed has the basin length of 253.5 km whereas, among 
sub-watersheds, WS_0 and WS_7 have the longest and smallest sub-watershed’s 
lengths respectively. The total length of streams of Burhanpur watershed is about 
2203.7 km (accounting 1108.3, 551.9, 213.4, and 330.1 for first, second, third and 
fourth order of streams respectively). Whereas maximum mean stream length of 
9.70 km is recorded for 3rd order stream, as 3rd order stream is not present in all 
sub watersheds. The highest (1.55) and lowest (0.39) stream length ratio is recorded
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Fig. 5 Sub-watershed wise stream order of Burhanpur watershed

between 4th and 3rd order stream and between 3nd order and 2nd order streams 
respectively. The stream length ratio for sub-watershed varies from 0.04 to 9.71 with 
in the sub watershed. Sub-watershed SW_2 has highest stream length ratio for 2nd, 
3rd and 4th order streams. This variation among the stream length ratio between 
the successive stream orders shows the corresponding variation in the slope and 
topographic conditions of watershed. 

The bifurcation ratio of Burhrapur watershed varies between 0.34 and 2.10 with 
mean bifurcation ratio of 1.77. Among sub-watersheds the highest bifurcation ratio 
is observed to be 4.67 for SW_0 whereas least bifurcation ratio of 0.33 for SW_3. 
These values are common in the basin where the drainage pattern is not influenced 
by the geological structure of watershed (Sreedevi et al. 2009). For bifurcation ratio 
less than 3 the watershed would be structurally less disturbed with less distortion 
in drainage pattern and geological formation (Patel et al. 2013). Higher value of 
bifurcation ratio also shows that watershed has steeply dipping rock strata and severe 
over land flow (Chandniha and Kansal 2017). The bifurcation ratio more than 3 
indicates severe over land flow and low discharge to the sub-watersheds. Further, 
the values of bifurcation ratio also display shape of watersheds. Here the delineated 
sub watersheds SW_0, SW_2, SW_7, SW_10, SW_11 and SW_15 were elongated 
in shape whereas remaining all the sub watersheds bifurcation ratio less than 3 are 
normal and approximately circular in shape. The higher value of bifurcation ratio
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Table 2 Sub-watershed wise computation of morphometric parameters for linear aspect 

Sub 
watershed 

Area 
(km2) 

Perimeter 
(km) 

Total length of uth order 
streams (km) 

Total number of 
uth order streams 

Total 

1 2 3 4 1 2 3 4 

SW_0 1670.3 272.1 174.1 54.5 99.0 10.6 21 10 11 1 43 

SW_1 750.6 248.3 43.9 71.9 21.7 17.8 8 5 1 3 17 

SW_2 996.1 193.9 100.1 4.2 40.9 38.9 11 1 5 8 25 

SW_3 644.3 187.7 50.8 7.6 32.8 27.5 7 2 2 6 17 

SW_4 264.9 142.2 22.1 14.8 11.9 5 3 3 11 

SW_5 394.5 137.1 33.2 36.3 17.5 6 3 4 13 

SW_6 480.8 153.0 59.5 2.7 18.9 5 2 4 11 

SW_7 146.0 79.8 10.3 9.2 15.9 3 1 3 7 

SW_8 266.1 103.6 34.0 5.9 15.7 4 2 3 9 

SW_9 278.3 108.1 30.6 17.9 15.6 5 2 4 11 

SW_10 474.0 167.7 55.3 25.7 15.2 6 2 5 13 

SW_11 188.6 78.6 13.3 12.4 12.2 3 1 3 7 

SW_12 647.0 182.4 92.7 38.8 17.4 8 6 3 17 

SW_13 696.2 189.0 105.9 38.7 27.6 9 5 5 19 

SW_14 390.3 103.7 29.5 38.9 8.3 0.0 5 3 1 9 

SW_15 492.5 133.4 67.9 29.2 3.9 0.0 8 6 1 15 

SW_16 414.9 137.8 36.4 44.2 18.3 4 2 3 9 

SW_17 827.6 211.5 72.6 84.5 49.2 9 4 6 19 

SW_18 562.2 131.4 76.2 14.6 6.8 0.0 5 3 1 0 9 

Burhanpur 
watershed 

10585.0 1145.5 1108.3 551.9 213.4 330.1 132 63 22 64 281 

Sub 
watershed 
(SW) 

SW 
length 
(km) 

Mean stream length (km) Stream length 
ratio 

Bifurcation ratios Mean 
Rbf 

1 2 3 4 2 3 4 1 2 3 

SW_0 88.8 8.29 5.45 9.00 10.65 0.31 1.82 0.11 2.10 0.91 11.00 4.67 

SW_1 56.4 5.49 14.38 21.75 5.92 1.64 0.30 0.82 1.60 5.00 0.33 2.31 

SW_2 66.2 9.10 4.21 8.17 4.86 0.04 9.71 0.95 11.00 0.20 0.63 3.94 

SW_3 51.7 7.25 3.82 16.39 4.59 0.15 4.29 0.84 3.50 1.00 0.33 1.61 

SW_4 31.2 4.41 4.93 3.97 0.67 1.67 1.67 

SW_5 39.1 5.53 12.10 4.37 1.09 2.00 2.00 

SW_6 43.8 11.91 1.35 4.73 0.05 2.50 2.50 

SW_7 22.2 3.42 9.21 5.29 0.90 3.00 3.00 

SW_8 31.3 8.49 2.95 5.22 0.17 2.00 2.00 

SW_9 32.1 6.11 8.93 3.89 0.58 2.50 2.50 

SW_10 43.4 9.22 12.85 3.03 0.46 3.00 3.00

(continued)
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Table 2 (continued)

Sub
watershed
(SW)

SW
length
(km)

Mean stream length (km) Stream length
ratio

Bifurcation ratios Mean
Rbf

1 2 3 4 2 3 4 1 2 3

SW_11 25.7 4.43 12.43 4.08 0.93 3.00 3.00 

SW_12 51.8 11.59 6.47 5.81 0.42 1.33 1.33 

SW_13 54.0 11.77 7.73 5.52 0.37 1.80 1.80 

SW_14 38.9 5.91 12.96 8.29 1.32 0.21 1.67 3.00 2.33 

SW_15 44.4 8.49 4.86 3.91 0.43 0.13 1.33 6.00 3.67 

SW_16 40.3 9.09 22.09 6.09 1.22 2.00 2.00 

SW_17 59.6 8.07 21.12 8.20 1.16 2.25 2.25 

SW_18 47.9 15.25 4.87 6.80 0.19 0.47 0.00 1.67 3.00 2.33 

Burhanpur 
Watershed 

253.5 
(Lb) 

8.40 8.76 9.70 5.16 0.50 0.39 1.55 2.10 2.86 0.34 1.77

spectacles the mature topography and large variation between successive streams 
order (Sreedevi et al. 2009). 

Drainage density illustrate the runoff potential, infiltration capacity, climatic 
conditions and vegetative cover of watershed (Horton 1932). Table 3 shows the 
different aerial parameters of Burhanpur watershed along with all sub-watersheds.

The drainage density of Burhanpur watershed is 0.21 which indicates that overland 
flow is predominate and having coarse drainage structure in the basin. Lower values of 
drainage density also characterize the watershed highly resistance and permeable sub 
soil materials with low relief and covers dense vegetation (Sreedevi et al. 2009). The 
drainage density of sub watershed varies between 0.17 and 0.25. For the watersheds 
the higher drainage density implies the weak impermeable surface, sparsely vegetated 
and high relief conditions for corresponding sub-watersheds. From Table 3 it was 
observed that stream frequency of Burhanpur watershed is 0.03 and varies between 
0.02 and 0.05 for sub watershed. The lower values of stream frequency show that 
the area has gentle ground slope and more permeable rocks. The lower values of 
drainage density and stream frequency implies that Burhanpur watershed as whole 
has less surface runoff and flooding is likely to be less. It also gives the inference of 
more percolation within the watershed which shows greater ground water potentials. 

Form factor is the ratio of area of the basin to the square of basin length. Generally 
it values less than 0.79 (0.79 is for perfectly circular watershed) (Chandniha and 
Kansal 2017; Patel et al. 2013). The low value of form factor confirms that the basin 
is elongated in shape. The form factor of Burhanpur watershed is 0.16 and for the 
sub watershed it varies from 0.21 to 0.29. This depicts that the sub-watersheds with 
high Ff (circular shape) will have peak flow of short duration, whereas those have 
low Ff (elongated shape) will be having less peak of longer duration. Hence flood can 
easily be managed in elongated sub-watersheds than in those which are of circular in 
shape. As per the Horton (1932) the shape factor of a basin always remains greater 
than 1 for basin which are elongated in some characteristic length of the basin Shape
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Table 3 Sub-watershed wise computation of morphometric parameters for arial aspect 

Sub 
watershed 

L N Dd Sf Ff FS Rc Re C If Lg T 

SW_0 338.29 43 0.20 0.03 0.21 4.72 0.28 0.52 4.94 0.01 2.47 0.16 

SW_1 155.31 17 0.21 0.02 0.24 4.24 0.15 0.55 4.83 0.00 2.42 0.07 

SW_2 184.05 25 0.18 0.03 0.23 4.40 0.33 0.54 5.41 0.00 2.71 0.13 

SW_3 118.70 17 0.18 0.03 0.24 4.15 0.23 0.55 5.43 0.00 2.71 0.09 

SW_4 48.76 11 0.18 0.04 0.27 3.68 0.16 0.59 5.43 0.01 2.72 0.08 

SW_5 86.99 13 0.22 0.03 0.26 3.88 0.26 0.57 4.53 0.01 2.27 0.09 

SW_6 81.14 11 0.17 0.02 0.25 3.99 0.26 0.56 5.93 0.00 2.96 0.07 

SW_7 35.33 7 0.24 0.05 0.29 3.39 0.29 0.61 4.13 0.01 2.07 0.09 

SW_8 55.51 9 0.21 0.03 0.27 3.68 0.31 0.59 4.79 0.01 2.40 0.09 

SW_9 63.98 11 0.23 0.04 0.27 3.70 0.30 0.59 4.35 0.01 2.17 0.10 

SW_10 96.18 13 0.20 0.03 0.25 3.98 0.21 0.57 4.93 0.01 2.46 0.08 

SW_11 37.94 7 0.20 0.04 0.28 3.51 0.38 0.60 4.97 0.01 2.48 0.09 

SW_12 148.97 17 0.23 0.03 0.24 4.15 0.24 0.55 4.34 0.01 2.17 0.09 

SW_13 172.18 19 0.25 0.03 0.24 4.19 0.24 0.55 4.04 0.01 2.02 0.10 

SW_14 76.69 9 0.20 0.02 0.26 3.88 0.46 0.57 5.09 0.00 2.54 0.09 

SW_15 100.95 15 0.20 0.03 0.25 4.00 0.35 0.56 4.88 0.01 2.44 0.11 

SW_16 98.81 9 0.24 0.02 0.26 3.91 0.27 0.57 4.20 0.01 2.10 0.07 

SW_17 206.29 19 0.25 0.02 0.23 4.29 0.23 0.54 4.01 0.01 2.01 0.09 

SW_18 97.62 9 0.17 0.02 0.25 4.07 0.41 0.56 5.76 0.00 2.88 0.07 

Burhanpur 
Watershed 

2203.68 281 0.21 0.03 0.16 6.07 0.10 0.46 4.80 0.01 2.40 0.25 

L = Total stream length, N = Total stream numbers, Dd = Drainage density (km/km2), Sf = 
Stream frequency (number/km2), Ff = Farm factor, FS = shape factor, Rc = Circularity ration, Re 
= Elongation ration, C = Constant of channel maintenance (km2/km), If = Infiltration number, Lg 
= Length of overland flow  (km), T  = Texture ration

factor of Burhapur watershed is 6.07 which shows that the watershed is more or less 
elongated in shape. 

The value of circularity ratio ranges from 0.2 to 0.8 or less than 1. The value more 
than 0.5 indicates that the watershed is more homogeneous in geological formation 
and more circular in shape whereas less than 0.5 shows that watershed is elongated 
in shape (Miller 1953). In circular watershed as the high flow could accumulated 
from whole area of watershed simultaneously circularity ratio of watershed is used 
for assessment of flood hazard. The circularity ratio of Burhanpur watershed is 0.10 
depicting it as elongated in shape. Further emphasizes that the discharge from the 
watershed would be less. Whereas the circularity ration vary between 0.15 and 0.46 
for the sub-watersheds. Higher value of 0.46 is for sub watershed SW_14 (relatively 
circular in shape) shows that it could be flood hazard zone with in the watershed. 
Similarly, the zones with higher circularity ration are prone to flood hazard.
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Constant of channel maintenance is the inverse of drainage density of watershed. 
It indicates the magnitude of Sq. km of watershed surface area required to sustain the 
one km liner length of stream segment. The value of constant of channel maintenance 
for Burhanpur watershed is 4.80. Its value varies from 4.01 to 5.93 with in the sub 
watersheds. Overland flow is flow of precipitated water which move over the land 
surface leading to the stream channels which is differ from surface runoff. Overland 
flow is predominant in small watershed than larger watersheds. Burhanpur watershed 
has length of overland flow of 2.40 km, whereas its value varies between 2.01 and 
2.96 km for sub-watersheds. SW_6 is more dominated with overland flow because 
of more relief than other sub-watersheds. 

Texture ratio is also called as drainage texture which is the ratio of total no of stream 
segments of all order to the perimeter of the watershed. It depends on the lithological 
properties of basin, infiltration of the soil as well as relief aspects of the terrain 
(Chandniha and Kansal 2017; Shelar et al. 2022). The texture ratio of Burhanpur 
watershed is 0.25. The value varies within the sub-watershed between 0.07 and 0.16. 
Lower values of texture ratio indicate that watershed is plain with lower degree of 
slope. Relief ratio and Ruggedness number (Rn) of Burhanpur watershed observed as 
3.88 and 0.2 respectively. The higher value of relief ratio characterizes the Burhanpur 
watershed with hilly regions (Fig. 3). Relief of the Burhanpur watershed is 983 m 
further indicates the mountainous area of watershed. 

4 Conclusion 

The Hydrological study of a watershed greatly relay on its geo-morphometric char-
acteristics. No doubt, watershed delineation along with its stream network may 
be performed with traditional observational survey and using the maps. However, 
advance remote sensing and GIS technologies play a great role to provide quick 
yet authentic delineation of study area. Further this analysis not only helps to study 
hydrologic behavior but also to prioritize susceptible areas under erosion, manage-
ment and utilization of land and water resources, status of landform etc. this study 
reviled that the Burhanpur watershed, as a whole, being elongated in shape (low 
form factor of 0.16 and shape factor of 6.07) and having dominant channel flow (low 
bifurcation ratio of 1.77) shows lesser susceptibility to erosion. Further it was found 
that the watershed is having low values of drainage density, stream frequency, and 
circularity ration of 0.21, 0.03, and 0.10 respectively, indicating that watershed, as a 
whole at outlet, do not contribute to instance flood hazards. 

Nevertheless, when the sub-watersheds are considered, the results show the other 
face of a coin. It was observed that the part of watershed having sever overland 
flow based on bifurcation ration indicating the susceptibility under erosion problem. 
The fact of having low drainage density again confirms the threat of high overland 
flow for some sub-watersheds and their susceptibility to soil erosion. Moreover, 
comparative higher values of form factor and elongation ration of some sub watershed 
(SW_4, SW_7, SW_8, SW_9, SW_14, and SW_16) confirms their circular shapes.
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In turn this indicates their capability to generate concentrated peak flow and hance 
susceptibility under flash flood situation. From this study it is concluded that the 
Burhanpur watershed is having some areas which may be under critical threat of soil 
erosion, sedimentation, and flash flood hazards. 

The geomorphometric study being first step to understand the watershed’s hydro-
logical processes and their potential risk on resources. However, the microscopic 
characterization and prioritization of sub-watersheds within the watershed area is 
further essential for comprehensive management, detailed planning and effective 
implementation. Hance this study also highlights the need of further research to 
prioritize the sub-watershed for strategies building to promote soil conservation via 
control of soil erosion and on-site water harvesting via control of flash floods. Which 
will help the decision makers to allocate the investments to critical sub-watersheds 
in technically efficient and economically effective way. 
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A GIS-Based DRASTIC Approach 
for Aquifer Vulnerability Assessment: 
Study Conducted in the Municipal 
Corporation Region of Ranchi, 
Jharkhand 

Shivam Saw, Prasoon Kumar Singh, Rohit Patel, Vaibhav Deoli, 
and Deepak Kumar 

Abstract The idea of Groundwater Vulnerability is based on the supposition that 
the physical environment may shield groundwater to some extent from impacts from 
the environment and people, particularly concerning contaminants that reach the 
subsurface environment. The present study develops the aquifer vulnerability map 
of the Ranchi Municipal Corporation area through the GIS-based DRASTIC method 
by calculating Drastic Value Index (DVI) values. The greater the DVI value, the 
greater the potential for aquifer contamination. The DVI values are categorized into 
five classes from low to high. The study area has a varied range of Drastic Value 
Index (DVI) values. It has been found that 47.08% of the total research region comes 
under the moderately low vulnerability class, followed by the Moderate vulnerability 
class with 29.49% of the total research region, and 18.57% of the total area comes 
under the high vulnerability class. Hence, the DVI map could be helpful in the 
environmental risk assessment aspects during town planning or during the proposal 
for new developmental or industrial activities. It could also be useful in the site 
selection procedure for activities that could directly impact Groundwater, like landfill 
sites.

S. Saw (B) · P. K. Singh · R. Patel · V. Deoli 
Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), 
Dhanbad 826004, India 
e-mail: shivamsaw@gmail.com 

P. K. Singh 
e-mail: pks0506@iitism.ac.in 

R. Patel 
e-mail: rohitpatelp7@gmail.com 

V. Deoli 
e-mail: deolivaibhavdeoli@gmail.com 

D. Kumar 
Department of Soil and Water Conservation Engineering, GB Pant University of Agriculture and 
Technology, Pantnagar 263145, India 
e-mail: deepak.swce.cot.gbpuat@gmail.com 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
C. B. Pande et al. (eds.), Surface and Groundwater Resources Development and 
Management in Semi-arid Region, Springer Hydrogeology, 
https://doi.org/10.1007/978-3-031-29394-8_3 

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29394-8_3&domain=pdf
mailto:shivamsaw@gmail.com
mailto:pks0506@iitism.ac.in
mailto:rohitpatelp7@gmail.com
mailto:deolivaibhavdeoli@gmail.com
mailto:deepak.swce.cot.gbpuat@gmail.com
https://doi.org/10.1007/978-3-031-29394-8_3


40 S. Saw et al.

Keywords Groundwater · DRASTIC · GIS · Vulnerability · DVI 

1 Introduction 

The most important form of naturally existing freshwater on earth i.e. groundwater, 
is in a very vulnerable position in terms of both its quantitative and qualitative eval-
uations. Aquifer conservation is now necessary since groundwater quality is contin-
uously declining around the world (Mallik et al. 2021). Due to fast and substan-
tial growth in population, careless planning, unplanned city modernization, various 
land use-land category trends, and improper drainage facilities, which would include 
sewage disposal from industry sectors, rural fields, and urban areas, the issue of water 
groundwater pollution has increased to alarming levels in the past few decades (Singh 
et al. 2017; Pande et al. 2017; Pande et al. 2023). Groundwater pollution remedia-
tion procedures and methods are frequently difficult and extremely costly. The most 
precise and efficient methods of groundwater preservation are those that safeguard it 
from various forms of pollution (Bera et al. 2022). Managing this precious resource is 
crucial for its protection, but it can be difficult to delineate and demarcate the amount 
of contamination on a broad scale (Bai et al. 2012). Thus, in order to set up and 
control numerous development planning needs, underground aquifer vulnerability 
examinations have become crucial from the viewpoint of groundwater preservation 
measures (Ghosh et al. 2015). The capability for contaminants to move from the 
soil profile to the groundwater’s vadose zone is estimated via vulnerability mapping 
of the aquifer against contamination (Connell and Daele 2003). Researchers have 
attempted to include geologic formations in groundwater vulnerability evaluations 
due to the significant impact they may have on the vulnerability of severely frac-
tured zones (Saranya and Saravanan 2021). The popular models used are DRASTIC 
approach (Aller 1985), AVI approach (Stempvoort et al. 1993), GALDIT approach 
(Mitra 2011), GOD approach (Foster et al. 2002), and IRISH approach (Daly and 
Drew 1999). 

DRASTIC approach is among the most prominent for determining how vulnerable 
groundwater is to various possible pollutants (Evans and Myers 1990; Anshumala 
et al. 2021). The results obtained using the DRASTIC model are reliable and can 
be used for even complex areas such as mining areas (McLay et al. 2001). The 
DRASTIC model has transformed its indexes to suit aquifers all around the globe 
(Baalousha 2011;Yu et al.  2022). Groundwater depth, rainfall recharge, aquifer class, 
soil characteristics, topography, the impact of the vadose zone, and the hydraulic 
conductivity of the aquifer are among the geographical datasets incorporated in this 
approach (Navulur and Engel 1998). A few disadvantages of the DRASTIC technique 
include the possibility for dispute in the rankings and weights applied as well as the 
exclusion of several crucial factors indicating contamination loading (Saranya and 
Saravanan 2021; Nair et al.  2022). 

The aim and objective of the present study is (i) to carryout the aquifer vulnerability 
assessment of study area using DRASTIC approach and (ii) to prepare a thematic



A GIS-Based DRASTIC Approach for Aquifer Vulnerability … 41

map of the study area to identify the high-risk zone using ArcGIS 10.5, software. The 
study provides immense utility to the groundwater board, Industries, and researchers 
for identifying the vulnerable zone of the study area. 

2 Study Area 

In the present research Aquifer Vulnerability evaluation is being conducted for the 
Ranchi Municipal Corporation Area. The Municipal corporation was established 
in 1979. Presently, the Municipal Corporation consists of 52 wards. The municipal 
corporation area extent is 174.837 sq km. The area is located between 23°14' to 23°26'
North latitude and 85°15' to 85°24' East longitude. Conferring to the 2011 Census, 
the population of India is 10,73, 427. Ranchi has a subtropical Climate. The summer 
temperature varies from 42 to 20 °C, while in the winter it varies from 25 to 0 °C. The 
coldest months are December as well as January, and certain urban areas experience 
freezing temperatures. The annual rainfall in Ranchi District is about 1430 mm 
(56.34 in.). The study area boundary, the Ranchi Municipal Corporation boundary, 
was digitized in ArcGIS at a scale of 1:40,000 using the municipal corporation ward 
map as a base reference. The Municipal corporation ward map was obtained from 
the Ranchi municipal corporation official website as a shapefile. The location map 
of present research is illustrated in Fig. 1. 

Fig. 1 Location Map of present work
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Between 2013–14 and 2019–20, the Indian government launched the drinkable 
water and sanitation initiative for low-income states, which include Jharkhand State, 
with assistance from World Bank. It is heavily reported that this area has good 
precipitation, but due to the hardy rock area, the water retention capacity is low; hence 
net recharge of water is poor. Also, water quality is deteriorating due to unplanned 
urbanization and the migration of people from rural areas. 

3 Material and Method 

3.1 Methodology 

Due to the fact that it takes numerous important hydrogeological elements into 
account when computing results, the DRASTIC approach is a numerical rating tech-
nique for assessing the possibility of groundwater pollution on diverse levels (local, 
regional, and global). The word DRASTIC is made up of the first letters of 7 model 
parameters which are as under. 

• D—Depth to water table 
• R—Net recharge 
• A—Aquifer media 
• S—Soil media 
• T—Topography 
• I—Impact of vadose zone 
• C—Hydraulic conductivity 

Every DRASTIC variable has a proportional weight given to it, so each class has 
ratings. Depending on how it affects how vulnerable the aquifer is to contamina-
tion, the most significant parameter is specified the maximum weight, while the least 
significant one is specified the minimum weight. Consequently, ratings are also given 
to the subcategories based on the kind, scope, and rate of their capability for contam-
ination. Thus, the corresponding parameters are given set ratings and weighting. To 
calculate DVI, the rates and weights of each variable are combined and added (Aller 
1985). The DVI of the present research area is estimated by Eq. 1: 

DVI = Dr Dw + Rr Rw + Ar Aw + Sr Sw + Tr Tw + Ir Iw + Cr Cw (1) 

The capital letters used here stand for every layer’s parameters, while the 
subscripts “r” and “w” stand for the parameters’ ratings and weighting, correspond-
ingly. The cumulative index value obtained by the calculation above serves as a 
comparative indicator of the susceptibility of groundwater to pollution. A location 
with a greater DVI value is more vulnerable to pollution than regions with a low DVI 
value. The methodology involved in DRASTIC approach of aquifer vulnerability 
assessement is illustrated in Fig. 2.



A GIS-Based DRASTIC Approach for Aquifer Vulnerability … 43

Geological Map 

LUP Soil Map 

Digital Elevation Model 
(Topography) 

Secondary Data of 
Pumping Test 

Litholog and Geology 

Well Inventory 

Rainfall & Geology 

Depth to Water Table 

Recharge 

Aquifer Media 

Soil Media 

Slope 

Hydraulic Conductivity 

Vadose Zone Impact 
Aquifer Vulnerability 

Map 

Drastic Index 

Weight & Rating 

Fig. 2 Flow chart of methodology undertaken in the present study 

3.2 Data Collection 

First of all, to create thematic maps of the DRASTIC parameters, various kinds of 
data were necessary. The data was collected from published reports and websites 
of Government departments, Education & Research institute, and others. The 
data collected in various formats were processed using GIS software, QGIS, and 
ArcGIS (Pande et al. 2023). The required parameters used in DRASTIC models are 
illustraded in Table 1.

3.3 Depth to Water Table 

The data for post-monsoon (2021) groundwater depth of 25 observation wells within 
the research area within a distance of 2 km from the research area’s boundary was 
obtained from the CGWB website, as shown in Table 2. The latitudes and longitude 
values were also obtained; hence it was incorporated to plot the Depth to Water Table 
map.
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Table 1 Parameters required for the DRASTIC model 

Final output layer Type of data Source 

D Water level CGWB, India 

R Rainfall and geology data Literature 

A Lithology data Literature 

S Soil map SAMETI, Jharkhand 

T Digital elevation model (DEM) NRSC, Hyderabad 

I Hydraulic conductivity and Water 
table data 

CMPDIL, Dhanbad and CGWB, 
India 

C Permeability CMPDIL, Dhanbad and Literature

Table 2 Water table data of 
different location 

Location Longitude Latitude Post monsoon GW level 
(mbgl) 

1 85.3167 23.375 6.7 

2 85.3083 23.4 1.49 

3 85.3022 23.4222 3.2 

4 85.3322 23.425 6.3 

5 85.4036 23.3542 2.7 

6 85.3786 23.3539 3.4 

7 85.3408 23.3683 2.15 

8 85.3467 23.3858 2.5 

9 85.3481 23.3881 3.19 

10 85.3908 23.4047 5.2 

11 85.4086 23.4203 4.15 

12 85.3194 23.343 1.8 

13 85.3105 23.3136 1.4 

14 85.3063 23.278 2.05 

15 85.2777 23.3013 1.9 

16 85.2972 23.2958 2.9 

17 85.2805 23.3819 2.25 

18 85.30833 23.3361 1.6 

19 85.32 23.241 4.3 

20 85.295 23.3777 1.85 

21 85.31 23.3561 1.9 

22 85.3686 23.4047 2.2 

23 85.3688 23.3916 1.05 

24 85.315 23.3069 3.45 

25 85.3425 23.3138 2.1
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3.4 Digital Elevation Model 

The Digital Elevation Model (DEM) for the Ranchi region was obtained from the 
BHUVAN website, from the ‘CartoDEM Version-2 R1’ product. From the DEM 
raster, the Topography (Slope) Raster was created. 

3.5 Hydrogeological Map 

From the “Groundwater Information booklet” for Ranchi District, Published by 
CGWB, the Hydrogeological map of present research area was taken. The various 
aquifer types were plotted on this map. This map was used for creating Aquifer Map 
for the research area. 

3.6 Soil Type 

The National Bureau of Soil Survey and Land Use Planning (ICAR) and Department 
of Agriculture jointly released a Study on Soil Properties for the State of Jharkhand, 
in which the information on soil characteristics was included. 

3.7 Rainfall Data 

Rainfall data for the present research was collected from the Indian Metrological 
Department Website, and a land use distribution map has been prepared, as shown 
in Fig. 3a.

3.8 Land Use Data 

The land Use Map of the Ranchi for the year 2017 was obtained from a study report 
on Land Use change analysis, and a rainfall distribution map has been prepared, as 
shown in Fig. 3b.
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Fig. 3 Spatial distribution map of a land use pattern, b rainfall intensity

3.9 Weights and Ratings 

The weights of the various DRASTIC constraints are given in Table 3. The Ratings 
for the different ranges of each of these parameters are given in Table 4. These 
weights and ratings were employed for calculating the DRASTIC value. 

Table 3 Weight given to 
seven DRASTIC constraints 
(Aller 1985; Karan et al. 
2018) 

Parameter Weight 

Depth to groundwater 5 

Net recharge 4 

Aquifer type 3 

Soil type 2 

Topography or slope 1 

Impact of vadose zone 5 

Hydraulic conductivity 3
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Table 4 Rating assigned to 
each parameters of DRASTIC 
approach 

Range Rating 

Depth to groundwater 

0–1.52 10 

1.52–4.57 9 

4.57–9.14 7 

9.14–15.24 5 

15.24–22.86 3 

22.86–30.48 2 

30.48+ 1 

Net recharge 

0–5.08 1 

5.08–10.16 3 

10.16–17.78 6 

17.78–25.4 8 

25.4+ 9 

Aquifer type 

Metamorphic/igneous 3 

Glacial till 5 

Soil type 

Clay loam 3 

Silty loam 4 

Slope (topography) 

0–2 10 

2–6 9 

6–12 5 

12–18 3 

18+ 1 

Impact of vadose zone 

Metamorphic/igneous 4 

Silt/clay 3 

Hydraulic conductivity 

0.04–4.07 1 

4.07–12.22 2 

12.22–28.52 4 

28.52–40.74 6 

40.74–81.49 8 

81.49+ 10
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4 Result and Discussion 

4.1 Preparation of Thematic Map of DRASTIC Parameters 

4.2 Depth to Water Table (D) 

The groundwater depth data table of the 25 observation wells was exported to ArcGIS 
software as a.csv file. With the wells’ latitude and longitude, the wells, the locations 
of the wells were converted into a point layer using the ‘Display XY data’ tool. The 
Groundwater depth values were automatically added as an attribute to the point layer. 
In ArcGIS, Spatial Interpolation was done using the point layer having groundwater 
depth data for creating the Groundwater depth. IDW technique of spatial interpolation 
was used. The map for Groundwater Depth was clipped to the research area boundary 
and its range of values were reclassified to the range according to which ratings were 
given. The thematic map was created in the Layout view, as illustrated in Fig. 4. 

Fig. 4 Depth to water table (D) distribution map
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Table 5 Runoff coefficient 
value of different land use 
category 

Land use category Runoff coefficient 

Barren land 0.6 

Built up area 0.9 

Vegetation 0.5 

Water body 0.01 

4.3 Net Recharge (R) 

It is calculated with the help of the Eq. 2 given as under. 

Net Recharge =[
Precipitation(Rainfall)

] − [
Precipitation(Rainfall) ∗ 0.05

]

− [
Precipitation(Rainfall) ∗ (Runoff Coefficients)

]
(2) 

The Indian Meteorological Division’s rainfall data was used to create the thematic 
map of precipitation. It was estimated that 5% of the precipitation would be lost 
through evapotranspiration (this value is gathered from a report of IMD, Ranchi). 
Land use map was also taken, which had four classes of land use: Barren land, 
Built up area, Vegetation, and Water body. The runoff coefficients were allocated to 
the various land use classes ranging from 0 to 1, as shown in Table 5. The runoff 
coefficient values were selected from the Land use and Rainfall maps as rasters were 
used to derive the Net Recharge raster, according to the formula, using the Raster 
Calculator tool. Furthermore, the Net Recharge spatial distribution map is derived 
as shown in Fig. 5

4.4 Aquifer Type (A) 

The hydrogeological map depicting the Aquifer types from the Groundwater booklet 
was Georeferenced using the ‘Georeferenced’ tool in QGIS. It was then clipped to 
the study area. Using this map as a base the Aquifer Map was digitized at a scale 
of 1:40,000. The Aquifer media distribution thematic map is illustrated in Fig. 6. In  
Ranchi municipal region, only two types of Aquifer Media were observed: glacial 
till, metamorphic/igneous.

4.5 Soil Type (S) 

Birsa Agriculture University (BAU), Ranchi, provided the various soil map. For 
the purpose of creating the thematic map of soil media, it was georeferenced and 
then digitalized at a scale of 1:40,000 in ArcGIS software. The research region
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Fig. 5 Net recharge (R) distribution map

comprises of Clay loam and Silty loam soil. The two types of soil were categorized, 
and associated ratings were given to each category. Figure 7 displays the map created 
for soil media.

4.6 Topography (T) 

The Digital Elevation Model (DEM) raster image was employed to develop the 
Topography (slope) map. Thematic map for slope was obtained using the DEM 
raster using the ‘Slope’ tool in ArcGIS software, as shown in Fig. 8. The Slope 
values obtained were in degrees, which was also reclassified into the range by which 
ratings were given.

4.7 Impact of Vadose Zone (I) 

Since there was no evidence on the vadose zone in the study location, the estimated 
ratings for the vadose zone were derived employing the information on the soil media.
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Fig. 6 Aquifer media (A) distribution map

Ratings for the vadose zone media were defined in order to convert the map to raster 
data (using soil media data). Figure 9 depicts the thematic map of the vadose zone’s 
effects.

4.8 Hydraulic Conductivity (C) 

Since there was no data on hydraulic conductivity in the research region, the estimated 
ratings for hydraulic conductivity were derived using data on the aquifer medium. In 
compliance with the required ratings, it was transformed into raster data. According 
to Table 4, ratings for hydraulic conductivity were provided (instead of utilizing 
aquifer media data here). Figure 10 displays the hydraulic conductivity map.
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Fig. 7 Soil media (S) distribution map

4.9 Aquifer Vulnerability Index Map Using DRASTIC 
Parameters 

The thematic map for DVI, as revealed in Fig. 11, is created by overlapping different 
thematic maps of the seven constraints. According to the DRASTIC value, Ground-
water Vulnerability is alienated into five category. They are Low, Moderately low, 
Moderate, Moderately High, and High class. The total research region is 174.837 
km2. The area extent in each class of vulnerability and the percentage of it concerning 
the total study area is given in Table 6.

5 Conclusion 

To create the map of Ranchi District’s aquifer vulnerability, the GIS-based DRASTIC 
approach was equipped. The estimation of the DRASTIC index specified that the 
southern and some northern areas of the research region are highly vulnerable, 
and the Eastern part of research area is less vulnerable in comparison. This will 
illustrate the aquifer’s intrinsic susceptibility for contamination. The final map
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Fig. 8 Topography (slope) (T) distribution map

Fig. 9 Vadose zone (I) 
distribution map
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Fig. 10 Hydraulic conductivity (C) distribution map

Fig. 11 DRASTIC DVI map of the research area
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Table 6 Area under the vulnerability class as a percentage (%) 

Vulnerability class Area under the vulnerability class in 
km2 

Area under the vulnerability class as 
a percentage (%) 

Low 7.134 4.08 

Moderately low 83.569 47.08 

Moderate 51.558 29.49 

Moderately high 32.468 18.57 

High 0.108 0.06

displays the whole spectrum of vulnerability indexes. The ability of the hydroge-
ologic situation to quickly transfer pollutants from surfaces to subsurface increases 
with increasing vulnerability index. On the other hand, low indices showed that the 
natural environment is doing a better job of protecting groundwater from pollution 
leaching. 
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Evaluation of Infiltration Models 
in an Agricultural Catchment Using 
Guelph Permeameter in Mysore District 

Y. Harshith and Abhishek A. Pathak 

Abstract Infiltration process has a significant impact on many hydrological aspects 
of agricultural watersheds, including runoff generation, soil erosion, irrigation plan-
ning and management, contaminant transport, vadose zone hydrology and ground 
water management. Modelling of infiltration process in catchment scale is extremely 
complex, because it is influenced by numerous factors such as rainfall, soil physical 
properties, vegetative cover, various tillage practises, etc. Studies that emphasise the 
importance of infiltration modelling in agricultural catchments using guelph perme-
ameter are minimal. The main goal of this research is to estimate and compare 
infiltration models that are used to measure infiltration rates in agricultural catch-
ment located in Baradanapura village of Mysore district, Karnataka state, India. 
For this investigation, field infiltration experiments were conducted using a Guelph 
permeameter at a depth of 15 cm in 37 locations throughout the catchment of area 
216 ha. Two infiltration models, Philip’s and Kostiakov, were chosen for this study 
to test their dependability in catchment scale with measured values of infiltration 
rates. Parameters of two infiltration models were estimated using linear regression 
analysis. Statistical performance measures such as Coefficient of determination (R2), 
Root mean square error (RMSE), Mean absolute error (MAE), and Nash Sutcliffe 
efficiency (NSE). Similarly, visual comparison methods such as box plots, Taylor’s 
diagrams and scatter plots are used to evaluate model performance. Results indicates 
that Philip’s model performed well for silty clay and sandy loam soils and were in 
good agreement with observed data. From this study it can be inferred that domi-
nance of Philip’s model will highlight the effect of soil texture on Sorptivity(s) and 
transmissivity factor(k) of Philip’s equation. Efficiency and reliability of Philip’s 
model in predicting infiltration rates for this study area and that will be helpful in 
irrigation system planning and management. 
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1 Introduction 

Stipulation for food, water, and land has increased due to the world’s fast expanding 
population. Furthermore, the restricted amount of water accessible for agriculture 
worldwide, particularly in developing countries, is a result of climate change’s major 
impact on the equilibrium between demand and supply for water resources (Pande 
et al. 2023). While irrigated agriculture is thought to generate 40% of the world’s 
food, it produces more than 70% of food grains in India. Numerous studies have 
concentrated on increasing agricultural yield per unit of water use, but a small gain 
in water-use efficiency could result in substantial cost savings. In order to alleviate the 
current issue, surface irrigation systems must be designed properly and efficiently. 
Evaluation and modelling of soil infiltration characteristics are pivotal for quantifying 
catchment water storage capacity and also the final steady infiltration rates for varying 
soil texture classes throughout the catchment for planning and betterment of irrigation 
system. Infiltrometers and permeameters are two of the many field techniques used 
to measure infiltration rates in soils (Pande et al. 2022). 

There are several well-known infiltrometers, including the single ring, double 
ring, and disc infiltrometers, as well as permeameters like the Guelph and tension 
permeameters etc. However, due to the high degree of soil variability, precise field 
measurement of infiltration is challenging, restricting their application in data scarce 
situations, and is a costly process in practise, particularly on large scale. As a result, 
modelling of infiltration behaviour gained much attention, which has given rise 
to variety of diverse analytical models. In past years many researchers conducted 
infiltration-based studies worldwide. These studies are mainly based on field exper-
iments, laboratory experiments, modelling of infiltration process in catchment scale 
(Dahak et al. 2022), field scale (Jha et al. 2019; Mahapatra et al. 2020; Singh et al. 
2018; Machiwal et al. 2006 etc.) different field conditions such as tillage and no 
tillage practices (de Almeida et al. 2018), different soil textures (Sajjadi et al. 2016; 
Amami et al. 2021; Thomas et al. 2020, etc.). 

Three infiltration models applicability (Horton, Philips, and Kostiakov) in a catch-
ment scale is assessed in Northern Algeria (Dahak et al. 2022). It demonstrates the 
relevance of initial and final infiltration measurements, as well as soil moisture, in 
determining the superiority of Horton model for estimating infiltration rates in Alge-
rian catchment. It also exemplifies that performance criteria of Kostiakov and Philips, 
which showed similar variations. Some researchers analysed the effect of soil texture 
on infiltration rate. For example, Thomas et al. (2020) used DRI to analyse the impact 
of soil texture on soil infiltration characteristics for two distinct types of soil, namely 
silty loam and sandy loam. Performance metrics reveal that, in comparison to Green 
ampt, Horton, and Kostiakov models, Philip’s model has a better relationship with 
observed data. The performance of cumulative infiltration models among four fine 
grained soil classes i.e., loam, clay loam, silty clay and silty loam soils was evalu-
ated by Mirzaee et al. (2014). Revised Kostiakov model (RMK) performed better for 
loam, clay loam and silty clay. For silty loam soils Modified Kostiakov model fits 
better than RMK model. Mahapatra et al. (2020) conducted grid-based infiltration
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experiments using DRI to assess the effect of land use/land cover and soil texture 
on soil infiltration parameters. It was found that the properties of infiltration are not 
solely dependent on soil texture, bulk density, and patterns of land use and land cover. 

Other elements that affect it include the existence of macropores and complex 
flow dynamics in vadose zones. (de Almeida et al. 2018) assessed effectiveness of 
infiltration models and effects of land-use/land cover changes, cultivation practises 
(conventional and no-tillage), and cultivation practises (conventional and no-tillage) 
on soil permeability. Compared to soil tillage techniques, soil infiltration characteris-
tics are more susceptible to different land use patterns. In addition, the Horton model 
outperformed the Kostiakov-Lewis and Philip models. By conducting 72 double-
ring infiltration experiments across several sites, Jha et al. (2019) aimed to study the 
infiltration features of lateritic soil–water zones. Five infiltration models were ranked 
as the Swartzendruber model, Brutsaert model, Kostiakov-Lewis model, Kostiakov 
model, and Philip Two-Term model, respectively, after being examined for their 
ability to model infiltration behaviour in lateritic vadose zones. Duan et al. (2012) on  
the Texas Tech University campus to assess efficacy of five conventional infiltration 
models in three turf soil types. A theoretically based model, Philip, was explored and 
compared, as of four empirical models, Kostiakov, Mezencev, NRCS, and Horton. 
The Mezencev model and Horton model outperformed other three infiltration models. 

As per aforementioned literature review, only a limited number of studies have 
investigated how soil texture affects infiltration model performance and the charac-
teristics of soil infiltration on catchment scale. The primary goal of this research is to 
measure infiltration rates in an agricultural watershed using a Guelph permeameter. 
There are few research works that highlight the use of Guelph permeameter data 
for modelling purposes. As a result, two renowned infiltration models i.e., Philip’s 
and Kostiakov were chosen for this study. These models are compared using statis-
tical and visual comparison approaches. On the basis of a larger number of data sets 
obtained in the field for diverse soil types, a dominating model suitable for selected 
study area is chosen. 

2 Materials and Methods 

2.1 Study Area 

Study area selected for this research is an agricultural watershed near Baradanapura 
a region in Mysore district, South Karnataka Fig. 1 shows the location of study 
area map. The catchment located in Arkavathi River basin which is tributary of 
Cavery River. The catchment lies Between 12°13'2.72''N latitude and 76°32'59.51''E 
longitude and covers an area of 216 ha (2.16 km2). Study area falls under semi-arid 
climate, usually hot during summers (temperature vary from 24 to 29 °C) and cold 
during winters (temperature vary from 18 to 22 °C). Average annual Rainfall over the 
last 10 years of 852 mm. More than 70% of the annual average rainfall occurs during
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Fig. 1 Location map of study area 

June to October. The evaporation ranges from 6.5 to 7.5 mm/day. The catchment has 
a wide range of soil textures as well as geological formations that are heterogeneous. 
The catchment shows topographic variation with elevations ranging from 650 and 
728 m. Agriculture has always been the most important socio-economic activity 
in Baradanapura Catchment. Agricultural land makes up roughly 90% of overall 
catchment area, with 70% of it being irrigated cropland, 15% non-irrigated cropland, 
and 5% forest land. Remaining 10% includes barren land. Ground water supplies all 
irrigated croplands. Horticulture, dry farming, communal gardening, and polyculture 
are the most prevalent agricultural activities in the study area. 

2.2 Field Investigations 

The catchment was divided into 37 sub-catchments based on drainage pattern. Within 
the boundaries of sub-catchments, test locations are identified, covering the majority 
of soil types in the area. Up to 30 cm of root zone was considered for infiltration 
experimentation. In each sub catchment, two core samples were taken from upper 
vadose zone layer to evaluate soil texture in laboratory. Sieve analysis is used to 
determine the grain size of soil particles, whereas hydrometer analysis is utilised to 
determine percentage of silt and clay. Maps are developed that highlight the spatial 
heterogeneity of soil textures throughout the watershed (Fig. 2).
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Fig. 2 Soil map showing variability of soils over the catchment 

2.3 Determination of Field Infiltration Rates 

Infiltration experiments were conducted on 37 sampling points using Guelph perme-
ameter (Fig. 1) inside each sub-catchment. Infiltration tests were conducted in March 
and April of 2022. Reynolds and Elrick designed and developed Guelph Permeameter 
(1985). Marriotte Principle is used in Guelph Permeameter, which is an in-hole 
Constant-Head Permeameter (Fig. 3). The approach entails monitoring steady-state 
rate of water recharge into unsaturated soil from a cylindrical well hole with a constant 
water depth (head). Before using a Guelph permeameter, it is crucial to prepare the 
well of requisite depth on ground with an auger and cleaning equipment. The tripod 
should be centred over the cleaned well hole, as shown in Fig. 3, and water-filled 
Guelph permeameter should be lowered gradually into well hole. Verify again that 
inner and outer reservoirs are connected using reservoir knob. air inlet tip is then 
steadily increased by grasping upper air tube, resulting in an initial well head height 
(H1) of 5 cm. At regular intervals, measure the flow rate from reservoir. Keep an eye 
on the flow rate until it stabilises. Readings can be taken when there is no change in 
flow rate over three consecutive time intervals. Now, if necessary, refill inner reser-
voir with water and set the second well head height (10 cm) by slowly raising air 
inlet tip. Make a reading by following steps as described above.
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Fig. 3 Guelph permeameter and field experimentation 

3 Infiltration Models and Parameters 

3.1 Philip’s Model 

Philip (1957) model is given by: 

F(t) = St−0.5 + Kt (1) 

where F(t) is cumulative infiltration capacity at time t, S is sorptivity, and k is constant 
proportional to Hydraulic conductivity. 

Philip’s two term model is given by equation: 

f(t) = 
1 

2 
St−0.5 + K (2)  

where, f(t) is infiltration rate at time t. 

3.2 Kostiakov Model 

Kostiakov (1932) model is given by: 

F(t) = atb (3)
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where F(t) indicates cumulative infiltration capacity at time t. a and b are constants, 
which represents soil infiltration characteristics. 

4 Models Performance Evaluation Parameters 

4.1 Coefficient of Determination (R2) 

The correlation coefficient is a measure of linear regression between anticipated 
values and model. R2 is calculated as. 
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where, X, Y represents predicted and observed infiltration rates and N represents 
number of observations. 

4.2 Root Mean Square Error (RMSE) 

By comparing predicted value to observed value, this approach calculates prediction 
error. Root Mean Squared Error (RMSE) is determined by: 

RMSE = 
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where Xi and Yj are Predicted and observed values and N is number of measued 
values. 

4.3 Mean Absolute Error (MAE) 

The absolute error depicts magnitude of difference between predicted and observed 
values. Absolute error is estimated as. 

MAE = 
1 
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)

(6)
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where Xi and Yj are Predicted and observed values and N is number of measured 
values. 

4.4 Nash Sutcliffe Efficiency (NSE) 

A normalised statistic called the Nash–Sutcliffe efficiency (NSE) measures how 
much residual variation there is in relation to the variance of the measured data. 

NSE = 1 −
[ ΣN 

i=1

(
Xi − Yj

)2

ΣN 
i=1

(
Xi − X1

)2

]

(7) 

where, Xi and Yj are Predicted and observed infiltration rate values, X represents 
mean of observed values and N is number of observations. 

5 Results and Discussions 

5.1 Determination of Soil Physical Properties 

The infiltration tests was carried out in an agricultural watershed near Mysore district, 
located in southern portion of Karnataka using a Guelph permeameter to account for 
infiltration rate spatial variability. The catchment under consideration for this study 
is 216 ha in area. The experiments are conducted in 37 sub-catchments (P1–P37), 
which represent the most common soil types found across the catchment. The soil 
samples collected were analysed to determine the percentages of sand, silt, and clay. 
Soil samples collected throughout the catchment are evaluated in laboratory and 
classified according to USDA (United States Department of Agriculture) soil textural 
classification (Table 1). It reveals that study area has four major soil types i.e., silty 
clay (21.62%), sandy loam (29.73%), sandy clay loam (21.62%), and loamy sand 
(27.02%). Spatial variation of soil textures throughout the catchment are depicted in 
Fig. 2.

The Statistical description of results reveal that the study area has four major 
soil types (Fig. 2) i.e., silty clay (21.62%), sandy loam (29.73%), sandy clay loam 
(21.62%), and loamy sand (27.02%). In silty clay, the mean values of sand, silt, and 
clay content were 25.4%, 45.5%, and 29.1% respectively. Sand and silt show a lesser 
coefficient of variation (CV) of 3.6% and 7.1% compared to clay which shows a 
much higher CV of 12.6%. In Sandy Loam texture mean values of sand, silt, and 
clay content were 61.5%, 24.6%, and 13.9% respectively. Sand depicts a lesser CV 
of 2% compared to silt (7.8%) and Clay (13.8%). For Sandy Clay Loam mean values 
of sand, silt, and clay content were 56.6%, 20%, and 23.4% respectively. Silt and
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Table 1 Statistical description of soil physical properties 

Soil texture Parameters Range Mean SD CV (%) 

Silty Clay (P1–P8) Sand (%) 24.0–26.0 25.4 0.9 3.6 

Silt (%) 39.0–48.0 45.5 3.3 7.1 

Clay (%) 26.0–32.0 29.1 3.7 12.6 

Sandy Loam (P9–P19) Sand (%) 59.0–63.0 61.5 1.2 2.0 

Silt (%) 22.0–27.0 24.6 1.9 7.8 

Clay (%) 12.0–17.0 13.9 1.9 13.8 

Sandy Clay Loam (P20–P27) Sand (%) 54.0–58.0 56.6 1.5 2.7 

Silt (%) 17.0–24.0 20.0 2.5 12.5 

Clay (%) 21.0–28.0 23.4 2.4 10.5 

Loamy Sand (P28–P37) Sand (%) 66.0–69.0 67.9 1.2 1.7 

Silt (%) 20.0–27.0 24.6 2.5 10.2 

Clay (%) 6.0–11.0 7.6 1.8 24.0

Clay show much higher CV of 12.5% and 10.5% compared to sand (2.7%). The 
mean values of sand, silt, and clay content in Loamy sand were 67.9%, 24.6%, and 
7.6% respectively. Clay shows a higher CV of 24% compared to silt (10.2%) and 
sand (1.7%). It reveals that Clay and silt have a high degree of variability in different 
soil textures compared to sand in this agricultural watershed. 

6 Determination of Model Parameters 

The parameters of Philip’s and Kostiakov models are estimated using linear regres-
sion analysis and average values of model paramteres for distinct soils are summa-
rized Table 2. In comparison to silty clay soil, which has the lowest average value of 
7.70 cm/h at sites (P1–P8), the final infiltration rate in loamy sand soil was higher, 
with an average value of 80.73 cm/h at sites (P28–P37). Minimum, maximum, and 
average parameter values of selected models for each soil were computed to gain 
an understanding of the model behaviour in the case of parameters variations (Table 
2). The average values of S in the Philips model range from 2.61 to 8.88 cm, and k 
from 6.13 to 71.71 cm−h for diverse soils. The Kostiakov model parameter a range 
from 14.40 to 87.50, and b ranges from 0.82 to 0.91, which is consistent with theory 
of infiltration, which states that value must be positive and smaller than one (Ogbe 
et al. 2011). The observations of field experimental tests were analysed and individual 
infiltration curves for Observed and modelled infiltration rates for four representative 
sites per individual soil type have been developed Fig. 4a–d.
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Table 2 Parameters of Philip’s and Kostiakov models 

Test site Soil type Statistics Philip’s model Kostiakov model 

S (cm) K (cm/hr) A b 

P1–P8 Silty clay Minimum 1.23 0.75 5.47 0.72 

Maximum 5.76 14.60 34.24 0.91 

Average 2.61 6.13 14.40 0.82 

P9–P19 Sandy loam Minimum 2.62 25.21 34.11 0.84 

Maximum 6.93 45.03 58.62 0.96 

Average 4.42 37.36 45.61 0.90 

P20–P27 Sandy clay loam Minimum 2.33 9.58 22.63 0.77 

Maximum 7.62 27.18 34.45 0.89 

Average 5.22 18.57 29.56 0.83 

P28–P37 Loamy sand Minimum 4.86 52.27 64.35 0.84 

Maximum 14.11 107.31 113.24 0.99 

Average 8.88 71.71 87.50 0.91

7 Statistical Performance Evaluation of Infiltration Models 

Statistical performance indices methods such as Maximum absolute error (MAE), 
Root mean square error (RMSE), coefficient of determination (R2), and Nash 
Sutcliffe Efficiency (NSE) were used to evaluate infiltration models. Best fit model 
was chosen based on higher values of the coefficient of determination (R2), lowest 
possible Root Mean Square Error, and higher possible Mean Absolute Error Criteria. 
Computed average values of MAE, RMSE, R2 and NSE for four different types of 
soils are in Table 3. For silty clay (P1–P8), average values of MAE were 2.24, 2.68 
and RMSE were 2.90, 3.60 and R2 were 0.80, 0.70 and those of NSE were 0.74, 0.57 
for Philip’s, Kostiakov respectively. From the above results it can be inferred that 
Philip’s model show least values of MAE, RMSE and higher R2 and NSE demon-
strating that this model accurately predicted infiltration rates for the silty clay in this 
catchment. For sandy loam (P9–P19), the average values of MAE were 2.58, 3.29 
and RMSE were 3.15, 4.11 and R2 were 0.84, 0.73 and those of NSE were 0.80, 
0.63 for Philip’s, Kostiakov models respectively. As per the above statistical results, 
Philip’s model had the lowest MAE, RMSE, and higher R2 and NSE values, showing 
that infiltration rates for silty clay in this study area were accurately characterised by 
this model.

For sandy clay loam (P20–P27), the average values of MAE were 2.88,3.53 and 
RMSE were 3.55, 4.19 and R2 were 0.86, 0.80 and those of NSE were 0.83, 0.74 
for, Philip’s, Kostiakov respectively. The above findings show that Philip’s model 
accurately characterised the infiltration rates for sandy loam in this study area because 
it had lowest MAE, RMSE, and higher R2 and NSE values. It was determined that 
Kostiakov model shows much similar variations compared to Philip’s infiltration 
model. For loamy sand (P28–P37), average values of MAE were 4.31, 6.71 and



Evaluation of Infiltration Models in an Agricultural Catchment Using … 67

Site No- P1 Site No- P2 

Site No- P3                                                                              Site No- P4 

Site No- P11 Site No- P12 

Site No- P13                                                Site No- P15 

(a) 

(b) 

Fig. 4 a Comparison of observed and modeled infiltration rates for silty clay soil. b Comparison of 
observed and modelled infiltration rates for sandy loam soil. c Comparison of observed and modelled 
infiltration rates for sandy clay loam soil. d Comparison of observed and modelled infiltration rates 
for loamy sand soil
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Site No- P20                                                                           Site No- P27 

Site No- P26                                                                                                       Site No- P23 

Site No- P34                                                            Site No- P33 

Site No- P28                                                       Site No- P29 

(c) 

(d) 

Fig. 4 (continued)
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Table 3 Statistical performance evaluation of infiltration models 

Soil type Statistics Philip’s model Kostiakov model 

MAE RMSE R-squared NSE MAE RMSE R-squared NSE 

Silty clay Minimum 0.53 0.76 0.72 0.60 1.72 1.99 0.63 0.32 

Maximum 4.04 5.58 0.90 0.88 5.02 6.40 0.90 0.87 

Average 2.24 2.90 0.80 0.74 2.92 3.62 0.76 0.61 

Sandy 
loam 

Minimum 1.73 2.01 0.77 0.70 1.72 1.99 0.38 0.35 

Maximum 3.20 3.77 0.90 0.89 10.41 14.27 0.90 0.87 

Average 2.58 3.15 0.84 0.80 4.65 5.93 0.74 0.64 

Sandy clay 
loam 

Minimum 2.17 2.87 0.75 0.67 2.36 2.87 0.74 0.65 

Maximum 3.60 4.37 0.91 0.90 4.00 5.02 0.89 0.89 

Average 2.88 3.55 0.86 0.83 3.03 3.78 0.84 0.79 

Loamy 
sand 

Minimum 1.80 2.11 0.73 0.63 1.77 2.29 0.69 0.31 

Maximum 8.09 9.51 0.94 0.93 8.19 9.40 0.92 0.92 

Average 4.31 5.08 0.85 0.82 4.52 5.36 0.84 0.72

RMSE were 5.08, 7.01 and R2 were 0.85, 0.72 and those of NSE 0.82, 0.59 for 
Philip’s and Kostiakov models respectively. It reveals that Philip’s model, which had 
lowest MAE and RMSE values and highest R2 and NSE values, accurately described 
the infiltration rates for loamy sand in this research region. Kostiakov model was 
observed to be the second-best infiltration model for loamy sand. 

Box plots are adopted to evaluate the variation of R2 (Fig. 5a, b). In silty clay and 
sandy loam (Fig. 5a), the R2 Percentile of Philip’s model are higher compared to 
Kostiakov model, and similarly, in Sandy clay loam and loamy sand soils (Fig. 5b), 
Philip’s model shows higher R2 percentiles and Kostiakov shows some similar vari-
ations in comparison to Philip’s model. Box plots for variation of RMSE (Fig. 5c) 
for silty clay and sandy loam show lower values in Philip’s compared to Kostiakov 
model. For sandy clay loam and loamy sand soils (Fig. 5d), Philip’s model shows 
lower values. MAE values for silty clay and sandy loam (Fig. 5e) Philip’s and model 
show lower values compared to Kostiakov model. For sandy clay loam and loamy 
sand soils (Fig. 5f), Philip’s and Kostiakov models show lower values. NSE values for 
silty clay and sandy loam (Fig. 5g) were higher for Philip’s compared to Kostiakov 
model. For sandy clay loam and loamy sand soils (Fig. 5h), Philip’s model shows 
much higher values.

To investigate scatter around the line of perfect agreement. The Scatter plots 
between observed and estimated (predicted) values of infiltration rate was drawn in 
the resulting graph (Fig. 6a–d) showing that majority of values predicted by Philip’s 
model for silty clay and sandy loam soil lies close to line of agreement. For Sandy clay 
loam and Loamy sand values of Philip’s and Kostiakov model values are lies close 
to line of perfect agreement. Visual comparison methods of model’s performance 
have some disadvantages that those with high performance are easily identified, but 
it is difficult to recognize and rank models based on performance. Hence, some
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(a) 

(b) 

(c) 

(d) 

Fig. 5 a Box plots for R2 percentile for Silty clay and Sandy loam soils. b Box plots for R2 

percentile for Sandy clay loam and Loamy sand soils. c Box plots for RMSE percentile for Silty 
clay loam and Sandy loam soils. d Box plots for RMSE percentile for Sandy clay loam and Loamy 
sand soils. e Box plots for MAE percentile for Silty clay loam and Sandy loam soils. f Box plots 
for MAE percentile for Sandy clay loam and Loamy sand soils. g Box plots for NSE percentile 
for Silty clay loam and Sandy loam soils. h Box plots for NSE percentile for Sandy clay loam and 
Loamy sand soils
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(f) 

(g) 

(h) 

(e) 

Fig. 5 (continued)
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quantitative measurements that provide greater evidence of the model’s performance 
are required. As a result, evaluation metrics were used in this study to compare 
performance of some selected models.

A further renowned visual comparison method was adopted to evaluate model 
performance. The Taylor diagrams (Fig. 7a, d) were created to further assess the 
model’s ability to anticipate. In Taylor’s diagrams, best model is selected based on 
higher Correlation coefficient values, lower RMSE (Root mean square error) values, 
and values that lie near the standard deviation line. Taylors plots are developed for 
four representative sites (Fig. 7a, b) in silty clay and sandy loam textures showing that 
Philip’s model shows lower RMSE and lie nearer to the standard deviation line and 
show a higher coefficient of correlation (R) values compared to Kostiakov model. 
For Sandy clay loam and loamy sand soils (Fig. 7c, d), Philip’s model shows lower 
values of RMSE and whose values lies close to the standard deviation line. Hence 
Philip’s model dominates Kostiakov model.

From the statistical results it reveals that Philip’s model performed well for all 
types of soils. Philip’s model performed best for silty and sandy loam soil textures. 
Similarly for sandy clay loam and loamy sand soils Philip’s and Kostiakov models 
show similar variations. The modelling outcomes will also highlight significance 
of soil characteristics, soil hydraulic parameters and infiltration measurement tech-
niques at particular sites with various soils textures and site conditions. A comparison 
of the statistical parameters RMSE, R2, NSE and MAE shows that the Philip’s model 
agreed well with the measured data and thus outperformed the Kostiakov model for 
coarse grained soils. This result is consistent with findings of (Al-Azawi, 1985), who 
evaluated six infiltration models on homogeneous coarse textured soils and discov-
ered that Philip’s model provided a very good representation of infiltration rates. 
Similarly (Thomas et al. 2020) who evaluated the consistency of four infiltration 
models in coarse grained soils out of which Philip’s performed best. The Philip’s 
model performs best compared to other models which are mentioned above for this 
catchment and hence this model was used to assess the infiltration rates in absence 
of observed values to this catchment. 

8 Conclusion 

In this study, ability of two renowned infiltration models were evaluated in 37 loca-
tions within an agricultural catchment comprising of coarse textured soils using 
Guelph Permeameter. The results of statistical performance indices and visual 
comparison methods indicated that Philip’s models are predominant for silty clay and 
sandy loam soil. Philip’s and Kostiakov models show better performance in sandy 
clay loam and loamy sand. Dominance of Philip’s model in this study area specifies 
the effect of soil texture on Sorptivity(S) and transmissivity factor(K) of Philip’s 
equation. Soil physical properties such as soil texture, porosity, plays a crucial role 
in affecting parameters of Kostiakov models. Thus, even if the measured infiltration 
data sets are not available, Philip’s model for prediction of infiltration rates is used
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Site No – P1                                                       Site No – P2 

Site No – P3                                                         Site No – P4 

(a) 

Site No – P11                     Site No – P12 

Site No – P13                                                        Site No – P15

 (b) 

Fig. 6 a Observed vs predicted infiltration rates by various models in Silty clay soil. b Observed vs 
predicted infiltration rates by various models in Sandy loam soil. c Observed vs predicted infiltration 
rates by various models in Sandy clay loam soil. d Observed vs predicted infiltration rates by various 
models in Loamy sand soil
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Site No – P20                                                    Site No – P23 

Site No – P26                                                     Site No – P27 

Site No – P28                                                            Site No – P29 

Site No – P33                                                             Site No – P34 

(c) 

(d) 

Fig. 6 (continued)



Evaluation of Infiltration Models in an Agricultural Catchment Using … 75

Site No.- P3                                                          Site No.- P4 

Site No.- P11                                                     Site No.- P12 

Site No.- P13                                                              Site No.- P15 

(a) 

(b) 

Site No.- P1                                                         Site No.- P2 

Fig. 7 a Taylors diagrams for Comparison of models in silty clay soil. b Taylors diagrams for 
comparison of models in sandy loam soil. c Taylors diagrams for Comparison of models in sandy 
clay loam soil. d Taylors diagrams for Comparison of models in Loamy sand soil
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Site No.- P20                                                     Site No.- P23 

Site No.- P26                                                     Site No.- P27 

Site No – P28 Site No – P29 

Site No – P33 Site No – P34 

(c) 

(d) 

Fig. 7 (continued)
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in this study area. Further investigations in the direction of finding different soil 
physical properties which will affect the cumulative infiltration models parameters, 
applicability of three parameter models in agricultural catchments comprising of 
both fine textured and coarse textured soils are highly recommended. 
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Investigation of Trends and Variability 
Associated with the SPI and SPEI 
as a Drought Prediction Tools in Gujarat 
Regions, India 

Paras Hirapara, Manthan Brahmbhatt, and M. K. Tiwari 

Abstract Drought is a well-known yet incredibly difficult to understand hydro-
meteorological natural hazard that occurs around the globe as a result of major 
climate change occurrences. For the central Gujarat region, we examined the drought 
periodicities during the previous 30 years for this study. The patterns of drought 
conditions are a sign of climatic and environmental change, and recognizing these 
trends is crucial for the sustainable management of water resources. Application 
of the MK test to the first SPI series revealed that the post-monsoon SPI series 
had a negligible upward trend. The MK test on the original SPEI series indicated 
several time series with large declining trends prior to the monsoon, whereas every 
post-monsoon SPEI series displayed an insignificant growing trend. The findings 
demonstrate that (1) due to the various time series, the SPI and SPEI’s identification 
of the characteristics of drought were quite distinct in space at various timescales, 
(2) The SPI and SPEI differed most at the shortest time scale, and (3) The drought 
represented by the two indicators may be consistent over long periods of time. (4) 
The SPEI may be more suitable than the SPI for drought monitoring in the study 
region when compared to typical drought occurrence. It should be emphasized that 
future research will need to examine whether the SPI and SPEI’s adaptability varies 
among regions and historical periods. 
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1 Introduction 

Climate change could have a significant and enduring impact on all major natural 
disasters known to mankind (Krishnamurthy et al. 2014). A perception of climate 
change can be obtained by examining the long-term trend and variability associated 
to hydro-climatic variables such as rainfall, temperature, and drought (Rashed et al. 
2015; Yerdelen et al. 2021). In general, it is anticipated that drought intensity and 
frequency would rise due to global warming, decreased precipitation, and similarly 
increased thermometer readings (Das et al. 2020; Paras et al. 2022). Understanding 
the main physical processes affecting droughts can help improve current drought 
monitoring, forecasting, and management systems as well as reduce the vulnera-
bility to and effects of drought. An investigation of changes in drought magnitude, 
severity, and duration can provide insight into the governing physical and atmospheric 
phenomena (Joshi et al. 2016; Luhaim et al. 2021; Menna et al. 2022). Drought, one 
of the most significant hydrometeorological conditions, is typically characterised as 
a prolonged shortage of freshwater on Earth (Yang et al. 2018; Menna et al. 2022). 

Droughts can be classified as meteorological, agricultural, hydrological, or 
economical in nature. Each has distinctive qualities all of its own. The most severe 
of them is the meteorological drought, which is most clearly caused by a decrease 
in precipitation. The effects of the other three forms of drought on individuals and 
society are more severe. One may contend that the meteorological drought is what 
causes the other three types of drought. Due to the complexity and severity of 
drought, defining and evaluating drought features is particularly challenging (Asadi 
et al. 2015). To evaluate and monitor drought occurrences, numerous drought indices 
have been developed in recent years. Among these are the composite meteorological 
drought index, standardised precipitation evapotranspiration index, Palmer drought 
index, and standardised precipitation index (CI). Two of them, the SPI and SPEI, both 
have the characteristics of several timeframes, which can represent various types of 
droughts and more accurately illustrate the variations in drought aspects (Salehnia & 
Ahn 2022). These indexes are therefore widely used across the globe. Although the 
concepts behind the SPI and SPEI are similar, the parameters used in each computa-
tion are very different (Pande et al. 2023a, b). The SPEI is based on the cumulative 
difference between precipitation (P) and potential evapotranspiration (PET), which 
may properly reflect changes in the surface water balance. The SPI solely considers 
precipitation, which is easy to compute and has strong geographical and temporal 
flexibility. 

However, the increase in evaporation brought on by warming is not trivial for an 
accurate assessment of drought with global warming (Bera et al. 2021). As a result, 
the SPEI is substantially better than the SPI in tracking drought, but its application in 
arid areas may be limited (Ojha et al. 2021). Furthermore, the SPI is still widely used 
worldwide. Therefore, there is still room for debate regarding the distinctions between 
the SPI and the SPEI in terms of tracking droughts as well as their geographical 
applicability in light of overall climate change.
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India is one of the world’s most susceptible and drought-prone nations (Mishra & 
Singh 2010). In India, the south-west monsoon, which lasts from June to September, 
is responsible for 70–90% of the nation’s average annual precipitation (Kumar et al. 
2013). Failure of the monsoon season could result in a lack of water accessible 
across the nation, which could cause droughts (Fung et al. 2019). According to the 
Indian Meteorological Department, a drought year occurs when the seasonal rainfall 
anomaly averaged throughout the nation as a whole is less than 10% of its long-term 
norm (IMD). 

The standardised precipitation index (SPI), which was created at Colorado State 
University to measure precipitation deficiencies (Mckee et al. 1993; Asadi et al., 
2015), has gained widespread acceptance as a tool for studying droughts (Mundetia & 
Sharma 2015; Qaisrani et al. 2021). The World Meteorological Department uses the 
SPI as the index for analyzing agricultural and hydrological drought because of 
its simplicity, stability, and adaptability (Mundetia & Sharma 2015). Despite SPI’s 
widespread acceptance and use, it ignores other elements that can cause drought, 
such as temperature, evapotranspiration volume, wind speed, and soil water-holding 
capacity (Vicente-serrano et al. 2010). Consequently, the SPEI will be used to coun-
teract the benefits of the SPI (Ojha et al. 2021). SPEI is particularly useful for 
analyzing, observing, and researching how drought is affected by climate change 
(Ghasemi et al. 2021). 

