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Abstract. Pattern lock strength meters designed for securing Android
devices are inconsistent in their metering, e.g., assigning higher scores
to weaker patterns. In this paper, we raise this inconsistency problem
by analyzing five existing pattern strength meters. We reveal that they
commonly miss some important visual features and even assign erroneous
weights to features. As a preliminary study toward a consistent pattern
strength meter in the future, we design a rigorous user study to identify
the visual features of a pattern that correspond to real-world users’ cri-
teria to score the strength of the pattern. We conducted an online survey
for 3,851 users to collect reliable labels for 625 patterns. The statistical
result of the user study sheds light on a pattern strength meter that
reflects the user’s visual perception with various visual features.

Keywords: Pattern lock · Pattern strength meter · Shoulder surfing
attack

1 Introduction

Android pattern lock, which is one of the authentication methods used to
protect a smartphone, originates from the earlier recall-based systems such as
Draw-A-Secret (DAS) [18] and Pass-Go [30]. A pattern lock user draws a pat-
tern shape on 3 × 3 grid in a touchscreen and enrolls it. When unlocking the
smartphone, the user only needs to draw the enrolled pattern. As a graphical
password, pattern lock utilizes the fact that graphical information is easier to
be remembered by humans than text information [5,28]. It is also preferred by
users because of its good error recovery [37]. Although the recent trend is using
a biometric authentication that has been developed newly, in this case, users
should adopt the pattern lock or PIN as a secondary authentication method.

Android pattern lock is one of the most common authentication methods for
smartphone [16,21]. It is reported in a previous study that about 40% of Android
users are using the pattern lock [35]. Furthermore, in our user study, we found
that 35.91% of Android smartphone users are currently using the pattern lock,
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Fig. 1. Proportion of current authentication method usage of survey participants

which accounts for the most among authentication schemes (see Fig. 1). Users
who have experience using the pattern lock comprised 93.35% of all participants.
This indicates that Android pattern lock still influences heavily protecting users’
smartphones.

Despite a number of smartphone users using Android pattern lock, a vari-
ety of security issues with the pattern lock have been raised. Theoretically, the
possible number of unique patterns in Android pattern lock is 389,112. It is a
tremendous amount but actual pattern usage differs from the theory. Users com-
monly use simple and usable but insecure patterns. This decreases the number
of patterns that an attacker should consider and makes the pattern lock vulner-
able to the guessing attack [27,32]. Moreover, as a simple pattern is easier to
be remembered by both user and attacker, it is easily exposed to the shoulder-
surfing attack [36]. Because the shoulder-surfing attack does not need any prior
knowledge about the pattern lock, it is more dangerous considering that anyone
near the user can perform the attack. Therefore, there needs equipment that
leads users to choose more complex and secure patterns to prevent two types of
attacks on the pattern lock.

From decades ago, there have been a lot of studies about password strength
meters as equipment to increase the security of user’s text password [13]. Against
the brute-force attack [13,14], the dictionary attack [8,9,13,19,33,34,39], and the
guessing attack [9], those existing works applied features such as Markov model
and entropy to their meters. The text password strength meters are deployed on
websites, encouraging users to choose more secure passwords [34]. Inspired by
the case of the text password, there have been several studies about a pattern
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strength meter to prevent shoulder-surfing attack and guessing attack [2,6,27,
29,32]. They extracted various features based on their own criteria, designed
a metric to measure the strength of a pattern, and performed user studies to
confirm the validity of their meters. They commonly concluded that pattern
strength meters can help choose more secure patterns. However, all of the existing
pattern strength meters have an inconsistency problem. In other words, they
have the possibilities that they estimate a simple pattern that is vulnerable to
attacks complex. Likewise, they might estimate a complex pattern that is robust
to attacks simple. Their inconsistencies can cause a fatal defect that they can
recommend a vulnerable pattern to users. Due to this reason, the existing pattern
strength meters are premature to be applied to public users.

