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Preface

The 25th International Conference on Information Security and Cryptology (ICISC
2022) was held from November 30 – December 2, 2022. This year’s conference was
hosted by the KIISC (Korea Institute of Information Security and Cryptology) and NSR
(National Security Research Institute).

The aim of this conference is to provide an international forum for the latest results
of research, development, and applications within the field of information security and
cryptology.This year,we received69 submissions andwere able to accept 24papers at the
conference. The challenging review and selection processeswere successfully conducted
by program committee (PC) members and external reviewers via the EasyChair review
system. For transparency, it is worth noting that each paper underwent a blind review
by at least three PC members. For the LNCS post-proceedings, the authors of selected
papers had a few weeks to prepare their final versions, based on the comments received
from the reviewers.

The conference featured two invited talks, given by Elisa Bertino and Matthias J.
Kannwischer. We thank the invited speakers for their kind acceptance and valuable
presentations. We would like to thank all authors who submitted their papers to ICISC
2022, as well as all PC members. It was a truly wonderful experience to work with such
talented and hardworking researchers. We also appreciate the external reviewers for
assisting the PC members. Finally, we would like to thank all attendees for their active
participation and the organizing members who successfully managed this conference.
We look forward to seeing you again at next year’s ICISC.

November 2022 Seung-Hyun Seo
HwaJeong Seo
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See-In-The-Middle Attacks
on Blockciphers ARIA and DEFAULT

Jonghyun Park1(B) and Jongsung Kim1,2

1 Department of Financial Information Security, Kookmin University,
Seoul, Republic of Korea

{mmo330,jskim}@kookmin.ac.kr
2 Department of Information Security, Cryptology, and Mathematics,

Kookmin University, Seoul, Republic of Korea

Abstract. See-In-The-Middle (SITM) is an analysis technique that uti-
lizes side-channel information for differential cryptanalysis. The SITM
attack exploits side-channel leakage in the middle round of blockcipher
implementations. The blockcipher ARIA proposed at ICISC 2003 is a
Korean national standard, and the blockcipher DEFAULT proposed at
Asiacrypt 2021 offers proctection against differential fault analysis. In
this study, we propose SITM attacks on the ARIA-128, 192, 256 and
DEFAULT. Consequently, it is demonstrated that for these blockciphe r
based on look-up-table implementations and no masking technique SITM
attacks are possible with practical attack complexities.

Keywords: ARIA · DEFAULT · Side-channel analysis · Differential
cryptanalysis · SITM

1 Introduction

Differential cryptanalysis is a representative mathematics-based cryptographic
analysis technique [5]. Side-channel analysis is a powerful attack technique
against cryptographic implementations [7]. Many methods have been proposed
to utilize various types of side-channel information such as power consumption
and electromagnetic emissions of devices for attacks [1,8]. These techniques are
used to evaluate the security of cipher algorithms and they represent an essential
security criterion that must be fulfilled in the cryptographic design process.

The side-channel assisted differential plaintext attack (SCADPA) proposed
at DATE 2018 is an analysis technique that utilizes side-channel information
for differential analysis [6]. While SCADPA targets only bit-permutation based
blockciphers, the see-in-the-middle (SITM) technique proposed at TCHES 2020

This work was supported by Institute for Information & communications Technol-
ogy Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-
00520, Development of SCR-Friendly Symmetric Key Cryptosystem and Its Applica-
tion Modes).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-H. Seo and H. Seo (Eds.): ICISC 2022, LNCS 13849, pp. 3–16, 2023.
https://doi.org/10.1007/978-3-031-29371-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29371-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-29371-9_1
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has been extended to target substitution-permutation network (SPN) blockci-
phers [4]. The SITM analysis technique utilizes the power trace information of
blockciphers in which partial rounds are not implemented with masking tech-
niques for differential cryptanalysis. By using this attack, it is possible to deter-
mine the appropriate number of rounds by applying the partial first or higher-
order masking technique when implementing the blockcipher, and this can reduce
the cost of the masking technique. Currently, the AES, SKINNY, and PRESENT
attacks with SITM techniques have been presented [4,10,11].

Contributions

In this paper, we present the results of SITM attacks against the blockciphers
ARIA-128, 192, 256 and DEFAULT. The targets of these attacks are look-up-
table (LUT) implementation based blockciphers. The results demonstrate that
these LUT implementation based blockciphers to which no masking technique
is applied are susceptible to SITM attacks with practical attack complexities.
Our associated attack complexities are summarized in Table 1. In this table,
depth refers to a round position for measuring a power trace through side-
channel observation. These attacks are the first SITM attacks against ARIA and
DEFAULT.

Table 1. Summary of SITM attack complexities on ARIA and DEFAULT

Blockcipher Key# Depth Data Time Memory Ref

ARIA 128 2, 3 4, 5 215.12 215.12 210.02 Section 3

192 2, 3 4, 5 215.12 215.12 210.02 Section 3

256 2, 3 4, 5 215.12 215.12 210.02 Sect. 3

DEFAULT 128 3 210 210 215 Section 4

Key# is the key size and the unit of memory is byte.

2 Background

2.1 BlockCipher ARIA

ARIA proposed at ICISC 2003 is a Korean national standard [9]. ARIA encrypts a
128-bit plaintext by using a 128-, 192-, or 256-bit masterkey (MK) and processes
12, 14, and 16 rounds, respectively. For convenience, we label the bytes in the
ARIA state column-wise from left to right, as follows:

⎡
⎢⎢⎣

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

⎤
⎥⎥⎦ .
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The round function of ARIA is composed of substitution layer (SL), diffusion
layer (DL), and addroundkey (ARK). In the SL, an 8-bit S-box is applied to
the 128-bit state, and four types of S-boxes are used. There are two types of
SL, and they are used alternately in different rounds. DL multiplies the 16×16
binary matrix with the input data (Figs. 1 and 2).

Fig. 1. Substitution layer of the ARIA Fig. 2. Diffusion layer of the ARIA

ARK XORs the ith roundkey ki to the state. ARIA uses the whitening key.
The key schedule of the ARIA comprises the initialization part and the roundkey
generation part. In the initialization part, a 3-round feistel cipher is used. The
feistel cipher is identical to the 3-round ARIA except for the roundkey. This
cipher uses a fixed constant instead of a roundkey as follow.

– C1 = 0x517CC1B727220A94FE13ABE8fA9A6EE0
– C2 = 0x6DB14ACC9E21C820FF28B1D5EF5DE2B0
– C3 = 0xDB92371D2126E9700324977504E8C90E

During the feistel cipher encryption process, W0 ∼ W3 are generated. We denote
the odd round be Fo, the even round be Fe and the ith byte of key as key[i]. The
detailed key schedule of the ARIA-128 is as follows:

1. key = masterkey || 0128

2. CK1 = C1, CK2 = C2, CK3 = C3.
3. KL = key[0..15], KR = key[16..31]
4. W0 = KL
5. W1 = Fo(W0, CK1)⊕ KR
6. W2 = Fe(W1, CK2) ⊕W0

7. W3 = Fo(W2, CK3) ⊕W1

– k0 =W0 ⊕ (W1⋙ 19), k1 =W1 ⊕ (W2⋙ 19)
– k2 =W2 ⊕ (W3⋙ 19), k3 =W3 ⊕ (W0⋙ 19)

We describe the generation process of these roundkeys because only k0 ∼ k3 are
used for key recovery. The key schedule of ARIA-192, 256 is similar to the above.
Please refer to [9] for details.
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2.2 BlockCipher DEFAULT

DEFAULT proposed at Asiacrypt 2021 offers protection against differential fault
analysis [2], and it is similar to GIFT-128 [3], except for S-box. DEFAULT encrypts
a 128-bit plaintext by using a 128-bit masterkey and processes 80 rounds. This
cipher has a sandwich structure composed of DEFAULT-LAYER and DEFAULT-
CORE.

The round function of DEFAULT-LAYER comprises SubCells, PermBits, Add-
Constants, and AddRoundKey. SubCells applies a 4-bit S-box to the 128-bit
state, and two types of S-box are used. The PermBits and AddConstants func-
tions are identical to those used in GIFT-128. AddRoundKey XORs the 128-bit
ith roundkey to the state. This cipher does not use a whitening key, and 1st

roundkey is the masterkey (Fig. 3).

Fig. 3. Structure of DEFAULT

DEFAULT-CORE is similar to DEFAULT-LAYER, except for the S-box and
number of rounds. The number of rounds in DEFAULT-LAYER is 28, and whereas
that in DEFAULT-CORE is 24.

– DEFAULT-LAYER
S-box = [0x0, 0x3, 0x7, 0xE, 0xD, 0x4, 0xA, 0x9, 0xC, 0xF, 0x1, 0x8, 0xB,
0x2, 0x6, 0x5].

– DEFAULT-CORE
S-box = [0x1, 0x9, 0x6, 0xF, 0x7, 0xC, 0x8, 0x2, 0xA, 0xE, 0xD, 0x0, 0x4,
0x3, 0xB, 0x5].

Because we do not use a key schedule in key-recovery, we omit a description of
this. Please refer to [2] for details.

2.3 SITM Overview

An SITM attack uses differences in the power traces generated during the encryp-
tion process to filter plaintext pairs and utilize them for differential cryptanalysis.
The following definitions are used in the description of SITM.

– Power trace:
flow of power from a device equipped with a cryptographic function.
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– Difference trace:
difference between two power traces.

– Differential trail:
expected trail through which a specific difference propagates when different
plaintexts are encrypted.

– Differential pattern:
differential trails.

– Active S-box:
S-box with non-zero input difference on differential trail (or pattern).

– Non-active S-box:
S-box with zero input difference on differential trail (or pattern).

Fig. 4. Example of difference trace in AES SubBytes operation

An SITM attack uses the difference trace generated during the encryption
of different plaintext pairs as the key idea. Assume that different plaintext pairs
have gathered the power traces generated during encryption. It can be predicted
that if the input values match each other during S-box operation at the same
location, the two power traces are similar. If not, the two power traces are
different. This principle can be used to select plaintext pairs that satisfy the
differential trail (or pattern) expected by the attacker. Figure 4 is a graph of
difference trace generated from the AES SubBytes operation used in [10]. The
logic in which the non-active S-box is clearly visible in the Fig. 4 is used for SITM
attacks. The secret key can be recovered by utilizing the selected plaintext and
differential transition. The detailed key-recovery process is described in Sects. 3
and 4.

3 SITM Attacks on ARIA

3.1 ARIA Differential Patterns

We used Eight differential patterns for the attack. These patterns are depicted
in Fig. 5. For differential patterns, it is probable that two active bytes have the
same difference after the SL1 operation. We proceed with the following steps to
find the differential pattern with the optimal probability.
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1) For two different S-boxes, find all pairs of input differences in which the
possible candidates for output differences match each other.

2) For each pair of input differences satisfying the above, all the probabilities of
differential trails whose output differences coincide with each other after the
SL1 operation are summed.

3) The input difference pair with the highest probability is used for the differ-
ential pattern.

If these 2 active bytes are identical, the state after DL1 operation must comprise
6 active bytes. This is because the branch number of DL is 8. These cases are
summarized in Table 2.

Because SL applies different S-boxes to each state row, the probability of each
differential pattern is different. In this study, we investigated all input differences
to identify the differential pattern with the highest probability, and the results
are as follows.

– Probabilities of
differential patterns 1 to 4: 2−7.64 differential patterns 5 and 6: 2−7.62 differ-
ential patterns 7 and 8: 2−6.98

3.2 Precomputation

For key-recovery in SITM, we prepare the input value candidates of the active
byte positions in SL1 as follows.

1. Calculate the differential distribution table (DDT) for four types of S-boxes
used in SL.

Table 2. DL operation from 2 active bytes to 6 active bytes.

No Input difference Output difference

1 00 00 00 01 00 00 01 00

00 00 00 00 00 00 01 01

00 00 00 00 01 00 00 00

00 01 00 00 01 01 00 00

2 00 00 00 02 00 00 02 00

00 00 00 00 00 00 02 02

00 00 00 00 02 00 00 00

00 02 00 00 02 02 00 00

...
...

...

255 00 00 00 FF 00 00 FF 00

00 00 00 00 00 00 FF FF

00 00 00 00 FF 00 00 00

00 FF 00 00 FF FF 00 00
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2. By using each DDT, find the output difference where the input difference
0x90 and 0x25 can be the same difference after the SL1 operation.

3. Store all the input values of the input differences for the output differences
found. Let these values be InList.

The other differential patterns can be used to obtain InList through a similar
process. For each of the patterns, the number of InList is different as follows.

Fig. 5. Eight differential patterns of ARIA (For each pattern, the green bytes denote
specific differences, yellow bytes denote equal differences, red bytes denote truncated
differences, and all colored bytes denote non-zero differences).
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– The numbers of InList for
differential patterns 1 to 4: 328
differential patterns 5 and 6: 332
differential patterns 7 and 8: 520

3.3 SITM Application

The proposed SITM attack is divided into two processes: 1) finding a plaintext
pair that satisfies the differential pattern and 2) key-recovery. In this section, an
attack on differential pattern 1 is described as an example, and it can be easily
transformed into attacks on other differential patterns.

Finding a plaintext pair that satisfies the differential pattern

– This process requires the following steps:
1. Generate a random plaintext P1
2. Generate another plaintext P2 satisfying the input difference of differen-

tial pattern 1 through P1.
3. Encrypt P1 and P2 to collect the power traces of the SL2 operation.
4. Calculate the difference trace of the resulting power trace pair.
5. Check whether the difference trace in the SL2 operation is only active-S-

box in 2nd, 3rd, 7th, 8th, 9th, and 13th bytes. If confirmed, collect P1.
6. Repeat steps 1 ∼ 5 until P1 is collected.

Because the probability of differential pattern 1 is 2−7.64, we can predict that
P1 will be collected with 28.64 encryption.

Key-recovery

– This process requires the following steps:
1. Stores all the 328 values obtained by XORing the 7th and 12th bytes of

P1 with the InList. Let these values be KeyList.

Fig. 6. Logic for generating a KeyList([i] is the byte (or cell) numbering).

2. Randomly select a value from InList.
3. XOR the selected value with the one from KeyList to generate the 7th

and 12th bytes of plaintext P1. Let the used key candidate be keyu.
4. Generate random but fixed values for remaining bytes of plaintext P1.
5. Generate another plaintext P2 that satisfies the input difference of dif-

ferential pattern 1 through P1.
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Fig. 7. Process for generating plaintext P1.

6. Check whether the difference trace in the SL2 operation is only active
S-box in 2nd, 3rd, 7th, 8th, 9th, and 13th bytes. If confirmed, collect keyu.

7. Repeat step 1 ∼ 6 until keyu is collected by using the other KeyList

(Figs. 6 and 7).

The 7th and 12th bytes of the value that P1 and k0 are XORed with are
included in InList by differential transition. Therefore, the right key is included
in keyList. Consequently, the 7th and 12th bytes of k0 can be recovered by the
above process.

All bytes of k0 can be recovered through a similar attack process by using the
remaining differential patterns. After recovering k0, we can repeat the attack to
recover k1 by choosing plaintexts that have pairwise differential patterns begin-
ning from DL1 and observe leakage in round 3. With this method, it is possible
to recover k0 ∼ k3. If the masterkey recovery method described [12] is used,
the ARIA masterkey can be recovered only with k0 ∼ k3, and this applies to
ARIA-128, 192, and 256.

1. A = k0 ⊕ (k1⋙ 19) =W0 ⊕ (W2⋙ 38)
2. B = k2 ⊕ (k3⋙ 19) =W2 ⊕ (W0⋙ 38)
3. A ⊕ (B⋙ 38) =W0 ⊕ (W0⋙ 76)

If we guess the most significant 2-bits of W0 ⊕ (W0⋙ 76) as 0 or 1, we get 4
candidates for W0. W0 can be used to obtain W1 according to the key schedule
logic. By using W0 and W1, we can get the masterkeys of ARIA-128, 192, and
256.

Experiment. We experimented with the finding a plaintext pair process 5000
times, assuming that there is a side channel tool to observe the power trace. From
this experimental result, we obtain the average number of plaintexts used for each
differential pattern and the probability that the right key is included in keyList

generated with collected plaintexts. Table 3 is the result of the experiment.
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Table 3. Experimental results of finding a plaintext pair for each differential pattern.

Pattern 1 2 3 4 5 6 7 8

Plaintext pair 27.64 27.66 27.63 27.63 27.64 27.6 26.95 26.94

Right key# 5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

Right key# is probability that the right key is included in keyList.

Attack Complexity. For ARIA-128, 192, and 256, the attack requires 4 × {4 ×
2 × (27.64 + 328) + 2 × 2 × (27.62 + 332 + 26.98 + 520)} ≈ 215.12 plaintexts, the
memory space of 2 × 520 ≈ 210.02-bytes to store the 2-byte key candidates, the
time complexity of 215.12 and side-channel observation in rounds 2 ∼ 5.

4 SITM Attack on DEFAULT

4.1 DEFAULT Differential Trails

We used the eight differential trails shown in Fig. 8 for the attack. Each differen-
tial trail, consists of truncated differential trails and differential trails. Because
DEFAULT-LAYER does not use the whitening key, if the 128-bit value before
1st round AddRoundKey is determined, the plaintext can be generated through
partial decryption. Our attack randomly generates a 128-bit value before the 1st

Table 4. DDT of S-box used in DEFAULT-LAYER.

Input difference Out difference

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 8 0 0 0 0 0 8 0 0 0 0 0 0

2 0 0 0 0 0 0 0 8 0 0 0 0 0 8 0 0

3 0 0 0 0 8 0 0 0 0 0 0 0 0 0 8 0

4 0 0 0 0 0 0 0 8 0 0 0 0 0 8 0 0

5 0 0 0 0 8 0 0 0 0 0 0 0 0 0 8 0

6 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0

7 0 0 0 8 0 0 0 0 0 8 0 0 0 0 0 0

8 0 0 0 0 0 0 8 0 0 0 0 0 8 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

A 0 8 0 0 0 0 0 0 0 0 0 8 0 0 0 0

B 0 0 8 0 0 0 0 0 8 0 0 0 0 0 0 0

C 0 8 0 0 0 0 0 0 0 0 0 8 0 0 0 0

D 0 0 8 0 0 0 0 0 8 0 0 0 0 0 0 0

E 0 0 0 0 0 0 8 0 0 0 0 0 8 0 0 0

F 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0
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round AddRoundKey, and therefore the truncated differential trail depends on
that value. Differential trails have a probability of 2−4 that the number of active
S-boxes is 1 after the 2nd round operation. In addition to the input differences
0x3, 0xB, 0xA, and 0xB, other input differences can be used in the attack with-
out changing the probability and differential trails, and the differences can be
easily obtained from the DDT (Table 4).

4.2 Precomputation

For key recovery in SITM, we prepare input the value candidates of the active cell
positions in 2nd round SubCells. The process of preparing input value candidates
for a differential trail is as follows.

1. Calculate the DDT for the S-box used in SubCells.
2. Store all input values such that input differences 0x3, 0xB, 0xA, and 0xB

become output differences 0x4, 0x2, 0x1, and 0x8 after SubCells operation.
Let these values be InList.

The number of InList for the differential trails is 212.

4.3 SITM Application

Our SITM attack process is divided into two processes: 1) finding four plaintext
pairs that satisfy the differential trail; and 2) key-recovery. This section describes
the attack on a differential trail 1 in Fig. 8 as an example, which can easily be
transformed into attacks on other differential trails.

Fig. 8. Eight differential trails of DEFAULT with probability 2−4 (Each differential
trail is indicated by a different color, and from left to right are differential trailx 1
to 8).
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Finding Four Plaintext Pairs that Satisfy the Differential Trail

– This process requires the following steps:
1. Generate a 128-bit random value before the 1st round AddRoundKey. Let

this value be P ′.
2. Partially decrypt P ′ to convert it into plaintext P1.
3. Generate another plaintext P2 that satisfies the input difference of the

differential trail through P1.
4. Encrypt P1 and P2 to collect the power traces of the 3rd round SubCells

operation.
5. Calculate the difference trace for the power trace pair.
6. Check whether the difference trace in the 3rd round SubCells operation

is only active-S-box in the 0th cells. If confirmed, collect P ′.
7. Repeat steps 1 ∼ 6 untill four P ′ are collected. Each time a P ′ is collected,

the input difference of the differential trail must be changed.

Because the probability of the differential trail is 2−4, we can predict that four
P ′ will be collected in 27 encryption.

Key-recovery

– This process requires the following steps:
1. For each P ′, store all 212 values obtained by XORing the 0th ∼ 3rd cells

of P ′ with InList. Let the values stored in the four P ′ be Set1 ∼ Set4.
2. Find duplicate elements in Set1 ∼ Set4 (Fig. 9).

Fig. 9. Process of key-recovery.

The 0th ∼ 3rd cells of the values that the P ′ and 1st roundkey are XORed
with are included in InList through differential transition. Therefore, the right
key is included in Seti. The Seti is a subset of size 212 of the full set of size 216.
Therefore, when these sets are intersected, it can be predicted that the number
of key candidates will decrease to 216−4−4−4−4 = 1. Consequently, the 0th ∼ 3rd

cells of 1st roundkey can be recovered by the above process. The entire cell of
the 1st roundkey can be recovered through a similar attack process by using the
remaining differential trails, and the 1st roundkey is masterkey.

Experiment We experimented with the finding four plaintext pairs process 5000
times, assuming that there is a side channel tool to observe the power trace. From
this experimental result, we obtain the average number of plaintexts used for
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Table 5. Experimental results of finding four plaintext pairs for each differential trail.

Trail 1 2 3 4 5 6 7 8

Plaintext pairs 25.99 26.0 26.0 25.99 26.00 25.99 26.0 26.0

Right key# 5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

5000
5000

Right key# is probability that the right key is included in keyList.

each differential trail and the probability that the right key is included in keyList

generated with collected plaintexts. Table 5 is the result of the experiment.

Attack Complexity. For DEFAULT, the attack requires 8 × 2 × 4 × (24) = 210

plaintexts, the memory space of 4 × 2 × 4096 = 215-bytes to store the four 2-
byte key candidates, the time complexity of 210, and side-channel observation in
round 3.

5 Conclusion

In this study, we performed SITM attacks against the Korean blockcipher ARIA-
128, 192, and 256 with practical attack complexity. To counter these attack,
ARIA should be applied with at least a 4-round partial masking implementation.

Moreover, we performed an SITM attack against the blockcipher DEFAULT
with practical attack complexity. To counter this attack, DEFAULT should be
applied with at least a 6-round partial masking implementation.

In conclusion, an SITM attack is a strong attack against LUT implementation
based blockciphers, and implementation using the bitslice technique or masking
technique, instead of LUT, is necessary to counter.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
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Abstract. When keys are small or parts thereof leak, key-recovery
attacks on symmetric-key primitives still pose a plausible threat. Key
stretching is one well-known means to throttle potential adversaries,
where stretching a key by s bit means that a key-recovery attack has
to perform min{2k−1, 2k−λ+s−1} operations on average for λ bit infor-
mation leakage. However, typical explicit key stretching requires also the
defender to pay for the stretch operations.

The usual assumption is that a surrounding encryption scheme does
not increase the key-recovery security of its internal primitives. This
work challenges this assumption by considering the structure of popular
encryption schemes. In particular, message lengths may be non-negligible
in settings such as full-disk encryption or archiving, where the adversary
can obtain only long messages. Surprisingly, the question of whether a
surrounding encryption scheme has only a negligible impact on key recov-
ery seems to have remained uninvestigated. Therefore, it is interesting
to study if “implicit” key stretching may come for free as an inherent
property of popular schemes.

We define an encryption scheme as “fully key-stretching-secure” if an
adversary that sees plaintext-ciphertext pairs of at least m blocks each
must perform at least m primitive calls for testing a key candidate. Using
a similar definition of affine modes as Chakraborti et al. in JMC 2018, we
systematically explore common encryption schemes with respect to their
key-stretching security. In total, we consider five classes of (1) online,
(2) SIV-like, (3) parallelizable two-pass (EME-like), (4) sequential two-
pass (CMC-like), and (5) three-pass (HCTR-like) encryption schemes. By
modeling them as affine modes, we can identify all considered encryp-
tion schemes key-stretching-insecure, i.e., one needs only O(1) primitive
calls for testing a key candidate. However, for the insecure schemes from
types (4) and (5), namely for EME-, CMC-, and HCTR-like schemes, we
propose minor tweaks to ensure full key-stretching security.

Keywords: Symmetric-key cryptography · Provable security ·
Encryption
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1 Introduction

Key Recovery and Message Lengths. In symmetric-key cryptography, key-
recovery attacks on primitives are a research topic of their own. Besides time-
memory-data trade-offs, cryptanalysis on round-based primitives aims to iden-
tify non-ideal properties in the primitive that can be used for key-recovery
attacks thereafter. For higher-level schemes that employ keyed primitives, the
implicit assumption is that no key-recovery attacks on the primitive better than
exhaustive search with the best known time-memory-data trade-offs exist. Thus,
schemes are usually not expected to add any further security in this regard.

Explicit Key Stretching. Key-derivation functions are cryptographic prim-
itives for deriving cryptographic keys from potentially low-entropy secrets. By
guaranteeing a high time-memory-data product, they can stretch an initial seed
K0 of only k′ bit of entropy to a key K of k = |K|-bit entropy. A simple way is
to iterate a function Ki ← F i(Ki−1) for m iterations to have K = Km, for com-
puting C ← EK(M). In this manner, the naive memoryless key recovery needs
min{2k,m·2k′} primitive calls. Though, this process also throttles the legitimate
seed owner when deriving the key. Thus, it appears desirable to identify further
entropy-stretching means that do not throttle the owner.

Message Lengths. Using already present long messages may be one possi-
ble means. Some settings restrict messages (or message segments) to a non-
negligible minimal length. For example, Full-Disk Encryption schemes typically
process fixed-sized chunks of data whose lengths are fixed to multiples of 512 or
4096 bytes each. Optical-Transport Networks (OTNs) use longer message frames
of 64 kiB [27], which corresponds to 212 AES blocks. Moreover, long-term archive
backup frames usually consist of (multi-)MiByte-size chunks. In such settings,
the minimum length has not been considered a security-enhancing factor yet.
Thus, it is interesting to evaluate if a significant minimal length could increase
the security of a scheme.

In addition to settings that enforce a minimal message length by a surround-
ing standard, the sender and receiver can simply choose longer messages. While
active adversaries could naturally decide to introduce shorter messages, known-
plaintext attacks are often preferable over their chosen plain- and ciphertexts
counterparts, for an adversary might want to remain passive and undetected,
can only receive but not send, or is otherwise thwarted from choosing inputs, e.g.
by further means of authentication. Then, it must resort to a known-plaintext
attack and is limited to exploiting message material obtained from eavesdrop-
ping. In all these settings, whenever the minimum lengths of observed materials
are non-negligible, a study of its effect on key recovery is worth an evaluation.

Attack Model. Imagine a key-recovery attack on an encryption scheme Π.
An adversary observes or queries q plaintext-ciphertext pairs (M i, Ci), where
each message M i = (M i

1, . . . ,M
i
mi) consists of a minimal number of m =

min{m1, . . . ,mq} blocks each. It may obtain additional information, e.g. in the
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form of λ ≤ k bits of leakage from the employed secret keys. The adversary’s
goal is to recover the key, which requires the ability to map at least parts from
one of the plaintexts M i to parts of its corresponding ciphertext Ci. Given
a plaintext-ciphertext pair for a keyed secure black-box primitive and λ bits
of effective information about the secret key, a key recovery should succeed in
O(2k−λ) operations and require half of that number of primitive computations on
average. The surrounding cryptographic scheme may add complexity, i.e., may
increase the adversary’s computational effort for testing keys. If the amount of
necessary computations approaches m · 2k−λ, we say that Π provides log2(m)
bits of implicit key stretching.

Contribution. This work introduces implicit key stretching as a robustness
property of cryptographic schemes. Since the property is equivalent to a lower
bound on the number of blocks to be processed for a cipher for an m-block
message, we use a query complexity as a measure for the number of necessary
primitive calls for obtaining a relation for filtering key candidate. We call a tran-
script of plaintext-ciphertext queries m-block-minimal if all plain- and cipher-
texts consist of at least m blocks. We say that a scheme provides full implicit
key stretching if at least m primitive computations must be performed for each
key candidate. After showing why it must be trivial for online schemes, we study
well-known existing encryption, authenticated encryption, and tweakable enci-
phering schemes that we categorize as:

– SIV-like constructions: Deoxys-II [15], Farfalle [4], and SIV [24],
– EME-like constructions, i.e., parallelizable two-pass encryption schemes: AEZ

[13], EME [10,12], and EME∗[8,9],
– CMC-like constructions, i.e., sequential two-pass encryption schemes: CMC

[11], and the two-pass construction that reversed the block order in the middle
layer from the paper “Turning Online Ciphers Off” [2], that we call TOCO
as an hommage to the paper, and

– HCTR-like constructions: HCTR [28], PIV [26], and RIV [1].

Before our study of existing schemes, we developed some intuitive assump-
tions on full implicit key stretching:

– For online schemes, it is impossible to achieve.
– For schemes that combine two layers of an online scheme with a mixing layer

in the middle, it depends on the middle layer whether they can achieve full
implicit key stretching or not.

– CMC- and EME-like schemes provide it due to their middle layers.
– Three-pass schemes can achieve full implicit key stretching.

Given those initial assumptions, we studied the schemes above to identify their
security in terms of our notion and the pivotal properties. From our model, we
can derive several results. We could confirm our former two assumptions, i.e.,
the impossibility of full implicit key stretching as a property of online schemes.
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Table 1. Comparison of existing schemes and here-proposed schemes with minor mod-
ifications. •/– = Feature is present/absent. Dependency for messages of ≥ m blocks.

2-pass 3-pass This work

Aspect A
E
Z

C
M
C

D
eo
xy
s-
II

E
M
E

F
ar
fa
lle

S
IV

T
O
C
O

H
C
T
R

P
IV

R
IV

C
M
C

′

E
M
E

′

H
C
T
R

′

P
IV

′

R
IV

′

T
O
C
O

′

Redundancy • – • – • • • – – • – – – – • •
Parallelizeable • – • • • • – • • • – • • • • –

Primitive-query complexity 4 4 2 4 2 2 4 2 2 2 O(m)

For two-pass schemes, we illustrate thatCMC-like schemes can possess full implicit
key stretching. The sequential nature of each encryption pass of two-pass schemes
is necessary (although not sufficient), with a special middle layer.

Interestingly, our assumption that CMC and EME-like schemes would pro-
vide full implicit key stretching was contradicted. Moreover, our fourth intuition
was falsified: we show that all considered HCTR-like schemes have small con-
stant implicit key stretching due to their usage of an encryption scheme with an
efficiently invertible primitive. However, we demonstrate that they can possess
both full parallelizability and full implicit key stretching if their middle layer
uses a non-efficiently invertible function instead of a permutation. We propose
to salvage some well-known three-pass HCTR-like schemes from minimal modi-
fications. Moreover, we illustrate how to add a sufficient middle layer to CMC, a
nonlinear middle layer to EME, and half of a middle layer to AEZ to achieve full
implicit key stretching. Table 1 summarizes our results, where we denote slightly
modified schemes by an apostrophe, i.e., EME′is the modified variant of EME.

Outline. In the following, we detail the notions and the setting we consider.
Thereupon, we study existing modes concerning whether or not they implicitly
stretch the primitive key. We show that the additional complexity that the mode
adds to key recovery is at best a small multiple for most of them in Sect. 4.
We derive variants of the previous modes we considered with full implicit key
stretching and reevaluate their properties in Sect. 5. We discuss and conclude in
Sect. 6.

2 Preliminaries

2.1 General Notations

We will use lowercase letters x, y for indices and integers, uppercase letters X,Y
for binary strings and functions, calligraphic uppercase letters X ,Y for sets and
spaces, and bold letters A for matrices (and, abusing the notation a little to be
consistent to the quasi-standard notation, also bold letters for adversaries). We
write F2 for the finite field of characteristic 2 and F

n
2 for an n-element vector of

elements in F2, or bit strings. We will use F
n
2 and {0, 1}n interchangeably in this
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paper. X ‖Y denotes the concatenation of binary strings X and Y , and X ⊕ Y
for their bitwise XOR, that is, addition in F2. We indicate the length of X in
bits by |X| and write Xi for the i-th block. Moreover, for nonnegative integers
x < 2n, we use 〈x〉 ∈ F

n
2 for their encoding as an n-bit string. We denote by

X1, . . . , Xm � X that X1, . . . , Xm are chosen uniformly at random from the
set X . We define Func(X ,Y) for the set of all functions F : X → Y, Perm(X ) for
the set of all permutations π : X → X , and P̃erm(T ,X ) for the set of tweakable
permutations π̃ : T × X → X over X with tweak space T .

Primitive. For a block space X and a vector of values X = (X1, . . . , Xj) ∈ X j

for any non-negative integer j, we define by (X1, . . . , Xj)
X←− X the injective

splitting of X into blocks Xi ∈ X for all i. For m ∈ N, X ≤m =def
⋃m

i=0 X i. For
q ∈ N, we define [q] =def {1, . . . , q} and [0..q] =def {0, . . . , q}.

A block cipher is a family of functions E : K×X → X such that for each key
K ∈ K, EK(·) is a permutation over a block space X . A tweakable block cipher
˜E : K × T × X → X adds a tweak, i.e., for each key K ∈ K and tweak T ∈ T ,
˜ET

K(·) is a permutation over a block space X . We define BlockCipher(K,X ) as
the set of all block ciphers E : K × X → X and TBlockCipher(K, T ,X ) as the
set of all tweakable block ciphers ˜E : K × T × X → X . In this work, a block is
an element of X = F

n
2 . An m-block-message M = (M1, . . . ,Mm) is an m-tuple

M ∈ X m. We write Mi..j = (Mi,Mi+1, . . . ,Mj) as a subsequent set of blocks.
Moreover, we write matrices as A with r rows and c columns of elements

from B, Ai,j for the element at Row i and Column j, and Ai,∗ and A∗,j for the
i-th row and the j-th column, respectively. For i ∈ {0, . . . , r − 1}, we call Li the
shift matrix by i rows, where Lj,k = δj,k+i, where δj,k is the Kronecker delta.
Moreover, we define the half-diagonal matrix HD where HDr,c = 1 if and only
if c = 
(r + 1)/2� and 0 otherwise. For a vector X = (Xi, . . . , Xx), we denote by
wt(X) = |{Xi : Xi �= 0}| the number of non-zero entries of X.

2.2 Online Ciphers

Let F ∈ Func(X m,Yr). For i ≤ r, we define F (i) : X m,Yi to return the first i
elements of the result of F . That means for all inputs X = (X1, . . . , Xm) ∈ X m

and Y = (Y1, . . . , Yr) = F (M), F (i)(M) = (Y1, . . . , Yi).

Definition 1 (Online Function [3]). Let n,m be positive integers. Let F :
X m → X m be length-preserving. We call F online if there exists a function
G : X m → X such that for every M ∈ X m and every i ≤ m, it holds that
F (i)(M) = G(M1, . . . ,Mi). A keyed function F : K×X m → X m is called online
if FK is online for all K ∈ K.

Definition 2 (Online Permutation [3]). Let F be an online function. Fix
M1..i−1 = (M1, . . . ,Mi−1) ∈ X i−1. We define PF

M1..i−1
(Mi) =def F (i)(M1, . . .,

Mi−1, Mi) for all Mi ∈ X . F is an online permutation for i ≥ 1 and all M1..i ∈
X i−1 if PF

M1..i−1
is a permutation over X . We use OPerm(X m) as the set of all

online permutations over X m.
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Definition 3 (Online Cipher [3]). Let P and F be as above. An online cipher
Π = (E ,D) for E : K × X ≤m → X ≤m is a length-preserving cipher such that for
all i ≤ m, all M = (M1, . . . ,Mi−1) ∈ X i−1, Mi ∈ X , and K ∈ K, it holds that

EK(M1, . . . ,Mi) =
(

PFK (M1) , PFK

M1
(M2) , . . . , PFK

M1..i−1
(Mi)

)

.

We call a cipher Π offline if Π is not online. We define OCipher(K,X ) for
the set of all online ciphers with a non-empty key set or space K that operates
on blocks of space X . Note that ciphers can be “almost” online, e.g. online-but-
last [2], where for each M = (M1, . . . ,Mm) ∈ X m, the cipher is online for all
computations to Mm−1 but not for the processing of Mm. Analogously, one can
define online-but-first, where for each M = (M1, . . . ,Mm) ∈ X m, the cipher is
online for all computations from M2 through Mm, but not for processing M1.

By non-efficiently invertible functions, we mean exponentially hard-to-invert
functions in the sense of [7]. Thus, we assume that no probabilistic polynomial-
time algorithm A has significant advantage in inverting them.

3 Model

3.1 Affine Modes

Our definitions of affine modes are based on those by [6]. Let E : K×B → B be a
keyed permutation. We model the encryption schemes Π[EK ] = (̂E [EK ], ̂D[EK ])
that we consider as alternating sequences of affine layers Ai and nonlinear keyed
encryption modes Ei. Chakraborti et al. defined the layers Ei : B≤m → B≤m

as ECB modes, i.e., given inputs X ∈ Bm, each encryption layer Ei encrypts
Yi = EK(Xi) for i ∈ [m], where we assume arbitrary nonnegative integers m.
This choice allows us to later determine the number of nonlinear computations
by the number of blocks that must be computed over all layers Ei. This follows
the model by Chakraborti et al. [6].

Note that this model does not cover all possible constructions: online ciphers
[3] can be more complex. The i-th call to the primitive may depend on all inputs
to and outputs from the previous calls; one can also use the input to the primitive
as a tweak. We consider an extended model later, where we add tweaks to the
individual encryption passes and assume tweakable primitives.

Our goal is similar to that of the work by Chakraborti et al., i.e., to find the
number of nonlinear computations where attacks are possible in terms of calls to
EK . We differ in the definition of what we call an attack, or rather a key-filter
condition. Similar to their work, we model Π as

Ar ◦ Er−1 ◦ Ar−1 ◦ · · · ◦ E1 ◦ A1 .

The number of encryption modes in the model of schemes represents the number
of passes. We will focus on single-, two-, and three-pass modes, represented by

A2 ◦ E1 ◦ A1 ,

A3 ◦ E2 ◦ A2 ◦ E1 ◦ A1 , and
A4 ◦ E3 ◦ A3 ◦ E2 ◦ A2 ◦ E1 ◦ A1 ,
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respectively. Here, the affine layers Ai produce the inputs to layer Ei. The final
affine layer yields the ciphertext output. We denote by Ui and Vi the inputs to
and outputs from E1, i.e., Vi = EK(Ui); by Wi and Xi the inputs to and outputs
from E2 , Xi = EK(Wi); and by Yi and Zi the inputs to and outputs from E3:
Zi = EK(Yi). We define the encryption layers Ei ◦ Ai as online ciphers: they
are allowed to use previous outputs from E of the layer, which is necessary to
model modes such as CBC. Though, we define that they cannot use encryptions
of later blocks.

Restrictions. While we can try to use as general definitions as possible, overly
broad definitions may produce many instances with invalid or non-decryptable
data flows, e.g., that Ui in encryption direction may depend on Vi, although
Vi = EK(Ui) demands that Ui is defined before. Therefore, we focus on subsets
of plausible bijective constructions. We use the following notations:

– All-zero submatrices are denoted by 0.
– Non-strictly lower triangular submatrices use a single underline.
– Strictly lower triangular submatrices use a double underline.

Single-pass Modes are represented as

[

U
C

]

=

[

AM
1 AV

1 AL
1

AM
2 AV

2 AL
2

]

·
[

M V L
]�

,

where the submatrices AM
1 , AV

1 , AL
1 define the mappings of M , V , L to U ,

respectively, and the second row the similar mappings to C. Thus, A1,A2 ∈
Bm×(2m+κ), where κ is the number of words of the vector L. Similarly as Chakra-
borti et al., we say that L = (K, 〈1〉) contains a key-derived value for keyed linear
computations as well as a constant entry 〈1〉 ∈ B so that the modes are affine.
The modes must be decryptable uniquely. We defer the analogous definitions of
the decryption models for one through three passes to Appendix B.

Two-pass Modes are modeled as

⎡

⎣

U
W
C

⎤

⎦ =

⎡

⎣

AM
1 AV

1 0 AL
1

AM
2 AV

2 0 AL
2

0 AV
3 AX

3 AL
3

⎤

⎦ ·
[

M V X L
]�

We suggest a clearer equivalent representation, where we split AV
3 = AW

3 · AV
2 :

⎡

⎣

U
W
C

⎤

⎦ =

⎡

⎣

AM
1 AV

1 0 0 AL
1

AM
2 AV

2 0 0 AL
2

0 0 AW
3 AX

3 AL
3

⎤

⎦ ·
[

M V W X L
]�

.
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Three-pass Modes extend the model by denoting Xi = EK(Wi), Y = A3 ·
(M,V,X,K)�, Zi = EK(Yi), and C = A4 · (M,V,X,Z,K)�. Thus, we define
our model, where we already suggest a more readable representation that splits
AV

3 into AW
3 · AV

2 and AX
4 into AY

4 · AX
3 :

⎡

⎢

⎢

⎣

U
W
Y
C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

AM
1 AV

1 0 0 0 0 AL
1

AM
2 AV

2 0 0 0 0 AL
2

0 0 AW
3 AX

3 0 AZ
3 AL

3

0 0 0 0 AY
4 AZ

4 AL
4

⎤

⎥

⎥

⎦

·
[

M V W X Y Z L
]�

.

3.2 Rationale of Restrictions

In the following, we define two sets of restrictions.

Generic Restrictions. The definitions of single-, two-, and three-pass modes
above already contain a preliminary set of restrictions, similar to those in [6]:

– The submatrices AX
1 , AX

2 , AW
1 , AW

2 , AM
i , AV

i , for all i ≥ 3, are 0.
– For any modes, AV

1 is strictly lower triangular.
– For single-, two-, and three-pass modes, AV

2 , AX
3 , and AZ

4 are non-strictly
lower triangular. In general, the matrix that maps the outputs of the final
encryption layer to the ciphertext is non-strictly lower triangular.

Restrictions for Compositions from Online Ciphers. Moreover, we add a
second set of restrictions for constructions that are composed of online encryption
layers, in the spirit of [2,6]. This means, that

– For single-pass modes, the entire mode, A2 ◦ E1 ◦ A1, is an online cipher.
– For two-pass modes, A3 ◦ E2 and E1 ◦ A1 are online ciphers each.
– For three-pass modes, A4 ◦ E3, E2, and E1 ◦ A1 are online ciphers each.

Then, we employ the following restrictions for compositions from online
ciphers, where we represent single-, two- and three-pass modes by

[

U
C

]

=

[

AM
1 AV

1 AL
1

AM
2 AV

2 AL
2

]

·
[

M V L
]�

,

⎡

⎣

U
W
C

⎤

⎦ =

⎡

⎣

AM
1 AV

1 0 0 AL
1

AM
2 AV

2 0 0 AL
2

0 0 AW
3 AX

3 AL
3

⎤

⎦ ·
[

M V W X L
]� and,

⎡

⎢

⎢

⎣

U
W
Y
C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

AM
1 AV

1 0 0 0 0 AL
1

AM
2 AV

2 0 0 0 0 AL
2

0 0 AW
3 AX

3 0 AZ
3 AL

3

0 0 0 0 AY
4 AZ

4 AL
4

⎤

⎥

⎥

⎥

⎦

·
[

M V W X Y Z L
]�

,

respectively. The decryption definitions and restrictions follow naturally. Our
models, with indicated restrictions, are visualized in Fig. 5.
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3.3 Number of Nonlinear Computations

To obtain a key filter, an adversary tries to find an overdetermined equation
system. Thus, the task is to formulate the system so to find an overdetermined
subset of equations, given the knowns M , C, the known current key candidate
K, and values derived from K in the vector L. Let ̂U , ̂W , ̂Y denote the reduced
rows of U , W , Y Then, we find the number of primitive computations by the
weight of wt(U) in the equation system in single-, by wt(U)+wt(W ) in two- and
by wt(U) + wt(W ) + wt(Y ) in three-pass schemes. Given an encryption scheme
Π[EK ], qc denotes an upper bound of the query complexity, i.e., the maximal
number of primitive computations EK induced by an equation system.

4 Analysis of Modes

This section shows that online, SIV-like, CMC-like, EME-like, and HCTR-like
schemes lack full implicit key stretching; for the former two construction types,
it is impossible to achieve. Throughout this section, we assume that Π[EK ] is
an encryption scheme based on a block cipher E ∈ BlockCipher(K,B), where K
and B are a key and a block space, respectively, and K � K is a secret key.
An adversary is given a transcript τ = {M, C}, consisting of a set of q ≥ 1
messages M = {M i}i∈[q] and a set of their corresponding ciphertexts C = {Ci :
Ci ∈ B≥m}i∈[q] where Ci = Π[EK ](M i) for all i ∈ [q]. Π[EK ] is an encryption
scheme based on a block cipher E with a secret key K � K. We call τ m-block-
minimal if M i, Ci ∈ B≥m for all i ∈ [q] and positive integer m.

4.1 Online Schemes

Theorem 1. Let Π[EK ] ∈ OCipher(K,B) be an online cipher and τ an m-block-
minimal transcript for Π[EK ]. Then, we can build an equation system with query
complexity qc(Π[EK ]) = O(1).

Proof. For any multi-block plaintext-ciphertext pair (M,C) of M = (M1, . . .,
Mm), C = (C1, . . ., Cm) ∈ Bm where C = Π[E]K(M), it holds by definition of
an online cipher that C1 depends only on a constant amount of primitive output
blocks V1, . . . , Vc for some constant c ≥ 1. Thus, qc(Π) = O(1). ��

As a direct consequence of Theorem 1, schemes such as GCM [17], OCB
[16,23], OTR [19], or Duplex [5] cannot possess implicit key stretching beyond
constant query complexity. However, they can achieve limited key stretching
when used as higher-level schemes. Some schemes employ an online cipher for
their encryption that operates on a different block size than the internal primi-
tive. For example, OTR uses a two-round Feistel network with double blocks for
encryption. Thus, it employs a block cipher E ∈ BlockCipher(K,B) on a block
space that is half of that of its online cipher X = B2. This can be a wrapped
online cipher ̂Π = (̂E , ̂D) such as CHAIN [14] that operates on potentially large
segment spaces X , whereas each segment is processed individually by an offline
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cipher Π = (E ,D) with primitives that operate on smaller block spaces B. The
minimal number of primitive calls for obtaining a key-filter relation in ̂Π is then
upper bounded by the minimal number of primitive calls in Π.

4.2 Schemes with PRP-Based Counter Mode

The following filter is probably well-known, but may not have been formulated
as such. We state it here only for the sake of self-containment. Its relevance stems
from the widespread use of the counter mode in two- or three-pass encryption
and authenticated encryption schemes, such as SIV or HCTR. There, it usually
takes an additional secret (a pseudorandom secret initial value IV ∈ IV from a
space IV) as an input and employs a block cipher E as before. Let I ⊆ N0 be
an index space. Then, CTR[EK ]IV (M) encrypts as

[

U
C

]

=
[

0 0 AL
1

1 1 0

]

·
[

M V L
]�

, AL
1 =

[

1 1 1 · · · 1
0 1 2 · · · m − 1

]�
, and L = (IV, 〈1〉) .

Theorem 2 (Differential Filter of CTR Mode). Let CTR[EK ] denote the
counter mode above. Given a transcript τ with any message-ciphertext pair of
at least two blocks, qc(CTR[EK ]) ≤ 2.

Proof. Consider the reduced equation system with M = (M1, M2) and C = (C1,
C2). Given M , C, and the current candidate for K, the adversary can compute
U1 = E−1

K (M1 ⊕C1) and U2 = E−1
K (M2 ⊕C2), and obtains an |IV |-bit key-filter

from the equation system
[

0
0

]

=
[

1 0 1 0
0 1 1 1

]

·
[

U1 U2 IV 1
]�

.

��

The query complexity for counter-based schemes with invertible primitives,
such as Farfalle, HCTR, PIV, RIV, or SIV, is limited to two.

4.3 EME-like Schemes

In the following, we study EME-like schemes, e.g., EME+EME∗, EME2, or AEZ.
Such schemes ̂Π = (̂E , ̂D) are composed of two passes of an online cipher Π =
(E ,D) based on a primitive EK and A2. The online cipher is a variant of OCB.

Though, EME-like schemes possess a middle layer with at least one nonlinear
call. As a result, we model them as three pass schemes with an incomplete central
encryption layer E2. Given M = (M1, . . . ,Mm), we model the encryption as

⎡

⎢

⎢

⎣

U
W
Y
C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 0 0 0 0 AL
1

0 AV
2 0 0 0 0 AL

2

0 0 AW
3 AX

3 0 0 0
0 0 0 0 0 1 AL

4

⎤

⎥

⎥

⎦

·
[

M V W X Y Z L
]�
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with

AL
1 = AL

4 =
[

1 2 · · · 2m−1

0 0 · · · 0

]�
,

AV
2 =

⎡

⎢

⎢

⎢

⎣

1 · · · 1
0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥

⎥

⎥

⎦

, AV
3 =

⎡

⎢

⎢

⎢

⎣

0 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥

⎥

⎥

⎦

, AW
3 = AX

3 =

⎡

⎢

⎢

⎢

⎣

0 0 · · · 0
2 0 · · · 0
...

...
. . .

...
2m−1 0 · · · 0

⎤

⎥

⎥

⎥

⎦

.

Here, two neighboring non-initial (EME) and non-final (AEZ) blocks can be
used to construct an efficient filter with four nonlinear computations. Figures 1a
and 1b show the computations in EME and AEZ for necessary filters (the arrows
indicate computations).

Theorem 3. Let ̂Π[Π[EK ]] = (̂E [E [EK ]], ̂D[E [EK ]]) be an EME-like scheme as
defined above with an online cipher Π = (E ,D). Given an m-block-minimal
transcript τ , it holds that qc( ̂Π[EK ]) ≤ 4.

Proof. For EME-like schemes, we can denote the offset in the middle layer and
assume it to be an n-bit secret value L independent from K. Note that this
strictly renders the attack harder for the adversary since it can compute L,
given M , C, and K from m + 1 computations of EK(·). But our goal is to show
that we can spare those m + 1 calls to EK . We can define the computation of
non-initial blocks Ci from Mi and L, for some i ≥ 2, as:

⎡

⎣

U2..m

Y2..m

C2..m

⎤

⎦ =

⎡

⎣

1 0 0 0 0
0 1 0 0 AL

3

0 0 0 1 AL
4

⎤

⎦ ·
[

M2..m V2..m Y2..m Z2..m L
]�

,

where AL
3 =

[

2 22 . . . 2m−1
]� ·L. We can reduce the equation system by consid-

ering any subset of disjoint indices i, j ∈ [m] and obtain the equation system

Yi = Ei
K(Mi) + 2i−1L = Di

K(Ci) and Yj = Ej
K(Mj) + 2j−1L = Dj

K(Cj) ,

which leads to the filter relation

(2i−1)−1 · (Ei
K(Mi) + Di

K(Ci))
?= (2j−1)−1 · (Ej

K(Mj) + Dj
K(Cj)) .

This holds with probability one for the correct key candidate K, but with negli-
gible probability, for sufficiently large |B|, otherwise. Hence, a filter can be tested
with four (parallelizable) primitive computations. ��

A similar distinguisher can be given for AEZ. Similar to EME, we can also
model AEZ as a three-pass mode with an encryption layer in the middle, repre-
sented by a vector L:

⎡

⎢

⎢

⎣

U
W
Y
C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

AM
1 AV

1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 AZ

3 AL
3

0 0 0 0 1 0

⎤

⎥

⎥

⎦

·
[

M V W X Z L
]�

,
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M1 M2 M3

L1 2L1 22L1

L1 2L1 22L1

C1 C2 C3

ΣV

2L2 22L2

ΣY

EK EK EK

EK

EK EK EK

L2

V1

V2 V3

Y1

Y2 Y3

(a) EME.

M1 M2

Σ

C1 C2

Et,1
K

Et,2
K

Ec,1
K

Eb,1
K

Eb,2
K

(b) AEZ.

Fig. 1. Two non-initial blocks in the en- and decryption of EME can be used for a key
filter with four primitive calls. It holds that ΣV =

⊕m
i=2 Vi and ΣY =

⊕m
i=2 Yi. For

AEZ, a similar filter can be constructed from a non-final double block.

where AM
1 is the exchange matrix, AV

1 = AZ
3 = S1 (the lower shift matrix by 1

row down), and AL
3 = HD, i.e., the half-diagonal matrix. While AEZ introduces

m/2 additional nonlinear computations in the middle layer, reusing the middle
layer’s results opens an attack angle for an efficient key-candidate filter with
only four nonlinear computations.

Theorem 4. Let ̂Π[EK ] = (̂E [EK ], ̂D[EK ]) be AEZ. Given an m-block-minimal
transcript τ , it holds that qc( ̂Π[EK ]) ≤ 4.

Proof. We consider a non-final full double block, e.g., (M1,M2) that is mapped
to (C1, C2), for any message-ciphertext pair (M,C). An adversary can compute

V1 = Et,1
K (M2) + M1 V2 = Et,2

K (V1) + M2

W1 = Eb,1
K (W2) + C1 + L W2 = Eb,2

K (C1) + C2 + L ,

and obtains

(Et,1
K (M2) + M1) + (Eb,1

K (Eb,2
K (C1) + C2) + C1)

?= (Et,2
K (Et,1

K (M2) + M1) + M2) + (Eb,2
K (C1) + C2) ,

which holds with probability one for the correct key candidate K, but only with
negligible probability otherwise. Thus, the filter differs in the sense that AEZ
has a nonlinear middle layer.
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Algorithm 1. Filters for schemes with small qc.
11: function FOTR[E]Ki(M1, M2, C1, C2)
12: Y1 ← M1 ⊕ C1

13: Xi
1 ← E−1

Ki (Y1)
14: Y2 ← M2 ⊕ C2

15: Xi
2 ← E−1

Ki (Y2)

16: return Xi
1 ⊕ C2

?
= Xi

2 ⊕ M1

21: function FEME[E]Ki(M2, M3, C2, C3)
22: L ← EKi(0)
23: Xi

1 ← EKi(M2 ⊕ 2L) ⊕ E−1
Ki (C2 ⊕ 2L)

24: Xi
2 ← EKi(M3 ⊕ 4L) ⊕ E−1

Ki (C3 ⊕ 4L)

25: return 2Xi
1

?
= Xi

2(→ 2 · 2M
?
= 4M)

31: function FTOCO[Ẽ]Ki(M1, M2, Cm−1, Cm)

32: Xi
1 ← Ẽ0,0

Ki (M1)

33: Xi
2 ← Ẽ

M1,Xi
1

Ki (M2)

34: Y i
m−1 ← Xi

2

35: Y i
m ← (Ẽ

Y i
m−1,Cm−1

K )−1(Cm)

36: return Y i
m

?
= Xi

1

41: function FOCB[E]Ki(N , M1, C1)
42: Δ ← EKi(N)

43: return C1
?
= EKi(M1 ⊕ 2Δ) ⊕ 2Δ

51: function FSIV[E]Ki(IV , M1, C1)
52: Y1 ← M1 ⊕ C1

53: return EKi(IV )
?
= Y1

61: function FHCTR[E]Ki(M1, M2, C1, C2)
62: Y1 ← M1 ⊕ C1

63: Y2 ← M2 ⊕ C2

64: Xi
1 ← E−1

Ki (Y1)

65: Xi
2 ← E−1

Ki (Y2)

66: return Xi
1 ⊕ Xi

2
?
= 1

71: function FAEZ[E]Ki(M1, M2, C1, C2)
72: X2 ← Et,1

Ki(M1) ⊕ M2

73: X1 ← Et,2

Ki(X2) ⊕ M1

74: Y2 ← Eb,2

Ki(C1) ⊕ C2

75: Y1 ← Eb,1

Ki(Y2) ⊕ C1

76: return X1 ⊕ Y1
?
= X2 ⊕ Y2

4.4 SIV-like Schemes

Two-pass modes with only a single online encryption pass – i.e., a single online
layer that maps M to C and vice versa – can stretch the key implicitly only
as much as an online cipher can. This holds for all SIV-like schemes, such as
Deoxys-II, Farfalle, and (naturally) also for SIV. Such modes can be described as
shown in Fig. 2b:

1. First, the message is processed by a PRF F : IV ← FK1(M).
2. IV is used for encrypting CR ← EIV

K2
(MR) in an online cipher E .

3. Finally, any invertible transformation is used to derive CL ← EK3(IV ).

Note that EK3 may be the identity map, as is the case for SIV or Deoxys-II. The
final transformation must be invertible since decryption could not reconstruct
the IV otherwise. EK3 must not use the major part of the plaintext or ciphertext
since the scheme would consist of three passes otherwise.

We can model length-extending schemes like SIV as affine modes by adding
a value S to the output vector. Thus, IV ← EK(S), and L = (IV, 1). In the
following, we consider the combination of CBC-MAC with CTR mode:

⎡

⎢

⎢

⎣

U
S
W
C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 AV
1 0 0 0

0 (1, . . . , 1) 0 0 0
0 0 1 0 AL

3

1 0 0 1 0

⎤

⎥

⎥

⎦

·
[

M V W X L
]�

,

where

AV
1 =

⎡

⎢

⎢

⎢

⎣

0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎤

⎥

⎥

⎥

⎦

and AL
3 =

[

1 1 · · · 1
0 1 · · · m − 1

]�
.
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N A M

CV

FK1

K2

(a) SIV.

ML MR

CL CR

FK1

K2

EK3

IV

(b) Generic two-pass modes.

Fig. 2. Left: Schematic illustration of SIV-like schemes. Right: Illustration of gener-
alized two-pass modes, which cannot achieve full block-wise dependency.

Theorem 5. Let ̂Π[EK ] = (̂E , ̂D) be a SIV-like two-pass encryption scheme.
Given an m-block-minimal transcript τ , there exists a positive integer m such
that qc( ̂Π[EK ]) = O(1).

Proof. Choose any plaintext-ciphertext tuple (M,C) from τ . In decryption direc-
tion, there must exist a constant c1 such that the computation of a candidate
of IV depends on only c1 primitive calls, here, those in CL. Since EK2 is online,
the first block depends on only IV and a set of c2 primitive inputs to compute
C1 from M1 and IV . Thus, the claim follows. ��

Remark 1. Theorem 5 also implies that the generic compositions of Encrypt-
then-MAC, Encrypt-and-MAC, and MAC-then-Encrypt cannot provide implicit
key stretching with an online encryption scheme in our model. Moreover, a sim-
ilar statement follows for all schemes from [20]. Since those schemes release the
encryption of M , they would have to make the IV depend on the full message
or the full ciphertext in both encryption and decryption direction otherwise.

4.5 Constructions from Two Passes of Online Ciphers

Andreeva et al. [2] studied the security of ciphers composed of multiple stacked
layers of online ciphers. Assume a secure online cipher Π[ ˜EK ] ∈ OCipher(K,B)
with ˜E ∈ TBlockCipher(K, T ,B), T = B2, and K � K. While there exist various
secure sequential online ciphers from a TBC, we use TC2 [25] for description.

The Generic Single-Pass Online Cipher. We can model the generic single-
pass online cipher as an affine mode by introducing an additional vector T1 =
(T1,1, . . . , T1,m), where T1,i represents the tweak in the i-th primitive call; the
subscript one denotes the first encryption pass for generalizing to multi-pass
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modes later. For the generic scheme, we employ a two-part tweak T1,1 = (T1,1,1,
. . ., T1,m,1) and T1,2 = (T1,1,2, . . ., T1,m,2) to address the potential that both
inputs and outputs may be processed independently by the primitive. We define

⎡

⎢

⎢

⎣

U
T1,1

T1,2

C

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

AM
1 AV

1 AL
1

TM
1,1 TV

1,1 TL
1,1

TM
1,2 TV

1,2 TL
1,2

AM
2 AV

2 AL
2

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

M

·
[

M V L
]�

, with M =

⎡

⎢

⎢

⎣

1 0 0
1 0 0
0 1 0
0 1 0

⎤

⎥

⎥

⎦

for TC2.

The Generic Two-Pass Cipher. For the generic two-pass construction, E1 ◦
A1 and A3 ◦ E2 are online ciphers. The two-pass scheme follows the description
in Sect. 3.1 but adds vectors T2,1 and T2,1 for the second encryption pass

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U
T1,1

T1,2

W
T2,1

T2,2

C

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AM
1 AV

1 0 0 AL
1

TM
1,1 TV

1,1 0 0 TL
1,1

TM
1,2 TV

1,2 0 0 TL
1,2

AM
2 AV

2 0 0 AL
2

0 0 TW
2,1 TX

2,1 TL
2,1

0 0 TW
2,2 TX

2,2 TL
2,2

0 0 AW
3 AX

3 AL
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·
[

M V W X L
]�

.

We define AV
2 as the exchange matrix and AM

2 = AL
2 = 0. Thus, Wi = Vm+1−1

for i ∈ [m]. We call this construction TOCO as a reference to the paper title of
[2] and will show briefly that and why it lacks full implicit key stretching.

4.6 Attack on the Generic Two-Pass Construction

Theorem 6. Let Π[ ˜EK ] ∈ OCipher(K,B). Let A2 be the exchange matrix and
̂Π[Π[ ˜EK ]] = (̂E , ̂D) with A2 denote the TOCO construction. Then, given an
m-block-minimal transcript τ for arbitrary m ≥ 2, it holds that qc( ̂Π) ≤ 3.

Proof. For m = 1, the filter is trivial and needs only two calls to compute
from M1 to C1 or vice versa. Given a current key candidate K as well as any
plaintext-ciphertext pair (M,C) of m ≥ 2 blocks, the adversary can compute

Wm = ˜E
T1,1,0,T1,2,0
K (M1) , and Wm−1 = ˜EM1,Wm

K (M2)

and test on Cm
?= ˜E

Wm−1,Cm−1
K (Wm), which holds for the correct K but only

with probability about |B|−1 otherwise. ��

The same key-recovery filter also applies to a variant of TOCO with three
passes of an online cipher Π, where both A2 and A3 are exchange matrices. We
call this construction TOCO3. Though, this filter is not extendable to four or
more passes.
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M1
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V1
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EK

V2

M3

V3

EK

C1

EK

W1

C2

EK

W2

C3

W3

EK

(a) TOCO.

M1 M2 M3

C1 C2 C3

L L L

EK EK EK

EK EK EK

V1 V2 V3

W1 W2 W3

(b) CMC.

Fig. 3. Encryption with TOCO and CMC, for m = 3 message blocks each. For CMC,
it holds that L = 2(V1 ⊕ Vm) = 2(W1 ⊕ Wm).

Theorem 7. Let ̂Π[Π[ ˜EK ]] = (̂E [E [ ˜EK ]], ̂D[E [ ˜EK ]]) denote the TOCO3 con-
struction and let A2 and A3 be exchange matrices. Then, given an m-block-
minimal transcript τ , it holds that qc( ̂Π) ≤ 5.

Proof. Again, the filter is trivial for m = 1 and needs only three calls to compute
from M1 to C1 or vice versa. For m ≥ 2, given a current key candidate K as
well as any plaintext-ciphertext pair (M,C), the adversary can compute

Wm = ˜E
T1,1,0,T1,2,0
K (M1) , Wm−1 = ˜EM1,V1

K (M2) ,

Xm = Y1 = ˜D
T3,1,0,T3,2,0
K (C1) , Xm−1 = Y2 = ˜DY1,C1

K (C2) ,

and can test on Xm
?= ˜E

Wm−1,Xm−1
K (Wm), which holds for the correct K but

only with probability about |B|−1 otherwise. ��

4.7 CMC-Like Constructions

CMC consists of two mirrored passes of CBC with an affine layer A2 that adds
2(V1 + Vm) to each block. Nevertheless, the stronger middle layer does not
strengthen the scheme by stretching the key.

Theorem 8. Let Π[EK ] = (E ,D) denote CMC. Then, given an m-block-
minimal transcript τ for arbitrary m ≥ 2, it holds that qc( ̂Π) ≤ 3.

Proof. Again, the key-candidate filter is trivial for m = 1 and needs only two
calls to compute from M1 to C1 or vice versa. For m ≥ 2 blocks and given a
current key candidate K as well as any plaintext-ciphertext pair (M,C), the
adversary can compute

V1 = EK(M1) , V2 = EK(M2 + V1) , and W1 = E−1
K (C1) .
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Algorithm 2. TOCO′, CMC′, and EME′with full implicit key stretching.

11: function TOCO′[Ẽ]K(M, C)

12: (M1, . . . , Mm)
X←− M

13: T1 ← (0n, 0n)
14: for i ← 1..m do
15: Xi ← ẼTi

Ki
(Mi)

16: Ti+1 ← (Mi, Xi)

17: U ← 2(X1 ⊕ Xm)
18: for i ← 1..m do
19: Yi ← Xi ⊕ U
20: Zi ← Ym+1−i

21: T1 ← (0n, 0n)
22: for i ← 1..m do
23: Ci ← ẼTi

Ki
(Zi)

24: Ti+1 ← (Zi, Ci)

25: return (C1 ‖ · · · ‖ Cm)

31: function CMC′[E]K(M, C)

32: (M1, . . . , Mm)
X←− M

33: V0 ← 0
34: for i ← 1..m do
35: Ui ← Mi ⊕ Vi−1

36: Vi ← EK(Ui)

37: W ← AV
2 · V

38: W0 ← 0
39: for i ← 1..m do
40: Xi ← EK(Wi)
41: Ci ← Xi + Wi−1

42: return (C1 ‖ · · · ‖ Cm)

51: function EME′[E]K(M, C)

52: (M1, . . . , Mm)
X←− M

53: for i ← 1..m do
54: Ui ← 2i−1L1 ⊕ Mi

55: Vi ← EK(Ui)

56: ΣV ← ⊕m
i=2 Vi

57: W1 ← V1 ⊕ ΣV

58: X1 ← EK(W1)
59: L2 ← W1 ⊕ X1

60: ΣY ← ⊕m
i=2 Yi

61: Y1 ← X1 ⊕ ΣY

62: for i ← 1..m do
63: if i ≥ 2 then
64: Yi ← Vi ⊕ 2i−1L2

65: Zi ← EK(Yi)
66: Ci ← 2i−1L1 ⊕ Zi

67: return (C1 ‖ · · · ‖ Cm)

Then, it can rewrite W1 = Vm + 2V1 + 2Vm = 2V1 + 3Vm, such that Vm =
3−1(W1 + 2V1), which allows it to derive

Wm = 3V1 + 2Vm and Wm−1 = V2 + 2V1 + 2Vm ,

and to test if Cm
?= EK(Wm)+Wm−1, which always holds for the correct K but

only with negligible probability otherwise for sufficiently large |B|. ��

5 Minimal Modifications for Full Implicit Key Stretching

Two passes can suffice to obtain full block-wise dependency. We show that no
sequential encryption passes are necessary as long as the middle layer is MDS.
Since full implicit key stretching can benefit also three-pass modes, we can try
to achieve it for HCTR-like schemes in this section. Those schemes lacked full
implicit key stretching only due to their use of counter mode with invertible
primitives. We will try to improve it with minimal modifications. In general, we
denote the modified schemes by an apostrophe appended to their names, e.g.,
EME is modified to EME′.

5.1 Adding Full Implicit Key Stretching to Two-Pass Modes

For two passes, the efficient key filters depend on the intermediate layer A2.
We will show that an MDS matrix as A2 will suffice to provide full implicit
key stretching for the generic construction from two passes of an online cipher
Π[ ˜EK ]. In the following, we will show a key filter similar to that on TOCO.

We show briefly that the filter is made inapplicable by an MDS matrix for A2

instead, leading to full implicit key stretching - even if we replace the encryption
passes E1 ◦ A1 and A3 ◦ E2 as ΘCB3 layers each, with all independent alls to
˜Ei

K . Thus. A1 maps Ui = Mi and A3 is defined so that Ci = Xi for all i ∈ [m].
The same property follows clearly for CMC as well as for an arbitrary (stronger)
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two-pass online cipher with an MDS matrix as a middle layer. Thus, we illustrate
that the property is caused by the middle layer and not the complexity of the
encryption passes.

Theorem 9. Let ̂Π[ ˜EK ] = (̂E , ̂D) denote the generic construction from two
passes of an online cipher Π[ ˜EK ] = (E ,D) as above. Let AM

2 = AL
2 = 0 and let

AV
2 be MDS and non-singular. Given an m-block-minimal transcript τ , it holds

that qc( ̂Π) = m + 1.

Proof. To show that the bound in Theorem 9 is tight, we consider two state-
ments: (1) there exists no key filter with ≤ m primitive calls, and (2) m+1 calls
suffice. Both statements follow from the MDS property of AV

2 . In the following,
we denote its coefficients in Row r and Column c as ar,c. For any i ∈ [m], it
holds that Wi =def

∑

j=1 ai,jVj . Since AV
2 is MDS, the equation system of any

Wi yields no solution if any of the values Vj are unknown, which shows the first
statement. Hence, an overdetermined equation system for any Wi needs to com-
pute all values Vj = EK(Mj), for all j ∈ [m], as well as Wi = E−1

K (Ci). It is
also possible to derive a similar equation system with different blocks chosen as
inputs and outputs which needs one primitive call for each j ∈ [m] and an index
i, such that Wi and Vi are both contained. Since this key filter uses exactly m+1
primitive calls, it shows the second statement. Theorem 9 follows. ��

Theorem 9 implies that CMC′ and TOCO′ – that replace only their previous
AV

2 with an arbitrary MDS matrix compared to CMC and TOCO, respectively
– provide qc(m + 1), i.e. full implicit key stretching. An MDS matrix needs to
be efficient and easily extendable. One extendable instance for arbitrary non-
negative integer m is the Vandermonde matrix for a generator α ∈ B. We call
the constructions of EME, CMC, and TOCO that replace their matrix AV

2 by
the Vandermonde matrix as EME′, CMC′, and TOCO′.

We emphasize that a mode with only r passes block-wise-operating indepen-
dent STPRPs with an MDS matrix in between would not be a secure SPRP. This
structure is an r-round SPN, which is vulnerable to yoyo or mixture attacks, and
the here-proposed minimal modified variants, e.g., EME′or CMC′ must therefore
include chaining between message blocks.

5.2 Keystream Generator as a Middle Mode of Three Passes

HCTR-like schemes lacked full implicit key stretching since their internal counter
modes were invertible. Thus, even under an unknown IV , two primitive outputs
could be decrypted to test on a linear relation. As a countermeasure, we suggest a
PRG whose outputs are indistinguishable from random and that is secure against
key-recovery attacks. Then, HCTR-like schemes can benefit from a secret IV that
is used as the key in the PRG. We model such schemes as shown in Fig. 4:

1. In the first pass, the full message is used to compute an initial value IV ←
˜EMR

K1
(ML). This pass must be invertible if ML is non-empty. If ML is empty,

it can also be a not efficiently invertible PRF F .
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ML MR

CL CR

K1

K2

K3

IV

ML MR

CL CR

K1

K2

K3

EK4

IV1

IV2

IV

Fig. 4. Left: PIV as an example of HCTR-like scheme with invertible transformations
ẼK1 and ẼK3 . Right: HCTR as an example of for a scheme with ẼK1 and ẼK3 that
yield the IV from additions ML + IV1 or CL + IV2.

2. IV is used for encrypting CR ← ˜EK2(G(IV, i))⊕MR in a keystream generator
E . We denote the keystream as Y = (Y1, . . . , Yr) ← ˜EK2(IV ).

3. Finally, any invertible transformation is used to derive CL ← ˜ECR

K3
(IV ).

Theorem 10 (Theorem 5 in [21]). Let H = (H1, . . . , Hd) be a vector of d
polynomials in M = (M1, . . . ,Mm) and K over some field F that can be computed
by s multiplications. If m ≥ 2(s − r) + 1 with r ≤ d, then, there exist distinct
X,X ′ elements of F

r and Δ ∈ F such that

Pr
K�K

[HK(X ′) + δ = HK(X)] ≥ |F|−r .

Thus, to obtain d almost universal hash output blocks Hi ∈ B on messages
M ∈ Bm, at least (d−1)+m/2 key-dependent multiplications are necessary. For
d = 1, m/2 is thus minimal.

Theorem 11. Let K � K and F : K → B → B be a non-efficiently invertible
function. Let ̂Π[CTR[FK ]] = (̂E , ̂D) be as above with ˜E1 and ˜E3 being universal
in B. Given an m-block-minimal transcript τ , it holds that qc( ̂Π[EK ]) ≥ m/2.

Note that the universality assumptions of ˜E1 and ˜E3 are standard, and nec-
essarily fulfilled by all HCTR-like schemes.

Proof. The proof consists of three steps: (1) All overdetermined equation sys-
tems that serve as a key filter allow deriving IV or IV1 + IV2 linearly. Hence, an
overdetermined equation system that is the equivalent of every key filter needs
knowledge of IV or IV1 + IV2. (2) Deriving the IV needs m/2 key-dependent
multiplications or primitive calls. (3) Obtaining an overdetermined equation sys-
tem needs either one additional nonlinear call in ˜E2, or m/2 additional non-
linear computations in ˜EK3 . First, we replace CTR[FK ] by a random function
ρ � Func(B,B) The advantage is upper bounded by the maximal PRF advan-
tage against CTR[FK ] for K � K.
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Step (1). It remains to show that all overdetermined equation systems allow
deriving the IV . It holds that

IV1 ← ˜EML

K1
(MR) , IV2 ← ˜ECL

K3
(CR) , and IV ← MR + IV1 = CR + IV2 .

The overdetermined equation system can either contain Vi or Ui in ˜EK2(IV ). In
this case, there is an equation considering (ML)i, (CL)i, and a known Vi that can
be matched. If Vi is known, Ui is known, which allows us to derive IV efficiently
from F−1

i (IV ).
Otherwise, there must be an overdetermined equation system solely with MR,

CR, and the knowledge of IV1 + IV2. If either IV1 or IV2 are known, IV can be
computed from them. Then, our claim would follow. Since the computation of
IV1 and IV2 are independent of each other and use distinct keys, the computation
of IV1+IV2 would need strictly more key-dependent multiplications or primitive
calls than each computation of either of IV1 or IV2.

Step (2). There are three ways of deriving the IV : computing IV ← ˜EMR

K1
(ML),

computing IV ← ˜DCR

K3
(CL), or deriving it inside ˜EK2 . Since the computation of

IV is universal by assumption, Theorem 10 ensures that their computations in
˜EK1 or in ˜DK3 need at least m/2 key-dependent multiplications or primitive
calls. Since G is an ideal PRG, the advantage of computing IV from ˜EK2 is zero.

Step (3). Given the IV from either ˜EK1 or ˜DK3 , each output in ˜EK2 needs at
least one primitive call to encrypt any message block or decrypt any ciphertext
block. Our claim follows then from the individual proof steps. ��

Consequently, an HCTR-like scheme can employ a variant of Counter mode
instantiated with a PRF and a secret IV . Such a variant can be as simple as AES
in Davies-Meyer mode or AES-PRF [18], which encrypts 128-bit message blocks
as efficiently as the AES and provides close to O(q/2n) security. Alternatively,
Counter-in-Tweak [22] also provides an n-bit-secure PRF from a tweakable block
cipher when used with a 2n-bit IV as input.

6 Conclusion

Implicit key stretching can be satisfied by offline encryption schemes besides their
core security goals. This work proposed it as a property that can help throttle
passive attacks based on known plaintext-ciphertext pairs. We introduce full
implicit key stretching as a property that helps analyze it from a simple affine-
mode representation. We see large-file archive backups and file-disk encryption
as exemplary settings where messages may have substantial minimal lengths.
Nevertheless, more applications of implicit key stretching may exist.

We could show that online schemes can provide only constant implicit key
stretching. Moreover, modes with two passes of a secure online cipher around a
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mixing layer can provide full implicit key stretching with the help of an MDS
layer between both encryptions, at the price of implementation drawbacks.

As part of a remedy, we could show that three passes can provide full implicit
key stretching if the input is processed in full in the wrapping layer, independent
of a high level of parallelization or not. Existing three-pass modes such as HCTR,
PIV, or RIV can add it by a minor modification: the middle layer of a counter
mode based on a permutation is replaced by one that employs a PRF or an
already available tweakable block cipher instead.

Acknowledgements. We are highly thankful to the reviewers of CT-RSA 2022 and
ICISC 2022 for their fruitful comments. This research was funded by DFG Grant LU
608/9-1.

A Encryption-Model Visualization
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Fig. 5. Models for single-, two-, and three-pass modes. Arrows without an input indi-
cate that our models are restricted to plausible variants.
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B Decryption Representations

For single-pass modes, we define the decryption model as
[

V
M

]

=
[

DM
1 DV

1 DL
1

DM
2 DV

2 DL
2

]

·
[

C U L
]�

.

For two-pass schemes, the decryption can be represented as
⎡

⎣

X
V
M

⎤

⎦ =

⎡

⎣

DC
1 DW

1 0 0 DL
1

DC
2 DW

2 0 0 DL
2

0 0 DV
3 DU

3 DL
3

⎤

⎦ ·
[

C W V U L
]�

.

For three passes, the decryption is represented as
⎡

⎢

⎢

⎣

Z
X
V
M

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

DC
1 DY

1 0 0 0 0 DL
1

DC
2 DY

2 0 0 0 0 DL
2

0 0 DX
3 DW

3 0 DU
3 DL

3

0 0 0 0 DY
4 DU

4 DL
4

⎤

⎥

⎥

⎦

·
[

C Y X W V U L
]�

.
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Abstract. With the urgency of the threat imposed by quantum com-
puters, there is a strong interest in making the signature schemes quan-
tum resistant. As the promising candidates to ensure post-quantum secu-
rity, symmetric-key primitives, in particular the recent MPC/FHE/ZK-
friendly hash functions or block ciphers, are providing another choice
to build efficient and secure signature schemes that do not rely on any
assumed hard problems. However, considering the intended use cases,
many of these novel ciphers for advanced cryptographic protocols do not
claim the related-key security.

In this paper, we initiate the study of the ignored related-key security
of GMiMC proposed by Albrecht et al. at ESORICS 2019, some ver-
sions of which are optimized and designed to be used in post-quantum
secure signatures. By investigating the potential threats of related-key
attacks for GMiMC intended to be deployed as the underlying building
block in post-quantum signature schemes, we then construct two kinds
of iterative related-key differentials, from which not only do we explore
its security margin against related-key attacks, but also collision attacks
on its key space can be performed. For example, for GMiMC instance
that beats the smallest signature size obtainable using LowMC, we can
find its key collision using only about 210 key pairs. It worths noting that
our current key collision attack is only applicable when the adversarial
power is sufficiently strong (e.g., in the so-called multi-user setting), and
it does not threaten the one-wayness of GMiMC. Furthermore, from the
experiments of our related-key differentials, it can be observed that the
differential clustering effect of GMiMC differs in both aspects: the choice
of the finite field F being Fp or F

n
2 , and the size of the finite field F.
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1 Introduction

Quantum cryptanalysis has become an important topic in recent years, for exam-
ple, Shor’s algorithm [24] breaking the security of public-key cryptosystems RSA
and ECC, and Simon’s algorithm [25] promoting symmetric-key cryptanalysis
on multiple systems [17,20,21]. Consequently, the design of cryptographic prim-
itives that remains secure against quantum attacks has attracted more and more
attentions. This has led to the NIST Post-Quantum Cryptography standardiza-
tion project [13], and its candidates to be standardized have been announced
recently.1

To achieve the post-quantum security, building secure and efficient sig-
nature schemes from symmetric-key primitives rather than relying on struc-
tured hardness assumptions is becoming an interesting and promising direc-
tion. For instances, one of NIST post-quantum cryptography candidates—
SPHINCS+ [6] is a stateless hash-based signature scheme, and one of NIST
Round 3 submissions—Picnic [11] is a signature scheme whose security is based
on the one-wayness of a block cipher and the pseudo-random properties of an
extensible hash function. When deriving post-quantum security from symmetric-
key primitives, the recent developments of advanced cryptographic protocols,
such as Multiparty Computation (MPC), Fully Homomorphic Encryption (FHE)
and Zero-Knowledge proof (ZK), opens up new directions of designing novel
MPC/FHE/ZK-friendly symmetric-key ciphers as alternatives to AES and SHA-
3, with LowMC [4], MiMC [3] and its variants GMiMC [1], and Rescue [5] as
notable examples. Following the traditional statistical cryptanalysis, many of
these novel symmetric-key primitives are shown to be with sound security against
statistical cryptanalytic attacks. However, they remain relatively new and less
extensively studied. Considering the intended use cases, it is worth noting that
most of these MPC/FHE/ZK-friendly symmetric-key primitives explicitly do not
claim the security in related-key models [8,18]. Under the related-key setting, it
assumes that an attacker has the ability to manipulate the key, which is always
more powerful than traditional single-key differential cryptanalysis [9]. However,
these newly symmetric-key ciphers are gradually used as the underlying build-
ing blocks in a wide range of purposes to ensure the post-quantum security, it
is still necessary to study the resistance against related-key differential attacks
of these primitives in detail, which might be ignored for the original intended
applications.

Contributions. On one hand, we investigate the potential threats of the
related-key attacks for GMiMC-erf2 when deployed as PRP/PRFs in the post-
1 https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-

2022.
2 One of GMiMC variants with expanding round functions.

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
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quantum signature schemes, which is the recommended version of GMiMC and
aims at competing with LowMC in post-quantum signature applications.

– For one-way function use case in Picnic digital signature scheme [12], tra-
ditional statistical attacks do not apply to this low-data scenario, while our
related-key attacks still work with the limited data access and will pose some
potential threats if there are many users, such as the multi-user setting.3 It
should be noted that this does not threaten the one-wayness of GMiMC-erf.

– For hash function use case in Enhanced Privacy ID (EPID) signatures built
only from symmetric-key primitives presented by Boneh et al. [10], it requires
the underlying PRF with full-data security and collision resistance on its key
space, which can be attributed to the resistance of GMiMC-erf against related-
key attacks and are directly related to the security of key revocation strategy
of the resulting EPID schemes.

We then construct two kinds of iterative related-key differentials to explore the
security margin of GMiMC-erf under related-key setting, which are provided in
Table 1. What calls for the attention is that our proposed related-key differentials
are also constructed for collision attacks, it means that the output differences
of our distinguishers must be zero, which are more demanding than the previ-
ous single-key truncated differentials [1,7] and supposed to be bounded by the
birthday bound.

Table 1. Comparisons of different bounds of differential distinguishers of GMiMC-erf.

Attack setting The bound of
number of rounds

The probability bound
of a random
permutation

Resource

Single-key differential 1 + t + �n(t2+t)
2(n−1)

�� 2−nt [1]

t2 − t − 2 2−n(t−2) [7]

Related-key collision � t
4
� · (t + 1) 2−nt

2 † Sect. 3.2

(2 + � t
2

− 3� · t) 2−nt
2 † Sect. 3.3

� GMiMC-erf is a generalized Feistel block cipher with number of branches t and
the state of each branch belonging to a finite filed F, where n = �log2 |F|�. Thus,
the block size of GMiMC-erf is N = nt. More detailed description of GMiMC-erf will
be given in Sect. 2.
† This is the birthday bound for the collision attack, and we defer the detailed
discussion in Sect. 3.1.

On the other hand, to verify these two related-key differentials, the experi-
ments for both GMiMC-erf instantiations over Fp with the odd characteristic and
F
n
2 are performed, that is with any given x, we can easily find the key collision

3 In this paper, when discussing a Picnic-style signature, we consider that its under-
lying symmetric-key primitive LowMC is replaced with GMiMC, which is designed
to compete with LowMC in some ZK use-cases.
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(sk0, sk1) such that GMiMC-erf(sk0, x) = GMiMC-erf(sk1, x) with only about 27

(over Fp) and 210 (over Fn
2 ) key pairs. From all these experiment results, we have

two observations: 1) the smaller finite field we choose to instantiate GMiMC-erf,
the stronger differential clustering effect it can be observed for our proposed
related-key differentials; 2) when instantiating GMiMC-erf over small finite field
to achieve the smaller signature size, it is better to choose instances over Fn

2 due
to the intractable differential clustering effect for smaller Fp. All these observa-
tions we hope can facilitate the related design and cryptanalysis in the future.

Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminaries of GMiMC, differential cryptanalysis and its extension under
related-key setting. In Sect. 3, the potential threats of related-key attacks in
post-quantum signature applications are discussed, and followed by constructing
two kinds of iterative related-key differentials. The experiments of these two
differentials are provided in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Specifications of GMiMC

GMiMC is a family of symmetric-key primitives proposed by Albrecht et al. [1]
based on several generalized Feistel networks and power maps S(x) := xd, which
can be used as hash functions or block ciphers. In this paper, we focus on the
variant GMiMC-erf with expanding round function, as depicted in Fig. 1, which
is the recommended variant from both aspects of security and performance.

x1r x2r xjr · · ·· · · xtr

··
·

··
·

x1r+1 xt−1
r+1xi−1

r+1 xtr+1· · · · · ·

Sr

kr + cr

Fig. 1. The round function of GMiMC-erf.

Throughout this paper, for GMiMC-erf operating over a finite field F, it can
be instantiated over Fp of odd characteristic or F

n
2 . It also should be noted that

the addition operator is used to represent the addition (Fp) or the XOR (Fn
2 ) if

not specified. We let n = �log2 |F|� denote the branch size in bits where | · | is the
cardinality of a given set, then the block size of GMiMC-erf can be denoted by
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N = nt, where t is the number of branches and the branches are numbered from
1 to t from left to right. For example, as shown in Fig. 1, the state of Branch 1
and round r (starting from 1) of GMiMC-erf is represented by x1

r where x1
r ∈ F.

As for the key schedule, there are two cases for the master key K with the key
size in bits log2 |K|: the univariate case has n = log2 |K| and the multivariate
case has N = log2 |K|, we focus on the latter case because GMiMC-erf is intended
to be used as block ciphers in post-quantum signature applications, which will
be detailed discussed in Sect. 4.

Number of rounds of GMiMC-erf: For full-data scenario, the designers [2,
Table 2] take RTD ≥ 1 + t + �(t2 + t) × n

2(n−1)� rounds to provide the resistance
against truncated differential attacks for multivariate case under single-key set-
ting. This bound then has been broken and extended to t(t − 2) rounds by
Beyne et al. [7]. For low-data scenario, an attacker has limited data access, that
is given only one or two known plaintext-ciphertext pairs for the cryptanalysis,
thus designers mainly consider Greatest Common Divisors (GCD) and Gröbner
Basis attacks, the number of rounds to provide security is

RG ≥ �1.262 · n − 4 · log3(n)� + 3t + 3.

As can be observed, for large n, RTD ≈ (t+1)2

2 . For small n, RG ≈ 3t + 3. In
the rest of the paper, the concrete instance of GMiMC-erf will be represented by
GMiMC-erf(n, t) or GMiMC-erf(n, t, R) where R is the total number of rounds. For
more details, we refer the reader to full version of GMiMC design paper [2].

2.2 Differential Cryptanalysis

Differential cryptanalysis [9] and its variants are the most widely used techniques
to analyze symmetric-key primitives. The differential probability of the function
F over F

m
2 is defined by

DP (ΔP,ΔC) =
|x : F (x) ⊕ F (x ⊕ ΔP ) = ΔC|

2m
,

where ΔP ∈ F
m
2 ,ΔC ∈ F

m
2 and x ∈ F

m
2 . Naturally, the differential probability

of the function F over F
t
p can be generalized as below

DP (ΔP,ΔC) =
|x : F (x) − F (x − ΔP ) = ΔC|

pt
,

where ΔP ∈ F
t
p,ΔC ∈ F

t
p and x ∈ F

t
p. The XOR difference is simply replaced by

the subtraction difference for F
t
p. It is well known that S(x) := x3 is an Almost

Perfect Non-linear function (APN) [23], thus the optimal differential probability
of S over a finite field F is bounded by 2

|F| .
Roughly speaking, one first needs to find a differential trail ΔP → ΔC with

high probability to attack a target function F , such as distinguish attack, colli-
sion attack or key-recovery attack.
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Related-Key differential cryptanalysis: Related-key attacks [8,18] are vari-
ations of differential cryptanalysis, which usually outperform the conventional
single-key differential attacks due to attackers’ additional ability to manipulate
the keys. More specifically, under the related-key setting, one can introduce the
difference ΔK of the master key K into the key schedule and find a high prob-
ability related-key differential trail (ΔP,ΔK) → ΔC for attacks.

Despite that the presence of related-keys is a strong assumption, it can be
fulfilled in block cipher-based modes or protocols, which may rekey the block
cipher with related-keys. For example, it has given rise to a forgery attack on
3-DES-based RMAC [19].

3 Related-Key Differentials Cryptanalysis on GMiMC-erf

In this section, we try to explore the security margin of GMiMC-erf against
related-key differential attacks when used as the underlying symmetric-key prim-
itives in post-quantum signatures.

3.1 Potential Threats of Related-Key Differential Attacks
in Post-Quantum Signature Applications

As has been mentioned in GMiMC design paper [2, Section 7.3], there are two
intended applications when deployed in some previous post-quantum signatures:

– One-way function (low-data scenario): such as Picnic [12].
– Collision resistant hash function (full-data scenario): such as group signa-

ture [10].

For one-way function usage, only one or two plaintext-ciphertext pairs per key
of f(k, x) = y is visible to an adversary, the security of the signature scheme is
derived from the underlying symmetric-key primitives f . It should be noted that
our related-key attacks can be also applied to this low-data scenario. For a given
x, one can find two different keys (k, k′) such that f(k′, x) = f(k, x). Despite
that this does not threaten the one-wayness of f instantiated by GMiMC-erf when
used in the signature scheme [12], we hope to find more potential applications
for this kind of collision attack in the future, such as the possible multi-user
setting.

For collision resistant hash function usage requiring full-data security, it has
to consider traditional statistical attacks that usually needs a large amount of
data. Compared to the sponge construction adopted in [14], Boneh et al. [10]
proposed applying a lower-cost Davies-Meyer (DM) construction with low mul-
tiplicative complexity ciphers to obtain a hash function with a fixed message
length, depicted in Fig. 2, that is f(k, x) = E(k, x) + x. The resulting scheme
relies on a PRF f , which is collision resistant on its keyspace. This collision resis-
tant property of f(k, x) can be attributed to the related-key security under a
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fixed known plaintext x, which is important to the feature of the key revocation
of the resulting EPID signatures [10]. To be specific, if f is not secure against
collision attacks on its keyspace, one can firstly prepare two different secret keys
sk0 and sk1, such that f(sk0, c) = f(sk1, c) for a given challenge c obtained from
the manager, as shown in Fig. 3. Based on this collision attack, an adversary can
still pretend to be a valid user even if sk0 is revoked by the manager, by using
sk1 to sign on behalf of the group without being detected, which can break the
revocation strategy of the group signature scheme. For more details, we refer the
reader to [10].

Ex f (k, x)

k

Fig. 2. Davies-Meyer construction with block cipher E.

Ec f (sk0, c) = f (sk1, c)

sk0

E c

sk1

Fig. 3. Collision attack of f on its keyspace.

The designers of LowMC and GMiMC both do not claim the security in
related-key models. However, according the intended use cases discussed above,
special attention still should be paid to the resistance against related-key dif-
ferential attacks with all zero input/output differences and non-zero key differ-
ence. We note that the probability bound here for the related-key distinguisher
is 2− log2 |K|

2 = 2− N
2 due to the birthday bound of this kind of key collision

attack. In the following, we will construct two different related-key differentials
for GMiMC-erf.

3.2 (t + 1)-round Iterative Related-Key Differential

We first construct a (t + 1)-round related-key differential with the same input
and output differences, as depicted in Fig. 4, which can be iterated for more
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0 0 0· · · 0

··
·

· ·
·

S1

Δk

−Δk

−Δk −Δk −Δk· · · 0

··
·

··
·

−Δk 0−Δk −Δk· · ·

S2

Δk

0

(t−
2)-round

−−−−−−→

0 −Δk −Δk· · · −Δk

··
·

··
·

0 00 0· · ·

St+1

Δk

Δk

Fig. 4. (t + 1)-round related-key differential of GMiMC-erf.

rounds. For each round, it will activate two S-boxes but requires the same subkey
difference, and we will dicuss how to find such key schedule in Sect. 4 later. This
(t + 1)-round related-key differential trail consists of following three parts:

– First round: the input and output differences of the S-box are Δk and −Δk

respectively, that is Δk
S1−→ −Δk.

– Middle (t − 2) rounds: the input difference of the S-box will be cancelled
to zero difference due to the same subkey difference.
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– Last round: the input and output differences of the S-box are Δk and Δk

respectively, that is Δk
St+1−−−→ Δk.

The differential probability of this (t + 1)-round iterative related-key character-
istic are determined by the S-boxes of the first and last round. For GMiMC-erf
over Fp, the probability is at least 2

p2 for valid differential propagations.4 For
GMiMC-erf over F

n
2 , the probability is 2−2(n−1). Assume that we can iterate this

characteristic for s1 times at most, considering the birthday bound ( 1p )
t
2 or 2− t

2n,

then it has s1 = 	 t
4

log 1
p

log
√

2
p


 or s1 = 	 t
4
. Thus, the bounds of total number of

rounds of the related-key differential trail are 	 t
4

log 1
p

log
√

2
p


 · (t + 1) for GMiMC-erf

over Fp and 	 t
4
 · (t + 1) for GMiMC-erf over F

n
2 . As for the real probability of

this iterative differential trail, the following two factors should also be taken into
consideration:

– The choice of Δk. We need to choose the difference Δk that can pass to Δk
and −Δk according to the DDT of S-box over Fp or F

n
2 .

– The clustering effect. The clustering effect may have great influences on the
estimation of the differential probability, which has been found for many
ciphers [15,22,27] and used to enhance the probability of the distinguisher
for attacks. The differential clustering effect of GMiMC-erf will be exhibited
by the experiments of these related-key differentials in next section.

3.3 t-round Iterative Related-Key Differential

Now we present a t-round related-key differential, as depicted in Fig. 5, which
is circled with blue rectangle and similar to the iterative single-key differential
constructed in [7]. It begins with first two rounds (circled with green rectangle)
with all zero input difference and output difference (Δk1,2, · · · ,Δk1,2,Δk2,Δk1),
where Δk1,2 = Δk1 + Δk2 = Δk0. This has probability 1

p or 2−n and aims to
cancel the following (t−2)-round input differences of the S-box, then this t-round
iterative differential trail consists of two parts as below:

– First (t − 2) rounds: the input and output differences of the S-box are both
zero due to Δk0,1,2 = Δk0 + Δk1 + Δk2 = 0.

– Last two rounds: the output differences of the S-boxes of the last two
rounds are Δk3 and Δk4 respectively. In order to iterate this t-round truncate
differential, the output difference should be (Δk1,2, · · · ,Δk1,2, ∗, ∗) where ∗
is the unknown difference.

4 It is well known that the cubic function is Almost Perfect Non-linear (APN), then
probability is bounded above by 2/|Fp|.
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For the first prepared two rounds, it has probability 1
p or 2−n as Δk0,1,2 = 0.

For the first (t − 2)-round of this iterative trail, it does not produce any active
S-boxes. For the last two rounds, it has probability 1

p or 2−n due to the iterative
condition Δk3,4 = Δk3 + Δk4 = 0. Besides, when the whole distinguisher ends
with this t-round trail with all zero output differences, it must guarantee that
Δk2,4 = Δk2 + Δk4 = 0 and Δk1,3 = Δk1 + Δk3 = 0, which has probability 1

p2

or 2−2n. So, we can iterate this t-round differential for s2 = 	 t
2 − 3
 times at

most, considering the birthday bound ( 1p )1+s1+2 ≥ ( 1p )
t
2 or 2−(1+s2+2)n ≥ 2− t

2n,
and this kind of t-round iterative related-key differential can be bounded by
(2 + 	 t

2 − 3
 · t) rounds of GMiMC-erf.

4 Experiments of Related-Key Differentials of GMiMC-erf

Before provding the experiment results of two related-key differential distin-
guishers presented above, we first discuss how to find a key schedule that meets
the demands of GMiMC design and guarantees the same subkey differences for
each round.

When used as block ciphers in these post-quantum signature applications,
GMiMC works with the multivariate case, that is log2 |K| = N = t × n. Let ki
be the subkey of round i, then the master key K = k0 ‖ k1 ‖ · · · ‖ kt−1. Let M
be a t × t matrix with elements in F2n or Fp. For each 1 ≤ i ≤ �R/t� where R
is the total number of rounds, it has

[ki×t ‖ ki×t+1 ‖ · · · ‖ ki×t+(t−1)]
T = M × [k(i−1)×t ‖ · · · ‖ k(i−1)×t+(t−1)]

T
.

The designers require the invertible matrix M to satisfy the following condition:

– for each 1 ≤ i ≤ �R/t�, it has

M i[j, l] ≡ M × M × · · · × M
︸ ︷︷ ︸

i-th times

[j, l] �= 0,

for all 0 ≤ j, l < t, where M [j, l] denotes the entry in row j and the column l
of the matrix M .

This condition requires that the number of zeros in matrices M to M�R/t� should
be as few as possible, preferably no zero coefficients. However, the designers of
GMiMC [2] do not provide a specific method to generate such matrices.

Now we consider the condition of iterative related-key differential presented
above, it loads the master key differences with ΔK = (Δk, · · · ,Δk) and expects
the same output differences after updating by the matrix M as below,

M ×

⎛
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Fig. 5. t-round related-key differential of GMiMC-erf.
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Thus for each 0 ≤ l ≤ t − 1, it has
∑t−1

j=0 ml,j × Δk ≡ Δk mod p, that is

t−1
∑

j=0

ml,j ≡ 1 mod p.

With only such t constraints, it is still difficult to find such matrices M in the
whole matrix space. So, we limit M to be the commonly used circulant matrix,
where all row vectors are composed of the same elements and each row vector is
rotated one element to the right or left relative to the preceding row. Here, we
only consider the left circulant matrix M , denoted by

M = circ(m0,m1, · · · ,mt−1).

As our target search space are limited to the circular matrix, it is easy to deter-
mine the number of zeros in the matrix by checking the first row. Also, the prod-
uct of two circulant matrices is still a circulant matrix, which means that M2,
M3 to M�R/t� are all circulant matrices. Thus, with t variables (m0, · · · ,mt−1),
we can represent all these matrices iterated from M . By utilizing Satisfiability
Modulo Theories (SMT) based search techniques that are already convenient
tools at hand for the symmetric-key cryptanalysts, this matrix search problem
can be translated into an SMT based model, and we can try to find these matri-
ces with as few zero entries as possible. The search of the matrix M over F

n
2

bears the similarity of that over Fp. Due to the limit space, the details of our
SMT based models are provided in Appendix.

4.1 Experiments of Related-Key Differentials of GMiMC-erf over Fp

Based on the proposed (t + 1)-round and t-round iterative related-key differen-
tial trails, we perform experiments on these distinguishers for some GMiMC-erf
instantiations over small fields Fp, including n = 3 (F5), n = 5 (F17) and n = 6
(F41).

GMiMC-erf(n = 3, t = 86) over F5: We first find a left circulant matrix M for
GMiMC-erf(n = 3, t = 86, R = 261), which is an instantiation over Fp provided in
the design paper [2, Table 6] to compete with LowMC in the context of ZKB++.
The first row of M is

(1, · · · , 1
︸ ︷︷ ︸

81

, 4, 4, 3, 1, 3),

by which there are no zero entries in M1,M2,M3. According to the estimation
given in Sect. 3.2, the theoretical probability of this related-key differential char-
acteristic is ( 15 × 2

5 )3 ≈ 2−10.93. Then, we test this related-key differential trail
with input x = (0, · · · , 0)5 and 216 random generated key pairs with the master

5 Other choice of x has the similar results.
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key difference ΔK = (1, · · · , 1), and 591 collisions are found. Thus, the exper-
imental probability of this trail is 2−6.79. Some other number of rounds of this
iterative (t + 1)-round related-key differential and t-round related-key differen-
tial are also tested, listed in Table 2. It should be noted that we adopt the same
matrix M presented above for different rounds of GMiMC-erf(n = 3, t = 86) over
F5, because the searching space of the SMT based search model becomes large
with the number of rounds growing, which makes the search inefficient. Also, the
found matrix M for R = 261 is already good enough, in terms of the number of
nonzero entries of these circulant matrices iterated from M .

From the experiments of GMiMC-erf(n = 3, t = 86) over F5, it can be
observed that the experimental probability of (t + 1)-round iterative related-
key trail obviously deviates from the theoretical estimation with the number
of rounds growing, which shows a very strong differential clustering effect of
this related-key differential for higher number of rounds. And we provide our
codes of the experiments at https://www.dropbox.com/sh/kxex7rqw440zes4/
AAC1omTjoPoM5B8Ka19ErmjZa?dl=0, which are performed by the tool
SAGE [26] with version 8.8.

Table 2. Experiments of GMiMC-erf(n = 3, t = 86) over F5.

Types Rounds Theoretical
Probility

Experimental
Probility

(t + 1)-round iterative with ΔK = (1, · · · , 1) 87 2
25

≈ 2−3.64† 2−3.66

174� ( 2
25

)2 ≈ 2−7.29 2−5.01

261 ( 2
25

)3 ≈ 2−10.93 2−6.79

348 ( 2
25

)4 ≈ 2−14.58 2−8.36

435 ( 2
25

)5 ≈ 2−18.22 2−9.48

522 ( 2
25

)6 ≈ 2−21.86 2−11.00

609 ( 2
25

)7 ≈ 2−25.51 2−12.43

696 ( 2
25

)8 ≈ 2−29.15 2−13.09

783 ( 2
25

)9 ≈ 2−32.79 2−15.39

870 ( 2
25

)10 ≈ 2−36.44 2−15.61

957 ( 2
25

)11 ≈ 2−40.08 2−16.83

t-round iterative with ΔK = (1, · · · , 1) 88 ( 1
5
)3 ≈ 2−6.97 2−5.19

174� ( 1
5
)4 ≈ 2−9.29 2−5.01

260 ( 1
5
)5 ≈ 2−11.61 2−7.77

346 ( 1
5
)6 ≈ 2−13.93 2−11.25

432 ( 1
5
)7 ≈ 2−16.25 2−14.00

† For cubic function over F5, Δk = 1 passes to Δk = 1 with probability 2
5

and
Δk = 1 passes to −Δk = −1 with probability 1

5
.

� These two 174-round trails are the same when iterating two times and with the
same master key difference. This is similar for the results thereafter.

GMiMC-erf(n = 5, t = 52) over F17: The first row of matrix M we found for
GMiMC-erf(n = 5, t = 52, R = 159) is

(13, 2, 5, 3, 2, 10, 8, 9, 13, 2, 14, 15, 10, 2, 14, 2, 7, 2, 4, 5, 6, 7, 11, 16, 3, 1, 4, 9, 7,

https://www.dropbox.com/sh/kxex7rqw440zes4/AAC1omTjoPoM5B8Ka19ErmjZa?dl=0
https://www.dropbox.com/sh/kxex7rqw440zes4/AAC1omTjoPoM5B8Ka19ErmjZa?dl=0
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Table 3. Experiments of GMiMC-erf(n = 5, t = 52) over F17.

Types Rounds Theoretical
Probility

Experimental
Probility

(t + 1)-round iterative with ΔK = (1, · · · , 1) 53 ( 2
17

)2 ≈ 2−6.17 2−6.19

106 ( 2
17

)4 ≈ 2−12.35 2−11.64

159 ( 2
17

)6 ≈ 2−18.52 2−17.14

t-round iterative with ΔK = (1, · · · , 1) 54 ( 1
17

)3 ≈ 2−12.26 2−13.30

106 ( 1
17

)4 ≈ 2−16.35 2−11.64

158 ( 1
17

)5 ≈ 2−20.44 2−19.00

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 5, 11, 16, 3, 2, 8, 4).

The experiment results of (t + 1)-round and t-round related-key differentials
are provided in Table 3. Considering the feasible runtime when choosing larger
finite field, we limit the trail to be iterated three times at most. From the results
of these iterative related-key differentials for GMiMC-erf(n = 5, t = 52) over F17,
it can be observed that the differential clustering effect seems not as strong as
that of GMiMC-erf(n = 3, t = 86) over F5.

Table 4. Experiments of GMiMC-erf(n = 6, t = 43) over F41.

Types Rounds Theoretical
Probility

Experimental
Probility

(t + 1)-round iterative with ΔK = (10, · · · , 10) 44 ( 2
41

)2 ≈ 2−8.72 2−8.71

88 ( 2
41

)4 ≈ 2−17.43 2−17.19

132 ( 2
41

)6 ≈ 2−26.15 2−25.19

t-round iterative with ΔK = (10, · · · , 10) 45 ( 1
41

)3 ≈ 2−16.07 2−15.83

88 ( 1
41

)4 ≈ 2−21.43 2−17.19

131 ( 1
41

)5 ≈ 2−26.79 2−26.19

GMiMC-erf(n = 6, t = 43) over F41: The first row of matrix M we found for
GMiMC-erf(n = 6, t = 43, R = 132) is

(6, 14, 28, 12, 5, 10, 30, 30, 19, 21, 8, 14, 18, 32, 38, 25, 37, 29, 31, 33, 20,

25, 9, 25, 39, 33, 40, 40, 40, 40, 40, 40, 40, 12, 40, 2, 3, 1, 1, 2, 3, 1, 8).

The experiments of (t + 1)-round and t-round related-key differentials are per-
formed with the master key difference ΔK = (10, · · · , 10), which are provided in
Table 4. Despite the limited number of rounds, it can be observed that the clus-
tering effect of these related-key differentials seems not significant for GMiMC-erf
over F41 when compared to the instantiations over F5 and F17.
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4.2 Experiments of Related-Key Differentials of GMiMC-erf over F
n
2

To compare with the experiments over Fp presented above, we also verify these
related-key differentials for GMiMC-erf over F

n
2 .

Table 5. Experiments of GMiMC-erf(n = 3, t = 86) over F
3
2.

Types Rounds Theoretical
Probility

Experimental
Probility

(t + 1)-round iterative with ΔK = (1, · · · , 1) 87 ( 2
23

)2 = 2−4 2−4.04

174� ( 2
23

)4 = 2−8 2−8.00

261 ( 2
23

)6 = 2−12 2−10.19

348 ( 2
23

)8 = 2−16 2−14.41

435 ( 2
23

)10 = 2−20 2−16.68

t-round iterative with ΔK = (3, · · · , 3) 88 ( 1
23

)3 = 2−9 2−7.11

174� ( 1
23

)4 = 2−12 2−10.42

260 ( 1
23

)5 = 2−15 2−12.49

346 ( 1
23

)6 = 2−18 2−15.19

432 ( 1
23

)7 = 2−21 2−18.09

� These two 174-round trails are different due to the different master key differ-
ences.

GMiMC-erf(n = 3, t = 86) over F
3
2: The irreducible polynomial of the instantia-

tion over F
3
2 is set to be x3 ⊕ x ⊕ 16, then we find M for GMiMC-erf(n = 3, t =

86, R = 261) over F
3
2, which is an instantiation over F

n
2 in the design paper and

even achieves smaller signature size than the previous smallest size obtainable
using LowMC in Picnic. The first row of M is

(5, 5, 4, 6, 2, 1, 3, 5, 1, 4, 3, 5, 1, 5, 6, 1, 5, 5, 4, 5, 3, 1, 7, 6, 2, 1, 2, 1, 4,

5, 1, 5, 2, 6, 2, 2, 5, 3, 1, 4, 3, 2, 6, 4, 7, 3, 7, 2, 5, 2, 5, 1, 4, 1, 1, 4, 1, 6,

1, 6, 3, 1, 6, 3, 1, 2, 1, 7, 4, 6, 6, 7, 4, 2, 3, 2, 5, 5, 4, 7, 5, 6, 1, 6, 2, 4).

The experiments of (t + 1)-round and t-round related-key differentials are per-
formed with the master key differences ΔK = (1, · · · , 1) and ΔK = (3, · · · , 3)
respectively, which are provided in Table 5. From the results of GMiMC-erf(n =
3, t = 86) over F

3
2, it also shows a differential clustering effect for both (t + 1)-

round and t-round related-key differentials, but which is not as strong as that
of GMiMC-erf(n = 3, t = 86) over F5.

6 This is the default choice for GF(23) in software tool SAGE [26] that we perform the
experiments in this paper. Other choice of irreducible polynomials has the similar
results.
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Table 6. Experiments of GMiMC-erf(n = 5, t = 52) over F
5
2.

Types Rounds Theoretical
Probility

Experimental
Probility

(t + 1)-round iterative with ΔK = (3, · · · , 3) 53 ( 2
25

)2 = 2−8 2−8.00

106 ( 2
25

)4 = 2−16 2−15.75

159 ( 2
25

)6 = 2−24 2−22.83

t-round iterative with ΔK = (9, · · · , 9) 54 ( 1
25

)3 = 2−15 2−14.83

106 ( 1
25

)4 = 2−20 2−20.00

158 ( 1
25

)5 = 2−25 2−24.42

GMiMC-erf(n = 5, t = 52) over F
5
2: Similarly, the irreducible polynomial of the

instantiation over F5
2 is set to be x5 ⊕x2 ⊕ 1, then we find M for GMiMC-erf(n =

5, t = 52, R = 159) over F
5
2, the first row of which is

(14, 6, 14, 13, 15, 15, 14, 10, 5, 6, 15, 14, 6, 7, 15, 14, 10, 15, 6, 19, 15, 10, 15, 3, 3, 14,

15, 14, 6, 12, 12, 15, 7, 15, 7, 14, 8, 9, 1, 12, 15, 10, 4, 13, 14, 18, 13, 6, 4, 7, 15, 10).

The experiments of (t + 1)-round and t-round related-key differentials are per-
formed with the master key differences ΔK = (3, · · · , 3) and ΔK = (9, · · · , 9)
respectively, which are provided in Table 6. From the results of GMiMC-erf(n =
5, t = 52) over F

5
2, the experimental probability of these two kinds of iterative

related-key differentials matches the theoretical estimation.

Remark: According to all experiments of GMiMC-erf over Fp and F
n
2 presented

above, it can be concluded that the smaller finite field we choose to instantiate
the cipher, the stronger differential clustering effect we can observe for these
iterative related-key differentials of GMiMC-erf. However, if pursuing small view
size is the primary goal in the target application, GMiMC-erf instances over F

n
2

seem to be better than the comparable parameterizations over Fp, not only
because the performance is better in terms of the signature size, but also the
differential clustering effect seems intractable for instantiations over smaller Fp,
such as F5. It also should be noted that our experiments presented above are still
limited in terms of the number of rounds and the number of differential trails,
thus more comprehensive studies theoretical evaluating method of differential
clustering effect over Fp are expected in the future.

5 Conclusion

In this paper, we have studied the security of GMiMC against the related-key
differential cryptanalysis. By investigating the potential threats of related-key
attacks of GMiMC-erf when used as the PRP/PRF in the post-quantum signature
applications, we constructed two kinds of iterative related-key differentials, by
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which not only did we explore the security margin of GMiMC-erf against related-
key attacks, but also collision attacks on its key space could be performed. We
then utilized the distinguisher to find key collision of GMiMC-erf instance that is
intended to compete with LowMC in Picnic signature schemes, with only about
210 key pairs. Furthermore, interesting differences in the clustering effect of our
proposed related-key differentials of GMiMC-erf between Fp and F

n
2 are observed.
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Appendix SMT based Search Model of Matrix M
in the Key Schedule of GMiMC

In this paper, we use STP [16] solver to perform the search of the matrix,
which is a constraint solver (or SMT solver) aimed at solving constraints of
bitvectors and arrays. In the following, we describe our SMT based search
models by using CVC language7, which is the default input language of STP.
And our codes of generating the SMT based search model of matrix M over
Fp and F

n
2 are provided at https://www.dropbox.com/sh/kxex7rqw440zes4/

AAC1omTjoPoM5B8Ka19ErmjZa?dl=0.

The model of searching M over Fp: Each variable in SMT based model can
be expressed by a bitvector, that is, a variable m0 ∈ Fp in the circulant matrix
M can be represented by using n = �log2 p� bits. An example of a non-zero
variable m0 ∈ F5 is:

m0 : BITVECTOR(3) ;
ASSERT(NOT(m1 = 0bin000 ) ) ;
ASSERT(BVLT(m1, 0bin101 ) ) ;

7 Please refer to the brief introduction via https://github.com/stp/stp/blob/
ee83ef70ffeb386575f7452095b52406894b0489/docs/cvc-input-language.rst.

https://www.dropbox.com/sh/kxex7rqw440zes4/AAC1omTjoPoM5B8Ka19ErmjZa?dl=0
https://www.dropbox.com/sh/kxex7rqw440zes4/AAC1omTjoPoM5B8Ka19ErmjZa?dl=0
https://github.com/stp/stp/blob/ee83ef70ffeb386575f7452095b52406894b0489/docs/cvc-input-language.rst
https://github.com/stp/stp/blob/ee83ef70ffeb386575f7452095b52406894b0489/docs/cvc-input-language.rst
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As M is a left circulant matrix, for matrix M i (2 ≤ i), the variable M i[1, l]
in the first row can be recursively expressed by

M i[1, l] ≡
t−1
∑

j=1

(M i−1[1, j] × m(l+j) mod t) mod p,

where 0 ≤ j, l ≤ t−1. This relationship can be described by using the predicates:
BVPLUS, BVMULT and BVMOD in CVC language. Then, the number of zero
entries of these t × �R/t� variables is counted as an objective function to min-
imize during the search. Once we obtain a solution of M , it has to be checked
whether it is invertible. If not, this solution should be excluded from the search
model, and repeat the process until we find a proper one.