Because its performance is unaffected by the assumptions of uniform data distri-
bution and the requirement for skewed data distribution, the Mann–Kendall test is 
determined to be durable (Onoz & Bayazit, 2003; Afshar et al., 2022). The MK test 
has a noteworthy drawback in that it cannot handle data with serial correlation, which 
is typically present in hydro-climatic data (Salehnia & Ahn 2022). When examining 
trends in hydroclimatic time series, it’s crucial to consider how these changes fluctuate 
across various time periods in addition to whether the trend direction is increasing 
or decreasing (Onoz & Bayazit 2003; Yerdelen, et al. 2021). A common method for 
identifying oscillatory signals is the Fourier Transform (FT), which uses sine- and 
cosine-based functions (Tefera et al. 2019). 

A relatively new method for processing time and frequency domain signals 
for time series analysis is the wavelet transformation (WT) (Araghi et al. 2015; 
Mundetia & Sharma 2015). WT is employed to break down time series data into 
several sub-time series data with various periodicities using various scales and ampli-
tudes (Labat 2005; Wang & Lu 2009). Time series data naturally have physical 
properties including trends, periodicity, discontinuities, and change points. Wavelet 
analysis has been shown to be an advanced technique for capturing these proper-
ties (Partal 2010; Nikhil raj & Azeez 2012; Araghi et al. 2015). Having tremendous 
possibilities of SPI and SPEI indices for drought assessment, these Due to the climate 
change and its variability, which could be accounted to the undulating topography 
of the research area, and variation in drought ratings from SPI and SPEI is expected 
(Bera et al. 2021). As a result, this study looked at the level of agreement between the 
SPI and SPEI ratings as instruments for assessing the drought in the Gujarat region. 

This chapter has been focus on four main sections, which includes the introduction 
as 1st Sec. In Sect. 2 we present the materials and methods used in this study, while
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in Sect. 3 we present detail results of our study. In Sect. 4 we present the main 
conclusions and outcomes of the research objective. 

2 Materials and Methods 

2.1 Data and Methods 

The main region of analysis for this study is Middle Gujarat, but for most of the 
analyses employed through the paper we split the Middle Gujarat domain into three 
separate micro-regions such as Dahod, Chhota Udaipur, Vadodara. Monthly rainfall 
data of 17 Grids under study area of 30 years (1986–2015) is used for calculate the 
seasonal and annual SPI drought index (Table 1 and Fig. 1). Monthly precipitation 
and mean temperature are used for calculate seasonal and annual SPEI drought 
index for 42 Grids. The data quality was rigorously monitored, and the average 
values of the data from the adjacent meteorological stations were used to fill in any 
missing values. We acquired the gridded dataset (Precipitation & Temperature) from 
the Climate Research & Services, Pune (IMD, Pune Lab) (https://www.imdpune. 
gov.in/). For detection of seasonal SPI and SPEI, four seasons are considered as 
Winter (December to February), Pre-monsoon (March to May), Monsoon (June to 
August) and Post-monsoon (September to November).

2.2 Description of Drought Indices 

2.2.1 Standardized Precipitation Index (SPI) 

The SPI is a popularly used drought index that is based only on rainfall measurements 
and may be summed up as the likelihood of precipitation being seen at a particular 
time range. Regardless of climate and land use, this probabilistic measure is indepen-
dent and can be applied in various regions. Applying the following equation, the data 
were initially fitted to the gamma probability distribution function and transformed 
into a normal distribution: 

If the amount of precipitation fell during a specific time period was x, the G 
distribution of the probability density function was as follows: 

g(x) = 1 

βα τ (α) 
xα−1 e 

−§ 
β , f or  x  > 0 (1)  

where, x is the monthly accumulated precipitation amount, and α and β are the shape 
and scale parameters of gamma distribution, respectively.

https://www.imdpune.gov.in/
https://www.imdpune.gov.in/
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Table 1 Study area grids location details 

Grid code Lat (°N) Long (°E) District 

For SPI For SPEI From—To From—To 

A01 AE01 22.00–22.25 72.75–73.00 Vadodara 

A02 AE02 22.00–22.25 73.00–73.25 Vadodara 

A03 AE03 22.00–22.25 73.25–73.50 Vadodara 

A04 AE04 22.00–22.25 73.50–73.75 Chhota Udepur 

A05 AE05 22.00–22.25 73.75–74.00 Chhota Udepur 

A06 AE06 22.00–22.25 74.00–74.25 Chhota Udepur 

A07 AE07 22.25–22.50 73.00–73.25 Vadodara 

A08 AE08 22.25–22.50 73.25–73.50 Vadodara 

A09 AE09 22.25–22.50 73.75–74.00 Chhota Udepur 

A10 AE10 22.25–22.50 74.00–74.25 Chhota Udepur 

A11 AE11 22.50–22.75 73.25–73.50 Vadodara 

A12 AE12 22.50–22.75 73.75–74.00 Dahod 

A13 AE13 22.50–22.75 74.00–74.25 Dahod 

A14 AE14 22.75–23.00 73.75–74.00 Dahod 

A15 AE15 22.75–23.00 74.00–74.25 Dahod 

A16 AE16 23.00–23.25 74.00–74.25 Dahod 

A17 AE17 23.25–23.50 74.00–74.25 Dahod

The Z or SPI values is more easily obtained computationally using an approxi-
mation that converts cumulative probability to the standard normal random variable 
Z; 

Z = SP  I  = −
(
t − C0 + C1 t + C2 t2 

1 + d1 t + d2 t2 + d3 t3

)
for 0 < H(x) ≤ 0.5 (2)  

Z = SP  I  = +
(
t − C0 + C1 t + C2 t2 

1 + d1 t + d2 t2 + d3 t3

)
for 0.5 < H(x) < 1 (3)  

where, t =
/
ln

(
1 

(H(x))2

)
and t =

/
ln

(
1 

(1−H(x))2

)
are for 0 < H(x) ≤ 0.5 and 

0.5 < H(x) < 1, , respectively. (The constants are C0 = 2.515517, C1 = 0.802853, 
C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3= 0.001308). 

Values from SPI indicate both dry and wet situations. Extreme wet (> 2), severely 
wet (1.5 to 1.99), moderately wet (1.00 to 1.49), slightly wet (0 to 0.99), mildly 
dry (0 to -0.990), moderately dry (−1.00 to -1.49), severely dry (−1.5 to −1.99), 
and extreme dry (–2.00) are the eight classifications that the SPI drought portion is 
randomly divided. When SPI approaches 0.0, a drought event begins, and it ends 
when SPI turns positive (World Meteorological Organization, 2012).
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Fig. 1 A Geographical location map of the study location

2.2.2 Standardized Precipitation Evapotranspiration Index 

Vicente Serrano and associates suggested the SPEI in 2010 as an improvement of 
the SPI. Based on the water balance principle, the SPEI assesses the dry and wet 
conditions of the region using the difference between precipitation (P) and poten-
tial evapotranspiration (PET) (Tirivarombo et al. 2018). The SPEI has a significant 
advantage over other commonly used drought indices that take the impact of PET 
on drought severity into account because its multi-scalar properties make it possible 
to identify various drought types and their effects in the context of global warming. 

Using a discrepancy between precipitation and evapotranspiration from the 
average condition, the SPEI is used to detect drought in a region (Vicente-serrano 
et al. 2010). The Penmen Monteith (PM) equation is used to calculate PET (Allen 
et al., 1998) as follows; 

ET o  = 
0.408∆(Rn − G) + γ

[
900 

T+273

]
u2(es − ea)

∆ + γ (1 + 0.34u2) 
(4) 

where, ETo represents evapotranspiration (mm/day); ∆ = saturated vapor pressure 
slope (kPa/°C); G = heat flux density of soil (MJ/m2 /day); Rn = net radiation
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(MJ/m2 per day); T = mean temperature (°C); u2 = average daily speed of wind 
(m/s); es − ea = deficit of vapor pressure; γ = psychrometric constant (kPa/°C). 

After a standard normal distribution process, the SP  E  I  can be obtained by below 
equation: 

SP  E  I  = W − C0 + C1W + C2W 
1 + d1W + d2W + d3w'

W = 
√−2ln(P) (5) 

When, P ≤ 0.5, P = 1 - F(x); P  > 0.5, P = 1 – P. (C0 = 2.515517, C1 = 
0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3= 0.001308 
(Vicente-serrano et al. 2010). 

2.3 Mann–Kendall (MK) Trend Tests 

The Mann Kendall (MK) statistical test is used to detect trends in hydrological time 
series data that have been recorded (precipitation, runoff, water quality, temperature). 
Analysis of time series data trends has proven to be a useful technique for efficient 
management, planning, and design of water resources (Mallick et al. 2021). For each 
study location, the MK test and its variance were identified in order to derive the 
test’s standard normal value (Z). The essential two-tailed Z-value (area under the 
normal curve) corresponding to the significant level of α /2 (this study used = 5%) 
then was compared to the absolute value of this Z. (Ali et al. 2019). The Z values 
for α of 5% in a two-tailed test are ± 1.96. If the Z-value obtained from the MK 
calculation is found outside the -1.96 and + 1.96 boundaries, then this indicates that 
the trends detected are significant. 

The calculation of the MK test statistic, which is also known as the Kendall’s tau, 
is as follows (Yue et al. 2002): 

St =
∑n−1 

c=1

∑n 

d=c+1 
si  gn(Xd − Xc) (7) 

where, Xc and Xd are data points, and n is the number of the dataset. 
si  gn(t) is defined as: 

si  gn(Xd − Xc) = 

⎧⎨ 

⎩ 

+1, Xd > Xc 

0, Xd = Xc 

−1, Xd < Xc 

(8) 

The Mann–Kendall statistic Z is given as: 

Var  (St ) = (n(n − 1))(2n + 5) −
∑n 

c=1 
tc(c)(c − 1)(2c + 5)/18
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Z = 

⎧⎨ 

⎩ 

(St − 1)/
√
Var(St ), St > 0 

0, St < 0 
(St + 1)/

√
Var(St ), St = 0 

(9) 

where, t c indicates the cumulative sum of t , which is the size of ties or duplicates of 
the extent c. 

2.4 Magnitude of Trend Using Sen’s Slope Estimator 

In order to determine the magnitude and variability of the trend in time series of SPI 
and SPEI Sen’s slope estimator was used (Ali et al. 2019) with the following set of 
equations: 

The slope of the dataset is obtained from: 

mi = (x j − xk)/( j − k) 

(i = 1, 2, . . . ,  N ) (10) 

where, mi , N , x j , and xk denote the slope, the number of data points and j and k 
( j > k) represent the time points, respectively. 

The median of these N value of mi is termed as Sen’s estimator of slopes and is 
calculated by the following formulae: 

β =
(
m(N+1)/2, when N i s  odd 

1/2(mN /2 + m(N+1)/2, when N i s  even 
(11) 

A positive value means an increasing or upward trend, and a negative value means 
a decreasing or downward trend (Jain et al. 2013; Agarwal et al. 2021). 

3 Results and Discussion 

3.1 Temporal Evolution of the SPI and SPEI Analysis 

3.1.1 Pre Monsoon 

Since the turn of the century, the frequency and severity of droughts in the middle 
Gujarat region have increased, with the tendency becoming more obvious the further 
back in time one goes. In this study, we examined the differences between the 
pre-monsoon (May) and post-monsoon seasons using 3-month SPI & SPEI values
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Fig. 2 The time series of the pre monsoon SPI and SPEI in the study region during 1986–2015 

(November). The 12-month SPI values (SPI-12) and 12-month SPEI values (SPEI-
12) for December are used to detect annual SPI and SPEI values (Yang et al. 2018; 
He et al. 2015). The temporal distribution of SPI & SPEI for pre monsoon are clearly 
indicated in Fig. 2. 

The SPI based analysis indicates that pre monsoon indices from 3.22 to -0.25 
(Extremely wet to Mildly dry state), while SPEI vary between 2.49 to – 4.39 which 
means extremely wet to extremely dry state. At 3-month time scale, strongest wet 
year identify by SPI & SPEI were 2000. Unlikely for the dentification of extremely 
driest year found by SPEI is 2010. Temporal distribution of SPI & SPEI are clearly 
indicated in Fig. 2 and it reviled that the maximum drought occurrence at 3-month 
time scale is highest in SPEI than SPI. Less fluctuation of extreme wet to extreme 
dry observed in SPI compared to SPEI, which means it give linear response-based 
rainfall data. While SPEI give quite good response by combination of rainfall and 
evapotranspiration data. 

3.1.2 Post Monsoon 

Figure 3 shows that post monsoon SPI & SPEI drought apical severity vary from 2.51 
to –3.08 and 2.42 to –2.40 (Extremely wet to Extremely dry) respectively. In SPI
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Fig. 3 The time series of the post monsoon SPI and SPEI in the study region during 1986–2015 

identify year 2013 (Gride A05) is an extremely wet year while 1998 (AE10) year is 
based on SPEI. 3-month time scale SPI found 1986 is extremely dry drought severity 
while in SPEI 1987 year is extremely dry drought severity and intensity respectively. 

Additionally, SPEI performed well in capturing the drought in 3-month time scale. 
Figure 2 shows that the SPEI identify higher draught year in all year compared to 
SPI. Regardless of their difference, however SPI and SPEI able to identify major 
recorded drought year in the study area including 1986, 1987, 2000, & 2015 in most 
cases. The SPI and SPEI were essentially consistent in representing drought periods, 
but the SPI’s reflection of the severity of the drought was higher than the SPEI’s. 

3.2 Serial Correlation and Seasonality Factors 

Here we used lag-1 autocorrelation for assessment of seasonality patterns, and it 
is applied to each and every SPI and SPEI data sets. Figures 4, 5 illustrate the 
lag-1 correlation graph for pre monsoon and post monsoon SPI. The frequency of 
statistical significance correlation at 0.4 and –0.4 levels is marked with red and grey 
color respectively (Figs. 4, 5) and investigated time scale of the analysis indicated
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Fig. 4 Lag-1 correlograms for pre & post monsoon SPI
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Fig. 5 Lag-1 correlograms for pre & post monsoon SPEI 

an acceptable degree of agreement between SPI & SPEI. Correlograms for whole 
dataset was also prepared and we observed that no any significant seasonality pattern 
follows by SPI pre and post monsoon time series data set.

3.3 Seasonal and Annual Trends in SPI 

MK test is employed to analyze the trend for SPI and SPEI drought indices of all 
stations over the period of 1986 to 2015. This is done with 3-month cumulative time 
series data and 5% significance level. Results of the Mann Kendall trend test and 
Sen’s slope for 3-month time scale seasons of SPI & SPEI are exhibited in Tables 2, 
3. Pre monsoon SPI series significantly increases in its trend in most of the grids, 
only A05, A06 indicates negative trend which means trend of these two grids are 
not at its significant level. In pre monsoon Sen’s slope estimator indicates no change
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Table 2 Results of Mann–Kendall (Z) and Sen Slope (β) for seasonal SPI from 1986 to 2015 for 
17 Grids. (Significant values at α = 5% are denoted by an asterisk) 

Grid Pre monsoon Post monsoon 

Z β Z β 
A01 0.90 0.000 1.94 0.045 

A02 0.46 0.000 0.46 0.011 

A03 0.00 0.000 1.52 0.036 

A04 0.13 0.000 1.21 0.031 

A05 −1.21 0.000 1.87 0.045 

A06 −0.61 0.000 2.48* 0.049 

A07 0.98 0.000 0.95 0.028 

A08 0.63 0.000 1.93 0.046 

A09 1.87 0.000 1.70 0.036 

A10 1.22 0.000 2.03* 0.045 

A11 0.44 0.000 2.09* 0.045 

A12 0.52 0.000 0.95 0.024 

A13 0.75 0.000 1.37 0.031 

A14 0.83 0.000 1.30 0.038 

A15 2.22* 0.000 1.14 0.022 

A16 0.86 0.000 1.71 0.043 

A17 1.99* 0.000 1.82 0.029

on SPI series while in post monsoon all SPI series for sen’s slope are positive trend. 
Highest significant tread observed in A06 grid (Z = 2.48 & β = 0.049). Sen’s slope 
indicates weighted median of the difference in all values. Here is a simplest possibility 
illustration of zero is shorter upward trending segments. 

Seasonal SPEI trend series period of 1986 to 2015 for 17 different grids into the 
study area (Table 3). Based on results, it found that the pre monsoon were significant 
decreasing trend in the study areas. On other hand post monsoon analysis indicates 
insignificantly increasing trend of SPEI over the study locations. Sen’s slope indicates 
difference between major and minor value is significant in both pre monsoon and post 
monsoon. SPEI capture tall the major drought years between 1986 to 2015 at time 
scale, while SPI fail to capture extreme drought events (Tables 2, 3). SPI value appears 
little lower than the SPEI values. This type of dissimilarity observed in our study and 
in other studies also. Wang et al. 2014 reported difference between SPI and SPEI 
based drought assessment. SPI predict extreme event based only precipitation data, 
while SPEI uses precipitation and temperature variability to predict climate extreme 
events (Mckee et al. 1993; Guttmann 1999; Vicente, et al. 2010). However, difference 
between SPI and SPEI values doesn’t mean that they give complete opposite results. 
In lower temperature variation regions, SPI can give equal results as strong as SPEI
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Table 3 Results of Mann–Kendall (Z) and Sen Slope (β) for seasonal SPEI from 1986 to 2015 for 
17 Grids. (Significant values at α = 5% are denoted by an asterisk) 

Grid Pre monsoon Post monsoon 

Z β Z β 
AE01 −2.39* −0.043 1.23 0.028 

AE02 −2.34* −0.044 0.23 0.006 

AE03 −2.44* −0.042 0.68 0.017 

AE04 −2.48* −0.042 0.79 0.023 

AE05 −0.05 −0.003 1.15 0.034 

AE06 0.12 0.005 1.93 0.041 

AE07 −2.41* −0.042 0.14 0.007 

AE08 −2.39* −0.041 1.18 0.037 

AE09 0.00 0.000 1.53 0.031 

AE10 0.00 0.001 1.12 0.019 

AE11 −2.37* −0.041 1.28 0.032 

AE12 0.05 0.003 1.84 0.032 

AE13 0.00 0.004 0.70 0.014 

AE14 −0.95 −0.025 1.09 0.030 

AE15 −1.07 −0.026 0.91 0.024 

AE16 −0.98 −0.027 0.98 0.018 

AE17 −0.95 −0.019 1.03 0.019

does. This indicates inability of SPI to count the effect of global warming in drought 
monitoring. 

Sen’s slope results agreed with (Dogan 2018), which concluded that the good 
relationship can be expected if scattering of points is diminished, and lie relatively 
close to line which represent mean. Here, existed good level of agreement for most 
of scattering points lie between set range of upper and lower limit. 

3.4 Linear Relationship Between SPI and SPEI for Pre 
and Post Monsoon Reasons 

Using Pearson’s correlation coefficient, it was found that SPI and SPEI have a linear 
relationship for different seasons. The results showed that the pre- and post-monsoon 
seasons did not yield significant results for the SPI and SPEI. Pre and post monsoon 
SPI & SPEI correlation is displayed using R2, which has values of 0.1928 & 0.1298, 
respectively. Scattered plot revealed that the relationship between SPI and SEPI 
and time was linearly decrementing (Fig. 6). This is partially due to the fact that 
the outcomes of the two distinct approaches do not agree, which could lead to a
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Fig. 6 Scatter plot showing the linear relationship of SPI & SPEI for all grids in pre monsoon & 
post monsoon season

variety of conclusions that are either good or negative. This was supported by Dogan 
NO 2018, which cautioned against using correlation to gauge the comparability of 
different methodologies. The results clearly demonstrate that SPI and SPEI have a 
linear connection in this case, however there is not necessarily a degree of agreement. 
Furthermore, the independent Sen’s slop test clearly demonstrates that the SPI and 
SPEI in this study do not differ significantly from one another. 
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4 Conclusion 

SPI and SPEI indicators were utilized in the current study to analyze the spatial and 
temporal characteristics of climate extreme occurrences that occurred in Gujarat, 
India, before during and after the monsoon season. Drought is a devastating and 
slow-moving event that is influenced by both human and natural activity, in contrast 
to other climatic calamities. The number of severe occurrences in the study area 
was trended using both Sen’s slope and the MK test. We can therefore infer from 
the results of this study that SPEI outperformed SPI in the Vadodara regions of 
Gujarat. However, the research for additional study locations also showed that SPEI 
can be used in place of SPI at time scales. SPI cannot be calculated in the absence 
of temperature data and a suitable analytical instrument; hence it is reasonable to 
assume that SPI can be used to measure drought in the research region at all-time 
scales. 

This study’s focus was on meteorological conditions based historical drought indi-
cators. In order to make well-informed decisions for sustainable basin planning and 
management and to maximize the operational guidelines of existing water resources, 
trends in drought indices would be projected to future periods based on the antici-
pated outcomes from global climate models. Future studies that consider hydrologic, 
agricultural, and socioeconomic droughts will produce more insightful findings. 
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Identification in Semi-arid Conditions: 
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Abstract Health ailments due to fluoride rich groundwater is a major threat to 
millions of people around the globe. Fluorosis is more common in the arid and 
semi-arid regions of the world (USA, China, Argentina, India, etc.). This chapter 
emphasizes the significance of various factors deciding the fate of fluoride release in 
the groundwater. Fluoride release is mainly attributable to geogenic processes such 
as fluoride-bearing minerals in the aquifer matrix, prevailing climatic conditions, 
pH conditions, ion-exchange reactions, residence time etc. A significant positive 
correlation of F− with parameters like pH, Na+, HCO3

−, SO4 
2−, and Cl− describes 

the influence of evaporation and the role of chemical weathering on fluoride-bearing 
rocks. Further, saturation to over saturation of calcite while undersaturation of fluorite 
mineral under alkaline condition is indicative of silicate weathering and ion exchange 
reactions facilitating F− release in the semi-arid conditions. Anthropogenic inputs 
include use of phosphate fertilizers, brick kiln, aluminum smelting, cement industries 
etc. which are capable of enriching nearby groundwater system with fluoride. Stable 
isotopes 18O, 2H, and 34S have been utilized in the semi-arid regions to decipher the 
provenance and mechanism of F− release in the groundwater. Evaporation plays a 
crucial part in the enrichment of F− in arid and semi-arid zones globally. It is evident 
from various studies that slope of the Local Meteoric Water Line (LMWL) in the 
semi-arid regions is manifested by a lower slope than the Global Meteoric Water 
Line (GMWL), reflecting the importance of evaporative enrichment in F− release in 
the semi-arid conditions. 
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1 Introduction 

Fluorine is the 13th most prevalent element in the Earth’s crust and is widely 
distributed in the environment. It is the most electronegative and lightest halogen 
family member, and a non-metallic, pale yellow-green gas with a strong odor (Hem 
1959). It naturally occurs as fluoride ion in water, soil and aquifer sediments. It has 
no other oxidation states which are found in the aqueous systems. Due to its strong 
reactivity, it commonly occurs as compounds. Fluoride ion (F−) has the same charge 
and radii as of hydroxyl ion (OH−) and as a result, these ions exchange each other 
in many rock forming minerals. Due to the toxicity, fluoride pollution in ground-
water has drawn a lot of attention in recent decades (Mukherjee et al. 2018). The 
F− is mainly utilized by the higher forms of life and it is very essential for the 
development of teeth and bones of humans. However, both deficiency and excess 
concentration of F− in the potable water may lead to several complications as dental 
and skeletal fluorosis which has been widely reported across the globe (Vithanage 
and Bhattacharya 2015). Fluoride concentration in potable water below 0.6 mg/L 
and above the 1.5 mg/L have negative impacts on human health when consumed for 
a considerable period of time. Groundwater having Fluoride concentration above the 
1.5 mg/l shows considerable toxicological effects on human wellbeing, which has 
been reported globally (Fawell et al. 2006; Liu et al. 2014). Most common effects 
are on the bones, teeth, skeletal muscles, and nervous system. High F− in pregnant 
women not only leads to fluorosis but also causes Anemia, which reduces absorption 
of iron, affecting both mother and the newborn (Bello 2020). Globally, approxi-
mately 260 million people face the problem of high fluoride levels (>1.5 mg/L). 
Elevated F− in groundwater is mainly attributable to geogenic in origin through 
dissolution and ion exchange of F− bearing minerals such as fluorite, apatite, fluo-
rapatite, sphene, microlite, pyrochlore, topaz, tourmaline, spodumene, cryolite, etc. 
found in many granitic and metamorphic rocks. Volcanic, geothermal activities, and 
mixing of hot springs rich in F− also contribute high fluoride to groundwater system 
in several regions (Kundu et al. 2001; Vithanage and Bhattacharya 2015). Anthro-
pogenic sources include both point and nonpoint sources such as phosphate mining 
and fertilizers, cement industries, ceramic, aluminum smelting, brick kiln, burning 
of coal, glass and tile industries etc. which contribute fluoride to the natural water 
system (Datta et al. 1996; Brindha and Elango 2011). Other sources are atmospheric 
air and precipitation, though insignificant. Therefore, broadly fluoride concentration 
in groundwater is a function of (i) paleoclimate which facilitates dry deposition in 
arid to semi-arid climate, (ii) geology of the region, and (iii) anthropogenic activ-
ities. Brunt et al. (2004) has reported the likelihood of elevated concentration of 
F− globally. According to Brunt, American continents possess low to moderate risk 
based on F− enriched groundwater. Likewise, Europe and Oceania possess low risk 
of F− concentration in groundwater. While, Africa and Asia possess medium to 
high threat of F− in groundwater. All these geographic domains not only reflect the 
significance of bedrock geology but also conveys the importance of climatic vari-
ability which decides the fate of fluoride release in the groundwater. Continents, Asia
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and Africa and their arid/semi-arid regions with limited occurrence of groundwater 
are often characterized by enriched groundwater in fluoride which possess great 
health risk to the inhabitants. Worldwide elevated enriched groundwater with Fluo-
ride concentration and related problems has been reported around the countries like 
Kenya, Norway, North Jordan, Ethiopia, Mexico, Malawi, Iran, Brazil, Japan, Sri 
Lanka, Turkey, Argentina, India, Pakistan, China, USA, Ghana, Italy, Canada (Nair 
et al. 1984; Saether et al. 1995; Rukah and Alsokhny 2004; Tekle-Haimanot et al. 
2006; Valenzuela-Vasquez et al. 2006; Msonda et al. 2007; Asghari Moghaddam 
and Fijani 2008; Viero et al. 2009; Abdelgawad et al. 2009; Chandrajith et al. 2012; 
Yeşilnacar et al. 2016; Pilar Alvarez and Carol 2019; Ali et al. 2019; Younas et al. 
2019; Li et al.  2020; McMahon et al. 2020; Zango et al. 2021; Fuoco et al. 2021; 
Bondu et al. 2022). In India groundwater rich in fluoride has been reported from the 
states of Odisha, Gujarat, Kerala, Andhra Pradesh, Uttar Pradesh, Karnataka, Tamil 
Nadu, Rajasthan, Haryana, and Punjab (Kundu et al. 2001; Gupta et al. 2005; Shaji 
et al. 2007; Rao  2009; Sajil Kumar et al. 2014; Choubisa 2018; Yadav et al. 2019; 
Ahada and Suthar 2019, Pant et al. 2021, Nijesh et al. 2021). Fluoride release and 
mobilization in groundwater has been rigorously studied through various tools like 
hydrogeological conditions of a given aquifer which allow us to know the ground-
water occurrence, flow direction and hydrogeological parameters such hydraulic 
conductivity, porosity and permeability persisting in a given geographical domain 
(Ansari et al. 2022). Likewise, groundwater chemistry is used to understand the 
groundwater flow path, its source and chemical reactions due to rock-water interac-
tions including chemical weathering such as silicate and carbonate, ion exchange, 
reverse ion exchange, evaporation etc. (Jampani et al. 2018; Ansari et al. 2022). To 
get insight into the hydrogeochemical evolution and extent of groundwater maturity, 
use of bivariate plots, trilinear plots, hydrochemical modelling, and various statistical 
analysis has been employed worldwide (Ansari et al. 2022; Pant et al. 2021). Stable 
isotopes (δ18O and δ2H) inherit unique isotopic signature in the various hydrological 
domains and therefore are used to decipher recharge sources, and zones. Further, 
stable isotopes (δ18O and δ2H) are also utilized to understand provenance, release 
mechanism and conditions in F− rich groundwater (Clark and Fritz 2013; Younas 
et al. 2019; Pant et al. 2021). Thus, an integrated approach for the assessment of 
mobilization factors and source of fluoride release, and mitigation measures in the 
semi-arid regions would suffice proper water resource management in the semi-arid 
regions. For the present chapter, a detailed literature review has been done by compi-
lation of various manuscripts related to Fluoride contamination in the natural water 
system with special emphasis on arid/semi-arid regions of India. The present chapter 
deals with the following objectives (i) to understand the geospatial variability of 
F− rich groundwater in India, (ii) to identify the provenance and physicochemical 
controls on F− release in the groundwater, and (iii) application of stable isotopes in 
identification of F− releasing processes. For more insight into the hydrogeochemical 
and isotopic analysis various plots were replicated (based on the published plots) in 
the Grapher software version 17, while the spatial maps were prepared in the ArcGIS 
version 10.5.
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2 Study Area 

India is a large country encompassing an area of 3.28 million km2, out of which 
12% of the geographical area is characterized by arid zones. Out of total 32 million 
ha which is hot and dry regions covers the part of Rajasthan, Gujarat, Karnataka, 
Punjab, Andhra Pradesh, and some part of Haryana. Lahul Spiti region of Himachal 
Pradesh, Ladakh, and Jammu and Kashmir, are characterized by cold arid zones 
of India. The largest hot arid region of the country (20 million ha area) is covered 
by western part of Rajasthan is often affected with high F− in groundwater. The 
arid and semi-arid zones are manifested by low annual precipitation and very high 
evapotranspiration, and the Aridisol type of major soil. India is among the major 
consumer of groundwater globally (Saha et al. 2018) and is marked by intensive 
agricultural activities which was promoted since the mid-twentieth century after the 
Green Revolution, launched by the Government of India to secure food demand of 
the country. As a result, a sharp rise in groundwater irrigation-based agricultural 
activities increased after 1970 has resulted many groundwater depleted regions in 
the Country. Groundwater is mainly exploited for irrigation purposes apart from 
domestic and agriculture usage. 

3 Factors Responsible for Fluoride Release 

Following section deals with the major contributing factors and processes related to 
the enrichment of Fluoride in groundwater. 

3.1 Natural Causes 

3.1.1 Geology and Hydrogeology 

The geological and hydrogeological setup is integral factor in deciding liberation of 
F− in the natural water system. Chowdhury et al. (2019) reported 5 major fluoride 
belts of the world and identified major rocks associated with these belts and tectonic 
settings. The geographical regions dominated by rocks such as granites, gneiss, shale, 
volcanic igneous rocks, hydrothermal fluids rich in F−, meta-rhyolites, calc-alkaline, 
alkaline granites, pegmatite veins, hot spring, volcanic craters, and volcanic ash all 
contribute a significant amount of F− to the groundwater. The main fluoride minerals 
which constitute the rock are fluorite (CaF2), fluorapatite (Ca5(PO4)3(OH, F), amphi-
boles, micas, cryolite (Na3AlF6), and topaz (Al2(SiO4) F2). The concentration of 
F− in the various lithologies follows this order: Potash feldspar rich granitoid > 
hornblende-biotite granitoid > basalts > hornblende-biotite tonalite > hornblende 
biotite granodiorite > biotite granitoid (Sunkari et al. 2021). The structural control
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of enriched fluoride groundwater can be validated through the examples of the East 
African Rift valley and West African mobile belt where the elevated concentration of 
F− lies along these belts (Chowdhury et al. 2019). Fracture and topography control 
the groundwater hydrogeology in various tectonic settings and hence the groundwater 
chemistry. It is generally observed that groundwater is low in F− concentration even 
if the geology has fluoride-bearing minerals in the highlands (unless marine sedi-
ments in Highland areas are found) and gradually increases in the flow direction as 
a result of more chemical weathering of alumina silicate rocks and dissolution of 
fluoride bearing aquifer matrix, and increasing residence time in the flow direction 
favoring more rock water interaction (Li et al. 2020). Enriched groundwater with 
F− in the proximity of various tectonic settings has been observed around the globe 
(Chowdhury et al. 2019). A geographical area affected by a fault has a chance of 
exposing deeper rocks with high F− content onto the surface and their weathering 
by various agents increases F− concentration in the nearby natural water system. 
The various hotspots of F− are often associated with some kind of tectonic setting. 
The aborted rifts, intra-continental hotspots, and Andean Magmatic belts have been 
reported with the highest F− content. A classic example is East African rift valley and 
enriched groundwater with F− content along this belt. The co-occurrence of volcanic 
belts such as in the Andes and Japan and groundwater rich in F− is associated with 
pyroclasts ejected from the volcanic activities which are often rich in Na+ and F− 

while low in Ca2+ and Mg2+. 

3.1.2 Climate 

Climate is another very important factor apart from the geology of a region which 
decides the extent of release and mobility of F− in the groundwater. Various workers 
around the globe have reported elevated value of F− in natural water system as a 
function of climate and geology (Chowdhury et al. 2019; Mandal et al. 2021). The arid 
and semi-arid regions of the tropical belt have shown more potential for groundwater 
F− enrichment than other parts of the world. Countries like India, Pakistan, Sri Lanka, 
China, Ethiopia, Kenya, Tanzania, Syria, Jordan, Egypt, Sudan, Somali, etc. are part 
of the tropical region (Chandrajith et al. 2012; Younas et al. 2019; Chowdhury et al. 
2019; Mandal et al. 2021). The arid and semi-arid belts of these countries have 
reported enriched groundwater with Fluoride. The typical soil type in the arid and 
semi-arid regions has been identified as Aridisol. However, recent insight to better 
comprehend the climatic control on F− rich groundwater has reported other climatic 
zones with enriched fluoride groundwater such as Temperate Humid zones of Japan 
and Indonesia which is manifested by Andisols type of soil. High F− groundwater in 
this belt is attributable to numerous active and dormant volcanoes in this belt, thus 
known as the volcano fluoride belt of the world. The active subduction along Japan, 
volcanic rocks, volcanic ash, and hot springs contributes high F− to the groundwater 
(Chowdhury et al. 2019). However, the majority of F− hotspots lie in the tropical 
belt of the world and are manifested by arid/semi-arid climate and Aridisol soil 
type. The release of F− in the groundwater is influenced by the regional and local
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geology of arid to semi-arid regions, as well as the groundwater flow pattern (Su 
et al. 2013; Saxena and Saxena 2014). The spatial variability map Fig. 1, shows  
that most of the enriched groundwater with fluoride is attributable to arid/semi-arid 
regions of the country which favors the mobilization and release of fluoride from 
the F− bearing aquifer material to the groundwater. States of Rajasthan, Gujarat, 
Punjab and some parts of South India are characterized by arid and semi-arid zones 
with high evaporation rates and lower annual precipitation have groundwater rich in 
Fluoride concentration. The majority of the population depends on the groundwater 
enriched with F− in these regions and thus affected by Fluorosis. The absence and 
low concentration of fluoride in the other regions of the country is either because of 
the absence of fluoride-bearing minerals in the aquifer matrix, or freshwater recharge 
and minimal evaporation rates (Handa 1975). 

Fig. 1 India map (modified after CGWB 2018; Ali et al. 2019) highlighting the states affected by 
Fluoride, and the semi-arid/arid regions of the country (figure not to scale)
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3.1.3 Adsorption/Desorption 

Soil sorption capacity is affected by physicochemical properties like activity of 
hydrogen ion (pH) and salinity of the soil, as well as the type of sorbent present 
(Cronin et al. 2000). Processes like adsorption and desorption play a vital role in 
elevating F− concentration in the groundwater even if the total fluorine concentra-
tion is low in the natural water system. Oxides and oxyhydroxides of metals (Al2O3 

and Fe (OH)2) in the aquifer matrix act as an adsorbing and desorbing surface 
for similar charged ions such as F− and OH−. Under acidic to neutral conditions 
F− replaces OH− onto the metal oxides and hydroxide surfaces and F− adsorption 
capacity decreases from acidic to alkaline conditions and as well from wet to arid 
climatic conditions (Li et al. 2015). The leaching process is comparatively higher in 
alkaline soil and in both arid and semiarid zones worldwide. Because most of the 
fluoride in the soil is insoluble, it is merely available for plant intake. As a result, 
maximum fluorine compounds are adsorbed by aquifer matrix and oxyhydroxide 
in an alkaline condition, with only a small percentage dissolving in the soil (Hong 
et al. 2016). The competitive adsorption by other anions, such as bicarbonate, also 
causes fluoride desorption from the surfaces of minerals and organic materials in 
groundwater. 

3.2 Anthropogenic Inputs 

Fluoride-rich groundwater is generally attributable to geogenic causes as discussed 
in the previous sections. However, there are few notable human-induced sources of 
F− in the groundwater which has been studied worldwide. Phosphate mining and 
the use of phosphate fertilizers in agricultural practices and industries are capable of 
increasing F− concentration in the nearby groundwater. Phosphate fertilizer, NPK, is 
very commonly used and irrigation return flow has shown considerable enrichment 
in F− concentration, especially in shallow groundwater. In this context, a positive 
correlation of F− with K+, Cl−, SO4 

2−, and NO3
− is indicative of the same source 

of release through chemical fertilizers enriching the F−concentration in shallow 
groundwater around the agricultural fields (Mukherjee and Singh 2022). Other note-
worthy human-induced F− contamination includes the combustion of coal, aluminum 
smelting, brick kiln, ceramic firing, cement industries, glass, and tile (Vithanage and 
Bhattacharya 2015). A bivariate plot of F− versus NO3

− (Fig. 2) distinguishes the 
samples affected by geogenic and anthropogenic factors, and it becomes evident that 
most of the F− enriched samples are geogenic derived and as evident with low NO3

− 

concentration in the groundwater.
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Fig. 2 F versus NO3, distinguishing samples from geogenic and anthropogenic sources 

4 Fluoride Release and Mobilization: A Hydrochemical 
Approach 

The following sub-sections deals with the hydrogeochemical approaches to decipher 
the governing mechanism in the fluoride rich groundwater using hydrochemical tool. 

4.1 pH/Alkalinity/Temperature 

The hydrogen ion activity of water is a vital factor that decides the mobilization 
of different ions in the groundwater. Numerous research indicates that pH controls 
the release and mobility of F− in the groundwater system. Under neutral and acidic 
conditions F− is preferentially adsorbed onto a clay mineral surface while the alkaline 
environ is highly favorable for fluoride dissolution and gets desorbed from the clay 
into the groundwater and thus elevating the F− concentration (Raj and Shaji 2017). 
The release of fluoride, can be understood with through following points. 

Under the alkaline condition, groundwater is rich in HCO3
− and Na+ generally 

lowers the concentration of Ca2+ due to the precipitation as CaCO3 and thereby 
increasing the relative concentration of F−. In an alkaline environment, OH− can
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exchange F− adsorbed on surfaces of soil colloids and clay minerals. The distribution 
of F− in groundwater is thus partly explained by the relationship of pH and fluoride. 
The presence of high pH condition affects the mobility of F− and the material surfaces 
which help in desorption/adsorption process of anions. An excessive amount of OH− 

in groundwater can promote precipitation of Ca2+, Fe3+, and Al3+, which prevents F− 

from complexing with cations and leads to a high release of F− in groundwater. The 
elevated temperature of hot springs laden with high F− such as in South America 
is a key factor influencing the nearby groundwater chemistry (Chowdhury et al. 
2019). The groundwater which is in contact with calcite and fluorite remains in 
thermodynamic equilibrium which can be calculated with the help of Eq. (1) 

CaF2(s) ↔ Ca2+ + 2F− (1) 

CaCO3(s) + H+ + 2F− ↔ CaF2(s) + HCO− 
3 (2) 

Kcal−fluor =
aHCO− 

3 

aH+ × (aF− )2
(3) 

Since the K value is constant for a constant pH value, Eq. 3 predicts that any 
change in the concentration of HCO3

− will change the concentration of fluoride. 
This supports a positive correlation between these two ions. 

4.2 Rock Water Interaction 

The chemistry of groundwater relies on the water bearing formation and its residence 
time in aquifer. Groundwater acquires its chemistry by the dissolution of mineral 
matter present in the aquifer. The rain water dissolves the CO2 and forms carbonic 
acid. During the infiltration, carbonic acid reacts with subsurface rock material and 
dissolve the chemical constituents. The silicate rocks containing fluoride bearing 
minerals are very prone to dissociate/dissolution and release fluoride under the bicar-
bonated groundwater. Other than fluorite and fluor-apatite, micas after dissolution 
may release F− in groundwater under alkaline water condition Eqs. (4 and 5) 

KAl3Si3O10(OH, F)2+ CO2 + 2.5H2O → 1.5Al2Si2O5(OH)4 + K+ + 2F− + HCO− 
3 (4) 

NaMg3AlSi3O10
(
OH, F)2+ 7CO2 + 7.5H2O → 0.5Al2Si2O5(OH)4 + Na+ + 3Mg+2F− + 2H4SiO4 + 7HCO− 

3 (5) 

The base and cation exchange process are common in the sedimentary aquifers 
of the world. For example, Ca2+ and Mg2+ in the aquifer matrix can exchange with 
Na+ and K+ present in groundwater and vice-versa is a common process. However, in 
reverse ion exchange, Na+ and K+ present in the groundwater exchange with Ca2+ and 
Mg2+ of the aquifer material. Due to the ion exchange process, the concentration of 
Na+ and K+ levels would be higher in comparison to Ca2+ and Mg2+ and would result
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Fig. 3 F versus (Ca  + 
Mg)/(Na + K) 

in higher Na/Ca molar ratio values and result in water-type Na-HCO3. The results of 
geochemical simulation reveal that under alkaline conditions, Na-HCO3 water type 
is associated with increased F− and low Ca2+ ion concentration through base ion 
exchange and calcite precipitation (Jha et al. 2013). The bivariate plot (Fig. 3) of F  
versus (Ca +Mg)/(Na + K) shows F− enriched groundwater is generally manifested 
by low (Ca + Mg)/(Na + K) which is either due to the exchange of (Ca + Mg) from 
the groundwater with (Na + K) of aquifer matrix lowering the concentration of Ca2+ 

or precipitation of calcium carbonate and additionally dissolution of F− bearing 
mineral under the alkaline condition as stated by Eqs. 1 and 2 (Sect. 4.1). 

4.3 Ion Effects 

In the upper section it is now proven that under natural water systems F− is in positive 
correlation with HCO3

−, and Na+ while negatively correlated with Ca2+. It is due  to  
precipitation of calcium ion as carbonate releasing more F− into the groundwater. 
Therefore, dissolution evaporites such as gypsum add up Ca2+ to the groundwater 
and will enrich groundwater in F− through ion exchange. It is due to similar ion 
effect which causes enrichment of groundwater with F−. The precipitation of calcite 
might also result from dissolution of dolomite, gypsum and from cation exchange 
reactions. Within the groundwater system, calcite precipitation removes Ca2+ from 
the water, raising the HCO3

− concentration through further dolomite dissolution. 
This also causes continual rise in the Saturation Index (SI) of fluorite in groundwater.
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This condition indicates faster dissolving rate of fluorite, and simultaneous rise in 
fluoride concentration. Thus, the ion effect in groundwater is also responsible for the 
higher fluoride concentration. 

4.4 Evaporation and Salt Effects 

Elevated salt concentration in groundwater is common in geographical areas having 
arid and semi-arid climatic conditions such as Rajasthan, Gujarat, and in parts of 
Southern states of India (Fig. 1). The excessive evapotranspiration and low precip-
itation aided with dry conditions increases the relative abundance of ions such as 
Na+, SO4 

2− and Cl− concentration in groundwater. The hydrogeochemical studies 
show a positive correlation of F− with Na+, HCO3

−, pH,  SO4 
2− and Cl− in arid 

and semi-arid regions (Mandal et al. 2021). It explains the influence of evaporation 
along with the silicate weathering. The positive linear relationship of F− with Cl− is 
indicative of the evaporation process which enriches F− concentration in the ground-
water particularly in arid and semi-arid zones (Fig. 4a, b). The Cl− versus F− and 
F− versus F−/Cl− bivariate plots trend (Fig. 4a, b) shows the reason of high fluoride 
concentration generally in the shallow groundwater systems because of evaporation 
or dissolution of Fluoride bearing minerals in the aquifer matrix (Luo et al. 2018). 

The source of salts may be either evaporites or saline lake water intrusion (Gao 
et al. 2007). Salt effects are the dissolution of evaporites with fluoride bearing 
minerals (such as gypsum, halite, bloedite, mirabilite etc.). It also reduces the fluo-
ride ion activity through ion complexation in groundwater. Thus, the availability of 
F− along with increasing concentration of Cl−, SO4 

2−, Na+, and TDS suggests salt 
effect processes. Thus, these processes can be responsible for occurrence of fluoride 
in the groundwater in arid and semi-arid regions.

Fig. 4 a F versus Cl and  b F/Cl versus F 
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5 Application of Stable Isotopes in Provenance and Process 
Identification 

The application of Stable isotopes δ2H and δ18O has proven successful worldwide in 
many aquifer systems in provenance identification as recharge zones and the identi-
fication and quantification of dominant end members (Precipitation, River, Glacier, 
etc.) responsible for the recharge. The retention of the peculiar signature of the 
source inherited by the Stable isotopes makes them a special tool. Stable isotopic 
data aided with hydrochemical and hydrogeological data, particularly in arid and 
semi-arid zones have been utilized worldwide to identify the governing processes 
responsible for high F− groundwater. The arid and semi-arid zones where evapo-
transpiration plays a noteworthy role in F− enrichment and therefore the effect of 
evapotranspiration cannot be neglected in an arid and semi-arid area. The stable 
isotopic composition of such groundwater and precipitation is helpful in unravel-
ling the controlling factors. The hydrochemical data analysis reveals that the rock 
water interaction under alkaline conditions is a governing factor for the mobilization 
of fluoride in a given aquifer. The hydrogen and oxygen isotope ratio (δ18O and 
δ2H) provides clues about the evaporation and other related processes during the 
recharge. The groundwater sample falling along the evaporation line in the plot of 
δ18O versus  δ2H reveals that the groundwater is isotopically enriched due to evap-
otranspiration and/or water–rock interactions (Fig. 5). Usually, the δ18O and δ2H 
signatures of groundwater reflect the history of hydrological processes of ground-
water from recharge to reaching the aquifer. A right deviation of water samples in 
δ18O and δ2H plot from the GMWL and an increase in F− concentration confirms 
evaporative enrichment processes (Fig. 4). Evaporation intensifies the concentrations 
of all ionic species to some extent. In arid and semi-arid conditions oversaturation of 
CaCO3 in groundwater occurs under areas of high evaporation, which endorses the 
breakdown of F− containing minerals and thus releases F− into the groundwater (Li 
et al. 2015). Evaporative enrichment of isotopes coupled with d-excess can also help 
to understand the processes leading to F− release into the groundwater (Figs. 5 and 
6). It has been observed that there exists an inverse relationship between d-excess 
and F−, high F− concentration in the groundwater is manifested by low d-excess and 
vice versa (Fig. 6).

Sulphur isotope (δ34S) helps to identify the source of F− in groundwater. The 
δ34S of dissolved sulphate can help to trace the sources of sulphate in the surface 
and the shallow and deep aquifers. However, the combined use of both δ34S and 
δ18O provides a powerful tool to trace the source of sulphate. For example, a plot 
of δ34S of sulphate and δ18O of sulphate (Fig. 7) would help to identify the sources 
of sulphate in groundwater. Tracing the source of the sulphate would help to know 
the source of the F−in groundwater, especially when it is due to anthropogenic 
activities. The various processes acting together are responsible for the variations 
of the isotopic composition of SO4 

2− in aquifers, which help in tracing the sources. 
The negative correlation between SO4 

2/Cl− and δ34S show the presence of bacterial 
reduction processes, particularly in high F−conditions (Fig. 8). Groundwater samples
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Fig. 5 The plot between δ18O versus δ2H shows the relation between evaporated and non-
evaporated water (modified from Mook 2000)

of the phreatic aquifer condition have low F−concentration without any evidence of 
bacterial sulphate reduction (Marimon et al. 2007).

6 Mitigation Measures 

6.1 In-Situ 

Groundwater is the most abundant natural resource on the earth and clean water 
is a basic need of every human. Every 1 out of 3 individuals lacks access to clean 
water (WHO 2019). The potability of groundwater depends on the dissolved ions and 
many times on the organic constituents as well. Any excess of these constituents and 
their prolonged intake through drinking water may introduce many serious health 
ailments. Therefore, groundwater with an excess of F− must be treated before it can 
be consumed. Like any treatment, it involves both in-situ (treatment on site) and ex-
situ (laboratory) treatment. Finding an alternate source of drinking water works in 
some cases as well. In-situ measures involve treating groundwater/affected aquifers 
on-site rather than collecting groundwater samples and treating them separately in the
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Fig. 6 Plot of d-excess versus F− indicates the role of evaporation on groundwater (modified from 
Mandal et al. 2021)

Fig. 7 δ34S and  δ18O of  
sulphate used sourcing of 
sulphate of various origins 
dissolved in groundwater 
(modified from Mook 2000)
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Fig. 8 δ34S sulphate versus 
normalized sulphate 
concentrations show a 
reverse correlation with high 
fluoride (modified from 
Marimon et al. 2007)

laboratory. It is advantageous in terms of little maintenance and cost-effectiveness 
with minimum waste generation and provides a long-term solution. The various 
onsite reduction options for F− can be achieved through: 

(a) Managed aquifer Recharge (MAR) has worked very well around the globe by 
dilution of groundwater rich in F−. However, the challenge lies in those areas 
where an alternate source is difficult to locate with lower levels of F− for the 
dilution of the affected aquifer. 

(b) Rainwater harvesting works in those areas where annual rainfall is enough for 
direct vertical recharge with minimal surface runoff. 

c) The construction of check dams in many parts of India (Anantapur district) has 
significantly reduced the fluoride concentration in the groundwater. 

(d) Mixing high F− groundwater with groundwater lower in F− concentration. 
(e) Using various adsorbing materials such as H3PO4, apatite, etc. can signifi-

cantly lower the concentration of F−, however, adsorbing and desorbing is a 
pH-dependent process, and maintaining an optimum level of pH condition in 
natural water systems is often encountered with challenges. 

(f) Minerals like natrolite, magnesite, goethite, serpentine, apophyllite, bentonite, 
etc. have significantly reduced the F− concentration. 

6.1.1 Ex-Situ 

Ex-Situ Remedial Measures used for treating groundwater elevated in Fluoride 
concentration generally involve the introduction of an adsorbing material or chemical
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constituents. The following section deals briefly with techniques that are success-
fully deployed at the domestic and community level. Various methods and removing 
materials are listed below. 

a. National Environmental Engineering Research Institute, India has developed 
Nalgonda Technique which involves treating groundwater with aluminum salts 
(aluminum chloride, aluminum sulphate) depending on the chloride and sulphate 
content of the untreated water. It is then followed by the addition of lime 
and bleaching powder, sedimentation, and finally filtration. The aluminum salt 
removes fluoride from the water by complexation, while lime helps in floccu-
lation and rapid settling which is generally about 1/20th of the aluminum salt. 
Finally, the addition of bleaching powder acts as a disinfectant. 

Ca(OH)2 + 2F− → CaF2 + 2(OH)− (6) 

b. Membrane Based Processes involve reverse osmosis (RO), Nanofiltration (NF), 
and electrolysis which are capable of reducing the concentration of F− in water 
samples. 

Reverse Osmosis is based on the principle of movement of solvent from the 
region of high concentration of solvent to a region of low concentration of solvent 
through a semipermeable membrane by applying high pressure which is capable 
of removing the dissolved solids and thus removing F-. 

c. The Ion Exchange Method uses a strongly basic anion exchange resin with the 
quaternary ammonium functional groups to help with fluoride removal from the 
water. The F− ion at all the sites in the resin is replaced by OH− group thus 
reducing the concentration of F−. 

d. Adsorbing Media has proved to be useful in the reduction of F-concentration. 
Materials such as activated carbon, activated sawdust, activated alumina, carbon-
activated fly ash, coffee husk, calcite, etc. are capable of adsorbing Fluoride 
(Jagtap et al. 2012). 

Matrix − NR3+Cl− + F− → Matrix − NR3+F− + Cl− (7) 

7 Conclusion 

The spatial variability map suggests most of the fluoride rich groundwater is found 
in the arid/semi-arid regions of Rajasthan, Gujarat, and some parts of south India 
where evaporation plays a vital role in enrichment of F− in the shallow groundwater 
system. Geologically, Fluoride is concentrated in rocks like granites, gneiss, shale, 
and volcanic igneous rocks and minerals like fluorite, fluoroapatite, micas, amphi-
boles, cryolite, etc. The arid and semi-arid regions of the tropical belt have shown 
more potential for groundwater F− enrichment than other parts of the world and
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typical soil associated with these regions is aridisol. However, F− rich groundwater 
has also been reported from other climatic zones such as the Temperate Humid zones 
of Japan and Indonesia which is manifested by Andisols type of soil. Under neutral 
to acidic environ, fluoride is preferentially adsorbed onto the clay mineral surfaces, 
while the alkaline environment is highly conducive for fluoride dissolution. More-
over, it is often observed that enriched groundwater with F− is associated with low 
Ca2+ and high Na+ and HCO3

− under alkaline conditions. Ion exchange reactions 
confirm that enriched groundwater is generally manifested by low (Ca + Mg)/(Na + 
K) which is due to the exchange of (Ca + Mg) from the groundwater with (Na + K) 
of aquifer matrix lowering the concentration of Ca2+ and increasing F− concentration 
in the groundwater. A positive correlation of F− with Na+, HCO3

−, pH,  SO4 
2− and 

Cl− in arid and semi-arid regions shows the influence of evaporation along with the 
silicate weathering. The linear positive relationship of F− with Cl− is indicative of 
the evaporation process which enriches F− concentration in the groundwater. The 
hydrogen and oxygen isotope ratio (δ18O and δ2H) reflects the significance of evap-
oration in the enrichment of F− in arid and semi-arid regions. The Local Meteoric 
Water Line (LMWL) in the semi-arid regions is manifested by a lower slope than the 
Global Meteoric Water Line (GMWL), also the inverse relationship of d-excess with 
F− confirms the importance of evaporative enrichment. On the other hand, the nega-
tive correlation between δ34S and SO4 

2/Cl− shows the presence of bacterial reduction 
processes, particularly in high F−conditions. Anthropogenic sources include the use 
of phosphate fertilizers, brick kilns, glass and cement industries, etc. Many in situ 
and ex situ mitigations are available whose success depends on the various geolog-
ical and hydrogeological factors. Use of an integrated approach would thus suffice 
proper water management in the arid and semi-arid zones of the world. 
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Simulation–optimization Models 
for Aquifer Parameter Estimation 

Sharad Patel and T. I. Eldho 

Abstract An accurate estimation of aquifer parameters is important for effective 
groundwater management and future scenario prediction. These parameters are 
mostly obtained through different time-consuming and cumbersome field pumping 
tests. The inverse problem is a recently developed widely accepted mathematical 
approach to obtain the representative optimal aquifer parameters, particularly in 
large heterogeneous aquifer systems. For the inverse problem solution, the simula-
tion–optimization (SO) model approach has been effectively used. The efficiency of 
these SO models depends mainly on two factors like, the accuracy of the simulation 
model and the ability of the optimization algorithm to explore the solution space. 
In this study, we selected the combination of two simulation models (i.e., FEM and 
Meshfree method) and four optimization algorithms (i.e., Particle Swarm Optimiza-
tion (PSO), Differential Evolution (DE), a hybrid version of DE and PSO (DE-PSO) 
and Co-variance Matrix Adaptation Evolution Strategy (CMA-ES)) which resulted 
into the development of total eight number of SO models. These models are success-
fully applied to a synthetic confined aquifer problem. The obtained results showed the 
better performance of the Mfree-CMA-ES compared to its other counterparts like: 
FEM-DE, Mfree-DE, FEM-PSO, Mfree-PSO, FEM-CMA-ES and Mfree-DE-PSO 
in terms of convergence and a higher degree of unanimity with the known values of 
transmissivity and hydraulic conductivity. 
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1 Introduction 

Groundwater is a significant natural resource in India, accounting for 45% of urban 
water supply, 85% of rural water supply, and 62% of irrigation demand (The 
Comptroller and Auditor General of India 2021). However, as a result of unchecked 
pumping, groundwater levels have recently plummeted in several parts of the world. 
The same trend can be seen in India, where a World Bank report predicted that in 15– 
20 years, 60% of Indian aquifers would be in unsafe conditions due to unchecked 
groundwater over-exploitation (The World Bank 2009). The best possible use of 
groundwater should thus be a priority for ensuring its sustainability, and strict 
adherence to groundwater management policies is required to achieve this goal. 

Groundwater management policies are chosen in accordance with an anticipated 
future scenario for groundwater. The temporal variations in groundwater head are 
estimated by simulating groundwater governing flow equations with various numer-
ical techniques such as the finite difference method (FDM), meshfree method (Mfree; 
Patel and Rastogi 2017) and the finite element method (FEM). These groundwater 
simulation models rely heavily on the accuracy of estimated aquifer parameters like 
hydraulic conductivity, transmissivity, and storage coefficient. As a result, accurate 
estimation of aquifer parameters is critical, which indirectly aids in the formulation 
of groundwater management policies (Thangarajan 2007). In-situ tests or graphical 
matching-based pumping tests are commonly used to estimate these aquifer param-
eters. The former tests are limited to homogeneous and isotropic aquifer domains 
and are based on governing equations with closed-form solutions (Theis, 1935). 
Aside from that, these pumping-based methods necessitate nearly 24–72 h of nonstop 
pumping in order to collect the data required for graphical matching, which is an 
inefficient and time-consuming solution (Michael 2009). As a result, researchers 
frequently employ a purely mathematical process known as inverse groundwater 
modelling. Simulation-optimization (SO) is a commonly used approach to solve 
these inverse problems. The SO approach assigns distributed parameters to a mathe-
matical model with known boundary conditions in such a way that the error between 
observed and simulated state variables is minimised (Lakshmi Prasad and Rastogi 
2001). This entire process is an optimization process in which aquifer parameters 
are decision variables, least square difference is the objective function, and possible 
parameter limits are the constraints. 

According to Mahinthakumar and Sayeed (2005), the optimization methods used 
in the SO approach are broadly classified as derivative-based and non-derivative-
based optimization. In the former, a derivative of the objective function improves 
the initial guess of parameters until the required objective function value is obtained. 
Previous research on inverse groundwater modelling demonstrated that the objec-
tive functions for parameter estimation problems are discrete, have multiple optima, 
and are non-convex. Because these objective function-related peculiarities cannot be 
addressed by derivative-based local optima methods and have a higher likelihood 
of becoming stuck in local minima, population-based stochastic search methods
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were introduced to inverse problems. These methods are non-derivative based opti-
mization methods that do not require an initial guess of the parameter to be esti-
mated. Global stochastic population-based metaheuristic optimizations have gradu-
ally replaced traditional numerical optimization methods in the SO approach due to 
their superior ability to handle discrete problems. By solving the inverse groundwater 
problem, these characteristics of metaheuristics-based optimization are successfully 
explored. Ant colony optimization (ACO; Abbaspour et al. 2001), Particle swarm 
optimization (PSO; Ch and Mathur 2012), differential evolution (DE; Rastogi et al. 
2014), and, cat swarm optimization (CSO; Thomas et al. 2018), among others, are 
examples of this class of optimization that have been successfully applied to estimate 
aquifer parameters. However, these optimization methods have their own limitations. 
For example, DE explores the space with a higher multiplicity, making it more suscep-
tible to unstable convergence (Wu et al. 2011); PSO typically becomes stuck to the 
previous best value (pbest), and eventually all remaining particles begin to follow 
it, resulting in a suboptimal solution (Jiang et al., 2010). Above all, the accuracy 
of the previously discussed heuristic-based global search methods is highly depen-
dent on their manually adjusted control parameters. The control parameters of various 
popular and traditional metaheuristic algorithms are problem specific, and their tuned 
values are obtained after numerous model runs, which is the main reason for the 
higher model run cost. The Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES) developed by Hansen (2006) is a quasi-parameter free global stochastic 
optimization algorithm in which population size is the only parameter that must be 
tuned. As a result, it may be a viable option to replace the existing optimization 
model with CMA-ES optimization in the parameter estimation problem. 

In this paper, we proposed a novel approach to estimate aquifer parameters by 
combining the multiquadric-based Mfree approach with CMA-ES optimization. It 
is anticipated that this coupling will enhance the estimation of aquifer parameters, 
particularly in regional aquifer systems. Here, the Mfree is able to produce accurate 
head values (Patel et al. 2022), and CMA-ES optimization achieves objective function 
convergence faster with fewer generations, so this ultimate combination as a SO 
model yields accurate aquifer parameter values. 

2 Materials and Methods 

2.1 Mfree Based Groundwater Simulation Model 

The groundwater flow governing equation for confined aquifer for the transient 
condition, including variabilities like anisotropy, non-homogeneity, areal recharge 
including pumping or draft or both is represented as Willis and Yeh (1987): 
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With an initial condition as: 

H (x, y, 0) = H0(x, y) x, y ∈ Ω (2) 

The constant groundwater head (Dirichlet boundary) and boundary flux (Neumann 
boundary) are described as following: 

H (x, y, t) = H1(x, y, t) x, y ∈ ∂Ω1 (3) 
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where H (x, y, t) is the groundwater head (m); T , transmissivity (m2/day); Tx and Ty 

are transmissivity values along principal axes (m2/day); S, storativity (dimension-
less); Qw, source (−) or sink (+) term (m/day);

(
xp, yp

)
, ,coordinate for the well 

location (m); δ, Dirac delta function with the property that if x = xp and y = yp then 
δ = 1 else δ = 0; R, areal- recharge (m/day); t , time (day); H0, initial known ground-
water head distribution (m); H1, known groundwater head values at the boundary 
(m); q2, known boundary flux (m3/day/m);

(
lx , ly

)
, direction cosine of the outward 

normal at certain node on Neumann boundary (dimensionless);Ω, the computational 
domain; ∂Ω, the boundary ∂Ω1 ∪ ∂Ω2 = ∂Ω of computational domain; and

(
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)
, 

the normal derivative. 
Using the global-collocation based Mfree method (Patel and Rastogi 2017) the  

governing groundwater flow Eq. (1) is approximated by scattered data interpolation, 
which is explained as follows: 
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where φ j is a matrix of basis or shape function. Multiquadric is used as a shape func-

tion and can be express as (Hardy 1971) φ j (x, y) = 
/

(x − x j )2 + (y − y j )2 + C2 
s ;{(

x j , y j
)}N 

j=1 are coordinates of N collocation nodes in Ω. Cs is a free param-
eter referred as shape parameter (Cheng et al. 2003) given as Cs = αsds , where 
αs is support size for radial basis function (dimensionless) and ds is the nodal 
spacing. Nodal spacing (Liu and Gu 2005) for two- dimensional case is computed 
as: ds =

√
A 

( √N−1) (where A, is an area of the whole computational domain and N
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is the total number of nodes distributed over the domain). The optimum value of 
αs is known by performing numerous simulation on different benchmark problems. 
Liu and Gu (2005) suggested that the value between 2–3 is giving good results for a 
variety of problems. 

2.2 Inverse Groundwater Modelling: As an Optimization 
Problem Using SO Approach 

The inverse model generates initial natural guesses of upper and lower bounds of 
aquifer parameters based on random numbers. These values are used as input for 
the simulation model, which calculates the aquifer state variables. To calculate the 
objective function, the observed values are compared to the calculated values at 
the observation well location. If the termination criteria is met, the initial guess 
will be the optimum aquifer parameters; if not, the optimization model will modify 
previous input parameter values until the required termination criteria is met, and 
the corresponding modified input parameter will be the optimum aquifer parameters. 
Minimizing the fitting error between observed and simulated aquifer state variables 
at specific monitoring well locations yields the representative optimal parameter 
values. Because the fitting error-based objective function is nonlinear (NL) and non-
continuous, it cannot be expressed explicitly in terms of decision variables (i.e. 
aquifer parameters). This study’s objective function is the sum of squared differences 
(SSD), which can be expressed as: 

Min  E(P) = βl,t

ΣL 

l=1

Σtt 

t=t0

[
Hobs 
l,t − Hsim 

l,t (P)
]2 

(6) 

Subjected to: 

Plb 
i ≤ Pi ≤ Pub 

i (7) 

where E(P) represents objective function to be minimized; Hsim 
l,t is calculated ground-

water head at observation well l at time t with parameter (P) as input [L]; Hobs 
l,t is 

observed groundwater head at observation well l at time t [L]; Pi is aquifer parameter 
at zone i; L is total number of observation wells; t0 and tt are beginning and ending 
time of observations [day]; lb and ub are the superscripts representing the lower and 
upper bounds on the parameters and βl,t ∈ [0, 1] is the weighing coefficient whose 
value is chosen according to confidence on measured groundwater head at a certain 
observation well location.
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3 Optimization Models 

A number of population-based global metaheuristic optimizations (i.e., DE, PSO and 
CMA-ES) have been successfully applied to the varieties of groundwater problems 
such as aquifer parameter estimation, groundwater management problems, pollutant 
source detection, and many others. Since DE and PSO are commonly used in this 
class of problems, they are not discussed in depth; however, CMA-ES optimization, 
which is relatively new, has been extensively discussed. 

3.1 Working of CMA-ES Optimization 

CMA-ES belongs to the family of evolutionary algorithm, like GA and mimics the 
characteristics of Darwin’s evolution theory. To generate new candidate solutions, 
a typical CMA-ES employs initialization, evaluation, and mutation (selection with 
recombination) operators. Like other stochastic search methods in the evolutionary 
strategy (ES), the possible solution is known as individuals. Mutation is a main 
step to generate the new individuals by adding the random vector from multivariate 
random distribution to parent vector. In CMA-ES, the possible solution moves with 
in the fitness landscape by rotating and scaling of the covariance matrix. This whole 
procedure is controlled by different strategy parameters which also evolve with each 
generation (Bayer and Finkel 2007) and hence there is no need to pre-calibrate 
them as they update themselves by utilizing the internal mechanism of CMA-ES. 
Eventually this iterative updation of covariance matrix leads the individual towards 
the convergence at an optimum value. Here it is noteworthy that CMA-ES uses the 
information of number of previous generations (called as evolution path) instead of 
only the last one (Bayer and Finkel 2004). 

4 Initialization 

In CMA-ES, new search points within the fitness landscape is produced by multi-
variate normal distribution. The equation to produce the sampling point is represented 
as (Hansen 2006): 

pg+1 
k ∼ N

[
mg ,

(
σ g

)2 
, Cg

]
where k  = 1, 2...λ (8) 

The equation further simplified as: 

pg+1 
k ∼ mg + σ g N
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0, Cg

] ∼ mg + σ g Bg Dg 
N[0, I ] (9)
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where λ represent population size or total number of search points generated by 
multivariate distribution; g is generation number; pg+1 

k ∈ Rn is kth member of 
population from g + 1 generation; mg ∈ Rn is mean value of pg; σ g ∈ R+ is overall 
standard deviation or step size at generation g; Cg ∈ Rn×n is covariance matrix at 
generation g; Bg ∈ Rn represents eigenvectors of Cg and Dg ∈ Rn×n is diagonal 
matrix of eigenvalues of Cg . 

4.1 Selection and Recombination for Calculation of Mean 
Vector 

After generation, all λ vectors (population) are evaluated based on the problem 
specific objective function. Subsequently, μ (≤λ) numbers of best parental vectors 
are selected from total λ vectors. This selection may be random or based on evaluated 
fitness value of each vector. Later these selected μ vectors recombined together and its 
weighted (based on fitness) mean vector is calculated using weighted recombination 
(represented by μw, λ-CMA-ES). This operation keeps the mean vector nearer to 
better individuals. This entire procedure is mathematically expressed as (Hansen 
2006): 
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as λ 
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where E is objective 

function to minimize. 
Equation (10) implements recombination by taking weighted sum of μ individuals 

and selection by choosing μ ≤ λ and assigning different weights wi. 

4.2 Adapting the Covariance Matrix 

According to Eq. (9), covariance matrix and step size are the other terms which 
are need to be estimated. Initially, the covariance matrix is estimated from single 
population and one generation. This matrix further needs to be modified because it 
is considered as unreliable due to its small population size by adaptation procedure. 
Further inclusion of successive step size also enhances the estimation of covariance 
matrix.
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4.3 Estimating Covariance Matrix 

According to the assumption by Hansen (2006), population contains enough infor-
mation to estimate a covariance matrix. The covariance matrix can be estimated using 
generated sample population, pg+1 

1 , pg+1 
2 .......pg+1 

λ as: 

Cg+1 
emp =

1 

λ − 1
Σλ 

i=1

(
pg+1 
i − 

1 

ë

Σλ 

j=1 
pg+1 
j

)(
pg+1 
i − 

1 

ë

Σλ 

j=1 
pg+1 
j

)T 

(11) 

Here Cg+1 is unbiased estimator of covariance matrix by assuming pg+1 
i is randomly 

distributed using normal distribution. Since it is based on the population of single 
generation we will try to further modify it to include the effect of previous generation 
as: 

Cg+1 
λ = 

1 

λ

Σλ 

i=1

(
pg+1 
i − mg

)(
pg+1 
i − mg

)T 
(12) 

The above equation represents an unbiased maximum likelihood estimator of 
covariance matrix. Here we can see the difference between Eqs. (11) and (12) in terms  
of mean value. In first one the mean value is calculated from actually realized sample 
while in second it is true mean value of gth population distribution. Subsequently, 
Eq. (11) represents the deviation within the sampled points while in Eq. (12) it is  
within the sampled steps. Hence Eq. (12) is more prominent representation of adapted 
covariance matrix. 