In this paper, we conduct a preliminary study toward consistent pattern
strength meters. We first summarize five existing pattern strength meters [2,6,
27,29,32] and identify the reason for their inconsistency problem. They com-
monly miss some important features and assign improper weight values to used
features. Furthermore, they designed their meters from the subjective perspec-
tive of authors, not the real-world users’ perspective. We claim that features
relevant to users’ visual perception should be applied as much as possible to
the strength metering to solve the problem. In this respect, we raise a fun-
damental question: visual features of patterns correspond with the perception
of real-world users? We perform a large-scale online survey subjected to 3,851
android users to answer the question. In this process, various feature values of
patterns were measured and a clustering algorithm was applied to select 1,000
survey patterns. Through the statistical analysis of the survey result, we obtained
reliable strength scores of 625 patterns among 1,000 patterns. Our study result
implies that a future pattern strength meter based on abundant features and
their proper weights can clearly explain how human recognizes a pattern and
scores the strength of the pattern. In summary, this paper makes the following
contributions:

– We raise the inconsistency problem of the existing five pattern strength meters
through several pattern examples that are misestimated. We identify that the
reason for their problem is the lack of used features and improper feature
weights due to the subjective perspective.

– We perform a large-scale online survey for 3,851 android users (Sect. 3). Unlike
previous studies, 100 of our survey participants who responded to one pattern
can give the ground truth of the strength of the pattern. We also obtain
reliable strength scores of 625 patterns through statistical analysis.

– Further, we discuss solutions to resolve the problems and to measure an accu-
rate pattern strength (Sect. 4). We define requirements for a consistent pat-
tern strength meter. We also discuss how the survey result can be utilized to
construct the strength meter.
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2 Pattern Strength Meters

Despite of efforts of the previous works, the existing pattern strength meters
have an inconsistency in measuring the strength of a pattern. In other words,
they are possible to judge a weak pattern to be strong and a strong pattern to
be weak. This can lead to a serious problem in that those meters guide users
to choose weak patterns. In this section, we introduce the existing five pattern
strength meters [2,6,27,29,32], analyzing their inconsistency.

We first analyze an error caused by a single pattern meter. Figure 2 shows
error patterns that we found the existing meters measure erroneously. In
Figs. 2(a), (b), (d), and (e), the right pattern generally looks simpler than the
left one for human, but each meter concludes that the right pattern is much more
complex than the left one. In Figs. 2(c), the right pattern generally looks more
complex than the right one, but the Sun meter estimates similar complexities
for both patterns. We repeatedly sorted 389,112 patterns in ascending orders of
the five meters. We then extracted the Nth strong pattern in each existing meter
to identify erroneous patterns.

2.1 Existing Pattern Strength Meters

Uellenbeck Meter. Uellenbeck et al. [32] measured the security of a pattern
against the guessing attack, based on the hidden Markov model. Their pattern
strength metric based on an n-gram Markov model can be defined as follows.

P (c1, ..., cm) = P (c1, ..., cn−1) ·
m∏

i=n

P (ci|ci−n+1, ..., ci−1) (1)

In the above equation, cn indicates a 3-gram pattern sequence token,
P (c1, ..., cn−1) indicates an initial probability, and P (cn|c1, ..., cn−1) indicates
a transition probability. They collected user patterns of hundreds of participants
in the user study to collect the probability of each token.

It is more real to utilize probabilities from the usage distribution of real-world
users, but it is impossible to investigate the usage distribution of all 389,112 pat-
terns and all users. We, therefore, implemented their meter, defining the prob-
ability that the current dot moves to another dot as the transition probability.
From now on, we call Uellenbeck’s meter the Markov meter in this paper.

The major error we can find from the Markov model is that the security
measurement relies heavily on the number of dots in a pattern. This metric can
reflect the security against the guessing attack but cannot reflect the security
against the shoulder-surfing attack. In Fig. 2(a), the complexity ranking of the
right pattern in the Markov meter is higher than the left one. The right pattern
seems less secure than the left one because of the lack of features such as cross
point, the direction of segments, and the angle of segments. However, the Markov
meter does not consider those features and over-estimated the right pattern.
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Fig. 2. Error patterns caused by existing single pattern strength meters. Each meter
estimated the much larger strength score of the right pattern than the left one except
for the Sun meter. Sun meter estimated similar strength scores for both patterns. The
circle in the pattern denotes the starting point, and the asterisk in the pattern denotes
the endpoint.