The model of searching M over F
n
2 : Similar to the model over Fn

2 , a variable
m0 ∈ F

n
2 in the circulant matrix M can be represented by using n bits. An

example of non-zero variable m0 ∈ F
3
2 is:

m0 : BITVECTOR(3) ;
ASSERT(NOT(m1 = 0bin000 ) ) ;

In the same way, the variable M i[1, l] in the first row can be recursively
expressed by

M i[1, l] ≡
t−1
∑

j=1

M i−1[1, j] × m(l+j) mod t,

where 0 ≤ j, l ≤ t − 1. Note that the addition here for Fn
2 is the XOR operation,

the multiplication operation here is the field multiplication operation that needs
the corresponding irreducible polynomial. By using the predicate BVXOR in
CVC language, we can describe polynomial multiplication and modular polyno-
mial operations by the SMT based model. Then, it follows the similar search
process of that over Fp presented above.
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Abstract. The area of lightweight cryptography, i.e., ciphers with par-
ticularly low implementation costs, has drawn considerable attention over
the last few years. PRINCE is a lightweight block cipher proposed by J.
Borghoff et al. at ASIACRYPT 2012. In 2017, Ding et al. constructed
a 4-round truncated impossible differential distinguisher. They treat S-
boxes as ideal ones that any nonzero input difference could produce any
nonzero output difference. Obviously, this is not true for the S-boxes in
the real block ciphers. In this paper, after investigating the properties of
both the S-box and the linear layer of PRINCE, we construct two types
of 5-round impossible differential distinguishers. Then we exhibit two
types of key-recovery attacks on 9 out of 12 rounds of PRINCEcore. The
corresponding data complexities are 253.3 and 256.1 chosen plaintexts,
respectively. Our results are the best impossible differential cryptanal-
ysis on PRINCE as far as we know to date, and our attacks meet the
security claims of the designers.

Keywords: Lightweight cryptography · PRINCE · Impossible
differentials · Distinguisher · S-box

1 Introduction

With the development of mobile communications and the Internet of Things,
communication security has received extensive attention. Many corresponding
applications should be supported by cryptographic techniques, such as smart
homes, intelligent transportation, etc. However, the contradiction between mass
information encryption and limited resource processing has become increasingly
prominent, and most of these devices work in unreliable environments, such as
the smart sensors used in the Internet of things. In such a case, how to pro-
tect data security is an essential issue. In order to use a minimum of resources
to provide the required security in some extreme applications, some designers
proposed the concept of lightweight block cipher, which can guarantee privacy
and occupy fewer resources than the classic block cipher at the same time. Sev-
eral lightweight block ciphers have been proposed in the last decade, such as
PRESENT [1], SIMON [2] and SKINNY [3].
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PRINCE [4], proposed by J. Borghoff et al., is a low-latency block cipher. In
order to reduce the latency in hardware implementation, the designers employ
the FX structure [5] and a property called α-reflection [6]. Based on the FX
construction, a 12-round core cipher, called PRINCEcore is used to hold the
major encryption process. There are already many cryptanalytic results on
PRINCEcore. In [7], Jean et al. gave Integral attacks on 4, 5, and 6-round
PRINCEcore. In [8], Zhao et al. found the 5-round and 6-round truncated dif-
ferential distinguishers and presented an attack on 7-round PRINCEcore. In [9],
Ding et al. constructed a 4-round impossible differential distinguisher. Based on
the distinguisher, they launched impossible differential attacks on the 6-round
and 7-round PRINCEcore. In [10], Ding et al. further presented an impossible
differential attack on the 8-round of PRINCEcore. In [11], the authors proposed
a new technique named key-dependent sieve, which was applied to attack on 8-
round of PRINCEcore. In [12], Farzaneh et al. presented an independent-biclique
attack on the full version of PRINCEcore.

Impossible differentials is one of the effective methods for evaluating the secu-
rity of block ciphers, which was independently proposed by Knudsen [13] and
Biham [14], and had successfully attacked many block ciphers, such as AES [15],
Camellia [16], LBlock [17]. Impossible differentials are typically constructed by
the miss-in-the-middle method, i.e., by tracing differences between inputs and
outputs in the encryption and decryption directions. If there are contradictions in
the middle, it is possible to find the impossible differential. Among these impos-
sible differentials, truncated impossible differentials [18] attract much attention.
However, they do not take advantage of the properties of the non-linear substitu-
tion layer (e.g., S-box), their target is not the concrete cipher, but the “structure”
[19]. A concrete cipher should consider both S-box and key schedule, but the
mechanism by which the key schedule affects differential propagation is unclear.
In [20,21], they show that there do not exist such impossible truncated differen-
tials covering more than four rounds for AES with the S-box considered and the
key schedule omitted. If the differential property of the S-boxes is considered,
more and longer impossible differential distinguishers might be discovered.

Our Contributions. Firstly, we study the differential distribution table of the
S-box which stores the input/output differences and the corresponding values.
Then we find the property of M ′ operation. The property shows that, for the
input and output states of M ′ operations, if the output states are fixed, the set of
values for the input state are determined. Based on these properties, two types
of 5-round impossible differential distinguishers of PRINCE are constructed,
including a distinguisher with only one active nibble for input-output difference
and a distinguisher with only one active nibble for input difference and two
active nibbles for output difference. Finally, we use them to launch impossible
differential attacks on 9-round PRINCEcore, respectively.

Table 1 summarizes our results compared with some major previous results
on PRINCEcore under single-key model. The rest of the paper is organized
as follows. The necessary preliminaries and a brief description of PRINCE are
visited in Sect. 2. Section 3 identifies some properties of PRINCE. In Sect. 4, we
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construct two types of 5-round impossible differential distinguishers of PRINCE.
Impossible differential attacks on 9-round PRINCEcore are proposed in Sect. 5.
We conclude the paper in Sect. 6.

Table 1. Summary of the attacks on PRINCEcore in the single-key model.

Technique Rounds Data Time Memory Source

Integral 4 24 28 24 [7]

Integral 5 26.3 221 28 [7]

Integral 6 216 230 216 [7]

Impossible differential 6 242.6 243 230 [9]

Truncated differential 6 248 256.26 248 [12]

Truncated differential 7 250 248.2 222.6 [8]

Impossible differential 7 256 253.8 243 [9]

MITM 8 253 253 228 [11]

Impossible differential 8 260 262.26 245 [10]

Impossible differential† 9 253.3 263.91 251.02 Section 5.1

Impossible differential† 9 256.1 250.68 236.3 Section 5.2

Biclique 12 240 262.72 28 [12]

†: The details of the S-box are considered.

2 Preliminaries

2.1 Notations

⊕: Bit-wise XOR

Xi: The (i + 1)-th nibble of the state X

Xi/Y i: The input/output state of the (i + 1)-th round

�X: The XOR difference of two values, i.e., �X = X ⊕ X ′

wt(X): The hamming weight of the state X

Xi
col(j): The (j + 1)-th column of Xi

k1[i]: The (i + 1)-th nibble of k1

�Xi: The (i + 1)-th round difference of the state

Di,j
a : a 4 × 4 matrix over the finite fields F 4

2 which all the positions are 0

except the position (i, j) equals a

2.2 Brief Description of PRINCE

PRINCE is a block cipher with block-length of 64-bit and key-length of 128-bit.
The 128-bit key is split into two 64-bit keys, i.e., k = k0||k1. k0 and k′

0 are
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used as the input and output whitening keys respectively, where k′
0 = (k0 ≫

1)⊕ (k0 � 63). And k1 is used as the identical round-key of its internal function
PRINCEcore as illustrated in Fig. 1.

Fig. 1. Encryption process of PRINCE

PRINCEcore is a 12-round SPN block cipher. We take the state as a 4 × 4
nibble matrix, and the matrix is indexed by

⎛
⎜⎜⎝

0 4 8 c
1 5 9 d
2 6 a e
3 7 b f

⎞
⎟⎟⎠ or 0123|4567|89ab|cdef.

Each round of PRINCEcore consists of an S-box layer (S), a linear layer (M), a
round-constant addition (RC), and a round-key addition (AK). The details of
the round function Ri = AK ◦ RC ◦ M ◦ S are as follows:

(1) S-box Layer (S). The S-box is a single 4-bit to 4-bit S-box which is applied
16 times in parallel, and it is shown in Table 2.

Table 2. The S-box of PRINCE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

(2) Linear Layer (M). The linear layer is defined as M = SR ◦ M ′, where
M ′ is a matrix multiplication that has a branch number of four and SR
is a shifting-row permutation. In fact, M ′ acts as a diagonal matrix mul-
tiplication denoted as M ′ = diag(M̂0, M̂1, M̂1, M̂0), in which M̂0 and M̂1

are 16 × 16 matrices. If we take the state as a 4 × 4 nibble matrix, the
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four columns of a state are multiplied with M̂0 or M̂1, respectively. The
structures of M̂0 and M̂1 are defined as below.

M̂0 =

⎛
⎜⎜⎝

M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

⎞
⎟⎟⎠ , M̂1 =

⎛
⎜⎜⎝

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

⎞
⎟⎟⎠ ,

where

M0 =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,M1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,M2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ,M3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ .

(3) Round-key addition (AK).The 64-bit state is XORed with the subkey k1.
(4) Round-constant addition (RC). The round constants satisfy the condi-

tion RCi ⊕ RC11−i = α for 0 ≤ i ≤ 11, where α is a specific constant. It
allows PRINCE to decrypt a ciphertext by simply encrypting it with the
key k0||k1 ⊕ α. This is the so-called α-reflection property.

Denote the 5-round PRINCE as

R5 = R−1 ◦ S−1 ◦ M ′ ◦ S ◦ R1 ◦ R1,

where R1 = SR◦M ′◦S,R−1 = S−1◦M ′−1◦SR−1. Since we are only considering
differences, we can leave out AddKey (AK) and constant addition (RC) for sake
of clarity.

2.3 Impossible Differential Cryptanalysis

Definition 1. For an iterative block cipher algorithm, let α0 be the difference
�X of plaintext X and X ′, and αr be the corresponding difference �Y of cipher-
text Y and Y ′. If P (�Y = αr | �X = α0) = 0, α0

r
� αr is a r-round impossible

differential.

Under the miss-in-the-middle technique, there are generally two kinds of
contradictions. For simplicity, we denote them as “direct contradiction” and
“indirect contradiction”.

For direct contradiction, the distinguisher is constructed based on two trun-
cated differentials from the directions of encryption and decryption with direct
contradiction. For example, in [9,10], the distinguisher does not consider the real
difference value but only finds the direct contradiction by whether the difference
is active.

For indirect contradiction, the contradiction is discovered by secondary cal-
culation. In this case, the direct contradiction is nonexistent and some uncertain
difference of the internal states can be calculated with certain ones to make a
contradiction. For uncertain differences, we can use the difference property of
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S-box to traverse all possible differences, and then put them into set 1, 2. If set
1 and set 2 have no intersection, then the contradiction is true. The complexity
is high due to the need to traverse all possible differences. In order to solve this
problem, we use quicksort and dichotomy for difference collision, which greatly
reduces the complexity.

3 The Properties of the S-box and the Linear Layer

In this section, firstly, we need to investigate some details about the S-box of
PRINCE. Table 3 shows the input/output differences and the number of corre-
sponding input pairs of the S-box. When the input and output differences of
the S-box are known, the values of the corresponding input/output pairs can be
obtained by looking up DDT. Secondly, since M ′ is constructed by M̂0 and M̂1,
we study the properties of M̂0 and M̂1 instead of M ′. Due to the linearity of M̂0,
the analysis of its input and output differences can be regarded as the analysis
of its input and output text. We give the properties of S and M ′ below.

Definition 2. (Difference Distribution Table) Let S be a function from Fn
2 to

Fn
2 . The difference distribution table (DDT ) is a two-dimensional table defined

by
DDT (α, β) = #{x ∈ Fn

2 : S(x) ⊕ S(x + α) = β},

where α, β ∈ Fn
2 .

Table 3. DDT of PRINCE’s 4-bit S-box.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 4 0 0 2 0 2 0 4 2 0 2 0 0 0 0

2 0 2 0 4 0 0 0 2 2 0 0 0 0 4 2 0

3 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

4 0 2 2 4 2 2 0 0 2 0 2 0 0 0 0 0

5 0 0 2 2 0 2 0 2 0 2 0 2 2 2 0 0

6 0 0 2 2 0 2 2 0 0 2 0 2 0 0 4 0

7 0 0 2 0 0 0 2 0 2 0 4 0 0 2 2 2

8 0 0 2 0 4 2 0 0 2 2 0 2 0 2 0 0

9 0 0 2 2 0 0 0 0 0 2 2 0 4 2 0 2

a 0 0 0 2 2 4 0 4 2 0 0 0 0 0 0 2

b 0 2 0 0 4 0 0 2 0 0 0 2 2 0 2 2

c 0 4 0 0 0 2 2 0 0 0 2 2 2 0 2 0

d 0 2 0 0 0 0 0 2 0 4 2 0 0 2 2 2

e 0 0 2 0 0 0 4 2 0 0 0 2 2 2 0 2

f 0 0 2 0 2 0 2 2 0 0 2 0 2 0 2 2
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Definition 3. Define DDTout(α) = {β|∃ x ∈ F 4
2 , s.t. S(x) ⊕ S(x ⊕ α) = β},

then we have DDTout(0x1) = {0x1, 0x4, 0x6, 0x8, 0x9, 0xb}.
Definition 4. Define DDTin(β) = {α|∃ x ∈ F 4

2 , s.t. S(x)⊕S(x⊕α) = β}, then
we have DDTin(0x1) = {0x1, 0x2, 0x4, 0xb, 0xc, 0xd}.
Property 1. Let M̂0 be a function from (F 4

2 )4 to (F 4
2 )4. When the input difference

Xcol(0) has A active nibbles and the output difference Ycol(0) has B active nibbles,
we can determine the number of input differences that satisfy this condition,
namely,

NumAB = #{Xcol(0) ∈ (F 4
2 )4 : wt(Xcol(0)) = A,wt(Ycol(0)) = B}, (1)

where Ycol(0) = M̂0(Xcol(0)) and A,B ∈ {0, 1, 2, 3, 4}.

We use wt(Xcol(j)) and wt(Ycol(j)) to demonstrate the number of active nib-
bles for the input and output difference of the (j + 1)-th column, respectively.
Since M ′ can be viewed as four 16×16 bitmatrix multiplications in four columns
of the state respectively. The first and fourth columns of the state are multiplied
by M̂0, while the other two columns are multiplied by M̂1. For the linear layer
M̂0 and M̂1, although they are different in the order of rows, they have the same
property which can be proved similarly. Then we can get the number of input
differences that satisfy Eq. (1) through the linear layer M ′. As shown in Table 4,
where i, j ∈ {0, 1, 2, 3}, we give the quantitative relation between input-output
differences through the linear layer M ′ (regarding the state as a 4 × 4 nibble
matrix).

Table 4. The quantitative relationship between input states and output states of M ′

wt(Xcol(j)) wt(Ycol(j))

0 1 2 3 4

0 1 0 0 0 0

1 0 0 0 16 44

2 0 0 28 256 1066

3 0 16 256 2848 10380

4 0 44 1066 10380 39135

4 Impossible Differential Distinguishers of PRINCE

Currently, the longest impossible differential distinguisher is four rounds, and it
is constructed through the direct contradiction of the miss-in-the-middle tech-
nique. In order to get a longer distinguisher, we want to find indirect contradic-
tions in the intermediate states. In this section, we present two types of 5-round
impossible differential distinguishers of PRINCE by using the properties of the
S-box and the linear layer in Sect. 3.
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In the first type of impossible differential distinguisher, each input difference
�X and the output difference �Y has only one active nibble. Then we need to
test 24 · 24 nibble positions. Also, we need to iterate through all possible values
of F24/{0} for each byte. Then, there are 24 · 24 · (24 − 1)2 = 57600 candidate
input-output difference pairs. Among them, 56392 candidate pairs satisfy the
5-round impossible differential distinguisher, and 1208 candidate pairs are not.
See GitHub for all distinguishers1.

Example of the First Type of Distinguishers

One of the 56392 5-round impossible differential distinguishers of PRINCE
is

0x1000|0000|0000|0000 R5

� 0x1000|0000|0000|0000.

We manually verify the above example of impossible differential distinguisher
of PRINCE. It is completely different from the previous impossible differential
distinguishers in that the impossible differentials are detected by considering the
details of the S-box.

Proposition 1. Let R1 = SR ◦M ′ ◦S, the input difference D0,0
0x1 can propagate

to at least one of the output differences of SR ◦ M ′(D0,0
0x1), SR ◦ M ′(D0,0

0x4), SR ◦
M ′(D0,0

0x6), SR ◦ M ′(D0,0
0x8), SR ◦ M ′(D0,0

0x9) and SR ◦ M ′(D0,0
0xb) through R1.

Proposition 2. Let G = M ′ ◦S ◦R1, since considering the details of the S-box,
when the input difference �X0 = D0,0

0x1 propagate to the output difference �W 1

through G, there are 7370 output differences, which we put into the set H and
classify them into seven classes by the hamming weight, as shown in Table 5.

Table 5. The output differences of the set H

wt(�W 1) Number wt(�W 1) Number

16 1704 12 139

15 2852 11 333

14 1574 10 333

13 317 9 118

Theorem 1. For a 5-round PRINCE with an M ′ layer in the middle. The
input difference 0x1000|0000|0000|0000 cannot propagate to the output differ-
ence 0x1000|0000|0000|0000 after 5 rounds of PRINCE by considering all the
details of the S-box.

Proof. In Fig. 2, the input difference is propagated in forwards by 3 rounds, and
the output difference is propagated in backwards by 2 rounds.

1 https://github.com/ZLAa-oss/PRINCE.git.

https://github.com/ZLAa-oss/PRINCE.git
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Fig. 2. 5-round impossible differential distinguisher of PRINCEcore

1. As shown in the encryption direction of Fig. 2, for the input difference �X0 =
D0,0

0x1, it can propagate to one of the following six differences through R1.
⎛
⎜⎜⎝

0x1 0 0 0
0 0 0 0x1
0 0 0x1 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0x4 0 0 0
0 0 0 0
0 0 0x4 0
0 0x4 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0x8
0 0 0x8 0
0 0x8 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0x6 0 0 0
0 0 0 0x2
0 0 0x4 0
0 0x6 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0x1 0 0 0
0 0 0 0x9
0 0 0x9 0
0 0x8 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0x3 0 0 0
0 0 0 0xb
0 0 0x9 0
0 0xa 0 0

⎞
⎟⎟⎠ .

2. As shown in the decryption direction of Fig. 2, since PRINCE possesses the
similarity of encryption and decryption, �W 3 = �W 1. The output difference
�X4 = D0,0

0x1 can propagate to one of the above six differences through R1.
At the same time, all possible differences of �W 3 are in Table 5.

3. A key question is whether any difference �W 1 ∈ H cannot propagate to any
difference �W 3 ∈ H though S ◦ SR, namely, �W 1 S◦SR

� �W 3. Therefore,
we only need to find the indirect contradiction between S ◦ SR(�W 1) and
�W 3 ∈ H to prove that the 5-round impossible differential distinguisher is
valid.
In this paper, we use the combination of classification search and dichotomy
to find collisions, as shown in Algorithm 1. The source codes are available in
https://github.com/ZLAa-oss/PRINCE.git.

https://github.com/ZLAa-oss/PRINCE.git.
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Algorithm 1. Search for collisions between S ◦ SR(�W 1) and �W 3

Input: Set H, |H| = 7370,�W 1,�W 3 ∈ H
Output: 1 for no colision, -1 otherwise.
1: ObjList=[ ];// a list storing possible differentials
2: for i in range (9, 16) do//Categorical lookup by number of active bytes
3: wt(�W1) = wt(�W3) = i//Look for collisions in differences with the same

number of active nibbles
4: Sort the corresponding differences in the H using quicksort//See Table 5
5: if all �W1 can transform to �W3 by S-box then//using dichotomy
6: �W3 → ObjList
7: end if
8: end for
9: if ObjList=∅ then

10: return 1
11: else
12: return -1
13: end if

The most direct way to find collisions is an exhaustive search, but the complexity
is almost the whole space. In this paper, we use the dichotomy to reduce the
complexity and take only two days to run all nibble positions and all nibble
values. Finally, we prove that �W 1 S◦SR

� �W 3 is impossible differentials of the
S-boxes.

All in all, the input difference 0x1000|0000|0000|0000 cannot propagate to
the output difference 0x1000|0000|0000|0000 after 5 rounds of PRINCE by con-
sidering all the details of the S-box.

In the second type of impossible differential distinguisher, the input difference
�X has one active nibble and the output difference �Y has only two active
nibble. The 5-round impossible differential distinguishers of PRINCE is

0x1000|0000|0000|0000 R5

� 000x10|0000|0000x1|0000.

Theorem 2. For a 5-round PRINCE with an M ′ layer in the middle. The
input difference 0x1000|0000|0000|0000 cannot propagate to the output differ-
ence 0x1000|0000|0000|0000 after 5 rounds of PRINCE by considering all the
details of the S-box.

The proof is similar to Theorem 1, and we ignore it. The 5-round impossible
differential distinguisher of PRINCEcore is shown in Fig. 3.

5 Impossible Differential Attack on 9-Round
PRINCEcore

In this section, we show impossible differential attacks on 9-round PRINCEcore
using the 5-round impossible differential distinguishers presented in Sect. 4.
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Fig. 3. 5-round impossible differential distinguisher of PRINCEcore

5.1 The First Key Recovery Attack on PRINCEcore

We utilized a 5-round impossible differential distinguisher in Theorem 1 with two
rounds extended at the top and the bottom to attack the 9-round PRINCEcore.
The procedure of this attack is as follows, and see also Fig. 4.

(1) Precomputation

According to Table 4, when each column of �W 0 has only one active nibble, the
corresponding �Z0 has at least three active nibbles in the same column. And
the number of �Z0 is (16 + 44)3 ≈ 217.7, so the number of possible input pairs
in �X1 is at least 217.7. For the 217.7 input pairs, we compute all the possible
values of the 12 nibbles and store them in a hash table.

(2) Data Collection

Take 2N structure of plaintexts, and each takes all the possible 217.7 values in the
hash table of �X0

col(0,1,2) with a fixed value of �X0
col(3). We can generate approx-

imately 234.4 plaintext pairs for each structure. Select pairs whose ciphertext
difference �X8 is zero in �X8

col(3). We expect to have 2N+34.4 ×2−16 = 2N+18.4

pairs on average.

(3) Key Recovery
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Fig. 4. 9-round impossible differential attack of PRINCEcore

Step 1: Guess the values of k1[0 − 2] and partially encrypt the corresponding
nibbles in X0. Choose pairs whose differences �W 1

col(0) = (0x1, 0, 0, 0)T after
M ′ operation. In this step, we expect to have 2N+18.4 × 2−8 = 2N+10.4 pairs.
The probability of this step is 2−8. According to Definition 4, when the output
difference is 0x1, there are six input differences. Then there are 63 ≈ 28 possible
differences of X1.

Step 2: For every k1[0 − 2] guessed in step 1, we guess the values of k1[3].
Partially decrypt the associated nibbles in Y 8. Choose pairs whose differences
�W 8

col(0) after M ′ operation are non-zero at one nibble and zero at the other
three nibbles. In this step, we expect to have 2N+10.4 × 2−12 × 3 = 2N+0.4 pairs.
The probability of having one active nibble is 2−12, and we have three choices
to locate the active nibbles.

Step 3: Guess the values of k1[4 − 7] and partially decrypt the corresponding
nibbles in Y 8. Choose pairs whose difference �W 8

col(1) after M ′ operation is non-
zero at one nibble and zero at the other three nibbles. In this step, we expect
to have 2N+0.4 × 2−12 × 2 = 2N−10.6 pairs. 2−12 × 2 is the probability of having
one active nibble, and we have two choices to locate the active nibbles. (to avoid
active nibbles in every column after the SR operation).

Step 4: Guess the values of k1[8 − 11] and partially decrypt the corresponding
nibbles in Y 8. Choose pairs whose difference �W 8

col(2) after M ′ operation is non-
zero at one nibble and zero at the other three nibbles. In this step, we expect
to have 2N−10.6 × 2−12 = 2N−22.6 pairs. 2−12 is the probability of having one
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active nibble, and there is only one choice for the location of this nibble because
it is required to be in the same column as the active nibble mentioned in steps
2 and 3 after the SR operation.

Step 5: For every k1[0 − 2] guessed in step 1, partially decrypt the associated
nibbles in Y7. Check pairs whose difference �W 7

col(0) = (0x1, 0, 0, 0) after M ′

operation. If this condition is satisfied, the corresponding data pairs meet the
5-round impossible difference distinguisher, and the guessed key is wrong. We
discard the corresponding k1[0 − 11] from the list of all the 248 possible partial
values of k1. The probability of this step is 2−8.

(4) Attack Complexity

In this attack, we guess the possible 248 bits of k1. After testing the 2N−22.6

remaining pairs, the probability that a wrong 48 bits key guess of k1[0 − 11]
remains is (248 − 1) × (1 − 2−8)2

N−22.6
. To single out the correct key, we

must guarantee N ≥ 35.6. Consequently, the data complexity of the attack
is 235.6+17.7 = 253.3 chosen plaintexts.

The time complexity of our attack consists of three parts. Step 1 requires
2 × 212 × 2N+18.4 = 267 encryptions. Step 2 requires 2 × 216 × 2N+10.4 = 263

decryptions. Step 3 requires 2 × 216 × 2N+0.4 = 253 decryptions. And Step 4
requires 2 × 216 × 2N−10.6 = 242 decryptions. Consequently, the overall time
complexity of the attack is (267 + 263 + 253 + 242)/9 ≈ 263.91 full encryptions.
We can obtain the remain 216 of k1 by exhaustive search with 216 encryptions,
so 263.91 +216 ≈ 263.91 9-round encryptions are required to recover the whole k1.

The memory occupied by the attack consists of two main parts. Firstly,
we need to store 248 bits, i.e., 245 bytes memory. Secondly, 2N+18.4/8 = 251

bytes of memory are needed to store the pairs remaining after data collection.
Accordingly, 245 + 251 ≈ 251.02 bytes of memory are necessary to launch the
attack.

5.2 The Second Key Recovery Attack on PRINCEcore

We propose a 9-round impossible differential attack by adding two rounds on top
and the bottom of the 5-round distinguisher in Theorem 2, as shown in Fig. 5.
The specific attack steps are as follows.

(1) Precomputation

According to Table 4, when each column of �W 0 has only one active nibble, the
corresponding �Z0 has at least three active nibbles in the same column. And
the number of �Z0 is (16 + 44)3 ≈ 217.7, so the number of possible input pairs
in �X1 is at least 217.7. For the 217.7 input pairs, we compute all the possible
values of the 12 nibbles and store them in a hash table.

(2) Data Collection

Take 2N structure of plaintexts, and each takes all the possible 217.7 values in the
hash table of �X0

col(0,1,2) with a fixed value of �X0
col(3). We can generate approx-

imately 234.4 plaintext pairs for each structure. Select pairs whose ciphertext
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difference �X8 is zero in �X8
col(3). We expect to have 2N+34.4 × 2−32 = 2N+2.4

pairs on average.

Fig. 5. 9-round impossible differential attack of PRINCEcore

(3) Key Recovery

Step 1: Guess the values of k1[0 − 2] and partially encrypt the corresponding
nibbles in X0. Choose pairs whose differences �W 1

col(0) = (0x1, 0, 0, 0)T after
M ′ operation. In this step, we expect to have 2N+2.4 × 2−8 = 2N−6.4 pairs.
The probability of this step is 2−8. According to Definition 4, when the output
difference is 0x1, there are six input differences. Then there are 63 ≈ 28 possible
differences of X1.

Step 2: For every k1[0 − 2] guessed in step 1, we guess the values of k1[3].
Partially decrypt the associated nibbles in Y 8. Choose pairs whose differences
�W 8

col(0) after M ′ operation are non-zero at one nibble and zero at the other
three nibbles. In this step, we expect to have 2N−6.4 × 2−12 × 2 = 2N−17.4 pairs.
The probability of having one active nibble is 2−12, and we have three choices
to locate the active nibbles.

Step 3: Guess the values of k1[4−7] and partially decrypt the associated nibbles
in Y 8. Choose pairs whose difference �W 8

col(1) after M ′ operation is non-zero at
one nibble and zero at the other three nibbles. In this step, we expect to have
2N−17.4 × 2−12 = 2N−29.4 pairs. 2−12 is the probability of having one active
nibble, and we have one choice to locate the active nibbles. (to avoid active
nibbles in every column after the SR operation).
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Step 4: For every k1[4 − 7] guessed in step 3, partially decrypt the associated
nibbles in Y7. Check pairs whose difference �W 7

col(0) = (0, 0, 0x1, 0x1)T after M ′

operation. If this condition is satisfied, the corresponding data pairs meet the
5-round impossible difference distinguisher, and the guessed key is wrong. We
discard the corresponding k1[0 − 7] from the list of all the 232 possible partial
values of k1. The probability of this step is 2−5.2. According to Definition 4,
when the output difference is 0x1, there are six input differences. Then there are
62 ≈ 25.2 possible differences of X1.

(4) Attack Complexity

In this attack, we guess the possible 232 bits of k1. After testing the 2N−29.4

remaining pairs, the probability that a wrong 32 bits key guess of k1[0−7] remains
is (232 −1)× (1−2−5.2)2

N−29.4
. To single out the correct key, we must guarantee

N ≥ 38.4. Consequently, the data complexity of the attack is 238.4+17.7 = 256.1

chosen plaintexts.
The time complexity of our attack consists of three parts. Step 1 requires

2 × 212 × 2N+2.4 = 253.8 encryptions. Step 2 requires 2 × 216 × 2N−6.4 = 249

decryptions. Step 3 requires 2 × 216 × 2N−17.4 = 238 decryptions. Consequently,
the overall time complexity of the attack is (253.8 + 249 + 238)/9 ≈ 250.68 full
encryptions. We can obtain the remaining 232 of k1 by exhaustive search with 232

encryptions, so 250.68 + 232 ≈ 250.68 9-round encryptions are required to recover
the whole k1.

The memory occupied by the attack consists of two main parts. Firstly,
we need to store 232 bits, i.e., 229 bytes memory. Secondly, 2N+2.4/8 = 236.3

bytes of memory are needed to store the pairs remaining after data collection.
Accordingly, 229 + 236.3 ≈ 236.3 bytes of memory are necessary to launch the
attack.

6 Conclusion

The work of this paper starts from the designer′s viewpoint, giving more accurate
impossible differential cryptanalysis for PRINCE by considering the details of
the S-box. Compared to the cryptanalysis of the SPN structure, our results are
closer to the attacks on the concrete cipher.

We solve the impractical situation that an exhaustive search traverses the
whole space by classifying the difference and adding dichotomy to make the
difference through S-box realize collision. It is worth mentioning that although
the two types of distinguishers have the same number of rounds, the complexity
required to recover the key is different when the input and output differences are
different. In addition, our results can be generalized to other lightweight block
ciphers for finding longer impossible differential distinguishers with considering
the details of the S-box.

In the future, the only chance of finding longer impossible differentials distin-
guisher for PRINCE, is restricted by this paper to the situation where the key
schedule must be considered, which is a problem worth further investigating.
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Abstract. Pattern lock strength meters designed for securing Android
devices are inconsistent in their metering, e.g., assigning higher scores
to weaker patterns. In this paper, we raise this inconsistency problem
by analyzing five existing pattern strength meters. We reveal that they
commonly miss some important visual features and even assign erroneous
weights to features. As a preliminary study toward a consistent pattern
strength meter in the future, we design a rigorous user study to identify
the visual features of a pattern that correspond to real-world users’ cri-
teria to score the strength of the pattern. We conducted an online survey
for 3,851 users to collect reliable labels for 625 patterns. The statistical
result of the user study sheds light on a pattern strength meter that
reflects the user’s visual perception with various visual features.

Keywords: Pattern lock · Pattern strength meter · Shoulder surfing
attack

1 Introduction

Android pattern lock, which is one of the authentication methods used to
protect a smartphone, originates from the earlier recall-based systems such as
Draw-A-Secret (DAS) [18] and Pass-Go [30]. A pattern lock user draws a pat-
tern shape on 3 × 3 grid in a touchscreen and enrolls it. When unlocking the
smartphone, the user only needs to draw the enrolled pattern. As a graphical
password, pattern lock utilizes the fact that graphical information is easier to
be remembered by humans than text information [5,28]. It is also preferred by
users because of its good error recovery [37]. Although the recent trend is using
a biometric authentication that has been developed newly, in this case, users
should adopt the pattern lock or PIN as a secondary authentication method.

Android pattern lock is one of the most common authentication methods for
smartphone [16,21]. It is reported in a previous study that about 40% of Android
users are using the pattern lock [35]. Furthermore, in our user study, we found
that 35.91% of Android smartphone users are currently using the pattern lock,
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Fig. 1. Proportion of current authentication method usage of survey participants

which accounts for the most among authentication schemes (see Fig. 1). Users
who have experience using the pattern lock comprised 93.35% of all participants.
This indicates that Android pattern lock still influences heavily protecting users’
smartphones.

Despite a number of smartphone users using Android pattern lock, a vari-
ety of security issues with the pattern lock have been raised. Theoretically, the
possible number of unique patterns in Android pattern lock is 389,112. It is a
tremendous amount but actual pattern usage differs from the theory. Users com-
monly use simple and usable but insecure patterns. This decreases the number
of patterns that an attacker should consider and makes the pattern lock vulner-
able to the guessing attack [27,32]. Moreover, as a simple pattern is easier to
be remembered by both user and attacker, it is easily exposed to the shoulder-
surfing attack [36]. Because the shoulder-surfing attack does not need any prior
knowledge about the pattern lock, it is more dangerous considering that anyone
near the user can perform the attack. Therefore, there needs equipment that
leads users to choose more complex and secure patterns to prevent two types of
attacks on the pattern lock.

From decades ago, there have been a lot of studies about password strength
meters as equipment to increase the security of user’s text password [13]. Against
the brute-force attack [13,14], the dictionary attack [8,9,13,19,33,34,39], and the
guessing attack [9], those existing works applied features such as Markov model
and entropy to their meters. The text password strength meters are deployed on
websites, encouraging users to choose more secure passwords [34]. Inspired by
the case of the text password, there have been several studies about a pattern
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strength meter to prevent shoulder-surfing attack and guessing attack [2,6,27,
29,32]. They extracted various features based on their own criteria, designed
a metric to measure the strength of a pattern, and performed user studies to
confirm the validity of their meters. They commonly concluded that pattern
strength meters can help choose more secure patterns. However, all of the existing
pattern strength meters have an inconsistency problem. In other words, they
have the possibilities that they estimate a simple pattern that is vulnerable to
attacks complex. Likewise, they might estimate a complex pattern that is robust
to attacks simple. Their inconsistencies can cause a fatal defect that they can
recommend a vulnerable pattern to users. Due to this reason, the existing pattern
strength meters are premature to be applied to public users.

In this paper, we conduct a preliminary study toward consistent pattern
strength meters. We first summarize five existing pattern strength meters [2,6,
27,29,32] and identify the reason for their inconsistency problem. They com-
monly miss some important features and assign improper weight values to used
features. Furthermore, they designed their meters from the subjective perspec-
tive of authors, not the real-world users’ perspective. We claim that features
relevant to users’ visual perception should be applied as much as possible to
the strength metering to solve the problem. In this respect, we raise a fun-
damental question: visual features of patterns correspond with the perception
of real-world users? We perform a large-scale online survey subjected to 3,851
android users to answer the question. In this process, various feature values of
patterns were measured and a clustering algorithm was applied to select 1,000
survey patterns. Through the statistical analysis of the survey result, we obtained
reliable strength scores of 625 patterns among 1,000 patterns. Our study result
implies that a future pattern strength meter based on abundant features and
their proper weights can clearly explain how human recognizes a pattern and
scores the strength of the pattern. In summary, this paper makes the following
contributions:

– We raise the inconsistency problem of the existing five pattern strength meters
through several pattern examples that are misestimated. We identify that the
reason for their problem is the lack of used features and improper feature
weights due to the subjective perspective.

– We perform a large-scale online survey for 3,851 android users (Sect. 3). Unlike
previous studies, 100 of our survey participants who responded to one pattern
can give the ground truth of the strength of the pattern. We also obtain
reliable strength scores of 625 patterns through statistical analysis.

– Further, we discuss solutions to resolve the problems and to measure an accu-
rate pattern strength (Sect. 4). We define requirements for a consistent pat-
tern strength meter. We also discuss how the survey result can be utilized to
construct the strength meter.
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2 Pattern Strength Meters

Despite of efforts of the previous works, the existing pattern strength meters
have an inconsistency in measuring the strength of a pattern. In other words,
they are possible to judge a weak pattern to be strong and a strong pattern to
be weak. This can lead to a serious problem in that those meters guide users
to choose weak patterns. In this section, we introduce the existing five pattern
strength meters [2,6,27,29,32], analyzing their inconsistency.

We first analyze an error caused by a single pattern meter. Figure 2 shows
error patterns that we found the existing meters measure erroneously. In
Figs. 2(a), (b), (d), and (e), the right pattern generally looks simpler than the
left one for human, but each meter concludes that the right pattern is much more
complex than the left one. In Figs. 2(c), the right pattern generally looks more
complex than the right one, but the Sun meter estimates similar complexities
for both patterns. We repeatedly sorted 389,112 patterns in ascending orders of
the five meters. We then extracted the Nth strong pattern in each existing meter
to identify erroneous patterns.

2.1 Existing Pattern Strength Meters

Uellenbeck Meter. Uellenbeck et al. [32] measured the security of a pattern
against the guessing attack, based on the hidden Markov model. Their pattern
strength metric based on an n-gram Markov model can be defined as follows.

P (c1, ..., cm) = P (c1, ..., cn−1) ·
m∏

i=n

P (ci|ci−n+1, ..., ci−1) (1)

In the above equation, cn indicates a 3-gram pattern sequence token,
P (c1, ..., cn−1) indicates an initial probability, and P (cn|c1, ..., cn−1) indicates
a transition probability. They collected user patterns of hundreds of participants
in the user study to collect the probability of each token.

It is more real to utilize probabilities from the usage distribution of real-world
users, but it is impossible to investigate the usage distribution of all 389,112 pat-
terns and all users. We, therefore, implemented their meter, defining the prob-
ability that the current dot moves to another dot as the transition probability.
From now on, we call Uellenbeck’s meter the Markov meter in this paper.

The major error we can find from the Markov model is that the security
measurement relies heavily on the number of dots in a pattern. This metric can
reflect the security against the guessing attack but cannot reflect the security
against the shoulder-surfing attack. In Fig. 2(a), the complexity ranking of the
right pattern in the Markov meter is higher than the left one. The right pattern
seems less secure than the left one because of the lack of features such as cross
point, the direction of segments, and the angle of segments. However, the Markov
meter does not consider those features and over-estimated the right pattern.
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Fig. 2. Error patterns caused by existing single pattern strength meters. Each meter
estimated the much larger strength score of the right pattern than the left one except
for the Sun meter. Sun meter estimated similar strength scores for both patterns. The
circle in the pattern denotes the starting point, and the asterisk in the pattern denotes
the endpoint.

Andriotis Meter : Andriotis et al. [2] utilized five pattern features and defined
conditions for each feature to increase a security score. The score increase con-
dition xi is as follows. 1) x1 is 1 if the starting point is not upper left, otherwise,
it is 0. 2) x2 is |P | − 5 where |P | is length of the pattern if |P | >= 6, otherwise,
it is 0. 3) x3 is 1 if the number of turns is more than or equal to 2, otherwise, it
is 0. 4) x4 is the number of knight moves. 5) x5 is the number of overlaps. The
final pattern score θ is defined with

θ =
5∑

i=1

xi. (2)

Figure 2(b) illustrates an example of the error of the Andriotis meter. In this
figure, the ranking of the left pattern and that of the right pattern is identical in
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the Andriotis meter, even though the left one seems visually more secure than
the right one for humans. From the perspective of the Andriotis meter, the left
pattern could not get the strength score from the starting point. The left pattern
also has several directions but got the additional score only by 1 because of
their policy. Furthermore, they missed noticeable features of the pattern such as
narrow angles and cross points. As a result, the Andriotis meter underestimated
the left pattern.
Sun Meter : Sun et al. [29] tried to apply a similar strength metric as for text
password to pattern lock. Using several pattern characteristics, they transformed
the traditional entropy equation to

PSp = Sp × log2(Lp + Ip + Op) (3)

In this metric, Sp, Lp, Ip, and Op indicate the number of points, the sum of
segments’ euclidean distance, the number of cross points, and the number of
overlaps, respectively.

There is concern that the Sun meter does not consider the direction and
angle of segments so patterns with those features can get low strength scores. In
addition, the number of points has a great influence since it is applied to true
value while other features are reduced with a log scale. The same weights for the
other three features can make long patterns get a high strength score easily. In
Fig. 2(c), the ranking of the left pattern and the right pattern is similar in the
Sun meter. The left pattern does not have noticeable features and seems simple.
Sun meter, however, overestimated the number of points and the length of the
pattern.
Song’s Meter : Song et al. [27] designed a function for pattern strength meter,
which is combined from three pattern features considering both guessing attack
and shoulder-surfing attack.

MP = 0.81 × LP

15
+ 0.04 × NP + 0.15 × min(IP , 5)

5
(4)

They extracted a feature that had not been extracted by other existing
approaches before. LP is sum of segments’ vertical and horizontal length, NP is
the ratio of non-repeated sub-patterns, and IP is the number of intersections.
The repetition of the same segments makes a pattern seem simple to users and
increases guessability. The weights of the three features were initialized to 0.33
in common. They updated their weights as the above equation through a user
study.

They assigned a too-large weight to the pattern length but a small weight
to the sub-pattern feature. In Fig. 2(d), the ranking of the left pattern is lower
than the right pattern in Song meter, while the left pattern seems more complex
for humans. Song meter over-estimated the right pattern since they assigned a
large weight to euclidean distance. They also underestimated the left pattern
and reduced its ranking improperly since they missed narrow angles of segments
of the pattern.
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Bier’s Meter : Bier et al. [6] concentrated on the directional feature of segments.
Their pattern strength metric is as below

m(P0, d1d2...dk) = (1 − p(P0))(1 − αk)
1
3k

s(k)∑

i=1

w(di). (5)

Given k segments, di indicates ith segment. p(P0), α, w(di) indicate weights
for starting point, the sensitivity of the number of points, and ith segment,
respectively. They assigned larger weights for diagonal segments than vertical
and horizontal segments.

Bier meter is missing important features such as euclidean distance, cross
points, overlap, and angle of segments. In Fig. 2(e), the ranking of the left pat-
tern is lower than the right pattern in the Bier meter. The left pattern was
underestimated even though its many turns and overlap increase the complex-
ity. Bier meter also over-estimated knight move of the right pattern, increasing
its ranking unnecessarily.

2.2 Common Problem of Pattern Strength Meters

We additionally found the common error cases from the five existing meters.
We could identify their common problem from those cases. Figure 3 depicts two
patterns that the five meters commonly under-estimated or over-estimated. In
Fig. 3(a), compared with the right pattern, the left pattern seems much more
complex. This example represents that the existing meters commonly overlook
the angle and density of the left pattern. Meanwhile, in Fig. 3(b) illustrates
an opposite example. In this figure, compared with the left pattern, the right
pattern seems much simpler. We can conclude that the existing meters overly
concentrated on pattern features such as the length, and the number of points.

Fig. 3. Common error patterns caused by five existing pattern strength meters. All of
the existing meters estimated the smaller strength score of the left pattern of (a) than
the right one. In addition, they estimated the larger strength score of the right pattern
of (b) than the left one.
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3 Our Study

In this section, we perform a user study based on a survey to identify whether the
strength scores of patterns measured by visual features correspond with those
of real-world users. In the following subsections, we explain how we designed,
performed, and analyzed the survey and also explain how we created the pattern
strength scores.

3.1 Survey Pattern Selection

The ideal approach is collecting labels of patterns as many as possible from
real-world users. However, it is impossible to ask for all of 389,112 patterns to
users. We need to choose a part of those patterns to be included in the training
dataset. The chosen patterns should be able to represent other patterns and
create objective data. If patterns have more points and become more complex,
people may not be able to answer their accurate strengths. For this reason, we
use patterns whose number of points does not exceed six for this user study. We
found that 34,792 patterns satisfy this criterion. We still have too many patterns
to be considered so we grouped similar patterns among them into clusters.

We utilized scikit-learn [24], the Python-based open source machine learning
library, for pattern clustering. We used kmeans++ among the available algo-
rithms. We used 29 visual features, which are extractable from a pattern itself,
in Fig. 4 for clustering. Each feature has a different scale so feature values are nor-
malized from 0 to 1 by the min/max scaler. Intersections make lines of a pattern
more densely such that the pattern gets more complex. Therefore, we increased
the weight of the intersection ten times because we thought that intersections
have significant importance to pattern strength.

We chose representative patterns (i.e. centroids), that will be displayed to
respondents in the survey, from 1,000 clusters. It is difficult for a respondent to
answer all 1,000 patterns, so we need to make them answer for the proper num-

Fig. 4. A total of 29 visual features used for pattern clustering. For the frequency of
vectors (left bottom in the figure), each direction of vectors is an independent feature.
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Fig. 5. Example patterns that describe an intersection (i.e., cross point) and overlapped
lines

ber of patterns to obtain an objective answer. Therefore, we created 40 survey
groups, limiting the number of patterns a respondent can answer to 25. There are
simple (i.e. weak) patterns and complex (i.e. secure) patterns among the chosen
patterns. For respondents to answer from a weak pattern to a secure pattern, we
created five temporary pattern complexity groups and let the respondents answer
for all complexity groups. The respondents are asked to answer five patterns for
each complexity group.

We sorted 1,000 patterns based on our own criteria to determine which
complexity group they belong to. We considered that any features that have
a large value significantly affect the pattern strength, so we sorted the patterns
in ascending order of feature values. The order of the priority of features is the
number of unique directions, the sum of intersections and overlaps, the number
of points, intersections, overlaps, and the total euclidean length. Patterns are
firstly sorted in ascending order of the number of directions. When two patterns
have the same value, the pattern with the smaller sum of intersections and over-
laps, which is the next priority feature, is considered simpler than the other.
We divided the sorted patterns into five groups of the same size, then assigned
the first 200 patterns into complexity group 1 and the last 200 patterns into
complexity group 5.

3.2 Survey Design

We have 40 survey groups through the result of clustering. 25 patterns are
assigned to each survey group. We set 100 respondents for each survey group and
we planned to recruit a total of 4,000 respondents. We expected that 100 samples
of a pattern are enough to derive the ground-truth of the strength score. The
respondents were limited to Android smartphone users located in the United
States. We used Amazon Mechanical Turk where we can accommodate a lot of
participants to request our surveys. The questionnaire design for each survey
group is identical to each other but the only difference is in the shape of the
patterns. To display the pattern shape, we printed a point sequence of a pattern
as an image. One questionnaire contains two main survey sections. Both survey
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Fig. 6. The number of participants and used data size for each survey group of user
study

sections are used to calculate the label of a pattern. The organization of a survey
is as follows.

Survey Section 1 consists of five questions. Each question is related to one com-
plexity group and shows five patterns in the group. Respondents should watch
the patterns and answer the complexity ranking of the patterns. The ranking
of patterns in one question must be different from each other. In this survey
section, we want to identify the detailed differences in scores among patterns in
the same complexity group.

Survey Section 2 consists of 25 questions. Each question shows a pattern and
respondents should answer the objective complexity score, ranging from one to
five, of the pattern. Score one means the pattern is the weakest, and score five
means the pattern is the most secure. In this section, five questions are assigned
for each complexity group. We want to identify the objective score in this section,
that is not related to complexity groups. It is possible for the same respondent
to make bias by answering the same pattern in both sections. Therefore, we
deployed Section 1 patterns of the even survey group in Section 2 of the odd
survey group. In the same way, we deployed Section 1 patterns of the odd survey
group in Section 2 of the even survey group.

A total of 3,851 respondents were recruited as the result of 40 survey groups.
A lot of respondents participated in the initial phase of survey groups, but
their participation became slow such that some groups could not recruit over
100 respondents. There were a variety of the age of respondents, ranging from
teenagers to 60s, and their education level. The survey group that recruited the
most respondents had 136 respondents, and the group that recruited the least
respondents had 55 respondents. On average, each survey group recruited 96.275
respondents.
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We did not use all of the respondent’s data. As the label of training patterns
must be measured by the reliable labeling method, we used only the reliable
ones among all data. We regarded the data of respondents who gave an answer
that makes no sense as noise and rejected them. For instance, some respondents
answered the most complex pattern as the simplest, and vice versa. We also
rejected the data of randomly answered respondents. The number of respondents
and used samples are illustrated in Fig. 6. The number of total used samples
for labeling was 3,257 over 40 survey groups. The survey group with the most
samples had 116 samples, and the group with the least samples had 44 samples.
On average, each survey group had 81.425 samples.

3.3 Strength Score Measurement

In this step, we measure the strength score of the patterns used in the survey.
Although we utilize both survey sections to determine the strength of a pattern,
they have different purposes and structures. In this respect, we obtain scores
of a pattern using different methods for each survey section and then combine
two scores. Survey Sect. 1 results in the relative score of a pattern compared to
the other four patterns in the same complexity group. For the conversion from
a relative score to the absolute value, a score range of five complexity groups
should be defined. Therefore, we first analyze the result of survey Sect. 2 to
define their range. Fortunately, we identified that there is a statistical difference
among pattern complexity groups so we can consider those groups are separated.
However, we cannot assure that the grouping result is definitely objective. In the
real world, the most complex pattern in the Nth group may be more complex
than the simplest one in the N+1th group. For this reason, we permit overlap
of the range of two complexity groups to some degree.

We calculated the objective score of Sect. 2 by averaging the responses of
all respondents who answered in the same pattern. The score range of each
complexity group is determined by the minimum/maximum Sect. 2 scores in the
group. Same as Sect. 2, we calculated the Sect. 1 score by averaging all responses
of a pattern. The scale of the Sect. 1 score changes when the relative Sect. 1 score
is converted to the objective score. Given a pattern P , its complexity group G,
its Sect. 2 score S2, and its relative Sect. 1 score S1, the equation to obtain the
objective Sect. 1 score S1′

P is defined as

S1′
P =

(max(S2
G) − min(S2

G))
4

× (S1
p − 1) + min(S2

G). (6)

mim(S2
G) and max(S2

G) means the minimum and maximum score of G.
(max(S2

G)−min(S2
G))

4 means the interval between two adjacent objective scores.
The relative score 1 of Sect. 1 is converted to the objective score min(S2

G). The
relative score 5 of Sect. 1 is converted to max(S2

G). The relative score 2, 3, and 4
is converted to objective scores based on the score interval of G. In conclusion,
the equation of combining Sect. 1 score S1′

P and Sect. 2 score S2
P to measure the
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Fig. 7. Mean pattern strength score of pattern complexity groups of user study. Each
color of line describes a survey group number.

pattern strength label Lp of a pattern P is defined as

LP =
√

(S1′
P )2 + (S2

P )2. (7)

3.4 Survey Results

We make sure that the five complexity groups over 40 independent survey groups
match people’s perspectives and that the difference in scores between the com-
plexity groups is significant. If our grouping contains an error, it leads to an
error in the design of the questionnaire and the survey results become diffi-
cult to analyze. We confirmed this by conducting a statistical analysis based on
Mixed Factorial ANOVA. We eliminated 15 survey groups during the statistical
test, we only labeled the strength scores of patterns in the remaining 25 survey
groups.

The normality which is the basic assumption of ANOVA analysis was estab-
lished with more than 30 survey groups. The homogeneity which is another basic
assumption of ANOVA analysis wasn’t established since the sample sizes of some
surveys were too small or too large to satisfy homogeneity of variance. The 1st,
2nd, 12th, 13th, 14th, 21st, 29th, 31st, and 35th survey groups made this prob-
lem, so we excluded those survey groups to satisfy homogeneity of variance.
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Table 1. Within-Subjects effect test

Source Type3 sum
of square

Degree of
freedom

Mean square F value P value

Pattern group 6348.427 3.681 1724.597 4661.218 .000

Pattern*Survey
group

276.939 88.347 3.129 8.456 .000

Error (Pattern
group)

2699.420 7295.954 .370

Table 2. Within-Subjects contrast test

Source Type3 sum
of square

Degree
of free-
dom

Mean square F value P value

Pattern group 5917.302 1 5917.302 12680.546 .000

Pattern
*Survey group

71.927 24 2.997 6.422 .000

Error (Pattern
group)

924.889 2982 .467

Levene’s test of equality of error variance showed no difference in all pattern
groups based on median (p-value > 0.05). Meanwhile, as there was a significant
mean difference among the remaining 31 survey groups (p-value < 0.025), we
identified that the 4th, 19th, 20th, 36th, 37th, and 40th survey groups had a
large difference in mean among groups by conducting LSD post-analysis that
is sensitive to the average difference. We removed the results of these survey
groups and made the remaining survey groups have no mean difference (p-value
> 0.05).

Mixed Factorial ANOVA analysis suggested that the pattern complexity
group did not satisfy the sphericity which is the basic assumption of Mixed
Factorial ANOVA (p-value < 0.05). Nevertheless, we assumed that the spheric-
ity was ensured because the Greenhouse-Geissser value was close to 1. Table 1
showed that the mean difference among pattern complexity groups was signifi-
cant (p-value > 0.05). Also, from Table 2, which is the result of the contrast test,
we found that the difference was significant in linear models (p-value < 0.05).
As shown in Fig. 7, the complexity of the pattern group is upward. Therefore,
through the survey result, we identified survey groups that have no difference
from other groups and confirmed that there is a linear upward difference among
pattern complexity groups. In addition, we also found that the pattern complex-
ity of those patterns measured by our approach follows the visual perception of
real-world users.



94 L. H. Park et al.

4 Discussion

Through the analysis of error cases of the existing pattern strength meters iden-
tified in Sect. 2, we define their two main problems. First, each of them is missing
at least one visual feature which affects the safety of a pattern. The strength
of text passwords can be represented by simple features. On the other hand,
the strength of patterns must be represented with more complex visual features.
We showed that, in Sect. 2, incorporating used and missing features of existing
meters can reenact the criteria of real-world users to evaluate patterns. For more
accurate metering, we can consider further features such as Markov model [32],
repeating sub-patterns [27], or the angle of two lines.

The second problem of existing pattern strength meters is that they assigned
wrong weights to their features due to the intervention of the author’s subjective
perspective. Song et al. [27] adopted a machine learning model, but its weights of
features were initialized by the author. Even though the strength of our survey
patterns was accurately derived, we cannot manually measure the strength of
all existing patterns. Therefore, we suggest the strength of a pattern should be
measured by the machine learning model alone rather than by applying some-
one’s opinion to assign accurate weights for various features. Deep learning is a
promising solution to extract latent features. DNN consists of layers with neu-
rons. Each neuron of different layers are connected by weights and biases (i.e.,
parameters). The topology of DNN can be designed freely. A sophisticated DNN
can solve a difficult problem such as a non-linear problem. We believe that DNN
can extract the latent features from the perspective of a human.

Meanwhile, the machine learning model requires a ground-truth for training.
The strength scores of 625 survey patterns are a reliable ground-truth because
they were measured by multiple users and evaluated by the statistical test. If we
deploy a regression model, the model learns the appropriate weights of features
from the label of survey patterns. The model then calculates the strength of the
remaining patterns with feature values of the patterns and weight parameters of
the model.

5 Related Work

5.1 Security of Android Pattern Lock

Android pattern lock has a security issue in that users prefer to use only a few
pattern spaces to draw actual patterns within the theoretical limits of pattern
space [2,32]. There is a trade-off between security and usability according to the
complexity of lock patterns [29]. However, users tend to select the simple pattern
which is easily stolen and replicated for usability rather than security. Various
types of attacks targeted to android pattern lock have been proposed, such as
guessing attacks [3,10,27], shoulder surfing attacks [22,31], a smudge attacks [4],
a video-based attack [41,42], and a thermal attack [1]. Such attacks have a
common ground that they are performed via a leakage of pattern shapes [25],
where simple patterns are more vulnerable to those attacks. In this study, we
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focused on guessing attack and shoulder-surfing attack which are more feasible
in real-world.

Some previous works proposed some modifications of existing schemes includ-
ing pattern lock to prevent the leakage of graphical passwords [11,17,38,43].
They focused on an increment of resistance against only one specific attack.
However, they could not deal with other attacks they do not consider while more
than two attacks that target the Android pattern lock can coexist in the real
world. Moreover, in general, they could not guarantee a significant improvement
in security or they reduced the usability of their schemes.

As the essential motivation of attacks on graphical authentication is to crack
the shape of private passwords, the behavior-based authentication leveraged not
only private passwords but also user behavior collected by embedded sensors in a
smartphone to prevent those attacks [7,12,15,23,26,40]. Especially, Ku et al. [20]
applied the behavioral approach to android pattern lock. They turned a private
pattern into a public one by displaying the pattern to multiple users. They used
only user’s behavior information to distinguish users. As a consequence, they
could remove existing threats on the traditional android pattern lock. However,
this system is still hard to be accepted by public users who are firmly using
android pattern lock which.

5.2 Password Strength Meter

One of the methods to offer a secure password authentication system for users
is maintaining the current scheme and recommending for them to use secure
passwords [19]. Text password policies had been studied to create passwords
that are robust against guessing attack. Policies were created based on LUDS
formulation that counts lower and uppercase letters, digits, and symbols while
the policies depend on different websites using passwords as an authentication
method [19,39]. However, the LUDS formulation had problems of usability and
ineffectiveness against guessing attack [39].

To resolve this problem, studies about password meters have begun [34]. Ur
et al. [33] implemented a meter that scores a password by combining various
heuristics related to a neural network and created data-based text feedback.
Castelluccia et al. [9] implemented an adaptive password strength meter (APSM)
that estimates password strength using the Markov model. It was accurate on
the guessability of a password and robustness against other attack models. Some
studies proved that password meters are helpful for password creation [14,33].
Users who utilize a password meter create longer passwords than those who do
not utilize the meter, and passwords created with help of the meter displaying
a visual bar are slower to be cracked than those without the meter [14,34].

5.3 Pattern Strength Meter

There are five previous studies that are most relevant to our work [2,6,27,29,32].
They developed pattern strength meters that improve the security of android
pattern lock by assessing the strength score of a pattern and encouraging users to
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use secure patterns. Uellenbeck et al. [32] utilized the Markov model to measure
the guessability of a pattern. Although they did not consider shoulder-surfing
attack, we included Markov probability in our feature set because we consider
guessing attack as well as shoulder-surfing attack. The other four studies focused
on security against shoulder-surfing attack. They established their metrics to
calculate the visual complexity of a pattern. Various numerical features such
as starting point, length, directions, cross points, and overlaps were included in
their metrics. They have two main problems that cause inconsistency in pattern
metering. First, they included only few features in their metrics so they could
not fully reflect the user’s visual perception. As a solution for the first problem,
we combined most of their features into our feature set and also included new
features (i.e., angles). Second, except Song et al. [27], they assigned the wrong
weights to their features because of their subjectivity. Song et al. [27] initialized
feature weights and updated their weights by regression. However, they collected
a label of a pattern from a limited number of users. As a result, their labels could
not represent the ground-truth and they assigned wrong weights to features
as well. We collected reliable strength scores of patterns, from large-scale user
survey, that can also be used for training a further strength meter as the labels.

6 Conclusion

As smartphone contains users’ private data more than before and android pat-
tern lock becomes a target of various attacks, the need for novel equipment that
protects the smartphone from those attacks is continuously increasing. We pro-
posed a novel pattern strength meter that reflects the user’s visual perception,
overcomes the inconsistency problem of existing pattern strength meters and
eventually encourages users to create more secure patterns. Based on various
visual features of a pattern, the proposed pattern strength meter can score the
accurate robustness of a pattern against a guessing attack and a shoulder-surfing
attack. We performed a large-scale online survey of android users. From the sur-
vey, we could obtain the ground-truth of the user’s perspective about a pattern
and identified that complexities of patterns measured by our features follow the
visual perception of real-world users. We are considering future work on the
pattern strength meter with some improvements toward the ground-truth of the
strengths of all patterns.
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Abstract. End-to-End Encryption (E2EE) aims to make all messages
impossible to read by anyone except you and your intended recipient(s).
Many well-known and widely used Instant-Messaging (IM) applications
(such as Signal, WhatsApp, Apple’s iMessage, and Telegram) claim to
provide an E2EE functionality. However, a recent technique called client-
side scanning (CSS), which could be implemented by these IM applica-
tions, makes these E2EE claims grandiose and hollow promises. The CSS
is a technology that scans all sending and receiving messages from one
end to the other, including text, images, audio, and video files. Some
in industry and government now advocate this CSS technology to com-
bat the growth of malicious child pornography, terrorism, and other illicit
communication. Even though combating the spread of illegal and morally
objectionable content is a laudable effort, it may open further back-
doors that impact the user’s privacy and security. Therefore, it is not
end-to-end encryption when there are censorship mechanisms and back-
doors in end-to-end encrypted applications. In this paper, we shed light
on this hugely problematic issue by introducing an encrypted keyboard
that works as a system keyboard and can be enabled on the user’s phone
device as a default system keyboard. Therefore, it works on every appli-
cation on the user’s phone device when the user is asked to enter some
data. To avoid the CSS system, users can use this encrypted keyboard
to encrypt and decrypt their messages locally on their phone devices
when sending and receiving them via IM applications. We first design
and implement our encrypted keyboard as a custom keyboard applica-
tion, and then we evaluate the effectiveness and security of our encrypted
keyboard. Our study results show that our encrypted keyboard can suc-
cessfully encrypt and decrypt all sending and receiving messages through
IM applications, and therefore, it can successfully defeat the CSS technol-
ogy in end-to-end encrypted systems. We also show that our encrypted
keyboard can be used to add another layer of E2EE functionality on
top of the existing E2EE functionality implemented by many end-to-end
encrypted applications.
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1 Introduction

Smartphones are becoming increasingly important in today’s society as more
people rely on them for daily communication. Due to this widespread use of
smartphones, many applications are continuously being developed to meet peo-
ple’s needs and facilitate their text, audio, and video communications. However,
people today are concerned about the security and privacy of their communi-
cations due to government surveillance programs and law enforcement agencies,
which have pushed them to worry about their online activities and sharing sen-
sitive information. As a consequence of these concerns, many Instant-Messaging
(IM) applications have been developed to address these issues by providing secure
messaging solutions through a method known as End-to-End Encryption (E2EE)
which protects conversations from any third party. However, these IM applica-
tions, which claim to provide an E2EE feature, are vulnerable to Man-in-the-
Middle (MitM) attacks, either by compromising the service providers or by using
another form of attack.

Furthermore, the E2EE functionality has been plagued by a recent attack
called client-side scanning, endpoint filtering, or local processing, which breaks
the E2EE feature claimed by IM applications [20]. In this client-side scanning
(CSS) system, an end-to-end encrypted application performs a scan against
any text, image, audio, or video in the message before encrypting the message
and sending it to the intended recipient. If the CSS system in the end-to-end
encrypted application finds any matching item, it will prevent the user from
sending the message or reporting any matching item to government censorship
or law enforcement authorities. It is a laudable effort when end-to-end encrypted
applications tend to use the CSS technique to prevent child exploitation imagery
(CEI), thwart terrorism, or provide copyright protection. However, this will lead
to open another door for further censorship mechanisms and build further back-
doors that impact the user’s privacy. Having such CSS technology in end-to-end
encrypted applications could be abused by many attackers. Thus, it might be
causing more threats to the user’s privacy than protecting objectionable content.
People are now worried that the Meta company is listening in on their What-
sApp conversations, which are supposed to be encrypted from end to end, to
show them ads that are more relevant to them [3]. Recently, the Apple company
has also proposed its CSS system to fight child sexual abuse materials (CSAMs)
over the Internet [28]. It uses a database of known CSAM image hashes main-
tained by child safety organizations and reports any matching image to law
enforcement agencies. This database is nothing but a set of hashes whereby each
image is converted into a different unique numeric representation. A hash func-
tion, which is a computer function that maps data of arbitrary size to fixed-size
values called hash values, converts such an image into a small hash value, and
only that hash value is converted into that image. Also, it has come out that the
Federal Bureau of Investigation (FBI) and its international partners secretly ran
an encrypted messaging app called Anom to spy on and collect tens of millions
of messages from Anom users [22]. Their goal was to monitor organized crime on
a global scale by looking over the shoulders of organized criminals as they talked
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to each other. The revealed parts of the code showed that the exchanged mes-
sages were secretly duplicated and sent to a third party (which is the FBI and its
law enforcement partners) that was hidden from the users’ contact lists. There-
fore, from a security perspective, that is not an E2EE functionality when having
these censorship mechanisms and backdoors in end-to-end encrypted applica-
tions. The end-to-end encrypted applications should provide the E2EE feature
in such a way that the exchanging of messages is known only to the sender and
the intended recipient. No third party, not even the service provider, should be
privy to any message content exchanged between the sender and the intended
recipient.

In this paper, we introduce an encrypted keyboard to address this issue
facing the E2EE functionality implemented by IM applications. This encrypted
keyboard is a system keyboard that the user can enable on his phone device and
therefore use to encrypt or decrypt a message. Many IM applications implement
the CSS system and still advertise that they provide the E2EE feature. They
may argue that the CSS mechanism will just occur right before and after the
encryption and decryption of messages while keeping the promise of providing
the E2EE functionality to take place between two endpoints. However, this will
be a hollow promise, and there will not be an E2EE anymore since the service
provider is sitting on both endpoints and watching over the user’s shoulder to
filter all sending and receiving messages. The goal of our encrypted keyboard is
to encrypt multimedia data (including text, image, audio and video) locally on
the user’s phone before the user puts them into any IM app (like WhatsApp)
and then decrypt them when they reach the other end. Our encrypted keyboard
on the user’s phone device will ensure that any CSS system implemented by an
IM application will be prevented. Our approach not only protects against CSS
technologies but also strengthens the E2EE feature used by current end-to-end
encrypted applications by implementing it twice.

Contributions: Our contributions are as follows:

– Encrypted Keyboard for Preventing Client-Side Scanning: We intro-
duce our encrypted keyboard, built as a system keyboard, that can effec-
tively prevent CSS technologies in many end-to-end encrypted systems. Our
encrypted keyboard can be enabled on the user’s phone device as a primary
keyboard; therefore, it works on every application on the user’s phone device
that requires inputs from the user. We believe that our encrypted keyboard
can provide a great solution to secure users’ messages from filtering techniques
and other surveillance mechanisms that technology companies may use.

– Design and Implementation of the Encrypted Keyboard: We design
an encrypted keyboard that follows a similar layout to one of the most popular
keyboard layouts, such as a QWERTY English keyboard. Our implementation
consists of a custom keyboard application that allows users to encrypt and
decrypt their data locally on their phone devices. It also allows users to display
the decrypted data on the custom keyboard’s interface. This custom keyboard
application can be installed on the users’ phones like any other application.
Users can then enable this custom keyboard as the default system keyboard
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on their phone devices and, therefore, can use it to encrypt data locally on
their phone devices before entering them into IM applications. It also works
locally on users’ phones to decrypt data that were encrypted and sent to them
through IM apps.

– Evaluating the Encrypted Keyboard for Effectiveness and Security:
We evaluate the effectiveness of our encrypted keyboard by testing its ability
to encrypt and decrypt the user’s data. Here we focus only on the ability to
defeat such a CSS system by encrypting and decrypting the user’s data locally
on his phone device. We show that our encrypted keyboard can not only allow
users to encrypt their data locally on their phone devices but is also able to
decrypt their encrypted data locally on their phone devices. We also establish
that our encrypted keyboard can encrypt and decrypt the user’s data before
or after exchanging them through IM applications. Our results show that our
encrypted keyboard can be effective against CSS technologies by encrypting
and decrypting users’ data locally on their phone devices. Our encrypted
keyboard may also be used to enhance the security of E2EE functionality
implemented by many end-to-end encrypted applications by adding an extra
layer of E2EE functionality on top of their E2EE functionality.

2 Background

Secure messaging applications aim to provide private communications in such a
way that sensitive information is hidden from anyone who is not a part of these
communications. This can be done through an E2EE functionality, which ensures
that all private messages are only viewable by the sender and the intended recip-
ient. Due to the Snowden revelations about widespread government surveillance
in 2013, people were concerned about their security and privacy in online com-
munications [24]. Therefore, IM and Voice over IP (VoIP) applications began
integrating E2EE security features to make communication more secure. Several
IM and VoIP applications, including WhatsApp [11], Telegram [8], Signal [6],
Viber [10], and Skype [7], have adopted the E2EE protocol to protect all private
communications in recent years. Although many IM and VoIP applications claim
to implement the E2EE protocol to secure private communications, they vary
in their goals, ambiguous security claims, threat models, usability, and adoption
properties [31,37].

Furthermore, several end-to-end encrypted applications may implement the
CSS technology to scan messages just before they are sent from a sender or after
they are received by an intended recipient. Using this technology, end-to-end
encrypted applications aim to scan and flag any message before transmission,
thereby preventing the transmission of any message or item that may contravene
legal prohibitions. This could be done by adding a scanning system as a part
of the end-to-end encrypted application; in other words, the scanning mecha-
nism could be built into the end-to-end encrypted application such as Signal,
WhatsApp, and many others [30]. These applications may use related software
to check such a message against a database of problematic content (such as
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CSAM images), extremist content, copyright infringement, rumors, or misinfor-
mation. This means that if any match has been found, it may block the message
or report it to law enforcement authorities. From their perspective, these end-
to-end encrypted applications claim that adding such a CSS system can protect
against any illegal and morally objectionable content. However, even though this
point of view is considered a well-intentioned attempt to help ban such content,
it could open many doors to expanding the scope of the CSS system [14]. Back-
doors and censorship in end-to-end encrypted applications will break the E2EE
feature, even though these applications promise and guarantee their users that
their messages will be encrypted between two endpoints and that the CSS sys-
tem will only scan their messages right before encrypting them or right after
decrypting them [20]. The E2EE feature should ensure that a message is only
seen by the sender and the recipient. This means that no one else can read the
message or scan its content to figure out what it is about.

2.1 Related Work

There has been a vast amount of work studying secure messaging solutions.
Borisov et al. [16] proposed a protocol, called “off-the-record messaging”, in 2004
for secure online communication. Their protocol was designed to provide perfect
forward secrecy and deniable authentication for messages exchanged between
two users. It was inspired by the notion of having a private conversation in a
room between two people, Alice and Bob. In this scenario, Alice will be confi-
dent that no one else outside the room can hear the private conversation between
her and Bob. Also, she will be confident that no one, not even Bob, can go to
court and blame her by using her words against her. The OTR protocol has been
plugged into different IM applications such as Pidgin [2]; however, it has not been
adopted widely due to its usability shortcomings [36]. Frosch et al. [21] analyzed
the Signal protocol to provide a detailed analysis of its underlying cryptographic
protocol and highlight its claimed security features. Similarly, Cohn-Gordon et
al. [18] performed a formal security analysis of the Signal protocol as a multi-
stage authenticated key exchange protocol. They showed some standard security
properties and showed that these properties meet the protocol’s security claims.
Further, Unger et al. [37] conducted a comprehensive academic survey on secure
communication tools in terms of investigating their security, usability, and ease
of adoption properties. They systematized these tools and discussed three fun-
damental issues of secure messaging solutions: trust establishment, conversation
security, and transport privacy.

On the other hand, there is prior work that has studied the CSS technology
in terms of the security and privacy issues of using this technology. Abelson et al.
[14] studied the potential security and privacy risks of utilizing CSS technolo-
gies. They argued that these systems could be exploited to open many doors
that may impact the privacy and security of communications, even though the
initial objective of these systems is solely to prevent the spread of illegal and
morally objectionable content. Then, people would struggle to stop the system’s
expansion and prevent its abuse. Another study by Reis et al. [29] showed that it
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is possible to scan messages on end-to-end encrypted systems. They explored the
idea of using fact-checking to detect misinformation in WhatsApp and proposed
an architecture that could be implemented by WhatsApp to detect and flag mis-
information on users’ devices. This might introduce new system vulnerabilities
and effectively violate E2EE’s privacy and security guarantees. To address this,
we propose an encrypted keyboard that protects end users’ devices from CSS
technologies, which could be implemented by numerous end-to-end encrypted
applications.

There are some encrypted keyboard applications available on the Apple App
Store and the Google Play Store, such as Enigma Encryption Keyboard [5] and
WhisperKeyboard [12], that aim to provide end-to-end encryption and decryp-
tion for text messages. While these applications focus only on encrypting and
decrypting text messages, we consider encrypting and decrypting not only text
messages but also other multimedia messages (like images, audio, and video) in
our encrypted keyboard. We also consider using an automated process to deci-
pher encrypted text messages in our encrypted keyboard, whereas these applica-
tions require a user to copy the encrypted text message to the phone’s clipboard
in order to decipher the encrypted text message, thereby adding extra burden
to users every time they want to decode their encrypted text messages.

2.2 Threat Model

As a reminder, the goal of the E2EE functionality is to protect the contents
of a message against anyone who is not involved in the private conversation.
Therefore, we assume the same threat model as outlined in a comprehensive
survey on secure messaging by Unger et al. [37]. The authors stated that the
threat model includes the following attackers:

– Local Adversary: An (active/passive) attacker who can control local net-
works on any side of the conversation, such as owners of open wireless access
points.

– Global Adversary: An (active/passive) attacker who can control many
parts of the Internet service (e.g., powerful nation-states or large internet
service providers).

– Service Providers: All service operators could be considered potential
attackers when IM and VoIP applications utilize a centralized infrastructure
for distributing public keys and storing or forwarding messages (such as a
public-key directory).

However, in this work, we extend our threat model to include the endpoints
of end-to-end encrypted applications, since many of these applications could use
CSS technology. We assume that the CSS technology is made as a part of an end-
to-end encrypted application such as Signal or WhatsApp, which means that it
is built into the end-to-end encrypted application. It is possible that these appli-
cations perform pre-scanning of the users’ messages by sitting on any endpoint
and looking over the user’s shoulder when he sends a message. Therefore, these
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Fig. 1. The architecture of our encrypted keyboard. The sender (Alice) creates a mes-
sage, encrypts it using the custom keyboard, and then sends it via an instant messaging
app. At the other end, the receiver (Bob) gets the encrypted message in the instant
messaging app and uses the custom keyboard to decrypt it.

applications should not be trusted by users and should be considered potential
adversaries. We assume that the operating system of a phone device is healthy
and secure at both endpoints. We also assume that the attacker does not have
a deeper access to information on a device. In other words, the attacker only
has direct access to a database and files that are associated with the end-to-end
encrypted application (e.g., WhatsApp) installed on the user’s phone device but
does not have internal control of the other parts of the user’s phone system,
including other applications’ data on the user’s phone device.

3 Design and Implementation

We designed a system keyboard application using Android Studio to demonstrate
the ability to provide a protection mechanism against CSAM image-related tech-
niques, copyright infringement, or any material whose illegality is uncontested.
In addition to the CSS technology, our encrypted keyboard aims to provide an
extra layer of E2EE security over the existing E2EE functionality implemented
by the end-to-end encrypted applications. Our encrypted keyboard architecture
is shown in Fig. 1.

3.1 End-to-End Encrypted System Keyboard

We developed an Android application that implements the input method ser-
vice needed by an Input Method Editor (IME) to get connected to the Android
system. Therefore, our encrypted keyboard runs as a system keyboard and cre-
ates an input method that allows the user to enter encrypted text into any IM
application. In addition to encrypting text, our encrypted keyboard allows the
user to encrypt images, audio, and video files locally on his phone device before
sending them via any IM application. Another key design component of our
encrypted keyboard is to build it as an end-to-end encrypted system, thereby
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adding another layer of E2EE security on top of the current E2EE functionality
implemented by many end-to-end encrypted applications. In order to enable our
encrypted keyboard on the user’s phone device, the user needs to install our
encrypted keyboard application on his phone device and then navigate to the
Language and input setting in his phone’s system settings, where he can select
this encrypted keyboard to be the default keyboard on his phone device. The
user can then use this encrypted keyboard in any application that requires data
entry. The user interface of our encrypted keyboard is depicted in Fig. 2.

We designed five different interfaces for our encrypted keyboard. First, we
designed a user interface layout to encrypt/decrypt text and followed a simi-
lar layout for one of the most popular keyboard layouts, such as a standard
QWERTY English keyboard with an additional numeric keyboard layout (see
Figs. 2a and 2b). This user interface layout contains additional elements (i.e.,
encryption and decryption buttons, an edit text field, etc.) to implement the
E2EE functionality. It also contains keys at the bottom of the interface to allow
the user to navigate between other user interfaces. Then, we designed an addi-
tional three interfaces for encrypting and decrypting other multimedia elements
such as images, audio, and video (see Figs. 2c, 2d, and 2e). In each user inter-
face, there is a list that contains all the existing user’s images, audio, or video
files on his phone device. The user can select any image, audio, or video file
from the list and display that image on the image box, play the audio file using
audio control buttons, or play the video file using video control buttons on the
current keyboard interface. Moreover, in the audio keyboard layout, we added
audio recording buttons to allow the user to record voice memos. We put the
encryption and decryption buttons at the bottom of these new user interfaces
so that the user can encrypt and decrypt his multimedia data on his phone.

Fig. 2. User interface of our encrypted keyboard
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3.2 Strong Encryption Algorithm

In order to provide confidentiality to the data, we used the Advanced Encryption
Standard (AES) to encrypt and decrypt multimedia data. It is one of the most
powerful encryption algorithms that is widely used in many different technology
fields and computer systems. It is also one of the most efficient encryption algo-
rithms, and it is considered to be fast and flexible, thereby ensuring the security
of data and making it trustworthy for users [13]. AES is one of the symmetric
encryption algorithms where both the sender and the receiver have the same
key to encrypt and decrypt data. It uses three different key sizes, such as 128,
192, and 256 bits, with a 128-bit block cipher. The details of the encryption
and decryption processes of the AES algorithm can be found in [13,19,26]. We
adopted an open-source library for implementing the encrypted text task [4]. It
creates an encryption instance with the AES algorithm in Cipher Block Chaining
(CBC) mode and uses a key size of 128 bits. The same key (the secret key) was
used for the encryption and decryption processes of all text messages between
two parties. We designed on our encrypted keyboard at the bottom of the main
user interface, as shown in Fig. 8, a key button to allow the user to select the
shared secret key with his intended recipient. We discuss the management and
distribution of the keys that provide secure communications functionality in
Sect. 4.

In order to secure all the user’s textual messages and to prevent any IM
application from performing the CSS technique on the user’s phone device, we
used a local edit text (private editor) as a private text box where the user can
use it for typing and modifying the text. Furthermore, we created a new form of
interaction between this private editor and our encrypted keyboard using (the
InputConnection interface in Java code) in order to receive all typed text on the
encrypted keyboard. Once the user enters the text into the private text box and
clicks the (encryption button), our encrypted keyboard encrypts the currently
composing text, which is the text located inside the private text box, before
entering the encrypted text into the text field linked to the currently open IM
application. After that, the user can send only the encrypted text to the other
end via the current IM application (e.g., Signal) (see Figs. 3a, 3b, and 3c). Once
the receiver receives the encrypted text message, he can decrypt it by tapping
the (decryption button) to obtain the original text message that was sent by the
sender (see Fig. 3d).

The basic idea underlying using our encrypted keyboard is to allow users to
encrypt their multimedia data locally on their phone devices, thereby avoiding
any implementation of CSS technologies. Furthermore, we implement an E2EE
feature for messages sent from one party of the private conversation to the other.
This E2EE feature could be used to enhance the security against attackers lis-
tening onto the channel when users exchange their messages over an end-to-end
encrypted application (e.g., WhatsApp) since users can encrypt their multime-
dia data using our encrypted keyboard before inserting them into the end-to-end
encrypted application, which will then encrypt them once again using its E2EE
functionality. Our encrypted keyboard can guarantee that no messages will be
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revealed to those attackers even if they can somehow compromise the encrypted
messages transmitted by any end-to-end encrypted application. Therefore, when
our encrypted keyboard is used in an IM application that also has an E2EE
feature, it will add an extra layer of E2EE security.

Fig. 3. Encryption and decryption of the text message using our encrypted keyboard
when the Signal application is used to send and receive the encrypted text message
exchanged between Alice and Bob.

3.3 Automated Decryption Process

In our study, we considered the usability aspect in terms of automating the
decryption process in order to make it easier to decrypt any encrypted text
on the user’s phone device. We aim to reduce the burden on the user when he
unscrambles encrypted text messages on his phone device. SMASheD [25] utilizes
the Android Debug Bridge (ADB) functionality to have access to phone device
resources/services. Therefore, we adapted the SMASheD server and pushed it
to the phone device to run a screenshot service every second in the background
and to store the screenshot image in a file. Our implementation does not store
all these screenshot images. Instead, this image file will be overwritten every
time a screenshot image is taken, thereby avoiding the consumption of too many
resources. Even though many real-world applications can take screenshots and
are used daily, our encrypted keyboard is a more trustworthy application because
it works as a system keyboard and does not send any images outside the user’s
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phone device during the actual implementation. The screenshot service will keep
running in the background until the user decides to stop it or the phone device
is switched off. Our goal in running this screenshot service on a phone device is
to get the content displayed in the foreground of a phone device’s screen to use
as an input file for an Optical Character Recognition (OCR) engine. The OCR
engine is used to turn a screenshot into text that can be edited and searched
[32]. The encrypted text is then taken from the output of the OCR engine so
that our decryption method can get the needed ciphertext and the decryption
phase can be completed.

Thus, if the encrypted text message is received by the receiver’s phone device,
we expect that a screenshot image of the current phone device’s screen has
already been taken by the running screenshot service before the user clicks on
the (decryption button). Reading and extracting text from the screenshot image
are then needed to obtain the ciphertext from the image. To this end, we adopted
the (tess-two) project to run the Tesseract OCR engine on the screenshot image.
Tesseract, which was developed at HP between 1984 and 1994, is an open-source
OCR engine. It was adjusted and enhanced in 1995 for better accuracy before
HP released it as open source in late 2005 [35], which is now available at [9].
Once our decryption method in the decryption phase gets the ciphertext, it will
automatically decipher the ciphertext and return the original text that was sent
by the sender.

Because of the accuracy of OCR tools, which ranges from 71% to 98% [27],
we convert an encrypted text into a hexadecimal format, where numbers are
represented by a base of 16, before sending it to the other end user. The purpose
of converting the encrypted text into hexadecimal format is to increase the accu-
racy of our OCR performance by limiting the OCR engine to recognizing a small
group of characters. Another reason for recognizing a small group of characters
is to avoid any noisy and garbled results that may occur if the OCR engine reads
all possible characters. Therefore, we set up a white list for our OCR engine that
contains hexadecimal symbols from 0 to 9, corresponding to number values from
0 to 9, and A to F, corresponding to number values from 10 to 15. By converting
an encrypted text into a hexadecimal format, we believe that any accuracy issue
that might result from our OCR performance can be surmounted.

3.4 Multimedia Support

Not only can our encrypted keyboard encrypt and decrypt text messages, but it
can also encrypt and decrypt multimedia messages like images, audio, and video.
Figure 4 shows how our encrypted keyboard is used to encrypt and decrypt an
image file when an instant messaging app like Signal is used to send and receive
the encrypted image file between two end users. The same steps, as shown in
Fig. 4, can be done if we want to encrypt and decrypt other multimedia elements
(such as audio and video) using the additional user interfaces of our encrypted
keyboard associated with audio and video tasks (see Figs. 2d and 2e).
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Fig. 4. Encryption and decryption of the image file using our encrypted keyboard when
the Signal application is used to send and receive the image file exchanged between
Alice and Bob.

Our encrypted keyboard can encrypt and decrypt multimedia data locally
on the user’s phone device. As shown in Fig. 2a, for the purpose of encrypting
and decrypting multimedia elements locally on the user’s phone device, the main
user interface of our encrypted keyboard has three different keys at the bottom
of the interface that allow a user to easily navigate between other interfaces for
image, audio, and video tasks. We designed new custom layouts as additional
layouts to our main encrypted keyboard layout that allow a user to encrypt and
decrypt his multimedia data locally on his phone device (see Figs. 2c, 2d, and
2e). Therefore, the user can prevent any IM application from performing the CSS
technique on his phone device, thereby securing all his multimedia messages that
may be scanned by an IM application. In our encrypted keyboard application,
the AES algorithm in CBC mode was used to encrypt and decrypt multimedia
data. We used the same key for the encryption and decryption processes of all
multimedia messages that were sent between two end users. The user needs to
click on the image, audio, or video key button at the bottom of the main user
interface of our encrypted keyboard in order to navigate to the related keyboard
interface, and therefore can view an exhaustive list of all existing images, audio,
or video files on his phone device. Then, from the long list displayed on his
current keyboard interface, he can choose an existing image, audio, or video file
and encrypt it by clicking the ENCRYPT button. After that, the user can send
the encrypted file through an IM application (such as Signal) to the intended
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recipient. Once the intended recipient receives the encrypted file on his phone
device through the IM application, he can decrypt the encrypted file by clicking
on the DECRYPT button, thereby obtaining the original image, audio, or video
file that was sent by the sender. The intended recipient then looks at the original
image file, listens to the original audio file, or watches the original video file on
the encrypted keyboard interface on his phone. We designed on our encrypted
keyboard, as shown in Figs. 2d and 2e, playback control buttons (like play, pause,
and stop) in order to allow the user to control the playback of audio and video
files. Furthermore, the user will have additional buttons in his audio keyboard
layout to record and encrypt voice memos locally on his phone device. As soon
as the user finishes recording his voice memo file, the voice memo file will be
encrypted immediately, and therefore he can insert it into an IM application to
send it to his intended recipient.

4 Keys Management and Distribution

We use a new decentralized approach, which is a public key verification system
based on audio fingerprints R consisting of a set of words W spoken in the owner’s
voice V . The basic idea behind this system is for the public key owners to speak
the fingerprint of their static/permanent public keys, and for the receivers to
authenticate the validity of the public key by verifying the audio fingerprint. To
bind the public key to the owners, the audio fingerprint should be verified at two
levels: (1) data integrity and (2) voice integrity. To verify that the fingerprint is
valid, receivers should verify that the fingerprint matches the hash of the public
key (i.e., data integrity) and that the fingerprint is spoken by the owner (i.e.,
voice integrity). The integrity of data in this system is verified by an automatic
fingerprint comparison tool that is built on top of speech transcription [34]. This
tool automatically converts the audio fingerprint to text and compares it to the
hash of the received public key. The attacker who injects his public key should
also inject the fingerprint by generating a matching fingerprint in the user’s voice.
If the attacker only injects the public key but does not change the fingerprint,
the receiver can detect the attack. Also, if the attacker speaks his fingerprint, the
receiver can detect the attack since the voice speaking the fingerprint does not
match the voice of the owner, even though the fingerprint may match the hash
of the public key. This system consists of the following components, as depicted
in Fig. 5.

Fig. 5. The main components of keys distribution approach. The fingerprint distribu-
tion channel is insecure.
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(1) Fingerprint Generation and Recitation: Figure 6 shows the process of
generating the fingerprint in this system. Here, the hash of the public key
is mapped into PGP words [23], following the approach used by ZRTP [1].
The output of the SHA-256 hash is fully mapped to the fingerprint without
truncation, resulting in 32 PGP words W . The PGP word list consists of
two sets of 256 phonetically distinct words, such that they have an optimum
distinction. To encode a bit string, each byte is mapped into one word from
one of the odd and even word sets. Since the even and odd lists are different,
human errors in duplicate reading, swapping words, and omission of words
are detected. The user generates the audio fingerprint R by speaking and
recording W in their own voice characterized by V . Since this task takes place
only once, the user can spend sufficient effort on preparing acceptably high-
quality audio, perhaps using home recording devices in a quiet place. The
user can also check (pre-evaluate) the results of the transcription to make
sure that R would be perceived well at the receiver’s side. Any errors during
this phase may be corrected by the user by re-recording the fingerprint.

Fig. 6. Generating and reciting the audio fingerprint from the public key

(2) Fingerprint Distribution: This new approach is a distributed public key
verification system and does not require imposing trust onto centralized third
parties (e.g., a certificate authority) and does not require any trusted auxil-
iary channel (e.g., out-of-band secure channels). It uses the human voice to
authenticate users and binds the public keys to owners’ identities. Therefore,
in this system, the user can share the fingerprint along with the public key
on any public platform accessible by the other parties.

(3) Fingerprint Verification: Figure 7 shows the process of verifying the fin-
gerprint in this system. This step represents the core novel component of this
system, which involves building a fingerprint comparison tool. This tool was
built by carefully adapting speaker-independent speech-to-text transcription
engines. To bind the public keys to the owners, we rely on the users to verify
the public key owners’ voice V . The users should have prior knowledge of
each other’s voices.

This system does not require imposing trust on third parties or a distributed
network of trusted users, unlike prior models such as a Public Key Infrastruc-
ture (PKI) and web of trust. Each user simply generates a key fingerprint by
computing the hash of the public key mapped into PGP words and key owners
speak, record, and share the fingerprint with peers (via any out-of-band chan-
nel) who can validate the binding between the public key and its owner by:
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Fig. 7. Verifying the received fingerprint

(1) automatically converting the vocalized fingerprint to the textual fingerprint
using speech-to-text technology and comparing it with the hash of the public
key, and (2) manually verifying that the voice speaking the vocalized fingerprint
corresponds to the public key owner. Therefore, the automated vocalized finger-
print comparison tool was built using speech recognition technology. This new
system can benefit from any off-the-shelf transcriber (e.g., Google Cloud Speech-
to-Text). The fingerprint comparison tool receives the public key and the audio
fingerprint R from the owner. The tool generates the hash of the public key
and maps it to the words W , the same as the fingerprint generation tool. The
received audio fingerprint is converted to text W ′ using the speech-to-text tool
and compared with W computed from the received public key. A matching W
and W ′ indicates that the public key is valid, as long as the speaker’s voice can
be verified by the receivers.

Also, as a part of the fingerprint verification process in this system, receivers
should identify the public key owners by their voice, a process that the system
refers to as speaker verification. Speaker verification is based on the uniqueness
of the sound waves produced by a voice. Since the sound waves reflect the vibra-
tions of air, and such vibrations are dependent on the shape of the oral and
nasal cavities above the larynx, each individual’s voice should produce a differ-
ent signal. Besides, each person has a different speech behavioral pattern (e.g.,
speaking style and accent) that gives each person a unique acoustic feature set,
reflecting the body anatomy and speaking style. Thus, the human can identify a
particular speaker’s voice by recognizing the voice features and behavioral pat-
terns. We assume that users know each other in advance and can recognize each
other’s voices (the same assumption applies to all other applications that rely on
audio fingerprints). Possibly, if they do not have prior knowledge of the speaker’s
voice, they can make a phone call or listen to publicly available voice samples
of the owner (e.g., published on social media). Similar approaches, such as the
web of trust, could also be used, in which unknown people would be vouched
for by other trusted users. In our scenario, this implies that if a receiver named
Bob does not know the voice of a user named Alice, he can rely on some trusted
mutual friends or trusted introducers who do know Alice. Thus, users would be
able to agree on a shared symmetric key to be used for the encryption/decryption
processes of all their textual and multimedia messages. This shared symmetric
key can be saved on our encrypted keyboard application and used for encryption
and decryption when a user wants to communicate securely with an intended
recipient (see Fig. 8).
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Fig. 8. User interface of using shared secret key

In this system, we assume a model similar to other decentralized trust models
for public key verification. In this model, the end users handle the management
and distribution of the keys that provide secure communications functionality
such as E2EE, decryption, signing, and verification. The end nodes, their devices,
and the incorporated tools (including the transcriber, whether performed by a
remote service or a localized engine residing on the device) are assumed to be
trusted. However, the channel over which the key is distributed may be controlled
by the attacker. An attacker can perform a MitM attack to inspect and alter the
public key. For example, the attacker can alter an email containing the user’s
public key to inject an invalid key, or the attacker can compromise the service
that holds the public keys and change them as he wishes.

However, we assume that the attacker does not have full control over the
distributed fingerprint. That is, the attacker cannot insert the fingerprint of his
public key while speaking it in the user’s voice. This assumption comes from the
fact that every human has a unique voice. We note that the attacker may be able
to generate fake fingerprints in the user’s voice by synthesizing or replicating the
victim’s voice. For example, the attacker may collect the isolated words available
in the dictionary in the user’s voice and merge them to create a fingerprint in
the user’s voice. However, if the dictionary consists of rarely used words (or fake
words) such as PGP words, the attacker perhaps would not be able to create
the synthesized voice, as argued in [15], in contrast to a dictionary of frequently
used ones such as digits. Moreover, we will discuss voice authentication and the
prevention of voice replication and synthesis attacks in Sect. 6.

5 Evaluation

In this section, we will evaluate the effectiveness of our encrypted keyboard
application for encrypting and decrypting text and other multimedia elements
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such as images, audio, and video on various Android phone devices and IM
applications. Table 1 exhibits the results of our encrypted keyboard evaluation
for encrypting and decrypting exchanged messages between two end users. We
show the results of only 15 encrypted messages exchanged between two end
users using three different phone devices (namely Samsung Android 4, Samsung
Android 5, and Google Pixel) and six different IM applications (namely Signal,
Viber, Skype, Telegram, WhatsApp, and LINE). We repeated our exchanged
messages for encrypting and decrypting text and other multimedia elements,
which yielded similar results, in 60 different cases and they are not reported
here because of space constraints.

Experimental Setup: We installed our encrypted keyboard application on
three different phone devices and selected it to be the default keyboard on all
three devices from every phone’s settings. Six different IM applications (i.e.,
Signal, Viber, Skype, Telegram, WhatsApp, and LINE) were installed on these
phone devices to use them for exchanging encrypted textual messages as well
as exchanging other encrypted multimedia messages. We created several user
accounts on these installed IM applications to utilize them in our experiment. By
using these user accounts, each phone device was used either to encrypt textual
messages (or other multimedia messages) on one end or to receive the encrypted
textual messages (or the encrypted multimedia messages) and decipher them at
the other end. We established many communication channels between any two
phone devices used in our experiment to evaluate the efficiency of our encrypted
keyboard application for encrypting and decrypting textual messages or other
multimedia messages. We used our encrypted keyboard enabled on both phone
devices to encrypt and decrypt textual messages or other multimedia messages.
We also used the installed IM applications on both phone devices to exchange
encrypted textual messages (or encrypted multimedia messages) between two
end users. We utilized the ADB functionality and the SMASheD platform to
push a native service into the /data/local/tmp/ directory on each phone device.
By using that, we are running the native service in the background for taking
a screenshot of the contents of a phone device’s screen every second to make
sure that the screenshot image is always obtainable and can be used by the
OCR engine as an input file. To ensure the perfect performance of the OCR
engine on each phone device, a trained data file for the English language was
installed simultaneously with the encrypted keyboard application installation on
each phone device.

Observations: To measure the effectiveness of our encrypted keyboard appli-
cation, we can consider the capability of our encrypted keyboard in terms of
encrypting a text, image, audio, or video file on one end and deciphering it on
the other end. To observe the ability to encrypt and decrypt textual messages
using our encrypted keyboard, we typed a text message using our encrypted
keyboard and encrypted it on one phone device (the sender). Then, we sent
the encrypted textual message via an IM application (i.e., Signal, Viber, or
Skype) to the other phone device (the receiver). Using our encrypted keyboard
on the receiver’s phone device, we deciphered the encrypted textual message and
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obtained the plaintext of the original textual message. In addition, to test the
effectiveness of our encrypted keyboard application in encrypting and decrypt-
ing other multimedia messages, we chose (an image, audio, or video file) and
encrypted it on one phone device (the sender). Then, we sent (the encrypted
file) over an IM application (i.e., Signal, Viber, Skype, Telegram, WhatsApp, or
LINE) to the other phone device (the receiver). By using our encrypted keyboard
on the receiver’s phone device, we deciphered (the encrypted file) and therefore
obtained (the original image, audio, or video file). Subsequently, we displayed
the original image file, played the original audio file, or played the original video
file on the receiver’s phone screen. We repeated these processes (encrypting and
decrypting text, images, audio, and video files) many times using three different
phone devices and six different IM applications (i.e., Signal, Viber, Skype, Tele-
gram, WhatsApp, and LINE). Thus, we observed the capability of our encrypted
keyboard to perform both encryption and decryption of textual messages as well
as other multimedia messages on these phone devices and IM applications. The
results of the sending and receiving of encrypted textual messages as well as
other multimedia messages among three different phone devices are shown in
Table 1. A total of six different instant messaging applications were utilized to
send and receive encrypted textual messages and other multimedia messages.
The results show that our encrypted keyboard can encrypt text, images, audio,
and video files on one phone device and decipher them on the other phone device.
Therefore, our encrypted keyboard application can easily encrypt and decrypt
any text, image, audio, or video file that two end users exchange. This protects
the user’s data from any CSS technique that an IM application could use.

6 Discussion and Future Work

6.1 Strengths and Limitations of Our Study

We believe that our study has several strengths. Our encrypted keyboard covers
all users’ messages (textual and multimedia messages) just like in day-to-day
messaging system use. This is in contrast to current encrypted keyboard appli-
cations (such as Enigma Encryption Keyboard and WhisperKeyboard), which
only allow the user to encrypt and decrypt textual messages. Also, our encrypted
keyboard automates the decryption process of textual messages, whereas, in cur-
rent encrypted keyboard applications (such as Enigma Encryption Keyboard
and WhisperKeyboard), the user needs to copy and paste the text every time
he wants to decrypt such a textual message, which may place a very heavy bur-
den on the user. By using the SMASheD server and an OCR mechanism in the
decryption process, it helps to automate the text decryption on our encrypted
keyboard and, therefore, unburdens the human user from copying and pasting
text on the system keyboard. In the decryption process, we also convert the
encrypted text into a hexadecimal format to increase the accuracy of the OCR
performance. As a rule of thumb, the accuracy of OCR tools can fluctuate every
time the OCR engine reads any selected text, recognizing all possible text charac-
ters. Therefore, limiting the number of characters to a small group of characters
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Table 1. Evaluation results of our encrypted keyboard for encrypting and decrypting
exchanged messages

Message
no.

Message
type

Encryption
status

Sender device Messaging
application
medium

Receiver device Accuracy of
OCR engine

Decryption
status

1 Text Successful Samsung Android 4 Signal Samsung Android 5 100% Successful

2 Text Successful Google Pixel Viber Samsung Android 4 100% Successful

3 Text Successful Samsung Android 5 Skype Google Pixel 100% Successful

4 Image Successful Google Pixel Telegram Samsung Android 5 N/A Successful

5 Image Successful Samsung Android 5 WhatsApp Samsung Android 4 N/A Successful

6 Image Successful Samsung Android 4 Signal Google Pixel N/A Successful

7 Audio Successful Samsung Android 5 LINE Samsung Android 4 N/A Successful

8 Audio Successful Samsung Android 4 Viber Google Pixel N/A Successful

9 Audio Successful Google Pixel Skype Samsung Android 5 N/A Successful

10 Voice memo Successful Samsung Android 4 Telegram Samsung Android 5 N/A Successful

11 Voice memo Successful Google Pixel WhatsApp Samsung Android 4 N/A Successful

12 Voice memo Successful Samsung Android 5 Signal Google Pixel N/A Successful

13 Video Successful Google Pixel LINE Samsung Android 5 N/A Successful

14 Video Successful Samsung Android 5 Viber Samsung Android 4 N/A Successful

15 Video Successful Samsung Android 4 Skype Google Pixel N/A Successful

like the hexadecimal symbols will improve the accuracy of OCR performance.
As shown in Table 1, we achieved 100% accuracy on the OCR performance by
converting the encrypted text into a hexadecimal format. We believe that recog-
nizing a small group of characters by the OCR engine is better than recognizing
all possible text characters if we consider the accuracy of OCR tools, which
fluctuates from 71% to 98% [27]. It helped us reach 100% accuracy in the OCR
performance because we recognized only hexadecimal symbols from 0 to 9, and A
to F. To automate our decryption process in textual messaging, our decryption
process has to perform two tasks. The first task is to run the OCR engine on
a screenshot image to obtain an editable and searchable text. Once the text is
extracted from the screenshot image, the second task in our decryption process
is performed by reading and extracting an encrypted text to decipher it by using
the AES algorithm with the same secret key.

In our study, we focused on studying secure messaging by designing an
encrypted keyboard that runs on Android phone devices as a system keyboard.
As indicated in Sect. 5, we conducted our experiments using only Android phones
available in our laboratory. We utilized two older versions and one more recent
one. However, we believe that our encrypted keyboard is compatible with every
Android phone device, regardless of its version, as it is an Android app that was
designed as a system keyboard app. Users can type text on this encrypted key-
board and encrypt it before putting it into an instant messaging application like
WhatsApp, Signal, or Viber. Users can then use the IM application to send the
encrypted text message to the other intended parties. Likewise, they can use this
encrypted keyboard to encrypt other multimedia elements such as images, audio,
and video. The main objective of this encrypted keyboard is to prevent any IM
application from performing a CSS technique and thereby provide protection
for all messages exchanged between end users, including text, images, audio,
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and video files. By using our encrypted keyboard to encrypt multimedia data
before inserting it into instant messaging applications, users can avoid the CSS
technique that may be performed by these instant messaging applications when
they exchange their messages via these applications. Our encrypted keyboard
can also be used to decipher the encrypted multimedia data once the intended
recipients receive it in these IM applications. Therefore, our study showed that
our encrypted keyboard is a practical and feasible approach that can effectively
overcome the CSS technique that could be performed by an IM application (e.g.,
WhatsApp, Signal, or Viber). However, due to an automated decryption process
that relies heavily on a screenshot image of the current phone’s screen, we could
not have control over the length of the text, especially in long text messages. The
phone’s screen size (viewport size) is an important factor that needs to be taken
into consideration and may affect the process of decrypting encrypted textual
messages. Thus, our encrypted keyboard decrypts the encrypted text showing on
the current phone’s screen, which is based on various screen sizes (viewport sizes)
from one phone to another. Further studies should be conducted to cover any
length of the text that may exceed the phone’s screen size (viewport size) during
the automated decryption process of decrypting encrypted textual messages.

6.2 Voice Reordering Attacks

In [33], a “voice reordering” attack was introduced against end-to-end short-
spoken text authenticated systems. In the reordering attack, the attacker collects
isolated units of the fingerprint (e.g., words or digits) and combines them to
create new fingerprints not spoken before. We argue that a reordering attack
would be very difficult to pursue if the fingerprint dictionary is sufficiently large.
We assume that the dictionary consists of 256 words for even positions and 256
words for odd positions. The easiest attack is to assume that the attacker has
obtained “all the words” in the dictionary and has built a data set to create “any
desired fingerprint” in the user’s voice by mixing and matching the words from
this data set. To collect all the words, we should assume that the user has at least
16 (= 512/32) unique public keys with no repetitive words in any of them, i.e., the
user has 16 public keys mapping to 16 fingerprints Ri = (Wi, Vi), i ∈ {1, ..., 16}
(each Wi is a sequence of 32 words wi, 16 words in even and 16 words in odd
positions) such that ∀ 0 < i, j ≤ 32, wi = wj =⇒ i = j. The probability of
the user having 16 different fingerprints with absolutely no repetitive words (in
each fingerprint, and among all fingerprints) can be calculated as the following
(multiplying the probability of each textual fingerprint Wi not containing any
of the dictionary words used in the i − 1 preceding fingerprints):

P1 =
(256 − 0)32

25632
× (256 − 16)32

25632
× (256 − 32)32

25632
....

× (256 − 240)32

25632
=

15!

1616 = 7.09E − 8

(1)
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As can be seen, the probability of the attacker collecting all the words in the
dictionary (even if we generously assume that the user has 16 different public
keys) is very low.

On the other end of this statistic, we can assume that the user has only 1
fingerprint (i.e., 1 public key). Therefore, the attacker has collected a total of
16 words (assuming that the fingerprint does not contain any duplicate words)
from each of the even and odd sets. The attacker tries to create a public key such
that the words in the attacker’s fingerprint match the words used in the user’s
fingerprint (but perhaps not in the same order). The probability of succeeding
in this attack is:

P2 =
1616

25632 =
1

1616 = 5.42E − 20 (2)

Note that in any other situation (i.e., the user having more than 1 and less
than 16 unique fingerprints), the attacker has access to only a subset of the
dictionary in the user’s voice. Therefore, P3, which is the probability of creating
a fingerprint containing only the spoken words, falls between P1 and P2, i.e.,
P1 < P3 < P2. Note that increasing the size of the dictionary can also help
to reduce the chance of a reordering attack. Finally, if the attacker creates a
fingerprint by mixing some of the words from the spoken data set and replacing
the rest with synthesized voices, such inconsistency and the use of synthesized
voices should be detected (since we expect the user to listen to the audio samples
and verify the speaker).

6.3 Attacks on Speech Recognition

A few types of attacks against transcription technology have been proposed
recently [17,38]. These attacks generate audible samples that are not intelligible
to the human user but interpretable by the transcriber. Although these types
of attacks may be used against virtual personal assistant applications to run
the attacker’s commands, we assume that in the public key verification system,
the user who listens to the vocalized fingerprint to verify the speaker can detect
such suspiciously malformed audible/robotic audio samples and would notice if
the content of the vocalized fingerprint is completely different from the finger-
print (e.g., music being played in the background). Inaudible attacks on speech
transcription, such as the one proposed in [39], require physical access to the
speech transcription device. Besides, such an approach should have knowledge
of the hardware characteristics of the speech transcription device and therefore
is not relevant to this system and cannot compromise the security of online
transcription systems.

7 Conclusions

In this paper, we introduce an encrypted keyboard built as a system keyboard.
Our encrypted keyboard can be enabled by users on their phone devices as a
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default system keyboard in order to use it on every application that prompts
users to enter some data. Our encrypted keyboard can offer protection against
CSS technologies that might be implemented by a vast number of IM applica-
tions. Besides the protection against CSS technologies, our encrypted keyboard
can be used to strengthen security against MitM attackers by adding an extra
E2EE layer on top of the current E2EE functionality implemented by many
end-to-end encrypted applications. Users can use our encrypted keyboard to
encrypt their multimedia data locally on their phone devices before exchanging
it over an IM application. They can also use our encrypted keyboard to decipher
all encrypted multimedia data received from an IM application locally on their
phone devices. Our work shows that our encrypted keyboard can successfully
encrypt and decrypt all sending and receiving messages through IM applications.
Therefore, our encrypted keyboard can prevent any CSS system that might be
implemented by an IM application. It can also be used to reinforce the security of
E2EE functionality against MitM attacks by providing another E2EE function-
ality in addition to the current E2EE feature provided by end-to-end encrypted
applications. Therefore, users can have a duplicate encryption scheme when they
use our encrypted keyboard to encrypt their messages and then exchange them
via end-to-end encrypted applications. This duplicate encryption scheme gives
our encrypted keyboard a strong defense mechanism against MitM attackers,
even if they can somehow compromise the E2EE functionality provided by end-
to-end encrypted applications.

Acknowledgment. The authors would like to thank Maliheh Shirvanian who con-
tributed to the audio fingerprinting approach.
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Abstract. Differential fuzz testing is a promising technique to detect
numerous bugs in cryptographic libraries by providing the same input
for different implementations of cryptographic algorithms. Cryptofuzz is
an edge-cutting project that supports various libraries in this regard,
employing coverage-guided libFuzzer as its back-end core. However, we
observe that Cryptofuzz heavily relies on heuristic custom mutation
strategies to expand code coverage while fuzzing, compensating for the
limited performance of libFuzzer and the overhead of differential fuzzing.
In this paper, we show such evidence and then present a novel tweak
method to make differential fuzzing perform better with advanced fuzzers
rather than the custom mutators overfitted with cryptographic features.
Our basic insight is that hybrid fuzzing, which combines fuzzing and
concolic execution, could help. We make the front end of Cryptofuzz
standalone for differential testing of cryptographic libraries with hybrid
fuzzers. We conduct experiments and use AFL and Intriguer for hybrid
fuzzing. Our evaluation results show that the proposed method achieves
better code coverage independently of the custom mutators and is more
effective in bug-finding than Cryptofuzz. Our method generalizes its back
end to use any advanced fuzzers for differential testing of cryptographic
libraries.

Keywords: Differential fuzzing · Differential testing · Cryptographic
library fuzzing · Cryptofuzz · Hybrid fuzzing

1 Introduction

Cryptographic libraries (also called cryptography or briefly crypto libraries) are
increasingly widely used by developers to furnish their implementation with vari-
ous kinds of security features, ranging from individual cryptographic algorithms
to full-fledged SSL/TLS protocol suites. Many cryptographic libraries in use
today, such as OpenSSL, libgcrypt, and Crypto++, are written in C and C++
code, which means that unfortunately, security-related bugs are inevitable. For
instance, many triaged bugs in OpenSSL, 1,168 closed and 526 open at this
submission time, are enumerated at OpenSSL’s GitHub [24]. Furthermore, due
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to the complexity of cryptographic algorithms and protocols, there could be
implementation discrepancies in diverse libraries, producing crucial bugs with
wrong output but hardly detectable because of incurring no crash on execution.
For example, CVE-2022-1343 [7] reported a flaw in OpenSSL’s Online Certifi-
cate Status Protocol (OCSP) response that returns a negative number instead
of 0 when the signer’s certificate verification failed, making a linked applica-
tion falsely believe the certificate. This implementation discrepancy bug doesn’t
make a crash but results in the protocol going wrong in using the particular
library. Differential fuzz testing, which provides the same test input for different
implementations of the same objective, is a promising technique to detect not
only syntactic bugs but also semantic bugs in cryptographic libraries, in that
sense.

Cryptofuzz is an edge-cutting project for differential fuzzing that supports
various cryptographic libraries, including but not limited to OpenSSL, LibreSSL,
BoringSSL, Crypto++, cppcrypto, libgcrypt, libsodium, Bitcoin and Monero
cryptographic code, Veracrypt cryptographic code, and the Whirlpool reference
implementation [5]. To include target libraries in differential fuzzing, Cryptofuzz
requires the harness code to call the functions inside each library by linking with
the libraries under test. For fuzzing, Cryptofuzz employs LibFuzzer as its back-
end core, which is a coverage-guided in-process fuzzer developed by the LLVM
project and adds the custom mutator [6] written by considering various cryp-
tographic features on test input. The front-end of Cryptofuzz mainly devotes
to detecting implementation discrepancies through differential testing while the
back-end dedicates to finding memory bugs as well as expanding code coverage.
Indeed, Cryptofuzz reported many bugs discovered successfully in various cryp-
tographic libraries [5]. However, to the best of our knowledge, the performance
of Cryptofuzz has not been questioned and studied concerning both end cores.

In this context, (§3) our new observation is intriguing. Firstly, about the
front-end of Cryptofuzz, (§3.1) we compare the performance of differential
fuzzing and single target fuzzing. We observe there is a substantial overhead in
differential fuzzing. Secondly, about the back-end of Cryptofuzz, (§3.2) we com-
pare the performance of Cryptofuzz in two versions, i.e., with and without the
custom mutator. We observe that Cryptofuzz heavily relies on the custom muta-
tor to explore complex and narrow paths for fuzzing. Note that the custom muta-
tor code keeps requiring sophisticated manual work considering specific features
of cryptographic libraries [6]. Thus, we come up with our fundamental question.
What about adopting more advanced fuzzers with Cryptofuzz rather than the com-
bination of custom mutator and LibFuzzer? For example, hybrid fuzzers, such as
QSYM [32] and Intriguer [4], which combine coverage-guided fuzzing and con-
colic execution, show significant advancement in exploring complex and narrow
paths while fuzzing. However, such advanced fuzzers are designed for fuzzing a
single target application only.

In this paper, (§3) we scrutinize the performance of differential fuzzing with
Cryptofuzz and show the above observation by experiments. Subsequently, (§4)
we present a novel tweak method of differential fuzzing to effectively work with
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advanced fuzzers. The key idea of our method is to transform Cryptofuzz into
a standalone application in a way that (§4.1) accommodates its well-structured
harness code and differential fuzzing functionality and (§4.2) conforms to the
existing advanced fuzzers targeting a single application. We (§5) implement
our system and (§6) evaluate its performance by experiments regarding three
research questions about (§6.1) code coverage, (§6.2) bug-finding capability, and
(§6.3) differential fuzzing overhead. We use three cryptographic libraries such as
OpenSSL, Crypto++, and Libgcrypt in our experiments. Our implementation
leverages Cryptofuzz, AFL, and Intriguer but our system design is general in
accommodating other advanced fuzzers. For example, (§7) AFL++ can reinvoke
the custom mutator if necessary and more advanced fuzzers, such as employing
deep learning algorithms, can selectively work with our system.

