
Chapter 9 
Best Practices for Teaching Information 
Systems Modelling 

Steve Wade 

Abstract The subject of Information Systems Modelling (ISM) grew out of 
computer science to fill a gap created by the difficulties programmers had in under-
standing and solving user problems. The intention behind ISM is to facilitate commu-
nication between technologists (many of whom have no idea of the complexity of 
organisations) and end-users and their managers (many of whom are unable to trans-
late their problems into feasible demands upon technology). “Best practices” in 
information system development might therefore be considered to be those prac-
tices which contribute in some way to improving communication between these two 
parties. The work described here is primarily focussed on documenting practices that 
address the issues associated with the seamless transition from a requirements model 
seamlessly to a technology based system that satisfies those requirements. This has 
involved reflection on lessons learned during thirty years’ experience of teaching 
Information Systems Modelling in the context of higher education. 

Keywords Information systems modelling · Requirements model ·
Communication · Pattern language 
9.1 Background 

The subject of Information Systems Modelling (ISM) grew out of computer science 
to fill a gap created by the difficulties programmers had in understanding and solving 
user problems. The intention behind ISM is to facilitate communication between 
technologists (many of whom have no idea of the complexity of organisations) and 
end-users and their managers (many of whom are unable to translate their problems 
into feasible demands upon technology). “Best practices” in information system 
development might therefore be considered to be those practices which contribute in 
some way to improving communication between these two parties.

S. Wade (B) 
Department of Computer Science, University of Huddersfield, Huddersfield, UK 
e-mail: s.j.wade@hud.ac.uk 

© Springer Nature Switzerland AG 2023 
J. Carter et al. (eds.), Higher Education Computer Science, 
https://doi.org/10.1007/978-3-031-29386-3_9 

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29386-3_9&domain=pdf
mailto:s.j.wade@hud.ac.uk
https://doi.org/10.1007/978-3-031-29386-3_9


114 S. Wade

Before considering examples of best practice and how these may be taught we will 
consider the possible consequences of poor communication between technologists 
and end-users. Focussing on these will enable us to be clearer about the specific 
benefits that the practices we consider might offer. We will focus on two possible 
consequences of poor communication. 

1. The end-user holds limited views about what they need and fails to realise that 
alternative superior solutions (which they have been unable to imagine) are 
possible. 

2. The developers hold misguided opinions about what the users need because this 
has not been clearly explained to them. 

There is good evidence to suggest that many information system failures are 
a result of one or both of these leading to a discrepancy between the system “as 
required” and the system “as delivered”. If we are to avoid this discrepancy we need 
to deploy development methods that: 

1. Provide mechanisms to make sense of and understand the details of human activ-
ities that an information system is developed to support. This involves developing 
some kind of information requirements model. 

2. Provide a seamless transition between developing the information requirements 
model and the design and implementation of a technology-based system to satisfy 
the requirements captured in the model. 

The work described here is primarily focussed on documenting practices that 
address the above requirements. This has involved reflection on lessons learned 
during thirty years’ experience of teaching Information Systems Modelling in the 
context of higher education. Some lessons were learned in the eighties when we 
still made use of plastic flowchart stencils, pencils and plenty of printer paper. More 
came in the nineties with the rise of powerful CASE tools supporting development 
methods that required the designer to develop and maintain increasingly elaborate, 
internally-consistent collections of diagrams. The most significant lessons have been 
learned more recently as the evolution of powerful programming environments has 
encouraged a more informal approach to modelling. 

In addition to learning lessons from the past it is important to prepare students for 
the future. Most software systems are embedded in social systems and the resulting 
sociotechnical systems’ boundaries and interactions can be hard to identify. For 
example, social networks, travel booking and online shopping applications have had 
far-reaching effects on the way people form relationships, how they travel and what 
they buy. Becker et al. (2016) have argued that software’s critical role in society 
demands a paradigm shift in the software engineering mind-set. We argue that our 
students need to be prepared for this shift which will focus on architectural issues 
that can be addressed through Information Systems Modelling.