Andriotis Meter : Andriotis et al. [2] utilized five pattern features and defined
conditions for each feature to increase a security score. The score increase con-
dition xi is as follows. 1) x1 is 1 if the starting point is not upper left, otherwise,
it is 0. 2) x2 is |P | − 5 where |P | is length of the pattern if |P | >= 6, otherwise,
it is 0. 3) x3 is 1 if the number of turns is more than or equal to 2, otherwise, it
is 0. 4) x4 is the number of knight moves. 5) x5 is the number of overlaps. The
final pattern score θ is defined with

θ =
5∑

i=1

xi. (2)

Figure 2(b) illustrates an example of the error of the Andriotis meter. In this
figure, the ranking of the left pattern and that of the right pattern is identical in
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the Andriotis meter, even though the left one seems visually more secure than
the right one for humans. From the perspective of the Andriotis meter, the left
pattern could not get the strength score from the starting point. The left pattern
also has several directions but got the additional score only by 1 because of
their policy. Furthermore, they missed noticeable features of the pattern such as
narrow angles and cross points. As a result, the Andriotis meter underestimated
the left pattern.
Sun Meter : Sun et al. [29] tried to apply a similar strength metric as for text
password to pattern lock. Using several pattern characteristics, they transformed
the traditional entropy equation to

PSp = Sp × log2(Lp + Ip + Op) (3)

In this metric, Sp, Lp, Ip, and Op indicate the number of points, the sum of
segments’ euclidean distance, the number of cross points, and the number of
overlaps, respectively.

There is concern that the Sun meter does not consider the direction and
angle of segments so patterns with those features can get low strength scores. In
addition, the number of points has a great influence since it is applied to true
value while other features are reduced with a log scale. The same weights for the
other three features can make long patterns get a high strength score easily. In
Fig. 2(c), the ranking of the left pattern and the right pattern is similar in the
Sun meter. The left pattern does not have noticeable features and seems simple.
Sun meter, however, overestimated the number of points and the length of the
pattern.
Song’s Meter : Song et al. [27] designed a function for pattern strength meter,
which is combined from three pattern features considering both guessing attack
and shoulder-surfing attack.

MP = 0.81 × LP

15
+ 0.04 × NP + 0.15 × min(IP , 5)

5
(4)

They extracted a feature that had not been extracted by other existing
approaches before. LP is sum of segments’ vertical and horizontal length, NP is
the ratio of non-repeated sub-patterns, and IP is the number of intersections.
The repetition of the same segments makes a pattern seem simple to users and
increases guessability. The weights of the three features were initialized to 0.33
in common. They updated their weights as the above equation through a user
study.

They assigned a too-large weight to the pattern length but a small weight
to the sub-pattern feature. In Fig. 2(d), the ranking of the left pattern is lower
than the right pattern in Song meter, while the left pattern seems more complex
for humans. Song meter over-estimated the right pattern since they assigned a
large weight to euclidean distance. They also underestimated the left pattern
and reduced its ranking improperly since they missed narrow angles of segments
of the pattern.
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Bier’s Meter : Bier et al. [6] concentrated on the directional feature of segments.
Their pattern strength metric is as below

m(P0, d1d2...dk) = (1 − p(P0))(1 − αk)
1
3k

s(k)∑

i=1

w(di). (5)

Given k segments, di indicates ith segment. p(P0), α, w(di) indicate weights
for starting point, the sensitivity of the number of points, and ith segment,
respectively. They assigned larger weights for diagonal segments than vertical
and horizontal segments.

Bier meter is missing important features such as euclidean distance, cross
points, overlap, and angle of segments. In Fig. 2(e), the ranking of the left pat-
tern is lower than the right pattern in the Bier meter. The left pattern was
underestimated even though its many turns and overlap increase the complex-
ity. Bier meter also over-estimated knight move of the right pattern, increasing
its ranking unnecessarily.

2.2 Common Problem of Pattern Strength Meters

We additionally found the common error cases from the five existing meters.
We could identify their common problem from those cases. Figure 3 depicts two
patterns that the five meters commonly under-estimated or over-estimated. In
Fig. 3(a), compared with the right pattern, the left pattern seems much more
complex. This example represents that the existing meters commonly overlook
the angle and density of the left pattern. Meanwhile, in Fig. 3(b) illustrates
an opposite example. In this figure, compared with the left pattern, the right
pattern seems much simpler. We can conclude that the existing meters overly
concentrated on pattern features such as the length, and the number of points.

Fig. 3. Common error patterns caused by five existing pattern strength meters. All of
the existing meters estimated the smaller strength score of the left pattern of (a) than
the right one. In addition, they estimated the larger strength score of the right pattern
of (b) than the left one.
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3 Our Study

In this section, we perform a user study based on a survey to identify whether the
strength scores of patterns measured by visual features correspond with those
of real-world users. In the following subsections, we explain how we designed,
performed, and analyzed the survey and also explain how we created the pattern
strength scores.