2 Background

2.1 Cryptofuzz

Fig. 1. Structure of Cryptofuzz. * implies the custom mutator inside.

Cryptofuzz [5], a state-of-the-art cryptographic library fuzzer conducting differ-
ential fuzzing, is written as the front-end of LibFuzzer. Unlike normal libraries,
implementation discrepancies of cryptographic libraries that do not invoke
crashes but return abnormal outputs can lead to fatal outcomes. Detecting bugs
caused by implementation discrepancies with tools like address sanitizer is dif-
ficult because implementation discrepancies do not cause crashes, so it can be
seen as normal behavior. Fortunately, cryptography has a standard and imple-
mentation convention so that no matter which library is used, the return value
of cryptographic library functions must be equal if the same input is given to
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functions that conduct the same operation. Cryptofuzz utilizes these features of
the cryptographic library to perform differential fuzzing. If Cryptofuzz is built
with multiple cryptographic libraries, Cryptofuzz gives single input generated by
the fuzzer to each target library and checks the return value difference to detect
implementation discrepancies. If Cryptofuzz is built with a single cryptographic
library, Cryptofuzz conducts single target fuzzing because there are no other
libraries to compare.

Fig. 1 describes the structure of Cryptofuzz briefly. Cryptofuzz can be divided
into three large portions. The back-end of Cryptofuzz generates input and passes
it to the front end of Cryptofuzz. Cryptofuzz uses LibFuzzer as its back-end
fuzzing core by default. The front-end of Cryptofuzz contains the main routines
of Cryptofuzz that select parts to test such as an encryption scheme or operation
based on the input from the back-end fuzzer and pass input to harness code. A
difference check which compares results from each harness of multiple libraries
is also conducted in the front-end. In addition, the front-end of Cryptofuzz con-
ducts internal consistency testing that compares the results of multiple functions
constructed for the same function. The harness of cryptographic libraries which
is called a module in Cryptofuzz calls functions in cryptographic libraries with
the input given from the front-end to conduct an operation which is selected
by the front-end of Cryptofuzz and returns the results. If address sanitizer is
included when the target libraries are built, bugs related to memory corruption
can also be detectable.

LibFuzzer, the default back-end fuzzer of Cryptofuzz, is a fuzzer that is
included in LLVM Project and is widely used for library fuzzing. LibFuzzer is an
in-process, coverage-guided fuzzer that passes the input generated in the fuzzing
process to the fuzzing entry point function named LLVMFuzzerTestOneInput()
as an argument of the function. It repeats the testing process that conducts
on the LLVMFuzzerTestOneInput() function to maximize coverage. LibFuzzer
provides an option to use multiple workers so that the fuzzing process can use
multiple CPU cores easily. However, LibFuzzer which is based on random muta-
tion is not efficient on Cryptofuzz or cryptographic libraries that have narrow
and complex paths. LibFuzzer enables to use custom mutator. Cryptofuzz uses
a custom mutator [6] that fits on the structure of the front-end of Cryptofuzz to
overcome the inefficiency of LibFuzzer.

Cryptofuzz was released in 2019 and has been continuously updated to this
day. Currently, it is implemented to perform fuzzing targeting 88 cryptographic
libraries and supports the functions for 90 operations, 386 ciphers including
AEADs, 98 digests, and more than 110 ECC curves. Until today, Cryptofuzz
has discovered over 160 bugs in open-source cryptographic libraries such as
OpenSSL, Crypto++, libgcrypt, and relic, proving that Cryptofuzz is effective
in detecting bugs in cryptographic libraries.

2.2 Hybrid Fuzzing

Coverage-guided fuzzing [8,9,17] and symbolic execution [3] are the most rep-
resentative way to find software bugs. Fuzzing that gives a random value to
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the input of the programs executes the program and classifies it to a bug if a
crash occurs. Coverage-guided fuzzing measures the coverage of the program on
each input and uses it afterward fuzzing if new code coverage is found. By this
method, coverage-guided fuzzing can pass the branches one by one and eventu-
ally can test branches that are hard to reach. However, because of the randomly
generated inputs used on fuzzing basically, it is still hard to pass the narrow and
complex branches. To pass the branch that has 4 bytes constraint, for instance,
it needs an average 232 times of random trial. Such branches that are not easily
passed cause the fuzzer not to find a new path.

Symbolic execution is a method to analyze which part of the input can exe-
cute a specific path of the program. The symbolic executor executes the program
not using the concrete value that is utilized in normal execution but using the
symbolic value as input. The constraints of each branch can be represented as
an expression that contains the symbolic values which are used for the input
of the program. The symbolic executor solves this constraint expression with
the solver to generate an answer that can satisfy the branch conditions. Using
this method, input that can reach the specific path can be generated. However,
symbolic execution is too slow compared to normal execution because it has to
manage every symbol that is used on the program, and it has a problem that
state explosion can occur.

Hybrid fuzzing utilizes fuzzing and symbolic execution complementarily to
make up for each shortcoming. Coverage-guided fuzzing has difficulty in mak-
ing input that can satisfy complex constraints, but symbolic execution can eas-
ily generate input by solving these constraints. Symbolic execution has a state
explosion problem, but this can be minimized by utilizing symbolic execution
only on the path that the fuzzer found. By combining these two methods, hybrid
fuzzing can find bugs more efficiently than using each method alone. Driller [27],
QSYM [32], and Intriguer [4] on user-level applications, and HFL [15] on Linux
kernel, for example, show that hybrid fuzzing is efficient.

3 Motivation

In this section, we describe the motivation of our study by analyzing the overhead
of differential fuzzing at the front-end of Cryptofuzz compared to single target
fuzzing and the reliance on the custom mutator for fuzzing at the back-end of
Cryptofuzz. We explain our findings by experiments. The experimental settings
and the target libraries, such as OpenSSL, Crypto++, and libgcrypt, conform
to the details described in our evaluation part (§6).

3.1 Overhead of Differential Fuzzing

To analyze the overhead of differential fuzzing, we use Cryptofuzz for fuzzing
in two ways: First, we fuzz each of three libraries OpenSSL, Crypto++, and
libgcrypt in a single target fuzzing fashion. Second, we conduct differential
fuzzing on the three libraries. Our hypothesis is that differential fuzzing results
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Fig. 2. Throughput comparison of differential fuzzing and single target fuzzing:
Cryptofuzz

Fig. 3. Coverage comparison of differential fuzzing and single target fuzzing:
Cryptofuzz

in lower performance than each single target fuzzing. This is looking straight-
forward but our intention is to comprehend how large is the overhead, saying,
whether it is negligible or not at the current combination of Cryptofuzz. Thus,
we measure the throughput of fuzzing and also the code coverage.

Fig. 2 illustrates the fuzzing throughput obtained by the experiment accord-
ing to the number of executions. In the results of single target fuzzing, Crypto++
showed the lowest throughput. The result of differential fuzzing is even lower
than Crypto++ as expected. In particular, in the case of libgcrypt, the execu-
tion per time was 94.4% higher than that of differential fuzzing when executed
10 million times, resulting in a very high throughput overhead when differen-
tial fuzzing was performed on libgcrypt. Fig. 3 is a graph showing the results of
fuzzing for 24 hours as region coverage over time. As with the throughput results,
the number of regions tested by differential fuzzing is lower than single target
fuzzing. Crypto++ which has the lowest throughput overhead has no significant
difference in coverage results, but for libgcypt, which had the largest throughput
overhead, single target fuzzing secured up to 37.4% higher coverage.

Our observation at the front-end of Cryptofuzz is that the overhead of dif-
ferential fuzzing is real and non-negligible. Another observation is that there is
a variance in the throughput of each fuzzing and that of differential fuzzing.
Despite the lower performance, differential fuzzing is very necessary for crypto-
graphic libraries, and the only way to improve the performance of differential
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fuzzing is to update the fuzzing engine. Thus, our observation supports that
the back-end of Cryptofuzz, i.e., LibFuzzer, must be updated to more advanced
fuzzers to improve the performance of differential fuzzing at the front-end.

3.2 Reliance on Custom Mutator

Fig. 4. Coverage comparison of Cryptofuzz with and without custom mutator

The front-end of Cryptofuzz selects the function such as encryption scheme and
operation to be tested through a branch based on the switch-case statement.
Branches based on the switch-case statement can be reached when a specific
offset of the input matches a specific value, so the front-end of the Cryptofuzz
mainly consists of a narrow path. The input generated by LibFuzzer, which is
the default back-end fuzzer of Cryptofuzz, is a value generated based on random-
ness, so it is difficult to pass through these narrow paths. Cryptofuzz implements
and uses the custom mutator [6] optimized for the front-end of Cryptofuzz to
overcome the limitations of LibFuzzer. We confirmed how much the custom
mutator of Cryptofuzz overcame the limitations of LibFuzzer through experi-
ments. The experiment compared vanilla Cryptofuzz with Cryptofuzz without
a custom mutator and was performed for three libraries: OpenSSL, Crypto++,
and libgcrypt.

Fig. 4 represents the coverage results of Cryptofuzz with and without a cus-
tom mutator. Cryptofuzz with and Cryptofuzz without in the legend of Fig. 4
represent Cryptofuzz using a custom mutator and Cryptofuzz which do not
use a custom mutator respectively. Each fuzzing was conducted for 24 hours
and repeated 5 times. The results of comparing Cryptofuzz with with Crypto-
fuzz without show that Cryptofuzz which utilized a custom mutator obtained
much more coverage. In the five repeated experiments, Cryptofuzz using the
custom mutator secured an average of 122%, 95%, and 98% more coverage on
libgcrypt, OpenSSL, and Crypto++ respectively. Through this, we confirmed
the effect of the custom mutator on performance.

Our observation at the back-end of Cryotofuzz is that the reliance on the cus-
tom mutator is substantial in Cryptofuzz to explore complex and narrow paths
and expand code coverage. The current custom mutator of Cryptofuzz is writ-
ten in C++ by the author of Cryptofuzz who knows the structure of Cryptofuzz
very well and is composed of over 2000 lines of code [6]. The custom mutation
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strategies are heuristic and incorporate many details of target libraries. For new
users to modify the custom mutator or add new functions to it, the manual anal-
ysis of the front-end of Cryptofuzz and the target libraries should precede first.
In other words, the custom mutator of Cryptofuzz has the limitation of taking
substantial effort and time for analysis and manual work. On the other hand,
to explore complex and narrow paths and expand code coverage while fuzzing,
hybrid fuzzing is excellent. Hybrid fuzzing, which provides a solver to solve the
constraint of branch conditions inside the target, is known to be more advanta-
geous than fuzzing in searching for complex branches because it mathematically
calculates and generates an input that can discover a path over the branch. Thus,
our observation supports that the back-end of Crytofuzz must be replaced by
hybrid fuzzers to avoid or remove the reliance on the custom mutator.

4 Design

In this section, we describe the design of our system. The key idea of our sys-
tem design is to transform Cryptofuzz, which incorporates the custom muta-
tor and LibFuzzer inside, into a standalone version that removes all of those
cumbersome and low-performing components. Fig. 5 illustrates an overview of
our system design concept. The so-called Crytofuzz-standalone takes input from
outside fuzzers and conducts differential fuzzing on linked libraries. Thus, this
generalization of the back-end enables the adoption of hybrid fuzzers.

4.1 Making Cryptofuzz Standalone

Fig. 5. Cryptofuzz to Standalone. * implies the custom mutator inside.

To make Cryptofuzz standalone, LibFuzzer and LibFuzzer-dependent parts in
Cryptofuzz must be removed. In the front-end of Cryptofuzz, there are func-
tions to communicate with LibFuzzer which is the default back-end of Crypto-
fuzz. LLVMFuzzerInitialize() function initializes options related to fuzzing and
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loads Cryptofuzz modules in which harness code for fuzzing target library is
implemented. After initialize process is done, LLVMFuzzerTestOneInput() func-
tion receives input from LibFuzzer and conducts tests according to the structure
of the Cryptofuzz front-end. LLVMFuzzerCustomMutator() function is a cus-
tom mutator for LibFuzzer which was implemented suitably on the front-end
of Cryptofuzz. Likewise, functions that are prefixed LLVMFuzzer are made to
use on LibFuzzer, and these functions are the root cause that makes Crypto-
fuzz dependent on LibFuzzer. Therefore, the new main() function has to be
constructed to call LLVMFuzzerInitialize(), LLVMFuzzerTestOneInput(), and
LLVMFuzzerCustomMutator() which are prefixed LLVMFuzzer similar to the
main() function of LibFuzzer. Using this new main() function instead of the
main() function in LibFuzzer can eliminate the dependencies of Cryptofuzz on
LibFuzzer.

In the main() function to be newly constructed, the LLVMFuzzerInitialize()
function that initializes the library and loads the module to be fuzzed should be
called first when the program starts. The receiving part has to be constructed
to receive input from standard input or file after the initializing part. Since the
main() function receives the input generated by the back-end dynamic analysis
tool, the receiving part can be constructed by selecting a method that is con-
venient to use the dynamic analysis tool. After receiving the input, the main()
function passes it to the LLVMFuzzerTestOneInput() function to test the tar-
get. If the dynamic analysis tool used as a back-end supports the use of a cus-
tom mutator, the existing LLVMFuzzerCustomMutator() function can be used
by modifying it according to the custom mutator format of the corresponding
dynamic analysis tool.

Cryptofuzz-standalone was constructed by eliminating the portion that relies
on LibFuzzer and using the newly created main() function as the standalone
version of Cryptofuzz. Cryptofuzz-standalone uses the front-end of Cryptofuzz
except for the communication part with LibFuzzer and uses Cryptofuzz modules
which include the harness code to call functions in the target library. Cryptofuzz-
standalone, like Cryptofuzz, performs single target fuzzing on a single library and
conducts differential fuzzing when the target library is multiple. Considering
that Cryptofuzz-standalone takes input from standard input or files, testing
cryptographic libraries are enabled using a dynamic analysis tool that is used
on regular user programs.

4.2 Applying Hybrid Fuzzer to Cryptofuzz-Standalone

As we mentioned already, the back-end generalization of our system enables more
advanced fuzzers to work for differential fuzzing. Fig. 6 illustrates an overview
of this concept. Cryptofuzz-standalone, built and instrumented together with
linked libraries, runs as a target binary of the hybrid fuzzer, taking test input
from the corpus and providing coverage information while fuzzing. We then
describe our design decision regarding the hybrid fuzzers.
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Fig. 6. Overview: Hybrid Fuzzing with Cryptofuzz-standalone

LibFuzzer does not provide a function to perform fuzzing in parallel with
other fuzzing instances because it can use multiple workers by itself. In order to
use LibFuzzer in parallel with other fuzzing instances, it is necessary to add syn-
chronization tasks manually such as merging the input corpus of each instance
periodically. For this reason, LibFuzzer is inconvenient to be used for hybrid
fuzzing that needs to continuously synchronize the concolic execution instance
and the fuzzing instance. AFL, on the other hand, is basically designed to per-
form fuzzing by using only one core per instance. When fuzzing is performed
in parallel using multiple cores, AFL continuously synchronizes the input queue
with other fuzzing instances during fuzzing. Because of these characteristics,
AFL is adopted and used as a fuzzing engine in many hybrid fuzzing studies.

The hybrid fuzzer used in this paper uses AFL as the fuzzing engine. In
terms of performance, it would also be more advantageous to use AFL in a
hybrid fuzzer. According to a fuzzing experiment on OpenSSL, which performs
by Fuzzbench [11], a service that evaluates fuzzers for real-world software, AFL
can perform well on cryptographic fuzzing compared to LibFuzzer. Intriguer, the
state-of-the-art concolic execution engine that showed better performance than
QSYM, is used as the concolic execution engine of the hybrid fuzzer.

The AFL instance and the Intriguer instance run in parallel and share the
seed by synchronizing the input queue. The seed generated through fuzzing or
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concolic execution is tested by giving it as an input to Cryptofuzz-standalone.
Large amounts of code are tested quickly by fast traversal of wide paths done
through fuzzing and passing narrow paths through concolic execution. When the
execution is finished, the coverage information acquired during the execution is
used as feedback for the hybrid fuzzing. Even if another advanced fuzzer is used
instead of a hybrid fuzzer as a back-end fuzzer, fuzzing can be performed in
the same way as general application fuzzing because Cryptofuzz-standalone can
receive input from standard input or file depending on main function implemen-
tation.

5 Implementation

In this section, we describe our system implementation.

5.1 Main Function of Cryptofuzz-Standalone

1 int main(int argc , char **argv)

2 {

3 LLVMFuzzerInitialize (&argc , &argv);

4 FILE *f = fopen(argv[1], "rb");

5 size_t len = fread(buf , 1, BUF_MAX , f);

6 fclose(f);

7 LLVMFuzzerTestOneInput(buf , len);

8 }

Code. 1: the main() function getting input from a file

1 int main(int argc , char **argv)

2 {

3 LLVMFuzzerInitialize (&argc , &argv);

4 size_t len = read(0, buf , BUF_MAX);

5 LLVMFuzzerTestOneInput(buf , len);

6 }

Code. 2: the main() function getting input from the standard input

Cryptofuzz-standalone is inspired by StandaloneFuzzTargetMain.c [18] which
is a part of fuzzer in LLVM-Project. StandaloneFuzzTargetMain.c includes the
main() function which calls LLVMFuzzerInitialize() when the program starts
and tests each input file by passing it to the LLVMFuzzerTestOneInput() func-
tion. However, since Cryptofuzz-standalone is designed for fuzzing and concolic
execution that only receives one input at a time, we deleted repeated statements
to make the execution time caused by comparison for repetition not be wasted.
Code. 1 and Code. 2 represent the implementation of the main() function get-
ting input from files and standard input. If the input is received as a file, the file
passed as an argument is read when the program is executed and used to test
the target by the LLVMFuzzerTestOneInput() function. If the input is received
as standard input, one input is received through the read() function and used to
test the target by the LLVMFuzzerTestOneInput() function.
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1 __AFL_FUZZ_INIT ();

2 int main(int argc , char **argv) {

3 #ifdef __AFL_HAVE_MANUAL_CONTROL

4 __AFL_INIT ();

5 #endif

6 LLVMFuzzerInitialize (&argc , &argv);

7 while (__AFL_LOOP(AFL_REPEAT_CNT)) {

8 memset(buf , 0, BUF_SIZE);

9 size_t len = read(0, buf , BUF_SIZE);

10 LLVMFuzzerTestOneInput(buf , len);

11 }

12 }

Code. 3: the main() function for AFL

Intriguer used as a concolic executor does not matter which way Cryptofuzz-
standalone receives input from standard input and file, so it does not matter
which version is used as the main() function. However, in the case of Cryptofuzz-
standalone for using AFL, if the above method is used as it is, the initialization
function is repeatedly executed unnecessarily leading to wasting execution time.
Therefore, in Code. 3, we build Cryptofuzz-standalone for AFL using AFL per-
sistent mode [10] to repeat the testing process that receives input and tests with
the LLVMFuzzerTestOneInput() function without restarting the program. We
added some code on the main() function of Cryptofuzz-standalone for AFL per-
sistent mode. The code related to LLVMFuzzerCustomMutator() function is not
dealt with separately because AFL does not support custom mutators.

The code of Cryptofuzz that we wrote and modified to construct Cryptofuzz-
standalone other than the main() function is as follows. A header file was
additionally created to connect the main() function of Cryptofuzz-standalone
and functions prefixed LLVMFuzzer, The code of the mutator.cpp in Crypto-
fuzz was partially modified to build normally without LibFuzzer. Also, to build
Cryptofuzz-standalone, we have added the code to build in Makefile.

5.2 Hybrid Fuzzing with Cryptofuzz-Standalone

To perform hybrid fuzzing, we need to separately build two versions of
Cryptofuzz-standalone for fuzzing and concolic execution. In the case of
Cryptofuzz-standalone which is built to use AFL, we need to build it using the
compiler named afl-clang-fast that performs instrumentation for AFL. When
building Cryptofuzz-standalone to use Intriguer, clang, the compiler of LLVM-
Project, is used, and -O0, -fno-jump-tables can be used as compile flags to
enable the intriguer to perform analysis well. If the dynamic analysis tool to use
is not able to build with the clang compiler or if we need to use the GCC com-
piler to utilize tools such as gcov, we have to replace the clang builtin macros
such as builtin rotateright32() used by Cryptofuzz.

In this study, we used docker to perform hybrid fuzzing using the built
Cryptofuzz-standalone. The docker image set for hybrid fuzzing is run as a con-
tainer according to the number of instances, and the CPU to be used in each
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instance is fixed using the -cpuset-cpus option of the docker. Through this,
the CPU core of the fuzzing machine performing hybrid fuzzing can be utilized
without waste. The output directory of each fuzzing instance and concolic exe-
cution instance running on docker is mounted in the same directory on the host
machine with the -v option when running docker. The fuzzer instance running
on docker and the concolic execution instance can synchronize with each other
to perform hybrid fuzzing through this process.

6 Evaluation

We evaluated our approach, to answer the following three research questions.

– RQ1: How much is code coverage increased by our method?
– RQ2: How effective is our method in terms of bug-finding capabilities?
– RQ3: Can our method reduce the overhead of differential fuzzing?

We used three cryptographic libraries in our experiments: OpenSSL v3.0.0,
Crypto++ v8.7, and Libgcrypt v1.9.3. Each library was compiled for Crypto-
fuzz, AFL, and Intriguer. We conducted our experiments on a machine with
two MD Ryzen Threadripper PRO 3975WX CPUs and 256GB RAM, running
Ubuntu 18.04 LTS. The fuzzers are run inside docker v20.10.7, and the Docker
images were created based on Ubuntu 16.04. We used Cryptofuzz from git com-
mit 83d3c0a8212fb4dbb61be90d2dbb5fd7c801900d for the experiment.

6.1 RQ1: Code Coverage

To answer RQ1, we compared our hybrid approach with Cryptofuzz which not
uses a custom mutator. Our approach is to replace the back-end fuzzer by utiliz-
ing Cryptofuzz-standalone. In order to compare the exact performance difference
due to this technology, we conduct a control experiment in which the custom
mutator, a variable that can affect performance, was removed in Cryptofuzz.
Fig. 7 shows the code coverage obtained as a result of fuzzing by Cryptofuzz with-
out a custom mutator and our hybrid fuzzer leveraging Cryptofuzz-standalone
to three cryptographic libraries, OpenSSL, Crypto++, and Libgcrypt, respec-
tively. Each experiment was conducted for 24 hours, and each fuzzer uses three
CPU cores for fuzzing. We repeated the experiments for 5 runs per fuzzer [16].
The solid lines in the Fig. 7 are median, and the shaded region around is the
min/max.

As a result of the experiment, Cryptofuzz without a custom mutator achieves
lower coverage than our hybrid approach. This is because the inside of crypto-
graphic libraries and the front-end of Cryptofuzz are complex to test through
the random-based input generated by LibFuzzer. On the other hand, our app-
roach was able to get much higher coverage because it generates an input that
can explore narrow and complex paths through concolic solving during hybrid
fuzzing. We confirmed that simply replacing the Cryptofuzz back-end with a
better dynamic analysis tool can significantly improve performance.
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Fig. 7. Coverage comparison of our method (Hybrid) and Cryptofuzz without custom
mutator

6.2 RQ2: Bug Discovery Capability

To answer RQ2, the bug-finding experiment was conducted to find the 1-day bug
discovered by Cryptofuzz. Since the bug-finding experiment is not an evaluation
for the back-end but for the practicality of the fuzzer itself, we compare our
hybrid approach with vanilla Cryptofuzz. In the experiment, each fuzzer used 6
CPU cores. Cryptofuzz uses 6 workers, and hybrid fuzzer uses 4 AFL instances
and 2 Intriguer instances. The CPU core distribution ratio of the hybrid fuzzer
is the same ratio that the typical hybrid fuzzer such as QSYM and Intriguer
used.

The criteria for determining that a bug has been detected are as follows. In
the case of Cryptofuzz, the name of the input file in the input corpus is stored
and managed as a hash value, and in the event of a crash, the file is stored in the
form of crash-〈Hash〉. Therefore, we can determine that Cryptofuzz detected
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Table 1. Number of crashes found by Cryptofuzz with custom mutator and our method
(Hybrid) in each round of fuzzing. Our method outperforms in every round: discovering
many crashes and a unique bug (parenthesized).

Round Cryptofuzz(unique) Hybrid(unique)

1 0 (0) 90 (1)

2 0 (0) 124 (1)

3 0 (0) 112 (1)

4 0 (0) 114 (1)

5 0 (0) 213 (1)

Table 2. Number of functions covered only by Cryptofuzz with custom mutator or our
method (Hybrid) and functions covered by both fuzzer in each round of fuzzing. Our
method outperforms in every round: covering more functions for fuzzing.

Round Cryptofuzz Hybrid Both

1 4 38 446

2 4 36 448

3 5 39 445

4 0 38 451

5 0 43 441

a bug when a file with the name crash- was created in the input corpus. In
the case of hybrid fuzzing, since AFL is used as a fuzzing engine, if a specific
input generated during fuzzing causes a crash, it is stored in the crash directory
according to the input corpus management method of AFL. When a file is stored
in the crash directory, we then know that the hybrid fuzzer has detected a bug.

The experiment to find a 1-day bug was conducted for 24 hours. To increase
the reliability of the experiment results, the experiment is repeated 5 times
under the same condition. Table. 1 shows that during 5 repeated experiments,
Cryptofuzz did not generate any crash files in the input corpus directory. On the
other hand, in the case of hybrid fuzzing, 90 to 213 crash files were generated for
one unique bug in all experiments. The unique bug found with hybrid fuzzing is
the bug that causes a null pointer to dereference when the modulus is 0 in the
BN mod exp2 mont() function. It was reported on February 6, 2022, through the
issue of the OpenSSL official git [23] and patched on March 2. By this result, we
can see that hybrid fuzzing could be more efficient in the same condition compare
to Cryptofuzz and has proved that can detect bugs in real-world cryptographic
libraries.

We have extracted the function coverage of the results of 1-day bug finding
experiments. The number of functions that are covered only by Cryptofuzz or
hybrid fuzzer is represented in Table. 2. Cryptofuzz and hybrid fuzzer tested on
average 448.8 functions and 485 functions during 5 repeated experiments respec-
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tively. During the 5 repeated experiments, the maximum number of functions
covered only by Cryptofuzz is 5, and the number of functions covered only by
hybrid fuzzer is 38.8 on average. This shows that a hybrid fuzzer can quickly
test code that Cryptofuzz cannot easily reach by traveling narrow and complex
branches in the Cryptofuzz front-end and cryptographic libraries without a cus-
tom mutator. This means that the hybrid fuzzer can quickly reach and test bugs
that exist in functions that are difficult to reach by Cryptofuzz, and detect bugs.
In summary, in this experiment, a hybrid fuzzer can quickly reach functions that
Cryptofuzz cannot easily reach without a custom mutator, allowing more code
to be tested, and it detects one unique bug that occurred in OpenSSL showing
that the technique proposed in this paper is sufficiently meaningful in terms of
bug finding.

Fig. 8. Coverage comparison of differential fuzzing and single target fuzzing: Our
method (Hybrid).
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6.3 RQ3: Overhead Reduction

To answer RQ3, we apply our hybrid approach to differential fuzzing and single
target fuzzing and evaluate the impact of overhead caused by differential fuzzing.
Three libraries, OpenSSL, Crypto++, and libgcrypt, were built simultaneously
in Cryptofuzz-standalone to perform differential fuzzing, and built each library
separately to perform single target fuzzing. As with RQ1, each experiment was
conducted for 24 hours, and each fuzzer uses three CPU cores for fuzzing. The
solid line and shaded region in Fig. 8 describe the median and min/max of 5
repeated experiments.

As shown in Fig. 8, the overhead of differential fuzzing is up to 14.6% in
Crypto++, and in libgcrypt and OpenSSL, the overhead is up to 1.9%, and
9.8% respectively. The maximum overhead is the result obtained by dividing the
best single target coverage and the worst differential fuzzing coverage among 5
replicates. Compare to the result of motivation in Fig. 3, in aspects of coverage,
the maximum overhead caused by differential fuzzing was reduced from 37.4%
to 14.6%. Especially in the case of libgcrypt, the mean coverage of differential
fuzzing is higher than single target fuzzing. Therefore, we can say that our app-
roach reduced the overhead of differential fuzzing and can completely offset the
overhead in some cases.

7 Discussion

In this paper, we use AFL as a fuzzing engine of a hybrid fuzzer. We cannot use
the custom mutator of Cryptofuzz because AFL does not support customizing
mutator. Therefore, the evaluation of this study compared the performance dif-
ference due to the back-end replacement without considering the custom muta-
tor, but there is a limitation in that the comparison to the performance difference
when the custom mutator is applied has not been conducted.

Fig. 9. Coverage comparison of three differential fuzzers: Cryptofuzz with and without
custom mutator and our method (Hybrid).
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Fig. 9 is a graph showing the results of fuzzing for Crypto++ using a hybrid
fuzzer, Cryptofuzz with with custom mutator, and Cryptofuzz without which do
not use the custom mutator. In this result, the hybrid fuzzing approach that we
used earned more coverage for Crypto++ than the others even though it did not
use the custom mutator. Considering that the custom mutator has a very large
effect on the performance of Cryptofuzz if the custom mutator is also applied
to the hybrid fuzzing approach, it is expected to show much better performance
than the existing Cryptofuzz.

In a future study, we will perform hybrid fuzzing using a fuzzing engine
that supports a custom mutator such as AFL++ [8]. When custom mutator
and hybrid fuzzing are used together, the Cryptofuzz front-end can be quickly
explored through the custom mutator and explore the deep part of the crypto-
graphic library through concolic execution. It is expected that this method will
show better performance. In addition, Cryptofuzz-standalone is designed to be
applied to any dynamic analysis tool for user applications, so not only hybrid
fuzzing but also advanced fuzzers based on AI technology such as EcoFuzz [31]
and NEUZZ [26] can be applied.

8 Related Work

Among the vulnerabilities that occur in the cryptographic library, the percentage
of vulnerabilities caused by cryptographic issues and those caused by memory
safety issues is only 64.4% [2]. Vulnerabilities due to implementation discrep-
ancy belonging to the remaining 35.6% can lead to fatal issues but are difficult to
detect by general methods. In this study, we tried to efficiently detect vulnerabil-
ities due to implementation discrepancy as well as vulnerabilities due to memory
issues through differential fuzzing. By applying the advanced fuzzing method to
Cryptofuzz, the state-of-the-art cryptographic library differential fuzzer, differ-
ential fuzzing can be performed more efficiently.

We utilized the well-structured harness of Cryptofuzz, a state-of-the-art
fuzzing project for cryptographic libraries, as a harness for testing cryptographic
libraries. Unlike general programs, libraries cannot be executed alone, so fuzzing
can be performed only if there is a harness that calls the functions of the
library. Therefore, fuzzing research targeting libraries is being studied not only to
improve the performance of fuzzing itself but also how to quickly and efficiently
create a harness to be used for fuzzing.

In 2019 ACM CCS, Fudge [1] extracts the API call sequence from the open
source code that uses the library and automatically extracts the library’s harness
using this information. Fudge has generated fuzz drivers for numerous libraries,
some of which were integrated into OSS-Fuzz [25] fuzzing infrastructure.

In 2020 Usenix Security, FuzzGen [13] infers the interface of the library by
analyzing the source code of the whole system statically and generates a harness
based on the collected information. This process does not need human interaction
and can apply to various libraries. The harness generated by FuzzGen was fuzzed
by LibFuzzer and obtained 6.94% more code coverage compared to the manually
written harness.
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In 2021 NDSS, Winnie [14] does not conduct fuzzing on libraries but generates
a harness automatically to bypass GUI code on the Windows binary. Winnie
synthesizes harnesses of application based on the sample executions and uses
them to test binaries. As a result, Winnie found 61 unique bugs on 32 windows
binaries and showed its efficiency.

Differential fuzzing, which is essential when testing cryptographic libraries,
is also being studied to improve efficiency or apply it to new domains. In 2019,
DifFuzz [21] performed differential fuzzing to find side-channel vulnerabilities.
DifFuzz analyzed the two versions of the program and performed directed fuzzing
in the direction that the difference in resource consumption increase through
resource-guided heuristics. DifFuzz proved its effectiveness by discovering a new
vulnerability in the Apache FTP server, a JAVA open-source application.

In 2020 ICSE, HyDiff [22] used a hybrid approach combining two techniques,
feedback-directed grey-box fuzzing, and shadow symbolic execution, for differen-
tial software analysis. Divergence-driven feedback was used for grey-box fuzzing,
and four-way forking was utilized for symbolic execution. HyDiff found the first
divergence much faster than the single technique and identified a much larger
number of total divergences.

In 2021 OSDI, Fluffy [30] conducted multi-transaction differential fuzzing
to find Ethereum consensus bugs. To find the consensus bug, Fluffy ran multi-
transaction test cases using multiple existing Ethereum clients. Fluffy showed
its excellence by discovering two new exploitable consensus bugs in the Geth
Ethereum Client.

9 Conclusion

In this paper, we constructed Crytofuzz-standalone taking input from outside
fuzzers and conducting differential fuzzing. As an outside fuzzer, we used a hybrid
fuzzing approach using AFL and Intriguer to easily cover the narrow path of the
front-end of Cryptofuzz without a custom mutator. We have shown that our
method outperforms Cryptofuzz in the terms of obtaining coverage and finding
bugs. Furthermore, our method reduced the overhead of differential fuzzing, and
in some cases, we have shown the overhead can be completely offset. In the
future study, we plan to adopt a hybrid fuzzer in Cryptofuzz-standalone using
a fuzzing engine that supports a custom mutator. In addition, we plan to adopt
an advanced fuzzer based on AI technology instead of hybrid fuzzers.
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1 Introduction

1.1 Background

Cloud computing is becoming increasingly ubiquitous [8,15,19], with cloud stor-
age services being especially popular [3,21]. Data uploaded to the server can be
easily accessed by users at any time and from any place; moreover, the service
provider ensures that users have sufficient storage and do not lose data. How-
ever, these services are usually provided and managed by an untrusted server. To
ensure the privacy of sensitive data, users must encrypt their data before upload-
ing them. Unfortunately, encryption hinders data manipulation. For example, a
user searching for a specific file hosted in the cloud must first download all of the
encrypted data and locally decrypt it before searching. This method is inefficient
and computationally expensive, especially when compared with local storage.

To solve this problem, Boneh et al. [4] proposed public key encryption with
keyword search (PEKS) to allow users to search encrypted data without decrypt-
ing it in a public key setting. Specifically, there are three roles in PEKS: the
sender, receiver, and cloud server. The sender first retrieves related keywords
from the data and then encrypts not only the data but also related keywords,
which are ciphertexts that can be searched by the receiver. Finally, the sender
uploads both the encrypted data and the searchable ciphertexts to the cloud
server. Consequently, to determine whether encrypted data related to a key-
word exists, the receiver can generate a trapdoor for a specific keyword using
the receiver’s private key. This trapdoor is uploaded to the cloud server that
then searches for searchable ciphertexts that match the trapdoor. Finally, the
corresponding encrypted data are returned to the receiver.

The scheme of Boneh et al.’s [4] is both efficient and elegant; therefore, it has
been used as a basis for several subsequently proposed extended PEKS schemes,
including schemes that are resistant to keyword guessing attacks [5,12,16] and
schemes that support more functions for a greater variety of scenarios [17,18].
However, in normal PEKS schemes, only the receiver’s private key can be used
to generate a valid trapdoor. In an enterprise scenario, if employees want to
generate trapdoors to search encrypted data that have been encrypted using the
enterprise’s public key, they must access the corresponding private key, which
may lead to key abuse.

Public key encryption with authorized keyword search (PEAKS), which was
proposed by Jiang et al. [9], enables receivers to authorize other users to search
encrypted data; users do not need to access a private key to generate a trap-
door. More concretely, an authority holding a private key can authorize a user
to generate a trapdoor by giving the user a token associated with a set of key-
words W. The authorized user can then adaptively generate a trapdoor for any
keyword w ∈ W. However, authorized users cannot further delegate their power
to other users in PEAKS. In actual enterprise scenarios, employees often belong
to different departments or are at different organizational levels. If employees at
each level could delegate trapdoor generation authority to employees at the next
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level, not only can the burden on the private key holder be reduced but search
policies can also be flexibly tailored to various scenarios.

1.2 Our Contributions

In this work, we first formalize a novel cryptosystem termed public key encryp-
tion with hierarchical authorized keyword search (PEHAKS), in which autho-
rized users can further hierarchically delegate their power to unauthorized users.
Specifically, the system model of PEHAKS is developed in a multikeyword
setting.

An authority can provide the ability to generate trapdoors to users, called
authorization; this is done by producing authorization tokens tokenW for a set of
keywords W. The authorized users can then further delegate their authorization
to unauthorized users by generating delegated authorization tokens tokenW′ for a
set of keywords W ′ for some W ′ ⊆ W. Consequently, let W ′′ be a set of keywords
such that W ′′ ⊆ W and W ′′ ⊆ W ′, both authorized users and delegated users
can generate trapdoors tdW′′ for the set of keywords W ′′ by using authorization
tokens and delegated authorization tokens, respectively. In addition, let ctW be
a searchable ciphertext related to some set of keywords W then, if W ′′ ⊆ W,
the cloud server can search ctW using tdW′′ .

We also rigorously model a security requirement known as semantic secu-
rity against chosen keyword attacks (SS-CKA) between a challenger and an
adversary to ensure that no adversary can obtain any keyword information from
the searchable ciphertext. In addition, based on the dual pairing vector spaces
(DPVS) technique [13], we introduce a concrete scheme supporting a multi-
keyword setting. By leveraging the semi-functional technique [20], we present
security proof to show that our scheme is SS-CKA secure if OT.1 and OT.2
assumptions are hard. We also theoretically compare the proposed scheme with
the PEAKS scheme of Jiang et al. in terms of their properties and compu-
tational requirements. To the best of our knowledge, the proposed scheme is
the first scheme to allow hierarchical multikeyword searches and delegation for
authorization.

1.3 Intuition Behind Our Scheme

Generally, let W ′ ⊆ W, W ′′ ⊆ W, and U be a sorted universal keyword space
with polynomial large size. In this work, we aim to formulate a scheme that has
the following two properties.

1. Support hierarchical delegation from an authorization token (or a delegated
authorization token) tokenW to a delegated authorization token tokenW′ .

2. Allow a ciphertext ctW to be searched by a trapdoor tdW′′ .

To realize it, we choose a proper mapping function map in our scheme. This
function maps a nonempty set of keywords W ⊆ U to a unique �-bit string
bitW . The ith bit of bitWi

is set to 1 if the ith keyword of U is in W; otherwise,
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it is set as 0. For example, if U := {Australia, Egypt, Greece, Norway},W :=
{Australia, Greece}, then bitW := map(W) = 1010. Hence, each possible set of
keywords is presented as a unique string.

Our strategy is to propose methods of generating elements (i.e., autho-
rization tokens, delegated authorization tokens, ciphertexts, and trapdoors) in
PEHAKS for various strings such that these elements meet the requirements of
the PEHAKS. Concretely, the authorization token for a string (e.g., 1010) can
be further transformed to a delegated authorization token for substrings of this
string (e.g., 1000 or 0010). A ciphertext for a string (e.g., 1111) can be searched
by a trapdoor (which is produced from an authorization token or a delegated
authorization token) for a substring (e.g., 0110) of 1111.

To achieve this goal, we adopt the inner-product encryption with generalized
key delegation (WKP-IPE) proposed by Abdalla et al. [2] as a basic building
block of our proposed scheme. We then modify their [2] generic transformation of
WKP-IPE to an (anonymous) wildcard identity-based encryption (IBE) scheme
with generalized key delegation (WW-IBE). More concretely, we propose three
novel encoding functions that map bit strings to patterns, and modify them
accordingly. Therefore, the resulting private keys have a hierarchical structure,
enabling delegation, and the inner product of the vector representation of the
ciphertext and the trapdoor under the specified base are 0. Therefore, with
the proposed encoding functions, the resulting (variant) WW-IBE can provide
the desired outcomes. After obtaining a variant WW-IBE, the patterns can be
considered an identity and we can further apply Abdalla et al.’s [1] IBE-to-PEKS
transform on the variant WW-IBE. Thus, the first PEHAKS scheme is obtained.

1.4 Paper Organization

The remainder of this paper is organized as follows. We start with formulating
the proposed PEHAKS system in Sect. 2, including describing the whole system
and defining formal definition as well as the security model. Then, in Sect. 3, we
review some preliminaries, including background on the dual pairing vector space
and two complexity assumptions. In Sect. 4, we propose a concrete PEHAKS
scheme and the corresponding correctness. Furthermore, in Sect. 5, we show the
proposed scheme is SS-CKA secure. In Sect. 6, we also provide a theoretical
comparison between the proposed scheme and Jiang et al.’s scheme [9]. Finally,
we summarize this work and provide interesting future work in Sect. 7.

2 Problem Formulation

2.1 System Description

As illustrated in Fig. 1, a PEHAKS system comprises four parties: Authority,
Sender, Receiver, and Server.
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– Authority. The authority can authorize users the power of generating trap-
doors for search.

– Sender. The sender uploads encrypted data and searchable ciphertexts to
the server. The searchable ciphertexts, generated using the authority’s public
key, are related to a set of keywords retrieved from the data.

– Receiver. There are two types of receivers—authorized users and delegated
users. Authorized users, authorized by the authority, can further delegate
authorization for unauthorized users (called delegated users now). These del-
egated users can also hierarchically delegate their authorization to other unau-
thorized users. In addition, both authorized users and delegated users can
generate a trapdoor for search by using their authorization token and dele-
gated authorization tokens, respectively.

– Server. The server determines which searchable ciphertext matches the trap-
door. It then returns the corresponding encrypted data to users.

Fig. 1. High-level description of PEHAKS.

2.2 Algorithm Definitions

A PEHAKS ΠPEHAKS comprises seven polynomial-time algorithms—Setup,
KeyGen, Authorize, Delegate, Encrypt, Trapdoor, and Test—which are described
as follows:
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– pp ← Setup(1λ, �). Taking a security parameter λ and the size � of the univer-
sal keyword space as inputs, this algorithm outputs a public parameter pp.
Note that pp is implicitly included in the following algorithms.

– (pk, sk) ← KeyGen(pp). Taking the public parameter pp as inputs, this algo-
rithm generates a public and private key pair (pk, sk).

– tokenW ← Authorize(sk,W). Taking the private key sk and a set of keywords
W as inputs, this algorithm outputs an authorization token tokenW for W.

– tokenW′ ← Delegate(pk, tokenW ,W ′). Taking the public key pk, the autho-
rization (or delegated authorization token) tokenW , and a set of keywords
W ′ ⊆ W as inputs, this algorithm outputs a delegated authorization token
tokenW′ for W ′.

– ctW ← Encrypt(pk,W). Taking the public key pk and a set of keywords W as
inputs, this algorithm outputs a ciphertext ctW for W.

– tdW′′ ← Trapdoor(tokenW∗ ,W ′′). Taking an authorization token (or dele-
gated authorization token) tokenW∗ and a set of keywords W ′′ ⊆ W∗ as
inputs, this algorithm outputs a trapdoor tdW′′ for W ′′. Here, we use tokenW∗

to represent an authorization token tokenW or a delegated authorization
token tokenW′ that may have been delegated several times.

– 1/0 ← Test(ctW , tdW′′). Taking the ciphertext ctW and the trapdoor tdW′′

as inputs, this algorithm outputs “1” if ctW matches tdW′′ (i.e., W ′′ ⊆ W).
Otherwise, it outputs “0”.

Correctness. Let U = U(1λ, �) be the universal keyword space, a PEHAKS
scheme ΠPEHAKS is correct if, for any parameter λ, � ∈ N and any sets of keywords
W ′′ ⊆ W ′ ⊆ W ⊆ U and W ′′ ⊆ W∗, we have

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
Test(ctW , tdW′′) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1λ, �)
(pk, sk) ← KeyGen(pp)
tokenW ← Authorize(sk,W)
tokenW′ ← Delegate(pk, tokenW ,W ′)

ctW ← Encrypt(pk,W)
tdW′′ ← Trapdoor(tokenW∗ ,W ′′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1.

2.3 Security Model

To ensure that no adversary can obtain any keyword information from cipher-
texts, we define a security game termed semantic security against chosen keyword
attacks (SS-CKA) for PEHAKS. This game follows the SS-CKA game defined
in the work of Jiang et al.’s [9], in which a challenger C and an adversary A
interact.

– Setup. C runs pp ← Setup(1λ, �) and (pk, sk) ← KeyGen(pp) algorithms. C
then sends (pp, pk) to A and keeps sk secret.

– Phase 1. In this phase, A performs a polynomially bounded number of
queries:
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• Authorization Query. A issues a set of keywords W to C for this query. C
responds to A with an authorization token tokenW for W.

• Delegation Query. A issues two sets of keywords W ′,W to C for this query,
where W ′ ⊆ W. C responds to A with a delegated authorization token
tokenW′ for W ′.

– Challenge. After A stops Phase 1, A selects two sets of keywords (W∗
0 ,W∗

1 )
with the same size as the challenge and sends them to C. C then randomly
chooses a bit b

$←− {0, 1} and responds to A with a challenge ciphertext
ctW∗

b
← Encrypt(pk,W∗

b ). Here, the restriction for A is that A has never
issued any set of keywords W̃ for some W̃ ⊆ W∗

0 or W̃ ⊆ W∗
1 to C for an

authorization query or delegation query to generate a (delegated) authoriza-
tion token token

˜W .
– Phase 2. A continues to perform queries as in Phase 1. The restriction is

that A cannot issue authorization queries or delegation queries on any set of
keywords W̃ for some W̃ ⊆ W∗

0 or W̃ ⊆ W∗
1 , and that the size of (W∗

0 and
W∗

1 ) must be the same.
– Guess. A outputs a bit b′ as its guess.

The advantage of A winning this game is defined as

AdvSS-CKA
A,ΠPEHAKS

(λ, �) :=
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ .

Definition 1 (SS-CKA Security of PEHAKS). A PEHAKS scheme
ΠPEHAKS satisfies SS-CKA security if for any probabilistic polynomial time
(PPT) adversary A, the function AdvSS-CKA

A,ΠPEHAKS
(λ, �) is negligible.

Remark 1. In the system model of Jiang et al. [9], each token is associated with
a timestamp; if it expires, the token becomes invalid. In addition, to capture
the possibility of an invalid token being used by an adversary, they define the
security requirement termed “trapdoor existential unforgeability.” However, as
a similar result can be easily achieved by equipping a concrete scheme with
a secure digital signature [7,10], we omit discussing timestamps in our system
model. Consequently, we also do not consider trapdoor existential unforgeabil-
ity because this security requirement can be trivially satisfied if the underlying
digital signature scheme satisfies existential unforgeability under chosen message
attacks.

3 Preliminaries

3.1 Dual Pairing Vector Spaces (DPVS)

In this subsection, we briefly describe the concept of DPVS introduced by
Okamoto and Takashima [13]. We focus on the DPVS over symmetric pairing
groups.
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Definition 2 (Symmetric Pairing Groups). Let (G,GT , N, g, ê) be a sym-
metric pairing groups. Here, G is an elliptic curve group, and GT is a multi-
plicative subgroup. N is the prime order of G and GT , g is a generator of G,
and ê : G × G → GT is a nondegenerate bilinear pairing operation. In addition,
the following three properties should be satisfied:

– For all u, v ∈ G and a, b ∈ ZN , we have ê(ua, vb) = ê(u, v)ab.
– ê(g, g) is a generator of group GT .
– For all u, v ∈ G, ê(u, v) can be efficiently computed.

Now, let (G,GT , N, g, ê,V,A) be a DPVS tuple over symmetric pairing, there
exist three important properties.

– Vector space V: For some n ∈ N, V := G
n is termed a “vector space”

containing n-dimensional vectors (e.g., x = (gx1 , · · · , gxn) ∈ V, where
x1, · · · , xn ∈ ZN ).

– Canonical base A: The canonical base of V is defined as A := (a1, · · · ,an),
where ai is a vector whose elements are all 1 except that the ith element
is g (i.e., ai = (1, · · · , 1, g, 1, · · · , 1)). Then, x ∈ V can be expressed as
(x1, · · · , xn)A.

– Pairing operation: For x,y ∈ V, the pairing operation of x and y can be
defined as

ê(x,y) :=
∏

i∈[n]

ê(gxi , gyi) = ê(g, g)
∑n

i=1 xi·yi = ê(g, g)〈x·y〉.

In the following we further introduce a crucial DPVS algorithm that is used
in the proposed scheme:

Definition 3 (Dual Orthonormal Bases Generator). Given a security
parameter λ and n ∈ N, let the general linear group GL(n,Fq) be an algorithm
that outputs a set of n×n matrices with entries in the field Fq whose determinant
is nonzero [6]. The random dual orthonormal bases generator DOBGen(1λ, n)
operates as follows:

1. Generate DPVS parameters as ppV := (G,GT , N, g, ê,V,A) under parameters
λ and n.

2. Pick R := (ri,j)i∈[n],j∈[n]
$←− GL(n,ZN ) and set R∗ := (r∗

i,j)i∈[n],j∈[n] =
(R�)−1.

3. Set B := (bi)i∈[n] and B
∗ := (b∗

i )i∈[n], where bi =
∑

j∈[n] ri,j · aj and b∗
i =∑

j∈[n] r
∗
i,j · aj.

4. Return a tuple (ppV,B,B∗).

Here (B,B∗) is called a dual orthonormal base of V with the property that

ê(bi, b
∗
j ) :=

{
ê(g, g) if i = j;

1 otherwise.
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3.2 Complexity Assumptions

We now recall two assumptions (OT.1 and OT.2) introduced by Lewko et
al. [11] that are used in the security proof of our scheme. Let (ppV :=
(G,GT , N, g, ê,V,A),B := (bi)i∈[2n+3],B

∗ := (b∗
i )i∈[2n+3]) ← DOBGen(1λ, 2n +

3), the descriptions of D1 and D2 are defined as follows:

Description of D1

1 : μ, ρ
$←− ZN

2 : μ := (μ1, · · · , μn)
$←− Z

n
N

3 : U := (ui)i∈[n] := (ui,j)i∈[n],j∈[n]
$←− GL(n,ZN )

4 : B̂ := (b1, · · · , bn, b2n+1, b2n+3)

5 : B̂
∗ := (b∗

1, · · · , b∗
n, b∗

2n+1, b
∗
2n+2)

6 : e0 := (μ · bi + μi · b2n+3)i∈[n]

7 : e1 := (μ · bi + ρ ·
∑

j∈[n]

ui,j · bn+j + μi · b2n+3)i∈[n]

8 : D1 := (ppV, B̂, B̂∗)

Description of D2

1 : μ, ρ, ω, ι
$←− ZN

2 : ν := (ν1, · · · , νn)
$←− Z

n
N

3 : U := (ui)i∈[n] := (ui,j)i∈[n],j∈[n]
$←− GL(n,ZN )

4 : B̂ := (b1, · · · , bn, b2n+1, b2n+3)

5 : B̂
∗ := (b∗

1, · · · , b∗
2n+2)

6 : Z := (zi)i∈[n] := (zi,j)i∈[n],j∈[n] = (U�)−1

7 : e := (μ · bi + ρ ·
∑

j∈[n]

ui,j · bn+j)i∈[n]

8 : h0 := (ω · b∗
i + νi · b∗

2n+2)i∈[n]

9 : h1 := (ω · b∗
i + ι ·

∑

j∈[n]

zi,j · b∗
n+j + νi · b∗

2n+2)i∈[n]

10 : D2 := (ppV, B̂, B̂∗, e)

We define the advantage of a PPT algorithm A for breaking OT.1 assumption
to be

AdvOT.1
A (λ) := |Pr[A(D1,e0) = 1] − Pr[A(D1,e1) = 1]| ,

and the advantage of a PPT algorithm A for breaking OT.2 assumption to be

AdvOT.2
A (λ) := |Pr[A(D2,h0) = 1] − Pr[A(D2,h1) = 1]| .

Definition 4 (OT.1 and OT.2 Assumptions). We say that OT.1 (resp.
OT.2) holds for generator DOBGen(1λ, 2n + 3) if for all PPT algorithms A,
AdvOT.1

A (λ) (resp. AdvOT.2
A (λ)) is a negligible function of λ.

Lewko et al. showed that the hardnesses of breaking assumptions OT.1 and OT.2
are the same as breaking the n-extended decisional Diffie–Hellman (Lemma 6
and Lemma 7 in [11]). In addition, Okamoto and Takashima further proved that
these assumptions can be reduced to decision linear assumption (Lemma 1 and
Lemma 2 in [14]).

4 Public Key Encryption with Hierarchical Authorized
Keyword Search

In this section, we introduce a concrete PEHAKS scheme. Let U be a sorted
universal keyword space with size �, and let n be the total length of a string
representing � (i.e., n = 2�). The proposed scheme is described as follows:

Setup(1λ, �) → pp. Given a security parameter λ and the size � of U , this algo-
rithm performs the following steps:
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– Choose symmetric pairing groups (G,GT , N, g, ê) as defined in Definition 2.
– Define three encoding functions Encode1,Encode2, and Encode3 that take an

�-bit string bit as input as in Fig. 2.

Fig. 2. Procedure of encoding functions.

– Choose a proper mapping function map : W → {0, 1}� that maps a nonempty
set of keywords W ⊆ U to a unique �-bit string bitW , where the ith bit of
bitWi

is set to 1 if the ith keyword of U is in W and set to 0 otherwise.

Finally, the public parameter is set as

pp := (λ, �,N, g, ê,G,GT ,Encode1,Encodes2,Encodes3,map).

KeyGen(pp) → (pk, sk). Given the public parameter pp, this algorithm first runs
(ppV,B,B∗) ← DOBGen(1λ, 2n + 3). Then, it sets

B̂ := (b1, · · · , bn, b2n+1, b2n+3); Ω := ê(g, g).

The algorithm outputs the public and private key pair as

pk := (ppV, B̂, Ω); sk := B
∗.

Authorize(sk,W) → tokenW . Given the private key sk and a nonempty set of
keywords W ⊆ U , this algorithm first performs the following steps:

– Generate an encoding result w := (w1, · · · ,w�) ← Encode1(map(W)), where
each wi ∈ {(0, 0), (1, 0)}.

– Choose r, r1, · · · , r�
$←− ZN , compute

δ := (δ1, · · · , δ�) := (r1 · w1, · · · , r� · w�),

and set
tokenα

W := (δ1, · · · , δ�,0n, 1, r, 0)B∗ ∈ G
2n+3,

where 0n is an n-dimensional zero vector.
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– Define {
X := {i ∈ [�] : wi �= (0, 0)};
Y := {2i − 1, 2i : ∃i ∈ [�] s.t. wi = (0, 0)}.

– For each i ∈ X , choose si, si,1, · · · , si,�
$←− ZN , compute

ζi := (ζi,1, · · · , ζi,�) := (si,1 · w1, · · · , si,� · w�),

and set
tokenβ

W,i := (ζi,1, · · · , ζi,�,0n, 0, si, 0)B∗ ∈ G
2n+3.

– Choose t
$←− ZN and for each i ∈ Y, runs the following steps:

• Choose ti, ti,1, · · · , ti,�
$←− ZN , and compute

ηi := (ηi,1, · · · ,ηi,�), where ηi,j :=

⎧
⎨
⎩

(t, 0) if j = � i
2	 and i is odd;

(0, t) if j = � i
2	 and i is even;

ti,j · wj otherwise.

• Set
tokenγ

W,i := (ηi,1, · · · ,ηi,�,0n, 0, ti, 0)B∗ ∈ G
2n+3.

– The authorization token tokenW is set as

tokenW :=
{

tokenα
W , {tokenβ

W,i}i∈X , {tokenγ
W,i}i∈Y

}
.

Remark 2. The token, ciphertext, and trapdoor, described as follows, are vectors
of length 2n + 3 with base B or B

∗ in the vector space V. The content of these
vectors is the vectors obtained by the encoding functions after randomization
and concatenation with a specific format.

Delegate(pk, tokenW ,W ′) → tokenW′ . Given the public key pk, a (delegated)
authorization token tokenW , and a nonempty set of keywords W ′ ⊆ W, this
algorithm is executed as follows:

– Generate w := (w1, · · · ,w�) ← Encode1(map(W)) and w′ := (w′
i, · · · , w′

n) :=
(w′

1, · · · ,w′
�) ← Encode1(map(W ′)).

– Define four sets as follows:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X := {i ∈ [�] : wi �= (0, 0)};
X ′ := {i ∈ [�] : w′

i �= (0, 0)};
X̄ := {i ∈ [�] : wi = (0, 0)};
Y ′ := {2i − 1, 2i : ∃i ∈ [�] s.t. w′

i = (0, 0)}.

– Choose r′
1, · · · , r′

�
$←− ZN and compute

tokenα
W′ = tokenα

W +
∑
i∈X

r′
i · tokenβ

W,i

+
∑
i∈X̄

r′
i · (w′

2i−1 · tokenγ
W,2i−1 + w′

2i · tokenγ
W,2i).
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– For each i ∈ X ′, choose s′
i,1, · · · , s′

i,�
$←− ZN and compute

tokenβ
W′,i =

∑
j∈X

s′
i,j · tokenβ

W,j

+
∑
j∈X̄

s′
i,j · (w′

2j−1 · tokenγ
W,2j−1 + w′

2j · tokenγ
W,2j).

– Choose t′ $←− ZN . For each i ∈ Y ′, choose t′i,1, · · · , t′i,�
$←− ZN and compute

tokenγ
W′,i = t′ · tokenγ

W,i +
∑
j∈X

t′i,j · tokenβ
W,j

+
∑
j∈X̄

t′i,j · (w′
2j−1 · tokenγ

W,2j−1 + w′
2j · tokenγ

W,2j).

– Output a delegated authorization token

tokenW′ :=
{

tokenα
W′ , {tokenβ

W′,i}i∈X ′ , {tokenγ
W′,i}i∈Y′

}
.

Encrypt(pk,W) → ctW . Given a nonempty set of keywords W ⊆ U , this algo-
rithm is executed as follows.

– Generate an encoding result w := (w1, · · · ,w�) ← Encode2(map(W)).
– Choose σ, q, q1, · · · , q�

$←− ZN and compute

τ := (τ1, · · · , τ�) := (q1 · w1, · · · , q� · w�).

– Set

ctW,1 := (τ1, · · · , τ�,0n, σ, 0, q)B ∈ G
2n+3; ctW,2 := Ωσ ∈ GT .

– Output a ciphertext ctW := {ctW,1, ctW,2}.

Trapdoor(tokenW′ ,W ′′) → tdW′′ . Given the (delegated) authorization token
tokenW′ and a specific nonempty set of keywords W ′′ ⊆ W ′, this algorithm
is executed as follows:

– Compute w′ := (w′
1, · · · ,w′

�) ← Encode1(map(W ′)) and w′′ :=
(w′′

i , · · · , w′′
n) := (w′′

1 , · · · ,w′′
� ) ← Encode3(map(W ′′)).

– Defines {
X := {i ∈ [�] : w′

i �= (0, 0)};
X̄ := {i ∈ [�] : w′

i = (0, 0)}.
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– Chooses r′
1, · · · , r′

�
$←− ZN and compute tdW′′ as follows:

tdW′′ = tokenα
W′ +

∑
i∈X

r′
i · tokenβ

W′,i

+
∑
i∈X̄

r′
i · (w′′

2i−1 · tokenγ
W′,2i−1 + w′′

2i · tokenγ
W′,2i)

= (δ1, · · · , δ�,0n, 1, r, 0)B∗ +
∑
i∈X

r′
i · (ζi,1, · · · , ζi,�,0n, 0, si, 0)B∗

+
∑
i∈X̄

r′
i · (w′′

2i−1 · (η2i−1,1, · · · ,η2i−1,�,0n, 0, t2i−1, 0)B∗

+ w′′
2i · (η2i,1, · · · ,η2i,�,0n, 0, t2i, 0)B∗).

Because the aforementioned operation yields a linear combination of elements
on B

∗, tdW′′ can be represented by (δtd
1 , · · · , δtd

� ,0n, 1, rtd, 0)B∗ for simplicity,
where δtd

1 , · · · , δtd
� ∈ Z

2
N and rtd ∈ ZN .

– Output a trapdoor

tdW′′ := (δtd
1 , · · · , δtd

� ,0n, 1, rtd, 0)B∗ ∈ G
2n+3.

Test(ctW , tdW′′) → 1/0. Given a ciphertext ctW and a trapdoor tdW′′ , this algo-
rithm outputs 1 if ê(ctW,1, tdW′′) = ctW,2 holds, and outputs 0 otherwise.

Correctness. Suppose that a ciphertext ctW := (ctW,1, ctW,2) for W and
a trapdoor tdW′′ for W ′′ are produced, where W ′′ ⊆ W. Here, ctW,1 :=
(τ1, · · · , τ�,0n, σ, 0, q)B, ctW,2 := Ωσ, and tdW′′ := (δtd

1 , · · · , δtd
� ,0n, 1, rtd, 0)B∗ .

In addition, τ := (τ1, · · · , τ�) and δ := (δ1, · · · , δ�) are linear combinations
of w ← Encode2(map(W) and w′′ ← Encode1(map(W ′′)) multiplied by ran-
dom coefficients, respectively. Therefore, because W ′′ ⊆ W, we have 〈τi, δi〉 =
0 for i = 1, · · · , �. According to Definition 3, we have

ê(ctW,1, tdW′′) = ê(g, g)σ+
∑�

i=1〈τi,δi〉 = ê(g, g)σ = Ωσ = ctW,2.

5 Security Proof

In this section, we demonstrate that the following theorem holds.

Theorem 1. The proposed scheme satisfies SS-CKA if the assumptions OT.1
and OT.2 hold.

Our strategy for proving the theorem is to define a sequence of games between
a PPT adversary A and a challenger C. The first game is the real SS-CKA game.
For the following games, the semi-functional technique introduced by Waters
[20] is utilized, and the ciphertexts and tokens given to the adversary are grad-
ually changed to be semi-functional. In the last game, the challenge cipher-
text is generated from a random set of keywords instead of the challenge set
of keywords. Then, we demonstrate that A cannot distinguish between any two
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adjacent games. Therefore, no information about the challenge set of keywords
is revealed to the adversary.

We describe three types of semi-functional algorithms and their properties
are described as follows:

– Semi-functional ciphertexts. To create a semi-functional ciphertext for a set
of keywords W, this algorithm first runs Encrypt(pk,W) to generate a normal
ciphertext ctW := {ctW,1, ctW,2}, where ctW,1 := (τ1, · · · , τ�,0n, σ, 0, q)B and
ctW,2 := Ωσ. It then sets ctsf

W,1 to be identical to ctW,1 in all respects except
that ctsf

W,1 is such that the element 0n in ctW,1 is replaced by a random vector

vct $←− Z
n
N . That is,

ctsf
W,1 := (τ1, · · · , τ�,v

ct, σ, 0, q)B.

In addition, it also sets ctsf
W,2 := ctW,2. Finally, the semi-functional ciphertext

for W is set as
ctsf

W :=
{

ctsf
W,1, ct

sf
W,2

}
.

– Semi-functional tokens. To create a semi-functional tokens for a set of key-
words W, this algorithm first runs Authorize(sk,W) algorithm to generate
a normal token tokenW := {tokenα

W , {tokenβ
W,i}i∈X , {tokenγ

W,i}i∈Y), where
tokenα

W := (δ1, · · · , δ�,0n, 1, r, 0)B∗ , tokenβ
W,i := (ζi,1, · · · , ζi,�,0n, 0, si, 0)B∗ ,

and tokenγ
W,i := (ηi,1, · · · ,ηi,�,0n, 0, ti, 0)B∗ . It also randomly picks vectors

vα, {vβ
i }i∈X , {vγ

i }i∈Y
$←− Z

n
N . It then sets tokensf.α

W to be identical to tokenα
W ,

{tokensf.β
W,i }i∈X to be identical to {tokenβ

W,i}i∈X , and {tokensf.γ
W,i }i∈Y to be

identical to {tokenγ
W,i}i∈Y with the exception being that in each case, the

element 0n in the former token are replaced by vα, {vβ
i }i∈X and {vγ

i }i∈Y ,
respectively. That is,

⎧
⎪⎨
⎪⎩

tokensf.α
W := (δ1, · · · , δ�,v

α, 1, r, 0)B∗ ;
tokensf.β

W,i := (ζi,1, · · · , ζi,�,v
β
i , 0, si, 0)B∗ ;

tokensf.γ
W,i := (ηi,1, · · · ,ηi,�,v

γ
i , 0, ti, 0)B∗ .

Finally, the semi-functional token for W is set as

tokensf
W :=

{
tokensf.α

W , {tokensf.β
W,i }i∈X , {tokensf.γ

W,i }i∈Y
}

.

– Semi-functional trapdoors. A semi-functional trapdoor can be generated by
running the Trapdoor algorithm with a semi-functional token as its input.
Thus, the semi-functional trapdoor can be represented as

tdsf
W′′ := (δtd

1 , · · · , δtd
� ,vtd, 1, rtd, 0)B∗ ,

where

vtd = vα +
∑
i∈X

r′
i · vβ

i +
∑
i∈X̄

r′
i · (w′′

2i−1 · vγ
2i−1 + w′′

2i · vγ
2i).
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The crucial property of the semi-functional elements used in the following
security proof is as follows: if the Test algorithm takes a semi-functional cipher-
text ctsf

W for W and a semi-functional trapdoor tdsf
W′′ for W ′′ as its inputs, it

returns 0 with high probability even if W ′′ ⊆ W because

ê(ctsf
W,1, td

sf
W′′) = ê(g, g)σ+

∑�
i=1〈τi,δi〉+〈vct,v td〉,

where 〈vct,vtd〉 �= 0 since vct and vtd are uniformly and independently dis-
tributed with overwhelming probability. If one of the input tokens in Trapdoor
algorithm is semi-functional, the generated trapdoor will be semi-functional,
because vtd can be a uniformly and randomly distributed Z

n
N element.

Let q denote the total number of queries made by A in Phase 1 and Phase
2. The sequences of games are defined as follows:

– GameReal: This is the same as the SS-CKA game of PEHAKS.
– GameRes: This game is the same as GameReal except that A cannot issue

delegation queries in Phase 1 and Phase 2.
– Game0: This game is the same as GameRes, except that the challenge cipher-

text given to A is semi-functional.
– Gamei,j : For i = 1, · · · , q and j = 0, · · · , n + 1, Gamei,j is the same as

Game0 except that the output tokens of the first i − 1 authorization queries
are semi-functional; while the outputs of the remaining q − i authorization
queries are normal. For the ith authorization query, only the first j elements
are semi-functional and the rest are normal. In addition, for convenience, we
also let Game1,0 := Game0 and Gamei,n+1 := Gamei+1,0.

– GameFinal: This game is the same as Gameq,n+1, except that the challenge
ciphertext is generated for a random set of keywords instead of the challenge
sets of keywords.

In the following, we provide several lemmas to demonstrate that no PPT
algorithm can distinguish between any two adjacent games.

Lemma 1. The probability that there exists an algorithm A that can distinguish
GameReal from GameRes is negligible.

Proof. Let W and W ′ be two sets of keywords with W ′ ⊆ W, and let tokenW′

be a token for W ′. We demonstrate that the probability that A can dis-
tinguish GameReal from GameRes is negligible because the probability that
A can determine whether tokenW′ is generated by Authorize(sk,W ′) or by
Delegate(pk, tokenW ,W ′) is negligible, where tokenW ← Authorize(sk,W).

Because {tokenβ
W,i}i∈X in tokenW can be regarded as a linear com-

bination of coefficients that are chosen uniformly at random, the distri-
bution of {tokenβ

W,i}i∈X can be considered to be uniform and random.
In addition, {tokenβ

W,i}i∈X also plays a role in the randomization of the
Delegate(pk, tokenW ,W ′) algorithm. Concretely, tokenW′ can be regarded as
the linear combinations of {tokenβ

W,i}i∈X with coefficients chosen uniformly at
random. Therefore, the distribution of tokenW′ is also uniform and random.
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Suppose the element of t used to compute tokenW in Authorize is 0, tokenW′

is then not random because some entries of {tokenγ
W,i}i∈Y become 0, and the

elements that are chosen in Delegate and that operate on those entries also
become 0. Fortunately, the probability of t = 0 is 1/N , which is a negligible
number.

In summary, the probability that there exists an algorithm A that
can determine whether tokenW′ is generated by Authorize(sk,W ′) or by
Delegate(pk, tokenW ,W ′) is negligible. �
Lemma 2. If an algorithm A that can distinguish GameRes from Game0 with
advantage ε exists, then an algorithm C that can break OT.1 assumption with
advantage ε necessarily exists.

Proof. Given an instance (ppV, B̂, B̂∗,eξ := (eξ,1, · · · , eξ,n)) of OT.1 assumption,
C simulates the following game and interacts with A to answer whether ξ is
0 or 1.

Setup. C first generates pp ← Setup(1λ, �). It then computes Ω = ê(g, g) and
sets pk := (ppV, B̂, Ω) and sk := B̂

∗. Then, C gives (pp, pk) to A and keeps sk
secret.
Phase 1. To answer the authorization query for any set of keywords, C generates
the corresponding authorization token using sk.
Challenge. A selects two challenge sets of keywords with the same size
(W∗

0 ,W∗
1 ) and sends them to C. C randomly chooses b

$←− {0, 1} and gener-
ates the encoding result w∗ := (w∗

1 , · · · ,w∗
� ) ← Encode2(map(W∗

b )). Then, C
chooses σ, q1, · · · , q�

$←− ZN and sets

τ ∗ := (τ∗
1 , · · · , τ∗

n) := (τ ∗
1 , · · · , τ ∗

� ) := (q1 · w∗
1 , · · · , q� · w∗

� ).

Furthermore, C computes

ctW∗
b ,1 =

∑
i∈[n]

τ∗
i · eξ,i + σ · b2n+1; ctW∗

b ,2 = Ωσ.

Finally, C responds to A with ctW∗
b

:= (ctW∗
b ,1, ctW∗

b ,2).
Phase 2. A can perform authorization queries as Phase 1 with the same restric-
tions defined in the SS-CKA game.
Guess. Finally, A outputs a guess b′ for b.
Analysis. The Challenge phase has two cases:

– If ξ = 0, then
eξ = (μ · bi + μi · b2n+3)i∈[n]

and

ctW∗
b ,1 =

∑
i∈[n]

τ∗
i · eξ,i + σ · b2n+1

= (μ · τ ∗
1 , · · · , μ · τ ∗

� ,0n, σ, 0, 〈τ ∗,μ〉)B
= (τ̂1, · · · , τ̂�,0n, σ, 0, q)B,
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where τ̂i = μ · τ ∗
i and q = 〈τ ∗,μ〉. Therefore, the challenge ciphertext is

distributed as in GameRes.
– If ξ = 1, then

eξ = (μ · bi + ρ ·
∑
j∈[n]

ui,j · bn+j + μi · b2n+3)i∈[n]

and

ctW∗
b ,1 =

∑
i∈[n]

τ∗
i · eξ,i + σ · b2n+1

= (μ · τ ∗
1 , · · · , μ · τ ∗

� , ρ · 〈τ ∗,u1〉, · · · , ρ · 〈τ ∗,un〉, σ, 0, 〈τ ∗,μ〉)B
= (τ̂1, · · · , τ̂�,v

ct, σ, 0, q)B,

where τ̂i = μ · τ ∗
i , vct = (vct

1 , · · · , vct
n ) with vct

i = ρ · 〈τ ∗,ui〉 and q = 〈τ ∗,μ〉.
Because τ ∗ �= 0n and u1, · · · ,un as well as μ belong to a uniform and
independent distribution, the challenge ciphertext is properly distributed as
in Game0.

Therefore, if A can determine which game it is interacting with, then C can use
A as a black box to break OT.1 assumption. �
Lemma 3. If an algorithm A exists that can distinguish Gamei,k−1 from
Gamei,k with advantage ε, where i = 1, · · · , q and k = 1, · · · , n + 1, then there
exists an algorithm C that can break OT.2 assumption with advantage ε.

Proof. Given an instance (ppV, B̂, B̂∗,e,hξ := (hξ,1, · · · , hξ,n)) of OT.2 assump-
tion, C simulates the following game and interacts with A to answer whether ξ
is 1 or 0.
Setup. C first generates pp ← Setup(1λ, �). It then computes Ω = ê(g, g) and
sets pk := (ppV, B̂, Ω) and sk := B̂

∗. C then gives (pp, pk) to A and keeps sk
secret.
Phase 1. C responses to the first i−1 authorization queries with semi-functional
tokens generated as described in Theorem 1. The last q − i authorization queries
are answered with normal tokens generated identically to those in the Authorize
algorithm. For the ith authorization query for a set of keywords W, C first
generates tokenW as in Authorize(sk,W). C then converts tokens with a sequence
less than k in tokenW into semi-functional tokens as described in Theorem 1. C
sets kth token of the ith query tokenW,k of tokenW depending on its original
type. Specifically,

tokenW,k :=

⎧
⎪⎨
⎪⎩

∑
i∈[n] δi · hξ,i + b∗

2n+1 if type is α;∑
i∈[n] ζi · hξ,i if type is β;∑
i∈[n] ηi · hξ,i if type is γ,

where (δ1, · · · , δn) := (δ1, · · · , δ�), (ζ1, · · · , ζn) := (ζ1, · · · , ζ�), and (η1, · · · , ηn)
:= (η1, · · · ,η�).
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Remark 3. Suppose that A wants to generate trapdoor tdW by using all n + 1
parts of tokenW in the ith query for the set W, the generated trapdoor tdW
differs based on the original type of tokenW,k, the value of ξ, and the elements
of the converted tokenW,k, described as follows.

– If the original type of tokenW,k is α (i.e., k = 1) and ξ = 0, then

hξ = (ω · b∗
i + νi · b∗

2n+2)i∈[n]

and

tokenW,k =
∑
i∈[n]

δi · hξ,i + b∗
2n+1

= (ω · δ1, · · · , ω · δ�,0n, 1, 〈δ,ν〉, 0)B∗

= (δ̂1, · · · , δ̂�,0n, 1, r, 0)B∗ ,

where δ̂i = ω · δ and r = 〈δ,ν〉. Therefore, the generated trapdoor tdW is set
as

tdW := (δ̂1, · · · , δ̂�,0n, 1, r, 0)B∗ +
∑
i∈X

r′
i · tokenβ

W,i

+
∑
i∈X̄

r′
i · (w2i−1 · tokenγ

W,2i−1 + w2i · tokenγ
W,2i)

= (δ̂1, · · · , δ̂�,0n, 1, r, 0)B∗ +
∑
i∈X

r′
i · (ζi,1, · · · , ζi,�,0n, 0, si, 0)B∗

+
∑
i∈X̄

r′
i · (w′′

2i−1 · (η2i−1,1, · · · ,η2i−1,�,0n, 0, t2i−1, 0)B∗

+ w′′
2i · (η2i,1, · · · ,η2i,�,0n, 0, t2i, 0)B∗)

= (δtd
1 , · · · , δtd

� ,0n, 1, rtd, 0)B∗ ,

which is a normal trapdoor.
– If the original type of tokenW,k is α (i.e., k = 1) and ξ = 1, then we have

hξ = (ω · b∗
i + ι ·

∑
k∈[n]

zi,k · b∗
n+k + νi · b∗

2n+2)i∈[n]

and

tokenW,k =
∑
i∈[n]

δi · hξ,i + b∗
2n+1

= (ω · δ1, · · · , ω · δ�, ι · 〈δ,z1〉, · · · , ι · 〈δ,zn〉, 1, 〈δ,ν〉, 0)B∗

= (δ̂1, · · · , δ̂�,v, 1, r, 0)B∗ ,
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where δ̂i = ω · δ,v = (v1, · · · , vn), (vi = ι · 〈δ,zi〉)i∈[n], (zi)i∈[n] = Z, and
r = 〈δ,ν〉. The generated trapdoor tdW is set as

tdW := (δ̂1, · · · , δ̂�,v, 1, r, 0)B∗ +
∑
i∈X

r′
i · (ζi,1, · · · , ζi,�,0n, 0, si, 0)B∗

+
∑
i∈X̄

r′
i · (w′′

2i−1 · (η2i−1,1, · · · ,η2i−1,�,0n, 0, t2i−1, 0)B∗

+ w′′
2i · (η2i,1, · · · ,η2i,�,0n, 0, t2i, 0)B∗)

= (δtd
1 , · · · , δtd

� ,vtd, 1, rtd, 0)B∗ .

Because vtd in the generated trapdoor tdW is a random vector of Z
n
N as

described in Theorem 1, the generated trapdoor tdW is semi-functional.
– If the original type of tokenW,k is β, then

tokenW,k =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i∈[n] ζi · h0,i = (ω · ζ1, · · · , ω · ζ�,0n, 〈ζ,ν〉, 0)B∗

= (ζ̂1, · · · , ζ̂�,0n, 0, s, 0)B∗ , if ξ = 0;∑
i∈[n] ζi · h1,i = (ω · ζ1, · · · , ω · ζ�, ι · 〈ζ,z1〉, · · · ,

ι · 〈ζ,zn〉, 0, 〈ζ,ν〉, 0)B∗

= (ζ̂1, · · · , ζ̂�,v
β , 0, s, 0)B∗ , if ξ = 1,

where ζ̂i = ω · ζ, s = 〈ζ,ν〉,vβ = (vβ
1 , · · · , vβ

n), and (vβ
i = ι · 〈ζ,zi〉)i∈[n].

We also note that because k > 1, there must be at least one part (i.e.,
tokenW,1) in tokenW that is semi-functional. According to Theorem 1,
the generated trapdoor tdW is also semi-functional and is set as tdW :=
(δtd

1 , · · · , δtd
� ,vtd, 1, rtd, 0)B∗ .

– If the original type of tokenW,k is γ, then

tokenW,k :=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i∈[n] ηi · h0,i = (ω · η1, · · · , ω · η�,0n, 0, 〈η,ν〉, 0)B∗

= (η̂1, · · · , η̂�,0n, 0, t, 0)B∗ , if ξ = 0;∑
i∈[n] ηi · h1,i = (ω · η1, · · · , ω · η�, ι · 〈η,z1〉, · · · ,

ι · 〈η,zn〉, 0, 〈η,ν〉, 0)B∗

= (η̂1, · · · , η̂�,v
γ , 0, t, 0)B∗ , if ξ = 1,

where η̂i = ω · η, t = 〈η,ν〉,vγ = (vγ
1 , · · · , vγ

n), and (vγ
i = ι · 〈η,zi〉)i∈[n]. For

the same reason as those for the previous cases, the generated trapdoor tdW
is also semi-functional and set as tdW := (δtd

1 , · · · , δtd
� ,vtd, 1, rtd, 0)B∗ .

Challenge. A selects two challenge sets of keywords with the same size
(W∗

0 ,W∗
1 ) and sends them to C. C randomly chooses b

$←− {0, 1} and generates
a encode result w∗ := (w∗

1 , · · · ,w∗
� ) ← Encode2(map(W∗

b )). Then, C chooses

σ, q1, · · · , q�
$←− ZN and sets

τ ∗ := (τ∗
1 , · · · , τ∗

n) := (τ ∗
1 , · · · , τ ∗

� ) := (q1 · w∗
1 , · · · , q� · w∗

� ).
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Furthermore, C computes

ctW∗
b ,1 =

∑
i∈[n]

τ∗
i · ei + σ · b2n+1 + q · b2n+3

= (μ · τ ∗
1 , · · · , μ · τ ∗

� , ρ · 〈τ ∗,u1〉, · · · , ρ · 〈τ ∗,un〉, σ, 0, q)B
= (τ̂1, · · · , τ̂�,v

ct, σ, 0, q)B;
ctW∗

b ,2 = Ωσ,

where τ̂i = μ · τ ∗
i ,vct = (vct

1 , · · · ,vct
n ), and (vct

i = ρ · 〈τ ∗,ui〉)i∈[n].

Phase 2. A can perform an authorization query as described in Phase 1 with
the same restrictions defined in SS-CKA game.

Guess. Finally, A outputs a guess b′ for b.

Analysis. We now analyze the advantage of A to determine which game it
interacts with. First, we consider the case for k = 1. Suppose that ξ = 0; the
trapdoor tdW generated by A using all n + 1 parts of tokenW in the ith query
for the set W is then a normal trapdoor. Therefore, the joint distribution of
the challenge ciphertext and the generated trapdoor is the same as those in
Gamei,0. Suppose ξ = 1; the generated trapdoor tdW is then semi-functional.
Therefore, the joint distributions of the challenge ciphertext and the generated
trapdoors in Gamei,0 and Gamei,1 are the same.

Second, we consider the case for k = 2, · · · , n + 1. Regardless of whether
of ξ is 0 or 1, the trapdoor tdW generated with n + 1 parts of tokenW in the
ith query for set W is semi-functional. Therefore, for k = 2, · · · , n + 1, the
joint distributions of the challenge ciphertext and the generated trapdoors in
Gamei,k−1 and Gamei,k are the same.

In summary, if A can distinguish between any two adjacent games, then C
can use A as a black box to break OT.2 assumption. �
Lemma 4. The view of an algorithm A in Gameq,n+1 is identical to that of A
in GameFinal.

Proof. Given the dual orthonormal bases of V used in Gameq,n+1

{
B := (b1, · · · , bn, bn+1, · · · , b2n, b2n+1, b2n+2, b2n+3);
B

∗ := (b∗
1, · · · , b∗

n, b∗
n+1, · · · , b∗

2n, b∗
2n+1, b

∗
2n+2, b

∗
2n+3),

we construct another dual orthonormal base (D,D∗) of V as follows: First, choose
U := (ui

$←− Z
n
N )i∈[n] and m := (mi

$←− ZN )i∈[n], then define
{
D := (b1, · · · , bn,dn+1, · · · ,d2n, b2n+1, b2n+2, b2n+3);
D

∗ := (d∗
1, · · · ,d∗

n, b∗
n+1, · · · , b∗

2n,d∗
2n+1, b

∗
2n+2, b

∗
2n+3),

where (dn+i = bn+i − ∑
j∈[n] ui,j · bj − mi · b2n+1)i∈[n], (d∗

i = b∗
i +

∑
j∈[n] ui,j ·

b∗
n+j)i∈[n], and d∗

2n+1 = b∗
2n+1 +

∑
j∈[n] mi · b∗

n+j .
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Because this transformation preserves the dual orthonormal property, (D,D∗)
are still dual orthonormal and distributed in the same manner as (B,B∗). Fur-
thermore, because bn+1, · · · , b2n and B

∗ are hidden from the adversary, an adver-
sary cannot determine whether tokens or ciphertexts are represented in (B,B∗)
or in (D,D∗) if the adversary can only access the public key information. There-
fore, we can rewrite tokens and the challenge ciphertext in Gameq,n+1 from the
bases (B,B∗) to the bases (D,D∗).

Now, we rewrite each semi-functional token in Gameq,n+1 under base D
∗.

For example, consider an α-type token:

tokensf.α
W

= (δ1, · · · , δ�,v
α, 1, r, 0)B∗

=
∑
i∈[n]

δi · b∗
i +

∑
i∈[n]

vi · b∗
n+i + b∗

2n+1 + r · b∗
2n+2

=
∑
i∈[n]

δi · (d∗
i −

∑
j∈[n]

ui,j · b∗
n+j)

+
∑
i∈[n]

vi · b∗
n+i + (d∗

2n+1 −
∑
j∈[n]

mi · b∗
n+j) + r · b∗

2n+2

=
∑
i∈[n]

δi · d∗
i +

∑
i∈[n]

(vi − 〈δi,ui〉 − mi) · b∗
n+i + d∗

2n+1 + r · b∗
2n+2

= (δ1, · · · , δ�,v
′, 1, r, 0)D∗ ,

where v′ = (v′
1, · · · , v′

n) with v′
i = vi − 〈δi,ui〉 − mi. Here, v′ is uniformly dis-

tributed. Moreover the challenge ciphertext in Gameq,n+1 can also be rewritten
under base D as follows:

ctW∗
b ,1

= (τ1, · · · , τ�,v
ct, σ, 0, q)B

=
∑
i∈[n]

τi · bi +
∑
i∈[n]

vct
i · bn+i + σ · b2n+1 + q · b2n+3

=
∑
i∈[n]

τi · bi

+
∑
i∈[n]

vct
i · (dn+i +

∑
j∈[n]

ui,j · bj + mi · b2n+1) + σ · b2n+1 + q · b2n+3

=
∑
i∈[n]

(τi + 〈vct,ui〉) · bi +
∑
i∈[n]

vct
i · dn+i + (σ · 〈vct,u〉) · b2n+1 + q · b2n+3

= (τ̂1, · · · , τ̂�,v
ct, σ′, 0, q)D,

affecting only τ and σ and where τ and σ′ = σ · 〈vct,u〉. Both τ̂ and σ′ are
independently and uniformly distributed and ctW∗

b ,2 is still equal to Ωσ. After
the base transformation, the challenge ciphertext is equivalent to that obtained
by generating for a random set of keywords, and the views of an algorithm A in
Gameq,n+1 and GameFinal are the same. �
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6 Theoretical Comparison

We compare our proposed scheme with the PEAKS scheme of Jiang et al. [9] in
terms of computational cost, communication cost, and their properties. We use
� to denote the size of the set of keywords. With respect to their computational
cost (Table 1), five algorithms are considered, the Authorize, Delegate, Encrypt,
Trapdoor, and Test algorithms. We focused on four time-consuming operations:
modular exponentiation (E), pairing computation (P ), modular multiplication
(M), and hashing (H). In comparisons of communication cost (Table 2) |G|, |GT |
and |Zp| denote the size of a group element in groups G, GT , and Zp respectively.

Table 1. Computational cost of our scheme and that of Jiang et al. [9].

Scheme Authorize Delegate Encrypt Trapdoor Test

[9] 3E + H – (� + 2)E + (� − 1)M (2� + 1)E + (2� − 2)M 5P + H

Ours 3 ∗ (4� + 3)2E 3 ∗ (4� + 3)2E ((4� + 3)2 + 1)E + P (4� + 3)2E (4� + 3)P

Table 2. Communication cost of our scheme and that of Jiang et al. [9].

Scheme Public key Private key Auth. token Dele. token Ciphertext Trapdoor

[9] (3� + 3)|G| |G| + 4|Zp| 2|G| - 3|G| 4|G|
Ours (2� + 3)|G| + |GT | (4� + 3)|G| (2� + 1)(4� + 3)|G| (2� + 1)(4� + 3)|G| (4� + 3)|G| + |GT | (4� + 3)|G|

Table 3. Properties of our scheme and that of Jiang et al. [9].

Scheme Assumption Multikeyword search Token delegation Hierarchical search

[9] (n, �)-MSE-DDH No No No

Ours OT.1 & OT.2 Yes Yes Yes

The properties of our scheme and that of Jiang et al. are presented in Table 3.
With regard to the hardness assumption, Jiang et al. [9] relied on the (n, �)-
multisequence of exponents Diffie-Hellman ((n, �)-MSE-DDH) assumption; our
scheme relies on the OT.1 and OT.2, which can be reduced to decision linear
assumption. In addition, our scheme is more flexible than that of Jiang et al. [9].
First, our scheme supports multikeyword search; users with direct or delegated
authorization can generate trapdoors that are related to a set of keywords W ′′

to search for ciphertexts related to another set of keywords W if W ′′ ⊆ W.
In other words, the proposed scheme supports searching the ciphertext using
multiple keywords at a time. Second, our scheme supports token delegation;
authorized users can further delegate their tokens, which are related to a set of
keywords W, to another set of keywords if W ′ ⊆ W. Thus, token delegation is
not restricted, and our scheme is more applicable to various real-world scenarios.
Finally, because an upper-level user can also generate a trapdoor from his/her
token, our scheme naturally provides a hierarchical search function. To the best
of our knowledge, other PEKS-derived schemes do not allow for both token
delegation and hierarchical search properties.
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7 Conclusion and Future Work

In this work, we introduce a novel cryptosystem, called public key encryption
with hierarchical authorized keyword search (PEHAKS), to support delegation
for authorization over multikeyword search. We formally define the system model
and the security requirement. To obtain a concrete construction, we design three
encoding functions, modify Abdally et al.’s generic transformation, and carefully
combine them together. In addition, detailed security proof is also provided to
show the proposed scheme is SS-CKA secure under OT.1 and OT.2 assumptions.

Although PEHAKS is useful for various applications, the current scheme has
some flaws. Specifically, the computational cost of Test algorithm and the com-
munication cost are linearly related to the size of the set of keywords. In addition,
the sizes of all elements depend on the size of the universal keyword space; thus,
the scheme can be applied only in a polynomial-size universal keyword space
(the existing PEAKS scheme [9] also has this drawback). Hence, increasing the
efficiency of the proposed PEHAKS scheme is an open problem that we will
investigate in a future study.
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Abstract. There has been increasing interest in developing privacy-
preserving algorithms for evaluating machine learning (ML) models.
With the advancement of cloud computing, it is now possible for model
owners to host their trained ML models on a cloud server and offer
cloud computing solutions on different ML tasks to users (clients). Thus
private evaluation of ML models is an attractive area of research as it
allows solution providers to protect their propriety ML models and users
to protect their sensitive data while using cloud computing solutions.
In this work, we propose an algorithm to privately evaluate a decision
tree. We examine current state-of-the-art private evaluation protocols
and present a solution that is sublinear in tree size and linear in tree
depth. The key feature of our proposal is that it is entirely based on
secret sharing and thus there are no computational costs associated with
heavy cryptographic primitives such as modular exponentiation. We pro-
pose a new method to privately index arrays that avoids the use of pub-
lic/symmetric key cryptosystem, typically associated with private array
indexing protocols. The results of our experiments show that our solution
has a low communication cost compared to existing methods (lower by
a factor of ≈10 in the online phase), and demonstrate a faster runtime
at low network latency (such as LAN network). We conclude by suggest-
ing improvement to our protocol and proposing potential areas of future
research.

Keywords: Secret sharing · Private decision tree evaluation · Privacy
preserving machine learning

1 Introduction

Solutions based on cloud computing have become increasingly popular in recent
years. By leveraging the power of cloud computing, technology companies are
already offering a diverse range of services based on the needs of their customers
[1,24,35]. Of particular interest are solutions based on machine learning (ML),
as they allow users with limited computational resources to perform tasks using
computationally expensive ML models. For instance, an organization may host
a pre-trained ML model in its cloud server and offer services to its clients, allow-
ing them to perform a variety of different ML tasks like dataset classification.
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Classification is a typical example of a supervised machine learning (ML) task,
which first involves training a classifier and then evaluating the trained classi-
fier on samples from a raw dataset to predict their associated labels. Real-world
applications of classification using ML are varied, ranging from spam filtering,
credit fraud detection to drug discovery and diagnosing the presence or absence
of a disease [25,33,46]. Consider a case where a ML classifier trained by a service
provides on one of these datasets is offered as a computing service to its clients.

While this sort of arrangement poses no risk when the client’s dataset consists
of nonsensitive data, it raises serious privacy concerns for datasets with privately
identifiable information (PII). For instance, consider the case of a ML model that
detects the presence or absence of a disease using clinical data. A client with
sensitive data would be unwillingly to use such a model hosted on a cloud server
as the client data is sent and thus leaked to the server. An obvious approach to
deal with this scenario would be to outsource the ML model to the client but
this would mean that confidential information such as the internal structure of
the model are potentially leaked to the client, which in turn could be detrimental
to the business of cloud service provider. All these point to the fact that there
are practical benefits to designing algorithms that evaluate ML based classifiers
without leaking any information about the query or the model parameters. A
diverse group of ML classifiers are used in practice, from relatively simplistic
models such as decision trees (DT) to complex ones such as neural networks.
In this work, we primarily focus on a DT classifier as DT models are easy to
interpret, they can be explained using boolean logic and are thus the classifier
of choice in clinical diagnosis [40].

1.1 Our Contribution

We propose an outsourced two-party protocol between two computing nodes
that privately evaluate a DT, where the depth of the tree is publicly known.
These nodes which can be considered as servers (or cloud servers), receive an
input query and a DT classification model as secret shares from a query and tree
holder respectively. The computing nodes thus learn neither the query nor the
DT model since they operate on shares. Meanwhile, the query holder remains
oblivious to the DT parameters, and the tree holder to the input query. The
nodes then jointly run a private protocol and output the result as secret shares
to the query holder. Thus, only the query holder learns the result of classification
from the private protocol.

Just as in the case of a plain evaluation of a DT, the number of comparisons
in our private protocol is proportional to the depth of the tree. This helps us
achieve a round complexity that is linear in tree depth and sublinear in tree size,
a feature that is important for designing optimal protocols for not only deep-
but-sparse trees but also shallow-but-dense trees. The main contribution of our
approach is that the decision tree and the query vector are represented as arrays,
we design private protocols on array based tree traversal and query feature selec-
tion using random shuffling. This helps us save computational costs associated
with public/symmetric key operations of oblivious transfer (OT) based array
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indexing, as well as communication costs with transmitting the ciphertexts dur-
ing these operations. Lastly, our entire protocol is based on secret sharing, which
helps us avoid computationally expensive cryptographic primitives such as those
based on modular exponentiation. As a result, our protocol is suited for sce-
narios where clients have limited computational resources and bandwidth while
also achieving reasonably fast protocol runtime. A high level overview of our pri-
vate decision tree evaluation protocol (PDTE) is shown in Fig. 1 and a detailed
explanation on its implementation is given in Sect. 4.4.

Fig. 1. An overview of our proposed model, a query holder B evaluates a query q
using a decision tree T held by tree holder A such that neither q nor T is leaked. The
model has a preparation phase, where A and B interact to setup a private decision tree
evaluation (PDTE) protocol. T and q are then secret shared to computing nodes Pk

(server) who run the PDTE protocol. We refer to the this stage of the model as the
evaluation phase, and upon the termination of PDTE protocol, Pk obtain the shares
of classification label, κi corresponding to q. These are then sent to B as shares, who
reconstructs the actual label from the shares.

2 Related Works

Numerous methods on designing two-party based private decision tree evalua-
tion (PDTE) protocols have been proposed in literature [8,18,29,32,41,42,45],
and on a fundamental level all these protocols have a similar idea. Input query
features are first mapped to the decision nodes of a tree using a cryptographic
primitive such as oblivious transfer (OT). A secure comparison protocol is then
run to evaluate a decision function by comparing the query features to the deci-
sion node thresholds. Finally, a path evaluation function determines the clas-
sification label associated with the query. We now present some of the prior
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works on designing PDTE protocol in chronological order. Bost et al. [8] pro-
posed a privacy-preserving protocol by modeling the path evaluation a tree as
a polynomial function of boolean variables and then evaluating this function
using leveled fully homomorphic encryption. Meanwhile, Wu et al. [45] use a
path evaluation strategy based on a decision bit string which is then evaluated
using additive homomorphic encryption. Despite being more efficient than Bost
et al.’s approach due to the use of additive homomorphic encryption, Wu et al.’s
method does not perform well for deeply rooted trees (trees with high depth)
since it transforms a binary decision tree into a full binary decision tree and
thus the complexity of the protocol increases exponentially with depth. Tai et
al. [41] improved upon the method of Wu et al. by implementing a path selec-
tion strategy based on additive homomorphic encryption that only depends on
the number of decision nodes. All of the above works implement their private
comparison functionality based on DGK comparison protocol [14–16]. Taking
a slightly different approach, De Cock et al. [18] proposed a protocol based on
secret sharing that significantly improved upon the runtime of Wu et al. due to
the use of computationally inexpensive cryptographic primitives while avoiding
the use of modular exponentiation. De Cock et al.’s approach performs well for
trees with low depth, however just like Wu et al., the complexity of their protocol
increases exponential with the depth of tree since the decision path is evaluated
as a polynomial function of a complete binary tree.

More recently, Kiss et al. [29] proposed a modular approach to designing
PDTE protocol by decomposing it into a series of private selection, private
comparison and private path evaluation sub-protocols, which are then imple-
mented using methods based on state-of-the-art garbled circuits (GC) and addi-
tive homomorphic encryption (HE). Just like the prior HE-based approaches,
Kiss et al. also use the DGK comparison protocol and make use of single-
instruction-multiple-data (SIMD) slots for efficient implementation through par-
allel processing [7]. As for their GC based comparison protocol, they use Yao’s
garbled circuit [47,48] along with the optimizations from [4,31,49]. Meanwhile,
Tueno et al. [42] proposed a PDTE model with an array based representation of
decision tree and a GC based evaluation protocol, while studying the protocol
performance on a variety of array indexing methods such as GC+OT, oblivious
transfer (OT) and oblivious RAM (ORAM). A key feature of their approach is
that the round complexity of the protocol depends on the depth of the tree as
opposed to the size of the tree of previous methods. Meanwhile, Zheng et al. [50]
proposed a PDTE protocol based on secret sharing that is outsourced to two
cloud servers. Unlike the prior works that implement private selection using OT,
Zheng et al. instead use an indicator matrix created by a DT provider that maps
query features to decision node thresholds. This matrix is then secret shared to
the cloud servers, who privately select the relevant query features and thresholds
for each of the decision node using secure matrix multiplication. Like Tai et al.
[41], Zheng et al. also formulate private path evaluation as a path cost problem,
but this requires running the private comparison protocol over all the decision
nodes, which results in a PDTE protocol that is non-sublinear in tree size unlike
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Tueno et al. Lastly, Ma et al. [32] propose a PDTE protocol that is sublinear
in tree size, by secret sharing the tree and then evaluating the tree using GC
based comparison protocol. Ma et al. show that their protocol outperforms other
PDTE protocols that are linear in tree depth, while also outperforming constant
round PDTE protocols at higher tree depth. The overall computational complex-
ity of the above protocols compared to our approach is summarized in Table 1,
construction of which is inspired from [32].

Table 1. Summary of previous approaches to private decision tree evaluation pro-
tocols based on asymptotic complexity of all the participants of the protocol. FHE:
Fully homomorphic encryption, DGK: DGK comparison protocol, HE: Additive homo-
morphic encryption, GC: Garbled circuit, SS: Secret sharing, SKE: Symmetric key
encryption/decryption, t : No. of query features, m : No. of decision nodes, l : bit-
length, d : Depth of tree, t̄ : No. of padded query features, n̄ : No. of depth-padded
nodes, A : Tree holder, B : Query holder, Pk : Computational node k.

Method Primitives Computational Complexity Rounds Leakage

Server Client

Bost et al. FHE O(ml) FHE + O(m) DGK O(tl) + O(m) DGK O(1) m

Cock et al. SS O(2d)l O((t + 2d)l O(1) d

Wu et al. HE O(2d) DGK + O(2d) HE O((t + 2d)l HE O(1) d,m

Tai et al. HE O(ml) SKE O(m + tl) HE+ O(1) m

O(m) DGK

Kiss et al. (GGH) GC + HE O(md) HE+ O(m) HE+ O(1) m

O(l(m log m + t)) SKE O(l(m log m + t)) SKE

Tueno et al. (OT) SS + GC O(2d + dl) O((t + l)d) O(d) d

Ma et al. (Sparse) SS + GC O(m + dl) O((t + l)d) + d SKE O(d) d,m

Cloud Server Provider + Client

Zheng et al. SS O(mt) + O(ml) O(m) + O(t) O(l) d,m

Pk A + B
Ours SS O(dl) O(t̄) + O(n̄) O(d) d

3 Preliminaries

Unless stated otherwise, the notations used throughout the paper are adopted
based on Table 2.

3.1 Secret Sharing

A linear secret sharing scheme splits an integer x ∈ Zp into n pieces known as
shares in an arithmetic field Zp. Any t-out-of-n subset of these arithmetic shares
can then be used to reconstruct the original integer [6,20,27,39]. Our protocols
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use a 2-out-of-2 additive secret sharing scheme which consists of two functions -
Share(x) → [[x]]0, [[x]]1, that splits an integer into shares and Reveal([[x]]0, [[x]]1) →
x, that reconstructs the original integer. We use the notation [[x]]k to denote the
shares of x held by party Pk and distinguish from its plain form x. Hereafter,
we use the term shares to denote arithmetic shares.

Table 2. List of notations used throughout the paper

Symbol Meaning

A Tree holder (client)

B Query holder (client)

Pk Computing node k (server)

T Decision tree

d Depth of decision tree

m Number of decision nodes in T
n Number of nodes in tree in T
t Number of query features

x Vector with node ids of T . x = (x1, x2, . . . xn), xi ∈ [1, n]

λi Level at xi, λi ∈ [0, d]

θi Comparison threshold at xi, θi ∈ R

ωi Feature to be selected at xi, ωi ∈ [1, t]

v Look-up vector of T . v = (v1, v2, . . . vn), vi ∈ Z

d Threshold vector of T . d = (d1, d2, . . . dn), di ∈ R

t Feature select vector of T . t = (t1, t2, . . . tn), ti ∈ [1, t]

c Class label vector of T . c = (c1, c2, . . . cn), ci ∈ Z

f Flag vector indicating if children are swapped. f = (f1, f2, . . . fn), fi ∈ {0, 1}
q Query vector held by B, q = (q1, q2, . . . qt), qi ∈ R

w Secure feature select vector, w = (w1, w2, . . . wn), wi ∈ [1, t]

[[z]] Secret shares of z in Zp, where p is a prime

z[i] i-th element of vector z, z[1] corresponds to its first element

z̃ Randomly shuffled z

[[z]] ([[z1]], [[z2]], . . . [[zl]]) vector of shares or bitwise sharing of z =
∑l

i=1 2i−1 · zi, zi ∈ {0, 1}

3.2 Operations Using Secret Sharing

Addition. Addition using secret sharing can be performed with local compu-
tation by simply summing over shares. Let [[x]]k, [[y]]k be the shares of integers
x and y held by Pk. The operation x + y can be computed locally, with P0

computing [[z]]0 := [[x]]0 + [[y]]0, and P1 computing [[z]]1 := [[x]]1 + [[y]]1, where [[z]]
represents the shares of z, such that z = x + y. Similarly, multiplication with
a scalar c can also be performed locally by computing [[z]] = c[[x]], such that
z = c · x since it is just repeated addition.

Multiplication. Multiplication using secret sharing is more complex, and
unlike addition cannot be performed without distributed computing. More con-
cretely, multiplication over shares of x, y is defined by Mult([[x]], [[y]]) → [[z]], such
that z = x · y. Numerous works exist in literature that describe the construction
of a Mult protocol [2,17,26,44]. In this work we use the two-party protocol of
Beaver which requires only one interactive round using notions from commodity-
based cryptography [3]. The key idea of Beaver’s protocol is to pre-compute a
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set correlated randomness known as Beaver’s triples (BT) which can then used
to perform multiplication. BTs are either generated collaboratively by the two-
parties or by a trusted initializer [28,36]. We adopt the trusted initializer setting
when implementing the Mult protocol.

Boolean Operations. Boolean operations can be represented using multipli-
cation and thus, boolean operations using secret sharing can be defined using
Mult as a sub-protocol. Let a, b be two boolean variables, we define conjunction
over boolean shares as AND([[a]], [[b]]) := Mult([[a]], [[b]]) → [[z]], such that z = a∧b,
disjunction as OR([[a]], [[b]] := [[a]]+[[b]]−Mult([[a]], [[b]])) → [[z]], such that z = a∨b,
and exclusive disjunction as XOR([[a]], [[b]] := [[a]] + [[b]]− 2 ·Mult([[a]], [[b]]) → [[z]]),
such that z = a⊕ b. Meanwhile, NOT([[a]]) can be performed locally - each party
simply computes [[z]] = [[1]] − [[a]], where z = ¬a. We define a bitwise sharing in
l-bits as [[z]] such that [[z]] = {[[z1]], [[z2]], . . . [[zl]]} and zi = {0, 1}.

Comparison. Relational operations are useful for defining many mathemat-
ical functions and thus secret sharing based less-than comparison protocol is
an active area of research [10,13,22,37,38]. Less-than comparison protocols
are typically constructed using secure boolean operations and is defined as,
LT([[x]], [[y]]) → [[z]] such that z = 0 if (x < y), and z = 1 otherwise. In this
work, we implement Garay et al.’s LT protocol [22] using the improvement sug-
gested by Veugen et al. [43]. Garay et al.’s LT protocol has a round complexity of
�log p� interactive rounds, where �log p� is the minimum number of bits required
to represent the prime, p in arithmetic field, Zp. Note that we have defined all the
above operations (including boolean operations) using arithmetic shares only.

3.3 Security Definition

The protocols presented in this paper are two-party protocols, follow security def-
initions of two-party computational model introduced in [5,12,23,34] using Uni-
versal Composability (UC) framework [9] and adopt the notion of semi-honest
security. We assume that one of the parties is corrupted before protocol execu-
tion. The corrupted party does not deviate from the protocol but tries to learn as
much information as possible from its inputs and the messages exchanged during
the protocol. Furthermore, we also assume the presence of a trusted initializer
[3,28] that generates all the necessary correlated random prior to the execution
of the protocol. Let Π be a protocol behind two-parties performing some ideal
functionality F . We say that a protocol is secure in the semi-honest model if
there exits an algorithm S that can simulate its execution given its input and
output.

4 Methods

4.1 Problem Setting

We formulate the problem of private evaluation of a decision tree (PDTE) as
follows: a tree holder A possesses a DT model T of depth d with n nodes,
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and a query holder B holds a query vector q with t features. B would like to
learn the class label associated with q by privately evaluating the classification
model held by A. Here the term private evaluation implies that B evaluates
T without learning anything about the internal structure of T (other than its
depth), whereas A learns nothing about q. To accomplish this we propose an
outsourced two-party protocol between two computing nodes, P0 and P1 using
a 2-out-of-2 secret sharing scheme based on a semi-honest security model [23]. A
creates shares of T and B secret shares of q, which are then distributed to P0 and
P1. The nodes then participate in a PDTE protocol that evaluates q on T and
outputs a classification label κi, which we denote in plain form by T (q) → κi.
We assume that the depth, d of T is publicly known, and the protocol reveals no
information other than d. A general overview of our protocol is shown in Fig. 1
and in Sect. 4.2 we present the basic data structure corresponding to T .

Fig. 2. The representation of T using tree arrays v,d, t, c is shown in A. T represents
the base data structure and T ∗ represents the hardened data structure with depth
padding and path randomization. Update of v,d, t, c after applying FPrepT and output
f is shown in B. Meanwhile, the transformation of v,d, t, f , c into ṽ, d̃, t̃, f̃ , c̃ after using
FShuff is shown in C. The prepend position of the tree arrays (lines 2–3 of Fig. 4) is
indicated using − in x̃ and the append position (lines 5–6 of Fig. 4) is indicated using +.

4.2 Base Data Structure

Let T be a decision tree of depth d with n nodes, m of which are decision
nodes. Let x = (x1, x2, . . . xn) be a vector with the id of all nodes in breadth-
first search (BFS) order such that xi ∈ [1, n]. We assume a binary DT and
thus each decision node xi has two children, a threshold θi and a feature ωi.
The remaining n − m nodes with no children are called leaf nodes, and have an
associated class label κi. The level of T is represented as λ ∈ [0, d] and the level
of xi is specified using λi. Suppose q is a query vector with t attributes. For
any decision node xi, its child is selected based on the result of the comparison
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operation g(q[ωi], θi) → {0, 1}, where g = 0 if (q[ωi] < θi), and g = 1 otherwise.
The result of the operation, g → 0 selects the left child of xi and g → 1 selects the
right child of xi, this is known as path evaluation. Decision tree classification
is thus a traversal of decision nodes starting from the root node at x[1] until
reaching a leaf xl, whereby the classifier outputs κl which is the class label
associated with xl.

Look-Up Vector. The key feature of our approach is to represent T as a
combination of array-like data structure and then evaluate the tree by traversing
these arrays using a look-up vector. We define a lookup vector, v ∈ Z

n such that
v contains the index of (pointer to) the left child in case of decision nodes,
and the index of itself in case of non-decision nodes. Since we assume a binary
decision tree with node ids in BFS order, the index of the left child of xi is given
by 2i and the right child is given by 2i+1. Therefore, it is sufficient to store the
index of either one of the two children, since the index of the right child can be
derived from the left child and vice versa. This is depicted in Fig. 2 A where the
left child of x[1] = a is given by v[1] = 2, since x[2] = b and b is the left child of
a. Meanwhile, its right child is retrieved by computing v[1] + 1 = 3, as x[3] = c
and c is the right child of a.

Algorithm 1: PrepT

Input: x,v, t, c ∈ Z
n, d ∈ R

n, λi ∈ Z

Output: x,v, t, f , c ∈ Z
n̄, d ∈ R

n̄

1 Define f ∈ Z
n

2 Compute λmin = min(λm, λm+1, . . . λn), where xm, xm+1, . . . xn are leaf nodes
3 for 1 ≤ i ≤ d − λmin do
4 Append 0 to x,v,d, t, c, f � Depth padding
5 Set x[n + i] = n + i

6 end
7 Define n̄ := |x|, t̂ := t + 1
8 for 1 ≤ i ≤ n̄ do
9 if xi is a decision node then

10 Sample r
$ {0, 1}

11 if r = 1 then
12 Swap v[2i] with v[2i + 1], d[2i] with d[2i + 1]
13 Swap t[2i] with t[2i + 1], c[2i] with c[2i + 1] � Compute in parallel
14 Update t[i] = ωi + λit̂
15 Set f [i] = r

16 else if xi is a leaf or dummy node then
17 if λi < d then
18 Update t[i] = t̂ + λit̂
19 Update v[i] = 2i � Left child of xi is at x[2i]
20 else
21 Update t[i] = t̂ + (d − 1)t̂
22 Update v[i] = i � Only necessary for dummy nodes
23 Update d[i] = 1
24 end

Fig. 3. Implementation of FPrepT that outputs f and updates v,d, t, c, see Fig. 2 B
for a schematic representation.
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Tree Array. The complete structure of T is represented using three additional
vectors denoted by d, t, c. Here, d stores the information corresponding to the
threshold for all nodes, where d[i] := θi if xi is a decision node and d[i] := 0,
otherwise. Meanwhile, t consists of the query feature to be selected at each xi,
that is t[i] = ωi if xi is a decision node, and t[i] = 0 otherwise. Lastly, c contains
the class labels of leaf nodes, we define c[i] := κi if xi is a leaf node, and c[i] = 0
otherwise. See Fig. 2 A for an illustration, here d[2] = θ2 as θ2 is the threshold
associated with b, t[3] = 0 since c is a leaf and c[4] = γ as γ is the class label
of d.

4.3 Secure Data Structure

The tree arrays and look-up vector as described above cannot be used in a PDTE
protocol as this would reveal information about the decision path and internal
structure of T . Therefore we apply an array preprocessing functionality and
shuffle the tree arrays to obtain their equivalent secure version which leaks no
information other than that which is already known. An implementation of the
preprocessing functionality is shown in Fig. 3 where FPrepT is run on v,d, t, c to
obtain f and update v,d, t, c. FPrepT consists of two main steps: depth padding
(lines 5–7 in Fig. 3) and path randomization (lines 10–16 in Fig. 3), these steps
are discussed in further detail below. After the preprocessing step, the padded
arrays are shuffled using FShuff as presented in Fig. 4 on the output vectors of
FPrepT . An illustration of the preprocessing step is shown in Fig. 2 B and the
shuffling step is shown in Fig. 2 C.

Depth Padding. To ensure that all the decision paths evaluate to the same
depth, we follow a strategy that is similar to [29] and [32]. This is known as
depth padding and our padding strategy involves inserting d − λmin dummy
nodes for the whole tree. Here, λmin is the λi for the leaf node that is closest
to the root of tree. Thus starting from λmin + 1, each level of tree has a unique
dummy node, and each leaf node with λi < d will point to the dummy node
at λi + 1. Dummy and leaf nodes are both assigned the threshold θi = 1 and
attribute ωi = t + 1 = t̂. Moreover, the values in t are shifted by λit̂, that is
t[i] = t[i] + λit̂, except for nodes where λi = d. In this case t[i] = t[i] + (d − 1)t̂
and we elaborate on the rationale behind this in Sect. 4.4. This is shown in Fig. 2
B, where t[2] = ω2 + t̂ since λi = 1, and t[4] = 2t̂ since x[4] = e is a leaf node
and thus t[4] = t̂ + (d − 1)t̂ = 2t̂.