9 Best Practices for Teaching Information Systems Modelling 115

9.2 Introduction 

This chapter primarily draws on a number of years’ experience teaching an Informa-
tion Systems Modelling module jointly to postgraduate students on an MSc Informa-
tion Systems Management and an MSc Advanced Computer Science. The module 
concerns the application of the Unified Modelling Language (UML) throughout 
the development lifecycle from requirements analysis to implementation. All the 
students arrive on the module with some background in modelling but those on the 
MSc Information Systems Management tend to think in terms of business models 
whereas those on MSc Advanced Computer Science tend to view modelling as high-
level programming. This presents the challenge of moving students into a deeper 
understanding from different starting points and with different preconceptions about 
the nature of the subject. 

In the process of delivering this module we have engaged in the following activities 
each of which will be described in more detail in the remaining sections of this 
chapter:

• The design of a pattern language to organise best practice in the application 
of systems development techniques. In developing the pattern language we were 
mindful of the need to encourage maximum student ownership of the development 
process. The patterns could not therefore comprise simple lists of instructions to 
be followed slavishly.

• The development of teaching materials to document the pattern language.
• Running the module. Observing the progress of the module week-by-week in a 

number of ways including a range of on-going student feedback mechanisms. 

The remaining sections of this chapter reflect on what we have learned from 
engagement in these activities. 

9.3 The Pattern Language 

Patterns have been widely used in information systems design over the last ten years. 
A pattern in this context is a generic solution to a recurring problem expressed in 
a literary form. The approach has its roots in architecture specifically the work of 
Alexander (1979). In ISM patterns have been used to ease communication problems 
and the thinking behind complex design (Gamma et al. 1995). Patterns are usually 
described by templates which specify the style and structure of a pattern description. 
Typically the template will include sections for a description of the problem to be 
addressed, the forces acting to create the problem, a generic solution, a specific 
example of how this solution might be applied and a discussion of the benefits the 
solution should provide.



116 S. Wade

The following example relates to a common (and hopefully familiar) problem in 
domain modelling where students represent a many-to-many relationship between 
two objects when the relationship would be better represented by a third object. 

Problem 

How to model the relationship between two classes that have a many-to-many 
association with each other. 

Forces

• Many-to-many relationships occur often in the real world.
• It can be difficult to implement many-to-many associations in some object oriented 

programming languages.
• Many-to-many relationships have no direct implementation in relational database 

systems.
• A many-to-many relationship is usually complicated enough to warrant the 

addition of an extra class. 

Solution 

Transform the many-to-many association between two classes into a trio of classes 
by creating an intermediary class with two one-to-many relationships. The name of 
the intermediary class should describe the type of relationship being captured. 

Example 

A many-to-many relationship between Student and Module is reconstructed as two 
one-to-many relationships. One between Student and Work Record and the other 
between Module and Work Record. 

Discussion 

We can now store details of module grades for each student as attributes of the new 
“work record” class. 

Summary 

If you find this: 
consider replacing it with this: 

The idea is that patterns such as this can be used to guide students away from 
common problems and into good practice. We have specified many more patterns 
related to commonly occurring problems. Initially we used patterns drawn from the 
publications of Ambler (1998), and Evitts (2000). We spent some time re-working 
and shaping the documentation for these patterns to give coherence to the collection. 
A key feature of the collection is that relationships are drawn between patterns. When 
a number of patterns are related to each other in this way we describe the result as a 
“pattern language”. We are therefore trying to develop a pattern language to support



9 Best Practices for Teaching Information Systems Modelling 117

the teaching of information systems modelling. Further examples of specific patterns 
and their relationships will be provided later in this chapter. 