For further improvement in Eq. (12) weightage (similar as mean) can be given to 
better to more successful μ vectors and can be represented as: 

Cg+1 
μ = 

μΣ
i=1 

wi

(
pg+1 
i :λ − mg

)(
pg+1 
i :λ − mg

)T 
(13) 

To maintain a reliable estimation of covariance matrix, variance effective selection 
mass μe f  f

(
=[Σμ 

i=1wi 
2
]−1

)
should be large enough get condition smaller than 10. 

To avoid this restriction the upcoming next step modification is essential. 

4.4 Rank-µ Update 

Large population helps to estimate reliable values of covariance matrix but it will also 
increase the number of generation to achieve convergence criteria. As current form 
of Eq. (13) is not capable to estimate Cg+1 value, therefore as a remedy, information 
from previous generation is added. Mathematically, it can be presented as:
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Cg+1 = 1 

g + 1
Σg 

i=0 

1(
σ i

)2 Ci+1 
μ (14) 

It is further modified by assigning different weight to different generation which 
is known as learning rate. Then Cg+1 reads: 

Cg+1 = (1 − ccov)Cg + ccov 
1 

(σ g)2 
Cg+1 

= (1 − ccov)Cg + ccov
Σμ 

i=1 
wi O P

(
pg+1 
i :λ − mg 

σ g

_
(15) 

where c(∈ [0, 1]) is learning rate for updating the covariance matrix. If ccov is 1 then 
no information from previous generation will be incorporated and it is zero then 
learning take place; OP denotes the outer product of a vector by itself. Here it is 
noteworthy that covariance matrix is initiated as identity matrix (i.e. C0 = I). 

As sum of the outer product in Eq. (14) is of rank  μ, therefore, this modification 
for covariance is called as rank-μ-update. 

The value of ccov is very crucial for rank-μ-updation. Small value of ccov leads 
towards slow convergence, while large value leads to premature convergence. Hansen 
(2006) applied CMA-ES on different classical optimization problem and found that 
ccov is only dependent on dimension of the problem and suggested an approximated 
value as μe f  f  /D. 

4.5 Cummulation: Utilizing the Evolution Path 

In Eq. (15) a term of outer product doesn’t use sign information, as OP(x) = xxT = 
OP(−x). Therefore, a concept of evolution path in which represents sequence of 
steps and the strategy over number of generation is introduced. It is expressed in 
terms of sum of consecutive steps and its summation is called as cummulation. For 
example, an evolution path of three steps can be constructed by the sum as: 

mg+1 − mg 

σ g
+ 

mg − mg−1 

σ g−1
+ 

mg−1 − mg−2 

σ g−2 
(16) 

Similar as Eq.  (15) using the exponential smoothing Eq. (16) can be utilized to 
write an expression for evolution path of generation (g + 1) for covariance matrix 
as (Hansen 2006): 

pg+1 
c = (1 − cc)pg c +

√
cc(2 − cc)μe f  f  

mg+1 − mg 

óg 
(17)
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where pg c ∈ Rn is evolution path at gth generation;
√
cc(2 − cc)μe f  f  is a normalize 

constant for pg c 
If cc = 1 and μe f  f  = 1, then pg+1 

c = p
g+1 
1:λ −mg 

σ g 

pg+1 
c ∼ N(0, C) (18) 

If 

pg+1 
c ∼ 

pg+1 
1:λ − mg 

σ g
∼ N(0, C) for all i = 1,2...,μ (19) 

In Eq. (17) 

(1 − cc)2 +
√
cc(2 − cc)μe f  f  

2 = 1 
μΣ
i=1 

wi N(0, C) ∼ 1 √
μeff 

N(0, C) 
(20) 

Now utilizing the concept of evolution of path in Eq. (15) the ultimate equation 
can be read as: 

Cg+1 = (1 − ccov)Cg + ccov p
g+1 
c pg+1T 

c (21) 

Empirical value of learning rate for rank-1-update of C, (ccov) and time cummu-
lation of C (cc) are respectively 2 

D2 and 4 
D provides optimal value of covariance 

matrix. 

4.6 Combining Rank-µ Update and Commulation 

Now by combining Eqs. (15) and (16) the ultimate equation for covariance matrix 
is: 

Cg+1 = (1 − ccov)Cg + 
ccov 
μcov 

pg+1 
c pg+1T 

c◟ ◝◜ ◞
rank−1 update  

+ccov

(
1 − 

1 

μcov

)

× 
μΣ
i=1 

Wi

(
pg+1 
i :λ − mg 

σ g

_(
pg+1 
i :λ − mg 

σ g

_T

◟ ◝◜ ◞
rank−μ update  

(22) 

Where μcov ≥ 1 and μcov = μe f  f  .
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The rank-one-update part of Eq. (22) uses the information of correlation between 
generations using evolution path while rank-μ-update uses the information within 
the population to reach optimal value of covariance matrix. 

4.7 Step Size Control 

Similar to covariance matrix, step size also utilizes an evolution path (sum of succes-
sive steps). To define the length of step size as ‘long’ or ‘short’, the length of evolution 
path is compared with its expected length under selection. 

The conjugate evolution path for step size is defined as (based on exponentially 
smoothed sum): 

pg+1 
σ = (1 − cσ ) pg c +

√
cσ (2 − cσ )μe f  f  C

g 
−1 
2 m

g+1 − mg 

σ g 
(23) 

The updation of step size based on the comparison of ||pg+1 
σ || with its expected 

length E||N(0, I )||, and can be represented mathematically as: 

σ g+1 = σ g exp

(
cσ 

dσ

(
||pg+1 

σ ||
E||N(0, I )|| − 1

__
(24) 

where σ g+1 is global step size; E||N(0, I )|| is expectation of Euclidean norm 

of a N(0, I ) distributed random vector
(
= 

√
D
(
1 − 1 

4D + 1 
21D2

))
; dσ is damping 

parameter
(= 4 D

)
and Cσ is backward time horizon of evolution path

(
=1 + 

/
μe f  f  

D

)
. 

5 Results and Discussion 

5.1 Problem Description: Synthetic Confined Rectangular 
Problem 

A confined hypothetic problem (6 km × 6 km) similar to Carrera and Neuman (1986) 
is selected in this study as shown in Fig. 1. Here, the assumed distance between two 
consecutive nodes is 1000 malong X and Y-directions. This rectangular confined 
region has an area of 36 sq. km. which is bounded by two impervious, a constant 
head and one inflow boundaries. The northern part of the aquifer is getting areal 
recharge at the rate of 0.15 × 10–3 m/d (AR-1) and 0.25 × 10–3 m/d (AR-2) through 
two distinct aquitard-layers. This aquifer is assumed to have three zones of known 
transmissivity values varying within the range of 5 to 150 m2/d. An inflow rate of
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Fig. 1 Synthetic confined aquifer domain showing zonation pattern (indexed in red), boundary 
conditions and two areal recharge regions 

0.25 m3/d/m across the western boundary is also considered. A uniform storage 
coefficient value for entire aquifer region is assumed as 0.001. 

5.2 Model Input 

For testing of all the developed SO models, the known transmissivity values of 
selected rectangular confined synthetic problem are considered to be unknown. The 
objective here is to determine the transmissivity values using known data i.e. stora-
tivity, boundary conditions and zonation pattern by minimizing the error between 
observed and simulated head values at certain monitoring well locations. The inputs 
in terms of predefined upper and lower limits of unknown aquifer parameters are 
kept between 1 to 150 m2/day. 

FEM and Mfree simulators are used to estimate the head values by discretizing 
entire domain using uniformly distributed 49 nodes and 72 triangular elements. In 
case of FEM simulator, the coordinates of distributed nodes and elemental area are 
used to form various element-based coefficient matrices which are further assembled 
to form a global coefficient of matrix. On the other hand, the estimated value of 
average nodal distance (ds) and shape parameter value (αs) are utilized to calculate 
the elements of shape parameter which eventually forms a coefficient matrix in Mfee 
simulator Eq. (5). In this synthetic problem, the estimated value of ds is 1000 m. Since 
Mfree model is successfully applied on different synthetic problems with αs as 3, the 
same is adopted for present case also. Total 49 nodes as shown in Fig. 1 are used. 
Flux vector contains the known values like inflow flux and constant groundwater head 
values. Using both the simulators (i.e. FEM and Mfree) model runs are performed 
for 25 days as total simulation period with 1 day as time-step size.
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Table 1 The range and calibrated values of control parameters used in the DE, PSO and DE-PSO 
based SO models for synthetic aquifer problem 

Control parameter Suggested range Calibrated value Optimization method 

Population size (N) 50 

Mutation weighing 
factor (F) 

0.3–0.5 0.4 DE DE-PSO 

Crossover rate (Cr) 0.8–1 0.8 

Inertia weight (ω) 0.8–0.3 Linearly varying 
from 0.8 to 0.2 

PSO 

Acceleration constants 
(C1 = C2) 

1.5–2 1.8 

5.3 Parameter Setting for Developed SO Models 

In the developed SO models, the population evolution guides the ultimate algo-
rithm towards the optima. This navigation is controlled by certain problem depen-
dent parameters allied to that specific optimization models. These problem specific 
parameters are needed to be tuned or estimate empirically which are discussed in the 
upcoming sub-sections. 

5.4 DE, PSO and DE-PSO Based Model Setting 

The heuristic algorithms are dependent on various weighting factors for their best 
performance, which are commonly known as control parameters. These control 
parameters are fine-tuned to extract the best performance prior to their application. 
In the whole study, the possible range of DE based control parameters is inves-
tigated based on the literature of Storn and Price (1997) and Price et al. (2005). 
Similarly for PSO parameters, the range proposed by Eberhart and Kennedy (1995) 
and Kennedy and Eberhart (2010) are explored for their optimum values. For DE-
PSO, the appropriate tuned control parameter values of both the individual heuristic 
are used directly. The optimum values of these control parameters for DE, PSO and 
DE-PSO are presented in Table 1. 

5.5 CMA-ES Based Model Setting 

The main strength of CMA-ES optimization lies on the capacity of self-adaption 
with each generation (Bayer et al. 2009). Unlike pre-calibrated control parameters 
of prior discussed metaheuristics, the strategy parameters of CMA-ES are calculated 
by certain empirical formulae. These parameters are obtained by researchers after
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Table 2 The empirical equation and estimated values of control parameters used in the CMA-ES 
based SO models for synthetic aquifer problem 

Control parameter Equation Estimated value 

Population size (λ) 
λ = 4 +3logD 
where D =Problem dimension 

8 

Parent population (μ) μ= λ 
2 4 

Time const. for cummulation of C (Cc) Cc= 4 
D +4 0.5 

Damping parameter for cummulation of σ 
(dσ) 

dσ 1 

numerous past experiments on different classical benchmark problems. Some of these 
like λ, μ and cc are function of dimension of the problem. Remaining parameters like 
ccov, cμ and cσ adapt their values based on rank- μ-update with cummulation, and 
vary with the progress of each generation. The calculated value of CMA-ES strategy 
parameters for rectangular synthetic confined problem is presented in Table 2. 

5.6 Comparative Performance of Results Obtained Through 
the Developed SO Models 

Using the prior-tuned values of optimization specific parameters, all the developed 
SO models i.e. FEM-DE, FEM-PSO, FEM-DE-PSO, FEM-CMA-ES, Mfree-DE, 
Mfree-PSO, Mfree-DE-PSO and Mfree-CMA-ES are applied to selected rectangular 
synthetic problem. The obtained results are presented in terms of a convergence graph 
as shown in Fig. 2. It is visible that Mfree-CMA-ES produces best convergence 
with lowest value of objective function as compared to others. It takes nearly 153 
generations to get steady global convergence of all 4 transmissivity values. The 
second-best performer is Mfree-DE-PSO which tries to explore the solution space 
intensely by switching between DE and PSO phases hence at initial stage some 
oscillation is observed in the fitness function (Fig. 2). It can be seen in convergence 
graph that individual versions of selected optimizations i.e. DE and PSO lagged 
behind their hybrid version due to lack of multiplicity after certain generations. 
Use of MQ based Mfree simulator with different optimizations also strengthened 
the solution-space exploration capacity of a SO model due to its higher accuracy 
compared to conventional FEM simulator. It also compels the specific SO model to 
explore the solution space faster with less number of generations.

Apart from functional evaluation, computational time is also an important criterion 
to judge the performance of a SO model. The time required to perform one iteration 
of all the developed models is presented in Table 3. It concludes that Mfree-CMA-
ES is a better performing algorithm due self-adaptive internal mechanism. On the 
contrary, DE-PSO model consumes slightly higher time as population generated on
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Fig. 2 The variation of objective function with iteration using eight different SO models for 
synthetic confined aquifer problem

each iteration is passed to DE and PSO phase in series manner for objective function 
evaluation. 

In above described discussion, for all the analysis the SSD (Eq. 6) is used as an  
objective function. The results obtained are presented in Table 4 and reaffirms the 
superiority of Mfree-CMA-ES over other seven models.

As all these SO models are random number based stochastic search methods 
therefore each model run is performed 10 times and its mean value is taken as 
representative zonal transmissivity value as shown in Fig. 3 and Table 5. It was  
showed greater agreement with real value in all the developed eight models.

Table 3 Time needed to 
complete one iteration of the 
synthetic confined aquifer 
problem utilising eight 
developed SO models 

SI. no SO model Time required for one generation 
(sec.) 

1 FEM-DE 0.27 

2 FEM-PSO 0.28 

3 FEM-DE-PSO 2.96 

4 FEM-CMA-ES 0.06 

5 Mfree-DE 0.19 

6 Mfree-PSO 0.18 

7 Mfree-DE-PSO 2.75 

8 Mfree-CMA-ES 0.05 
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Table 4 Best solution 
obtained through eight 
different SO models based on 
SSD as an objective function 
on synthetic confined aquifer 
problem 

Algorithm Best solution (Lowest value of objective 
function) 

Sum of squared difference (SSD) (m) 

FEM-DE 0.001356 

FEM-PSO 0.9887 

FEM-DE-PSO 5.60E-06 

FEM-CMA-ES 3.50E-07 

Mfree-DE 0.000825 

Mfree-PSO 0.458387 

Mfree-DE-PSO 1.46E-08 

Mfree-CMA-ES 1.46E-08

Fig. 3 Average values of each parameter after 10 times model run by 8 different methods and their 
comparison with the known value

It is clearly evident from present study that all the developed models are able to 
estimate the aquifer parameter values. This selected problem is relatively small in 
dimension where parameter estimation using different SO models is fairly accurate 
and easy to implement.
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Table 5 Average values of each parameter after 10 times model run by 8 different methods 

SO models T1 T2 T3 T4 

FEM-DE 150.00 50.00 15.00 5.00 

FEM-PSO 150.00 50.00 15.00 5.00 

FEM-DE-PSO 151.49 49.29 14.93 4.94 

FEM-CMA-ES 150.29 49.98 15.00 4.98 

Mfree-DE 150.00 50.00 15.00 5.00 

Mfree-PSO 150.00 50.00 15.00 5.00 

Mfree-DE-PSO 151.49 49.29 14.93 4.94 

Mfree-CMA-ES 150.29 49.98 15.00 4.98 

Real value 150.00 50.00 15.00 5.00

6 Conclusions 

In this study eight different SO models are tested on a synthetic confined aquifer 
problem with known solution and found efficient and robust. Following are the 
conclusions that can be drawn from the present study: 

1. DE, PSO and DEPSO based SO models require tuning of control parameters 
before its application to the problems while CMA-ES based models are free 
from such a limitation. Therefore, the CMA-ES is more efficient and robust 
algorithm and highly suitable to field problems. 

2. Eight different combinations of SO models are applied to a synthetic confined 
aquifer problem. The obtain results proved that the developed CMA-ES based 
models are able to estimate the aquifer parameter values with the lowest value 
of objective function. 

3. In terms of objective function evaluation, the accuracy-wise general pattern is 
CMA-ES > DE-PSO > DE > PSO and for time consumption criteria the general 
sequence is CMA-ES < DE < PSO < DE < DE-PSO. 
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Water Resources and Irrigation 
Management Using GIS and Remote 
Sensing Techniques: Case of Multan 
District (Pakistan) 

Ali Raza, Aftab Khaliq, Yongguang Hu , Nadeem Zubair, Siham Acharki, 
Muhammad Zubair, Neyha Rubab Syed, Fiaz Ahmad, Sadia Iqbal, 
and Ahmed Elbeltagi 

Abstract Pakistan experiences extreme water scarcity, which has an impact on 
the sustainability of agricultural output. Irrigated agriculture could benefit from 
effective water management employing geographic information system (GIS) and 
remote sensing (RS) approaches. This study has shown that quantifying the transfer 
of soil-vegetation and atmosphere could aid in understanding rainfall estimation, 
evapotranspiration, soil fertality analysis, water status, planning and management of 
surface and groundwater resources with the combined GIS and RS approaches. These 
methods proved highly successful in mapping the present state of water resource 
availability and anticipating future requirements for agricultural use. In addition,
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researchers, field consultants, and lawmakers can benefit from the crucial and accu-
rate information that remote sensing and GIS tools can provide regarding managing 
water resources. The land use land coner (LULC) shows that how the water bodies 
effected with the setelment area, vegetation cover and soil fertility. The GIS mappig 
for the waters status clearified the effect of rainfall, and evapotranspiration on the 
goundwater profile. The effect of the water resouces and irrigation management have 
all been proven with varying degrees of precision using RS. By identifying signifi-
cant issues that can be resolved by RS and GIS applications in the real world, this 
research fills the gap that currently exists between academics and policymakers. 
GIS/RS technologies will be used to conduct analysis on the Multan district’s, 
which is located in a hyper-arid environment. This study specifically explains how 
the practical implementation of remote sensing is of pivotal significance in water 
resources. 

Keywords Water management · Remote sensing · Geographic information 
system · Hyper-arid region 

1 Introduction 

The irrigation system is the world’s greatest user of fresh water. The production 
of 30–40% of the world’s staple crops uses about 70% of all water (Bastiaanssen 
1998). The main sources of consumable water are groundwater, rainfall, and surface 
water bodies like rivers, ponds, and lakes (Pande et al. 2023). However, there are too 
many competitors in the home, agricultural, infrastructure, and industrial sectors. 
As a result, water resources must be managed to satisfy future food demands with a 
restricted water supply. When water resources are sufficient and environmental pollu-
tion and degradation are not a concern, water managers may afford to be negligent in 
their management. Nevertheless, there won’t be many areas in the twenty-first century 
where we have this luxury because of population expansion and the associated water 
demand for food, health, and the environment. Reliable information is required for 
management and planning, and accurate information on water resource utilization 
is currently limited (Bastiaanssen et al. 2000). When resources are limited, effective 
planning and decision-making at all levels are necessary. The key to making deci-
sions in the modern global environment is gathering and assembling various kinds of 
data into a manner that can be used (Abdelhaleem et al. 2021). From the farm to the 
river basin, however, extensive managerial expertise and understanding are essential 
to enhance water productivity at all scales. Moreover, it can be feasible if the system 
can be measured quantitatively and qualitatively, which will justify the investments 
to enhance productivity and improve the irrigation system (Pande et al. 2021). 

From the trivial, it is no easy task to provide dependable and precise measure-
ments on a scale ranging from individual farmer’s fields to vast river basins, including 
irrigated land covering millions of hectares. Nonetheless, frequent data on agri-
cultural and hydrological land surface properties may be obtained from spatially
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remote sensing observations across massive swaths. During the past 20 years, remote 
sensing’s ability to detect and track crop development and other relevant biophysical 
characteristics has significantly improved, while a number of problems still need to 
be fixed (Stewart et al. 1999; Rango and Shalaby 1998). 

Although remote sensing technology is cutting-edge, its offshoots, such as 
Geographical Information System (GIS)/Land Information System (LIS), have 
grown significantly in significance and utility when it comes to remotely sensed data 
computer-aided analysis for resource management. The application sectors have 
accelerated as additional satellite platforms gather data on natural resources from 
the earth at 10 m spatial resolution. When defining the training regions for classi-
fication and updating databases for spatially and temporally dynamic phenomena 
evaluation, the integration of remotely sensed data with GIS can be helpful guid-
ance (Walsh et al. 1990). Despite having a lot of potential, the application of GIS 
thematic overlays as a tool for remotely sensed data interpretation is not extensively 
used. Enhancement methods that improve the interpretability and thematic informa-
tion extraction from images include ratioing, principal components analysis, spatial 
filtering, and contrast stretching. Multi-spectral classification facilitates the quanti-
tative estimations of land cover types, land use patterns, and crop water consumption 
(Montesinos and Fernández 2012). 

This research describes the combined use of satellite images and georeferenced 
overlays, using GIS. It also exhibits typical land and water usage applications of 
selected coastal, alluvial, and hard rock environments. Furthermore, this research 
presents potential remote sensing applications in irrigation and water resources 
management in Multan district, Pakistan. It provides scientists with background 
information on the developments in irrigation-related remote sensing. 

2 Study Area 

The Multan district in Pakistan was chosen as the research region for GIS and RS 
approaches, as illustrated in Fig. 1. The research region is located at latitude of 
30.29°, longitutde of 71.47° and altitude of 123 m (Ahsen et al. 2020). The sidhnai 
canal is the primary irrigation water supply source for the Multan district, which has 
a large control area of 0.349 Mha (Khattak 2006).The Multan district spread over 
the four tehsil namely, multan city, multan sadar, shujabad and jalalpur pirwala. It 
is bounded on the west by the Chenab River. In summer (winter), the minimum and 
maximum temperatures are 26 and 50 °C (4.8 and 23.4 °C), respectively. The Multan 
experiences 25.6 °C on average each year. The Multan district is situated in desert 
terrain and receives about 200 mm of precipitation annually. Rabbi and Kharif are 
the two main growing seasons in Multan. The most significant crop during the Kharif 
season is cotton. It is sown in April to May, and it is harvested between October and 
December. The main crop during Rabbi season is wheat. From October to December, 
wheat is sown, and it is harvested from April to May (Hussain et al. 2020).
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Fig. 1 GIS map for study area location 

3 Materials and Methods 

In June 2020, literature and reviews on different aspect of water resources and irriga-
tion management using GIS and RS techniques were limited to global web searches 
using Google search engines. The literature study uncovered a few reports, research 
articles, and theses on the use of GIS in water and irrigation management that had 
been published or unpublished over the past two decades. 

3.1 Remote Sensing and Its Approaches 

Remote sensing is the collection of data (spectrum, topographical, or chronolog-
ical) about real-world objects or locations without direct contact. As can be seen in 
Fig. 2, remote sensing utilises the electromagnetic spectrum to scan land, sea, and sky 
utilising electromagnetic waves (EMR) of different wavelength (visible, red, NIR, 
TIR, and microwave). Quantitative information on hydrological processes may be 
gleaned from the identification of the unique spectral features emitted by every item 
on Earth’s surface at these wavelengths.
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Fig. 2 Classification of EM spectrum frequency and wavelengths (Zhu et al. 2018) 

Table 1 Polar orbiting satellite-based resolution categories characteristics (Jackson et al. 2010) 

Resolution category Pixel resolution (mm) Swath width (mm) Satellites 

Very high 0.5 * 103–2.5 * 103 5 * 103–40 * 103 GeoEye, Ikonos, 
Worldview, Quick bird 

High 2.5 * 103–30 * 103 40 * 103–700 * 103 RadarSat RapidEye, 
SPOT, LandSat, Aster, 
Chers, FormoSat, LISS 

Moderate 30 * 103–400 * 103 700 * 103–3000 * 103 ASAR, MODIS, FY, 
AWIFS, MERIS 

Low 400 * 103–25,000 * 103 3000 * 103 TRMM AMSRE„ 
MODIS, MERIS, FY, 
GRACE, ASAR, 
ASCAT 

Several satellites circle the Earth, gathering information on climate and ecosys-
tems. Table 1 shows the pixel sizes range from a few millimeters to kilometers, 
and the prediction accuracy ranges from three hours to many months. Projections of 
the 24 h rainfall at a dpi of 25 km since 1990 can help with this. Meteorological, 
terrestrial, and oceanic factors are monitored by the Advanced Microwave Scanning 
Radiometer-Earth Observing System (AMSR-E). Advanced Microwave Scanning 
Radiometer-Earth Observing System provides daily estimations of soil moisture at 
a 25 km pixel resolution (Jackson et al. 2010). AMSR-E and MODIS satellites at 
one-kilometergrids might be used to measure daily evapotranspiration. Additionally, 
MODIS, SPOT vegetation, land use, albedo, and biomass may all be estimated at a 
1 km resolution. 

3.1.1 Passive Remote Sensing Operation 

Passive remote sensing (PRS) collects data by utilizing natural. Figure 3 shows how 
PRS sensors identify and monitor electromagnetic radiation, bounced or generated 
by entities that derive their power from the environment. Solar radiations are the
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Fig. 3 Passive remote sensing operating system (Cheema and Bastiaanssen 2012) 

main source for data collection for RS. The sun is the and largest energy source. 
Like thermal infrared wavelengths, optical wavelengths can be absorbed or reflected 
before being re-emitted. Passive sensors (PS), particularly those operating in the 
microwave range of the electromagnetic spectrum, can detect radiations emitted by 
Earth. 

3.1.2 Active Remote Sensing 

The sensors in active remote sensing are powered by independent sources. As seen in 
Fig. 4, radar is an example. They radiate in the direction of the item being examined 
while also detecting and recording radiances coming from it. Active sensors provide 
the advantage of taking measurements at any time of day or year. Active sensors are 
frequently employed at wavelengths where the sun’s output is insufficient. In the case 
of these devices, there are significant energy requirements for greater illumination 
of the target. Active sensors include synthetic aperture radar (SAR), laser scanning 
earth observation (LASER), and European remote sensing satellites (ERS).

3.2 Geographic Information System (GIS) 

The term “GIS” refers to a computerised system for managing and analysing 
geographical information (Fischer and Nijkamp 1992).Typically, GIS is defined as 
“an organised collection of dataset, applications, hardware, software, and trained 
personnel capable of acquiring, processing, maintaining, and analysing the geograph-
ically reference dataset and delivering output both in statistical and visual form,” as 
seen in Fig. 5. In its broadest sense, a geographic information system (GIS) is a tool for
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Fig. 4 Active remote sensing operation system (Islam et al. 2022)

conducting interactive searches, performing geographical analyses, and modifying 
existing information. 

The main purposes of geographic information system are problem-solving and 
decision-making. Similar to other information systems, a geographic information 
system offers the following four capabilities for handling geospatial information:

● Input
● Data management
● Manipulation and analysis
● Output

Fig. 5 GIS classification for data collection (Acharya and Lee 2019) 
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Table 2 GIS applications 

Agriculture Water resources management Urban and rural planning 

Crop growth climate 
constraints 

Soil water-holding capacity 
map 

Planning and zoning 

Soil resources availability, 
assessment, and planning 

Map of groundwater table 
depth 

Infrastructure planning 

Crops/cropping pattern pattern 
potential 

Water stress assessment and 
demand mapping for crops 

Land information system 

Estimating crop productivity 
losses and locating potential 
hazards 

Irrigation scheduling Percale mapping 

Agro-ecosystem 
characterization 

Estimating water logging 
condition 

Assessment of property tax 
based on current land usage 

Additionally, a geographic information system is built for the purpose of gathering, 
storing, and analysing things and phenomena in which geography is a key aspect or 
analytical component. Geographic information systems (GIS) are distinguished by 
their capabilities for spatial searching and the superimposition of (map) layers. Using 
a GIS, it is possible to create a temporal and spatial map of crop/land by combining, 
like, a map of crop potential with a map of the ground/surface water condition. 
Table 2 represents the use of GIS in various sectors. Since complexity in real-world 
situations is great (for example, in agriculture, data on soil, land, crops, climatic 
condition, water, forest, cattle, fish stocks, and socioeconomic characteristics are 
necessary for making decisions), and since the physical computer capability to alter 
data is restricted and time-consuming, geographic information systems (GIS) are an 
ideal planning tool for resource managers (Knox and Weatherfield 1999). 

Hydrological data may be obtained from satellites. High to moderate resolution 
satellite imagery offers essential information on numerous hydrological components 
for water resource management methods in terms of irrigation water concerns. 

4 Satellite Image Processing 

4.1 Spatial Land Use and Land Cover (LULC) 

A LULC dataset must include information on water consumer and revenues in food, 
woods, hydroelectric power, ecological benefits, etc. The crops cultivated in the 
areas must be recognized in order to allocate water wisely. This can be done by 
selecting appropriate land uses. The distribution of soil and vegetative covers is 
reflected in the various vegetation indices. NDVI is the most trustworthy method for 
digital image processing (Allawai and Ahmed 2020). This study used the normalised 
difference vegetation index (NDVI) technique to analyse satellite datasets of Multan
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Table 3 Explanation of remote sensing data used in spatial 

Explanation Remote sensing data of 2020 

Satellite Landsat 8 

Sensor type OLI_TIRS 

Resolution 30 m 

Cloud cover 5.3 

Projection UTM43N 

Sun azimuth 109.3074943 

Sun elevation 68.78002522 

Spectral bands B2 Blue: 0.45–0.51 B3 Green: 0.53–0.59 B4 Red: 0.64–0.67 B5 NIR: 
0.85–0.88 

Acquisition date 26 June 

district in search of indicators of different land-use types. Classifying the 2020 
Landsat data using NDVI yielded more accurate findings. Pixel-by-pixel values of 
the normalised difference vegetation index were calculated using the visible and 
near-infrared (NIR) spectrums of the sattelite images. 

NDVI = NIR − Red 
NIR + Red (1) 

where RED represents visible red reflectance (600–700 nm) and NIR represents near 
infrared reflectance (750–1300 nm). Table 3 lists the visible-to-infrared spectrum 
and picture properties. The NDVI value varied from –1 to 1. Values closer to 1 
were associated with more intense vegetated areas, whereas values closer to 0 were 
associated with less or no greenery. Water was represented by negative values (Zaidi 
et al. 2017). 

4.2 Image Classification 

In this investigation, NDVI measurements were used for unsupervised classification. 
Table 4 lists the designated classifications, which include waterbody, settlements, 
barren land, crop land, spare, and dense vegetations. It can be seen in Fig. 6 that the 
blue areas represent water, the red areas represent human settlement, the orange areas 
represent barren land, the light green areas represent cropland, the moderate green 
areas reflect sparse vegetation, and the dark green areas represent dense vegetation. 
ERDAS Imagine was used to activate the Iterative Self-Organizing Data Analysis 
Technique Algorithm (ISODATA) clustering algorithm to group pixels with compa-
rable attributes without any sample classes (Nelson et al. 2020). Pixel-by-pixel iden-
tifiers based on the DN values of various topographical elements are used to divide 
the region into six distinct categories.
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Table 4 Unsupervised classification-based classes 

Classes Description 

Waterbodies Freshwater lakes, ponds, rivers, and oceans 

Settlements A variety of human-made structures, such as towns, cities, villages, and 
residential and commercial roadways, are included in this category 

Barren land Areas of the Earth’s surface that are bare soil or incapable of supporting 
plant life 

Crop land Crops and grasslands 

Dense vegetation A huge region that is covered with mature trees and other flora 

Spare vegetation Low-density tree cover that precludes using the area as a forest 

Fig. 6 Flowchart for the LUCL change detection and water allocation assisment (Dogru et al. 2020)
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4.3 Water Allocation Assessment 

Allocating water supplies has been identified as a top water management issue in 
response to rising demand, especially in the agricultural sector. In order to irrigate 
their crops, farmers need access to an adequate supply of water (Li et al. 2020). 
Most areas, including the Multan district, use the warabandi method to help farmers 
provide enough water for their crops. Due to rapid urbanisation and the rise of 
large businesses, the country’s land usage and land cover have been shifting at an 
unprecedented rate. The high rate of change in land cover has resulted in an equal rate 
of change in water bodies, which in turn has led to water allocation issues (Saeidian 
et al. 2019). 

The GIS assists in determinining area under various land-use classes and describes 
the classes along with their area in the Multan as shown in Fig. 7. In 1990, about 
8.9% area of Multan District was under waterbody that remains 1.4% in 2020, 26.2% 
was under settlements that increase upto 51.5% in 2020, 2.6% was under barren land 
and increase upto 12.7% in 2020, 15.5% was under crop land and 20.1% in 2020, 
13.4%area was covered by spare vegetation which decrease 11.7% in 2020, and 
33.3% was under dense vegetation that highly effected with settlement area and 
remain 2.6% of the total area (Fig. 8). 

Fig. 7 LULC Map of Multan a for 1990 b for 2020 (Naeem et al. 2022)
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Fig. 8 Multan district land use area distribution (Naeem et al. 2022) 

4.4 Spatio-Temporal Precipitation 

Rainfall quantification is the first step in any water resource analysis. Rainfall in time 
and space may be measured using satellite-based sensors. They are a good option 
for measuring rainfall. With the help of its satellite, the Tropical Rainfall Measuring 
Mission (TRMM) can estimate global precipitation every three hours, and the data 
is available for free download. However, these projections are also inaccurate (Wang 
et al. 2005). Figure 9 represent the rainfall precipitation in the Multan district. As a 
result, these estimations need to be revised before they can be used in the evaluation 
and administration of water supplies. Estimates of TRMM rainfall (product 3B43) 
can be calibrated using low density rain gauge observations using one of two methods. 
Both regression analysis and spatial differential analysis can be used. Nash Sutcliffe 
efficiency is improved by 81 and 86% with the two methods, respectively.

Despite having a lower spatial resolution than competing gridded products, the 
TRMM provides more comprehensive regional coverage and a finer temporal preci-
sion. Even when using onboard sensors to infer rain, there remains room for error 
(Hossain et al. 2006). Lack of precipitation detection, erroneous detection, and biases 
cause these uncertainties (Tobin and Bennett 2010). There are monthly temporal 
inaccuracies of 8 to 12% and monthly sampling errors of 30% in TRMM rainfall 
estimates. If such flaws are not corrected, they might lead to incorrect applications 
(Gebremichael et al. 2010). To reduce such inaccuracies, TRMM satellite estimations 
require area-specific calibration.
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Fig. 9 Spatial distribution of calibrated TRMM rainfall for 2020

4.5 Evapotranspiration (ETo) Spatial Distribution Map 

Traditional point measurements, innovative modelling, and regionally distributed 
remote sensing estimations are only some of the methods used to calculate ETo. 
Lysimeters, Bowen ratios, heat pulse velocity, eddy correlation, and surface renewal 
are often used to measure ETo in both plants and fields. The accuracy of these 
old tools, however, is less than 90% (Prasad and Mahadev 2006). Furthermore, 
considerable manpower, equipment costs, and coverage issues are seen as major 
barriers to implementing these strategies on a broad scale. Routine meteorological 
data cannot be used to calculate the real rate of evapotranspiration. With simple 
tools, rain can be easily detected, while ETo from terrestrial surfaces cannot (unless 
locations have energy balance equipment). Therefore, a novel Penman–Monteith 
approach (Calvache et al. 2015) has been evaluated, which gives geographic esti-
mates of evapotranspiration using satellite observations as well as a surface energy 
balance. Surface energy balance can be represented as (Cheema and Bastiaanssen 
2012)
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Rn − G = λE + H (2)  

where, Rn denotes net radiation (Wm−2), G denotes soil heat flow (Wm−2), E denotes 
latent heat flux (Wm−2), and H denotes sensible heat flux (Wm−2) (Cheema and 
Bastiaanssen 2012) 

E =
Δ

(
Rn,soil  − G) + ρcp

[
Δe 

γn,soil

]

Δ + γ
[
1 + rsoil  ra,soil

] (3) 

T =
Δ

(
Rn,canopy

) + ρcp
[

Δe 
γn,canopy

]

Δ + γ
[
1 + rcanopy ra,canopy

] (4) 

where E and T represent evaporation and transpiration (Wm−2). When considering 
the relationship between air temperature (Tair, °C) and saturation vapour pressure 
(Psat), the slope of the saturation vapour pressure curve (mbar K−1) is denoted as 
(es, mbar). The density of air is measured in kilogrammes per cubic metre, and the 
vapour pressure deficit is denoted by e (mbar). Dry air has a specific heat capacity of 
104 J kg−1 K−1, or cp. The value for the psychometric constant is (mbar K−1). The 
net radiations at the soil, Rn, and the canopy, Rn, are denoted by the symbols Rn and 
Rn. Canopy and soil resistances are respectively denoted by the symbols rsoil and 
rcanopy. Two types of aerodynamic resistance are defined here: soil (ra, soil) and 
canopy (ra, canopy). 

The units of resistance are s m−1. E and T fluxes (W m−2) are transformed to rates 
(mm d−1) using a temperature-dependent LHV function. 

There are other different ETo algorithms described in the literature, but this one 
stands out because it provides reliable, weather-independent estimations of ETo all 
year round. The predicted ETo at 1 km dpi was closely correlated with lysimeter, 
Bowen ratio, and remote sensing observations (R2 of 0.70–0.76 at annual time scale; 
RMSE of 0.29- and 0.45-mm d−1). It was shown that the ETo fluxes at the pixel scale 
can be calculated on daily, 8-day, or monthly time periods. 

Figure 10 shows that the Multan evapotranspiration rang from 1.2 to 10.1 mm/ 
year in 2020. Areas in the northwest and lower south have higher ETo (8.62–10.1). 
The ETo range 7.13–8.62 was found center of the northwest and below the center of 
east to west side however the lowest range (1.2–2.67) of the ETo was shown in the 
northeast sides.

4.6 Soil Fertility Status 

The ability of the soil to provide vital nutrients to plants is known as soil fertility. 
Currently, identifying of four factors (Organic matter, pH, Electric Conductivity
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Fig. 10 Evapotranspiration 
(ETo) in Multan

(EC), Phosphorus (P) that can be used to estimate soil fertility (Javed et al. 2022). 
We set the range in line with the soil fertility state by measuring the values of these 
parameters using remote sensing at various locations within the study region. From 
the map we can clearly see that soil fertility is changing over the different regions of 
Multan. Figure 11 represents that the Organic Matter map shows that the central area 
of Multan, North–West & North–East area of Multan Saddar and small area from 
central Jalapur Pir wala is low fertile, area of Multan Saddar around the Multan city 
and area around the central Jalapur pur Wala has medium fertile soil and the total 
area of Shujabad, Eastern area from center of Multan saddar and northern area of 
Jalalpur Pir wala has high fertile soil as shown in due to its high pH, Ec, P, ranges in 
these region.

4.7 Groundwater Status 

Surface water supply for agricultural purposes is quite low, but water demand is 
extremely high. The groundwater is extracted by the farmer for agricultural growth. 
Water availability in Kharif 2020–21 remained at 65.1 million acre-feet (MAF), a 
slight decrease of 0.2% from 65.2 MAF in Kharif 2019–20. In comparison to Rabi
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Fig. 11 Soil fertility status in Multan 

Fig. 12 Groundwater status of Multan City (Imran et al. 2022)
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2019–20, Rabi 2020–21 got 31.2 MAF, an increase of 6.9%. The total number of tube-
wells was less than 30,000 until the 1960s; today, there are more than 1 million (Watto 
and Mugera 2015). Over 80% of groundwater is extracted through small capacity 
private tubewells making it extremely difficult to establish control of the resource 
(Imran et al. 2022). Groundwater depletion is commonly defined as long-term water-
level commonly defined continuous groundwater pumping. The study analyze the 
season-vise data of 16 years from 2004 to 2020. The outcomes are based on data from 
101 observation wells with varying depths to the water table and more extraction of 
groundwater developed the depletion of groundwater. The GIS programme was used 
to process the pointed data, and the Inverse Distance Weighted method was employed 
to interpolate the missing data points (IDW). The interpolated data was then divided 
into groups based on well depth (Imran et al. 2022). The results depicted about 1.59 
ft groundwater depletion rate per year presented in Fig. 11. Results depicted that 
the farmers in the upper area of the Multan region have taken more water from the 
surface water as well as groundwater whereas farmers can’t easily uptake the surface 
and groundwater from the lower area with ultimately lower yield compared to upper 
area farmers (Fig. 12). 

4.8 Accuracy Assessment 

In remote sensing, accuracy is determined by whether or not the data collected from 
remote sensing accurately depicts what is really on the ground. It is basically compar-
ison between user accuracy (actual field condition) and producer accuracy (values 
from remote sensing and software). ERDAS Imagine Software is one of the best tool 
which is very important for the accuracy assessment. It’s useful because it stream-
lines the processes of radar processing, basic vector analysis, LIDAR analysis, and 
RS photogrammetry. Using a simple raster-based interface, ERDAS IMAGINE can 
extract data from imagery and compare it to the present. To determine the accu-
racy of producer with respect to user data, we select 53 points from the map which 
was develop from GIS and check the behavior of soil at these points that in which 
class these lie and what is frequency of these values individually. First, we check 
the producer values for year 2020, we found that 31 points out of total 53 were 
lie in high fertile class, 12 lie in medium and 10 lie in Low fertile class. Now, we 
select 53 points in all four tehsils (Multan Saddar, Multan City, Shujabad & Jalal 
Pur Pir wala) of district Multan and collect samples of soil from there along with 
their coordinates at that location and then analyze them in Soil and Water Testing 
Laboratory, Multan. After analysis, these user points were classified as 26 points lie 
in high fertile class, 13 points lie in medium fertile class and 14 points lie in low 
fertile class. When we compare both these points then we get correct points for each 
class where both (producer and user) match each other as high fertile class is same at 
22 points, medium at 10 points and low fertile class matches at 8 points. With the help 
of these values, we get the User and Producer Accuracy and then finally determine 
the overall accuracy as 75.47% which means the 75% of our values determined with
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the help of RS and GIS are same as found in the actual field by soil sample analysis. 
Which is acceptable and show the accuracy that RS and GIS techniques are feasible 
to determine the soil fertility of any area without physical contact to that place. 

5 Conclusion 

Pakistan experiences extreme water scarcity, which has an impact on agricultural 
output sustainability. This study has shown that quantifying the transfer of soil-
vegetation and atmosphere could aid in understanding with GIS, the RS approaches, 
how crop growth and water management are related. This is useful for crop catego-
rization, rainfall estimation, soil moisture analysis, and planning and management of 
surface and groundwater resources. The results shows that settlement has increased 
by 25% because of development of Multan. The area under dense vegetation has 
been decreased by 30% because of changes in barren land and settlements. The total 
annual mean rainfall in the basin calculated was 187 mm yr-1 (or 213 km3 yr-1). The 
lowest value was 108 mm yr-1 and the highest value was 184 mm yr-1. The total ET 
of the Multan district was 140 mm yr-1. It is also important to gain knowledge of 
net water producing (R > ETo) and water consuming areas (ET > R). The waters 
stuts shows that the due to less vegetation area and more ETo ground water pumping 
incerae which reduce the ground water table from 65 to 75 ft. This study specifi-
cally explained how the practical implementation of accurate and precise information 
provided by remote sensing is a pivotal significance in water resources. 
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Coorelating Stream Guage Stations 
Using Multi Gene Genetic Programming 
and Random Forest 

Preeti Kulkarni, Pradnya Dixit, and Shreenivas Londhe 

Abstract Correlation stream gauge stations i.e. linking of discharge at upstream 
stations to find the discharge at the downstream station, is an important method which 
can be adopted. Corelating stations for discharge estimation plays a crucial role in 
the planning of hydrological applications, optimization of water resource allocations, 
pricing and water quality assessment, and agriculture and irrigation operations. Many 
data driven techniques have been seen to be utilized for this activity. The present study 
is an attempt to carry the baton forward with an aim of correlating the three stream 
gauging stations namely Ashti, Bhatpalli and Tekra which are situated in the Andhra 
Pradesh state at the Godavari River, India using Multi Gene Genetic Programming 
and Random Forest techniques. Previously measured streamflow values for the years 
of 1995–2013 at these three locations were used to develop the data driven models 
wherein stream flow at Tekra station is estimated using the stream flow values of the 
two upstream stations; Ashti and Bhatpalli. Monsoon monthly models and yearly 
models have been developed. All the models display better performance in estimating 
the stream flow at Tekra. The performance of developed models is judged by the 
traditional error measures along with the visual plots. 
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1 Introduction 

The stream flow measurements are used for a variety of water resources related 
studies and especially for developing stream flow prediction models. Unfortunately, 
the measurement records available for many stream gauging stations are either 
incomplete or too short. When there is no lateral flow between any two-stream flow 
measuring stations the traditional flood routing techniques can be implemented to 
streamflow at the downstream flow stations using the same at an upstream flow 
station. However, when one or more tributaries join the river in between two stations 
an unsteady and non-uniform flow analysis is necessary to predict the flow on the 
downstream side which though can be accomplished using the modern-day numer-
ical methods still not very easy owing the exogenous data requirement. To counter 
this hurdle a technique of transfer of information from one or more nearby stream 
gauge stations to other can be implemented and is termed as correlating stream gauge 
stations. The bond of climate is the key for strong correlation between two stream 
gauge stations (William and Burns 1983). If the data for the upstream stations is 
available, the discharge at downstream station can be predicted using the recently 
available data driven techniques. With the invent of Machine Learning Techniques, 
Tree based techniques are paving their way in this area. These data-driven techniques 
learn from the input-output relationship without explicit knowledge of the physical 
processes or formulation of mathematical equations and try to give the reasonable 
solutions. To make up for their lack of ability to provide interpretation of the under-
lying mechanisms these techniques habitually require fewer data, demonstrate high 
accuracy in their performance, are computationally efficient, and can be used in 
real-time forecast (Mosavi et al. 2018; Adamowski 2008). 

Researchers have attempted stream flow predictions using techniques like Artifi-
cial Neural Networks, Support vector Machines etc. Tongal and Booij (2018) fore-
casted daily streamflow in four rivers in the United 35 States with Support Vector 
Regression (SVR) and Artificial Neural Network (ANN) and Random Forest (RF) 
coupled with a baseflow separation method (Pande et al. 2022a; Pande et al. 2022b; 
Pande et al. 2023). In a study discharge was estimated at downstream station with 
discharge at upstream stations using Multigene Genetic Programming (MGGP) and 
concluded the work with satisfactory performance of the technique (Mengade et al. 
2020). Mehr et al. (2017) suggested a new hybrid approach of Season Algorithm-
Multigene Genetic Programming (SA-MGGP) to enhance timing accuracy of GP 
based rainfall-runoff models to enhance timing accuracy of the stand-alone GP-based 
models. Mehr et al. (2017), proposes a Pareto-optimal moving average multigene 
genetic programming (MA-MGGP) approach to develop a parsimonious model for 
single-station stream flow prediction. RF applications in hydrology include precip-
itation downscaling (Diez-Sierra et al. 2019) flood prediction (Muñoz et al. 2018), 
predicting flow characteristics at ungauged locations (Prieto 2019). Lanng et al. 
(2018) present long term Streamflow forecasting using Soil and Water Assessmet 
tool (SWAT) through the integration of random forests. In this study, a hybrid fore-
casting model is developed to improve accuracy of long-term stream flow forecasting
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by combining random (RF) forest and soil and water assessment tool (SWAT) (Pande 
et al. 2022c). The results show random forest gives accurate prediction. Mohamed 
et al. (2019) noticed that RF-regionalized models allowed slightly better prediction 
of streamflow in ungauged situations when compared with benchmark regionaliza-
tion approaches. Ability of RF was assed to make 1-day lead time daily streamflow 
forecast at 86 watersheds in the Pacific Northwest and based on Kling-Gupta Effi-
ciency scores (ranging from 0.62 to 0.99) and it is noticed that RF is able to produce 
useful forecasts across all the watersheds (Pham et al. 2021). 

Thus, the earlier highlight the fact that Techniques like MGGP and RF re used 
in stream flow predictions and other hydrological applications. However, its appli-
cation in the area of correlating gauging stations is seldom. Thus, the present work 
is an attempt to study the performance of techniques: MGGP and RF in discharge 
prediction at station which is at downstream with the discharge at upstream stations. 
In the current study three stations situated in Godavari River basin in India namely 
Ashti, Bhatpalle and Tekra are correlated using three Tree based techniques: Multi-
Gene Genetic Programming (MGGP) and Random Forest (RF). All the developed 
models are trained and developed in two distinct ways in the current work. In the first 
case, separate monthly models are developed for monsoon months data whereas in 
second case, the models are developed of the entire data in the monsoon season. The 
models are assessed in testing by root mean square error, mean absolute error along 
with coefficient of determination. The present paper consists total of 6 sections in 
which study area and data is explained in Sect. 2, followed by brief explanation of 
techniques employed. Section 4 elaborated the methodology used for model devel-
opment and immediately after those results are discussed in the Sect. 5. Conclusions 
are marked at the end in the Sect. 6 followed by the references. 

2 Tree Based Techniques 

Tree based approach is the basics of the three techniques utilized: Multi-Gene Genetic 
Programming (MGGP) and Random Forest (RF). The basic advantage of tree-based 
models is that they are easy to represent visually, making a complex predictive 
model much easier to interpret. Splitting and combining with a respective algorithm 
maximises the information gain. 

2.1 Multi Gene Genetic Programming (MGGP) 

Genetic programming was proposed by Koza (1992), being a generalization of the 
genetic algorithms. It is a search algorithm based on the principles of Darwin’s 
Theory of Evolution which is often paraphrased as “survival of the fittest”. MGGP is 
the most recent advancements of Genetic Programming (GP) that linearly combines 
low depth GP trees in order to improve fitness of classical GP (Searson 2007). Owing
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Fig. 1 Illustration of MGGP (Searson et al. 2007) 

to the use of smaller trees, the MGGP is expected to provide simpler models than 
those of classical GP. In MGGP, predicted variables are computed by the weighted 
output of each gene in the multigene program plus a bias term. Multigene symbolic 
regression can be implemented using GPTIPS (is a free Explainable-AI machine 
learning platform and interactive modelling environment for MATLAB)toolbox for 
Matlab (Pandey 2015; Tzuc et al. 2019; Searson et al. 2007). The resulting pseudo-
linear model can capture the non-linear behaviour. Forcing the transformations to be 
low order (by restricting the GP tree depth) allows the evolution of accurate, relatively 
compact mathematical models of predictor–response (input–output) data sets, even 
when there is a large number of input variables. Therefore, MGGP employs the power 
of classical linear regression method to capture nonlinear behaviours without need 
for pre-specified nonlinear structure. The highlighting characteristic of MGGP is that 
it provides a readily available equation which is can be used in excel for forecasting 
of output stream flow. Redears are referred to (Searson 2007) for further details. An 
illustration of MGGP is shown in Fig. 1 for 3 genes adapted from (Searson et al. 
2007). 

2.2 Random Forest (RF) 

Random Forest (RF) proposed by Breiman in 2001, is an ensemble tree-based algo-
rithm of semi-unsupervised and non-parametric type. It is from the decision tree 
family that comprises an ensemble of uncorrelated trees to yield prediction for clas-
sification and regression works. Since a single decision tree can produce high variance
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Fig. 2 Typical random forest tree (Granada et al. 2018) 

and is prone to noise, RF addresses this limitation by generating multiple trees where 
each tree is built on a bootstrapped sample of the training data (James et al. 2013). 
Each time a binary split is made in a tree (also known as split node), a random subset 
of predictors (without replacement) from the full set of predictor variables is consid-
ered. One predictor from these candidates is used to make the split where the expected 
sum variances of the response variable in the two resulting nodes is minimized. The 
randomization process in generating the subset of the features prevents one or more 
particularly strong predictor from getting repeatedly chosen at each split, resulting in 
highly correlated trees (Granada et al. 2018). After all the trees are grown, each tree 
casts a vote on a label class for classification task or a prediction value for regression 
task. The output is the most popular class or the average of all regression values. In 
the recent days, the step-by-step of building a regression RF is explained in Pham 
et al. (2021) and readers are directed to refer these articles for more details. A typical 
Random Forest tree is shown in Fig. 2 adapted from (Granada et al. 2018). 

3 Study Area and Data 

The present study is carried out at the three stations of Godavari River namely Ashti, 
Bhatpalli and Tekra which are situated in Andhra Pradesh, India and hence a brief
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Fig. 3 Location Map of stations: Ashti, Bhatpalli and Tekra (http://indiawris.gov.in)

mention about the Godavari River is presented below. The Godavari River originates 
in the Western Ghats of central India near Nashik in Maharashtra, 80 km from the 
Arabian Sea. It flows for 1,465 km, first eastwards across the Deccan Plateau then 
turns southeast, entering the West Godavari district and East Godavari district of 
Andhra Pradesh, until it splits into two distributaries that widen into a large river 
delta at Dowleswaram Barrage in Rajahmundry and flow into the Bay of Bengal. 
The Godavari is India’s second longest river after the Ganga. In terms of length, 
catchment area and discharge, the Godavari is the largest in peninsular India, and 
had been dubbed as the Dakshina Ganga (Ganges of the South). Tekra station is at 
the downstream side of Ashti and Bhatpalli and thus streamflow from the Ashti and 
Bhatpalli reaches at Tekra by natural gravity flow. The daily previously measured 
discharge (stream flow values in m3/s) at these three locations is made available for 
the years of 1995–2013 from the India WRIS portal (http://indiawris.gov.in). Figure 3 
and Table 1 presented below, showcases the location map of the study area and the 
data characteristic in detail respectively. 

Examining the data from Table 1, one observes that the average discharge for 
monsoon months of July to October differ considerably. Though stations belong to the 
same river basin, there is a remarkable difference between measured values of stream 
flow. A comparatively high skewed data can be seen for station Bhatpalle indicating 
that the data distribution in the right tail is long relative to the left tail. Higher 
standard deviation at Ashti indicate variation in discharge values. For Bhatpalle the 
distribution shows an asymmetry as 12.07 in August and 18.30 in October. The data 
is deviated as shown in Table 1. Ashti has high standard deviation for all months 
which indicates that the data is spread out over a wider range. Bhatpalle shows a low 
standard deviation which means that the data spread is not in a wider range also it 
indicated that the values tend to be slightly close to the mean value of data set.

http://indiawris.gov.in
http://indiawris.gov.in
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Table 1 Data characteristics of daily discharge values from 1995 to 2013 at the three locations 

Station Month Max (m3/s) Min (m3/s) Mean Skewness Standard 
deviation 

Ashti July 24,276 11.40 203.65 3.85 2723.38 

August 20,613 59.88 1589.98 2.57 2981.89 

September 24,481 135.00 2715.63 3.7 3011.95 

October 5511 73.07 555.16 3.07 723.75 

4 monthly 
Data 

July–October 24,481 11.40 1827.68 3.604 2694.33 

Bhatpalle July 2307 1.00 70.58 7.06 198.54 

August 6652 1.32 121.66 12.07 365.31 

September 1567 0.94 88.19 5.94 156.73 

October 7862 2.94 61.12 18.3 361.12 

4 monthly 
data 

July–October 7862 1.00 90.92 16.09 295.19 

Tekra July 38,915 14.24 2509.66 4.28 4306.31 

August 32,665 126.92 4339.28 2.72 4324.25 

September 20,695 256.93 3291.41 2.30 3403.30 

October 17,223 92.30 1120.81 4.91 1512.73 

4 monthly 
data 

July–October 38,915 14.24 2811.42 3.48 3763.02

4 Methodology Adopted 

Correlating stream gauging stations: Ashti, Bhatpalli and Tekra i.e. estimating the 
discharge at downstream station Tekra using the discharge data at upstream stations: 
Ashti and Bhatpalle; is the objective of the current work. Analysing the data used 
in the present work, two sets of models were developed. Set 1: Discharge prediction 
at Tekra (Output) with discharge at Ashti and Bhatpalle respectively (as input/s) for 
monsoon months i.e. separate models for July, August, September and October; Set 2 
models with same input and output as in set 1, however the data now is for combined 
4 monsoon months. Each set of models with its respective Input and output is shown 
in Table 2.

RF models were developed in Python through Jupyter notebook (a web-based 
interactive computing platform). The trees selected were between 100 and 500, 
and the bagging iterations and the tree size were selected, anticipating that these 
were those that yielded the best performance by a low Mean Square Error (MSE). 
Multi-Gene Genetic Programming was developed in Matlab 2017 using GPTIPS-2 
(an open-source toolbox for MGGP). Readers are referred for features of GPTIPS 
to Searson et al. (2007, 2015). The following parameters were selected owing to 
the trials conducted for less complexity of olutions and experience of the authors:
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Table 2 Methodology of models developed 

Set No: Input (I)–Output (O) Model No. and respective month (Each 
model developed using MGGP and RF) 

1 Ashti (I) and Tekra (O) 1 (July), 2 (August), 3 (September), 4 
(October) 

Bhatpalle(I) and Tekra (O) 5 (July), 6 (August), 7 (September), 8 
(October) 

Ashti and Bhatpalle (I) and Tekra (O) 9 (July), 10 (August), 11 (September), 12 
(October) 

2 Ashti (I) and Tekra (O) 13 (July–October) 

Bhatpalle (I) and Tekra (O) 14 (July–October) 

Ashti and Bhatpalle (I) and Tekra (O) 15 (July–October)

Number of generations: 200–500, Selection method: Tournament with size 13– 
15, Cross-over rate: 0.78–0.84, Mutation rate: 0.14–0.20, Termination criteria: 500 
generation or fitness value less than 0.00 whichever is earlier, Maximum number of 
genes and tree depth: 4–5. All the models were developed using MGGP and RF tech-
niques and 70% data was used for training the models whereas 30% data was used 
for the testing. Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and 
Correlation coefficient (r) along with the scatter plots and flow plots were used to 
judge the performance of the models in the testing phase. High prediction accuracy 
was expected for lower error statistics (RMSE, MAE), while the opposite was valid 
for the correlation coefficient. Further, the degree by which RMSE exceeded MAE 
was an indicator of the extent to which outliers (or variance in the differences between 
the modelled and observed values) existed in the data (Jain et al. 2008; Legates et al. 
1991; Londhe 2008). Along with errors, the performance of the model in testing will 
be judged through visual technique as Scatter plot, Hydrograph and Box Plot. 

Along with Scatter plot and Hydrograph, Box plot are effective visualisation 
method which provide statistical information like medians, ranges, and outliers. Box 
plot, will enable to see the data representation in their quartiles. The bottom and top 
of the box represent the first and third quartile, and the band inside the box represents 
the second quartile or median. The whisker in the box plot which extends to the most 
extreme data points; that is, the largest and smallest values which are not outliers, 
and the value should be no more than 1.5 * IQR (interquartile range) from the box. 
Any data outside the whisker is considered an outlier (https://www.simplypsycho 
logy.org/boxplots.html). 

It is interesting to note that the techniques Random Forest and MGGP are data 
driven techniques and the crux of their performance lies in the data; specifically, the 
training data. Addition to the data given in table, the Fig. 4a, b shows the box plot 
of training data utilised for Model 3 and testing data utilised for Model 3. A higher 
variability in the data can be seen for Ashti in training phase with a greater number of 
outliers as compared to that in testing. The discharge at Tekra (which is the output) 
shows more variability in testing dataset with less outliers in testing phase, however

https://www.simplypsychology.org/boxplots.html
https://www.simplypsychology.org/boxplots.html
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a: Box plot for data in Training for Model 3 

b: Box plot for data in Testing for Model 3 

Fig. 4 a Box plot for data in Training for Model 3, b Box plot for data in testing for Model 3 

with higher condensed data in between Q1 and Q3 in testing as compared to that 
in training. The standard deviation of Discharge value at Tekra in training is less 
(3175.81) as that of the same in testing (3822.75). The discharge data of Ashti and 
Tekra in Training also positive skewness, however less than that in the testing phase. 
All of this data characteristics affects the performance of all models and can provide 
hint/s towards performance of the model. 

Similar characteristics of data can be seen in Data utilized for Model 15 (Refer 
Fig. 5a, b).
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a: Box plot for data in Training for Model 15 

b: Box plot for data in Testing for Model 15 

Fig. 5 a Box plot for data in Training for Model 15, b Box plot for data in Testing for Model 15 

5 Results and discussion 

The present work attempts estimating discharge at Tekra with inputs as discharge 
at Ashti and Bhatpalle respectively. 15 Models were developed in total each using 
MGGP and RF. The performance of each model is shown in Table 3.
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Table 3 shows that MGGP and RF have been performing good in estimation of 
discharge for both sets of models. However, RF shows an upper hand in performance 
as compared to MGGP which can be seen through higher correlation coefficient 
between actual and predicted values (r = 0.91–0.93), higher MAE and lower RMSE. 
MGGP models however display higher RMSE values. Model 1–4 and Model 9–12 
perform well as compared to the models 5–8. Model 5–8 display lower performance 
as compared to other models in both the techniques. This can be attributed toward 
the fact that Bhatpalli station is at a distance from Tekra as seen in Fig. 3. Also as  
seen in Table 1 the skewness of discharge data at Bhataplli is more as compared to 
other stations suggesting its higher right tailed data. However, with discharge at Ashti 
and Bhatpalli as input parameters the performance of the models show a rising trend 
as seen in table. In monthly models, September models show a good performance 
for both the techniques. This can be attributed towards the standard deviation of 
the data at Ashti and Bhataplli and Tekra. The difference in the standard deviation 
between input and output for September models is less as compared to that of other 
models. October models are the next best models followed by others. Model 13–15 
also display an acceptable performance with higher r (0.83 and 0.90) with station 
inputs as Ashti, Ashti and Bhatpalli. Results in model 14 are at lower side and is due 
to the location of station: Bhatpalle. Monthly models show better performance as 
compared to yearly models as the difference in the standard deviation between the 
stations for yearly data is more as compared to that of monthly data thus suggesting 
more dispersion of data. Higher skewness of yearly data suggesting asymmetric data 
at Bhatpalli as compared to the same at other stations also contribute towards lower 
performing models. 

RF as a technique utilizes ensemble technique which combine the prediction of 
several models, which results in better performance compared to what could be 
obtained from a single model. This attribute of RF also contributes towards lower 
risk of overfitting of data. Standard Random Forest (SRF) is a powerful method for 
high-dimensional regression and classification. For Random Forest, SRF gives an 
accurate approximation of the conditional mean of a response variable, revealing 
that RF provides information about the full conditional distribution of the response 
variable, not only about the conditional mean One of the tree developed in RF for 
model 3 is shown in Fig. 6 along with the detail of one of leaf.

MGGP on other hand combines the weighted output of each gene to display a 
single model and bias (in form of a regression equation). The regression equation 
developed for Model 3 and Model 15 is shown in Eq. 1 and Eq. 2 respectively. 

qt  = 67900.a0.125 + 19900.a0.25 − 55473.6a0.5 + 48000.(−a0.5 + a + 278)0.5 

− 
1.524 ∗ 1016(a + 201.5)(a + 416.) 

1.37 ∗ 1011a3 + 5.95 ∗ 1013
− 2222( 

−a0.5 + a3 + a2 

a + 329 
)0.5 

+ 2222a + 6655(a − 15.2)0.5 − 711526 (1)
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Fig. 6 One tree developed in RF for Model 3

qt  = −0.000491b

(
−2a0.5 + 

b3 

a3 
+ 

3a 

b 
+ a

)

+
(
2.13742 ∗ 1016a0.5 + 2.36185 ∗ 1016

)
(b2)0.5 + 8.64 ∗ 1015 ∗ a0.5b + 8.64 ∗ 1015a2 

−8.84 ∗ 1015a1.5 + 1.41 ∗ 1014a0.5 + 4.41 ∗ 1016a2 + a
(
8.82 ∗ 1016b − 3.53296 ∗ 1016

)(
b + 4.87430417 ∗ 10−15

)
(b + 1.92443) 

+ 2.04a (2) 

where qt = discharge at Tekra, a = Discharge at Ashti, b = Discharge at Bhatpalli. 
The weight of respective genes offer knowledge about importance of that genes 

while predicting the output. The gene having highest weight has largest contribution 
towards the final prediction. It is seen that the weights of genes 1, 3 and bias term 
are higher than the other genes indicating that they have higher contribution to the 
prediction of stream flow (Fig. 7). The Pareto front report of MGGP model M-07 
shown in Fig. 8 signals at the accuracy of each model against the complexity of 
evolved models. It is used to plot expressional complexity against the goodness of 
fit (R2) for all the models. The Pareto front report enables the user to visualize 
the performance of solutions and select a solution that retains a balance between
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Fig. 7 Weights of Genes and convergence of MGGP solution 

Fig. 8 Pareto front report of MGGP 

complexity and accuracy. Green dots represent the Pareto front models in terms of 
model performance (1-R2) and model complexity. Blue dots represent non-Pareto 
models. The red circled dot represents the best model in the population in terms of 
R2 on training data set (Searson et al. 2007). 

The performance of models discussed in Table 3 are also been visually interpreted 
through scatter plots and flow diagrams. Figure 9 shows the plot for model 3 and 
15 which clearly indicates the close concur of discharge values estimated by MGGP 
and RF with the observed values. A slight difference in the estimation of the peak 
values in model 15 can be seen in Fig. 10.
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Fig. 9 Plot for observed and Estimated discharge using MGGP and RF for Model 3 

Fig. 10 Plot for observed and Estimated discharge using MGGP and RF for Model 15 

Figure 11a shows the combined scatter plot for the observed and predicted values 
in Model 3 using MGGP and RF and Fig. 11b for model 15. Scatter plot for Model 
3 shows an almost balanced scatter, however higher underprediction can be seen in 
scatter plot for Model 15, specially for the higher values. This also can be seen in 
figure above. This also explains the higher RMSE for Model 15 with 2461.28 for RF 
and 2765.92 with MGGP.

Figure 12 shows the box plot for Model 3 in Testing phase. The box length gives 
an indication of the sample variability and the line across the box shows where 
the sample is centred. A large variability in Observed discharge values can be seen 
followed by that of discharge values predicted by MGGP and then the discharge 
values predicted by RF. MGGP shows the highest value in its predicted data as 
compared to RF. The figure also shows observed values with higher outliers as
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a: Scatter plot for Model 3  b: Scatter plot for Model 15 

Fig. 11 a Scatter plot for Model 3, b Scatter plot for Model 15

Fig. 12 Box plot for Observed and Predicted values for Model 3

compared to Predicted values by RF and MGGP respectively, which also hints 
towards the error between the observed and predicted values. The box lot also shows 
the median line towards the lower bound of the box plot and the upper whisker 
is longer than the lower one in observed and predicted values, indicating the right 
skewness of data. The box plot also shows more amount of data in the quartile 3 i.e. 
Q3 as compared to that in Q1. Thus the analysis of Observed and predicted values 
can help in providing insight towards the error analysis. 
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Fig. 13 Box plot for Observed and Predicted values for Model 15 

Further analysis also shows that the highest discharge value in the testing dataset is 
20694.84 and the predicted value for the same by RF is 14656.0308 and by MGGP is 
15854.35, thus RF and MGGP shows underprediction for higher value, alias MGGP 
tries to predict closer to observed value. For the minimum observed value of 256.92, 
the predicted value by RF is 493.83 which is overprediction and by MGGP the 
value is 297.38 which is slight overprediction. The median value also shows an 
overprediction through RF. 

A similar box plot of Observed and Predicted values for Model 15 is shown in 
Fig. 13. In the testing dataset, higher variability in predicted values can be seen for 
MGGP as compared to RF. Higher skewness of the data can be seen in Observed 
values as compared to that of RF and MGGP. 

6 Conclusion 

In the present research, the work of correlating stream gauge stations is carried 
out for three stations in Godavari River basin namely Ashti, Bhatpalle and Tekra. 
The models are formulated using Multigene Genetic Programming (MGGP) and 
Random Forest (RF) in two ways based on monthly and yearly arrangement of data. 
In case of Yearly correlating models, there are only four models one each from 
the respective combination while in case of Monthly correlating models; there are 
altogether 15 models with each technique. MGGP and RF display satisfactory results 
towards estimation of discharge at Tekra with RF showing best results.With input 
as discharge at Ashti and output as discharge at Tekra, September model displays 
a good result with RF as Techniue (r with RF = 0.93 and MGGP = 0.91) With 
Bhatpalli as input parameter and Tekra as output, both the moels perform poor as
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compared to when Ashti is input parameter (r ranges between 0.49 to 0.71).This may 
be attributed towards the location of the station Bhatapalli. However when discharge 
at Ashti and Bhatappli as Input parameters, both models perform best in September 
with r = 0.93 respectively with RF and MGGP). The variation of data in monthly 
models is restricted as compared to yearly models and thus the performance of yearly 
models are less. Similar to monthly models with Bhataplli as input parameter, yearly 
model with only Bhatapalli as input parameter perform less (r = 0.58) as compared 
to other months. As the correlation between stations is dependent on catchment 
characteristics and climatic conditions, even without considering these parameters, 
techniques like MGGP and RF learn from the data given and estimated discharge 
values closer to the actual values at Tekra. This can also be verified through error 
measures and visual plots. Monthly models show better performance as compared 
to yearly models. Models developed with Bhatpalli as input and Tekra as output 
display low performance and this can be attributed towards the location of the station 
and the data characteristics. RF displays the output in form of trees which can be 
easily interpreted and also MGGP shows the output in form of equation which can 
be readily used by the end users. 
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Mapping and Trend Analysis in Water 
Spread Area of Upper and Lower Lakes 
of Bhopal, Using Remote Sensing 
Technique 

Vaibhav Deoli, Deepak Kumar, Deep Shikha, Shivam Saw, and Rohit Patel 

Abstract Surface water is essential for all forms of life. Identification and calcu-
lation of water bodies can be useful in various ways like drought mapping, flood 
mapping, drinking and irrigation water analysis. This study is done for revolving the 
affectivity of satellite data in water spread mapping and area estimation of Upper Lake 
and Lower Lake of Bhopal city, Madhya Pradesh. Water surface areas for 21 years 
from 2001 to 2021 are calculated. To calculate the water spread area of studied lakes, 
Landsat-7 imageries from 2001 to 2012 and Landsat-8 imageries from 2013 to 2021 
were used. To calculate the area of lakes, 3 water indices namely Normalized Differ-
ence Water index (NDWI), Modified Normalized Difference Index (MNDWI) and 
Water Ratio Index (WRI) used. To check the accuracy of the water index physical 
GPS survey has been conducted. Based on that survey, MNDWI was the most accu-
rate method in this study. Furthermore, to detect the trend and magnitude of the trend 
in the water spread area Mann–Kendall and Theil’s Sen Slope Test has been used. 
Z-value for Upper Lake and Lower Lake was obtained as –3.23 and –3.097 respec-
tively. Both Lake shows a decreasing trend in water surface area for study period 
which is significant at 10% as well as 5% level of significance. The result can be 
effective in water related problems like drought, flood or debris dams. 