Path Randomization. In order to hide the decision path selected during the
evaluation of T , the children of all decision nodes are randomly swapped and
this information is stored in a flag vector f . As seen in line 11 of Fig. 3, a random
number r

$← {0, 1} is first sampled, and the left child of xi is swapped with its
right child if r = 1. The result of this operation is stored in f as it necessary for
correct path evaluation. The above step randomizes the decision path since the
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Algorithm 2: Shuff

Input:
Output:

1 Define
2 Prepend Prepend first index
3 Prepend Compute in parallel
4 if then
5 Append Append if is odd
6 Append Vectors are of equal length
7 Compute
8 for do

9 Sample
10 Swap with with with
11 Swap with with with Compute in

parallel
12 Swap with with with

13 Swap with with with
Compute in parallel

14 end

Fig. 4. Implementation of FShuff that shuffles tree arrays v,d, t, f , c pairwise, see
Fig. 2 C for a schematic representation.

left and right child of decision nodes are randomly flipped. This suggests that
the decision path cannot be used to guess which of the two children nodes were
selected during evaluation. The idea is illustrated in Fig. 2 B, where children of
x[2] = b is flipped and thus f [2] = 1.

Level Hiding. Next the level of each node is hidden by obtaining a random
permutation of T . We do so by using an approach which we term as pairwise
shuffling. Here the vectors are randomly shuffled in such a way that the left
and right child of each decision node are always adjacent to each other after
shuffling. This is realized using the functionality FShuff , where x,v,d, t, c, f
are randomly shuffled using the Fisher-Yates shuffle algorithm [30] to output
x̃, ṽ, d̃, t̃, c̃, f̃ as demonstrated in Fig. 4. Since the root node has no sibling we
duplicate it by prepending the first index (line 2 in Fig. 4). Next if necessary, we
pad the vector by appending the last element such that its length is divisible by
2 (even). See Fig. 2 C for an illustration, here ṽ is updated based on the criteria
described in Sect. 4.2. For instance, ṽ[1] = 7 since the left child of x̃[1] = b
is x̃[7] = e which is accessed by ṽ[7]. Thus, we have ṽ[r] = v[i] and likewise,
d̃[r] = d[i], t̃[r] = t[i], c̃[r] = c[i] and f̃ [r] = f [i] due to pairwise shuffling.

Tree Traversal. Here we present an overview of how tree traversal is performed
using shuffled look-up vector ṽ, given that the index of root node is known. Let
us denote the result of the evaluation at each decision node as e → {0, 1}, and
denote the position of root node in ṽ as r. T can be traversed by recursively



182 M. N. Ahmed and K. Shimizu

accessing ṽ as follows: ṽ[ṽ[r]+e], ṽ[[ṽ[r]+e]+e], ṽ[. . . ṽ[[ṽ[r]+e]+e] . . .+e]. Since
elements of ṽ with decision nodes point to its left child, the operation ṽ[i] + e
will access either the left or right child of xi. However, the above explanation
is simplistic as it is also necessary to invert e by computing g = e ⊕ f̃ [ṽ[i]],
since the children of decision nodes are randomly flipped. Thus given that ṽ is
shuffled using FShuff and that r is random, recursively accessing ṽ[. . . ṽ[[ṽ[r] +
g] + g] . . .+ g] leaks neither the decision path nor the level of tree. However, this
means that ṽ is only secure for one query, as multiple queries on the same ṽ
would leak information, thereby making it non-secure.

4.4 Secure Evaluation

So far we have described an approach to securely traverse tree arrays. However,
a secure evaluation protocol requires secure feature selection through a secure
query vector. We implement this by using a query preprocessing functionality
FPrep that outputs a randomly shuffled query vector q̃ and give the details of
its construction below. The key idea behind obtaining q̃ is that a unique query
feature is selected for each level of T . Since t̃ can no longer be used to select
features in q̃, a new protocol ΠSelQ is run between A and B through which A
obtains a secure query select vector w̃. This allows for secure feature selection,
in other words ωi is obtained from q̃ using w̃ without learning ωi.

Query Preprocessing. The query vector is preprocessed using FPrepQ to
obtain a shuffled query vector such that a unique query feature is accessed at
each level of T . This prevents protocol participants from deducing that the same
feature has been previously selected and is also our reasoning for shifting each
element in t̃ (see Sect. 4.3). In FPrepQ, we first define q′ := q and add a new
feature t̂ = t+ 1 for dummy and leaf nodes by zero padding, such that q[t̂] = 0.
Next, the t̂ elements of q′ are copied and appended d times to q′, such that
|q′| = t̂d = t̄. Thus, accessing q′ through t̃ selects a unique feature in q′ for each
λ < d in T , since t̃[i] = t̃[i] + λit̂ and λi ∈ [0, d − 1]. To illustrate, consider two
decision nodes xi and xj with ωi = ωj and λi 
= λj , in spite of the fact that
ωi = ωj , accessing q′ through t̃ would correspond to different features in q̃ since
λi 
= λj . Lastly, in order to hide the selection of features in q′, it is shuffled by
some random shuffling algorithm [30] to obtain q̃. However, this also means that
t̃ cannot be used to select features from q̃ and thus we define a new protocol to
securely select features from q̃ as we demonstrate below. For an implementation
of FPrepQ see Fig. 5 and refer to Fig. 7 for its schematic representation.

Query Selection. Here, we define a protocol ΠSelQ between A,B and Pk that
outputs a vector w̃, which can securely select features from q̃. The main idea
behind the construction of w̃ is that features selected from q̃ using w̃ correspond
to the same features in q′ as we demonstrate below. In ΠSelQ, B first computes h
such that q′[j] = q̃[h[j]] for all 1 ≤ j ≤ t̄. Notice that h can be easily computed
since B knows the permutation of q̃. Next B sends h to A, who constructs w̃
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Algorithm 3: PrepQ

Input: q ∈ R
t

Output: q′, ∈ R
t̄

1 Define q′ := q
2 Append 0 to q′ � Zero padding
3 for 1 ≤ k ≤ d − 1 do
4 Append q to q′ � Increases |q′| to (t + 1) d
5 end
6 Define ′, t̄ := (t + 1)d
7 for 1 ≤ i ≤ t̄ − 1 do

8 Sample j
$ [i, t̄]

9 Swap [i] with [j] � Shuffles q′

10 end

Fig. 5. Implementation of FPrepQ that outputs q′, q̃ from q, Fig. 7 shows an illustration
of FPrepQ with q.

by computing w̃[m] = h[̃t[m]] for all 1 ≤ m ≤ n̄. Note that h[̃t[m]] is a valid
assignment since h and t̃ have the same range [1, t̄], where t̄ = t̂d. We stress
that even though A learns the permutation of q̃ from h, no knowledge about
the feature being accessed is leaked since A does not hold q̃. Finally, A sends
an index r along with [[w̃]] to Pk such that t̃[r] = t[i]. Since t̃ is obtained by
randomly shuffling t, sending r in plain leaks no information as r is also random.
B meanwhile sends [[q̃]] to Pk, who obtain a random feature s by jointly revealing
[[w̃[r]]]. Thus Pk securely obtains q′[j] by instead accessing q̃[s] without learning
j. An implementation of ΠSelQ is shown in Fig. 6.

Correctness. We state that the protocol ΠSelQ is correct in the semi-honest
security model if the feature selected using w̃ on q̃ correspond to the same feature
in q′. Thus to prove for correctness, we need to show that q̃[s] corresponds to
q′[j]. More precisely, we need to show that q̃[w̃[r]] corresponds to q′[j]. Since we
know that w̃[r] := h[̃t[r]], and t̃[r] = t[i], we have w̃[r] = h[t[i]] (see Sect. 4.3).
Next, recall that t[i] := ωi and let us suppose that ωi = j, which implies that
w̃[r] = h[j]. Thus, accessing q̃[w̃[r]] is equivalent to accessing q′[j] since q̃[h[j]] =
q′[j], hence proving for correctness.

Security. We assert that ΠSelQ is secure in the semi-honest security model and
only provide a sketch-of-proof. First notice that the only interaction between
the protocol participants, A and B is the exchange of h. Since h is obtained by
randomly shuffling q′, it can be simulated by choosing a random permutation
from Z

t̄. Next A computes and sends [[w̃]], r to Pk, whereas B sends [[q̃]] to
Pk. [[w̃]] and [[q̃]] are secure by definition and r can be simulated by randomly
sampling from Z

t̄ since r is obtained from a randomly shuffled t̃. This shows
that ΠSelQ is secure in the semi-honest security model.
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Algorithm 4: ΠSelQ

Input of A: t̃ ∈ Z
n̄

Input of B: ∈ R
t̄,q′ ∈ R

t̄,h ∈ Z
t̄

Computation by B:
1 Compute h from and q′ � Permutation order of
2 Compute [[ ]] = Share( )

Input from B to A: h
Computation by A:

3 Define ∈ Z
n̄

4 for 1 ≤ m ≤ n̄ do
5 Set [m] = h[̃t[m]]
6 end
7 Compute [[ ]] = Share( )

Input from A to Pk: [[ ]], r where t̃[r] = t[i]
Input from B to Pk: [[ ]]

8 Define j := ωi � Query feature at xi

Computation by Pk:
9 Compute s = Reveal([[ [r]]])

10 Obtain [[ [s]]] � [s] corresponds to q′[j]

Fig. 6. Protocol ΠSelQ, where Pk selects a feature j from q′ by accessing a random
index s in q̃ with no knowledge of j. See Fig. 7 for a schematic representation.

Fig. 7. Representation of shuffled query vector, q̃ and secure query select vector w̃ by
applying FPrepQ and ΠSelQ. As shown, FPrepQ outputs q′, q̃, and duplicated elements
in q′ are distinguished in gray. A and B run ΠSelQ (lines 1–6), based on which B obtains
h and A computes w̃ after receiving h from B. Here h[1] = 6, since q′[1] = q1 = q̃[6].
Assuming ω1 = 3 and ω2 = 2, w̃[1] = 8 since h[̃t[1]] = h[6] = 8.

Evaluation Protocol. All the building blocks are now in place to describe our
evaluation protocol ΠEval which is an outsourced two-party protocol between
the computing nodes P0 and P1. In this protocol, each Pk receives shares of
T and q as an input from A and B respectively and evaluate T (q) using these
shares. Let us suppose that A already holds x̃, ṽ, d̃, t̃, f̃ and c̃ as described in
Sect. 4.3 and that B holds q̃ based on the steps described in Sect. 4.4. A and B
then interact using ΠSelQ (lines 1–6 in Fig. 7) through which A obtains w̃. Note
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that it is not necessary to run the rest of ΠSelQ since it corresponds to securely
selecting a feature from q̃. A then obtains a random r such that r corresponds to
the index of root node (x1) in ṽ, that is x̃[r] = x[1]. Following this, A creates the
shares [[ṽ]], [[d̃]], [[̃f ]], [[w̃]], [[c̃]] and likewise, B computes [[q̃]]. The parties then send
their respective shares to Pk. The above steps are performed prior to running
ΠEval and is referred to as the preparation phase. More concretely, this phase
includes the execution of FPrepT ,FShuff ,FPrepQ and ΠSelQ (lines 1–6) includ-
ing the creation of shares and the generation of necessary correlated randomness
for running ΠEval. Upon receiving the shares, Pk interactively participate in
ΠEval, obtain the class label [[κ]] as shares, and output their respective share
of [[κ]] to B. The execution of ΠEval performed interactively by Pk is defined
as the evaluation phase and its detailed implementation is shown in Fig. 8. The
objective of ΠEval is to traverse the tree by iteratively updating r based on the
computation r = ṽ[r] + g when represented in plain form (see Sect. 4.3 for a
more detailed explanation). At the same time starting from κ = 0, κ is updated
by computing κ = κ + c̃[r]. After d such updates, r indexes the deepest node
(at d) and thus summing κ over the traversal path will yield a κl correspond-
ing to the classification label of leaf node xl. A schematic representation of the
entire PDTE protocol including the preparation and evaluation phases is shown
in Fig. 9 and its computational complexity is shown in Table 1.

Correctness. We define the protocol ΠEval to be correct if it outputs the correct
class label corresponding to q on T , more formally T (q) → κl where xl is a
leaf. As stated earlier ΠEval evaluates T by iteratively updating [[r]], and for
simplicity consider the case of updating r in plain form. That is, r is updated by
computing r = ṽ[r] + g (line 9 in Fig. 8). Here, g is obtained by computing e ←
¬(q̃[s] < d̃[r]), followed by g ← e ⊕ f̃ [r]. The operation (q̃[s] < d̃[r]) compares
the query feature ωi with the threshold θi. This is because d̃[r] = d[i] = θi
(see Sect. 4.3) and q̃[s] = q̃[h[ωi]] = q′[ωi] (as we have shown in Sect. 4.4).
Meanwhile, the operation e ⊕ f̃ [r] (line 7) inverts the randomly flipped decision
path meaning that the correct path is selected. Note that for decision nodes,
g → {0, 1}, whereas for dummy and leaf nodes, g → 0 always. The reasoning
being that θi := 1 and q[ωi] := 0 for non-decision nodes (recall from Sect. 4.3 and
4.4). Lastly κ is summed up over the traversal path by computing κ = κ + c̃[r].
Since ΠEval runs for d iterations, there are d updates of r = ṽ[r] + g. After d
such updates, r access a node at d and κ = κl since there is only one leaf xl

in the traversal path. This is because κ = 0 + . . . κi + . . . 0 = κl, where κi = 0
for non-leaf nodes, κi = κl for leaf nodes. Therefore, ΠEval is correct since it
outputs κl after d iterations.
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Algorithm 5: ΠEval

Input from A to Pk: [[ ]], [[d̃]], [[ ]], [[c̃]], [[̃f ]] ∈ Z
n̄
p , r ∈ [1, n̄]

Input from B to Pk: [[ ]] ∈ Z
t̄
p

Computation by Pk:
1 Intialize [[κ]] 0
2 for 1 ≤ j ≤ d do
3 Compute [[κ]] = [[κ]] + [[c̃[r]]] � Local computation
4 Obtain [[s]] = [[ [r]]] � Local computation
5 Compute s = Reveal([[s]])
6 Compute [[e]] = LT([[ [s]]], [[d̃[r]]])
7 Compute [[e]] = NOT([[e]]) � Local computation
8 Compute [[g]] = XOR([[e]], [[̃f [r]]])
9 Update [[r]] by [[r]] := [[ [r]]] + [[g]] � Local computation

10 Compute r = Reveal([[r]])
11 end
12 Each Pk locally computes [[κ]] = [[κ]] + [[c̃[r]]] � Node x̃r at d

Output from k to : [[κ]] Zp

Fig. 8. Implementation of ΠEval which is instantiated by A and B sending their respec-
tive shares of ṽ, d̃, w̃, f̃ , c̃ and q̃ to Pk, who then interactively run ΠEval and output
their respective shares [[κ]] to B, which corresponds to the class label obtained by eval-
uating q on T .

Security. We assert that ΠEval is secure in the semi-honest security model and
only provide a sketch of proof. First, let us consider what is revealed in the pro-
tocol for each query, namely the index variables r and s. Since s is used to access
a randomly shuffled q̃ for d iterations, s is revealed d times. Moreover, |q̃| = t̄
and q̃ is randomly shuffled, and thus s can be simulated by sampling d elements
without replacement from Z

t̄. However, this also implies that q̃ is only secure
for d accesses and a new q̃ must be constructed for each new query. Likewise, r
is obtained from a randomly shuffled look-up vector ṽ ∈ Z

n̄ and updated for d
iterations. Elements of ṽ point to nodes that are pairwise shuffled, and also shuf-
fled within these pairs in case of decision nodes (see the discussion in Sect. 4.3).
Thus r can be simulated by sampling d elements without replacement from Z

n̄.
Since ṽ is secure for d repeated accesses, revealing r leaks no information for
one particular query. However similar to q̃, a new ṽ has to be obtained for each
subsequent query since ṽ cannot be reused. All other exchanges of the protocol
are shares and are thus secure by definition. Hence, we can state that ΠEval is
secure in the semi-honest security model on each random instance of q̃ and ṽ.

5 Experimental Evaluation

In this section, we discuss the performance of our PDTE protocol by analyzing
its computational runtime and communication size. Following this, we compare
our protocol with the existing methods of Kiss et al. and Ma et al. (sparse) using
the same benchmark. We note that the protocol setup of Kiss et al. and Ma et al.
does not feature computational nodes, does not assume the presence of a trusted
initializer and is thus different from our proposed model both in terms of model
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Fig. 9. Detailed overview of our entire PDTE protocol showing the interaction between
the tree holder A, query holder B and computing nodes Pk. Only lines 1–6 of ΠSelQ

(see Fig. 6) is run to obtain w̃. Though not shown, it is assumed that the necessary
correlated randomness for ΠEval is generated by either one of A or B using the trusted
initializer setting.

setup and security assumptions. In spite of this, we compare the computational
runtime of the evaluation phase of our protocol (see Sect. 4.4) with their online
phase since the number of parties interacting in these two phases is the same.
As for the communication size, we compare the size during the data preparation
phase of our protocol (see Sect. 4.4) with their offline phase, and the size during
the evaluation phase of our protocol with their online phase since the aim is to
benchmark the communication efficiency of our protocol.
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Table 3. Dataset used in our experiments including the parameters (d, t, n) of T and
q. T ∗ represents secure T and (t̄, n̄) are the sizes of the depth-padded tree arrays and
q respectively. Direction of data exchange between the parties is indicated by →: send
and ↔: send/receive. Columns with ms show the protocol runtime in evaluation phase,
and in preparation phase, the computational time of generating padded tree-arrays and
padded query vector. Meanwhile, columns with KB show the communication size, and
is essentially the size of data transmitted for running the protocol. A∗ denote that
either A or B may generate the data to be transmitted. In all experiments, our PDTA
protocol is run with a precision of l = 16-bit on a network with 0.1 ms latency.

Dataset T T ∗ Evaluation Preparation
d t n t̄ n̄ P0 ↔ P1 B → A,Pk A → Pk A∗ → Pk

iris 5 4 17 25 22 6 1.9 0 0.3 1 1.1 7 3.4

wine 5 13 23 70 26 7 1.9 1 0.8 1 1.3 7 3.4

linnerud 6 3 25 24 30 8 2.3 0 0.3 1 1.4 10 4.1

breast cancer 7 30 43 217 48 9 2.8 6 2.6 2 2.3 11 4.8

digits 15 64 337 975 350 20 5.9 26 12.2 22 16.8 22 10.2

diabetes 27 10 791 297 818 36 10.7 9 3.6 53 39.6 44 18.3

boston 30 13 535 420 568 42 11.9 12 5.2 36 27.5 48 20.3

ms KB ms KB ms KB ms KB

In all our experiments, we implement our protocol on a standard desktop
workstation with Ubuntu 22.04 running on an Intel i7-6000k processor (4.0
Ghz) with a memory of 64 GB. We assume two network environments for running
our protocol: (i) LAN (Local area network) - 1 Gbps RTT, 0.1 ms latency and
(ii) MAN (Metropolitan area network) - 100 Mbps RTT, 6 ms latency, similar
to the setup of [42]. Our entire protocol is written in C++ and only make use of
C++ standard libraries. We also note that the four participants of our protocol
(A,B,P0,P1) are simulated on the same workstation using four different process
threads.

As was the case with prior works in [29,32], the performance of our protocol
is evaluated using real-world datasets from UCI machine learning repository [21].
In all our experiments, a decision tree classification model is first trained using
the scikit-learn library of Python [19] with default parameters. Since secret-
sharing only uses integers, we handle real-valued numbers by multiplying with a
constant and then rounding it to the nearest integer as suggested in [8,11]. The
constant is adapted for a specific feature so that an appropriate precision is used
during the comparison operation.

The dataset used in our experimental setup, in addition to the parameters of
the trained decision tree model and the size of the depth-padded arrays is shown
in Table 3. We report the communication size by saving the data exchanged
during the protocol to a file and then measuring the file size. A acts as the
trusted initializer in our experiments and thus generates the necessary correlated
randomness required for LT, XOR subprotocols. This includes generating a total
of d · l-bit random numbers as bitwise shares and d(l+2) pairs of BTs. In Table 3,
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we use A∗ → Pk to denote the fact that either A or B can act as the trusted
initializer.

The results in Table 3 are reported after averaging over 10 trials. Since we sim-
ulate the protocol participant as different threads running on the same machine,
we simulate the network latency using tc utility of Linux. A precision of l = 16-
bits is used in our experiments since we found it to be relatively accurate for
most UCI datasets in Table 3. More concretely, we generate shares in an arith-
metic field Zp such that p < 216 and p is represented with 16-bits. A quick glance
at the computational runtime from Table 3, shows that the runtime of our pro-
tocol is proportional to the depth of the tree. That is, the round complexity of
our protocol is O(d) and hence our protocol is sublinear in tree size.

(a) Preparation phase (b) Evaluation phase

Fig. 10. Plots showing the communication cost of our protocol (in kB) compared to
the methods of Kiss et al. [29] and Ma et al. [32]. The preparation phase of our PDTE
protocol is compared with the offline phase of their protocol whereas the evaluation
phase is compared with their online phase. We use a precision of l = 16 bits, and for
reference, use dotted lines to show the trend with l = 32 bits.

5.1 Comparison with Other Methods

Here, we present a comparison of our approach with the evaluation methods
of Kiss et al. [29] and Ma et al. [32] using the same datasets from Table 3. As
mentioned in Sect. 4, the PDTE protocol of Kiss et al. use a combination of
homomorphic encryption (HE) and garbled circuits (GC). The protocol of Ma
et al. use GC and secret sharing, whereas ours is solely based on secret sharing.
Figure 10 shows a plot comparing the communication size (in kB) of our protocol
with the protocols of Kiss et al. and Ma et al. We would like to remark that the
plots shown here are for references only since we did not implement the method
of Ma et al. (Sparse) and Kiss et al. (GGH). We also note that Kiss et al. and Ma
et al. exclude the cost of generating base OTs when reporting their offline phase
results, and hence we exclude the cost of generating BTs and random numbers
from the plot in Fig. 10(a). The communication cost associated with generating
these correlated randomness can be referenced from Table 3 under A∗ → Pk.

A quick glance at the plot in Fig. 10(a) reveals that our protocol performs well
for deeply rooted trees (d > 14), whereas the protocol of Ma et al. performs better
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for small sized trees. This is because in Ma et al.’s protocol, the communication
size is ≈ 2ml + log t whereas in our case it is ≈ 2(n + dt). Also note that in
the preparation phase, the communication size of our protocol is independent
of l when random number generation is excluded, since we share the arrays as
arithmetic shares. Thus, despite having a slightly higher communication cost
for small trees, our protocol has superior communication cost for deeply rooted
trees due to our efficient depth padding strategy and our choice to operate using
arithmetic shares only. Meanwhile, the plot in Fig. 10(b) shows that our protocol
has significantly low bandwidth compared to both Kiss et al. and Ma et al. In
fact, we see a reduction in communication size by a factor of ≈ 10 in the online
phase since our protocol does not use public/symmetric key operations and thus
transmits a lower number of bytes.

(a) LAN: 1Gbps/0.1 ms (b) MAN: 100Mbps/6 ms

Fig. 11. Plots showing the evaluation time (in ms) of our protocol compared to the
methods of Kiss et al. [29] and Ma et al. [32] in the online phase on two different
environment: Local Area Network (LAN) and Metropolitan Area Network (MAN).
Here, the y−axis is in logarithmic scale and the protocol is run with a precision of
l = 16 bits. As was the case in Fig. 10, we use dotted lines to show the trend with
l = 32 bits.

The plots in Fig. 11 show the runtime in the evaluation phase of our protocol
(in ms) compared to the methods of Kiss et al. and Ma et al. in their online
phase. As was the case in Fig. 10, the plots here should not be used for a one-
to-one comparison, since the runtime values of Kiss et al. and Ma et al. are
estimated from the online runtime plot of Ma et al.’s paper. We use the same
network settings as Ma et al. but would like to note that Ma et al. run with their
experiments on a different computing environment compared to ours. As seen in
Fig. 11, with a network latency of 0.1 ms, our protocol is faster than Ma et al.’s
protocol (by a factor of 2 at d = 30), and thus is the best performing protocol
since Ma et al.’s protocol in turn outperforms Kiss et al.’s (see Fig. 11(a)). On
the other hand, at a network latency of 6ms, our protocol performs significantly
worse than both Ma et al.’s and Kiss et al.’s protocol (≈10x slower for small trees
and ≈5x slower for deep trees as indicated in Fig. 11(b)). This because of the
large number of interactions in the online phase of Garay et al.’s LT protocol [22]
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which we use in ΠEval. Since we use a precision of l = 16, the LT protocol takes
16 rounds of interactions for each comparison operation and is thus significantly
affected by network latency. This also suggest that a constant round LT protocol
as suggested in [10,37] can help us mitigate the effect of network latency in our
current implementation.

6 Discussion

We have thus presented a two-party PDTE protocol based on an additive secret
sharing scheme. The key feature of our protocol is that both the decision tree T
and the query vector q are represented as arrays. We use a random shuffling algo-
rithm to transform these arrays, traverse the tree by privately accessing a shuffled
look-up vector and use the same approach to securely select query features. This
helps us avoid public/symmetric key operations of OT based array indexing
thereby reducing the computational cost of our protocol. We have showed that
our implementation has low communication cost and achieves fast runtime at
low network latency. However, our protocol is not competitive at higher network
latency due to the larger number of interactions in the comparison functionality
of our implementation. We now offer suggestions on how to improve our protocol
and conclude with a discussion on potential areas of future research.

The most obvious area of improvement would be an implementation of the
comparison functionality in our protocol in constant number of rounds. By
replacing Garay et al.’s linear round LT protocol with a constant round protocol
such as that of Nishide et al. [37], our PDTE protocol would also be competitive
at higher network latency. There are however, drawbacks to this approach as
Nishide et al.’s comparison protocol has relatively high communication cost in
the offline phase [43] which would increase the offline communication cost of our
protocol.

Lastly, at present we have designed our protocol for decision splits with
numerical variables. Categorical variables were not considered in the design and
future research should incorporate extending the protocol to handle categori-
cal variables. This would require adding a private set intersection functionality
(PSI) to our protocol and design split functions based on set membership test.
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Abstract. This work introduces, to the best of our knowledge, the
first stake based reputation and trust layer to proof of stake (PoS) sys-
tem. Namely, we show that the delegation framework, introduced by
Karakostas et al. (SCN’20) to provide a delegation framework, can be
extended and repurposed to construct a trust layer over a PoS consensus
protocol in addition to its original application. Furthermore, we show a
concrete reputation system satisfying the positive results of (1) Asharov
et al. (Asiacrypt’13), allowing the secure execution of multiparty proto-
cols such as GMW (STOC’ 87) and Damgard and Ishai (Crypto’05), and
(2) Kleinrock et al. (Indocrypt’20), a Reputation-fair Lottery, thus, also,
a Proof of Reputation system. More concretely, our devised layer is used
to construct a concrete reputation system based on arbitrary stake dis-
tribution. In this layer groups of users can freely and dynamically “assign
their respective trust” to members of a set of trustees, i.e. participants
that offered themselves as receivers of such assignment. Furthermore, our
work offers the advantage of providing a clear stake based criteria, verifi-
able in the ledger, and, therefore, naturally resistant to sybil attack, that
the set of trustees indeed yields an honest majority. This setting provides
a better situation than a simple assumption of honest majority, since it
involves stake in a decentralized ledger, and the public verifiability of the
reputation score via verification of the stake distribution.

Keywords: Ranking · Reputation · Trust · Proof-of-Stake · MPC

1 Introduction

To the best of our knowledge, this work is the first to introduce a concrete and
practical distributed reputation layer for a PoS based blockchain. Given that
trust between individuals and reputation are ubiquitous society, our protocol is
relevant for modern life. Surprisingly, despite its fundamental role and numer-
ous works in the literature, it seems there is still not a thorough solution that
satisfactorily addresses it.
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Technical Challenges. Although the straightforward practicality and deceiv-
ingly simplicity of the concept, reputation record has shown itself to be some-
what elusive to formal techniques intended to satisfactorily capture this concept,
and properly embed it in a practical system free from manipulation and general
enough to be used widely. It is natural to expect that such systems would even-
tually be securely incorporated into our lives via information systems that are
increasingly permeating all aspects of our daily routine. For the moment, such
a general system does not seem to exist. The explanation seems to rely on the
technical challenges in pursuing such solution, and they can be broken down in
three main areas in the available literature:

– eliciting feedback: Systems based on ranking crucially depend on the feedback
of the system users. Briefly, a reputation framework needs to continuously
gather and process the “opinion” from the parties;

– aggregating/displaying: The feedback from the user has to be aggregated in
order to establish a comprehensible and meaningful value;

– distribution: Each player of such a system is subject to receive a “reputation”
value, which others can consult or be used in decision making, in particular,
it can be used in outlining general strategies.

Eliciting Feedback. In general, participants are entitled to decide whether to
provide feedback or not. Therefore without proper incentive we may be led to
the situation that we would have a highly biased view of the reputation of a
particular target, since only parties willing to spread bad reputation, for some
particular reason, would bother to interact with the system in order to feed with
its opinion. The quality of the feedback is also subject to problems. Ideally, the
desirable feedback are the honest ones, reporting bad or good behavior alike,
however it is notoriously hard to obtain or verify. Furthermore, bad reports, if
public, can even cause retaliation from the feedback target in future interactions.
One approach to incentivize “good feedback”, or at least “valid feedback”, is to
tie together some sort of stake to the participant providing such feedback.

Aggregating and Displaying. A highly popular technique to process feedback
is simply associating a score with the target node, with respect to some ser-
vice/interaction. In extreme cases, the nodes have only two options: “good” or
“bad”, i.e. 1 or −1. In this binary feedback scenario, reputation aggregators
would apply a simple technique named netfeedback. Basically it is the simple
sum of the feedbacks in order to provide a straightforward “good” or “bad” sta-
tus, which, later, can be used to assemble a ranking, for the target nodes. This
approach is widely deployed in major Internet websites, however it has clear set-
backs, since it does not take into account the type of interaction which led to the
reported score. More concretely, the target node which interacted with several
other feedback providers but with respect with difference services/products.

Reputation Distribution. Once a reputation is established, as, for example, a
simple score, a major challenge is to bind it with the parties and allow pub-
lic availability, including compatibility with other systems. In an environment
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where users/identities can easily be created, participants with bad reputation
can create new identities effectively erasing past history, and bad reputation,
i.e. whitewashing. The newly created node would be free of the bad effects of
its past actions. Here, once again some sort of relation with a stake, has the
potential to minimize such erasure. A large amount of work was dedicated to
minimizing such effects in game theory. A common strategy is to penalize the
newcomer until it has enough history within the system. Previous work had
shown that given the risk of whitewashing, the system as whole has to carry the
burden in the form of penalties for every newcomer.

It is straightforward to understand that reputation systems are particularly
needed when parties have a long term expectation of activities, i.e. a set of nodes
is expected to keep interacting with each other in the long term. In the early
mentioned main areas, if the problems are solved it paves the way to correctly
capture feedback, process and distribute it, which is valuable in guiding future
interactions. More importantly, they can fundamentally change the interactions
by allowing parties to establish their own strategies for further interactions.
For example, a reliable and available reputation system could be used to guide
participants of a protocol to whom they would choose to interact in order to
perform a joint protocol.

1.1 Related Work

An interesting overlap between reputation and multiparty computation was
observed by Asharov et al. [1]. In particular, [1] points out that by observing the
reputation of the protocol participants, in some cases, it is possible to guaran-
tee an honest majority. It is important to remark that in the positive cases, a
fair distributed computation can be performed and therefore such a scenario is
highly desirable in numerous scenarios.

This early work adds to the rich and long literature of reputation and trust
management [12], even in decentralized form [8,10]. In the set of decentralized
reputation, Kleinrock et al. [17] proposed a new paradigm named Proof of Repu-
tation, following roughly on the analogous idea of Proof of Stake (PoS) and Proof
of Work (PoW). That is, proportionally to the stake, or computational work, a
participant would be more frequently selected to issue the new block. More-
over, [17] introduces a new definition for reputation-fair lottery which is suitable
for Proof of Reputation. Roughly, it states that given a vector of reputation
scores for a set of participants, even the ones with the lowest reputation can still
have a chance of being selected by the lottery, which differs from another work
on, i.e. the Proof of Reputation by Biryukov et al. [3], that focuses on assuring
a more even probability distribution for the lottery algorithm.

1.2 Our Work

We introduce, to the best of our knowledge, the first concrete and practical rep-
utation system which can be deployed on a Delegated PoS blockchain protocol.
The starting point of our work comes from the observation that the delegation
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of stake, as defined in [13], can be interpreted as an assignment of trust. In
other words, when a stakeholder in the PoS environment delegates its stake to a
stake pool, it is in fact, informing publicly that it trusts that entity. Hence, these
special participants, or trustees as we later denote them, can publicly claim a
higher reputation score by accumulating more votes, or assignments, of trust via
a similar delegation method adapted from [13].

PoS Based Reputation Vector. We show that the framework proposed in [13]
is general enough to be repurposed to a different context, i.e., a trust layer. More
concretely, when a participant wants to receive trust assignments from others,
it would issue a certificate and publish it in the ledger L. Similarly to what is
already done with stake pools in [13]. The difference here is that such registration
certificates contain a context identification, i.e. a string IDcontext, which repre-
sents the context that the trust assigners trust that trustee. The string IDcontext

is a unique identifier which can represent a particular service, product, company
or a decentralized identity [18]. Therefore, by assigning trust, again, via delega-
tion procedure similarly to the technique in [13], to the published certificate, a
participant is publicly informing that it trusts the signer of that certificate with
respect to that context. Needless to say, the trust assigning certificate should
also contain the identifier IDcontext. Hence it does not interfere with the critical
PoS delegated consensus protocol, and also to allow multiple contexts. Relying
on a PoS system has the advantage of the honest stake majority property which
is a common security assumption of PoS systems. Furthermore, it also tackles
a major technical challenge of reputation systems, namely, aggregating and dis-
play, since trust assigning and revocation are easy, and the PoS based ledger
allows publicly verifiability.

In comparison to [17], our proposed reputation system is limited to PoS sys-
tems given the adaptation from [13]. On the other hand, [17] lacks the definition
of a concrete reputation system (similarly with [1]), despite presenting concrete
results, including a Nakamoto style fallback in case of flawed reputation rank-
ing. Here, we concretely present a distributed reputation protocol by allowing
the participants of the PoS system to freely, and publicly, show their trust,
therefore allowing reputation to be created. Typically, the reputation of a set of
participants, say T , is a vector of (real) values between [0, 1] of size |T |, where
the i-th position indicates the likelihood of the i-th player being honest. Hence
reputation 1 means that the player is assured to behave honestly, or, depending
on the context, has a perfectly good reputation.

In our model, given an unique context identifier, again, IDcontext, partici-
pants can issue, and publish in the L, certificates that tie together IDcontext

and their respective verification keys. In this way, they are perceived by all the
users of the PoS system as members of the pool of potential receivers of delegated
trust, e.g. the set T , in that particular context. Given that these certificates and
verification keys are public, they can be widely advertised by their issuers outside
of the protocol, i.e. in the real world. In this setting, any user of the entire PoS
system, therefore a stakeholder which is a member of the set U , such that T ⊂ U ,
can issue trust votes (delegation certificates in the jargon of [13]) also containing
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the context identifier IDcontext. The reputation scores naturally arise by taking
into account the stake associated with each trust assignment combined. For a
fixed context identification string IDcontext, each score of the reputation vector
is the percentage of stake that each participant, in T , was assigned with respect
to the combination, that is, the summation, of all stake of the set U .

Stake as Trust Weight. Assume, for example, that all participants in U are
assigning trust with the identifier IDcontext for multiple trustees. Furthermore,
assume also that each of them assigns trust for every player in T . In this scenario,
every reputation value in the vector is 1, since they received trust votes from
every player in U . Note that the participants can cast votes for different members
of the T set at the same time, i.e. same context. The reputation percentage,
i.e. score, is taken by considering how much a single address of T has harvest
for its own, with respect to the summation of all the stake in the set U , i.e.
the players voting for that context. More concretely, the overall stake being
used to vote is the summation of all s1, . . . , s|U|, the corresponding shares of
the participants in U , and the resulting reputation score for the i-th member
of the T is ri = sUT

s1+···+sU
, where sUT is the summation of the stake of all

assigners to the i-th trustee. Needless to say, although the system bases the “trust
delegation” in the same fashion of [13], i.e. via certificates, this sort of purposely
tailored delegation does not affect the stake delegation crucially important for
the PoS consensus protocol. Given the context identification, it can be handled
in isolation of the consensus.

This reputation system is compatible with the setting considered in [17]. More
formally, each reputation value ri is associated with a binary random variable
Hi which tells if the i-th participant behaves honestly, thus Pr[Hi = 1] = ri.
Differently from [1,17], our framework relies by design on the community of
users interested in the context referred by the IDcontext. Hence, ultimately, the
reputation scores of our system reflect how the set of trust assigners, the set
U , perceives the members of the set T . In other words, this perception can be
subject to real world information.

Relying on the stake of the underlying PoS ledger when computing the rep-
utation score has the “good” side effect to guarantee some accountability of the
feedback, arguably increasing the quality of the resulting vector. Furthermore, it
provides a more dynamic environment where the reputation can be verified with
access to the ledger L. On the other hand, our construction does not support
negative feedback, i.e. −1 or “bad” as mentioned earlier in the technical chal-
lenge of modeling reputation. Our proposed system offers only a simple “trust
association” which is already enough for numerous applications. Despite the lim-
ited functionality, regarding inclusion, our model supports easy addition of new
participants, both as trust assigners and trustees, since any newcomer could gen-
erate a new certificate containing the context identifier, and, therefore, turning
itself target of trust assignment.

Our proposed system addresses another drawback of handling reputation
information. By relying on the underlying ledger also helps on the reputation
distribution since all the trust assignments are public. In comparison to current
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and more common ranking reputation systems, our construction is not deterred
to a particular silo as a company platform or database. It enjoys the advantages
of distributed systems as long as the consensus security assumptions are valid,
typically an honest majority of the stakes in the PoS paradigm. At the same time,
by adopting specific context identifiers, groups of participants, for example, of
the same market, can compare its own reputations by issuing certificates and
publishing them in L, thus competing by the trust delegation.

Public Perception. With our system honest users would assign trust to other
honest participants which directly reflects the public perception. The main rea-
son is that our framework allows participants to assign trust freely, dynamically
and publicly in multiple contexts. However, our work does not advocate a notion
of right reputation. In our setting the correct score reputation is as correct as the
public perceives it. Moreover, in our setting, we consider that trust is transitive.
In other words, if a participant assigns trust to another, it is assumed that the
trustee will behave honestly, hence transitive. Our basic assumptions are:

– Honest participants assign trust only to honest participants;
– The majority of the combined stake of the assigners is honest.

We advocate that these two basic assumptions seem reasonable because while
the latter can be assumed from the basic properties of the typical PoS ledgers [2,
7,15,16], the former can be assumed since the trust assignments could be revoked
(similar to the regular delegation in [13]). Therefore, via information of the real
world, it is expected that once, for a given context, the participants are not
willing to associate their stake to a trustee any longer, they could revoke it.
Leaving only honest trustees with assigned trust. Despite of being an optimistic
view, this puts the reputation system in a better situation of contextualizing
the reputation vector, in comparison to [1,17] which does not provide extra
information on how the scores are obtained.

Our Contributions and Benefits of Stake Based Reputation. The con-
crete benefits of our novel design start by allowing us to revisit the works in [1,17]
in the light of a stake based reputation system, and derive an alternative cri-
teria, this time based on stake distribution, in order to obtain honest majority
of players while executing multiparty computation and fair proof-of-reputation
protocol. This brings immediate advantages, because the participants can verify
if indeed the conditions are satisfied via stake distribution in L.

We summarize our contributions as follows:

– extension of the framework from [13], by providing a functionality FT (argu-
ing also the existence of a protocol that realizes it under Universal Compos-
ability Framework [4]) to allow assignment of trust among participants for
multiple contexts;

– introduce a concrete reputation scheme Repm
S

based on FT and the stake
distribution S of a set of participants T with size m, in a PoS ledger L;



Reputation at Stake! A Trust Layer over Decentralized Ledger 201

– revisit the work of [1] in the light of Repm
S

, and show that the early mentioned
basic assumptions yield an honest majority on the set T except with negligible
probability, and therefore allows the secure execution of protocols [9] and [6];

– revisit the work of [17] in the light of Repm
S

, showing that T yields an honest
majority except with negligible probability, therefore T can be used to build
a reputation-fair lottery algorithm, and consequently a proof-of-reputation
system over L.

A drawback of our work is that, in fact, the guarantees it provides in terms
of honest majority relies heavily on the public perception. In other words, it
relies on how much users assign their trust and that can mislead the fact that
the trustee may not be faithfully honest. We argue that this is intrinsic to all
reputation/trust systems. Furthermore, our framework allows a dynamic setting
in which once an assigned trustee is identified as being dishonest, users can
revoke their trust assignment in a publicly verifiable fashion via the ledger.

2 Basic Definitions

The trust in our model is closely tied to the stake, which will translate into
an honest majority of users, therefore we need to review previous results for
reputation vectors and basic lemmas as, for example, the Hoeffding Inequality
used in [1]. We review of the proof of stake ledger L, as it is given by the Kachina
framework [14], and the delegation framework FCoreWallet, as given by [13] in
Sects. 3 and 4, respectively.

2.1 Security with Reputation Vector

For completeness we briefly review the key definitions for secure computation
with a reputation vector introduced in [1] which better suits our purposes. These
definitions rely heavily on the standard definition available in the literature [4].
Let us start by reviewing the running time of the family of functionality and
protocol. For a complete description we refer the reader to [1]. Moreover, in the
next definitions, let PPT mean probabilistic polynomial-time with respect to the
security parameter λ ∈ N.

Definition 1. Let F = {fm}m∈N be an infinite family of functionalities, where
fm is an m-ary functionality. We say that F is a PPT family of functionalities
if there exists a polynomial p(·) and a Turing machine M that on input λ and
m outputs a circuit Cλ,m in time at most p(λ + m) such that for every input
x1, . . . , xm it holds that Cλ,m(x1, . . . , xm) = f (m)(1λ, x1, . . . , xm).

Let the family of protocol π be defined analogously. That is, it is said to
be polynomial time if the running time of all parties is upper bounded by a
polynomial on λ+m. The next definition introduces the extra vector parameter
x ∈ ({0, 1}∗)m(λ) corresponding to the reputation of the m participants defined
as the function m : N → N, for a varying number of participants.
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Definition 2. Let m : N → N be a function. We say that protocol π t(·)-
securely computes the functionality F = {fm(λ)}λ∈N with respect to m(·), if
for every PPT adversary A, there exists a PPT simulator S, such that for
every PPT distinguisher D, there exist a negligible function μ(·) such that for
every λ ∈ N, every I ⊆ [m(λ)] with |I| ≤ t(m(λ)), every reputation vector x ∈
({0, 1}∗)m(λ) and z ∈ {0, 1}∗, it holds that

∣
∣ Pr

[

D(IDEALF,S(z),I(λ,m, x)) = 1
]

−
Pr

[

D(REALπ,A(z),I(λ,m, x)) = 1
] ∣
∣ ≤ μ(λ).

Lastly, assume Rep is the reputation system which provides rm = (rm
1 , . . . ,

rm
m). Furthermore, we denote by I ← rm the subset I ⊆ [m] of parties chosen

probabilistically where every i ∈ I with probability 1−rm
i , and the probabilistic

choice of I is given to the distinguisher.

Definition 3. Let m, Rep, F and π be as earlier mentioned. We say π securely
computes F with respect to (m(·),Rep), if for every PPT adversary A, there
exists a PPT simulator S, such that for every PPT distinguisher D, there exist
a negligible function μ(·) such that for every λ ∈ N, every reputation vector
x ∈ ({0, 1}∗)m(λ) and z ∈ {0, 1}∗, it holds

∣
∣ PrI←rm(λ)

[

D(IDEALF,S(z),I(λ,

m, x)) = 1] − PrI←rm(λ)

[

D(REALπ,A(z),I(λ,m, x)) = 1
] ∣
∣ ≤ μ(λ).

Feasibility Reputation. Similarly to [1], we focus on the relation between
the honest majority of players performing a protocol, despite stating security
assumptions in terms of stake. Namely, a major difference from our work is that
we focus on the honest stake, whereas [1] focus on the majority in terms of the
number of participants running the protocol. Although it is not immediately clear
to establish the relation between stakes and number of players, for the moment
we review Hoeffding Inequality [11], rather than the Chernoff bound, in order
to relate to the summation on the individual reputation scores. Later, in Sect. 5,
we formally clarify the relation between stakes and reputation by introducing
a concrete reputation system. Concretely, given a family of reputations Rep =
{rm(λ)}λ∈N for a number of participants m = m(λ) being assigned trust from
regular stakeholders, Hoeffding Inequality allows to state the average of the

reputation should be greater than 1/2 + ω

(√
log m

m

)

, or, equivalently, that the

number of honest parties is greater than m/2 + ω
(√

m · log m
)

, where ω is the
standard small-omega notation.

Lemma 1 (The Hoeffding Inequality). Let X1, . . . , Xm be independent ran-
dom variables, each ranging over the (real) interval [0, 1], and let μ = 1

m . Then
let E[

∑m
i=1 Xi] denote the expected value of the mean of these variables. Then

Pr
[∣
∣
∣
∣

∑m
i=1 Xi

m
− μ ≥ k

∣
∣
∣
∣

]

≤ 2 · e−2k2·m, for every k > 0.

Like [1] and, as already outlined earlier, the random variables we consider
only have the values 0 and 1, therefore we rely on a simpler version of the
inequality. The following claim is proven in [1].
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Claim. Let m : N → N be such that O(log m(λ)) = O(log λ), let Rep =
{rm(λ)}λ∈N be a family of reputation vectors, and let m = m(λ). If it holds
that

m∑

i=1

rm
i >

⌊m

2

⌋

+ ω(
√

m · log m),

then there exist a negligible function μ(λ) such that for every λ

Pr
I←rm

[

|I| ≥
⌊m

2

⌋]

< μ(λ).

As we will see later, the existing frameworks, like ours, assume the existence
of an EU-CMA signature scheme 〈KeyGen,Verify,Sign〉.

3 The Proof of Stake Ledger

For our purposes, it suffices to assume that the consensus protocol progresses
in a predefined number of rounds which composes a time slot, and each block is
associated with a single slot. The parties are assumed to have semi-synchronous
communication where messages sent by honest players are delivered upon a
bounded number of rounds. Besides, we also assume the presence of a rush-
ing adversary [4], which can actively corrupt parties. Regarding communication
capabilities, we assume all the players have access to a diffusion (multicast)
channel which can be built by standard flooding/gossip protocols.

Our protocol relies on the Kachina framework [14]. In particular we rely
on its formulation of ledger due to its simplicity. Moreover it is designed as
a global functionality, following the Global UC Framework [5], hence we will
use the GsimpleLedger functionality from Kachina [14], which we denote in this
work by L. The functionality is available in Fig. 1, where ≺ defines the prefix
operation, i.e. Ω ≺ Ω′ means the state Ω is included in Ω′, and, for readability
and consistency purposes, we rename transaction (τ) to block (b).

The functionality keeps a state Ω and a mapping M of parties to states,
both initially empty.

– When receiving a message (SUBMIT, b) from a party P , query A with
(BLOCK, b).

– When receiving a message READ from a party P , return M(P ); if P is
A, it returns Ω.

– When receiving a message (EXTEND, Ω′) from A, set Ω ← Ω||Ω′.
– When receiving a message (ADVANCE, P, Ω′) from A, if

M(P ) ≺ Ω′ ≺ Ω then set M(P ) ← Ω′.

Global Ledger Functionality L

Fig. 1. The Simple Global Ledger Ideal Functionality.
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The functionality L is generic enough to abstract transactions and blocks,
focusing on the ledger’s properties. In general, that is enough for our purposes,
however, for the sake of completeness and formality, we need to define, more
concretely, the entries in the ledger.

Typically a transaction is the tuple tx = (Θ,αs, αr, v, f), where

1. αs, αr ∈ {0, 1}∗ are the sender’s and receiver’s addresses respectively, for the
tradable asset set Θ,

2. v ∈ R is the value transferred from αs to αr, and
3. f ∈ R is the fees of the transaction.

A block consists of an ordered list of transactions. In order to organize transac-
tion in blocks, we assume a function blockify which, given a set of transactions
and a chain, returns a block which can extend the chain.

4 The Stake Delegation Framework

In a nutshell [13] introduces a mechanism for issuing address strings which con-
tain attributes. More concretely, their framework defines a core-wallet function-
ality FCoreWallet, representing the key management capabilities of a concrete
wallet. That is, every PoS has an internal core which manages the private infor-
mation with respect to that wallet, and therefore all its addresses, putting forth
an account. For completeness the full description of FCoreWallet is given by Figs. 2
and 3. Their framework introduces a predicative M for malleability of addresses
and describes three types of addresses, i.e. base, pointer and exile, according to
a list of attributes δ (which can contain cryptographic keys). We refer the reader
to [13] for a complete discussion on the topic.

Stake Pool Registration and Delegation. The stake pools are identified
by a registered staking key generated by accessing its internal FCoreWallet, to
compute a new staking key (vks, sks) pair, respectively verification and secret
keys, in order to issue a registration certificate (vks,m), where m is the pool’s
metadata. By accessing its internal functionality FCoreWallet, it receives back
((vks,m), σ), where σ is the signature corresponding to sks of the tuple (vks,m).
Next, it publishes in the ledger the registration certificate Σreg = ((vks,m), σ)
via a regular transaction tx = (αreg,Σreg), where αreg is the pool special address.

The stake delegation is achieved with certificates via a process similar to
the staking pool registration described. A delegation certificate is a tuple d =
(vkss, 〈vksd,m〉). The first element is the staking key vkss which assigns the rights
of the stake to someone else, i.e. the owner, while the second is the staking key
vksd of the receiver of the rights, i.e. the delegate, while the third element is the
certificate’s metadata. In order to sign the delegation certificate, the participant
accesses its internal FCoreWallet and then publishes Σ = (d, σ) on the ledger.
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Initialization: Upon receiving (Init, sid) from P ∈ P, forward it to S and
wait for (InitOk, sid). Then initialize the empty lists LP of addresses and
attribute lists and KP of staking keys, and send (InitOk, sid) to P .
Wallet Recovery: Upon receiving (RecoverWallet, sid, i) from P ∈ P,
for the first i elements in LP return (Tag, sid, δ2).
Address Recovery: Upon receiving (RecoverAddr, sid, α, i) from P , if
(α, l) is one of the first i elements of LP or M(LP , “recover”, α) = 1, return
(RecoveredAddr, sid, α).
Address Generation: Upon receiving (GenerateAddress, sid, aux) from
P ∈ P, forward it to S. Upon receiving (Address, sid, α, lα) from S, parse
lα as (δ1, . . . , δg) and ∀P ′ ∈ P check if ∀(α′, (δ′

1, . . . , δ
′
g)) ∈ LP ′ it holds that

α �= α′, δ′
2 �= δ2, and ∀j ∈ [i, . . . , g] : δ′

j �= δj , i.e. the address, recovery tag,
and private attributes are unique. If so, then:

– if aux = (“base”), check that ∀(α′, (δ′
1, . . . , δ

′
g)) ∈ LP : δ′

1 �= δ1,
– else if aux = (“pointer”, vks), check that δ1 = vks,
– else if aux = (“exile”), check that δ1 = ⊥.

If the checks hold or P is corrupted, then insert (α, lα) to LP and return
(Address, sid, α) to P . If aux = (“base”) also insert δ1 to KP and return
(StakingKey, sid, δ1) to P .
Issue Transaction: Upon receiving (Pay, sid, Θ, αs, αr, m) from P ∈ P, if
∃lα : (αs, lα) ∈ LP forward it to S. Upon receiving (Transaction, sid, tx, σ)
from S, such that tx = (Θ, αs, αr, m), check if ∀(tx′, σ′, b′) ∈ T : σ′ �= σ,
(tx, σ, 0) T∈� , and M(LP , “issue”, αr) = 1. If all checks hold, then insert
(tx, σ, 1) to T and return (Transaction, sid, tx, σ).
Verify Transaction: Upon receiving (VerifyPay, sid, tx, σ) from P ∈ P,
with tx = (Θ, αs, αr, m) for a metadata string m, forward it to S and wait
for a reply message (VerifiedPay, sid, tx, σ, φ). Then:

– if M(LP , “verify”, αs) = 0, set f = 0
– else if (tx, σ, 1) ∈ T , set f = 1
– else, if P is not corrupted and (tx, σ, 1) T∈� , set f = 0 and insert

(tx, σ, 0) to T
– else, if (Θ, αs, αr, m, σ, b) ∈ T , set f = b
– else, set f = φ.

Finally, send (VerifiedPay, sid, tx, σ, f) to P .

Functionality FM
CoreWallet (First Part)

Fig. 2. The first part of the full Core Wallet Functionality from [13].

Our trust platform, described in the body of the work, is based on similar
ideas for delegation. In particular, we adapt the early mentioned FCoreWallet,
by adding interfaces for special sort of delegation, i.e. the “trust assignment”
(details on Sect. 5).
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Issue Staking: Upon receiving (Stake, sid, stx) from P , such that stx =
(vks, m) for a metadata string m, forward the message to S. Upon receiving
(Staked, sid, stx, σ) from S, if ∀(stx′, σ′, b′) ∈ S : σ′ �= σ, (stx, σ, 0) �∈ S, and
vks ∈ KP , add (stx, σ, 1) to S and return (Staked, sid, stx, σ) to P .
Verify Staking: Upon receiving (VerifyStake, sid, stx, σ) from P ∈ P,
forward it to S and wait for (VerifiedStake, sid, stx, σ, φ), with stx =
(vks, m). Then find Ps, such that vks ∈ KPs , and:

– if (stx, σ, 1) ∈ S, set f = 1
– else if Ps is not corrupted and (stx, σ, 1) �∈ S, set f = 0 and insert

(stx, σ, 0) to S
– else if exists an entry (stx, σ, f ′) ∈ S, set f = f ′

– else set f = φ and insert (stx, σ, φ) to S.

Finally, return (VerifiedStake, sid, stx, σ, f) to P .

Functionality FM
CoreWallet (Second Part)

Fig. 3. The second part of the full Core Wallet Functionality from [13].

5 Trust Layer over Proof of Stake Ledger

The basic setting we consider has two sets of participants, the regular ones U and
the trustees T , with varying sizes of, respectively, n(λ) and m(λ) for the trust
assigners and the receivers of trust. Here we introduce a framework to deal with
the assignment of trust, via the delegation of stake. That is, each participant
u ∈ U controls an address α, such that it contains an amount of stake S(α) as it
is registered in a decentralized ledger L. Our proposed reputation system Repm

S

takes into account the stake of all the trust assigners, say S(αu1), . . . ,S(αun
), to

generate the reputation vector as they access FT , our Trust Assignment Func-
tionality. Before we define the Stake Reputation System Repm

S
, we introduce FT

in Fig. 4.

Trust Assignment Framework. From now we adapt the delegation and
addressing framework of [13], and repurpose it in order to capture the “trust
assignment” feature. In particular, we extend the functionality FCoreWallet into
the Trust Assignment Functionality FT by adding two new interfaces Assign
Trust and Verify Trust which handle “trust transactions” ttx. We remark that
FT contains the interfaces of FCoreWallet, however we left it out of the next def-
inition for simplicity of the description. Furthermore, each regular participants
u has verification keys vksu which is used in the trust assignment.

For simplicity, let P = U ∪ T , the next functionality keeps a list P of both
regular participants and trustees. Moreover, for each participant, it also keeps a
list S of tuples (ttx, σ, f), respectively, a trust transaction string, a signature and
the result of the signature verification. Lastly, for each participant P , it keeps
lists KP which contains the corresponding verification key vks.
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Assign Trust: Upon receiving (Trust, sid, ttx) from P , such that ttx =
(vks, m) for a metadata string m, forward the message to S. Upon receiv-
ing the message (Trusted, sid, ttx, σ) from S, if ∀(ttx′, σ′, b′) ∈ S :
σ′ �= σ, (ttx, σ, 0) �∈ S, and vks ∈ KP , add (ttx, σ, 1) to S and return
(Trusted, sid, ttx, σ) to P .
Verify Trust: Upon receiving (VerifyTrust, sid, ttx, σ) from P ∈ P, for-
ward to S and wait for (VerifiedTrust, sid, ttx, σ, φ), with ttx = (vks, m).
Then find Ps, such that vks ∈ KPs , and:

– if (ttx, σ, 1) ∈ S, set f = 1
– else if Ps is not corrupted and (ttx, σ, 1) �∈ S, set f = 0 and insert

(ttx, σ, 0) to S
– else if exists an entry (ttx, σ, f ′) ∈ S, set f = f ′

– else set f = φ and insert (ttx, σ, φ) to S.

Finally, return (VerifiedTrusted, sid, ttx, σ, f) to P .

Functionality T

Fig. 4. The trust interface which extends the delegation framework of [13].

Trustee Registration Certificate. We approach it, as follows: any trustee
interested in receiving “trust” from regular participants generates a Registration
Certificate Σreg and publishes it in the ledger L in similar fashion as outlined
in Sect. 4 for stake pools. This certificate introduces the address whose keys
are controlled by the trustee, say αTi

, and it contains the metadata which is
instantiated with an arbitrary string IDcontext of the choice of Ti, that is Ti sets
m ← IDcontext. This string works as a unique identifier of the context in which
Ti is expected to be assigned trust. In other words, Ti publishes the transaction
tx = (αTi

,Σreg), for Σreg = ((vksTi
,m), σ) where vksTi

is the verification key
for Ti. Other participants can issue similar certificates, and they also would be
potential receivers of “trust” of regular participants.

Publicly Assigning Trust. The assignment is done via the issuing of “trust
transactions” ttx, and then publishes a corresponding certificate in the ledger. A
trust assigning certificate, is similar to the delegation certificate from Sect. 4, it
is a tuple d = (vksUj

, 〈vksTi
,m〉) with m ← IDcontext, for a pre-existing Trustee

Registration Certificate with metadata m = IDcontext to identify in which con-
text Uj trusts Ti. The first element is the verification key of the receiver of
the trust assignment vksUj

which assigns trust, while the second is the verifi-
cation key vksTi

of the receiver of the rights, i.e. the delegate, while the third
element is the certificate’s metadata which contains the identification of the con-
text IDcontext. In order to sign the delegation certificate, the Uj accesses FT via
the Assign Trust interface and then publishes Σ = (d, σ) on the ledger. The
trust assignment is publicly verifiable via the Verify Trust interface. Therefore
we have the following definition.
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Definition 4 (Trust Assignment). It is said that the participant u assigns
trust to T for a context ID when there is a Registration Certificate Σreg =
((vksT , ID), σT ) published in the ledger L, and u publishes the certificate Σtrust =
(du, σu) such that du = (vksu, 〈vksT , ID〉).

Protocol and Security. As mentioned earlier, the functionality FT is an exten-
sion of FCoreWallet from [13]. Likewise, FCoreWallet, which has a corresponding
protocol πCoreWallet, we claim, without giving a concrete construction, that there
is a corresponding protocol πT which UC realizes FT , given

– the signature scheme 〈KeyGen,Verify,Sign〉 is Existential Unforgeability under
Chosen Message Attack security (EUF-CMA);

– internal building blocks described in [13] and its security properties, i.e.
RTagGen, HKeyGen, and GenAddr functions.

Presenting πT and fully proving its security here would be tedious for the reader
since it contains the basic technique of πCoreWallet, thus we present the following
theorem (without proof), assuming our claim that there is a protocol πT . Our
next theorem states that πT realizes FT .

Theorem 1. Let the protocol πT be parameterized by a signature scheme be
parameterized by a signat 〈KeyGen, Verify,Sign〉 and the RTagGen, HKeyGen,
and GenAddr be functions. Then πT securely realizes the ideal functionality FT
if and only if Σ is EUF-CMA, GenAddr is collision resistant and attribute non-
malleable, RTagGen is collision resistant, and HKeyGen is hierarchical for Σ.

A proof for the earlier theorem derives very closely to the main theorem
in [13] given that our adapted FT contains only minor changes to the original
functionality definition. Therefore, as mentioned earlier, we skip a detailed proof.

Concrete Stake Based Reputation System. In order to concretely instan-
tiate a stake based reputation system Repm

S
, assume there are two sets U and

T , respectively the sets of regular participants and trustees, then assume there
are n regular participants u1, . . . , un who have respectively the following shares
S(α1), . . . ,S(αn) with respect to the ledger L, for their respective addresses.
Moreover, we assume that for a particular context (to be formally defined later),
there are m trustees T1, . . . , Tm which are targets of trust from the regular par-
ticipants. Each single regular participant can publicly assign its own trust to
multiple trustees.

Definition 5 (Stake based Reputation System). Let S be the combination,
the sum S(u1) + · · · + S(un), of all the shares of participants. The reputation
system Repm

S
= (rm

1 , . . . , rm
m) such that rm

i = S(Ti)
S

, and S(Ti) is the summation
of the stake assigned to Ti.

Note that the earlier definition is handy because stakes are used to quantify
the amount of trust assigned. Thus Repm

S
provides the percentile of how much

stake a trustee receives as trust assigned with respect to all stake assigned for that
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context. Thus, once a participant ui assigns trust to several trustees, its stake
is taken into account only once in the total combination s, however it is taken
multiple times on each value Ti. We stress that with access to the functionalities
L and FT , respectively to verify the stakes of each address and the validity of
the assignment of trust, any participant can compute the reputation vector, with
respect to a context identification string IDcontext.

Feasibility of Honest Majority with Respect to Stakes. Next, we take a
closer look at Repm

S
and the guarantees it offers in order to provide an honest

majority. Our approach is similar to the one in [1, Claim 3.2], which relates to
the reputation values and the number of participants. In the terminology of our
work, it is equivalent to the reputation values and the number of honest trustees.
However, given our concrete reputation system Repm

S
, we provide a lemma that

relates the honest stake of the regular participants and the number of honest
trustees. In the following, we slightly abuse the notation by denoting S(U) the
combination, i.e. sum, of stakes in the set U .

Lemma 2. Let m : N → N be such that O(log m(λ)) = O(log λ), let Repm
S

=
{rm(λ)}λ∈N be a family of reputation vectors, m = m(λ), and m trustees
T1, . . . , Tm and n regular participants u1, . . . , un . If the two following conditions
hold

– given that all honest regular participants Uh ⊆ U assign trust only to honest
trustees Ti;

– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m),

then there exist a negligible function μ(λ) such that for every λ

Pr
I←rm

[

|I| ≥
⌊m

2

⌋]

< μ(λ).

Proof. Since all honest regular participants assign trust only to honest trustees
as given by hypothesis, and the reputation system Repm

S
is defined as rm

i = S(Ti)
S

then
m∑

i=1

rm
i = |Uh| · S(Uh)

S
+ (m − |Uh|) · S − S(Uh)

S
.

Given the security assumption S(Uh)
S

≥
⌊

m
2

⌋

+ ω(
√

m · log m), we infer that

m∑

i=1

rm
i ≥

⌊m

2

⌋

+ ω(
√

m · log m).

The claim stated in Sect. 2.1 gives the proof.
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6 Secure MPC and Reputation-Fair Lottery

Now we argue that our Lemma 2 translates the main positive results from [1]
to the setting of PoS by considering the stakes of each participant, i.e. secure
computation and subset with honest majority. Later, we also explore the conse-
quences of the previous lemma with respect to [17].

6.1 Revisiting the Positive Results of [1]

Concretely, a set of parties willing to run a secure protocol that requires honest
majority, like, for example, GMW [9], would need access to a ledger L and FT ,
in order to compute the functionality F . In order to present the next general
theorem, likewise [1], we need to review a known fact.

Postulate. [1] Let F = {fm}m∈N be a functionality and let π denote the GMW
protocol for F . Then, for every polynomial m(·) : N → N, the protocol π(m,λ)
m(λ)

2 - securely computes F with respect to m(n).
The earlier postulate is required by the following theorem.

Theorem 2. Given the two sets of regular participants U and trustees T with
access to a ledger L and a trust assignment functionality FT , and |T | = m.
Let F = {fm}m∈N be a functionality, and assume π = {π(m,λ)} be the GMW
protocol as stated in the earlier Fact. Moreover assume m(·) is a function such
that O(log m(λ)) = O(log λ), let m = m(λ) and Repm

S
be as given by Definition 5.

If the two following conditions hold

– given that all honest regular participants Uh ⊆ U assign trust only to honest
trustees Ti;

– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m),

then π securely computes F with respect to (m(·),Repm
S

).

As expected the proof of the theorem is immediate given the similarity with
the equivalent result in [1]. The crucial observation for the proof is that our
Lemma 2 guarantees honest majority, albeit considering the assignment of stake,
with negligible probability in λ. Hence the ideal and real execution, as stated by
Definition 3, are indistinguishable.

Subset Honest Majority. For completeness, we also state the result regarding
finding a subset honest majority which is motivated by [6], which states that in
order to achieve secure computation with complete fairness, it suffices to have
a subset of participants that, with the except of negligible probability, contains
an honest majority. In order to explore this subset, we slightly depart from our
initial model by assuming a subset T ⊆ U which, in the setting of [6], would
perform the computation. We emphasize that, given our framework with L, FT
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and an arbitrary context, defined by the string IDcontext, it is equivalent to
say, basically, that the subset means that the regular participants U are issuing
Registration Certificates and publishing them in L in order to receive trust
from within members of the U . Thus, from [6], as long as T contains an honest
majority except with negligible probability, there is a protocol for U and a family
of reputation vectors. In terms of stake, we can state the following.

Lemma 3. Let n(·), m(·), F , U and Repn
S
be defined as before. If there exists a

negligible function μ(·), such that

– for every λ there exists a subset Tλ ⊂ U , with |Tλ| = m, for which

Pr
I←rn(λ)

[

|Tλ ∩ I| ≤ |Tλ|
2

]

≤ μ(λ),

– given that all honest regular participants Uh ⊆ U , with |U| = n, assign trust
only to honest participants within U ;

– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m);

then there exists a (non-uniform) protocol π that securely computes F with respect
to (m(·),Repn

S
).

The proof for this lemma is similar to the one from Theorem 2, therefore we skip
it. Moreover, likewise [1] and as highlighted there, the subset Tλ may differ across
the values of λ, which results in the claim that the protocol π is non-uniform.

Reputation Vector Criteria for Repn
S
. The earlier Lemma 3 shows that given

a subset of parties T it is possible to compute a functionality F with respect
to Repn

S
. However it says nothing regarding when Repn

S
gives a subset with an

honest majority except with negligible probability. Here, once again due to the
similarity of the proofs, in particular with the Lemma 2, we will skip them for
the next lemmas.

Lemma 4. Let m(·), n(·) and Repn
S
be defined as earlier. For every λ and subset

Tλ ⊆ U . If there is a series of subsets {Tλ}λ∈N, with |Tλ| = m, and

– all honest regular participants Uh ⊆ U , with |U| = n, assign trust only to

honest participants within U , and ΔTλ

def
= S(Uh)

S
− |Tλ|

2 , such that (ΔTλ
)2

|Tλ| =
ω(log λ);

– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m),

then there exists a negligible function μ(·) such that for every λ,

Pr
I←rn(λ)

[

|Tλ ∩ I| ≤ m

2

]

≤ μ(λ).
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Given the Lemmas 3 and 4, which, respectively, give us the existence of a
suitable subset T , and a criteria for finding such subset, thus we can conclude,
analogously to Theorem 2, but now for subsets, the following

Theorem 3. Given the set of regular participants U with access to a ledger L
and a trust assignment functionality FT . Let F = {fm}m∈N be a functional-
ity, m(·), n(·) and Repn

S
be defined as earlier. Now assume that the following

conditions hold

– there is a series of subsets {Tλ}λ∈N, with |Tλ| = m, such that ΔTλ

def
= S(Uh)

S
−

m
2 and (ΔTλ

)2

m = ω(log λ);
– all honest regular participants Uh ⊆ U assign trust only to honest participants

within U ;
– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m),

then there is (non-uniform) protocol π which securely computes F with respect
to (m(·),Repn

S
).

Finding a Conservative Subset T via Stake. The generation of the subset
Tλ or an equally valid subset given the non-uniformity of the protocol, is as
straightforward as presented in [1]. The idea is to sort out the participants U in
decreasing order of reputation, and then selecting the highest reputable members
of the set. What differs from [1] is that, here, we rely primarily on the stakes of
each member of the set as they are published on L. Concretely, let ui1 , . . . , uin

be
the members of U sorted in decreasing order of reputation, as they were provided
by Repn

S
, and each respective stake S(ui1), . . . ,S(uin

) in L. Then

1. for every j = 1, . . . , n, compute Δj =
∑j

k=1

S(uik
)

S
− � j

2�;
2. if j∗ is the index such that (Δj∗ )

2

j∗ is maximum over all indexes j, then output
the set T = {i1, . . . , ij∗}.

Roughly the above routine shows a conservative approach. That is, it always
selects the highest reputation among the reputation vectors. Without a change
in the reputation vector, the output of the selected T set remains the same.

6.2 Revisiting Reputation-Fair Lottery [17]

Given the early description for finding a subset T with the guarantees it contains
an honest majority with high probability. However, as already mentioned, and
also pointed out in [17], the earlier method for finding T is not suitable because
members with low reputation score would not be selected. An alternative method
was introduced by [17] and it is not based on the conservative approach from [1],
but on partition of the candidate set, which in our case is U . Each partition, or
tier, Pi would aggregate users uj ∈ U with similar reputation score, such that



Reputation at Stake! A Trust Layer over Decentralized Ledger 213

for a number of w tiers, U =
⋃w

i=1 Pi. The procedure associates, for each set Pi,
a fixed number �i ∈ N representing the number of participants to be picked in a
random fashion on each sampling.

Given this setting, roughly, the procedure would progress in rounds. In the
first round it randomly picks the set P̂1

$← P1 with |P̂1| = �1, in the second round

it randomly picks the set P̂2
$← P1

⋃
P2, with |P̂2| = �2, until i = n. It is not

hard to understand the difference from the previous method, since this approach
would even provide chances for participants with lower reputation scores, given
that the tiers are sorted in decreasing order, i.e. members of Pn have the lowest
reputation scores.

The authors in [17] formally showed that, with access to a reputation system
Rep that presents the so called feasibility property, i.e. guarantee of an honest
majority under right conditions, their introduced algorithm for lottery, say, LRep,
which is based on partitioning the set U is fair for suitable definition of reputation
fairness they provide. Given that the analogous feasibility property in our work
is the Lemma 4, we have the following corollary.

Corollary 1. Let n(·), U and Repn
S
, with |U| = n, be defined as before. For

every λ, there is a series of subsets {Tλ}λ∈N with |Tλ| = m. If the following hold

– all honest regular participants Uh ⊆ U , assign trust only to honest participants
within U , and ΔTλ

def
= S(Uh)

S
− m

2 , such that (ΔTλ
)2

m = ω(log λ);
– for the subset of honest regular participants Uh, it holds that

S(Uh)
S

>
⌊m

2

⌋

+ ω(
√

m · log m),

then there is a lottery algorithm L(·), such that LRep
n
S is reputation-fair.

The proof of the corollary is immediate as one should notice that given the initial
conditions, which are the same as in Lemma 4, the set U yields a subset with an
honest majority which is the only requirement for the reputation system from
Theorem 1 in [17]. Thus, LRep

n
S is reputation-fair as L(·) is the lottery algorithm

given in [17].

7 Final Remarks

We have extended the Core Wallet Functionality from [13]. In addition to its
regular stake delegation use, our proposed FT allows a participant of the PoS
consensus protocol to “assign trust”, without harming the ledger consensus pro-
tocol. The immediate consequence is that we could propose in this work the
creation of a reputation system based on the stake of the “trust assigners”. This
concrete design of a reputation system allowed us to revisit the works of [1]
and [17] which deals with the performing of relevant MPC protocols and the
construction of proof of reputation protocol resistant to sybil attacks given the
stake distribution underpinning the system, i.e. the PoS consensus protocol.
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Our work is relevant because given the existing global PoS ledger in place,
groups of users can gather and build reputation around a context of their choice.
Furthermore, each honest participant, based on which of the other participants
it trusts, can individually verify whether a certain group of players, say T , who
jointly received the trust assignments from a community of other players, yields
an honest majority. This verification can be done just by simple checking of the
ledger and verifying the stake distribution with respect to the trust assignments.
This is an enhancement in comparison to [1,17]. Although these works do deal
with reputation, they do not provide insights on how the reputation score is
computed nor how it can be verified. Let alone to integrate them in concrete,
and deployed, PoS ledgers.

A drawback of the work is that the guarantees of an honest majority are based
on the public perception of honesty of the trustees, which can be misleading.
However, given that the trust assignment of our construction is very dynamic and
publicly verifiable, once a misbehavior trustee is identified, the trust assignment
can be easily revoked by the users, which promotes accountability of actions by
the trustees.
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Abstract. The modern security protocols in most of our systems rely
primarily on three basic functions of asymmetric cryptography: public
key encryption, digital signature, and key exchange. Today, we only do
key exchange (TLS 1.3) with the ECDH protocol. The confidentiality
is persistent because the session keys are discarded at the end and to
certify this key exchange, we sign it with RSA or ECDSA. However,
these cryptosystems are at least theoretically attackable in a quantum
computer model. Thus the NIST PQC standardization process has given
significant momentum to research on code-based public-key cryptosys-
tems specifically. Their security is based on the hardness of the syndrome
decoding problem. In this article, we first propose a new formalism of the
matrix-vector product in based-code cryptography. Second, we present
a chosen-ciphertext attack on the first step of Niederreiter decryption
by solving the matrix-vector product problem with side-channel infor-
mation. Finally, we put this result to recover secret information in code-
based cryptosystems including some candidates for the extension of the
NIST PQC normalization process.

Keywords: Code-based cryptography · Side-channel attack ·
Matrix-vector product problem · NIST PQC standardization

1 Introduction

In recent years, a lot of research has been done on quantum computers [14,17,
32]. These are computers that exploit the phenomena of quantum mechanics
to solve difficult mathematical problems in number theory, such as the Integer
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Factorization Problem or the Discrete Logarithm Problem. Shor [28] proved that
if large-scale quantum computers are built, they will be able to break most of
the current asymmetric cryptography like RSA, ECDSA, and ECDH schemes.
This would seriously compromise the confidentiality and integrity of all digital
communications.

Since then, cryptographic community proposed alternative solutions which
remain safe in the quantum era. These schemes are called post-quantum resis-
tant. In 2016, the National Institute of Standards and Technology (NIST) made
a call to the community to propose post-quantum secure solutions for standard-
ization. The process consists of several rounds, and only some of the candidates
in each round are chosen to enter the next round. The most popular approaches
are those based on the search for low-weight words for lattice, the problem of
decoding random codes, solving multivariate polynomial systems, isogenies, and
hash functions [5,7]. Lattice-based cryptography has the reputation of being very
efficient. Code-based cryptography using some codes is often considered to be
already more mature and reliable such as McEliece [23] and Niederreiter [25]
cryptosystems.

The majority of code-based post-quantum cryptosystems base their security
on the classic hard problem in code-based cryptography: the binary Syndrome
Decoding Problem (SDP). Informally, for a binary linear code C of length n and
dimension k, having a parity-check matrix H, the SDP is defined as follows: given
s ∈ F

n−k
2 , find a binary vector x having less than t values equal to one, such that

Hx = s. The best algorithm to solve this problem in this original version is the
Information Set Decoding (ISD) proposed by Prange [27]. The ISD techniques
are considered the best strategy for message recovery. It consists, in randomly
permuting the matrix H (denote P such a permutation) until the support of
the permuted x is included in the set {0, . . . , n − k − 1}, i.e., the set where the
HP is in upper triangular form. It has been considerably improved since then
[3,18,19,21,22,29], although the complexity remains exponential in t.

A recent possible solution to solve the syndrome decoding problem is to use
Integer Linear Programming (ILP). The idea was first proposed by Feldman [11]
and later improved by Feldman et al. [12]. Since the initial problem is nonlinear,
some relaxation was proposed in order to decrease the complexity. Most recently,
Cayrel et al. [9] showed that the SDP becomes considerably easier to solve if
the syndrome is computed in N. They perform a laser fault injection attack on
the matrix-vector product when computing the syndrome in the encapsulation
of Classic McEliece. This allows them by corrupting some specific instructions
during this operation to have a syndrome in N. To solve the syndrome decoding
problem in N, they propose to define the SDP as an ILP inspired by the ideas
of Tanatmis et al. [33]. The complexity of recovering the secret message from
the faulty syndrome is polynomial O(n2) with an optimized version of their
algorithm.

Afterwards, Colombier et al. [10] proposed to perform a message-recovery
attack in Classic McEliece that relies on side-channel information only instead
of laser fault injection in the previous work [9]. The latter depends on the very
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strong attacker model and does not apply to optimized implementations of the
algorithm that make optimal usage of the machine words capacity. Improvements
include the power consumption analysis that is sufficient to obtain an integer syn-
drome using machine learning techniques. To recover the secret message they use
the computationally-efficient score function and known information-set decoding
methods.

Contribution: In this work, a key-recovery chosen-ciphertext attack against
code-based cryptosystems is performed. We analyze in particular the secret oper-
ation of matrix-vector multiplication in Niederreiter decryption using a physical
attack. First, we will introduce a new formalism in code-based cryptography.
Informally, for z in F

n−k
2 of any weight, the Matrix-Vector Product Problem

(MVPP) is defined as follows: given z∗ in N
n−k, find S ∈ F

(n−k)×(n−k)
2 such

that SzT = z∗. To get z∗ in N
n−k, we will use the same method of the power

analysis attack in [10]. This method is based on side-channel analysis using ran-
dom forests to recover z∗ from the Hamming weight information obtained from
the matrix-vector product in the first step of Niederreiter decryption. Second, we
show that if we can construct the matrix Z∗ = (z∗

1 , · · · ,z∗
n−k) correctly, we can

directly find the secret of the cryptosystem. We obtain directly the secret with-
out solving the syndrome decoding problem unlike in [9,10] and this is applicable
for most of the code-based cryptosystems.

Organization: The paper is organized as follows. In Sect. 2, we focus on code-
based cryptosystems, and in particular on the results of the NIST PQC com-
petition. Section 2.1 defines the new formalism in code-based cryptography, the
Matrix-Vector Product Problem (MVPP). In Sect. 3, we present our attack on
the matrix-vector product in Niederreiter decryption using a side-channel attack.
Finally, we conclude this paper in Sect. 4.

2 Code-Based Cryptosystems

2.1 Encoding Theory

Notations. The following conventions and notations are used. A finite field
is denoted by F, and the ring of integers by N. Vectors (column vectors) and
matrices are written in bold, e.g., a binary vector of length n is x ∈ {0, 1}n, an
m × n integer matrix is A = (ai,j)0≤i≤m−1

0≤j≤n−1
∈ Mm,n (N). A[i] denotes the i-th

line of A and a row sub-matrix of A indexed by a set I ⊆ {0, . . . , m − 1} is
denoted by AI, = (ai,j) i∈I

0≤j≤n−1
. The same applies to column vectors, i.e., xI is

the sub-vector induced by the set I on x.

Error-Correcting Codes. An [n, k] linear code C over Fq is a vector subspace
of Fn

q , where k, n are positive integers with k < n. The elements of C are called
codewords. The support of a codeword Supp(c) is the set of non-zero positions
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of c. We will represent a code either by its generator matrix G ∈ F
k×n
q such

that its lines form a basis of the vector space C, or by its parity-check matrix,
H ∈ F

(n−k)×n
q , where HGT = 0 holds. One of the key elements of decoding is

the use of metrics. In the Hamming metric, we consider codes with coefficients
in Fq (generally, F2).

Definition 1 (Hamming metric). Let x ∈ F2, the Hamming weight wt(x)
is the number of non null coordinates in x, and the distance between two vectors
x and y is the number of non null coordinates in wt(x − y).

The hardness of general decoding for a linear code is an NP-complete problem
in coding theory [4]. This is the syndrome decoding problem (SDP), which is
the hard problem in code-based cryptography.

Definition 2 (Binary-SDP). Let H ∈ F
(n−k)×n
2 , a vector s ∈ F

n−k
2 and

t ∈ N. The syndrome decoding problem is to find x ∈ F
n
2 such that HxT = s

and wt(x) ≤ t.

The best-known algorithms for solving this problem are all exponential in t.
Except if the syndrome is computed in N instead of F2 [9].

Definition 3 (N-SDP). Let H ∈ Mn−k,n (N), with hi,j ∈ {0, 1} for all i, j,
a vector s ∈ N

n−k and t ∈ N
∗. The syndrome decoding problem in N is to find

x ∈ N
n with xi ∈ {0, 1} such that HxT = s and wt(x) ≤ t.

H and x are sampled in the same way as for the binary SDP, only the matrix-
vector multiplication operation changes, and thus its result s.

Thus we define the new problem on the matrix-vector product as follows,

Definition 4 (Binay-Matrix-Vector Product Problem (MVPP)). Let
z ∈ F

n−k
2 of any weight, a vector z∗ ∈ N

n−k. The matrix-vector product problem
is to find S ∈ F

(n−k)×(n−k) such that SzT = z∗.

We can find z∗ for side-channel information with power consumption analysis
and then with a chosen-ciphertext attack we find S.

2.2 NIST PQC Standardization - Results

On July 5, 2022, NIST released the first four winning algorithms from a campaign
launched in 2016 to standardize post-quantum cryptographic algorithms. These
future standards will be default options for selecting post-quantum algorithms in
the majority of security products. Provided that these post-quantum algorithms
are also combined with proven classical algorithms through hybrid mechanisms.
The main goal of the process started by NIST is to replace three standards that
are considered the most vulnerable to quantum attacks, i.e., FIPS 186-41 (for
digital signatures), NIST SP 800-56A2, and NIST SP 800-56B3(both for keys
1 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
2 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.
3 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
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establishment in public-key cryptography). For the first round of this competi-
tion, 69 candidates met the minimum criteria and the requirements imposed by
NIST. 26 out of 69 were announced on January 30, 2019, for moving to the second
round. Of these, 17 are public-key encryption and/or key-establishment schemes
and 9 are digital signature schemes. In July 2020, NIST started the third round
of this process where only seven finalists were admitted (four PKE/KEM and
three signature schemes). In addition to the finalists, eight alternate candidates
were selected.

The first four algorithms selected are a key establishment algorithm named
CRYSTALS-Kyber; and three digital signature algorithms named CRYSTALS-
Dilithium, FALCON, and SPHINCS+. The first three of these algorithms are
based on structured lattices; the last one, SPHINCS+ is a hash-based signature
scheme. These four algorithms will therefore be used as the basis for writing U.S.
federal standards. The scope of the NIST announcement is international with
strong involvement of the cryptography research community, which will make
the future US standards also used as de facto international industry standards.
Beside the four winners, an extension of the NIST PQC standardization cam-
paign (4th round) is planned for four key establishment algorithms: BIKE [1],
HQC [24], Classic McEliece [2] (all three based on error-correcting codes), and
SIKE [16] (isogeny graphs-based). Classic McEliece was the first selected final-
ist as a key encapsulation mechanism, while BIKE and HQC were alternative
candidates. The latter two use special codes to reduce the size of the public key,
which is considered the main drawback of code-based cryptosystems.

Classic McEliece is a code-based scheme using binary Goppa codes, the same
codes that McEliece originally proposed in [23]. During Round 2 the scheme
merged with NTS-KEM, which was using the same codes. The Classic McEliece
scheme uses the dual of McEliece’s scheme, as proposed by Niederreiter [25], and
tightly turns this OW-CPA PKE into an IND-CCA2 KEM.

BIKE (Bit Flipping Key Encapsulation) is a key encapsulation mechanism
(KEM) based on quasi-cyclic codes with moderate density parity check matrices.
The code structure in BIKE is public and allows to reduce the size of the public
key. Bit flipping corrects errors by repeatedly flipping the input bits that, given
the secret moderate-density parity checks, seem most likely to be errors.

HQC (Hamming Quasi-Cyclic) uses error-correcting codes built from Reed-
Muller and Reed-Solomon. The public key includes a random h and s = x+h·y,
where x,y are secretes and small Hamming weights. The ciphertext includes
u = r1 + r2 · h and v = M + s · r2 + e, where r1, r2,e are small Hamming
weights and M is a message encoded using an error-correcting code. The receiver
computes v−u ·y = M+s ·r2+e−u ·y, which is close to M since x,y, r1, r2,e
are small, and decodes the error-correcting code to recover M.

SIKE (Supersingular Isogeny Key Encapsulation) is a key encapsulation
mechanism based on the hard problem of pseudo-random walks in supersingular
isogeny graphs. SIKE is a relatively new problem in the cryptographic arena and
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currently undergoing several attacks like its instantiation SIDH (Supersingular
Isogeny Diffie-Hellman key exchange protocol) [8,13,20,34,35]. These are key
recovery attacks, reduces of the level security, side-channel attacks, and fault
injection.

Some of these algorithms could therefore later join the same standardization
process as the four algorithms already selected. The final objective of NIST is
indeed to be able to standardize a varied range of algorithms to cover a majority
of use cases. Most of these constructions based on error-correcting codes use
matrix-vector products in the decryption, as in Niederreiter’s scheme (Table 1).

The goal of our attack is to find the secrete matrix Q. But first, let’s assume
that we already have the result of the product Q−1z in N using the same tech-
nique as in [10].

Table 1. Niederreiter PKE scheme

KeyGen(n, k, t) = (pk, sk)

H -parity-check of C that corrects t errors
An n × n permutation matrix P

An (n − k) × (n − k) invertible matrix Q

Compute Hpub = QHP

pk = (Hpub, t)

sk = (Q,H ,P )

Encrypt(m, pk) = z

Encode m → e \\ error vector of wt(e) = t

z = Hpube

Decrypt(z, sk) = m

Compute z∗ = Q−1z = Sz \\ target of our attack
z∗ = HPe

e∗ = Decode(z∗,H)

Retrieve m from P −1e∗

3 Our Attack and Results

3.1 On the Decryption of Niederreiter

Our attack on Niederreiter’s decryption is now described. It consists in directly
finding the secret matrix Q. In the following, we note S = Q−1 ∈ F

(n−k)×(n−k)
2 .

We assume that, we can recover the result of the matrix-vector product Sz in
N (z∗ ∈ N

n−k) with side-channel information as in [10].
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Profiled Side-Channel Measurements. We performed side-channel measurements
during the computation of the product Sz in the Niederreiter decryption imple-
mentation. The vector z∗ is computed as the matrix-vector product Sz = z∗.
We have recorded a single trace that will be sufficient to form the training set
for the profiled attack. This trace is composed of n samples and stored as a row
vector. We chose the ciphertexts zi in F

(n−k)
2 linearly independent as the inputs

of the matrix-vector product algorithm. In addition, we stored a second trace,
used as a test set when training the classifier. For both traces, we also stored
the Hamming weights of the intermediate value resulting from the matrix-vector
product Szi.

After the traces acquisition, we performed an adequate preprocessing for
reducing the dimension (eight dimensions since there are nine possible values
for the Hamming weight of a byte) of the data by Linear Discriminant Analysis
(LDA) to make it easier to handle by the classifier. We chose the random forest
algorithm, used previously for side-channel analysis with good results [15], to
recover the Hamming weight of z∗.

We obtained the Hamming weight of the intermediate value of the prod-
uct Szi, we derived the entries of z∗ in N with 98.65% accuracy. Indeed, the
Hamming distance between two consecutive intermediate values is exactly the
number of 1’s found in the bitwise AND between the row of the matrix S and
the byte of the ciphertext z. Computing the value of the integer z∗ entry is
equivalent to counting those ones, which in turn is equivalent to summing the
Hamming distances between consecutive intermediate values (the absolute value
of the difference of their Hamming weights). In our implementation (n = 6, 960,
k = 5, 413 and t = 119), the Hamming distance between two consecutive inter-
mediate values is small and satisfies the condition in [10, Equation (3)] to recover
the entries of z∗ in N with good accuracy (82% for Hamming distance).

Course of the Attack. We propose a chosen-ciphertext attack that essentially
consists of 4 steps:

Step 1. We choose the ciphertexts or vectors zi in F
(n−k)
2 linearly indepen-

dent. We therefore define a matrix Z = (z1, · · · ,zn−k) which is invertible.
Step 2. For each vector zi thanks to the side-channel attack, we have the

vector z∗
i = Szi in N (in reality we get the Hamming weight for each component).

This gives us a new matrix Z∗ = (z∗
1 , · · · ,z∗

n−k).
Step 3. We solve a matrix system SZ = Z∗ with S the unknown matrix

in F
(n−k)×(n−k)
2 . Since Z is invertible, we multiply on the right-hand side by its

inverse and we obtain

S = Z∗Z−1. (1)

Then we just have to read the entries of the right matrix to get the values of
S and thus the secret matrix Q. A toy example is described in the Appendix A.

The attack as presented above allows to find the secret matrix directly. How-
ever, in Step 2, we can raise two questions:

1. Can we know if the matrix Z∗ is not correct?
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2. If so, how can we correct the errors and find the secret matrix S?

We will discuss question 2 in Sect. 3.2. For the first point, we assume that in
Step 2 we obtain the matrix Z∗∗ instead of Z∗. So we have

S′ = Z∗∗Z−1 (2)

and
Z∗∗ = Z∗ +Er (3)

where Er is an error matrix.

How to distinguish S from S′?
We know that S is an invertible matrix in F2. Thus it’s enough to look

directly at its coefficients and compute its determinant.
We have shown that our attack allows us to directly find the secret matrix

Q in the case where there is no error in Step 2. Otherwise, we know how to
detect it. We have two levels of optimization of this attack either minimize the
risk of errors when recovering the matrix Z∗ or reduce its coefficients modulo an
integer number to speed up the computations. We can judiciously choose the zi
at step 1, for example, taking zi of low Hamming weights allow a regularity of the
words one “1" by block reduce considerably the risk of errors in the acquisition
of traces. Moreover, in this case, we would have Z = In−k and we obtain the
secrete matrix S directly without computing Z−1. We can also suppose that the
victim does not accept to decrypt n − k ciphertexts for example, but with the
choice of ciphertexts with low regular weights we avoid this problem.

We will now see how to correct the errors in the matrix Z∗ and find the
correct matrix S.

3.2 Error Correction

In this section, we will provide an answer to question 2 and show that we can
indeed find the matrix S in some cases. We consider the case where we have Er

in the matrix Z∗ at Step 2, Eqs. (2) and (3). We consider two assumptions h1
et h2 about Er:

1. The matrix Er has coefficients 0 or 1, (h1 ).
2. The matrix Er has, at most, a 1 on each row, (h2 ).

These two assumptions are not restrictive, we will see that we can deduce the
general case and we assume that the error can be controlled to some extent, i.e.,
Z∗∗ does not differ “too much” from Z∗.
According to the above assumptions, there exist two finite sets I and J such
that:

Er =
∑

(i,j)∈I×J

Ei,j (4)

with Ei,j the square matrix of order n − k where all coefficients are zero, except
the one of row i and column j which is 1.

We will need the following lemma:
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Lemma 1. Let 1 ≤ a, b ≤ n. Let M = (mi,j) be a square matrix of order n − k
then:

Ea,bM =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
0 · · · 0
... · · · ...

mb,1 · · · mb,n−k

... · · · ...
0 · · · 0
0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← a-th row

In other words: [Ea,bM ]i,j =

{
0 if i �= a

mb,j if i = a

To find S despite the error in Z∗. We have

SZ = Z∗ +Er = Z∗ +
∑

(i,j)∈I×J

Ei,j

Hence

S = Z∗Z−1 +ErZ
−1 = Z∗Z−1 +

∑

(i,j)∈I×J

(Ei,jZ
−1)

From the above we deduce the following theorem:

Theorem 1. For any i ∈ [1, n − k], there exists j ∈ [1, n − k] and ε ∈ {0, 1}
such that Z∗∗Z−1[i] − εZ−1[j] is binary and Z∗∗Z−1[i] − εZ−1[j] = S[i].

Proof. Let us suppose |I × J | = 1, let I × J = (a, b). Then we have

S = Z∗Z−1 +Ea,bZ
−1.

According to Lemma 1, only the line a of Ea,bZ
−1 is nonzero.

We deduce that for all i �= a,

Z∗∗Z−1[i] = S[i].

It is, therefore, sufficient to take ε = 0 and any j.
According to Lemma 1,

Ea,bZ
−1[a] = Z−1[b]

and so it suffices to take ε = 1 and j = b.
Let (a, b) ∈ I × J , (c, d) ∈ (I × J) \ (a, b) and if |I × J | ≥ 2, the hypothesis

(h2 ) implies that c �= a.
According to Lemma 1, we have

Ec,dZ
−1[a] = 0.
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thus
Z∗Z−1[a] +

∑

(i,j)∈I×J

(Ei,jZ
−1[a]) = Z∗Z−1[a] +Ea,bZ

−1[a].

We thus have, on each line, at most one contribution. We deduce then

1. if i �∈ I, then Z∗∗Z−1[i] = S[i], it is enough to take ε = 0 and any j.
2. if i ∈ I, then there exists j such that (i, j) ∈ I × J , we have Z∗∗Z−1[i] =

S[i] +Z−1[j], so it is enough to take the j given previously and ε = 1.

We deduce that in some cases, it is possible to find S by the following
Algorithm 1.

Algorithm 1. Finding S with errors in Z∗

1: We assume that we can determine the erroneous line(s) of S (for example, S is not
binary).

2: Let Li be an erroneous row of S, we subtract from Li the rows of the matrix Z−1

and keep those that are binary.
3: We thus obtain a list of possible candidates for S and for each candidate matrix,

we compute its determinant to check its invertibility in F2.
4: In particular, if this list is reduced to one element, we obtain S.

We will now lighten the assumptions by deleting (h2 ). According to
Theorem 1, we can deduce the general case of our approach.

Corollary 1. Let i ∈ [1, n−k], let ri be the Hamming weight of the vector Er[i],
there exists a sequence (jk)1≤k≤ri of distinct pairwise elements and a sequence
(εk)1≤k≤ri such that

Z∗∗Z−1[i]−
∑

Z∗∗Z−1[i]−
ri∑

k=1

εkZ
−1[jk] is binary and Z∗∗Z−1[i]−

ri∑

k=1

εkZ
−1[jk] = S [i].

Proof. We use the same notations as before. We suppose that |I ×J | ≥ 2 (if not,
we are in the previous case). Let (a, b) ∈ I × J .

We try to count the couples (a, t) with t in J . There are as many as the
amount of “1" on the row Er[a], in other words, there are ra couples (a, t).

Let Ga = { (a, t) | t ∈ J} = {(a, j1), (a, j2), · · · , (a, jra)}.
By Lemma 1, for all c �= a and d ∈ J , the a-th row of Ec,dZ

−1 is zero. We
deduce that

S[a] = Z∗∗Z−1[a] = Z∗Z−1[a]+ErZ
−1[a] = Z∗Z−1[a]+

∑

(i,j)∈I×J

(Ei,jZ
−1)[a]

= Z∗Z−1[a] +
ra∑

k=1

Z−1[jk].
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Table 2. McEliece PKE scheme

KeyGen(n, k, t) = (pk, sk)

G-generator matrix of C that corrects t errors
An n × n permutation matrix P

An k × k invertible matrix S

Compute Gpub = SGP

pk = (Gpub, t)

sk = (S,G,P )

Encrypt(m, pk) = z

Encode m → c = mGpub

z = c + e \\ e is an error vector of wt(e) = t

Decrypt(z, sk) = m

Compute z∗ = zP −1

z∗ = mSG + eP −1

m∗ = Decode(z∗,G)

Retrieve m from m∗S−1

Thus we have the following result:

1. If i �∈ I, then the sequence (εk) is null and it is enough to take any (jk) and
two by two distinct.

2. If i ∈ I, considering the set Gi defined above and according to what precedes,
it is enough to take the sequence (εk) constant equal to 1 and the (jk) given
by Gi.

In the case where the matrix Er has negative coefficients or is not binary, we
can adapt Theorem 1. It is sufficient to allow the sequence εk to take the value
−1 and to be able to subtract (or add) the same row several times.

We notice that, unlike in the previous case, we cannot give an algorithm to
determine a list of possible candidates for the matrix S. A similar approach as
the one presented above would be too expensive. We do not know, a priori, the
number of rows to remove from each erroneous row. Although correcting the
error in the matrix Z∗ at Step 2 is theoretically possible, it may be difficult in
practice.

3.3 Comparison to Other Attacks

Recall that the goal of our attack is to find the secret matrix Q in the Niederreiter
scheme. It has been shown in various previous works that it is possible to obtain
secret information about the decryption in the McEliece scheme (Table 2). Falko
Strenzke proposed in [30,31] two attacks on each of the two calls of the Extended
Euclidean Algorithm (EEA) in McEliece decoding with the parameters n =
2, 048 and t = 50. This vulnerability in the Patterson algorithm [26] in the error
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correction phase allows an attacker to gather information about the secret n×n
permutation matrix P through a timing side channel.

The first attack [30] targets the second call of the EEA in the Patterson
algorithm to determine the polynomials forming the error locator polynomial
σ(x). The polynomial of deg(σ(x)) ≤ t consists of two polynomials a(x) and
b(x) whose degrees have a direct impact on the number of iterations of the EEA.
This variation in the number of iterations implies a difference in the execu-
tion times and makes possible a timing attack. The attacker creates ciphertext
(chosen-ciphertext attack) using random error vectors with Hamming weight
wt = 4 and then lets the decryption routine decrypt the ciphertext. It evaluates
whether zero or one iteration occurred in the EEA. If an iteration has occurred,
deg(b(x)) = 1, nothing is done, and if there are no iterations, deg(b(x)) = 0, the
error vector is added as a new row of a matrix over F2 having n columns. Each
time a row is added, a Gauss-Jordan elimination is performed and the rank is
determined. Once the maximum rank is reached (here 2,036), the attack is com-
pleted with 7,848,229 ciphertexts. However, such an approach only recovers the
secret permutation matrix P when the Hamming weight of error e is small (2
or 4).

The second attack [31] is based on the vulnerabilities that are present in the
inversion of the error syndrome through the extended euclidean algorithm (first
call in the Patterson algorithm). Strenzke showed the existence of a timing side
channel vulnerability in the syndrome inversion that allows the attacker to gain
knowledge of the zero-element of the secret support. It is based on the analysis of
the key equation to deduce the relations between the degrees of the polynomials
involved in it. As in the first attack, this approach only works for Hamming
weights of 2, 4, or 6 of the error vector e to recover the secret permutation
matrix P . Despite the improvements in [6], the main problem with these two
previous attacks is the number of cases (depending on the Hamming weight of
e) that can be exploited to find the secret.

In our attack, we have no constraints on the Hamming weights of the cipher-
text (or error vector e) to find the secret matrix Q in the case that we cor-
rectly construct the matrix Z∗ with a random forest. Moreover, we attack the
least complex step of Niederreiter decoding (first step). The Niederreiter PKE is
slightly different from the McEliece PKE (Table 1 and Table 2). However, here

Table 3. Attacks to recover the secret matrix P

Attack Hamming weight Number of
ciphertexts

Target

Timing attacks
of Strenzke

2, 4 or 6 7,848,229 in
[30]

EEA in Patterson
algorithm

Our attack
against MVPP

no constraints 2,048 First step in
McEliece’s
decryption
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too, an error vector is chosen during the encryption and decryption features,
and since these features are the prerequisites of our attack, it is also applicable
to McEliece’s PKE. Unlike the attack of Strenzke in [30] we only need 2,048
ciphertexts instead of 7,848,229 to find the secret n × n permutation matrix P .
The Table 3 give more details on the comparison with Strenzke’s attacks to find
the secret matrix P .

4 Conclusion

This article presents a key-recovery attack against the Matrix-Vector Product
Problem, which is a new formalism that we introduce in based-code cryptog-
raphy. We have also shown that with a side-channel attack on this operation,
we can recover secret information on based-code cryptosystems without solv-
ing the hardness of the binary syndrome decoding problem. In addition to the
side-channel information, we performed a chosen-ciphertext attack, which, with
careful choice of the ciphertexts, can find the secret matrix without errors. When
noise (errors) is present during the attack, we have shown that in some cases it
is possible to find the secret matrix. Our attack can be applied to code-based
cryptosystems with matrix-vector product operations.

A Simple Version of Our Attack

Case 1: no Errors in Z∗. Let the matrices Z invertible in F2 and Z∗ in N

respectively constructed in Step 1 and recovered in Step 2 of our attack. One
chooses here n − k = 3, we have for instance

Z =

⎛

⎝
1 1 1
1 0 1
1 1 0

⎞

⎠

its inverse

Z−1 =

⎛

⎝
−1 1 1
1 −1 0
1 0 −1

⎞

⎠

and

Z∗ =

⎛

⎝
2 2 1
1 0 1
2 1 2

⎞

⎠ .

From the Eq. 1, S = Z∗Z−1, we find

S =

⎛

⎝
1 0 1
0 1 0
1 1 0

⎞

⎠ .

Case 2: Few Errors in Z∗. We keep the same Z, its inverse and Z∗ matrices
in case 1.
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According to Eq. 3, Z∗∗ = Z∗ +Er, we have

Er =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ .

By performing the same operation as before, we obtain the following S′

matrix according to Eq. 2

S′ =

⎛

⎝
0 1 2
0 1 0
1 1 0

⎞

⎠ .

This matrix S′ is not binary, so we deduce that the first row contains a fault.
We then apply the Algorithm 1 of Sect. 3.2 to determine the list of possible
candidates for the matrix S

S′[1] − Z−1[1] = [1 0 1]

S′[1] − Z−1[2] = [−1 2 2]

S′[1] − Z−1[3] = [−1 1 3].

Only the first case gives a binary vector, we deduce that S′[1] = S[1] + Z−1[1]
and we have directly S.

Case 3: Errors in Z∗. We consider the error matrix

Er =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ .

We then obtain the following matrix

S′ =

⎛

⎝
1 0 1
1 0 0
1 1 0

⎞

⎠ .

Here the matrix is binary, moreover its determinant det(S′) = 1. In this case,
we cannot detect that the matrix is not correct.
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Abstract. The Internet of Things connects various types of devices
and hardware for the connection are built-in. Symmetric key-based
encryption may be embedded in the chip according to the environment.
Recently, security problems have increased since the development of IoT
devices. In particular, as the use of these devices has increased dra-
matically, the possibility of accessing and stealing cryptographic devices
is also increasing. According to such physical accessibility, the issue of
side-channel analysis of the safety of IoT devices is increasing. Differen-
tial Fault Attack (DFA) is based on intentionally injecting a fault at a
specific time in the process of the cryptographic operation in an embed-
ded device with a chip to cause a malfunction desired by the attacker.
The Piret & Quisquarter DFA (P&Q DFA) is a differential fault attack
method proposed under the assumption that single-byte fault are injected
into the input of the AES 9th round MixColumn. However, single-byte
faults occur in an environment where actual faults are injected, and the
fault ciphertext with faults of two or more bytes can be collected. This
paper proposes an analysis technique that can utilize defective ciphertext
data containing two to four byte faults by extending the existing P&Q
DFA, and optimizing the table called D that needs to be calculated in
advance. In addition, this paper presents the results of recovering four
bytes of the 10-round key by applying it to the multi-byte faults data
obtained through the electromagnetic wave fault injection attack exper-
iment on real devices.

Keywords: Side-channel analysis · AES · Differential fault attack

1 Introduction

Side-channel analysis is a technique that acquires secret information through
physical information such as power consumption, electromagnetic wave, and
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sound generation, while an encryption algorithm is operating in an actual device
[4]. With the recent development of IoT and smart devices, the technology is
being applied and distributed widely to numerous devices. This situation makes
it easier for a malicious attacker to access these devices, and a physical attack
is also becoming possible naturally. Thus, in this environment, there is increas-
ing interest in side-channel security. Differential fault attack (DFA) is a type of
semi-invasive (SCA) that injects an unsupported voltage or current into a device
containing an embedded processor, a strong electric or magnetic field, or a laser
pulse at a specific point in time when it is operating. DFA was first proposed by
Biham et al. for DES in 1997 [1]. After that, DFAs on various algorithms were
studied [2,3], and various techniques for fault-injection were developed [5,7,8].
DFAs on AES have been studied. However, most of them have been directed to
injecting a single byte fault into the Mixcolumns operation of a specific round
of AES, and there are few studies have injected faults into multiple bytes.

Our Contributions. Our contributions are as follows:
- First, a method is proposed to reduce the amount of computation and memory
when extending the Piret & Quisquarter DFA method for the AES to ciphertext
targeting faults of four bytes or fewer. The proposed attack is based on a fault
of fewer than four bytes, and shows that only a part of the data used in the
full investigation for each of the two, three, and four-byte faults are used in the
actual attack.

- Second, a multi-byte fault ciphertext can be obtained through an EM-FI attack
on actual device and uses to verify the proposed method (Table 1).

Table 1. Notation for the whole process

Parameter Description

rkr
i rth round key ith byte

SB−1 Inverse Sbox operation
MC Mixcolumn operation

C,CE Normal and fault ciphertexts
D Mixcolumn differential table
Δ Mixcolumn’s output difference
⊕ Bit exclusive or operation

Organization. The remainder of this paper is structured as follows. In Sect. 2,
we introduce the Piret & Quisquarter DFA(P&Q DFA). Section 3 reported the
methodology of the proposed DFA on AES. Section 4, evaluates the validity of
the proposed attack with a EM-FI attack experiment for real device. Finally, the
paper is concluded in Sect. 5.
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2 Backgrounds

2.1 Differential Fault Analysis (DFA)

A DFA, a type of SCA, combines differential analysis with a fault injection
attack. When the device is operating, the attack exploits on the difference infor-
mation that results from injecting a fault in the middle. The actual difficulty of
the attack is determined by the type of fault that occurs when performing the
attack. They can be classified broadly into the following types:

– Type 1 (capability of Attack Accuracy)
1. Word Error[random value]: The attacker can change one or more bytes

to a random value.
2. Byte Error[random value]: The attacker can change a single byte of a

specific word into a random value.
3. Bit Flip: The attacker can flip a single-bit of a specific word

– Type 2 (capability of location tracking)
1. Random Position: Various position values that can produce the same

result. The attacker cannot specify precisely where the fault was injected.
2. Deterministic position: The attacker can pinpoint where the fault was

injected by looking at the specific results.

A lower value indicates a stronger attacker assumption.

2.2 Piret & Quisquarter DFA(P&Q DFA)

Piret & Quisquarter DFA (P&Q DFA) is a differential fault attack technique
proposed in 2003 for block cipher AES [6]. P&Q DFA is a method for inducing
a change in a specific byte of the final ciphertext by inserting an input with a
single byte error into the AES 9th round Mixcolumn, and recovering the AES
secret key using the difference between the normal and fault ciphertext. Figure 1
shows that when a single byte error occurs in the AES 9th round Mixcolumn
input, it can affect the difference between the final ciphertext and the specific
bytes of the normal ciphertext (here, the 1st, 8th, 11th, and 14th). A basic P&Q
DFA computes the following equation. The attacker calculates a four-byte output
difference in table D that can occur when a single byte error is entered in the
AES 9th round Mixcolumn input. D contains the following 4 X 255 elements,
because there are four positions where a single byte fault can occur, and it is
formed by considering all of them.

D = MC (Δε) = (Δ0,Δ1,Δ2,Δ3) (1)

Form a 10th round key candidate list L(rk10
1 , rk10

14 , rk
10
10 , rk

10
8 ) that satisfies the

following equation.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ0 = SB−1(C1 ⊕ rk10
1 ) ⊕ SB−1(CE

1 ⊕ rk10
1 )

Δ1 = SB−1(C14 ⊕ rk10
14) ⊕ SB−1(CE

14 ⊕ rk10
14)

Δ2 = SB−1(C11 ⊕ rk10
11) ⊕ SB−1(CE

11 ⊕ rk10
11)

Δ3 = SB−1(C8 ⊕ rk10
8 ) ⊕ SB−1(CE

8 ⊕ rk10
8 )

(2)
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Fig. 1. Error propagation of the AES 9 round

The number of 10th round key candidates with a size of four bytes can be
reduced to approximately 1000 using the difference between the normal and
faulty ciphertext pairs. An attacker can recover four bytes of the 10th round key
with a 98% probability using another faulty ciphertext.

Therefore, the entire 10th round key can be recovered if eight faulty cipher-
texts are obtained for the 16-byte input of the Mixcolumn. The entire AES secret
key can be recovered using this value.

3 Proposed Differential Fault Attack on AES
for Multi-byte Fault

Figure 2 is a position where the value of a specific byte (1st, 8th, 11th, and 14th

byte) can be changed for the final ciphertext of AES when an error is injected.
Assume that the values of the 1st, 8th, 11th, and 14th byte values are different
from the ciphertext obtained from the attacker through the fault injection attack
compared to the normal ciphertext. An attacker cannot specify how many bytes
the fault was injected with only the given faulty ciphertext. In other words, it
is impossible to distinguish between a ciphertext resulting from the injection of
a fault into a single byte and a ciphertext resulting from a fault injection into
multiple bytes. In an actual attack environment, there may be differences in the
parameters set by the attacker (e.g., the position where a fault is injected into the
cryptographic device, strength to be injected, and time of injection. Depending
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on the parameters set, faults may not be injected or multi-byte errors may occur.
The P&Q DFA produces a 4 × 255 sized difference table, assuming a single byte
fault has occurred. However, a two-byte error can occur in six different positions.
A three-byte error can occur in four positions, and in some cases, the entire byte
can be affected. In addition, as the number of bytes affected by an error increases,
the size of the difference table D increases. This section proposes an extended
differential fault attack logic of P&Q DFA for multi-byte fault ciphertext by
reflecting these characteristics. Each attack consists of four steps as follows:

Fig. 2. AES 9th round Full differential path affecting specific bytes of ciphertext

3.1 Attacker’s Assumption

The attacker can conduct encryption in the proposed DFA by obtaining a device
with the AES operating with a fixed key. The attacker can induce a fault in which
a random word is at a specific position during the operation and monitor pairs
of the normal and fault ciphertext.
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STEP 1. Calculating the Mixcolumn difference table D.
Mixcolumn operation is performed by changing all four bytes of the fixed

value. The difference table is calculated with the results. This allows an attacker
construct the normal and fault differential table D. The size of the D table
produced by changing the Mixcolumn input by two, three, or four bytes is shown
in step2.

STEP 2. Transforming D table
Table D used in the attack can be transformed due to the following char-

acteristics of Sbox (or Inverse Sbox). Assume that the value of the first byte
of the normal ciphertext is 0xd3 and the value of the first byte of the faulty
ciphertext is 0xd0. There are 127 possible values for the output difference in the
Inverse Sbox when the input difference is 03. Figure 3 show the possible output
differences and key candidate pairs.

Table 2. Comparison table of memory usage required for an attack

Number of faulty bytes Brute Force D Transform D

1 4 KB 0.225 KB
2 1.56 MB 0.097 MB
3 265 MB 16.6 MB
4 17 GB 1 GB

STEP 3. Calculate Round Key candidates D Create a 10th round key candidate
list L(rk10

1 , rk10
14 , rk

10
10 , rk

10
8 ) that satisfies (2). The lower figure of Fig. 3 shows

that the key candidates can be tabled using characteristics of the Sbox. The
gray line indicates that the number of key candidates is four, and the remaining
differences except for this value havecandidates. For example, only k = 0 × 48,
0 × 4b satisfies the following equation.

SB−1 (0xd0 ⊕ k) ⊕ SB−1 (0xd3 ⊕ k) = 0xa

That is, when the normal and fault ciphertext output difference is determined,
the possible output difference of the inverse Sbox is determined, and the number
of key candidates that can be obtained through the difference is two or four.
An attacker can produce a set of four-byte key candidates using the key table
produced from the normal and faulty ciphertext pair.
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Fig. 3. Possible output difference and key candidate pairs

STEP 4. Confirm the secret key from key candidates
The size of the key candidate set can be reduced by also using the normal and
fault ciphertext pairs. In the case of two-byte and three-byte faulty ciphertext,
the number of key candidates decreases significantly. In the case of four bytes,
however, the decrease in the number of key candidates is constant, and a much
larger amount of fault ciphertext is required than in the previous case.
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4 Experimental Results

This section reports the process of inducing a fault ciphertext required to perform
proposed attack on the device via an EM-FI attack along with the results.

Fig. 4. Active area on Arduino Uno board when measured with EM Transient Probe

4.1 Experimental Environment

To inject a fault at the end of the shiftrow operation of the 9th round of AES,
the point where may electromagnetic waves are emitted from the Arduino board
while the shiftrow is operating was collected through EM Transient probe equip-
ment. The position where many electromagnetic waves were emitted is the red
area in Fig. 4, and the position was set as the EM-FI attack position. The exper-
iment was conducted by gradually narrowing the area where the desired fault
ciphertext occurred. The faulty ciphertexts can be retrieved if the attack is suc-
cessful, as shown in Fig. 5. Compared to the normal ciphertext, ciphertext with
different values of the 1st, 8th, 11th, and 14th bytes were filtered and used for
the attack.
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Fig. 5. EM-FI result: four-byte faulty ciphertext

4.2 Experimental Results

When the first intended error occurred, there were 13127 normal ciphertexts,
4535 abnormal operations, and 338 erroneous ciphertexts, showing an error rate
of about 1.87%. When the error injection strength is strong, it is confirmed that
ciphertext affected by all 4 bytes can be generated. This can be seen in Table 3.