9.4 A Framework for the Pattern Language 

Most modern courses in Information Systems Modelling are based on the Unified 
Modelling Language (UML). The UML provides a suite of diagrams that help us 
to visualise the design of a system. It is published by the International Organization 
for Standardization (ISO) as an approved ISO standard. Having decided to use the 
UML we needed to decide which development method to follow. The most popular 
model-centric approach currently in use is the Unified Software Development Process 
(USDP) but this is both large and complex. Instead of following the USDP we 
devised our own simplified method based on our earlier research into the design of 
a multi-method framework (Salahat and Wade 2009). In that research we proposed 
a framework for bringing together principles from object oriented approaches to 
designing software systems and the “soft systems” approach to analysing social 
systems as part of Business Analysis (Checkland 1999). This approach requires a 
few words of explanation. 

The teaching of Information Systems Modelling tends to focus on issues related 
to ‘hard’ systems design. Hard systems are the technical systems that are produced 
during a development project. Each hard system will be embedded in its social 
context. This context can be seen as a “soft” densely interconnected system of human 
activities. It can be argued that hard systems should not be analysed in isolation 
from the soft systems within which they reside. In analysing the present system or 
designing a new system, there is the need to consider both the hard system that will 
be the product of the development, and the soft system within which it will be used. 
This is challenging because the workings of the soft system are often difficult to 
understand and the needs of the organisation can be difficult to predict. The UML 
covers all aspects of hard systems design but has much less to say about the soft 
system. In contrast Soft Systems Methodology (SSM) focusses on the soft approach. 

In addition to augmenting UML modelling with techniques from SSM we also 
wanted to introduce students to Persona Analysis as a means of developing empathy 
for users. 

Defining personas is an established practice in user-interface design. Blomkvist 
(2002) describes personas as follows: 

A persona is a model of a user that focuses on the individual’s goals when using 
an artefact. The model has a specific purpose as a tool for software and product 
design. The persona model resembles classical user profiles, but with some important 
distinctions. It is an archetypical representation of real or potential users. It’s not a 
description of a real, single user or an average user. The persona represents patterns 
of users’ behaviour, goals and motives, compiled in a fictional description of a single 
individual. It also contains made-up personal details, in order to make the persona 
more ‘tangible and alive’ for the development team. (Blomkvist 2002).



118 S. Wade

We ask students to develop personas that include a fictional name and life story, a 
picture, and a ‘tag line’—a phrase, supposedly written by the persona, that represents 
the character of the persona as related to the development project. The case studies 
that we use in teaching relate to our own department. Accordingly we encourage 
students to develop a persona for each of the following: A Student of Computer 
Science, a Student of Information Systems, a Course Administrator, a Lecturer and 
a representative of an organisation providing industrial placement opportunities. 

Although the primary application of personas has been in the context of user-
interface design, we have found spending time developing them focusses attention 
on requirements in a concrete way. Rather than referring to users in an abstract form, 
students refer to personas by name. So our student of Computer Science becomes Jo 
Smith who has a first degree in Software Engineering a great deal of confidence in 
his programming ability but lacks confidence in writing essays and reports—his tag 
line is “I would rather write code than prose”. In contrast our student of Information 
Systems becomes Sue Rachel who has a first degree in Law, is fascinated by the 
impact of technology on society but lacks confidence in her ability to write code. 
Her tag line is: “technology will never replace great people but it can help ordinary 
people to achieve great things”. 

Following the basic structure of this framework we developed patterns and 
teaching materials based around the following topics:

• How to use Persona Analysis to help the developer focus on the needs of the user.
• How to use Soft Systems Methodology to learn about a problem situation.
• How to extract Use Cases from the soft systems models.
• How to develop sequence diagrams related to each Use Case.
• How to develop a domain model from the collection of sequence diagrams.
• How to convert the domain model into a class diagram and database design.
• How to implement the class diagram as an object oriented software system using 

the, “naked objects”, implementation pattern. 

We have used the step-by-step approach implied by these questions as the basis for 
a course structure and an assignment specification. We have adopted a “scaffolded” 
approach to teaching (Larkin 2001) which involves working through a number of 
exercises following the structure implied above then asking students to apply the 
techniques to related case studies for their coursework. The case studies used for 
assessment were based around the needs of an academic department like our own. 