3.1 Survey Pattern Selection

The ideal approach is collecting labels of patterns as many as possible from
real-world users. However, it is impossible to ask for all of 389,112 patterns to
users. We need to choose a part of those patterns to be included in the training
dataset. The chosen patterns should be able to represent other patterns and
create objective data. If patterns have more points and become more complex,
people may not be able to answer their accurate strengths. For this reason, we
use patterns whose number of points does not exceed six for this user study. We
found that 34,792 patterns satisfy this criterion. We still have too many patterns
to be considered so we grouped similar patterns among them into clusters.

We utilized scikit-learn [24], the Python-based open source machine learning
library, for pattern clustering. We used kmeans++ among the available algo-
rithms. We used 29 visual features, which are extractable from a pattern itself,
in Fig. 4 for clustering. Each feature has a different scale so feature values are nor-
malized from 0 to 1 by the min/max scaler. Intersections make lines of a pattern
more densely such that the pattern gets more complex. Therefore, we increased
the weight of the intersection ten times because we thought that intersections
have significant importance to pattern strength.

We chose representative patterns (i.e. centroids), that will be displayed to
respondents in the survey, from 1,000 clusters. It is difficult for a respondent to
answer all 1,000 patterns, so we need to make them answer for the proper num-

Fig. 4. A total of 29 visual features used for pattern clustering. For the frequency of
vectors (left bottom in the figure), each direction of vectors is an independent feature.



Towards Consistent Pattern Strength Meters with User’s Perception 89

Fig. 5. Example patterns that describe an intersection (i.e., cross point) and overlapped
lines

ber of patterns to obtain an objective answer. Therefore, we created 40 survey
groups, limiting the number of patterns a respondent can answer to 25. There are
simple (i.e. weak) patterns and complex (i.e. secure) patterns among the chosen
patterns. For respondents to answer from a weak pattern to a secure pattern, we
created five temporary pattern complexity groups and let the respondents answer
for all complexity groups. The respondents are asked to answer five patterns for
each complexity group.

We sorted 1,000 patterns based on our own criteria to determine which
complexity group they belong to. We considered that any features that have
a large value significantly affect the pattern strength, so we sorted the patterns
in ascending order of feature values. The order of the priority of features is the
number of unique directions, the sum of intersections and overlaps, the number
of points, intersections, overlaps, and the total euclidean length. Patterns are
firstly sorted in ascending order of the number of directions. When two patterns
have the same value, the pattern with the smaller sum of intersections and over-
laps, which is the next priority feature, is considered simpler than the other.
We divided the sorted patterns into five groups of the same size, then assigned
the first 200 patterns into complexity group 1 and the last 200 patterns into
complexity group 5.

3.2 Survey Design

We have 40 survey groups through the result of clustering. 25 patterns are
assigned to each survey group. We set 100 respondents for each survey group and
we planned to recruit a total of 4,000 respondents. We expected that 100 samples
of a pattern are enough to derive the ground-truth of the strength score. The
respondents were limited to Android smartphone users located in the United
States. We used Amazon Mechanical Turk where we can accommodate a lot of
participants to request our surveys. The questionnaire design for each survey
group is identical to each other but the only difference is in the shape of the
patterns. To display the pattern shape, we printed a point sequence of a pattern
as an image. One questionnaire contains two main survey sections. Both survey
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Fig. 6. The number of participants and used data size for each survey group of user
study

sections are used to calculate the label of a pattern. The organization of a survey
is as follows.

Survey Section 1 consists of five questions. Each question is related to one com-
plexity group and shows five patterns in the group. Respondents should watch
the patterns and answer the complexity ranking of the patterns. The ranking
of patterns in one question must be different from each other. In this survey
section, we want to identify the detailed differences in scores among patterns in
the same complexity group.

Survey Section 2 consists of 25 questions. Each question shows a pattern and
respondents should answer the objective complexity score, ranging from one to
five, of the pattern. Score one means the pattern is the weakest, and score five
means the pattern is the most secure. In this section, five questions are assigned
for each complexity group. We want to identify the objective score in this section,
that is not related to complexity groups. It is possible for the same respondent
to make bias by answering the same pattern in both sections. Therefore, we
deployed Section 1 patterns of the even survey group in Section 2 of the odd
survey group. In the same way, we deployed Section 1 patterns of the odd survey
group in Section 2 of the even survey group.