Table 3. Number of faulty ciphertext according to the number of erroneous bytes

Number of faulty bytes 1 2 3 4 Total

Number of faulty ciphertext 0 0 0 548 548

When the error injection strength is gradually weakened, it can be confirmed
that the frequency of occurrence of a lot of 1-byte error ciphertext increases.
This can be seen in Table 4.

However, it was confirmed that faulty ciphertexts of more than 2 bytes were
still collected, and the location information and number of bytes could not be
specified.

Table 4. Types of faulty ciphertext collected when error strength is weakened

Number of faulty bytes 1 2 3 4 Total

Number of faulty ciphertext 87 26 2 13 128
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Fig. 6. Experimental Result three-byte fault ciphertext

As can be seen in Fig. 6, in the case of 3-byte faulty ciphertext, the number of
key candidates rapidly decreases each time the faulty ciphertext is additionally
compared, and the case of 2-byte shows a similar pattern. However, in the case of
ciphertext affected by all 4 bytes, the reduction range is very small, and because
of this, it was possible to reduce the key candidate to 1 through about 1500
erroneous ciphertext. The number of ciphertexts required for each byte is shown
in Table 5.

Table 5. Number of pairs of normal and fault ciphertexts required for key recovery

Number of faulty bytes 2 3 4

Number of faulty ciphertext 3 6 1440

5 Conclusion

This paper proposed an attack that analyzes the key using only a part of the
entire difference table when extending the existing P&Q DFA a fault of four
bytes or less. Only the area used for the actual attack (approximately 1/16
of the total table) is extracted from the entire table when the I/O differential
characteristic of Sbox is used. In addition, the type and number of candidate keys
can be calculated once the difference used in the attack is determined. With this
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information, a set of key candidates can be generated from only table references
given a pair of normal and faulty ciphertext. With the proposed methodology,
four bytes of the 10th round key were recovered with two, three, and four-byte
faulty ciphertext obtained after performing an EM-FI attack on the Arduino
Uno.

Future studied will analyze the frequency band of electromagnetic waves
emitted from the target device with other EM-MI equipment. In addition, the
effect of an attack will be assessed using an electromagnetic wave similar to the
frequency band of the electromagnetic wave collected by EM transient probe on
the performance of fault injection attack.
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Abstract. As Post-Quantum Cryptography (PQC) incurs higher costs
in some metrics compared to conventional cryptosystems, performance
evaluation to determine the trade-offs on circumstantial usage is essen-
tial. In this paper, we provide state-of-the-art performance evaluation
results of PQC algorithms in the IPsec protocol. Specifically, we perform
a deep dive into the performance of PQC-integrated IKEv2 in terms
of the execution speed of each IKEv2 stage and packet size according
to various PQC algorithms and their security levels. The evaluation is
conducted with our implementation, constructed upon strongSwan, the
most popular open-source IPsec implementation. As only the latest, but
unstable version of strongSwan supports PQC, it is not straightforward
to integrate the existing PQC implementations into strongSwan. We pro-
pose a well-established method to integrate PQC algorithmhe code base
of strongSwan. Our evaluation targets a variety of PQC KEM algorithms,
including NIST Round 3 finalists (i.e., Kyber, NTRU, and Saber) and
algorithms developed in Korea and China. The performance evaluation
shows the trade-offs between the security level and performance for indi-
vidual PQC algorithms in the IPsec protocol.

Keywords: Post-quantum cryptography · IPsec · Internet key
exchange version 2 · Benchmark

1 Introduction

With the underlying development of quantum computing research, the birth of
movie-like robust and unstoppable quantum computers is becoming a reality [1].
The existence of Shor’s and Grover’s algorithms initiated the threat to the real-
world conventional cryptosystem [2]. The two uprising cryptographic attacks are
agile and clever enough to break through the classical public key algorithms. As a
result of the continuous threats by the quantum computing-aided code-breakers,
the effort in the realm of Post-Quantum Cryptography (PQC) has become vital [3].

Accordingly, NIST announced the outline and the call for PQC standard-
ization submission in 2016 [4]. The breathtaking measurements concluded the
standardizing mechanism to be CRYSTALS-Kyber for the public-key encryption
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algorithm and key-encapsulation mechanism (KEM) in 2022 [5]. The excessive
growth of quantum computers is also considered a threat to the confidential-
ity and integrity of digital communication in numerous Asian and European
countries. China has launched rounds of domestic cryptographic competitions to
determine the utmost cryptographic schemes within the country [6]. The lattice-
based LAC, and AKCN, algorithms were enlisted as possible standardizing PQC
candidates as a result of the competition. Similarly, Korea and European Union
members operate national cybersecurity institutions to find promising quantum-
resistant algorithms.

Unlike the existing cryptosystem in secure network protocols (e.g., TLS and
IPsec), applying PQCs to those protocols may provide an inefficient trade-off
between security and performance. Some metrics cause higher computational
costs, additional storage requirements, or larger network bandwidth. To enhance
the balance between security and performance, executing practical measure-
ments to evaluate PQC algorithms is critical to efficiently replace the existing
cryptosystem with PQC. There are many studies on performance evaluations for
PQC-integrated TLS protocols [7,8]. However, there are few works on evaluation
for the case of applying PQC to IPsec, a secure Internet protocol standardized
by IETF, in the literature.

In this paper, we present the state-of-the-art performance measurement
results for PQC algorithms integrated into the IPsec protocol. Specifically,
we provide extensive measurements of the key exchange performance of PQC-
integrated IKEv2 in terms of the execution speed (i.e., the latency) of each IKEv2
stage and packet size according to different PQC algorithms and their security
levels. To assess how a PQC algorithm affects the individual IKEv2 stages, we
further evaluate the execution performance of each KEM operation (e.g., key
generation, encapsulation, and decapsulation) in the IPsec implementation. We
aim to evaluate each algorithm’s security level and performance level in the PQC-
integrated IPsec environment through performance measurements. The charted
values suggest the trade-offs between the security and the performance context
of embedded algorithms variant by their security level. Our evaluation results
may help users to choose the algorithm based on their circumstances.

We construct our implementation for the performance evaluation. The imple-
mentation is built upon strongSwan, one of the most popular open-source IPsec
implementations that support PQC integration. As only the latest but unsta-
ble version of strongSwan provides a framework for the integration, there are
some challenging issues in integrating the existing PQC implementations into
the code base of strongSwan. We overcome the issues by analyzing the source
code of strongSwan as well as liboqs, the related library for an open-source imple-
mentation of PQC algorithms. Based on the analysis, we provide a precise and
well-established method to integrate general PQC algorithms into strongSwan’s
IPsec implementation. The proposed method may ease the migration from the
conventional public-key cryptosystems to the PQC to encourage users to deploy
quantum-safe secure network protocols.
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Targets for our evaluation include a variety of PQC KEM algorithms, such
as NIST Round 3 finalists (i.e., Kyber, NTRU, and Saber) and algorithms
developed in Korea and China. The performance evaluation provides users with
insights into the trade-offs between the security level and performance for indi-
vidual PQC algorithms in the IPsec protocol.

The main contributions of our work are as follows:

– To the best of our knowledge, we provide the first performance evaluation
results of various PQC algorithms, such as CRYSTALS-Kyber, NTRU, Saber,
RLizard, LAC, and AKCN, in the IPsec protocol.

– We present a well-established method to integrate general PQC algorithms
into an open-source IPsec implementation.

– We extensively measure the performance and security of each algorithm
with varying security levels to determine the feasibility of the cryptosys-
tem depending on circumstances. The measurements encompass KEM oper-
ations: key generation, encapsulation, and decapsulation and include the key
exchange stages from the IKEv2: IKE SA INIT, CREATE CHILD SA, and Addi-
tional Key Exchange.

The remaining of this paper is structured as follows. In Sect. 2, we intro-
duce readers to the general outlook of PQC, IKEv2 and hybrid key exchange.
Section 3 underscores related work to the current project. and Sect. 4 explains
the methodology to combine IPsec, particularly with IKEv2 and PQC. In Sect. 5,
we provide our evaluation for the performance of PQC algorithms. Lastly, Sect. 6
concludes our work.

2 Background

In this section, we briefly overview the correlating mechanisms of PQC and
IKEv2, which are the main considerations of the study.

2.1 Post-quantum Cryptography

The purpose of PQC is to resist quantum computing-aided code-breaking attacks
by leveraging hard mathematical problems that even quantum computers cannot
easily solve. The PQC schemes compromise into five distinct families: code-based,
lattice-based, hash-based, multivariate, and supersingular elliptic curve isogeny
cryptography [9]. Each category determines unique mathematical structure and
properties of cryptographic algorithms. The underlying attributes cause a sig-
nificant difference in the efficiency, computing time, security level, and other
elements that define each security scheme.

For the study, we select lattice-based schemes as they comprise the majority
of the existing PQC algorithms. Lattice-based schemes have smaller key sizes,
unlike some code-based and multivariate schemes that have larger public key
sizes [10]. Therefore, the lattice-based schemes provide practical security counter
measurements against potential attacks from quantum computers.
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Fig. 1. General KEM procedure

KEM is a scheme that allows two entities to share an ephemeral key. The
procedure for KEM instructs as follows.

1. Parameter setup: Generate the parameters.
2. Key generation: Generate the public and secret key with the created param-

eters.
3. Key encapsulation: Create ciphertext by encrypting a shared key through the

generated public key.
4. Key decapsulation: Obtain the shared key by decrypting the ciphertext with

the generated secret key.

This step is performed by sharing the generated parameters, public key, and
ciphertext between the two hosts, as shown in Fig. 1.

As CRYSTALS-Kyber [11], NTRU [12], and Saber [13] are the lattice-based
KEM schemes that are nominated as NIST Round 3 finalists; we scrutinized
their behavior when interacting with IKEv2 networking protocol. Other than
NIST finalist candidates, the cryptographic schemes developed in Asian coun-
tries, including LAC [14] and AKCN [15] from China, and RLizard [16] from
Korea are selected based on their recognition in their nations.

2.2 Internet Key Exchange Version 2

Internet key exchange version 2 (IKEv2) [17] is a component of IPsec used to
perform mutual authentication and establish and maintain secure associations
(SAs) [17]. IKEv2 consists of several steps, but we only deal with steps that
contain key exchange, where PQC KEM operations are used. The demonstration
of the IKEv2 negotiation steps is shown in Fig. 2.

The first step in IKEv2’s key exchange process, IKE SA INIT, is the initial
exchange in which peers establish a secure channel. In order to perform the
IKE SA INIT, the initiator transmits the SA proposal (SAi), key exchange pay-
load (KEi), and nonce (Ni). The responder selects the SA (SAr) from the SA
proposal received from the initiator and transmits key exchange payload (KEr)
and nonce (Nr).

Thereafter, both peers deploy the selected SA and the shared key (SK)
generated by the key exchange. Once the IKE SA INIT procedure is completed,
further exchanges are encrypted with SK.
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Fig. 2. IKEv2 Key Exchange

For each additional key exchange that has agreed to an IKE SA INIT
exchange, the initiator and responder proceed to an INTERMEDIATE phase [18]. In
this phase, the initiator sends key exchange data (KEi) with a nonce (Ni) in a
payload encrypted with SK. After receiving the encrypted payload, the respon-
der sends the key exchange payload (KEr) and nonce (Nr) back. When the
INTERMEDIATE stage is completed, both sides need to update their key material
for subsequent communication.

The CREATE CHILD SA is performed for additional child SAs are required or
either IKE SAs or child SAs need to be rekeyed. The CREATE CHILD SA sends an
additional SA and traffic selector payload (TSi and TSr) to create a new child
SA. If necessary, the key exchange data (KEi and KEr) are optionally used for
additional key negotiation.

3 Related Work

In this section, we discuss previous studies related to our work.

Evaluation of PQC Implementations in TLS. Paquin et al. [7] proposed the
integration strategy of PQC into TLS using an emulated network setting. The
testbed of the experiment independently controls latency and packet loss rate to
examine the performance impact of various PQC primitives on established TLS
connection.
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The observation of subsequent study highlights that packet loss rate above
3 to 5% displays significant impact on unstructured-lattice-based PQC algo-
rithms. The additional result from the performance evaluation concluded that
the latency of loading entire web pages over the TLS network hides the essential
impacts of PQC algorithms with slower computations.

The study analyzed the influence of PQC on TLS 1.3 handshake completion
time by deploying the structured and unstructured lattices and supersingular
isogenies of hybrid post-quantum key exchange. The post-quantum authenti-
cation is specifically measured using structured lattices and symmetric-based
signatures. The emulated network experiments include four different latencies
and packet loss rates ranging from 0 to 20%.

As opposed to the proposed method of PQC-based performance evaluation
on latency and packet loss process with bases on the TLS 1.3, we evaluated the
selected PQC-based IPsec to measure the execution performance of KEM.

Measurement of PQC and TLS 1.3 in Embedded Systems. There are
multiple attempts to integrate PQC KEM and PQC signature schemes into the
TLS protocol or port to embedded devices. However, Bürstinghaus et al. [8]
provide the experimental framework of combining TLS and the PQC scheme to
evaluate the performance of PQC-TLS on embedded platforms.

The evaluation further compares the performance of PQC cipher suite to
the classical TLS variant using elliptic curve cryptography (ECC). As a result,
the study demonstrates that PQC key establishment performs better in TLS on
embedded devices than ECC variants. On the contrary, the SPHINCS+ signa-
ture is challenged with signature size and signing time, which affects the use of
embedded systems to act as PQC-TLS.

Our study highlights the strategy for measuring the KEM and IKEv2 schemes
under the condition of PQC-IPsec. Proudly, to the best of our knowledge, such
a perspective of the experiment is the novel approach to evaluating the perfor-
mance of the PQC to a specific network protocol.

4 Implementation

In this section, we present our implementation to evaluate the performance of
PQC in IPsec and determine the trade-offs on different target PQC algorithms.
Our implementation is basically constructed upon strongSwan [19], one of the
most popular open-source IPsec implementations that support the integration of
PQC algorithms into the IPsec protocol. Although the latest version of strong-
Swan already includes several PQC algorithms, such as the NIST Round 3 final-
ists [4], in its code base, it still lacks broad support for various algorithms yet.
Hence, some challenging engineering efforts are necessary to integrate the exist-
ing PQC implementations into strongSwan. We present in detail our method to
integrate general PQC algorithms into the current version of strongSwan.

Source Code Structure. We first analyze the source code of strongSwan with
version 6.0dr14 [20], which is the latest version that supports PQC. As that
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Fig. 3. The structure of strongSwan with OQS library

version of strongSwan internally utilizes liboqs, an Open Quantum Safe (OQS)
library [21] for PQC algorithms, we also analyze the source code of liboqs with
version 0.7.1 [22].

Figure 3 shows the hierarchical structure of the source code of strongSwan
and the related library. The strongSwan has an oqs plugin (i.e., oqs kem.c in
the oqs directory) in its code base, which provides links to the OQS library. The
actual PQC implementations are located in the code base of an OQS library. For
KEM algorithms, each header and source file for individual algorithms is located
in the kem directory (e.g., kem/rlizard for the RLizard algorithm). Every header
file is included by kem.h for integrating the algorithm to liboqs.

Integration to Liboqs. We first initiated the integration by embedding PQC
algorithms to liboqs, then implement the following cryptosystems to the IKEv2
protocols through the strongSwan’s plugin. According to the architecture of
strongSwan, the initial integration of any algorithm must occur with liboqs first.
The following procedure is the steps to combine a new PQC algorithm using
liboqs.

Step 1. Modify the source code of the new PQC algorithm to match the function
and the parameter names to the liboqs format. As shown in Fig. 3, define
the name of the new PQC algorithm to add it to the kem.h header file
and declare the function name to map it to the name of the algorithm,
which is defined in the header file, in the kem.c source file.
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Fig. 4. Example of a header file, kem rlizard.h, for the RLizard algorithm in the OQS
library

Step 2. Specify the parameter size for public key, secret key, ciphertext, and
shared secret newly added algorithms by following the format of liboqs,
as shown in Lines 3-6 in Fig. 4. Then modify the functions’ name of the
newly added algorithm according to the format of the liboqs API as
shown in Lines 8-11 in Fig. 4.

Step 3. Then, add the source code path to CMakeLists.txt so that the source
code of the new PQC algorithm can be added to the liboqs build process.

Step 4. Build liboqs as a shared library. After completing the steps, the newly
added algorithm can be retrieved through generic KEM functions
(keypair, encaps, and decaps) in the liboqs.

Integration to StrongSwan. The new PQC algorithm has been integrated
to the liboqs through the above steps. Now we need to register the modified
liboqs in the strongSwan’s oqs plugin to use the new algorithm in strongSwan;
the detailed procedure is described as follows:

Step 1. Declare a new keyword to identify the new PQC algorithm (e.g.,
KE RLIZARD L1 for the RLizard algorithm), and the corresponding short
keyword (e.g., rlizard1) in key exchange.c of strongSwan (Fig. 3).

Step 2. Assign a new Transform ID, which is an unique ID that identifies a PQC
algorithm in IPsec packets, for the new algorithm.

Step 3. Declare onto the oqs plugin.c source file to load the strongSwan plugin
with the declared keyword for the PQC algorithm.

Step 4. Declare onto the oqs kem.c source file to map the new PQC algorithm
from liboqs with the declared keyword.
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After completing the above steps, the users of strongSwan are given a chance
to select the PQC algorithm for SA proposal through a short keyword (declared
in Step 1.) that maps the declared keyword in key exchange.c. Beside the algo-
rithms presented in this work, our procedure suggests that other PQC-KEM
algorithms can also be integrated with strongSwan as well.

5 Measurements and Evaluation

In this section, we evaluate the performance of the PQC algorithm embedded
to the IPsec protocol in terms of the speed of KEM and IKEv2 along with the
IKEv2 packet size.

5.1 Experimental Setup

For the experiment, we settled an environment for machines to communicate in
IPsec with a host-to-host mode. The first machine acting as an IPsec initiator
is equipped with AMD Ryzen 5 5600X 6-core processor(3.7 GHz) with 16GB
RAM. Another machine acting as an IPsec responder is equipped with is AMD
Ryzen 9 3950X 16-core processor(3.5 GHz) with 16GB RAM.

Both machines are connected via 100Mbps ethernet in LAN environment,
operate on the Ubuntu 20.04 LTS, built around the host-host IPsec VPN envi-
ronment with the strongSwan 6.0dr14 and liboqs 0.7.1. Therewith, the IPsec
environment is built using strongSwan and liboqs, including new PQCs through-
out the method introduced in Sect. 4.

All the algorithm source codes used in the performance evaluation are
obtained from the PQC website of the NIST Computer Security Resource Center
(CSRC) [23].

5.2 Measurements

We measure the performance of CRYSTALS-Kyber, NTRU, and Saber from
the NIST’s finalist candidates, RLizard from Korea, and LAC and AKCN from
China depending on their security level.

In our study, KEM, IKEv2, and packet size are used as performance eval-
uation metrics. In addition, we use strongSwan to measure the performance of
each KEM operation and specify the performance of each operation in detail.
The IKEv2 evaluation metric indicates IPsec performance when the PQC algo-
rithm is used as the key exchange algorithm.

Table 1 presents the parameter set and security level [24] for individual algo-
rithm. The security level employed for our experiment is the announced security
standard level from NIST’s security requirements for cryptographic modules.
NIST describes four qualitative security levels (Level 1, Level 3, Level 4, and
Level 5) for exhaustive key retrieval. Each security level has a different security
strength. Level 1 should be as hard to break as AES-128, Level 3 should be as
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hard to break as AES-192. And Level 4 should be as hard to break as SHA-384,
Level 5 should be as hard to break as AES-256.

We compare individual algorithms to evaluate the trade-offs between the
security level and performance of these algorithms. The research strive for the
optimized implementation rather than the reference version of the implementa-
tion. To assess the individual cryptographic schemes, three performance metrics
are deployed as essential measurements:

– The execution speed of KEM operations: key generation, encapsulation and
decapsulation.

– The latency of IKEv2 stages: IKE SA INIT, CREATE CHILD SA, and Additional
Key Exchange.

– The packet size of IKEv2 messages for IKE SA INIT, CREATE CHILD SA, and
Additional Key Exchange.

We utilize gettimeofday() function to measure the speed of key generation
(i.e., OQS KEM keypair() in kem.c), encapsulation (i.e., OQS KEM encaps()), and
decapsulation (i.e., OQS KEM decaps()) with a resolution of microseconds. The
measurements for the latency of IKEv2 messages are also achieved by observ-
ing the processing time of IKE SA INIT, CREATE CHILD SA, and Additional Key
Exchange with the task manager of the IKEv2 protocol in the strongSwan dae-
mon. In addition, we also measure the size of the IPsec initiator’s sending and

Table 1. The parameters of PQC algorithms

Algorithm Security level Size (bytes)

Public key Secret key Ciphertext Shared secret

Kyber512 1 800 1,632 768 32

Kyber768 3 1,184 2,400 1,088 32

Kyber1024 5 1,568 3,168 1,568 32

NTRU-HPS-2048509 1 699 935 699 32

NTRU-HPS-2048607 3 930 1,234 930 32

NTRU-HPS-4096821 5 1,230 1,590 1,230 32

LightSaber 1 672 1,568 736 32

Saber 3 992 2,304 1,088 32

FireSaber 5 1,312 3,040 1,472 32

RLizard-category1 1 4,096 1,152 2,080 32

RLizard-category3 3 4,096 1,152 4,144 48

RLizard-category5 5 8,192 2,304 8,256 64

LAC-128 1 544 1,056 1,024 32

LAC-192 3 1,056 2,080 1,536 48

LAC-256 5 1,056 2,080 2,048 64

AKCN-MLWE 4 992 288 1,120 32

AKCN-SEC 5 1,696 1,664 2,083 95
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receiving packets by investigating the daemon’s debugging log. We repeated
experiments with individual IPsec connections 1,000 times and then averaged
the measurement results to obtain the above metrics.

5.3 Evaluation

The complete measurement results of the performance of PQC algorithms are
presented in Table 2 in Appendix. The general trend of the measurement denotes
that the increase in the security level represent the decrease in KEM and IKEv2
speed and the increase in the packet size. In this section, we focus on analyzing
the results in relation to the performance metrics and investigate the changes in
performance outcomes on the security level of each algorithm.

Analysis on the Performance of KEM. Although mainly interested in the
performance of IKEv2 for each PQC algorithm, we first analyze the execution
time of KEM in IPsec, as it solely represents the performance of the algorithms.

We introduce the performance results concerning the speed (i.e., the execu-
tion time) measurement on three KEM operations: key generation, key encapsu-
lation, and key decapsulation in Fig. 5. The overall result depicts that all algo-
rithms performs within 150µs for key generation, 237µs for key encapsulation
and 222µs within key decapsulation. The fastest key generation and key decapsu-
lation is performed by Kyber512, and the fastest key encapsulation is performed
by NTRU-HPS-2048509. The slowest algorithm to perform key generation is
NTRU-HPS-4096821, key encapsulation is AKCN-SEC, and key decapsulation
is LAC-256.

As the security level increases, Kyber and Saber equally experience about
40% latency at all stages. For NTRU, the increase in the key generation is twice
as large as key encapsulation and key decapsulation. RLizard shows that the
execution time of key generation and key encapsulation is approximately twice
as large as when the security level increases from Level 3 to Level 5 than from
Level 1 to Level 3. The key decapsulation stage depicts a similar increase. When
LAC performs key generation, it shows minor changes when the security level
increases from Level 3 to Level 5. However, when the security level increases from
Level 1 to Level 3, there is a 130% increase. Based on the security level 1, the
key encapsulation and key decapsulation depicts 100% increase in the security
level, which is simailar to key generation. A significant increase is depicted in
AKCN from security level 4 to 5. For a key generation, the increase is by 36%,
key encapsulation by 93%, and key decapsulation by 129%.

Analysis on the Performance of IKEv2. We evaluate the latency of IKEv2
key exchanges for IKE SA INIT, CREATE CHILD SA, and Additional Key
Exchange. The metrics of our study examines the performance of key exchange
mechanism for each targeted PQC algorithms within IPsec.

Figure 6 presents the measurements of latency for each IKEv2 messages. The
result represents that the speed of KEM corresponds to the performance of
IKEv2 as it includes the key exchange phase in every stage. Unlike measuring
KEM, the noise may occur when measuring the performance of IKEv2 due to
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Fig. 5. Average execution time for each KEM operation

the network environment. Therefore, the presence of error should be in consider-
ation. The latency of all KEM stages for three different IKEv2: the numbers for
IKE SA INIT are between 1109µs and 3040µs; for CREATE CHILD SA, the perfor-
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Fig. 6. Average latency for each IKEv2 stage

mance is within 1495µs and 5329µs, then finally, for Additional Key Exchange,
the numbers range from 1849µs to 5209µs.

The fastest IKE SA INIT performance at security level 1 is the LightSaber
algorithm, for CREATE CHILD SA is Kyber512, and for Additional Key Exchange
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Fig. 7. Total packet size for each IKEv2 packet

is LAC-129. The shortest latency for IKE SA INIT and CREATE CHILD SA at secu-
rity level 3 is NTRU-HPS-2048607 and Saber for the Additional Key Exchange.
The fastest completion of IKE SA INIT in security level 5 is NTRU-HPS-4096821,
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then Kyber1024 demonstrates the highest performance for CREATE CHILD SA and
Additional Key Exchange. As the security level increases, CRYSTALS-Kyber,
NTRU, and Saber show an equal increase in latency in all three stages of KEM.
Even though the increase in latency ranges from 140µs to a maximum of 650µs,
we conclude that the increase is relatively equal considering the margin of error
caused by the network environment. RLizard demonstrates a significant degra-
dation in performance as the latency outreaches 1000µs when the security level
elevates from Level 3 to Level 5. On the other hand, the elevation for latency
in security level 1 to 3 is insignificant as it is similar to the KEM performance.
Unlike RLizard, LAC demonstrates the elevation in latency from 480µs to 800µs
when the security level increases from Level 1 to Level 3. However, the latency
inclines by 100µs when the security level raises from Level 3 to Level 5. AKCN
causes a latency of 500µs to 800µs when the security level increases from Level
4 to Level 5.

The IKEv2 latency results are closely related to the sum of execution
time of KEM operations: key generation, key encapsulation, and key decap-
sulation. Although the execution time for KEM is shorter than the IKEv2,
our experiment confirms that the IKEv2 stage introduces greater latency.
For example, even though NTRU-HPS-4096821 takes a longer KEM execu-
tion time than RLizard-category1, RLizard-category1 denotes greater latency
in IKE SA INIT, CREATE CHILD SA, and Additional Key Exchange compared
NTRU-HPS-4096821. It is because the process is affected by the parameter set
size. The overall network latency is provoked by the increase in the parameter
set size and the packet size. The scrutiny of evaluating the packet size results
continues in the section below.

Analysis on the IKEv2 Packet Size. Finally, we analyze the size of IPsec
packets of each IKEv2 stage. The increase in the set parameter, key size, cipher-
text size, shared secret, and shared secret corresponds with the increase in the
security level. Such an increase in various aspects of parameter set size directly
influences the performance of IKEv2. In addition to the influence of parameter
set size on the speed of IKEv2, the packet size is also affected by the parame-
ter set size. In particular, the public key must be included in the key exchange
packet payload from the initiator to the responder, and the ciphertext must
be in the packet payload from the responder to the initiator. Therefore, we
measure the sending and the receiving packet size of two hosts to observe the
overhead corresponding to the increase of the security level. Figure 7 highlights
the measurement results of packet sizes for individual IKEv2 stages. Note that
the measured packet size includes all headers except the key exchange payload
and the measurement results are the combination of sending and the receiving
packet size.

When the security level increases, the packet size increase by about 400
bytes to about 900 bytes for CRYSTALS-Kyber, NTRU, and Saber. Since the
inclination of the public key and the secret key size is about 300 to 500 bytes,
the increase in the packet size on the elevation of security level is insignificant.
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With RLizard, about 2,000 bytes of overhead occurs with security level 1 and
3. However, about 8,000 bytes of overhead occurs between the security level of 3
and 5, which is about 4 times more than security level 1 and 3. The significant
difference occurs when the security level for RLizard increases from Level 1 to
Level 3, the public key size remains the same, and the ciphertext size increase
by about 2,000 bytes. Nonetheless, when the security level elevates from Level 3
to Level 5, the public key and the ciphertext size individually increase by about
4,000 bytes.

Further with LAC, the increase in overhead occurs by 1,100 bytes from secu-
rity level 1 to level 3. In contrast, only about 100 bytes of difference occurred
with security level 3 and 5. For instance with the LAC algorithm, the difference
in the public key size for security level 5 to 3 is 1,000, and the increase in the
ciphertext is only 100 bytes.

AKCN-SEC carries a packet size that is 1,600 bytes larger than AKCN-
MLWE. AKCN also displays an increase reflecting the public key and ciphertext
sizes. About 700 bytes of the increase occurred with the public key size, and
about 900 bytes of ciphertext size increased.

6 Conclusion

As quantum computers develop, the conventional public key cryptosystems are
easily broken. Accordingly, a post-quantum cryptographic algorithm that is
secure from quantum computers has emerged. However, PQC needs to be rigor-
ously evaluated for its practicability before being deployed to the real world.

In this paper, we conducted performance evaluation of various PQC algo-
rithms under the IPsec-secured networking environment. For this, we integrated
the existing PQC implementations into strongSwan, the most popular open-
source IPsec implementation. After that, we performed extensive performance
evaluations on PQC-integrated IKEv2 of the IPsec protocol, targeting NIST
Round 3, Korea, and China PQC-KEM algorithms. We measured KEM oper-
ation execution time, IKEv2 stage-specific average latency and packet size of
each algorithm as performance metrics. The benchmarking result, which shows
a trade-off between the security level and the performance, provides an useful
guideline to those who want to implement the IPsec protocol combined with
PQC. We believe that our study has contributed to the evaluation of the per-
formance of IPsec with PQC.
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Appendix

Table 2. The evaluation of algorithms

Algorithm PQC KEM (µs) Evaluation time (µs) Evaluation packet size (bytes)

Key Key Key IKE SA CREATE Additional IKE SA CREATE Additional

Generation Encapsulation Decapsulation INIT CHILD SA Key Exchange INIT CHILD SA Key Exchange

Kyber512 23.22 35.61 17.56 1,144.67 1,495.56 1,923.20 2,057 2,016 1,744

Kyber768 31.50 47.35 24.97 1,284.48 2,089.01 2,254.63 2,761 2,720 2,448

Kyber1024 37.89 60.51 33.61 1,646.72 2,270.73 2,684.87 3,625 3,584 3,312

NTRU-
HPS-
2048509

68.63 27.55 17.98 1,135.28 1,283.96 1,850.93 1,887 1,824 1,568

NTRU-
HPS-
2048607

108.22 35.09 25.52 1,278.26 1,617.81 2,109.77 2,349 2,304 2,032

NTRU-
HPS-
4096821

149.39 38.41 33.68 1,434.04 2,220.45 2,757.17 2,949 2,880 2,624

LightSaber 27.21 41.47 21.98 1,109.26 1,297.67 1,999.48 1,897 1,856 1,584

Saber 36.81 61.35 32.03 1,279.06 1,765.10 2,100.41 2,569 2,528 2,256

FireSaber 50.08 84.81 47.27 1,637.19 1,976.33 2,700.67 3,273 3,232 2,960

RLizard-
category1

72.89 50.80 40.01 1,901.64 2,586.32 3,104.66 6,665 6,624 6,352

RLizard-
category3

90.99 89.89 77.72 1,974.20 3,013.36 3,620.43 8,729 8,688 8,416

RLizard-
category5

147.70 144.91 109.49 3,040.21 4,584.53 5,209.32 16,937 16,896 16,624

LAC-128 30.11 61.36 74.08 1,218.41 1,580.02 1,849.32 2,057 2,016 1,744

LAC-196 69.80 129.71 159.35 1,698.61 2,331.11 2,662.70 3,081 3,040 2,768

LAC-256 70.24 163.09 221.99 1,729.74 2,337.28 2,721.12 3,593 3,552 3,280

AKCN-
MLWE

63.16 121.89 35.46 1,361.99 2,115.69 2,196.70 2,601 2,560 2,288

AKCN-
SEC

100.73 236.02 81.32 1,877.65 2,473.04 2,994.95 4,268 4,224 3,952
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Abstract. An ultrafast cryptographically secure pseudorandom number
generator, referred to as MaD4, is presented in this paper. MaD4 main-
tains a small byte-oriented state, whose transition follows a pseudoran-
dom permutation, and a large integer-oriented state, whose transition
follows a pseudorandom mapping. The byte-oriented state is initialized
from a secret key and then further used to bootstrap and initialize the
integer-oriented state. After initialization, both states evolve, with the
byte-oriented state serving as a source of entropy and periodically reseed-
ing the integer-oriented state. The combination of slow byte-oriented oper-
ations and fast integer-oriented operations renders a nice balance between
quality and speed. MaD4 generates high quality pseudorandom numbers
as attested by standard statistical testing tools and runs at a speed close
to half clock cycle per byte on an Intel Core i7 processor. With a large
state space of 10520 bits, MaD4 has an expected period length around
1.00e+1783. It is designed to resist various known cryptographic attacks
and withstand state compromise extension attacks as well.

Keywords: Pseudorandom number generator · Pseudorandom
permutation · Pseudorandom mapping · Unpredictability ·
Cryptanalysis · High performance

1 Introduction

Random numbers and pseudorandom numbers have broad applications and they
are of paramount importance in cryptography. Keystreams, keys, seeds, salts,
and challenges used in various cryptosystems are all assumed to be random. A
pseudorandom number generator (PRNG) targeting secure applications should
have several properties. First of all, it must be secure. A basic requirement
is that there is no polynomial-time algorithm that can be used to deduce the
internal state or the seed from the output sequence. A cryptographically secure
pseudorandom number generator (CSPRNG) should also withstand state com-
promise extensions. Second and obviously, a PRNG should be able to generate
high quality pseudorandom numbers. Although, in a strict sense, generating high
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-H. Seo and H. Seo (Eds.): ICISC 2022, LNCS 13849, pp. 267–291, 2023.
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quality pseudorandom numbers subsumes being secure, these two features are
often addressed separately and will be so treated in this paper. The quality of
pseudorandom number generation is usually measured by the difficulty of distin-
guishing the generated pseudorandom sequence from a truly random one. Last,
high speed is another desirable feature, especially for those PRNGs designed for
high performance computing such as data encryption in cloud computing.

So far many PRNGs have been developed, but dedicated high performance
high quality PRNGs are still in demand, particularly in the cryptographic cate-
gory. In light of this, we propose a new CSPRNG in this paper. This generator,
referred to as MaD4, demonstrates a new design paradigm for high speed and
high quality pseudorandom number generators. At the core of this paradigm is
a two-layer approach, which closely combines a slow byte-oriented layer with
a fast integer-oriented layer. The first layer maintains a small byte-oriented
state (BOS), whose transition follows a pseudorandom permutation, and the
second layer maintains a large integer-oriented state (IOS), whose transition fol-
lows a pseudorandom mapping. The byte-oriented state is first initialized from a
seed or key1 and the integer-oriented state is then bootstrapped and initialized
through the byte-oriented state. After initialization, both states evolve, with
the byte-oriented state serving as a source of entropy and periodically reseeding
the integer-oriented state. The slow-start strategy of the first layer ensures high
quality initialization, which shows to have an avalanche effect that meets the
strict avalanche criterion (SAC) [32]. The second layer takes advantages of mod-
ern 64-bit platforms and uses integer operations for high speed pseudorandom
number generation.

The combination of slow byte operations and fast integer operations renders a
nice balance between quality and speed. MaD4 generates high quality pseudoran-
dom numbers as attested by standard statistical testing tools and runs at a speed
close to half clock cycle per byte on a typical Intel Core i7 personal computer,
which is several times faster than any CSPRNGs we know. It has a state space
of 10520 bits and an expected period length around 101783. MaD4 is designed
with various cryptanalytic attacks in mind and our security analysis shows it has
strong resistance against attacks that range from those special attacks mounted
against the popular stream cipher RC4 [29] to other well-known attacks such as
time-memory tradeoff attacks, guess-and-determine attacks, algebraic attacks,
distinguishing attacks, differential attacks, and side channel attacks. It can also
withstand state compromise extension attacks due to the use of non-invertible
pseudorandom mappings and the design that the byte-oriented state serves as
an unpredictable source of entropy and periodically reseeds the integer-oriented
state during pseudorandom number generation. While MaD4 is not based on
computationally hard problems, it is practically impossible to go backwards,
either from the observed stream of pseudorandom numbers to the internal state
or from a compromised state to its previous states or the stream of pseudorandom
numbers generated before the state is compromised. For its excellent statistical
property, ultrafast speed, and strong resistance against various attacks, MaD4

1 Seed and key are used interchangeably in this paper.



An Ultrafast Cryptographically Secure Pseudorandom Number Generator 269

is well suited for high speed pseudorandom number generation, pervasive data
encryption, and a range of other cryptographic applications.

The rest of this paper is structured as follows. In Sect. 2, we introduce a
simple byte-oriented PRNG that is used as a building block of MaD4. In Sect. 3,
we describe the algorithm of MaD4 in detail. In Sect. 4, we analyze the period
of MaD4. Next, in Sect. 5, we present the security analysis. Then, in Sects. 6
and 7, we give the statistical testing results and performance testing results
respectively. Finally, in Sect. 8, we conclude the paper with a summary.

2 A Building Block

In this section we first give a brief review of MARC [35] and then describe an
iteration-reduced version of MARC, which is used as a building block of MaD4.
All algorithms given in this section and next section will be described using
pseudo code and the following notations are used:
Notation Usage
# starting a comment line
++ increment (x++ is same as x = x + 1)
% modulo
<< left logical bitwise shift
>> right logical bitwise shift
& bitwise AND
| bitwise OR
∧ bitwise XOR
[] array subscripting (subscript starts from 0)

Hexadecimal numbers are prefixed by “0x” and all variables and constants are
unsigned integers in little endian.

2.1 MARC

MARC is a variant of stream cipher RC4 [29]. While retaining the simplicity
of RC4, MARC enhances the security of RC4 by modifying its key scheduling
algorithm (KSA) and improves the performance by modifying its pseudorandom
generation algorithm (PRGA). It supports a key up to 64 bytes. Its internal
state consists of a 256-byte state table S and three 8-bit indices i, j, and k. The
KSA and PRGA of MARC are shown in Listing 1. The KSA first initializes the
state table S to an identity permutation as RC4 KSA does. It then enhances the
security of RC4 KSA by increasing the number of iterations from 256 to 256 +
256 + 64 = 576 and during each iteration using a left rotation operation among
S[i], S[j], and S[k] (i.e., tmp = S[i], S[i] = S[j], S[j] = S[k], S[k] = tmp) instead
of a swap operation between S[i] and S[j] to shuffle the state table S. The PRGA
reuses the values of indices j and k from the KSA and sets the initial value of
index i to the sum of indices j and k. It then iterates as many times as needed
and during each iteration shuffles the state table S using a swap operation as
RC4 PRGA does. It outputs four bytes during each iteration.
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Listing 1. MARC Pseudorandom Number Generator
� �

1 ## addition (+) and increment (++) operations ##
2 ## are performed modulo 256; except variable r, ##
3 ## which is a 16-bit unsigned integer , all other ##
4 ## variables are 8-bit unsigned integers. ##
5 ## % means modulo; ∧ means bitwise XOR. ##
6

7 # Key Scheduling Algorithm (KSA)
8 for r from 0 to 255
9 S[r] = r

10 endfor
11 i = 0
12 j = 0
13 k = 0
14 for r from 0 to 575
15 j = j + S[i] + key[r % keylength]
16 k = k ∧ j
17 left_rotate(S[i], S[j], S[k])
18 i++
19 endfor
20

21 # Pseudorandom Generation Algorithm (PRGA)
22 # (j and k are from KSA)
23 i = j + k
24 while GeneratingOutput
25 i++
26 j = j + S[i]
27 k = k ∧ j
28 swap(S[i], S[j])
29 m = S[j] + S[k]
30 n = S[i] + S[j]
31 output S[m]
32 output S[n]
33 output S[m ∧ j]
34 output S[n ∧ k]
35 endwhile

� �

2.2 MARC-bb: MARC as a Building Block

As a byte-oriented PRNG, MARC does not take advantage of modern 64-bit plat-
forms. However, it can be used as a building block to construct more advanced
PRNGs. In MaD4, we use an iteration-reduced version of MARC, referred to
as MARC-bb (bb stands for building block), for key scheduling, state initial-
ization, and reseeding. The only difference between MARC-bb and MARC is
that MARC-bb KSA iterates 320 times instead of 576 times. The reason we
choose MARC-bb over MARC is that MARC-bb KSA already has an avalanche
effect that meets the strict avalanche criterion (SAC) [32] (details given in Sub-
sect. 2.3) and the additional 256 iterations implemented in MARC KSA are
mainly for increasing the security margin, which is achieved in MaD4 through
the additional shuffling introduced after the key scheduling (details given in
Subsect. 3.3).
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2.3 Avalanche Effect of MARC-bb KSA

We study the avalanche effect of MARC-bb KSA in this subsection. Avalanche
effect measures the diffusion efficiency of a system, e.g., a hash function, a PRNG,
or a block cipher. It shows how the output changes when the input is changed
slightly. The strict avalanche criterion (SAC) [32] is satisfied if each output bit
changes with a probability of 0.5 whenever a single input bit is complemented.
We investigate the avalanche effect as follows:

1. Randomly select a key of 64 bytes (worst case for diffusion in MARC-bb
KSA), denoted by K1.

2. Get the following variants of K1:
(a) K2 = 1’s complement of K1
(b) K3 = reverse of K2 (i.e., reverse the bits of K2 and assign the result to

K3)
(c) K4 = 1’s complement of K3
If K2 and K3 are the same (i.e., the input is symmetric), then K3 and K4 are
not used.

3. For each selected key or its variant, flip one bit of it each time (starting
from the most significant bit) and compare the output of the flipped version
with the output of its unflipped version. This step is also referred to as one
experiment.

4. Repeat step 1, 2, 3 until the number of flippings, denoted by N, reaches a
specified number, for example 105. Because we do not stop until all the bits
of a key or its variant are flipped and the key length is 512 bits, the actual
number of flippings will be a multiple of 512. For an expected number 105,
the actual number of flippings is N = ceiling (105/512) × 512 = 100352.

Once enough number of experiments are carried out, we conduct a chi-square
goodness-of-fit test. Our test goal is to accept or reject the null hypothesis H0

that, for the flippings of input bits, the flippings of output bits follow a binomial
distribution.

Let S = (s0, s1, ..., sL−1) represent the output, whereL is the bit length of
the output. For the flipping of each input bit, we calculate the Hamming distance
H between the flipped version S′ and the unflipped version S as:

H =
L−1∑

i=0

(s
′
i ∧ si)

Let Hj denote the Hamming distance corresponding to the j -th experiment (i.e.,
the j -th flipping of input bits). The number of times that exactly m output bits
are flipped is

Countm =
N∑

j=1

δmHj
m = 0, 1, 2, ..., L

where N is the number of experiments and δmHj
is the Kronecker delta. Then

we compute the chi-square value
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χ2 =
L∑

m=0

(Countm − NPm)2

NPm
(1)

where Pm is the theoretical probability that m output bits are flipped for a
binomial distribution, calculated as,

Pm =
(

L
m

)
× 1

2L
=

L!
m!(L − m)!

× 1
2L

The critical value of the chi-square distribution with the degrees of freedom
(d.o.f.), v, can be computed as (see [16]):

C.V. = v +
√
2vxp +

2
3
x2
p − 2

3
+ O(

1√
v
)

where xp = 2.33 for our chosen significance level α = 0.01. Finally we compare
the chi-square statistic with the critical value to determine whether to accept or
reject the null hypothesis H0.

Table 1. Chi-Square Statistic Testing Results for MARC-bb Key Scheduling

Algorithm Input size
(bytes)

Output
size (bytes)

d.o.f. C.V. (α = 0.01) χ2 Reject H0?

MD5 64 16 128 168.233 49.527 No
SHA-1 20 160 204.633 66.401 No
SHA-256 32 256 311.674 77.629 No
SHA3-256 32 256 311.674 80.472 No
MARC-bb 32 256 311.674 79.463 No

256* 2047 2199.06 238.36 No
RC4 256* 2047 2199.06 4.56 × 1055 Yes
RC4 (+64 iterations) 256* 2047 2199.06 1.87 × 1016 Yes
RC4 (+256 iterations) 256* 2047 2199.06 244.29 No
∗We use 2047 bits out of the total 2048 output bits, because for swap operations the
number of flippings is always an even number if the entire state table is used.

The chi-square test results are shown in Table 1. The test results for RC4
and hash functions MD5, SHA-1, SHA-256, and SHA3-256 are also provided
for comparison. Each χ2 value is the average result of 10 runs, with each run
containing N = 100352 experiments. The results show that MARC-bb KSA has
a similar avalanche effect as hash functions MD5, SHA-1, SHA-256, and SHA3-
256. It satisfies the strict avalanche criterion. Each χ2 value is far less than the
corresponding critical value at the 0.01 significance level, suggesting that the null
hypothesis cannot be rejected and the observed distribution has a close match
with the expected binomial distribution. The distributions of the original RC4
and revised RC4 with additional 64 iterations do not agree with the expected
binomial distribution. But more shuffling, e.g., with additional 256 iterations,
helps to improve the avalanche effect of RC4 key scheduling.
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3 Algorithm Details

In this section we present the algorithm details of MaD4, including data struc-
ture, key scheduling, state initialization, and pseudorandom number generation.
The functional model of MaD4 is illustrated in Fig. 1. MaD4 uses MARC-bb for
key scheduling, state initialization, and reseeding. The pseudorandom generation
algorithm includes a generate function to generate pseudorandom numbers, an
update function to update the internal state, and a reseed function to provide new
entropies. The details of this model are discussed in the following subsections.

Fig. 1. Functional Model
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3.1 Data Structure

MaD4 maintains a data structure shown in Fig. 2, which comprises one 256-byte
state table (denoted by S ), two 512-byte state tables (denoted by Sa and Sb),
three 8-bit indices (denoted by i, j, and k), four 64-bit integers (denoted by a,
b, c, and d), and one 1024-byte output sequence buffer (denoted by T ). State
tables S, Sa, Sb, indices i, j, k, and integers a, b, c, d construct the internal state
of MaD4. T is used for buffering pseudorandom numbers generated from the
internal state. In some functions, the concatenation of Sa and Sb is used as a
large 1024-byte state table, referred to as Sw, or cast into a 32-bit integer array
of size 256, referred to as S32. During pseudorandom generation, state tables
(Sa, Sb, T, and Sw) are all cast into and used as 64-bit integer arrays.

Fig. 2. Data Structure

3.2 Key Scheduling

MaD4 uses MARC-bb KSA for key scheduling. It accepts a key that is no larger
than 64 bytes (512 bits). MaD4 also supports the use of an initialization vector
(IV) or a nonce. An IV can be up to 64 bytes and must be applied after the key.
It is used to further shuffle the state table S by iterating another 320 times and
during each iteration performing a left rotation operation among S[i], S[j], and
S[k]. This in effect is same as invoking MARC-bb KSA again, but with the IV
as the key and without resetting state table S and indices i, j, and k.

3.3 State Initialization

The initialization of the internal state of MaD4 consists of three steps.

1. First, state table S and indices i, j, and k are initialized using MARC-bb
KSA with a key (and an IV, if provided).

2. Next, state table S and indices i, j, and k are used to initialize state tables
Sa and Sb, by repeating the following copy-and-shuffle process.
(a) Copy S [0], S [1], ..., S [255] to Sa[0], Sa[1], ..., Sa[255];
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Listing 2. Initialization Shuffling Algorithm (ISA)
� �

1 # addition (+) and increment (++) operations
2 # are performed modulo 256
3 for r from 0 to 255
4 i++
5 j = j + S[i]
6 k = k ∧ j
7 left_rotate(S[i], S[j], S[k])
8 endfor

� �

(b) Shuffle S according to the Initialization Shuffling Algorithm (ISA) shown
in Listing 2 (the ISA shuffles the 256-byte state table S to generate a new
permutation);

(c) Copy S [0], S [1], ..., S [255] to Sa[256], Sa[257], ..., Sa[511];
(d) Repeat ISA;
(e) Copy S [0], S [1], ..., S [255] to Sb[0], Sb[1], ..., Sb[255];
(f) Repeat ISA;
(g) Copy S [0], S [1], ..., S [255] to Sb[256], Sb[257], ..., Sb[511];
(h) Repeat ISA.

3. Last, 32 pseudorandom bytes are generated using MARC-bb PRGA. These 32
bytes are converted into four 64-bit integers using little endian and assigned
to integers a, b, c, and d.

Now the internal state is initialized and contains five permutations of {0, 1, ...,
255}, three initialized 8-bit indices, and four initialized 64-bit integers.

3.4 Pseudorandom Number Generation

The pseudorandom generation algorithm is shown in Listing 3. MaD4 uses 64-bit
operations for pseudorandom number generation. Initially, the output sequence
buffer T is marked as empty. During each round of pseudorandom number gen-
eration, 128 64-bit integers or 1024 bytes are generated and stored in the output
sequence buffer. When a pseudorandom number generation request is received,
the output sequence buffer is checked. If it is not empty, the data stored in it
are used to serve the need. After all the data in the buffer are consumed, MaD4
refreshes the buffer by generating new pseudorandom numbers. During each gen-
eration round, the algorithm iterates 64 times and generates two 64-bit integers
during each iteration.

The internal state of MaD4 is functionally divided into two parts. State table
S and indices i, j, and k form the byte-oriented state (BOS) since they are used
as bytes in all the operations. State tables Sa, Sb and integers a, b, c, d construct
the integer-oriented state (IOS) since they are used in 64-bit integer format in
most operations. The BOS serves as a source of entropy to the IOS. Before each
generation round, 32 pseudorandom bytes are obtained from the BOS using the
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Listing 3. One Round of Pseudorandom Number Generation
� �

1 ## additions are performed modulo ##
2 ## 0x10000000000000000 ##
3

4 # declare a byte array of size 64
5 byte x[64]
6

7 # cast the byte array into 64-bit integer array
8 x[64] => x64[8]
9

10 # reseed
11 (e, f, g, h) = reseed(S32)
12

13 # update a, b, c, and d
14 a = a + e
15 b = b + f
16 c = c + g
17 d = d + h
18

19 # populate array x (through x64)
20 M = 0x7878787878787878
21 N = 0x0405060700010203
22 x64[0] = (a & M) | N
23 x64[1] = (b & M) | N
24 x64[2] = (c & M) | N
25 x64[3] = (d & M) | N
26 x64[4] = ((a >> 1) & M) | N
27 x64[5] = ((b >> 1) & M) | N
28 x64[6] = ((c >> 1) & M) | N
29 x64[7] = ((d >> 1) & M) | N
30

31 # generate pseudorandom numbers and update internal state
32 for r from 0 to 63
33 a = a << 1
34 b = b >> 1
35 a = a + (e ∧ Sw[x[r]])
36 b = b + (f ∧ Sw[x[r]∧0x78])
37 c = c + (g ∧ Sa[r])
38 d = d + (h ∧ Sb[r])
39 T[2r] = c ∧ (a + d)
40 T[2r+1] = d ∧ (b + c)
41 Sw[x[r]] = a + b
42 endfor

� �

reseed function given in Listing 4. These 32 bytes are converted into four 64-bit
intermediate variables e, f, g, and h using little endian. The reseed function is
similar to MARC-bb PRGA except that the 32-bit integer array S32 is shuffled,
i.e., four elements in S32 are left rotated during each of the eight iterations. The
four integers e, f, g, and h are then used to update a, b, c, and d. It is worth not-
ing that, while MaD4 is presented as a deterministic CSPRNG in this paper, it
can be used as a non-deterministic CSPRNG as well by introducing additional
non-deterministic and/or true random sources during reseeding. Those addi-
tional entropy inputs make MaD4 behave like a true random number generator
(TRNG).
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Listing 4. Reseed Function
� �

1 # function reseed(S32)
2 for r from 0 to 7
3 i++
4 j = j + S[i]
5 k = k ∧ j
6 swap(S[i], S[j])
7 m = S[j] + S[k]
8 n = S[i] + S[j]
9 left_rotate(S32[i], S32[j], S32[k], S32[n])

10 output S[m]
11 output S[n]
12 output S[m ∧ j]
13 output S[n ∧ k]
14 endfor

� �

Variable x is a byte array of size 64, used as indices to access state tables
for indirection operation. It is computed from the updated a, b, c, d, and two
constants M and N. Each byte of x has a value falling in the range [0, 127] and
any two bytes with a distance less than 8 have distinct values. The combination
of Sw [x [r ]], Sw [x [r ]∧0x78], Sa[r ], and Sb[r ] introduces pseudorandom indirect
access and at the same time guarantees all state table integers get involved
during each generation round. The way we choose these four state table integers
during each iteration deserves some explanations. First note that both Sw [x [r ]]
and Sw [x [r ]∧0x78] can access either state table Sa or state table Sb but they
can never access the same state table, which also means each state table has the
same chance to be accessed by them. The use of constants M and N results in
a special feature – the four state table integers Sw [x [r ]], Sw [x [r ]∧0x78], Sa[r ],
and Sb[r ] are distinct and they are also different from any of the four state table
integers used in the previous 3 or next 3 iterations. By distinct and different,
we mean they point to different state table integers, which do not necessarily
but with a high probability have different values. One can verify this feature
by observing the following facts: Sw [x [r ]] and Sw [x [r ]∧0x78] are distinct; so are
Sa[r ] and Sb[r ]; the lower three bits of x [r ] and x [r ]∧0x78 come from N and
cycle through the values 4, 5, 6, 7, 0, 1, 2, 3; while those of r cycle through the
values 0, 1, 2, 3, 4, 5, 6, 7. This is demonstrated in Table 2.

Table 2. State Table Access During Pseudorandom Number Generation

State table integer Subscript State table accessed Subscript values (last 3 bits)

Sw [x [r ]] x [r ] Sy (y = a or b) 4, 5, 6, 7, 0, 1, 2, 3, ...

Sw [x [r ]∧0x78] x [r ]∧0x78 Sz (z = a or b, z �= y) 4, 5, 6, 7, 0, 1, 2, 3, ...

Sa[r ] r Sa 0, 1, 2, 3, 4, 5, 6, 7, ...

Sb[r ] r Sb 0, 1, 2, 3, 4, 5, 6, 7, ...
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Fig. 3. Data Flow in One Iteration of PRGA

Figure 3 summarizes the data flow during one iteration in pseudorandom
number generation, with detailed interactions among different elements omitted.

For efficiency and simplicity, only a few types of operations are used. They are
bitwise AND, bitwise OR, bitwise XOR, addition, left logical bitwise shift, and
right logical bitwise shift, each taking only one clock cycle for most processors
when operands are immediate constants or register variables [12]. All four inte-
gers a, b, c, and d are updated during each iteration. Besides that, one element
from state table Sa or Sb is also updated via Sw [x [r ]] during each iteration. In
other words, nearly half of Sa and Sb is updated during each generation round
or on average each state table element has a 50% chance to get updated. Is it fast
enough to update half of Sa and Sb during each generation round? The answer
is “yes”. Due to the shift operations, the value of a is determined by the most
recent 64 values of Sw [x [r ]] (and e) and the value of b is largely determined by
the most recent 64 values of Sw [x [r ]∧0x78] (and f ). On the other hand, c and d
are permanently affected by any state table element that has been involved in
the computation of their values. This means the update of a single state table
element can completely change the evolution path of c and d.

4 State Transition and Period

The internal state of MaD4 consists of a byte-oriented state whose transition fol-
lows a pseudorandom permutation and an integer-oriented state whose transition
follows a pseudorandom mapping. For the 256-byte state table S, the number of
possible permutations is N = 256! ≈ 21684. This gives an average period around
N/2 = 21683. The index i is used as a loop counter and has a cycle of 28. The
transition of index j or k roughly follows a pseudorandom mapping and has a
cycle around 28/2 = 24. Therefore the expected period of the byte-oriented state
is 21683+8+4+4 = 21699. The integer-oriented state consists of the 1024-byte state
table Sw and the four 64-bit integers a, b, c, and d . Its transition follows a pseu-
dorandom mapping. This gives an expected period of 2(1024×8+4×64)/2 = 24224.
So the overall expected period of MaD4 is 21699+4224 = 25923 ≈ 1.00 × 101783.
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Aside from the average period length, another metric of practical interest is
the lower bound of the period length. Some stream ciphers and pseudorandom
number generators provide a hard lower bound of period length through the use
of a counter [8,10,15]. MaD4 does not use a counter and theoretically any period
length is possible, but it is unlikely to hit a short period length in practice due
to the huge number of internal states. For an n-bit state, the probability that
the period length is equal to or smaller than k can be computed as

P≤k = 1 − P>k

= 1 −
(
2n − 1
2n

) (
2n − 2
2n

)
· · ·

(
2n − k

2n

)
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)]k

= 1 −
(
1 +

−k

2n

)k
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k
j

)(−k

2n

)j
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)
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is the binomial coefficient. For 1 � k � 2n/2, it follows that
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Table 3 gives some “small” period lengths of MaD4 and their associated prob-
abilities computed using Eq. (2). Note that, MaD4 has a state of 10520 bits, but
the 2048-bit state table S is a permutation of {0, 1, ..., 255}, which gives a total
256! ≈ 21684 states instead of 22048 states. Therefore we need to substitute 10156
instead of 10520 for n in Eq. (2) when computing the probabilities.

5 Security Analysis

5.1 Resistance Against Known Attacks

In this subsection, we analyze the security of MaD4 in the context of known
attacks.
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Table 3. Period Lengths and Associated Probabilities

Period length ≤ 264 ≤ 2128 ≤ 2256

Probability
< 2−10028

≈ 1.87 × 10−3019

< 2−9900

≈ 6.35 × 10−2981

< 2−9644

≈ 7.36 × 10−2904

Time-Memory Tradeoff Attacks. Time-memory tradeoff attacks rely on pre-
computation to reduce the effort needed for recovering the internal state and/or
secret key [6]. This type of attacks proceed as follows: assume that the PRNG is
in a certain state and calculate a number of output bits and put the pair (out-
put, state) in a sorted list; after enough pairs are calculated and stored, try to
match a received output sequence with the saved output sequences; if the match
is successful, then with some likelihood the internal state or partial of it may be
determined, which may further lead to the recovery of the secret key. The param-
eters in a time-memory tradeoff attack are time (T ), memory (M ), and amount
of output data (D). In general T×M2×D2 = S2, where S is the state space of the
PRNG and D2 ≤ T . The precomputation time P is computed as P = S/D. The
design strength of MaD4 is 512 bits. For the brute-force equivalent attack with
T = 2512 and D ≤ √

T = 2256, M = S/D/
√

T ≥ 210156/2256/2256 = 29644. The
lower bound on memory for the attack is 29644 bits, which is simply impractical.

Guessing Attacks. The strategy for this type of attacks is to guess a small part
of the internal state and then deduce the remaining part. This is particularly
powerful when applied to a word-based PRNG because a word-based PRNG has
a relatively small number of internal words and any word guessed has a good
chance to participate in the computation of next iteration if the algorithm is
not designed with caution. The consequence is that more and more words get
revealed and the PRNG is eventually broken. MaD4 is designed to resist this
type of attacks.

To be successful, an attacker must be able to do two things, namely, be able
to efficiently verify his guessing (guess and verify) and be able to determine more
unknowns based on his guessing (guess and determine). In MaD4, by knowing
the value of T [2r ] at a certain moment, an attacker can guess two of the three
integers (a, c, and d) and then compute the third integer. Since he also knows
T [2r+1], he can further compute the value of b. The attacker needs to guess 128
bits to figure out the values of all four integers a, b, c, and d. Once the attacker
knows a and b, he can compute Sw [x [r ]] = a + b. To know x [r ] and therefore
identify which integer is to be updated, he needs to guess another 4 bits (out of
the 7 bits, the lower 3 bits are known apriori). So the attacker needs to guess 132
bits (128 bits if he chooses not to know x [r ]) in total during the first iteration
of guessing.

During the second iteration, the attacker needs to guess 128 bits like in the
first iteration to figure out the new values of a, b, c, and d, and then another 128
bits to figure out the values of two of e, f, g, and h (and also two of the four state
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table integers Sw [x [r ]], Sw [x [r ]∧0x78], Sa[r ], and Sb[r ]). Note that since the
attacker only needs to find out two values (one must be c or d) so as to know all
the values of a, b, c, and d during each iteration, it is not necessary for him to find
out all the values of e, f, g, and h. Also notice that the second 128 bits guessing
is based on the design that the four state table integers Sw [x [r ]], Sw [x [r ]∧0x78],
Sa[r ], and Sb[r ] are distinct and they are also different from any of the four
state table integers used in the previous iteration. If two integers, for example
Sw [x [r ]] and Sa[r ], are identical, then the attacker only needs to guess 64 bits
instead of 128 bits. If a state table integer used in the previous iteration, for
example the already known Sw [x [r ]], can appear in the next iteration, then the
128 bits guessing is also reduced to 64 bits. Here we have ignored the relatively
small cost that is needed to make two integers point to the same state table
integer (a probability of 1

128 = 2−7 or a cost of 7 bits) or make a state table
integer used in the previous iteration appear in the next iteration (a probability
of 2× 1

128 = 2−6 or a cost of 6 bits; the coefficient 2 comes from that each of the
two state table integers whose values need to be determined can take the known
value).

During the third iteration, the attacker still needs to find out the new values
of two of the four integers a, b, c, and d. To achieve this, he needs to know the
values of two of the four state table integers Sw [x [r ]], Sw [x [r ]∧0x78], Sa[r ], and
Sb[r ]. This requires to guess another 128 bits. Note that even though the attacker
already knows the values of five distinct state table integers, one during the first
iteration and four during the second iteration, none of them can reappear during
the third iteration. Since none of the state table integers accessed during the first
three iterations can reappear in the fourth iteration, the attacker still needs to
guess 128 bits during the fourth iteration.

The first four iterations require at least 128+ 2× 128+ 128+ 128 = 640 bits
of work, which is far more than our design strength 512 bits. The above attack
is not unique and different attack strategies can be taken, but none is likely
to be more efficient than the above one. The above analysis only covers one
generation round. Between each two generation rounds, the attacker has to deal
with the 32 pseudorandom bytes obtained from state table S, otherwise he will
not be able to track the values he has already guessed and determined. So the
cost to completely break MaD4 through guessing attacks is far more than that
of a brute force attack. To conclude this subsection, we also want to point out
that it is infeasible to break the 64-bit integers into smaller units so as to reduce
the attack cost. If the smaller units, say bytes, can be computed independently,
then the attack cost will be significantly reduced. This is because each 64 bits
can be reduced to, for example, eight 8 bits, which is equivalent to 11 bits only
(8 × 28 = 211).

Distinguishing Attacks. As its name suggests, a distinguishing attack tries
to distinguish the output sequence of a PRNG from a truly random sequence.
Distinguishing attacks are low-cost and powerful attacks. For a distinguishing
attack to be successful, it is usually sufficient to find a bias, a correlation, or
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some non-uniform distribution in the internal state and/or the output sequence.
As such, being resistant to distinguishing attacks is a fundamental requirement
for a CSPRNG and has been taken into account in a general sense throughout
the design and testing of MaD4. In this subsection, we look into a few specific
distinguishing attacks and examine the security of MaD4 against them.

All statistical testing tools are designed for detecting this problem in the
design of various pseudorandom number generators and ciphers. Passing statisti-
cal tests, however, does not necessarily mean a pseudorandom number generator
or cipher is immune to distinguishing attacks. A sequence not distinguishable
from a truly random sequence by statistical testing tools may still be revealed as
not random by distinguishing attacks. This is particularly true when consider-
ing that distinguishing attacks often explore specific design details that are not
considered by general purpose testing tools.

One way to launch a distinguishing attack against a PRNG is to explore the
algebraic structure of the PRNG and try to demonstrate that it can be (par-
tially) described by some algebraic equations, thereby proving it is not random.
Although similar techniques are used, a distinguishing attack does not try to
completely solve the algebraic equations as an algebraic attack does. It suffices
to show that those equations are satisfied with a non-trivially high probability
that cannot happen with a truly random sequence. There are only two values in
F2 and therefore each equation is satisfied with a probability of 0.5 for a truly
random sequence. For a successful algebraic attack, each equation is satisfied
with a probability of 1. For a successful distinguishing attack, each equation
should be satisfied with a probability that is non-trivially higher than 0.5 or,
equivalently, the number of equations that are satisfied should be non-trivially
larger than half of the total number of equations.

The degree of equations, denoted as d, that makes algebraic attacks more
efficient than a k -bit brute force search for an n-bit internal state can be numer-
ically evaluated using the following inequality:

(
n!

d!(n − d)!

)2.3727

< 2k

Our analysis shows the degree of equations derived for one round of pseudoran-
dom generation in MaD4 is 256 and the degree for a feasible algebraic attack
must be less than 19 according to the above inequality (analysis details are omit-
ted due to page limit). This big difference indicates MaD4 has a strong resistance
to both algebraic attacks and distinguishing attacks based on similar techniques.

Another distinguishing attack technique that targets stream ciphers using
linear masking was proposed by Coppersmith et al. and applied to SNOW 1.0
[11]. Stream ciphers (also PRNGs) usually include some nonlinear process in
their design. The nonlinear process resembles a block cipher and its states are
deemed uncorrelated if they are far away in time. Linear masking tries to mask
the correlation among states close in time. It masks those states using indepen-
dent parts of a linear process. The basic idea of the attack is to find some linear
combination of the linear process that vanishes. When this same combination
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is applied to the output stream, the linear process would vanish. This way the
attacker is left with the nonlinear process only, for which he can further look
for a characteristic that can be distinguished from randomness. Distinguishing
attacks have also been mounted for other stream ciphers that use linear mask-
ing, including SNOW 2.0 and Sosemanu, [19,26,31]. MaD4 does not use linear
masking, thus rendering this type of distinguishing attacks irrelevant.

Differential Attacks. Differential cryptanalysis tries to track the relationship
between differences in input and differences in the corresponding output of a
cryptosystem. A special differential cryptanalysis called impossible differential
cryptanalysis exploits differences that are impossible (i.e., having a probability
of 0) instead of differences that have a probability higher than what can be
expected from a random transformation. Differential attacks are of particular
concern and have long since been the subject of intensive research for block
ciphers and other cryptosystems whose process depends on the input plaintext.

Differential cryptanalysis can be used to track how differences of keys and/or
IVs propagate and affect the internal state and the output sequence of a PRNG.
This has been demonstrated in several attacks on RC4 [5,13,22]. All these attacks
have exploited the relatively simple key scheduling algorithm and pseudoran-
dom generation algorithm of RC4. As shown in Subsect. 2.3, MaD4 significantly
improves the avalanche effect by using a more complex key scheduling algorithm
than RC4. This makes it more difficult to track the relationship between the
input key and the internal state. Compared with RC4, MaD4 also performs some
additional state initialization and uses a more complex pseudorandom generation
algorithm, which further enhance its resistance against differential attacks.

Other Attacks. We have also analyzed the security of MaD4 against other
attacks, including special attacks against RC4, algebraic attacks, and side chan-
nel attacks, but cannot include the results here due to page limit.

5.2 Next-Bit Test and State Compromise Extensions

Besides those requirements set for an ordinary PRNG, a CSPRNG also needs
to meet some additional requirements, that is, satisfying the “next-bit test” and
withstanding “state compromise extensions”. In this subsection we address these
two requirements.

Next-Bit Test. Given the first k bits of a random sequence, if there is no
polynomial-time algorithm that can predict the (k+1)-th bit with a probability
of success significantly greater than 1/2, then the random sequence is said to
pass the next-bit test [7]. A more general test is Yao’s test [34], which tests
whether a random sequence is distinguishable from a truly random sequence by
any polynomial-time algorithm. Obviously next-bit test is only a special case of
Yao’s test and passing next-bit test is a necessary condition for passing Yao’s test.
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However, Yao proved that passing next-bit test is also a sufficient condition for
passing Yao’s test. The significance of Yao’s work is that it reduces randomness
test to a single test, i.e., next-bit test.

It is important to notice that the next-bit test is a theoretical test due to
the fact that it needs to be conducted against every polynomial-time algorithm,
which is impossible in practice. Although some next-bit tests have been devel-
oped [14,17,28,30], they are only based on a few specific prediction algorithms
and passing them is far from enough to conclude a PRNG passes the next-bit
test. Those tests have more values for research than for practical use.

Since it is impossible to implement a perfect next-bit test, no PRNG can
prove it passes the next-bit test in the strict sense given in [34]. A common
practice is to relax the requirement by replacing all polynomial-time algorithms
with (most) known polynomial-time algorithms. This less strict requirement can
be addressed from several respects:

1. Several standard statistical test suites have been developed. They include
many tests designed for distinguishing a pseudorandom sequence from a truly
random sequence. We tested MaD4 using those statistical test suites and the
results will be given in Sect. 6.

2. Standard statistical test suites are developed with no knowledge of a specific
PRNG, which means they do not address the next-bit test issue with respect
to the PRNG algorithm itself. An attacker can use the PRNG algorithm itself
to predict or even compute the next bit if he knows part or all of the internal
state. How to prevent an attacker from using the PRNG algorithm itself to
predict the next bit is addressed by the requirement that a CSPRNG should
be able to withstand state compromise extensions. We will discuss MaD4’s
this capability in next subsection.

3. A third group of polynomial-time algorithms are those used in various known
attacks. Being resistant to known attacks is a necessary condition for passing
the next-bit test. For MaD4, this has largely been addressed in Sect. 5.

4. There are always unknown attacks and new attacks can keep on emerging.
As such, a CSPRNG should be routinely revisited and, if necessary, revised.

State Compromise Extensions. A state compromise extension attack
attempts to recover unknown outputs and/or internal states of a PRNG by
using the knowledge of the internal state of the PRNG at some time. A formal
requirement defined in terms of backtracking resistance and prediction resistance
is given in NIST special publication 800-90A [1]:

– Backtracking Resistance – Backtracking resistance is provided relative to time
T if there is assurance that an adversary who has knowledge of the internal
state of a PRNG at some time subsequent to time T would be unable to
distinguish between observations of ideal random bitstrings and (previously
unseen) bitstrings that were output by the PRNG prior to time T.

– Prediction Resistance – Prediction resistance is provided relative to time T if
there is assurance that an adversary who has knowledge of the internal state
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of the PRNG at some time prior to T would be unable to distinguish between
observations of ideal random bitstrings and bitstrings output by the PRNG
at or subsequent to time T.

The above definition means that a CSPRNG should withstand both distinguish-
ing attacks and state recovery attacks in both backward and forward directions
in the case the internal state is compromised at some time. Since distinguishing
attacks are easier than state recovery attacks, being resistant to this type of
attacks means a higher requirement for the designer of the generator.

While MaD4 is not based on computationally hard problems, it is practically
impossible to go backwards, either from the observed stream of pseudorandom
numbers to the internal state or from a compromised state to its previous states
or the stream of pseudorandom numbers generated before the state is compro-
mised. State compromise extension attacks are likely to happen if state initial-
ization does not provide sufficient entropy. Many attacks mounted against RC4
exploit the weakness of RC4’s key scheduling. MaD4 uses a more advanced KSA
that meets the strict avalanche criterion. State compromise extension attacks can
also happen when the internal state is leaked out or compromised by attacks.
Since it is impossible to guarantee that occasional compromises of the internal
state cannot happen, a CSPRNG should be designed to resist state compromise
extension attacks.

One difference between RC4 and MaD4 is that RC4 uses pseudorandom per-
mutations for state transition and MaD4 uses both pseudorandom permutations
and pseudorandom mappings for state transition. Pseudorandom permutations
are invertible and it requires no efforts to go from a state to its previous state.
For example, RC4’s state transition is done through the following code:

i++
j = j + S[i]
swap(S[i], S[j])

If the internal state (j plus S ) completely leaks out or is compromised, one can
easily go back by reversing the algorithm, that is,

swap(S[i], S[j])
j = j - S[i]
i--

It is possible to recover the entire internal state of RC4 within a minute by
launching a cache timing attack against it [9]. So state compromise extensions
are real threats to RC4 and, for this reason, RC4 cannot be used as a CSPRNG.

Pseudorandom mappings are non-invertible and therefore have a better back-
tracking resistance. Knowing the internal state of MaD4 at a point in time does
not enable one to compute its previous state. During each of the 64 iterations of
the generation round of MaD4, all four state integers a, b, c, and d are updated.
Another state table integer Sw [x [r ]] is also updated. The update of those integers
involves the old values of those integers, the byte array x, and the intermediate
variable e, f, g, and h. Therefore it is impossibleto directly compute the old val-
ues from the current known values. Knowing the output pseudorandom sequence
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additionally does not help much either, since each output integer is computed
from many internal integers and the computation involves indirect access (via
Sw [x [r ]] and Sw [x [r ]∧0x78]), which is nonlinear. It is also worth noting that,
to go back to the previous state, one must find out the byte array x and the
four intermediate variables e, f, g, and h, which are computed at the beginning
of the generation round, that is, they are computed from some state that is far
before the previous state one is trying to recover. In principle, this issue can be
solved by constructing and resolving a system of equations. But neither the con-
struction nor the resolution of such a system of equations would be easy, if not
impossible, due to the special design of the pseudorandom generation algorithm
of MaD4.

Prediction resistance can only be achieved when at least some part of the
internal state or some entropy input is kept unknown or unpredictable from
attackers. Knowing the whole internal state does enable one to compute the
future states. This is likely to happen when an attacker gains physical access to
the internal state. It is often assumed that one or more unpredictable sources of
entropies are available to a CSPRNG. In other words, it is a reasonable assump-
tion that at least some information (e.g., a seed, part of the internal state, etc.)
is not leaked out. In our case, we assume at least one part of the internal state
is not compromised. The internal state of MaD4 is functionally divided into two
parts. A specific implementation should take this into consideration and main-
tain the two parts of the internal state in such a way that they are unlikely
to be compromised (e.g., through physical access) at the same time. Prediction
resistance can also be achieved by periodically querying some non-deterministic
random sources and using them as unpredictable sources of entropies. One such
implementation can be found in [21]. It converts MaD4 into a non-deterministic
pseudorandom generator that behaves like a true random number generator.

6 Statistical Testing

A couple of statistical testing tools have been developed, among which are the
most widely used NIST statistical test suite [27], Diehard battery of tests [23],
and TestU01 batteries of tests [18]. We tested MaD4 using these three statistical
test suites and the results are summarized in this section.

6.1 NIST Statistical Test Suite

The NIST tests are based on hypothesis testing. Each test is formulated to test
a specific null hypothesis, i.e., a specific sequence of zeroes and ones is random.
A probability value (P-value) is computed for each test, which summarizes the
strength of the evidence against the null hypothesis. The probability that the
null hypothesis for randomness is rejected for a random sequence is called the
level of significance (α) of the test. If P-value ≥ α, then the null hypothesis
is accepted; i.e., the sequence appears to be random. If P-value < α, then the
null hypothesis is rejected; i.e., the sequence appears to be non-random. We
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tested 1000 random sequences, each containing one million bits (125 KB). The
significance level (α) is set to 0.01 in all tests. MaD4 passed the NIST statistical
tests.

6.2 Diehard Battery of Tests

Most of the tests in Diehard return a P-value, which should be uniform on [0,1)
if the input file contains truly independent random bits. A P-value near 0 or 1
indicates deviation from true randomness. This is in contrast with NIST tests,
where a bigger P-value indicates better randomness. The new Diehard release
contains 17 tests, including some “tough” tests [24]. The tests are divided into
two groups based on the minimum random sequence size that is needed by each
test. For the first group, we tested 50 random sequences, each containing 2176
million bits (272MB). For the second group, we tested 100 random sequences,
each containing 96 million bits (12MB). MaD4 passed the Diehard battery of
tests.

6.3 TestU01 Batteries of Tests

TestU01 is the most comprehensive statistical test suite that is publicly avail-
able so far. Six pre-defined batteries of tests are available in TestU01. TestU01
requires much more (pseudo-)random numbers than the NIST and Diehard
suites. It takes many hours to run all the 6 batteries on our machine. MaD4
cleared the 6 TestU01 batteries of tests.

7 Performance Testing

Table 4. Pseudorandom Number Gener-
ation Speed (cycle/byte)

Generator Sequence size (KB)

1 10 100 1000 10000

RC4 5.87 3.88 3.80 3.81 3.83

HC-128 18.50 3.17 1.52 1.35 1.34

Rabbit 6.65 5.36 5.25 5.23 5.24

Salsa20 6.51 5.94 5.84 5.83 5.90

Sosemanuk 13.60 3.13 2.02 1.91 1.90

ChaCha8 7.22 2.80 2.35 2.30 2.30

ChaCha12 8.11 3.79 3.34 3.29 3.29

ChaCha20 10.09 5.77 5.31 5.27 5.28

MaD4 12.65 1.74 0.63 0.51 0.50

Table 5. Data Encryption Speed
(cycle/byte)

Cipher Sequence size (KB)

1 10 100 1000 10000

RC4 5.89 3.90 3.82 3.83 3.85

HC-128 19.25 3.50 1.84 1.67 1.66

Rabbit 6.70 5.57 5.41 5.31 5.34

Salsa20 9.41 8.74 8.63 8.60 8.71

Sosemanuk 14.83 4.50 3.43 3.32 3.32

ChaCha8 7.76 3.26 2.76 2.71 2.70

ChaCha12 9.16 4.36 3.85 3.80 3.81

ChaCha20 11.14 6.53 6.02 5.97 6.00

AES-128 30.97 12.29 10.42 10.23 10.27

AES-192 32.70 13.99 12.11 11.93 12.01

AES-256 34.37 15.69 13.82 13.63 13.66

AES-NI-128 3.82 3.23 3.18 3.17 3.17

AES-NI-192 4.23 3.65 3.59 3.59 3.59

AES-NI-256 4.48 4.05 4.01 4.00 4.00

MaD4 12.67 1.78 0.69 0.58 0.56
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In this section, we present the performance testing results for MaD4, including
both pseudorandom number generation speed and data encryption speed. The
testing results for RC4, the four software-efficient finalists of eStream [2,3,8,33],
the ChaCha stream cipher [4], and Advanced Encryption Standard (AES) [25]
are also included for comparison2.

The testing is done for a software implementation using C programming lan-
guage. The C implementation closely follows the pseudo code given in Sect. 2
and Sect. 3. There are no special optimizations done at the source code level
except that register variables are used to minimize memory access whenever
possible. Most modern compilers are smart enough and know more about code
generation than the developer [20]. They can perform various optimizations to
generate more compact and/or faster code, including constant folding, dead code
elimination, inline expansion or macro expansion, strength reduction, loop opti-
mization, code re-ordering for maximum pipeline throughput and cache effects,
and many more. Therefore we leave optimizations largely to the compiler.

All implementations are compiled using Microsoft Visual C/C++ 64-bit
Optimizing Compiler Version 19 with option /O2 (optimized for maximum
speed) and tested on an Intel Core i7-7500U 2.7GHz personal computer with
128KB L1 cache, 512KB L2 cache, and 4MB L3 cache. For each sequence size,
we run each executable 100 times and get the average value of the top 5 speeds.
The reason we exclude low speeds in our calculation is that the measured cycles
may contain contributions from some system processes that we cannot stop and
the small cycles more likely reflect the actual performance. The testing does
not involve any file I/O operations. The data given here are more for relative
comparison than for benchmarking, which would require more comprehensive
testing on different platforms. For the same reason, we refrain from using the
commercial Intel C/C++ compiler, which has the potential to generate faster
executables than Microsoft Visual C/C++ compiler on Intel platforms.

The testing results for pseudorandom number generation are given in Table 4.
MaD4 does not perform better than other PRNGs for short sequences of 1 KB
due to its relatively heavy state initialization. MaD4 is significantly faster than
other PRNGs for long sequences and is 2.4 to 2.7 times as fast as the second
fastest HC-128 when the sequence size is 100 KB or more.

The testing results for data encryption are given in Table 5. All stream ciphers
are faster than the software implementation of block cipher AES (specifically, the
optimized software implementation from OpenSSL). MaD4 is the fastest cipher
and is about 18 to 24 times as fast as AES for long sequences. Notice, however,
the Intel AES New Instructions (AES-NI) achieve a speedup of 3.2 to 3.4 times,
which makes AES comparable to most stream ciphers.

2 The Electronic Code Book (ECB) mode is used in the performance testing of AES.
This is not a recommended mode due to its security weaknesses, but it is the simplest
and the fastest mode, which enables us to find the upper limit of the speed of AES.
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8 Conclusion

A new design paradigm is introduced and used to construct a cryptographically
secure pseudorandom number generator in this paper. The key of this paradigm
is the close combination of slow byte-oriented operations that are used for initial-
ization and reseeding and fast integer-oriented operations that are used for pseu-
dorandom number generation. The state space of the generator is accordingly
divided into a small byte-oriented state, whose transition follows a pseudoran-
dom permutation, and a large integer-oriented state, whose transition follows a
pseudorandom mapping. The byte-oriented state is first initialized through a key
scheduling process as usual. The integer-oriented state is then bootstrapped and
initialized through the byte-oriented state. After initialization, the byte-oriented
state serves as a source of entropy and periodically reseeds the integer-oriented
state. The effectiveness of this new design paradigm is well demonstrated through
the construction of MaD4, the new cryptographically secure pseudorandom num-
ber generator presented in this paper. MaD4 excels in several respects:

– high quality key scheduling and initialization. It has an avalanche effect
that meets the strict avalanche criterion.

– high quality pseudorandom number generation. It clears all the NIST
statistical tests, the new Diehard battery of tests, and the most stringent
TestU01 batteries of tests.

– high speed. It reaches a speed close to half clock cycle per byte on a typical
Intel Core i7 personal computer, which is several times faster than any existing
cryptographically secure pseudorandom number generator that we are aware
of. When used as a stream cipher, it is about 18 to 24 times as fast as AES
and 6 to 7 times as fast as AES-NI.

– cryptographically secure. It resists various known cryptographic attacks
and withstands state compromise extension attacks as well.

It can be used in a wide range of cryptographic applications, including those
having stringent requirements for security, randomness, and speed.
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1 Introduction

The use of Public Key Cryptography, often known as PKC, protects the con-
fidentiality of data by ensuring its secure transmission through an unsecured
channel, such as the internet, relying on hard mathematical problems to pro-
tect the privacy of the information. The NP-hard factorization and (Elliptic
Curve) Discrete Logarithm Problems (DLP) are the foundations upon which
traditional cryptosystems are constructed. Elliptic Curve Cryptography (ECC),
which is entrenched in the complexity of solving ECDLP, delivers high-security
levels while demonstrating minimal computational latency and small key sizes
in comparison to other classical cryptosystems. As a consequence, ECC-based
cryptoschemes are essential for network protocols, as they are frequently used for
key agreement and digital signature algorithms. Despite the minimal resource
requirements of ECC schemes, public key cryptography remains challenging to
implement and deploy on low-end real-time devices which feature scarce memory,
limited battery life, and restricted bandwidth.

The continuous advancement of technology leads to its integration into daily
life activities, producing the vast universe of the Internet of Things (IoT),
which implies an improved standard of living. The widespread usage of real-
time embedded systems over the last several decades has created a demand for
efficient cryptographic scheme implementation on resource-constrained devices.
The specifications of the ARMv7-based Cortex-M4 processor, suitable for cost-
conscious and power-constrained development, position the platform among the
most widely used embedded devices in the IoT market. This is the reason why
the National Institute of Standards and Technology (NIST) [1] selected it as a
target platform for evaluating the performance of the cryptographic primitives.

The classical cryptosystems, believed to be robust against today’s comput-
ers, are, however, shown to be vulnerable to quantum attacks as presented by
Shor in [2]. The hard mathematical problems underpinning classical schemes
could be broken in polynomial time, rather than exponential, when a large-scale
quantum computer is developed. Although the availability of such a class of
quantum computers cannot be predicted, the need for quantum-robust encryp-
tion prompted NIST to initialize a Post-Quantum (PQ) standardization process
in 2016. The newly proposed PQ primitives are being evaluated and optimized
during the standardization effort. The use of stand-alone post-quantum prim-
itives in network protocols, however, is not in accordance with industry and
government standards; hence, hybrid systems based on classical and PQ algo-
rithms are the primary focus of cryptography researchers for transitioning from
classical- to PQ- robust environment, thus, the optimal implementation of clas-
sical schemes such as ECDH and EdDSA, focus of this work, remains critical for
the performance of cryptographic network protocols.

ECC is a critical component of the majority of cryptographic libraries. Yet, in
recent years, certain NIST curves have been a subject of further investment and
analysis, rising concerns about their security. Due to the resolved backdoor issues
associated with existing NIST curves introduced in [3], the recently proposed
Montgomery curves Curve25519 and Curve448 and their birationally equivalent
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(un)twisted Edwards curves Ed25519 and Ed448 have been widely used and rec-
ommended by NIST. Providing 128- and 224-bit security, the curves are suitable
for implementing key agreement and digital signature protocols. As a result, they
have been included in the TLS1.3 version of the widely used Transport Layer
Security protocol from 2018. The interest in the curves leads to several target-
specific optimizations, resulting in better performance and energy outcomes.
Due to its low calculation latency and reduced resource requirements, several
research teams are concentrating on Curve25519 and Ed25519 on different sys-
tems, according to the literature. To the best of our knowledge, Curve448 and
Ed448 have not yet been explored in such depth, particularly on low-end devices,
due to the challenging implementation of long-integer finite field arithmetic on
such resource-constrained targets. In this work, we present a new performance
record of the key exchange protocol based on Curve448 and the digital signature
algorithm based on Ed448 targeting low-end embedded devices based on ARM
Cortex-M4 platform.

1.1 Related Work

The implementation of cryptographic primitives on low-end IoT devices is a
challenge, especially when designing public key cryptography, due to the enor-
mous resource needs of such schemes. This is why academics and engineers are
focusing on the ideal development of asymmetric schemes for embedded devices,
where ECC has been the dominant choice when addressing resource-constrained
devices due to its efficiency and low bandwidth needs.

Bernstein introduced the new-generation elliptic curve Curve25519 and its
birationally equivalent twisted Edwards curve Ed25519 in [4] and [5], respec-
tively, to achieve a high level of security and optimal performance outcomes
for the Elliptic Curve Diffie-Hellman (ECDH) key agreement and the Edwards-
curves Digital Signature Algorithm (EdDSA). Some of the most recent work on
Curve25519 and Ed25519 is presented in [6–8] aimed at optimizing the finite
field and group computations on high-end platforms. Time-efficient implementa-
tion of Curve25519 arithmetic targeting embedded devices is presented in [9–11]
based on optimal register utilization and careful instruction scheduling. Another
research focus is the optimization on hardware presented in [12–14]. Extensive
study on side-channel protection of the scheme is also present in the literature
[15–17].

Curve448 along with its birationally equivalent untwisted Edwards curve
Ed448, proposed by Hamburg in [18], offers higher security level than the dis-
cussed Curve25519. The optimizations for Curve448, however, to the best of our
knowledge, have not been as exhaustive, specifically when targeting low-ended
devices with scarce resources due to the higher security level and thus more
computationally intensive arithmetic operations.

Recent enhancements to the 224-bit secure ECDH/EdDSA over Curve448
targeting Haswell and the Skylake microarchitectures are presented in [19] where
Oliveira et al. present an optimal fixed-point multiplication strategy based on
precomputation of constant values derived from the fixed point and its multiples.
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Later, in [20], Seo presents an optimized implementation of Curve448 arithmetic
targeting low-end 8-bit AVR and 16-bit MSP processors, where the main con-
tribution consists of the adoption of two- and three-level subtractive Karatsuba
method for the execution of the multi-precision multiplication and squaring sub-
routines. Faz-Hernandez et al. present speed optimizations of the Curve448 in
[6] targeting the Intel AVX2 vector instruction set, reaching 10–30% of per-
formance improvements for key agreement and digital signature cryptographic
schemes. Finally Seo et al. present the first implementation of Curve448 ECDH
targeting the low-end embedded platform ARM Cortex-M4 [21] and Anastasova
et al. show optimal target-specific implementation of EdDSA algorithm based
on Ed448 [22].

The Elliptic Curve Cryptography has a pyramid-like layered structure, where
the computation of high-layer group operations is based on low-layer finite field
arithmetic. The pyramidal structure enables high-level improvements aimed at
breaking speed records for group operations. The low-level arithmetic computa-
tions, the topic of this study, result in an overall acceleration of the ECC prim-
itives, with the platform characteristics dictating the optimization tactics used
to create the architecture. The primary challenge when implementing Curve448
and Ed448 field arithmetic is that the operands frequently exceed the avail-
able CPU resources, particularly on low-end platforms. Due to the unavoidable
necessity for safe and efficient cryptographic protocols, the ECC architectural
design undergoes continual research and optimization efforts on both high- and
low-level enhancements.

The high-level improvements include representing the curve elements in
projective coordinates rather than affine coordinates to minimize the number
of costly arithmetic operations required for scalar-point multiplication. Mont-
gomery ladder [23], significantly lowers the latency of ECC-based protocols
by combining Montgomery’s doubling formulae with Montgomery’s differential-
addition formulas and enables the use of Y -only coordinate calculations.

Several efforts to optimize low-level field arithmetic operations are docu-
mented in the literature, with optimal execution strategies resulting in record
performance of the cryptographic protocols. Due to the complexity of the long-
integer operations’ execution flow, there is no implementation option that can be
considered ideal. Indeed, different platforms offer a diversity of capabilities, each
of which facilitates a specific set of instructions, hence favors the deployment of
a specific multi-precision approach. The adaptation of Product Scanning (PS)
or Operand Scanning (OS) methodologies, with a focus on long-integer opti-
mal solutions, for low-end devices, has been rigorously investigated and tested.
The literature also proposes combination of multi-precision strategies to provide
further performance improvements.

In [24] Hutter et al. present the first implementation of Operand Caching
(OC) multiplication technique which outperforms the previous best hybrid
implementation architectures. Based on the OC strategy, Seo et al. present in
[25] and [26] optimized variant of the multi-precision arithmetic where the exe-
cution flow of the inner loop is re-arranged to optimally re-use common operands
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between previous and new partial products reporting significant speedup results.
Optimization of long-integer multiplication and squaring techniques based on the
Cortex-M4 platform is presented by Seo et al. in [27], where the authors pro-
pose Refined-OC multiplication technique based on increased number of cached
limbs in the register bank of the processor. The article offers optimal field oper-
ations independently of the post-quantum nature of the target protocol since
classical ECC techniques, as well as the post-quantum Supersingular Isogeny
Key Encapsulation (SIKE) mechanism, are defined over large finite fields and
so operate on big integers, thus, implement the same lowest layer arithmetic for
the performance of the high layer group operations. Further work on the finite
field operations of the elliptic curve-based PQ protocol is presented in [27–30]
targeting specifically the ARM Cortex-M4 platform.

Literature indicates that little effort has been spent optimizing 448-bit inte-
ger finite field arithmetic for the entry-level ARM-based Cortex-M4 architecture.
Multiple research teams are implementing and enhancing the lowest layer of ECC
primitives. Using a novel architecture for finite field arithmetic, we extend this
study by demonstrating a new performance benchmark for Curve448 and Ed448.
[21] and [22] show the most relevant research based on Curve448 that focuses on
low-end RISC devices. In this paper, we extend this area of research by intro-
ducing a novel method for long-integer operations and compare its performance
to that of prior work. In addition, the long-integer implementation subroutines
are an excellent fit for the PQ protocol SIKE.

1.2 Contributions

In this work, we demonstrate novel implementation techniques for accelerat-
ing the execution of the Curve448- and Ed448-based key derivation and digital
signature protocols. Our contributions include the following:

1. We present a novel design for the underlying finite field operations multi-
precision multiplication and squaring targeting the ARM Cortex-M4 plat-
form. We observe a speedup of 25% and 35%, respectively for modular multi-
plication and squaring functions when compared to the Curve448-based key
exchange protocol counterparts in [21] and 13% and 24% when compared
to the previously best-reported results for the Ed448-based digital signature
algorithm presented in [22].

2. We present the first handcrafted assembly implementation of multi-precision
squaring procedure with the goal of improving Curve448 and Ed448 for the
ARMv7-M architecture. Both multi-precision multiplication and squaring are
implemented using a novel architecture in which we combine multiplication
techniques. We allocate a fixed number of registers for storing words from A
and lower the number of registers for storing operand B’s limbs, where we
compute current and successive column-wise partial results. Thus, we present
the first multi-precision multiplication architecture, combining product- and
operand-scanning techniques in the inner multiplication loop execution flow.
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Algorithm 1. Montgomery ladder
Input: P = (XP : ZP ), k =

∑l−1
i=0 ki2

i where kl−1 = 1
Output: R = k · P
1: R ← (XR, ZR) = (1, 0)
2: Q ← (XQ, ZQ) = (XP , 1)
3: for (i = 447; i >= 0; i − −) do
4: if ki = 0 then
5: (R,Q) = ladderstep(XP , R,Q)
6: else
7: (Q,R) = ladderstep(XP , Q,R)
8: end if
9: end for

10: return xR = XR/ZR

3. We present a speedup of around 48% and 11% for the X448 and Ed448 DSA
protocols, compared to the best previously reported results in [21] and [22],
respectively on the target platform when running on STM32F407VG dis-
covery board @24MHz to avoid zero wait state and to disregard memory
controller stalls.

4. We evaluate and analyze the proposed design’s performance by conducting
benchmarking experiments at 24MHz, which presents the exact number of
clock cycles on the target platform regardless of the microcontroller’s speci-
fications, and 168MHz, which boosts the performance of the STM32F407VG
board to obtain real-world values.

The rest of the paper is organized as follows. In Sect. 2 we present an overview of
the mathematical concepts underlying X448 and Ed448 DSA protocols and sum-
marize the main features of the target architecture. Section 3 presents the pro-
posed finite field arithmetic architecture and overviews the performance results
of the newly implemented functions. In Sect. 4 we perform latency evaluation of
the entire protocols after integrating our new function implementations. Finally,
we conclude our work in Sect. 5.

2 Preliminaries

This section provides an overview of the mathematical ideas underpinning the
Curve448 and Ed448 key exchange and digital signature protocols. We discuss
both protocols and illustrate their execution flow, as well as the primary prop-
erties of the target platform.

2.1 ECC Mathematical Background

A Montgomery Elliptic Curve Curve448 over a finite field Fp is defined by the
solutions of the equation:

EM/Fp : v2 ≡ u3 + Au2 + u
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Algorithm 2. Montgomery ladder step
Input: xP , R = (XR, ZR), Q = (XQ, ZQ)
Output: PPD = 2 · R, PPA = R + Q
1: XPD = (XR − ZR)2 · (XR + ZR)2

2: ZPD = 4XRZR · (X2
R + 39081XRZR + Z2

R)
3: XPA = 4(XRXQ − ZRZQ)2

4: ZPA = 4xp(XRZQ − ZRXQ)2

5: return PPD = (XPD, ZPD), PPA = (XPA, ZPA)

where the value of A is defined as 156326 and p = 2448 − 2224 − 1. Montgomery
curves have their birationally analogue Edwards curves, where Curve448 can be
represented by the solutions to the equation:

EEd/Fp : ax2 + y2 = 1 + dx2y2

with d = −39081 and a = 1 since the value of the prime number is congruent
to 3mod4 and thus the curve is untwisted Edwards curve called Ed448. The
elements of Curve448 are represented by two coordinated (u, v) ∈ Fp × Fp. The
birational map to project a point from Montgomery to Edwards curve is as
follow:

(u, v) = ((y − 1)/(y + 1), sqrt(156324) ∗ u/x)

where to map the point back to Montgomery curve the next formula is applied:

(x, y) = (sqrt(156324) ∗ u/v, (1 + u)/(1 − u))

Elliptic Curve Cryptography’s nature is based on the difficulty of solving the
Elliptic Curve Discrete Logarithm Problem (ECDLP). Executing scalar-point
multiplications with the point P = [k] ·Q results in the addition of point Q with
itself k times, where the value of k is difficult to resolve given P and Q.

Point multiplication requires several point additions and point doublings,
where various techniques can be applied to obtain the resulting coordinates such
as Double-And-Add (and its constant time variants) or Montgomery ladder Algo-
rithm1, where the latter requires p steps of combined point addition (PA) and
point doubling (PD) function (referred to as Montgomery ladder step) offering
better performance results.

To further increase the speed of the scalar-point multiplication, the point
is transformed from affine (x, y) to projective representation (X,Y,Z) with
x, y = (X · Z−1, Y · Z−1), which relaxes group operations by reducing the num-
ber of costly operations such as modular inversions. Algorithm2 illustrates the
Montgomery ladder step, a more thorough illustration of the execution steps for
point addition and point doubling unified formula.

The usage of Montgomery ladder enables the computing of time-efficient
X−only formulae in which the Y coordinate is not required for point multi-
plication computations and is restored once the method is done, which results
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Algorithm 3. X448 algorithm. G represents the value of the base point
Alice Bob

skA ∈R Z/Fp skB ∈R Z/Fp

pkA = [skA] · G pkB = [skB ] · G

exchange
pkA←→ pkB

ssA = [skA] · pkB ssB = [skB ] · pkA
ssA = [skA] · skB · G ssA = ssB ssB = [skB ] · skA · G

in further speed optimizations and it represents the method deployed in most
implementations, including this work.

2.2 X448

Elliptic Curve Diffie-Hellman (ECDH) protocol implementation enables commu-
nication parties to agree on a shared secret that is later utilized in low-cost sym-
metric encryption schemes. To execute ECDH over a finite field using Curve448
requires both computing parties to generate secret key values represented by
a long-integer value. Later on, each must apply the scalar-point multiplication
function X448 depending on the scalar value of their secret key and a public
base point G, for instance using the Montgomery ladder Algorithm1. The newly
computed points, representing the public keys of each party, are exchanged and
another point multiplication is computed, applying their own secret key scalar
value and the received point public key value. Algorithm3 provides a represen-
tation of the ECDH algorithm in detail.

Following the execution of the two-point multiplications, as presented in
Algorithm 3, both parties can ensure the privacy of their communication via effi-
cient symmetric encryption scheme. The symmetric key is being derived through
the equivalent values of the shared secrets and is then being used to encrypt data
based on symmetric algorithm such as AES.

2.3 Ed448

The digital signature algorithm is mainly used to verify that the communication
was sent by the intended recipient. The Edwards-Curve Digital Signature Algo-
rithm (EdDSA) is defined in three phases - Key Generation, Sign and Verify.
Ed448 DSA has a thorough explanation of these procedures, which may be found
in Algorithm 4. The key generation uses a seed value to produce a secret key and
its respective public key that are generated using a eXtendable Output Function
(XOF) SHAKE256 (denoted with capital letter H in Algorithm4) and scalar-
point multiplication function. After running the signing function, it returns a
signature R||S generated based on the secret key and the message value. Finally,
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Algorithm 4. Ed448 algorithm [31]. H denotes SHAKE256. L represents the
order of Ed448 curve. G represents the value of the base point

Key Generation
Input: seed
Output: (p, s), pkA
1. skA ∈seed

R Z/Fp

2. (p, s) ← H(skA)
3. pkA ← encode([s] · G)
Return (p, s), pkA

Sign
Input: pkA, (p, s),M
Output: sign ≡ R||S
1. r ← (H(p||M))(modL)
2. R ← encode([r] · G)
3. k ← (H(R||pkA||M))(modL)
4. S ← encode((r + k ∗ s)(modL))
Return R||S

Verify
Input: pkA,M,R||S
Output: true/fasle
1. k ← H(R||pkA||M)(modL)
2. A ← decode(pkA)
Return [S] · G == R + [k] · A

the verification is executed based on the public key and the message value and
returns success upon the correctness of the equation [S] · G == R + [k] · A.

As noted, the scalar multiplication subroutine is forming the basis of both
- elliptic curve based key agreement and digital signature algorithms, thus, its
optimization is the main focus of this work. A new design and a performance
record of the multi-precision multiplication and squaring, the base operations
of point multiplication, are described later in the paper and the timing results
of both cryptographic primitives are reported based on the proposed finite field
arithmetic design.

2.4 Target Architecture

The ARM Cortex-M4 processor’s Reduced Instruction Set Computer (RISC)
architecture delivers a set of basic yet powerful instructions that are devoid of
structural hazards and data dependence delays. This is why it is in such great
demand in the realm of IoT and real-time systems. Furthermore, NIST recom-
mended ARMv7-M Cortex-M4-based STM32F407VG discovery board microcon-
troller for low-end device performance assessment, featuring 192KB of RAM and
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Table 1. ARMv7-M ISA [32] for memory access and MAC instructions

Instruction Functionality
Latency

(CC)

(V)LDR/

(V)STR

Rn ← memory

memory ← Rn

Sn ← memory

memory ← Sn

2

VMOV
Rn ← Sm
Sm ← Rn

1

UMULL Rd1, Rd2 ← Rn × Rm 1

UMAAL Rd1, Rd2 ← Rn × Rm + Rd1 + Rd2 1

1MB of flash memory, thus, it represents the board chosen by NIST for perfor-
mance evaluation of the cryptographic algorithms and is, therefore, the target
platform of this article.

The limited register set of just 16 32-bit General-Purpose Registers (GPRs)
R0-R15 where two of them are reserved for the Stack Pointer SP and the Pro-
gram Counter PC and are not accessible by the programmer, converts the imple-
mentation of multi-precision arithmetic operations into a challenging task. The
ARMv7-M architecture offers another 32-bit Floating-Point Registers (FPRs)
S0–S31. The transition of register values between the two register banks is
ensured to be instant via the powerful VMOV instruction. The single clock
cycle instruction latency, specific for the ARMv7-M 3-stage pipeline, has as only
exception the memory access LDR/STR instructions where if not properly sched-
uled they can induce an additional clock cycle before another instruction can
be processed. The nature of the long-integer arithmetic does not always allow
to schedule the instructions, thus, to avoid stalling the pipeline. To maximize
the performance of a hand-crafted assembly code, a thorough structure of the
instruction flow and an in-depth examination of the Instruction Set Architecture
(ISA) Table 1 are required. The precise order of the instruction flow is a combi-
natoric problem which requires careful analysis and deployment to provide the
most optimal execution path.

The ARMv7-M ISA supports powerful multiplication instructions, referred
to as Multiply ACcumulate (MAC), ensuring the execution of 32 × 32-bit mul-
tiplication, resulting in a 64-bit long value. The simple long multiply UMULL
instruction offers an accumulative variant UMAAL executing another two 32-bit
accumulative additions. The single clock cycle latency of the MAC instruction
considerably improves the performance of long integer multi-precision multi-
plication and squaring subroutines when utilized correctly as presented in this
work.
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Fig. 1. Instruction set notation in dot format for the rhombus representation of the
arithmetic operations multiplication and squaring.

3 Proposed Design for Field Arithmetic

3.1 Notation

The proposed architecture for multi-precision multiplication and squaring may
be presented in a variety of ways, the most visually appealing of which is through
the use of a rhombus representation. The implementation of finite field proce-
dures needs distinct instruction sequences, which we represent with dots on the
rhombus figures.

We utilize a different pattern of dots to a different color of dots, as shown
in Fig. 1, to denote various MAC instructions. The white color dot indicates
the execution of Unsigned Multiply with double Accumulate Long UMAAL where
the multiplication of two 32-bit registers is performed, resulting in a 64-bit value
accumulated with the content of the destination registers as two 32-bit numbers.
The black dot represents an Unsigned MULtiply Long UMUUL with the destination
registers containing the result’s low and high 32-bits. Finally, the implementation
of the multi-precision squaring routine requires the accumulation of a single 32-
bit value to the 64-bit multiplication result, thus, we use the UMAAL and zero out
one of the accumulated values. We denote the use of this instruction by a gray
dot on the rhombus schemes.

For our implementation, we refer to the previous multi-precision strategies,
such as Product-Scanning (PS), Operand-Scanning (OS) and Refined Operand-
Caching techniques (R-OC). OS method is predicated on the concept of reusing
a single limb from one operand while employing the whole set of limbs from
the second operand. In particular, each calculation step should accumulate the
previously stored partial result limb with a single partial result value. The
computation of a partial result limb in each iteration can be represented as
Ti = Ti + AkBi−k with k being the iteration count. Finally, the product limb
Ri = Ti when the iteration count equals the result index being computed. There-
fore, the computation of R4 requires the execution of 5 iterations, where in each
iteration one partial result is being computed and accumulated to the current
partial result value.
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The PS method is based on computing the entire set of accumulative partial
multiplication results at once, allowing to obtain the final result, and, thus, not
re-load any partial product values. Therefore, for the computation of the result
limb Ri all partial multiplications would be computed and accumulated, i.e.
Ri =

∑i
k=0 AkBi−k. Both techniques are the base of the modern multi-precision

multiplication strategies and are combined, depending on the characteristics of
the target device, to offer optimal performance results.

One such combination among PS and OS is the so called Operand Caching
(and its variants), where the multiplication implementation is split into different
sections, referred as rows, and each row consists of straightforward implemen-
tation of the product scanning multiplication technique. The size of the row
represents the number of consecutive accumulated partial results computed in
each iteration. Each row, thus, produces row-size number of accumulated partial
results. The rows among them employ the OS approach, wherein the previously
computed partial result is accumulated with the newly computed partial value at
each iteration. The multi-precision multiplication design is also referred to as a
combination of two loops - inner and outer multiplication loop. The OC deploys
PS in the inner loop, i.e. the computations inside the scope of the rows. The
outer loop in OC implements OS method which is applied among the different
rows. The size of the row is one of the factors to determine the variant of the
OC multiplication method, where the latest and most efficient variant of the OC
targeting the Cortex-M4 platform is the Refined-OC (R-OC) method with row
size equal to four.

The use of one or another multi-precision multiplication approach to enhance
performance is entirely dependent on the platform being targeted. Large pro-
cessors, for instance, have a large register set bank, so they can store more
operand limbs and favor the PS technique. In addition, modern processors fea-
ture instant memory access instructions, therefore, multiple operand re-loading
is inexpensive. However, the usage of low-end devices, such as the intended ARM
Cortex-M4 chip, makes long-integer computations difficult due to register bank
constraints and expensive memory accesses. We disclose the obtained speedup
for the provided arithmetic and the performance record after incorporating our
design into the ECDH and EdDSA cryptographic algorithms in this paper.

3.2 Multi-precision Multiplication

The design and implementation of the multi-precision multiplication subrou-
tines are extremely important for the efficiency of the cryptographic protocols
when based on long-integer values. The nature of the multi-precision multipli-
cation places it into the most frequently invoked routines in Elliptic Curve and
Isogeny-based protocols. Additionally, due to the high computational cost of
these procedures, optimizing them results in an overall speedup of the protocols.
This is why several academics have concentrated their efforts on optimizing it
for various platforms.
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Fig. 2. Proposed architecture for 448-bit multi-precision multiplication. Black lines
denote inner loop execution flow.

In this paper, we present a novel multi-precision multiplication approach,
demonstrating a speed record on the target platform.

We illustrate our architecture in detail in Fig. 2, where the diagonal lines in
the rhombus indicate the operands A and B and the dots represent the word-level
operand partial operations. Numerous studies in the literature focus on the com-
binatorics of this topic with the goal of optimizing the performance outcomes
of this function. The primary multiplication approaches are frequently used in
high-level implementation designs that include product- or operand-scanning.
However, owing to resource limits, a single application of one of the multiplica-
tion algorithms is not practical. Additionally, both have some significant down-
sides. To be more precise, the former requires numerous accesses to the value of
the (partial) product in order to compute the result, whereas the latter requires
continual reloading of the operand words in the accessible register set. Which
approach is the most optimal is entirely dependent on the technical requirements
of the target platform.

To optimize multiplication performance, the authors in [24,25,27,33] provide
designs that combine the two major approaches to take use of the benefits of each
one, namely the Hybrid, Operand Caching, Consecutive Operand Caching, and
Refined-Operand Caching (R-OC) multi-precision multiplication. The methods
already proposed in the literature apply one of the major techniques to the outer
multiplication loop and one to the inner loop. The primary goal of routine opti-
mization for low-end devices is to minimize memory accesses, since it can cause
additional stalls when no cache memory is available, which is frequently the case
with embedded low-cost devices. The R-OC, the most efficient multiplication in
the literature, method’s concept is to load operands into the register set and
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Fig. 3. Proposed design, register utilization and carry propagation for the multi-
precision multiplication outer (left) and inner (right) loop execution flow.

reuse the operands’ values. To do so, the authors in [27] introduce a method for
storing four words of both operands in the instant memory units, thus, increase
the size of the inner loop (i.e., row size) to four 32 × 32-bit multiplications. This
technique optimizes the memory accesses by reusing the four loaded limbs from
the second operand, when the growing operand index is switched (i.e., at the
middle of the inner loop).

In this work, we present a novel technique for multi-precision multiplication,
with an emphasis on increasing row (inner loop) size and hence decreasing mem-
ory accesses for partial value accumulation. To accomplish this aim of creating
rows of size five, we reserve five registers for the value of operand A, and three
registers for operand B (further detail of the register utilization is provided in
Fig. 3). In our approach, two partial results are computed for the current col-
umn of calculation and one multiplication is performed for the subsequent three
columns. This reduces register requirement for the storage of the second operand.
Therefore, we maximize the available registers and increase the row size to five
32-bit multiplications per iteration, as there are sufficient free registers for the
partial column-wise results. A close view of the inner loop operations is shown
in Fig. 3, where it is presented that each step computes a single partial column
value, stores it into memory and keeps another four columns partial values in
the register set.
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Algorithm 5 . Proposed design (pseudocode), register utilization and carry
propagation for the multi-precision multiplication inner loop execution flow.
VMOV R0, S12 // R12
UMAAL R0, R10, R2, R6 // a6b6
UMAAL R11, R10, R3, R6 // a7b6
UMAAL R12, R10, R4, R6 // a8b6
UMAAL R14, R10, R5, R6 // a9b6
LDR R7, [R8, #4*7] // b7
UMAAL R0, R9, R1, R7 // a5b7
VMOV S12, R0 // R12

The row’s length implies that further six registers should be reserved for the
32-bit partial results. In the previous best performance implementation design
(i.e., R-OC) in [27], the authors use a single register to hold the current column’s
lower 32-bit accumulative result and another four registers to store four separate
upper 32-bit partial values.

In contrast to this strategy, in our work, we utilize a single register for the
upper 32-bit value, which is continually propagated to the subsequent column,
and another five registers for the lower 32-bit values. Figure 2 illustrates graph-
ically our architecture design with each inner loop iteration denoted by a black
line. A more detailed view is shown in Fig. 3 and a pseudocode is presented
in Algorithm 5, where one register Rn+1+m stores the low results of An+1Bm
accumulated to AnBm+1, Rn+2+m stores low An+2Bm, Rn+3+m stores low An+3Bm,
Rn+4+m stores low An+4Bm and Rn+5+m stores high An+4Bm result, which has
accumulated all previously created upper 32 bits (carry propagation).

To our knowledge, this new combination of product scanning and operand
scanning approaches in the inner loop of multi-precision multiplication is intro-
duced for the first time in the literature. As described in Fig. 3, this hybrid-inner
loop design enables a reduction in the number of words allotted for operand B
to only two. We reserve three to minimize the cost of reloading operands in the
midst of the multiplication; consequently, we require just two more reloads per
row above R-OC. By utilizing the register set optimally and following the new
instruction flow, we optimize the R-OC approach by raising the row widths,
which lowers access to partial results for accumulation.

3.3 Multi-precision Squaring

Due to the high invocation ratio of the multi-precision squaring routine, its per-
formance optimization benefits the overall execution time and resource require-
ments of Curve448- and Ed448-based key exchange and digital signature algo-
rithm protocols. In this work, we propose and implement the first multi-precision
squaring procedure in hand-crafted assembly target-specific ARMv7 architecture
code for the finite field of length 448 bits.

Due to the fact that the bottom portion of the rhombus representation
mirrors the top part, the software design of the squaring benefits from the
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Fig. 4. Proposed architecture for 448-bit multi-precision multiplication with 14th index
word for the doubled operand value (red line). (Color figure online)

duplication of some of the partial result values, and so can produce higher per-
formance results than multi-precision multiplication. Since the result of AnAm
equals the result of AmAn the accumulation of bottom and top rhombus sides
may be implemented by doubling one of both values. The computation for the
rhombus diagonal consists of operands with coinciding indexes (e.g. AkAk), as
seen in Fig. 4 where they are marked with a red line. Their partial outcomes
occur just once and are hence not duplicated. Additionally, because only one
operand is involved in the operation, loading the operand words into the regis-
ter set is eased. Numerous teams have worked in the literature to exploit these
aspects of the subroutine and optimize the output for low-end target systems.
There has been no software implementation of multi-precision squaring for the
Curve448 and Ed448 protocols; hence, this work covers this gap by offering the
first and most optimal design of 448-bit multi-precision squaring on the Cortex-
M4 platform in comparison to other similar research.

Scott et al. provide one of the first attempts for multi-precision squaring
function aiming low-end devices in [34]. The authors propose a carry catcher
approach with an additional number of registers dedicated to storing and accu-
mulating the generated carry. Later, Lee et al. propose lazy doubling method in
[35] the authors, where each computed column is doubled and then accumulated
to the non-doubled values. While this approach is the closest similar to our novel
design, it does not produce ideal results due to the numerous result doublings
and accumulations required.