It is beyond the scope of this chapter to discuss each of these topics in detail but 
for those unfamiliar with the techniques, the following examples are intended to give 
an idea of what deliverables are produced during each step of the method. 

The example used here relates to the decision to introduce a Peer Tutoring System 
into an academic department to provide extra help to students on a programming 
module. The idea being that students who are confident in their programming skills 
would run support sessions for their less confident colleagues. We initially asked 
students to develop a simple persona for the type of people who would use this 
system. As explained above a persona is a fictional character that typically has a name, 
a picture, behavioural traits, common tasks, and a goal that describes the problem the



9 Best Practices for Teaching Information Systems Modelling 119

persona wants to see solved or the benefit the character wants to achieve. Personas 
are not considered in the UML so we devised our own simple template based on 
the facets listed above. In filling out this template the developer is encouraged to 
visualise the user in a concrete, tangible way. So the personas mentioned above, 
named Jo Smith and Sue Rachel, may be involved in the peer tutor system as a peer 
tutor and peer tutee respectively. 

Moving on from Persona Analysis we next ask students to conduct a simple 
business analysis—with no attention to the design of software. Again this is somewhat 
outside the scope of the UML so, as explained above, we have introduced techniques 
from Soft Systems Methodology. The first of these is a rich picture. Figure 9.1 shows 
a rich picture that we might use to get things started. 

We have found rich pictures to be a good way to encourage discussion about the 
problem situation without focus on any proposed solution. The discussion leads to 
the development of a root definition: This is defined in SSM as a succinct description 
of the Human Activity System (HAS) that is required. It is possible to develop 
multiple root definitions each offering a different perspective on what is required. 
The following is a possible root definition for the peer tutoring system: 

A system owned by the course that provides programming skills support to students using 
volunteers with programming experience from the student cohort. The quality of this support 
will be monitored by academic staff. 

Once we have developed a root definition, or set of definitions, we move to devel-
oping more detailed activity models. These are called Conceptual Models in SSM 
and we would develop one for each root definition. The following example, orig-
inally presented in Wade et al. (2012), includes activities that might be supported 
by software and others that will be enacted by humans without the assistance of 
software.

Fig. 9.1 Initial rich picture raising issues for the peer tutoring system 



120 S. Wade

Fig. 9.2 Activity diagram

In developing this type of diagram (Fig. 9.2) we encourage discussion about the 
social system we are supporting. In this simple case discussion might focus on the 
following questions: 

• Will weaker students attend these sessions or will they be primarily attractive to 
students who are already competent programmers but want further opportunities 
to develop their skills?

• Should some (weaker) students be required to attend the sessions? If so how do 
we identify people in this position?

• Should we pay peer tutors? Are their alternatives to rewarding them with money? 

This discussion might lead us to develop additional activity models. For example 
we might consider the need to monitor attendance at the sessions and develop the 
following (see Fig. 9.3) for an “attendance monitoring” system:

In developing these models we have not concerned ourselves with the question of 
how software might be able to assist the people involved. This would be the role of a 
Use Case Model. Use Cases are part of the UML and represent activities that require 
software support. If we were to develop a Use Case Diagram from our activity models 
we would be making the transition from business analysis to software design. The 
Use Case diagram in Fig. 9.4 could be derived from the conceptual model above:

If we focus on the “Print Class List” Use Case we might prototype a simple user 
interface like Fig. 9.5:

Behind this interface our software system might be composed of collaborating 
objects. The high-level sequence diagram in Fig. 9.6 depicts the role that a number 
of objects might have, behind the scenes”.



9 Best Practices for Teaching Information Systems Modelling 121

Fig. 9.3 Activity diagram for attendance monitoring. Taken from Wade et al. (2012)

Fig. 9.4 A Use case model. Taken from Wade et al. (2012)



122 S. Wade

Fig. 9.5 Screenshot for a 
use case. Taken from Wade 
et al. (2012)

Fig. 9.6 A sequence diagram. Taken from Wade et al. (2012) 

We found that students found the transition from Use Case Models to Sequence 
Diagrams difficult so we provided the following pattern and discussed it in class. 