A total of 3,851 respondents were recruited as the result of 40 survey groups.
A lot of respondents participated in the initial phase of survey groups, but
their participation became slow such that some groups could not recruit over
100 respondents. There were a variety of the age of respondents, ranging from
teenagers to 60s, and their education level. The survey group that recruited the
most respondents had 136 respondents, and the group that recruited the least
respondents had 55 respondents. On average, each survey group recruited 96.275
respondents.



Towards Consistent Pattern Strength Meters with User’s Perception 91

We did not use all of the respondent’s data. As the label of training patterns
must be measured by the reliable labeling method, we used only the reliable
ones among all data. We regarded the data of respondents who gave an answer
that makes no sense as noise and rejected them. For instance, some respondents
answered the most complex pattern as the simplest, and vice versa. We also
rejected the data of randomly answered respondents. The number of respondents
and used samples are illustrated in Fig. 6. The number of total used samples
for labeling was 3,257 over 40 survey groups. The survey group with the most
samples had 116 samples, and the group with the least samples had 44 samples.
On average, each survey group had 81.425 samples.

3.3 Strength Score Measurement

In this step, we measure the strength score of the patterns used in the survey.
Although we utilize both survey sections to determine the strength of a pattern,
they have different purposes and structures. In this respect, we obtain scores
of a pattern using different methods for each survey section and then combine
two scores. Survey Sect. 1 results in the relative score of a pattern compared to
the other four patterns in the same complexity group. For the conversion from
a relative score to the absolute value, a score range of five complexity groups
should be defined. Therefore, we first analyze the result of survey Sect. 2 to
define their range. Fortunately, we identified that there is a statistical difference
among pattern complexity groups so we can consider those groups are separated.
However, we cannot assure that the grouping result is definitely objective. In the
real world, the most complex pattern in the Nth group may be more complex
than the simplest one in the N+1th group. For this reason, we permit overlap
of the range of two complexity groups to some degree.

We calculated the objective score of Sect. 2 by averaging the responses of
all respondents who answered in the same pattern. The score range of each
complexity group is determined by the minimum/maximum Sect. 2 scores in the
group. Same as Sect. 2, we calculated the Sect. 1 score by averaging all responses
of a pattern. The scale of the Sect. 1 score changes when the relative Sect. 1 score
is converted to the objective score. Given a pattern P , its complexity group G,
its Sect. 2 score S2, and its relative Sect. 1 score S1, the equation to obtain the
objective Sect. 1 score S1′

P is defined as

S1′
P =

(max(S2
G) − min(S2

G))
4

× (S1
p − 1) + min(S2

G). (6)

mim(S2
G) and max(S2

G) means the minimum and maximum score of G.
(max(S2

G)−min(S2
G))

4 means the interval between two adjacent objective scores.
The relative score 1 of Sect. 1 is converted to the objective score min(S2

G). The
relative score 5 of Sect. 1 is converted to max(S2

G). The relative score 2, 3, and 4
is converted to objective scores based on the score interval of G. In conclusion,
the equation of combining Sect. 1 score S1′

P and Sect. 2 score S2
P to measure the
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Fig. 7. Mean pattern strength score of pattern complexity groups of user study. Each
color of line describes a survey group number.

pattern strength label Lp of a pattern P is defined as

LP =
√

(S1′
P )2 + (S2

P )2. (7)

3.4 Survey Results

We make sure that the five complexity groups over 40 independent survey groups
match people’s perspectives and that the difference in scores between the com-
plexity groups is significant. If our grouping contains an error, it leads to an
error in the design of the questionnaire and the survey results become diffi-
cult to analyze. We confirmed this by conducting a statistical analysis based on
Mixed Factorial ANOVA. We eliminated 15 survey groups during the statistical
test, we only labeled the strength scores of patterns in the remaining 25 survey
groups.