In this work, we propose a new design for the implementation of finite
field long-integer squaring. Our implementation’s inner loop is based on the
operand scanning mechanism. The rationale for picking this method is the enor-
mous amount of free registers available due to the routine’s single operand
nature. Our primary goal is to raise the row size. For our design, we used the
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Fig. 5. Proposed design, register utilization and carry propagation for the multi-
precision squaring with coinciding indexes of the operand (left) and with the carry
word produced after doubling the operand (right).

double-operand approach presented in [27]. Additionally, we use the improved
execution flow described in [29], which decreases the row number.

We should note that due to the exact fit of the prime number consisting of
448-bits into 14 32-bit value registers, the doubling the operand A may produce
a carry. The carry bit specifies whether the doubled value of A is 448 or 449
bits. Thus, we simulate an additional word with index 14 of the duplicated A to
obtain accurate results. We draw a red line through the word with index 14 of
the doubled A in Fig. 4 and regard it as a regular limb of 2xA.

A thorough depiction of the implemented design is shown in Fig. 5 which
illustrates the execution flow of one inner step iteration. On the left is a repre-
sentation of the 32-bit partial multiplication of four doubled operand words with
the original A. As with multiplication, the carry is kept in a single register and is
propagated across subsequent short multiplications through the MAC UMAAL
instruction. The right side of Fig. 5 depicts the execution flow when the 2xA is
utilized. As it could be noticed, there is not much difference with the rest of
the iterations, except that the value of the carry A13 is dynamically computed
during the execution of the program.

3.4 Side-Channel Implications

Side-channel analysis (SCA) attack uses data leakage based on timing, power
consumption, or electromagnetism information to recover secret information
about the communication parties.

In this work, we propose new constant-time implementation of the multi-
precision multiplication and squaring architectures for our Curve448-based key
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agreement and digital signature algorithms. Our subroutines’ designs do not
contain conditional execution flow, thus, are robust against timing attacks.

A question that can emerge is based on the fact that multiplication and
squaring deploy different architectures and, therefore, show different latencies.
This, however, should not present an issues in terms of information leakage since
we deploy Montgomery ladder point multiplication design, where in each Mont-
gomery ladder step one point doubling and one point addition are executed,
independently of the secret key bit values. The sequence of multi-precision mul-
tiplication/squaring is known and is the same in each Montgomery ladder step.
We should note again that this work is focused on the multi-precision modu-
lar operations, not on the group operations. Thus, our proposed design is not
directly dependent on the users’ secret information, but rather forms part of the
multiple executions of the Montgomery ladder step.

3.5 Implementation Results

The next section compares the implemented multi-precision multiplication and
squaring methods to their literature counterparts.

We present the execution time of low-level finite field arithmetic operations
and the speedup obtained by integrating them into group operations. We base
our experiment results on the STM32F407VG microcontroller running at 24MHz
in order to remove memory controller stalls and deliver more exact findings that
remain relatively similar on any ARMv7-M-based board.

We compare our work with the best-known counterparts in the literature
targeting the same platform for Curve448- and Ed448-based algorithms and we
present the latency results in number of clock cycles in Table 2. In this work, we
achieve 25% of improvement compared to [21] for finite field multiplication when
integrating our new multi-precision designs. Additionally we observe another
35% of speedup after introducing the first 448-bit modular squaring subroutine.
The low-level arithmetic optimization leads to a 31% speedup for the inversion
routine.

The group operations point addition and point doubling show 49% of perfor-
mance improvement for the execution of the point doubling and addition. Our
design is based on the execution of Montgomery ladder step where the doubling
and addition are performed by the subroutine. After integrating the low-level
finite field arithmetic along with the Montgomery ladder point multiplication
strategy we observe more than 48% improvement for the execution of point
multiplication.

The work on Ed448 we compare with the recently published work [22] where
we achieve 13.1% and 24.5% latency speedup for the execution of the multipli-
cation and squaring routine. Sequentially, we observe around 24% better results
for the execution of the inversion and another 13.5% for the execution of the
Montgomery ladder step. Finally, we observe 12% better performance for the
Montgomery ladder based scalar multiplication routine.
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Table 2. Finite field operations for Curve448/Ed448 targeting ARMv7-M

Ref. Arithmetic performance evaluation

Fp Group

Mul Sqr Inv Add Double Multiply

Curve448

Seo et al.a 821 821 363,485 6,566 6,567 6,218,135

This work 613 532 247,707 6,640(total) 3,220,682

25.33% 35.20% 31.85% 49.44% 48.21%

Ed448

Anastasova et al.b 705 705 325,997 8,465(total) 3,703,755

This work 613 532 247,934 7,323(total) 3,259,379

13.05% 24.54% 23.95% 13.49% 12.00%

Refer to: a[21], b[22]

In the following section, we perform a more exhaustive report of the overall
elliptic curve based key agreement and digital signature algorithms latencies
when integrating our new low-level architecture designs.

4 Performance Evaluation

The next section analyzes the acquired findings in terms of performance.
We report on the latency of our designs when they are executed on the
STM32F407VG discovery board, which features a Cortex-M4 CPU. We run our
results at 24MHz to assure a zero-wait condition and hence eliminate memory
control unit stalls. Additionally, we report our results when the Curve448 ECDH
key exchange and Ed448 DSA protocols are run at 168MHz in order to simulate
a real-world scenario on the given microcontroller. Note that the high frequency
measurement is extremely reliant on the target platform and varies between
devices based on the memory control unit’s clock speed.

We base our results on the version gcc-arm-none-eabi-10.3-2021.07 cross-
compiler setting the -O3 optimization flag for optimized performance results. We
compare our work with Curve25519- and Curve448-based implementations where
we note that the results presented for Curve25519 are significantly better than
our results due to the size of the prime number and thus the minimal length of
the operands.

We provide the performance findings in Table 3 in terms of clock cycles ×103.
We notice that we obtain ∼3.6× slower results for Curve448 in comparison to the
Curve25519 results reported in [10] targeting the same platform. However, we
should note that the Curve448 offers a much higher security level, in particular,
224-bit compared to 128-bit of Curve25519. We present more than 22× better
results for executing scalar-point multiplication X448 function than the work
presented in [10]. However, we find that the limited resources available on their
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Table 3. Curve 25519 and Curve448 key exchange and digital signature computation
latency performance on IoT platforms

Work Platform Freq. X448 Ed448 KeyGen Ed448 sign Ed448 verify

[MHz]

Curve25519a Cortex-M4 84 894 390 544 1,331

Curve448b AVR 32 103,229 – – –

MSP 25 73,478 – – –

Curve448c Cortex-M4 24 6,218 – – –

168 6,286 – – –

Ed448d Cortex-M4 24 – 4,069 6,571 8,452

168 – 4,195 6,699 8,659

This work Cortex-M4 24 3,221 3,536 6,038 7,404

168 3,975 4,282 6,787 8,854

Refer to: a[10],b[20], c[21], d[22]

low-end target systems necessitate more extensive outcome improvements. Thus,
a portion of the reason for the enormous latency discrepancy is due to the target
restrictions experienced by the writers on such low-end architecture device.

We compare the best performance results on the target platform, as pro-
vided by Seo et al. in [21] and Anastasova et al. in [22], by assessing the X448
point multiplication function and the Ed448 DSA key generation, sign, and ver-
ify functions. We mark around 48.2% and 36.8% of speedup when comparing
our optimized X448 design running at 24 MHz and 168 MHz, respectively. The
gains realized are a result of the novel arithmetic architecture introduced in this
study. Thus, we report the execution of point multiplication in 3, 221×103CCs.
We also report a speedup of 13.1%, 8.1%, and 12.4% compared to the most recent
literature equivalents while analyzing Ed448 EdDSA on the STM32F407 discov-
ery board. We note that our implementation design shows a 1.4% of latency
increase when running the digital signature procedures at the maximum plat-
form frequency of 168 MHz. This is due to the floating-point register set being
utilized as a storage unit rather than memory. This change, however, is negligible
and is mostly due to the board’s increased speed, a scenario that may not exist
with other microcontrollers with different features.

5 Conclusion

In this work, we present a novel design for time-efficient finite field arithmetic
over Curve448 and its birationally equivalent Ed448, where the pyramid-like
structure of the protocols, results in an overall speedup of the key derivation
and digital signature protocols based on the Montgomery and Edwards rep-
resentation of Curve448. We describe an optimum multi-precision multiplica-
tion architecture and the first hybrid implementation of operand and prod-
uct scanning techniques in the multiplication routine’s inner loop. Additionally,
we provide the first multi-precision squaring technique for 448-bit finite field
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arithmetic, where the carry of the operand doubling is represented as a new
word and utilized to compute the right final value.

Acknowledgements. We would like to thank the reviewers for their comments. This
work is supported in parts by research grants from NSF awards 214796 and 2101085.

References

1. National Institute of Standards and Technology: Security Requirements for Crypto-
graphic Modules. Technical report, Federal Information Processing Standards Pub-
lications (FIPS PUBS) 140-2, Change Notice 2 December 03, 2002, U.S. Depart-
ment of Commerce, Washington, D.C. (2001)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

3. Bernstein, D.J., Lange, T.: Security dangers of the NIST curves. In: Invited talk.
International State of the Art Cryptography Workshop, Athens, Greece (2013)

4. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9
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Abstract. Synchronized aggregate signature is a special type of signa-
ture that all signers have a synchronized time period and allows aggre-
gating signatures which are generated in the same period. This signature
has a wide range of applications for systems that have a natural report-
ing period such as log and sensor data, or blockchain protocol.

In CT-RSA 2016, Pointcheval and Sanders proposed the new random-
izable signature scheme. Since this signature scheme is based on type-3
pairing, this signature achieves a short signature size and efficient signa-
ture verification.

In this paper, we design the Pointchcval-Sanders signature-based
synchronized aggregate signature scheme and prove its security under
the generalized Pointcheval-Sanders assumption in the random oracle
model. Our scheme offers the most efficient aggregate signature verifica-
tion among synchronized aggregate signature schemes based on bilinear
groups.

Keywords: Synchronized aggregate signature · Pointcheval-Sanders
signature · Bilinear groups

1 Introduction

1.1 Background

Aggregate Signature. Aggregate signature originally introduced by Boneh,
Gentry, Lynn, and Shacham [6] allows anyone to compress many signatures pro-
duced by different signers on different messages into a short aggregate signature.
The size of an aggregate signature size is the same as any signature. By veri-
fying an aggregate signature, we can check the validity of all those individual
signatures which are compressed into an aggregate signature.

These attractive features are useful for the internet of things (IoT) system
to reduce the storage space for signatures and realize efficient verification of
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signatures. An aggregate signature scheme is expected to be used in a wide range
of applications such as Border Gateway Protocol (BGP) routing [4], certificate
chain compression [6], bundling software updates [2], sensor network data [2], or
blockchain protocol [23].

Currently, only three aggregate signature scheme constructions are known.
The first construction by Boneh et al. [6] is based on bilinear maps. This scheme
can aggregate signatures as well as already aggregated signatures (i.e., full
aggregation) in any order. The security of this scheme is proven under the co-
computational Diffie-Hellman (co-CDH) assumption in the random oracle model
(ROM). However, their scheme has a drawback in that the verification cost of
an aggregate signature is expensive. Concretely, the number of pairing opera-
tions in verification for an aggregate signature is proportional to the number of
signatures compressed into the aggregate signature.

The other schemes are constructed in the standard model (without the
ROM). The second scheme by Hohenberger, Sahai, and Waters [22] is based on
multilinear maps. The third scheme by Hohenberger, Koppula, and Waters [21]
is an indistinguishability obfuscation (iO) based construction. Since constructing
aggregate signature schemes from standard computational assumptions without
ROM is a difficult task, several variants of aggregate signature with restricted
aggregation have been proposed.

Synchronized Aggregate Signature. One variant of aggregate signature is
synchronized aggregate signature. The concept of this signature was proposed
by Gentry and Ramzan [16]. They constructed an identity-based aggregate sig-
nature that is based on the computational Diffie-Hellman (CDH) assumption in
the ROM.

After their seminal work, Ahn, Green, and Hohenberger [2] revisited their
model and proposed a synchronized aggregate signature. In this scheme, all of
the signers have a synchronized time period. For each time period, each signer
can sign a message at most once and signatures generated in the same time period
only can be compressed into an aggregate signature. Even though a synchronized
aggregate signature scheme has restrictions described above, it is still useful for
systems that have a natural reporting period. (e.g. log data [2], sensor data [2],
blockchain protocols [23])

So far, several synchronized aggregate signature schemes were proposed. Ahn,
Green, and Hohenberger [2] gave a pairing-based synchronized aggregate signa-
ture scheme based on the CDH assumption without the ROM. Moreover, they
also gave an efficient pairing-based synchronized aggregate signature scheme
whose security is proven under the CDH assumption in the ROM.

Lee, Lee, and Yung [26] gave a synchronized aggregate signature scheme
based on the Camenisch-Lysyanskaya (CL) signature scheme [9]. The security of
this scheme relies on an interactive assumption called Lysyanskaya-Rivest-Sahai-
Wolf (LRSW) assumption [30] in the ROM. Tezuka and Tanaka [40] revisited
their security analysis result and improved it by showing the security based
on a non-interactive assumption called the modified 1-strong Diffie-Hellman-2
(1-MSDH-2) assumption [33] in the ROM.
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As for a pairing-free scheme, Hohenberger and Waters [23] proposed the
synchronized aggregate signature scheme based on the RSA assumption without
the ROM.

Motivation: Efficient Synchronized Aggregate Signature. In pairing-
based synchronized aggregate signature schemes, the scheme by Lee et al. [26] is
the most efficient synchronized aggregate signature scheme. Their scheme offers
the smallest number of pairing operations (3 pairing operations) in an aggregate
signature verification (See Fig. 1). From the viewpoint of the efficiency of aggre-
gate signature verification, it is desirable to construct a synchronized aggregate
signature scheme with fewer pairing operations for aggregate signature verifica-
tion.

1.2 Our Result

Our Result. In this paper, we give a new synchronized aggregate signature
scheme based on the Pointcheval-Sanders (PS) signature scheme [32]. The secu-
rity of our scheme can be proven under the generalized Pointcheval-Sanders
(GPS) assumption [24] in the ROM.

In general, compared to the computation cost of multiplication for elliptic
curve points, the computation of pairing is more costly. To clarify the advan-
tages of our synchronized aggregate scheme, we compare our scheme with other
schemes (See Fig. 1).

Comparison with Other Schemes. The scheme BGLS [6] is a full-aggregate
signature scheme that offers optimal public-key size and aggregate signature size.
A full-aggregate signature scheme can be used as a synchronized aggregate sig-
nature scheme, with the following trivial modifications. A message m is changed
to a message-period pair (m, t). Aggregation of signatures is only allowed for
signatures that are signed in the same time period t. However, if we use BGLS as
a synchronized aggregate signature scheme, n + 1 pairing operations are needed
for verifying an aggregate signature where n is the number of aggregated original
signatures.

The scheme SASAGH1 [2] is a synchronized aggregate signature scheme in the
standard model. In SASAGH1, message space is �×k-bits message space. (k chunks
of �-bits strings). If we set k = 1 in SASAGH1, k + 3 = 4 pairing operations is
needed for verifying an aggregate signature.

The SASAGH2 [2] and SASLLY [26] are synchronized aggregate signature
schemes in the random oracle model. In both schemes, a public key is com-
posed of 1 group element. SASAGH2 needs 4 paring operations and SASLLY needs
3 paring operations for verifying an aggregate signature, respectively. Although
a public key of our scheme is composed of 2 group elements, our scheme only
needs 2 paring operations for verifying an aggregate signature.

Thus, compared with existing paring-based synchronized aggregate signature
schemes, our scheme offers the fewest paring operations in a verification of an
aggregate signature. Our scheme offers the most efficient aggregate signature
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Fig. 1. Comparison with pairing-based synchronized aggregate signature schemes. In
the column of “Assumption”, “ROM” represents the random oracle model. In the
columns of “pp size”, “pk size”, “Agg size” represent the number of elements in a
public parameter pp, a public key pk, and an aggregate signature, respectively. In
the column of “Agg Ver (Pairing op)” represents the number of pairing operations in
the verification of an aggregate signature. In the column of “CertKey model ”, “�”
represents that the EUF-CMA security of the corresponding scheme is proven in the
certified-key model. In ASBGLS, n represents the number of original signatures which are
aggregated into an aggregate signature. ASBGLS can be used as a synchronized aggregate
signature scheme, with the following trivial modifications. A message m is changed to a
message-period pair (m, t). Aggregation of signature is only allowed for signatures that
are signed in the same time period t. An aggregate signature of ASBGLS is composed 1
element, but in other synchronized aggregate signature schemes, information of time
period t is included in an aggregate signature. For fair comparison to other synchronized
aggregate signature schemes, we include t into an aggregate signature and count the
number of elements in an aggregate signature as 2. Security of ASBGLS simply can be
proven under the co-CDH assumption in the ROM under the aggregation restriction
that signatures for the same message cannot be aggregated. Without this aggregation
restriction, ASBGLS can be used as a multi-signature, however, it falls victim to the
rogue key attack which is known as a notorious attack for multi-signature schemes [5].
In synchronized aggregate signature has a restriction that each signer issues a signature
one-time for each period, but it allows aggregating signatures on the same message.
To prevent the rogue key attack, we should pose the certified-key model for ASBGLS. In
SASAGH1 has a � × k-bits message space (k chunks of �-bits message).

verification among synchronized aggregate signature schemes based on bilinear
groups.

1.3 Technical Overview

How to Construct Our Signature Scheme. The core idea of our construc-
tion is based on the combination of randomizable signature, the “public-key
sharing technique” and the “randomness re-use technique” [28]. These technique
are used to construct variants of aggregate signatures scheme [11,26,28,37].

Lee et al. [26] used these techniques to construct a synchronized aggregate
signatures scheme based on the CL signature scheme which is a randomizable
signature scheme. The security of these schemes can be proven by the security
of the original (CL) signature scheme.
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Problem in Security Proof. However, it is not clear that it is possible to
design a PS signature-based synchronized aggregate signature scheme with prov-
able security. Since existing CL signature-based synchronized aggregate signa-
ture scheme SASLLY [26] is given in only type-1 pairing, a type-3 pairing variant
of CL signature-based synchronized aggregate signature scheme is not known.

Our first attempt is to apply the public-key sharing technique and the ran-
domness re-use technique to the PS signature scheme which is also a randomiz-
able signature scheme. In fact, we obtain the PS signature-based synchronized
signature scheme but we fail to prove our scheme from the EUF-CMA security
of the original (PS) signature scheme.

Now, we briefly explain the reason why the security proof technique in [26]
fails in our scheme. In SASLLY, a group element of a public-key and group ele-
ments of signature belong to the same group G. This fact allows signature simu-
lation in the security proof of SASLLY scheme. In the security proof of SASLLY, by
using the programmability of the random oracle model, a signature is generated
by computing multiplications of public-key.

By contrast, in our construction, group elements of signature and a group
element of signature belong to different groups (See Fig. 7). Group elements of
a public-key (X̃, Ỹ ) belong to the group ˜G and a group element of signature B
belongs to the group G. If we try to generate a signature by multiplying public-
key elements X̃ and Ỹ , the result of the multiplication does not belong to G.
Thus, the security proof technique by [26] cannot be applied to our scheme.

Our Approach for Security Proof. To prove the security of our scheme,
we use the generalized PS (GPS) assumption [24] which is a variant of the PS
assumption [32]. These assumptions are classified into interactive assumptions.
The interactive assumption is that the computational problem is difficult for all
probabilistic polynomial time adversary which tries to solve the problem even if
oracle queries that are related to the problem are allowed.

Briefly, the difference between the PS assumption and the GPS assumption
is equipped oracles (See Assumption 1 and Assumption 2). The GPS assumption
is obtained by changing the oracle equipped with the PS assumption as follows.
We divide the computation of the equipped oracle in the PS assumption into 2
computation steps and replace the equipped oracle with 2 oracles that compute
each step. By using 2 oracles in the GPS assumption, we prove the security of
our scheme under the GPS assumption in the random oracle model.

1.4 Related Works

Variants of Aggregate Signature. An aggregate signature can be categorized
into various types from the point of view of aggregation restriction. The full
aggregate signature proposed by Boneh et al. [6] allows any user to aggregate
signatures generated by different signers. Moreover, this scheme allows us to
aggregate individual signatures as well as already aggregated signatures in any
order.
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Lysyanskaya, Micali, Reyzin, and Shacham [29] proposed sequential aggre-
gate signature. This signature scheme allows a signer to add his signature to an
aggregate signature in sequential order.

Synchronized aggregate signature scheme [2,16] allows signers to generate at
most one signature for each period and aggregate signatures generated in the
same period into an aggregate signature.

Chalkias, Garillot, Kondi, and Nikolaenko [10] proposed the notion of half-
aggregation. Half-aggregation allows compressing signatures into an aggregate
signature that has half size of the total signature size.

Hartung, Kaidel, Koch, Koch, and Rup [20] proposed fault-tolerant aggregate
signature. In this signature, as long as the number of invalid signatures aggre-
gated does not exceed a certain bound, a verification algorithm can determine a
subset of all messages belonging to an aggregate that were signed correctly.

Goyal and Vaikuntanathan [19] proposed locally verifiable aggregate signa-
ture. In this scheme, given an aggregate signature corresponding to the set of M
of n messages, a local verification algorithm can check whether a particular mes-
sage m is in the set M . Moreover, the runtime of a local verification algorithm
is independent of N and the local verification algorithm can be run without
knowledge of the entire set M .

Pointcheval-Sanders Signature. The Pointcheval-Sanders (PS) signature
scheme [32] is a randomizable signature scheme that allows anyone to refresh
a valid signature σ on a message m to a new valid signature σ′ on the same mes-
sage m. Compared to the Camenisch-Lysyanskaya signature scheme [9] which is
also a randomizable signature scheme, this scheme offers a short signature size.

Security of this signature scheme was proven under the interactive assump-
tion called the PS assumption [32]. In [33], Pointcheval and Sanders introduced
the non-interactive assumption called the modified q-strong Diffie-Hellman-1 (q-
MSDH-1) assumption. They proved the weak-EUF-CMA security of the PS sig-
nature scheme from the q-MSDH-1 assumption.

The PS signature scheme (the PS assumption) and its variant are impor-
tant starting points to construct signature schemes with functionalities. (e.g.
sequential aggregate signature [31,32], redactable signature [31,34], threshold
signature [3], group signature [13,24,25,35,36], threshold group signature [8],
multi-signature [8], updatable signature [12]) Moreover, relationships between
the PS signature and the structure-preserving signature have been studied.

Gardafi [18] introduced the notion of a partially structure-preserving sig-
nature. In a structure-preserving signature scheme [1], all the messages, signa-
tures, and public keys are group elements. Partially-preserving signature is the
same with the exception that the message space is Z

n
p where n is an integer

and p is a prime. They further proposed the notion of linear-massage strongly
partially structure-preserving signature where the message is embedded in a
linear manner. This signature class includes the CL signature scheme and the
PS signature scheme. They proved some impossibility results and lower bound
results for a linear-massage strongly partially structure-preserving signature and
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gave a generic transformation from a linear-massage strongly partially structure-
preserving signature scheme to a structure-preserving signature scheme.

In recent work by Sedaghat, Slamanig, Kohlweiss, Preneel [38], they intro-
duced the notion of a message-indexed structure-preserving signature which is
a variant of a structure-preserving signature whose message is parameterized by
a message indexing function. They gave a message-indexed structure-preserving
signature scheme whose construction is inspired by the PS signature scheme
and the structure-signature scheme by Ghadafi [17]. Moreover, they proposed
a notion of a structure-preserving threshold signature and gave a construction
based on a message-indexed structure-preserving signature scheme.

1.5 Road Map

In Sect. 2, we recall pairing groups and a digital signature. In Sect. 3, we review
synchronized aggregate signature scheme and its security. In Sect. 4, we review
the PS signature scheme, provide a high-level idea of our construction, and give
our synchronized aggregate signature and prove its security.

2 Preliminaries

In this section, we introduce notations and review pairing groups and the
Pointcheval Sanders assumption. Then, we review a digital signature scheme.

Notations. Let 1λ be the security parameter. A function f is negligible in k
if f(k) ≤ 2−ω(log k). For a positive integer n, we define [n] := {1, . . . , n}. For a

finite set S, s
$←− S represents that an element s is chosen from S uniformly at

random. For a group G, we define G
∗ := G\{1G}. For an algorithm A, y ← A(x)

denotes that the algorithm A outputs y on input x. We abbreviate probabilistic
polynomial time as PPT.

2.1 Bilinear Group

A pairing group is a tuple BG = (p,G, ˜G,GT , e) where G, ˜G and GT are cyclic
group of prime order p and e : G × ˜G → GT is an efficient computable, non-
degenerating bilinear map. (i.e., e satisfies the following properties.)

1. For all X ∈ G, ˜Y ∈ ˜G and a, b ∈ Zp, then e(Xa, ˜Y b) = e(X, ˜Y )ab.
2. For all G ∈ G

∗, ˜G ∈ ˜G
∗, e(G, ˜G) �= 1GT

.

Type-3 pairing groups [15] are pairing groups which satisfy G �= ˜G and there is
no efficiently computable homomophism from ˜G to G.

We introduce a type-3 bilinear group generator. A type-3 bilinear group
generator BG is an algorithm that takes as an input a security parameter 1λ.
Then, it returns the descriptions of an asymmetric pairing BG = (p,G, ˜G,GT , e)
where p is a λ-bits prime.
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Pointcheval and Sanders [32] introduced the interactive assumption called
Pointcheval-Sanders (PS) assumption. This assumption holds in the generic
group model [39].

Assumption 1 (PS Assumption [32]). Let BG be a type-3 bilinear group gen-
erator and A be a PPT algorithm. The Pointcheval-Sanders (PS) assumption
over BG is defined by the game PSBG in Fig. 2.

Fig. 2. The game PSA
BG.

The advantage of an adversary A in the game PSBG is defined by AdvPSBG,A(λ)
:= Pr[1 ⇐ PSABG(λ)]. We say that the PS assumption holds if AdvPSBG,A(λ) is
negligible in λ for all PPT adversaries A.

Kim, Lee, Abdalla, and Park proposed the generalized Pointcheval-Sanders
(GPS) assumption [24]. This assumption is a modification of the PS assumption
in that the oracle Ox,y(·) in the PS assumption is divided into the following
two oracles. OGPS

0 samples a group element A and OGPS
1 computes B ← Ax+m·y

where (A,m) is given to OGPS
1 as an input.

Assumption 2 (GPS Assumption [24]). Let BG be a type-3 bilinear group
generator and A be a PPT algorithm. The generalized Pointcheval-Sanders
(GPS) assumption over BG is defined by the game GPSBG in Fig. 3.

The advantage of an adversary A in the game GPSBG is defined by AdvGPSBG,A(λ)
:= Pr[1 ⇐ GPSABG(λ)]. We say that the GPS assumption holds if AdvGPSBG,A(λ) is
negligible in λ for all PPT adversaries A.

Kim et al. [24] proved that the GPS assumption holds in the generic group
model. Moreover, Kim, Sanders, Abdalla, and Park [25] analyzed the relationship
among the PS assumption, the GPS assumption, and the symmetric discrete
logarithm assumption. More precisely, from their result, the following facts are
clarified.

– If the GPS assumption holds, the PS assumption holds.
– If the symmetric discrete logarithm assumption holds, the GPS assumption

holds in the algebraic group model [14].
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Fig. 3. The game GPSA
BG.

2.2 Digital Signature Scheme

We review a digital signature scheme and its security notion.

Definition 1 (Digital Signature Scheme). A digital signature scheme DS
consists of following four algorithms (Setup,KGen,Sign,Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It
returns the public parameter pp. In this work, we assume that pp defines a
message space and represents this space by Mpp. We omit a public parameter
pp in the input of all algorithms except for KGen.

– KGen(pp) : A key-generation algorithm takes as an input a public parameter
pp. It returns a public key pk and a secret key sk.

– Sign(sk,m) : A signing algorithm takes as an input a secret key sk and a
message m. It returns a signature σ.

– Verify(pk,m, σ) : A verification algorithm takes as an input a public key pk,
a message m, and a signature σ. It returns a bit b ∈ {0, 1}.

Correctness. DS satisfies correctness if for all λ ∈ N, pp ← Setup(1λ) for all
m ∈ Mpp, (pk, sk) ← KGen(pp), and σ ← Sign(sk,m), Verify(pk,m, σ) = 1 holds.

We review a security notion called the existentially unforgeable under chosen
message attacks (EUF-CMA) security for digital signature.

Definition 2 (EUF-CMA Security). The existentially unforgeable under
chosen message attacks (EUF-CMA) security of a digital signature scheme DS
is defined as Fig. 4.

The advantage of an adversary A for the EUF-CMA security game is defined
by AdvEUF-CMA

DS,A := Pr[EUF-CMADS
A ⇒ 1]. DS satisfies EUF-CMA security if for

all PPT adversaries A, AdvEUF-CMA
DS,A is negligible in λ.

3 Synchronized Aggregate Signature

In this section, we review a synchronized aggregate signature scheme and it
security model.
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Fig. 4. The EUF-CMA security game EUF-CMADS
A .

3.1 Synchronized Aggregate Signature Scheme

An aggregate signature [6] allows us to compress an arbitrary number of indi-
vidual signatures into a short aggregate signature. A synchronized aggregate
signature [2] is a variant of aggregate signature that all signers have a synchro-
nized time clock or has an access to the public current time period. For each
time period t, each signer can sign a message at most once and anyone can aggre-
gate signatures generated by different signers in the same period t. A generated
aggregate signature is the same size as an individual signature.

Now, we review a definition of a synchronized aggregate signature.

Definition 3 (Synchronized Aggregate Signature Scheme [2,16]). A syn-
chronized aggregate signature scheme SAS for a bounded number of periods is a
tuple of algorithms (Setup,KGen,Sign,Verify,Agg,AVer).

– Setup(1λ, 1T ) : A setup algorithm takes as an input a security parameter λ
and the time period bound T . It returns the public parameter pp. We assume
that pp defines the message space Mpp. We omit a public parameter pp in
the input of all algorithms except for KGen.

– KGen(pp) : A key-generation algorithm takes as an input a public parameter
pp. It returns a public key pk and a secret key sk.

– Sign(sk, t,m) : A signing algorithm takes as an input a secret key sk, a time
period t ≤ T , and a message m. It returns a signature σ. We assume that the
information of time period t is contained in a signature σ.

– Verify(pk,m, σ) : A verification algorithm takes as an input a public key pk,
a message m, and a signature σ. It returns a bit b ∈ {0, 1}.

– Agg((pki,mi, σi)i∈[�]) : An aggregation algorithm takes as an input a list of
tuple (pki,mi, σi)i∈[�]. It return either an aggregate signature Σ or ⊥. We
assume that the information of time period t is contained in an aggregate
signature Σ.

– AVer((pki,mi)i∈[�], Σ) : An aggregate signature verification algorithm takes as
an input a list of tuple (pki,mi)i∈[�] and an aggregate signature Σ. It returns
a bit b ∈ {0, 1}.

Correctness. SAS satisfies correctness if for all λ ∈ N, T ∈ N, pp ←
Setup(1λ, 1T ), for any finite sequence of key pairs (pk1, sk1), . . . (pk�, sk�) ←
KGen(pp) where pki are all distinct, for any time period t ≤ T , for any
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sequence of messages (m1, . . . m�) ∈ M�
pp, σi ← Sign(ski, t,mi) for i ∈ [�],

Σ ← Agg((pki,mi, σi)i∈[�]), we have

Verify(pki,mi, σi) = 1 for all i ∈ [�] ∧ AVer((pki,mi)i∈[�], Σ) = 1.

3.2 Security for Synchronized Aggregate Signature

We review a security model called the existentially unforgeable under chosen
message attacks (EUF-CMA) security in the certified-key model.

Gentry and Ramzan [16] introduced the existentially unforgeable under cho-
sen message attacks (EUF-CMA) security for synchronized aggregate signature.
In this security model, a public parameter pp and a challenge public key pk∗

are given to an adversary which tries to forge an aggregate signature without
secret key sk∗. For each period t, the adversary allows to access signing oracle
OSign and obtain a signature for an arbitrary message. This security guarantees
that it is hard for an adversary to forge an aggregate signature that is valid and
non-trivial. Gentry and Ramzan [16] constructed an identity-based synchronized
aggregate signature scheme.

Ahn, Green, and Hohenberger [2] introduced the certified-key model for a
synchronized aggregate signature. In this model, signers must prove that a tuple
of keys (pk, sk) is generated honestly by an algorithm KGen. To prove the honest
generation of a public key pk, the signer (adversaries for EUF-CMA) must submit
a tuple (pk, sk) to the certification oracle OCert. Now, we review the EUF-CMA
security in the certified-key model.

Definition 4 (EUF-CMA Security in the Certified-Key Model [2,26]).
The existentially unforgeable under chosen message attacks (EUF-CMA) security
of a synchronized aggregate signature scheme SAS in the certified-key model is
defined as Fig. 5.

The advantage of an adversary A for the EUF-CMA security game in the
certified-key model is defined by AdvEUF-CMA

SAS,A := Pr[EUF-CMASAS
A ⇒ 1]. SAS sat-

isfies EUF-CMA security in the certified-key model if for all PPT adversaries
A, AdvEUF-CMA

SAS,A is negligible in λ.

4 PS Signature-Based Synchronized Aggregate Signature

In this section, we review the Pointcheval-Sanders (PS) signature scheme [32].
Then, we give a high-level idea of our synchronized aggregate signature scheme
from the PS signature scheme and give our synchronized aggregate signature
scheme. Finally, we prove the security of our scheme from the EUF-CMA security
of the PS signature scheme in the ROM.

4.1 Pointcheval-Sanders Signature Scheme [32]

Pointcheval and Sanders [32] proposed a short randomizable signature scheme.
We review the single-message Pointcheval-Sanders (PS) signature scheme
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Fig. 5. The EUF-CMA security game in the certified-key model EUF-CMASAS
A .

Fig. 6. The single-message PS signature scheme DSPS.

DSPS = (SetupPS,KGenPS,SignPS,VerifyPS). The construction of their scheme
is described in Fig. 6.

Theorem 1 [32]. If the Pointcheval-Sanders (PS) assumption holds, DSPS sat-
isfies the EUF-CMA security.

4.2 High-Level Idea of Our Construction

We give a high-level idea of our synchronized-aggregate signature construction
from the PS signature scheme DSPS. Let (pki, ski) = (( ˜Gi, ˜Xi, ˜Yi), (xi, yi)) be a
key pair of the signer i in DSPS. The signature σi on a message mi signed by ski

is formed as σi = (Ai, Bi = Axi+mi·yi

i ) where Ai
$←− G

∗.
To construct our synchronized-aggregate signature, we apply the “public-key

sharing technique” and the “randomness re-use technique” [28]. These tech-
niques are used to construct variants of aggregate signatures [11,26,28,37,40].
We explain how to apply these techniques to DSPS.

First, we consider applying the “public-key sharing technique”. In this tech-
nique, one of element in public key of underlying scheme is replaced by the public
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parameter. We change pki as ( ˜Xi, ˜Yi) and force signers to use same ˜Gi. That is,
we include ˜G = ˜Gi into the public parameter of the scheme.

Second, we consider applying the “randomness re-use technique”. This tech-
nique forces all signers to use the same randomness to sign a message. If all
of signer share same Ai, a signature σ on a message mi by each signer i is
formed as (A,Bi = Axi+mi·yi). Then, we can compress signatures {σi}i∈[�] into
an aggregate signature Σ = (A,

∏

i∈[�] Bi = A
∑

i∈[�] (xi+mi·yi)).
To share the same randomness A to all signers for each time period t, we

change A to H1(t) where H1 : [T ] → G
∗ is a hash function. Hashing the time

as group element has been used to construct variants of aggregate signature
schemes [26,27]. Moreover, to prove the security, we modify mi to H2(t,mi)
where H2 : [T ] × {0, 1}∗ → Zp is a hash function.

4.3 Our Synchronized Aggregate Signature Scheme

We describe our synchronized aggregate signature scheme SASOurs = (SetupOurs,
KGenOurs,SignOurs,VerifyOurs,AggOurs,AVerOurs). The construction of our synchro-
nized aggregate signature scheme is described in Fig. 7.

Fig. 7. Our synchronized aggregate signature scheme SASOurs.
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Correctness. We confirm the correctness of our scheme SASOurs. Let pp ←
SetupOurs(1λ, 1T ), t ∈ [T ], (pki, ski) ← KGenOurs(pp) for i ∈ [�] and σi ←
SignOurs(ski, t,mi) for i ∈ [�] where pki are all distinct. First, we check
the correctness of a non-aggregated signature. For each i ∈ [�], Bi =
H1(t)xi+H2(t,mi)·yi holds where σi = (Bi, t) and ski = (xi, yi). By these fact,

e(H1(t), ˜Xi
˜Yi

H2(t,mi)
) = e(Bi, ˜G) holds where pki = ( ˜Xi, ˜Yi). Thus, we can see

that the correctness of a non-aggregated signature σi holds.
Next, we check the correctness of an aggregate signature. Let Σ = (B′, t) ←

AggOurs((pki,mi, σi)i∈[�]). Then, B′ =
∏�

i=1 Bi =
∏�

i=1(H1(t)xi+H2(t,mi)·yi) =

H1(t)
∑�

i=1(xi+H2(t,mi)·yi) holds. By these fact, e(H1(t),
∏�

i=1(˜Xi
˜Yi

H2(t,mi)
)) =

e(H1(t), ˜G
∑�

i=1(xi+H2(t,mi)·yi)) = e(Bi, ˜G) holds. Thus, we can see that the cor-
rectness of aggregate signature Σ holds.

4.4 Security Analysis

As explained in Sect. 1.3, security proof technique by Lee et al. [26] cannot be
applicable. Instead, we prove the EUF-CMA security of our scheme SASOurs from
the GSP assumption.

Theorem 2. Let H1,H2 be a hash function of SASOurs in Fig. 6 and T is a poly-
nomial in λ. If the GPS assumption holds and H1,H2 are modeled as the random
oracle, our scheme SASOurs satisfies the EUF-CMA security in the certified-key
model.

Proof. Let A be an EUF-CMA security game adversary of the SASOurs scheme
with qH2 hash queries to OH2 . We construct an adversary B for the GPS security
game of BGGPS by using A. The construction of B is given in Fig. 8.

We confirm that if B does not abort, B simulates the EUF-CMA game for
SASOurs. Now, we discuss the distribution of pp∗, pk∗, output of oracles OCert,
OH1 , OH2 , and OSign

– Distribution of pp∗ and pk∗: It is clear that B simulates pp and pk in the
EUF-CMA game for the SASOurs.

– Output of OCert: It is clear that B simulates OCert in the EUF-CMA game
for the SASOurs in the certified-key model.

– Output of OH1 : In the original game, hash values of H1 are chosen from G
∗

uniformly at random. In the simulation of B, the hash value H(ti) is set by
Ai ← OGPS

0 . Since OGPS
0 samples Ai from G

∗ uniformly at random, B perfectly
simulates OH1 .

– Output of OH2 : It is clear that B simulates OH2 .
– Output of OSign: In the simulation of B, by the programming of OH1 and

OH2 , H1(t) = A and H2(t,mj) = m′
(t,j) hold. If B �= ⊥, OGPS

1 (A,m′
(t,j))

returns B = Ax · Am′
(t,j)·y = H1(t)x+H2(t,mj)·y. Thus if B does not abort, B

simulate OSign.
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Fig. 8. The reduction B.

From the above discussion, we can see that B does not abort, B can simulate the
EUF-CMA game for SASOurs.

Second, we confirm that if A successfully output a valid forgery
((pk∗

i ,m
∗
i )i∈[�∗], Σ

∗) of SASOurs, B can extract a solution for the GPS prob-
lem. Let ((pk∗

i ,m
∗
i )i∈[�∗], Σ

∗) be a valid forgery output by A. Then there exists
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j∗ ∈ [�∗] such that pk∗
j∗ = pk∗. By the verification of AVerOurs,

e(H1(t∗), (
�

∏

i=1

˜Xi
˜Yi

H2(t
∗,m∗

i ))) = e(B∗′, ˜G)

holds. If B does not abort in the procedure If m∗
j∗ ′ ∈ C, then abort. in Fig. 8,

m∗
j∗ ′ ∈ C has not been queried to OGPS

1 .

We can see that B∗′ = A′∑�∗
i=1(x

∗
i +y∗

i ·m∗
i

′) holds where (xi, yi) = sk∗
i is a

secret key corresponding to pk∗
i . In the certified-key model, since B knows all

{sk∗
i }i∈[�∗]\{j∗}, B can compute the following.

B′ = A′xj∗+m′
j∗ ·yj∗ = B∗′ ·

(

A′∑i∈[�∗]\{j∗}(xi+m′
i·yi)

)−1

Therefore, if B does not abort, and B a solution (m∗
j∗ ′, A′, B′) for the GPS

problem.
We analyze the probability that B succeeds in forging a signature of PS.

First, we consider the probability that B aborts at the simulation of signa-
tures. B aborts the simulation of OSign if B queries same A at least twice for
OGPS

1 (A,m′
(t,j)). To give an upper bound of this probability, it is sufficient to con-

sider the probability that collision is found in H1. We can bound the probability
that B fails simulating a signature for each signing query by qs/|G∗| = qs/(p−1)
where qs is the number of queries to OSign from A. By taking union bound, the
probability that B fails simulating signatures through the EUF-CMA game is
upper bounded by q2s/(p − 1)

Next, we consider the probability that B aborts at If m∗
j∗ ′ ∈ C, then abort.

in Fig. 8. This probability can be bounded by the probability that a collision is
found in H2. We can bound this probability by qH2/|Zp| = qH2/p where qH2 is
the number of queries to OH2 .

Finally, we summarize the above discussion. Let AdvEUF-CMA
SASOurs,A be the advantage

of the EUF-CMA game for the SASOurs scheme of A. The advantage of the GPS
game B is

AdvGPSBG,A ≥ AdvEUF-CMA
SASOurs,A − q2s

p − 1
− qH2

p
.

Therefore, we can conclude Theorem 2. �

5 Conclusion

In this paper, we construct the PS signature-based synchronized aggregate sig-
nature scheme which offers the most efficient aggregate signature verification
among existing synchronized aggregate signature schemes. As for the security
proof of our scheme, since the reduction technique by Lee et al. [26], could not
be applied in the security proof of our scheme, we prove its security by using the
GPS assumption in the ROM as a new approach.
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If we apply the public-key sharing technique and the randomness re-use
technique to the CL signature scheme on type-3 pairing, we will obtain the
CL signature-based synchronized aggregate signature scheme on type-3 pair-
ing. However, as with our PS signature-based synchronized aggregate signa-
ture scheme, group elements of a public key and group element in a signature
belong to different groups ˜G and G respectively, the reduction technique by
Lee et al. [26], would not be applied. Fortunately, similar to the GPS assump-
tion, the generalized LRSW (GLRSW) assumption [7] that is a variant of the
LRSW assumption [30] was proposed. We leave a future task to confirm whether
our reduction technique can be applied to the CL signature-based synchronized
aggregate signature scheme on type-3 pairing and prove its security from the
GLRSW assumption.
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Abstract. In trapdoor sanitizable signatures (TSS) (ACNS’08), a signer
can partially delegate its signing ability to someone. When signing a mes-
sage, the signer chooses its sanitizable parts. Each signature is associated
with a trapdoor, enabling any entity arbitrarily to modify the sanitiz-
able parts while retaining validity of the signature. In previous TSS, the
sanitizable parts are permanently sanitizable. We formalize sanitization-
controllable TSS, where the sanitizable parts can be partially (and irre-
versibly) changed into fixed. We formally define its security notions,
including unlinkablity (any sanitized signature and its trapdoor cannot
be linked to their original ones), invisibility (each signature leaks no infor-
mation about its sanitizable parts) and strong context-hiding (SCH) (any
sanitized signature and its trapdoor distribute like fresh ones). We pro-
pose a generic transformation from a downgrade-controllable downgrad-
able affine MAC (DAMAC), which is a generalization of DAMAC (CT-
RSA’19). Our TSS scheme is the first TSS scheme satisfying unlinkabil-
ity or invisibility. In redactable signatures (ICISC’01), we can partially
black out a signed message. We formalize disclosure-controllable trapdoor
redactable signatures (TRS). We propose a generic transformation from a
sanitization-controllable TSS. Our TRS scheme is the first unlinkable and
disclosure-controllable (T)RS scheme.

Keywords: Trapdoor Sanitizable Signatures · Trapdoor Redactable
Signatures · Downgradable Affine Message Authentication Codes ·
Unlinkability · Invisibility · Strong Context-Hiding

1 Introduction

1.1 Background and Related Works

Sanitizable Signatures. In the ordinary digital signature, if a single bit of a signed
message is altered, its signature loses its validity. In sanitizable signatures (SS)
[6], a special entity called sanitizer is able to partially modify a message while
retaining validity of the signature. Specifically, a message consists of multiple
sub-messages in a form like m = (m1, · · · ,mn) for some n ∈ N. A signer, when

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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signing a message m, chooses a public-key pkz of sanitizer and a set T ⊆ [1, n]
of indices for sanitizable sub-messages in m. The sanitizer (with the secret-key
skz for pkz) can change any sub-message mi s.t. i ∈ T into any binary string. As
security requirements for SS, the followings have been formalized [17,18,20]1.

Unforgeability. The most standard security requirement for digital signature.
Informally, no outsider can forge a correct signature.

Immutability. No sanitizer can modify other than the modifiable parts.
Privacy. Any sanitized signature includes no information about the original

message.
Transparency. From a signature, we cannot correctly guess whether the signer

or sanitizer has generated it.
Unlinkability. Any sanitized signature includes no information about either

the original message or signature.
Invisibility. Any signature includes no information about the sanitizable parts.

In the first work on SS [6], they proposed a scheme based on chameleon
hash function. The first unlinkable (resp. invisible) SS scheme was proposed in
[18] (resp. [20]). Recently, the first unlinkable and invisible SS scheme, based on
non-accountable SS (NASS) and verifiable ring signatures, was proposed in [19].

Trapdoor SS. In trapdoor SS [21], a specific sanitizer is not designated. Each
sanitizable signature is associated with a trapdoor which enables any entity
to sanitize the signature. Canard et al. [21] proposed a generic construction
based on identity-based chameleon hash function [27]. Yum et al. [38] formalized
unforgeability, privacy and transparency for TSS, and proved their simple generic
transformation from ordinary digital signature are secure.

In TSS, even after a signer generate a signature, the signer can designate
a single or multiple sanitizers. A trapdoor given to the sanitizer might need
to be encrypted. If we use (ciphertext-policy) attribute-based encryption [11], a
trapdoor can be distributed to anyone whose attributes satisfy a policy. If we use
anonymous identity-based encryption [16], the signer can anonymously delegate
her signing ability to someone with an identity. If we use the ordinary public-key
encryption (PKE), that can be a NASS appeared in [19]2.

P -Homomorphic Signatures. In P -homomorphic signatures (P -HS) [5] for a
predicate P , from a signature on a message m, we can derive a randomized signa-
ture on another message m s.t. 1 ← P (m,m). Ahn et al. [5] defined unforgeability
and a strong notion of privacy, named strong context hiding (SCH), meaning that
any signature derived from an honestly generated one distributes like a fresh one.

1 In transparent SS, it is unknown whether signer or sanitizer generated the signa-
ture. In some applications, accountability is required. Specifically, any signer can
prove the fact that she has (or has not) generated the signature. As related security
requirements, signer-accountability and sanitizer-accountability have been defined
[17].

2 Verifying whether invisibility and unlinkability of the underlying TSS are inherited
by the NASS is an open problem.
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Attrapadung et al. [7] defined a stronger notion, called complete context hiding
(CCH), requiring that any signature derived from any correct one (which might
have been dishonestly generated) distributes like a fresh one.

Homomorphic signature for subset predicate (HSSP) is a subclass of P -HS.
Each message is a set. From a signature on a set m, a new signature on any of
its subsets m ⊆ m can be derived. In [5] (resp. [7]), unforgeable and SCH-secure
(resp. CCH-secure) scheme was proposed.

Redactable Signatures. Redactable signatures [35] is also a subclass of P -HS.
Each message m consists of some sub-messages in a form like m = (m1, · · · ,mn).
Each (non-blacked-out) sub-message can be blacked-out (or redacted). Steinfeld
et al. [35] proposed a simple generic construction based on message commitment
and ordinary digital signature. A signer, when firstly signing a message, chooses
a set of indices for its redactable sub-messages, named content extraction access
structure (CEAS). However, in their scheme, CEAS is eternally fixed and visible
from verifier. A property that any redactable sub-message can irreversibly change
into non-redactable was named (consecutive) disclosure-controllability [33], and
disclosure-controllable schemes have been proposed, e.g. [24,32–34].

Any HSSP scheme can be transformed into a RS scheme. A signature on a
list m = (m1, · · · ,mn) for RS is a signature on a set S = {i||mi}n

i=1 for HSSP.
Redacting a sub-message mi is excluding i||mi from S. Note that the HSSP
schemes [5,7] lead to SCH and CCH secure RS schemes, respectively.

The other sub-classes of P -HS include quotable signatures [5,8], linearly
homomorphic signatures [5,8], append-only signatures (AOS) [25] and history-
hiding AOS [10,31].

Downgradable Affine MAC. Affine MAC (AMAC) [14] is an algebraic MAC with
a group description (G, p, g), where G is a group, p is a prime and g is a generator
of G. For a ∈ Z

n
p , let [a] denote (ga1 , · · · , gan)T ∈ G

n. A tag τ = ([t], [u]) on
m ∈ M consists of a randomness [t] ∈ G

n and a message-depending [u] ∈ G,
satisfying t := Bs ∈ Z

n
p and u :=

∑l
i=0 fi(m)xT

i t +
∑l′

i=0 f ′
i(m)xi ∈ Zp, where

fi, f
′
i : M → Zp are public functions, B ∈ Z

n×n′
p , xi ∈ Z

n
p and xi ∈ Zp are from

the secret-key skMAC, and s
$←− Z

n′
p

3. Pseudo-randomness, a security notion
related to unforgeability, guarantees that no PPT adversary, who arbitrarily
chooses m∗ then receives ([h]1, [h0]1, [h1]T ), can distinguish the case (I) where

they have been honestly generated, i.e., h
$←− Zp, h0 :=

∑l
i=0 fi(m∗)xih and

h1 :=
∑l′

i=0 f ′
i(m

∗)xih, from the case (II) where they have been randomly gen-
erated. Note that the adversary can adaptively use tag-generation oracle, which
takes m �= m∗ then returns a tag on it. They proposed two AMAC schemes,
one of which based on a hash-proof system (HPS) [22] is pseudo-random under
k-Linear assumption.

Blazy et al. [14] showed that an AMAC with message-length l ∈ N

can be transformed into an anonymous identity-based KEM (AIBKEM) with

3 $←− means that we select an element uniformly at random from a space.
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identity-length l. A key-issuing authority randomly generates skMAC for the
AMAC and perfectly-hiding commitments {Zi} (resp. {zi}) to {xi} (resp. {xi}).
A secret-key for an identity id is identical to a Bellare-Goldwasser (BG) signa-
ture [9]. Specifically, it consists of an AMAC tag ([t]2, [u]2) on a message id and a
non-interactive zero knowledge proof [u]2 w.r.t. the commitments, which proves
the tag has been correctly generated. Key-encapsulation and key-decapsulation
are a randomized verification of the NIZK proof. They proved that its adaptive
security is tightly reduced to the pseudo-randomness of the AMAC.

In delegatable AMAC (DlgAMAC) [14], each message is hierarchical. A
tagged message can be transformed into any of its descendants. Its pseudo-
randomness is a natural extension from the one for AMAC, where the tag-
generation oracle returns not only a tag but also related elements used to delegate
and re-randomize it. They showed that the HPS-based AMAC is delegatable.
Their anonymous HIBKEM based on DlgAMAC is a natural extension from
the AMAC-based AIBKEM. Each secret-key for a hierarchical ID consists of a
BG-signature on the ID and elements for delegating and re-randomizing it.

Downgradable AMAC (DAMAC) [13] is also an AMAC with
tag-delegatability. Any tagged message can be downgraded. In other words, any
bit 1 can be changed into 0. They proposed (anonymous) downgradable IBKEM
(DIBKEM) based on DAMAC. In DIBKEM, each user secret-key, associated with
an identity, can be downgraded. They also proposed generic transformations from
DIBKEM to HIBKEM, wildcarded IBKEM [2,12] and wicked IBKEM [3].

1.2 Our Contributions

In this work, we formally define downgrade-controllable DAMAC (DCDAMAC)
and prove that a natural extension from the delegatable AMAC in [14] satisfies
the definition. We formally define sanitization-controllable TSS (SCTSS) and
propose a generic construction based on the DCDAMAC. Moreover, we propose
a generic transformation of disclosure-controllable trapdoor RS from SCTSS.

1. Downgrade-Controllable DAMAC. In the DAMAC [13], any bit 1 (in a tagged
message) is permanently downgradable. In downgrade-controllable DAMAC
(DCDAMAC), a generalization of the original DAMAC, any downgradable bit
1 can be irreversibly changed into non-downgradable (or fixed). As security
requirements, we define pseudo-randomness and strong context-hiding (SCH).

The pseudo-randomness notion is a weakened version of the natural extension
from the one for delegatable AMAC [14]. Firstly, pseudo-randomness of [h0]1 is
not considered. Secondly, the oracles (incl. a oracle for tag-generation) cannot
be used after the challenge instance is issued. Like the SCH for P -HS [5], SCH
for DCDAMAC means that any tag downgraded from another tag distributes
identically to a fresh tag directly-generated by the secret-key skMAC. We prove
that any scheme (satisfying a definition for DCDAMAC) is unconditionally SCH.

2. Sanitization-Controllable TSS. A message is simply a binary string of length
l ∈ N. A TSS scheme consists of 4 polynomial-time algorithms, namely key-
generation, signing (Sig), sanitization (Sanit) and verification. A signer, when
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signing a message m ∈ {0, 1}l, chooses a set of indices T ⊆ [1, l] for its sanitizable
bits. When a signature is generated in Sig or Sanit, its trapdoor is simultane-
ously generated4. We assume that each trapdoor explicitly includes the set T so
that any sanitizer knows it. The sanitizer can alter the set T to any T ⊆ T.

Our TSS is a subclass of P -HS (or P -trapdoor HS). As a security require-
ment, we define SCH for TSS. Informally, it guarantees that any pair of signa-
ture and trapdoor, generated from an honestly-generated one, distributes like a
fresh one. Other than SCH, we formally define (existential) unforgeability, pri-
vacy, transparency, unlinkability and invisibility. Among the security notions, we
prove that some implications hold. Especially, SCH is an important (or useful)
notion because it directly implies transparency and unlinkability, and simplifies
unforgeability and invisibility. The details will be in Subsect. 4.2.

We propose a generic construction based on DCDAMAC. We implicitly con-
sider the downgrade-controllable version of the DIBKEM based on DAMAC [13].
We know that a user secret-key in an encryption system can function as a signa-
ture, e.g., the transformation from HIBE to hierarchical identity-based signatures
[26], the transformation from (CP-)ABE to HSSP [5]. Our TSS scheme is a trans-
formation from the implicit downgrade-controllable DIBKEM (DCDIBKEM)
based on DCDAMAC. Either signature or trapdoor on (m, T) is a user secret-
key for the DCDIBKEM scheme. For instance, a signature is a secret-key for
an ID = m ∈ {0, 1}l with no downgradability. Verifying a signature is gener-
ating a test ciphertext then decrypting it by the signature. A trapdoor td is a
secret-key for the DCDIBKEM scheme associated with an ID′ = F (m, T) and
a set T. Informally, the function F changes every downgradable bit 0 in m into
1. Our proof for its unforgeability is an extension of the proof for the security
(indistinguishability) of the HIBKEM based on delegatable AMAC [14]. Its SCH
security is directly implied by the SCH security of the underlying DCDAMAC.

We prove that the existing TSS schemes [21,38] are neither unlinkable nor
invisible. Thus, our scheme is the first one satisfying unlinkability or invisibility.

3. Disclosure-Controllable TRS. In DCTRS, message space is simply {0, 1, ∗}l,
where ∗ denotes a redacted (or blacked-out) bit. The set T ⊆ [1, l] for m denotes
a set of indices for redactable bits in m. Since every redactable bit has not been
redacted yet, T is naturally a subset of I0(m) ∪ I1(m)5. We require the same
security as TSS. The same implications as TSS hold for TRS.

The technique for our transformation from (SC)TSS to (DC)TRS is similar
to the transformation from DIBKEM to wildcarded IBKEM in [13]. We use a
TSS scheme with message length 2l. A message m ∈ {0, 1, ∗}l for the TRS is
deterministically changed into a message m′ ∈ {0, 1}2l for the TSS. The i-th bit
of m determines the 2i−1 and 2i bits of m′ as follows. Formally, (m′[2i−1],m′[2i])
are set to (0, 1) if m[i] = 0, (1, 0) if m[i] = 1, or (0, 0) if m[i] = ∗. The set T ⊆ [1, l]

4 In the previous model [21], there is a trapdoor-generation algorithm, enabling the
signer to generate a trapdoor from a signature using her signing-key.

5 In this paper, Ib(a) denotes a set of indices for all bits with value b in a.
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is also deterministically changed into T
′ ⊆ [1, 2l] based on m. For all i ∈ T, in

(m′[2i − 1],m′[2i]) ∈ {(0, 1), (1, 0)}, only element with value 1 is sanitizable.
Disclosure-controllable RS schemes have been proposed in [24,32–34]. Either

one cannot be unlinkable since there exist eternally-fixed elements in each signa-
ture, e.g., committed values [24,33], document ID [32]. The SCH-secure HSSP
schemes [5,7] can lead to unlinkable RS schemes. However, either one is not
disclosure-controllable. Our TRS scheme is the first unlinkable and disclosure-
controllable (T)RS scheme.

1.3 Paper Organization

In Sect. 2, some notations and matrix Diffie-Hellman assumption are introduced.
In Sect. 3, syntax and security notions for (DC)DAMAC are defined. A secure
DAMAC scheme is also given. In Sect. 4, syntax and security notions for TSS are
defined. In Sect. 5, we propose a generic transformation from (DC)DAMAC to
(SC)TSS and prove that it satisfies our security notions. In Sect. 6, we propose
a generic transformation from (SC)TSS to (DC)TRS. We compare our TSS and
TRS schemes with existing schemes in these sections.

2 Preliminaries

Notations. 1λ (for λ ∈ N) denotes a security parameter. PPTA means prob-
abilistic polynomial-time algorithm. We say that a function f : N → R is
negligible if ∀c ∈ N, ∃x0 ∈ N s.t. ∀x ≥ x0, f(x) ≤ x−c. For a binary string
x ∈ {0, 1}n, x[i] ∈ {0, 1} for i ∈ [1, n] denotes the value of its i-th bit. For
a string x ∈ X

n, e.g., X is {0, 1} or {0, 1, ∗}, Ib(x) for b ∈ X denotes the
set {i ∈ [1, n] s.t. x[i] = b}. For x, y ∈ {0, 1}n, the relation x  y holds if∧

i∈[1,n] x[i] = 1 =⇒ y[i] = 1. For x, y ∈ {0, 1}n and a set J ⊆ I1(y), the

relation x J y holds if
∧

i∈[1,n]\J x[i] = y[i]
∧

i∈J
x[i] = 1 =⇒ y[i] = 1. a

$←− A
means that we extract an element a uniformly at random from a set A. For a
matrix A ∈ N

(k+1)×k, Ā ∈ N
k×k denotes the square matrix composed of the

upper k rows of A, and A ∈ N
1×k denotes the lowest row of A.

Matrix Diffie-Hellman Assumption. Let GBG denote a generator of asymmetric
bilinear pairing. Let λ ∈ N. GBG takes 1λ, then generates (p, G1, G2, GT , e, g1,
g2). p is a prime of length λ. (G1, G2, GT ) are multiplicative groups of order p.
g1 and g2 are generators of G1 and G2, respectively. e : G1 × G2 → GT is an
asymmetric function, computable in polynomial time and satisfying both of the
following conditions: (i) Bilinearity: For every a, b ∈ Zp, e(ga

1 , gb
2) = e(g1, g2)ab.

(ii) Non-degeneracy: e(g1, g2) �= 1GT
, where 1GT

denotes the unit element of GT .
Note that gT := e(g1, g2) is a generator of GT . For s ∈ {1, 2, T} and a ∈ Zp,

[a]s denotes ga
s ∈ Gs. Generally, for s ∈ {1, 2, T} and a matrix A ∈ Z

n×m
p whose

(i, j)-th element is aij ∈ Zp, [A]s ∈ G
n×m denotes a matrix whose (i, j)-th

element is g
aij
s ∈ Gs. Obviously, from [a]s and an integer x ∈ Zp, [xa]s ∈ Gs is
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efficiently computable. From [a]1 and [b]2 (for b ∈ Zp), [ab]T is also efficiently
computable. Note that for a, b ∈ Z

n
p ,

[
aTb

]
T

= e([a]1, [b]2) = e([b]1, [a]2).
Based on [14,22,28], we define matrix Diffie-Hellman assumption.

Definition 1. Let l, k ∈ N s.t. l > k. We call a set Dl,k a matrix distribution if
it consists of matrices in Z

l×k
p of full rank k and extracting an element from it

uniformly at random can be efficiently done. W.l.o.g., we assume that the upper
k rows of A

$←− Dl,k form an invertible matrix.

Definition 2. Let Dl,k be a matrix distribution. Let s ∈ {1, 2, T}. Dl,k-
matrix (decisional) Diffie-Hellman (MDDH) assumption holds relative to GBG

in group Gs, if for every PPT A, its advantage Adv
Dl,k-MDDH
A,GBG,Gs

(λ) := |Pr[1 ←
A(gd, [A]s, [Aw]s)] − Pr[1 ← A(gd, [A]s, [u]s)]| is negligible, where gd := (p, G1,

G2, GT , e, g1, g2) ← GBG(1λ), A
$←− Dl,k, w

$←− Z
k
p and u

$←− Z
l
p.

Corollary 1 is directly obtained from Lemma 4 in [29].

Corollary 1. For any prime p and n ∈ N, Pr[rank(S) �= n | S
$←− Z

n×n
p ] ≤ 1

p−1 .

3 Downgradable Affine MAC (DAMAC)

A randomized message authentication code (MAC) consists of following 3
polynomial-time algorithms. Key-generation GenMAC takes a system parameter
par, then generates a secret-key skMAC. Tag-generation Tag takes skMAC and a
message, then generates a tag. Tag-verification Ver takes skMAC, a message and
a tag, then deterministically returns 1 (accept) or 0 (reject).

3.1 Our Model

Affine MAC (AMAC) [14] over Z
n
p are group-based MAC with an algebraic struc-

ture. In delegatable AMAC (DlgAMAC) [14], a message is hierarchical. From a
tag on a message, we can produce a valid tag on any of its descendant message.
Downgradable AMAC (DAMAC) [13] is also an AMAC with tag-delegatability.
Given a tag on a message {0, 1}l, we can downgrade any bit 1 in m into 0. Note
that any bit 1 can be permanently downgradable.

We define (consecutively) downgrade-controllable DAMAC6. Any downgrad-
able bit 1 can be irreversibly changed into non-downgradable (or fixed). The
downgrade-controllability is required for the DAMAC-based trapdoor SS (TSS)
in Sect. 5 to be sanitization-controllable, and for the TSS-based trapdoor RS in
Sect. 6 to be disclosure-controllable. The following definition is an extension from
the one for DlgAMAC [14].

Definition 3 (DAMAC). We say that a MAC system ΣMAC = {GenMAC,
Tag, Down, Ver} is downgradable over Z

n×n′
p if it satisfies the following condi-

tions.
6 The name of (consecutive) downgrade-controllability comes from (consecutive)

disclosure-controllability for redactable signatures [33].
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– Key-Generation GenMAC(par): It takes a public parameter par including
integers n, n′, l and a description (p, G1, G2, GT , e, g1, g2) for bilinear groups,
then returns skMAC. We parse skMAC as (B,x0,x1, · · · ,xl, x), where B ∈
Z

n×n′
p , xi ∈ Z

n
p and x ∈ Zp. Message space is M = {0, 1}l.

– Tag-Generation Tag(skMAC,m ∈ M, J ⊆ I1(m))7: It chooses s
$←− Z

n′
p and

S
$←− Z

n′×n′
p . It computes

• t := Bs ∈ Z
n
p , T := BS ∈ Z

n×n′
p ,

• u :=
∑l

i=0 fi(m)xT
i t + x ∈ Zp, w :=

∑l
i=0 fi(m)xT

i T ∈ Z
1×n′
p , and

• di := hi(m)xT
i t ∈ Zp and ei := hi(m)xT

i T ∈ Z
1×n′
p for all i ∈ J,

where fi : M → Zp for i ∈ [0, l] and hi : M → Zp for i ∈ J are public
functions. For every m ∈ {0, 1}l, every J ⊆ I1(m), every m ∈ {0, 1}l and
every J ⊆ I1(m) s.t. m J m ∧ J ⊆ J, they satisfy both of the following
conditions.

• For every i ∈ [0, l],

fi(m) =

{
fi(m) (if i = 0 ∨ m[i] = m[i]),
fi(m) − hi(m) (otherwise).

• For every i ∈ J, hi(m) = hi(m).
It returns τ := ([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}). Core of the tag
is ([t]2, [u]2) ∈ G

n
2 × G2. The former is randomness. It uniquely determines

the latter under skMAC. The other elements are used to rerandomize and
downgrade the core part.

– Downgrade Down(m ∈ M, τ,m ∈ M, J ⊆ I1(m))(see footnote 7): It parses τ
as ([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}). It returns ⊥ if m �J m∨J �⊆ J.
It computes the followings8.

• s
$←− Z

n′
p , S

$←− Z
n′×n′
p .

[
t
]
2

:=
[
t + TSs

]
2
,
[
T

]
2

:=
[
TS

]
2
.

• [ei]2 :=
[
eiS

]
2

and
[
di

]
2

:=
[
di + eiSs

]
2

for all i ∈ J.
• [w]2 :=

[
wS − ∑

i∈I1(m)∩I0(m) ei

]
2
, [u]2 :=

[
u + wSs − ∑

i∈I1(m)∩I0(m) di

]
2
.

It returns τ := (
[
t
]
2
, [u]2,

[
T

]
2
, [w]2, J, {[

di

]
2
, [ei]2 | i ∈ J}).

– Verification Ver(skMAC,m, τ): It parses τ as ([t]2, [u]2, · · · ). It returns 1 if

it holds that [u]2 =
[∑l

i=0 fi(m)xT
i t + x

]

2
, or 0 otherwise.

We require every DAMAC scheme to be correct. A DAMAC scheme is correct if
∀par ∈ {0, 1}∗ (incl. l, n, n′ ∈ N), ∀skMAC = (B,x0, · · · ,xl, x) ← GenMAC(par),
∀m ∈ M, ∀J ⊆ I1(m), ∀τ ← Tag(skMAC,m, J), ∀m ∈ M s.t. m J m, ∀J ⊆ I1(m)
s.t. J ⊆ J, ∀τ ← Down(m, τ,m, J), 1 ← Ver(skMAC,m, τ). Definition 3 implies
correctness. We prove the following theorem in the full version of this paper.

Theorem 1. Any DAMAC scheme satisfying Definition 3 is correct.
7 To make the inner-randomnesses explicit, we sometimes use notations like τ ←
Tag(skMAC, m, J; s, S) and τ ← Down(m, τ, m, J; s, S).

8 If the original tag has been honestly generated by Tag or Down, it holds that ei =
hi(m)xT

i T , di = hi(m)xT
i t, w =

∑l
i=0 fi(m)xT

i T and u =
∑l

i=0 fi(m)xT
i t + x.
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Security. We define strong context-hiding and pseudo-randomness.
Strong context-hiding (SCH) [5] was originally introduced as a strong privacy

notion for P -homomorphic signatures [5]. We will define SCH for TSS and TRS
in later sections. Here, we define it for DAMAC. It intuitively means that any
tag generated by Down distributes like a fresh tag generated by Tag.

Definition 4 (SCH). A DAMAC scheme ΣDAMAC is statistically SCH if ∀par ∈
{0, 1}∗ (incl. l, n, n′ ∈ N), ∀skMAC = (B,x0, · · · ,xl, x) ← GenMAC(par), ∀m ∈
M, ∀J ⊆ I1(m), ∀m ∈ M s.t. m J m, ∀J ⊆ I1(m) s.t. J ⊆ J, ∀ probabilistic
algorithm A, its advantage AdvSCHΣDAMAC,A,par,l,n,n′(λ) defined as

∣
∣Pr

[
1 ← A(skMAC, τ, τ)

∣
∣ τ ← Tag(skMAC,m, J), τ ← Down(m, τ,m, J)

]

−Pr
[
1 ← A(skMAC, τ, τ)

∣
∣ τ ← Tag(skMAC,m, J), τ ← Tag(skMAC,m, J)

]∣
∣

is negligible. It is perfectly SCH if the advantage is 09.

Definition 3 implies SCH. We prove the following theorem in the full paper.

Theorem 2. Any DAMAC scheme satisfying Definition 3 is SCH. Formally, for
any probabilistic algorithm A, AdvSCHΣDAMAC,A,par(λ) ≤ 4

p−1 .

As (delegatable) AMAC [14], we define pseudo-randomness for DAMAC. We
define two notions, namely PR-CMA1 and PR-CMA1′.

For PR-CMA1, we define two experiments ExptPR-CMA1ΣDAMAC,A,b with b ∈ {0, 1} for
a PPT adversary A. In these experiments, every part surrounded by a grey box
abc is ignored. A can adaptively use three oracles. A can make Tag produce a tag
on a message. A can make Down downgrade a tag generated on Tag or Down.
On Tag or Down, A cannot get the whole tag, but only its core part, i.e., [t]2
and [u]2. A can make Reveal reveal any of the hidden tags. Finally, A chooses a

target m∗, then gets ([h]1, [h0]1, [h1]1), where h
$←− Zp and h0 :=

∑
i fi(m∗)xih.

A has to guess whether h1 is hx or random on Zp. If A has a correct tag on m∗,
she can correctly guess that10. Because of that, we require that no tag on m∗

has been generated on Tag or Down, and no tag on a message downgradable
into m∗ has been revealed on Reveal.

PR-CMA1 is not a natural extension from the one for AMAC (DlgAMAC) [14],
but weaker. Firstly, pseudo-randomness of [h0]1 is not considered. Secondly, the
three oracles cannot be used after the challenge instance is issued11.

PR-CMA1′ is weaker than PR-CMA1. We define two experimentsExptPR-CMA1
′

ΣDAMAC,A,b

with b ∈ {0, 1}. It is the same as the counterpart experiment for PR-CMA1, i.e.,
ExptPR-CMA1ΣDAMAC,A,b, except for the gray part. In short, A cannot use Down.

9 When we say that a DAMAC system is SCH-secure, that means the statistical one.
10 Let ([t∗]2, [u

∗]2, · · · ) denote the tag on m∗. She can correctly guess that by verifying
whether e([h]1, [u

∗]2) = e([h0]1, [t
∗]2) · e([h1]1, [1]2) holds.

11 The name PR-CMA1 comes from IND-CCA1 for public-key encryption.
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ExptPR-CMA1ΣDAMAC,A,b(par): // ExptPR-CMA1
′

ΣDAMAC,A,b

skMAC ← GenMAC(par). Parse skMAC as (B,x0, · · · ,xl, x).
(m∗ ∈ {0, 1}l, st) ← ATag,Down,Reveal

0 (par).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Tag(m ∈ {0, 1}l, J ⊆ I1(m)):
τ ← Tag(skMAC, m, J). Parse τ as ([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}).
Q := Q ∪ {(m, J, τ)}. Rtrn ([t]2, [u]2).

- Down(m ∈ {0, 1}l, J ⊆ I1(m), [t]2 ∈ G
n
2 , [u]2 ∈ G2, m ∈ {0, 1}l, J ⊆ I1(m)):

Rtrn ⊥. Rtrn ⊥ if m ��J m ∨ J �⊆ J.
Rtrn ⊥ if � ∃τ such that (m, J, τ) ∈ Q and being parsed as

([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}) for some T,w, di and ei.
τ ← Down(m, τ, m, J). Parse τ as (

[
t
]
2
, [u]2,

[
T

]
2
, [w]2, J, {[

di

]
2
, [ei]2 | i ∈ J}).

Q := Q ∪ {(m, J, τ)}. Rtrn (
[
t
]
2
, [u]2).

- Reveal(m ∈ {0, 1}l, J ⊆ I1(m), [t]2 ∈ G
n
2 , [u]2 ∈ G2):

Rtrn ⊥ if � ∃τ such that (m, J, τ) ∈ Q and being parsed as
([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}) for some T,w, di and ei.

Qr := Qr ∪ {(m, J)}. Rtrn τ .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Abrt if (m∗, ·, ·) ∈ Q ∨ ∃(m, J) ∈ Qr s.t. m∗ �J m.

h
$←− Zp, h0 :=

∑l
i=0 fi(m

∗)xih. If b = 0, h1 := xh. If b = 1, h1
$←− Zp.

Rtrn b′ ← A1(st, [h]1, [h0]1, [h1]1).

Definition 5 (PR-CMA1). A DAMAC system is PR-CMA1 if ∀λ ∈ N,
∀par ∈ {0, 1}∗, ∀ PPT A, its advantage AdvPR-CMA1ΣDAMAC,A,par(λ) defined as
|∑1

b=0(−1)b Pr[1 ← ExptPR-CMA1ΣDAMAC,A,b(par)]| is negligible.

Analogously, PR-CMA1′ is defined. Theorem 3 is proven in the full paper.

Theorem 3. A DAMAC scheme ΣDAMAC is PR-CMA1 if it is PR-CMA1′ and
SCH. Formally, for any PPTA A, there exist a probabilistic algorithm B1

and a PPTA B2 such that AdvPR-CMA1ΣDAMAC,A,par(λ) ≤ 2qd · AdvSCHΣDAMAC,A,par(λ) +
AdvPR-CMA1

′
ΣDAMAC,A,par(λ), where qd ∈ N denotes total number that A uses the oracle

Down.

3.2 Construction

The DAMAC scheme ΠDAMAC is essentially the same as the AMAC scheme
based on hash-proof system in [14].

GenMAC (par): B
$←− Dn,n′ , x0, · · · ,xl

$←− Z
n
p , x

$←− Zp. Rtrn skMAC :=
(B,x0, · · · ,xl, x).
Tag

(
skMAC, m ∈ {0, 1}l, J ⊆ I1(m)

)
:

s
$←− Z

n′
p , S

$←− Z
n′×n′
p . t := Bs ∈ Z

n
p , T := BS ∈ Z

n×n′
p .

u := (xT
0 +

∑
i∈I1(m) x

T
i )t + x ∈ Zp. w := (xT

0 +
∑

i∈I1(m) x
T
i )T ∈ Z

1×n′
p .

For all i ∈ J, di := xT
i t ∈ Zp and ei := xT

i T ∈ Z
1×n′
p .

Rtrn τ := ([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}).
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Down
(
m ∈ {0, 1}l, τ, m ∈ {0, 1}l, J ⊆ I1(m)

)
:

Parse τ as ([t]2, [u]2, [T ]2, [w]2, J, {[di]2, [ei]2 | i ∈ J}). Rtrn ⊥ if m �J m ∨ J �⊆ J.

s
$←− Z

n′
p , S

$←− Z
n′×n′
p .

[
t
]
2

:=
[
t + TSs

]
2
,
[
T

]
2

:=
[
TS

]
2
.

[ei]2 :=
[
eiS

]
2

and
[
di

]
2

:=
[
di + eiSs

]
2

for all i ∈ J.

[w]2 :=
[
wS − ∑

i∈J∩I0(m) ei

]
2
, [u]2 :=

[
u + wSs − ∑

i∈J∩I0(m) di

]
2
.

Rtrn τ := (
[
t
]
2
, [u]2,

[
T

]
2
, [w]2, J, {[

di

]
2
, [ei]2 | i ∈ J}).

Ver
(
skMAC, m ∈ {0, 1}l, τ

)
:

Parse skMAC as (B,x0, · · · ,xl, x). Parse τ as ([t]2, [u]2, · · · ).
Rtrn 1 if [u]2 =

[
(xT

0 +
∑l

i=1 m[i]xT
i )t + x

]
2
. Rtrn 0, otherwise.

It satisfies Definition 3. Note that for every m ∈ {0, 1}l and every i ∈ [0, l],
fi(m) = 1 if i = 0∨m[i] = 1) or fi(m) = 0 otherwise, and hi(m) = 1 if m[i] = 1.
By Theorem 1 and Theorem 2, it is correct and SCH.

Theorem 4 guarantees that the DAMAC is PR-CMA1′ under the MDDH
assumption. A proof of the theorem is given in the full paper. We modify the
proof of a theorem for pseudo-randomness of the delegatable AMAC scheme [14].

Theorem 4. The DAMAC scheme is PR-CMA1′ if the Dn,n′-MDDH assumption
w.r.t. GBG and G2 holds. Formally, for any PPTA A, there exists a PPTA B
s.t. AdvPR-CMA1

′
ΠDAMAC,A(λ) ≤ 1

pn + 1
pn−n′ + Adv

Dn,n′ -MDDH
B,GBG,G2

(λ).

Since the scheme is SCH, by Theorem 3, it is PR-CMA1.

4 Trapdoor Sanitizable Signatures (TSS)

In the ordinary digital signature, any signed message cannot be modified. San-
itizable signatures (SS) [6] allows an entity called sanitizer to partially modify
the message while retaining validity of the signature. In SS, the signer chooses a
public-key of a sanitizer. The sanitizer can modify the message using her secret-
key. In trapdoor SS (TSS) [21], each signed message is associated with a trapdoor.
Any entity who knows the trapdoor can modify the message.

4.1 Our Model

Syntax. TSS consists of following four polynomial time algorithms. KGen, Sig
and Sanit are probabilistic and Ver are deterministic. In the original model [21],
each message consists of multiple sub-messages with unbounded length. In our
model, each message is simply a binary string with constant length l ∈ N.

Key-generation KGen: Let l ∈ N denote bit length of a message. It generates
a key-pair of a signer. Formally, it takes 1λ and l, then outputs a key-pair
(pk, sk). a [(pk, sk) ← KGen(1λ, l)]
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Signing Sig: It generates a signature on a message. Formally, it takes a secret-
key sk, a message m ∈ {0, 1}l and a set T ⊆ [1, l] of indices for its modifiable
bits, then outputs a signature σ and a trapdoor td. We require that the set
T is uniquely identified by the trapdoor td, e.g., explicitly included in td.
a [(σ, td) ← Sig(sk,m, T)]

Sanitizing Sanit: It modifies a signed message into another. Formally, it takes
a public-key pk, a message m, a signature σ, a trapdoor td, a modified message
m and a modified set T ⊆ T, then outputs a signature σ and a trapdoor td.
a [(σ, td) ← Sanit(pk,m, σ, td,m, T)]

Verification Ver: It verifies a signature. It takes a public-key pk, a message m
and a signature σ, then returns 1 or 0. a [1/0 ← Ver(pk,m, σ)]

A relation must hold between an original and modified message. We define the
relation algorithm Rs for TSS as follows.

Definition 6 (TSS Relation). m,m ∈ {0, 1}l are arbitral messages. T ⊆ [1, l]
is an arbitral set of indices for modifiable bits.

Rs(m,m, T) :=

{
1 (if

∧
i∈[1,l] [m[i] �= m[i] =⇒ i ∈ T])

0 (otherwise)

We require every TSS scheme to be correct. We say that a TSS scheme is correct,
if ∀λ ∈ N, ∀l ∈ N, ∀(pk, sk) ← KGen(1λ, l), ∀m ∈ {0, 1}l, ∀T ⊆ [1, l], ∀(σ, td) ←
Sig(sk,m, T), ∀m ∈ {0, 1}l s.t. 1 ← Rs(m,m, T), ∀T ⊆ T, ∀(σ, td) ← Sanit(pk,
m, σ, td,m, T), 1 ← Ver(pk,m, σ) and 1 ← Ver(pk,m, σ).

Comparison with [21,38]. In our model, a trapdoor is generated simultaneously
with a signature. In the original model [21,38], there is an algorithm which gener-
ates a trapdoor from a signature using the signing-key. Its usefulness is limited. If
someone demands a trapdoor associated with a signature, the signer only needs
to ignore the signature and generate a fresh signature and its trapdoor on the
same message and set of indices for modifiable bits. Moreover, our model dif-
fers in the following three respects. First, Sanit is probabilistic. As we explain
later, this property is necessary to achieve unlinkability. Because the sanitiza-
tion algorithms of the schemes [21,38] are not probabilistic12, they cannot be
unlinkable. Second, a signature and its trapdoor can be re-randomized. This is
done by running Sanit with (m, T) = (m, T). Third, a set of indices for modi-
fiable bits can be consecutively downsizable. We call this property (consecutive)
sanitization-controllability. This is done by running Sanit with m(= m) and
T(⊂ T). In the original model, each trapdoor and set of indices for modifiable
bits are permanently fixed.

4.2 Security Definitions

As security notions for SS, for instance, unforgeability, privacy, transparency,
unlinkability and invisibility have been defined [17,18,20]. Yum et al. [38] have
12 Precisely, they are deterministic and semi-probabilistic, respectively.
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defined only the first three notions for TSS. In this work, we define all of them
and strong context-hiding (SCH) for TSS. These notions are categorized into two
groups search-type and distinction-type based on their problems the adversary
solves. The former includes unforgeability and the latter the others.

Search-Type Notion. One of the standard security notions for the ordinary digital
signature is (weak) existential unforgeability against chosen messages attacks,
shortly wEUF-CMA. We define two notions for TSS, wEUF-CMA and wEUF-CMA′. The
former is a naive extension from the one for the ordinary digital signature, and
the latter is a slight downgrade of the former.

In the following experiment for wEUF-CMA, a PPT adversary A can adaptively
use three oracles. Signing oracle Sig takes a message m and a set T. A signature
σ and its trapdoor td are generated. Here, only σ is revealed. Sanitization oracle
Sanit is used when A wants to sanitize the signature generated on Sig. The
(trapdoor-)revelation oracle Reveal is used when A wants to get the hidden
trapdoor generated on Sig or Sanit. Finally, A outputs a forgery σ∗ on a target
message m∗. Since this notion is weak existential unforgeability, m∗ must not be
the one queried to Sig or Sanit. Naturally, the message must not be obtained
by modifying a message whose trapdoor has been revealed on Reveal.

ExptwEUF-CMAΣTSS,A(1λ, l): // ExptwEUF-CMA
′

ΣTSS,A .

1. (pk, sk) ← KGen(1λ, l). (σ∗, m∗) ← ASig,Sanit,Reveal(pk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Sig(m, T): (σ, td) ← Sig(sk, m, T). Q := Q ∪ {(m, T, σ, td)}. Rtrn σ.
- Sanit(m, σ, m, T):

Rtrn ⊥. Rtrn ⊥ if � ∃(T, td) s.t. (m, T, σ, td) ∈ Q ∧ 1 ← Rs(m, m, T) ∧ T ⊆ T.
(σ, td) ← Sanit(pk, m, σ, td, m, T). Q := Q ∪ {(m, T, σ, td)}. Rtrn σ.

- Reveal(m, T, σ):
Rtrn ⊥ if � ∃td s.t. (m, T, σ, td) ∈ Q. Qr := Qr ∪ {(m, T)}. Rtrn td.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2. Rtrn 1 if 1 ← Ver(pk, m∗, σ∗)

∧
(m,T)∈Qr

0 ← Rs(m, m∗, T)
∧

(m∗, ·, ·, ·) /∈ Q.
3. Rtrn 0.

Definition 7 (wEUF-CMA). A TSS scheme ΣTSS is wEUF-CMA, if for any λ ∈ N,
any l ∈ N and any PPT A, its advantage AdvwEUF-CMAΣTSS,A,l(λ) defined as Pr[1 ←
ExptwEUF-CMAΣTSS,A (1λ, l)] is negligible.

In wEUF-CMA′, the sanitization oracle cannot be used. This notion is defined
analogously to wEUF-CMA. As we prove later in Theorem5, the two notions are
equivalent if the TSS scheme is SCH.

Distinction-Type Notions. We define (i) transparency, (ii) privacy, (iii) unlinka-
bility, (iv) invisibility and (v) SCH.

For the notions, we commonly define two experiments, namely Expt0 and
Expt1. They require that no probabilistic algorithm (with unbounded compu-
tational time) A can distinguish the two experiments statistically or perfectly.
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Informally, (i) transparency (TRN) means that we cannot correctly guess that
a signature is generated by Sig or Sanit. In Expt1, on the oracle of Sanit/Sig,
we generate the signature σ directly by Sig. In Expt0, we firstly generate a
signature σ on m, then σ from it by Sanit. Note that sk is directly given to A.

ExptTRNΣTSS,A,b(1
λ, l): // b ∈ {0, 1}.

1. (pk, sk) ← KGen(1λ, l). Rtrn b′ ← ASanit/Sig(pk, sk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Sanit/Sig(m, T, m, T):
Rtrn ⊥ if 0 ← Rs(m, m, T) ∨ T � T.
(σ, td) ← Sig(sk, m, T). (σ, td) ← Sanit(pk, m, σ, td, m, T).
(σ, td) ← Sig(sk, m, T). Rtrn (σ, td).

Definition 8 (TRN). A scheme ΣTSS is statistically TRN if for any λ ∈ N, any
l ∈ N and any probabilistic algorithm A, its advantage AdvTRNΣTSS,A,l(λ) defined as
|∑1

b=0(−1)b Pr[1 ← ExptTRNΣTSS,A,b(1
λ, l)]| is negligible. It is perfectly TRN if the

advantage is 013.

Intuitively, (ii) privacy (PRV) means that from a sanitized signature on a
modified message we cannot get any information about the original message.
PRV is defined analogously to TRN, cf. Definition 8.

ExptPRVΣTSS,A,b(1
λ, l): // b ∈ {0, 1}.

1. (pk, sk) ← KGen(1λ, l). Rtrn b′ ← ASigSanitLR(pk, sk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- SigSanitLR(m0, m1, T0, T1, m, T):
Rtrn ⊥ if ∃β ∈ {0, 1} s.t. 0 ← Rs(mβ , m, Tβ) ∨ T �⊆ Tβ .
(σ, td) ← Sig(sk, mb, Tb). (σ, td) ← Sanit(pk, mb, σ, td, m, T). Rtrn (σ, td).

(iii) Unlinkability (UNL) is a stronger notion than PRV. Intuitively, it means
that from a sanitized signature we cannot get any information about not only the
original message but also the original signature. For a TSS scheme, its sanitiza-
tion algorithm must be probabilistic to be UNL. No scheme, such that a sanitized
signature is (partially) determined by the original signature, can be UNL, e.g.,
the ones [21,38]. UNL is also defined analogously to TRN, cf. Definition 8.

ExptUNLΣTSS,A,b(1
λ, l): // b ∈ {0, 1}.

1. (pk, sk) ← KGen(1λ, l). Rtrn b′ ← ASig,Sanit,SanitLR(pk, sk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Sig(m, T): (σ, td) ← Sig(sk, m, T). Q := Q ∪ {(m, T, σ, td)}. Rtrn (σ, td).
- Sanit(m, T, σ, td, m, T):

Rtrn ⊥ if (m, T, σ, td) /∈ Q ∨ T �⊆ T.
(σ, td) ← Sanit(pk, m, σ, td, m, T). Q := Q ∪ {(m, T, σ, td)}. Rtrn (σ, td).

- SanitLR(m0, T0, σ0, td0, m1, T1, σ1, td1, m, T):

13 Let Z ∈ {TRN, PRV, UNL, INV, SCH, INV′, INV†}. When we shortly say that a scheme is
Z-secure, that means it is statistically Z-secure..
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Rtrn ⊥ if ∃β ∈ {0, 1} s.t. (mβ , Tβ , σβ , tdβ) /∈ Q ∨ 0 ← Rs(mβ , m, Tβ) ∨ T �⊆ Tβ .
(σ, td) ← Sanit(pk, mb, σb, tdb, m, T). Q := Q ∪ {(m, T, σ, td)}. Rtrn (σ, td).

Intuitively, (iv) invisibility (INV) means that from a signature we get no
information about its set of indices for modifiable bits T. More precisely, it
means that only from a signature we can get no information about its set of
indices for modifiable bits because our model has assumed that the set can be
uniquely identified by the trapdoor.

We define two notions for invisibility, namely INV and INV′.
We define two experiments for INV. The latter one Expt1 is associated with

three simulation algorithms {SimKGen, SimSig, SimSanit}. A can adaptively use
two oracles SimSig and SimSanit. In Expt0, on SimSig, a signature and its
trapdoor on (m, T) are honestly generated by Sig. In Expt1, they are generated
by the simulated signing algorithm SimSig which is not given T as input. If both
of the signatures are indistinguishable, that means no information about T is
included in an honestly generated signature.

ExptINVΣTSS,A,b(1
λ, l): // b ∈ {0, 1}.

(pk, sk) ← KGen(1λ, l). (pk, sk′(� sk)) ← SimKGen(1λ, l).
Rtrn b′ ← ASimSig,SimSanit(pk, sk).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- SimSig(m, T):

(σ, td) ← Sig(sk, m, T). σ ← SimSig(sk′, m). td := 0.
Q := Q ∪ {(m, T, σ, td)}. Rtrn σ.

- SimSanit(m, σ, m, T):
Rtrn ⊥ if � ∃(T, td) s.t. (m, T, σ, td) ∈ Q

∧
1 ← Rs(m, m, T)

∧
T ⊆ T.

(σ, td) ← Sanit(pk, m, σ, td, m, T). σ ← SimSanit(sk′, m, σ, m). td := 0..
Q := Q ∪ {(m, T, σ, td)}. Rtrn σ.

Definition 9 (INV). A scheme ΣTSS is statistically INV if for any λ ∈ N,
any l ∈ N and any probabilistic algorithm A, there exist simulation algorithms
{SimKGen, SimSig, SimSanit} such that A’s advantage AdvINVΣTSS,A,l(λ) defined as
|∑1

b=0(−1)b Pr[1 ← ExptINVΣTSS,A,b(1
λ, l)]| is negligible. It is perfectly INV if the

advantage is 0(see footnote 13).

The two experiments for INV′ are the same as INV except that the (simu-
lated) sanitization oracle SimSanit cannot be used. This notion is defined as
Definition 9. As we prove in Theorem 5, the two notions are equivalent if the
scheme is SCH.

In P -homomorphic signatures (P -HS) [5] for a predicate P , from a signature
on a message m, we can derive a correct signature on any message m such that
1 ← P (m,m). Obviously, TSS is a sub-class of P -HS14. As a strong notion of
privacy for P -HS, Ahn et al. [1] defined strong context-hiding (SCH) (SCH), which
informally says that any signature derived from another one is indistinguishable
from a fresh signature directly generated by the signing-key. We define SCH for
TSS as follows.
14 Precisely, we should probably say that TSS is a sub-class of P -trapdoor HS.
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Definition 10 (SCH). A TSS scheme ΣTSS is statistically SCH if for any λ ∈ N,
any l ∈ N, any (pk, sk) ← KGen(1λ, l), any m,m ∈ {0, 1}l, any T, T ⊆ [1, l] such
that 1 ← Rs(m,m, T) ∧ T ⊆ T and any probabilistic algorithm A, its advantage
AdvSCHΣTSS,A,l(λ) defined as

∣
∣
∣Pr

[

1 ← A(sk, σ, td, σ, td)
∣
∣
∣ (σ, td) ← Sig(sk, m, T), (σ, td) ← Sanit(pk, m, σ, td, σ, T)

]

−Pr
[

1 ← A(sk, σ, td, σ, td)
∣
∣
∣ (σ, td) ← Sig(sk, m, T), (σ, td) ← Sig(sk, m, T)

]∣
∣
∣

is negligible. It is perfectly SCH if the advantage is 0(see footnote 13).

Relations among the Security Notions. The following six implications hold.

Theorem 5. For any TSS scheme, (1) wEUF-CMA′ ∧ SCH implies wEUF-CMA, (2)
INV′ ∧ SCH implies INV, (3) TRN implies PRV, (4) UNL implies PRV, (5) SCH implies
TRN, and (6) SCH implies UNL. Note that any of the implications hold in either
of the statistical and perfect formalizations.

The theorem is formally proven in Sect.A.
The relations are visualized in Fig. 1. Note that TRN does not imply UNL

because there exists a counterexample which is TRN but not UNL, e.g. the scheme
by Yum et al. [38] as we will prove in Subsect. 5.2. We can prove that UNL does
not imply TRN by presenting a simple counterexample. Let Σ denote a scheme
satisfying UNL. Another Σ′ is basically the same as Σ, but Sanit always adds a
special symbol (like �) somewhere in a signature. Any user can correctly guess
the generator based on it. Thus, Σ′ is not TRN. Obviously, Σ′ is still UNL.

Fig. 1. Relations among security notions for TSS. Normal arrow (→) indicates a (com-
binational) implication result. Negated arrow (�) indicates a separation result. (Color
figure online)

5 Our TSS Scheme

5.1 Contruction

Downgradable IBE (DIBE) [13] is a generalization of hierarchical IBE [15]. Each
secret-key is associated with an ID. The ID can be downgraded, which means that
any bit 1 can be changed into 0. We can propose downgrade-controllable DIBE
(DCDIBE). For each bit 1, we can decide downgradable or fixed. Blazy et al. [13]
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proposed a DIBE scheme based on DAMAC (w/o downgrade-controllability),
which is an extension of the HIBE scheme based on delegatable AMAC [14].
We believe that the same approach effectively works for DCDIBE. We implicitly
construct a DCDIBE scheme based on (downgrade-controllable) DAMAC.

We have known that a user secret-key in an encryption system can function
as a signature, e.g., the transformation from HIBE to hierarchical identity-based
signatures [26], the transformation from (CP-)ABE to HSSP [5]. Our TSS scheme
is a transformation from the implicit DCDIBE scheme.

Each signature or trapdoor on (m, T) is a user secret-key for the DCDIBE
scheme. For instance, each signature is a secret-key for an ID = m ∈ {0, 1}l with
no downgradability. We verify it as the HIBE-to-HIBS transformation. Thus, we
generate a test ciphertext then decrypt it by the signature. Each trapdoor td is
a secret-key for the DCDIBE scheme associated with an ID′ = F (m, T) and a
set T. Informally, the function F changes every downgradable bit 0 in m into 1.

In Sig and Sanit, we firstly generate a trapdoor then a signature. In Sig, we
firstly generate a trapdoor td (using sk), then a signature σ by td. Likewise, in
Sanit, we firstly generate a trapdoor td (using the original td), then a signature
σ by td. Figure 2 depicts a simple case where we, given a signature on m = 0101
with T = {3, 4}, modify the message into m = 0100 with T = {4}.

Our TSS scheme ΩTSS is formally described as follows.

KGen(1λ, l):

A
$←− Dn′+1,n′ . skMAC ← GenMAC(1λ, l). Parse skMAC as (B,x0, · · · ,xl, x).

y
$←− Z

1×n′
p , z := (y | x) A ∈ Z

1×n′
p .

For all i ∈ [0, l], Yi
$←− Z

n×n′
p and Zi := (Yi | xi) A ∈ Z

n×n′
p .

pk :=
(
[A]1,

{
[Zi]1 | i ∈ [0, l]

}
, [z]1

)
. sk := (skMAC, {Yi | i ∈ [0, l]} ,y). Rtrn (pk, sk).

Sig(sk, m, T):
m′ ← F (m, T).
τ ′ ← Tag(skMAC, m′, T). Parse τ ′ as ([t′]2, [u

′]2, [T
′]2, [w

′]2, T, {[d′
i]2, [e

′
i]2 | i ∈ T}).

u′ :=
∑l

i=0 fi(m
′)Y T

i t′ + yT ∈ Z
n′
p . W ′ :=

∑l
i=0 fi(m

′)Y T
i T ′ ∈ Z

n′×n′
p .

For all i ∈ T, d′
i := hi(m

′)Y T
i t′ and E′

i := hi(m
′)Y T

i T ′.
td := (τ ′, [u′]2, [W

′]2, {[d′
i]2, [E

′
i]2 | i ∈ T}). σ ← Derive(m′, td, m, ∅). Rtrn (σ, td).

F (m ∈ {0, 1}l, T ⊆ [1, l]):
m′ := m. For all i ∈ T s.t. m[i] = 0, m′[i] := 1. Rtrn m′.

Derive(m′ ∈ {0, 1}l, td′, m ∈ {0, 1}l, T ⊆ I1(m)):
Parse td′ as (τ ′, [u′]2, [W

′]2, {[d′
i]2, [E

′
i]2 | i ∈ T

′}) for some T
′ ⊆ I1(m

′).
Parse τ ′ as ([t′]2, [u

′]2, [T
′]2, [w

′]2, T
′, {[d′

i]2, [e
′
i]2 | i ∈ T

′}).

τ ← Down(m′, τ ′, m, T; s, S), where s
$←− Z

n′
p and S

$←− Z
n′×n′
p .

Parse τ as ([t]2, [u]2, [T ]2, [w]2, T, {[di]2, [ei]2 | i ∈ T}).
For all i ∈ T

′, [Ei]2 := [E′
iS]2 and [di]2 := [d′

i + E′
iSs]2.

[W ]2 :=
[
W ′S − ∑

i∈I1(m′)∩I0(m) Ei

]
2
. [u]2 :=

[
u′ + W ′Ss − ∑

i∈I1(m′)∩I0(m) di

]
2

τ := ([t]2, [u]2, [T ]2, [w]2, T, {[di]2, [ei]2 | i ∈ T}).
td := (τ, [u]2, [W ]2, {[di]2, [Ei]2 | i ∈ T}). Rtrn td.

Sanit(pk, m, σ, td, m, T):
Rtrn ⊥ if 0 ← Ver(pk, m, σ).
Parse td as (τ ′, [u′]2, [W

′]2, {[d′
i]2, [E

′
i]2 | i ∈ T}) for some T.

Parse τ ′ as ([t′]2, [u
′]2, [T

′]2, [w
′]2, T, {[d′

i]2, [e
′
i]2 | i ∈ T}).
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Rtrn ⊥ if T � T ∨ 0 ← Rs(m, m, T).
m′ ← F (m, T). m′ ← F (m, T).
td ← Derive(m′, td, m′, T). σ ← Derive(m′, td, m, ∅). Rtrn (σ, td).

Ver(pk, m, σ):
Parse σ as (τ, [u]2, · · · ). Parse τ as ([t]2, [u]2, · · · ).
r

$←− Z
n′
p . [v0]1 := [Ar]1 ∈ G

n′+1. [v]1 := [zr]1 ∈ G. [v1]1 :=
[∑l

i=0 fi(m)Zir
]
1

∈ G
n.

Rtrn 1 if e

(
[v0]1,

[
u
u

]

2

)
· e

(
[v1]1, [t]2

)−1
= e

(
[v]1, [1]2

)
. Rtrn 0 otherwise.

Fig. 2. A simple example of sanitization in our TSS scheme. The grey ( 0 ) box indi-
cates downgradable bits.

For correctness and security, we give the following four theorems. They are
formally proven in the full paper.

Theorem 6. The TSS scheme is correct if ΣDAMAC satisfies Definition 3.

Theorem 7. The TSS scheme is SCH if ΣDAMAC is SCH.

Theorem 8. The TSS scheme is perfectly PRV and perfectly INV′.

Theorem 9. The TSS scheme is wEUF-CMA′ if the MDDH assumption relative
to GBG in group G1 holds and ΣDAMAC is PR-CMA1′ and SCH.

5.2 Security Analysis of Existing Two TSS Schemes

We check whether existing two TSS schemes are secure under our definitions.
The first one is a TSS scheme by Canard et al. [21]. It uses identity-based

chameleon hash function (IBCH) and digital signature, and adopts (IB)CH-then-
Sign approach. A signing-key consists of a master secret-key msk of the IBCH
and a signing-key sk of the digital signature. She signs a message m = (m1, · · · ,
mn) with T ⊆ [1, n] as follows. For every i ∈ T, she computes the hash value hi of
the sub-message mi under an identity m and randomness ri. She sets m̂i := hi.
On the other hand, for every i ∈ [1, n] \ T, she simply sets m̂i := mi. Next, she
computes the hash value h of m under an identity m and randomness r. Then,
she generates a signature σ̂ on m̂1|| · · · ||m̂n||h using sk. Finally, the signature
σ consists of (σ̂, {hi, ri | i ∈ T}, h, r). Its trapdoor td is an IBCH secret-key for
the identity m generated from msk. We have proven that the TSS scheme is



Trapdoor Sanitizable and Redactable Signatures 355

neither INV nor PRV, which implies that it is neither TRN, UNL nor SCH because
of Theorem 5. Their proofs are simple, which are given in the full paper.

The second one is a generic scheme based on an ordinary signature scheme
proposed by Yum et al. [38]. A key-pair of a signer is a key-pair (vk, sk) of the
underlying signature scheme. To sign a message m = (m1, · · · ,mn) for T ⊆ [1, n],
the signer generates a new key-pair (v̂k, ŝk), then makes a message m̂ := ||ni=1m̂i,
where m̂i is set to a special symbol (e.g. �) if i ∈ T, or mi itself otherwise. The
signature consists of (v̂k, σ0, σ1), where σ0 is a signature on a message v̂k||m̂
generated by sk, and σ1 is a signature on v̂k||m̂||m generated by ŝk. Its trapdoor
is ŝk. We have proven that the TSS scheme is perfectly TRN, which implies that
it is perfectly PRV. We have also proven that it is neither INV nor UNL, which
implies that it is not SCH. Their proofs are simple, which are given in the full
paper.

Our DAMAC-based TSS scheme is perfectly PRV, and (statistically) TRN,
UNL, INV and SCH. We obtain Table 1. Our scheme is the first one which has been
rigorously proven to achieve either UNL, INV or SCH. We do not compare the
schemes in terms of existential unforgeability because its definitions are different
in each work. We emphasize that our definition is stronger in the sense that the
sanitization-controllability is considered.

Table 1. Comparing our TSS scheme with existing TSS schemes in terms of security.
Stat. (Perf.) means statistical (resp. perfect).

Generic const. TRN PRV UNL INV SCH Building blocks

CLM08 [21] ✗ ✗ ✗ ✗ ✗ IBCH, Digital Signature

YSL10 [38] Perf. Perf. ✗ ✗ ✗ Digital Signature

Ours Stat. Perf. Stat. Stat. Stat. DAMAC

6 Trapdoor Redactable Signatures (TRS)

Redactable signatures (RS) [35] is a subclass of P -homomorphic signatures [5].
Any signed message can be partially blacked out while maintaining validity of the
signature. Unlike (T) SS, alteration is not allowed. In this section, we formally
define trapdoor RS (TRS), and propose a generic transformation from TSS.

6.1 Our TRS Model

Message space is simply {0, 1, ∗}l for some integer l, where ∗ denotes a blacked-
out bit. Like TSS, it consists of four algorithms {KGen, Sig, Redact, Ver}. Sig
takes a message m ∈ {0, 1, ∗}l and a set of indices for redactable bits T ⊆
I0(m) ∪ I1(m). Redact takes a signature on a message m, a redacted message
m ∈ {0, 1, ∗} and a set T ⊆ I0(m) ∪ I1(m). The redacted message must satisfy
the TRS relation.
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Definition 11 (TRS Relation). m,m ∈ {0, 1, ∗}l are arbitral messages. T ⊆
I0(m) ∪ I1(m) is an arbitral set of indices for redactable bits.

Rr(m,m, T) :=

{
1 (if

∧
i∈[1,l] [m[i] �= m[i] =⇒ i ∈ T ∧ m[i] = ∗])

0 (otherwise)

We define the same security notions as TSS. To avoid the redundancy, we do
not formally describe the security experiments. Among the security notions for
TRS, the same implications as TSS hold, c.f. Theorem5.

Fig. 3. Redacting m = 01 ∗ 01∗ with T = {4, 5} into m = 01 ∗ 0 ∗ ∗ with T = {4} in our

TRS scheme. The normal ( 0 ) and grey ( 0 ) boxes indicate redactable and sanitizable
bits, respectively.

6.2 A Generic Tranformation from TSS

Its technique is similar to the transformation from DIBKEM to wildcarded
IBKEM [13]. We use a TSS scheme of message length 2l. A TRS message
m ∈ {0, 1, ∗}l and a set of indices T ⊆ I0(m) ∪ I1(m) are transformed into a
TSS message m′ ∈ {0, 1}2l and a set T

′ ⊆ [1, 2l] as follows: For each i ∈ [1, l],
(m′[2i − 1],m′[2i]) are set to (0, 1) if m[i] = 0, (1, 0) if m[i] = 1, or (0, 0) if
m[i] = ∗. T

′ is set to
⋃

i∈T s.t. m[i]=0{2i}⋃
i∈T s.t. m[i]=1{2i − 1}.

Figure 3 visualizes a redaction example in our TRS scheme. The TRS scheme
is a functionally-restricted TSS scheme with message length 2l. Thus, for every
security notion, the notion of the TRS scheme is straightforwardly implied by
the one of the TSS scheme.

Theorem 10. For any Z ∈ {wEUF-CMA′, wEUF-CMA, TRN, PRV, UNL, INV′, INV,
SCH}, the TRS scheme is Z-secure, if the underlying TSS scheme is Z-secure.

6.3 Comparison with Existing RS Constructions

Disclosure-controllable RS schemes have been proposed in [24,32–34]. Either one
cannot be unlinkable since there exist eternally-fixed elements in a signature, e.g.,
committed values [24,33], document ID [32]. The homomorphic signatures for
subset predicates (HSSP) schemes [5,7] can lead to unlinkable RS schemes.

In HSSP, a message is a set. From a signature on a set M , we can obtain a
signature on any subset M ′ ⊆ M . Any HSSP scheme can be transformed into
a RS scheme. A RS signature on a message m = (m1, · · · ,mn) is an HSSP
signature on a set

⋃n
i=1{i||mi}. Redacting mi is excluding i||mi from the set.
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Ahn et al. [5] proposed a transformation from attribute-based encryption
(ABE) [11] (with specific properties) into HSSP. Each HSSP signature on a
set M is a user secret-key associated with the same set M of the ABE. The
ABE scheme must satisfy key-delegatability15 and key-re-randomizability16. As
schemes satisfying the properties, [11,30,37] are picked. Since any of them is
perfectly key-re-randomizable, it derives an HSSP scheme with perfect SCH.

Table 2. Comparing our TRS scheme with existing SCH-secure RS schemes. Note:
Selec., Adap., Stand., GG, BG, SGD, dBDH, Comp. and DC mean selective, adaptive,
standard (model), generic group (model), subgroup decision (problem), decisional bilin-
ear Diffie-Hellman, bilinear groups, composite and disclosure-controllability, respec-
tively.

(T)RS schemes Privacy Unlinkability Context-hiding Unforgeability Order of BG TRS DC Invisibility

Level Model Assump.

ABC+12 [5]w. [11] Perf. PRV Perf. UNL Perf. SCH Adap. GG – Prime – – –

ABC+12 [5]w. [30] Perf. PRV Perf. UNL Perf. SCH Adap. Stand. SGD Comp. – – –

ABC+12 [5]w. [37] Perf. PRV Perf. UNL Perf. SCH Selec. Stand. dBDH Prime – – –

ALP12 [7] Perf. PRV Perf. sUNL Perf. CCH Adap. Stand. q-type Prime – – –

Ours Perf. PRV Stat. UNL Stat. SCH Adap. Stand. k-Lin. Prime � � Stat. INV

Attrapadung et al. [7] defined complete CH (CCH) for P -HS. CCH is stronger
than SCH. CCH guarantees that any signature derived from any correct sig-
nature (which might have been dishonestly generated) distributes like a fresh
signature. Their CCH-secure concrete HSSP scheme is based on two (structure-
preserving) signature schemes [4,36] and Groth-Sahai NIWI proof [23].

Remind that, in TSS and TRS, SCH implies UNL, cf. Theorem 5. The same
implication must hold for the (ordinary) RS. Thus, the HSSP scheme [5] leads
to a RS scheme with perfect SCH and perfect UNL. In the experiments for UNL,
every signature queried to SanitLR must be one which was (honestly) gener-
ated on Sig, Sanit or SanitLR. We slightly strengthen the experiments for UNL
by forcing SanitLR to accept any correct signature as input. Let sUNL denote
the stronger unlinkability notion defined with the new experiments. It must be
obvious that sUNL (for RS) is implied by CCH (for RS). Hence, the HSSP scheme
by Attrapadung et al. derives a RS scheme with perfect CCH and perfect sUNL.

The above RS schemes are compared with our DAMAC-based TRS scheme in
Table 2. Any RS scheme derived from [5,7] is neither trapdoor RS nor disclosure-
controllable, implying it cannot be invisible17. Thus, our TRS scheme is not only
the first (T)RS scheme which is UNL and disclosure-controllable, but also the first
one which is adaptively unforgeable under a static assumption in the standard
model based on prime-order bilinear groups.

15 From a secret-key for a set, we can derive a secret-key for any of its subsets.
16 The derived secret-key is re-randomized and distributes like a fresh secret-key.
17 This is because that invisibility is a notion meaningful only for disclosure-controllable

TRS (or sanitization-controllable TSS) schemes.
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A Proof of Theorem5 (on Six Implications among
the Security Notions of TSS)

Each implication holds in either of the statistical and perfect formalizations.
For instance, if a TSS scheme is statistically (resp. perfectly) TRN, then it is
statistically (resp. perfectly) PRV. In this subsection, we prove only the statistical
implications. The perfect ones can be proven analogously.

(1) wEUF-CMA′ ∧ SCH =⇒ wEUF-CMA. Let Expt0 denote the standard wEUF-CMA
experiment, i.e., ExptwEUF-CMAΣTSS,A,l. Let qz ∈ N denote number that A uses the san-
itizing oracle Sanit. We introduce some experiments. For i ∈ [1, qz], Expti
is identical to Expti−1 except that on the i-th query to Sanit the signa-
ture σ is generated directly by the signing algorithm Sig but not by the san-
itizing algorithm Sanit. Let Wi denote the event where Expti outputs 1.
We obtain AdvwEUF-CMAΣTSS,A,l(λ) = Pr[W0] ≤ ∑qz

i=1 |Pr[Wi−1] − Pr[Wi]| + Pr[Wqz ] ≤
qz · AdvSCHΣTSS,B1,l(λ) + AdvwEUF-CMA

′
ΣTSS,B2,l(λ). The last inequality is because of the fol-

lowing two statements. We omit their proofs because they are straightforward.

– For any i ∈ [1, qz], there exists a PPTA B1, |Pr[Wi−1] − Pr[Wi]| ≤
AdvSCHΣTSS,B1,l(λ).

– There exists a PPTA B2, Pr[Wqz ] ≤ AdvwEUF-CMA
′

ΣTSS,B2,l(λ).

��
(2) INV′ ∧ SCH =⇒ INV. This proof is basically the same as the proof of the
first implication (1), which is omitted because of the page restriction. ��
(3) TRN =⇒ PRV. We temporarily introduce an experiment Expttemp. The
experiment is the same as the standard PRV experiment w.r.t. ΣTSS parame-
terized by b ∈ {0, 1}, i.e., ExptPRVΣTSS,A,b, except that the signature σ and its
trapdoor td on SigSanitLR are directly generated by the signing algorithm
Sig. The experiment is formally described as follows.

Expttemp(1λ, l):
(pk, sk) ← KGen(1λ, l). Rtrn b′ ← ASigSanitLR(pk, sk).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- SigSanitLR(m0, m1, T, m, T):

Rtrn ⊥ if T � T ∨ ∃β ∈ {0, 1} s.t. 0 ← Rs(mβ , m, T).
(σ, td) ← Sig(sk, m, T). Rtrn (σ, td).

Let W0 (resp. W1,Wtemp) denote the event where ExptPRVΣTSS,A,0 (resp.
ExptPRVΣTSS,A,0, Expttemp) outputs 1. By the triangle inequality, we obtain
AdvPRVΣTSS,A,l = |Pr[W0]−Pr[W1]| ≤ |Pr[W0]−Pr[Wtemp]|+|Pr[Wtemp]−Pr[W1]|.
Obviously, if we can prove that ∀b ∈ {0, 1}, ∃ a PPT simulator Bb s.t.
|Pr[Wb] − Pr[Wtemp]| = AdvTRNΣTSS,Bb,l(λ), then the proof of the theorem is done.
The simulator Bb uses A which tries to distinguish ExptPRVΣTSS,A,b from Expttemp

as a sub-routine to distinguish the TRN experiments. Bb behaves as follows.
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BSanit/Sig′
b (pk, sk): // (pk, sk) ← KGen(1λ, l).
Rtrn b′ ← ASigSanitLR(pk, sk).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- SigSanitLR(m0, m1, T, m, T):

Rtrn ⊥ if T � T ∨ ∃β ∈ {0, 1} s.t. 0 ← Rs(mβ , m, T).
(σ, td) ← Sanit/Sig′(mb, T, m, T). Rtrn (σ, td).