Problem 

It is hard to develop sequence diagrams from the Use Case Module. What can I do 
to make this transition easier? 

Forces 

A high level Use Case Diagram (such as the one presented above) is fine for a, “mile 
high”, view of the computer systems behaviour. For many stakeholders, such as 
sponsors and managers, this will be enough. As designers however we need to open 
these up and define them in detail. We know what the system presents to the various 
users (or actors), we need to define in fine detail the, “how”, of that interaction; 
until we have done this we cannot begin to develop a sequence diagram. There is no



9 Best Practices for Teaching Information Systems Modelling 123

prescription in UML regarding what detailed information should be recorded about 
a use case. 

Solution 

Document the detailed logic of a Use Case as a series of steps. Where appropriate 
each step should include reference to one or more domain classes and identify the 
role that this class should play in the implementation of the Use Case. We can use 
this description as the basis for developing an initial sequence diagram. The way 
in which this is done is specified in the “Develop Sequence Diagram from Primary 
Path” pattern. 

Example 

This Use Case is concerned with enrolling an existing student in a peer tutor session 
for which she is eligible. 

Key Steps: 

1. The use case begins when a student wants to enrol in a peer-tutor session. 
2. The student inputs her name and student number into the system. 
3. The system verifies the student is eligible to enrol in classes at the university. 
4. The system displays the list of available peer tutor sessions. 
5. The student indicates the session in which she wishes to enrol. 
6. The system checks that the student is enrolled on the appropriate module to join 

the session. 
7. The system asks the student to confirm that she wants to enrol in the session. 
8. The student indicates she wants to enrol in the session. 
9. The system creates an enrolment the student in the session. 

These steps can then be mapped to messages passed between objects in a sequence 
diagram like the one presented above. It may be that each line in the Use Case descrip-
tion would map to a single message passed between objects. We would develop a 
sequence diagram for every use case then develop a domain model consistent with 
all of these sequence diagrams. A domain model derived from this single sequence 
diagram might look like that in Fig. 9.7.

This domain model can be used as the basis for an object oriented software system 
design and a relational database structure. We have developed patterns to translate 
the domain model to a physical database design principally by adding primary and 
foreign keys to create relationships between tables. A separate pattern discusses ways 
of mapping inheritance relationships to relational structures. 

In developing User Interfaces we encourage students to use the Naked Objects 
architectural pattern (2012) to generate a graphic user interface directly from the 
domain model. The pattern uses reflection to automatically generate an initial user 
interface. Typically this interface will present a series of windows containing icons 
representing each of the domain classes. A class can then be accessed by double
-clicking on its icon to reveal its operations. In the above example I can select, 
“Module,” select a specific module then right-click on that module’s “Create Class 
List” operation to see a list of students currently enrolled on the module. Other



124 S. Wade

Fig. 9.7 A Domain model. Taken from Wade et al. (2012)

functionality can be achieved by dragging and dropping; so for example if I wish 
to enrol a student onto a module I can drag the icon representing that student on 
to the icon representing the module thereby creating the relationship between them. 
An advantage of applying this pattern is that the resulting relationship between the 
domain model and what appears in the interface is very direct. A change in the domain 
model (e.g., the addition of an operation on, “Student”, named “Get Coursework 
Marks”) feeds through into the code and then directly into the user interface. From 
a teaching perspective this helps to reinforce the idea that modelling is both about 
representing the real world and designing software. 

An important part of our teaching has been to identify specific issues that cause 
difficulties for students then provide specific, detailed guidance of how to ameliorate 
these difficulties. More specifically we have considered the difficulty of conducting 
a thorough business analysis before transitioning to design, the transition from a Use 
Case view to a behind-the-scenes view of the software architecture, the transition 
from design to implementation with specific attention being paid to the design of an 
interface that reflects the structure of the software. We have discussed these transitions 
in terms of patterns that capture good practice and the relationships between these 
patterns. 