The normality which is the basic assumption of ANOVA analysis was estab-
lished with more than 30 survey groups. The homogeneity which is another basic
assumption of ANOVA analysis wasn’t established since the sample sizes of some
surveys were too small or too large to satisfy homogeneity of variance. The 1st,
2nd, 12th, 13th, 14th, 21st, 29th, 31st, and 35th survey groups made this prob-
lem, so we excluded those survey groups to satisfy homogeneity of variance.
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Table 1. Within-Subjects effect test

Source Type3 sum
of square

Degree of
freedom

Mean square F value P value

Pattern group 6348.427 3.681 1724.597 4661.218 .000

Pattern*Survey
group

276.939 88.347 3.129 8.456 .000

Error (Pattern
group)

2699.420 7295.954 .370

Table 2. Within-Subjects contrast test

Source Type3 sum
of square

Degree
of free-
dom

Mean square F value P value

Pattern group 5917.302 1 5917.302 12680.546 .000

Pattern
*Survey group

71.927 24 2.997 6.422 .000

Error (Pattern
group)

924.889 2982 .467

Levene’s test of equality of error variance showed no difference in all pattern
groups based on median (p-value > 0.05). Meanwhile, as there was a significant
mean difference among the remaining 31 survey groups (p-value < 0.025), we
identified that the 4th, 19th, 20th, 36th, 37th, and 40th survey groups had a
large difference in mean among groups by conducting LSD post-analysis that
is sensitive to the average difference. We removed the results of these survey
groups and made the remaining survey groups have no mean difference (p-value
> 0.05).

Mixed Factorial ANOVA analysis suggested that the pattern complexity
group did not satisfy the sphericity which is the basic assumption of Mixed
Factorial ANOVA (p-value < 0.05). Nevertheless, we assumed that the spheric-
ity was ensured because the Greenhouse-Geissser value was close to 1. Table 1
showed that the mean difference among pattern complexity groups was signifi-
cant (p-value > 0.05). Also, from Table 2, which is the result of the contrast test,
we found that the difference was significant in linear models (p-value < 0.05).
As shown in Fig. 7, the complexity of the pattern group is upward. Therefore,
through the survey result, we identified survey groups that have no difference
from other groups and confirmed that there is a linear upward difference among
pattern complexity groups. In addition, we also found that the pattern complex-
ity of those patterns measured by our approach follows the visual perception of
real-world users.
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4 Discussion

Through the analysis of error cases of the existing pattern strength meters iden-
tified in Sect. 2, we define their two main problems. First, each of them is missing
at least one visual feature which affects the safety of a pattern. The strength
of text passwords can be represented by simple features. On the other hand,
the strength of patterns must be represented with more complex visual features.
We showed that, in Sect. 2, incorporating used and missing features of existing
meters can reenact the criteria of real-world users to evaluate patterns. For more
accurate metering, we can consider further features such as Markov model [32],
repeating sub-patterns [27], or the angle of two lines.

The second problem of existing pattern strength meters is that they assigned
wrong weights to their features due to the intervention of the author’s subjective
perspective. Song et al. [27] adopted a machine learning model, but its weights of
features were initialized by the author. Even though the strength of our survey
patterns was accurately derived, we cannot manually measure the strength of
all existing patterns. Therefore, we suggest the strength of a pattern should be
measured by the machine learning model alone rather than by applying some-
one’s opinion to assign accurate weights for various features. Deep learning is a
promising solution to extract latent features. DNN consists of layers with neu-
rons. Each neuron of different layers are connected by weights and biases (i.e.,
parameters). The topology of DNN can be designed freely. A sophisticated DNN
can solve a difficult problem such as a non-linear problem. We believe that DNN
can extract the latent features from the perspective of a human.

Meanwhile, the machine learning model requires a ground-truth for training.
The strength scores of 625 survey patterns are a reliable ground-truth because
they were measured by multiple users and evaluated by the statistical test. If we
deploy a regression model, the model learns the appropriate weights of features
from the label of survey patterns. The model then calculates the strength of the
remaining patterns with feature values of the patterns and weight parameters of
the model.

5 Related Work

5.1 Security of Android Pattern Lock

Android pattern lock has a security issue in that users prefer to use only a few
pattern spaces to draw actual patterns within the theoretical limits of pattern
space [2,32]. There is a trade-off between security and usability according to the
complexity of lock patterns [29]. However, users tend to select the simple pattern
which is easily stolen and replicated for usability rather than security. Various
types of attacks targeted to android pattern lock have been proposed, such as
guessing attacks [3,10,27], shoulder surfing attacks [22,31], a smudge attacks [4],
a video-based attack [41,42], and a thermal attack [1]. Such attacks have a
common ground that they are performed via a leakage of pattern shapes [25],
where simple patterns are more vulnerable to those attacks. In this study, we
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focused on guessing attack and shoulder-surfing attack which are more feasible
in real-world.