Firstly, let us consider the case where the TRN experiment is the first one param-
eterized by 0, i.e., ExptTRNΣTSS,Bb,0. In this case, Bb unconsciously perfectly sim-
ulates the PRV experiment, i.e., ExptPRVΣTSS,A,b, to A. Since Bb directly outputs
what A outputs, it holds that Pr[Wb] = Pr[1 ← ExptTRNΣTSS,Bb,0(1

λ, l)]. Secondly,
let us consider the case where the TRN experiment is the second one parameter-
ized by 1, i.e., ExptTRNΣTSS,Bb,1. In this case, Bb perfectly simulates Expttemp to
A. It holds that Pr[Wtemp] = Pr[1 ← ExptTRNΣTSS,Bb,1(1

λ, l)]. ��
(4) UNL =⇒ PRV. The standard PRV experiment parameterized by b ∈ {0, 1}
is denoted by Exptb. Let Wb denote the event where Exptb outputs 1. We
prove that there exists a PPT simulator B such that AdvPRVΣTSS,A,l(λ) = |Pr[W0]−
Pr[W1]| = AdvUNLΣTSS,B,l(λ). The simulator B uses A which tries to distinguish the
PRV experiments as a sub-routine to distinguish the UNL experiments.

BSig′,Sanit′,SanitLR′
(pk, sk): // (pk, sk) ← KGen(1λ, l).

Rtrn b′ ← ASigSanitLR(pk, sk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- SigSanitLR(m0, m1, T, m, T):
Rtrn ⊥ if T � T ∨ ∃β ∈ {0, 1} s.t. 0 ← Rs(mβ , m, T).
(σ0, td0) ← Sig′(sk, m0, T). (σ1, td1) ← Sig′(sk, m1, T).
(σ, td) ← SanitLR′(m0, T, σ0, td0, m1, T, σ1, td1, m, T). Rtrn (σ, td).

If the UNL experiment is ExptUNLΣTSS,B,0, then B perfectly simulates
ExptPRVΣTSS,A,0 to A. Since B directly outputs what A outputs, Pr[W0] =
Pr[1 ← ExptUNLΣTSS,B,0(1

λ, l)]. Analogously, we obtain Pr[W1] = Pr[1 ←
ExptUNLΣTSS,B,1(1

λ, l)]. ��
(5) SCH =⇒ TRN. In this proof, qzs ∈ N denotes total number that A
uses the oracle of Sanit/Sig. For each i ∈ [0, qzs], we define an experiment
Expti. Expt0 is identical to the standard TRN experiment parameterized by
b = 0. For i ∈ [1, qzs], Expti is identical to Expti−1 except that on the
i-th query to Sanit/Sig a pair (σ, td) of signature and trapdoor is directly
generated by the algorithm of Sig, i.e., (σ, td) ← Sig(sk,m, T). Obviously,
Exptqzs is identical to the standard TRN experiment parameterized by b = 1.
We obtain AdvTRNΣTSS,A,l(λ) = |Pr[1 ← Expt0(1λ, l)] − Pr[1 ← Exptqzs(1

λ, l)]| ≤
∑qzs

i=1 |Pr[1 ← Expti−1(1λ, l)]−Pr[1 ← Expti(1λ, l)]| ≤ qzs ·AdvSCHΣTSS,B,l(λ). The
last transformation is because of the fact that for every i there exists a prob-
abilistic algorithm B s.t. |Pr[1 ← Expti−1(1λ, l)] − Pr[1 ← Expti(1λ, l)]| ≤
AdvSCHΣTSS,B,l(λ). We omit its proof because it is straightforward. ��
(6) SCH =⇒ UNL. In this proof, the standard UNL experiment parameterized
by b ∈ {0, 1} is shortly denoted by Exptb,0. Let qz, q

′
z ∈ N denote total number
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that A uses the oracles of Sanit and SanitLR, respectively. For i ∈ [1, qz + q′
z],

Exptb,i denotes an experiment which is the same as Exptb,i−1 except that on
the i-th query to Sanit or SanitLR a sanitized signature σ and its trapdoor td
are directly generated by Sig. For b ∈ {0, 1}, i ∈ [0, qz+q′

z], Wb,i denotes the event
where Exptb,i outputs 1. We obtain AdvUNLΣTSS,A,l(λ) = |Pr[W0,0] − Pr[W1,0]| ≤
∑1

b=0

∑qz+q′
z

i=1 |Pr[Wb,i−1] − Pr[Wb,i]| ≤ 2(qz + q′
z) · AdvSCHΣTSS,B,l(λ). We used the

following statement, which can be proven straightforwardly.

– For each b ∈ {0, 1} and each i ∈ [1, qz + q′
z], there exists a probabilistic

algorithm B s.t. |Pr[Wb,i−1] − Pr[Wb,i]| ≤ AdvSCHΣTSS,B,l(λ).

��
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Abstract. In this paper, we comprehensively study group testing aggre-
gate signatures that have functionality of both keyless aggregation of
multiple signatures and identifying an invalid message from the aggre-
gate signature, in order to reduce a total amount of signature-size for lots
of messages. Our contribution is (i) to formalize strong security notions
including soundness for group testing aggregate signatures by taking into
account related work such as fault-tolerant aggregate signatures and non-
interactive aggregate MACs with detecting functionality (i.e., symmetric
case); (ii) to construct group testing aggregate signatures from aggregate
signatures in a generic and comprehensive way; and (iii) to present an
aggregate signature scheme which we can apply to our generic construc-
tion of group testing aggregate signatures with the formalized security.

Keywords: Aggregate signature · Digital signature · Group testing

1 Introduction

Background and Related Work. Digital signature is a fundamental and
important primitive in modern cryptography, and it has a wide range of appli-
cations that require integrity of data. In the era of IoT (Internet of Things), it
is important to ensure integrity of data gathered from many and various IoT
devices, however, it is often the case where a total amount of size of signatures
for checking validity of big data is too large. An aggregate signature scheme
allows any user to compress multiple signatures into a short signature (called
an aggregate signature) and can reduce signature-size on an insecure channel.
Thus, there are many applications such as sensor network data (with IoT), secure
BGP protocols, and block chain protocols. From this viewpoint, we study tech-
niques for the purpose of reducing a total amount of signature-size for many and
various data, in particular, techniques of compressing (or aggregating) multiple
signatures on data.

For the purpose mentioned above, Boneh et al. [3] proposed aggregate signa-
tures and proposed a pairing-based scheme in the random oracle model (ROM).
Assuming the weaker security model (i.e., certified-key model) in which sign-
ers have to prove knowledge of the secret key at key-registration, Rückert and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Schröder gave an aggregate signature scheme using multilinear maps in the stan-
dard model [21]. Gentry and Ramzan dealt with the identity-based setting so
that not only signature-size but also verification key-size can be reduced, and
then proposed an identity-based aggregate signature scheme (with pairing) in the
ROM [10]. Hohenberger, Sahai, and Waters presented (identity-based) aggregate
signature schemes using multilinear maps in the standard model [13].

Hartung et al. [11] introduced the notion of fault-tolerant aggregate signa-
tures, that has functionality of both compressing multiple signatures and iden-
tifying an invalid message from the aggregate signature, and they proposed a
generic construction starting from any aggregate signature scheme and cover-
free family. However, their scheme does not guarantee the property of identify-
ing valid and invalid message-signature pairs correctly, if an adversary generates
message-signature pairs so that the aggregate signature scheme incorrectly iden-
tifies these pairs. Hence, in this paper, we deal with this by formalizing a security
notion identifiability.

Regarding aggregate authentication in the symmetric key setting, Katz and
Lindell introduced the notion of aggregate message authentication code (AMAC)
that can compress MAC-tags on multiple messages into a short aggregate tag,
and they proposed a generic construction using any MAC scheme [15]. Mine-
matsu studied a MAC scheme with combinatorial group testing [7], and this
can be seen as an AMAC with keyed aggregation, which has the functional-
ity of identifying an invalid message from the aggregate tag [17]. Hirose and
Shikata proposed AMAC that has the functionality of both compressing mul-
tiple MAC-tags into a short aggregate tag and identifying an invalid message
from the aggregate tag [12]. In [12], the model considers keyless aggregation like
in [15], and the scheme is constructed from non-adaptive group testing in addi-
tion to the underlying MAC scheme in a generic way. Related work by applying
non-adaptive group testing in symmetric-key cryptography includes [18,19,22].
In addition, Sato and Shikata [23,24] consider an interactive version of [12], and
they constructed the interactive protocol from adaptive group testing in addition
to the underlying MAC.

Contribution. In this paper, we comprehensively study aggregate signatures
with detecting functionality (called group testing aggregate signatures), that
have functionality of both keyless aggregation of multiple signatures and identi-
fying an invalid message from the aggregate signature, in order to reduce a total
amount of signature-size for lots of messages. The goal of this paper is to pro-
vide a group testing aggregate signature scheme which achieves strong security
notions considering related work mentioned above, especially for [11,12,23,24].
To this end, we formalize the model and security notions for (non-adaptive)
group testing aggregate signatures. In addition, we present construction method-
ology for group testing aggregate signatures with the formalized security in a
generic and comprehensive way. Details on our contribution are as follows.

I. In Sect. 2.2, we revisit the security of conventional aggregate signatures and
introduce a new security notion called soundness. We deal with this property in
order to extend a security notion called identifiability (concretely, ident-soundness
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Table 1. Comparison of GT-ASIG schemes: Soundness and Weak-Soundness mean
ident-soundness and ident-weak-soundness (see Definition 9), respectively. ROM means
the random oracle model. Standard model means the model without random oracles.
(M)CDH means the (multilinear) computational Diffie-Hellman assumption.� (resp. d)
is the total number of messages (resp. the maximum number of invalid messages).|σ| is
the bit-length of the signature generated by the signing algorithm of an aggregate
signature scheme. |r| is the bit-length of the randomness used by the aggregation
algorithm of our aggregate signature scheme with soundness.

Scheme Identifiability Standard Assumption Total aggregate

Soundness ? Model? Signature-Size

HKKKRBGLS Weak-Soundness ROM CDH O(d2 log �)|σ|
HKKKRHSW Weak-Soundness � MCDH O(d2 log �)|σ|
Our GT-ASIG � ROM CDH O(d2 log �)(|σ| + |r|)

defined in Sect. 2.3) for group testing aggregate signatures. In addition, the
soundness property is also useful to achieve the functionality of batch verifi-
cation [1,5,9].

II. In Sect. 2.3, we propose a formal model and security formalization of non-
adaptive group testing aggregate signatures (GT-ASIG) that have functionality
of both keyless aggregation of multiple signatures and identifying an invalid mes-
sage from the aggregate signature. A similar functionality was proposed in fault-
tolerant aggregate signatures in [11], however, the functionality of fault-tolerant
aggregate signatures guarantees that valid messages must be regarded as valid
from the aggregate signature even if some fault occurs, just like the property
of error-correcting codes. On the other hand, GT-ASIG in this paper guaran-
tees that, from the aggregate signature, (i) valid messages must be regarded as
valid (ident-completeness); and (ii) invalid messages must be regarded as invalid
(ident-soundness), even in presence of malicious adversary in the chosen-key
security model of [3]. Namely, identifiability consists of ident-completeness and
ident-soundness; and ident-soundness can be weakened as ident-weak-soundness.
To formalize these security notions, we take into account the similar notion in
the symmetric-key setting in [12].

III. In Sect. 3, we propose a generic construction for GT-ASIG starting from
an aggregate signature scheme, and we show that the resulting GT-ASIG meets
unforgeability, ident-completeness, and ident-soundness (resp. unforgeability,
ident-completeness, and ident-weak-soundness) if the underlying aggregate signa-
ture scheme fulfills both unforgeability and soundness in Definition 5 (resp. only
unforgeability). Furthermore, we present an aggregate signature scheme satisfy-
ing both unforgeability and soundness, in order to obtain a concrete GT-ASIG
scheme satisfying the formalized security notions including ident-soundness. This
aggregate signature scheme is given by modifying the aggregate signature scheme
of [3]. Hence, we can obtain the first GT-ASIG scheme satisfying all the formal-
ized security notions: unforgeability, ident-completeness, and ident-soundness.
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Comparison of GT-ASIG Schemes. We compare our work with the exist-
ing one [11] since a fault-tolerant aggregate signatures can be seen as a GT-
ASIG. Table 1 shows this comparison. HKKKRBGLS (resp. HKKKRHSW) means
the fault-tolerant aggregate signature scheme constructed by applying the aggre-
gate signature scheme of [3] (resp. [13]) to the generic construction of [11]. Our
GT-ASIG means the GT-ASIG scheme obtained by applying our aggregate sig-
nature scheme with soundness (proposed in Sect. 3.2) to our generic construction
of GT-ASIG.

From Table 1, the main advantage of our scheme is to achieve a stronger secu-
rity notion (i.e., ident-soundness) by just adding randomness as a component of
an aggregate signature. In addition, ours does not need any additional compu-
tational assumption. The disadvantage of ours is to achieve security under the
ROM while HKKKRHSW is secure under the standard model. However, the com-
putational assumption of HKKKRHSW is stronger. In addition, we achieve the
goal in this paper since our scheme satisfies a stronger security notion compared
to the existing ones.

2 Preliminaries

Notation. In this paper, we use the following notation: For a positive integer
n, let [n] := {1, . . . , n}. For a function f : N → R, if f(λ) = o(λ−c) for arbi-
trary positive c, then f is negligible in λ, and we write negl(λ). A probability is
overwhelming if it is 1 − negl(λ). Probabilistic polynomial-time is abbreviated as
PPT.

Sets and Sequences. For n values x1, . . . , xn and a subset I ⊆ [n] of indexes,
let (xi)i∈I be a sequence of elements whose indexes are in I, and let {xi}i∈I be
a set of elements whose indexes are in I.

Vectors and Matrices. For a vector x with dimension n, let xi be the i-th
entry (i ∈ [n]). For a m × n matrix X, let xi,j be the entry at the i-th row and
the j-th column (i ∈ [m], j ∈ [n]).

In addition, we describe definitions of several cryptographic primitives.

2.1 Group Testing Protocol

The first paper about group testing is published by Dorfman [6]. Group testing
(e.g., [7]) is a method to detect positive items called defectives among many
whole items with a small number of tests than the trivial individual testing for
each item. The applications of group testing include screening blood samples for
detecting a disease, and detecting clones which have a particular DNA sequence.

The group testing techniques are classified into two types: the first type
means the testing techniques by non-adaptive strategies, called non-adaptive
group testing [8,20,25], and the second type means the techniques by adaptive
strategies, called adaptive group testing (or called sequential group testing) [6,
8,14,16]. Suppose that there are totally � items of which there are (at most) d
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defectives. In non-adaptive group testing, we need to know d beforehand and
to select all the subsets of � items to be tested without knowing the results of
other tests. On the other hand, in adaptive group testing, we do tests several
times such that we can select a subset of items to be tested after observing the
result of the previous test. In this paper, we focus on non-adaptive group testing.
This is because non-adaptive group testing can run all tests simultaneously, since
all test-designs are determined in advance. On the other hand, adaptive group
testing cannot execute all tests at the same time, since each test-design depends
on the result of the previous test. To sum up, non-adaptive group testing is much
better than adaptive one, in terms of time-complexity.

Non-adaptive group testing is typically designed by providing a d-disjunct
matrix, a d-cover-free family, or a d-separable matrix (e.g., see [7]). And, a non-
adaptive group testing protocol with u tests for � items is represented by a
u × � binary matrix, and the (i, j)-th element of the matrix is equal to 1 if
and only if the i-th test is executed to the j-th item. Among such matrices for
representing non-adaptive group testing, a disjunct matrix (or cover-free family)
is well studied in combinatorics and bioinformatics, and it is defined as follows.

Definition 1 (d-disjunct). A matrix G = [g1, . . . , g�] ∈ {0, 1}u×� is d-disjunct
if for any d columns gs1 , . . . , gsd

and every ḡ ∈ {g1, . . . , g�}\{gs1 , . . . , gsd
}

(s1, . . . , sd ∈ [�]), there exists z ∈ [u] such that vz < ḡz, where let v =
∨d

i=1 gsi
,

and
∨

is the bitwise-OR.

By using a d-disjunct matrix, a non-adaptive group testing protocol can
efficiently detect at most d positive items (defectives). We simply describe the
process of group testing protocol with a d-disjunct matrix G ∈ {0, 1}u×� as
follows: Let Si(G) = {j | j ∈ [�] ∧ gi,j = 1} for i ∈ [u] and G ∈ {0, 1}u×�.
We assume that if multiple items including at least one positive item (defective)
are compressed, the test outcome of the compressed item shows positive, and
otherwise the test outcome shows negative.

1. Let J ← {1, 2, . . . , �} be a set of indexes of all items.
2. For each i ∈ [u], compress items with indexes in Si(G).
3. For each i ∈ [u], set J ← J\Si(G) if the test result of the i-th compressed

item shows negative.
4. Output J , which is the set of all defectives’ indexes due to the d-disjunct

property of G.

In this paper, we mainly deal with non-adaptive group testing based on dis-
junct matrices and its application to GT-ASIG introduced in Sect. 2.3, however,
other types of non-adaptive group testing such as separable matrices can be
applied to GT-ASIG in a similar way. We note that the number of tests required
in non-adaptive group testing using d-disjunct matrices is O(d2 log �) (see [7]),
and it is expected that the number of signatures can be reduced to O(d2 log �)
in GT-ASIG instead of checking � signatures.
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2.2 Aggregate Signatures

In this section, we describe the definitions of aggregate signatures and introduce
a new security notion called soundness.

Definition 2. An aggregate signature scheme consists of five polynomial-time
algorithms (KGen,Sign,Vrfy,Agg,AVrfy): For a security parameter λ, let M =
M(λ) be a message space.

– (pk, sk) ← KGen(1λ): The randomized algorithm KGen takes as input a secu-
rity parameter 1λ, and it outputs a public key pk and a secret key sk.

– σ ← Sign(sk,m): The randomized or deterministic algorithm Sign takes as
input a secret key sk and a message m ∈ M, and it outputs a signature σ.

– 1/0 ← Vrfy(pk,m, σ): The deterministic algorithm Vrfy takes as input a public
key pk, a message m ∈ M, and a signature σ, and it outputs 1 or 0.

– σ̂ ← Agg((pk1,m1, σ1), . . . , (pk�,m�, σ�)): The randomized or deterministic
algorithm Agg takes as input a tuple (pk1,m1, σ1), . . . , (pk�,m�, σ�) of triplets
of public keys, messages and signatures, and it outputs an aggregate signature
σ̂.

– 1/0 ← AVrfy((pk1,m1), . . . , (pk�,m�), σ̂): The deterministic algorithm AVrfy
takes as input a tuple (pk1,m1), . . . , (pk�,m�) of pairs of public keys and mes-
sages, and an aggregate signature σ̂, and it outputs 1 or 0.

Definition 3 (Correctness). An aggregate signature scheme ASIG = (KGen,
Sign,Vrfy,Agg,AVrfy) meets correctness if the following holds:

– For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Vrfy(pk,
m, σ) = 1 with overwhelming probability, where σ ← Sign(sk,m).

– For any � = poly(λ), every (pk1, sk1) ← KGen(1λ), . . . , (pk�, sk�) ← KGen(1λ),
and every m1, . . . ,m� ∈ M, it holds that AVrfy((pk1,m1), . . . , (pk�,m�), σ̂) = 1
with overwhelming probability, where σ̂ ← Agg((pk1,m1, σ1), . . . , (pk�,m�, σ�))
and σi ← Sign(ski,mi) for all i ∈ [�].

Following [3], we describe the definition of existential unforgeability against
chosen message attacks, denoted by EUF-CMA security.

Definition 4 (EUF-CMA security). An aggregate signature scheme ASIG =
(KGen,Sign,Vrfy,Agg,AVrfy) satisfies EUF-CMA security if for any PPT adver-
sary A against ASIG, the advantage Adveuf-cma

ASIG,A (λ) := Pr[A wins] is negligible in
λ. [A wins] is the event that A wins in the following game:

Setup. The challenger generates (pk∗, sk∗) ← KGen(1λ) and sets Q ← ∅. It
gives pk∗ to A.

Queries. Given a signing-query m ∈ M, the signing oracle SIGN returns σ ←
Sign(sk∗,m) and sets Q ← Q ∪ {m}.

Output. A outputs a forgery ((pk1,m1), . . . , (pk�,m�), σ̂). A wins if AVrfy(
(pk1,m1), . . . , (pk�,m�), σ̂) = 1 and mz /∈ Q hold, where z ∈ [�] is an index
such that pkz = pk∗.
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Soundness and its Relation to Unforgeability. We introduce a new secu-
rity notion called soundness, denoted by asig-soundness, of aggregate signatures.
The functionality of aggregate signatures is to compress multiple signatures of
multiple messages, and we would expect that all the pairs of the messages and sig-
natures are valid if the compressed signature (i.e., aggregate signature) is valid.
However, the aggregate signature scheme in [3] does not guarantee this property,
and there is an invalid pair of a message and a signature though the compressed
signature is valid (see the explanation after Proposition 2). The notion of sound-
ness prevents such a case, and asig-soundness achieves what we expect explained
above1.

Definition 5 (asig-soundness). An aggregate signature scheme ASIG = (KGen,
Sign,Vrfy,Agg,AVrfy) satisfies asig-soundness if for any PPT adversary A against
ASIG, the advantage Advasig-soundASIG,A (λ) := Pr[A wins] is negligible in λ. [A wins] is
the event that A wins in the following game:

Setup. The challenger generates (pk∗, sk∗) ← KGen(1λ) and gives pk∗ to A.
Queries. Given a signing-query m ∈ M, signing oracle SIGN returns σ ←

Sign(sk∗,m).
Output. A outputs ((pk1,m1, σ1), . . . , (pk�,m�, σ�)). Then, the challenger com-

putes σ̂ ← Agg((pk1,m1, σ1), . . . , (pk�,m�, σ�)). A wins if AVrfy((pk1,m1), . . . ,
(pk�,m�), σ̂) = 1 and Vrfy(pkz,mz, σz) = 0 hold, where z ∈ [�] is an index
such that pkz = pk∗.

We show that the two security notions EUF-CMA security and asig-soundness
are separated (i.e., one of the two does not imply the other). First, EUF-CMA
security does not imply asig-soundness, since it is shown that the scheme
ASIGBGLS of [3] satisfies EUF-CMA security but does not meet asig-soundness
(in the description of ASIGBGLS in Sect. 3.2, we show how to break this scheme
in the asig-soundness game).

Second, asig-soundness security does not imply EUF-CMA security. We con-
sider an aggregate signature scheme satisfying asig-soundness that is the same
as the scheme ASIGsnd

BGLS given in Sect. 3.2 except that the underlying aggregate
signature scheme is insecure in the EUF-CMA security game. It is clear that an
adversary can generate a forgery of this scheme by making a forgery for pk∗.
In addition, we will see that the asig-soundness of that scheme does not follow
from the EUF-CMA security of the underlying aggregate signature scheme by
Theorem 3. Hence, the above scheme does not satisfy EUF-CMA security though
it meets asig-soundness.

1 We should notice the difference between asig-soundness and batch verification, as
follows: In the asig-soundness game, the adversary is allowed to generate key-pairs
except for the key-pair generated by the challenger, while batch verification requires
all key-pairs to be generated according to the key generation algorithm. See [5] on
details of the definition of batch verification.
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2.3 Group Testing Aggregate Signatures

In this section, we introduce the syntax and security formalization of group test-
ing aggregate signatures (GT-ASIG schemes for short) that fulfill functionality
of both keyless aggregation of multiple signatures and identifying an invalid
message from the aggregate signature.

Definition 6. A GT-ASIG2 consists of five polynomial-time algorithms (KGen,
Sign,Vrfy,GTAgg,GTVrfy) associated with a set G consisting of d-disjunct matri-
ces, where the size (i.e., the number of rows or the number of columns) of the
matrices in G may be different from each other in general: For a security param-
eter λ, let M = M(λ) be a message space.

Key Generation (pk, sk) ← KGen(1λ): The randomized algorithm KGen takes
as input a security parameter 1λ, and it outputs a public key pk and a secret
key sk.

Signing σ ← Sign(sk,m): The randomized or deterministic algorithm Sign takes
as input a secret key sk and a message m ∈ M, and it outputs a signature σ.

Verification 1/0 ← Vrfy(pk,m, σ): The deterministic algorithm Vrfy takes as
input a public key pk, a message m ∈ M, and a signature σ, and it outputs 1
or 0.

Group Testing Aggregation (σ̂1, . . . , σ̂u) ← GTAgg(G, (pki,mi, σi)i∈[�]): The
randomized or deterministic algorithm GTAgg takes as input a d-disjunct
matrix G ∈ {0, 1}u×� ∩ G, a tuple ((pk1,m1, σ1), . . . , (pk�,m�, σ�)) of triplets
of public keys, messages, and signatures, and it outputs a tuple (σ̂1, . . . , σ̂u)
of aggregate signatures.

Group Testing Verification J ← GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1,
. . . , σ̂u)): The deterministic algorithm GTVrfy takes as input a d-disjunct
matrix G ∈ {0, 1}u×� ∩ G, a tuple ((pk1,m1), . . . , (pk�,m�)) of pairs of public
keys and messages, and a tuple (σ̂1, . . . , σ̂u) of aggregate signatures, and it
outputs a set J of (invalid) pairs of public keys and messages3.

A D-ASIG scheme is required to meet correctness, as follows.

Definition 7 (Correctness). A GT-ASIG scheme GT-ASig = (KGen,Sign,
Vrfy,GTAgg,GTVrfy) satisfies correctness if the following conditions hold:

– For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Vrfy(pk,
m, σ) = 1 with overwhelming probability, where σ ← Sign(sk,m).

2 One may wonder if the detecting functionality of GT-ASIGs can be achieved by cryp-
tographic methodology, rather than combinatorial methodology (i.e., group testing
with d-disjunct matrices). However, to the best of our knowledge, the property of d-
disjunct matrices is necessary to achieve the non-interactive detecting functionality,
in a practical way. As described in Conclusion, constructing an aggregate signature
scheme with this functionality (in a practical way) is important as future work in
this research.

3 J = ∅ means that the given pairs of public keys and signed messages are all valid.
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– For every d-disjunct matrix G ∈ {0, 1}u×� ∩ G, every (pk1, sk1) ← KGen(1λ),
. . . , (pk�, sk�) ← KGen(1λ), and every m1, . . . ,m� ∈ M, it holds that
GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂�)) = ∅ with overwhelming
probability, where (σ̂1, . . . , σ̂�) ← GTAgg(G, ((pk1,m1, σ1), . . ., (pk�,m�, σ�)))
and σi ← Sign(pki,mi) for all i ∈ [�].

We define the security notions of GT-ASIG: EUF-CMA security and
identifiablity. EUF-CMA security is formalized as in [11]:

Definition 8 (EUF-CMA security). A GT-ASIG scheme GT-ASig = (KGen,
Sign,Vrfy,GTAgg,GTVrfy) satisfies EUF-CMA security for any PPT adversary A
against GT-ASig, the advantage Adveuf-cma

GT-ASig,A(λ) := Pr[A wins] is negligible in λ.
[A wins] is the event that A wins in the following game:

Setup. The challenger generates a key-pair (pk∗, sk∗) ← KGen(1λ) and sets
Q ← ∅. It gives pk∗ to A.

Queries. Given a signing-query m ∈ Q, signing oracle SIGN returns σ ←
Sign(sk∗,m) and sets Q ← Q ∪ {m}.

Output. A outputs a forgery (G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)). The
challenger computes J ← GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)).
A wins if (pkz,mz) /∈ J and mz /∈ Q hold, where z ∈ [�] is an index such that
pkz = pk∗.

Identifiablity guarantees that, from the aggregate signature, (i) valid mes-
sages must be regarded as valid (ident-completeness); and (ii) invalid messages
must be regarded as invalid (ident-soundness), in the chosen-key security model
introduced in [3]. This notion is formalized as follows.

Definition 9 (Identifiability). Regarding the identifiability of GT-ASIG
scheme GT-ASig = (KGen,Sign,Vrfy,GTAgg,GTVrfy), the two notions
ident-completeness and ident-soundness are defined. Let A be a d-dishonest PPT
adversary against GT-ASig, where a PPT adversary A against GT-ASig is d-
dishonest if it outputs (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)) such that |{(pki,mi) |
i ∈ [�] ∧ Vrfy(pki,mi, σi) = 0}| ≤ d, in the following security game:

Setup. The challenger generates a key-pair (pk∗, sk∗) ← KGen(1λ) and sets
Q ← ∅. It gives pk∗ to A.

Queries. Given a sign-query m ∈ Q, signing oracle SIGN returns σ ←
Sign(sk∗,m) and sets Q ← Q ∪ {m}.

Output. A outputs (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)). The challenger com-
putes (σ̂1, . . . , σ̂u) ← GTAgg(G, ((pk1,m1, σ1), . . . , (pk�,m�, σ�))) and J ←
GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)).

Ident-completeness and ident-soundness are defined as follows: For a set {(pk1,
m1, σ1), . . . , (pk�,m�, σ�)}, let D = {(pki,mi) | i ∈ [�] ∧ Vrfy(pki,mi, σi) = 0},
and D̄ = {(pki,mi) | i ∈ [�] ∧ Vrfy(pki,mi, σi) = 1}. Let z ∈ [�] be an index such
that pkz = pk∗.
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Completeness: GT-ASig satisfies ident-completeness against d-dishonest adver-
saries, if for any d-dishonest PPT adversary A against GT-ASig, the advan-
tage Advcomplete

GT-ASig,A(λ) := Pr
[
(pkz,mz) ∈ D̄ ∩ J

]
is negligible in λ.

Soundness: GT-ASig satisfies ident-soundness against d-dishonest adversaries,
if for any d-dishonest PPT adversary A against GT-ASig, the advantage
AdvsoundGT-ASig,A(λ) := Pr [(pkz,mz) ∈ D\J ] is negligible in λ.

In addition, a weak variant ident-weak-soundness of ident-soundness is defined
in the same way as ident-soundness except that the advantage of a d-
dishonest PPT adversary A against GT-ASig is defined as Advw-sound

GT-ASig,A(λ) :=
Pr [(pkz,mz) ∈ D′\J ], where D′ = {(pkγ(i),mi) | i ∈ [�] ∧ Vrfy(pki,mi, σi) =
0 ∧ mi /∈ Q}.

For the relations among EUF-CMA security, ident-soundness, and ident-weak-
soundness, we show the implications, “EUF-CMA security ⇒
ident-weak-soundness” and “ident-soundness ⇒ ident-weak-soundness”, and the
separations, “EUF-CMA �⇒ ident-soundness” and “EUF-CMA �⇐ ident-soundness”.
The separations can be shown similarly as those of aggregate signatures in
Sect. 2.2, and the following proposition shows the implication “EUF-CMA ⇒
ident-weak-soundness”.

Proposition 1. Let d be an arbitrary positive integer. If a GT-ASIG scheme
GT-ASig meets EUF-CMA security, it also satisfies ident-weak-soundness against
d-dishonest adversaries.

Proof. By using a d-dishonest PPT adversary A against ident-weak-soundness,
we construct a PPT algorithm Feuf breaking EUF-CMA security, as follows:
It takes as input a public key pk∗ of GT-ASig and gives pk∗ to A. By using
the given signing oracle, Feuf simulates the oracle access of A in the straight-
forward way. When A outputs (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)), Feuf com-
putes (σ̂1, . . . , σ̂u) ← GTAgg(G, ((pk1,m1, σ1), . . . , (pk�,m�, σ�))), and outputs
(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)).

If the output of A fulfills (pkz,mz) ∈ {(pki,mi) | i ∈ [�] ∧ Vrfy(pki,mi, σi) =
0∧mi /∈ Q}\J for some z ∈ [�] such that pkz = pk∗, then the output of Feuf is a
forgery of EUF-CMA security game since (pkz,mz) /∈ J and mz /∈ Q hold. Thus,
we obtain Advw-sound

GT-ASig,A(λ) ≤ Adveuf-cma
GT-ASig,Feuf (λ). ��

3 Proposed (Group Testing) Aggregate Signatures

In this section, we propose a generic construction of GT-ASIG starting from
an aggregate signature scheme, and an aggregate signature scheme with
asig-soundness, which we can apply to the proposed GT-ASIG scheme with all
the formalized security notions including ident-soundness.
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3.1 GT-ASIG from Aggregate Signatures

We propose a generic construction of GT-ASIG and prove that the
resulting GT-ASIG scheme satisfies EUF-CMA security, ident-completeness,
and ident-soundness (resp. EUF-CMA security, ident-completeness, and
ident-weak-soundness) if the underlying aggregate signature fulfills EUF-CMA
security and asig-soundness (resp. only EUF-CMA security). This indicates that
the security notion asig-soundness of aggregate signatures is extended to the
ident-soundness of GT-ASIG.

Our construction GT-ASig = (KGen,Sign,Vrfy,GTAgg,GTVrfy) is as follows:
Let ASIG = (KGenasig,Signasig,Vrfyasig,Aggasig,AVrfyasig) be an aggregate sig-
nature scheme. For G ∈ {0, 1}u×� and i ∈ [u], let Si(G) = {j | j ∈ [�]∧gi,j = 1}.

– KGen, Sign, and Vrfy are the same as KGenasig, Signasig, and Vrfyasig, respec-
tively.

– (σ̂1, . . . , σ̂u) ← GTAgg(G, ((pk1,m1, σ1), . . . , (pk�,m�, σ�))): For each i ∈ [u],
generate σ̂i ← Aggasig((pkk,mk, σk)k∈Si(G)). Output (σ̂1, . . . , σ̂u).

– J ← GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)): Set J ← {(pk1,m1),
. . . , (pk�,m�)}. For each i ∈ [u], if AVrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1 holds,
then set J ← J\{(pkk,mk)}k∈Si(G). Then, output J .

Theorem 1. If an aggregate signature scheme ASIG meets EUF-CMA security,
then the resulting GT-ASIG scheme GT-ASig satisfies EUF-CMA security.

Proof. To prove the theorem, we construct a PPT algorithm Fasig breaking the
EUF-CMA security of ASIG, as follows: Fasig is given the public key pk∗ of ASIG.
In Setup phase, it sets Q ← ∅ and gives pk∗ to A. The SIGN oracle is simulated
by using the given signing oracle in the EUF-CMA security game of ASIG. When
A outputs (G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)), then Fasig computes J ←
GTVrfy(G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)). If there exits an index z ∈ [�]
such that pkz = pk∗, (pkz,mz) /∈ J , and mz /∈ Q, then it checks whether there
exits i ∈ [u] such that z ∈ Si(G) and AVrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1. If there
exists such an index, then Fasig outputs (pkk,mk)k∈Si(G) and σ̂i. Otherwise, it
aborts.

If A outputs a valid forgery (G, ((pk1,m1), . . . , (pk�,m�)), (σ̂1, . . . , σ̂u)), then
there exist the above indexes z ∈ [�] and i ∈ [u] such that mz /∈ Q and
AVrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1, due to the winning condition of A (i.e.,
mz /∈ Q and (pkz,mz) /∈ J). Thus, the output of Fasig is a valid forgery of
ASIG, and we obtain Adveuf-cma

GT-ASig,A(λ) ≤ Adveuf-cma
ASIG,Fasig (λ). ��

Theorem 2. For identifiability, the GT-ASIG scheme GT-ASig constructed from
an aggregate signature scheme ASIG satisfies the following: Let d be an arbitrary
positive integer.

(i) If G ∈ {0, 1}u×� is a d-disjunct matrix, and ASIG meets correctness, then
GT-ASig satisfies ident-completeness against d-dishonest adversaries.

(ii) If G ∈ {0, 1}u×� is a matrix such that u ≤ � and every column vector of
G is non-zero, and ASIG meets EUF-CMA security, then GT-ASig satisfies
ident-weak-soundness against d-dishonest adversaries.
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(iii) If G ∈ {0, 1}u×� is a matrix such that u ≤ � and every column vector
of G is non-zero, and ASIG meets asig-soundness, then GT-ASig satisfies
ident-soundness against d-dishonest adversaries.

Proof. First, we prove that GT-ASig satisfies ident-completeness. For the out-
put (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)) of a d-dishonest PPT adversary A, let
(σ̂1, . . . , σ̂u) ← GTAgg(G, ((pk1,m1, σ1), . . . , (pk�,m1, σ�))) be a tuple of aggre-
gate signatures. For any valid pair (pkv,mv) such that Vrfyasig(pkv,mv, σv) = 1
(v ∈ [�]), there exists a valid pair ((pkk,mk)k∈Si(G), σ̂i) such that v ∈ Si(G) and
Vrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1. This reason is as follows: Without loss of gen-
erality, we assume that at most d invalid pairs are fixed. Due to the d-disjunct
property of G, for any column corresponding to a valid pair, there exists the
i-th entry of the column (i ∈ [u]), such that the entry is 1, but all i-th entries
of columns corresponding to invalid ones are 0. That is, the i-th aggregate sig-
nature is valid. Hence, the d-disjunct property guarantees that for any valid
pair, there exists an aggregate signature on only valid ones including the valid
pair. In addition, the correctness of ASIG guarantees that all aggregate signa-
tures on valid messages are accepted by Vrfyasig algorithm with overwhelming
probability. Hence, we have Advcomplete

GT-ASig,A(λ) ≤ negl(λ). In addition, it is clear
that Advw-sound

GT-ASig,A(λ) ≤ Adveuf-cma
ASIG,Fasig (λ) holds by combining Proposition 1 and

Theorem 1.
Next, we prove that GT-ASig satisfies ident-soundness. By using A which

breaks the ident-soundness of GT-ASig, we construct a PPT algorithm
Ssnd which breaks asig-soundness, as follows: Ssnd takes as input a pub-
lic key pk∗ of ASIG, and gives pk∗ to A. By using the given signing ora-
cle, it can simulate the SIGN oracle in the ident-soundness game. When
A outputs (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)), Ssnd computes (σ̂1, . . . , σ̂u) ←
GTAgg(G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)) and J ← GTVrfy(G, ((pk1,m1),
. . . , (pk�,m�)), (σ̂1, . . . , σ̂u)). Then, it finds a pair (z, i) ∈ [�] × [u] of
indexes such that pkz = pk∗, z ∈ Si(G), AVrfyasig((pkk,mk)k∈Si(G), σ̂i) =
1, and Vrfyasig(pkz,mz, σz) = 0. If there exits such a pair, it outputs
(pkk,mk, σk)k∈Si(G). Otherwise, it aborts.

If A succeeds in generating (G, (pk1,m1, σ1), . . . , (pk�,m�, σ�)) which meets
the winning condition in the ident-soundness game, then (pkz,mz) ∈ D\J holds
for z ∈ [�] such that pkz = pk∗. There exists an index i ∈ [u] such that z ∈
Si(G) and AVrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1, due to (pkz,mz) /∈ J . In addition,
AVrfyasig(pkz,mz, σz) = 0 also holds due to (pkz,mz) ∈ D. Hence, the output
(pkk,mk, σk)k∈Si(G) of Ssnd fulfills the winning condition in the asig-soundness
game, and we have AdvsoundGT-ASig,A(λ) ≤ Advasig-sound

ASIG,Ssnd (λ). ��

3.2 Aggregate Signatures with Soundness

In this section, we describe the aggregate signature scheme of [3] and then pro-
pose its variant satisfying asig-soundness. We are focusing on this scheme [3]
because the other schemes are secure under the non-standard assumption or
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need some constraint (e.g., sequential aggregation and synchronized aggrega-
tion) for aggregating signatures.

Aggregate Signature Scheme in [3]. The aggregate signature scheme
ASIGBGLS = (KGen,Sign,Vrfy,Agg,AVrfy) of [3] is as follows: For a security
parameter λ, set the following parameters: let {0, 1}∗ be a message space. Let
G1, G2 be the base groups with a prime order p, g1 and g2 be generators of
G1 and G2, respectively. Let φ be the computable isomorphism from G2 to G1,
and e : G1 × G2 → GT be the bilinear map with the target group GT . Let
H : {0, 1}∗ → G1 be a random oracle.

– (pk, sk) ← KGen(1λ): Choose x
$← Zp and compute v ← gx

2 ∈ G2. Output
pk = v and sk = x.

– σ ← Sign(sk,m): Output σ ← hx ∈ G1, where h ← H(m) ∈ G1.
– 1/0 ← Vrfy(pk,m, σ): Output 1 if e(σ, g2) = e(H(m), v) holds, where pk = v.

Output 0 otherwise.
– σ̂ ← Agg((pk1,m1, σ1), . . . , (pk�,m�, σ�)): Output σ̂ ← ∏�

i=1 σi ∈ G1.
– 1/0 ← AVrfy((pk1,m1), . . . , (pk�,m�), σ̂): Let pki = vi for all i ∈ [�]. Output 1

if e(σ̂, g2) =
∏�

i=1 e(H(mi), vi) holds, and all m1, . . . ,m� are distinct. Output
0 otherwise.

The computational problems related to this scheme are given in Appendix A.
Regarding its security, the following proposition was proven in [3].

Proposition 2. ([3, Theorem 1]). If (G1, G2) is a bilinear group pair for co-
Diffie-Hellman, then ASIGBGLS satisfies EUF-CMA security.

Furthermore, we can show that ASIGBGLS does not satisfy asig-soundness
as follows: An adversary has ((pk1,m1, σ1), . . . , (pk�,m�, σ�)) such that σ1 =
H(m1)x1 , σ2 = H(m2)x2 , σ3 = H(m3)x3 , . . . , σ� = H(m�)x� , where sk1 = x1,
sk2 = x2, . . . , sk� = x�, by accessing SIGN oracle and generating key-pairs by
itself. And, it outputs ((pk1,m1, σ

′
1), (pk2,m2, σ

′
2), (pk3,m3, σ3), . . . , (pk�,m�, σ�))

such that σ′
1 = H(m1)x1v, σ′

2 = H(m2)x2v−1, σ3 = H(m3)x3 , . . . , σ� = H(m�)x� ,
where v �= 1. Then, the Vrfy algorithm of ASIGBGLS accepts this output, since
e(σ′

1σ
′
2

∏�
i=3 σi, g2) = e(

∏�
i=1 σi, g2) holds. Although the triplets (pk1,m1, σ

′
1),

(pk2,m2, σ
′
2) are invalid, σ̂′ := σ′

1σ
′
2

∏�
i=3 σi is a valid aggregate signature on

((pk1,m1), . . . , (pk�,m�)). Hence, the output satisfies the winning condition in
the asig-soundness game.
Aggregate Signatures Satisfying asig-soundness. We propose a direct con-

struction satisfying asig-soundness, which is based on the aggregate signature
scheme ASIGBGLS. The idea to achieve asig-soundness is as follows: Given message-
signature pairs (m1, σ1), . . . , (m�, σ�) of ASIGBGLS, the aggregation algorithm
of our scheme chooses (δ1, . . . , δ�) ∈ Z

�
p uniformly at random and computes

σ̂′ ← ∏�
i=1 σδi

i ∈ G1, and sets (δ1, . . . , δ�, σ̂
′) as an aggregate signature. When

verifying messages (m1, . . . ,m�) and this aggregate signature, the verifier checks
if e(σ̂′, g2) =

∏�
i=1 e(H(mi), pkδi

i ). An adversary needs to guess (δ1, . . . , δ�) if it
tries to break the asig-soundness of ASIGBGLS. Notice that our concrete aggrega-
tion algorithm computes (δ1, . . . , δ�) ← Ĥ(r) (where Ĥ is a random oracle, and
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r is randomness) and sets (r, σ̂′) as an aggregate signature, so that the aggregate
signature-size does not depend on the number of signers linearly.

Then, we assume the adversary against the asig-soundness of this scheme,
which does the following:

1. Generate (pk1,m1, σ1), . . . , (pk�,m�, σ�), and (δ1, . . . , δ�) = Ĥ(r) by using the
given signing oracle and random oracle.

2. Compute σ∗
1 ← σ1 · vδ2 and σ∗

2 ← σ2 · v−δ1 (where v �= 1) in the same way as
the above attack against ASIGBGLS.

3. Output (pk1,m1, σ
∗
1), (pk2,m2, σ

∗
2), (pk3,m3, σ3), . . . , (pk�,m�, σ�).

Even though there exists this adversary, our scheme prevents this attack, since
the challenger chooses fresh randomness r∗ in order to generate a new aggregate
signature (r∗, σ̂′∗) (see the Output phase in Definition 5). Namely, the random-
ness r∗ chosen by the challenger is different from r chosen by the adversary (i.e.,
H(r) �= H(r∗)), with overwhelming probability. Hence, it is clear that (r∗, σ̂′∗) is
an invalid aggregate signature, and the attack fails in the asig-soundness game.

We construct the proposed aggregate signature scheme ASIGsnd
BGLS = (KGen,

Sign,Vrfy,Agg,AVrfy). The system parameters and the algorithms (KGen,Sign,
Vrfy) of this scheme are the same as those of ASIGBGLS. The Agg and AVrfy
algorithms are described as follows: Let {0, 1}κ be a randomness space with
κ = poly(λ). Let Ĥ : {0, 1}κ × {0, 1}∗ → Z

�
p be a random oracle.

– σ̂ ← Agg((pk1,m1, σ1), . . . , (pk�,m�, σ�)):

1. Sample r
$← {0, 1}κ.

2. Compute (δ1, . . . , δ�) ← Ĥ(r, pk1, . . . , pk�,m1, . . . ,m�).
3. Compute σ̂′ ← ∏�

i=1 σδi
i ∈ G1.

4. Output σ̂ ← (r, σ̂′).
– 1/0 ← AVrfy((pk1,m1), . . . , (pk�,m�), σ̂):

1. Parse σ̂ = (r, σ̂′).
2. Compute (δ1, . . . , δ�) ← Ĥ(r, pk1, . . . , pk�,m1, . . . ,m�).
3. Output 1 if e(σ̂′, g2) =

∏�
i=1 e(H(mi), vδi

i ) holds, and all m1, . . . ,m� are
distinct, where pki = vi for i ∈ [�]. Output 0 otherwise.

We should notice that this scheme is different from the existing multi-/aggregate
signatures based on [4] (e.g., [2,3]). As we explained beforehand, our key-idea
of achieving asig-soundness is to choose fresh randomness r when compressing
signatures, while the existing schemes (e.g., [2,3]) do not employ such an idea.

We show that the proposed scheme satisfies correctness. The first condition of
the correctness holds clearly. The second condition also holds because if (r, σ̂′) is
a valid aggregate signature (where (δ1, . . . , δ�) ← Ĥ(r, pk1, . . . , pk�,m1, . . . ,m�)
and σ̂′ =

∏�
i=1 σδi

i =
∏�

i=1 H(mi)xiδi), then we have
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e(σ̂′, g2) = e(
�∏

i=1

H(mi)xiδi , g2)

=
�∏

i=1

e(H(mi), g2)xiδi

=
�∏

i=1

e(H(mi), gxiδi
2 ) =

�∏

i=1

e(H(mi), vδi
i ).

Hence, ASIGsnd
BGLS satisfies correctness.

Regarding the security of ASIGsnd
BGLS, we can prove that this scheme satisfies

EUF-CMA security, in the same way as the proof of Theorem 1 in [3]. Notice
that the unforgeability of ASIGsnd

BGLS is ensured in the chosen-key model (Defini-
tion 4). This is because the AVrfy algorithm checks whether the given messages
m1, . . . ,m� are all distinct, in the same way as the ASIGBGLS scheme. Namely, it
is unnecessary to use zero-knowledge proofs or disclose secret keys.

Regarding the asig-soundness of ASIGsnd
BGLS, the following theorem holds.

Theorem 3. The aggregate signature scheme ASIGsnd
BGLS satisfies asig-soundness

in the random oracle model.

Proof. Let A be a PPT adversary against ASIGsnd
BGLS. Let ((pk1,m1, σ1), . . . , (pk�,

m�, σ�)) be the A’s output in the asig-soundness game, and let (r, σ̂′) ← Agg((pk1,
m1, σ1), . . . , (pk�,m�, σ�)) be an aggregate signature computed from the A’s out-
put. Then, due to the winning condition of A, e(σ̂′, g2) =

∏�
i=1 e(H(mi), vδi

i )
holds, but e(H(mz)xz , g2) �= e(H(mz), gxz

2 ) holds for z ∈ [�] such that pkz = pk∗,
where pkz = vz = gxz

2 .
Let σi = gci

1 for some ci ∈ Zp, and H(mi) = g
c′

i
1 for some c′

i ∈
Zp. Then, we can write e(σ̂′, g2) =

∏�
i=1 e(σi, g2)δi = e(g1, g2)

∑�
i=1 ciδi and

∏�
i=1 e(H(mi), vδi

i ) =
∏�

i=1 e(g1, g2)c′
ixiδi = e(g1, g2)

∑�
i=1 c′

ixiδi . Thus, if AVrfy
accepts the given pairs ((pk1,m1), . . . , (pk�,m�)) and (r, σ̂′) (i.e., e(σ̂′, g2) =
∏�

i=1 e(H(mi), vδi
i )), then we have

e(g1, g2)
∑�

i=1 ciδi = e(g1, g2)
∑�

i=1 c′
ixiδi ⇔

�∑

i=1

ciδi −
�∑

i=1

c′
ixiδi ≡ 0 (mod p).

By letting βi = ci − c′
ixi, it holds that

∑�
i=1 βiδi ≡ 0 (mod p). Due

to the winning condition of A, βz �= 0 holds for z ∈ [�] such that
pkz = pk∗. In addition, since p is a prime, there exists γz such that
βzγz ≡ 1 (mod p). Hence, we have δz ≡ −γz

∑
i∈[�] s.t. i�=z βiδi (mod p). Since

(δ1, . . . , δ�) = Ĥ(r, pk1, . . . , pk�,m1, . . . ,m�), the probability of choosing r such
that δz ≡ −γz

∑
i∈[�] s.t. i�=z βiδi (mod p) is at most 2−κ. Hence, if Vrfy(pkz,

mz, σz) = 0, the probability that A guesses r such that AVrfy((pk1,m1), . . . ,
(pk�,m�), (r, σ̂′)) = 1 is at most 2−κ, and we obtain Advasig-sound

ASIGsnd
BGLS,A

(λ) ≤ 2−κ. ��
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4 Conclusion

In this paper, we comprehensively studied group testing aggregate signatures
(GT-ASIG) that had functionality of both keyless aggregation of multiple signa-
tures and identifying an invalid message from the aggregate signature, in order
to reduce a total amount of signature-size for lots of messages. Specifically, we
formalized the model and security notions for group testing aggregate signa-
tures, and we provided construction methodology from aggregate signatures in
a generic and comprehensive way. Furthermore, we proposed an aggregate sig-
nature scheme which we could apply to this construction methodology.

As explained in [11], aggregate signatures have interesting applications
including sensor networks, secure logging, and authenticating software. We would
like to expect that aggregate signatures with detecting functionality would be
useful primitives for such applications in the era of IoT.

Regarding future work, it is important to consider a wider class of aggre-
gate signatures with the non-interactive detecting functionality. Namely, it is
meaningful to achieve the detecting functionality of GT-ASIG, without using
combinatorial methods (i.e., group testing with d-disjunct matrices), though we
formalized the notion of this aggregate signature by using d-disjunct matrices
(Definition 6). Hence, constructing such an aggregate signature scheme without
combinatorial methodology is future work in this research.

Acknowledgements. This paper is in part based on results obtained from a project,
JPNP16007, commissioned by the New Energy and Industrial Technology Development
Organization (NEDO). In addition, this work was in part supported by JSPS KAK-
ENHI Grant Numbers JP22K19773, JP21H03395. The authors would like to thank the
anonymous referees for their helpful comments.

Appendix A: Bilinear Groups for Co-Diffie-Hellman

We define bilinear groups for co-Diffie-Hellman, which are used in the aggre-
gate signature scheme of [3]. The following notation is used: G1, G2, and GT

are multiplicative cyclic groups of prime order p. g1 and g2 are generators of
G1 and G2, respectively. φ : G2 → G1 is an isomorphism with φ(g2) = g1.
e : G1 × G2 → GT is a bilinear map. Then, Co-computational Diffie-Hellman
(co-CDH) problem, co-decision Diffie-Hellman (co-DDH) problem, and co-Gap
Diffie-Hellman (co-GDH) group pairs are defined.

Definition 10 (co-CDH and co-DDH problems).

co-CDH. Given g2, g
a
2 ∈ G2 and h ∈ G1, compute ha ∈ G1

co-DDH. Given g2, g
a
2 ∈ G2 and h, hb ∈ G1, determine if a = b or not.

In [4], it is known that in the case of G1 = G2 and g1 = g2, there are
reductions from co-CDH and co-DDH to the standard CDH and DDH problems,
respectively.

Next, co-Gap Diffie-Hellman (co-GDH) group pairs are defined, as follows.
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Definition 11 (Decision Group Pair). The pair (G1, G2) of two groups is a
decision group pair for co-Diffie-Hellman if the group action on G1, the group
action on G2, and the map φ from G2 to G1 can be computed in one time unit,
and co-decision Diffie-Hellman on (G1, G2) can be solved in one time unit.

Definition 12 (Co-GDH Group Pair). Suppose two groups G1, G2 are
selected by following a security parameter λ. The advantage of a PPT algorithm
A solving the co-CDH problem in groups G1, G2 is defined as Advco-cdhA (λ) :=

Pr[A(g2, ga
2 , h) → ha | a

$← Zp, h
$← G1]. The pair (G1, G2) is a co-GDH group

pair if the pair is a decision group pair for co-Diffie-Hellman, and Advco-cdhA (λ) ≤
negl(λ) holds for any PPT algorithm A.

We define bilinear group pairs for co-Diffie-Hellman, which are used in the
aggregate signature scheme of [3].

Definition 13 (Bilinear Group Pair for co-Diffie-Hellman). Suppose two
groups G1, G2 are selected by following a security parameter λ. The pair (G1, G2)
is a bilinear group pair if the group action on either can be computed in one time
unit, the map φ from G2 to G1 can be computed in one time unit, a bilinear map e
is computable in one time unit. Furthermore, the pair (G1, G2) is a bilinear group
pair for co-Diffie-Hellman if it is a bilinear group pair and Advco-cdhA (λ) ≤ negl(λ)
holds for any PPT algorithm A.
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Abstract. In attribute-based signatures (ABS) for inner products, the
digital signature analogue of attribute-based encryption for inner prod-
ucts (Katz et al., EuroCrypt’08), a signing-key (resp. signature) is labeled
with an n-dimensional vector x ∈ Z

n
p (resp. y ∈ Z

n
p ) for a prime p, and the

signing succeeds iff their inner product is zero, i.e., 〈x,y〉 = 0 (mod p).
We generalize it to ABS for range of inner product (ARIP), requiring the
inner product to be within an arbitrarily-chosen range [L, R]. As secu-
rity notions, we define adaptive unforgeablity and perfect signer-privacy.
The latter means that any signature reveals no more information about x
than 〈x,y〉 ∈ [L, R]. We propose two efficient schemes, secure under some
Diffie-Hellman type assumptions in the standard model, based on non-
interactive proof and linearly homomorphic signatures. The 2nd (resp.
1st) scheme is independent of the parameter n in secret-key size (resp.
signature size and verification cost). We show that ARIP has many appli-
cations, e.g., ABS for range evaluation of polynomials/weighted averages,
fuzzy identity-based signatures, time-specific signatures, ABS for range
of Hamming/Euclidean distance and ABS for hyperellipsoid predicates.

Keywords: Attribute-based signatures for range of inner product ·
Adaptive unforgeablity · Signer-privacy · Symmetric bilinear groups of
prime order

1 Introduction

Attribute-Based Encryption (ABE) for Inner Products. In ABE for inner prod-
ucts [16], n-dimensional vector x ∈ Z

n
p (resp. y ∈ Z

n
p ) for a prime p is associ-

ated with secret-key (resp. ciphertext). The decryption succeeds iff 〈x,y〉 = 0
(mod p). It can be generically transformed into various ABE primitives, e.g.,
(anonymous) identity-based encryption (IBE), hidden-vector encryption (HVE)
[10], the dual variant of HVE (= wildcarded IBE [1]), ABE for evaluation of
polynomials/weighted averages, ABE for CNF and DNF formulas, and ABE
for exact thresholds. Let us consider a generalized primitive, named ABE for
arbitrarily-chosen inner product (ACIP), enabling a signer to choose a value
of inner product a ∈ Zp. Obviously, ABE for ACIP with n dimensions can be
transformed from the usual ABE for inner products with n + 1 dimensions1.
1 The (n + 1)-th elements of x,y ∈ Z

n+1
p are set to 1 and −a (mod p), respectively.
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Attribute-Based Signatures (ABS) for Inner Products (AIP). AIP is the signa-
ture analogue of the ABE for inner products. The signing succeeds iff 〈x,y〉 = 0
(mod p). A signer-privacy guarantees that any signature leaks no more infor-
mation about x than 〈x,y〉 = 0. It has many applications, e.g., identity-based
signatures (IBS), hidden-vector signatures (HVS) (= the signature analogue of
HVE), the dual variant of HVS, ABS for evaluation of polynomials/weighted
averages, ABS for CNF and DNF formulas, and ABS for exact thresholds.

ABS for Range of Inner Product (ARIP). We generalize a specific value of inner
product to a range of values. A range [L,R] with L,R ∈ Zp is associated with
a signature. If the inner product is within the range, the signing succeeds. The
encryption analogue of ARIP, named ABE for range of inner product, can be
transformed from ABE for ACIP in a simple manner, where for each integer
i ∈ [L,R], the encryptor generates a ciphertext Ci whose inner product is set to
i2. The same transformation is not directly applicable to ARIP since the signer-
privacy requires the real inner product 〈x,y〉 to be hidden. The ABS scheme
by Sakai et al. [26] supporting any circuit as signer-predicate can be an ARIP
scheme by properly configuring the circuit. A vector x ∈ Z

n
p is transformed into

a binary attribute x ∈ {0, 1}nλ. In their ABS scheme, at signature generation, a
signer generates a commitment of the non-interactive witness indistinguishable
proof (NIWI) system by Groth and Sahai (GS) [11] for each bit x[i] ∈ {0, 1} of
x. Thus, at least, its signature length linearly increases with n.

Contribution of this work is threefold. First, we formally define the syntax
and security of ARIP. Second, we propose two efficient ARIP schemes based on
NIWI and linearly homomorphic signatures (LHS)3 [9], one of which is indepen-
dent of n in signature length. Third, we show that ARIP has various applications.

Formalization of ARIP. As the security requirements, we define adaptive exis-
tential unforgeability [20,26] and perfect signer-privacy [7]. The latter guarantees
that any signature leaks no information about x ∈ Z

n
p of the signer. Its defini-

tion is simulatability-based, which requires us to prove that any signature which
should be generated using a specific revealed secret-key associated with a vector
x ∈ Zp is simulatable even if without knowing the secret-key.

Our Efficient ARIP Schemes. We propose two efficient ARIP schemes, based on
symmetric bilinear pairing groups of prime order, and secure under the compu-
tational Diffie-Hellman (CDH), flexible CDH (flexCDH) [6] and decisional linear
(DLIN) assumptions. The 2nd (resp. 1st) scheme is independent of n in secret-
key size (resp. signature size and verification cost). They are originally a generic

2 A drawback of this simple approach is low efficiency. Ciphertext length and encryp-
tion cost linearly increase with the maximal cardinality of the range [L, R], which is
p if L, R ∈ Zp or T if L, R ∈ [0, T − 1] for T ∈ N.

3 In LHS, any signature on a message of vector v ∈ Z
n
p is labeled with a tag τ ∈ {0, 1}∗.

Any entity collecting l signatures σ1, · · · , σl with the same tag τ on v1, · · · , vl ∈ Z
n
p

can derive a new σ on any linear combination v =
∑l

i=1 βi · vi ∈ Z
n
p with βi ∈ Zp.



384 M. Ishizaka and K. Fukushima

construction based on NIWI and LHS, which is instantiated from the GS NIWI
system and a simplified variant of the LHS scheme by Attrapadung, Libert and
Peters (ALP) [6].

The generic construction behind our 1st scheme is as follows. For a secret-
key skx for x ∈ Z

n
p , we generate n + 4 number of vectors {vi}n+4

i=1 . Each vi ∈
Z

n+5
p is set to xi|ei if i ∈ [1, n], or 0|ei otherwise, where ei ∈ Z

n+4
p is the

i-th unit vector. Then, randomly choose a tag τ ∈ {0, 1}N and generate n +
4 signatures σ1, · · · , σn+4 of the LHS on the vectors v1, · · · ,vn+4 under the
tag τ . skx consists of all of the signatures. To sign a message M ∈ Zp under
a vector y ∈ Z

n
p and a range [L,R] ⊆ Zp, we set n + 4 number of weight

coefficients β1, · · · , βn+4 as βi := yi for each i ∈ [1, n], and (βn+1, βn+2, βn+3,
βn+4) := (L,R,M, 1). Then, derive a new signature σ on the linear combination
v :=

∑n+4
i=1 βivi. Note that v is in the form of (〈x,y〉 (mod p), y1, · · · , yn, L,R,

M, 1). Finally, under the witness of 〈x,y〉, τ and σ, generate an NIWI proof π
that both of the following two conditions are satisfied, namely (1) σ is a correct
LHS signature on v under τ , and (2) 〈x,y〉 ∈ [L,R]. In the GS NIWI system,
the prover computes a commitment for each variable, then generates proofs
that the variables satisfy a pairing-product equation in a form of

∏m
i=1 e(Ai,

Xi) · ∏m
i=1

∏m
j=1 e(Xi,Xj)aij = tT , where Xi ∈ G are variables and Ai ∈ G,

aij ∈ Zp and tT ∈ GT are constants. Actually, the verification algorithm of
the simplified variant of ALP LHS scheme consists of only two such equations.
Thus, proving for the 1st condition (1) is non-problematic. To prove for the 2nd
condition (2), we adopt the tree-based range membership technique used for
efficient time-specific encryption/signatures constructions [14,23].

In our 2nd scheme, each secret-key skx consists of only four LHS signatures
σ1, · · · , σ4 on vectors v1, · · · ,v4. Each vi ∈ Z

n+4
p is set to (x1, · · · , xn)|ei if

i = 1, or (0, · · · , 0)|ei otherwise, where ei ∈ Z
4
p is the i-th unit vector. At

signature generation, we derive a signature σ on v :=
∑4

i=1 βivi, where (β1, β2,
β3, β4) := (1, L,R,M). Note that v = (x1, · · · , xn, 1, L,R,M) ∈ Z

n+4
p . Finally,

under the witness of 〈x,y〉, τ , σ and x, generate an NIWI proof that all of the
following three conditions are satisfied, namely (1) σ is a correct LHS signature
on v under τ , (2) 〈x,y〉 ∈ [L,R] and (3) 〈x,y〉 =

∑n
i=1 xi · yi (mod p).

Applications of ARIP. Since ARIP is a generalization of AIP, any ABS primitive
which can be transformed from AIP, can also be transformed from ARIP. And
not only that, for some of such primitives, ARIP can transform into more gener-
alized primitives. The first example is ABS for range evaluation of polynomials
(AREP), which is a generalization of the ABS for evaluation of polynomial. In
AREP, each signature is labeled with a polynomial f : Zp → {0, 1} and a range
[L,R] ⊆ Zp. A secret-key with x ∈ Zp correctly signs iff f(x) ∈ [L,R] (mod p).
Another example is ABS for range evaluation of weighted average (resp. fuzzy
identity-based signatures), which is a generalization of the ABS for evaluation of
weighted averages (resp. the ABS for exact thresholds). Moreover, ARIP can be
transformed into the following (original) ABS, namely time-specific signatures
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[14,23], ABS for range of Hamming/Euclidean distance, and ABS for hyper-
sphere/hyperellipsoid predicates. For the details, refer to Sect. 5.

Further Related Work. The idea of ABS was proposed by Maji et al. [19,20].
They proposed a generic construction, supporting monotone span programs
as predicate, based on a non-interactive proof system and a digital signature
scheme. Okamoto and Takashima [22] proposed an ABS scheme supporting non-
monotone span programs as predicate based on the technique of dual pairing
vector spaces. Sakai et al. [26] proposed an ABS scheme supporting arbitral
circuits as predicate, built from the GS proof [11] and the structure-preserving
signatures by Kiltz et al. [17]. Sakai et al. [27] proposed key-policy ABS for
any deterministic Turing machines as predicate. Zhang et al. [29] proposed an
ABS scheme for inner products, secure under a lattice assumption of Short Inte-
ger Solution problem in the random oracle model. In ABE for non-zero inner
products [16], unlike ABE for inner products [16], the decryption succeeds iff the
inner product is non-zero. A lot of secure schemes based on bilinear maps [3,4,21]
or lattice assumptions [15] have been proposed. Phuong et al. [24] proposed a
secure construction of edit distance based encryption (EdDBE). In EdDBE, each
secret-key (resp. ciphertext) is associated with an alphabet string A (resp. an
alphabet string A′ and a threshold value t). The decryption succeeds iff the edit
distance (aka. Levenshtein distance) between A and A′ is smaller than t. Guo
et al. [12] proposed the notion of Euclidean distance based encryption (EuDBE).
In EuDBE, each secret-key (resp. ciphertext) is associated with a vector x = (x1,
· · · , xn) ∈ R

n (resp. a vector y = (y1, · · · , yn) ∈ R
n and a threshold t ∈ R) with a

real number space R. The decryption succeeds iff the Euclidean distance between
x and y is smaller than t4. They proposed a generic EuDBE construction from
any ABE for inner products [16].

Paper Organization. In Sect. 2, we explain some notations and define the CDH,
FlexCDH and DLIN assumptions. In Sect. 3, we define the syntax and security
of ABS for a general predicate f and ARIP. In Sect. 4, we propose two ARIP
schemes and its optimized versions in terms of efficiency. In Sect. 5, we explain
that ARIP has many applications. In Sect. 6, we summarize the paper, then
discuss possible functional developments of ARIP.

2 Preliminaries

Notations. For λ ∈ N, 1λ denotes a security parameter. A function f : N → R is
negligible if for every c ∈ N, there exists x0 ∈ N s.t. for every x ≥ x0, f(x) ≤ x−c.
Given a binary string x ∈ {0, 1}L, for every i ∈ [0, L−1], let x[i] ∈ {0, 1} denote
its i-th bit. PPTA means probabilistic polynomial time algorithm. For a set A,
a

U←− A means that an element a is chosen uniformly at random from A.
4 The EuDBE is similar to the encryption analogue of our ABS for range of Euclidean

distance, but more functionally-restricted than it, because in the latter, not only
the upper bound R (of the Euclidean distance) but also the lower bound L can be
chosen.
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Symmetric Bilinear Pairing on Groups with Prime Order. G takes a security
parameter 1λ with λ ∈ N and outputs a group description (p,G,GT , e, g). p is
a prime with length λ. G and GT are multiplicative groups with order p. g is
a generator of G. e : G × G → GT is an efficiently-computable function which
satisfies both of the following conditions.

Bilinearity. For any a, b ∈ Zp, e(ga, gb) = e(g, g)ab

Non-degeneracy. e(g, g) 
= 1GT
, where 1GT

denotes the unit element of GT .

Assumptions. We define the three computational hardness assumptions.

Definition 1. The computational Diffie-Hellman (CDH) assumption holds on
the group G if for every PPT A, AdvCDHA,G(λ) := Pr[gab ← A(g, ga, gb)] with

a, b
U←− Zp, is negligible.

Definition 2. The flexible CDH (FlexCDH) assumption [6] holds on the group
G if for every PPT A, AdvFlexCDHA,G (λ) := Pr[(gμ, ga·μ, gab·μ) ← A(g, ga, gb)] with

a, b
U←− Zp and μ 
= 0, is negligible.

Definition 3. The decisional linear (DLIN) assumption holds on the group G

if for every PPT A, AdvDLINA,G(λ) := |Pr[1 ← A(ga, gb, gab, gbd, gc+d)]| − Pr[1 ←
A(ga, gb, gab, gbd, gz)] with a, b, c, d, z

U←− Zp, is negligible.

3 ABS for Range of Inner-Product (ARIP)

We define general ABS for predicate f in the first subsection, then show that
ARIP is a concrete example of the general ABS in the second subsection.

3.1 General ABS for Predicate f

General ABS for predicate f : {0, 1}∗ → {0, 1} in F consists of the following four
polynomial-time algorithms. Ver is deterministic and the others are probabilistic.

Setup Setup: It takes a security parameter 1λ for λ ∈ N, then outputs a public
parameter pp and master-key mk. Let M denote the message space. Note
that the other algorithms implicitly take pp as input. [(pp,mk) ← Setup(1λ)]

Key-Generation KGen: It takes mk and an attribute x ∈ {0, 1}∗, then outputs
a secret-key sk. [sk ← KGen(mk, x)]

Signing Sig: It takes a secret-key sk, a message M ∈ M, a predicate f ∈ F ,
then outputs a signature σ. [σ ← Sig(sk,M, f)]

Verification Ver: It takes a signature σ, a message M ∈ M, a predicate f ∈ F ,
then outputs 1 or 0. [1/0 ← Ver(σ,M, f)]

Every ABS scheme must be correct. Informally the property means that every
correctly generated signature is accepted. Formally the property is defined
as follows. An ABS scheme is correct if ∀λ ∈ N, ∀(pp,mk) ← Setup(1λ),
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∀x ∈ {0, 1}∗, ∀sk ← KGen(mk, x), ∀M ∈ M, ∀f ∈ F s.t. 1 ← f(x),
∀σ ← Sig(sk,M, f), 1 ← Ver(σ,M, f) holds.

As security for ABS, we require unforgeability and signer-privacy. As a notion
of unforgeability, we define (weak) existential unforgeability against adaptively-
chosen messages and predicate attack (EUF-CMA). For a PPT algorithm A, we
consider the following experiment.
ExptEUF-CMAΣABS,A(1λ):

1. (pp, mk) ← Setup(1λ). (σ∗, M∗ ∈ M, f∗ ∈ F) ← AReveal,Sign(pp).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Reveal(x ∈ {0, 1}∗): sk ← KGen(mk, x). Q := Q ∪ {x}. Rtrn sk.
- Sign(x ∈ {0, 1}∗, M ∈ M, f ∈ F):

sk ← KGen(mk, x). σ ← Sig(sk, M, f). Q′ := Q′ ∪ {(M, f, σ)}. Rtrn σ.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2. Rtrn 1 if
(1) 1 ← Ver(σ∗, M∗, y∗), (2) ∀x ∈ Q, 0 ← f∗(x) and (3) (M∗, f∗, ·) /∈ Q′.

3. Rtrn 0.

Definition 4. An ABS scheme ΣABS is EUF-CMA if for every λ ∈ N and every
PPT A, A’s advantage AdvEUF-CMAΣABS,A(λ) := Pr[1 ← ExptEUF-CMAΣABS,A(1λ)] is negligible.

As a notion of signer-privacy, we define perfect signer-privacy (PRV). For a prob-
abilistic algorithm A, we consider the following two experiments.
ExptPRVΣABS,A,0(1

λ): //ExptPRVΣABS,A,1

(pp, mk) ← Setup(1λ). (pp, mk, μ) ← SimSetup(1λ).
Rtrn b′ ← AReveal,Sign(pp, mk).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- Reveal(x ∈ {0, 1}∗):

sk ← KGen(mk, x). sk ← SimKGen(mk, μ, x). Q := Q ∪ {(x, sk)}. Rtrn sk.
- Sign(x ∈ {0, 1}∗, sk, M ∈ M, f ∈ F):

Rtrn ⊥ if (x, sk) /∈ Q ∨ 0 ← f(x). σ ← Sig(sk, M, f).
σ ← SimSig(mk, μ, M, f). Rtrn σ.

The latter is associated with 3 polynomial-time algorithms {SimSetup, SimKGen,
SimSig}. The grey parts are considered in the latter, but ignored in the former.

Definition 5. An ABS scheme ΣABS is perfectly signer-private (PRV) if
for every λ ∈ N and every probabilistic algorithm A, there exist
polynomial-time algorithms {SimSetup, SimKGen, SimSig} such that A’s advan-
tage AdvPRVΣABS,A(λ) := |∑1

b=0(−1)b Pr[1 ← ExptPRVΣABS,A,b(1
λ)]| is 0.

3.2 ARIP

ARIP is a sub-class of the general ABS for predicate f . p denotes a prime
number of bit length λ. n ∈ poly(λ) is an integer. An attribute x ∈ {0, 1}∗ in
the general ABS is changed into an n-dimensional vector x ∈ Z

n
p in ARIP. A

predicate f ∈ F is associated with an n-dimensional vector y ∈ Z
n
p and a range

[L,R] with L,R ∈ Zp. We parse x (resp. y) as (x1, · · · , xn) (resp. (y1, · · · , yn)).
The predicate outputs 1 if (and only if) 〈x,y〉(:= ∑n

i=1 xi ·yi) ∈ [L,R] (mod p).
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4 Our ARIP Schemes

Non-Interactive Witness-Indistinguishable Proof (NIWI). An NIWI system by
Groth and Sahai (GS) [11], based on a group G whose order is a prime p, is secure
under the DLIN assumption. The CRS consists of 3 vectors

#»

f 1,
#»

f 2,
#»

f 3 ∈ G
3,

where
#»

f 1 = (f1, 1, g),
#»

f 2 = (1, f2, g) and f1, f2 ∈ G. A commitment
#»

C to a
group element X ∈ G is given as

#»

C := (1, 1,X) · #»f r
1 · #»f s

2 · #»f t
3, where r, s, t

U←− Zp.
The CRS is in one of the following two settings, (1) perfect soundness setting
and (2) perfect witness-indistinguishability (WI) setting. The CRS in the former
setting satisfies

#»

f 3 =
#»

f ξ1
1 · #»f ξ2

2 with ξ1, ξ2 ∈ Zp. From any commitment
#»

C =
(fr+ξ1t

1 , fs+ξ2t
2 ,X ·gr+s+t(ξ1+ξ2)) distributing as a Boneh-Boyen-Shacham (BBS)

ciphertext [8], the committed variable X is extracted by using β1 = logg(f1) and
β2 = logg(f2). In the latter setting, where the element

#»

f 3 is chosen outside the
span of

#»

f 1 and
#»

f 2, any commitment is perfectly hiding. In the GS NIWI system,
the prover can efficiently prove that committed variables satisfy a paring-product
equation in the form of

∏m
i=1 e(Ai,Xi)·

∏m
i=1

∏m
j=1 e(Xi,Xj)aij = tT for variables

Xi ∈ G and constants Ai ∈ G, aij ∈ Zp and tT ∈ GT .

Linearly Homomorphic Signatures (LHS) [9]. In LHS, each signature on a mes-
sage of vector v ∈ Z

n
p is labeled with a tag τ ∈ {0, 1}N . Any entity collect-

ing l number of signatures σ1, · · · , σl labeled with the same tag τ on mes-
sages v1, · · · ,vl ∈ Z

n
p can derive a new signature σ on any linear combination

v =
∑l

i=1 βi ·vi ∈ Z
n
p with βi ∈ Zp. The unforgeability security informally means

that no PPT adversary, given q number of signatures {σi}q
i=1 with q ∈ poly(λ)

on arbitrarily and adaptively chosen vectors {vi}q
i=1 with tags {τi}q

i=1, can find a
correct signature on a vector v∗ /∈ Vτ∗ on a tag τ∗ with a non-negligible probabil-
ity, where Vτ∗ denotes the subspace spanned by all of the vectors vi s.t. τi = τ∗.
Attrapadung, Libert and Peters (ALP) [6] proposed unforgeable and complete
context-hiding (CCH) secure scheme, based on the CDH and FlexCDH assump-
tions. The CCH notion [5] and a weaker notion called strong context-hiding
(SCH) [2] are unlinkability-related notions, which guarantee that any derived
signature (from some of the other signatures) distributes identically to a fresh
signature directly generated by the signing-key. Our ARIP schemes do not need
these unlinkablity notions. We consider the following simplified variant of the
ALP LHS scheme lacking CCH security. The verification-key includes group ele-
ments g, v, {gi}n

i=1, u
′ and {ui}N−1

i=0 . The signing-key is α ∈ Zp. A signature on
v ∈ Z

n
p under a tag τ ∈ {0, 1}N distributes as ((

∏n
i=1 gvi

i vs)αHG(τ)r, gr, gs,

gs·α) with randomnesses r, s
U←− Zp, where HG(τ) = u′ ∏N−1

i=0 u
τ [i]
i . The simpli-

fied variant of the ALP LHS scheme is formally described in Sect.A.

4.1 Our First ARIP Scheme

Generic Construction Based on NIWI and LHS. A secret-key skx for x ∈ Z
n
p

consists of a tag τ ∈ {0, 1}N for N ∈ N and n + 4 signatures {σi}n+4
i=1 of LHS.

The tag is uniform-randomly chosen for each secret-key. The LHS signature σi
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is on a vector vi ∈ Z
n+5
p . Each vector vi is set to xi|ei if i ∈ [1, n], or 0|ei

otherwise, where ei ∈ Z
n+4
p is the i-th unit vector. The signer with skx signs a

message M ∈ Zp under a vector y ∈ Z
n
p and a range [L,R] with L,R ∈ Zp as

follows. Compute the weights β1, · · · , βn+4 ∈ Zp as follows. βi for i ∈ [1, n] is set
to yi. βi for i ∈ [n + 1, n + 4] is set to L, R, M , and 1, respectively. Derive an
LHS signature σ on the weighted vector v :=

∑n+4
i=1 βi ·vi = (〈x,y〉 (mod p), y1,

· · · , yn, L,R,M, 1) ∈ Z
n+5
p . Finally, using 〈x,y〉, τ and σ as witness, generate

NIWI proofs that both of the following two conditions are satisfied, namely (a)
σ is a correct signature on the vector v under the tag τ and (b) 〈x,y〉 ∈ [L,R].
Since the verification algorithm of the simplified variant of the ALP LHS scheme
consists of only two pairing-product equations, generating GS proofs for the first
condition (a) is non-problematic. For the second condition (b), we adopt the
tree-based range membership technique used for the efficient constructions of
time-specific encryption/signatures [14,23].

Formal Description. For any X ∈ G, ι(X) denotes (1, 1,X) ∈ G
3. For any

X ∈ GT , ιGT
(X) denotes the 3 × 3 matrix which has X as the (3, 3)-th element

and 1GT
as any of the other elements. For any h, g1, g2, g3 ∈ G, E(h, (g1, g2, g3))

denotes (e(h, g1), e(h, g2), e(h, g3)) ∈ G
3
T . For any

#»

X = (X1,X2,X3) ∈ G
3 and

#»

Y = (Y1, Y2, Y3) ∈ G
3, F (

#»

X,
#»

Y ) := F̃ (
#»

X,
#»

Y )1/2 · F̃ (
#»

Y ,
#»

X)1/2 ∈ G
3×3
T , where

F̃ (
#»

X,
#»

Y ) ∈ G
3×3
T contains e(Xi, Yj) as the (i, j)-th element for all i, j ∈ {1, 2, 3}.

Setup(1λ, n): Choose bilinear groups (G,GT ) whose order is a prime p of bit
length λ. Choose α

U←− Zp. Let g, v, g1, · · · , gn+5, u
′, u0, · · · , uN−1

U←− G

with N ∈ N. HG is a function which takes τ ∈ {0, 1}N then outputs
u′ ∏N−1

i=0 u
τ [i]
i ∈ G. Generate a GS CRS f = (

#»

f 1,
#»

f 2,
#»

f 3) for the perfect WI
setting as

#»

f 1 := (f1, 1, g),
#»

f 2 := (1, f2, g) and
#»

f 3 :=
#»

f ξ1
1 · #»f ξ2

2 · (1, 1, g)−1,
where f1, f2

U←− G, ξ1, ξ2
U←− Zp. Finally, output (pp,mk), where pp := (G,

GT , g, gα, v, {gi}n+5
i=1 , u′, {ui}N−1

i=0 ,f) and mk := α.

KGen(mk,x): Choose a tag τ
U←− {0, 1}N . Generate n+4 vectors v1, · · · ,vn+4 ∈

Z
n+5
p . Each vector vi = (vi,1, · · · , vi,n+5) ∈ Z

n+5
p is set to xi|ei if i ∈ [1, n], or

0|ei otherwise. Compute an ALP signature (σi,1, σi,2, σi,3, σi,4) on vi, where
σi,1 := (

∏n+5
j=1 g

vi,j

i vsi)αHG(τ)ri , σi,2 := gri , σi,3 := gsi and σi,4 := gα·si with

ri, si
U←− Zp. Finally, output the secret-key sk := (x, τ, {{σi,j}4

j=1}n+4
i=1 ).

Sig(sk,M,y, L,R): Conduct the following 5 steps first.
1. Calculate the inner product d := 〈x,y〉 (mod p). Assume that d ∈ [L,R].
2. Choose r

U←− Zp. For each i ∈ [1, n], βi := yi. Set (βn+1, βn+2, βn+3,
βn+4) := (L,R,M, 1).

3. Compute σ1 :=
∏n+4

i=1 σβi

i,1 · HG(τ)r, σ2 :=
∏n+4

i=1 σβi

i,2 · gr, σ3 :=
∏n+4

i=1 σβi

i,3

and σ4 :=
∏n+4

i=1 σβi

i,4. Note that if sk is a correct secret-key with inner-
randomness {rj , sj}n+4

j=1 , the computed ALP signature distributes as
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({
g

〈x,y〉
1

n∏
i=1

g
yi
i+1 · gL

n+2 · gR
n+3 · gM

n+4 · gn+5 · v
∑n+4

j=1 yjsj

}α

HG(τ)
∑

j yjrj+r,

g
∑

j yjrj+r, g
∑

j yjsj , gα
∑

j yjsj

)
. (1)

4. Compute the GS commitments for all of the following variables in G.
(a) gτ [i] and g1−τ [i] (for all i ∈ [0, N − 1])
(b) HG(τ)
(c) g

d[i]
1 and g

1−d[i]
1 (for all i ∈ [0, λ − 1])

(d) gd
1

(e) σ1, σ3 and σ4

Let the commitments be denoted by
#»

Cτ [i],
#»

C1−τ [i],
#»

CHG(τ),
#»

Cd[i],
#»

C1−d[i],
#»

Cd,
#»

Cσ1 ,
#»

Cσ3 ,
#»

Cσ4 ∈ G
3 respectively. The GS commitment

#»

CX for a
variable X ∈ G is computed as ι(X) · #»f r

1 · #»f s
2 · #»f t

3, where r, s, t
U←− Zp.

5. Compute the GS proofs that the variables satisfy the following relations.
[a] e(gτ [i], g1−τ [i]) = 1GT

and e(gτ [i], g) · e(g1−τ [i], g) = e(g, g)
(for all i ∈ [0, N − 1])

[b] e(HG(τ), g) = e(u′, g)
∏N−1

i=0 e(ui, g
τ [i])

[c] e(gd[i]
1 , g

1−d[i]
1 ) = 1GT

and e(gd[i]
1 , g1) · e(g1−d[i]

1 , g1) = e(g1, g1)
(for all i ∈ [0, λ − 1])

[d] e(gd
1 , g) =

∏λ−1
i=0 e(gd[i]

1 , g2i

)
[e] e(σ1, g) = e(gd

1 , gα) · e(
∏n+4

i=1 gyi

i+1, g
α) · e(v, σ4) · e(HG(τ), σ2)

[f] e(σ3, g
α) = e(g, σ4)

The relations [a] guarantee that the variable τ [i] used in the committed
variables gτ [i] and g1−τ [i] is one bit value. Likewise, the ones [c] guarantee
that the variable d[i] is one bit value. The above GS proofs are categorized
into two groups, namely type-1 (resp. type-2) proofs consisting of 3 (resp.
9) elements in G. Specifically, the proofs for the relations with the grey
background abc are type-2, and the others are type-1. Let the proofs be
denoted by #»π τ [i] ∈ G

9 , #»π ′
τ [i] ∈ G

3, #»π HG(τ) ∈ G
3, #»π d[i] ∈ G

9 , #»π ′
d[i] ∈ G

3,
#»π d ∈ G

3, #»π σ1 ∈ G
3, #»π σ3 ∈ G

3, respectively.

What remains is proving that d ∈ [L,R].
Consider a complete binary tree with p leaf nodes. The root node is asso-

ciated with the null value. Any non-leaf node associated with a binary value
a ∈ {0, 1}≤λ has two subordinates associated with a||0 and a||1 respectively.
The p leaf n are associated with 0, 1, · · · , p − 1 from left to right.

We derive a set of intermediate nodes Θ which covers two leaf nodes L and
R. For an intermediate node with θ ∈ {0, 1}≤λ, LEAVESθ denotes a set of
leaf nodes, each of which is descendant of the node with θ. The covering set Θ
consists of nodes with θ ∈ {0, 1}≤λ such that (1) the union set of LEAVESθ for
all θ ∈ Θ is identical to the set of leaf nodes for [L,R], and (2) the cardinality of
Θ, i.e., |Θ|, is the minimum5. Parse Θ as {θ ∈ {0, 1}≤λ}. For each θ, we define
a Boolean variable Aθ ∈ {0, 1} as follows.
5 Note that |Θ| is maximized when [L, R] = [1, p − 2] and becomes 2λ − 2.
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[Aθ :] Be 1 if the leaf node with d ∈ {0, 1}λ is descendant of the leaf node with
θ ∈ {0, 1}≤λ. Be 0 otherwise.

Note that if d ∈ [L,R], there must exist (at most) one node θ∗ ∈ Θ which has
the leaf node d as descendant. The highest |θ∗| bits of d are identical to θ∗. For
each θ ∈ Θ and j ∈ [1, |θ|], we define two Boolean variables Aθ,j , A

′
θ,j ∈ {0, 1}

as follows.

[Aθ,j :] Be 1 if the j-th highest bit of d ∈ {0, 1}λ is identical to the one of
θ ∈ {0, 1}≤λ, i.e., d[λ − j] = θ[|θ| − j]. Be 0 otherwise.

[A′
θ,j :] Be 1 if all of the j highest bits of d ∈ {0, 1}λ are identical to the ones
of θ ∈ {0, 1}≤λ, i.e., d[λ − k] = θ[|θ| − k] for all k ∈ [1, j]. Be 0 otherwise.
Obviously, A′

θ,|θ| = Aθ.

Finally, conduct the following two steps.

1. Compute the GS commitments for all of the following variables in G.
(f) gAθ

1 (for all θ ∈ Θ)

(g) g
Aθ,j

1 and g
A′

θ,j

1 (for all θ ∈ Θ and j ∈ [1, |θ|])
Let the commitments be denoted by

#»

CAθ
,
#»

CAθ,j
,
#»

C ′
Aθ,j

∈ G
3.

2. Compute the GS proofs that the above variables satisfy the followings.

[g] e(gAθ,j

1 , g) =

{
e(gd[λ−j]

1 , g) (if θ[|θ| − j] = 1)
e(g1−d[λ−j]

1 , g) (otherwise)
(for all θ ∈ Θ and j ∈ [1, |θ|])

[h] e(g
A′

θ,1
1 , g1) = e(gAθ,1

1 , g1) (for all θ ∈ Θ)

[i] e(g
A′

θ,j

1 , g1) = e(g
A′

θ,j−1
1 , g

Aθ,j

1 ) (for all θ ∈ Θ and j ∈ [2, |θ|])
[j]

∏
θ∈Θ e(g

A′
θ,|θ|

1 , g) = e(g1, g)
Let the computed GS proofs be denoted by πAθ,j

∈ G
3, #»π ′

Aθ,1
∈ G

3,
#»π ′

Aθ,j
∈ G

9 and πA ∈ G
3 respectively.

The signature σ consists of all of the GS commitments and proofs, and the
second ALP signature element σ2 ∈ G.

Ver(σ,M,y, L,R): Each GS proof π ∈ G
3 (resp. #»π ∈ G

9), composed of 3 (resp.
9) elements in G, is parsed as (π1, π2, π3) (resp. ( #»π 1,

#»π 2,
#»π 3) with #»π i ∈ G

3).
Output 1 if all of the following equations are satisfied.

1. F (
#»

Cτ [i],
#»

C1−τ [i]) = ιGT
(1GT

) · ∏3
k=1 F ( #»π τ [i],k,

#»

f k)
(for all i ∈ [0, N − 1])

2. E(g,
#»

Cτ [i]) · E(g,
#»

C1−τ [i]) = E(g, ι(g)) · ∏3
k=1 E(π′

τ [i],k,
#»

f k)
(for all i ∈ [0, N − 1])

3. E(g,
#»

CHG(τ)) = E(u′, ι(g)) · ∏N−1
i=0 E(ui,

#»

Cτ [i]) · ∏3
k=1 E(πHG(τ),k,

#»

f k)
4. F (

#»

Cd[i],
#»

C1−d[i]) = ιGT
(1GT

) · ∏3
k=1 F ( #»π d[i],k,

#»

f k)
(for all i ∈ [0, λ − 1])

5. E(g,
#»

Cd[i]) = E(g, ι(g)) · E(g,
#»

C1−d[i]) · ∏3
k=1 E(π′

d[i],k,
#»

f k)
(for all i ∈ [0, λ − 1])
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6. E(g,
#»

Cd) =
∏λ−1

i=0 E(g2i

,
#»

Cd[i]) · ∏3
k=1 E(πd,k,

#»

f k)
7. E(g,

#»

Cσ1) = E(gα,
#»

Cd) · E(
∏n+4

i=1 gyi

i+1, ι(g
α)) · E(v,

#»

Cσ4) · E(σ2,
#»

CHG(τ)) ·
∏3

k=1 E(πσ1,k,
#»

f k)
8. E(gα,

#»

Cσ3) = E(g,
#»

Cσ4) · ∏3
k=1 E(πσ3,k,

#»

f k)

9. E(g,
#»

CAθ,j
) =

{
E(g,

#»

Cd[λ−j]) · ∏3
k=1 E(πAθ,j ,k,

#»

f k) (if θ[|θ| − j] = 1)
E(g,

#»

C1−d[λ−j]) · ∏3
k=1 E(πAθ,j ,k,

#»

f k) (otherwise)
(for all θ ∈ Θ and j ∈ [1, |θ|])

10. E(g1,
#»

C ′
Aθ,1

) = E(g1,
#»

CAθ,1) · ∏3
k=1 E(π′

Aθ,1,k,
#»

f k)
(for all θ ∈ Θ)

11. F (ι(g1),
#»

C ′
Aθ,j

) = F (
#»

C ′
Aθ,j−1

,
#»

CAθ,j
) · ∏3

k=1 F ( #»π ′
Aθ,j ,k,

#»

f k)
(for all θ ∈ Θ and j ∈ [2, |θ|])

12.
∏

θ∈Θ E(g,
#»

C ′
Aθ,|θ|

) = E(g1, ι(g)) · ∏3
k=1 E(πA,k,

#»

f k)

Output 0 otherwise.

Unforgeability. We present the following theorem.

Theorem 1. Our 1st ARIP scheme is EUF-CMA if the DLIN, CDH and FlexCDH
assumptions hold in the group G.

Proof. To prove the theorem, we define the following 5 experiments.

Expt0: The standard EUF-CMA experiment for the ARIP scheme.
Expt1: The same as Expt0 except that it aborts when we choose a tag on the

key-revelation or signing oracle, the tag matches a tag previously chosen.
Expt2: The same as Expt1 except that the ALP signature (σ1, σ2, σ3, σ4) used

on the signing oracle Sign is directly generated by the master-key mk(= α)
as follows: ({g

〈x,y〉
1

∏n
i=1 gyi

i+1 · gL
n+2 · gR

n+3 · gM
n+4 · gn+5 · vs}α · HG(τ)r, gr, gs,

gαs), where r, s
U←− Zp and τ

U←− {0, 1}N .
Expt3: The same as Expt2 except that the GS CRS f = (

#»

f 1,
#»

f 2,
#»

f 3) is
generated as a perfectly sound one. Specifically,

#»

f 1 := (f1, 1, g),
#»

f 2 := (1,
f2, g) and

#»

f 3 :=
#»

f ξ1
1 · #»f ξ2

2 , where f1 := gφ1 , f2 := gφ2 and φ1, φ2, ξ1, ξ2
U←−

Zp. Note that in this experiment and the next experiment Expt4, all GS
commitments are perfectly binding ones. We use the BBS decryption keys
(φ1, φ2) to extract all of the hidden variables from the GS commitments in
the forged signature σ∗. Since the GS proofs in σ∗ are perfectly sound, the
extracted variables satisfy all of the relations [a], [b], · · · , [j]. Hereafter, some
of the extracted variables are denoted by τ∗ ∈ {0, 1}N , d∗ ∈ Zp, σ∗

1, σ
∗
3,

σ∗
4 ∈ G. Let σ∗

2 ∈ G denote the 2nd ALP signature element included in σ∗.
Expt4: The same as Expt3 except that it aborts if the tag τ∗ matches none of

the tags chosen on the key-revelation or signing oracle.

Wi denotes the event where Expti outputs 1. We obtain AdvEUF-CMAΣARIP,A,n(λ) =
Pr[W0] ≤ ∑4

i=1 |Pr[Wi−1] − Pr[Wi]| + Pr[W4] ≤ q(q − 1)/2N+1 + AdvDLINB1,G(λ) +
4q(N + 1)(AdvCDHB2,G(λ) + AdvFlexCDHB3,G (λ) + 2/p), where q ∈ N is number that A
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uses the key-revelation and signing oracles. The last inequality is because of the
following lemmas. We omit the proof of Lemma 3. As said in [5,6,18], Expt2
and Expt3 are indistinguishable under the DLIN assumption. �
Lemma 1. |Pr [W0] − Pr [W1]| ≤ q(q − 1)/2N+1.

Proof. For i ∈ [1, q], τi denotes the tag chosen on the i-th key-revelation or
signing oracle. Ei denotes the event where τi is the first tag which matches one
of the tags previously chosen. Expt0 and Expt1 are identical except for the case
where an event from E2, · · · , Eq occurs. Thus, we obtain |Pr[W0] − Pr[W1]| ≤
Pr[

∨q
i=2 Ei] ≤ ∑q

i=2 Pr[Ei]. We derive an upper bound for Pr[Ei]. A denotes the
event where no one from τ1, · · · , τi−1 matches another. B denotes the event where
τi matches one of τ1, · · · , τi−1. Obviously, Pr[Ei] = Pr[A] · Pr[B | A] ≤ Pr[B |
A] = i−1

2N . Hence, |Pr[W0] − Pr[W1]| ≤ 1
2N + · · · + q−1

2N = 1
2N · q(q−1)

2 = q(q−1)
2N+1 . �

Lemma 2. |Pr [W1] − Pr [W2]| = 0.

Proof. In Expt1, on the signing oracle, a secret-key skx for x ∈ Z
n
p is generated.

Parse skx as (x, τ, {{σij}4
j=1}n+4

i=1 ). For each i ∈ [1, n + 4], ri, si ∈ Zp denote the
randomness used for the ALP signature {σij}4

j=1. Using skx, we generate a
signature σ on M associated with y ∈ Z

n
p and L,R ∈ Zp. Let σ = (σ1, σ2,

σ3, σ4) denote the ALP signature generated during the generation of σ. σ is
expressed as follows, where r

U←− Zp. σ1 = (g〈x,y〉
1 · ∏n

i=1 gyi

i+1 · gL
n+2 · gR

n+3 · gM
n+4 ·

gn+5 · v
∑n+4

i=1 yisi)α · HG(τ)
∑n+4

i=1 yiri+r, σ2 = g
∑n+4

i=1 yiri+r, σ3 = g
∑n+4

i=1 yisi and
σ4 = g(

∑n+4
i=1 yisi)α. Since any information about {ri, si}n+4

i=1 is not revealed to A,
both

∑n+4
i=1 yiri and

∑n+4
i=1 yisi distribute uniformly at random in Zp. Hence, σ

in Expt1 distributes identically to the one in Expt2. �
Lemma 3. There is a PPTA B1 s.t. |Pr [W2] − Pr [W3]| ≤ AdvDLINB1,G(λ).

Lemma 4. There is a PPTA B2 s.t. |Pr [W3] − Pr [W4]| ≤ 4q(N +
1)(AdvCDHB2,G(λ) + 1/p).

Proof. E denotes the event where A makes Expt3 output 1. F denotes the event
where A makes Expt4 abort. By a basic theorem, Pr[E]−Pr[E∧¬F ] = Pr[E∧F ].
Since Pr[E] = Pr[W3] and Pr[E ∧¬F ] = Pr[W4], we obtain |Pr[W3]−Pr[W4]| =
Pr[E ∧ F ]. Assume that A is a PPTA which makes the event E ∧ F occur with
a non-negligible probability. Let B2 be a PPTA who attempts to solve the CDH
problem by using A. B2 behaves as follows.

Receive (g, ga, gb) as an instance of the CDH problem. Set l := 2q. Choose
uniformly at random an integer k satisfying 0 ≤ k ≤ N . Assume that
l(N + 1) ≤ p. Set gα := ga. Choose κv, κ1, δ1, · · · , κn+5, δn+5

U←− Zp. Set

v := gκv and gi := (gb)κigδi for i ∈ [1, n + 5]. Choose x′, x0, · · · , xN−1
U←− Zl

and y′, y0, · · · , yN−1
U←− Zp. For a tag τ ∈ {0, 1}N , define two functions F, J :

{0, 1}N → Zp as F (τ) := x′ +
∑N−1

i=0 xi · τ [i]− lk and J(τ) := y′ +
∑N−1

i=0 yi · τ [i].
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Set u′ := (gb)−lk+x′ · gy′
and ui := (gb)xi · gyi for i ∈ [0, N − 1]. It holds that

u′ ∏N−1
i=0 u

τ [i]
i = (gb)−lk+x′+

∑N−1
i=0 xi·τ [i] · gy′+

∑N−1
i=0 yi·τ [i] = (gb)F (τ) · gJ(τ). Gen-

erate the GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3) as perfectly sound one. Set pp := (G,GT ,
g, gα, v, {gi}n+5

i=1 , u′, {ui}N−1
i=0 ,f) and send it to A. When A issues a query to the

key-revelation or signing oracle, B2 behaves as follows.

Key-Revelation Reveal(x): Let τ
U←− {0, 1}N . Consider the following two cases,

(1) F (τ) 
= 0 (mod l) and (2) F (τ) = 0 (mod l). If the case (2) occurs,
abort the simulation. If the case (1) occurs, continue as follows. Since we
have assumed that l(N + 1) < p and 0 ≤ k ≤ N , it holds that F (τ) = 0
(mod p) =⇒ F (τ) = 0 (mod l) for any τ . Its contraposition is that F (τ) 
= 0
(mod l) =⇒ F (τ) 
= 0 (mod p) for any τ .

Choose r
U←− Zp. Compute (d1, d2) := ((gα)− J(τ)

F (τ) (u′ ∏N−1
i=0 u

τ [i]
i )r,

(gα)− 1
F (τ) gr). Let r̃ := r − α/F (τ). Obviously, d2 = gr̃. It holds that

d1 = (gb)αHG(τ)r̃ since d1 = (gb)α{(gb)F (τ)gJ(τ)}− α
F (τ) {(gb)F (τ)gJ(τ)}r =

(gb)αHG(τ)r− α
F (τ) .

Generate n + 4 vectors v1, · · · ,vn+4 ∈ Z
n+5
p in the normal manner. For each

i ∈ [1, n + 4], generate an ALP signature (σi,1, σi,2, σi,3, σi,4) as
(

d
∑n+5

j=1 κjvij

1 (gα)siκv+
∑n+5

j=1 δjvij HG(τ)ri , d
∑n+5

j=1 κjvij

2 gri , gsi , (gα)si

)

,

where ri, si
U←− Zp. Let r̂i := r̃

∑n+5
j=1 κjvij + ri. Obviously, σi,2 = gr̂i . It holds

that σi,1 = (
∏n+5

j=1 g
vij

j vsi)αHG(τ)r̂i since

σi,1 = (gbα)
∑n+5

j=1 κjvij · HG(τ)r̃
∑n+5

j=1 κjvij+ri · (gα)siκv+
∑n+5

j=1 δjvij

= {(gb)
∑n+5

j=1 κjvij gsiκv+
∑n+5

j=1 δjvij }αHG(τ)r̂i

=

⎡

⎣
n+5∏

j=1

{(gb)κj gδj }vij gsiκv

⎤

⎦

α

HG(τ)r̂i .

Finally, return skx := (x, τ, {{σij}4
j=1}n+4

i=1 ) to A.

Signing Sign(x,M,y, L,R): Compute d := 〈x,y〉 (mod p). Choose τ
U←−

{0, 1}L. If F (τ) = 0 (mod l), abort the simulation. Else if F (τ) 
= 0 (mod l),
as the key-revelation oracle, B2 derives the variables (d1, d2), then an ALP
signature (σ1, σ2, σ3, σ4) on the vector v = (d, y1, · · · , yn, L,R,M, 1). In the
normal manner, compute all of the GS commitments and proofs. Return a
signature σ, composed of all of the GS commitments/proofs and σ2, to A.

B2 receives a forged signature σ∗ from A. Set v∗ := (d∗, y∗
1 , · · · , y∗

n, L∗,
R∗,M∗, 1) ∈ Z

n+5
p . Parse it as (v∗

1 , · · · , v∗
n+5). The ALP signature (σ∗

1,
σ∗

2, σ
∗
3, σ

∗
4) extracted from the forged signature σ∗ satisfies that σ∗

1 =
(
∏n+5

i=1 g
v∗

i
i vs∗

)αHG(τ∗)r∗
, σ∗

2 = gr∗
, σ∗

3 = gs∗
and σ∗

4 = gs∗·α for some
r∗, s∗ ∈ Zp.
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We assume that it holds κn+5 
= −∑n+4
i=1 κiv

∗
i (mod p), which implies

∑n+5
i=1 κiv

∗
i 
= 0 (mod p). Since κn+5 has not been used yet from A’s view-

point and κn+5 has been chosen uniformly at random from Zp, the probability
that κn+5 = −∑n+4

i=1 κiv
∗
i (mod p) is at most 1/p. Hence, this assumption is

reasonable.
Compute (ω∗

1 , ω∗
2) as

⎛

⎝

{
σ∗

1

(σ∗
4)κv (gα)

∑n+5
i=1 δiv∗

i

}1/
∑n+5

i=1 κiv
∗
i

, {σ∗
2}1/

∑n+5
i=1 κiv

∗
i

⎞

⎠ .

Let r̃∗ := r∗/
∑n+5

i=1 κiv
∗
i . Obviously, ω∗

2 = gr̃∗
. It holds ω∗

1 = gabHG(τ∗)r̃∗
since

ω∗
1 =

{
(
∏n+5

i=1 g
v∗

i
i vs∗

)αHG(τ∗)r∗

(gα)s∗κv+
∑n+5

i=1 δiv∗
i

}1/
∑n+5

i=1 κiv
∗
i

=

[
{∏n+5

i=1 (gbκigδi)v∗
i gs∗κv}αHG(τ∗)r∗

(gα)s∗κv+
∑n+5

i=1 δiv∗
i

]1/
∑n+5

i=1 κiv
∗
i

=
{

(gbα)
∑n+5

i=1 κiv
∗
i HG(τ∗)r∗

}1/
∑n+5

i=1 κiv
∗
i

= gabHG(τ∗)r∗/
∑n+5

i=1 κiv
∗
i .

Consider the following two cases, (1) F (τ∗) = 0 (mod p) and (2) F (τ∗) 
= 0
(mod p). If the second case occurs, abort the simulation. If the first occurs, B2

outputs ω∗
1

(ω∗
2 )J(τ∗) , which is equivalent to gabHG(τ∗)r̃∗

(gr̃∗ )J(τ∗) = gab because HG(τ∗) =

(gb)F (τ∗)gJ(τ∗) = gJ(τ∗), as the correct answer to the CDH problem.
Consider a situation where B2 has not aborted and A has made E ∧F occur.

Except for the case where κn+5 =
∑n+4

i=1 κiv
∗
i (mod p) which occurs with the

probability 1/p at most, B2 outputs the correct answer for the CDH problem.
Thus, it holds Pr[E ∧ F ∧ ¬abort] − AdvCDHB2,G(λ) ≤ 1/p, where abort is the event
where B2 aborts the simulation. The first term is equivalent to Pr[¬abort]·Pr[E∧
F | ¬abort] = Pr[¬abort]·Pr[E∧F ]. We obtain Pr[E∧F ] ≤ 1

Pr[¬abort] (Adv
CDH
B2,G(λ)+

1
p ). In the same manner as [28], the lower bound of Pr[¬abort] is derived, i.e.,

1
4q(N+1) . Details of the derivation are described the full version of this paper [13].

�
Lemma 5. There is a PPTA B3 s.t. Pr[W4] ≤ 4q(N + 1)(AdvFlexCDHB3,G (λ) + 1/p).

Proof. Assume that A is a PPT algorithm which makes Expt4 outputs 1 with
a non-negligible probability. Let B3 be a PPT simulator who attempts to solve
the FlexCDH problem by using A.

Receive (g, ga, gb) as an instance of the FlexCDH problem. As the proof of
Lemma 4, compute the variables l, k, κ1, δ1, · · · , κn+5, δn+5, x

′, x0, y0, · · · , xN−1,
yN−1 and f , and define the functions F and J .

Set gα := ga, v := gb, gi := (gb)κigδi , u′ := (ga)−lk+x′ · gy′
and ui :=

(ga)xi · gyi for i ∈ [0, N − 1]. It holds that u′ ∏N−1
i=0 u

τ [i]
i = (ga)F (τ) · gJ(τ).
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Set pp := (G,GT , g, gα, v, {gi}n+5
i=1 , u′, {ui}N−1

i=0 ,f) and send it to A. When A
issues a query to the key-revelation or signing oracle, B3 behaves as follows.

Key-Revelation Reveal(x): Choose τ ∈ {0, 1}N . Generate the n + 4 vectors
v1, · · · ,vn+4 ∈ Z

n+5
p in the normal way. As the proof of the previous lemma,

consider the following two cases.
(1) F (τ) 
= 0 (mod l): For each i ∈ [1, n + 4], generate an ALP signature

(σi,1, σi,2, σi,3, σi,4) as
⎛
⎝(gα)

∑n+5
j=1 δjvij (gb)−

J(τ)(
∑n+5

j=1 κjvij+si)

F (τ) HG(τ)ri , (gb)
−

∑
j κjvij+si

F (τ) gri , gsi , gα·si

⎞
⎠ ,

where ri, si
U←− Zp. Let r̃i := ri − b

∑n
j=1 κjvij+si

F (τ) . Obviously, σi,2 = gr̃i .
The ALP signature correctly distributes since

⎛
⎝n+5∏

j=1

g
vij

j vsi

⎞
⎠

α

HG(τ)r̃i =

⎡
⎣n+5∏

j=1

(gb·κj gδj )vij gb·si

⎤
⎦

α

HG(τ)
ri−b

∑n
j=1 κjvij+si

F (τ)

=���������
{(gb)

∑n+5
j=1 κjvij+si}α · (g

∑n+5
j=1 δjvij )α · HG(τ)ri ·���������

(gα)−b(
∑n+5

j=1 κjvij+si)

·g−b
J(τ)
F (τ) (

∑n+5
j=1 κjvij+si)

is equivalent to the above σi,1.
(2) F (τ) = 0 (mod l): Immediately abort the simulation if this condi-

tion has already been satisfied by a tag previously chosen on the key-
revelation or signing oracle. For each i ∈ [1, n + 4], choose ri

U←− Zp, set
si := −∑n+5

j=1 κjvij , then generate an ALP signature (σi,1, σi,2, σi,3, σi,4)

as ((ga)
∑n+5

j=1 δjvij HG(τ)ri , gri , gsi , (gα)si). Since the vectors {vi}n+4
i=1 are

linearly independent and any of {κi}n+5
i=1 has been chosen randomly from

Zp, any of {si}n+4
i=1 distributes randomly in Zp. The ALP signature cor-

rectly distributes since (
∏n+5

j=1 g
vij

j ·vsi)α ·HG(τ)ri = [
∏n+5

j=1 {(gb)κigδi}vij ·
(gb)− ∑n+5

j=1 κjvij ]α · HG(τ)ri is equivalent to the above σi,1.
Finally, return skx := (x, τ, {{σij}4

j=1}n+4
i=1 ) to A.

Signing Sign(x,M,y, L,R): Compute d := 〈x,y〉 (mod p). Choose τ
U←−

{0, 1}N . As the key-revelation oracle, consider the mutually exclusive two
cases w.r.t. F (τ) ∈ Zp, and in each case compute an ALP signature (σ1, σ2,
σ3, σ4) on the message v = (d, y1, · · · , yn, L,R,M, 1). In the normal man-
ner, compute all of the GS commitments and proofs. Return a signature σ,
composed of all of the GS commitments/proofs and σ2, to A.

B3 receives a forged signature σ∗ from A. Consider the following two cases,
namely (1) F (τ∗) = 0 (mod p) and (2) F (τ∗) 
= 0 (mod p). If the case (2)
occurs, abort the simulation. If the case (1) occurs, compute the following three
variables, namely ξ1 := σ∗

3 · g
∑n+5

j=1 κjv∗
j , ξ2 := σ∗

4 · (gα)
∑n+5

j=1 κjv∗
j and ξ3 :=

σ∗
1 · (σ∗

2)
−J(τ∗) · (gα)

∑n+5
j=1 δjv∗

j .
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Let ŝ∗ := s∗ +
∑n+5

j=1 κjv
∗
j . Obviously, ξ1 := gŝ∗

and ξ2 := gaŝ∗
. It holds

that ξ3 = [
∏n+5

i=1 {(gb)κi

��g
δi}v∗

i · (gb)s∗
]α ·�����

HG(τ∗)r∗

������
(gr∗

)−J(τ∗) ·�������
(gα)− ∑n+5

j=1 δjv∗
i =

(gab)s∗+
∑n+5

j=1 κjv∗
j = gabŝ∗

.
Thus, (ξ1, ξ2, ξ3) is the correct answer to the FlexCDH problem under an

assumption that it holds ŝ∗ 
= 0 (mod p) ⇔ s∗ 
= −∑n+5
j=1 κjv

∗
j (mod p). This

assumption is reasonable since the probability Pr[s∗ = −∑n+5
j=1 κjv

∗
j (mod p)] is

at most 1/p. As the proof of the previous lemma, we obtain Pr[1 ← Expt4(1λ,
n)] ≤ 4q(N + 1)(AdvFlexCDHB3,G (λ) + 1

p ). �

Signer-Privacy. We present the following theorem.

Theorem 2. Our 1st ARIP scheme is perfectly signer-private.

Proof. Expt1 is associated with the three simulation algorithms SimSetup,
SimKGen and SimSig. The first two are the same as the original ones of our
scheme6. SimSig is defined as follows.

SimSig(mk,M,y, L,R): Arbitrarily choose an attribute x∗ ∈ Z
n
p s.t. 〈x∗,y〉

(mod p) ∈ [L,R]. Choose τ∗ U←− {0, 1}N . Generate an ALP signature (σ1, σ2,

σ3, σ4) as ({g
〈x∗,y〉
1 · ∏n

i=1 gyi

i+1 · gL
n+2 · gR

n+3 · gM
n+4 · gn+5 · vs}α · HG(τ∗)r, gr,

gs, gαs), where r, s
U←− Zp. As the original signing algorithm, generate all of

the GS commitments and proofs. Return a signature, composed of all of the
GS commitments/proofs and σ2.

In Expt0, an ALP signature used to generate a signature on the signing oracle
distributes as (1). Its second element σ2 distributes identically to the one in
Expt1 because of r

U←− Zp. Even though the adversary A knows of directly x, τ
and indirectly {si}n

i=1, because of the perfect WI of the GS NIWI system, all
of the GS commitments (incl. the ones related to 〈x,y〉, τ, σ1, σ3, σ4) and proofs
distribute identically to the ones in Expt1. �

4.2 Efficiency Analysis

We analyze efficiency of our 1st ARIP scheme. Precisely, we calculate (1) bit
length of a secret-key, (2) bit length of a signature, and (3) computational cost
of signature verification.