Keywords Landsat ·MNDWI · Trend analysis · Lake · Remote sensing 

1 Introduction 

For the sustainability of life on earth, surface water is an important component for 
humans as well as other forms of life (Acharya et al. 2016). Lake is one of the
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essential sources of surface water. Lake water has an important role in the ecosystem 
which may include water storage, fishery production, agriculture production and 
flood mitigation (Deng et al. 2017). Due to fluctuations in lake water all of these 
ecosystems are severely affected. They are affected by climate change and human 
activities also on different time scales on the regional hydrological processes (Cao 
et al. 2021; Tao et al. 2015; Zhang et al 2011). Hence, the identification and mapping 
of lakes might be useful in various ways for surface water estimation. Remote sensing 
and GIS is an effective technique for mapping of lake water (Feng et al. 2018; Qin  
et al. 2021; Kaplan and Avdan 2017). Remote sensing provides a well-established 
and sufficient platform for monitoring and management of different surface water 
features without physical contact with them. Landsat series, Sentinel satellite data 
and MODIS are effectively used to estimate water resources. 

To estimate the lake water surface area many researchers successfully used 
Landsat series imagery (Rover et al. 2012; Yang et al. 2015; Deoli and Kumar 
2019; Kandekar et al. 2021). To analysis Landsat imageries, water indices have 
been used due to their simplicity, low cost and superior analysis process (Elsahabi 
et al. 2016; Du et al.  2016; Mohsen et al. 2018). Most commonly used water indices 
are the Normalized Difference Water Index (NDWI), Modified NDWI, Water Ratio 
Index (WRI), and General Water Index (GWI). Ozelkan (2019) analysed water body 
detection from Landsa-8 imagery using NDWI for Atikhisar Dam Lake situated in 
western Turkey. Yue et al (2017) studied dynamic change of Hongjiannao Lake. 
They used MNDWI to extract lakes from 1988 to 2014 and find that the lake water is 
decreasing in the studied period. Yang and Du (2017) used Landsat TM imagery to 
extract water bodies. To calculate water surface area, author used NDWI, GWI and 
MNDWI and concluded that MNDWI method has the highest accuracy. Dai et al. 
(2019) computed dynamic change in Bosten Lake in China. To evaluate the area, the 
authors used NDWI and MNDWI techniques. Thayammal et al. (2021) analysied 
water body segmentation from Landsat data and deep learning technique. Author 
used deep neural network and signet techniques. Deoli et al. (2022) studied water 
spread mapping of Nainital Lake situated in Nainital city of India for year 2001 to 
2019. Authors used NDWI. MNDWI and WRI technique and ground truthing has 
been done using GPS survey of the lake. Based on the above review, this study has 
been carried out with following objectives: (i) to determine temporal change and 
detect lake water area in every year from 2001 to 2021 for Upper Lake and Lower 
Lake of Bhopal. (ii) to determine trend and magnitude of trend in lake water area for 
studied period.
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2 Materials and Methods 

2.1 Study Area 

In current study, two lakes namely Upper Lake and Lower Lake have been studied 
to determine surface water change. Both lakes are in western end of the Bhopal city 
of Madhya Pradesh, India. Upper Lake has been situated at 23.250° N and 77.253° 
E and 509 m above mean sea level. Lower Lake is situated at 23.258° N and 77.405° 
E and 499 m above sea level (Fig. 1).

2.2 Data Used 

The level 1 data of Landsat 7 and Landsat 8 sensors for every year for the month of 
April have been collected from the United States Geological Survey (USGS) website 
(Table 1). In case of no cloud-free Landsat image in the month of April, the image has 
been taken of nearby month. To carry out this study, Landsat 7 imageries from 2001 
to 2012 and Landsat 8 imageries from 2012 to 2021 have been used. Specifications 
of Landsat-7 and Landsat-8 are given in Tables 2 and 3 respectively.

2.3 Water Body Extraction 

To extract the water surface area of studied lakes from Landsat imageries, band 
rationing technique has been used. NDWI, MNDWI and WRI have been used for 
identification of water spread area of lakes. A model was developed in QGIS software 
for change detection. The equation for NDWI, MNDWI and WRI is given as below: 

NDWI = (Green − NIR)/(Green + NIR) (1) 

MNDWI = (Green − SWIR_1)/(Green + SWIR_1) (2) 

WRI = (Green + Red)/(NIR + SWIR_2) (3) 

2.4 Non-parametric Trend Analysis 

To find the significance of hydro-climatic data non parametric Mann–Kendall test 
gives valuable results and used by different researchers (Kumar and Kumar 2020;
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Fig. 1 Location map of studied lakes

Kuriqi et al. 2020; Rana et al. 2019). In this study Mann–Kendall test was used to 
detect trend in calculated lake surface area from 2001 to 2021. The magnitudes of 
trend were calculated using Theil’s Sen Slope estimator test. The direction of change 
and the rate of increase or decrease in the lake surface water trend are revealed 
through the slope (Choudhury et al. 2012). The detailed mathematical expressions 
of the tests have been given in Rana et al. (2022), Deoli and Kumar (2020).
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Table 1 Cloud free Landsat 
imageries used in study 

Satellite Year Date of imagery 

Landsat 7 2001 02 April, 2001 

2002 29 March, 2002 

2003 24 April, 2003 

2004 19 April, 2004 

2005 22 April, 2005 

2006 02 May, 2006 

2007 28 April, 2007 

2008 30 April, 2008 

2009 17 April, 2009 

2010 20 April, 2010 

2011 23 April, 2011 

2012 25 April, 2012 

Landsat 8 2013 06 April, 2013 

2014 23 April, 2014 

2015 17 April, 2015 

2016 19 April, 2016 

2017 22 April, 2017 

2018 25 April, 2018 

2019 28 April, 2019 

2020 23 April, 2020 

2021 26 April, 2021 

Table 2 Specification of 
Landsat-8 

Bands Wavelength 
(micrometres) 

Resolution (meters) 

Band 1—Ultra Blue 0.43–0.46 30 

Band 2—Blue 0.46–0.51 30 

Band 3—Green 0.53–0.59 30 

Band 4—Red 0.64–0.67 30 

Band 5—Near 
Infrared 

0.85–0.88 30 

Band 6—SWIR 1 1.57–1.65 30 

Band 7—SWIR 2 2.11–2.29 30 

Band 
8—Panchromatic 

0.50–0.68 15 

Band 9—Cirrus 1.36–1.38 30 

Band 10—Thermal 
Infrared 1 

10.60–11.19 100 

Band 11—Thermal 
Infrared 2 

11.50–12.51 100
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Table 3 Specification of 
Landsat-7 

Bands Wavelength 
(micrometres) 

Resolution (meters) 

Band 1—Blue 0.45–0.52 30 

Band 2—Green 0.52–0.60 30 

Band 3—Red 0.63–0.69 30 

Band 4—NIR 0.77–0.90 30 

Band 5—SWIR 1 1.55–1.75 30 

Band 6—Thermal 10.40–12.50 60 

Band 7—SWIR 2 2.09–2.35 30 

Band 
8—Panchromatic 

0.52–0.90 15

3 Results 

3.1 Comparison of Different Band Ratios for Correct Water 
Spread Area 

In the present study, the water surface area of Upper Lake and Lower Lake has been 
determined every year by NDWI, MNDWI and WRI indices and shown in Tables 4, 
5 and 6 respectively. From Table 4, it could be determined that the minimum and 
maximum area obtained by NDWI was 18.35 km2 in the year 2020 and 31.87 km2 in 
2002 respectively for Upper whereas for Lower lake minimum and maximum water 
spread area was 0.72 and 1.01 km2 in 2008 and 2011 respectively. The average water 
spread area for Upper Lake and Lower Lake is 26.5 and 0.8 km2 for respectively.

Similarly, Table 5 depicted the maximum water surface area of Upper Lake as 
31.50 km2 in the year 2002 whereas the minimum water surface area was 19.35 km2 

in year 2020 by MNDWI. The average water spread area of Upper Lake in the studied 
period was obtained as 26.08 km2. The maximum water surface area of Lower Lake 
was 0.98 km2 in the year 2009 whereas the minimum water spread area was 0.65 
km2 in the year 2021. The average water spread area of Lower Lake is obtained as 
0.77 km2. 

Further, the lake water spread areas calculated by WRI were tabulated in Table 
6. The minimum and maximum water spread area calculated using WRI was 20.02 
km2 in 2015 and 36.48 km2 in 2010 for upper lake whereas 0.63 km2 in the year 
2016 and 1.01 km2 in 2011 for lower lake using the same method. This method’s 
average water spread area for Upper Lake and Lower Lake was 27.04 and 0.81 km2 

respectively.
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Table 4 Water spread area of 
Upper Lake and Lower Lake 
by NDWI for period 
2001–2021 

Year Area (km2) 

Upper Lake Lower Lake 

2001 28.91 0.77 

2002 31.87 0.89 

2003 22.35 0.82 

2004 30.24 0.91 

2005 24.8 0.73 

2006 31.25 0.82 

2007 28.96 0.83 

2008 30.99 0.72 

2009 25.63 0.79 

2010 26.3 0.88 

2011 29.85 1.01 

2012 22.22 0.88 

2013 28.66 0.78 

2014 28.67 0.74 

2015 22.65 0.79 

2016 22.06 0.58 

2017 27.91 0.73 

2018 22.65 0.78 

2019 21.06 0.82 

2020 18.35 0.78 

2021 29.68 0.71

3.2 Accuracy Analysis 

For the purpose of accuracy, a GPS survey of Upper and Lower Lakes was conducted 
on 25 April 2021, and the obtained areas are presented in Table 7. Landsat-8 image 
of 26 April, 2021, has been obtained from earth explorer which is the nearest to the 
day of the GPS survey and extracted to determine the area of studied lakes. Table 
7 also shows the comparison between GPS surveyed area and the estimated water 
area by different indices. The overall errors in the estimated water spread area are 
also shown in the same table. It was also found that the accuracy of all used indices 
was more than 90%. However, the overall accuracy of MNDWI was higher. 2.49 
and 2.94% deviation or errors were found using MNDWI for Upper Lake and Lower 
Lake respectively. In contrast, 8.59 and 6.07% deviation were found in the water 
spread area of Upper Lake using NDWI & WRI indices respectively and 4.41 and 
8.82% deviations were determined in Lower Lake water spread area using NDWI 
and WRI respectively.
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Table 5 Water spread area of 
Upper Lake and Lower Lake 
by MNDWI for period 
2001–2021 

Year Area (km2) 

Upper Lake Lower Lake 

2001 27.21 0.78 

2002 31.50 0.87 

2003 25.70 0.77 

2004 30.91 0.89 

2005 23.78 0.78 

2006 30.53 0.78 

2007 28.01 0.85 

2008 30.60 0.67 

2009 25.67 0.86 

2010 25.6 0.85 

2011 28.83 0.98 

2012 23.25 0.82 

2013 28.24 0.69 

2014 28.73 0.70 

2015 21.91 0.75 

2016 21.47 0.69 

2017 27.08 0.67 

2018 21.74 0.72 

2019 20.06 0.74 

2020 19.35 0.68 

2021 28.01 0.66

Since this study that MNDWI estimated more accurate water spread area of studied 
lakes than other indices, MNDWI has been used to analyse further water spread area 
fluctuations. Figures 2 and 3 depicts the water spread area fluctuation for Upper Lake 
and Lower Lake respectively.

4 Trend Analysis 

Trend in lake spread area has been determined using non-parametric test for 21 years 
(2001–2021) and tabulated in Table 8. To know the significance change in water 
spread area, trend analysis based on Mann-Kendal test has been calculated and the 
result indicate that the water spread area in both lakes are sharply decreasing. Z-value 
for Upper Lake and Lower Lake was obtained as –3.23 and –3.097 respectively. 
Both Lake shows decreasing trend in water surface area for studied period which 
is significant at 5% level of significance. Based on Theil’s Sen Slope Estimator the
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Table 6 Water spread area of 
Upper Lake and Lower Lake 
by WRI for period 2001–2021 

Year Area (km2) 

Upper Lake Lower Lake 

2001 28.92 0.81 

2002 30.52 0.87 

2003 25.63 0.82 

2004 29.85 0.95 

2005 24.68 0.82 

2006 30.51 0.83 

2007 29.19 0.89 

2008 30.66 0.74 

2009 24.68 0.98 

2010 36.48 0.79 

2011 28.83 1.01 

2012 22.65 0.86 

2013 30.94 0.66 

2014 28.98 0.77 

2015 20.02 0.78 

2016 21.68 0.63 

2017 28.0 0.68 

2018 22.65 0.72 

2019 23.66 0.86 

2020 20.37 0.88 

2021 28.99 0.74

Table 7 Water spread area using the GPS survey and water indices 

Lake Using GPS (km2) Using NDWI 
(km2) 

Using MNDWI 
(km2) 

Using WRI 
(km2) 

Upper Lake 27.33 29.68 (–8.59% 
deviation from 
GPS’s area) 

28.01 (–2.49% 
deviation from 
GPS’s area) 

28.99 (–6.07% 
deviation from 
GPS’s area) 

Lower Lake 0.68 0.71 (–4.41% 
deviation from 
GPS’s area) 

0.66 (2.94% 
deviation from 
GPS’s area) 

0.74 (–8.82% 
deviation from 
GPS’s area)

magnitude of trend for Upper Lake and Lower Lake were determined as –0.32 and 
–0.0075 km2/year respectively.
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Fig. 2 Fluctuation in water spread for Upper Lake for period 2001–2021 
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Fig. 3 Fluctuation in water spread for Lower Lake for period 2001–2021

Table 8 Trend detection for 
surface area change of lakes 
and magnitude of change at 
5% significance level 

Lake Z-value (%) Trend Trend magnitude 
(km2/year) 

Upper Lake –3.23 Yes (–)* –0.32 

Lower Lake –3.09 Yes (–)* –0.0075 

* Significant at 5% level of significance
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5 Discussion 

In this study, the ratio indices, NDWI, MNSWI and WRI were computed. Further-
more, the best suitable band ratio technique was determined based on the GPS 
mapping of the lakes to predict the water extension in the lake between 2001 to 
2018. The MNDWI was the accurate water index in our study. The obtained results 
agree with the finding of Gautam et al. (2015) who evaluated the surface water 
area in Bangalore using MNDWI, NDWI and WRI and found a high performance 
of MNDWI. Furthermore, the current study results also agree with Mukherjee and 
Samuel (2016) who investigated water bodies’ extraction using MNDWI and WRI. 
The result of their study suggested that MNDWI is acceptable in flooded regions 
inside a metropolitan zone. 

On the other hand, Deoli et al. (2021) observed that the WRI was better than 
other indices for high-altitude lakes and hence utilized for mapping and modeling 
spatiotemporal lake changes. Authors also find the trend in lakes water area for 
studied lakes based on Mann-Kendal and Sen’s Slope test and found a strong down-
ward tendency and their results align with this study. Rokni et al. (2014) concluded 
that NDWI was better than other indices and hence utilized for mapping changes 
in water bodies. They also present a new technique and assessed for changes in the 
multi-temporary NDWI components. 

However, it should be noted that extracting water bodies using a multiband pixel-
based approach has inherent difficulties because they need analysts’ expertise to 
choose the precise training data set (Li et al. 2013). In order to gather information 
about water bodies and deliver it to investors, legislators, and decision-makers, it is 
essential to use a water index like the NDWI. In particular, the technique proposed 
in this study may be highly helpful for decision-makers and water managers to take 
effective steps, such as minimising pollution and overwater extraction from such 
significant and vulnerable water bodies. 

6 Conclusions 

In this study, the effectiveness of NDWI, MNDWI and WRI were applied and 
explored to identify and determine of water spread area using Landsat-7 and Landsat-
8 imageries. Water surface area of Upper and Lower lake from 2001 to 2021 has 
been determined. The results evaluate that MNDWI is very close to the actual area 
of lakes based on GPS survey. The study successfully revolved that the water surface 
area in both of the lakes is sharply decreasing with time for study period based on 
trend analysis in lake water area. It has been observed that the lake water area was 
decreasing by 0.32 km2/year for upper lake and 0.0075 km2/year for lower lake. This 
type of study might be very useful in water spread mapping without physical contact 
with study area. The result can be effective in water-related problems like drought, 
flood or debris dams. A similar methodology may be obtained for agriculture land
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mapping, built-up area and glacier mapping using suitable indices. In future, we will 
try new indices with the machine-learning techniques for water surface mapping and 
monitoring. 
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Water Resource Management 
for Alleviating Crop Diseases 
in Semi-Arid Regions 

K. Kamesh Krishnamoorthy and K. Karthik Subramaniam 

Abstract The semi-arid regions are characterized by long periods of sunshine, defi-
cient rainfall and unpredictable drought-like situations. In addition, climate change 
accelerates the intensity of these problems by creating scanty rainfall leading to an 
excess dependency on groundwater. Many crop diseases arise in such regions due to 
improper management of water resources and therefore its management becomes a 
highly essential tactic. Water resource management by choosing the proper method 
of irrigation helps in reducing the occurrence and intensity of many plant diseases. 
Drip irrigation is the most sought in semi arid regions as this minimizes water usage 
and the spread of soil-borne and foliar plant diseases. In addition, chemigation as 
an alternative to the foliar spray of fungicides and bactericides results in a uniform 
application with better efficacy avoiding the leaching of chemicals which can be 
done using drip and trickle irrigation methods. The application of micronutrients 
through drip irrigation helps manage diseases directly by the antagonistic effect on 
the pathogen or indirectly by augmenting the defense mechanism of plants or by 
inciting antagonist organisms in the rhizosphere. Application of fungal and bacterial 
biocontrol agents to plants helps plants under semi-arid areas to tolerate drought 
stress by improving the photosynthetic ability and production of a broad range of 
enzymes and metabolites. Recycled waste water used for irrigation has to be evalu-
ated for the presence of plant pathogens before use to avoid detrimental effects on 
plant health. 
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1 Introduction 

Water management using the proper choice of irrigation method is a highly crucial 
factor for efficient crop production. Proper irrigation assures good quality seeds and 
food materials. Around 30–40% of global food production comes from irrigated 
agriculture (Ondrasek 2014; Pande and Moharir 2023). 

Groundwater resources form a key source of water for irrigating crops in semi-
arid areas. As rainfall is an unpredictable factor, the majority of the water for irri-
gation is obtained from groundwater. Proper irrigation and drainage in such areas 
are highly imperative to prevent the predisposition of many plants to be attacked 
by pathogens. The major challenges in semi-arid regions include long periods of 
sunshine, and the absence of considerable rainfall. In addition to that evapotranspi-
ration due to prolonged periods of hot temperature and dry winds accelerate the water 
loss from plants. Under semi-arid environments, plants are subjected to growth under 
higher temperatures as a result of which they display diminishing levels of carbohy-
drate and protein synthesis rendering them vulnerable to pests and plant pathogens 
(Obrepalska-Steplowska et al. 2015). Unpredictable rainfall patterns pose a threat 
to pulses in semi-arid regions which are easily predisposed to the attack of diseases 
like Fusarium wilt and Dry root rot (Pande and Sharma 2011). Some of the addi-
tional problems caused by semi-arid situations contributing to plant diseases include 
poor soil and water. A prolonged period of water scarcity may lead to desertifica-
tion. This can be visualized in the semi-arid southern regions like Kolar and Chik-
ballapur in Karnataka and Madanapalli and Anantapur in Andhra Pradesh which 
is prone to desertification as a result of consistent water scarcity. Such a kind of 
water-scarce ecosystem may lead to favoring the survival of certain plant pathogens 
(Ganeshamurthy et al. 2020). Drought-like situations enhance the severity of certain 
plant viruses (Clover et al. 1999) in addition to increasing the virulence of fungal 
plant pathogens like Armillaria (Lonsdale and Gibbs 1996). 

2 Diseases of Crop Plants in the Semi-Arid Regions 

The pathogens predominant in the semi-arid regions include Fusarium, Sclerotium, 
and Macrophomina (Sinha et al. 2019). Drought stress in semi-arid regions escalates 
the occurrence of certain pathogens such as Aspergillus flavus infecting groundnut 
(Wotton and Strange 1987) and Fusarium solani infecting beans (Agrios 1997). Dry 
root rot of chickpeas is caused by the pathogen Rhizoctonia bataticola and is severe 
under semi-arid regions in India. The conditions like low soil moisture and high 
temperature favor its development. In addition to that the soil pH also plays a role 
in the modulation of disease incidence (Bhatti and Kraft 1992; Sinha et al. 2019). 
Sinha et al. (2021) observed a positive correlation between the disease incidence of 
dry root rot of chickpeas with minimum and maximum atmospheric temperatures. 
The most common plant diseases observed in the semi arid regions include Fusarium
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wilt caused by Fusarium sp., Collar rot caused by Sclerotium rolfsii. The pathogens 
sustain such harsh semi-arid atmospheres by the formation of resting structures. Dry 
root rot caused by Macrophomina phaseolina affects crops in both semi-arid and 
temperate regions. The disease expression is enhanced during high day temperatures 
of 30 °C coupled with dry conditions. Moreover the prolonged persistence of the 
pathogen in the soil as resting and dormant sclerotial structures renders the control of 
the disease a challenging task (Nene et al. 1991). The soil-borne pathogen Fusarium 
roseum causing seedling blight thrives well in dry environment and creates severe 
symptoms in plants suffering from water stress (Agrios 1997). The occurrence of 
Fusarium wilt disease of chickpea is common in semi-arid regions characterized 
by warm and dry conditions. The very nature of the pathogen to sustain such harsh 
conditions lies in its capacity to form chlamydospores which help it remain dormant 
under a period of stress (Gopalakrishnan et al. 2005). 

3 Irrigation and Plant Diseases 

The method and choice of irrigation resources and irrigation method is deciding factor 
for the occurrence of many plant diseases. Irrigation water can spread pathogenic 
propagules through its physical action by dispersing pathogens or being a contami-
nated source of plant pathogens by itself. In the case of contaminated water, irrigation 
water has the likelihood of getting contaminated from various sources among which 
the most common are ponds, lakes, rivers, streams, and artificial storage units (Hong 
and Moorman 2005). A worldwide estimation of the irrigated agricultural fields 
receiving treated and untreated forms of irrigation water are found to be around 
35.9 Mha among which most of them are located in regions where less than 75% of 
the wastewater is subjected to treatment before irrigating crops (Thebo et al. 2017). 
Surface runoff water passing through Such sources are most likely to get contami-
nated by plant debris or soil source present in the vicinity. Such contaminated water 
resources may ultimately end up in the irrigation channel. However, if the water 
source is still devoid of pathogens, it has the chance of getting contaminated by 
encountering various sources in its pathway of flow, such as crop debris, soil, and 
pathogen resting structures or propagules. Sometimes the unsterilized potting mixture 
serves as the best initial source of the pathogen (Hong and Moorman 2005). Irrigation 
has to be optimized as either excess or very low amount of irrigation can contribute to 
the occurrence of plant diseases. Surface irrigation systems mainly include flood irri-
gation, furrow irrigation, trickle irrigation, and seepage whereas overhead irrigation 
is mainly delivered by the use of the sprinkler method. Timely irrigation can serve as 
a means of protecting the crop from disease attack by evading the occurrence of plant 
pathogens whose survival is enhanced by drought-like conditions (Zentmeyer and 
Bald 1977). Furrow irrigation helps in carrying the pathogenic propagules and resting 
structures from one end of the field to another which helps in the rapid dispersal of 
plant diseases (Manda et al. 2021). When compared to irrigation water sources like 
pond and river water, groundwater is generally regarded as a safer source. This is
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mainly due to the susceptibility of pond and river water to contamination by various 
point sources like discharge pipes of sewage points and nonpoint sources like herbi-
cide, fertilizer, sediments, and other kinds of contaminating materials which tend to 
end up on the ground in natural means or due to human activity (Ritter et al. 2002). 

Surface water used for irrigation possess chance of being contaminated with the 
Xanthomonas campestris bacterial complex consisting of X. campestris pv. begoniae 
(Atmatjidon 1991), X. campestris pv. pelargonii (Wohanka 1995), and X. axonopodis 
complex which consists of X. axonopodis pv. alli (Gent et al. 2005), X. axonopodis pv. 
begonia (Hotink et al. 1991) and X. axonopodis pv. phaseoli (Steadman et al. 1975). 
The Xanthomonas bacteria are capable of causing diseases in a wide range of crops 
like rice, wheat, citrus, pepper and cabbage, spanning to the extent of more than 400 
crops. Common disease symptoms incited by Xanthomonas include leaf spots, leaf 
streaks, blights and cankers. These bacteria can adapt to a wide range of conditions 
due to their high genome plasticity (Timilsina et al. 2019). Plant pathogenic bacteria 
such as Pseudomonas syringae complex (Monteil et al. 2014), P. syringae pv. aptata 
(Riffaud and Morris 2002), Ralstonia solanacearum complex (Caruso et al. 2005), 
Pectobacterium sp. And Dickeya sp. (Roozen 1990) ranged from a limit of 102 

to 106 CFU L−1 in various water sources which included surface water, river water, 
subalpine catchment basin, river headwaters, river basins, and ponds. These densities 
were strongly affected by the geographical area, time of sampling, temperature, and 
chemistry of the water. The high levels of the pathogen were assumed to be favored 
by weed colonization in the water resources (Lamichhane and Bartoli 2015). An 
increased nitrogen fertilization makes the plants more susceptible to many diseases. 
In addition, the irrigation furrow serves as a suitable area for the dispersal of many 
soil-borne pathogens (Lopes et al. 2006). Sprinkler irrigation is cost-effective and 
more efficient when compared to furrow irrigation however it leads to wetting of the 
surface of the foliage. Prolonged wetting of crop canopy infested with foliar plant 
pathogens serves as a breeding area for sporulating fungal pathogens leading to their 
easy and increased dispersal. Such a wet condition further leads to an increased 
pathogen buildup when the crops are grown closely spaced resulting in a dense crop 
canopy. This kind of situations mostly arises due to the use of sprinkler systems for 
irrigation. (Rotem and Palti 1969). The incidence of gummy stem blight caused by 
Didymella bryoniae and anthracnose caused by Colletotrichum gleosporoides fsp. 
cucurbitae in watermelon were highly reduced when the method of irrigation was 
shifted from overhead to furrow. Such a change was attributed due to the reduction 
in the leaf wetness period (Lopes et al. 2006). An increased duration of leaf wetness 
creates a favourable microclimate for the propogation of fungi and bacteria on the leaf 
surface leading to their effective invasion and establishment within the plant host (Lee 
et al. 2016). Water supplied through overhead irrigation on the leaf surface also serves 
as a matrix for the bacterial population as their survival is highly dependent upon free 
moisture (Café-Filho et al. 2019). Moreover, droplet splash resulting from sprinkler 
irrigation helps in the dispersal of the soil-borne pathogen, Ralstonia solanacearum 
causing wilt disease in potatoes. However the contrary case is observed in powdery 
mildew pathogens whose conidial spores are damaged by the action of overhead
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irrigation thereby proving overhead irrigation to be detrimental to their survival 
(Café-Filho et al. 2019). 

The zoospores of oomycete pathogens depend on free-flowing irrigation water for 
their movement and subsequent infection of other neighboring plants. In addition to 
transmitting plant pathogens, irrigation water also acts as a carrier of plant pathogens 
rendering many plant diseases to be water-borne. This is noticed in the case of diseases 
like club roots of cabbage caused by Plasmodiophora brassicae. An increase in the 
requirement for irrigation water as a result of the growing population has led to 
excessive use of groundwater resources leading to the depletion of groundwater. 
Moreover, climate change also has led to droughts and scarcity of rainfall which 
further demands increased usage of groundwater resources (Karthikeyan et al. 2020). 
Irrigation when given in excess, is also detrimental to the growth of crops in semi 
arid regions as they deprive the crop of sufficient respiration, increased salinity, and 
crop lodging ( Wichelns and Qadir 2015). Use of poor-quality irrigation water for a 
prolonged period can alter soil pH values. A shift in the pH change favours the survival 
of certain plant pathogens (Hentati et al. 2014). The presence of physical forms of 
debris in irrigation water results in the clogging of emitters in drip irrigation systems. 
This kind of physical debris is often combined with bacterial slimes thereby posing 
a risk of transmission of bacterial diseases to the crops (Gilbert et al. 1981). The 
extremely mild concentration of plant viruses in water samples renders it cumbersome 
to detect their presence and the sample has to be concentrated in order to generate 
a detectable amount of viral inoculum (Haramoto et al. 2018; Hjelmo et al. 2017). 
Metagenomics and high throughput sequencing approach have helped in generating 
an idea of the constitution of viromes from various sources of water viz., wastewater 
(Aw et al. 2014), Sewage (Fernandez-Cassi et al. 2018), Reclaimed water (Rosario 
et al. 2019) and freshwater (Djikeng et al. 2009; Mohiuddin and Schelhorn 2015). The 
pepper mild mottle virus (PMMoV) holds the capacity to survive and pass along the 
digestive tract of humans. In addition to that, this pathogen has a global distribution 
and is present in various water resources, and is categorized as a water pollution 
indicator (Rosario et al. 2019; Kuroda et al. 2015; Kitajima et al. 2018). 

4 Role of Biocontrol Microorganisms in Water Use 
Efficiency and Plant Disease Control 

In order to manage highly resistant soil-borne fungal pathogens under semi-arid 
conditions, farmers have advocated the indiscriminate use of fungicides. Such an 
approach tends to be perilous to the farmer’s health as well as the environment. More-
over, such a prolonged used of fungicidal-based approaches may lead to the devel-
opment of fungicide-resistant strains of plant pathogens (Pavlou and Vakalounakis 
2005). Under such situations, use of biological control agents for plant disease 
management offers a viable alternative.
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Biological control refers to the use of microbial antagonists to suppress plant 
diseases. The microbes employed for biological control use various mechanisms 
like Antibiosis, lysis, competition, hyperparasitism and induction of host resistance 
to inhibit the development of plant pathogens. Inoculation of plants with such biocon-
trol microorganisms helps in strengthening the plant leading to drought tolerance and 
better water retention by the plants. Several benefricial microorganisms exist side 
by side in the rhizospheric region of the plant. Such organisms establish useful 
relationships with the plant and affect the growth, nutrient uptake and water use 
efficiency through a variety of mechanisms. The strains of Azospirrilum brasilense, 
Aeromonas punctata, Bacillus megaterium, Pseudomonas fluroscens and Serratia 
marscescens are capable of directly modulating crop physiology by the produc-
tion of useful growth hormones while others lead to an upsurge of plant minerals 
and nitrogen in the soil as a way of accelerating crop growth under water-deficient 
conditions (Yadav 2010; Wang et al. 2012; Kaushal and Wani 2015; Barnawal et al. 
2017). Plant growth-promoting rhizobacteria secrete multivarious phytohormones, 
which include abscisic acid (ABA), ethylene, gibberellins, auxins, cytokinins, and 
salicylic acid. Such hormones help in sustaining the water status of the plant under 
moisture deficit conditions and are necessary for plant growth and disease avoidance 
(Prasad et al. 2019). Some famous examples of such rhizobacteria include Aceto-
bacter, Bacillus, Herbaspirillum and Rhizobium sp. Which produce gibberellins 
(Yang et al. 2009). Indole-3-acetic acid is produced by certain species of Micro-
coccus, Pseudomonas and Staphylococcus. The  Azotobacter chroococum bacteria 
produce cytokinins that makes plant capable of maintaining proper moisture levels 
under extreme conditions of drought stress. In addition to the action against plant 
pathogens, biological control plays a key role in the management of water resources 
in the semi-arid regions due to the specific capabilities of biocontrol agents like 
imparting drought tolerance. The plant growth-promoting rhizobacteria strain Paeni-
bacillus poylmyxa conferred drought tolerance to Arabidopisis thaliana by stim-
ulation of transcription of a drought responsive gene termed ERD-15 and ABA-
responsive gene RAB 18 (Timmusk and Wagner 1999). Moreover, biocontrol strains 
containing 1-aminocyclopropane-1carboxylate (ACC) deaminase generate induced 
systemic tolerance to drought-acquired stress conditions in several plants by the 
mechanism of ACC deaminase which tends to lower plant ethylene levels (Mayak 
et al. 2004). The use of Trichoderma strains for the management of soil-borne diseases 
in the arid regions of Saudi Arabia proved to be beneficial as the Trichoderma strains 
chosen for the purpose are native to the harsh soil conditions and tend to perform 
better than exotic strains of Trichoderma collected from elsewhere (Aleandri et al. 
2015; El-Komy et al. 2020; Yu et al.  2021). Combined application of a mixture of 
native Trichoderma strains was found to be effective in managing Fusarium root and 
stem rot disease in cucumber in semi-arid regions of Saudi Arabia (El-Komy et al. 
2022). Chickpeas and pigeonpea constitue the major pulse crops grown under semi-
arid conditions in India. The major biocontrol agent used to manage pulse diseases 
in the semi-arid regions include Streptomyces spp. 

Among them Streptomyces tsusimanensis, S. caviscabies, S. setonii, S. africanus 
were found quite effective in the management of Fusarium wilt of chickpea. Among
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these strains KAI-32 and KAI-90 was also equally effective in inhibiting the soil 
borne pathogen Macrophomina phaseolina causing charcoal rot of sorghum. In addi-
tion to their role in preventing plant pathogens the Streptomyces agents also exhibited 
dual role of promoting crop growth and yield. Pseudomonas protect plant health by 
a wide array of mechanisms which include nitrogen fixation, phosphate solubiliza-
tion and plant hormone production (Penrose and Glick 2003; Mirza et al. 2006). 
The use of Rhizobacteria as a biocontrol agent finds great application among which 
Exopolysaccharide (EPS) production is well documented (Rashid et al. 2016) The  
exopolysaccharides in turn help in regulating the hydraulic conductivity and supple-
ments the soil water holding capacity thereby protecting plants during drought stress. 
The EPS also protects the beneficial soil microbes from undergoing desiccation under 
conditions of extreme water stress in the soil (Colica et al. 2014). 

In addition to aiding in drought tolerance, certain archaea and bacteria discov-
ered in semi-arid regions possess additional features which help in strengthening the 
plant to tolerate harsh semi-arid conditions and improve water use capacity. Among 
them nitrogen fixation and phosphorus solubilization properties are exhibited by 
Bradyrhizobium spp. And Serratia marcescens found in the Northern part of Egypt 
(Badawi et al. 2011), nitrogen fixation alone by Pelomonas saccharophila, Methylos-
inus trichosporium, Sinorhizobium sp, Methylococcus capsulatus and Azorhizobium 
caulenodans found in The Thar desert of India (Chowdhury et al. 2009), nitrogen fixa-
tion, phosphate and zinc solubilization, production of hydrogen cyanide, siderophore, 
indole acetic acid and salicyclic acid production by Bacillus, Enterobacter and Pseu-
domonas from Saudi Arabia (El-Sayed et al. 2014). The mechanism of EPS in 
mitigating drought stree is through the improvement of soil texture and structure. 
Maize plants growing in the semi-arid regions of Pakistan showed an improvement 
in plant growth despite being under drought stress. This was mainly attributed to 
treatment of maize seeds with bacteria such as Pseudomonas aeruginosa, Proteus 
panneri and Alacaligenes faecalis. In addition to imparting drought resistance, these 
bacteria also helped in enhancing the plant leaf area, shoot and root length and 
soil moisture. The bacteria also stimulated an increased synthesis in protein, sugar 
and water content (Naseem and Bano 2014). Under Indian conditions, numerous 
biological control microorganisms antagonistic to plant pathogens occurring in the 
semi-arid regions have been well documented. These include Streptomyces, Tricho-
derma viride, Trichoderma harzianum, Trichoderma virens, Bacillus subtilis and 
Aspergillus niger AN 27 showing inhibitory action against the pathogens Fusarium 
solani fsp. Solani, F. oxysporum f.sp. ciceri affecting chickpea (Gopalakrishnan et al. 
2011; Singh 2014; Mahbobeh et al.2016), Streptomyces griseus, Streptomyces sp., T. 
viride, T. harzianum and Pseudomonas fluoroscens effective against the pathogen 
Sclerotium rolfsii causing collar rot of chickpea (Sreevidya and Gopalakrishnan 
2013; Singh and Gaur 2016), T. harzianum, Alcaligenes xylosoxydans, T. viride, 
T. harzianum, Pantoea dispersa, B. subtilis AF1, P. fluoroscens and Bacillus subtilis 
are effective against Fusarium udum causing Fusarium wilt of pigeonpea (Siddiqui 
et al. 1998; Manjula and Podile 2001; Gounder and Srikanth 2002; Prasad et al. 2002; 
Vaidya et al. 2003; Mishra et al. 2018).
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5 Role of Water Scarcity as a Cause of Plant Disease 

Drought-like situations are highly favourable for developing of dry root rot and 
powdery mildew disease in legume crops (Gautam et al. 2013). The pathogen Xyllela 
fastidiosa is a fastidious xylem limted vascular bacteria causing Pierces disease of 
grapes. The effects of the disease are manifested in the form of clogged xylem 
vessels and reduced sap flow through plant system. Moreover, water-stressed condi-
tions makes the plants more vulnerable to the attack of the pathogen (Mc Elrone 
et al.; Baccari and Lindow 2011; Choat et al. 2009). The arthropod vector Homo-
ladisca vitripennis transmitting the pathogen was found to acquire the bacteria at a 
faster rate when they were subjected to infected plants under water-stressed condi-
tions. However when a choice of water-stressed infected and well-watered uninfected 
plants was presented to the vectors, the transmission efficiency rate of pathogen by 
the vectors decreased with increasing water stress (Cid et al. 2018). Chickpea and 
pigeonpea are predominantly grown in semi-arid tropics. The soils in these regions 
are characterized as nutrient deficient and also receive scanty rainfall, which leads to 
impediments of proper crop growth. Some plants growing in semi-arid regions have 
evolved mechanisms to overcome such conditions. This includes the development 
of regulatory mechanisms to control the movement of stomata during a period of 
water stress and pathogen attack (Schroeaden et al. 2001; Arnaud and Hwang 2015). 
Under such harsh conditions the production of Reactive oxygen species is triggered 
in the apoplast leading to stomatal closure (Qi et al. 2017). In addition to the above, 
plants possess a complex innate immune system characterised by the recognition of 
Pathogen Associated Molecular Patterns (PAMPs) by Pattern Recognition Receptors 
(PRR) in the plant system which leads to the activation of PAMP-triggered immunity. 
Such a kind of response leads to heightened levels of cytosolic Ca2+, stomatal closure 
and enhanced expression of pathogenesis-related genes which ultimately leads to the 
restriction of the pathogen (Lu et al. 2010; Zhang et al. 2010). 

6 Management of Water Resources to Alleviate Plant 
Diseases 

In the case of potato, the incidence of common scab disease caused by Streptomyces 
scabies is associated with water stress during the initial growth stages post-planting 
of potato tubers. This calls for maintaining optimum moisture levels in the soil 
for managing the disease. In order to curtain the disease overhead irrigation was 
suggested which minimized the disease incidence by 50%. Management of certain 
soil borne diseases is achieved by irrigating in surplus. Using this strategy flooding the 
soil was found to control several soil-borne pathogens like Fusarium oxysporum fsp. 
Cubense (Zentmeyer and Bald, Damping off disease caused by oomycete pathogens 
was found to be controlled when the quantity of flow irrigation was minimised 
thereby preventing injury to root system (Elmer et al. 2012). The necrotrophic fungus
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Rhizoctonia bataticola causes dry root rot of chickpea. High temperature and low 
soil moisture are predisposing factors for this disease. Therefore optimal irrigation 
to prevent occurrence of drought is highly essential (Sinha et al. 2021). 

The intensity of anthracnose disease of watermelon caused by Colletotrichum 
gleosporoides fsp. Cucurbitae was reduced when the method of irrigation was shifted 
to furrow method from sprinkler method of irrigation. This change was attributed to 
reduction in the time period of foliar wetness resulting in inhibition of pathogen 
invasion. In contrast sprinkler method of irrigation is often detrimental to plant 
health as it encourages foliar wetting and humidity buildup within the plant system 
allowing buildup of pathogens. An alternative method to this includes surface irri-
gation methods like furrow or flood irrigation which results in wetting only the 
soil regions thereby preventing foliar wetting (Rotem and Palti 1969). Conventional 
surface irrigation methods like flood and furrow are slowly being replaced by the 
drip irrigation systems keeping in view plant health. The drip irrigation method helps 
in the conservation of 50% of water and also decreases incidence of weeds, pests 
and diseases (Manda et al. 2021). The drip irrigation method is also highly essential 
for better plant nutrient utilization which helps it in generating resistance against 
major plant diseases. An appreciable increase in yield components in groundnut was 
observed when plant micronutrients were applied to groundnut through drip irriga-
tion (Singh et al., 2021). However micronutrient irrigation through the drip method 
often leads to salt precipitation as a result of problems in components of the drip 
irrigation system. Such kind of prolonged precipitation leads to fluctuation of soil 
pH values which leads to a drastic change in the activity of plant pathogens and other 
beneficial microorganisms in the soil (Lucas and Davis 1961; Capra and Scicolone 
1998; Stark et al. 2012). Such fluctuations in pH values lead to higher incidence of 
diseases in many crops. A low soil pH value of 5.5 enhances the disease incidence 
of bacterial wilt of tobacco (Li et al. 2017). Similarly, The soil-borne pathogen Scle-
rotium rolfsii, was able to colonize and invade the groundnut plants effectively in a 
soil pH range of 5–6 when compared with alkaline soil (Shim and Starr 1997). 

Fusarium wilt disease of banana affects the vascular region of banana plant and 
with increased progression of the disease death of tissues occur due to dominance of 
necrotrophic phase of the pathogen (Dita et al. 2018; Ploetz 2019). The pathogen is 
perpetuated effectively by chlamydospores present in the soil which are stimulated 
by host nutrients (Dita et al. 2018). The upsurge of the disease generally occurs 
when banana plantations are irrigated using water from contaminated dams or rivers 
or when flood water encountering the pathogenic spores arrives in the cropped area 
(Stover 1962; Su et al.  1986). Therefore, irrigation water received as a result of surface 
run off from diseased plantations should be avoided. Moreover, its advised to use a 
flotation inlet for the irrigation system (BIPB 1989). Overall, excessive irrigation is to 
be avoided in cases when presence of excess water around the plant root zone makes 
the plant more susceptible to diseases. An increase in the level of soil moisture 
activates the zoospores of many oomycete plant pathogens. These zoospores can 
move through the film of water in the soil thereby infecting neighbouring crops with 
the disease (Agrios 1997). When the soil is at field capacity, some of the pathogens 
exhibit their fullest potential to cause infection which includes the soil-borne fungi
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Phytophthora, Sclerotinia and Rhizoctonia, bacteria like Pseudomonas and Erwinia 
and the majority of the nematodes. Most of the bacterial plant pathogens and fungal 
pathogens attacking the plants during their juvenile stages prefer the presence of a 
high amount of soil moisture (Agrios 1997). Excessive moisture reduces the capacity 
of the host plant to protect itself from certain diseases. This is mainly attributed to 
lower amount of oxygen and lower temperature of soil under such situations (Hiltunen 
and White 2002). 

The water exuded from industrial wastewater plants can be made fit for irrigation 
purposes once treated thereby helping in recycling the water (Pedrero et al. 2010). 
Using waste water for irrigation is mostly observed in water deficient areas (Jesse 
et al. 2019; Soller et al. 2017). Around twenty mha of land receives irrigation in 
the form of treated and untreated wastewater on a global scale which is estimated to 
increase in the future (Medoza-Espinoza et al. 2019). In recent days the handling and 
care of wastewater generated due to rapid urbanization is a challenge as untreated 
waste water tends to pollute water resources and leads to the spread of water borne 
diseases (Menegassi et al. 2020; Petousi et al. 2019). However certain problems may 
arise in the use of recycled water like deterioration of soil quality, toxicity to crops 
due to heavy metals and plant pathogens present in recycled water (Redekar et al. 
2019; Rattan et al., 2005). In the point of view of plant health, recycled irrigation 
water is a harbouring area of many plant pathogens especially Phytophthora and 
Pythium (Redekar et al. 2019). Detection of plant pathogens in recycled irrigation 
water was tested using filters and bait methods. The filter method helped in detecting 
a large oomycete diversity whereas leaf baits showed specificity in capturing plant-
associated oomycete pathogens (Redekar et al.2019). Chlorination was devised as an 
effective management strategy for the elimination of such oomycete plant pathogens 
from recycled irrigation water and was well established from previous studies. 

A zero valent iron filtration was tested as a method for treating water before 
releasing it for irrigating crops. The zero valent iron consists of a metallic nano 
particle that serves as a filtering material. This filter helped in effectively reducing the 
amount of E. coli bacteria in irrigation water obtained after filtering compared with 
unfiltered water. In addition, the filtered water also had an increased pH (Anderson 
Coughlin et al. 2021). Analysis of plant pathogenic bacteria in irrigation water prior 
to their release for watering is highly essential. Some of the studies used to date 
for the purpose include immunofluorescence colony staining (Riffaud and Morris 
2002), DAS-ELISA (Caruso et al. 2005) and quantitative-real time PCR (Cottyn 
et al. 2011) among which the real-time PCR method is highly efficacious and sensitive 
(Lamichhane and Bartoli 2015). More recently, the concept of organic application 
of nutrients is slowly taking shape where the nutrients are added in the form of 
manures, compost, residues of crops and legumes. The release of nutrients from 
such sources relies upon the natural processes in the soil system (Stockdale et al. 
2002). The soils receiving the organic form of nutrients are known to have a better 
water-holding capacity which serves as an ideal feature to plants in the semi-arid 
conditions (Lampkin 1999).
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7 Conclusion 

The semi-arid areas involve a large proportion of the world’s arable land. Therefore 
proper water management in such areas with the use of irrigation methods capable of 
conserving water without compromising on crop moisture requirements is essential. 
Such an attempt will help to prevent many crop diseases generated as a result of 
improper irrigation practices and help alleviate drought stress, thereby preventing 
plant pathogens favored by drought like situations. Most plant pathogenic fungi and 
bacteria depend on free water for their survival and dissemination. Therefore the 
irrigation methods should not lead to the accumulation of free water on the surface 
of foliage. Micronutrient application by the method of drip irrigation leads to reduced 
disease as well as helps in conserving water in semi-arid regions. A brief knowledge of 
the ecology and epidemiology of plant pathogens in irrigated and water-scarce areas 
is essential to help devise strategies for the management of pathogens in such specific 
locations. Technologies for rapidly detecting of plant pathogens in water resources 
meant for irrigation are highly peremptory. Beneficial soil microbe interactions are 
to be identified to determine the disease control and drought resistance imparting 
potential of soil microorganisms. 
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Evaluation of Guelph Permeameter 
for Measuring Saturated Hydraulic 
Conductivity on Semi-arid Agricultural 
Catchment 

B. B. Prajwal and P. N. Chandramouli 

Abstract In an agricultural field, soil texture, cropping or tillage techniques, land-
scape orientations, and growing seasons have an impact on the spatial variability 
of saturated hydraulic conductivity (Ks). Regardless of the technique employed to 
measure Ks, the variability and heterogeneity of the soils have an impact on its 
measurements. This study’s objective was to compare Ks at a depth of 15 cm in 
a semi-arid agricultural catchment using a variety of techniques, double ring infil-
trometer (DRI) and guelph permeameter (GP) at the site, constant and falling head 
permeameters (CHPT and FHPT) at the laboratory and Rawls and Brakensiek regres-
sion equation based on the soil texture and porosity. Comparisons of Ks values of 
GP with all the other methods and evaluating the performance of the Rawls and 
Brakensiek regression equation in relation to the GP’s Ks. Results of this study 
shows that mean Ks value obtained from five different methods, DRI, GP, CHPT, 
FHPT and Rawls-Brakensiek regression equation for selected agricultural catchment 
with varying soil type were differ from each other. Mean Ks measured using DRI 
were higher than any other methods. As CHPT and FHPT measures Ks vertically 
and ramming of cores into soil could disturb the soil’s structure results in lesser Ks 

values when compared with field (DRI and GP) Ks. Rawls and Brakeinsiek regres-
sion equation agreed favorably and showed good performance with GP. The primary 
source of knowledge for choosing the right approach for certain conditions and soil 
properties is comparison of several methods. 
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1 Introduction 

The design and monitoring of irrigation and drainage systems, canals and reservoirs, 
ponds and percolation pits, landfills, water storage tanks, ground water, septic tank 
systems, and many other agricultural, industrial, and environmental installations 
depend critically on the water transmission characteristics of the unsaturated zone 
(Reynolds and Elrick 1986; Bouwer and Jackson 1974; and others). To accurately 
anticipate how much water will flow through a soil profile, it is vital to know the 
saturated hydraulic conductivity (Ks) of the  soil.  Ks is an important parameter in 
governing a variety of hydrological processes, including rainfall, infiltration and 
surface runoff. Ks is defined as the rate of infiltration at steady state when the hydraulic 
gradient is equal to unity. In an agricultural field, soil texture, cropping or tillage 
techniques, landscape orientations, and growing seasons have an impact on the spatial 
variability of Ks. It is also one of the main input variables in the majority of physically 
based watershed models that are used to assess the effects of various land uses and 
management strategies on the dynamic behavior of soil and water. Regardless of the 
technique employed to measure Ks, the variability and heterogeneity of the majority 
of soils have an impact on its measurements. 

Field experiments, such as guelph infiltrometer (GI), double ring infiltrometer 
(RI), rainfall stimulator (RS), and guelph permeameter (GP) to compare hydraulic 
conductivity (Ks) were conducted by Gupta et al. (1993). The results revealed that 
Ks values produced by RI and GP techniques were statistically equivalent, but were 
lower when compared to values obtained by RS and GI. Additionally, it was noted 
that the values acquired using GP and GI methods had high degrees of variability 
and required a larger number of observations to arrive at a mean value of Ks that 
had a similar standard error of estimation to that of the values obtained using RI and 
RS methods. Gallichand et al. (1990) compared the Guelph permeameter, falling 
head permeameter, and single auger hole method to determine the hydraulic conduc-
tivity. According to the results, the falling head permeameter had a lower Ks value 
than the other two methods. The existence of macropores, fewer sampling volumes, 
soil anisotropy, and disturbance of the cores all served as explanations for the lower 
hydraulic conductivity. Kanwar et al. (1990) conducted laboratory studies utilizing 
the constant head permeability approach as well as field experiments at a number 
of depths and sites using guelph permeameters and velocity permeameters to assess 
the effectiveness of two methods for determining hydraulic conductivity. The results 
indicate remarkably similar values for the two methods and due macropore flow, 
laboratory results demonstrated a greater Ks than guelph permeameter approach. 
Mohanty et al. (1994) performed analysis to evaluate the impact of four in situ satu-
rated hydraulic conductivity measuring methods comprising of guelph permeameter, 
velocity permeameter, disk permeameter and double-tube methods at different field 
conditions. The Ks value was also calculated in the laboratory using undisturbed soil 
cores collected from all four sites and depths. The results revealed minimal variation, 
probably due to large sample sizes in Ks values obtained by the disc permeameter and
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double-tube methods and lowest Ks values due to small pore size for guelph perme-
ameter method and presence or absence of open-ended macropores may have caused 
the maximum variation in Ks values for soil cores at shallow depths. Jačka et al. 
(2014) studied the Guelph permeameter, single ring infiltrometer, and lab perme-
ameter as three saturated hydraulic conductivity evaluation methods in the shallow 
subsurface layer. This study produced significantly higher mean values of lab perme-
ameters than the other two approaches, the presence of macropores and full saturation 
of the soil sample during lab permeameter technique resulted in higher Ks values. 
Mahapatra and Jha (2019) investigated the values of Ks by four pedotransfer func-
tions, including Campbell, Rawls-Brakensiek, Cronican-Gribb, and Rosetta Model 
2 and 3 with minimal data available on layered vadose zones and assessed satu-
rated hydraulic conductivity in the field using a Guelph permeameter. The analysis 
revealed that the Models 2 and 3 of the Rosetta had Ks values that were, to some 
extent, equivalent, and that the Rawls-Brakwseink equation produced good Ks values 
in the deeper lateritic strata of the vadose zone with finer sandy clay loam texture. 

The comparison of Ks from field, laboratory and texture-based models has only 
been studied in a small number of research. There were also surprisingly little studies 
conducted on Ks investigations in semi-arid agricultural catchments, particularly in 
southern Karnataka. This study’s objective was to compare the saturated hydraulic 
conductivity (Ks) at a depth of 15 cm in a semi-arid agricultural catchment having 
varying soil types using a variety of techniques, double ring infiltrometer (DRI) and 
guelph permeameter (GP) at the site, constant and falling head permeameters at the 
laboratory and Rawls and Brakensiek regression equation based on the soil texture 
and porosity. Comparing Ks values of GP with all the other methods and evaluating 
the performance of the Rawls and Brakensiek regression equation in relation to GP’s 
Ks. 

2 Materials and Methods 

2.1 Study Area Description 

The experimental area selected as shown in Fig. 1 was an agricultural catchment near 
Baradanapura village, Mysore district, Karnataka. It covers an area of about 1.873 
km2 and is located between 12°13'2.72'' N latitude and 76°32'59.51'' E longitude. The 
catchment shows topographic variation with elevations ranging from 650 to 728 m 
(from 12.5 m ALOS DEM). The catchment comes under semi-arid climatic condi-
tions with varying temperature of 24–29 °C during summer and 18–22 °C during 
winter. The evaporation ranges from 6.5–7.5 mm/day. Average annual rainfall over 
last 10 years is 852 mm and it is maximum during June to October. The catchment 
has a wide range of soil textures as well as geological formations that are heteroge-
neous. Agriculture is the most important socio-economic activity in Baradanapura
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Fig. 1 Study area map 

Catchment and agricultural land makes up roughly 90% of overall catchment area. 
Rainfall, tanks and ground water are the major irrigational sources for agriculture. 

2.2 Site Investigation 

At 15 cm deep, 21 distinct locations within the selected agricultural catchment have 
been studied and the tests were carried out in the months of March and April, 2022. 
Infiltration rate and hydraulic conductivity measurements at the sites were performed 
using Double Ring Infiltrometer and Guelph Permeameter and at the same time soil 
samples including core cutters were collected to carry out laboratory tests. The next 
sections provide a brief explanation on the theoretical aspects of the process used to 
calculate Ks using each technique.
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2.3 Determination of Physical Properties of Soil 

As shown in Fig. 2, undisturbed soil samples were collected for the determination 
of physical properties of soil such as texture, water content, bulk density, particle 
density followed by porosity. Wet sieve analysis and hydrometer analysis were used 
to determine the particle size distribution of the soil samples obtained from each 
location, and particle size distribution curves were plotted. As per United States 
Department of Agriculture (USDA) soil texture classification system, the soil samples 
were classified into several textural classes based on the percentages of Sand, Silt, 
and Clay so acquired. Core cutter method and density bottle method, respectively, 
were used in the laboratory to assess bulk density and particle density. 

Bulk density (γb) (g/cm3), Dry density (γd ) (g/cm3), Particle density and Porosity 
(∅) (volume fraction) were calculated using following expressions: 

γb = 
W2 − W1 

V 
(1) 

γd = 
γb 

1 + w 
(2) 

Particle  densi t y  = 
Mass o f  soil  sample 

V  olume o f  soil  sample  
(3) 

Porosi ty  = 1 − 
Bulk Densi ty  

Particle  Densi t y  
(4) 

Where, W1 = weight of core cutter (g); W2 = weight of core cutter with soil sample 
(g); V = volume of core cutter (cm3); w = water content.

Fig. 2 Collection of soil samples at site 
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2.4 Estimation of Saturated Hydraulic Conductivity 
by Various Method 

Hydraulic conductivity has been measured using a variety of instruments, including 
the Double Ring Infiltrometer (DRI), Guelph Permeameter (GP), Constant Head 
Permeability Test (CHPT), Falling Head Permeability Test (FHPT), and Rawls-
Brakensiek regression equation (Estimated) based on the textural classification and 
soil porosity. 

2.4.1 Double Ring Infiltrometer 

Two concentric metal rings with diameters of 30 and 45 cm make up the double 
ring infiltrometer. As shown in Fig. 3 to a depth of 15 cm, these rings were carefully 
inserted into the ground. The rings were filled with water, and during the experiment, a 
steady head of water was maintained in the inside ring. Additionally, water was held in 
the outer ring to keep water from flowing laterally beneath the inner ring and maintain 
one-dimensional flow conditions. Following the recording of the observations of 
cumulative infiltration versus time, the infiltration rates for elapsed times from the 
start of each experiment were calculated. The modified Philip’s infiltration equation 
was used to examine these infiltration data in order to calculate Ks values. 

Philip (1958) presented that one-dimensional infiltration under ponded conditions 
could be defined by a simple and rapidly converging power series in t1/2. In the  
current investigation, the first two terms of Philip’s modified solution were used in

Fig. 3 Double ring infiltrometer at site 
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the following equation: 

v(t) = 
1 

2 
St 

1 
2 + A (5) 

Where, v(t)= infiltration rate (cm/h); A= parameter known as transmissivity factor 
(cm/h); S= sorptivity (cm/h1/2); t= elapsed time since the start of infiltration (h). 

The saturated hydraulic conductivity (Ks) is functionally connected to both the 
A and S parameters and by analysing the experimental data and fitting the above 
equation to it, these parameters were established. The A values were converted to Ks 

estimates by using a multiplying factor of 2/3 (Youngs 1968). 

2.4.2 Guelph Permeameter 

The Mariotte principle is used by the Guelph permeameter, a constant head perme-
ameter shown in Fig. 4 that relies on the assumption of steady-state flows from a 3 cm 
cylindrical auger hole of 15 cm depth in the soil (Reynolds and Elrick 1985). The 
instrument measures the steady-state flow rate at predetermined depths to determine 
both the horizontal and vertical Ks. Prior to taking the measurements, the well hole 
was first augured to a depth of 15 cm. Two heads (5 and 10 cm) for the same auger 
hole were used in the trials, which were run at the same depth until a steady state 
was reached. The field Ks is calculated by following equations: 

Fig. 4 Guelph permeameter at site
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Ks = G2 Q2 − G1 Q1 (6) 

Q1 = R1x35.39 (7) 

Q2 = R2x35.39 (8) 

G1 = H2C1 

π(2H1 H2(H2 − H1) + a2(H1C2 − H2C1) 
(9) 

G2 = H1C2 

π(2H1 H2(H2 − H1) + a2(H1C2 − H2C1) 
(10) 

Where, H1 and H2= head maintained (5 and 10 cm); a= radius of well; C1 and C2 

= dimensionless shape factor that depends on H/a ratio and soil texture-structure 
category (Reynolds and Elrick 1986; Zhang et al. 1998). 

2.4.3 Constant and Falling Head Permeability Test 

Klute and Dirksen (1986) discussed the constant head and falling head methods for 
determining the saturated hydraulic conductivity of soil in a laboratory setting. With 
the dolly in position, the core cutter is rammed into the ground vertically at a depth 
of 15 cm. After it has been driven all the way through, the cutter is removed from the 
ground and both ends are trimmed. Undisturbed soil sample collected from the field 
is enclosed in the permeameter and soil sample is continuously subjected to water 
flow until it gets completely saturated. After reaching a steady state flow rate, the 
following Darcy’s law formulae are used in laboratory testing as shown in Fig. 5 to 
calculate the saturated hydraulic conductivity (Ks).

k = 
q 

i A  
(11) 

k = 2.3 
aL  

A(t2 − t1) 
log10 

h1 
h2 

(12) 

Where, k= coefficient of permeability (cm/h) or saturated hydraulic conductivity 
(Ks); q= discharge of water flowing through soil sample (cm3/h); i= hydraulic 
gradient; A= cross- sectional area of permeameter (cm2); a= cross- sectional area 
of stand pipe (cm2); L= length of permeameter (cm); t2 − t1= time interval (h); h1 
and h2= head causing flow (cm).
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Fig. 5 Saturated hydraulic conductivity tests at laboratory

2.4.4 Rawls and Brakensiek Regression Equation 

Rawls and Brakensiek (1989) published regression equations for the Brooks and 
Corey (1964) soil water retention and hydraulic conductivity parameters as a function 
of soil characteristics and also considered the porosity property which affects the 
infiltration rates. The formulae hold true for clay percentages more than 5% and 
below 60% as well as for sand percentages greater than 5% and below 70%. Equation 
for saturated hydraulic conductivity (Ks) (cm/h) for the USDA soil texture classes is 
given below: 

Ks = e 

⎡ 

⎢⎢⎢⎢⎢⎣ 

19.52348(∅) − 8.96847 − 0.028212(C) + 0.00018107
(
S2

)

−0.0094125
(
C2

)
− 8.395215

(
∅
2
)

+ 0.077718(S)(∅) − 0.00298
(
S2

)(
∅
2
)

−0.019492
(
C2

)(
∅
2
)

+ 0.0000173
(
S2

)
(C) + 0.02733

(
C2

)
(∅) 

+0.001434
(
S2

)
(∅) + 0.0000035(C2)(S) 

⎤ 

⎥⎥⎥⎥⎥⎦ 

(13) 

Where, ∅= porosity (vol fraction); C= percentage of clay; S = percentage of sand. 

2.5 Performance Assessment of Rawls and Brakensiek 
Regression Equation 

The Performance assessment of Ks determined using Rawls-Brakensiek regression 
equation with Ks of GP was compared using the following equation:
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Coefficient of determination (R2 ) =
[

N
Σ

XY  − Σ
X

Σ
Y √

N
Σ

X2 − Σ
X2 

√
N

Σ
Y 2 − Σ

Y 2

]2 

(14) 

Root Mean Square Error(RMSE) =
⌜||√ 1 

N 

NΣ
i=1 

(Xi − Y j )
2 (15) 

Mean Absolute Error(MAE) = 
1 

N

(
NΣ
i=1 

|Xi − Y j |
)

(16) 

Nash Sutcliffe Efficiency(NSE) = 1 −
ΣN 

i=1 (Xi − Y j )
2

ΣN 
i=1 (Xi − X) 2

(17) 

Where, X or Xi= Estimated Ks; Y or Y j= Observed Ks; X= mean of estimated Ks; 
N= number of measured values. 

3 Results and Discussion 

3.1 Determination of Physical Properties of Soil 

In the laboratory, soil samples collected throughout the catchment are analysed and 
classified in accordance with the USDA (United States Department of Agriculture) 
soil textural classification. Texture of soil is typically coarser towards the surface 
and gradually finer as it descended. Table 1 presents the findings from the analysis 
of particle size and porosity for each site at a depth of 15 cm. It was found that the 
experimental site contains four main types of soils i.e., loamy sand, sandy loam, 
sandy clay loam and silty clay loam and the percentage of porosity ranged from 
40.40 to 56.56.

3.2 Determination of Ks Obtained from Field, Laboratory 
and Estimated Values by Rawls-Brakensiek Regression 
Equation 

Table 2 and Fig. 6 provides an overview of raw Ks results from five different methods, 
DRI, GP, CHPT, FHPT and Rawls and Brakensiek regression equation (Estimated) 
on four distinct soils. Because of its spatial variability, Ks is considered to have a 
log-normal distribution. Unless otherwise specified, the geometric mean is taken into 
account in the study (Bouwer and Jackson 1974; Lee et al. 1985). The measured mean
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Table 1 Physical properties of soil at Baradanapura agricultural catchment 

Site Clay (C) (%) Silt (%) Sand (S) (%) Porosity (∅) (%) Textural class 

1 28.00 48.00 24.00 50.82 Silty clay loam 

2 37.00 39.00 24.00 51.95 Silty clay loam 

3 27.00 47.00 26.00 56.56 Silty clay loam 

4 27.00 47.00 26.00 52.87 Silty clay loam 

5 27.00 47.00 26.00 56.12 Silty clay loam 

6 26.00 48.00 26.00 52.15 Silty clay loam 

7 28.00 18.00 54.00 46.32 Sandy clay loam 

8 21.00 23.00 56.00 43.40 Sandy clay loam 

9 29.00 18.00 53.00 45.40 Sandy clay loam 

10 23.00 19.00 58.00 43.70 Sandy clay loam 

11 23.00 19.00 58.00 43.16 Sandy clay loam 

12 14.00 24.00 62.00 41.13 Sandy loam 

13 16.00 22.00 62.00 41.70 Sandy loam 

14 12.00 26.00 62.00 40.40 Sandy loam 

15 13.00 24.00 63.00 42.48 Sandy loam 

16 13.00 24.00 63.00 42.48 Sandy loam 

17 6.00 25.00 69.00 41.57 Loam sand 

18 6.00 26.00 68.00 47.90 Loam sand 

19 7.00 27.00 66.00 47.59 Loam sand 

20 8.00 24.00 68.00 42.54 Loam sand 

21 7.00 26.00 67.00 43.59 Loam sand

Ks values (in cm/h) from five methods range from 0.39 to 0.48 for silty clay loam, 
1.57 to 1.84 for sandy clay loam, 2.63–2.88 for sandy loam, and 5.35–7.03 for loamy 
sand. Also Ks values (cm/h) obtained from 21 sites using DRI, GP, CHPT, FHPT 
and regression equations ranges from 0.25–10.25, 0.25–8.42, 0.24–8.25, 0.25–8.31 
and 0.22–8.28 respectively.

Due to the fact that DRI is a flooding-type infiltrometer and considers larger 
surface area for sampling than the other methods, its Ks values were generally higher 
at all of the sites. Because of unanticipated anthropogenic factors that lead to changes 
in pore structure at the ground surface, mean Ks values measured from the field (DRI 
and GP) are greater than the laboratory Ks (CHPT and FHPT). However, because 
an infiltrometer depends on water penetration at the soil surface for its readings, 
these factors may have a greater effect on those measurements (Ghosh et al. 2019). 
There was a slight difference in Ks measured by laboratory methods (CHPT and 
FHPT). The mean estimated Ks value derived from the regression equation, with the 
exception of silty clay loam soil, falls within the range of field and laboratory Ks and 
it is almost comparable with that of the field or lab Ks at every site.
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Table 2 Comparison of Ks for different type of soils 

Soil type Site Ks (cm/h) 

DRI GP CHPT FHPT Estimated 

Silty clay loam 1 0.25 0.25 0.24 0.26 0.30 

2 0.27 0.26 0.27 0.25 0.22 

3 1.04 0.83 0.73 0.65 0.91 

4 0.41 0.40 0.39 0.34 0.51 

5 0.78 0.77 0.79 0.76 0.85 

6 0.41 0.39 0.36 0.34 0.48 

Mean Ks (cm/h) 0.46 0.43 0.42 0.39 0.48 

Sandy clay loam 7 1.87 1.68 1.44 1.43 1.75 

8 1.76 1.52 1.45 1.39 1.64 

9 1.32 1.30 1.13 1.27 1.25 

10 2.32 2.29 2.26 2.17 1.98 

11 2.11 1.83 1.81 1.73 1.79 

Mean Ks (cm/h) 1.84 1.69 1.57 1.57 1.66 

Sandy loam 12 2.84 2.83 2.82 2.81 2.35 

13 2.68 2.54 2.50 2.27 2.51 

14 2.47 2.44 2.66 2.40 2.12 

15 3.10 3.07 2.99 2.95 3.18 

16 3.38 3.26 3.08 3.13 3.18 

Mean Ks (cm/h) 2.88 2.81 2.80 2.69 2.63 

Loamy sand 17 4.76 4.46 4.30 4.16 4.22 

18 10.25 8.42 8.25 8.31 8.28 

19 8.74 7.49 6.07 6.46 7.12 

20 5.77 4.51 4.06 3.87 4.69 

21 6.96 6.27 5.98 5.06 4.80 

Mean Ks (cm/h) 7.03 6.03 5.54 5.35 5.62

3.3 Comparison of Ks Measured from GP with Ks of DRI, 
CHPT, FHPT and Rawls-Brakensiek Regression 
Equation 

Figures 7, 8, 9 and 10 show comparisons of Ks obtained via GP with those obtained 
from other methods for silty clay loam, sandy clay loam, sandy loam, and loamy 
sand, respectively. Ks measured from GP demonstrated good agreement with all 
four approaches, as evidenced by the four methods’ R2 values which vary from 0.85 
to 0.99 which is plotted against GP. As a result of its greater sampling area, different 
experimental installation depths, and reliance on water entry at the soil surface, DRI’s 
Ks values were often higher than those produced by GP. In contrast, GP readings
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Fig. 6 Box plots for comparison of Ks obtained from various methods for different type of soils
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were obtained by auguring a 3 cm diameter borehole at a depth of 15 cm. For all 
sites, GP’s Ks were in good agreement with laboratory Ks using CHPT and FHPT, 
but laboratory Ks were lower than GP’s Ks because GP measures both vertically 
and horizontally. Additionally, the volume of soil sampled by each method, soil 
compaction during core extraction, root channels, macropores, wormholes, tillage 
and irrigational practices, different type of crops grown and soil anisotropy may also 
have an impact on the Ks of soil. According to Rogers and Carter (1987), ramming 
of cores into soil could disturb the soil’s structure, which would lead to lower Ks. 
Similar outcomes were found when Kanwar et al. (1990) compared GP with constant 
head permeameter and Gallichand et al. (1990)’s evaluation of the GP with falling 
head permeameter. 