We present the patterns in a manner based around the metaphor of different devel-
opment “rooms”. The first room is concerned with developing user personas it is adja-
cent to a room for developing an “analysis” model based on Soft Systems Method-
ology. This room contains patterns for developing a range of soft systems models 
including rich pictures, root definitions and conceptual models. An adjoining room 
contains patterns for making the transition from analysis to design by translating 
the analysis model into a Use Case Model with carefully structured documenta-
tion of each use case. The next room contains patterns for moving into physical



9 Best Practices for Teaching Information Systems Modelling 125

design and then into code. These include: “Develop a sequence diagram showing 
how domain classes may co-operate in the implementation of a use case”. This 
will involve ensuring that the detailed steps in our use case description relate to the 
messages being passed on the sequence diagram. A related pattern will explain how 
to assign operations to classes that map to messages on the sequence diagram. 

As mentioned above when a number of patterns are related to each other in this 
way we describe the result as a “pattern language”. We are therefore trying to develop 
a pattern language to support information systems modelling. We would argue that 
patterns are particularly suited to this purpose. They are descriptive, not prescriptive 
(unlike most detailed development methods). They capture expertise in an open-
ended format that lends itself to a “hypertextual” structure of resources with links 
between related patterns that can be explored without forcing a specific sequence 
of activities. The patterns can also be used as the basis for developing assignment 
specifications. We will say more on this latter topic in the closing sections of this 
chapter. 

9.5 Running the Module 

In light of the above discussion we have been able to propose the following guidelines 
for developing a module in this area: 

1. Design a portfolio-based assessment that can be completed in instalments each 
instalment being aligned to patterns used in teaching. For each pattern we specify 
deliverables that can be represented in an assessment grid. In the case of the 
patterns described above, one instalment could be a Use Case model that is 
consistent with earlier conceptual models and which is described in steps that 
map to messages in a sequence diagram. The patterns then become part of the 
explanation of what is required and are clearly linked to the feedback grid. 

2. Provide formative in-class surveys that encourage students to reflect on their 
understanding of key patterns. In the first example above can they provide an 
example of a many to many relationship between two classes that could be better 
represented by a third class? Can they see how the proposed solution would help? 
Can they apply this learning to the coursework case studies? 

3. Encourage students to discuss the individual patterns and how they may be 
applied to case studies before they complete the in-class surveys or work on the 
assignment. Students should be encouraged to identify new patterns and fit them 
into the pattern language or to improve the documentation of existing patterns. 

4. Collect data on a regular basis by inspecting samples of student coursework 
on a week-by-week basis and in-class surveys. Use the feedback to inform 
improvements to pattern descriptions and the identification of new patterns.



126 S. Wade

These four guidelines work together to steer the students through the assessment 
process by frequently monitoring their progress. Hopefully this will lead to contin-
uous improvement in the clarity of the coursework specification and the teaching 
materials. 

With respect to Step 4 above we employ a variety of different ways to collect evalu-
ative information. These include: a pre-course questionnaire that we distribute before 
teaching begins this is intended to establish the background knowledge and expecta-
tions of our students; a series of anonymous in-class surveys to test students under-
standing and self-confidence in applying the patterns under discussion; short reflec-
tive essays were made part of the coursework portfolio in which students were asked 
to give their personal opinions about the usefulness of the pattern-based approach 
and focus group discussions were held in class. 

In addition to the above, during marking, we carried out an analysis of the most 
common mistakes made by students in their coursework. We discovered a number 
of recurring mistakes and made changes to the pattern language to discourage these. 
A number of examples are given below.

• Inconsistencies between diagrams. For example operations appearing in the 
sequence diagram that are not present in the class diagram.

• Failure to use domain-specific vocabulary as presented in the case study materials. 
In the above example we referred to “Pathway” where others may have used the 
term “Course”. It is important that the language used in the models can be found 
in the user documentation.

• Operations that have ambiguous or misleading names. We have seen operations 
with names like “Update all” or “Reconsider” these names are almost meaningless 
to anyone but the original programmer.