Some previous works proposed some modifications of existing schemes includ-
ing pattern lock to prevent the leakage of graphical passwords [11,17,38,43].
They focused on an increment of resistance against only one specific attack.
However, they could not deal with other attacks they do not consider while more
than two attacks that target the Android pattern lock can coexist in the real
world. Moreover, in general, they could not guarantee a significant improvement
in security or they reduced the usability of their schemes.

As the essential motivation of attacks on graphical authentication is to crack
the shape of private passwords, the behavior-based authentication leveraged not
only private passwords but also user behavior collected by embedded sensors in a
smartphone to prevent those attacks [7,12,15,23,26,40]. Especially, Ku et al. [20]
applied the behavioral approach to android pattern lock. They turned a private
pattern into a public one by displaying the pattern to multiple users. They used
only user’s behavior information to distinguish users. As a consequence, they
could remove existing threats on the traditional android pattern lock. However,
this system is still hard to be accepted by public users who are firmly using
android pattern lock which.

5.2 Password Strength Meter

One of the methods to offer a secure password authentication system for users
is maintaining the current scheme and recommending for them to use secure
passwords [19]. Text password policies had been studied to create passwords
that are robust against guessing attack. Policies were created based on LUDS
formulation that counts lower and uppercase letters, digits, and symbols while
the policies depend on different websites using passwords as an authentication
method [19,39]. However, the LUDS formulation had problems of usability and
ineffectiveness against guessing attack [39].

To resolve this problem, studies about password meters have begun [34]. Ur
et al. [33] implemented a meter that scores a password by combining various
heuristics related to a neural network and created data-based text feedback.
Castelluccia et al. [9] implemented an adaptive password strength meter (APSM)
that estimates password strength using the Markov model. It was accurate on
the guessability of a password and robustness against other attack models. Some
studies proved that password meters are helpful for password creation [14,33].
Users who utilize a password meter create longer passwords than those who do
not utilize the meter, and passwords created with help of the meter displaying
a visual bar are slower to be cracked than those without the meter [14,34].

5.3 Pattern Strength Meter

There are five previous studies that are most relevant to our work [2,6,27,29,32].
They developed pattern strength meters that improve the security of android
pattern lock by assessing the strength score of a pattern and encouraging users to
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use secure patterns. Uellenbeck et al. [32] utilized the Markov model to measure
the guessability of a pattern. Although they did not consider shoulder-surfing
attack, we included Markov probability in our feature set because we consider
guessing attack as well as shoulder-surfing attack. The other four studies focused
on security against shoulder-surfing attack. They established their metrics to
calculate the visual complexity of a pattern. Various numerical features such
as starting point, length, directions, cross points, and overlaps were included in
their metrics. They have two main problems that cause inconsistency in pattern
metering. First, they included only few features in their metrics so they could
not fully reflect the user’s visual perception. As a solution for the first problem,
we combined most of their features into our feature set and also included new
features (i.e., angles). Second, except Song et al. [27], they assigned the wrong
weights to their features because of their subjectivity. Song et al. [27] initialized
feature weights and updated their weights by regression. However, they collected
a label of a pattern from a limited number of users. As a result, their labels could
not represent the ground-truth and they assigned wrong weights to features
as well. We collected reliable strength scores of patterns, from large-scale user
survey, that can also be used for training a further strength meter as the labels.

6 Conclusion

As smartphone contains users’ private data more than before and android pat-
tern lock becomes a target of various attacks, the need for novel equipment that
protects the smartphone from those attacks is continuously increasing. We pro-
posed a novel pattern strength meter that reflects the user’s visual perception,
overcomes the inconsistency problem of existing pattern strength meters and
eventually encourages users to create more secure patterns. Based on various
visual features of a pattern, the proposed pattern strength meter can score the
accurate robustness of a pattern against a guessing attack and a shoulder-surfing
attack. We performed a large-scale online survey of android users. From the sur-
vey, we could obtain the ground-truth of the user’s perspective about a pattern
and identified that complexities of patterns measured by our features follow the
visual perception of real-world users. We are considering future work on the
pattern strength meter with some improvements toward the ground-truth of the
strengths of all patterns.
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