Though there were slight variations in Ks value obtained, Ks value calculated 
using the Rawls-Brakensiek regression equation was in good agreement with those 
measured by GP. Table 3 represents statistical performance indices assessment of 
estimated value of Ks by Rawls and Brakensiek regression equation with Ks deter-
mined using GP for different soils. Estimated Ks using regression equation were 
having lower MAE and RMSE values ranging 0.01–0.03 and 0.03–0.08 respectively 
and higher R2 and NSE values ranging 0.85–0.93 and 0.91–0.99 respectively, which
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Fig. 7 Comparison of Ks obtained from GP with other methods for silty clay loam
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Fig. 8 Comparison of Ks obtained from GP with other methods for sandy clay loam

indicates the good performance of regression equation with GP. Several assump-
tions and considerations made to carry out each experiments led to variations in Ks 

measurements. Field Ks measured using GP is on basis of steady-state infiltration 
rate (Reynolds et al. 1993) while estimated Ks using regression equations is based 
on soil’s porosity and percentage of sand and clay present in the soil (Rawls and 
Brakensiek 1989).

4 Conclusions 

Ks is one of the hardest soil properties to measure, as it is variable in both space 
and time. Because of this, estimating Ks is a challenging undertaking involving 
testing, measurement, and judgement. Results of this study shows that mean Ks value 
obtained from five different methods, DRI, GP, CHPT, FHPT and Rawls-Brakensiek 
regression equation for selected agricultural catchment with varying soil type were 
differ from each other. Mean Ks measured using DRI were higher than any other
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Fig. 9 Comparison of Ks obtained from GP with other methods for sandy loam

methods as it considers, greater surface areas for sampling, dependency on water 
penetration at the soil surface for its readings and difference in experimental instal-
lations depth. Since Ks obtained GP is by auguring a 3 cm diameter borehole mean 
Ks of GP were less than DRI. There was slight variations in mean Ks measured by 
two laboratory methods. As CHPT and FHPT measures Ks vertically and ramming 
of cores into soil could disturb the soil’s structure results in lesser Ks values when 
compared with field (DRI and GP) Ks. However there is slight variation in Ks measure 
by GP, showed good accordance with DRI, laboratory methods and regression equa-
tions. Also irrespective of several assumptions and considerations made to carry out 
both experiments, regression equation agreed favourably and showed good perfor-
mance with GP and it estimated results that are almost identical to field mean Ks. 
Although there are several methods and models for Ks estimate, each one has its 
own applications and limitations. DRI requires large volume of water in permeable 
soils while GP considers smaller diameter area for sampling, which requires many 
measurements to ensure accuracy. The primary source of knowledge for choosing 
the right approach for certain conditions and soil properties is comparison of several 
methods. By taking into account various methods’ constraints and expectations, the 
findings of this study can aid in choosing which methods to use for Ks measurement 
in the agricultural catchment under consideration. Further researches can be done by
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Fig. 10 Comparison of Ks obtained from GP with other methods for loamy sand

Table 3 Statistical performance indices assessment for GP’s Ks and Estimated value of Ks by 
Rawls-Brakensiek regression equation 

Type of soil MAE RMSE R2 NSE 

Silty clay loam 0.03 0.08 0.93 0.91 

Sandy clay loam 0.01 0.03 0.85 0.96 

Sandy loam 0.01 0.05 0.89 0.97 

Loamy sand 0.01 0.05 0.85 0.99

applying the present study to larger agricultural catchment and at different depths. 
Advanced field investigations are required to increase the sensitivity of the param-
eters of the soil and also further researches are required to study about the other 
pedotransfer functions based on soil properties other than soil texture and porosity.
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Applicability of Geospatial Technology 
for Drainage and Hypsometric Analysis 
of Koyna River Basin, India 

Tarate Suryakant Bajirao, Anuradha Kumari, and Nitin Madan Changade 

Abstract In this study, drainage and hypsometric analysis of the semi-arid Koyna 
River basin of India was carried out using remote sensing (RS) and Geographical 
Information System (GIS) technology. The results obtained in this study will be useful 
for the management of soil and water resource. In this study, different sub-watersheds 
were prioritized using two methods i.e. flash flooding and soil erosion separately. This 
information is useful in the assessment of the risk of flash flooding and soil erosion 
for better watershed planning and management. Different morphometric parameters 
of the study area were analyzed for the estimation of flash flood proneness of different 
sub-watersheds. A parallel drainage pattern was found to be dominant in the study 
area. Hypsometric analysis was used to find out the sub-watershed-wise stage of 
geomorphic development or erosion cycle. Sub-watershed-wise hypsometric curve 
(HC) and hypsometric integral (HI) were derived in hypsometric analysis. Here, it 
was observed that different sub-watershed comes under the young and mature stage 
of geologic development. No, even a single sub-watershed was found under the 
monadnock/old stage of the erosion cycle. It was revealed that the HI values corre-
sponding to different sub-watersheds vary from 0.4867 to 0.7533. Higher HI values 
represent the young stage of geologic development which indicates the high risk of 
soil erosion. Then sub-watershed-wise priority ranks were assigned based on value 
of morphometric parameters and HI for flash flood and soil erosion, respectively. 
Here, it was observed that there is no exact similarity between the priority ranks of 
both flash flood and soil erosion determined using drainage and hypsometric anal-
ysis, respectively. This study could be helpful to plan sub-watershed-wise soil and 
water conservation measures on a priority basis.
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Keywords Watershed management · Morphometry · HC · HI · Watershed 
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1 Introduction 

Watershed development projects must give priority to the conservation of soil and 
water resources (Bajirao and Kumar 2021). These natural resources are severely 
endangered and damaged as a result of their careless use. Watershed management 
is essential for soil and water conservation to achieve sustainable development. 
Reduced vegetative cover and shifting agriculture are responsible for the increase in 
runoff per unit area due to low infiltration (Muhammad et al. 2015). To maximize 
productivity in sustainable agriculture, watershed management entails the prudent 
use of the natural resources that are already present (Nigam et al. 2017; Dumka and 
Kumar 2021). The term morphometry indicates taking measurements and analysis 
of the dimensions of the landforms, features, and surface of the earth. Prioritization 
of watersheds, investigation of flood frequency, assessment of drainage basins, and 
conservation and management of natural resources all depend heavily on morphome-
tric analysis. Understanding the drainage basin’s lithology, drainage pattern, topog-
raphy, and erosional state is crucial for creating efficient watershed management and 
development strategies (Lole et al. 2016). 

Flash floods are considered the most catastrophic as well as very dangerous natural 
hazards because of their sudden occurrences and unpredictability which lead to 
damage to infrastructure and threaten human life (Toduse et al. 2020). There are 
very few options for forecasting flash floods since they have a convective origin, 
happen locally in watersheds of less than 1,000 km2, have short response times of a 
few hours or minutes, and have complex orography (Destro et al. 2018). The most 
significant factors affecting the severity of floods include the intensity of falling 
rainfall, rainfall duration, rainfall magnitudes, evaporation rate, water infiltration 
rate, drainage characteristics, environmental processes and anthropogenic activities 
(Jodar-Abellan et al. 2019). To protect people’s lives and their property against flash 
floods, it is crucial to demarcate these critical regions (Ali et al. 2020). Watershed 
management attempts to reduce erosion, reduce dangerous runoff, and use it for 
productive purposes. It also aims to increase groundwater storage. 

Soil erosion is one of the primary reasons for land degradation. Land degradation 
has an impact on a variety of things, including the quality of surface and groundwater, 
the operation of reservoirs due to siltation, the environment, and human survival 
(Ostovari et al. 2017). Soil erosion removes the land’s top layer of fertile soil, which 
has an impact on soil productivity (Pham et al. 2018). For the conservation of land 
and water resources, sub-watersheds within a basin must be prioritized based on 
morphometric analysis. Morphometric analysis has been widely used to evaluate how 
susceptible watersheds are to natural disasters like flash floods and soil erosion (Aher 
et al. 2014; Shivhare et al. 2018; Asfaw and Workineh 2019; Hussein et al. 2019; 
Alam et al. 2020). Morphometric parameters provide very simple approaches that
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may be employed to investigate the geological and geomorphic history of a hydro-
logical basin (Strahler 1952). Since the morphometric characteristics of watersheds 
are a significant factor that influences the intensity of flash floods and soil erosion, 
morphometry offers crucial insights into the hydrological response to rainfall (Borga 
et al. 2008). Morphometric parameters like linear, areal and relief parameters can be 
used in a variety of investigations like analysis and protection of natural resources as 
well as assessment of environmental hazards (Charizopoulos et al. 2019). Worldwide 
flash flood susceptibility has been successfully mapped using morphometric analysis 
(Alam et al. 2020; Das  2020; Pan et al. 2020). 

Langbein (1947) first described the hypsometric analysis, which shows the overall 
slope and form of a watershed. Further, it is extended by Strahler (1952) and he 
included percent HC and HI. The HC gives the idea about the process of erosional 
pattern inside a basin. HI is an important terrain analysis factor that reflects what is 
the stage of the erosion cycle of a given watershed. A hypsometric analysis is the 
recognized component in the morphometric analysis of any watershed (Luo et al. 
2018). The horizontal cross-sectional area is related to its relative elevation above the 
basin mouth by the area altitude curve, or HC (Strahler 1952). The shape of the HC 
represents how the slope of the basin has been changed temporally (Strahler 1952). 
At the early geomorphic stage of basin development, the change in the shape of the 
HC is frequent. But, the change in the shape of the HC becomes minimum when it 
attains a mature stage of geomorphic development over time. A true understanding of 
past soil movement can be derived by comparing the HC of various sub-watersheds. 
HC and HI are the two important parameters that indicate what is the health of a basin 
(Mehar et al. 2018) HI is an indicator of the “cycle of erosion” which represents how 
much time will be needed to remove the whole land mass to the base level. HC and 
HI are the two important indicators that state what is the evolutionary stage of a given 
watershed (Ritter et al. 2002; Singh et al. 2008). The age of the watershed can be 
assessed based on the shape of HC (Singh and Singh 2018; Tamilarasan and Brema 
2019). HC indicates how much soil erosion is already taken place in a watershed 
while HI represents the erosion cycle of a watershed (Pande et al. 2021). 

Watershed prioritization is the allotment of ranks to different sub-watersheds of 
the basin as per the order in which they should be treated for natural resources and 
hazard management (Puno and Puno 2019; Obeidat et al. 2021). Watershed manage-
ment has recently benefited from the effective application of geospatial technology 
(RS and GIS). The effectiveness of the robust GIS tool allowed several researchers 
to evaluate drainage basins and accurately analyze their features. It has been further 
strengthened by the availability of a high-quality resolution digital elevation model 
(DEM). This advancement made it possible to use and apply morphometric anal-
ysis with the help of GIS tools in a variety of research areas like prioritizing sub-
watersheds considering their vulnerability to flash floods and soil erosion (Obeidat 
et al. 2021). Geospatial technology, such as remote sensing and GIS, is advantageous 
for morphometric analysis since satellites can provide a synoptic image with a wide 
area range (Nigam et al. 2017). Traditional approaches can be used to quantify the 
drainage characteristics of various watersheds, but they are time- and labor-intensive 
(Kar et al. 2009). When compared to traditional approaches, the digital elevation
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model (DEM) and GIS make it simple to determine the morphometric parameters 
(Aher et al. 2014). GIS is a powerful tool for assessing the morphological features of 
drainage basins due to its flexibility in manipulating spatial data of multiple morpho-
metric parameters that vary spatially and temporally within the basin (Aparna et al. 
2015; Malik et al. 2019). GIS is user-friendly and offers better results with a high 
degree of accuracy (Chougale and Jagdish 2017). Since all lithologic and hydrolog-
ical processes take place at the sub-watershed level, morphometric characteristics at 
this level can be used to learn more about how landform processes occur (Kaushal 
and Singh 2013; Pande and Moharir 2017). 

Biswas et al. (1999) proposed that remote sensing and GIS are commonly used 
to study the morphometry of the basin. Nine sub-watersheds of West Bengal of 
India have been studied to analyze different morphometric parameters and prioriti-
zation of different sub-watershed had been done based on this analysis. Thakkar and 
Dhiman (2007) prioritized eight mini watersheds in the Kheda district of Gujarat 
State, India by employing geospatial technology based on morphometric analysis. 
Javed et al. (2009) utilized morphometric and land use change analysis for the prior-
itization of seven sub-watersheds in Madhya Pradesh using geospatial technology. 
Kar et al. (2009) utilized multi-spectral satellite data along with ground truth data for 
the management of rainfed watersheds in sustainable development in eastern India. 
Ahmed et al. (2010) derived different morphometric parameters using different input 
data like satellite data and available topographic maps. They proposed that satellite 
data gives more accurate and detailed information about the terrain characteristics. 
Pareta and Pareta (2011) studied morphometry and concluded that dendritic and 
radial drainage patterns of the Karawan watershed. Turkan and Bekir (2011) studied 
drainage nature, landform processes, flooding and erosional status in sub-basins of 
Central Anatolia. Aravinda and Balakrishna (2013) used Strahler’s stream ordering 
technique for making a stream order map of the Vrishabhavathi watershed of Arka-
vathi river basin, Bangalore, and observed dendritic drainage pattern in the study 
area. Kaushal and Singh (2013) studied quantitative geomorphological properties of 
micro watersheds of the Ghataprabha river sub-basin in the Karnataka state of India. 
Aher et al. (2014) employed geospatial technology for the identification of crit-
ical areas in the semi-arid water-scarce region of India in the Ahmednagar district 
of Maharashtra. Bharadwaj et al. (2014) studied the drainage pattern of the Adyar 
watershed in the Chennai basin and concluded that this watershed represents low 
flood potential. Gajbhiye et al. (2014) proposed that the geomorphometric features 
of a watershed are important to develop a regional-based hydrological model for an 
ungauged watershed in the case of inadequate data availability. Yahya et al. (2015) 
carried out a hypsometric integral analysis to understand the geomorphologic devel-
opment and geomorphic evolution stage of watersheds in Southern Jordan using DEM 
data. They concluded that soil erosion is a major concern in the study area. Nigam 
et al. (2017) studied the morphometry of a Kharun watershed located in the Seonath 
sub-basin. They found a homogeneous texture and less structural control by consid-
ering drainage analysis. Salvi et al. (2017) reviewed twenty-eight different literatures 
for watershed planning, management, and prioritization by considering morphome-
tric analysis with the help of geospatial technology and proposed that morphometric
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analysis could be used for planning and construction of recharge shafts, check dams, 
and percolation tanks. Umrikar (2017) analyzed the morphometry of the drought-
prone Andhale watershed of Maharashtra by employing geospatial technology and 
found that this watershed area is underlain by impervious rocks which would cause 
high runoff. Yahya (2017) conducted a study to investigate the drainage features of 
the Wadi Wala sub-basins. Adhikary and Dash (2018) found that the flow direction 
and the entire drainage network is controlled by local lithological and geomorpho-
logical structure in the Katra watershed. Kibate and Gessesse (2018) studied the 
hydro-geomorphology of the Dhidhessa river basin, a part of the Blue Nile basin via 
morphometric analysis and observed that the rate of soil erosion is severe. Zainab 
(2018) revealed the morphometric characteristics of the Khulgad watershed of the 
Kosi River and a GIS-based morphometric study revealed a sixth-order watershed 
mainly drained by a dendritic type of drainage pattern. Malik et al. (2019) carried out 
morphometric analysis using geospatial technology for studying the morphometry 
of the Naula watershed of India. Krishnan et al. (2021) used hypsometric analysis for 
studying the spatial variation of erosion in the Limbang River Basin. Prashanth et al. 
(2022) used hypsometric analysis for studying erosion proneness in North India. 
Shekhar and Mathew (2022) used hypsometric analysis for studying the erosion 
stages of the Bagh River basin. 

Prioritization is important in a basin to initiate soil conservation practices from 
critically endangered sub-areas by considering different input resource limitations. 
The hypsometric analysis is tedious and time-consuming under traditional methods 
of data acquisition and analysis. However, the estimation procedure is now more 
accurate and less laborious as a result of the advent of geospatial technology (Singh 
et al. 2008; Malik and Kumar 2019). In this study, we have prioritized different sub-
watershed based on flash floods and soil erosion separately for the Koyna river basin 
of India. The novelty of this study is that there is no exact similarity in priority ranks 
of different sub-watersheds between flash-flood and soil erosion determined using 
drainage and hypsometric analysis. This kind of prioritization using both drainage 
and hypsometric analysis for flash floods and soil erosion, respectively is not found 
previous literatures. Hence, this study was undertaken with the following objectives: 
(a) To study morphological parameters of the study area; (b) To prioritize different 
sub-watersheds for management of flash floods. (c) To study the hypsometry (HC and 
HI) of the study area and (b) To prioritize different sub-watersheds for management 
of soil erosion based on hypsometric analysis. 

2 Materials and Methods 

2.1 Study Area 

The origin of the Koyna River is Western ghat, Satara district of Maharashtra state, 
India. The catchment area of the Koyna river basin is 1917 km2 on the Deccan
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plateau. The catchment area of this river comes under semi-arid climatic conditions. 
Monsson rainfall is dominant in the study area. The topography of the study area is 
varying from gentle to steep slopy. The shape of the Koyna river basin is elongated. 
Due to the steep slope, the soil and runoff losses are dominant (Bajirao et al. 2021). 
The geographical location of different sub-watersheds of the study area is shown in 
Fig. 1.

2.2 Data Collection 

ASTER DEM remote sensing free of cost data having 30 m spatial resolu-
tion available at the USGS earth explorer website (http://earthexplorer.usgs.gov) 
were collected for this analysis. This DEM data was used for the generation of 
stream network, delineation of sub-watershed boundaries, flash flood mapping, and 
hypsometric analysis of the Koyna river basin. 

2.3 Methodology 

The entire study area was divided into 15 sub-watersheds using ASTER DEM data 
in Arc GIS 10.2.2 software (as shown in Fig. 1). In this study, for the prioritization of 
sub-watersheds, two different methods were used. In the first method, prioritization 
was carried out for flash flooding based on drainage analysis. In the second method, 
prioritization was carried out for soil erosion based on hypsometric analysis. The 
flowchart presenting the methodology utilized for this analysis is shown in Fig. 2.

2.4 Drainage Analysis 

For the purpose of creating the drainage network, hypsometric analysis, and delin-
eating the sub-watersheds, ASTER DEM data were employed. Firstly, the DEM 
data was mosaiced for the delineation of basin boundaries. Different sub-watershed 
boundaries were delineated using collected DEM data in ArcGIS 10.2.2 environment. 
Different important steps are performed one by one as shown in Fig. 2. Creation of 
depression less DEM is the first step to fill the sink which helps the water flow to 
find the flow path through different cells. The filling can be done by either cutting 
off tall cells or filling the sink. To avoid discontinuity in the drainage flow sinks 
were removed. Flow direction denotes the direction where each cell will drain in 
the landscape; only one neighboring cell receives water from a certain cell in the 
direction of the steepest descent. Flow accumulation is the next step of hydrological 
modelling which determines the flow path of the drainage network through different 
cells over the area. To create a drainage network, a flow accumulation map and a

http://earthexplorer.usgs.gov
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Fig. 1 Location of a study area
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ASTER DEM data collection 

Fill 

Flow direction 

Stream order 

Flow accumulation 

Threshold 

Sub-watershed delineation 

Drainage analysis Hypsometric analysis 

Sub-watershed prioritization 

Fig. 2 Flowchart showing methodology adopted for drainage and hypsometric analysis

flow direction map are used. ArcGIS 10.2.2 software was used to determine several 
morphometric characteristics such as linear, shape, and relief parameters in drainage 
analysis. Different morphometric parameters used in drainage analysis are presented 
in Table 1. The steps followed for the generation of the drainage network map are 
shown in Fig. 3.

2.5 Hypsometric Analysis 

2.5.1 Hypsometric Curve (HC) 

Strahler (1952) classified different geomorphic evolutionary stages/erosion cycles 
of watersheds into (i) youth stage (convex upward HC and HI ≥ 0.60) in which the 
sub-watershed is extremely susceptible to the erosion process; (ii) equilibrium or



Applicability of Geospatial Technology for Drainage and Hypsometric … 233

Table 1 Standard formulae for determination of morphometric parameters used in drainage 
analysis 

Morphometric 
parameters 

Formula/method References 

Linear 

Stream order Hierarchical order Strahler (1964) 

Stream length (km) Length of all streams Horton (1945) 

Drainage density (Dd), 
km/km2 

Dd = L A where, L = Sum of the 
length of all streams; A = watershed 
area 

Horton (1945) 

Texture ratio (T), 
number/km 

T = N1 
P where, N1 is the number of 

streams of 1st order stream; P is the 
sub-watershed perimeter 

Horton (1945) 

Length of overland flow  
(Lovf), km 

Lovf = 1 
2Dd 

Horton (1945) 

Stream frequency (Fs), 
number/km2 

Fs = N A where, N is the number of 
streams of all orders 

Horton (1945) 

Constant of channel 
maintenance (Cm) 

Cm = 1 
Dd 

Horton (1945) 

Infiltration number (In) In = Dd × Fs Faniran (1968) 

Drainage texture (Dt), 
number/km 

Dt = N P Horton (1945) 

Shape 

Form factor (Rf) Rf = A 
L2 
sw 

where, Lsw is the length of 

sub-watershed 

Horton (1945) 

Compactness 
coefficient (Cc) 

Cc = 0.2821P 
A0.5 Adhikary and Dash (2018) 

Circulatory ratio (Rc) Rc = 4πA 
P2

Miller (1953) 

Elongation ratio (Re) Re = 2
√

(A/π) 
Lsw 

Schumm (1956) 

Relief 

Sub-watershed relief 
(H), m 

The elevation difference between the 
highest and lowest points of 
sub-watershed 

Schumm (1956) 

Relief ratio (Rh) Rh = H 
Lsw 

where, Lsw is the length of 

sub-watershed 

Schumm (1956) 

Relative relief (Rr) Rr = H P Melton (1957) 

Ruggedness number 
(Rn) 

Rn = H × Dd Schumm (1956)
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Threshold 

Fig. 3 Steps followed for preparation of drainage network map
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mature stage (S-shaped HC which is concave upward at high elevation and convex 
downward at low elevation and 0.30 ≤ HI ≤ 0.60) and (iii) old or monadnock stage 
(concave upward HC and HI ≤ 0.30) which is fully stabilized. 

2.5.2 Hypsometric Integral (HI) 

The HI is a geomorphological parameter that classifies any watershed development 
into different geologic stages. It is most important to estimate the erosional stage of 
a watershed and for prioritization to start conservation practices for the conservation 
of natural resources on a priority basis. HI is an indicator used for the study of the 
‘cycle of erosion’ at any given watershed (Strahler 1952). The time needed to bring 
the land topological unit down to its base level is known as the cycle of erosion 
which is shown in Fig. 4. The HI can be stated as a percentage, indicating how much 
land mass (volume) is still present in the basin today relative to its original volume 
(Sarangi et al. 2001; Ritter et al. 2002). HI will describe how several hydrological 
processes contributed to the erosion that has occurred in the watershed. 

In this study, different HC curves were plotted concerning relative height (h/H) 
and relative area (a/A) corresponding to different sub-watersheds as shown in Fig. 7. 
Then, to describe the equation of the curve, a trend line (dotted line) was fitted to 
the plotted HCs of different sub-watersheds of the study area (Fig. 7). The best-fit 
equation was developed for the highest value of the coefficient of determination (R2). 
In order to estimate the area under the curve, this equation was then further integrated 
between 0 and 1 (due to the graph’s non-dimensionality). Thus, the HI value of each 
sub-watershed is determined by the anticipated area under the curve. The HC and HI 
values were estimated for individual sub-watersheds.

Fig. 4 Hypsometric analysis and hypsometric curve (Ritter et al. 2002; Mandi and Soren 2016) 
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2.6 Prioritization of Sub-watershed Using Drainage Analysis 
and Hypsometric Analysis 

Different morphometric parameters namely Dd, Fs, T, Dt, In, Rc, Rf, Re, Rh, Rr, 
Rn, Lovf, Cm and Cc were used for prioritizing different sub-watershed for flash-
flooding in drainage analysis. Those parameters which are directly proportional to 
flash flooding are assigned with higher priority and vice versa. 

In hypsometric analysis, priority ranks were assigned based on hypsometric inte-
gral (HI) values. The highest HI value sub-watersheds were assigned the highest 
(first) priority and vice versa. 

3 Result and Discussion 

The results obtained after carrying out morphometric analysis are described below. 
Basic features corresponding to different 15 sub-watersheds as per morphometric 
analysis are presented in Table 2. The Koyna River basin is a fifth-order basin as 
per Strahler’s stream ordering method. Stream numbers corresponding to different 
stream order and their corresponding stream length are presented in Table 3. 

A highly important hydrological element is the watershed area since it controls 
how much runoff water will flow as a result of rainfall. The correlation between

Table 2 Basic features of different sub-watersheds in the study area 

Sub-watershed 
(SW) 

Sub-watershed 
area (km2) 

Sub-watershed 
perimeter 
(km) 

Sub-watershed 
relief (m) 

Sub-watershed 
length (km) 

Stream 
numbers 

Stream 
length 
(km) 

1 214 111 803 26 81 143 

2 82 67 812 18 36 58 

3 111 70 592 18 53 86 

4 46 46 635 10 24 42 

5 263 135 606 27 139 216 

6 69 57 556 13 26 47 

7 125 78 590 18 49 89 

8 308 132 533 28 152 222 

9 22 29 548 5 11 22 

10 133 90 551 23 61 89 

11 165 94 537 18 76 142 

12 39 47 388 9 16 28 

13 84 68 513 18 37 50 

14 118 79 408 16 64 96 

15 140 83 507 14 70 96
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Table 3 Variation of a stream number and stream length corresponding to different sub-watersheds 

SW Number of streams Stream length (km) 

I II III IV V I II III IV V 

1 66 14 1 – – 78 28 37 – – 

2 29 4 2 1 – 32 11 15 0 – 

3 37 10 3 2 1 42 17 15 10 2 

4 18 4 1 1 – 24 11 1 6 – 

5 106 27 4 1 1 106 59 21 0 30 

6 18 5 2 1 – 28 10 10 0 – 

7 40 8 1 – – 52 20 17 – – 

8 129 20 2 – 1 121 52 12 – 37 

9 8 2 – – 1 15 1 – – 6 

10 51 8 1 – 1 40 22 25 – 2 

11 59 13 2 1 1 84 23 7 2 26 

12 12 3 – – 1 16 6 – – 6 

13 31 5 1 – – 21 11 17 – – 

14 51 9 2 1 1 50 20 6 20 1 

15 57 9 3 1 – 52 19 18 7 –

sub-watershed area and sub-watershed perimeter, sub-watershed length and sub-
watershed slope, sub-watershed length and stream length, stream order and stream 
number are shown in Fig. 5. There was a significant correlation found to be between 
the sub-watershed area and sub-watershed perimeter (R2 = 0.96). Basin length plays 
an important role in the formation of surface runoff. Longer streams will have flatter 
gradients (Obeidat et al. 2021). A negative correlation (R2 = −0.60) was observed 
between the sub-watershed length and the sub-watershed slope in this study. A 
strong positive correlation (R2 = 0.71) was observed between sub-watershed length 
and stream length. When compared to watersheds with low stream numbers, those 
watersheds with high stream numbers have more runoff and faster peak flows (Bhatt 
and Ahmed 2014). There is a negative correlation (R2 = −0.65) between a stream 
number and stream order. The correlation between stream order and stream length, 
sub-watershed area and stream length, drainage density and sub-watershed relief, 
sub-watershed relief and ruggedness number is shown in Fig. 6. Number of streams 
of the first-order stream was found to be more and vice versa. The relation between 
stream length and stream order was observed to be strongly negative (R2 =−0.77). In 
contrast, a strong positive correlation (R2 = 0.97) was found to be in between stream 
length and sub-watershed area. However, in this study, no relation was observed 
between sub-watershed relief and drainage density. Additionally, there is a positive 
correlation (R2 = 0.61) found between sub-watershed relief and ruggedness number.

Different linear, shape and relief parameters corresponding to different sub-
watersheds are presented in Table 4.
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Fig. 5 Relationship between a Sub-watershed area and Sub-watershed perimeter b Sub-watershed 
length and Sub-watershed slope c Sub-watershed length and stream length d Stream order and 
stream number

4 Linear Factors 

4.1 Drainage Density (Dd) 

It can suggest the closed spacing between different channels (Horton 1945). It will 
be used to study landforms and dissection complexity. Its lower value represents a 
coarser drainage network, and permeable topography while the higher value repre-
sents weak strata, mountainous areas and impervious land (Nigam et al. 2017). 
This parameter is most important to study the drainage capacity of any watershed. 
Chougale and Jagdish (2017) categorized Dd into five classes like very coarse, coarse, 
moderate, fine and very fine if the Dd is <2, 2–4, 4–6, 6–8 and <8 km/km2, respec-
tively. If the infiltration is high the Dd will be low (Chandrashekar et al. 2015). High 
Dd is responsible for quick peak runoff flow and flash flooding. The values of Dd 

corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be 0.67, 0.71, 0.78, 0.9, 0.82, 0.68, 
0.72, 0.72, 1.03, 0.67, 0.86, 0.73, 0.59, 0.82, 0.68 km/km2, respectively. The higher 
value of Dd was observed in sub-watershed 9 (SW-9) which is highly susceptible to 
flash flooding.



Applicability of Geospatial Technology for Drainage and Hypsometric … 239

R² = 0.7677 

0 
100 
200 
300 
400 
500 
600 
700 
800 

0 1 2 3 4 5  

St
re

am
 le

ng
th

 

Stream order 

R² = 0.9692 

0 

50 

100 

150 

200 

250 

0 100 200 300 400 

St
re

am
 le

ng
th

 (k
m

) 

Sub-watershed area (km2) 

R² = 0.0073 

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

0.5 0.7 0.9 1.1 

Su
b-

w
at

er
sh

ed
 r

el
ie

f 
(m

) 

Drainage density (km/km2) 

R² = 0.6085 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

300 500 700 900 

R
ug

ge
dn

es
s n

um
be

r 

Sub-watershed relief (m) 

Fig. 6 Relationship between a Stream order and stream length b Sub-watershed area and stream 
length c Drainage density and sub-watershed relief d sub-watershed relief and ruggedness number

4.2 Stream Frequency (Fs) 

Its value can be affected by lithology, climatic factors, vegetative cover, rainfall 
amount, rainfall pattern, soil permeability and topography of the watershed. Its higher 
value is responsible for quick runoff, less infiltration, peak water flow and flooding 
watershed. Its lower value indicates relatively pervious soil strata and flat topography. 
The values of Fs corresponding to different sub-watersheds like sub-watershed (SW) 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 was observed to be 0.38, 0.44, 
0.48, 0.52, 0.53, 0.38, 0.39, 0.49, 0.51, 0.46, 0.46, 0.41, 0.44, 0.55, 0.5 streams/km2, 
respectively. The higher value of Fs was observed to be in sub-watershed 14 (SW-14) 
which is highly susceptible to flash flooding. 

4.3 Texture Ratio (T) 

It is an important morphometric indicator for studying the drainage of the water-
shed. It depends on climatic conditions, rainfall conditions, vegetation health, under-
lying lithology, soil permeability and relief of the watershed (Schumm 1956). Its 
higher value represents higher runoff and vice versa. Its lower value represents a
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Fig.7 HCs of different 15 sub-watersheds of the study area
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Table 4 Variation of different morphometric parameters in different sub-watersheds 

SW Dd Fs T Dt In Lovf Cm Rc Cc Rf Re Rh Rr Rn 

1 0.67 0.38 0.59 0.73 0.25 0.75 1.49 0.22 2.15 0.31 0.62 31 7 538 

2 0.71 0.44 0.44 0.54 0.31 0.71 1.41 0.23 2.08 0.24 0.55 45 12 577 

3 0.78 0.48 0.53 0.76 0.37 0.64 1.28 0.28 1.89 0.36 0.67 33 8 462 

4 0.9 0.52 0.39 0.52 0.47 0.55 1.11 0.28 1.91 0.49 0.79 64 14 572 

5 0.82 0.53 0.79 1.03 0.43 0.61 1.22 0.18 2.35 0.36 0.68 22 4 497 

6 0.68 0.38 0.32 0.46 0.26 0.73 1.47 0.27 1.92 0.39 0.7 43 10 378 

7 0.72 0.39 0.51 0.63 0.28 0.7 1.39 0.25 1.98 0.37 0.68 33 8 425 

8 0.72 0.49 0.98 1.15 0.35 0.69 1.39 0.22 2.12 0.39 0.7 19 4 384 

9 1.03 0.51 0.28 0.38 0.53 0.49 0.97 0.33 1.74 0.76 0.99 110 19 564 

10 0.67 0.46 0.57 0.68 0.31 0.75 1.49 0.21 2.21 0.24 0.55 24 6 369 

11 0.86 0.46 0.63 0.81 0.40 0.58 1.16 0.24 2.06 0.53 0.82 30 6 462 

12 0.73 0.41 0.26 0.34 0.30 0.69 1.37 0.23 2.11 0.51 0.8 43 8 283 

13 0.59 0.44 0.46 0.54 0.26 0.85 1.69 0.23 2.08 0.27 0.59 29 8 303 

14 0.82 0.55 0.65 0.81 0.45 0.61 1.22 0.24 2.05 0.47 0.77 26 5 335 

15 0.68 0.5 0.69 0.84 0.34 0.73 1.47 0.26 1.98 0.68 0.93 36 6 345

relatively flat area. The values of T corresponding to different sub-watersheds like 
sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be 
0.59, 0.44, 0.53, 0.39, 0.79, 0.32, 0.51, 0.98, 0.28, 0.57, 0.63, 0.26, 0.46, 0.65 and 
0.69 streams/km, respectively. The T value of sub-watershed 8 (SW-8) was found to 
be more causing high runoff or flash floods. 

4.4 Drainage Texture (Dt) 

It gives an idea about the closeness of channels in the watershed. It depends on 
lithology, rock type, relief, climate and vegetation. It can be classified as very coarse, 
coarse, moderate, fine and very fine when the value of drainage texture is <2, 2–4, 
4–6, 6–8 and >8, respectively (Chougale and Jagdish 2017). The values of Dt with 
respect to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14 and 15 was found to be 0.73, 0.54, 0.76, 0.52, 1.03, 0.46, 
0.63, 1.15, 0.38, 0.68, 0.81, 0.34, 0.54, 0.81 and 0.84 streams/km, respectively. Dt of 
sub-watershed 8 (SW-8) was found to be more causing high runoff or flash floods.
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4.5 Infiltration Number (In) 

It is simply a multiplication of Dd and Fs. It is used to study the infiltration potential of 
the watershed area. It is inverse to that of the infiltration rate of land. Its higher value 
represents more runoff water flow and vice versa (Strahler 1964; Pareta and Pareta 
2011; Nigam et al. 2017). The values of In with respect to different sub-watersheds 
like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 was found 
to be 0.25, 0.31, 0.37, 0.47, 0.43, 0.26, 0.28, 0.35, 0.53, 0.31, 0.40, 0.30, 0.26, 0.45 
and 0.34/km3, respectively. The In of sub-watershed 9 (SW-9) was found to be more 
causing high runoff or flash floods. 

4.6 Length of Overland Flow (Lovf) 

It is a parameter that represents erosion, runoff flow and infiltration of the area and 
its Spatio-temporal variation (Sahu et al. 2016). Its high value indicates relatively 
low relief and hence high infiltration and less runoff while a low value indicates high 
relief and hence less infiltration and more runoff (Bharadwaj et al. 2014). A shorter 
Lovf is responsible for very quick peak runoff flow. The values of Lovf with respect 
to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14 and 15 was found to be about 0.75, 0.71, 0.64, 0.55, 0.61, 0.73, 0.7, 0.69, 
0.49, 0.75, 0.58, 0.69, 0.85, 0.61 and 0.73 km, respectively. Lovf of sub-watershed 9 
(SW-9) was found to be less which is responsible for high runoff or flash floods. 

4.7 Constant of Channel Maintenance (Cm) 

It is reciprocal to Dd. It is an important parameter to study landform runoff flow and 
erosion (Schumm 1956). It is dependent on factors like rainfall amount, vegetation 
health, soil permeability, rock strata, and degree of erosion. Its value will be low in 
the area of close dissection, steep slope and high relief (Chandrashekar et al. 2015). 
Its lesser value represents more runoff flow and vice versa (Schumm 1956). Its value 
corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14 and 15 was found to be about 1.49, 1.41, 1.28, 1.11, 1.22, 1.47, 
1.39, 1.39, 0.97, 1.49, 1.16, 1.37, 1.69, 1.22 and 1.47 km, respectively. Its value is 
lesser in sub-watershed 9 (SW-9) which is responsible for high runoff or flash floods.
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5 Shape Factors 

5.1 Circulatory Ratio (Rc) 

Different factors like geologic, climatic factors, vegetative and topographic factors 
affect it (Miller 1953). Its value lies between 0 (straight line) and 1 (perfect circle). 
Its higher, medium and lower values represent the old, mature, and young stages. Its 
lower value denotes a basin with a strong elongation and a highly permeable substrata. 
Rc and flash flood or runoff is directly correlated. Its higher value represents less time 
available for infiltration and thereby causing more runoff or flash floods. Its value 
corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be about 0.22, 0.23, 0.28, 0.28, 0.18, 
0.27, 0.25, 0.22, 0.33, 0.21, 0.24, 0.23, 0.23, 0.24, and 0.26, respectively. Its value is 
more in sub-watershed 9 (SW-9) which is responsible for high runoff or flash floods. 

5.2 Compactness Coefficient (Cc) 

It is a parameter whose dependence on the watershed’s slope rather than its size is 
important (Horton 1945). For a perfect circle, its value is 1 and increases with respect 
to the length of a watershed. This is a factor used to study the degree of elongation 
of the basin. Circular watersheds are causing more runoff than elongated watersheds 
(Singh and Singh 1997). Its minimum value represents more runoff and vice versa. 
Its value corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be about 2.15, 2.08, 1.89, 
1.91, 2.35, 1.92, 1.98, 2.12, 1.74, 2.21, 2.06, 2.11, 2.08, 2.05 and 1.98, respectively. 
Its value is less in sub-watershed 9 (SW-9) which is responsible for high runoff or 
flash flooding. 

5.3 Form Factor (Rf) 

It is a factor that depends upon the shape of the watershed and affects runoff formation. 
Its smaller value represents a highly elongated watershed while a higher value indi-
cates a circular watershed. Circular watersheds with a higher value of Rf are always 
responsible for higher peak flow (Horton 1932). This factor is used to study flood 
intensity of different watersheds (Bharadwaj et al. 2014). Its value corresponding 
to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14 and 15 was found to be about 0.31, 0.24, 0.36, 0.49, 0.36, 0.39, 0.37, 
0.39, 0.76, 0.24, 0.53, 0.51, 0.27, 0.47 and 0.68, respectively. Its value is more in 
sub-watershed 9 (SW-9) which is responsible for high runoff or flash flooding.
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5.4 Elongation Ratio (Re) 

It is a factor used to study the relief and circularity of watersheds. Its value will vary 
between 0 (straight line) to 1 (perfect circle). In different climatic and geological 
conditions, its value mostly lies between 0.4 to 1. If its value is closer to 1 then it 
indicates a circular watershed with low relief while its value equal to 0.4 indicates an 
elongated watershed with high relief (Strahler 1964). Biswas et al. (1999) classified 
watersheds based on its value as: 0.9 to 1 (circular watershed), 0.8–0.9 (oval water-
shed), 0.7–0.8 (less elongated watershed), 0.5–0.6 (elongated watershed), and <0.5 
(more elongated). Its higher value indicates more runoff and vice versa. Its value 
corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14 and 15 was found to be about 0.62, 0.55, 0.67, 0.79, 0.68, 0.7, 
0.68, 0.7, 0.99, 0.55, 0.82, 0.8, 0.59, 0.77 and 0.93, respectively. Its value is more in 
sub-watershed 9 (SW-9) which is responsible for high runoff or flash floods. 

6 Relief Factors 

6.1 Relief Ratio (Rh) and Relative Relief (Rr) 

These factors are crucial for the formation of landforms, drainage, surface water 
movement, subsurface flow, permeability, and erosional status of the land (Magesh 
et al. 2011). Its higher value indicates lower infiltration and higher surface runoff 
flow conditions and vice versa (Obeidat et al. 2021). If the watershed Rh and Rr are 
higher then it will cause a sudden occurrence of peak runoff and flash flooding in the 
watershed area (Ameri et al. 2018). The Rh with respect to different sub-watersheds 
like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 was found 
to be 31, 45, 33, 64, 22, 43, 33, 19, 110, 24, 30, 43, 29, 26 and 36, respectively. Rr 

corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be 7, 12, 8, 14, 4, 10, 8, 4, 19, 6, 6, 8, 
8, 5 and 6, respectively. Both Rh and Rr are more in sub-watershed 9 (SW-9) which 
is responsible for high runoff or flash flooding. 

6.2 Ruggedness Number (Rn) 

This factor is used to study unevenness, smoothness, or roughness of the terrain. Its 
higher value represents steep slopy terrain and is responsible for the quick formation 
of runoff and flash flooding (Patton and Baker 1976; Obeidat et al. 2021). Its value 
corresponding to different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14 and 15 was found to be 538, 577, 462, 572, 497, 378,
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425, 384, 564, 369, 462, 283, 303, 335 and 345, respectively. Its value is more in 
sub-watershed 2 (SW-2) which is responsible for high runoff or flash flooding. 

6.3 Prioritization of Different Sub-watersheds for Flash 
Flooding Using Morphometric Analysis 

Dd, Fs, T, Dt, In, Rc, Rf, Re, Rh, Re, and Rn have a positive relation with flash flood 
or runoff; the greater the values of these parameters, the greater the likelihood that 
flooding may occur. (Bajirao and Kumar 2021). On the contrary, Lovf, Cm and Cc 

have a negative relationship to flash floods or runoff. It implies that the likelihood 
of flooding is increased by lower values of these parameters (Bajirao and Kumar 
2021; Obeidat et al. 2021). The sub-watershed causing more runoff/flash flood was 
assigned with first priority and vice versa. On the basis of all these factors, sub-
watershed-wise priority ranks were assigned from 1 to 15 as presented in Table 5. 
Total rank is calculated by adding the ranks of all morphometric parameters for a 
given sub-watershed as presented in Table 5. 

Table 5 Final priority rankings for flash flooding based on morphometric parameters 

SW Dd Fs T Lovf Cm In Dt Rc Rf Re Cc Rh Rr Rn Total 
rank 

Final 
priority 
rank 

1 14 15 6 14 14 15 7 13 12 12 13 9 9 4 157 XIII 

2 10 11 11 10 10 10 11 11 15 15 10 3 3 1 131 X 

3 6 7 8 6 6 6 6 3 11 11 2 8 8 7 95 V 

4 2 3 12 2 2 2 12 3 5 5 3 2 2 2 57 II 

5 5 2 2 5 5 4 2 15 11 10 15 14 15 5 110 VII 

6 12 15 13 12 12 14 13 4 8 8 4 5 4 10 134 XII 

7 9 13 9 9 9 12 9 6 9 10 6 8 8 8 125 IX 

8 9 6 1 8 9 7 1 13 8 8 12 15 15 9 121 VIII 

9 1 4 14 1 1 1 14 1 1 1 1 1 1 3 45 I 

10 14 9 7 14 14 10 8 14 15 15 14 13 12 11 170 XIV 

11 3 9 5 3 3 5 5 8 3 3 8 10 12 7 84 III 

12 7 12 15 8 7 11 15 11 4 4 11 5 8 15 133 XI 

13 15 11 10 15 15 14 11 11 13 13 10 11 8 14 171 XV 

14 5 1 4 5 5 3 5 8 6 6 7 12 13 13 93 IV 

15 12 5 3 12 12 8 3 5 2 2 6 6 12 12 100 VI
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6.4 Prioritization of Different Sub-watersheds Based on Soil 
Erosion Using Hypsometric Analysis 

The hypsometric analysis of different sub-watersheds was carried out in the 
ArcGIS 10.2 environment. The hypsometric curves corresponding to different sub-
watersheds were generated using ASTER DEM data as shown in Fig. 7. As per 
the shapes of HCs of different sub-watersheds, it was observed that the areas of 
the Koyna river basin come under the young and mature stages of geologic devel-
opment. Here, it was observed that different sub-watersheds represent convex and 
S-type hypsometric curves. The convex shape of any sub-watershed indicates more 
hazard due to soil erosion/loss while the concave shape represents less hazard to soil 
resources. The S-shaped curve represents a mature stage of geologic development. 
In this study, it was observed that most of the sub-watersheds come under the convex 
type of hypsometric curve. 

Sub-watershed-wise minimum, mean and maximum elevation, HI, geologic stage 
and final prioritization rank of different sub-watersheds are presented in Table 6. 
Based on HI value, different sub-watersheds like sub-watershed (SW) 1, 2, 3, 4, 
5, 6, 7, 8, 10, 13 and 15 comes under the mature/equilibrium stage of geologic 
development. Different sub-watersheds like sub-watershed (SW) 9, 11, 12 and 14 
come under the young/inequilibrium stage of geologic development. Here, not even a 
single watershed came under the monadnock/old stage of geologic development. The 
Monadnock stage represents a very low erosion hazard, the mature stage represents a 
low to moderate rate of soil erosion while the young stage represents a severe rate of 
soil erosion. HI represents how much percent landmass still exists in the watershed.

In this study, priority rankings to different sub-watersheds were given by consid-
ering HI values. The greatest (first) priority was given to the sub-watershed with the 
highest HI score, and vice versa. The final priority ranks corresponding to different 
sub-watersheds are presented in Table 6 based on HI value. Sub-watershed SW-
12 got the highest priority, while sub-watershed SW-6 got the lowest priority for 
conservation purpose. 

Here it was observed that there is a mismatch of final priority ranks of different sub-
watersheds for flash floods and soil erosion risk assessment except for sub-watersheds 
(SW) 11 and 14. Here, it was found that both methods are providing different final 
priority ranks for different sub-watersheds. Hence, prioritization should be done 
by considering flash flood and soil erosion risk issues separately. Different sub-
watershed were categorized into three priority zones namely low, medium and high 
priority zones as shown in Fig. 8. Those sub-watersheds received final priority ranks 
from I to V categorized under high priority zones. The sub-watershed that comes 
under final priority ranking between VI to X are categorized under medium priority 
zone while the remaining sub-watershed showing final priority rank between XI to 
XV have been categorized under low priority zones in both flash flood as well as soil 
erosion analysis (Fig. 8).
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Table 6 Final priority rankings for soil erosion based on hypsometric analysis 

Sub 
watershed 

Min. 
elevation 
(m) 

Max. 
elevation 
(m) 

Mean 
elevation 
(m) 

HI by 
integration 
method 

Geologic 
stage 

Final 
priority 
rank 

SW-1 624 1427 862.00 0.5659 Mature IX 

SW-2 625 1437 926.24 0.5251 Mature XII 

SW-3 626 1218 788.31 0.5733 Mature VI 

SW-4 628 1263 805.72 0.5935 Mature V 

SW-5 626 1232 807.17 0.567 Mature VIII 

SW-6 626 1182 893.51 0.4867 Mature XV 

SW-7 559 1149 815.53 0.5166 Mature XIII 

SW-8 556 1089 771.43 0.5702 Mature VII 

SW-9 534 1082 659.83 0.6946 Young II 

SW-10 555 1106 797.85 0.5496 Mature X 

SW-11 542 1079 656.98 0.6635 Young III 

SW-12 539 927 607.02 0.7533 Young I 

SW13 596 1109 837.78 0.5382 Mature XI 

SW-14 554 962 674.80 0.601 Young IV 

SW-15 595 1102 809.87 0.5158 Mature XIV

Fig. 8 Priority zones for a Flash flood analysis b Soil erosion analysis
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7 Conclusions 

Being rapid and unexpected, one of the most dangerous and destructive natural 
disasters is flash flooding, endangering both human lives and property, and destroying 
infrastructure. Watershed management entails the management of water resources 
in light of potential climate change scenarios. Prioritization of sub-watersheds is 
required for the development of land and water conservation measures. In this study, 
two different methods namely drainage and hypsometric analysis were used for the 
prioritization of different sub-watersheds for flash flood and soil erosion estimation, 
respectively. Different morphometric parameters were used for the assessment of 
flood potential from different sub-watersheds. Those sub-watersheds which are more 
prone to flash flood formations must be given higher priority for preventing flash 
floods. Sub-watershed SW-9 represented a high risk of flash floods; hence, received 
the highest (first) priority. Sub-watershed SW-13 represented a low risk of flash floods 
hence, received last priority. In the second method, prioritization is carried out using 
hypsometric analysis for assessing the soil erosion risk of different sub-watersheds. 
The main purpose of a hypsometric analysis is to investigate the erosional stage of 
different sub-watersheds. In this research, the erosion risk of various sub-watersheds 
in the Koyna river basin of India was evaluated using HC and HI. Here, it was 
observed that HI values vary from 0.4867 to 0.7533 corresponding to different sub-
watersheds. The study area comes under the mature and young stages of geomorphic 
development. Sub-watershed SW-12 represented a high risk of soil erosion hence, 
received the highest (first) priority. Sub-watershed SW-6 represented a low risk of 
soil erosion hence, received last priority. This hypsometric analysis could be useful 
for analyzing soil erosion problems and the conservation of natural resources like 
soil and water. Because of all this, it may be said that geospatial technology is crucial 
for better watershed planning and management. For a given geologic and climatic 
conditions of the study area, only sub-watersheds (SW) 11 and 14 received similar 
priority for both flash floods and soil erosion risk. All other sub-watersheds received 
different final priority ranks for flash floods and soil erosion risk. However, this 
study is limited to only semi-arid climatic conditions for a given geomorphological 
conditions. Further, this kind of study should be done at other river basins to study 
where there is similarity or differences in prioritization using both methods. Future 
studies should be focused on different geologic and climatic conditions to assess the 
potential of geospatial technology. This study was carried out using only ASTER 
DEM. This analysis should be verified using other different DEM to test its accuracy. 
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Exploring the Suitability of Groundwater 
for Domestic Water Quality 
and Irrigation Purpose in Dindigul 
District, Tamil Nadu 

Rajee Radhakrishnan and Saravanabavan Vaithialingam 

Abstract The quality of groundwater is exaggerated by a wide range of natural 
and anthropogenic influences. Whenever there is a limited supply of water and it 
must be used as efficiently as possible, their influence is typically greater. The study 
area has lot of leather industries, cement industries which affects the excellence of 
groundwater. This leads to realize the chemical characteristics of groundwater based 
on BIS standards. The piper plot indicates that the cations and anions are in the order 
of Na+ > Mg+ > Ca+ and Cl− > HCO3 > SO4 

2 and the samples fallen are under 
the characteristics of alkaline earth exceeds alkalies. Weighted overlay techniques in 
GIS and multivariate statistical technique such as cluster analysis (CA) were used to 
identify the quality indexes. Derived results state that 12% of the samples are fit in 
both post and pre monsoon season and unfit for drinking purposes in DGWI. IWQ 
indicate that 56.08% of area in POM (post monsoon) and 70.31% of area in PRM (pre 
monsoon season) is suitable for Irrigation purposes. Integrated groundwater quality 
shows that 78.16% and 40.26% of area is undesirable for domestic and irrigation 
purposes. The outputs of each chemical parameter are cartographically and spatially 
visualized as a map using GIS Techniques. 

Keywords Domestic groundwater quality index · IWQ · Cluster analysis · GIS ·
Inverse distance weight · BIS 

1 Introduction 

Groundwater is the strategic resource for basic necessities, primary, secondary and 
quaternary activities (UNEP 1999). The quality of groundwater affects the urban 
expansion, industrial and agricultural activities in both developed and developing
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countries directly or indirectly (Singh and Chandel, 2006; Saleem, 2007; Gupta 
et al. 2008; Srinivasamoorthy et al. 2011). The decrease in quality of groundwater 
that makes contamination has introduced to the environment due to human activities. 
Certain groundwater constituents have high concentration due to natural processes. 

The color and taste in the groundwater decide the suitability of drinking water 
rather considering the chemical and heavy metal contamination (Kumar et al. 2007). 
About 80% of the diseases prevalent are because of the contaminated water. The 
concern on water scarcity and water quality for agriculture and other sectors is more 
sensitive. According to Omran et al. (2014), severe water shortage is experienced 
over the driest part of the globe. The groundwater quality degrades due to pressure 
formed over hydrological and hydro-geologic systems as an impact of dynamic nature 
of the climate (Gurdak et al. 2012; Bondu et al. 2016). The quality of the groundwater 
depends on the structural and chemical composition of rocks as well as on a number of 
hydrological elements. The solubility, complexity, sorption, and exchange processes 
of minerals are significantly influenced by water quality (Apambire et al. 1997; 
Raju et al. 2009). Hydro geochemical parameter is to be understood to expedicate 
differences in groundwater resources (Bozdag and Gocmez 2013; Pande and Moharir 
2022). 

There are number of studies related to groundwater quality assessment carried 
through out the country. Sadashivaiah et al. (2008) studied Tumkur Taluk, Karnataka 
and assess the water scarcity and quality problems. Water quality for Bhadravathi 
taluk using GIS has been analysed for both POM and PRM (Raikar and Sneha 
2012). Reddy (2013) studied the potential of groundwater for irrigation using APHA 
method for Bhaskar Rao Kunta watershed, Nalgonda. Venkateswaran and Vediappan 
(2013) assessed quality of the same for irrigation in Lower Bhavani Sub Basin, 
Cauvery River, Tamil Nadu. Samahajira and Annal (2017a) collected and analyzed 
groundwater samples from Rediyarchatram block for irrigation practices located in 
Dindigul district. The suitability of groundwater has been evaluated by applying 
multiple techniques (Ahmadi and sedghamiz 2007; Nas and Berktay 2010; Samson 
et al. 2010; Ketata-Rokbani et al. 2011; Ordookhani et al. 2012) for domestic as well 
as irrigation purposes. Vinothkanna et al. (2020a, b) assessed the quality of water on 
behalf of irrigation for Dindigul district. 

The area considered for study consists of many of industries like leather indus-
tries, spinning mills, cement and chemical industries and heavy fertilizer used in the 
agriculture making groundwater unfit for domestic and agriculture purposes. Based 
on the above aspect, a GIS based MCDSS (multi criteria decision support system) is 
a sound platform for decision makers not only to integrate the chemical parameters 
but also for easy visual interpretation (Simsek and Gunduz 2007; Pande et al. 2020). 
Geographic Information system (GIS) is an effective platform to monitor the ground-
water and to create maps based on chemical values present in the water (Krishnaraj 
et al. 2015; Lozano et al. 2012; Vinothkanna et al. 2020a, b). Pollution in water can be 
effectively monitored and managed using GIS (Balakrishnan et al. 2011). Along with 
GIS, cluster analysis were used in number of studies to identify pollutants (Lin et al. 
2017; Misaghi et al. 2017; Zamani-Ahmadmahmoodi et al. 2017). For sustainable 
use the quality of groundwater should be asses and monitor properly (Selvam and
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Fig. 1 Study area location 

Sivasubramanian 2012; Singaraja et al. 2012). Vinothkanna (2019) used correlation 
techniques to identify the suitability of groundwater in Dindigul district. 

Geographically, Dindigul is bounded by Erode, Karur and Tiruchirappalli districts 
on the north; a part of Madurai and Tiruchirappalli districts on the east; a part of 
Madurai and Theni districts on the south and Kerala State and Coimbatore district 
on the west and it locates in the latitudinal extent of 10°05’ and 10° 09’ north and 
longitudinal extent of 77° 30’ to 78°20’ east (Fig. 1). Total geographical area of the 
district is 6036.11 km. 

Dominant soil type is Alfisols, occupying 38.53% of Dindigul. Having a tropical 
climate, the district is geologically flanked by acid intrusive in the north, east and 
south. Another important geological feature present in the area is peninsular gneiss 
(Fig. 1). 

2 Material and Methods 

This study purely used secondary data for checking groundwater quality and was 
collected from Central Groundwater Board, Tharamani, and Chennai. For this study 
the mean values from 2008 to 2017 were considered to analyze the groundwater 
quality for domestic and irrigation. The number of wells varied from one year to 
another year because it may close or dry up. So, common wells for all the years 
for both POM and PRM are extracted using excel software. Finally, 17 common 
wells have been derived to study the groundwater quality based on BIS standards 
(Table 1). The base spatial administrative unit is prepared from SOI (Survey of India
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Table 1 The relative weight, 
weight and its BIS standards 
for groundwater quality 
parameters (Vinothkanna 
et al. 2022) 

WQ 
parameters 

BIS standards Weight (Wi) Relative weight 

pH 8.5 3 0.103 

Total dissolved 
solids (TDS) 

500 5 0.172 

Sulphates 
(So42−) 

200 3 0.103 

Chloride (Cl−) 250 3 0.103 

Sodium (Na+) 200 3 0.103 

Potassium 
(K+) 

12 1 0.034 

Calcium 
(Ca2+) 

75 2 0.069 

Magnesium 
(Mg2+) 

30 2 0.069 

Fluoride (F−) 1 5 0.172

Σwi = 27 ΣWi = 1.00 

Toposheets) in the scale of 1: 50,000. Location of each well has pointed and the result 
of each chemical parameter of water has been joined to the point as an attribute and 
final geo data base was created using Arc GIS software (Pande et al. 2018). The 
spatial analysis tool has been used extensively; mainly interpolation technique such 
as the Inverse Distance Weight (IDW) method is used for generating the surfaces 
(Karunanidhi et al. 2013). Cluster analysis by SPSS has been used to find out the 
similarities in the data. Hence, in groundwater, there are multiple types of clusters 
to identify the physic-chemical character (Troiano et al. 1994; Farnham et al. 2000). 

2.1 Domestic Water Quality Index (DWQI) 

The parameters to understand domestic water quality index are, pH, Total dissolved 
solids (TDS), Sulphates (So4 2-), Chloride (Cl-), Sodium (Na + ), Potassium (K+ ), 
Calcium (Ca2+ ), Magnesium (Mg2+ ) and Fluoride (F-). The assigning of weight 
has been done based on the relative importance on the water quality parameters. 
Vinothkanna et al. (2016), applied the relative weight using a weighted arithmetic 
index method (WAI) (Table 1). 

DWQI = Σqiwi. 
Where qi (parameter rating) = 100 X (Va-Vi) / (Vs-Vi), 
When Va = actual value. 
Vi = Desired value (null for all; except pH (7.0) and DO (14.6 mg/l). 
Vs = standard value. 
Wi (unit weight) = K/Sn.
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Where K indicates constant = 1. 
1/Vs1 + 1/Vs2 + 1/Vs3 + 1/Vs4…….. + 1/Vsn. 
Sn = ‘n’ number of standard values. 

2.2 Irrigation Ground Water Quality Index (IWQI) 

The indices such as SAR, EC, and RSC, % Na, PI, MR, KR and SSP are mainly 
concerned as irrigation parameters for assessing the IWQ index (Vinothkanna et al. 
2021a, b). The equations given in Table 2 is used as an input for IWQI assessment. 

There may be a radical difference in geographical settings with different soil 
conditions and cropping pattern. Based on the physical aspect the decision maker 
can easily change the procedure and alternate weight can assign for parameters used. 
In addition to weighing coefficient rating of each parameter has also worked out to 
calculate the irrigation water quality index. The IWQ index is calculated using the 
formula, 

IWQ index = 
8Σ

i−1 

Gi 

where I is an index and G is contribution of each categories important to assess the 
quality of irrigation water resources. 

Gi = W1 × R1 

Where W is the weight and r is the ranking value of the parameter.

Table 2 Equation for calculation of water quality for irrigation 

Parameter Equation Author 

SAR = Na/ 
√
Ca + Mg/2 Richards (1954) 

RSC = (CO3 + HCO3) − Ca + Mg) Richards (1954) 

Na % = (Na + K)/(Ca + Mg + Na + K) * 100 Wilcox (1955) 

PI = {(Na + HCO3)/[
√
(Ca + Mg + Na)]} * 100 Doneen (1964) 

MR = Mg * 100/(Ca + Mg) Raghunath (1987) 

KR = Na/(Ca + Mg) Kelly’s (1963) 

SSP = (Na + K)*100/Ca + Mg + Na + K Todd (1980) 
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2.3 Cluster Analysis 

Cluster analysis (CA) is a statistical method used to classify variables based on the 
similarities and to identify the homogeneity dendograms were used to perform CA. 

3 Result and Discussion 

The descriptive statistics such as, minimum, maximum, mean and Standard deviation 
values for both post and pre monsoon for domestic groundwater quality index are 
shown in the Table 3. Classification of chemical parameters based on BIS standards 
and their suitability classes for post monsoon (POM) and pre monsoon season (PRM) 
are shown in Table 4.

3.1 Groundwater Chemistry Mechanism 

Several factors affect the hydro-geochemical compositions of groundwater in the 
aquifer, and the Piper tri-linear diagram can be used to study these issues more 
thoroughly (Fig. 2).

Piper plot indicates analytical value of both cations and anions. The cations is 
dominated by sodium and potassium ions (Na+ + K+) followed by no dominant type 
and the anions is dominated by chloride ions (Cl−). The concentration of positive 
and negative ions are in the order of Na+ > Mg+ > Ca+ and Cl− > HCO3 > SO4 

2. 
Mixed type water is highly dominated in the study area followed by magnesium 
bi-carbonate type in both monsoon seasons. The samples present in the study area 
demonstrates that weak acids exceed strong acids followed by strong acids exceeds 
weak acids. Based on the graph it clearly illustrates that the alkaline earth exceeds 
alkalies. During pre-monsoon season almost all the samples are found between the 
percentages of 40 to 60. In post monsoon season most of the samples are found 
between 40 and 60% 

3.2 Domestic Ground Water Quality 

The easy ways of transferring diseases to humans is water. Water consists of charged 
particles, soluble gases and micro-livings. When these exceed particular extent; it 
becomes unfit for domestic purposes. The maximum value for individual chemical 
parameter is fixed and suggested by many governments and non-government orga-
nization such as, WHO and BIS to determine the usability of universal solvent. To
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Table 4 Classification of chemical parameters based on BIS level for POM and PRM 

Chemical 
parameter 

BIS standards Suitability class POM PRM 

% No. well % No. well 

pH <8.5 Desirable 100 17 100 17 

>8.5 Permissible – Nil – Nil 

TDS (mg/L) <500 Desirable 35.29 6 41.17 7 

500–1000 Permissible 35.29 6 35.29 6 

>1000 Not permissible 29.41 5 23.52 4 

Mg (mg/L) <30 Desirable 23.52 4 23.52 4 

30–100 Permissible 64.70 11 64.70 11 

>100 Not permissible 11.76 2 11.76 2 

K (mg/L) <20 Permissible 82.35 14 88.23 15 

>20 Not permissible 17.64 3 11.76 2 

Ca (mg/L) <75 Desirable 82.35 14 88.23 15 

>75 Permissible 17.64 3 11.76 2 

Na (mg/L) <200 Permissible 76.47 13 88.23 15 

>200 Not permissible 23.52 4 11.76 2 

So4 (mg/L) <200 Desirable 94.11 16 94.11 16 

>200 Permissible 5.88 1 5.88 1 

Cl (mg/L) <200 Desirable 64.70 11 70.58 12 

>200 Permissible 35.29 6 29.41 5 

F (mg/L) <1 Desirable 82.35 14 76.47 13 

>1 Permissible 17.64 3 23.52 4

Fig. 2 a PRM and b POM samples (Piper Plot)
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examine the suitability of subsurface water for drinking purpose chemical parameters 
used will be pH, TDS, Mg2+, K+, Ca2+, Na+, So42−, Cl−and F−. 

3.2.1 PH 

pH determines the acidic and alkaline nature of water. This acidic and alkaline nature 
can be evaluated with the interaction of rock and other materials to water (Hem 1985). 
The mean pH in the collected samples during post monsoon season ranging from 
7.75 to 8.38 mg/l and in pre monsoon it is 7.94 to 8.21 mg/l in the study. The samples 
are under the permissible limit as prescribed for the drinking water (BIS 2012). 

3.3 Total Dissolved Solids (TDS) 

The preferred limit for TDS is 1000 mg/l (WHO 2004 and BIS 2012). Nearly 71 and 
76% of groundwater representative is under permissible limit for drinking during 
post and pre-monsoon respectively. About 29 and 24% of samples found in the study 
locations were above the permissible level prescribed by the BIS and considered as 
not suitable for drinking purposes during post and pre monsoon season respectively. 
High values are due to inappropriate method of sewage disposals. 

3.3.1 Magnesium (Mg2+) 

For enzyme activation, magnesium is one of the important components. If the content 
of magnesium is high it is considered as laxative agent. For human beings, the 
structural and functional changes may occur due to the efficiency of magnesium. 
During the post monsoon season mean values range from 30.83 to 142.53 mg/l and 
in pre-monsoon season it is from 30.90 to 124.27 mg/l. There are only 2 samples 
exceeds the BIS limit (100 mg/l). Excess Magnesium content in the ground water 
leads to unpleasant taste (Ramesh and Elango 2012). 

3.3.2 Potassium (K+) 

The potassium level below 20 is permissible in the groundwater as per BIS standards 
and its values ranges from 15.20 to 71.60 mg/l as well as between 5.20 and 85.00 mg/l 
in POM and PRM season respectively. About 82% (14 representatives) in POM and 
88% (15 representatives) in PRM are under permissible limit.
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3.3.3 Calcium (Ca2+) and Sodium (Na+) 

For the growth of bone calcium is one of the important parameters. It is found alkaline 
in nature. Water hardness is depending on dissolved ca2+ and Mg2+ in water (Rabeiy 
2018). The mean level of calcium ranges from 26.60 to 125.27 mg/l and 20.60 to 
124.40 mg/l in post and pre monsoon season in the study area. 

Sodium is a common chemical element present in drinking water. However, intol-
erable taste occurs, if it exceeds the allowable extent. The acceptable limit for sodium 
is 200 mg/l (BIS 2012). 13 samples (76%) and 15 samples (88%) during POM and 
PRM are under the range prescribed by the BIS. 

3.3.4 Sulphate (So4) 

Due to the application of sulfate in agricultural field and the occurrence of sulphide 
minerals leads to the presence of Sulphate in the groundwater. It increased because 
of industrial waste. The Sulphate concentration is varying from 22.30 to 244.73 mg/l 
in the POM and in PRM between 23.60 and 274 mg/l. The desirable level for sulfate 
is 200 mg/l (BIS 2012). Approximately, all the samples in the location are under 
desirable limit except one sample. 

3.3.5 Chloride (Cl−) and Fluoride (F−) 

The permissible limit of chloride is 200 mg/l (BIS 2012) and it is considered as 
the significant chemical parameter in assessing the quality of water. High chloride 
concentration indicates high constituents of biotic contaminators (Singh and Khan 
2011). 6 samples (35%) and 5 samples (29%) in post and pre monsoon season exceeds 
the permissible limit as set by the BIS. During the post and pre monsoon season, 
the mean fluoride concentration in the groundwater samples ranges from 0.16 to 
1.33 mg/l and 0.22 to 1.3 mg/l respectively. All the samples are under permissible 
limit in the district. Fluoride is one of the significant health hazards in ground water 
resources (Vinothkanna et al. 2021a, b). 

3.3.6 Water Quality Index (WQI) 

The WQI is a mathematical method of showing groundwater quality and the index 
value is changing from one standard method to another depend upon the physical 
nature of the study undertaken. BIS standard been adopted to classify the values into 
5 categories (Table 5). The resulted WQI shows that, about 12% of the representative 
values are excellent and good in both POM and PRM. Also, 53% of post monsoon 
samples and 53% of pre monsoon samples are under poor to very poor water. 12% 
of water is unfit for drinking purposes (Fig. 3).
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Table 5 Water quality index—Pre monsoon and Post monsoon 

Sl. No WQI Water class Pre monsoon season Post monsoon season 

Total well % Total well % 

1 <25 Excellent 2 11.76 2 11.76 

2 25–50 Good 2 11.76 3 11.64 

3 50–75 Poor 4 23.52 4 23.52 

4 75–100 Very poor 6 35.29 5 29.41 

5 >100 Unfit for drinking 3 11.64 3 11.64 

Fig. 3 Spatial distribution of WQI for pre and post monsoon seasons 

3.4 Irrigation Water Quality 

Standard of groundwater is important for plant growth apart from soil. The salt 
present in the water influences permeability along with soil structure. Plant growth 
also affects indirectly (Karunanidhi et al. 2013). The productivity of crop is also 
affected if the water is in poor quality (Iqbal et al. 2012). To identify the groundwater 
quality condition for irrigation, eight quality indices were calculated. The results of 
each index are shown as map (Table 6).
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Table 6 Irrigation ground water quality parameter suitability classes 

Irrigation 
parameters 

Post monsoon 
season 

Pre monsoon 
season 

Suitability class Percentage 

Min Max Min Max POM PRM 

SAR (epm) 0.36 4.59 0.60 5.23 Excellent <10 100 100 

Good 10–18 – – 

Doubtful 18–26 – – 

Unsuitable >26 – – 

EC 
(µS/cm) 

128 2613.6 167 2421 Excellent <250 5.88 5.88 

Good 250–750 23.52 29.41 

Permissible 750–2000 47.05 41.17 

Desirable 2000–3000 23.52 23.52 

RSC (epm) 0.00 0.57 0.00 0.96 Safe <1.25 100 100 

Medium 1.25–2.5 – – 

Unsuitable 2.5 – – 

Na % 
(meq/l) 

18.92 52.48 23.74 54.74 Excellent 0–20 5.88 – 

Good 20–40 64.70 64.70 

Permissible 40–60 29.41 35.29 

Doubtful 60–80 – – 

Unsuitable >80 – – 

PI (meq/l) 45.28 70.89 47.280 74.082 Good <80 100 100 

Unsuitable >80 – – 

MR (meq/l) 21.41 63.00 27.32 69.34 Suitable >50 52.94 35.29 

Unsuitable <50 47.05 64.70 

KR (epm) 0.32 1.77 0.51 2.03 Suitable <50 58.82 47.05 

Unsuitable >50 41.17 52.94 

SSP 
(meq/l) 

30.65 64.98 38.74 69.42 Suitable <200 100 100 

Unsuitable >200 – – 

3.4.1 Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC) 

The amount of salt absorbed by the soil and the irrigation water utilised have a strong 
relationship (Bhunia et al. 2018). The irrigation suitability can be identified by using 
SAR as one parameter and helps to determine the presence of alkaline and earth 
alkaline in the water. The sodium concentration is due to the presence of Ca and 
Mg in the subsurface water (Iqbal et al. 2012). Richard(1954) proposed equations 
are used to calculate the SAR. The SAR values represents that all the samples (both 
post and pre monsoons) presents in the district are suitable for doing agricultural 
activities (Figs. 4, 5a).