• Database concepts (e.g. primary and foreign key dependencies) used in the domain 
model. The domain model is meant to be an abstract representation that might be 
used in the design of object oriented software or an ontology it is not a physical 
database design.

• Operations not supported by attributes or relationships. Some operations depend 
on the availability of connections to other classes or of data properties that must 
be included in the domain model.

• A lack of consistency between the SSM models and the Use Case Model. For 
example Use Cases that cannot be inferred from the activities in conceptual 
models. 

We continue to work on developing patterns that will steer students away from 
these types of mistake. We plan to present these via a website based on our “rooms” 
metaphor with hyperlinks between related patterns. We would argue that working in 
this way has encouraged us and our students to consider important aspects of infor-
mation systems design that are often overlooked in courses that teach Information 
Systems Modelling. A few of these are listed below:

• We encourage students to adopt multiple system viewpoints from different 
personas. The acknowledgment and exploration of these viewpoints emphasises



9 Best Practices for Teaching Information Systems Modelling 127

the important point that typically most systems have more than one purpose and 
many unexpected consequences.

• We are encouraging our students to consider the total problem situation and to be 
aware of the need to ensure that all, not just the most obvious, significant issues 
are addressed;

• Our approach is strongly goal-oriented. The central focus on Use Cases ensures 
that derived requirements are justified with respect to stated goals;

• All the techniques documented in our pattern language are well established and 
well tried. We haven’t presented patterns for anything that has not, in one form 
or another, proved useful to developers. We hope the manner of presentation is 
more effective than user manuals or detailed methodology documentation but the 
intention is not to present anything new but to organise and document the distilled 
wisdom of the many talented software engineers and systems analysts who have 
worked in this area over the years. 

9.6 Conclusion 

This paper has described our approach to teaching Information Systems Modelling 
over a number of years. We have described the approach as being built around 
the scaffold of a multi-method systems development framework which we have 
documented in the form of a pattern language. This basic structure has been tried 
and tested through a number of feedback mechanisms (including in-class surveys, 
focus group discussions and reflective essays) and a concordant assessment strategy. 
The results obtained through these feedback mechanisms have encouraged us to 
continuously refine our teaching materials and assessment strategies—we believe 
these changes have all been improvements. 

References 

Alexander C (1979) The timeless way of building. Oxford University Press, New York 
Ambler SW (1998) Software process patterns. Cambridge University Press 
Becker C, Betz S, Chitchyan R, Duboc L, Easterbrook S M, Penzenstadler B, Venters CC (2016) 

Requirements: the key to sustainability. IEEE Softw 33(1):56–65 
Blomkvist S (2002) The user as a personality: using personas as a tool for design. In: Position paper 

for the workshop ‘theoretical perspectives in human computer interaction’ at the interaction 
and presentation laboratory of the royal institute of technology, Sweden, September 3, 2002. 
Available at http://www.nada.kth.se/~tessy/Blomkvist.pdf 

Checkland P (1999) Soft systems methodology: a 30-year retrospective. Wiley, Chichester 
Evitts P (2000) A UML pattern language. Macmillan Technical, Indianapolis, Ind 
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-

oriented software. Addison Wesley, Reading 
Larkin MJ (2001) Providing support for student independence through scaffolded instruction. Teach 

except Child 34(1):30–34

http://www.nada.kth.se/~tessy/Blomkvist.pdf


128 S. Wade

Salahat M, Wade S (2009) A systems thinking approach to domain-driven design. In: The proceeding 
of UKAIS2009 conference, Oxford University, Oxford, UK 

Wade S, Salahat M, Wilson D (2012) A scaffolded approach to teaching information systems design. 
Innov Teach Learn Inf Comput Sci 11(1):56–70


	9 Best Practices for Teaching Information Systems Modelling
	9.1 Background
	9.2 Introduction
	9.3 The Pattern Language
	9.4 A Framework for the Pattern Language
	9.5 Running the Module
	9.6 Conclusion
	References