The 29 and 35% of representatives during both seasons are under excellent and 
good category respectively (Fig. 5b). EC value ranges from 2000 to 3000 µmhos/cm
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Fig. 4 Graphical representation of Wilcox diagram

are 24% during post and pre monsoon season indicates medium salt enhancement 
(Sarath Prasanth et al. 2012). 

The classifications of irrigation water are graphically plotted using Wilcox 
diagram (SAR versus EC). Only one sample in both seasons comes under C1S1 (Low 
salt—low sodium type). Under C2S1 (medium saline-low sodic type), 5 samples in 
pre and 4 samples in post are categorized as good salinity. Dominant samples are 
under C3S1 (High saline-low sodic type) and are equally distributed in post and pre 
monsoon season. Only few samples are in C4S1 (Very high saline-low sodic type) 
such as 1 and 2 in pre and post monsoon respectively. The medium saline and low 
sodium groundwater in both monsoon conditions are clearly portrays using plots 
(Table 7; Fig.  4).

3.4.2 Residual Sodium Carbonate (RSC) 

The alkalinity risk for soil is determined by the irrigation water’s residual sodium 
carbonate (RSC) index. The water with RSC greater than 2.5epm is well thought-
out as unsuitable for irrigation (Richard’s 1954). Almost, 100% of the ground water 
samples (17 wells) in post and pre monsoon are suitable for agriculture. 

3.4.3 Percent Sodium (%Na) 

The soil permeability can be reduced due to the presence of high amounts of sodium 
in irrigation water and arrest the growth of plants (Joshi et al. 2009). Na% present in 
the groundwater samples of >20 meq/l is excellent for irrigation and it is found only
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Fig. 5 a and b Geographical extension of SAR and Electrical Conductivity for both seasons
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Fig. 6 NA% for pre and post monsoon seasons 

in post monsoon season (6%). About 65% of test variables samples in the selected 
spatial extent are fit for cultivation. The test variables are under doubtful as well as 
unsuitable classes are not found in any of the samples during both seasons (Fig. 6). 

3.4.4 Permeability Index (PI) 

The suitability of water for irrigation can be assessed using Permeability Index 
(Doneen 1964). PI values ranges from 18.92 to 52.48 meq/l and 47.28 to 74.28 meq/l 
in post and pre monsoon season respectively. PI values specify that all the 17 ground 
water samples in both PRM and POM are suitable for irrigation. 

3.4.5 Magnesium Ratio 

Larger amount of magnesium in ground waters disturbs the soil quality in the way 
of alkaline conversion inversely affects crop production (Paliwal 1972). If the MR 
is <50 meq/l considered as suitable and if MR is above 50 meq/l, it is considered 
as unsuitable for agriculture. About 53 and 35% of collected representatives in both 
seasons are excellent in behalf of cultivation (Fig. 7). Samples unsuitable for agri-
culture are 65% over the study area. The high Magnesium ratio in the samples is due 
to interactions of surface and subsurface water with the country rock (Pandian and 
Sankar 2007).
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Fig. 7 MAR for seasons 

3.4.6 Kelly’s Ratio 

The sodium problem in irrigation water can be work easily with the help of Kelly’s 
ratio (Kelley et al. 1940). A KR value indicates that 59% (10 samples in POM) and 
47% (8 samples in PRM) during seasons are suitable (Fig. 8).

Soluble Sodium Percentage (SSP) 

The excess of sodium concentration reduces the crop production and plant growth 
(Iqbal et al. 2012). In the pre monsoon season in the SSP values varies from 41.05 
to 69.42 meq/l and in post monsoon it is 37.98 to 64.98 meq/l. The SSP values in 
entire groundwater test variables are suitable for agriculture in both seasons. 

Irrigation Water Quality Index 

To evaluate the suitability of water for irrigation purpose the chemical parameters 
are ranked and weighted based on its importance (Table 8). The weight has assigned 
equally due to their magnitude. The outputs of samples are classified as suitable and 
unsuitable.

In post monsoon season, the irrigation water quality index indicates that 56.08% 
of area was under suitable classes and 43.91% area is found in the unsuitable classes
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Fig. 8 KR for seasons

(Fig. 9). In pre-monsoon season 70.31% of area is under suitable classes and nearly 
29.68% are under unsuitable classes (Table 9).

3.5 Integrated Ground Water Quality 

The main intention of doing integrated ground water assessment on quality is to 
squashed drinking and irrigation groundwater quality index in a single map. Weighted 
overlay analysis in GIS has performed to integrate the multiple layers into single 
layers and grouped in to four categories. They are undesirable for domestic and 
irrigation, moderate desirable for irrigation, desirable for irrigation, desirable for 
basic as well as irrigation purpose. Table 10 contains calculated area and spatial 
distributions are shown as a map (Fig. 10).
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Table 8 Irrigation zones 
identifying ground water 
suitability of water quality 
parameters ratings 

Parameter Classes Ratings 

SAR Excellent 6 

Good 3 

Doubtful 1 

Unsuitable 0 

EC Excellent 4 

Good 3 

Permissible 2 

Doubtful 1 

RSC Safe 6 

Medium 4 

Unsuitable 0 

%Na Excellent 5 

Good 3 

Permissible 1 

Doubtful 1 

Unsuitable 0 

PI Suitable 6 

Moderate Suitable 4 

MR Suitable 10 

Unsuitable 0 

KR Suitable 10 

Unsuitable 0 

SSP Suitable 10 

Unsuitable 0

In pre-monsoon season, the desirable for domestic and irrigation classes covering 
an area of 381.61 sq. km and in post monsoon season, the area is 208.93 sq. km. 
About 624.88 sq. km (POM) and 567.26 sq. km (PRM) of geographical extent is 
desirable for agriculture. In study area, moderate desirable for irrigation is found to 
be 9% of area in POM and 43% of area in PRM. The area undesirable for domestic 
and irrigation is 78% in POM and 40% in PRM. 

The dendrogram resulted that only 3 clusters are identified over post monsoon 
season irrigation and all other pre monsoon season and post–pre DWQI have only 2 
clusters during the study area. Even though there are 2 clusters the sample location 
is not common for all and it’s varied from one monsoon season to another (Fig. 11).



272 R. Radhakrishnan and S. Vaithialingam

Fig. 9 Irrigation Water Quality Index 

Table 9 Irrigation water quality index 

Class Area in sq.km In percentage 

POM PRM POM PRM 

Suitable 3385.27 4244.00 56.08 70.31 

Unsuitable 2650.84 1792.10 43.91 29.68 

Total 6036.11 6036.11 100 100

Table 10 Integrated water quality index 

Class Area in sq.km In % 

POM PRM POM PRM 

Desirable for domestic and irrigation 208.93 381.61 3.46 6.32 

Desirable for irrigation 567.26 624.88 9.39 10.35 

Moderate desirable for irrigation 541.50 2598.92 8.97 43.05 

Undesirable for domestic and irrigation 4718.40 2430.69 78.16 40.26 

Total 6036.11 6036.11 100 100

4 Conclusion 

The earthly presence of groundwater as well as its usability is crucial. For the 
optimum and proactive use of water, the timely monitoring of groundwater quality is 
mandatory. The present study examines the aptness of groundwater for domestic and
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Fig. 10 Integrated Ground Water Quality for seasons

irrigation using water quality indices for Dindigul district, Tamil Nadu. General char-
acteristics, major positive and negative ions in the groundwater are direct indicators 
of quality indices based on BIS standards. The water quality index was calculated 
for both post and pre monsoon seasons. Geographical variations of each chemical 
parameter reveal the nature of groundwater in the study area. DWQI reveals that 53 
and 59% of groundwater samples are poor water quality in post and pre monsoon 
season respectively. 12% of samples are unfit for drinking purposes in both the 
seasons. About, 3385.27 and 4244.00sq.km area is suitable for watering in agricul-
tural fields in POM and PRM season based on IWQ indices. Assessing the integrated 
water quality index reveals only 3% in post monsoon and 6% in pre monsoon season 
are desirable for both basic and agricultural activities. This type of research helps 
realizing the quality of the water for drinking and agricultural purposes as well as 
to develop appropriate management practice needed in the contaminated ground-
water environment. BIS, WHO, and numerous other standards are followed widely 
for the evaluation of water quality, and variation in each parameter’s range is a 
limitation for water quality studies. It is challenging to understand the water status 
of a certain place when applying various types of water quality standards because 
they commonly show the permissible and non-permissible range at the same place. 
So, using the local geologic and lithological parameters will help in deriving more 
accurate results. Majority of the area’s water quality is affected by improper sewage 
treatment, contaminated water supplies, and the mixing of industrial wastes, which 
in turn affects the local population and environment. The water quality checking 
is incomplete unless otherwise contaminated water is treated and used accordingly. 
Considering the study area, the major sources of water contamination are agricultural 
fields in the form of pesticides and fertilizers along with leather industries. So the
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Post Irrigation (a) Pre-Irrigation (b) 

Post DWQI (c) Pre DWQI (d) 

Fig. 11 Dendrogram of water sampling locations during Post and Pre monsoon season for Irrigation 
a and b, c and d represents water sampling location dendrogram for post and pre monsoon season 
for domestic groundwater quality

quality of water can be improved by promoting organic farming and proper moni-
toring of waste management by the industries. Safe water influences the health and 
living conditions of the people, thus affecting the social life of public. 
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Evaluation of Morphometric Parameters 
of Drainage Networks Derived 
from Topographic Maps and DEM Using 
Geographical Information 
System—A Study on Semi-Arid River 
Basin, India 

B. Y. Chinmayi and H. Ramesh 

Abstract Agriculture plays a vital role in India’s economy and there is a prodigious 
need for efficient utilization of available water resources. Effective management of 
any river basin necessitates a precise delineation of the watershed as it is crucial to 
determining stream flow paths and the contributing areas, which are the main factors 
in a river basin’s morphometric characteristics. In the current study, an effort has 
been made to evaluate various morphometric characteristics using geographic infor-
mation system (GIS) and remote sensing (RS) techniques, including linear aspects, 
relief aspects, and aerial aspects. The GIS platform is used for the preprocessing 
of the data and the delineation of the watershed. The current study focuses on the 
upper Cauvery River basin i.e., the Hemavathi subbasin in Karnataka, which is clas-
sified as semi-arid. The Hemavathi River runs for about 202 km and drains about 
5,575 square kilometers. A total of 5 sub-basins are created using a hydrological 
model for the current study. The morphometric parameters evaluated for the study 
are derived using the Survey of India topographic map (1:50,000) and SRTM (Shuttle 
Radar Topographic Mission) Digital Elevation Model. The systematic analysis of 
morphometric parameters within the drainage network provides significant insight 
for hydrologists and decision-makers in understanding and framing efficient water 
and soil conservation practices. 
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1 Introduction 

Morphometric analysis is defined as quantitative and mathematical analysis and 
measurements of the earth’s landforms to have a significant understanding of the 
geological and hydrological characteristics of a drainage basin (Asfaw and Workineh 
2019). Drainage characteristics of a river basin are often studied using conventional 
methods (Athol 1984). More methodical approaches to studying the basin morpho-
metric characteristics have been presented in recent studies (Mahala 2020; Pande 
et al. 2021a). The development of morphometric analysis follows that of funda-
mental basin parameters like catchment area, perimeter, stream length, maximum 
and minimum elevation, and stream orders. Additionally, derived and shape param-
eters are obtained using these parameters. In order to study different morphometric 
parameters, drainage networks’ pattern, texture, and shape have been quantitatively 
analyzed in a significant amount of research (Ahmed et al. 2010; Pande et al. 2020). 

Traditional techniques, such as field observations and the use of topographic maps, 
can also be used to identify the drainage networks that exist within the basin (Pande 
et al. 2021b). Due to the various constraints involved in the field survey, it is practically 
not feasible to analyze every stream network (Maidment 2002) so in the current 
study, the drainage network is created using Digital Elevation Map (DEM) under 
Geographical Information System (GIS) platform (Pande et al. 2017). The generated 
stream networks are subsequently validated by superimposing them on topographical 
maps procured from the Govt. of India. Drainage networks extracted from DEM use 
the concept of water flowing under gravity from higher elevation to lower elevation 
under a few assumptions that there are no interception, evaporation, or other losses 
(Ahmed et al. 2010; Prabhakaran and Jawahar Raj 2018). In the current work, a 
semi-arid basin located in the southern part of India is selected for the study. 

2 Materials and Methods 

2.1 Description of the Study Area 

The Hemavathi river originates in the Western Ghats at a height of approximately 
1,869 m close to Ballalarayanadurga in the Chikkamagalur district of the State 
of Karnataka, which falls in the upper Cauvery basin. It flows through Hassan 
district where it is joined by its chief tributary, the Yagachi River, and then 
into Mandya district before joining the Cauvery river near Krishnarajasagara. Hema-
vathi river traverses a length of approximately 202 km and has a drainage area of 
about 5,575 km2. Figure 1 shows the location of the study area (Fig. 2).
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Fig. 1 Location map of the 
study area

3 Methodology 

The study area for the current study is delineated using 30 m resolution Shuttle 
Radar Topographic Mission (STRM) DEM procured from USGS which is projected 
in Universal Transverse Mercator (UTM) -WGS 84, Zone 43N. The DEM must be 
created without sinks or depressions, as these features could result in the generation 
of discontinuous drainage networks, which is the first crucial step before creating 
drainage networks (Pande et al. 2018). Sinks are DEM cells that are lower in elevation 
than the cells around them. As a result, when creating stream networks, the flow tends 
to congregate at the depressions or sinks in the DEM and cannot move elsewhere. 
Using Arc Hydro in ArcGIS, the sinks were located and eliminated in the current 
work. 

The next step in the analysis is to determine the flow direction. The basin land-
scape is analyzed using the eight direction pour point model, also known as the 
D-8 algorithm, to determine the direction of each cell. The cells are checked for 
the surrounding elevation of 8 cells and drained to the cell with the least elevation 
assuming gravity flow. Similarly, the entire cells in the area of interest are examined, 
and a flow direction map with a predefined threshold is generated (shown in Fig. 3a).

The accumulation of the flow is the following step in the modelling process. It is 
crucial to create the stream with the ultimate flow path now that the model is aware
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Fig. 2 Google Earth image of Hemavathi basin in the year 2022

of the direction of the flow in each cell. The flow is accumulated in each cell of a 
raster that is made in this step (shown in Fig. 3b). 

The study area for the current analysis is characterized into 5 sub-basins based on 
the 1st order of streams and major dams located in the study area. The first subbasin 
is taken up to upstream of the Yagachi dam built across the Yagachi river in the 
Chikkamagalur district. The second subbasin is considered up to upstream of the 
Gorur dam built across the Hemavathi river in Hassan district. 

The third subbasin is considered till the point where the Yagachi river confluences 
the Hemavathi river. The fourth subbasin is considered at the confluence point of 
Hebba Halla and Hemavathi rivers basically to reduce the geographical study area of 
the last subbasin. Lastly, the fifth subbasin up to entire subbasin outlet of the study 
area as shown in Fig. 4.

The streams generated were then overlaid on topographical maps to ensure that 
they were accurate before being used to create the sub-basins for the current study. 
Figure 5a, b show the reaches overlayed on topographical maps in GIS.
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Fig. 3 a Flowchart for extracting the drainage network from the DEM, b Extracting drainage 
network from DEM
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Fig. 4 Map showing sub-basins and reaches overlayed on filled DEM

4 Results and Discussion 

4.1 Basic Parameters 

The first basic parameter analyzed in the current study is the perimeter (P) of the basin 
defined as the total length of the drainage basin boundary. The perimeter derived from 
SRTM DEM is 745 km for the entire basin. The total area considered for the present 
study is 5575 km2. 

The total stream length (Lu) of the study area is found by counting the total 
number of streams of all orders and their total length was measured in GIS. The 
typical characteristic of a stream network is the total length of the stream is the 
longest in higher order and the total length decreases as the order decreases (Biswas 
2016) and this similar pattern are observed in the current study as well. The total 
stream length is 1878.89 km and the total order number is found to be 636. The 
maximum and the minimum elevation of the entire Hemavathi basin are 1869 m and 
747 m respectively. Table 2 shows the calculated basic morphometric parameters for 
each sub-basin in the study area.
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Fig. 5 a Map showing reaches overlayed on topographical maps, b Map showing the enlarged 
view of the reach in the fourth subbasin overlayed on the topographical map
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Table 2 Morphometric basic parameters 

Sub-
basin 
no 

Area 
(km2) 

Perimeter 
(km) 

Diameter 
(km) 

Stream 
length 
(km) 

Max 
elevation 
(km) 

Min 
elevation 
(km) 

Total order 
number 
(N) 

1 552.0 168.0 26.510 181.00 1.867 0.954 54 

2 988.0 241.0 35.467 327.27 1.279 0.886 111 

3 1362.0 394.0 41.643 466.13 1.423 0.886 145 

4 529.0 186.0 25.952 186.11 1.066 0.832 69 

5 2144.0 374.0 52.247 718.37 1.191 0.747 257 

Table 3 Derived morphometric parameters of Hemavathi basin 

Sub-
basin 
no 

Stream 
frequency 
(FS) 

Drainage Density 
(Dd) 

Texture 
ratio 
(T) 

Basin 
Relief 
(Bh) 

Relief 
Ratio 
(Rr) 

Slope 
Angle 
(S) 

Ruggedness 
Number 
(Rn) 

1 0.098 0.328 0.32 0.913 0.005 0.7165 0.299 

2 0.112 0.331 0.46 0.393 0.001 0.2229 0.130 

3 0.106 0.342 0.37 0.537 0.001 0.3107 0.184 

4 0.130 0.352 0.37 0.234 0.001 0.1718 0.082 

5 0.120 0.335 0.69 0.444 0.001 0.1217 0.149 

4.2 Derived Parameters 

4.2.1 Stream Frequency (Sf) 

Is the total number of stream segments of all orders per unit area of the basin (Horton 
1932). The stream frequencies calculated individually for each sub-basin are shown in 
Table 3. The stream frequency is directly related to the slope of the terrain, infiltration 
capacity, and permeability of the basin and provides drainage basin responses to 
stream processes. Recent studies have shown that it is possible to have different 
stream frequencies though the drainage density is the same (Mahala 2020). Stream 
frequency in the Hemavathi basin ranges between 0.09 and 0.13 (units/km2). This 
lower Stream frequency represents a poor drainage network in the basin (Thomas 
et al. 2010). The lower values of Sf being reported in the study area represents less 
available relief indicative of lesser slope and permeability. 

4.2.2 Drainage Density (Dd) 

Is a measure of the closeness of spacing of streams in the basin according to Horton 
(1945). Dd is the ratio between the total stream length of all orders to the area of the 
basin. Dd also provides the mathematical extent of runoff potentiality of the basin 
irrespective of stream order. Dd is considered an important parameter for studying the
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travel time of water. Dd for the Hemavathi basin is found to be 0.32 to 0.33 km/km2 

indicating low Dd. The Dd values for each of the sub-basins are tabulated in Table 3. 

4.2.3 Texture ratio (T) 

Is defined as the ratio between the total number of streams of all orders to the 
perimeter of the basin. According to Horton (1945) drainage texture lesser than 2 
indicates poor drainage texture ratio and the infiltration capacity of the basin acts 
directly on the texture ratio values as recognized by Horton. In the current study, the 
drainage texture ratio values range between 0.3 and 0.6 units/km. 

4.2.4 Basin Relief (Bh) 

Is defined as the maximum vertical distance between the lowest and the highest points 
of a sub-basin. Bh is a general relief morphometric parameter used to understand the 
slope of a basin as a hydrological parameter. The general relation of Bh with the 
slope is that with the increasing slope the relief ratio increases thereby resulting in 
higher stream gradients resulting in a lower time of concentration of runoff thereby 
increasing the flood peaks and sediment transport in the basin. Bh values are depen-
dent on various underlying geology and geomorphology of the basin. Bh can be used 
as the best indicator to determine the floodplain zones and to identify the stages of 
the flood (Sreekumar and Aslam 2016). In the current work, the Bh values range 
between 0.2 and 0.9 km. The values are lesser in the downstream of the basin indi-
cating the presence of relatively plain terrain while 0.9 value at the upstream subbasin 
1 indicates mountainous terrain with relatively higher Bh values in the study area. 
The values of Bh in each subbasin are tabulated in Table 3. 

4.2.5 Relief Ratio (Rr) 

Is defined as the ratio of the maximum vertical distance between the lowest and 
the highest points of a sub-basin to the basin length. Also, it is defined as the ratio 
between the relief of the basin to the longest dimension parallel to the highest order 
stream in the basin. Rr gives the calculation of the elevation difference between the 
source of the stream and the confluence point downstream divided by the total length 
of the stream. Normally Rr is used to understand the average drop in elevation per 
unit length of the stream considered. Rr increases with decreasing drainage area and 
the study area considered for the current study is relatively large hence there could 
be a dip in Rr values. The study reveals that the Rr of the Hemavathi basin ranges 
between 0.001 and 0.005 (refer to Table 3).
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4.2.6 Slope Angle (S) 

Is defined as the inverse tangent value for the ratio between the maximum vertical 
distance between the lowest and the highest points of a sub-basin to the basin length. 
Normally slope angle is considered with hydrological relevance. Steeper slopes 
generate higher runoff values and transport higher loads of sediment to downstream 
sub-basins. As slope governs the relationship between the infiltration and runoff, it is 
imperative to study the slope of the area of interest. The slope angle of the Hemavathi 
subbasin is shown in Table 3. 

4.2.7 Ruggedness Number (Rn) 

Is a measure that indicates the structural complexity of the terrain. Rn is a dimension-
less number obtained by the product of the basin relief and its drainage density and 
the basin relief is the maximum vertical distance between the lowest and the highest 
points of a sub-basin. In the study area, Rn is found to range between 0.13 and 0.29. 
Studies suggest that the mountainous basin will have higher Rn when compared to 
the rest of the terrain in the basin (Ansari et al. 2012). Here in the current study, 
subbasin 1 has the highest Rn followed by subbasin 2 and 3 downstream of subbasin 
1 (refer to Table 3). 

4.3 Shape Parameters 

4.3.1 Elongation Ratio (Re) 

Is defined as the ratio between the diameter of a circle with the same area as that 
of the basin and the maximum length of the basin (Schumm 1956). Studies have 
revealed that circular basins discharge the runoff relatively more efficiently compared 
to elongated basins (Ahmed et al. 2010). The values of Re generally range between 
0.1 and 0.9. These values can be grouped as circular when Re is > 0.8, as oval 
when Re ranges between 0.6 and 0.8 and the basin is grouped as less elongated 
when the Re values are < 0.6 (Schumm, 1956). In the current study, it is observed 
that the Re values for the Hemavathi basin fall under a less elongated region as shown 
in Table 4.

4.3.2 Circularity Index (Rc) 

Is defined as the ratio of basin area to the area of a circle having the same perimeter as 
the basin. Rc is often influenced by the length, frequency of streams, geology, relief, 
and slope of the basin (Sukristiyanti et al. 2018). Basins with Rc values greater than 
0.5 is considered to be more or less circular in shape with moderate to high drainage
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Table 4 Morphometric 
shape parameters of 
Hemavathi basin 

Sub-basin no Elongation 
ratio (Re) 

Circularity 
index (Rc) 

Form factor 
(Ff) 

1 0.146 0.246 0.026 

2 0.108 0.214 0.014 

3 0.089 0.110 0.010 

4 0.139 0.192 0.024 

5 0.073 0.193 0.006

and relief ratio. Rc values indicate how well the basin is structurally controlled 
concerning the drainage network (Das et al. 2022). The Hemavathi basin is having 
Rc values ranging between 0.11 to 0.24 and thus indicates having very less Rc. The 
Rc values are tabulated in Table 4. 

4.3.3 Form Factor (Ff) 

Is defined as the ratio of the basin area to the square of the basin length. Ff is also 
an indicator of the morphometric shape parameter. The higher the value of Ff more 
circular in shape is the basin (Javed et al. 2011). The Ff values are tabulated in Table 
4 for the sub-basins in the present study. The values indicate very low ranges of Ff 
indicating the basin is relatively elongated and less circular. 

5 Conclusions 

Morphometric parameters of a watershed can be calculated by field visits and other 
conventional methods. Systematic analysis and a significant understanding of the 
basin morphometric parameters demand finer data and advanced tools like GIS and 
remote sensing data. The current study analyses the basin morphometric parameters 
of the Hemavathi river basin using DEM and also topographical maps. The morpho-
metric shape parameters analyzed in the current study indicate that the basin is less 
circular and more elongated in shape which may further be affecting its surface runoff 
and sediment transport characteristics. 

The present study also concludes that the basin is having low stream frequency 
values and low drainage density. However, stream frequency and drainage density 
are greatly dependent on the total area of the basin, so researchers must consider the 
effect of the size of the basin on the morphometrical parameters analyzed. Similarly, 
from the current study, it is suggested that care must be taken in the selection of a 
threshold value for the flow accumulation of the drainage network. Since stream order 
and stream density are major inputs for most of the derived morphometric parameters, 
it is vital to generate realistic streams for the study before beginning the analysis. In 
the current study, the applicable threshold value was decided by superimposing the
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stream networks generated using DEM on the topographical maps for validating the 
stream network generated. 

The present study aims to interpret the basin-related information such as its form, 
relief, shape, geology, and hydrologic processes in the 5 subbasin of the Hemavathi 
basin to stakeholders and decision-makers. In addition to this, a systematic under-
standing of the variations in form and process in the basin is necessary for efficient 
policy making and serves as an important input in the prioritization of sub-basins 
for management and conservational practices planning. The current work can also 
provide an insight for. 
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Surface Water Quality Forecasting Using 
Machine Learning Approach 

Ayushi Jha, Manojit Chowdhury , and Ajay N. Satpute 

Abstract Surface water resources play a crucial role in drinking, industrial and 
agricultural domains. Since anthropogenic and environmental pollution sources 
affect surface water by threatening its ability to be used for industrial, agricultural, 
drinking, and other purposes. Estimating the contamination level of existing surface 
water is critical for effective water quality management. Evaluation of suitability of 
surface water for various purposes is an important task to establish the proper reme-
dies or safety measures if it is unhealthy. However, conventional method of water 
quality (WQ) monitoring is generally expensive and tedious. Machine learning (ML) 
approach can be deployed to accurately assess the surface water quality and fore-
casting the suitability of water for various applications. In recent years, ML models 
have been extensively used in predicting the surface Water Quality Index (WQI) that 
depends upon the physical and chemical parameters of the water such as pH, turbidity, 
dissolved oxygen, total dissolved solid, biochemical oxygen demand, and other pollu-
tants concentrations. A wide number of ML models such as linear regression (LR), 
decision tree, random forest (RF), naive bayes, k-nearest neighbour (KNN), support 
vector machine (SVM) and artificial neural network (ANN)-based algorithms have 
been used to predict and forecast surface water quality (SWQ). Analysing the effi-
ciency statistics (R2 and RMSE) can provide insight into the predictive performance 
of ML models. According to the comprehensive analysis, ML may be successfully 
implemented to water quality monitoring and forecasting from natural environmental 
processes and human impacts on an ecosystem.
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1 Introduction 

Water is one of the most important resources for sustaining life on earth, essential 
for both human and the existence of the majority of other creatures (Aldhyani et al. 
2020). There are water resources covering over 70% of the earth’s surface (Mishra 
and Dubey 2015). Surface water and groundwater are the two different categories of 
water resources. Surface water can be found in places like rivers, lakes, reservoirs, 
and coastal areas (Mustafa et al. 2017). 65% of the water utilised in agriculture comes 
from rivers, with the remaining 35% going toward drinking, industrial purposes, and 
other human requirements. Surface water quality is affected by human factors such 
sewage, urbanisation, agricultural waste, and industrial pollution (Bhatti et al. 2019). 
Living things require water of a certain quality to survive. Only a certain limit of 
pollution level can be tolerated by aquatic creatures, other animals and human beings. 
It is crucial to monitor WQ to maintain a consistent and secure water supply (Hassan 
et al. 2021). 

Increasing population and climate change have made water quality assessment 
challenging. Water scarcity is a problem brought on by population increase and 
inadequate infrastructure. The industrial revolution, extensive use of pesticides and 
fertilisers have had a negative impact on water quality ecosystems. People all 
throughout the world are impacted by the rise in global water usage that coincides with 
population growth. Individuals are forced to drink polluted water, which can cause 
several ailments for example cholera, diarrhoea, dysentery, and hepatitis (Kalaivanan 
and Vellingiri 2022). 

The conventional approach of forecasting water quality involves manually gath-
ering raw data at regular intervals and analysing it in laboratory. This method results 
in a tedious and perhaps risky process for creating water policy. The previous methods 
of data collection produced an imbalanced and noisy dataset. Water condition is deter-
mined by its physical, chemical, and biological characteristics (Bordalo et al. 2006). 
SWQ can be determined by a number of parameters, including electrical conductivity, 
dissolved oxygen, total dissolved solids, chemical oxygen demand, biological oxygen 
demand, turbidity, temperature, and pH (Tchobanoglous and Schroeder 1985; Nikoo  
et al. 2013). Another frequently used indicator of water quality that is necessary 
for time-consuming calculations involving large numbers of data and mathematical 
formulas is the water quality index (WQI). Based on the criteria defined by regula-
tory bodies in the study sector, WQI classifies water qualities into excellent, poor, 
and worst (Fernández et al. 2004). 

Innovative methods for assessing and predicting WQ are essential. Predicting 
water quality trends requires an understanding of the temporal aspect of predicting 
WQ changes. In order to monitor and evaluate the WQ around the world, numerous 
strategies have been implemented, including the multivariate statistical method
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(Alam et al. 2021), fuzzy inference (Oladipo et al. 2021), and the WQI (Wang 
et al. 2019). To forecast changes in water quality, a particular model variation 
performs better than a single model. A variety of methods are being suggested for 
forecasting and simulating water quality. Predictive algorithms, visual modelling, 
algorithm analysis, and statistical methods are frequently employed. To ascertain 
the correlation and association between various water quality indices, multivariate 
statistical methods were applied. Regression analysis, multivariate interpolation, 
and geostatistical methods were applied to transitional probability (Nair and Vijaya 
2022). 

Currently machine learning (ML) techniques are being used for rapid and precise 
prediction of SWQ based on training and testing of large datasets. The models for 
forecasting quality of models are predominantly capable of monitoring contami-
nants in surface water. Mechanism-oriented and no-mechanism-oriented models are 
used to model and predict WQ. The mechanism-oriented model is complex and uses 
cutting-edge system structure data to predict water quality; it is acknowledged as a 
multipurpose model that can be used to any aquatic body. Different ML models such 
as gradient boosting, decision tree, regression tree, random forest, group method of 
data handling (GMDH), support vector machine (SVM) and ANN have been used 
to forecast the surface WQ. The ML algorithms predict the long-term evolution of 
the WQ (Chen et al. 2018). Forecasting of WQ is essential for ecological sustain-
ability, environmental monitoring, and human and animal health (Fijani et al. 2019). 
The purpose of this chapter is to provide an overview of the ML based approaches 
available for predicting and forecasting the surface water quality. 

2 Parameters Associated to Surface Water Quality 
Estimation 

WQ parameters are split into three categories such as physical, chemical and 
biological (Gray 2008; Spellman 2017), given in Table 1.

2.1 Physical Parameters 

There are number of physical parameters that defines the quality of water such as: 

2.1.1 Turbidity 

Turbidity can be expressed as cloudiness or haziness of water. It is an assessment 
of capability of light to pass through water. Suspended material in water causes 
turbidity (Alley 2007). Higher turbidity elevates water temperatures because more
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Table 1 Surface water 
quality indicating parameters 

SWQ parameters 

Physical parameters Chemical parameters Biological 
parameters 

TS BOD Bacteria 

EC COD Viruses 

Turbidity DO Protozoa 

Temperature pH Algae 

Taste and odor Acidity 

Alkalinity 

Fluoride 

Chloride 

Hardness 

Sulphate 

Toxic organic and 
inorganic substance 

Iron and manganese

sun heat is absorbed by suspended particles, lowering the amount of food accessible. 
Because of this, heated water contains less oxygen than cold water (Cole et al. 
2000). Nephelometric turbidimeter is used to measure the turbidity of water which 
represents turbidity in NTU or TU unit. 

2.1.2 Temperature 

Temperature influences chemical reactions, smells, solubility, viscosity, and taste of 
water. Temperature has an influential effect on the sedimentation and chlorination 
process, and BOD. It also impacts on the biosorption of water’s dissolved heavy 
metals. Water tastes best when water temperature is in between 10 and 15 °C (APHA 
2005; Davis  2010). 

2.1.3 Taste and Odor 

Foreign substances including organic and inorganic molecules, soluble gases can 
have an impact on the taste and odour of water. These materials may originate from 
residential, agricultural, or natural sources. The quantitative value of odor or taste 
is calculated by diluting a known volume of surface water sample with an odor free 
distilled water sample to prepare a 200 ml of total volume (Tchobanoglous et al. 
1985). The odour or taste unit is denoted by the following expression:
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TON or TNN = (Sample A + Sample B) 

Sample A 

where; 

TON and TNN are the threshold odor and taste number respectively. 

Sample A is volume of the surface water sample. 

Sample B is the volume of distilled water added. 

2.1.4 Total Solid (TS) 

Solids exist in water in two forms: dissolved and suspended. A glass fibre filter is 
used to distinguish the solids present in the surface water sample by passing the water 
sample through the filter. The surface of the filter retains the suspended solids while 
dissolved solids travel through the filter (APHA 2005). Total dissolved solid (TDS) 
is obtained when the filtered portion of surface water sample is stored in a dish and 
evaporated. Total solid present in the water sample is the TDS and total suspended 
solid (TSS). The procedure for acquiring TS is depicted in Fig. 1.

2.1.5 Electrical Conductivity (EC) 

EC measures the capacity of a water sample to transmit electric current. Conductivity 
rises as ion concentration increases due to electrical current is transmitted by ions in 
solution. Therefore, it is one of the key variables used to determine irrigation water 
suitability. EC of pure water is always less than polluted water. The electrometric 
method is the most used way of measuring EC (APHA 2005). 

2.2 Chemical Parameters 

Important Chemical parameters representing surface water quality are discussed 
below. 

2.2.1 pH 

pH is among the most significant aspects of WQ. It is a dimensionless number 
and expressed as the hydrogen ion concentration’s negative logarithm determining 
whether a solution is more acidic or basic. H+ ions are more prevalent in acidic water, 
while basic water contains more OH− ions (Alley 2007; Spellman 2017). The pH 
scale which ranges from 0 to 14, while 7 signifying neutral value. Acidic solutions
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Fig. 1 Flow diagram of obtaining TS

have a pH under 7, while a pH more than 7 indicates a basic solution. Safest pH 
range for daily household purpose is 6.5–8.5 (APHA 2005). pH is measured with 
pH meter. 

2.2.2 Dissolved Oxygen (DO) 

DO is a major aspect of WQ estimation of surface water. It is used to represent 
the level of water contamination. More DO in water represents better quality of 
water. Oxygen is somewhat soluble in water and extremely temperature sensitive. 
The amount of oxygen dissolved in the surface water varies according on water
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temperature, pressure, and salinity. Laboratory based Winkler titration method is 
mostly used to determine DO (APHA 2005). 

2.2.3 Biochemical Oxygen Demand (BOD) 

BOD is a major parameter to represent the quality of water. Bacteria and other 
microbes feed on organic material in surface water. They consume oxygen as 
they decompose organic material. Energy released from the conversion of organic 
compounds to CO2 and H2O is utilised by the microorganisms for their growth and 
reproduction. 

This process needs the dissolved oxygen of water to decompose the organic matter. 
This oxygen requirement is termed as BOD. It is the measure of pollution level of 
surface water as highly polluted water is having higher BOD. It is measured in the 
laboratory by titration process (Tchobanoglous et al. 2003; APHA  2005). 

2.2.4 Chemical Oxygen Demand (COD) 

COD is another essential parameter that represent the quality surface water. COD can 
be defined as quantity of oxygen needed to dissolve the organic matter in water. It is 
a chemical analysis that makes utilisation of heat, potassic dichromate, and sulfuric 
acid to obtain the outcome in less than two hours. The value of COD is always greater 
than BOD. 

2.2.5 Acidity and Alkalinity 

Acidity and alkalinity are another two parameters that give the idea about the SWQ. 
Acidity is a measurement of the presence of acids in the surface water from mineral 
acids, CO2 and hydrolysed salts. Acidity level in surface water is measured by titrating 
a sample of the surface water with 0.02 N sodium hydroxide and phenolphthalein as 
an indicator in laboratory (APHA 2005). 

The ability of water to neutralise acids, or its alkalinity, is determined by the sum 
of all titratable bases. The major contributors of alkalinity of water are the hydroxide 
(OH−), bicarbonate (HCO3−) and carbonate (CO3 

2−) ions, or a combination of two 
of these ions. Alkalinity is measured by titration process with 0.02 N H2SO4 solution 
and methyl orange or phenolphthalein (APHA 2005). 

2.2.6 Chloride and Fluoride 

Chloride is a naturally occurring mineral that can be found in surface water such 
as lakes and streams. However, relatively high chloride concentrations in freshwater 
may be a sign of wastewater contamination. Small amount of chloride content does
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not affect the water quality as it is required for cell functioning of animals and plants. 
Chloride is dangerous for human being and animals when it is consumed as sodium 
chloride in large amount (Chatterjee 2001). 

Fluoride is also required in moderate amount in surface water to ensure good dental 
health of human being. Fluoride in excess amount causes discoloured teeth, a disease 
known as fluorosis so it should be managed in the surface water (Tchobanoglouset al. 
1985; Davis  2010). 

2.3 Biological Parameters 

The biological parameters are the useful indicator of SWQ as the absence or presence 
of the parameters defines the WQ. Bacteria, viruses, algae, protozoa etc. are the 
biological parameters of water quality indication. Microorganisms can be found all 
around nature. The intestinal system of humans contains a normal population of 
germs, the majority of which are coliform bacteria. Although surface water is a 
storehouse to numerous bacteria per millilitre, but major population of them are 
harmless. The presence of bacteria in surface water is dangerous when it contains 
harmful bacteria and viruses from persons affected with diseases (APHA 2005; Abbas 
et al. 2014). 

Traditional method of surface water quality estimation is a tedious and laborious 
process as it involves the laboratory-based analysis of the individual foresaid param-
eters. Furthermore, the traditional method cannot predict and forecast the SWQ over 
time. Due to the limitations of the traditional method of water quality estimation, 
ML based approach can be taken into consideration. ML based approach can rapidly 
and accurately forecast the surface water quality. A comprehensive overview of the 
ML based approaches has been discussed below. 

3 Conspectus of ML 

ML is a sub-part of artificial intelligence to evaluate data and look for patterns 
that could be used to forecast new information (Zhu et al. 2022; Alamet al. 2021; 
Oladipoet al. 2021). Machine learning is a novel approach to data analysis and 
processing. This approach has found broad application in numerous fields due to 
its high accuracy, adaptable customisation, and easy expansion (Wang et al. 2019). 
Machine learning allows managing complex and nonlinear datasets very easily, facil-
itating the identification of underlying mechanisms (Wang et al. 2019). Machine 
learning approach has proven its ability as a tool that has remarkable adaptability 
and excellent performance in environmental science as well as engineering areas 
(Simoeset al. 2008). Prior to application of machine learning, acquisition of data,
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Fig. 2 Framework of ML in surface water quality forecasting 

selection of appropriate algorithm, training of model, testing of model with pre-
defined set of data needs to be conducted. Among all these, selection of appro-
priate algorithm is one of the crucial tasks (Ma et al. 2014). Application of machine 
learning system has a rich collection of algorithms that can serve several purposes 
and would analyse various water quality parameters as shown in Fig. 2. Machine 
learning algorithms mainly includes LR, ANN, DT, SVM, naive Bayes, KNN, RF. 

3.1 Linear Regression 

Linear regression executes the operation based on regression operation. The regres-
sion operation consists of dependent and independent variables, in which independent 
variables is used to determine the dependent variable to develop a model. It provides 
a relationship and determines how variables are related to each other. The controlling 
parameters in the regression models are the type and number of independent vari-
ables, type of relationship between the variables and other factors. In the figure below, 
dependent variable represents salinity of water and independent variable represents 
hardness of water. So, with increase in hardness of water, salinity increases. Thus, 
there exist a linear relationship between hardness and salinity which can be presented 
by linear regression model. The regression line is the best fit line for the model. 

3.2 Decision Tree (DT) 

Decision tree is a algorithm is used widely in developing machine learning model. 
Decision tree algorithm can be used solve both the regression and classification 
requiring queries, but classification is more frequently practices practically. It has 
tree structure classifier with three nodes, starting with initial node called root node.
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Fig. 3 Structure of DT 

It consists of root node and branch nodes, where root node represents the complete 
sample. The root nodes are further divided into branches that are branch nodes or 
interior nodes. The branch nodes participate in for decision making and do the anal-
ysis using the codes embedded in the nodes, while the nodes as branches represents 
the nature of a data collection process. In the end of the process the output is reflected 
by the leaf nodes. In dealing with issues involving decisions, this algorithm might 
be helpful. A decision tree structure is shown in Fig. 3. 

3.3 K-Nearest Neighbour (KNN) 

KNN is considered amongst the simplest ML algorithms that has been used widely 
for refined analysis. The k-nearest neighbour algorithm is based on an assumption 
that is the present data case and new case is comparable and then when new data is 
fed then that data point is placed to the most similar category, that too rapidly and 
precisely into most suitable category. The classification of new data point is done on 
the basis of similarity, once all the existing data has been stored. k-nearest neighbour 
can also be used for regression problems, but mostly employed for classification 
problems. This algorithm stores the results during the train phase and learns from it 
later, so it is also called as lazy learner. The data set is the k number nearest neighbour 
chosen on the basis of Euclidean distance. The category with the highest number of 
neighbours receives the additional data points, and then the model is ready. Figure 4 
depicts the KNN structure.
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Fig. 4 KNN structure 

Fig. 5 Framework of SVM 

3.4 Support Vector Machine (SVM) 

SVM is an algorithm that can be utilized in solving classification problems and also 
used for regression problems. The decision making through SVM algorithm is based 
on decision line, this divides the n number of data into classes, and thus allows rapid 
classification of the new data points that are fed further. The decision boundary that 
is established is named as hyper plane. This hyper plane is created with the help 
of extreme vectors or points that is selected by SVM. The SVM technique is based 
on utilises support vectors that represent these extreme instances. The Fig. 5 below 
shows how hyperplane separates the data points into the classes. 

3.5 Naive Bayes 

The basis of this algorithm is the Bayes theorem, which is used to resolve classifica-
tion issues. This algorithm categorizes the text categorization having a large training 
set. It helps in developing one the accurate working machine learning algorithm that 
would produce outputs quickly and accurately. As the analysis is based on the statis-
tical theorem, so it can work as a probabilistic classifier and make the predictions 
on the basis of likelihood of occurrence of any event or say object. Naive Bayes
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Fig. 6 Working of RF algorithm 

algorithm cannot identify the associations between characteristics since it considers 
that all features are either independent or unrelated. 

3.6 Random Forest (RF) 

Random Forest can be applied to machine learning problems involving both classifi-
cation and regression. The idea behind this algorithm ensemble learning that means 
learning altogether to produce desirable output, as it is a combination of various 
decision tree models. In this algorithm output of various classifiers are integrated, 
then difficult issues are addressed and model performance is improved. Random 
forest utilizes the result forecasted from different decision tree rather than relying 
on a single DT and forecasts the result on the basis of majority of prediction votes. 
Working of RF algorithm is shown in Fig. 6. 

3.7 Artificial Neural Network (ANN) 

ANN is an algorithm inspired by brain of human being and is used to forecast 
problems and model the complicated patterns feasibly. ANN is the result of efforts 
that has been made to simulate the human brain and its functions. The operations of 
ANN and neural networks present in human brains are very similar, although they are 
not exactly the same. ANN algorithm accepts only structured and numeric data. The 
architecture of ANN consists of inner layer, outer layer and a hidden layer (can be
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Fig. 7 Architecture of ANN 

more than one). The hidden layer identifies some of the most important patterns in the 
inputs and sends them to the following layer for additional analysis. By selecting only, 
the most crucial information from the inputs and ignoring the redundant information, 
hidden layer speeds up and enhances the network’s performance. Figure 7 represents 
the architecture of ANN. 

4 An Overview on Application of ML for SWQ Analysis 

This section offers a range of ML-based strategies for analysing WQ. Many 
researchers have attempted to evaluate water quality parameters by means of machine 
learning approach by using several algorithms available, integrating real-time obser-
vation, forecasting, tracking of pollutant sources, determination of pollutant concen-
trations, allocation of water resources, and improvement of water treatment technolo-
gies (Olyaie et al. 2017; Zhu et al. 2022). The main cause of the declining water quality 
in metropolitan areas is now human-generated municipal and industrial wastewater 
(Mohammadpour et al. 2015) and WQ is depleted is assessed by parameters mainly 
BOD, COD, pH, TDS etc. In surface water quality research, the use of machine 
learning, have become prominent topic (Tung and Yaseen 2020; Sharma et al. 2021). 
A study was performed by Ahmed and Shah (2017) and Khaled et al. (2018) to predict 
BOD using ANFIS (adaptive-network-based fuzzy inference system) and the study 
recommended that ANFIS technique could be effectively applied to develop models 
for predicting the river WQ (Deng et al. 2015; Khaled et al. 2018). SVM model have 
also given success in study of WQ parameters such as BOD (Deng et al. 2015; Noori 
et al. 2015), DO (Liu and Lu 2014; Li et al.  2018), COD (Kisi and Parmar 2016), 
Total Phosphate, and Total Nitrogen (Liu and Lu 2014). Arnon et al. (2019) utilized 
SVM to build a novel method for pollutant prediction under uncertain circumstances. 
The datasets acquired by the SVM, the detection rates were high and the error rates 
were low.
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ML may also be used to forecast the concentrations of coagulants and disinfectants 
in drinking water plants. The SVM method is widely used in constructing schemes for 
flocculation and disinfection because of its simple structure and high robustness (Zhu 
et al. 2022). Wang et al. (2019) utilized the SVM model and suggested a predictive 
control scheme model for chemical dose based on the residual free chlorine, which 
was more successful than the conventional proportional-integral-derivative feedback 
control. Multi-layer perceptions (MLP) and the random forest were two ANN models 
to predict TDS that Niroobakhsh et al. (2012) compared (RF). The RF findings can 
handle a huge amount of data and predict TDS levels with accuracy. Tarke et al. (2016) 
forecasted the amount of TDS present in rivers, an ANN model was employed. The 
Levenberg–Marquardt optimization process and the back-propagation technique are 
employed to boost the performance of the ANN model. Using four independent 
variables—temperature, pH, total suspended solid, and total suspended—the MLR 
model is used to forecast both biochemical oxygen demand (BOD) and chemical 
oxygen demand (Zare 2014). With a correlation coefficient value of 0.5, the system 
promptly predicts BOD with a relatively good outcome. The Mathura River’s DO 
concentration was predicted using a two-layer ANN model (Wang et al. 2021a, b), 
and the results of the experiment supported this claim. Different neural network 
types are examined by Maxwell (2015) for stream water temperature prediction. 
To anticipate the chemical oxygen requirement, Abyaneh (2014) has used machine 
learning techniques like ANN and regression (COD). Sakizadeh (2016) estimated 
the water quality index using ANN and Bayesian regularization (WQI). However, 
the prediction and categorization of water quality were done using the radial-basis-
function (RBF), a form of ANN model (Yesilanacar et al. 2008; Bouamar and Ladjal 
2008). 

Defining the process of pollution transmission and assessing the components of 
water quality are two ways that are taken into consideration while evaluating the 
quality of water (Kashefipour 2002; Kashefipour and Falconer 2002; Nasseri and 
Kashefipour 2012; Qishlaqi et al. 2017). Emamgholizadeh et al. (2014) utilised 
multilayer perceptron (MLP), radial basis network (RBF) and an ANFIS for WQ 
components of Karoon River. Comparing the DT model to the Kappa statistical 
model, it was found that the Decision Tree model was more accurate and effective. 
The effectiveness of three ML classifiers—namely, PNN, SVM, and KNN—in clas-
sifying WQ metrics was assessed by Modaresi and Araghinejad (2014). As a result, 
SVM performed superbly in comparison to the other two classifiers. Danadeset al. 
(2016) assessed how well SVM and KNN models performed in categorising WQ 
indices. For the classification of five water quality metrics, Radhakrishnan and Pillai 
(2020) examined the effectiveness of three ML algorithms (SVM, DT, and Nave 
Bayes). In this study, categorization factors like as pH, DO, BOD5, and EC were 
taken into account. The classifiers performance results revealed the effectiveness 
machine learning algorithm. 

To improve model performance, many ML models are increasingly being 
combined with big data and some other technologies such as IoT. The accuracy 
is related to model computation time, determine how well a prediction of water
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quality performs. The research found that the time required by ML algorithms to 
estimate SWQ is not becoming any shorter (Kalaivanan and Vellingiri 2022). 

5 Comparison of Different Water Quality Prediction 
Models 

A major flaw in the existing water quality prediction methods or models is their 
incompetence in considering the cross effects between two explanatory variables. 
Different variables are interdependent and hence there is a cross-correlation between 
them that should be given due attention (Hwang et al. 2016; Lintern et al. 2017). 
ML-based models take into account all cross-correlations between input parameters 
and therefore their prediction accuracy is improved. It is the main advantage over 
traditional statistical models (Li et al. 2015; Wang et al. 2021a, b). 

Different ML algorithms have been applied to predict surface water quality. It 
includes regression tree analysis, decision trees, neural networks, byes function, 
etc. There exists a non-linear and very complex relationship between the different 
parameters water quality. The ML models like neural networks and regression tree 
have been found satisfactory in predicting the effect of land use characteristics on 
surface water quality (Castrillo and García 2020; Sajedi-Hosseini et al. 2018; Xu  
et al. 2020). The ML model developed and tested on a new dataset will help in 
predicting the surface water quality under different scenario of future land use. This 
will aid in policy decision-making (Schreiber et al. 2019). 

Among all the ML algorithm, SVM is an extensively used to develop various 
models. It has been also used to predict the quality of surface water. In the studies 
carried out to predict surface water quality using ML-based models, it was found that 
SVM is the best model. In the study conducted by Babbar and Babbar (2017), SVM 
and Decision tree were the best classifiers. The error rate of 0% which is the lowest 
among all the used models, made them superior to ANN, K-NN, and Naive Bayes 
classifiers in classifying water quality. It was also found that if the data provided to 
models accurately represent the domain knowledge, then ML models can determine 
the WQ. The SVM model has better forecasting accuracy of WQ than the ANN model 
mainly due to its ability to optimize a lesser number of parameters. This structural 
risk minimization principle helps the SVM model to avoid the overtraining of the data 
and hence aid to have a better generalization ability (Giri and Singh 2014; Sengorur 
et al. 2015; Kalaivanan and Vellingiri 2022; Malek et al. 2022). 

ANN is a very popular data-driven ML model. It offers solutions to both the linear 
and non-linear association between variables. Since the data associated with the water 
quality is highly nonlinear ANN model suits more than any other model. The output 
of the ANN model is affected if the initial weights assigned to all the input parameters 
have a similar value. The performance of the ANN models is impeded if the training 
data are imbalanced. Even though ANN models are widely used, they possess certain 
drawbacks. The main drawback arises due to input dataset size. If the size of the
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input dataset is small then the prediction power of the ANN models is lowered. This 
problem is further exaggerated if the data used for testing the model don’t lie in the 
range of the training dataset (Zare 2014; Khosravi et al. 2018; Asadollah et al. 2021). 

Traditional ML models like the Decision Tree model are often used to predict 
surface water quality and have been found to perform well. Among the decision tree 
models, there are different models that can be developed which include Gradient 
Boosting (GB), single decision tree, Random Forest (RF), Logistic Model Tree 
(LMT), Ordinary Decision Tree (ODT), etc. Here the ensemble models such as 
RF and GB are always superior to the models based on a single decision tree. This is 
attributed to the ability of these models to manage both regular attributes and data. 
Also, they are very efficient in the predictions and their performance is not influenced 
by the missing values in the data. (Gakii and Jepkoech 2019; Bui et al. 2020; Lu and 
Ma 2020; Wang et al. 2021a, b). The decision tree-based models have more calcu-
lation speed and are more suited to prediction of surface water quality at short-term 
scale. These models produce good results when continuous input datasets are used 
(Jeihouni et al. 2020). 

Every ML model has its benefits and shortcomings for the prediction of surface 
water quality. Hence it is better to combine the benefits of such models to have better 
accuracy. So, the hybrid ML model approach is the best way ahead. 

6 Limitations of ML Based Approach 

Machine learning is a powerful tool which because it can be applied to various 
purposes in the water resources area such as optimizing the allocation of water 
resources, predicting water quality, managing the recurrent shortages of water 
resources, etc. Despite this, there are still numerous challenges that hinder the use of 
ML algorithms in this area to assess water quality. Those challenges are described 
below. 

6.1 Availability of the Data 

A large amount of high-quality data is a prerequisite for the use of ML algorithms for 
any specific purpose. The ML models are trained based on the data that was obtained. 
These models then detect the trend or pattern in the data provided to them. Such a 
pattern or trend is useful in predicting any variable. The models are then validated 
and when certain accuracy is obtained in the results then only these models are used 
for real field application. The cost involved in the data acquisition limits the use of 
ML algorithms in the water resources domain. The technological limitations in this 
case further aggravate the problem (Wang et al. 2021a, b; Zhu et al. 2022). Even 
if the data is available, it will always not be in the required resolution (Wang et al. 
2021a, b).
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6.2 Limited Applicability 

Models developed using ML algorithms are often empirical in nature. They are 
suitable only for those areas for which they are developed. The conditions in real-
world water bodies for which the water quality predictions have to be done are very 
different and extremely complex. Further, these conditions vary in every water body. 
So, the model developed can be applied to the specific system. This factor is a major 
obstacle in the wide-scale applicability of ML-based approaches. To overcome this 
problem, models are required to be calibrated every time they are put in use in 
an area different than the one for which they were developed. This process will 
additional expenditure of resources (Zhu et al. 2022). Therefore, it is important that 
one should avoid black-box solutions when applying a ML approach, as it doesn’t 
provide process-based scientific insight (Schäfer et al. 2022). 

6.3 Selection of Appropriate Input Parameters 

The very first step in developing any ML based model is the selection appropriate 
input parameters. The water quality is influenced by number of factors which are 
presented in Table 1. It is imperative that out of all those factors only sufficient 
parameters which have enough underlying information to predict water quality are 
selected. This is very important because too many input variables will lead to redun-
dancy and too less will cause inaccuracies. It is very hectic and complex to choose 
the right set of input variables because the extent to which each input parameter influ-
ences the water quality also depends upon the other variable. The proper selection 
of the variables can improve the accuracy of the model because improper selection 
leads to an undesirable impact on model performance. (Khoi et al. 2022). Also, 
every ML model will respond to different input variables and input data patterns in 
a different way. So, it is very essential to choose the input variables that enhance the 
performance of a particular ML model (Hussain and Khan 2020). There are various 
techniques available to assess and select the input parameter combinations, which 
mainly include partial autocorrelation function, autocorrelation function, correlation 
coefficient, and cross-correlation function (Asadollah et al. 2021). 

6.4 Requirement of Professional Background 

Since the ML based approach deals with the large-scale data, sophisticated models, 
statistical data analysis and AI, the approach demands the technical knowledge. The 
implementation of ML algorithms in applications demands professional background 
knowledge (Zhu et al. 2022). Otherwise, the development and application of such 
models will be limited.
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7 Conclusion 

Water is the most significant and crucial resource of the nature. Not only the quan-
tity but also the quality of the water influences every aspect of its use. There is a 
certain limit to the level of deterioration in the water quality which can be toler-
ated depending upon the purpose of use. Exceeding these boundaries is also harmful 
to the organisms surviving in water. With the rapid growth of industrialization, the 
discharge of pollutant in the surface water bodies is increasing which further dete-
riorates the water quality. To mitigate this pollutant load it is essential to determine 
source areas and corresponding quantity. Therefore, it is imperative to continuously 
monitor the surface water quality. Traditionally the surface water quality is assessed 
by estimating different parameters (Table 1) from the water sample in the laboratory. 
But there are many constraints to use laboratory method which includes large time 
requirement, unable to predict future water quality, etc. Therefore, new methods 
should be developed to assess and monitor the surface water quality. 

The machine learning offers a solution to the development of the model for moni-
toring and prediction of surface water quality. The ML based models can be trained 
and tested on the past data of surface water quality available. Different ML algo-
rithms such as Linear regression, ANN, SVM, KNN, DT, RF, Naive Bayes, etc., can 
be used to develop a model that will forecast the surface water quality under various 
future scenarios. The ML-based models detect the trend in the data and then predict 
the output based on the trend. It offers many benefits over traditional approaches 
such as rapid and accurate estimation of multiple parameters, cost-effectiveness, 
non-laborious, and ability of surface water quality forecasting over time. The perfor-
mance of these models is hampered by the availability of the large datasets, their 
empirical nature, requirement of the professional knowledge and numerous input 
variables. Nevertheless, ML based models have proved very efficient in predicting 
the surface water quality. 

Future Scope 

Now a days ML models are being integrated with IoT and big data to enhance their 
performance. The performance of ML models in surface water quality prediction is 
dependent on the accuracy of the detection. In the future following research gaps in 
the ML-based approach for surface water quality prediction can be explored. 

1. New hybrid machine learning models should be introduced that can accurately 
predict surface water quality. 

2. Optimization methods need to be improved by adding new algorithms to predict 
the surface water quality. 

3. Advanced sensors have to be developed and used in surface water quality moni-
toring so that it will aid in the collection of more accurate data and facilitate ML 
based approach for the study. 

4. The reliability and feasibility of the existing ML models need to be improved 
and more universal ML model should be constructed to suit the different 
requirements.
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5. Multidisciplinary approach should be followed so that knowledge from different 
field can be integrated to develop the more sophisticated ML model could be 
developed. 

With the advances in the machine learning studies, it is promising for future studies 
in surface water quality prediction. 
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Abstract The pivotal role of groundwater in managing domestic and industrial 
water demand and its current unsustainable rate of exploitation from subsurface 
reserves following anthropogenic and Climate Change impacts necessitates an effi-
cient strategy in terms of resource identification, tenable extraction, and replenish-
ment. The presented study is an attempt towards the same with an objective to iden-
tify groundwater potential zones for the Panna district in Madhya Pradesh, a semi-
arid region under the Bundelkhand belt in Central India using an MCDM approach 
following a weighted overlay analysis integrated over RS and GIS platform. The 
study area encompasses a spatial extent of 7135 sq. km. The input layers used for 
the study include lithology, land use, slope, lineaments, rainfall, drainage density, 
and soil. Typically, these parameters first handily govern the subsurface hydroge-
ology of any region. The results from the overlay analysis suggested that 20.37, 
59.42, 19.40, and 0.81% of the total geographical area of the district have very good, 
good, moderate, and poor potentiality for groundwater, respectively. Further, this 
contemplates the strong control of lithological distributions, land use, and slopes in 
the determination of groundwater potential zones. Moreover, the study also advo-
cates for upscaling to other regions following its validation using some geophysical 
methods of subsurface exploration. 
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1 Introduction 

Groundwater, the second largest repository of fresh water on Earth, plays a decisive 
role in the operation and management of freshwater supplies, either domestic or 
public (Nazaroff and Cohen 2013; Khan et al. 2020). Alone, it supports the potable 
water demand of over 33% of the global population (Nickson et al. 2005; Pande 
et al. 2021a). In India, greater than 85% of rural, 50% of urban, and over 50% 
of irrigation water demands are met from groundwater reserves (CGWB 2007). 
Typically, groundwater is stored in saturated geologic formations beneath the earth’s 
surface, which are permeable enough to allow its flow fairly easily through it. These 
formations are termed an aquifer, which usually rests on the top of a relatively 
impermeable bed called, an aquitard or aquiclude, thus, restricting the movement of 
groundwater (Masters and Ela 2018). Naturally, aquifers are continuously recharged 
through precipitation water, which slowly percolates down through cracks and pores 
of overlaying soil and rock matrix, thus replenishing the subsurface reserves. 

1.1 Statement of Problem 

With the advent of substantial and water-intensive agriculture following the green 
revolution to feed this large population of the country followed industrialization 
and globalization, the dependency and withdrawal rate from available groundwater 
reserves has increased substantially to meet the overall demand of growing anthro-
pogenic operations (Adeyeye et al. 2018). Oftentimes, the water retraction rate to 
meet the demand from the subsurface reserves becomes so immense that it exceeds 
the annual recharge rate, thus making the management of demand unsustainable. This 
scenario is further exacerbated by the Climate Change (CC) impacts on meteorolog-
ical processes like erratic rainfall patterns manifesting as a decrease in the typical 
number of wet days over annual time scales, the occurrence of excessive intensity 
precipitation events, etc (Pande et al. 2023). These coupled together physically mani-
fest as declining groundwater levels, a decrease in the resurgence of discharges from 
aquifers and springs, freshwater water shortages, widened gap between demand, 
availability, and supply, land subsidence, etc., thus placing a question over the future 
water resource sustainability. These exigencies for an efficient groundwater resource 
development plan and policy in terms of resource identification, withdrawal, and 
replenishment, especially for the semi-arid region which receives most of its precip-
itation during the summer half and where most of the precipitated water escapes 
as surface runoff due to non-arresting land use and soils. Concerning groundwater 
resource identification, the use of traditional/physical techniques like geophysical 
surveys using resistivity method, seismic refraction, and reflection, Ground Penetra-
tion Radar (GPR), etc. for groundwater exploration follows a heft cost and manpower 
resources, and in a resource-limited environ with large spatial extent these methods 
find little to limited use (Rani et al. 2022). Following the onset of Remote Sensing
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(RS) and Geographic Information System (GIS), lately, the use of these technologies 
has greatly influenced hydrological explorations and are now extensively accepted 
in groundwater investigations as well (Hoffman and Sander 2007; Rodell et al. 2009; 
Das et al. 2018; Mallick et al. 2019; Ajay Kumar et al. 2020). GIS has now become 
a very nimble tool in the evaluation and management operations of various param-
eters/features that affects the availability and recharging processes of groundwater 
like slope, soil, lithology, lineaments, etc. (Ahmad et al. 2020; Roy et al. 2020; Jha  
et al. 2010; Pande et al. 2021b). Furthermore, incorporating the Multi-Criteria Deci-
sion Making (MCDM) approaches, which explicitly accounts for the inter-relational 
influence of one factor over the other and vice-versa, over the GIS platform for 
groundwater resource explorations has proved much laudable (Kadam et al. 2020). 
The presented work, therefore, is an attempt towards the identification of the ground-
water potential zones for a semi-arid district in Central India following an MCDM 
technique of Multi Influencing Factors (MIF) over a GIS platform using facilely 
available geological and hydro-meteorological RS data. The study, therefore, is a 
contribution towards the identification of suitable sites for sustainable groundwater 
exploration and withdrawal along with the recharging of groundwater reserves via 
manmade interventions. 

2 Study Area 

The study area (Fig. 1), i.e., the Panna district, is a part of the Sagar division in the state 
of Madhya Pradesh in Central India. It spans from latitude 23°49'11'' N to 24°4'40'' N 
and longitude 79°44'18'' E to 80°40'36'' E, covering a geographical area of 7135 sq. 
km, with an absolute relief ranging from 659 to 99 m Above Mean Sea Level (AMSL), 
and an average elevation of 363.2 m AMSL. The district was constituted in 1950. 
Historically, the region was the part of Gond settlement until the thirteenth century 
and later served as the capital of Raja Chhatrasal Bundela. Also, the region is famous 
for its diamond mines and is the only producer of diamonds in the country. Further, 
the district is a biodiversity hotspot housing the renowned Panna Tiger Reserve. The 
primary river draining through the district is the Ken R., which is the major tributary 
of the river Yamuna. At annual timescales, the study area is a water-scarce region 
receiving most of its precipitation during the Monsoonal period and is the part of 
semi-arid Bundelkhand belt (Jana et al. 2017). The major problems associated with 
the region are depleting groundwater reserves, soil erosion, and infertile lands (Jain 
et al. 2020). This adversely affects the overall economy and Human Development 
Index (HDI) of the region making it one of the most economically backward districts 
of Madhya Pradesh. 

The geology of the study area suggests the presence of rocks under the Bhander, 
Bijawar, Kaimur, Rewa, and Semri groups along with Bundelkhand granitoid 
complex and undifferentiated fluvial sediments. Whereas, the geomorphology of 
the region is dominated by homocline, pediplain, pediment, scarp, highly dissected
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Fig. 1 Index map of the study area 

hills and valleys, moderately dissected hills, valleys, and lower plateau, and water-
bodies with traces of residual hill, residual capping, plateau top, and butte. Besides 
these, active flood and older alluvial plains, gullied tracts, and lateritic uplands are 
also observed in the mid-west and southeast portions of the study area, respectively. 

3 Methodology 

Figure 2, illustrates the methodology used for the presented investigation. The 
boundary of the Panna district was prepared based on the Survey of India (SoI) topo-
graphic and political maps (54P/12, 54P/14, 54P/15, 54P/16, 55M/13, 63C/12, 63C/4, 
63C/8, 63D/1, 63D/11, 63D/12, 63D/2, 63D/3, 63D/4, 63D/5) of 1:50,000 scale. The 
drainage network and slope for the study area were developed from Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Eleva-
tion Model (GDEM) version 3, of spatial resolution 30 m using ArcGIS v 10.4.1. The 
lineament and lithology data were taken from the respective maps of scale 1:250,000 
available at the Bhukosh portal of the Geological Survey of India (GSI). The line 
density tool under the Spatial Analyst Toolbox in ArcMap v 10.4.1 was then used for 
the generation of both drainage and lineament density maps. The soil data is taken



Assessment of Groundwater Prospects Zones Using RS, GIS, and MIF … 321

from the Digital Soil Map of the World (DSMW) of the Food and Agriculture Orga-
nization (FAO), United Nations (UN) of scale 1:250,000 and Soil Water Assessment 
Tool (SWAT) 2012 ‘usersoil’ database, while the land use map is developed using the 
Sentinel-2A data of 2021 of spatial resolution 10 m. For the development of the rain-
fall map, 22-year gridded precipitation data of resolution 0.5° × 0.625°, from 2000 
to 2021, was taken from NASA CERES MERRA 2 (available from: https://power. 
larc.nasa.gov/data-access-viewer/). The average annual rainfall was then computed 
for various locations within the study area, which then was imported to ArcMap. This 
was followed by the use of Inverse Distance Weighing (IDW) for plotting the rainfall 
data for the area of interest. The generated maps were then transformed to raster (.tiff 
files), which were then resampled, for conforming the pixel/cell size, and reclassi-
fied, for assigning index values/sub-classes weights to developed classes under each 
layer. Finally, a weighted overlay analysis following a Multi-Influence Factor (MIF) 
technique was performed over the aforesaid layers for the generation of groundwater 
prospect zones. For the assessment of the influence/assignment of weights of the 
specific layer during the final overlay, the influence of each feature/input parameter 
over the hydrogeology of the study area was considered (Shaban et al. 2006). The 
identified classes from the developed overlay were then again reclassed under the 
poor, moderate, good, and very good groups following a quartile approach.

3.1 MIF for Assessment of Sub-class Weights and Percentage 
Influence 

MIF, one of the MCDM techniques, is used to assess the influence of each input layer 
towards the groundwater prospects zonation of the study area. For this purpose, the 
inter-relationship between inputs factors is ascertained and is subdivided into two 
categories, namely, the major and minor influences as per the recommendations of 
Magesh et al. (2012; Pande et al. 2020). In the case of each major influence, a weight 
of unity is assigned, while for the minor effect, a weight of 0.5 is awarded. The final 
weight (WL) of the layer is the sum of the major (WMaj) and minor (WMin) influence 
for the respective layer (as mentioned in Eq. 1). 

WL = 
nΣ

i=1 

WMaji + 
mΣ

j=1 

WMinj (1) 

where, n and m are the number of major and minor relations, respectively. To perceive 
the percent influence (IL) of each layer, the final weight of the individual layer is 
divided by the cumulative weights of all the input layers and then multiplied by 100 
and rounded off to whole numbers (as mentioned in Eq. 2). This percent influence 
shall also provide the range of whole numbers which can be used to rate various 
sub-classes under the respective layer.

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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Fig. 2 Flowchart for the groundwater prospects zonation mapping

IL =
[

WLiΣp 
i=1 WLi

]
∗ 100 (2) 

Figure 3 depicts the major and minor influence relationship between the seven 
input parameters, while Table 1 illustrates the respective WL and IL for each input 
layer.
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Fig. 3 Inter-relationship between various input layers for MIF 

Table 1 Final weights and percent influence of each layer following MIF 

Factor Major (WMaj) Minor (WMin) Final weight (WL) Percent influence 
(IL) 

Lithology 1 + 1 + 1 + 1 0 4 25 

Land use 1 + 1 0.5 + 0.5 + 0.5 3.5 22 

Slope 1 + 1 0.5 2.5 16 

Lineament density 1 + 1 0 2 13 

Rainfall 1 0.5 1.5 9 

Drainage density 1 0.5 1.5 9 

Soil 1 0 1 6

Σ16 Σ100 

4 Results and Discussion 

4.1 MIF and Sub-class Weights 

The seven input layers, namely, lithology, land use, slope, lineament density, rainfall, 
drainage density, and soil, were overlayed for the development of final groundwater 
prospects zonation mapping of the Panna district. These chosen factors affect both, 
groundwater availability as well as recharging/replenishment potential (Rani et al. 
2019). Hence understanding these parameters at the local level becomes a prerequisite 
for opportune groundwater prospects zonation. Following the computation of percent 
influence, the respective weights for each sub-classes under various input layers were
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assigned based on the recommendations and adaptions from similar studies from the 
past primarily from Fenta et al. (2015), Mukherjee et al. (2012), Owolabi et al. 
(2020), and Serele et al. (2020). The maximum numerical threshold for each sub-
class weight is the percent influence of the respective layer, while the minimum may 
be zero, depending upon the contribution/impact of sub-classes over groundwater 
availability and recharging processes. Table 2 illustrates various sub-classes under 
each input layer along their respective weights.

Finally, the groundwater potentiality (GPZ) is enumerated using the percent 
influence of input layers and weights assigned to sub-classes via Eq. 3 as 

GPZ = 0.25(LITHO) + 0.22(LU) + 0.16(S) + 0.13(LD) + 0.09(R) 
+ 0.09(DD) + 0.06(So) (3) 

4.2 Lithology 

Lithology governs the permeability as well as the porosity of the underlying forma-
tion of any drainage system (Tessema et al. 2014), hence plays a crucial role in 
the percolation of surface water to the groundwater table, thus affecting groundwater 
availability and recharging process (CGWB 2014). The presented work suggests that 
the lithology has major control over lineament density, soil, drainage density, and 
land use, hence is assigned the largest percent influence, i.e., 25%, in the context of 
groundwater potential zonation. A total of 22 lithologic sub-classes were identified 
for the study area, with alluvium/sand sub-classes with the highest weight (25) and 
shale sub-class with the lowest weight (1), respectively. The assigned weights were 
the function of the relatively easy/perviousness that the given lithologic class allows 
towards the movement of water in the subsurface matrix. The dominant lithologic 
classes are the sandstone and shale of Bhandar and Sumeri groups of the Neoprotero-
zoic and Mesoproterozoic periods. These two cover 47.77 and 31.81% of the total 
spatial extent of the area of interest. While, granite gneiss, kimberlite, quartz reef, and 
ferruginous sandstone belonging to Bundelkhand Granitoid Complex and Bijawar 
group of Paleoproterozoic & Archaean-Paleoproterozoic periods are the least domi-
nant, with cumulative coverage of 0.01% of the entire geographical area of the Panna 
district. Figure 4a illustrates the lithology map of the area of interest.

4.3 Land Use 

The land use data from Sentinel-2A suggests the presence of six (06) major land use 
classes, namely, waterbodies, forest, cropland/arable land, built-up/settlement, bare 
ground, and grasslands with relative percentages of 0.73, 10.08, 45.30, 2.01, 0.01,
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Table 2 Sub-class weights for input layers 

Parameter with % influence Sub-classes Weight 

Lithology (LITHO) (25%) Alluvium/sand 25 

Basalt/meta basalt 21 

Grey sand, silt, and clay/oxidised silt–clay 
with kankar and micaceous sand 

19 

Ferruginous sandstone/sandstone/sandstone 
and orthoquartzite 

18 

Limestone 16 

Clay 15 

Chlorite schist/laterite/quartz reef 14 

Diamondiferous conglomerate 9 

Diorite/kimberlite 07 

Medium-grained granite 04 

Coarse-grained porphyritic 
granite/fine-grained granite/granite gneiss 

03 

Shale 01 

Land use (LU) (22%) Waterbody 22 

Flooded vegetation 20 

Cropland/arable land 18 

Forest 14 

Pastures/grassland 09 

Bare ground 05 

Built-up/settlement 01 

Slope (S), in degree (16%) Less than 3 16 

3–5 12 

5–15 08 

15–30 04 

30–50 01 

Greater than 50 01 

Lineament density (LD), in km/sq. km 
(13%) 

0–1.39 01 

1.40–2.69 05 

2.70–3.99 09 

4.00–5.20 13 

Drainage density (DD), in km/sq. km 
(9%) 

0–1.79 09 

1.80–3.59 07 

3.60–5.29 05 

5.30–7 02 

Rainfall (R), in mm/year (9%) 938–992 02

(continued)
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Table 2 (continued)

Parameter with % influence Sub-classes Weight

993–1045 05 

1046–1099 07 

1100–1153 09 

Soil (So), as per FAO soil codes (6%) SNUM 3772 (sandy-clay loam) 06 

SNUM 3780 (sandy-clay loam) 06 

SNUM 3861 (clay) 02

and 41.88% of the total geographical area of the Panna district, respectively. Another 
land use class, particularly, the flooded vegetation is also detected but has very low 
to nil relative contribution towards the overall land use of the study area. Land use 
defines the relative perviousness of the surface towards the incoming precipitation 
water and the overland flow, thus governing the surface runoff and the infiltration 
rate (Douglas and Ansari 2005), therefore are ranked according to the same. From 
Fig. 3, Table 1, and previously mentioned recommendations, the land use is said to 
have a major impact on rainfall and drainage density, and have minor influence over 
the slope, lineament density, and lithology, with a total percent influence of 22% in 
the context of groundwater potentiality. The land use which directly endows to the 
groundwater availability/recharge, i.e., waterbody, flooded vegetation, and cropland, 
were assigned higher weights, which are 22, 20, and 18, respectively. While, land 
use classes like built-up/settlement and bare ground including rock outcrops, were 
assigned lower weights, i.e., 1 and 5. The land use for the Panna district is represented 
in Fig. 4b. 

4.4 Slope 

Slope affects the groundwater flow paths at both local and regional scales (Gleeson 
and Manning 2008). With higher slopes the flow velocity of overland flow and the 
surface runoff increases which in turn curtails the contact time between the sheet 
of flowing water and the underlying soil, thus reducing the infiltration rates and 
vice versa. Also, in excessively steep slopes the meager portion of the water which 
gets infiltrated in the soil matrix escapes out as the prompt interflow, thus having a 
very insignificant contribution towards groundwater. For the presented work slope 
classification as recommended by Rani et al. (2019) is adapted. The slope map of 
the study area is sub-classified into six (06) categories as mentioned in Table 2. The  
average slope of the study area was estimated to be 4.1°, while the maximum slope 
was 53.72°. The first slope class, i.e., less than 3°, covers the maximum (51.93%) 
of the study area followed by classes 3° to 5° (22.83%), and 5° to 15° (21.62%), 
respectively. The slope has a major effect on rainfall and drainage density and a minor 
effect on land use and is assigned a percent influence of 16%. Higher slopes were
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Fig. 4 a Lithology, b land use, c slope, and d lineament density map for the Panna district, Madhya 
Pradesh
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assigned lower sub-class weights, while the lower slope classes were apportioned 
with higher weights (as illustrated in Table 2). Figure 4c depicts the slope map with 
various slope classes. 

5 Lineament Density 

The lineaments, as the name suggests, are line structures/features, and are usually 
the projection of underlying geologic formations. The primary lineaments present in 
the study area are fractures and joints. The presence of lineaments offers additional 
permeability and porosity which in turn augments the availability and recharge of 
groundwater (Dar et al. 2010). The study revealed that the total length of the lineament 
for the Panna district was 691.71 km with an average density of 0.44 km/sq. km. 
Lineaments majorly affect the drainage density and land use and were assigned the 
percent influence of 13%. For the MIF, in sum four (04) lineament density classes 
were developed following an equal interval approach, namely, (i) 0–1.39 km/sq. 
km, (ii) 1.40–2.69 km/sq. km, (iii) 2.70–3.99 km/sq. km, and (iv) 4.00–5.20 km/sq. 
km. These classes account for 88.46, 8.77, 1.63, and 1.14% of the total geographical 
extent of the study area, respectively. The regions with higher lineament density were 
assigned greater scores/weights and vice-versa (as depicted in Table 2). Most of the 
lineaments are concentrated in the southeast and south portion of the study area, thus, 
imparting a greater degree of contribution in relation to groundwater availability and 
replenishment. Figure 4d depicts the lineament density map for the study area. 

6 Drainage Density 

The drainage map revealed that the drainage network of the study area follows a 
dendritic and sub-dendritic pattern. The drainage density, as depicted in Fig. 5a 
is derived from the drainage map using the line density function, and is inversely 
proportional to the length of overland flow (Horton 1945) and the permeability. 
Therefore, regions with higher drainage densities tend to have higher runoff from 
precipitation and are accompanied by low infiltration. The drainage density has a 
major effect on land use and a minor influence over the lineament density and was 
assigned the percent influence of 9%. A total of four drainage density classes based 
on the equal interval approach were developed, namely (i) 0–1.79, (ii) 1.80–3.59, (iii) 
3.60–5.29, and (iv) 5.30–7.00, which accounts for 52.22, 44.21, 2.93, and 0.64% of 
the spatial extent of the study area. The areas of low drainage density were assigned 
higher weights and vice versa (see Table 2). The average drainage density of the 
study area was estimated to be 1.83 km/sq. km.
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Fig. 5 a Drainage density, b rainfall, and c soil map for the study area
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7 Rainfall 

The precipitation falling over an area construes the maximum water available for 
percolation that may be dispensed for groundwater recharge and hence directly 
affecting its availability. Therefore, the regions with higher rainfall were assigned 
greater weights and vice-versa. Adopting the previous commendations, the rainfall 
was said to have a major impact on drainage density and a minor influence over 
soil characteristics and is assigned a percent influence of 9% over the zonation for 
groundwater potentiality and prospects. Based on 22 years of precipitation data, i.e., 
2000–2021, and following the Thiessen polygon method, the average annual precip-
itation over the Panna district was found to be 1063.7(±51.8) mm. Analysis of the 
precipitation data also suggested that approximately 91.50% of the average annual 
precipitation occurs in the summer half, i.e., from April to September. Using the 
equal interval method, a total of four rainfall classes were developed with annual 
average precipitation ranging from 938 to 1153 mm and are depicted in Table 2 
along with their respective sub-class weights. Figure 5b illustrates the rainfall map 
for the study area. 

8 Soil  

The soil map which was prepared using the DSMW FAO, UN data suggested the 
presence of three (03) types of soil with SNUM 3772, 3780, and 3861, with all of these 
falling under the Hydrologic Soil Group (HSG) D and having the USLE k-factor of 
0.225, 0.2266, and 0.2067, respectively as per the SWAT 2012 ‘usersoil’ database. 
The first two have a sandy-clay loam texture while the latter have a clay texture, 
respectively. Also, the two former soil groups account for 8.9 and 78.88%, while, the 
latter contributes to 12.22% of the geographical area of the district. The soil directly 
has a major influence over land use and was assigned a percent influence of 6%. For 
assigning weights to the soil sub-classes recommendations from Ibrahim-Bathis and 
Ahmed (2016) were adopted. The soil with relatively higher sand content, i.e., 3772 
and 3780 with a sand content of 54.5 and 51%, respectively, were assigned higher 
weights due to relatively greater infiltration rates, while the soil type under SNUM 
3861 with proportionately lower sand content, i.e., 17% were assigned a relatively 
lower value. Figure 5c illustrates the soil map of the study area. 

9 Groundwater Potential Zones 

For the development of the groundwater potential zonation map, the above-mentioned 
seven thematic layers were then overlayed using the percent influence of each layer 
over ArcMap 10.4.1 via the weighted overlay analysis tool. The raster generated
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after the overlay is then again reclassed to get four (04) groups for the final ground-
water prospects zonation, namely, poor, moderate, good, and very good based on the 
quartile approach, i.e., raster index values less than the first quartile are under poor, 
between the first and the second quartile is in moderate, while the values in second 
and third quartile range, and over the third quartile are under good and very good 
classes, respectively. From the final groundwater potential zonation raster, it was 
concluded that approximately, 20.37 and 59.42% of the total geographical area of 
the Panna district was found to be under very good and good potentiality for ground-
water, whereas, 19.40 and 0.81% have moderate and poor prospects for ground-
water. The potential zones under the ‘very good’ class are chiefly concentrated near 
the northern and mid-reaches as well as in the southern and south-eastern portions 
of the area of interest in the form of non-continuous stretches. This suggests the 
higher control of lithologic groups, primarily alluvium, grey sand, sandstone, and 
limestone deposits along with the land use, which is dominated by grasslands, crop-
land, and forest, and gentler slopes in governing the groundwater potentiality for 
the study area. Figure 6 demonstrates the groundwater potential zones for the Panna 
district. The sites with very good and good groundwater prospects represent locations 
where the probability of finding groundwater is relatively higher and the sustainable 
extraction process is comparatively easier. Furthermore, these locations also act as 
opportune spots where site-suitable Groundwater Augmentation Measures (GAMs) 
can be implemented for the replenishment and rejuvenation of the subsurface water 
reserves. The study suggests the development of contour trenches and recharge pits 
for different cross-sectional shapes in areas of very good and good potentiality. 
The purpose of these measures is to increase the cumulative amount of infiltrated 
water towards recharging the subsurface reserves along with soil conservation. In the 
areas of moderate potentiality, implementation of check dams like masonry dams, 
live check dams, brush-wood check dams, etc. is suggested over second and lower-
order streams towards arresting overland flow, surface runoff, and excessive channel 
flow during the Monsoonal period. Finally, in the areas of low potentiality, bunding, 
stone pitching, storage ponds, plantation of adaptable flora including hardwood and 
grasses, etc. should be done for enhancing soil moisture at one end and abbreviating 
soil erosion over the other.

10 Conclusions and Future Scope 

The RS and GIS-based approaches in coherence with the use of the MCDM technique 
have proved frugal, cost-effective, and nimble propositions towards the delineation 
of groundwater potential zones for the semi-arid Panna district of Madhya Pradesh. 
The study took into consideration seven thematic layers, namely, lithology, land use, 
slope, lineament density, rainfall, drainage density, and soil, as these parameters first-
handily affect the hydrogeology and groundwater regime at both local and regional 
scales. These layers were then overlayed after assigning suitable percent influence 
and sub-class weights following the MIF method. Following this approach, a total of
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Fig. 6 Groundwater prospects zones for the Panna district

four qualitative zones for groundwater potentiality and recharge, viz. poor, moderate, 
good, and very good, were developed for the study area. This shall contribute towards 
sustainable water resource management, especially groundwater when it comes to 
the identification of potential sites for tenable extraction as well as for the replenish-
ment of the same via site-suitable artificial augmentation structures. The study also 
suggests opportune GAMs for the identified sites of various degrees of potentialities 
in order to rejuvenate and provisioning of subsurface water reserves and for soil 
conservation. The MCDM technique followed for the quantitative assessment and 
dependence of various input influencers, i.e., MIF is relatively uncluttered, but leaves 
scope for more refined prospecting via the application of MCMD approaches which 
accounts for checking of mathematical consistencies in the assignment of weights
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along with uncertainty assessment like the Analytical Hierarchical Process (AHP) 
and Fuzzy AHP. Also, the addition of other influencing parameters like Topograph-
ical Proximity Index (TPI), curvature, roughness, geomorphology, etc. in the final 
overlay after assigning suitable weights and use of more refined and fine thematic 
data may bring the map depicted potential zones much closer to the on-ground 
scenario. Validation of the developed map via ground truthing remains open and 
can be done via geo-tagging followed by recording water levels for pre and post-
monsoonal periods from various borewells distributed across the study area and then 
plotting the water level fluctuation data and matching the same with the developed 
results. Another approach is to go for the geophysical investigation like the resistivity 
method, GPR, etc. for a few locations dispersed along the study area but that may 
prove manpower and financially intensive. Further, an improved understanding of 
the relationship of known influencers along identification of site-specific indices that 
governs the subsurface hydrology along with addressing their cumulative impact on 
the groundwater regime under the dynamic land use and CC scenario is also to be 
advocated. 
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Impact of Surface Temperature on Soil 
Chemical Properties Using Coupled 
Approach of Satellite Imagery, Gamma 
Test and Regression Based Models 
in Semi-arid Area 

Vijay Kant Singh, Ram Prakash, and Daniel Prakash Kushwaha 

Abstract Temperature of land surface has crucial effect on soil natural environment 
by controlling soil pH, soil water retention, organic content, physical and micro-
biological forms of soil. In the present study, semi-arid Guhla and Kaithal blocks of 
Kaithal district, Haryana state, India, have been selected for the assessment of effect 
of land surface temperature (LST) on the soil chemical properties. Soil sampling 
was done from twenty one random sites of this blocks in which nine belong to 
Guhla block and twelve belong to Kaithal block on 11 June 2015. Total eighteen soil 
chemical properties viz. soil saturation, cation exchange capacity, organic carbon, 
calcium carbonate, N, P, K, exchangeable sodium percentage, electrical conduc-
tivity, pH, water soluble anions viz. carbonate, bicarbonate, chloride, sulphate and 
water soluble cations viz. calcium, magnesium, sodium, and potassium have been 
determined for each sample. Spilt window technique has been used for LST deter-
mination by utilizing weather data of the location. Multiple linear regression (MLR) 
and multiple non-linear regression (MNLR) analysis have been used for modeling 
LST and soil chemical properties. Due to no correlation among the variables, gamma 
test has been used for selecting best input structure. Coefficient of multiple determi-
nation, multiple correlation coefficient and root mean square error (RMSE) between 
remote sensing (RS) based LST and soil chemical parameters, were found as 0.367, 
0.606 and 2.276 °K, respectively, in MLR model. In MNLR model, dataset length 
was divided into 70% for training and 30% for testing. Coefficient of determina-
tion (R2) and RMSE, between RS based LST and MNLR based LST, were found 
as 0.861 and 3.333 °K, respectively during testing period. MNLR model has given
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better results in terms of coefficient of determination in comparison to MLR analysis, 
with overestimated values of LST. 

Keywords Land surface temperature · Soil chemical properties · Gamma test ·
Remote sensing and GIS · Multiple regression analysis · Regression based residual 
study 

Abbreviations 

CEC Cation exchange capacity 
ECe Electrical conductivity of a saturation soil paste 
EDTA Ethylene diamine tetra acetic 
ESP Exchangeable sodium percentage 
FVC Fractional vegetation cover 
GT Gamma test 
K Available potassium 
LSE Land surface emissivity 
LST Land surface temperature 
MLR Multiple linear regression 
MNLR Multiple non-linear regression 
N Available nitrogen 
OLI Operational land imager 
P Available phosphorous 
Q-Q Quantity versus quantity 
RH Relative humidity 
RSC Residual sodium carbonate 
TIR Thermal infrared 
TOA Top of atmosphere 
WS Water soluble 

1 Introduction 

Surface temperature not only influences the plant growth but also effects the natural 
environment of soil by influencing the soil respiration process of micro-organisms 
in soil ecosystem. Surface temperature of soil is responsible for maintaining desired 
depth of soil profile temperature by conduction mode of heat transfer. Role of micro-
organisms is important to retain the balanced amount of nutrients in the soil for proper 
and healthier growth in soil ecosystem. Some studies state that temperature along 
the any vertical profile of soil decreases from top to bottom, especially if bottom 
profile is approaching towards a confined or unconfined aquifer (Singh et al. 2018b).
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Many researchers have determined the importance of soil temperature on physical, 
chemical and biological phenomena (Toselli et al. 1999; Lahti et al. 2002; Weih and 
Karlsson 1999; Lahti et al.  2002; Repo et al. 2004; Probert 2000; Jebamalar et al. 
2012; Tarate et al. 2017; Davidson and Janssens 2006; Buchas 2001) occurring in 
the crop root zone. Lehnert (2013) noted that inter-spherical processes which occur 
between soil and atmosphere by means of gas exchange is also influenced by LST. 
Soil respiration by means of micro-organisms and its temperature are positively 
correlated (Lloyd and Taylor 1994; Pajari 1995; Singh and Gupta 1977; Rajesh et al. 
2023; Gadekar et al. 2023). 

In recent years, the satellite remote sensing (RS) and geographic information 
system (GIS) have been used in many fields such as agriculture, hydrology, soil 
erosion, river network analysis (Kushwaha et al. 2019), change in earth surface 
features and many more (Jiang and Eastman 2000; Malczewski 2006; Chatterjee et al. 
2017; Tabari et al. 2011; Kushwaha et al. 2017a). Along with this, RS combined with 
crucial soil properties through statistical modeling is another idea and no such study 
has been done till now. The soil temperature at earth surface which is called LST is 
crucial for air temperature, top of atmosphere (TOA), spectral radiance, brightness 
temperature, land surface emissivity, relative humidity (RH), and atmospheric water 
vapour studies. In satellite remote sensing, sensor’s images do not provide LST 
directly but requires some band mathematics which is based on pixel values of 
sensor’s images and metadata file information associated with that image. 

Modeling between soil and crop parameters is longstanding. Too many models 
have been developed in this context by many researchers (Reimer and Shaykewich 
1980; Gupta et al. 1981; Ghuman and Lal 1982; Manrique 1990; Kushwaha et al. 
2021; Rehman et al. 2022). Langholz (1989) performed his study in bare soil condi-
tion and correlated this with natural vegetation. Kang et al. (2000) and Paul et al. 
(2004) studied in natural forest conditions and Parton (1984) shown the same study 
for pasture lands. Selection of modeling techniques is also a part of research and 
always been a challenge for researchers. There are many statistical technique for 
linear and non-linear modeling for these parameters viz. simple linear regression, 
multiple linear regression (MLR) and multiple non-linear regression (MLNR), arti-
ficial neural network (ANN), random forest (RF) data mining and other advanced 
techniques (Kushwaha et al. 2017b; Kushwaha and Kumar 2017a, b, c and 2021; 
Malik et al. 2019; Kumar et al. 2020; Anh et al. 2023). Simple linear regression 
can-not solve the problems if input variables are large. 

Many agriculturist have stated that regression based models are better than 
complex data driven techniques (Navale et al. 2018; Zheng, et al. 2020, Tamta,  
et al. 2023; Mairizal, et al. 2020). Rastgou et al. (2020) have found that MLNR tech-
nique is better than RF data mining technique in estimating the soil water retention 
curve. Stangierski et al. (2019) have investigated MLR and ANN techniques results 
and stated that both model are good to predict the overall desirability of spread-
able Gouda cheese during storage. Pahlavan-Rad et al. (2020) have found that MLR 
results are similar to RF technique in terms of root mean square error and mean 
absolute error. Complex non-linear data driven techniques do not provide equation 
for prediction. MLR and MNLR techniques help us to include potentially important
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variables in a single model. The benefits of these approaches are that this may lead 
to a more accurate and precise understanding of the addition of each individual input 
variables with the output through a single regression equation (Marill 2004; Kaup 
2020). 

The selection and assortment of inputs is one of the important criteria in modeling 
(Noori et al.  2011). Some of the studies suggest for the trial and error process for 
selecting appropriate input variables but time consumption cannot be avoided. In this 
context, gamma test (GT) has been proven by many meteorologists and hydrologists 
to generate a smooth model (Moghaddamnia et al. 2009; Stefansson et al. 1997; 
Remesan et al. 2008; Moghaddamnia et al. 2009; Lafdani et al. 2013; Singh et al. 
2017; Singh et al. 2018a, b). GT gives the certain statistical values, which helps us 
to select and assort the effective inputs for modeling output data. 

As per author’s knowledge, no such studies have been carried that provides exact 
relationship by means of relating satellite data to identify soil chemical composition 
and its fertility status anywhere in the location under highly variable climatic condi-
tions. This study can be a benchmark for future research. In this study, following 
objectives have been resolved: (i) to estimate LST over Guhla and Kaithal block of 
Kaithal district by using split-window technique, (ii) to construct a most efficient 
combination of input variables using gamma test technique to predict LST, (iii) to 
evaluate results of MLR analysis and MNLR analysis to predict remote sensing based 
LST associated with soil chemical parameters, (iv) to study the residuals associated 
with each output values of LST obtained by using MLR technique. 

2 Material and Methods 

2.1 Description of Study Area 

Kaithal district is semi-arid region, located in north eastern part of Haryana state, 
India. It is located between 76°10'-76°42' E longitudes and 29°31'-30°12' N latitudes. 
The district has been divided into six administrative blocks viz. Kaithal, Guhla, 
Kalayat, Pundari, Rajound and Siwan. Guhla and Kaithal block have been selected 
in this study (Fig. 1). The geographical area of Kaithal and Guhla bocks are 1280 and 
553 km2, respectively. Soil of these regions is irrigated with all identified categories 
of groundwater. Mean temperature of these regions is 40 °C in summer (May and 
June) which is mainly dry and hot and 7 °C in winder in the month of January. 
Climatic condition is tropical steppe, semiarid and hot with four seasons in a year. 
These regions are nearly flat with gentle slope in the direction of south west. Soil of 
this district was found as sandy to sandy loam in texture.
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Fig. 1 Location map of Guhla and Kaithal blocks 

2.2 Collection of Soil Samples 

Twenty one soil samples have been taken from random locations of these blocks in 
which nine belong to Guhla block and twelve belong to Kaithal block. Selection of 
random locations was also dependent on the spatially classified ground water map, 
because it was found that ground water has the great impact on soil properties in 
these regions (Singh et al. 2017; Singh et al. 2018a, b). All the soil samples have been 
collected with auger from the depths of 0–15 cm. Top 15 cm soil is more responsible 
for crop growth and it was considered that this layer is also highly affected by surface 
temperature (Singh et al. 2020). Sampling was done before the showers of monsoon 
on 11 June 2015. The location of soil sampling in the form of longitudes and latitudes 
was recorded by hand held global positioning system and given in Table 3. 

2.3 Analysis of Soil Samples 

All collected soil samples have been air dried in shed for few days because of initial 
moisture present in the soil samples. Subsequently, grinding and sieving was done. 
Wooden mortar and plastic hammer have been used for grinding of soil and 2 mm 
sieve has been used to separate gravel particles from the samples. The soil samples 
were analyzed for pH, ECe, N, P and K, CaCO3, water soluble cations (Ca2+, Mg2+ , 
Na+ and K+) and water soluble anions (CO3 

2−, HCO3
−, Cl− and SO4 

2−) as per stan-
dard procedures described in USDA handbook No. 60 (Richads 1954). The organic
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matter present in the soil is oxidized by the nascent oxygen, liberated by KMnO4, in  
the presence of NaOH (Subbiah and Asija 1956). Organic carbon (OC) was deter-
mined by oxidizing the organic matter in the soil (Walkley and Black 1934). Cation 
exchange capacity (CEC) was determined by treating the soil with sodium acetate 
(CH3COONa) solution (pH 8.2) for replacement of exchangeable cations by Na+ 

ions (Varley, 1971). ESP of was determined with the help of values of exchangeable 
sodium and CEC. 

2.4 Land Surface Temperature Estimation 

There are two widely acceptable methodologies in the determination of LST; one 
is based on single cumulative thermal infrared band which is called mono-window 
technique and another one is based on two thermal infrared bands which is called 
split window (SW) technique (Gabriele et al. 2015; Peng and Weng 2016). It has been 
proven that split-window approach is better than mono window approach (Dousset 
and Gourmelon, 2003; Sobrino et al. 2004, 2016; Weng et al. 2004; Mallick et al. 
2008; Chatterjee et al. 2017; Kumar et al. 2017; Kushwaha et al. 2017a; Singh et al. 
2018a, b). In this study, split-window approach has been used with Landset-8 imagery 
of 11 June 2015. This approach uses the following algorithm: 

LST  = TB10 + C1(TB10 − TB11) + C2(TB10 − TB11)
2 + C0 

+ (C3 + C4ew) (1 − ε) + (C5 + C6ew)Δε (1) 

where LST (°K), TB10 and TB11 (brightness temperatures; °K), ε (mean LSE of TIR 
bands), ew (atmospheric water vapor content; g/cm2) and Δε (difference in LSE of 
TIR bands). All C notations are the split window coefficients (Sobrino et al. 1991, 
2006; Shaouhua Zhao et al. 2009). To find Δε, ε, TB10 and TB11, steps have been 
given in Table 1.

Where, Lλ (TOA spectral radiance; watts per (m2 × srad × μm)), ML (radiance 
multiplicative band value), AL (radiance additive band value), K1 and K2 (thermal 
conversion constants), NIR (near infrared band, R (red band), εs and εv (soil and 
vegetative emissivity values of the respective bands), B (band value) and suffices 
s, v, 10 and 11 indicate soil, vegetation, band 10 and band 11, respectively. Values 
of ML, AL, K1 and K2 can be directly obtained from the metadata file of the image 
provided by the agency. To get the value of ew, it is necessary to determine equilibrium 
vapor pressure (e*w) (Eq.  2). 

e∗ 
w =

(
1.0007 + 3.46 × 10−6 P

) × (6.1121)e( 
17.502∗T 
240.97+T ) (2) 

ew = RH  × e∗w (3)
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Table 1 Systematic calculations of difference in land surface emissivity (Δε), mean land surface 
emissivity (ε), brightness temperatures of band 10 (TB10) and band 11 (TB11) 

Steps Factor Generalized formula 

Band 10 Band 11 

1 Lλ Lλ,10 = ML × B10 + AL Lλ,11 = ML × B11 + AL 

2 TB TB10 = K2,10 

Ln
{(

K1,10 
Lλ,10

)
+1

} TB11 = K2,11 

Ln
{(

K1,11 
Lλ,11

)
+1

}

3 NDVI ((NIR) − (R))/((NIR) + (R)) 
4 FVC FVC = NDV  I  −NDV  I  s  

N DV  I  v−NDV  I  s  

5 LSE LSE10 = εs,10 (1-FVC) + εv,10 × FVC; LSE11 = εs,11 (1-FVC) + εv,11 × FVC 
6 ε (LSE10 + LSE11)/2 

7 Δε (LSE10 − LSE11)

where T (dry bulb temperature; °C), P (absolute pressure; milli-bar), e*w and ew 
(milli-bar) and RH (fraction). 

Due to lack of weather data of Guhla and Kaithal blocks individually, lumped 
values of relative humidity (RH), absolute pressure and dry bulb temperature of 
whole Kaithal district have been taken, of given day and given time when satellite 
passed over the district. Soil samples were taken on the same day when LANDSAT-
8 passed through the location. Work of soil sampling was started early morning 
and completed till the sunset on 11 June 2015. LANDSAT-8 imagery of the same 
day has been used, which was found cloud free fortunately. LANDSAT-8 imagery is 
having Cirrus band (i.e. band-9; wavelength is from 1.360 to 1.390 μm) which shows 
the high-altitude cloud contamination and this contamination is not visible in other 
spectral bands. Cirrus clouds appear bright in color whereas most land surfaces appear 
dark through the cloud-free atmospheres which containing water vapor. In spite of 
this, atmospheric correction has also been done in “Semi-Automatic Classification 
Plugin” in QGIS software and by using “Build Virtual Raster” processing tool. 

2.5 Gamma Test (GT) 

Gamma test helps us to select appropriate inputs for modeling the given output in 
terms of establishing a smooth model (Lafdani et al. 2013; Singh et al. 2018a, b). 
It has the non-linear relationships that help us to use low and high variable data 
both in input selection. With the help of GT we can identify which input and what 
combination of it, should actually be used in a model (Changa and Heinemann 2018; 
Agalbjorn et al. 1997; Tsui et al.  2002). In this study, gamma values and variance ratio 
values have been determined in winGamma software. Lowest gamma and variance 
ratio values have been considered as best input/inputs (Jones et al. 2002).
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2.6 Multiple Linear Regression Analysis (MLR) 

In multiple regression analysis, we try to find the joint association of several indepen-
dent variables with the dependent variable. We can estimate the value of dependent 
variable for any give value of independent variable. It is applied when we have 
multivariate data set. The general form of MLR is as follows: 

Y = α + β1 X1 + β2 X2 +  · · ·  βk Xk (4) 

Ŷ = α + β1 X1 + β2 X2 +  · · · βk Xk + ∊ (5) 

(Residual)i = Yi − Ŷi (6) 

where, Y is a dependent variable, Ŷ is fitted value, X1, X2, ….,  Xk are independent 
variables, k is number of independent variable, i shows the ith observation, ∊ is error 
term or residual, α is intercept and β1, β2, …,  βk are partial regression coefficients. In 
this study, LST is dependent variable and soil chemical parameters are independent 
variables. The residual data of MLR model is the difference between the observed 
data of the dependent variable LST (i.e. LSTi) and the fitted values of LST (i.e. LST

∆

i) 
(Eq. 6). 

2.7 Multiple Non-linear Regression Analysis (MNLR) 

It is applied when dependent variable has no linear relationship with independent 
variables in multivariate data set (Tabari et al. 2010; Malik and Kumar 2018). In this 
study, a special form of non-linear relationship has been used, which best suits for 
non-linear relationship between LST and soil chemical parameters (Eq. 7). 

Y = αβ X1 
1 β X2 

2 . . . β  Xk 
k (7) 

where Y is a dependent output and X1, X2, ….,  Xk are independent inputs, k is 
number of independent variable, α is intercept and β1, β2,…,  βk are partial regression 
coefficients of MNLR equation. 

2.8 Performance Evaluation of Models 

Performance measures are used to indicate how well a model performs its tasks. 
The performance of the model can be measured qualitatively and quantitatively. 
Karl Pearson’s correlation coefficient (r), multiple correlation coefficient (MCC),
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Table 2 Quantitative performance evaluation indices 

Parameter Relationship Range 

Root mean square error (RMSE)
/∑N 

i=i (LST  i−LST  ci )2 

N 0 to  ∞ 

Correlation coefficient (r)
∑N 

i=1(LST  i−LSTm )
∑N 

i=1 (LST  ci−LST  cm )/∑N 
i=1 (LST  i−LST  m )2

/∑N 
i=1 (LST  ci−LST  cm )2 

−1 to  +1 

Multiple correlation coefficient (MCC)

/
∑N 

i=1 (LST
∆

i−LST  m ) 
2

∑N 
i=1 (LST  i−LST  m )2

−1 to  +1 

coefficient of determination (R2), coefficient of multiple determination (CMD) and 
root mean square error (RMSE) have been used as quantitative performance eval-
uating indices for predicting the effectiveness of the models and given in Table 2. 
MCC indicates the joint association of several independent variables with the depen-
dent variable. Coefficient of determination and coefficient of multiple determination 
help us to find out percent of variation in dependent variable due to independent 
variable/variables; both parameters are very close to the square of r and multiple 
correlation coefficient, respectively. In this study, multiple correlation coefficient, 
coefficient of multiple determination and root mean square error were estimated 
between remote sensing based LST and soil chemical parameters in multiple linear 
regression whereas r, R2 and root mean square error (RMSE) were estimated between 
multiple non-linear regression model computed LST and remote sensing based LST. 

Where, LSTci and LSTi are the model computed LST and remote sensing based 
LST for ith observation, respectively, LSTcm and LSTm are the mean of model 
computed and mean of remote sensing based LST, respectively, N is the total number 
of observations and LST

∆

i is fitted values of LST. 

3 Results and Discussion 

3.1 Land Surface Temperature Estimation and Statistical 
Analysis of Data 

LST were determined using split-window approach (Fig. 2) and values of LST were 
interpolated at 21 locations of soil sampling and given in Table 3. From Fig.  2, green 
colour shows most of the water bodies and vegetation, whereas red colour shows 
concrete structure, upland plains, built up lands etc. 71.43% sampling was done in 
the LST range 307.357 to 316.482 °K whereas 28.57% sampling was done in LST 
range 316.483 to 318.74 °K.

Coefficient of variation (CV) is very useful statistical technique to compare vari-
ations in the parameters (Table 4). Calcium carbonate has highest coefficient of 
variation (i.e. 135.385%) whereas LST has lowest CV (i.e. 0.637%). Saturation and
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Fig. 2 Land surface 
temperature of Kaithal 
district using split-window 
technique

cation exchange capacity have CV value less than 18% whereas organic carbon 
and pH have CV value less than 10%. In available N, available P and available K, 
available P has highest CV i.e. 17.993% and available N has lowest CV i.e. 11.955%. 
Exchangeable sodium percentage and electrical conductivity have CV value 37.732% 
and 34.858%, respectively. Among all the anions, chloride has highest 71.171% CV 

and Bicarbonate has lowest 28.395% CV. Among all the cations, calcium has highest 
value of CV i.e. 65.53% and potassium has lowest value of CV i.e. 22.365%. CV from 
highest to lowest can be arranged in following manner; calcium carbonate > chloride 
> calcium > magnesium > carbonate > sulphate > exchangeable sodium percentage 
> sodium > electrical conductivity > bicarbonate > WS potassium > available phos-
phorous > cation exchange capacity > available potassium > available nitrogen > 
saturation > organic carbon > pH > LST.
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Table 3 LST estimated by split window approach at respective locations 

Sampling number Longitude-Latitude LST (°K) Name of block Name of village 

1 76° 17' 2.59'' E-29° 57'
8.06'' N 

315.183 Guhla Kharkhada 

2 76° 16' 2.30'' E-30° 00'
0.31'' N 

317.338 Guhla Sultania 

3 76° 24' 6.65'' E-30° 03'
5.76'' N 

316.042 Guhla Bhagal 

4 76° 22' 5.77'' E-30° 05'
2.27'' N 

313.710 Guhla Dhandhauta 

5 76° 16' 9.21'' E-30° 01'
0.47'' N 

316.920 Guhla Kharodi 

6 76° 22' 5.07'' E-30° 04'
3.13'' N 

311.307 Guhla Badsui 

7 76° 14' 1.86'' E-30° 01'
4.51'' N 

317.369 Guhla Kheri Dabah 

8 76° 16' 4.71'' E-30° 01'
3.19'' N 

316.422 Guhla Dusharpur 

9 76° 23' 8.87'' E-30° 06'
6.04'' N 

313.760 Guhla Kasauli 

10 76° 23' 4.86'' E-29° 43'
6.53'' N 

312.085 Kaithal Titram 

11 76° 21' 0.58'' E-29° 50'
4.14'' N 

312.011 Kaithal Serta 

12 76° 24' 5.88'' E-29° 41'
0.41'' N 

312.655 Kaithal Deobon 

13 76° 23' 1.66'' E-29° 46'
2.58'' N 

313.530 Kaithal Chandana 

14 76° 26' 9.44'' E-29° 45'
3.28'' N 

314.414 Kaithal Sega 

15 76° 24' 0.96'' E-29° 49'
8.88'' N 

313.218 Kaithal Khurana 

16 76° 26' 9.24'' E-29° 46'
4.53'' N 

315.981 Kaithal Narar 

17 76° 30' 3.02'' E-29° 50'
4.40'' N 

317.386 Kaithal Tik 

18 76° 32' 0.61'' E-29° 48'
2.04'' N 

316.751 Kaithal Naina 

19 76° 27' 2.67'' E-29° 49'
5.43'' N 

315.026 Kaithal Jagdishpura 

20 76° 30' 2.43'' E-29° 47'
0.00'' N 

316.711 Kaithal Mundri 

21 76° 22' 4.38'' E-29° 51'
3.03'' N 

311.887 Kaithal Ujana
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Table 4 Statistical analysis of data for the study area 

Parameter Minimum value Maximum 
value 

Mean Std. deviation Coefficient of 
variation (%) 

LST (°K) 311.307 317.386 314.748 2.004 0.637 

Saturation (%) 33.5 47.5 37.750 3.878 10.272 

CEC (cmol 
kg−1) 

8.73 15.26 10.869 1.855 17.069 

OC (%) 0.36 0.49 0.448 0.040 8.849 

Calc. carbonate 
(%) 

0 7 1.247 1.688 135.385 

Available N (kg 
ha−1) 

155.16 258.86 197.631 23.627 11.955 

Available P (kg 
ha−1) 

14.4 32 23.339 4.199 17.993 

Available K (kg 
ha−1) 

178.1 302.3 245.372 32.265 13.149 

ESP (%) 5.4 25.55 14.658 5.531 37.732 

ECe (dSm−1) 1.25 6.67 3.663 1.277 34.858 

pH 7.21 9.32 8.421 0.596 7.081 

Carbonate (me 
l−1) 

0 4.82 2.457 1.294 52.655 

Bicarbonate (me 
l−1) 

6 18 12.865 3.653 28.395 

Chloride (me 
l−1) 

2 42.25 12.739 9.066 71.171 

WS sulphate (me 
l−1) 

0.89 11.77 5.731 2.834 49.455 

WS calcium (me 
l−1) 

1 11.64 4.662 3.055 65.530 

WS magnesium 
(me l−1) 

1.72 13.55 6.049 3.426 56.644 

WS sodium (me 
l−1) 

5.92 39.5 24.101 8.483 35.197 

WS potassium 
(me l−1) 

1.29 2.79 1.885 0.422 22.365 

Note cmol represents centi-mole, dSm−1 represent deci-Siemens per meter and me l−1 represents 
milli-equivalent per litre
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3.2 Karl Pearson’s Correlation Analysis of LST with All 
Measured Soil Chemical Parameters 

From the correlation matrix (Table 5), it was concluded that LST has no significant 
correlation with any of the soil chemical parameter. Although, LST shows correla-
tion coefficient, 0.47 with carbonate but this correlation cannot be considered for 
modeling purpose. Correlation of LST from highest to lowest can be arranged in 
following manner; carbonate > potassium > available potassium > organic carbon 
> calcium carbonate > available nitrogen > saturation, cation exchange capacity, 
exchangeable sodium percentage > pH, chloride, sulphate > sodium > magnesium > 
bicarbonate > electrical conductivity, calcium > available phosphorous.

3.3 Best Input Selection Using Gamma Test 

Gamma test was performing with all soil parameters for the selection of best input 
structure. Total 44 inputs structures were prepared by applying proper combination 
technique (Table 6). The structure which shows lower values of absolute gamma and 
variance ratio, was considered as best input structure. Structure number “30” which 
has combination of available nitrogen, available potassium and carbonate shows 
lowest value of absolute gamma (0.011) and second lowest value of variance ratio 
(−0.043). So, combination “30” has been selected as best input combination among 
all. In structure number “22”, which has combination of available nitrogen and water 
soluble magnesium, also shows lowest value of variance ratio (−0.745), but this 
structure has poor value of absolute gamma (0.186), so it was not considered for study. 
Structure number “39” with combinations of available nitrogen, available potassium, 
electrical conductivity and carbonate has highest values of absolute gamma (0.577) 
and variance ratio (2.307) and it has been found inferior than all the combinations 
(Table 6). Boxplot of LST, N, K and soil carbonate (Fig. 3), demonstrates that LST and 
carbonate have least variation and minimum, maximum, first quartile, median and 
third quartile values almost coincide, notwithstanding LST values are much higher 
than the carbonate values. N and K values shows some variation in comparison to 
LST and carbonate, with deviation in minimum, maximum, first quartile, median 
and third quartile values.

3.4 Model Generation Using Multiple Linear Regression 
Analysis and Residual Study 

Multiple linear regression model (Eq. 8) shows that the value of intercept is very 
high (301.309) whereas partial regression coefficients of available nitrogen, available 
potassium and carbonate are found low as 0.024, 0.028 and 1.242, respectively.
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Table 6 Gamma test results with all possible combinations of input structure 

Str. No. Input |Γ| Variance 
ratio 

Str. No. Input |Γ| Variance 
ratio 

1 Saturation 0.281 1.123 23 K, ECe 0.045 0.178 

2 CEC 0.224 0.897 24 K, CO3 
2− 0.438 1.752 

3 Organic 
carbon 

0.295 1.179 25 K, Mg2+ 0.293 1.171 

4 CaCO3 0.262 1.048 26 ECe, CO3 
2− 0.271 1.084 

5 N 0.099 0.397 27 ECe, Mg2+ 0.270 1.079 

6 P 0.429 1.715 28 CO3 
2−, 

Mg2+ 
0.080 0.320 

7 K 0.132 0.528 29 N, K, ECe 0.143 0.573 

8 ESP 0.370 1.481 30 N, K, 
CO3 

2− 
0.011 −0.043 

9 ECe 0.084 0.335 31 N, K, Mg2+ 0.098 0.390 

10 pH 0.216 0.863 32 K, ECe, 
CO3 

2− 
0.358 1.432 

11 CO3 
2− 0.156 0.622 33 K, ECe, 

Mg2+ 
0.166 0.663 

12 HCO3
− 0.206 0.825 34 ECe, CO3 

2−, 
Mg2+ 

0.238 0.950 

13 Cl− 0.424 1.695 35 N, ECe, 
CO3 

2− 
0.094 0.378 

14 SO4 
2− 0.313 1.251 36 N, CO3 

2−, 
Mg2+ 

0.173 0.691 

15 Ca2+ 0.399 1.600 37 K, CO3 
2−, 

Mg2+ 
0.277 1.109 

16 Mg2+ 0.174 0.695 38 N, ECe, 
Mg2+ 

0.088 0.351 

17 Na+ 0.301 1.206 39 N, K, ECe, 
CO3 

2− 
0.577 2.307 

18 K+ 0.290 1.161 40 N, K, ECe, 
Mg2+ 

0.031 0.122 

19 N, K 0.072 0.289 41 K, ECe, 
CO3 

2−, 
Mg2+ 

0.198 0.791 

20 N, ECe 0.124 0.494 42 N, ECe, 
CO3 

2−, 
Mg2+ 

0.196 0.784 

21 N, CO3 
2− 0.194 0.775 43 N, K, 

CO3 
2−, 

Mg2+ 

0.282 1.129

(continued)
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Table 6 (continued)

Str. No. Input |Γ| Variance
ratio

Str. No. Input |Γ| Variance
ratio

22 N, Mg2+ 0.186 −0.745 44 N, K, ECe, 
CO3 

2−, 
Mg2+ 

0.229 0.917 

Fig. 3 Boxplot of land surface temperature, available nitrogen, available potassium and soil 
carbonate

Multiple linear regression model demonstrates that LST has less dependency on 
available nitrogen and available potassium in comparison to carbonate. Coefficient 
of multiple determination and multiple correlation coefficient between LST and input 
parameters were obtained as 0.367 and 0.606, respectively. RMSE was obtained as 
2.276 °K. 

LST  = 301.309 + 0.024 N + 0.028 K + 1.242 Carbonate (8) 

Now, for the population analysis a hypothesis was prepared whether multiple 
correlation coefficient is significant or not. Following null and alternative hypothesis 
were made for this: 

H0: All partial regression coefficients are zero or multiple correlation coefficient 
is not significant 
H1: Not all partial regression coefficients are zero or multiple correlation 
coefficient is significant 

For testing the hypothesis, F-test was performed. Standard error, t-distribution 
value and probability values for intercept and three input variables have been given 
in Table 7. F-statistic was obtained as 3.291 on 3 and 17 degree of freedom. Final p-
value was obtained as 0.04602 which is less than 0.05; therefore, null hypothesis was 
rejected at 5% level of significance i.e. multiple correlation coefficient is significant.

In this study, residual values associated with each LST observation, have also 
been studied (Table 8). In Fig. 8, scatter plot between residuals and remote sensing 
based LST has been plotted; this shows the increasing trend of residual over LST.
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Table 7 F-test results 

Coefficients Estimate Standard error t-value Pr(>|t|) 

Intercept 301.30867 6.46735 46.589 <2e−16*** 

N 0.02433 0.02497 0.974 0.3436 

K 0.02798 0.01780 1.572 0.1345 

Carbonate 1.24205 0.45195 2.748 0.0137* 

Note Level of significant codes: ‘***’ 0.001, ‘*’ 0.05

Minimum, first quartile, second quartile, third quartiles and maximum values of 
residuals distribution were obtained as −5.783, −1.492, −0.092, 1.7 and 3.876, 
respectively. The standardized residual is the ratio of residual and its standard devi-
ation. The normal probability plot of residuals is a graphical representation in order 
to comparing a given data set with its normal distribution. We can use it with the 
standardized residual of the MLR model and see if the error term ∊ is actually follows 
normally distributed or not (Fig. 4). Scatter plot of scale location between square root 
of standardized residual versus fitted value of LST and standardized residual versus 
leverage value have also been plotted (Figs. 5 and 8, respectively). Normal Q-Q plot 
between standardized residual and theoretical quantities is very close to the 1:1 line 
(Fig. 6). Line of best fit for small intervals of fitted values of LST is very close to the 
“0” residual line (Fig. 7). 

Table 8 Residual value associated with each observation of land surface temperature 

Sampling number LST (°K) Residual (°K) Sampling number LST (°K) Residual (°K) 

1 315.183 −0.348 12 312.655 −0.76 

2 317.338 3.876 13 313.53 0.195 

3 316.042 0.693 14 314.414 −1.767 

4 313.71 2.951 15 313.218 −0.505 

5 316.92 2.198 16 315.981 2.792 

6 311.307 −2.455 17 317.386 −1.492 

7 317.369 3.493 18 316.751 −5.783 

8 316.422 −0.092 19 315.026 0.126 

9 313.76 1.7 20 316.711 −0.685 

10 312.085 −2.772 21 311.887 −1.645 

11 312.011 0.28
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Fig. 4 Scale location between square root of standardized residual and fitted value of land surface 
temperature 

Fig. 5 Normal Q-Q plot between standardized residual and theoretical quantities 

Fig. 6 Scatter plot between residuals and fitted values of land surface temperature
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Fig. 7 Scatter plot between standardized residual and leverage value 

Fig. 8 Scatter plot between residuals and remote sensing based land surface temperature 

3.5 Model Generation Using Multiple Non-linear Regression 
Analysis 

LST dataset length was divided into two parts viz. training dataset and testing dataset. 
In this study 70% data (i.e. sampling number 1–15) have been used for training 
purpose and remaining 30% (i.e. sampling number 16–21) have been used form 
testing of multiple non-linear regression model (Kisi et al. 2012). In multiple non-
linear regression model (Eq. 9), the value of parameter (α) is high (302.1731), whereas 
coefficients β1 and β2 are found with low values as 1.0001. Coefficient of carbonate 
(β3) is comparatively higher (1.0043) than β1 and β2. All the coefficients demon-
strate that LST is slight dependent on available nitrogen and available potassium in 
comparison to carbonate. During training period over fitting may occur, due to which 
testing results have been taken under consideration. The R2 value (0.861) of model 
during testing period is acceptable, notwithstanding RMSE value is comparatively 
high (3.333 °K) (Table 9). Scatter diagram between remote sensing based LST and 
model generated LST, shows that the model results are over estimated (Fig. 9).
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Table 9 Quantitative 
performance evaluation of 
multiple non-linear regression 
model 

Evaluation parameter Training period Testing period 

r 0.866 0.928 

RMSE (°K) 3.835 3.333 

R2 0.749 0.861 

Fig. 9 Scatter plot of 
multiple non-linear 
regression based LST and 
remote sensing based LST 
during testing period 

R² = 0.861 
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LST  = 302.1731 × 1.0001N × 1.0001K × 1.0043Carbonate  (9) 

Furthermore, this study were compared and influenced by the previous relevant 
work on this topic (Philip and De Vries 1957; Geiger 1961; DeVries 1963; Wierenga 
et al. 1969; Hanks et al. 1971; Hasfurther and Burman 1974; Khatry et al. 1978; 
DeBano and Conrad 1978; Lettau 1979; Meikle and Tredway 1979; Trangmar et al. 
1985; Farouki 1986; Giovannini et al. 1990; Cambardella et al. 1994; Csiszar and 
Gutman 1999). Krarti et al. (1995) presented a parametric analysis in order to observe 
the impact of various properties of the soil such as evaporation from the soil surface, 
absorptivity and convective properties of soil. Convective properties of soil refer to the 
surface temperature, which occurs due to either temperature or density differences. 
This analysis indicated that simplified model predicts the surface temperature of 
soil within only 10% of the data of five locations. This data were obtained from 
measurement. Schaab et al. (1999) worked on 3-dimensional surface of either a plant 
canopy or a terrain and reported the effects on the amount of biogenically volatile 
organic compounds which were emitted. They have also developed a complex solar 
radiation model (SORAM) which was based on the GIS. The advantage of this model 
is that it is not limited to the certain test sites. Values of temperature were linked to the 
output of the given radiation and further, they have stated that this procedure enabled 
them to correct emission factors for light as well as temperature by using well known 
emission algorithms of Tingey et al.’s (1980) and Guenther et al.’s (1993).
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Al-Temeemi and Harris (2001) predicted a soil profile of type of periodic vari-
ations in subsurface temperature. This variation was recorded with the soil depth 
and generation of the profile was based on equation for subterranean temperatures. 
These equations were based on the thermal and physical properties of the soil. At 
the end, these subsurface temperatures were compared with the ambient dry-bulb 
temperature. Mihalakakou (2002) stated that the soil surface temperature is a crucial 
factor in order to calculate the thermal performance of buildings in direct contact 
with the soil. He has also tested the efficiency of earth-to-air heat exchangers on 
the basis of his research. Gimeno-Garcia et al. (2004) created an artificial fire for 
assessing the surface temperature where was observed on spatial basis. This exper-
iment was conducted in a field station on forest slope. Obtained results indicated 
that the spatial patterns of soil temperature really affect the crucial soil properties 
and depends on the fire severity. This fact could be contributed to change the spatial 
dynamics of soil nutrients and this research may help in the in the recovery of the 
burned vegetation. Fonseca et al. (2019) performed simulation trial for two week 
periods in the austral winter season. They have used surface temperature and relative 
humidity relationship by using a model called Weather Research and Forecasting 
(WRF). They have taken in-situ observations at three different sites in order to relate 
variables. They have also conducted sensitivity experiments to improve the observed 
measurements. In this sensitivity experiment surface albedo, moisture content and 
five tuneable parameters viz. soil porosity, soil suction, saturated permeability and b 
parameter were perturbed for Noah Land Surface Model. Wang et al. (2020) worked  
on effects on glomalin traits in Changchun city. For this purpose, 500 km2 was 
selected in urban region and sampling was done in 281 random sites. To indicate the 
forest characteristics, 3 parameters were selected viz. plant diversity traits, tree size, 
and tree density, and 4 parameters were selected to indicate the soil properties viz. 
pH, bulk density, electrical conductivity, and temperature, and for indicating land use 
configuration, 4 characteristics were selected viz. road, green-space, building, and 
water. Association decoupling manifested that, in low-medium urbanization areas, 
soil properties explained 48–78% of inter-site variation. These all research indi-
cates the importance of soil surface temperature on soil properties mainly chemical 
properties which motivated and helped us to work on this scientific research. 

4 Conclusions 

The purpose of this study is to check whether land surface temperature actually 
affects the soil chemical properties or not. MLR and MNLR based models have been 
generated with best selected inputs using gamma test, although all the variables have 
shown inferior correlation among one another. In multiple linear regression based 
model, multiple correlation coefficient was accepted at 5% level of significance 
and it has given very less values of residual, whereas due to high variation in the 
dataset, results of linear model are found inferior in comparison to non-linear model, 
notwithstanding multiple linear regression based model has lesser value of RMSE in
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comparison to multiple non-linear regression based model. This study will help us 
to determine fertility and alkalinity status of the soil. Furthermore, residual sodium 
carbonate can also be determined by some advancement of research in the areas 
which are actually suffering from salinity hazard. A promising correlation between 
remote sensing based LST and multiple non-linear regression based LST, provides a 
base for further research to determine the soil chemical parameters of difficult places 
where soil sampling is difficult or onerous, although multiple non-linear regression 
based model have shown over estimation which could be reduced by increasing the 
training data length. With this study, more research can also be performed to check 
the effect of surface temperature and soil chemical properties on ground water quality 
in semi-arid regions. 
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Assessment of Rainfall (R), 
Evapotranspiration (ET), and Crop 
Coefficient (Kc) Using Satellite Data 

Susanta Das, Navneet Sharma, Puneet Sharma, and Nand Lal Kushwaha 

Abstract Earth-observing satellites could provide regular estimates of rainfall (R), 
evapotranspiration, and crop coefficient on a global scale. Through active and passive 
remote sensing methods, it is possible to measure rainfall from space, expanding the 
scope of space and time parameters for precipitation data at global level. There are 
several space organizations around the world, that predict microwave-based rainfall 
with different special resolutions from the cloud and also show a good correlation 
with the ground station. Satellite products like Climate Hazards Group InfraRed 
Precipitation with Stations (CHIRPS), Global Precipitation Measurement (GPM), 
Tropical Rainfall Measuring Mission (TRMM), and CMORPH—CPC Morphing 
Technique, etc. are available. Similarly, the evapotranspiration and crop coefficient 
was estimated by using the radiation and water balance method from different satellite 
images like MODIS, LANDSAT, Sentinel-2, etc. The most popular method, SEBAL 
is used to estimate ET and Kc, where NDVI plays an important role. From a case study 
review, it was observed that estimation of R, ET, and Kc from satellite images has a 
good correlation with ground-based analysis. From the overall study, it can conclude 
that estimation of satellite-based R, ET, and Kc can provide spatial information, and 
also it will enhance the real-time monitoring and scheduling of the irrigation. 
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1 Introduction 

The significance of precipitation for the hydrological cycle and the energy industry 
has been emphasised repeatedly (Faurès et al. 1995; Faridzad et al. 2018; Ebert et al.  
2007). More precisely, precise observation of the rainfall as a process is essential for 
hydrological cycle modelling and the local, regional, and even global forecasting of 
extreme weather events (Bharti and Singh 2015; Beck et al. 2017). However, insuf-
ficient coverage of survey stations limits our understanding of this crucial process 
(Teng et al. 2020; Tuo et al. 2016). Due to technological issues or political concerns, 
the number of weather stations over an unit area is relatively less or of low signif-
icance in many countries of the world (Chen et al. 2017; Musie et al. 2019). In 
addition, the confined data sharing system and other factors, such as brief obser-
vation histories or poor data standards, limit the accessibility of the data from the 
current stations, making it difficult to use the observed data in hydro-meteorological 
research (Rahaman et al. 2022). Fortunately, the release of satellite-based precipita-
tion databases has made it possible to complement gauge observations in data-limited 
regions such as desert, sparsely inhabited zones and alpine areas (Taylor et al. 2017; 
Mölg et al. 2014). Significant advancements in tropical and subtropical satellite 
precipitation estimation were accomplished with the actions of the Tropical Rain-
fall Measuring Mission (TRMM) satellite data (Sun et al. 2018). Since then, more 
highly-precise and extensive satellite precipitation datasets have been available. The 
continuation of TRMM is represented by TMPA (TRMM Multi-Satellite Precipi-
tation Analysis) and GPM (Global Precipitation Measurement) (Hou et al. 2014). 
Infrared remote sensing technology is mainly used by PERSIANN (Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks) 
and CHIRP (Climate Hazards Infrared Precipitation) (Funk et al. 2014). There are 
also multisource datasets, like CMORPH (Climate Prediction Center Morphing Tech-
nique) and GSMaP (Global Satellite Mapping of Precipitation), among many others 
(Kubota et al. 2007). 

The water and energy cycles frequently include land evapotranspiration (ET), 
which connects the surface to the atmosphere. For a better understanding of the 
interplay between hydrology and climate, accurate world-scale predictions of ET 
are essential. The FLUXNET project’s local scale ET observations are provided 
(Baldocchi et al. 2001). Intensive world coverage by specified observations is not 
feasible, and current research is being done to determine how representative unit-
scale in-situ data are for wider regions. In recent years, several alternative worldwide 
multiple years ET datasets are being produced to check this limitation. These datasets 
include estimates from satellites, land surface models that use forcing based on obser-
vations, re-analysis data results, projections based on empirical upscaling of detailed 
observations, and projections of the atmospheric water budget. The LandFlux-EVAL 
project (see http://www.iac.ethz.ch/url/research/LandFlux-EVAL) seeks to assess 
and contrast various ET datasets that are currently accessible. The project is a crucial 
part of the GEWEX LandFlux initiative, a programme of the GEWEX Radiation 
Panel that aims to provide a reliable and excellent worldwide ET dataset for climate

http://www.iac.ethz.ch/url/research/LandFlux-EVAL
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studies. It is necessary to be aware of the uncertainties in the available ET prod-
ucts for many applications, including the assessment of climate change projections 
(McCabe et al., 2016). The IPCC Fourth Assessment Report’s combined 11 atmo-
spheres, ocean, and land GCMs are also examined (AR4). The sensible and latent 
heat fluxes in a subset of twelve satellite-based, LSM and re-analysis datasets are 
the subject of a complementary analysis by Jimenez et al. (2011) for three years 
(1993–1995). 

The crop coefficient (Kc), which measures crop-specific water demand, is neces-
sary to accurately predict the amount of irrigation needed for various crops in any 
given location (Tyagi et al. 2000). Plant characteristics known as crop coefficients are 
used to forecast evapotranspiration (ET). Simply put, the simplest crop coefficient, 
Kc, is the difference between the ET measured for the crop under study and the ET 
measured for the well-calibrated reference crop under the identical circumstances 
(Allen et al. 2011). The FAO-56 technique, based on combined effect of reference 
evapotranspiration ET0 and crop coefficients, can be used to compute the crop coef-
ficient (Kc). The single crop coefficient and the dual crop coefficient are techniques 
used to calculate crop evapotranspiration from remotely sensed observations in form 
of datasets. The impacts of crop transpiration and soil evaporation are merged into 
a single Kc in the single crop coefficient (Kc single) (Kamble et al. 2013). The soil 
evaporation coefficient (Ke) and the basal crop coefficient (Kcb) make up the dual 
crop coefficient (Er-Raki et al. 2007). For the study of vegetation and crops, MODIS 
vegetation indices like the Normalized Difference Vegetation Index (NDVI) and the 
Enhanced Vegetation Index (EVI) data are frequently utilised (Sharma et al. 2016). 
The NDVI can be used to estimate vegetation density (Singhal and Goyal 2012). 

2 Descriptions of Different Models of Satellite-Based 
Rainfall Measurement 

2.1 The Tropical Rainfall Measuring Mission 

To better understand how rainfall is distributed and varies throughout the world as 
a component of the hydrological cycle in the contemporary climate system, TRMM 
was a satellite of research objective that was in action from years 1997–2015. TRMM 
is the source of important data on precipitation and the heat release it causes by 
covering the tropical and sub-tropical parts of the planet, which fuels the world’s 
atmospheric circulation that determines climatic and weather conditions. To improve 
our knowledge of the dynamics between water vapour, clouds, and rainfall essen-
tial to controlling Earth’s atmosphere, TRMM delivered significant precipitation 
information in cooperation with other satellites systems of NASA. 

Since its debut in 1997, TRMM has offered vital precipitation observations in 
our planet’s tropical and subtropical areas. The Precipitation Radar (PR) examined 
the rainfall column and offered fresh information on the structure and intensity of
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tropical storms. To determine the amount of water vapour, water from clouds, and 
precipitation intensity in the atmosphere, the TRMM Microwave Imager (TMI) anal-
ysed microwave radiation released by the Earth and its atmosphere. Numerous addi-
tional disciplines, including a wide range of social applications and tropical cyclone 
projections, numerical weather forecasting, and rainfall specific climatologies, have 
significantly benefited from TRMM precipitation measurements. 

After the spaceship used up all of its fuel, TRMM was formally terminated on 
April 15, 2015. On June 15, 2015, TRMM was deactivated and re-entered Earth’s 
atmosphere over the South Indian Ocean. TRMM delivered ground-breaking 3-D 
photographs of precipitation and storms for period of 17 observation-years despite 
being only intended to operate for three years. Additional microwave radiometer-
equipped precipitation measurement satellites, including the GPM Core Observatory, 
have been sparked by TRMM. 

3 Climate Data Record (CDR) 

The rainfall projection from Remote Sensing data observation applying Artificial 
Neural Networks-Climate Data Record (CDR) is a data set that mainly depends on 
infrared data, and it was transformed from a challenging PERSIANN method on 
GridSat-B1 infrared satellite data. The CDR was modified using the Global Precip-
itation Climatology Project (GPCP) monthly product version 2.2 (GPCPv2.2). The 
data set was created at a spatial resolution of 0.25° in the latitude band 60S–60N 
from 1983 to the recent past (Ashouri et al. 2015) and was first made public on June 
1, 2014. It is accessible on the Center for Hydrometeorology and Remote Sensing 
website at the University of California (https://chrsdata.eng.uci.edu/). 

4 CHIRPS  

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data 
set depends on previously applied strategies to “smart” projection methods and high 
resolution rainfall projections from long durations of observation, depend on infrared 
cold cloud duration (CCD) recordings. The data set was launched in the year 2015, 
and was formed at two spatial resolutions of 0.05° and 0.25° in the latitude band 
50S–50N from the year 1981 to till date (Funk et al. 2015). The information was 
obtained from the website of the Climate Hazards Center (https://data.chc.ucsb.edu/ 
products/CHIRPS-2.0/), University of California.

https://chrsdata.eng.uci.edu/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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5 CMORPH 

The CMORPH approach generates world rainfall studies at high time and space 
data in terms of resolutions by using precipitation estimates from microwave 
measurements made by low orbiter satellites. The NOAA file transfer protocol 
website (ftp:/ftp.cpc.ncep.noaa.gov/precip/CMORPHV1.0/) was used to download 
the dataset version used in this study (CMORPH IFLOODS V1.0 CRT), which was 
created at two spatial resolutions of 0.07° and 0.25° in the latitude band 60S-60N 
from 1998 to the end of the year 2019 (Xie et al. 1998). 

6 GPM  

The Integrated Multi-satellite Retrievals for GPM (IMERG) program of the GPM 
with objective to combine multiple types of satellite data, including microwave satel-
lite information and infrared satellite record, station gauge record, and others. The 
GPM was developed as a continuation and improvement of the TRMM mission. In 
March 2019, the most recent version (GPM IMERG Final Precipitation L3 V06) 
was made available. The coverage spans the months of June 2000 through August 
2020, with a latitude range of 90S to 90N and a spatial resolution of 0.10° (Huffman 
et al. 2019). NASA’s Data and Information Services Center (DISC) has the dataset 
available at https://disc.gsfc.nasa.gov/datasets/GPM3IMERGDF06. 

7 GSMaP  

The Japan Aerospace Exploration Agency created the GSMaP, a GPM algorithm 
(JAXA). The use of numerous attributes acquired from the TRMM precipitation 
radar (TRMM PR) and GPM Dual-Frequency Precipitation Radar Ku Band is the 
key component of the GSMaP algorithm (GPM DPR Ku). It should be mentioned 
that the GSMaP V6 Gauge version was used in this analysis rather than the most 
recent version of the dataset (GSMaP V7) because of its brief period (2017–present) 
(Kubota et al. 2020). This version, which was made at two spatial resolutions of 
0.10° and 0.25° in the latitude range 60S–60N from March 2000 to the present, 
was published in April 2016. The dataset was downloaded via the JAXA Earth 
Observation Research Center’s transfer protocol website (ftp:/hokusai.eorc.jaxa.jp).

https://disc.gsfc.nasa.gov/datasets/GPM3IMERGDF06
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8 TMPA 

The TMPA, is characterised by its intensive collection of high-quality microwave 
data and fill ins made up of microwave calibration infrared estimations. The dataset 
version used in this investigation (TMPA 3B42 daily V7) was published on May 
15, 2016, and it was produced by the DISC of NASA (Huffman et al. 2016) with 
a spatial resolution of 0.25°. The data source is the DISC of NASA (https://disc. 
gsfc.nasa.gov/datasets/TRMM3B42_Daily7/), and the coverage spans 1998 through 
December 30, 2019, with a latitude range of 50S to 50N. 

9 Descriptions of Different Models of Satellite-Based ET 
and Kc Measurement Models 

9.1 MODIS ET 

We synthesized the world yearly MOD16A3 (ET) parameters from the NASA 
Earth Observation System (EOS) program. The world level data informations were 
recorded by the Numerical Terradynamic Simulation Group (NTSG) at University of 
Montana (UMT) (available from http://www.ntsg.umt.edu/). The MOD16A3 product 
was obtained using the MOD17 program (Running et al. 2004; Zhao et al. 2005) 
and improvised MOD16 program (Mu et al. 2007, 2011, 2013), respectively. These 
informations were open for use from 2000 to till date at a spatial resolution of 1 km. 
The MOD17 algorithm is defined on basis of Monteith’s radiation use efficiency 
procedure (1972). The program considers that vegetation productivity under well 
irrigated and soil health nutrition conditions is directly proportional to the amount 
of Absorbed Photosynthetically Active Radiation (APAR). A conversion efficiency 
parameter (ε) is applied to transform APAR to the projected productivity. The param-
eter ε varies for types of vegetations and climate conditions. To quantify MOD17 also 
projects daily leaf and fine root maintenance respiration, yearly growth respiration, 
and yearly maintenance respiration of live cells in woody tissue. The MOD17 oper-
ator procedure gives further description of the program and is open source at http:// 
www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf. The MODIS NPP 
dataset has been validated and used in many studies (Turner et al. 2006; Zhao et al. 
2005, 2006). The MOD 16 program is dependent on Mu et al.’s improvised ET 
program (2011), which based on Penman–Monteith equation. The ET comprises 
evaporation from wet and moist soil, rainwater intercepted by the canopy before 
coming into the ground, and transpiration from stomata on plant leaves and stems. 
The remotly sensed information from MODIS allocates input for surface biophysical 
variables affecting ET, including albedo, biome type and leaf area index (LAI). The 
detailed program of MOD16 is available at http://www.ntsg.umt.edu/project/modis/ 
mod16.php. This global ET product was validated by Mu et al. (2011) using 46 eddy 
flux towers dataset and found that the dataset can be used to estimate actual ET with

https://disc.gsfc.nasa.gov/datasets/TRMM3B42_Daily7/
https://disc.gsfc.nasa.gov/datasets/TRMM3B42_Daily7/
http://www.ntsg.umt.edu/
http://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf
http://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf
http://www.ntsg.umt.edu/project/modis/mod16.php
http://www.ntsg.umt.edu/project/modis/mod16.php
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satisfactory accuracy in Asia. Previous studies in India used MOD16 ET to forecast 
actual ET (e.g. Shah and Mishra 2016). Due to the lack of ground observational 
recordings, the authors couldn’t endorse these products. 

9.2 SEBAL Based ET 

The Surface Energy Balance Algorithm for Land (SEBAL) is an image processing 
algorithm that includes 25 computing levels to determine the actual (ETact) and 
potential (ETpot) evapotranspiration rates as well as other energy exchanges between 
the ground surface and surroundings. The primary input data for SEBAL are spectral 
radiance measurements in the spectrum’s visible, near-infrared, and thermal infrared 
regions (Figs. 1 and 2). 

For each pixel, SEBAL calculates a comprehensive radiation and energy balance 
and the resistances for momentum, heat, and water vapour transport. The resistances

Fig. 1 Flow chart of the principal steps in SEBAL to derive instantaneous 24-h ETact and ETpot 
values (http://www.waterwatch.nl/tools0/sebal/sebal-a-scientific-description.html) 

Fig. 2 Surface energy 
balance (Jaber and Pradhan 
2016) 

http://www.waterwatch.nl/tools0/sebal/sebal-a-scientific-description.html
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depend on state variables that change daily, including soil water potential (and conse-
quently soil moisture), wind speed, and air temperature. Along with the satellite data, 
the SEBAL model requires daily weather parameters like wind speed, humidity, solar 
radiation, air temperature etc. 

10 Kc Using Remote Sensing 

10.1 Crop Coefficient (Kc) Estimation Using the Traditional 
Method 

Kc is a parameter that displays the ratio of the (ETc) and the (ETo). A variety of 
factors influences it A variety of factors, including crop type, crop stage, and crop 
management influences it. Consequently, using the following equation, the Kc can 
be determined (as shown in following Eq. 1). 

Kc = ET  c 
ET  0 

(1) 

10.2 WDI and ETc Estimation 

ETc was calculated using the following relationship between ETc, ETa, and the Water 
Deficit Index (WDI), which takes into account soil moisture content and serves as a 
gauge for the impact of water scarcity and crop stress (as shown in following Eq. 2). 

WDI  = 1 − ET  a 
ET  c 

(2) 

where ETa is the actual crop evapotranspiration (mm/day), ETc is the crop 
evapotranspiration (mm/day), and WDI is the water deficit index (dimensionless). 

Remote sensing is a promising method that provides important surface data and 
depicts the actual state of the many surface features due to heterogeneity and varying 
environmental conditions. Using remote sensing satellite data, ETc was calculated 
using above mentioned equations. and presented as a map. The triangle approach, 
which Jiang and Islam first developed in 1999 and 2001 (Jiang and Islam 1999, 2001) 
and later revised, was used to estimate ETa.
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11 Relationship Between NDVI and Kc 

Red and near-infrared bands from remote sensing data were used to calculate NDVI. 
It is based on the plant’s reflectance in the red (R) and near-infrared (NIR) regions of 
the electromagnetic spectrum. This index of vegetation is provided by the following 
Eq. 3. 

NDV  I  = N I  R  − R 
N I  R  + R (3) 

where R is the reflectance in the red portion of the spectrum, and NIR is the reflectance 
in the near infrared portion. The scientists concurred that there is a strong correlation 
between the NDVI values and vegetation characteristics like net primary produc-
tivity, leaf area index, and gross primary productivity (Gamon et al. 1995). We must 
determine the Kc and NDVI values from the same pixel in order to simulate the 
Kc-NDVI relationship. 

To obtain the intended relationship in the form (Kc NDVI = a × NDVI ± b), 
generated values are to be employed in a linear regression model. Another empirical 
approach used normalized NDVI (NDVIn) to estimate basal crop coefficient and 
actual crop evapotranspiration from the satellite data (Hunsaker et al. 2005). 

Kcb = min[0.15; 0.176 + 1.325NDV  I  n  − 1.466NDV  I  2 + 1.146NDV  I  n3 (4) 

where NDVIn is normalized NDVI as calculated in Eq. 3. 
As defined in FAO56, when potential effects of water stress on ETc are considered, 

actual ETc (ETc act) is computed as following Eq. 5. 

ETc act  = (kskcb + ks)ET0 (5) 

where Kcb is a crop transpiration coefficient (Tc), and Ke is a soil coefficient 
Ks is the water stress coefficient, ET0 is the grass reference, and evaporation, 
evapotranspiration. 

12 Case Study: Ludhina District of Punjab, India 

The case study region is the Ludhiana district of Punjab, which is divided into four 
subdistricts: Jagraon, Samrala, Khanna, and Ludhiana. The study region is mainly 
dominated by the agricultural land, and followed by built-up and range land (Fig. 3). 
The land use land cover (LULC) map with major classes like water, forest, agriculture, 
built-up, base ground, and rangeland (dominated by grasses) were generated for year 
2021 from sentinel 2.
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Fig. 3 Land use land cover of Ludhiana district of 2021 

In the present study, spatially distribution of rainfall, ET, Kc were extracted from 
remote sensing data. For the study periods, the daily gridded rainfall data from 
CHIRPS with a high spatial resolution (0.25° × 0.25°) from 2000 to 2021 was 
acquired. This daily gridded values were further used in ArcGIS domain to calculated 
the mean and total annual rainfall. The highest mean annual rainfall was recorded 
in Samrala (832.87 mm), and the lowest was recorded in Jagraon (589.09 mm) 
(Fig. 4). A rainfall pattern was constructed using the point mean annual rainfall values 
that were extracted from the spatial map. According to the study, the sub-districts 
of Ludhiana and Samrala received the highest rainfall in 2012, while Khanna and 
Jagraon received the highest amounts in 2011 and 2010, respectively (Fig. 5).

Similar to rainfall, spatial form (0.25°× 0.25°) of evapotranspiration was acquired 
from Global annual MOD16A3 product from the NASA Earth Observation System 
(EOS) program (http://ntsg.umt.edu/project/mod16). The MOD16 ET datasets were 
estimated using improved ET algorithm discussed in Sect. 9.1. In the present study, 
mean MOD16 ET for the month of July (from the year 2000 to 2021), were acquired. 
The study shows that, the highest and lowest ET values in Jagraon and Ludhiana as 
347.55, and 32.93 mm, respectively (Fig. 6). Figure 7 shows the actual evapotranspi-
ration (AET) of Ludhiana district for the month of July 2021, where maximum area 
of the district having higher AET (>175 mm) except the city. As kharif maize is often 
planted in the study region and enters its development stage in July, when there is 
the greatest water intake, due to this region July month was chosen for AET values. 
Evaporation pattern were calculated from by extracting the pixel (point) values from

http://ntsg.umt.edu/project/mod16
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Fig. 4 Mean annual from 2000 to 2021 rainfall of Ludhiana district 
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Fig. 5 Mean annual from 2000 to 2021 rainfall of sub-districts of Ludhiana district
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Fig. 6 Mean annual of July from 2000 to 2021 MODIS evapotranspiration of Ludhiana district

the spatial distribution map, and it was observed that the year 2006 was having highest 
ET values for all sub-districts (Fig. 8). 

The crop coefficient (Kc) values for kharif maize (July 2021) were estimated from 
sentinel 2 by using NDVI approach (discussed in Sect. 11). Kc values were ranging 
from 0.31 to 1.06 in the July 2021 for maize (Fig. 9).

13 Conclusions 

The assessment of rainfall, evapotranspiration, and crop coefficient satellite products 
is essential for understanding the effects of climate change on agriculture. These 
products provide information on the current and forecasted soil moisture, precipita-
tion levels and agriculture water demands. This data can then be used to assess the 
impact of climate change on agricultural production and to guide decisions about crop 
selection, irrigation, and other agricultural practices. By understanding the effects 
of climate change on agriculture we can develop more sustainable agricultural prac-
tices and ensure the security of our food supply. Satellite-based products can help 
to improve irrigation and agricultural water management in a variety of ways of 
Ludhiana district of Punjab. They can provide detailed information on soil moisture, 
evapotranspiration, and crop health, which allow farmers to make more informed 
decisions about when and how much to irrigate their crops. They can also be used



Assessment of Rainfall (R), Evapotranspiration (ET), and Crop … 377

Fig. 7 Actual evapotranspiration for July 2021 of Ludhiana district 
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Fig. 8 Mean annual of from 2000 to 2021 Evapotranspiration of sub-districts of Ludhiana district
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Fig. 9 Crop coefficient (Kc) of Ludhiana district for maize crop

to monitor the progress of irrigation projects and ensure that water is being used 
efficiently. In addition, satellite-based products can be used to detect areas of water 
stress and to identify potential problems with existing irrigation systems, such as 
areas of low water pressure or inadequate drainage. Finally, satellite-based prod-
ucts can be used to monitor the quality of irrigation water and to detect potential 
pollutants, which can help to ensure that water resources are being used safely. 
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Study on Development of Design Rainfall 
for Stormwater Management System 
in an Urban Catchment 
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Abstract Urban flooding, increase in storm runoff is caused due to development of 
urban infrastructure without paying much attention to changing rainfall patterns in 
an urban area. Design rainfall is one of the essential aspects while designing urban 
stormwater infrastructure. Many of the methods have been developed to prepare 
design rainfall from the shorter duration rainfall series. Annual maxima with extreme 
value distribution were very commonly used. This paper covers a study conducted 
in a pilot area i.e. Raipur City in India using 2D stormwater modelling for various 
design rainfall scenarios. Thirty-six years of shorter duration (15 min) rainfall has 
been collected to design the rainfall scenarios. Frequency analysis is performed 
using best fit distribution i.e. Gumbels Extreme Value distribution for the different 
return periods. For development of Intensity–Duration–Frequency (IDF) curves GEV 
distribution and Central Public Health and Environmental Engineering Organization 
(CPHEEO) methods were used. To create IDF curves shorter duration observed 
rainfall data 15, 30, 45 min, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 24 h were developed. 
Design storm intensity derived from IDF curves for different return periods estimates 
discharge and runoff to simulate the Storm water management model (SWMM). 
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1 Introduction 

The current hydraulic systems (urban wastewater drains) in developing nations like 
India are insufficient to quickly drain stormwater under harsh climatic conditions. It 
is caused not only by its capacity but also by the selection of design rainfall. This 
issue might be linked to changes in the area of urban growth as well as changes in the 
climate (Shrestha et al. 2014). Storm drains serve a vital function in carrying rain-
water from metropolitan areas to an outlet point, which is usually a water body such as 
a river or lake. Since the drainage system in the nation is old and degraded, it lacks the 
ability to convey excess runoff caused by significant flooding events, and hence flash 
floods occur almost exclusively in short-duration, high-intensity rainstorm events 
(Schmitt et al. 2004; Sharma and Singh 2017). For water resource planning and 
management, it is necessary to estimate changes in catchment surface runoff due to 
rapid urbanization. Climate change-related rainfall uncertainty is difficult to connect 
to current changing surface runoff conditions (Sinha et al. 2019a). As a result of 
the short period of severe rainfall, significant flood peak flows from altered urban 
catchments are occurring. Short-duration rainfalls are required for runoff calculation, 
especially in metropolitan areas (Suriya and Mudgal 2012). However, in developing 
nations like India, short-term rainfall data is limited, and the data that is acces-
sible is largely for daily rainfall data. In such instances, estimating design rainfall 
becomes an estimate, resulting in frequent drainage network failures and resultant 
floods (Ahmed et al. 2012). The hydraulic structure frequency analysis was performed 
to determine the design rainfall value. The frequency analysis was performed using 
the Intensity–Duration–Frequency (IDF) curve to graphically represent the projected 
rainfall intensities. The fact that IDFs built from historical climatic scenarios cannot 
be applicable for future climatic situations unless they are updated to reflect future 
climate trends has been acknowledged (Sinha et al. 2021, 2022). Before beginning 
any system performance study, it is necessary to assess the climate-induced change in 
the pattern, severity, and frequency of extreme rainfall events. Rainfall-Runoff simu-
lation software is available in a variety of formats. The first computerized models of 
urban storm drainage were created in the late 1960s, and a variety of models have 
been used since then (Mitchell et al. 1966; Pohlert 2017; Zoppou 2001). Design 
models, flow prediction models, and planning models are the three types of models 
(Fewtrell et al.  2008; Rangari et al. 2015). Graphical User Interface (GUI) tools 
like SWMM, HEC-HMS, HEC-RAS, MIKE FLOOD, and others became available. 
Understanding the characteristics of rainfall and runoff in the urban area, as well 
as the consequences of heavy rainfall on the runoff of urban catchments and the 
many socio-economic elements of rainfall-runoff, is the major goal of rainfall-runoff 
modeling (Guhathakurta et al. 2011; Halefom et al. 2017). 

In this study, the Gumbels extreme value (GEV) distribution and the CPHEEO 
manual on Rainfall Analysis have been used to prepare Intensity–Duration– 
Frequency curves of Raipur city. To select the optimal design storm events a rainfall-
runoff modeling was done using stormwater management model of the Environ-
mental Protection Agency (EPA) (SWMM) (Ahmed et al. 2012; Shrestha et al. 2017).
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The SWMM is a dynamic rainfall-runoff simulation model based on conservation 
principles of momentum, mass, and energy. This model is used to build, analyze, 
and plan drainage systems, as well as to simulate the quality and amount of runoff 
in metropolitan regions (Rossman and Huber 2016). 

2 Study Area and Data Used 

The area chosen for the present study is a small region of Raipur city, the capital 
of Chhattisgarh. The geographic location of the study region is 21° 17' N Latitude, 
81° 77' E Longitude. The location map is shown in Fig. 1. The region of research 
corresponds to the metropolitan catchment basin that drains the southwest portion of 
the city of Raipur. It enters the Kharun River from the Buddha Talab region, which 
implies’ talab’ in Hindi. The urban basin has a total area of 13.58 km2 with an area 
of about 3.30 km north–south and an area of about 5.70 km east–west (about 13,58 
km2). Its highest height is roughly 254.9 m (m) high, the minimum height is 204.5 m 
above sea level (Sinha et al. 2016). The Kharun River is a major tributary of the 
Seonath River, which begins in the hamlet of Petechua in the Balod block of Durg 
district and flows for 164 kms before joining the Seonath River. The Kharun Basin 
has a dry sub-humid climate (Sinha and Rajput 2020). The region is flat and has 
a slight slope to the west-southwest (less than 1%). The average annual rainfall is 
1200 mm from 1980–2016 and the mean temperature is 46.4 °C. Raipur is one of 
Chhattisgarh’s most rapidly expanding cities.

In the research area, the stormwater that generates runoff follows the open drains. 
In Raipur, there is a lot of building and development going on. As a result, imper-
meable land has increased rapidly in recent years. As a result, more and more runoff 
enter open drains, causing overflow in many areas, and the hydraulic structure is no 
longer suitable to drain rainwater due to changing rainfall patterns. It is caused not 
only by its capacity but also by the choice of design rainfall. As a result, there is a 
need to study the optimal storm event selection for stormwater management. In this 
study 1980–2016 (37 years) of 17 continuous duration i.e. 15, 30, 45, 60, 90 min, 1, 
2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 24 h of rainfall data are used to prepare IDF curve are 
used and another dataset should be shown in Table 1.

3 Methodology 

This paper follows methodology in three parts: 

I. To check the fitness of rainfall data using the various distribution. 
II. Developing Intensity–duration–frequency (IDF) curves for the available data 

best-fitted distribution and CPHEEO manual on rainfall analysis stormwater 
water management. 

III. Selection of optimal storm events by using rain rainfall-runoff model.
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Fig.1 Location map of the study area (modified after Sinha et al. (2019b))

Simulation of rainfall-runoff model of the chosen study area is carried out by 
well-known software stormwater management model (SWMM). The model should 
be set up by digital elevation model (DEM) of 12.5 m resolution, topographical map, 
and land use—land cover map and drainage area network details collected from 
Raipur Municipal Cooperation (RMC). The catchment area should be divided into 
sub-catchment using the ArcGIS tool. The time of concentration should be found out 
by rainfall–runoff hydrograph and design rainfall intensity are obtained from IDF 
curves.
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Table 1 Data used in this study 

SNo Data Use Source 

1 Rainfall 
(1980–2016) 

15 min shorter rainfall 
database used for 
preparing IDF curves 

Indian Meteorological Department 
(IMD) 

2 Digital Elevation 
Model 

12.5 m resolution data 
along with field DGPS 
survey used for model 
preparation 

ALOS-PALSAR 
(asf.alaska.edu/#/?dataset=SEASAT) 

3 Drainage network Point-line-vector data 
representing 
hydrological condition 
of the area 

Raipur Municipal Corporation 

4 Runoff coefficient 
and Hortons’s 
parameter 

Used in Rainfall-Runoff 
Model 

From literature survey and manual of 
PCSWMM

4 Check the Fitness of Rainfall Data with Various 
Distribution 

For this purpose, we have applied Goodness–of–fit test on various distributions. The 
goodness-of-fit test is used to test if sample data fits a distribution from a certain popu-
lation, goodness-of-fit of a probability distribution can be tested by comparing the 
theoretical and sample values of the relative frequency or the cumulative frequency 
function. In this study three testes were applied Chi-Square, Kolmogorov–Smirnov, 
and Anderson–darling test to check the test fitness of all the distribution, Gumbel 
distribution was found the most suitable from all. All test is non-parametric test that 
is used to find out how the observed value of a given rainfall is significantly different 
from the expected value. The null and the alternative hypotheses are: H0 is the data 
follow the Gumbel distribution and HA is vice versa. The hypothesis regarding the 
distributional form is rejected at the chosen significance level (α) if the test statistic, 
is greater than the critical value obtained from a table. The fixed values of α (0.2, 
0.1, and 0.05) are used to evaluate the H0 at various significance levels. 

5 Preparation of Intensity–Duration–Frequency (IDF) 
Curves 

For this purpose, we have taken the annual maximum daily data from 37 years (1980– 
2016) 15-min. rainfall record collected from the Indian Meteorological Department 
(IMD). For the preparation of Intensity–Duration–Frequency (IDF) curves Gumbel 
distribution and CPHEEO Manual method are used. Gumbel distribution is provided
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a better fit than the other distribution based on the goodness of fit test. The Intensity– 
Duration–Frequency (IDF) curves have been generated for 2, 5, 10, 25, 50, 100 yr 
return period, and the time period is divided into three part one is 1980–2016 that is P1, 
second is 1980–1993 that is P2 and third one is 1994–2016 that is P3 for considering 
non-stationarity from change point (Sinha et al. 2021, 2022). From these IDF curves 
we can derive the design rainfall intensity for all return periods mentioned above. 

6 Simulation Rainfall-Runoff Model 

The SWMM model is developed for the study area shown in Figs. 2 and 3. Figure 2 
shows pre-development-scenario model of the year 1965 in which total area divided 
into 3 sub-catchment and Fig. 3 shows post-development-scenario model of the 
year 2018 in which the total area is divided into 51-subcatchment by considering 
topography maps, sewer lines, and digital elevation models (DEMs). Area, slope, 
imperviousness, manning’s coefficient, the infiltration rate is provided as an input 
in the SWMM model to define runoff. IDF data used in rain gauge layer to derive 
the design intensity of rainfall for different return periods and simulate the SWMM 
model for different storm duration and plot Rainfall-Runoff hydrograph to found out 
the time of concentration and runoff condition. 

Critical storm or design storm period are essential component in storm water 
management. development of design storm event by using IDF curve. From the 
simulation of storm water management model shown in Fig. 2 derived rainfall— 
runoff plot. By using this plot, we can find out time of concentration using this 
formula: 

tp = 0.6 ∗ tc

where, tp = Lag time (min); tc = Time of concentration (min). 

7 Result and Discussion 

K-S test, chi-square, and Anderson darling goodness of fit test are used to determine 
the data’s fitness for various distribution at the significance level of 0.20, 0.10, and 
0.05. The result shows that the Gumbel distribution is best fit for the rainfall data than 
the other distribution. But some of the data are not fit. For example: K-S test has failed 
the 15 min rainfall data at 0.2 significance level and Chi-Square test and Anderson 
darling tests were failed at 0.20, 0.10 and 0.05 significance level. The 30 min rainfall 
data failed to fit in Gumbel as Chi Square test for 0.20 and 0.10 significance and 
Anderson darling test for 0.20 significance level. The 12 h rainfall is also not fit the 
Chi Square at 0.20 significance level. As a result, the fitness of 15, 30 min, and 12
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Fig. 2 Pre and Post development-scenario Model

h is insignificant for Gumbel distribution frequency analysis, rest all durations were 
fitted in GEV.  

The Gumbel distribution result from the goodness of fit test shows the 
projected intensities of annual maximum precipitation for 15, 30, 45 min, 1, 1.5, 
2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, and 24 h duration for 2, 5, 10, 25, 50, and 100-
year return periods. Figure 3 shows that the higher the return period, the greater the 
intensity of rainfall, which gradually decreases as the duration of the return period 
grows. Hence, a very precise records of shorter duration rainfall events (such as 1 h, 
30, 15 min, and so on) is necessary in order to monitor the expected anomaly of 
high-intensity rainfall at the appropriate return time.

Figure 4 shows the IDF curves for the time series P2 and P3 by Gumbels method 
and CPHEEO manual method. The range of projected intensity for time series P2 
is 45 to 96 mm/hr in Gumbel distribution method and 97–107 mm/hr in CPHEEO 
manual method for 2, 5, 10, 25, 50 and 100 years return period. And The range 
of projected intensity for time series P3 is 51–212 mm/hr in Gumbel distribution 
method and 91–107 mm/hr in CPHEEO manual method for 2, 5, 10, 25, 50 and 
100 years return period. Which indicate that the Gumbel distribution method shows 
higher intensity in time series P3 as compared to P2 and CPHHEO method shows
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Fig. 3 IDF curves of Raipur city derived using Gumbel distribution and CPHEEO manual method 
for time series P1 (1980–2016): (Data-base:1980–2016:15 min storm interval)

slightly equal intensity of both time series P2 and P3. Hence from Figs. 3 and 4 
clearly seen that the IDF curve required to update with new dataset at particular time 
interval. 

Fig. 4 IDF curves of Raipur city derived using Gumbel and CPHEEO for time series P2 (1980– 
1993) and P3 (1994–2016)
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Figure 5 shows change in runoff in pre and post development scenarios for 10 year 
and 50-year return period. In pre-development scenario the runoff value is lesser than 
the post development scenarios i.e. Runoff value in pre-development scenario is 1.62 
m3/sec and in post development scenario is 45 m3/sec for 10-year return period and 
runoff value in pre-development scenario is 1.23 m3/sec and in post development 
scenario is 49 m3/sec for 50-year return period. That shows the peak is higher after the 
urbanization which places new demands and challenges in storm water management. 
After the simulation of rainfall—runoff model with various return period junction 
j45, j44. j43, j30 are flooded node shown in below Fig. 7. And the flood inundation 
map shown in Fig. 6 for 10-year return period. 
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Fig. 5 Change in runoff in pre and post development scenario 

Fig. 6 Flood inundation map of the study area indicating flooding area-duration-depth
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Junction 45 Junction 43 

Junction 44                                                                    Junction 30 

Fig. 7 Flooded node (Junction) Output from design rainfall derived from 10 year return period 
IDF 

8 Conclusion 

In the present study a storm water drainage network for a pilot area of Raipur city 
has been analyzed. In this study for the preparation of IDF curves frequency analysis 
should be done. The time period should be divided into P1 (1980–2016), P2 (1980– 
1993), and P3 (1994–2016) for making IDF Curves. IDF curves derived by two 
methods give large variation in the estimation of rainfall for various durations. The 
first method was Gumbel and the second one is CPHEEO manual method. CPHEEO 
method gives closer results when compared to actual intensities but Gumbel should 
show the large variation in intensities. CPHEEO method shows smooth curves which 
means there is a small variation in rainfall intensities with different return periods 
for P1, P2, and P3 time series, but the Gumbel method shows a higher variation 
in intensity. The P3 time series Gumbel method shows large variation in intensities 
as compared to P1 and P2 time series with different return periods. Therefore, it 
is clear that the IDF curve needs to be updated with new datasets at specific time 
intervals. For the selection of design storm period it is necessary to determine the 
time of concentration. We can determine the time of concentration based on the 
simulation results of different design storms using the SWMM model. This time 
of concentration will aid in the selection of design storm durations, which include 
2, 5, 10, 50 year return periods with 1 and 3 h durations in pre and post duration.
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This research demonstrates the design storm value, which will be helpful hydraulic 
structure design and to identify the flood prone area and reduce the risk of flooding. 
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Evaluation of Effective Criteria 
on Determination of Capable Areas 
to Construction of Underground Dam 
in Shahrekord Watershed, Iran 

Sayed Naeim Emami, Saleh Yousefi , and Mohammad Nekoeimehr 

Abstract In this study, in order to help in water supply, the effective criteria on the 
locating of the construction underground dam in Shahrekord watershed is investi-
gated in three steps. In the first step of the removing criteria (slope, geology and land 
use), zero and one values were labeled to the suitable and unsuitable areas respec-
tively using Boolean logic and suitable areas for the underground dam is determined. 
In the second step, the axes that do not stop the Qanat furnace and are suitable from 
the aspect of length and surface of the reservoir were selected, which ultimately 
identified 15 axes. In the third step, the proposed locations were prioritized using 
the analytic hierarchy process. For this purpose, four criteria including water status, 
reservoir, dam axis and socio-economic factors were used. Therefore, the indices 
with high suitability are in accordance with more suitable axes for the construction 
of underground dams in the studied area. Five scenarios were considered for the 
prioritization. The results of this study showed that the best axes for the construction 
of an underground dam are located in the alluvial river bed with high subsurface flow, 
areas with large capacity of the reservoir or high runoff volume and also in areas 
with high permeability and low slope. The proposed method in this study is able 
to accurately determine suitable area for construction of underground dams through 
precise and detailed studies and considering factors affecting underground dams. 

Keywords Criteria · Susceptible area · Underground dam ·Multi-criteria decision 
making
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1 Introduction 

By suppling ~36% of drinking water and ~42% of agricultural water, groundwater is 
a key freshwater resource globally (Wang et al. 2022). Iran’s water crisis is entering a 
new paradigm where its impacts are becoming visible in the daily lives of millions of 
people (Kadam et al. 2012; Yousefian et al. 2022). The average annual precipitation 
in Iran is less than one third of the world average annual rainfall (Panda et al. 2007). 
According to the distribution of time and location of rainfall and runoff in the country 
and the lack of adequate moisture and permanent surface flows, the main sources of 
water supply are aquifers (Kharazi et al. 2019). The increasing importance of water 
supply causes that use of groundwater has been a great importance in comparison 
to surface water as a sustainable source because these resources are lower subject 
to drought and dehydration than other sources (Panda et al. 2007; Rahmati et al. 
2016). In order to use groundwater resources and availability of water in all seasons, 
the underground dam is an appropriate solution in some specific areas (Yazdandoost 
2016). An underground dam is a designed structure that obstructs and control flow of 
groundwater and stores water below the ground surface (Sehat et al. 2013). A subsur-
face dam is constructed below ground level and arrests the flow in a natural aquifer 
whereas sand-storage dam impounds water in sediments caused to accumulate by 
the dam itself (Talebi et al. 2019). The most important problem in the development 
and establishment of underground dams is the complexity of determining the appro-
priate areas for the construction of the dam. These problems are due to many criteria 
and factors including physical and socio-economic criteria that they are effective in 
locating (Chezgi et al. 2016). As a rule, underground water resources are affected 
by changes in climatic and hydrological condition (Naghibi and Pourghasemi 2015). 
Despite the indiscriminate extraction of underground water resources, they still play 
a vital role in water supply. Currently, about 33% of the world’s people suffer from 
water shortage (Mehrabi et al. 2013). 

Therefore, the development of a decision support system is essential in order to 
determine the criteria and identify the appropriate sites for the construction of the 
underground dams (Talebi et al. 2019). Sub-surface dams are obstacles to block sub-
surface water flow and these construction cause water to be stored in local aquifers 
or transferred to adjacent aquifers (Chezgi et al. 2016; Ebrahimi et al. 2021). The 
underground dams, as barriers, control the underlying water flow in the alluvial basin. 
These barriers can be physical or hydraulic. Hydraulic barriers are usually established 
adjacent to saltwater aquifers near the sea to protect freshwater aquifers (Sehat et al. 
2013; Chezgi et al. 2016). The general difference between the underground and 
surface dams is that surface barriers are constructed obstacles in the rivers and theirs 
purpose is storing upstream surface water and collecting them in an open reservoir, 
while the underground dam is designed to store water at the lower levels of the ground 
and in the form of obstacles, it performs the collection of water and diversion of it to 
arbitrary points (Chezgi et al. 2016; Kharazi et al. 2019). This research has organized 
for determining and prioritizing factors affecting the location of underground dams
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construction using remote sensing techniques and preparing a multivariable decision-
making system (DSS) in the Shahrekord Watershed. 

2 Materials and Methods 

This research consists of three stages: 

(a) Identification and selection of locations with acceptable conditions for the 
construction of an underground dam: For this purpose, the data extracted from 
the basic maps, findings in this field and also expert opinions were used. Suitable 
areas include the alluvial bed of rivers that have slopes of up to 6% and there are 
no agricultural, industrial, residential or aqueduct furnaces there. In addition to 
the above conditions, these alluvial beds should not conform to linear structures 
such as faults. In this research, Boolean logic was used to remove inappropriate 
points. 

(b) Identification of suitable straits in these areas: After preparing the base maps of 
geology, slope and land use using Boolean logic, the areas with a value of 1 are 
determined except for the areas prone to underground dams. At this stage, the 
remaining axes should be evaluated from three aspects. In addition to having 
the smallest width for a low structural workload, the desired axis in each area 
must also have a suitable tank volume. 

(c) Evaluating the points relative to each other and prioritizing them for the construc-
tion of the underground dam: After specifying the axes in the second stage of 
locating, in this stage, using the MADM method and based on the decision-
making process, suitable points for the construction of the underground dam 
are prioritized. 

2.1 Study Area 

Shahrekord watershed is located in north east of Chaharmahal va Bakhtiari province 
and in geographical area of Shahr-e-kord city (Yousefi et al. 2020). Also this 
watershed is located between 50°20'42.2'' to 51°10'19.76'' eastern longitude and 
32°07'31.07'' to 32°33'13.28'' northern latitude. The location of the study area is illus-
trated in Fig. 1. The cities of Shahr-e-kord, Hafshchan, Nafech, Qian, Soureshjan, 
Harooni, Taqanak and Farokh-shahr are located in this area and have a population 
of 248,219 people. The area is 1454.8 km2. The average annual rainfall is 330 mm 
and 442 mm at Shahr-e-kord and Morghmalek Stations, respectively. This basin is 
located in Sanandaj-Sirjan zone based on structural divisions and the atmospheric 
rainfall in the basin is mainly influenced by low-pressure Mediterranean systems 
(Emami et al. 2020).
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Fig. 1 Geographical location of the study area in Shahrekord, Chaharmahal va Bakhtiari province 

2.2 Identification and Selection of Appropriate Areas 
for the Construction of Underground Dams 

In order to accelerate the decision-making process, as well as avoiding the accumula-
tion of excessive information for a surveyed problem, it is first necessary to eliminate 
inappropriate points by considering a number of key criteria and factors (Mallick et al. 
2018). Suitable areas are including alluvial beds in rivers with maximum slopes 6% 
and in this area there are no agricultural, industrial, residential or Qanat furnace 
(Chezgi et al. 2016). In addition to the above mentioned conditions, these alluvial 
beds should not be in line with linear structures such as faults. The proper slope of 
the waterway should not be more than 5% to make it possible to create a suitable 
reservoir for subsurface water by constructing an underground dam (Mohammady 
et al. 2019; Ebrahimi et al. 2021). In this research, Boolean logic was used to remove 
inappropriate points. Boolean logic is derived from the name of the mathematician
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(Mahdavi et al. 2017), in which weighing the units in each layer of information is 
based on the score of zero and one (Pourghasemi et al. 2012). The Boolean model 
has two operator of AND Boolean and OR Boolean, which based on theories, set of 
AND operator, the subscriber and operator of OR, extracts the set of communities 
(Mahdavi et al. 2017; Ebrahimi et al. 2021). According to the purpose of the research, 
AND operator was used to select suitable areas for all parameters. Geological, slopes 
and land-use maps were prepared using Bolin logic and were given value 1 to the 
areas prone to constructing a dam and value 0 to the restricted areas for construction. 

2.3 Determination of Initial Proper Area for Construction 
Underground Dam 

The desired axis in each range, in addition to having the lowest width for a small 
construction workload, should also have the appropriate reservoir volume. The pres-
ence of water resources in these areas should be investigated (Yazdandoost 2016). 
After determining these areas, using field observations, straits in these areas were 
investigated. If the length of the axis be less, the volume of structural work will reduce 
and implementation operation progresses rapidly (Ebrahimi et al. 2021). The most 
suitable axes are the ones that, in addition to the short length, have a large surface 
expansion of the reservoir at the upper hand axis. Qanats must also be considered 
not to be destroyed (Rahmati et al. 2019). An area with a distance of 100 m from the 
Qanats axis was defined, because the axis of underground barrier should not cut the 
Qanat furnace. The areas inside this area are unsuitable for creating an underground 
dam. Regarding these factors and field observations in these axes, 15 proper axes 
were identified. 

2.4 Prioritization of Axes for the Construction 
of Underground Dams 

After determining the axes in the second step of locating suitable site, at this stage, 
using the MADM method and based on the decision flow, the appropriate points for 
the construction of the underground dam are prioritized (Sehat et al. 2013; Talebi et al. 
2019). The overall structure of decision-making criteria is presented in four levels. 
Level one in a hierarchy shows the target and the second level shows the criteria 
for achieving the desired target. At the third level (if this level exists), described the 
basic sub-criteria that effect on selection and finally, at the last level is mentioned 
options or solutions (Zucca et al. 2008). After determining the axes in the first stage 
of the locating suitable site and determining the criteria and their value, at this stage, 
using the MADM method and based on the AHP decision method, the proper points 
are prioritized for the construction of the underground dam (Kumar et al. 2017).
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The required data in the GIS environment is provided in order to prioritize the 15 
specified axes for the existing indicators in the lower part of the decision tree, which 
are the information layers for each axis. Subsequently, the fit index was calculated for 
these indices and criteria and using the formula for each axis by using the determined 
relative values in the binary method (Ebrahimi et al. 2021) (Fig. 2 and Table 1).

After binary comparing of the criteria and determining their relative importance, 
the suitability index for each criterion or option is achieved by combining the relative 
importance of the existing criteria (formula 1). 

SI = RI A1 × 
m∑

i=1 

RI · Bi × RI · K Bi + RI · A2 

× 
L∑

y=1 

RI Cy + . . .  RI AN × 
j∑

z=1 

RI Dz × RI K DZ (1) 

SI = suitability index, N = Number of the major criteria of A, RIAN … RIA1, RIA2 

= The relative importance of the criteria of A1, A2, …, AN, L, j  = the number of sub 
criteria related to the main criteria of A1, A2, …, AN, RIB, RIC, RID = The relative 
importance of the criteria B, C and D, which are related to the main criteria A1, A2, 
…, and AN. RIKD and RIKB, RIKC = The relative importance of the indicators for 
sub criteria of B, C and D associated with the main criteria A1, A2, … AN. 

The mentioned formula will be correct If the decision sequence has been lower or 
higher level. The Inconsistency rate for the validity of the results of the AHP method 
should be less than 0.1; otherwise the comments should be modified. 

3 Results and Discussion 

3.1 Detection and Selection of Appropriate Areas 
for Underground Dams 

Geologically, quaternary formations have the value of one and suitable for the 
construction of underground dam (Fig. 3). The slopes of 4–2 and 6–4 are suitable for 
the construction of underground dam in the slope map (Fig. 4). Poor, medium and 
good rangelands and garden lands are suitable for underground dam (Fig. 5). After 
combining these maps with Boolean logic, areas with a numerical value 1 are the 
appropriate area for construction underground dams (Fig. 6).
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Table 1 Quantitative value of judgments of the AHP model 

Preferences (oral judgment) Numerical value 

Fully preferable or quite important or quite desirable 9 

Very strong preference or important or desirable 7 

Very strong preference or important or desirable 5 

Slightly better or slightly more important or slightly more desirable 3 

The equal preference or importance or desirability 1 

Preferences between the above intervals 2, 4, 6, 8

Fig. 3 Map of appropriate 
and inappropriate geological 
ranges for the construction of 
underground dam 

Fig. 4 Map of appropriate 
and inappropriate slope 
ranges for the construction of 
underground dam
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Fig. 5 Map of appropriate 
and inappropriate land-use 
ranges for the construction of 
underground dam 

Fig. 6 Map of appropriate 
area for the construction of 
underground dam using 
removing criteria in Boolean 
method 

3.2 Identification of Appropriate Locations Within These 
Ranges 

After designing the map of suitable ranges for construction the underground dam by 
Boolean method, these ranges were mapped with a topography map 1: 25,000 and a 
drainage map derived from the altitude map was adapted and appropriate gaps were 
identified for the construction of underground dam (Figs. 7 and 8).

Axes of 52,8 due to low width of waterway, axes of 24, 15 and 62 due to lack 
of suitable reservoir and axes of 73, 71, 65 and 59 due to unsuitable foundation 
are removed. This assumption is considered that qanats should not be exposed to 
destruction or their water discharge would not be dropped sharply. Therefore, at this 
stage of finding potential, areas with Qanat furnaces are considered as unsuitable 
areas for the construction of underground dam. Figure 9 shows the distribution of 
Qanats in the region. By integrating the maps of the Qanats axis of the study area and
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Fig. 7 Integration map of 
potential areas with 
waterway and topography 
lines 

Fig. 8 Integration map of 
possible section and suitable 
area for construction of 
underground dam

the map of possible gaps of underground dam construction (Figs. 9 and 10), a total 
of 15 axes were identified for the construction of underground dam in ShahreKord 
and Morghmalek watersheds (Fig. 11).

3.3 Prioritizations of the Axes for the Construction 
of the Underground Dam 

The suitability index is calculated for each of the main and secondary criteria in 
each branch of the decision tree and finally, after merging and aggregating them, is 
shown as a final number. If this amount be high, desired axis has more value for 
the construction of the underground dam (Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11).
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Fig. 9 Distribution map of 
Qanats in ShahreKord and 
Morghmolk watershed 

Fig. 10 The map of 
integrating the Qanats axis 
and possible sections of the 
underground dam 

Fig. 11 Appropriate axes 
for building underground 
dams in ShaheKord and 
Morghmolak watersheds
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Table 2 Determination of 
the importance and weight of 
the water criterion by binary 
comparisons 

Water sub-criteria Quantity Quality Relative importance 

Quantity 1 5 0.83 

Quality 1.5 1 0.17 

For example, for the main criterion of the reservoir, the calculation of the suitability 
index is achieved by formula 2: 

Final suitability index for each axis = Water suitability index + Axis suitability index 
+ Reservoir suitability index 
+ Socio-Economic suitability index (2) 

According to the tables, the hydrologic and socio-economic criteria are the most 
important criteria for locating underground dam with the weights of 0.51 and 0.30, 
respectively. Reservoir and axis criteria have the weight of 0.13 and 0.058, respec-
tively and they are the third and fourth important criteria for prioritizing the under-
ground dam. In determining the value of the indicators, the water quantity (runoff 
height) with a weight of 0.833 and also the depth of alluvium with a weight of 0.743 
are more important than other indicators that this indicates the importance of the 
hydrologic criterion for experts (Fig. 12).

Table 3 Determination of 
the importance and weight of 
water sub-criteria by binary 
comparisons 

Subsurface flow Water quality 

Runoff height 
(mm) 

Relative 
importance 

Quality Relative 
importance 

15< 0.033 C2–S1 0.8 

10–15 0.063 C3–S1 0.2 

5–10 0.129 

1–5 0.261 

0–1 0.513 

Table 4 Determination of the importance and weight of the reservoir criteria by binary comparisons 

Reservoir sub-criteria Permeability Slope Surface Depth Relative importance 

Permeability 1 3 5 5 0.56 

Slope 1.3 1 3 3 0.25 

Surface 1.5 1.3 1 1 0.095 

Depth 1.5 1.3 1 1 0.095
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Table 5 Determination of the importance and weight of reservoir sub-criteria by binary compar-
isons 

Depth of alluvium Slope Surface Permeability 

Depth (m) RI Slope (%) RI Reservoir 
surface (ha) 

RI Surface 
permeability 
(cm\h) 

RI 

0–20 0.46 0–2 0.56 40< 0.51 0.01–0.1 0.03 

20–40 0.33 2–4 0.26 30–40 0.26 0.03–0.5 0.05 

40–60 0.15 4–6 0.12 20–30 0.13 0.25–0.5 0.085 

60< 0.06 6< 0.06 10–20 0.06 0.8–2.0 0.15 

10> 0.03 1.3–7.6 0.25 

2.5–25.0 0.44 

Table 6 Determination of the importance and weight of the axis criterion by binary comparisons 

Axis sub-criteria Depth Length Foundation Relative importance 

Depth 1 5 9 0.74 

Length 1.5 1 4 0.19 

Foundation 1.9 1.4 1 0.06 

Table 7 Determination of the importance and weight of axis sub-criteria by binary comparisons 

Depth of alluvium Axis length Axis foundations 

Depth (m) RI Length (m) RI Lithology RI 

0–10 0.57 0–20 0.51 Group 1 0.34 

10–20 0.27 20–40 0.26 Group 2 0.24 

20–30 0.13 40–60 0.13 Group 3 0.15 

30< 0.04 60–80 0.06 Group 4 0.09 

80< 0.03 Group 5 0.06 

Group 6 0.04 

Group 7 0.02 

Table 8 Determination of the importance and weight of the socio-economic criterion by binary 
comparisons 

Socio-economic 
sub-criteria 

Influence on water 
resources 

Water requirement Availability RI 

Influence on water 
resources 

1 5 7 0.73 

Water requirement 1.5 1 3 0.19 

Availability 1.7 1.3 1 0.08
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Table 10 Determination of 
the importance and weight of 
access to the underground 
dam with binary comparisons 

Access criteria Distance from 
the village 

Distance from 
the road 

Relative 
importance 

Distance from 
the village 

1 7 0.88 

Distance from 
the road 

1.7 1 0.12 

Table 11 Determination of 
the importance and weight of 
access to dam sub-criteria by 
binary comparisons 

Distance from the village Distance from the road 

Distance (m) RI Distance (m) RI 

<1000 0.56 <1000 0.51 

1000–2000 0.26 1000–2000 0.26 

2000–3000 0.12 2000–3000 0.13 

3000< 0.05 3000–4000 0.06 

4000< 0.03

Fig. 12 Prioritization of the 
proper axis of underground 
dam in the first scenario



408 S. N. Emami et al.

4 Conclusions 

The aim of this study was to investigate the effective criteria on determining the proper 
location of construction underground dam in Shahrekord watershed of Chaharmahal 
and Bakhtiari province. The results showed that the quantity of water is more impor-
tant than its quality, because in the absence or lack of subsurface flow, the under-
ground reservoir is not fully dewatered and will be faced with many problems, such 
as supplying water right which is consistent with results of (Talebi et al. 2019) 
about collecting water using an underground dam with emphasis on water quantity 
in African countries. If the waterway has been a higher subsurface flow, it has more 
relative importance than other waterways. The results of this study showed that the 
most suitable waterways for the construction of underground dams are those with 
3rd and 4th rank, which is consistent with the results of (Chezgi et al. 2016). 

Due to the formation of the underground reservoir in the underground and between 
the pores and alluvial sediments, it is very difficult to obtain the volume of the reser-
voir, which is considered as disadvantages of underground dam. The volume of the 
reservoir determined from depth, length and slope indices that these results are in 
same direction with (Chezgi et al. 2016; Ebrahimi et al. 2021) results. Reservoir 
capacity factor showed that a large reservoir is an necessary factor. Unlike under-
ground dams, in ordinary dams, the large volume of the reservoir due to water losses 
resulted from evaporation is a defect. With regardless of other effective factors in the 
selection of suitable location for underground dam’s construction are in upstream 
with a large reservoir, which are consistent with the results of (Sehat et al. 2013; 
Chezgi et al. 2016). The results of this study showed that due to the high influence of 
permeability on discharge rate and storage coefficient of dam reservoir, the reservoir 
is the most important factor which is related to the results of (Kharazi et al. 2019) 
in the selection of rivers with alluvial bed and high permeability, low slope, suitable 
depth and surface as the most suitable reservoirs. Investigations related to the depth 
of the reservoir show that an alluvial complex with a thickness of about 10 m is very 
suitable (Chezgi et al. 2016). The quality of these waters is very suitable due to the 
role of self-purification of alluvium. Also, the results show that the best slope of the 
waterway for the construction of an underground dam is less than 5% (Kharazi et al. 
2019; Chezgi et al. 2016; Talebi et al. 2019). Among the indicators related to the axis 
of the dam, the depth of alluvium at the location of the axis and the length of the axis 
of the underground dam are very important and influential from an economic point 
of view. This criterion due to limit in drilling depth in comparison to axis length, is 
first and foremost priority that is same with the results of (Talebi et al. 2019) that 
notified the most important limitation in the construction of the underground dam is 
the consideration of the axis depth. The results of the water requirement showed that 
the supply of drinking water needed by the villagers is more important than the agri-
cultural sector’s needs, which is in same direction with the results of (Yazdandoost 
2016; Ebrahimi et al. 2021). The index of distance from the village is more important 
than the distance from the road. Presence of the road at the site of the underground 
dam increases the access speed and reduces the cost of construction and maintenance
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of the structure. The axes near the road have more priority than other axes, which 
are in same direction with the results of (Chezgi et al. 2016; Talebi et al. 2019). 
By investigating the effective factors on construction of structures related to water 
storage, including underground dams in arid and semi-arid regions, achieving the 
purpose of comprehensive management of watersheds and sustainable development 
will be provided. 
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No. 24-42-29-009-000208. 
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Evaluation of Multi Indicators 
for Groundwater Recharges Conditions 
of the Asna River Basin, Maharashtra, 
India with Integration of Fuzzy Logic 
and GIS Tools 

Udaykumar Sahu, Vasant Wagh , Ajaykumar Kadam, Dipak Panaskar, 
and Satyajit Gaikwad 

Abstract The accurate representation of groundwater recharge conditions performs 
a crucial role in hard rock terrain; where, incidence, flow and occurrence of subsur-
face water have limitations. This results into a domestic water scarcity, mainly in the 
summer season period of the Asna River basin, Maharashtra, India. The present work 
has been carried out in the Asna river basin using Fuzzy logic and GIS techniques to 
identify the potential groundwater recharge zones. In view of this, various multi-
indicators (thematic layers) like Drainage, Lineaments, Geomorphology, Slope, 
Geomorphology, Rainfall and Water Table Fluctuation etc., have been used to delin-
eate the best appropriate sites for artificial subsurface water rejuvenation of the 
Asna River basin. The thematic indicators were generated from inventory maps and 
database, satellite imageries, and field surveys for identification of the best appro-
priate sites for groundwater recharge. These layers were classified, weighted, and 
combined using geographic information system (GIS) techniques and fuzzy logic 
(FL) method. This method was undertaken to get the weights to be assigned to 
numerous feature covers and these feature were coupled with geospatial devices to 
define groundwater recharge potential zones. The groundwater potential recharge 
map was classified into three classes; Low, Moderate and High. The results of fuzzy 
logic techniques were validated with the groundwater fluctuation data. The outcomes
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of the study will be helpful for precise demarcation of subsurface recharge arrange-
ments and inventive controlling strategy leading to sustainable development. Also, 
this study will be helpful to researchers, engineers and stakeholders for development 
plan of Asna river basin. 

Keywords Fuzzy logic · GIS · Groundwater potential · Asna river · India 

1 Introduction 

Groundwater resources are the precious and regular fresh water reserves of the 
country and help to sustain life. It is a supply of water to local communities, commer-
cial and agricultural activities, and individual households as a common property 
resource (Shiferaw et al. 2008; Wagh et al. 2016). The groundwater scarcity problem 
is the destabilizing effects by climatic changes in the arid and semi-arid regions. The 
lack of awareness and participation of local communities in water conservation that 
results exhibits mismanagement (Kumar et al. 2013). The rural drinking water supply 
is a primary goal of every country in the world beginning with small scale (house-
hold) to (nation) large scale. In rural areas, growing demand for drinking water and 
agricultural usage has led to the high groundwater extractions (Kadam et al. 2022). 
In the world, more than a billion individuals use consumption water and about 280 
million ha farming parcels are used for subsurface water (Richey et al. 2015; Siebert 
et al. 2013). In the South Asian countries like India, Pakistan and Bangladesh is 
about 85% groundwater exploiters is mainly used for agriculture relatively 40% rest 
of the world (Razzaq et al. 2022). The water shortage leads to reduce the industrial, 
urban and agricultural growth in various parts of the India (Black and Talbot, 2005; 
Tiwari et al. 2014). An annually quantified subsurface water resource revived in India 
is 433 km3 and a net gain of 399 km3 (Chatterjee and Purohit, 2009). The appraisal 
of groundwater is typically to understand the groundwater storing and accessibility, 
but also consider other constituents like hydrogeological and socioeconomic factors 
(Seiler and Gat 2007). 

In Maharashtra state, hard rock basalt is dominant, depleting water levels due to 
heavy pumping in the agricultural fields and reduces the recharge leads to degrada-
tion, excessive water extraction and unscientific sand mining too major hurdles in 
groundwater recharge. Nevertheless, hard basaltic terrain show demanding conflict 
in subsurface water storage and have been projected to agrarian scarcities (Thomas 
et al. 2017; Wagh et al. 2019). Recently, Marathwada semi-arid regions have caused 
severe precipitation of different tehsils (blocks) influenced terrible and rain-fed unde-
veloped areas (Budhiraja and Kulkarni 2015; Sahu et al. 2018; 2022). The agricultur-
alists have unobstructed irrigation pumping and have been scarce subsurface water 
stores. Early, Theis (1940) suggested that the effects of pumping well bound on 
subsurface water release and more revealing to revive inside aquifers displays those 
ideas of safe yields. The depiction of aquifer yields and sources limited to subsur-
face geology included joints, fractures and weathered sections (alternates) limited
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to deepening. The elementary ground station well data is consisting of well locality, 
depth of well, water level (pre & post-monsoon), variation and well exterior. It also 
got exact capability limits of discrete well such as drawdown, recovery and sequence 
of geology with distance below ground. 

The morphometric study has been carried out through extent of linear, aerial, 
relief, and slope of the basin (Magesh et al. 2011; Pande and Moharir 2017). The 
parameters like drainage pattern and density, stream order and frequency, bifurcation 
and elongation ratio etc., are the primary elements to evaluate watershed character-
istics (Sahu et al. 2018). In many study, it is proved that GIS is an essential tool 
for morphometric analysis from different data sources (Thomas et al. 2012; Patel 
and Dholakia 2010). Using groundwater recharge potential mapping is a scientific 
tool for systematic planning and development of the water resources (Díaz-Alcaide 
and Martínez-Santos 2019; Pande et al. 2020; Kadam et al. 2023). For evaluating 
problem-solving methodologies, fuzzy logic approaches integrated geospatial data; 
while, uncertain and partial data were graphical vague (Zadeh, 1965; Nguyen and 
Walker 2000). FL mechanisms have been reviewed by scientific communities in 
order to solve the problems with high accuracy and smoother control (Cagman et al. 
2011; Liu and Pedrycz, 2009). Fuzzy Logic sets have a degree of truth that can be 
applied in a variety of areas like atmospheric transmission or groundwater manage-
ment (Bardossy et al. 1995; Guan and Aral 2005). Fuzzy logic is the selection method 
using fuzzy values by combining promising and disapproving methods simultane-
ously. The integration of all assigned FL values spatial maps functions under the 
fuzzy logic tools in the ArcGIS 10.6 environs. Therefore, the fuzzy membership 
function specified scale ranges from 1 (full membership) to 0 (full non-membership) 
(Bonham-Carter, 1994). 

With considering the above factors, here we tried to identify the potential ground-
water recharge zones within Asna river basin located in the Marathwada region 
of Maharashtra state. In this region, climate is typically dry with average rainfall 
890.28 mm received from SW monsoon. As per GSI report (1997), 98% of area 
occupied by Deccan basalt and 2% is alluvium. Generally, in vesicular basalt has 
limited primary porosity; however, secondary porosity and permeability was devel-
oped by weathering, jointing, fracturing, etc. In the Asna river basin, the terrain slope 
observed at north to south and west to south directions and groundwater flow observed 
in north plateaus to southern plain areas. With low and uncertain rainfall scenario 
and agriculture is prime occupation with food grain and fodder crops in this region. 
Most of the rural population is depends on canal and groundwater resources for their 
domestic and agricultural needs. The present study is initiated with integration of 
Fuzzy logic and GIS techniques to identify the potential groundwater recharge zones 
in Asna river basin. The study will provide the baseline information to local water 
planners and young researchers for the sustainable management of water resources 
in the Asna watershed.
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2 Study Area 

The area comes under in the Hingoli and Nanded regions at southern part of Maha-
rashtra state of India. The Asna river basin covers an area of about 1187km2, which 
extent from19010' to19032' N latitudes and 77004' to 77031' E longitudes (Fig. 1). 
The origin of basin having elevation of 551 m above mean sea level and lowest eleva-
tion is 333 m (amsl). Elevation of area 218 m (amsl) down gradient of southern trends 
associated to dendritic and paralleled drainage pattern up to 7th order of stream. The 
river flow NW-ES course through physiographical undulant to plain and bedrock 
consist of Deccan basalt. The climate of the area is dry with mean yearly rainfall is 
890.28 mm occur from the SW monsoon and tropical with hot summer and slight 
cooled with mean temperature from 12.7° to 41.7 °C. The 30% moisture upsurges in 
the morning time, high moistureduring the rainsperiods and summer low moisture 
occurs (CGWB 2013). Based on Geological Survey of India (GSI 1997) report, 98% 
of the study area covered by Deccan basalt and rest of 2% is alluvium. The vesicular 
basalt (30 to 60%) has limited primary porosity. However, the secondary porosity 
and permeability was generated due to weathering, jointing, shearing, fracturing, etc. 
(CGWB 2013). Generally the terrain slope observed at north to south and west to 
south directions in the basin. The groundwater flow mainly from the north plateaus 
to southern plain areas. 

Fig. 1 Study area map
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3 Methodology 

In this study Survey of India (SOI) toposheets maps (56E/2, 3, 4, 7and 8) on 1:50,000 
scales were geo-referenced and transformed in ArcGIS platform to demarcate the 
drainage divide boundary of the Asna River basin. The drainage layer of the study area 
was digitized directly from SOI toposheets. A detailed depiction of drainage pattern is 
dendritic to parallel with assigned drainage orders numbers and corresponding from 
field checks (Goodrich et al. 1997; Hilpert and Miller 2001). Drainage density (Dd) 
accurately measured like total length (km) of all the streams divided by the entire 
basin area (km2) (Carlson et al.  1963). The method of lineaments was identified from 
satellite imageries (IRS P6 LISS IV) and support of ASTER (GDEM) data to refined 
polyline features of the lineaments within the study area using ArcGIS 10.6v soft-
ware. The extracted and calculated lineament density is based on the polyline features 
of the lineaments per units area (number/km2) (Hung et al. 2005). The extracted lines 
feature of the lineaments executed under the density extension tool to define the linea-
ment density maps classified on the basis of natural breaks in ArcGIS. The higher 
lineament density areas show that significant prospect for groundwater zones. The 
terrain elevation attributes and slope percentage maps created from standard ASTER-
GDEM (https://earthexplorer.usgs.gov/) with 30 m resolution of the Earth raster data 
used in the ArcGIS 10.6 v software. Remote sensing visual interpretation signatures 
based on the acquired satellite imagery data in reference of SOI topographic map 
features. The characteristic of landform boundaries clearly observed on the satellite 
imagery with help of image elements like colours/tones, textures, etc. The interpreted 
geomorphic map verified for ground truth in field checks in the account to relief and 
terrain features. These geomorphic units were classified into shallow, moderate and 
deep supported on the well inventory data and profile section cutting observed in 
nalla/road cutting etc. The entire geo-database was converted into a digital format 
to create groundwater potential recharge zones. Drainage and lineament layer maps 
were prepared to density raster maps using a density tool and slope maps in percentage 
converted from ASTERGDEM data. The corresponding attributes data as rainfall, 
water table of wells, etc. The groundwater potential recharge zones were evaluated 
in Fuzzy logic analysis tool into a GIS environment. Using of the fuzzy analysis tool 
that helped to separate the maps with new class features. The fuzzy map sub-classes 
were assigned fuzzy membership values based on their influence and significant char-
acteristics on groundwater recharge (Fig. 2). The Table 1 represents various thematic 
layers with classification, FL values and area %.

https://earthexplorer.usgs.gov/
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Fig. 2 Flow chart of the methodology

4 Result and Discussion 

4.1 Drainage and Drainage Density 

The surface natural drainage divides were extracted by identifying drainage basin 
boundaries and streams (drainage) outlet can be delineated. The infiltration of surface 
water flow from river and drainage systems to the contribute groundwater recharge. In 
our study, drainage divide assigned the Strahler- drainage order has to join each others 
up to the 7th higher order. First order drainages are most abundant and highest total 
length (1192.60 km) and the last seventh drainage length (7.94 km) found within the 
watershed area (Horton, 1945; Schumm, 1956; Rinaldo et al.1993). Drainage density 
(Dd) illustrates the compactness of the streams that presents quantitative measures 
of the total length of drainage of the basin (Horton, 1932; Strahler, 1964). It also 
explained the correlation with landform dissection, climate and vegetation, soil and 
water infiltration efficiency, surface runoff to end products erosion and sedimentation 
in the watershed (Farhan and Anaba 2016).The drainage density output is prepared 
from the drainage layer in GIS environment. Four drainage density (Dd) categories 
were produced and assigned Fuzzy Logic (FL) values to each (Fig. 3) namely, very 
low (265.43 km2), low Dd (408.25 km2), moderate Dd (341.71 km2)and high Dd 
(171.60 km2).Most of the areas covered with very low and low drainage density
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Table 1 The thematic layers with fuzzy logic values (After Sahu et al. 2022; Arulbalaji et al. 2019) 

Thematic layer Features Class FL value Area in km2 Area in % 

Drainage 
density 

4.25–2.58 (km/km2) High 0.20 171.61 14.45 

2.58–1.88 (km/km2) Moderate 0.60 341.71 28.78 

1.88–1.26 (km/km2) Low 0.80 408.25 34.39 

1.26–0 (km/km2) Very low 1.00 265.43 22.38 

Lineament 
density 

1.74–0.82 (km/km2) High 1 278.46 23.45 

0.82–0.38 (km/km2) Moderate 0.75 525.42 44.28 

0.38–0.00 (km/km2) Low 0.25 383.12 32.27 

Geomorphology Plateau undissected 
(PLU) 

– 0.50 17.5 1.47 

Plateau highly dissected 
(PLH) 

– 0.25 78.53 6.61 

Plateau moderately 
dissected (PLM) 

– 0.80 87.1 7.86 

Valley (V) – 0.9 37.56 3.01 

Plateau weathered canal 
command (PLWC) 

– 1 759.06 63.94 

Plateau weathered 
(PLW) 

– 0.80 202.51 16.99 

Mesa/Butte (M/B) – 0.05 1.5 0.2 

Flood Plain (FP) – 1 3.24 0.38 

Slope (%) 0–1.55% Plain 1 798.79 67.29 

1.59–4.56% Gentle 0.97 326.45 27.5 

4.56–9.69% Moderate 0.95 0.12 0.03 

9.69–16.07% High 0.45 37.44 3.15 

16.07–29.07% Steep 0.25 24.2 2.03 

Rainfall <800 mm – 0.1 99.46 8.37 

800–900 mm – 0.16 266.32 22.43 

900–1000 mm – 0.25 505.73 42.63 

1000–1200 mm – 0.35 212.36 17.89 

>1200 mm – 1.00 103.13 8.68

have significant groundwater storage, which comprised plain and flat terrain and less 
runoff zones. Therefore, high drainage density area exhibits the low permeability 
and is limited to groundwater.
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Fig. 3 Drainage (D) and Drainage Density (Dd) map of the study area 

4.2 Lineaments & Lineaments Density (Ld) 

Lineaments are linear structures on surface the earth that have increased permeability 
factor, which is extensively covered by the earth (Suganthi et al. 2013; Ni et al.  
2016).This is indication of the subsurface geological structures, fractures, faults 
or joints associated with the porosity and permeability of water cropping pattern 
and low lying topography etc., (Masoud et al. 2022; Rajaveni et al. 2017; Pradhan 
and Youssef 2010). Densely fractured and weathered basaltic rocks exhibit good 
groundwater recharge zones. The lineament map was prepared from satellite images. 
Lineaments were calculated for using lineaments density map using the density tech-
nique in ArcGIS mode. In this study, Ld classified into 3 classes like high Ld (278.46 
km2), moderate Ld (525.42 km2) and low Ld (383.12 km2) (Fig. 4). Lineaments 
are the major factor in groundwater recharge. The high Ld area about 23.45% area 
covered in the form of small patches with gentle and plain slopes within plateau 
weathered landform, denoted with FL is 1 value. The Low Ld areas continuously 
covered the edge basin boundaries and center of the study area.
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Fig. 4 Lineament density (Ld) mapof the study area 

4.3 Geomorphology 

Geomorphologyis important terms for infiltration and groundwater recharge into 
the earth (Etikala et al. 2019). This study shows that the surface produced three 
types of landforms like denudational, erosional and depositional. The denudational 
landforms include Plateau Undissected (PLU), Plateau Highly Dissected (PLH), 
Plateau Moderately Dissected (PLM), Plateau Weathered Canal Command (PLWC), 
Valley (V), Plateau Weathered Canal Command (PLWC), Plateau Weathered (PLW), 
Messa/Butte (M/B), and Depositional Landform is Flood Plain (FP) (Fig. 5). The 
groundwater augmented under the plateau canal command areas compared to the non-
canal command area with high fuzzy value (1) assigned the PLWC unit. Messa/Butte 
(M/B) isolated flat topped hills of basalt with steps to moderate slopes, high runoff 
zone and not suitable for groundwater recharge potential. It is occupied by the 1.54 
km2 (0.2%), it is not significant for groundwater recharge unit due to high runoff 
zone therefore it provided the fuzzy value (0.05). A flood plain (FP) is the portion 
of a river valley adjacent to the river bed, which consists of loose deposited during 
the overflow of river water discharge. It is a low elevation of 342 to 320 m (amsl), 
completely flat area.
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Fig. 5 Geomorphology map of the study area 

4.4 Slope 

The 90% part of the study area is covered by gentle to plain slopes, including the 
northern side stretched near the western margins of watershed, elevated terrain or 
plateaus sloping downwards in the southern part. A maximum terrain elevation is 
551 m (amsl) to minimum 333 m (amsl) and relief of 218 m (amsl) respectively. 
Slope map prepared from ASTER GDEM elevation data of 30 m resolution under 
processed into ArcGIS. The analyzedwatershed surface slopes in to percentage (%) 
classesranges from (0% to > 15%). Therefore, the slope mapdivided five classes 
(Fig. 6), (i) plain slope preference for the flat and almost zero gradient surfaces 
covering the 798.79 Km2 (67.29%). It is assigned great fuzzy value (1) to successful 
groundwater recharge. (ii) Secondly, dominantly gentle slope covered by a total area 
326.45 km2 (27.5%) and comprises a rough surface to flat topography sloping towards 
the south of the watershed. Whichever denote the good prospects of groundwater with 
a fuzzy value (0.80). (iii) Generally, the terrain of this area is an undulating surface 
area that covers much less area 0.12 km2 (0.03%) in this watershed. The fuzzy 
logic membership is specifying (0.70) and it’s moderately suitable for groundwater 
recharge potential. (iv) High slopes are mainly conjugated to form high drainage 
density values, symbolize the high peak with rugged terrain. It contributes to high 
runoff surface, less infiltration and low groundwater recharge practices. (v) Steep 
slope class accounts for a small area 24.2 km2 (2.03%) part of the watershed. It
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Fig. 6 Slope (%) map of the study area 

mainly occurs in the PLH and PLU landforms, flowing 1st and 2nd order drainages 
because of greater runoff to low fuzzy value (0.30) provided. 

4.5 Rainfall 

Rainfall is the principal source of water in arid and semiarid environment, which has 
significance in hydrological cycle (Tapiador et al. 2012; Keune and Miralles 2019). 
The study area consist of hard basaltic terrain, this rainfall factor was influenced in 
the groundwater recharge process. An interpolation method is used to create gridded 
rainfall data that depict the rainfall distribution at altered time interims (Giambelluca 
et al. 2013). A rainfall distribution map was prepared for the study area to comprehend 
the groundwater recharge (Fig. 7).

4.6 Water Table Fluctuation (WTF) 

The water table fluctuation (WTF) specifies that transient water-level rises are directly 
related to renew water reaching the water table (Nimmer et al. 2010). The water table 
fluctuation from 0.5 m to as high as 40 m based on well record data. The pre and post-
monsoon water table data were computed in ArcGIS platform to produce a water
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Fig. 7 Rainfall distribution map of study area

table fluctuation map, which classified into three categories like shallow, moderate 
and deep (Fig. 8). Based on the priority excellent recharge potential zone that assigned 
the fuzzy logic (0.80) for shallow water table fluctuation (WTF) zone, aerial extended 
about 570.54km2 (48.06%) in the north to east trajectory in the Asna watershed. The 
moderate fluctuation portion perspective northwest and south down slope of the 
watershed. It is indicating moderate prospects of groundwater recharge, which is 
exposed near about 500.38km2 (42.15%) area obtained the fuzzy logic (0.60). The 
negative water-level fluctuations shows in deep water-level zones covered the 116.08 
km2 (9.77%) and were distributed in the form of pockets in southwest side of the 
study area. Low (0.40) fuzzy logic value designated for the deep WTF zone.

4.7 Groundwater Potential Recharge Zones (GWPRZ) 

Fuzzy analysis was performed to identify the groundwater potential recharge zones 
(GWPRZ) in the study area (Fig. 9). In this study area, high groundwater potential 
recharge zones are mainly observed in western and southern parts and vicinity near 
to Basmat town due to low slope of surface associated with high drainage density 
and rainfall with low groundwater fluctuation. The moderate groundwater potential 
recharge zones are occurred in patches where gentle and moderate slopes with low 
to moderate drainage density. Moreover, precipitation in this zone is low to moderate 
and groundwater fluctuation is shallow to moderate. However, majority part of the



Evaluation of Multi Indicators for Groundwater Recharges Conditions … 423

Fig. 8 Fluctuation map of study area

study area are classified as low groundwater recharge potential due to steep to gentle 
slopes, high to low drainage density and groundwater fluctuation encountered as 
moderate to deep. Therefore, this zone is classified as low groundwater recharge 
potential.

5 Conclusion 

The present study has been carried out with integration of Fuzzy logic and GIS tech-
niques to identify the potential groundwater recharge zones in the Asna river basin, 
Maharashtra. In view of this, thematic layers such as drainage, lineaments, geomor-
phology, slope, geology, etc., were considered to delineate the best appropriate 
sites for artificial subsurface water rejuvenation. The weight assigned to drainage 
and lineament density, geomorphology, slope, precipitation and WTF, which are 
significant parameter for the controlling the groundwater. The groundwater potential 
recharge map was generated by using three classifications like Low, Moderate and 
High. The results of fuzzy logic techniques were validated with the groundwater 
fluctuation data. In Asna river basin, high groundwater potential recharge zones are 
mainly encountered in western and southern parts and vicinity of Basmat region 
due to low slope, high drainage density, rainfall and low groundwater fluctuation. 
Moreover, moderate groundwater potential recharge zones are observed in patches; 
where, gentle and moderate slopes with low to moderate drainage density. However,
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Fig. 9 Groundwater potential recharge zones of the study area

most part of the basin characterized as low recharge potential due to elevated plateaus 
comprises with massive hard basalt and high to moderate drainage density because 
groundwater fluctuation as moderate to deep. The outcomes of the study will be 
useful for the precise demarcation of groundwater potential recharge structures of 
the watershed. Also, provide the baseline information to new researchers, stake-
holders and policy makers to develop a sustainable water management plan in the 
Asna river basin. 
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