(1) Size of Secret-Key. Let |g| denote bit length of an element in G. Obviously,
bit length of a secret-key is expressed as |sk| = N + 4(n + 4)|g|.7

6 The auxiliary variable μ has no information, i.e., μ = .
7 Note that bit length of x ∈ Z

n
p is ignored here.
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(2) Size of Signature. Each signature consists of 3 types of element, namely the
ALP signature element σ2, GS commitments, and GS proofs. If we denote the bit
length of the 3 types of element by s1, s2, s3 respectively, bit length of a signature
is |σ| = s1 + s2 + s3. Obviously, s1 = |g|. Total number of the GS commitments
is 5

(b),(d),(e)

+ 2N
(a)

+ 2λ
(c)

+ |Θ|
(f)

+ 2
∑

θ∈Θ |θ|
(g)

. Note that the blue alphabet below

each number indicates the alphabet assigned to each committed variable in the
signing algorithm of our ARIP scheme. Both of the two terms |Θ| and

∑
θ∈Θ |θ|

are maximized when [L,R] = [1, p−2] and become 2λ−2 and (2+3+· · ·+λ)×2 =
λ2 + λ − 2 respectively. As a result, total number of the GS commitments is
upper bounded by 2N +6λ+2λ2 − 1, which is asymptotically O(N +λ2). Since
each GS commitment consists of 3 group elements, s2 = O(N + λ2)|g|. Total
number of the type-1 (resp. type-2) GS proofs is 4 + N + λ +

∑
θ∈Θ |θ| + 2

(resp. N + λ +
∑

θ∈Θ(|θ| − 1)), either of which is asymptotically O(N + λ2).
Since a type-1 (resp. type-2) GS proof consists of 3 (resp. 9) group elements,
s1 = O(N + λ2)|g|. Hence, |σ| = O(N + λ2)|g|.

(3) Cost of Verification. We derive total number of multiplication and exponen-
tiation on the group GT and calculation of the paring function e. In verification,
a verifier checks whether all of the 12 equations hold or not. The verifier con-
ducts following 4 types of calculation, namely (a) calculation of the function E,
(b) calculation of F , (c) multiplication of two vectors in G

3
T outputted by E,

and (d) multiplication of two matrices in G
3×3
T outputted by F . They require the

following number of multiplication, exponentiation and pairing, respectively, (a)
(0, 0, 3), (b) (9, 9, 9), (c) (3, 0, 0), and (d) (9, 0, 0). Total number of the 4 types
of calculation executed in one verification is derived as follows.

– Na := 5N
2

+ 5 + N
3

+ 5λ
5

+ 4 + λ
6

+ 8
7

+ 5
8

+
∑

θ∈Θ

∑|θ|
j=1 5

9

+ 5|Θ|
10

+ |Θ| + 4
12

= L + 6λ + 26 + 6|Θ| +
∑

θ∈Θ

∑|θ|
j=1 5

– Nb := 4N
1

+ 4λ
4

+
∑

θ∈Θ

∑|θ|
j=2 5

11

– Nc := 4N
2

+ N + 3
3

+ 4λ
5

+ λ + 2
6

+ 6
7
+ 3

8
+

∑
θ∈Θ

∑|θ|
j=1 3

9

+ 3|Θ|
10

+ |Θ| − 1 + 3
12

= 5N + 5λ + 16 + 4|Θ| +
∑

θ∈Θ

∑|θ|
j=1 3

– Nd := 3N
1

+ 3λ
4

+
∑

θ∈Θ

∑
j∈[2,|θ|] 3

11

Note that the blue number below each number indicates the identification num-
ber assigned to each equation verified in the verification algorithm of our ARIP
scheme. Each of them is asymptotically O(N +λ2). Each of number of multipli-
cation, number of exponentiation and number of pairing per one verification is
the linear summation of Na, Nb, Nc and Nd with coefficients of integers from 0
to 9. Thus, O(N + λ2).

As a result we obtain the 1st entry in Table 1. The 2nd, 3rd and 4th entries
are for the other our schemes explained in later subsections.
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4.3 Efficiency Optimization

The prime p is exponentially large in λ. In some applications of ARIP, it is
possible that for every vectors x,y ∈ Zp, their inner product 〈x,y〉 is upper-
bounded by T − 1 for an integer T ∈ poly(λ) s.t. T � p. In this case, our 1st
scheme (in Subsect. 4.1) can be optimized in terms of efficiency.

Table 1. Efficiency of our ARIP schemes.

Our schemes Size of secret-key |sk| Size of signature |σ| Cost of verification

# of Mul. # of Exp. # of Pair.

The 1st one (Subsect. 4.1) N + (4n + 16)|g| O(N + λ2)|g| O(N + λ2)

→ Its optimization (Subsect. 4.3) N + (4n + 16)|g| O(N + log2 T )|g| O(N + log2 T )

The 2nd one (Subsect. 4.4) N + 16|g| O(N + λ2 + n)|g| O(N + λ2 + n)

→ Its optimization N + 16|g| O(N + log2 T + n)|g| O(N + log2 T + n)

The inner product d := 〈x,y〉 ∈ [0, T − 1] is log T ∈ N bit. Since for every
i ∈ [log T, λ−1], d[i] (= the i-th bit of d) must be 0, we do not need to generate the
GS commitments

#»

Cd[i],
#»

C1−d[i] ∈ G
3 and the related GS proofs #»π d[i],

#»π ′
d[i] ∈ G

3.
The complete binary tree used to prove that d ∈ [L,R] has only T leaf nodes
associated with 0 to T − 1 from left to right. Both cardinality of the set Θ
(consisting of nodes covering all of the leaf nodes from L to R) and

∑
θ∈Θ |θ|

are maximized when [L,R] = [1, log T − 2] and become 2 log T − 2 and log T 2 +
log T − 2. As a result we obtain the 2nd entry in Table. 1.

4.4 Our 2nd ARIP Scheme with Constant-Size Secret-Keys

We propose another scheme that a trade-off relationship in terms of efficiency
holds with our 1st scheme. Its secret-key length is independent of n. In return,
any of its signature length and verification cost linearly increases with n.

A secret-key skx consists of only four ALP signatures σ1, · · · , σ4 on vectors
v1, · · · ,v4 ∈ Z

n+4
p . The vector vi is (x1, · · · , xn)|ei if i = 1, or (0, · · · , 0)|ei

otherwise, where ei is the i-th unit vector in Z
4
p. At signature generation, the

signer derives an ALP LHS signature σ on v :=
∑4

i=1 βi · vi, where (β1, β2, β3,
β4) := (1, L,R,M). Note that v = (x1, · · · , xn, 1, L,R,M) ∈ Z

n+4
p . The signer

has to compute GS commitments for x1, · · · , xn ∈ Zp and d(:= 〈x,y〉) ∈ Zp

then prove that d is genuinely the inner product of x and y. Actually, the signer
computes GS commitments for gxi and gxi

i for all i ∈ [1, n]. Then, the signer
computes GS proofs for the following relations, namely e(gxi , gi) = e(g, gxi

i ) for
all i ∈ [1, n] and e(gd

1 , g) =
∏n

i=1 e(gxi , gyi

1 ). Moreover, the relation [e] (in our 1st
scheme) is modified into e(σ1, g) = e(

∏n
i=1 gxi

i , gα) · e(
∏4

i=1 gβi

i+n, gα) · e(v, σ4) ·
e(HG(τ), σ2). The formal description of our 2nd scheme is given in Subsect. B.

Theorem 3. Our 2nd ARIP scheme is EUF-CMA if the DLIN, CDH and Flex-
CDH assumptions hold in the group G and perfectly signer-private.
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5 Applications of ARIP

Katz et al. [16] showed that attribute-based encryption (ABE) for inner prod-
ucts8 can be transformed into various ABE primitives, namely (anonymous)
identity-based encryption (IBE), hidden-vector encryption (HVE), the dual ver-
sion of HVE (= wildcarded IBE [1]), ABE for evaluation of polynomials/weighted
averages/CNF and DNF formulas, and ABE for exact thresholds. Based on the
same techniques, its digital signature analogue named ABS for inner products
can be transformed into identity-based signatures (IBS), hidden-vector signa-
tures (HVS), the dual of HVS (= wildcarded IBS), ABS for evaluation of poly-
nomials/weighted averages/CNF and DNF formulas, and ABS for exact thresh-
olds. Since ARIP is a generalization of the ABS for inner products, it can be
transformed into more generalized (or powerful) ABS primitives as follows.

(1) ABS for Range Evaluation of Polynomials (AREP):Assume that
the polynomial is univariate. AREP is a sub-class of the general ABS in
Subsect. 3.1. The attribute x ∈ {0, 1}∗ in the general ABS is changed into a
single variable x ∈ Zp in AREP. The predicate fAREP, associated with a d-
dimensional polynomial φ with coefficients ad, · · · , a0 ∈ Zp and a range [L,R]
with L,R ∈ Zp, is defined as

fAREP(x) :=

{
1 (If φ(x) :=

∑d
i=0 ai · xi ∈ [L,R] (mod p))

0 (Otherwise).

An AREP scheme is transformed from any ARIP scheme of d+1 dimensions.
The vector x ∈ Z

d+1
p in ARIP is changed into (xd, xd−1, · · · , x, 1). The vector

y ∈ Z
d+1
p in ARIP is (ad, ad−1, · · · , a1, a0). The AREP scheme is correct

because if φ(x) =
∑d

i=0 ai · xi ∈ [L,R] implies 〈x,y〉 ∈ [L,R]. Even if the
polynomial is multivariate with t variables, the transformation still works. In
this case, we need an ARIP scheme of (dt + 1) dimensions.

(2) ABS for Range Evaluation of Weighted Average (AREWA):The
attribute x consists of t variables x1, · · · , xt ∈ Zp. The predicate fAREWA,
associated with t coefficients a1, · · · , at ∈ Zp and a range [L,R] for L,R ∈ Zp,
is defined as follows: fAREWA(x1, · · · , xt) outputs 1 if

∑t
i=1 ai · xi ∈ [L,R]

(mod p), or 0 otherwise.
An AREWA scheme is transformed from an ARIP scheme of n = t dimen-
sions. The vector x ∈ Z

t
p (resp. y ∈ Z

t
p) in ARIP is (x1, · · · , xt) (resp. (a1,

· · · , at)). The AREWA scheme obviously satisfies the correctness.
(3) Fuzzy IBS (FIBS):This is a generalization of the ABS for exact thresholds.

Let A be {1, · · · , l} for l ∈ N. The attribute x is a set of attributes S ⊆ A. The
predicate fFIBS, associated with a set of attributes S′ ⊆ A and a range [L,R]
for 0 ≤ L ≤ R ≤ l, is defined as follows: fFIBS(S) outputs 1 if |S∩S′| ∈ [L,R],
or 0 otherwise9.

8 Like ARIP, vectors x,y are associated with secret-key and ciphertext respectively.
The decryption succeeds if the inner product is 0.

9 This FIBS is a further generalization of the signature analogue of FIBE [25] since
the upper bound R of the overlapped attributes can be set.
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Table 2. Efficiency of existing and our TSS schemes.

TSS schemes |pp| |mk| |sk| |σ| Assumptions

FSS-based [14] (2 log T + m + 3)·(|g| + |g̃|) |g| O(log T )|g| (2 log T + 2)|g| co-CDH

WIBRS-based [14] O(log T )|g̃| O(log T )|g| O(1)(|g| + |g̃|) O(log2 T )·(|g| + |g̃|) SXDH

Ours 1 (N + 9)|g| λ (N + 20)|g| O(N + log2 T )|g| CDH,FlexCDH,DLIN

Ours 2 (N + 8)|g| λ (N + 16)|g| O(N + log2 T )|g| CDH,FlexCDH,DLIN

Note: Both of the FSS-based and WIBRS-based schemes [14] use an asymmetric bilinear
map e : G × G̃ → GT . |g| (resp. |g̃|) denotes bit length of an element in G (resp. G̃).
For the FSS-based scheme, m ∈ N denotes bit length of a message. SXDH means
Symmetric External Diffie-Hellman.

An FIBS scheme is transformed from an ARIP scheme with n = l dimensions.
For the vector x ∈ Z

l
p, its i-th element xi is set to 1 if i ∈ S or 0 otherwise.

For the vector y ∈ Z
l
p, yi is 1 if i ∈ S′ or 0 otherwise. The FIBS scheme is

correct since 〈x,y〉 = |S ∩ S′|.
Additionally, we present the following 4 applications.

(4) Time-Specific Signatures (TSS) [14,23]: TSS is a sub-class of the ABS.
The attribute x ∈ {0, 1}∗ is a time-period t ∈ [0, T − 1] for an integer T ∈ N.
The predicate fTSS, associated with a range [L,R] with L,R ∈ [0, T − 1], is
defined as follows: fTSS(t) is set to 1 if t ∈ [L,R], or 0 otherwise.
We use an ARIP scheme of 1 dimension. The scalar x1 ∈ Zp in ARIP is t.
The scalar y1 ∈ Zp in ARIP is always 1. The TSS scheme is correct because
t ∈ [L,R] implies 〈x,y〉 = x1 · y1 = t ∈ [L,R].
In [23], TSS was firstly mentioned and its secure construction was presented
as a open problem. In [14], the authors formally defined TSS and proposed
two secure schemes based on forward-secure signatures (FSS) and wildcarded
identity-based ring signatures (WIBRS), respectively. In Table 2, their TSS
schemes [14] and ours are compared in terms of efficiency and security assump-
tions. Ours 1 (resp. Ours 2) is the TSS scheme obtained by instantiating the
optimized variant of our 1st (resp. 2nd) ARIP scheme. Ours are the first ones
whose |pp|, |mk| and |sk| are independent of the parameter T .

(5) ABS for Range of Hamming Distance (ARHD): A signer with a
(binary) string x ∈ {0, 1}l can sign a message under a string y ∈ {0, 1}l iff
the Hamming distance between x and y is within a range [L,R]. The attribute
x in the ABS is a string x ∈ {0, 1}l. The predicate fARHD is defined as follows:
fARHD(x) outputs 1 if HD(x, y) :=

∑l−1
i=0 |x[i] − y[i]| ∈ [L,R], or 0 otherwise.

We use an ARIP scheme of 2l dimensions. The strings x, y ∈ {0, 1}l are
changed into x,y ∈ Z

2l
p as follows. For each i ∈ [0, l − 1], (x2i+1, x2i+2) (resp.

(y2i+1, y2i+2)) is set to (0, 1) (resp. (1, 0)) if x[i] = 0, or (1, 0) (resp. (0, 1))
otherwise. Obviously, x2i+1 · y2i+1 + x2i+2 · y2i+2 is 1 if x[i] 
= y[i], or 0
otherwise. The ARHD scheme is correct because 〈x,y〉 = HD(x, y).

(6) ABS for Range of Euclidean Distance (ARED): A signer with a
vector

#»

X ∈ Z
n
p declares another vector

#»

Y ∈ Z
n
p and a range [L,R]. If the

Euclidean distance between the two vectors is within the range, the signing
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succeeds. The predicate fARED is defined as follows: fARED(
#»

X) outputs 1 if
ED(

#»

X,
#»

Y ) :=
√∑n

i=1(Xi − Yi)2 ∈ [L,R], or 0 otherwise.
An ARIP scheme with n + 2 dimensions is available. The vectors

#»

X,
#»

Y ∈ Z
n
p

for ARED are transformed into x,y ∈ Z
n+2
p as follows.

– xi := Xi for all i ∈ [1, n]. (xn+1, xn+2) := (
∑n

i=1 X2
i , 1).

– yi := −2Yi for all i ∈ [1, n]. (yn+1, yn+2) := (1,
∑n

i=1 Y 2
i ).

The range [L,R] for ARED is extended into [L2, R2] ⊆ Zp for ARIP. The
ARED scheme is correct since it holds 〈x,y〉 =

∑2n+1
i=1 xi · yi =

∑n
i=1 X2

i −
2XiYi + Y 2

i =
∑n

i=1(Xi − Yi)2 = ED(
#»

X,
#»

Y )2, which implies ED(
#»

X,
#»

Y ) ∈
[L,R] ⇔ 〈x,y〉(= ED(

#»

X,
#»

Y )2) ∈ [L2, R2].
(7) ABS for Hyperellipsoid Predicates (AHEP): An n-dimensional hyper-

sphere is a set of points (or vectors) whose Euclidean distance to the central
point is constant. Let us consider a special type of ABS, where a secret-key
is associated with a vector

#»

X ∈ Z
n
p , a signature is associated with a hyper-

sphere with center
#»

Y ∈ Z
n
p and radius a ∈ Zp and the signing succeeds iff the

vector
#»

X is inside of the hypersphere, named ABS for hypersphere predicates
(AHSP). Obviously, AHSP is transformed from ARED defined above.
AHEP is a generalization of AHSP. The hypersphere is generalized to the
hyperellipsoid. The predicate fAHEP is defined as follows: fAHEP(

#»

X) outputs
1 if

∑n
i=1(Xi − Yi)2/a2

i ≤ 1, or 0 otherwise, where
#»

Y ∈ Z
n
p is the center and

ai ∈ Zp is the radius in the i-th axis.
An AHEP scheme is transformed from an ARIP scheme with 2n + 1 dimen-
sions. For i ∈ [1, n], let δi := (

∏n
j=1 a2

j )/a2
i . The vectors

#»

X,
#»

Y ∈ Z
n
p for AHEP

are transformed into x,y ∈ Z
2n+1
p as follows.

– (x2i−1, x2i) := (X2
i ,Xi) for all i ∈ [1, n]. x2n+1 := 1.

– (y2i−1, y2i) := (δi,−2δiYi) for all i ∈ [1, n]. y2n+1 :=
∑n

i=1 δiY
2
i .

The range [L,R] for ARIP is set to [0,
∏n

i=1 a2
i ] ⊆ Zp. The AHEP scheme is

correct since 〈x,y〉 =
∑2n+1

i=1 xi ·yi =
∑n

i=1 δi(Xi −Yi)2 =
∑n

i=1

∏n
j=1 a2

j

a2
i

(Xi −
Yi)2 ∈ [0,

∑n
j=1 a2

j ] ⇔ ∑n
i=1(Xi − Yi)2/a2

i ∈ [0, 1].

6 Conclusion

We formally defined ARIP and proposed two efficient schemes secure under
standard assumptions, i.e., the CDH, FlexCDH and DLIN assumptions, in the
standard model, based on the GS NIWI system [11] and a simplified variant
of the ALP LHS scheme [6]. The 2nd (resp. 1st) scheme is independent of the
number of dimensions n ∈ poly(λ) in secret-key length (resp. signature length
and verification cost). We also optimized their efficiency for the case where each
possible variable for xi, yi, L,R, 〈x,y〉 ∈ Zp is upper-bounded by T −1 with T �
p. We showed that ARIP can be generically transformed into various ABS. Since
this work is the first research on ARIP, ARIP can develop in many directions.
Some of the examples are given below.
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Key-Policy ARIP (KPARIP): A range [L,R] is associated with each secret-
key (but not signature). The transformations from ARIP to various ABS (in
Sect. 5) work for KPARIP. Specifically, KPARIP can be transformed into the
key-policy analogues of AREP, AREWA, TSS, ARHD, ARED and AHEP.

Multi-Vectorial ARIP: Each secret-key has l number of n-dimensional vec-
tors x1, · · · ,xl ∈ Z

n
p . Each signature has l number of n-dimensional vectors

y1, · · · ,yl ∈ Z
n
p and ranges [L1, R1], · · · , [Ll, Rl] ⊆ Zp, and a Boolean for-

mula f : {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

l

→ {0, 1}. For each i ∈ [1, l], a Boolean variable

zi is set to 1 if 〈xi,yi〉 ∈ [Li, Ri], or 0 otherwise. If f(z1, · · · , zl) = 1, the
signing succeeds. For the form of f , we have various options, e.g., AND, OR
or Threshold function, CNF or DNF formula, and a general circuit.

Attribute-Based Encryption for Range of Inner-Product: The transfor-
mations from ARIP to various ABS (in Sect. 5) also work for the encryption
analogue of ARIP. Specifically, it can be transformed into the encryption
analogues of AREP, AREWA, TSS, ARHD, ARED and AHEP.

A The Simplified Variant of the ALP LHS Scheme [6]

Syntax of LHS. An LHS scheme consists of the following 4 polynomial-time
algorithms. Note that Setup and Sig are probabilistic, Ver is deterministic and
Derive is (possibly) probabilistic.

Key-Generation KGen: It takes a security parameter 1λ for λ ∈ N and an
integer n ∈ N, being polynomial in λ, that indicates the dimension of a
vector to be signed, then outputs a key-pair (pk, sk).

[(pk, sk) ← KGen(1λ, n)]
Signing Sig: It takes the secret-key sk, a tag (called a file identifier in [5])

τ ∈ {0, 1}∗ and a vector v ∈ Z
n
p to be signed, then outputs a signature σ.

[σ ← Sig(sk, τ,v)]
Derivation Derive: It takes the public-key pk, a tag τ ∈ {0, 1}∗ and l triples

{vi, σi, βi}l
i=1, consisting of a vector vi ∈ Z

n
p , a signature σi and a weight βi,

then outputs a signature σ on the weighted vector v :=
∑l

i=1 βi · vi ∈ Z
n
p .

[σ ← Derive(pk, τ, {vi, σi, βi}l
i=1)]

Verification Ver: It takes the public-key pk, a tag τ ∈ {0, 1}∗, a vector v ∈ Z
n
p

and a signature σ, then outputs a verification result 1 or 0.
[1/0 ← Ver(pk, τ,v, σ)]

We require every LHS scheme to be correct. An LHS scheme is correct if for
every λ ∈ N, every n ∈ poly(λ) and every (pk, sk) ← KGen(1λ, n), both of
the following conditions hold, namely (a) For every tag τ ∈ {0, 1}∗ and every
vector v ∈ Z

n
p , it holds that 1 ← Ver(pk, τ,v, Sig(sk, τ,v)). and (b) For every

tag τ ∈ {0, 1}∗, every integer l ∈ N and every l triples {vi ∈ Z
n
p , σi, βi ∈ Zp}l

i=1

such that 1 ← Ver(pk, τ,vi, σi) for all i, it holds that 1 ← Ver(pk, τ,
∑l

i=1 βivi,
Derive(pk, τ, {vi, σi, βi}l

i=1)).
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The Simplified ALP LHS Scheme. It is described as follows.

KGen(1λ, n): Choose bilinear groups (G,GT ) whose order is a prime p of bit
length λ. Choose α

U←− Zp. Let g, v, g1, · · · , gn
U←− G. Let u′, u0, · · · , uN−1

U←−
G for an integer N ∈ N. Let HG be a function which takes τ ∈ {0, 1}N as
input, then outputs u′ ∏N−1

i=0 u
τ [i]
i ∈ G. Output (pk, sk), where pk := (G,GT ,

g, gα, v, {gi}n
i=1, u

′, {ui}N−1
i=0 ) and sk := α.

Sig(sk, τ ∈ {0, 1}N ,v ∈ Z
n
p ): Parse v as (v1, · · · , vn). Choose r, s

U←− Zp. Com-
pute (σ1, σ2, σ3, σ4) := ((

∏n
j=1 gvi

i vs)αHG(τ)r, gr, gs, gα·s). Output σ := (v,
τ, σ1, σ2, σ3, σ4).

Derive(pk, τ ∈ {0, 1}N , {vi ∈ Z
n
p , σi, βi ∈ Zp}): Parse σi as (v, τ, σi,1, σi,2,

σi,3, σi,4). Choose r
U←− Zp. Compute (σ1, σ2, σ3, σ4) := (

∏l
i=1 σβi

i,1 · HG(τ)r,
∏l

i=1 σβi

i,2 · gr,
∏l

i=1 σβi

i,3,
∏l

i=1 σβi

i,4). Output σ := (
∑l

i=1 βi · vi, τ, σ1, σ2, σ3,
σ4).

Ver(pk, τ ∈ {0, 1}N ,v ∈ Z
n
p , σ): Parse v ∈ Z

n
p as (v1, · · · , vn). Parse σ as (v, τ,

σ1, σ2, σ3, σ4). Output 1 if both of the following two conditions hold, namely
(a) e(g, σ1) = e(

∏n
i=1 gvi

i , gα) · e(v, σ4) · e(HG(τ), σ2) and (b) e(gα, σ2) = (g,
σ4). Output 0 otherwise.

B Our 2nd ARIP Scheme

Setup(1λ, n): The same as the one of our 1st ARIP scheme except that number
of the variables {gi}n+5

i=1 is reduced to n + 4.

KGen(mk,x): Parse x as (x1, · · · , xn). Choose a tag τ
U←− {0, 1}N . Generate 4

vectors v1, · · · ,v4 ∈ Z
n+4
p . For each i ∈ [1, 4], generate a vector vi ∈ Z

n+4
p

as follows. v1 := (x1, · · · , xn)|e1 and vi := (0, · · · , 0)|ei for each i ∈ {2, 3, 4}.
For each vector vi = (vi,1, vi,2, · · · , vi,n+4) ∈ Z

n+4
p , compute an ALP sig-

nature on the vector vi as (σi,1, σi,2, σi,3, σi,4) := ((
∏n+4

j=1 g
vi,j

i vsi)αHG(τ)ri ,

gri , gsi , gα·si), where ri, si
U←− Zp. Finally, output the secret-key sk := (x, τ,

{{σi,j}4
j=1}4

i=1).
Sig(sk,M,y, L,R): Parse sk as (x, τ, {{σi,j}4

j=1}4
i=1). Parse y as (y1, · · · , yn).

To generate a signature σ, conduct the following five steps first.

1. Set d := 〈x,y〉 (mod p). Assume that d ∈ [L,R].
2. Choose r

U←− Zp. Set (β1, β2, β3, β4) := (1, L,R,M).
3. Compute σ1 :=

∏4
i=1 σyi

i,1 · HG(τ)r, σ2 :=
∏4

i=1 σyi

i,2 · gr, σ3 :=
∏4

i=1 σyi

i,3 and
σ4 :=

∏4
i=1 σyi

i,4. Note that if sk is a correct secret-key with inner-randomness
{rj , sj}4

j=1, the computed ALP signature distributes as ({∏n
i=1 gxi

i ·gn+1·gL
n+2·

gR
n+3 · gM

n+4 · v
∑4

j=1 βjsj }αHG(τ)
∑

j βjrj+r, g
∑

j βjrj+r, g
∑

j βjsj , gα
∑

j βjsj ).
4. As our 1st ARIP scheme, compute the GS commitments for all of the variables

(a), · · · , (e). Additionally, compute the commitments for all of the following
variables.
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– gxi and gxi
i (for all i ∈ [1, n])

Let the commitments be denoted by
#»

Cxi
,
#»

C ′
xi

∈ G
3, respectively.

5. As our 1st ARIP scheme, compute the GS proofs for all of the relations [a],
· · · , [f] except for the relation [e] which is modified as follows.
[e’] e(σ1, g) = e(

∏n
i=1 gxi

i · ∏4
i=1 gyi

i+n, gα) · e(v, σ4) · e(HG(τ), σ2)
Additionally, compute the GS proofs for all of the following relations.

– e(gxi , gi) = e(g, gxi
i ) (for all i ∈ [1, n])

– e(gd
1 , g) =

∏n
i=1 e(gxi , gyi

1 )

Let the proofs be denoted by #»π xi
, #»π ip ∈ G

3, respectively.
As our 1st ARIP scheme, generate the GS commitments/proofs for the fact

that d ∈ [L,R].
The signature σ consists of all of the GS commitments and proofs generated

so far, and the second ALP signature element σ2 ∈ G.

Ver(σ,M,y, L,R): As our 1st ARIP scheme, verify the 12 equations except for
the 7th equation which is modified as follows.

7’. E(g,
#»

Cσ1) =
∏n

i=1 E(gα,
#»

C ′
xi

) ·E(
∏4

i=1 gyi

i+n, ι(gα))E(v,
#»

Cσ4) ·E(σ2,
#»

CHG(τ)) ·
∏3

k=1 E(πσ1,k,
#»

f k)

Additionally, verify the following 13rd and 14th equations.

13. E(gi,
#»

Cxi
) = E(g,

#»

C ′
xi

) · ∏3
k=1 E(πxi,k,

#»

f k) (for all i ∈ [1, n])
14. E(g,

#»

Cd) =
∏n

i=1 E(gyi

1 ,
#»

Cxi
) · ∏3

k=1 E(πip,k,
#»

f k)
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Abstract. Aggregate signature allows users to compress multiple sig-
natures into a short signature (called an aggregate signature), and can
reduce a total amount of signature-size on a channel. In particular,
identity-based aggregate signature can reduce not only total signature-
size but also total verification key-size, because it is possible to check the
validity of multiple messages and an aggregate signature by using signers’
IDs, instead of verification keys. Furthermore, we focus on lattice-based
constructions as post-quantum cryptography, due to recent advancement
of quantum computers. In this paper, we propose the first identity-based
interactive aggregate signature scheme from lattices. The security of our
scheme is based on a standard lattice assumption, and its aggregate
signature-size is logarithmic in the number of signatures.

Keywords: Identity-based aggregate signatures · Interactive
aggregation · Lattice-based cryptography

1 Introduction

1.1 Background

Digital signature is a fundamental and important primitive in cryptography and
provides a wide range of applications. Due to advancement of IoT (Internet of
Things) and blockchain technologies, data-integrity is important when gathering
data from many and various devices through an insecure channel. In these appli-
cations, a total amount of signature-size for checking validity of data is too large,
since a lot of data is sent through a channel. Hence, in recent years, it has been
necessary to reduce such total size. Aggregate signature is useful because this
cryptographic technique can compress multiple signatures into a short signature
(called an aggregate signature) and reduce a total amount of signature-size on
an insecure channel. Thus, there are many applications such as sensor networks,
blockchain protocols, secure BGP protocols, and more. However, the verifier of
an aggregate signature scheme needs to obtain verification keys of signers and
store these keys in order to check the validity of multiple messages and an aggre-
gate signature. Thus, there are many situations where we have to be concerned
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about a total amount of key-size, even though total signature-size can be reduced.
Identity-based aggregate signature (IBAS) allows users to verify messages and
an aggregate signature by using signers’ IDs, instead of verification keys. Hence,
IBAS can reduce both total key-size and total signature-size, and we focus on
this cryptography.

On the other hand, we consider lattice-based aggregate signatures because
lattice-based cryptography is resistant to attacks using quantum computers,
and many lattice-based cryptosystems have been researched as promising post-
quantum cryptography. There are several (identity-based) lattice-based aggre-
gate signature schemes [8,9,11,27]. Doröz et al. proposed an aggregate signature
scheme based on a non-standard lattice problem whose hardness is based on an
average-case lattice problem [11]. Boneh and Kim proposed an aggregate one-
time signature scheme and an interactive aggregate signature scheme which gen-
erates an aggregate signature by using interactive process among signers, and
these schemes are based on (Ring-)SIS assumption [8]. Boudgoust and Roux-
Langlois proposed a non-interactive aggregate signature scheme from module-
lattices [9]. Li et al. presented an IBAS scheme based on NTRU [27].

Related Work. Boneh et al. introduced the notion of aggregate signatures and
proposed a pairing-based scheme secure in the random oracle model (ROM) [7].
Rückert and Schröder presented an aggregate signature scheme using multilin-
ear maps in the standard model [39], and its security is guaranteed under the
certified-key model in which signers have to prove knowledge of their signing
keys at key-registration,. Gentry and Ramzan introduced the notion of IBASs
so that a total amount of signatures and verification keys can be reduced. They
proposed an IBAS scheme (with pairing) secure in the ROM [17]. Hohenberger,
Sahai, and Waters presented (identity-based) aggregate signature schemes using
multilinear maps in the standard model [22]. Ahn, Green, and Hohenberger pro-
posed pairing-based synchronized aggregate signature schemes in the standard
model or the ROM, which aggregates signatures embedded a shared value [1].
Hohenberger and Waters proposed a synchronized aggregate signature scheme
without using pairing, and its security is based on the RSA assumption [23].
In addition, there are other variants of aggregate signatures as follows: Sequen-
tial aggregate signatures [6,10,13,15,26,28,29,35] and fault-tolerant (sequential)
aggregate signatures [18,19].

1.2 Contribution

Our goal is to propose an identity-based interactive aggregate signature (IBIAS)
scheme secure in a weak lattice assumption.

We construct an IBAS scheme so that we can reduce both key-size and
signature-size on a channel. Furthermore, we focus on interactive aggregation
and security in a weak assumption, owing to problems of existing lattice-
based (identity-based) aggregate signature schemes [8,9,11,27]. First, we con-
sider interactive aggregation so that we can construct an IBAS scheme whose
aggregate signature-size does not depend on the number of signatures linearly.
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The aggregate signature-sizes of the existing lattice-based non-interactive aggre-
gate signature schemes [9,11] linearly grow with the number of signatures. In
the same way as the interactive aggregate signature of [8], it is possible to con-
struct an aggregate signature scheme whose aggregate signature-size is at most
logarithmic in such a number. Second, the existing IBAS scheme [27] is based
on the (modified) NTRU cryptosystem [21,40], though its aggregate signature-
size logarithmically depends on the number of signatures. This scheme uses a
non-standard assumption, rather than standard assumptions such as learning
with errors (LWE) and small integer solution (SIS) whose hardness is based on
the worst-case hardness of lattice approximation problems [34,37]. Furthermore,
it is impossible to construct an IBIAS scheme from the interactive aggregate
signature scheme [8], in a straightforward way. For these reasons, we aim at
proposing an IBIAS scheme secure under a standard lattice assumption. Details
on our contribution are as follows:

– First, we construct an identity-based signature (IBS) scheme from lattices,
which is secure in the ROM. Our IBIAS scheme is based on this scheme.
Although there are existing lattice-based IBS schemes [36,38], it is difficult
to convert these ones into IB(I)AS schemes (for details on this, see Sect. 3).
Thus, we present an SIS-based IBS suitable for constructing an IBIAS scheme.
As another advantage of our IBS scheme, it is possible to convert this scheme
into an IBAS scheme with non-interaction (see Appendix B). There are some
applications for which non-interactive aggregation is more desirable though
its aggregate signature-size linearly grows with the number of signatures.

– Second, we propose our IBIAS scheme constructed from our IBS scheme.
The interactive aggregation algorithm of this scheme is based on that of
the interactive aggregate signature scheme of [8]. Notice that, unlike aggre-
gate signature schemes, there is no rogue-key attack for IB(I)ASs since no
verification/signing key-pair is generated. Thus, we do not have to add other
assumptions or security models (e.g., knowledge of secret keys model) in order
to prevent such an attack.

As the result, we can obtain the first IBIAS scheme based on the SIS assump-
tion and achieve our goal in this paper. We should notice that it is possible to
convert this scheme to the one based on structured lattice assumptions such
as ring-SIS [32] or module-SIS [25] assumption, in the straightforward way. For
simplicity, we give a security proof for the plain SIS-based scheme, in this paper.

Technical Overview. One may think of constructing an IB(I)AS scheme from
an (interactive) aggregate signature scheme, in the same way as a generic IBS
construction from two signature schemes [24]. However, we cannot use this con-
struction to construct the objective IB(I)AS scheme. Concretely, a signature
of this generic construction consists of a verification key vk and two signatures
(σ1, σ2) of the underlying (aggregate) signature schemes. When aggregating such
signatures, it is possible to compress the two components (σ1, σ2). However, it
is impossible to aggregate vk. Hence, its aggregate signature-size linearly grows
with the number of signatures.
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As described beforehand, we employ interactive aggregation so that the
aggregate signature-size of our scheme does not linearly depend on the num-
ber of signatures. In order to use interactive aggregation, its (aggregate) signing
protocol utilizes Fiat-Shamir with aborts [30,31], in the same way as the scheme
of [8]. In our scheme, the secret key of the underlying identification scheme cor-
responds to the signing key for a signer-ID. In order to generate such a key, we
utilize a lattice trapdoor and its algorithms [16,33]. To analyze its security, we
first construct a new IBS, and then propose an IBIAS scheme from this IBS.

2 Preliminaries

In this paper, we use the following notation: For a positive integer n, let [n] :=
{1, . . . , n}. For n values x1, . . . , xn and a subset I ⊆ [n], let (xi)i∈I be a sequence
of values whose indexes are included in I and let {xi}i∈I be a set of values whose
indexes are included in I. For a vector x, let xi be the i-th entry. For a vector
v = [v1, . . . , vn]� ∈ R

n, let ‖v‖p = (
∑n

i=1 |vi|p)1/p be the �p-norm. In particular,
let ‖v‖ =

√
v2
1 + · · · + v2

n be the Euclidean norm (the �2-norm). For a matrix
U ∈ Z

k×m, let Ũ be the result of applying Gram-Schmidt orthogonalization to
the columns of U . For a matrix U = [u1, . . . ,um], let ‖U‖ := maxi∈[m] ‖ui‖.
For two sets S1, S2, fix an element e1 ∈ S1, and then we write (e1, ·) /∈ S1 × S2

if (e1, e2) /∈ S1 × S2 for any e2 ∈ S2. For a function f : N → R, f is negligible in
λ if f(λ) = o(λ−c) for any constant c > 0 and sufficiently large λ ∈ N. Then, we
write f(λ) = negl(λ). A probability is an overwhelming probability if 1−negl(λ).
“Probabilistic polynomial-time” is abbreviated as PPT. For a positive integer
λ, let poly(λ) be a universal polynomial of λ. For a probabilistic algorithm A,
y ← A(x; r) means that A on input x outputs y by using randomness r.

Let X, Y be two random variables over a finite field D, and let Δ(X;Y ) =
1
2

∑
s∈D |Pr[X = s] − Pr[Y = s]| be the statistical distance between X and Y .

Let UD be a uniformly random variable over D, and we say that X is δ-uniform
over D if Δ(X;UD) ≤ δ. For a parameter λ, X = X(λ), and Y = Y (λ), we say
that X and Y are statistically close if Δ(X;Y ) is negligible in λ.

Furthermore, let L be a subset of Z
m. For a vector c ∈ R

m and a posi-
tive parameter δ ∈ R, the continuous normal distribution over R

m is defined
as the function ρm

c,δ(x) =
(

1√
2πδ2

)m

exp
(
−‖x−c‖2

2δ2

)
. In addition, ρm

c,δ(Z
m) =

∑
x∈Zm ρm

c,δ(x) is defined. For a center c ∈ Z
m, and a parameter δ ∈ R

+, the

discrete Normal distribution over Z
m is defined as Dm

c,δ(y) = ρm
c ,δ(y)

ρm
c ,δ(Z

m) . In the

case c = 0, we write ρm
δ (x) = ρm

0,δ(x), Dm
δ (x) = Dm

0,δ(x) for x ∈ Z
m.

2.1 Identity-Based Signatures

In this section, we describe the syntax and security definitions of identity-based
signatures (IBSs).
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Definition 1 (IBS). An IBS scheme consists of four polynomial-time algo-
rithms (Setup,KeyGen,Sign,Vrfy): For a security parameter λ, let ID = ID(λ)
be an identity space and let M = M(λ) be a message space.

– (pp,msk) ← Setup(1λ): The randomized algorithm Setup takes as input a
security parameter 1λ and outputs a public parameter pp and a master secret
key msk.

– skid ← KeyGen(pp,msk, id): The randomized algorithm KeyGen takes as input
a public parameter pp, a master secret key msk, and an ID id ∈ ID, and it
outputs a secret key skid of id.

– σ ← Sign(pp, skid, μ): The randomized or deterministic algorithm Sign takes
as input a public parameter pp, a secret key skid, and a message μ ∈ M, and
it outputs a signature σ.

– 1/0 ← Vrfy(pp, id, μ, σ): The deterministic algorithm Vrfy takes as input a
public parameter pp, an ID id ∈ ID, a message μ ∈ M, and a signature σ,
and it outputs 1 (accept) or 0 (reject).

An IBS scheme is required to be correct, as follows:

Definition 2 (Correctness). An IBS scheme IBS = (Setup,KeyGen,Sign,
Vrfy) is correct if for every (pp,msk) ← Setup(1λ), every id ∈ ID, every
skid ← KeyGen(pp,msk, id), and every μ ∈ M, it holds that Vrfy(pp, id, μ, σ) = 1
with overwhelming probability, where σ ← Sign(pp, skid, μ).

Following [4,14], we describe the definition of unforgeability, as a security
notion of IBSs.

Definition 3 (Unforgeability). An IBS scheme IBS = (Setup,KeyGen,Sign,
Vrfy) is unforgeable if for any PPT adversary A, its advantage AdvunforgeIBS,A (λ) :=
Pr[A wins] is negligible in λ. [A wins] is the event that A wins in the following
game:

Setup. The challenger generates (pp,msk) ← Setup(1λ), gives pp to A, and sets
LK ← ∅, LS ← ∅.

Queries. A is given access to the following oracles:
– The key generation oracle OKG: Given a key generation query id ∈ ID,

it returns skid ← KeyGen(pp,msk, id) and sets LK ← LK ∪ {id}. A is not
allowed to submit the same id to OKG twice.

– The signing oracle OSIGN: Given a signing-query (id, μ) ∈ ID × M,
OSIGN obtains skid ← KeyGen(pp,msk, id) by invoking OKG(id), returns
σ ← Sign(pp, skid, μ), and sets LS ← LS ∪ {(id, μ)}.

Output. A outputs ((id∗, μ∗), σ∗). A wins if it holds that Vrfy(pp, id∗, μ∗, σ∗) =
1, id∗ /∈ LK , and (id∗, μ∗) /∈ LS.

2.2 Identity-based Interactive Aggregate Signatures

In this section, we describe the definitions of identity-based interactive aggregate
signatures (IBIASs). Because there is no existing definition of IBIASs, we for-
malize this syntax and security notion by following the definitions of IBSs [4,14]
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and interactive aggregate signatures [8] (see Appendix A regarding the definition
of interactive aggregate signatures).

Definition 4 (IBIAS). An IBIAS scheme consists of four polynomial-time
algorithms (Setup,KeyGen,Sign↔,Vrfy): For a security parameter λ, let ID =
ID(λ) be an identity space and let M = M(λ) be a message space.

– (pp,msk) ← Setup(1λ): The randomized algorithm Setup takes as input a
security parameter 1λ and outputs a public parameter pp and a master secret
key msk.

– skid ← KeyGen(pp,msk, id): The randomized algorithm KeyGen algorithm
takes as input a public parameter pp, a master secret key msk, and an ID
id ∈ ID, and it outputs a signing key skid.

– σ̂/0 ← Sign↔〈(pp, skidi
, μi)i∈[�]〉: The interactive protocol Sign↔ is run by a

set of signers.
Start of the Protocol: For each i ∈ [�], the signer idi ∈ ID has a public

parameter pp, a signing key skidi
, and a message μi.

End of the Protocol: For each i ∈ [�], the signer idi ∈ ID has an aggregate
signature σ̂ on (idi′ , μi′)i′∈[�], or 0 (reject)1.

– 1/0 ← Vrfy(pp, (idi, μi)i∈[�], σ̂): The deterministic algorithm Vrfy takes as
input a public parameter pp, a set of IDs and messages (idi, μi)i∈[�], and
an aggregate signature σ̂, and it outputs 1 (accept) or 0 (reject).

Regarding the correctness of IBIASs, we should notice the following, in the
same way as [8]: Since Sign↔ of an IBIAS scheme is not a single signing algorithm
(i.e., Sign↔ is a protocol), we allow this signing protocol to successfully generate
a valid signature with constant probability. By parallel (or sequential) repetition,
it is possible to convert this protocol into a protocol which successfully generates
a valid signature with overwhelming probability.

Then, an IBIAS scheme is required to be correct and compact, as follows:

Definition 5 (Correctness). An IBIAS scheme IBIAS = (Setup,KeyGen,
Sign↔,Vrfy) is correct if for every (pp,msk) ← Setup(λ), every {skidi ←
KeyGen(pp,msk, idi)}i∈[�] ({idi}i∈[�] ⊆ ID), every μ1, . . . , μ� ∈ M, there exists
some positive constant C ∈ Z such that Vrfy(pp, (idi, μi)i∈[�], σ̂) = 1 holds with
constant probability 1/C, where σ̂ ← Sign↔〈(pp, skidi

, μi)i∈[�]〉.
Definition 6 (Compactness). An IBIAS scheme IBIAS = (Setup,KeyGen,
Sign↔,Vrfy) is compact if for every (pp,msk) ← Setup(λ), every {skidi ←
KeyGen(pp,msk, idi)}i∈[�] ({idi}i∈[�] ⊆ ID), every μ1, . . . , μ� ∈ M, it holds that
|σ̂| ≤ poly(λ, log �), where σ̂ ← Sign↔〈(pp, skidi

, μi)i∈[�]〉.
As a security notion of IBIASs, we define unforgeability. In the security game

of this security notion, the adversary against an IBIAS scheme is given access to
the signing oracle. This oracle on input ID-message pairs executes the signing
1 In the Sign↔ protocol, each signer can compute an aggregate signature, rather than

generating such a signature by using an aggregation algorithm.
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protocol Sign↔ and behaves as signers whose keys are not revealed by the key
generation oracle. In this execution, the adversary behaves as the other signers.
Then, this adversary is allowed to pause the signing protocol and initiate a new
one at any point in the security game. Hence, multiple parallel executions of the
signing protocol can be performed by the adversary in the security game.

Definition 7 (Unforgeability). An IBIAS scheme IBIAS = (Setup,KeyGen,
Sign↔,Vrfy) is unforgeable if for any PPT adversary A against IBIAS, its advan-
tage AdvunforgeIBIAS,A(λ) := Pr[A wins] is negligible in λ, where [A wins] is the event
that A wins in the following security game:

Setup. The challenger generates (pp,msk) ← Setup(1λ) and gives pp to the
adversary A. The challenger sets the lists LK ← ∅ and LS ← ∅.

Queries. A is given access to the following oracles:
– The key generation oracle OKG: Given a key generation query id ∈ ID,

OKG computes skid ← KeyGen(pp,msk, id), returns skid, and sets LK ←
LK ∪ {id}. Then, A is not allowed to submit the same id to OKG twice.

– The signing oracle OSIGN: Given a signing-query (idi, μi)i∈[�], OSIGN does
the following:
1. A and OSIGN execute σ̂′ ← Sign↔〈(pp, idi, μi)i∈[�]〉, where OSIGN

behaves as signers id ∈ {idi}i∈[�] such that id /∈ LK , and A behaves as
the other signers īd ∈ {idi}i∈[�] (i.e., īd ∈ LK).

2. If σ̂′ �= 0, OSIGN sets LS ← LS ∪ {(idi, μi)}i∈[�]

Output. A outputs ((id∗
i , μ

∗
i )i∈[�], σ̂

∗). A wins if AggVrfy(pp, (idi, μi)i∈[�], σ̂) = 1
holds, and there exists j ∈ [�] such that id∗

j /∈ LK and (id∗
j , μ

∗
j ) /∈ LS.

2.3 Lattices

In this paper, we consider the following integer lattices:

Definition 8. Let n,m be positive integers and q be a prime. For a matrix
A ∈ Z

n×m
q and a vector u ∈ Z

n
q , the following lattices are defined: Λ⊥

q (A) :=
{e ∈ Z

m | Ae = 0 (mod q)}, Λu
q (A) := {e ∈ Z

m | Ae = u (mod q)}.
In addition, for a positive integer k and a matrix U ∈ Z

n×k
q , let ΛU

q (A) :=
{
E ∈ Z

m×k | AE = U (mod q)
}
.

We describe the definition of Small Integer Solution (SIS) which is at least
as hard as worst-case lattice approximation problems [34].

Definition 9 (SISn,m,q,β). Let n,m be positive integers, q be a prime, and β

be a positive real number. Given A
$← Z

n×m
q , SISn,m,q,β is to find a vector x ∈

Z
m\{0} such that Ax = 0 and ‖x‖ ≤ β. In addition, the SISn,m,q,β assumption

holds if for any PPT algorithm S, it holds that

Pr
[
Ax = 0 ∧ ‖x‖ ≤ β ∧ x �= 0 | A $← Z

n×m
q ;x ← S(A)

]
≤ negl(λ).

Furthermore, it is proven that there exist the following algorithms:
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Lemma 1 ([2,3,16,33]). For a security parameter λ, let n = n(λ) be a positive
integer, q = q(λ) be a prime, m = Θ(n log q) be a positive integer. Then, there
exist the following polynomial-time algorithms:

– (A,SA ) ← TrapGen(n,m, q): A randomized algorithm which outputs a full-
rank matrix A ∈ Z

n×m
q and a basis SA ∈ Z

m×m for Λ⊥
q (A) such that A is

negl(n)-uniform and ‖S̃A‖ = O(
√

n log q), with overwhelming probability.
– X ← SampleD(A,SA ,U , γ): A randomized algorithm which takes as input

a matrix A ∈ Z
n×m
q , a basis SA ∈ Z

m×m for Λ⊥
q (A), a matrix U ∈ Z

n×k
q ,

and a positive integer γ ≥ ‖S̃A‖ · ω(
√

log m), and then outputs X ∈ Z
m×k

sampled from a distribution which is statistically close to Dm×k
ΛU

q (A),γ
.

In order to construct our IBS and IBIAS schemes, we use the two polynomial-
time algorithms TrapGen,SampleD.

3 Our IBS Scheme from Lattices

3.1 Construction

We construct a lattice-based IBS scheme so that we can construct an IBIAS
scheme. Although there are several lattice-based IBS constructions [36,38], we
cannot convert these ones into IB(I)AS schemes, straightforwardly. These con-
structions use Hash-and-Sign paradigm [16] when generating a signature on an
ID and a message. Aggregating these signatures seems difficult. Concretely, the
signer in these schemes generates a signature vector σid,μ, and the verifier checks
whether Aid,μ · σid,μ = y and ‖σid,μ‖ ≤ βS , where Aid,μ is a matrix generated
when producing a signature on an ID id and a message μ, y is a public vector,
and βS ∈ R is a public value. When these signatures σid1,μ1 , . . . , σid�,μ�

are com-
pressed into σ̂ ← ∑

i∈[�] σidi,μi
, the above verification procedure does not work,

since the corresponding matrices Aid1,μ1 , . . . ,Aid�,μ�
are distinct. Therefore, we

do not use those IBS schemes and consider a new construction.
The idea to construct our IBS is to utilize Fiat-Shamir with aborts [12,30,31]

and a lattice trapdoor [16,33] in order to generate the signing key of an ID.
In fact, the existing lattice-based aggregate signature schemes [8,9,11] employ
Fiat-Shamir with aborts [12,30,31], rather than Hash-and-Sign. Hence, our IBS
scheme is based on the lattice-based signature scheme [31] constructed from
Fiat-Shamir with aborts, and we chose this scheme because this is suitable for
constructing an IBS scheme. To generate the signing key for each ID, we utilize
a lattice trapdoor and its algorithms [16,33], and this signing key corresponds
to the secret key of the underlying identification scheme used in [31].

Our IBS scheme IBS = (Setup,KeyGen,Sign,Vrfy) is constructed as follows:
For a security parameter λ, we define the following parameters: Let n = n(λ),
m = m(λ), k = k(λ), γ = γ(λ), δ = δ(λ), κ = κ(λ), M = M(λ) be positive
integers, q = q(λ) be a prime, and η = η(λ) be a positive real number. We
define ID = {0, 1}λ as an ID space and M = {0, 1}∗ as a message space. In
addition, let DH1 := {v | v ∈ {−1, 0, 1}k ∧ ‖v‖1 ≤ κ}, and let H0 : ID → Z

n×k
q ,
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H1 : {0, 1}∗ → DH1 be cryptographic hash functions. In this scheme, we use the
algorithms TrapGen, SampleD defined in Lemma 1.

– (pp,msk) ← Setup(1λ):
1. Generate (A,SA ) ← TrapGen(n,m, q).
2. Output pp = A ∈ Z

n×m
q and msk = SA ∈ Z

m×m.
– skid ← KeyGen(pp,msk, id):

1. Let pp = A and msk = SA .
2. Compute Sid ← SampleD(A,SA ,H0(id), γ) (such that Sid ← Dm×k

γ and
ASid = H0(id) (mod q)).

3. Output skid = Sid ∈ Z
m×k.

– σ ← Sign(pp, skid, μ):
1. Let pp = A and skid = Sid.
2. Choose y ← Dm

δ .
3. Compute c ← H1(Ay mod q, id, μ).
4. Compute z ← y + Sidc ∈ Z

m.

5. Output σ = (c,z) with probability min
(

Dm
δ (z)

M ·Dm
S idc ,δ(z)

, 1
)

.

– 1/0 ← Vrfy(pp, id, μ, σ):
1. Parse σ = (c,z).
2. Output 1 if H1(Az−H0(id)c mod q, id, μ) = c∧‖z‖ ≤ ηδ

√
m. Otherwise,

output 0.

Parameter Setting. In order to show the correctness of IBS, we can set the
following parameters: For a security parameter λ, let n � λ be a lattice
parameter, and let C0, C1 be positive constants. Due to Lemma 1, we set a
prime q = poly(n)2, m ≥ 3n log q, γ ≥ C0

√
m · ω(

√
log m)2. In addition, in

order to prove the security of IBS, we need to set the parameters m, γ s.t.
m > λ+n log q/ log (2λγ + 1) due to the condition of [31, Lemma 5.2]. Based on
[31], we set the parameters k = O(n), κ s.t. 2κ ≥ (

n
κ

)
2O(λ), δ = C1γκ, η = O(1)

s.t. ηδ ≥ (λδ + λγκ), M = exp (C1γκ
√

m/δ + (γκ
√

m/2δ)2).

Lemma 2 (Correctness). The IBS scheme IBS is correct, under the parame-
ters of IBS.

Proof. For every id ∈ ID and every μ ∈ M, let (pp,msk) ← Setup(1λ), let
skid ← KeyGen(pp,msk, id), and let σ = (c,z) ← Sign(pp, skid, μ). Under the
parameters n, q,m, γ, the Setup and KeyGen algorithms are run correctly, due
to Lemma 1. Thus, we can assume that the keys pp,msk, skidi

are generated
correctly.

We show that the Vrfy algorithm accepts the signature σ. Regarding the first
condition of Vrfy, we have

H1(Az − H0(id)c mod q, id, μ) = H1(A (y + Sidc) − ASidc mod q, id, μ)
= H1(Ay mod q, id, μ) = c.

2 For a security reduction from lattice assumptions [34], q should be larger than β ·
poly(n), where β = 2(δη + γκ)

√
m.
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Next, we show that the second condition of Vrfy holds. Due to [31, Lemma
4.4] and Lemma 1, we have ‖y‖ ≤ λδ

√
m and ‖Sid‖ ≤ λγ

√
m, with at least

probability 1 − λme(1−λ2)m/2. In addition, ‖c‖1 ≤ κ, owing to the definition of
H1. Hence, we have ‖z‖ = ‖y + Sidc‖ ≤ λδ

√
m + λγκ

√
m ≤ ηδ

√
m.

Therefore, the both conditions of Vrfy hold, and we complete the proof. ��

3.2 Security Analysis

Theorem 1 shows the security of our proposed IBS scheme IBS, and we give the
proof of this theorem.

Theorem 1 (Unforgeability). If the SISn,m,q,β assumption holds for β =
2(δη + γκ)

√
m, then the IBS scheme IBS is unforgeable in the random oracle

model.

Proof. Let A be a PPT adversary against IBS. Let QK , QS , Q0, and Q1 be the
numbers of queries submitted to OKG, OSIGN, H0, and H1 oracles, respectively.
In addition, let T0 be a table of query-response pairs issued to the H0 oracle. In
order to prove Theorem 1, we consider the security games Hybrid0, . . . ,Hybrid5.

Hybrid0: This game is the same as the ordinary security game of IBSs.
Hybrid1: This game is the same as Hybrid0 except that the H0 and OKG oracles

are modified as follows: At the beginning of the security game, the challenger
sets a table T0 ← ∅.
H0(id):

1. H0 returns Tid if T0[id] = (Tid,Sid) ∈ Z
n×k
q × Z

m×k (i.e., T0[id] �= ∅).
2. If T0[id] = ∅, then H0 chooses Sid ← Dm×k

γ and computes Tid ←
ASid ∈ Z

n×k
q . It returns Tid and sets T0[id] ← (Tid,Sid).

OKG(id):
1. If T0[id] = (Tid,Sid) ∈ Z

n×k
q × Z

m×k, then OKG returns Sid and sets
LK ← LK ∪ {id}.

2. If T0[id] = ∅, then OKG chooses Sid ← Dm×k
γ and computes Tid ←

ASid ∈ Z
n×k
q . It returns Sid and sets LK ← LK ∪ {id}, T0[id] ←

(Tid,Sid).
Hybrid2: This game is the same as Hybrid1 except that A generated by TrapGen

is replaced with a matrix chosen from Z
n×m
q uniformly at random.

Hybrid3: This game is the same as Hybrid2 except that the challenger aborts if
H0(id∗) is not defined (i.e., T0[id∗] = ∅).

Hybrid4: This game is the same as Hybrid3 except that the OSIGN oracle is modified
as follows:
1. Choose y ← Dm

δ .

2. Choose c
$← DH1 .

3. Compute z ← y + Sidc.

4. Do the following with probability min
(

Dm
δ (z)

M ·Dm
S idc ,δ(z)

, 1
)

:

(a) Return σ = (c,z).
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(b) Program H1(Az − H0(id)c, id, μ) = c.
Hybrid5: This game is the same as Hybrid4 except that the OSIGN oracle is modified

as follows:
1. Choose c

$← DH1 .
2. Choose z ← Dm

δ .
3. Do the following with probability 1/M :

(a) Output σ = (c,z).
(b) Program H1(Az − H0(id)c, id, μ) = c.

In addition, for i ∈ {0, . . . , 5}, let Wi be the event that A wins in Hybridi.
We estimate the upper bound of |Pr[Wi−1] − Pr[Wi]| for i ∈ {1, . . . , 5}.

Proof of |Pr[W0] − Pr[W1]| ≤ negl(λ): The output Tid = ASid ∈ Z
n×k
q of H0 is

independent of a query id and statistically close to a uniformly random value in
Z

n×k
q due to the leftover hash lemma [20]. Thus, A cannot distinguish Hybrid0

and Hybrid1 statistically.

Proof of |Pr[W1] − Pr[W2]| ≤ negl(λ): Due to Lemma 1, the matrices A in
Hybrid1 and Hybrid2 are distributed statistically. In addition, OSIGN does not
have to use the trapdoor SA to generate a secret key of an ID, in both games.
Hence, A cannot distinguish these security games.

Proof of |Pr[W2] − Pr[W3]| ≤ 2−nk�log q�: The challenger aborts if A predicts the
value of H0(id∗) without querying id∗ to H0. The probability of predicting the
value H0(id∗) is at most 2−nk�log q�. Thus, the probability of distinguishing
between Hybrid2 and Hybrid3 is at most 2−nk�log q�.

Proof of |Pr[W3] − Pr[W4]| ≤ QS(Q1 + QS)2−n+1: The difference between
Hybrid3 and Hybrid4 is that the H1 oracle chooses c ∈ DH1 uniformly at ran-
dom and programs H1(Az − H0(id)c, id, μ) = H1(Ay, id, μ). Since the number of
queries issued to H1 is at most Q1 +QS , H1 programs Q1 +QS values (Ay, id, μ).
In addition, when OSIGN is called, (Ay, id, μ) is defined with at most probability
2−n+1. When OSIGN is invoked each time, the probability of getting a collision is at
most (Q1 +QS)2−n+1. Hence, when QS queries are issued to OSIGN, the adversary
distinguishes Hybrid3 and Hybrid4 by getting a collision each time, with at most
probability QS(Q1 + QS)2−n+1.

Proof of |Pr[W4] − Pr[W5]| ≤ QS · 2−ω(log m)/M : By applying the rejection sam-
pling lemma [31, Theorem 4.6], it is shown that the probability of distinguishing
Hybrid4 and Hybrid5 is at most QS · 2−ω(log m)/M .

Finally, we show that ε = Pr[W5] is negligible if the SISn,m,q,β assumption
holds. To do this, we construct a PPT algorithm F solving SISn,m,q,β , as follows:

Given an SISn,m,q,β instance A ∈ Z
n×m
q , responses r1, . . . , rQ1+QS

$← DH1 of H1,
randomness ρA, ρF used in A and F respectively, F runs A by giving pp = A
and ρA. Then, OKG, OSIGN, H0, and H1 are simulated in the same way as Hybrid5,
and (ri)i∈[Q1+QS ] are used as the responses of H1. Finally, A outputs a forgery
(id∗, μ∗, (c∗,z∗)) and halts. ‖z∗‖ ≤ ηδ

√
m and H1(Az∗−H0(id∗)c∗, id∗, μ∗) = c∗

holds with probability ε.
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If A does not issue any query to H1, or w∗ = Az∗ − H0(id∗)c∗ has never
been programmed, then c∗ such that c∗ = H1(w∗, id∗, μ∗) is predicted with at
most probability 1/|DH1 |. Thus, A succeeds in generating a forgery (c∗,z∗) such
that c∗ ∈ {ri}i∈[Q1+QS ], with at least probability ε − 1/|DH1 |.

We show that it is possible to extract a solution to the SISn,m,q,β instance
A, by using the A’s forgery. We consider c∗ = rJ , where rJ is the response of
the J-th query issued to H1 (J ∈ [Q1 + QS ]). First, we consider the case where
c∗ = rJ is set by the OSIGN oracle. For any id ∈ ID, let Tid = H0(id). In addition,
we assume that A queries (ĩd, μ̃) ∈ ID×M to H1, and H1(Az̃−T

˜idc
∗, ĩd, μ̃) = c∗

is set. If (c∗,z∗) satisfies the winning condition of the security game, it holds
that H1(Az̃ − T

˜idc
∗, ĩd, μ̃) = H1(Az∗ − Tid∗c∗, id∗, μ∗). Since (ĩd, μ̃) �= (id∗, μ∗)

holds due to the winning condition, A succeeds in finding the preimage of rJ .
This success probability is negligible under the random oracle model.

Next, we consider the case where c∗ = rJ is set by H1. In this case, F
records the A’s output (id∗, μ∗, σ∗ = (rJ ,z∗)). Then, given the matrix A, the
randomness ρA, ρF , and a new sequence (r1, . . . , rJ−1, r

′
J , . . . , r′

Q1+QS
) for fresh

randomness r′
J , . . . , r′

Q1+QS

$← DH1 , F runs A by giving A and ρA. Owing to
the forking lemma [5, Lemma 1], r′

J �= rJ holds, and A generates a forgery by
using r′

J , with at least probability
(

ε − 1
|DH1 |

)(
ε − 1/|DH1 |
Q1 + QS

− 1
|DH1 |

)

.

With this probability, A outputs a forgery σ′ = (r′
J ,z′) on (id∗, μ∗). Then, by

letting c∗ = rJ , c′ = r′
J , we have A(z∗ − z′ + Sid∗c′ − Sid∗c∗) = 0.

Due to ‖z∗‖, ‖z′‖ ≤ ηδ
√

m and ‖Sid∗c∗‖, ‖Sid∗c′‖ ≤ γκ
√

m, it holds that
‖z∗ − z′ + Sid∗c′ − Sid∗c∗‖ ≤ 2(ηδ + γκ)

√
m. In addition, we show z∗ − z′ +

Sid∗c′ − Sid∗c∗ �= 0. Due to the proof of [31, Lemma 5.2] and the parameters
based on the condition of this lemma, there exists a signing key S′

id∗ such that all
column vectors except for one column are the same as those of Sid∗ and ASid∗ =
AS′

id∗ , with overwhelming probability. Then, if z∗ − z′ + Sid∗(c′ − c∗) = 0, we
have z∗ − z′ + S′

id∗(c′ − c∗) �= 0. When simulating the OSIGN oracle, A cannot
distinguish Sid∗ and S′

id∗ since these keys are not used. Hence, we obtain a
solution to an SISn,m,q,β instance with at least probability 1/2 since both keys
are chosen with equal probability. Therefore, the probability of solving SISn,m,q,β

is at least
1
2

(

ε − 1
|DH1 |

)(
ε − 1/|DH1 |
Q1 + QS

− 1
|DH1 |

)

.

From the discussion above, the proof is completed. ��

4 Our IBIAS Scheme from Lattices

4.1 Construction

We construct a lattice-based IBIAS scheme by combining the interactive aggre-
gate signature scheme of [8] and our IBS scheme. As described in Sect. 1.2, we do
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not need to consider rogue-key attacks since an IBIAS scheme does not gener-
ate any verification/secret key-pair. Hence, it is possible to construct an IBIAS
scheme without any additional security model and computational assumption.

Our IBIAS scheme IBIAS = (Setup,KeyGen,Sign↔,Vrfy) is constructed as
follows: For a security parameter λ, we set positive integers n = n(λ), m = m(λ),
k = k(λ), γ = γ(λ), δ = δ(λ), κ = κ(λ), a prime q = q(λ), and a positive real
number η = η(λ). Let ID = ID(λ) be an ID space and let M = {0, 1}∗ be
a message space. We define two sets DH1 = {0, 1}poly(λ), DH2 = {v | v ∈
{−1, 0, 1}k ∧‖v‖1 ≤ κ}. Let H0 : ID → Z

n
q , H1 : Zn

q → DH1 , and H2 : {0, 1}∗ →
DH2 be cryptographic hash functions. We use the algorithms TrapGen, SampleD
defined in Lemma 1.

– (pp,msk) ← Setup(1λ):
1. Generate (A,SA ) ← TrapGen(n, q,m).
2. Output pp = A ∈ Z

n×m
q and msk = SA ∈ Z

m×m.
– skid ← KeyGen(pp,msk, id):

1. Let pp = A and msk = SA .
2. Compute Sid ← SampleD(A,SA ,H0(id), γ).
3. Output skid = Sid ∈ Z

m×k.
– σ̂/0 ← Sign↔〈(pp, skidi , μi)i∈[�]〉: Let pp = A and skidi = Sidi .

Round 1. Each signer idj chooses yj ← Dm
δ and computes wj ← Ayj ∈ Z

n
q .

And then, it computes hj ← H1(wj) and sends hj to the cosigners.
Round 2. After receiving (hi)i∈[�]\{j}, idj sends wj to the cosigners.
Round 3. After each signer idj receives (wi)i∈[�]\{j}, it does the following:

1. For all i ∈ [�], check whether hi = H1(wi). If there exists i ∈ [�] such
that hi �= H1(wi), return 0 to the cosigners.

2. Compute ŵ ← ∑
i∈[�] wi and cj ← H2(idj , ŵ, (idi)i∈[�], μj).

3. Compute zj ← yj + Sidj
cj .

4. Send zj to the cosigners with probability min
(

�−1
�

Dm
δ (zj)

Dm
S idj

c j ,δ(zj)
, 1

)

.

If there exists a signer which sends 0 during the execution of the protocol
Sign↔, then this protocol halts. Otherwise, each signer idj holds ŵ and
{zi}i∈[�]. Then it computes ẑ ← ∑

i∈[�] zi and holds σ̂ = (ŵ, ẑ).
– 1/0 ← Vrfy(pp, (idi, μi)i∈[�], σ̂):

1. Parse σ̂ = (ŵ, ẑ).
2. For i ∈ [�], compute ci ← H2(idi, ŵ, (idi′)i′∈[�], μi).
3. Compute v̂ ← ∑

i∈[�] H0(idi) · ci.
4. Output 1 if Aẑ = v̂ + ŵ mod q and ‖z‖ ≤ ηδ�

√
m. Otherwise, output 0.

Parameter Setting. In order to satisfy the correctness and compactness of
IBIAS, we can set the following parameters: Let n � λ be a positive integer,
and let C0 be a positive constant. Due to Lemma 1, let q = poly(n) be a prime,
and m ≥ 3n log q be a positive integer. In addition, in order to prove the security
of IBIAS, we need to set the parameters m, γ s.t. m > λ + n log q/ log (2λγ + 1)
due to the condition of [31, Lemma 5.2]. In the same way as our propose scheme
IBS, we set the parameters k = O(n), κ s.t. 2κ ≥ (

n
κ

)
2O(λ), δ = C0γκ, and

η = O(1) s.t. ηδ ≥ (λδ + λγκ)�.
Then, the following lemmas show the correctness and compactness of IBIAS.
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Lemma 3 (Correctness). The IBIAS scheme IBIAS is correct, under the
parameters of IBIAS.

Proof. We assume � = poly(λ). For every id1, . . . , id� ∈ ID and every μ1, . . . , μ� ∈
M, let (pp,msk) ← Setup(1λ), let skidi

← KeyGen(pp,msk, id), and let σ̂ =
(ŵ, ẑ) ← Sign↔〈(pp, skidi

, μi)i∈[�]〉. Then, it is shown that the keys pp, msk, skidi

are generated correctly, in the same way as the proof of Lemma 5.
We show that the Vrfy algorithm accepts the aggregate signature σ̂. Regard-

ing the first condition of Vrfy, it holds that

Aẑ = A
∑

i∈[�]

(yi + Sidici) =
∑

i∈[�]

Ayi +
∑

i∈[�]

ASidici =
∑

i∈[�]

wi +
∑

i∈[�]

H0(idi)ci.

Since ŵ =
∑

i∈[�] wi and v̂ =
∑

i∈[�] H0(idi)ci, we have Aẑ = ŵ + v̂.
Next, we show that σ̂ also fulfills the second condition of Vrfy. Due to [31,

Lemma 4.4] and Lemma 1, we have ‖yi‖ ≤ λδ
√

m, ‖Sidi
‖ ≤ λγ

√
m, with at

least probability 1 − λme(1−λ2)m/2. In addition, we have ‖ci‖1 ≤ κ due to the
definition of H2. As for the second condition of Vrfy, we have

‖ẑ‖ ≤ � · max
i∈[�]

‖zi‖ = � · max
i∈[�]

‖yi + Sidi
ci‖ ≤ �

(
λδ

√
m + λγκ

√
m

) ≤ ηδ�
√

m.

Finally, we show that the probability that Sign↔ generates a valid σ̂ �= 0 is
at least 1 − negl(λ). Each signer idi sends zi to the cosigners with probability

min
(

�−1
�

Dm
δ (zj)

Dm
S idj

c j ,δ(zj)
, 1

)

. Due to the rejection sampling lemma [8, Lemma 6.6],

this probability is close to the probability (� − 1)/�. Hence, the probability that
all signers do not reject the protocol Sign↔ is

(
�−1

�

)�
= O(1), and Sign↔ works

with constant probability.
From the above discussions, the proof of the correctness is completed. ��

Lemma 4 (Compactness). The IBIAS scheme IBIAS is compact, under the
parameters of IBIAS.

Proof. The proof of Lemma 4 is similar to that of Lemma 3. For every
id1, . . . , id� ∈ ID and every μ1, . . . , μ� ∈ M, let (pp,msk) ← Setup(1λ), let
skidi

← KeyGen(pp,msk, id), and let σ̂ = (ŵ, ẑ) ← Sign↔〈(pp, skidi
, μi)i∈[�]〉.

In the same way as the proof of 3, it is shown that the size of each element
of ẑ is at most �(λδ + λγκ) with overwhelming probability. Thus, the bit-length
of ẑ is at most m�log (�(λδ + λγκ))� (i.e., at most poly(λ, log �)). In addition, it
is clear that the bit-length of ŵ is n�log q�.

Therefore, the bit-length of σ̂ is at most poly(λ, log �). ��

4.2 Security Analysis

We give the security proof of our IBIAS scheme IBIAS. Theorem 2 shows the
security of this scheme.



422 S. Sato and J. Shikata

Theorem 2 (Unforgeability). If the SISn,m,q,β assumption holds for β =
2(ηδ + γκ)�

√
m, the IBIAS scheme IBIAS is unforgeable in the random oracle

model.

Proof. Let A be a PPT adversary against IBIAS. Let QK , QS , Q0, Q1, and Q2

be the numbers of queries issued to OKG, OSIGN
↔, H0, H1, and H2, respectively.

Let T0, T1, and (T(ŵ )
2 ,T

(id)
2 ) be the tables of query-response pairs issued to the

H0, H1, and H2 oracles, respectively. In order to prove Theorem 2, we consider
the security games Hybrid0, . . . ,Hybrid5.

Hybrid0: This game is the ordinary security game of IBIASs.
Hybrid1: This game is the same as Hybrid0 except that the H0, H1, and OKG

oracles are modified in the following way: At the beginning of the security
game, the challenger sets the tables T0 ← ∅ and T1 ← ∅.
H0(id):

1. If T0[id] = (Tid,Sid) ∈ Z
n×k
q × Z

m×k, then H0 returns Tid.
2. If T0[id] = ∅, then H0 chooses Sid ← Dm×k

γ and computes Tid ←
ASid ∈ Z

n×k
q . And then, it returns Tid and sets T0[id] ← (Tid,Sid).

H1(w): If T1[w] = h(�= ∅), then H1 returns h. If T1[w] = ∅, it samples

h
$← DH1 , returns h, and sets T1[w] ← h.

OKG(id):
1. If T0[id] = (Tid,Sid), then OKG returns Sid and sets LK ← LK ∪ {id}.
2. If T0[id] = ∅, it samples Sid ← Dm×k

γ and computes Tid ← ASid ∈
Z

n×k
q . And then it returns Sid and sets LK ← LK ∪ {id}, T0[id] ←

(Tid,Sid).
Hybrid2: This game is the same as Hybrid1 except that A generated by TrapGen

is replaced with a uniformly random A ∈ Z
n×m
q .

Hybrid3: This game is the same as Hybrid2 except that the challenger aborts if
for (id∗

i )i∈[�], there exists j ∈ [�] such that T0[id∗
j ] = ∅.

Hybrid4: This game is the same as Hybrid3 except that the procedures of the
oracles H2,OSIGN

↔ and the Output phase are modified as follows: At the
beginning of the game, the challenger sets T

(id)
2 ← ∅, T(w )

2 ← ∅, and ctr ← 0
where ctr is used to assign an index to each query issued to H2. In addition,
r1, . . . , rQ2+�·QS

$← DH2 are used as the responses of H2.
H2(id, ŵ, (idi′)i′∈[�], μ):

1. If T(id)
2 [id] = ∅, then H2 sets T

(id)
2 [id] ← 1.

2. If T
(ŵ )
2 [id, ŵ, (idi′)i′∈[�], μ] = ∅, then H2 chooses c

$← DH2 and sets
ctr ← ctr + 1, T(ŵ )

2 [id, ŵ, (idi′)i′∈[�], μ] ← rctr.
3. If T(ŵ )

2 [id, ŵ, (idi′)i′∈[�], μ] = c(�= ∅), then it returns c.
OSIGN

↔((idi, μi)i∈[�]): For j ∈ [�] such that idj /∈ LK , OSIGN simulates the
procedure of idj , in the following way:
Round 1.

1. If T(id)
2 [idj ] = ∅, then set T

(id)
2 [idj ] ← 1.

2. Let ctr ← ctr + 1, cj ← rctr.
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3. Choose yj ← Dm
δ and compute wj ← Ayj mod q. If T1[wj ] = ∅,

choose hj
$← DH1 and set T1[wj ] ← hj . Send the defined hj to

the cosigners.
Round 2. After receiving (hi)i∈[�]\{j} from the cosigners, do the follow-

ing:
1. Abort if there is no w ∈ Z

n
q such that T1[w] = hi for some

i ∈ [�]\{j}. Let Abort1 be the event that this condition holds.
2. Abort if for some i ∈ [�]\{j}, there exist distinct vectors w,w′

such that T1[w] = T1[w′] = hi(�= ∅). Let Abort2 be the event that
this condition holds.

3. For all i ∈ [�], find wi such that T1[wi] = hi and compute
ŵ ← ∑

i∈[�] wi ∈ Z
n
q . Abort if there exists i ∈ [�] such that

T
(ŵ )
2 [idi, ŵ, (idi′)i′∈[�], μi] �= ∅. Let Abort3 be the event that this

condition holds.
4. Set ctr ← ctr + 1 and T

(ŵ )
2 [idj , ŵ, (idi′)i′∈[�], μj ] ← rctr. Send wj

to the cosigners.
Round 3. After receiving (wi)i∈[�]\{j} from the cosigners, do the fol-

lowing:
1. For all i ∈ [�], check if T1[wi] = hi. Return 0 to A if there exists

some i ∈ [�] such that T1[wi] �= hi.
2. Compute zj ← yj + Sidj

cj . Send zj to the cosigners with proba-

bility min
(

�−1
�

Dm
δ (zj)

Dm
S idj

c j ,δ(zj)
, 1

)

.

The other procedure of this security game is the same as that of
Hybrid3.

Output: A outputs (id∗
i , μ

∗
i )i∈[�] and a signature σ̂∗ = (ŵ∗, ẑ∗). The chal-

lenger aborts if T(id)
2 [id∗

i ] = ∅ for some i ∈ [�]. Let Abort4 be the event this
condition holds. After checking this, the procedure of this security game
is the same as that of Hybrid3.

Hybrid5: This game is the same as Hybrid4 except that OSIGN
↔ is modified as

follows: For j ∈ [�] such that idj /∈ LK , OSIGN simulates the procedure of idj ,
in the following way:
Round 1.

1. If T(id)
2 [idj ] = ∅, then set T

(id)
2 [idj ] ← 1.

2. Set ctr ← ctr + 1, cj ← rctr.
3. Choose zj ← Dm

δ and set wj ← Azj − H0(idj)cj .
4. Program hj = H1(wj) and send hj to the cosigners.

Round 2. After receiving (hi)i∈[�]\{j}, do the following:
1. Abort if there is no w ∈ Z

n
q such that T1[w] = hi for some i ∈ [�]\{j}.

Let Abort1 be the event that this condition holds.
2. Abort if for some i ∈ [�]\{j}, there exist two distinct vectors w,w′

such that T1[w] = T1[w′] = hi(�= ∅) is defined. Let Abort2 be the
event that this condition holds.

3. For all i ∈ [�], find wi such that T1[wi] = hi, and compute ŵ ←∑
i∈[�] wi.
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4. Send wj to the cosigners.
Round 3. After receiving (wi)i∈[�]\{j} from the cosigners, do the following:

1. Return 0 if T1[wi] �= hi for some i ∈ [�].
2. Compute zj ← yj +Sid∗

j
cj . Send zj to the cosigners with probability

�−1
� .

The other procedure of this security game is the same as that of Hybrid4.

For i ∈ {0, 1, . . . , 5}, let Wi be the event that A wins in Hybridi. We estimate
the upper bound of |Pr[Wi−1] − Pr[Wi]| for each i ∈ [5].

In the same way as the proof of Theorem 1, we have the following:

– |Pr[W0] − Pr[W1]| ≤ negl(λ) holds due to the leftover hash lemma [20].
– |Pr[W1] − Pr[W2]| ≤ negl(λ) holds due to Lemma 1.
– |Pr[W2] − Pr[W3]| ≤ 2−nk�log q� holds due to the unpredictability of preimage

of the random oracle H0.

Proof of |Pr[W3] − Pr[W4]| ≤ negl(λ): We estimate the upper bound of the prob-
ability that the abort event Aborti occurs in Hybrid4 for i ∈ [4].

Abort1 occurs when A succeeds in guessing the preimage w of H1. The
challenger checks if this event happens � times. Hence, we have Pr[Abort1] ≤
� · QS/|DH1 |.

Abort2 occurs when A finds a collision of H1. A issues at most Q1 queries
to H1, and the challenger issues at most � · QS queries to H1. Hence, we have
Pr[Abort2] ≤ (Q1 + � · QS)/|DH1 |.

Abort3 occurs when A queries ŵ beforehand. Due to the leftover hash lemma,
the statistical distance between wi = Ayi (i ∈ [�]) and a uniformly random value
over Zn

q is at most n/qn. Since A submits at most QS queries to OSIGN, we have
2n�QS/qn.

Abort4 occurs when A succeeds in guessing the output of H2. For each id∗
i ,

the probability that this happens is at most 1/|DH2 |. A generates a forgery on
� ID-message pairs. Hence, we have Pr[Abort4] ≤ �/|DH2 |.

Hence, the probability of distinguishing the two games is negligible.

Proof of |Pr[W4] − Pr[W5]| ≤ �−1
� · QS · 2−ω(log n): Due to the rejection sampling

lemma [8, Lemma 6.6] in the setting of Z
n×n (rather than the ring setting

Z[X]/(Xn + 1) in this lemma), the probability of distinguishing Hybrid4 and
Hybrid5 is at most �−1

� · QS · 2−ω(log n).

Finally, we prove that ε = Pr[W5] is negligible if the SISn,m,q,β assumption
holds. In order to do this, we construct a PPT algorithm F solving SISn,m,q,β .
F is given the following values: An SISn,m,q,β instance A ∈ Z

n×m
q , random

responses r1, . . . , rQ2+�·QS
∈ DH2 of H2, and randomness ρA, ρF used for run-

ning A and F , respectively. At the beginning of the security game, F gives pp =
A and ρA to A. Without using a secret key, F simulates the H0, H1, H2, OKG,
and OSIGN

↔ oracle in the same way as Hybrid5. When A outputs (id∗
i , μ

∗
i )i∈[�] and

σ̂∗ = (ŵ∗, ẑ∗) as a forgery. Then F finds indexes j ∈ [�] and J ∈ [Q2+�·QS ] such
that id∗

j /∈ LK , (id∗
j , μ

∗
j ) /∈ LS , and T

(ŵ )
2 [id∗

j , ŵ
∗, (id∗

i′)i′∈[�], μ
∗
j ] = rJ . F runs A
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again, when it takes as input the instance A, the same randomness ρA, ρF , and
a new sequence r1, . . . , rJ−1, r

′
J , . . . , r′

Q2+�·QS
of randomness for uniformly ran-

dom r′
J , . . . , r′

Q2+�·QS
∈ DH2 . In the same way as the previous execution, F sim-

ulates the environment of A. Due to the forking lemma [5, Lemma 1], A outputs
(ŵ′, ẑ′) on (id∗

i , μ
∗
i )i∈[�], by using r′

J = H2(id∗
j , ŵ

′, (id∗
i′)i′∈[�], μ

∗
j ) for the indexes

(j, J) ∈ [�] × [Q2 + � · QS ]. Then, F obtains the two forgeries (ŵ∗, ẑ∗), (ŵ′, ẑ′)
with at least probability

ε

(
ε

Q2 + � · QS
− 1

|DH2 |
)

.

We show that ẑ − ẑ′ − Sid∗
j
(rJ − r′

J ) obtained by the two executions is a
solution to the SISn,m,q,β instance A. Since the two forgeries (ŵ, ẑ), (ŵ′, ẑ′) are
valid, we have Aẑ∗ =

∑
i∈[�] H0(id∗

i )c
∗
i + ŵ∗, Aẑ′ =

∑
i∈[�] H0(id∗

i )c
′
i + ŵ′.

Since all values of H2 except for the J-th one in the two executions of A are
equal, we have

A(ẑ∗ − ẑ′) =
∑

i∈[�]

(H0(id∗
i )c

∗
i − H0(id∗

i )c
′
i) − (ŵ∗ − ŵ′) = ASid∗

j
(c∗

J − c′
J) .

From this equation, it holds that A(ẑ∗ − ẑ′ −Sid∗
j
(c∗

J −c′
J )) = 0. Then, we have

the vector ẑ∗ − ẑ′ −Sid∗
j
(c∗

J − c′
J ) whose norm is at most 2(ηδ + γκ)�

√
m, with

overwhelming probability. In addition, it is shown that this vector is non-zero
since the secret key Sid∗

j
is independent of the view of A in the same way as

the proof of Theorem 1. Hence, we obtain a solution ẑ∗ − ẑ′ − Sid∗
j
(c∗

J − c′
J ) of

SISn,m,q,β with at least probability

ε

2

(
ε

Q2 + � · QS
− 1

|DH2 |
)

.

From the discussion above, the proof is completed. ��

5 Conclusion

Our goal is to propose an IBIAS scheme based on a standard lattice assump-
tion. To this end, we presented an SIS-based IBS scheme because there is no
existing IBS construction suitable for constructing an IB(I)AS scheme. Then,
we proposed an SIS-based IBIAS scheme based on our IBS, and its aggregate
signature-size is at most logarithmic in the number of signatures by interactive
aggregation. Therefore, we obtained the objective IBIAS scheme and achieved
our goal.
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Appendix A: Syntax and Security Definition of Interactive
Aggregate Signatures

Following [8], we describe the definition of interactive aggregate signatures
(IASs).

Definition 10 (IAS). An IAS scheme consists of polynomial-time algorithms
(Setup,KeyGen,Sign↔,Vrfy): For a security parameter λ, let M = M(λ) be a
message space.

– pp ← Setup(1λ): The randomized algorithm Setup takes as input a security
parameter 1λ and outputs a pubic parameter pp.

– (pk, sk) ← KeyGen(pp): The randomized algorithm KeyGen takes as input a
public parameter pp and outputs a public key pk and a secret key sk.

– σ̂/0 ← Sign↔〈(PK, ski, μi)i∈[�]〉: The interactive protocol Sign↔ is run by a
set of signers.
Start of the Protocol: Each signer i ∈ [�] has a sequence of public keys

PK = (pki′)i′∈[�], a signing key ski, and a message μi.
End of the Protocol: Each signer i ∈ [�] has an aggregate signature σ̂ on

(pki′ , μi′)i′∈[�], or 0 (reject).
– 1/0 ← Vrfy((pki, μi)i∈[�], σ̂): The deterministic algorithm Vrfy takes as input

a set of public keys and messages (pki, μi)i∈[�], and an aggregate signature σ̂,
and it outputs 1 (accept) or 0 (reject).

We require an IAS scheme to be correct and compact, as follows:

Definition 11 (Correctness). An IAS scheme IAS = (Setup,KeyGen,Sign↔,
Vrfy) is correct if for every pp ← Setup(1λ), every {(pki, ski) ← KeyGen(pp)}i∈[�]

and every μ1, . . . , μ� ∈ M, there exists some positive constant C ∈ Z such
that Vrfy((pki, μi)i∈[�], σ̂) = 1 holds with at least probability 1/C, where σ̂ ←
Sign↔〈(PK, ski, μi)i∈[�]〉 and PK = (pki′)i′∈[�].

Definition 12 (Compactness). An IAS scheme IAS = (Setup,KeyGen,Sign↔,
Vrfy) is compact if for every pp ← Setup(1λ), every {(pki, ski) ←
KeyGen(pp)}i∈[�] and every μ1, . . . , μ� ∈ M, it holds that |σ̂| ≤ poly(λ, log �),
where σ̂ ← Sign↔〈(PK, ski, μi)i∈[�]〉 and PK = (pki′)i′∈[�].

As a security notion of IASs, unforgeability is defined, as follows:

Definition 13 (Unforgeability). An IAS scheme IAS = (Setup,KeyGen,
Sign↔,Vrfy) is unforgeable if for any PPT adversary A against IAS, its advan-
tage AdvunforgeIAS,A (λ) := Pr[A wins] is negligible in λ. [A wins] is the event that A
wins in the following security game:

Setup. The challenger generates pp ← Setup(1λ) and (pk∗, sk∗) ← KeyGen(pp)
and gives (pp, pk∗) to A. It initializes a list LS ← ∅.

Queries. A is allowed to access the following oracle:
– The signing oracle OSIGN: Given a signing-query PK = (pki′)i′∈[�] and

(μi′)i′∈[�] (where pkj = pk∗ for some j ∈ [�]), OSIGN does the following:
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1. A and OSIGN execute σ̂ ← Sign↔〈(PK, ski, μi)i∈[�]〉, where OSIGN

behaves as the signer with pk∗, and A behaves as the other signers.
2. If σ̂ �= 0, OSIGN sets LS ← LS ∪ {(pki′ , μi′)}i′∈[�].

Output. A outputs PK∗ = (pk∗
i′)i′∈[�], (μ∗

i′)i′∈[�], and σ̂∗. A wins if it holds that
Vrfy((pk∗

i′ , μ∗
i′)i′∈[�], σ̂

∗) = 1, and pk∗
i = pk∗ ∧ (pk∗

i , μ
∗
i ) /∈ LS for some i ∈ [�].

Appendix B: Identity-Based Non-Interactive Aggregate
Signatures from Lattices

In this section, we describe the definition of identity-based non-interactive aggre-
gate signatures (IBASs) and present a lattice-based IBAS scheme constructed
from our IBS scheme.

Appendix B.1: Syntax and Security Definition of IBAS

Definition 14 (IBAS). An IBAS scheme consists of six polynomial-time algo-
rithms (Setup,KeyGen,Sign,Vrfy,Agg,AggVrfy): For a security parameter λ, let
ID = ID(λ) be an ID space and let M = M(λ) be a message space.

– (pp,msk) ← Setup(1λ): The randomized algorithm Setup takes as input a
security parameter 1λ and outputs a public parameter pp and a master secret
key msk.

– skid ← KeyGen(pp,msk, id): The randomized algorithm KeyGen takes as input
a public parameter pp, a master secret key msk, and an ID id ∈ ID, and it
outputs a signing key skid.

– σ ← Sign(pp, skid, μ): The randomized or deterministic algorithm Sign takes
as input a public parameter pp, a signing key skid, and a message μ ∈ M,
and it outputs a signature σ.

– 1/0 ← Vrfy(pp, id, μ, σ): The deterministic algorithm Vrfy takes as input a
public parameter pp, an ID id ∈ ID, a message μ ∈ M, and a signature σ,
and it outputs 1 (accept) or 0 (reject).

– σ̂ ← Agg((idi, μi, σi)i∈[�]): The randomized or deterministic algorithm Agg
takes as input triplets (idi, μi, σi)i∈[�] of IDs, messages, and signatures and
outputs an aggregate signature σ̂.

– 1/0 ← AggVrfy(pp, (idi, μi)i∈[�], σ̂): The deterministic algorithm AggVrfy takes
as input a public parameter pp, pairs (idi, μi)i∈[�] of IDs and messages, and
an aggregate signature σ̂, and it outputs 1 (accept) or 0 (reject).

An IBAS scheme is required to be correct and compact, as follows:

Definition 15 (Correctness). An IBAS scheme IBAS = (Setup,KeyGen,Sign,
Vrfy,Agg,AggVrfy) is correct if the following holds:

– For every (pp,msk) ← Setup(1λ), every id ∈ ID, every skid ← KeyGen(pp,
msk, id), and every μ ∈ M, it holds that Vrfy(pp, id, μ, σ) = 1, where σ ←
Sign(pp, skid, μ).
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– For every (pp,msk) ← Setup(1λ), every {skidi ← KeyGen(pp,msk,
idi)}i∈[�] ({idi}i∈[�] ⊆ ID), and every μ1, . . . , μ� ∈ M, it holds that
AggVrfy(pp, (idi, μi)i∈[�], σ̂) = 1, where for i ∈ [�], σi ← Sign(pp, skidi

, μi)
and σ̂ ← Agg((idi, μi, σi)i∈[�]).

Definition 16 (Compactness). An IBAS scheme IBAS = (Setup,KeyGen,
Sign,Vrfy,Agg,AggVrfy) is compact if for every (pp,msk) ← Setup(λ), every
{skidi ← KeyGen(pp,msk, idi)}i∈[�] ({idi}i∈[�] ⊆ ID), every μ1, . . . , μ� ∈ M,
it holds that |σ̂| ≤ poly(λ, log �), where σ̂ ← Agg((idi, μi, σi)i∈[�]), and σi ←
Sign(pp, skidi

, μi) for i ∈ [�].

We describe the definition of unforgeability as a security notion of IBASs.

Definition 17 (Unforgeability). An IBAS scheme IBAS = (Setup,KeyGen,
Sign,Vrfy,Agg,AggVrfy) is unforgeable if for any PPT adversary A against IBAS,
its advantage AdvunforgeIBAS,A (λ) := Pr[A wins] is negligible in λ. [A wins] is the event
that A wins in the following security game:

Setup. The challenger generates (pp,msk) ← Setup(1λ) and gives pp to A. It
initializes two lists LK ← ∅, LS ← ∅.

Queries. A is allowed to access the following oracles:
– The key generation oracle OKG: Given a key generation query id ∈ ID,

OKG returns skid ← KeyGen(pp,msk, id) and sets LK ← L∪ {id}. Then, A
is not allowed to submit the same id to OKG twice.

– The signing oracle OSIGN: Give a signing-query (id, μ), OSIGN obtains
skid by using OKG and computes skid ← KeyGen(pp,msk, id), returns
σ ← Sign(pp, skid, μ), and sets LS ← LS ∪ {(id, μ)}.

Output. A outputs ((id∗
i , μ

∗
i )i∈[�], σ̂). A wins if AggVrfy(pp, (id∗

i , μ
∗)i∈[�]) = 1

holds and there exists some j ∈ [�] such that id∗
j /∈ LK and (id∗

j , μ
∗
j ) /∈ LS.

Appendix B.2: Construction from Our IBS scheme

We describe an IBAS scheme based on our IBS scheme. Although its aggregate
signature-size linearly depends on the number of signatures, it is possible to
aggregate multiple signatures without interactive process. Thus, such aggrega-
tion is useful in a situation where it is required to reduce the time-complexity of
generating an aggregate signature.

The IBAS scheme IBAS = (Setup,KeyGen,Sign,Vrfy,Agg,AggVrfy) is con-
structed as follows: For a security parameter, let n = n(λ), m = m(λ),
k = k(λ), γ = γ(λ), δ = δ(λ), κ = κ(λ), M = M(λ) be positive integers,
q = q(λ) be a prime, and η = η(λ) be a positive real number. We define
ID = {0, 1}λ as an ID space and M = {0, 1}∗ as a message space. In addi-
tion, let DH1 := {v | v ∈ {−1, 0, 1}k ∧ ‖v‖1 ≤ κ}, and let H0 : ID → Z

n×k
q ,

H1 : {0, 1}∗ → DH1 be cryptographic hash functions. This scheme uses the
algorithms TrapGen, SampleD in Lemma 1.

Because the Setup and KeyGen of this scheme are the same as those of the
IBS scheme IBS in Sect. 3, we omit to describe these algorithms.
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– σ ← Sign(pp, skid, μ):
1. Let pp = A and skid = Sid.
2. Choose y ← Dm

δ .
3. Compute w ← Ay ∈ Z

n
q .

4. Compute c ← H1(w, id, μ).
5. Compute z ← y + Sidc ∈ Z

m.

6. Output σ = (w,z) with probability min
(

Dm
δ (z)

M ·Dm
S idc ,δ(z)

, 1
)

.

– 1/0 ← Vrfy(pp, id, μ, σ):
1. Parse σ = (w,z).
2. Compute c ← H1(w, id, μ).
3. Output 1 if ‖z‖ ≤ ηδ

√
m∧Az = w+H0(id)·c mod q. Output 0 otherwise.

– σ̂ ← Agg((idi, μi, σi)i∈[�]):
1. Parse σi = (wi ,zi) for i ∈ [�].
2. Compute ẑ ← ∑

i∈[�] zi.
3. Output σ̂ = ((wi)i∈[�], ẑ).

– 1/0 ← AggVrfy(pp, (idi, μi)i∈[�], σ̂):
1. Parse σ̂ = ((wi)i∈[�], ẑ).
2. Compute ci ← H1(wi, idi, μi) for i ∈ [�].
3. Compute ŵ ← ∑

i∈[�] wi.
4. Output 1 if Aẑ = ŵ+

∑
i∈[�] H0(idi)·ci mod q and ‖ẑ‖ ≤ ηδ�

√
m. Output

0 otherwise.

Parameter Setting. To satisfy correctness, we can set the following parameters:
For a security parameter λ, let n � λ be a lattice parameter, let q = poly(λ)
be a prime, and let C0, C1 be positive constants. Due to Lemma 1, we set m ≥
3n log q, γ ≥ C0

√
m · ω(

√
log m)2. In addition, in order to prove the security

of IBAS, we need to set the parameters m, γ s.t. m > λ + n log q/ log (2λγ + 1)
due to the condition of [31, Lemma 5.2]. We set the parameters k = O(n),
κ s.t. 2κ ≥ (

n
κ

)
2O(λ), δ = C1γκ

√
m, η = O(1) s.t. ηδ ≥ (λδ + λγκ)�, and

M = exp (C1γκ
√

m/δ + (γκ
√

m/2δ)2).
Then, Lemma 5 shows the correctness of IBAS. In this paper, we omit to

describe this proof because this lemma can be proven in the same way as the
proof of Lemma 3.

Lemma 5 (Correctness). The IBAS scheme IBAS is correct, under the
parameters of IBAS.

In addition, it is clear that IBAS is non-compact. However, it is shown that
the bit-length of ẑ is at most m�log (�(λδ + λγκ))�, in the same way as the proof
of Lemma 4. Thus, the bit-length of its aggregate signature is shorter than that
of the naive aggregation (σ1, . . . , σ�) ← Agg((idi, μi, σi)i∈[�]).

Furthermore, the following theorem shows the security of our scheme IBAS.

Theorem 3 (Unforgeability). If the SISn,m,q,β assumption holds for β =
2(ηδ+γκ)�

√
m, then the IBAS scheme IBAS is unforgeable in the random oracle

model.

The proof of Theorem 3 is similar to that of Theorem 2. Regarding this proof,
see the full version of this paper.
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Abstract. Debris-Alazard, Sendrier, and Tillich proposed SURF, which
is a code-based signature scheme and enjoys efficient signature genera-
tion and verification (eprint in 2017). The security of this scheme is based
on two problems: one is DOOM (Decoding One Out of Many), and the
other is the plain (U,U+V)-code problem over F2. There are many stud-
ies on the former one but few studies on the latter one. Later the security
of SURF was broken because the hardness of the plain (U,U+V)-code
problem does not hold with considering a notion of the hull.

Then Debris-Alazard et al. proposed Wave as a successor of SURF,
which is known as one of the most promising quantum-resistant signature
schemes (ASIACRYPT 2019). Wave is based on similar problems used
in SURF. Wave uses DOOM and the normalized generalized (U,U+V)-
code problem over F3.

In this paper, we utilize a notion of the Gramian (the determinant of
the Gram matrices) of public keys and analyze the plain (U,U+V)-code
problem over F2. For this purpose, we compute the asymptotic probabil-
ity distribution of Gramians of random matrices. Furthermore, we also
show a way to analyze the normalized generalized (U,U+V)-code prob-
lem over F2. Finally, we apply our analysis to the normalized generalized
(U,U+V)-code problem over F3. By our analysis with Gramian, SURF
is completely broken, however, Wave is not directly threatened.

Keywords: Code-based cryptography · Digital signature scheme ·
(U,U+V)-code problem · Gramian

1 Introduction

1.1 Code-Based Signature Schemes

Digital signature plays a significant role in modern cryptographic applications and
recently it becomes necessary to be quantum-resistant. To build secure digital sig-
nature schemes, first, we have to find quantum-resistant cryptographic problems.

Decoding a linear code is counted as one of those problems and cryptosystems
based on this problem are called code-based. Recently, NIST announced the first
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three quantum-resistant digital signature schemes for standardization. Two of
them are based on lattices while the other is based on hash functions. A code-
based digital signature scheme was proposed as a candidate [7], but unfortunately
not selected. It is still an important problem to build a secure code-based digital
signature scheme.

Courtois, Finiasz, and Sendrier gave the first code-based digital signature
scheme [3]. Its security depends on two problems; one is distinguishing Goppa
codes from random codes and the other is decoding a linear code. However, it
was later discovered that the former problem is not as hard as originally thought.
As a result, the unpractical size of public keys is required for practical security
level. Later its variant was proposed [10] but failed [13].

Aragon, Blazy, Gaborit, Hauteville, and Zémor proposed a new code-based
digital signature scheme recently, whose name is Durandal [1]. By adopting
Lyubashevsky’s approach [11], this scheme enjoys small sizes of signatures and
public keys. Durandal is based on a novel assumption, namely PSSI+ (Product
Spaces Subspaces Indistinguishability). However, this assumption is not studied
adequately and this scheme could leak the secret key information [6].

Debris-Alazard, Sendrier, and Tillich proposed a code-based signature
scheme SURF, which enjoys efficient signature generation and verification [4].
This scheme is based on the GPV construction, which is an improved hash-and-
sign digital signature scheme with trapdoor functions [8]. SURF is based on two
problems: one is DOOM (Decoding One Out of Many) and the other is the plain
(U,U+V)-code problem over F2.

First, DOOM is a kind of a decoding problem as follows:

Given H ∈ F
(n−k)×n
2 , s1, . . . , sq ∈ F

n−k
2 and a sufficiently small w (≤ n),

find (e, i) such that |e| = w and Het = st
i.

There are many studies on DOOM and its related problems [2,14,15].
Second, given linear codes U and V , we define a (U,U+V)-code as follows:

{(u,u + v) : u ∈ U,v ∈ V }.

The plain (U,U+V)-code problem is a decisional problem such that deciding
whether a linear code is a permuted (U,U+V)-code or a random code. This
problem can be converted into the problem of distinguishing a parity check
matrix of a permuted (U,U+V)-code from a random matrix. The parity check
matrix is denoted by

SHP = S
(
HU O
HV HV

)
P

where S is an invertible matrix, P is a permutation matrix, HU , HV are parity
check matrices of U and V , and O is the zero matrix.

In summary, the main idea of SURF is to use the following code-based
function:

fH,w : Sw → F
n−k
2

e �→ eHt
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for H ∈ F
(n−k)×n
2 , a sufficiently small w (≤ n) and Sw = {x ∈ F

n
2 : |x| = w}.

Generally, this function is one way as far as H is random due to the DOOM
problem, and in some cases invertible when H has a particular structure, for
example, H is a parity check matrix of a (U,U+V)-code. Here SHP is random
due to the plain (U,U+V)-code problem, therefore fSHP,w can be considered as
a trapdoor function where S, H and P are the trapdoors. We obtain a signature
of a message m as f−1

SHP,w(h(m)) with a hash function h.
Unfortunately, the security of SURF was broken because the hardness of

the plain (U,U+V)-code problem does not hold with considering the hull of the
code [5]. For a linear code C, the hull of C is defined by the intersection of C
itself and its dual code. Generally, the dimension of the hull of a random code is
not always 0, but that of a permuted (U,U+V)-code is 0 with an overwhelming
probability. Hence if we compute the dimension of the hull of a code, then we
can decide whether a permuted (U,U+V)-code or a random code. They showed
an attack on SURF.

After that, Debris-Alazard, Sendrier, and Tillich proposed Wave [6] as a suc-
cessor of SURF. Wave works over F3, unlike SURF works over F2. Therefore the
security of Wave is based on the normalized generalized (U,U+V)-code problem
over F3 instead of the plain (U,U+V)-code problem over F2. Given linear codes
U and V , the normalized generalized (U,U+V)-code is as follows:

{(a � u + b � v, c � u + d � v) : u ∈ U,v ∈ V }

where � denotes Hadamard product and a,b, c, and d are random vectors which
satisfy

∀i ∈ {1, . . . , n/2}, and aici �= 0 aidi − bici = 1.

The normalized generalized (U,U+V)-code problem is a decisional problem
such that deciding whether a linear code is a permuted normalized generalized
(U,U+V)-code or a random code. As far as we know, there are few studies on
this problem, and no efficient attack against this problem is found.

1.2 Our Contribution

First, we utilize a notion of the Gramian as an indicator for distinguishing the
plain (U,U+V)-code problem. By considering the Gramian in case of Hpk =
SHskP, the effect of the randomizing matrices S and P is canceled and we
obtain the Gramian of a secret key matrix Hsk such that

det(HpkHt
pk) = det(HskHt

sk).

We prove that if we instantiate Hsk with a parity check matrix of (U,U+V)-code,
then we obtain det(HskHt

sk) = 0.
Second, we estimate the distribution of the Gramian of random matrices. In

other words, for each a ∈ Fq, we would like to know

Pr[det(HHt) = a | H ∈ F
m×n
q ].
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Though this distribution seems to be common but has never been analyzed
mathematically. Hence we show an asymptotical formula, and conclude that this
probability approaches around 0.42 in case of q = 2 and a = 1 as n increases.
With such an analysis, we can construct a polynomial-time algorithm that dis-
tinguishes the plain (U,U+V)-code problem over F2.

Third, we deal with the normalized generalized (U,U+V)-code problem over
F2. In this problem, we have to consider the additional secret variables. However,
we prove that this problem is distinguished as well.

Finally, we apply our analysis to the normalized generalized (U,U+V)-code
problem over F3 which Wave is based on. By our analysis with Gramian, SURF
is completely broken, however, Wave is not directly threatened.

2 Preliminaries

2.1 Vectors and Matrices

For a prime number q, we denote the finite field with q elements by Fq for
example F3 denotes {0, 1,−1}. Vectors are denoted by small bold letters (such
as a) and matrices by capital bold letters (such as A).

Vectors are in row notation. Let u,v be two vectors in F
n
q . (u,v) ∈ Fq

denotes their inner product. u � v ∈ F
n
q denotes their Hadamard product such

that (u1v1, . . . , unvn). The Hamming weight of u is denoted by |u|. For a vector
a ∈ F

n
q , Diag(a) denotes the diagonal matrix A ∈ F

n×n
q with its entries given

by a, i.e. for all i, j ∈ {1, . . . , n}, A(i, i) = ai and A(i, j) = 0 for i �= j.
denotes the identity matrix and O denotes the zero matrices. For X ∈ F

m×n
q ,

Xt ∈ F
n×m
q denotes the transpose of X. We also define dim(V ) as the dimension

of a linear space V and rank(X) as the dimension of the vector space generated
by the columns of X.

We define a notion of permutations and their signatures for the definition
of the determinant. Sn denotes the set which is consisted of all permutations
of the set {1, . . . , n}. If σ is achieved by interchanging two entries an odd/even
number of times, σ is called odd/even. The signature of σ is defined to be +1 if
σ is even and −1 if σ is odd, and which is denoted by sgn(σ). Given A ∈ F

n×n
q ,

the determinant of A is defined as follows:

det(A) �
∑

σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)

)
.

Furthermore, we refer to a couple of well-known elementary linear algebraic
results.

Remark 1. For A ∈ F
m×n
q , let B ∈ F

n×n
q and C ∈ F

m×m
q be full rank matrices.

Then we have rank(AB) = rank(CA) = rank(A).

Remark 2. For A ∈ F
m×n
q , B ∈ F

n×m
q and m = n, det(AB) = det(A) det(B).

However, in case of m �= n, det(AB) is not necessarily det(A) det(B).
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Remark 3. For S ∈ F
n×n
q , det(S) = det(St). In addition, we have det(SSt) =

det(S)2 by Remark 2.

2.2 Coding Theory

A linear code of length n and dimension k is denoted by [n, k]-code, which is
defined as a linear subspace V with dimension k of the vector space F

n
q .

In the following, let C be an [n, k]-code. C⊥ denotes the dual of C which is
defined as:

{h ∈ F
n
q : ∀c ∈ C(c,h) = 0}.

We denote hull(C) as a vector space such that C ∩ C⊥.

2.3 (U,U+V)-codes and Problems

Given linear codes U and V of length n/2, we define a (U,U+V)-code as

{(u,u + v) : u ∈ U,v ∈ V }.

The plain (U,U+V)-code problem is defined as deciding whether a certain linear
code is a permuted (U,U+V)-code or a random code.

This problem over F2 is equivalent to the following problem in the light of a
parity check matrix.

Problem 1 (The plain (U,U+V)-code problem over F2). For a random non-
singular matrix S ∈ F

m×m
2 , a random permutation matrix P ∈ F

n×n
2 and Hsk ∈

F
m×n
2 given by (

HU O
HV HV

)

where HU ∈ F
l×(n/2)
2 ,HV ∈ F

m×(n/2)
2 (l < m) are random, distinguish Hpk �

SHskP from a random matrix Hrand ∈ F
m×n
2 .

Remark 4. The notations above such that Hpk and Hsk imply that Hpk is used
as a public key and Hsk is used as a secret key.

Also, we define a normalized generalized (U,U+V)-code as

{(a � u + b � v, c � u + d � v) : u ∈ U,v ∈ V }
where a,b, c and d ∈ F

n/2
q are some random vectors which satisfy the following

conditions:

∀i ∈ {1, . . . , n/2}, and aici �= 0 aidi − bici = 1.

The normalized generalized (U,U+V)-code problem is defined as deciding
whether a certain linear code is a permuted normalized generalized (U,U+V)-
code or a random code.

This problem is equivalent to the following problem in the light of a parity
check matrix.
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Problem 2 (The normalized generalized (U,U+V)-code problem). Let n be an
even integer and let a,b, c and d ∈ F

n/2
q be some random vectors which satisfy

the following conditions:

∀i ∈ {1, . . . , n/2}, and aici �= 0 aidi − bici = 1.

In addition, we take HU ∈ F
l×(n/2)
q and HV ∈ F

m×(n/2)
q at random and

define Hsk ∈ F
m×n
q as follows:

Hsk �
(

HUD −HUB
−HV C HV A

)

where A � Diag(a),B � Diag(b),C � Diag(c), and D � Diag(d).
Then for a random non-singular matrix S ∈ F

m×m
q and a random permu-

tation matrix P ∈ F
n×n
q , distinguish Hpk � SHskP ∈ F

m×n
q from a random

matrix Hrand ∈ F
m×n
q .

3 Gramian

We define a notion of the Gramian and prove some useful properties. In this
section, K denotes F2 or F3.

3.1 Basic Formulae

Definition 1. Given H ∈ F
m×n
q , the Gramian (the determinant of Gram

matrix) of H is defined by det(HHt).

Lemma 1. For any non-singular matrix S ∈ Kn×n, the Gramian of S equals
to 1.

Proof. When K = F2, det(S) = 1. When K = F3, det(S) = 1 or −1. In any
case, we obtain det(SSt) = det(S)2 = 1 by Remark 3.

Remark 5. In case of K is not F2 or F3, this lemma does not hold.

Theorem 1. Suppose that S ∈ Km×m,Hsk ∈ Km×n,P ∈ Kn×n, and Hpk �
SHskP, where S is a non-singular matrix and P is a permutation matrix. Then
we have

det(HpkHt
pk) = det(HskHt

sk).

Proof. By Remark 2, Lemma 1 and a well-known fact that PPt = I for any
permutation matrix P, we can obtain:

det(HpkHt
pk) = det((SHskP)(PtHt

skS
t))

= det(SHsk(PPt)Ht
skS

t)

= det(S) det(HskHt
sk) det(St)

= det(SSt) det(HskHt
sk)

= det(HskHt
sk).
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We also have the following theorem:

Theorem 2. Let the notations be the same as above, then we have

rank(HpkHt
pk) = rank(HskHt

sk).

Proof. By Remark 1, we can obtain as above:

rank(HpkHt
pk) = rank((SHskP)(PtHt

skS
t))

= rank(SHsk(PPt)Ht
skS

t)

= rank(S(HskHt
sk)St)

= rank(HskHt
sk).

3.2 Distribution of Gramian

As far as we know, the distribution of the Gramian of random matrices is not
studied adequately. Here we show an asymptotic analysis over F2 as follows:

Theorem 3. For a random matrix A ∈ F
m×n
2 , the probability that the Gramian

of A equals to 1 approaches the following proportion asymptotically as n
increases:

Pr
[
det(AAt) = 1

] −−−−→
n→∞

(
1 − 1

2

) (
1 − 1

23

) (
1 − 1

25

)
· · ·

(
1 − 1

2 m or m−1

)
.

Proof. We prove this theorem by demonstrating that AAt approaches a random
symmetric matrix asymptotically. In this proof, vectors are column notation. We
can write

A =

⎛
⎜⎝

v1

...
vm

⎞
⎟⎠

where v1, · · · ,vm ∈ F
n
2 and

det(AAt) = det

⎛
⎜⎜⎜⎝

(v1,v1) (v1,v2) · · · (v1,vm)
(v2,v1) (v2,v2) · · · (v2,vm)

...
(vm,v1) (vm,v2) · · · (vm,vm)

⎞
⎟⎟⎟⎠ .

First, we prove the following lemma:

Lemma 2. For arbitarary i, j ∈ {1, . . . , m},

Pr [(vi,vj) = 1] =

⎧⎪⎨
⎪⎩

1
2

i = j

1
2

− 1
2n+1

i �= j
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Proof. When i = j, it is easy to show that (vi,vi) = |vi| mod 2. Then we
obtain:

Pr [(vi,vi) = 1] =
{vi : |vi| = 1 mod 2}

2n

=

∑
i : odd number

(
n

i

)

2n

=
2n−1

2n

=
1
2
.

When i �= j, we divide the problem into whether vi = 0 or vi �= 0. In the
former case, (vi,vj) definitely equals to 0. In the latter case, the elements of
vi contains at least one 1 and let such a set of indices of vi be Λ. Then we
have (vi,vj) = |vjΛ| where vjΛ denotes a vector whose elements are vj on Λ.
Therefore for a certain vi �= 0 and λ which denotes the number of elements of
Λ,

Pr[(vi,vj) = 1] =
{vjΛ : |vjΛ| = 1 mod 2}

2λ

=

∑
i : odd number

(
λ

i

)

2λ

=
2λ−1

2λ

=
1
2
.

Hence we obtain:

Pr [(vi,vj) = 1] = Pr [vi �= 0] · 1
2

= (1 − 1
2n

) · 1
2

=
1
2

− 1
2n+1

.


�
By this lemma, all of the elements of AAt approach to 1

2 asymptotically as
n increases.

Second, we consider the independence of the elements. Here we remark on
their pairwise independence. Without loss of generality, we would like to prove
the following three patterns where i, j, k are different indices:
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Pr[(vi, vi) = 1 ∩ (vj , vj) = 1] −−−−→
n→∞ Pr[(vi, vi) = 1] · Pr[(vj , vj) = 1] (1)

Pr[(vi, vi) = 1 ∩ (vi, vj) = 1] −−−−→
n→∞ Pr[(vi, vi) = 1] · Pr[(vi, vj) = 1] (2)

Pr[(vi, vj) = 1 ∩ (vi, vk) = 1] −−−−→
n→∞ Pr[(vi, vj) = 1] · Pr[(vi, vk) = 1]. (3)

By the above lemma, the right sides of (1) to (3) approach 1
4 asymptotically.

We can check easily the left side of (1) equals 1
4 . As for (2), we have vi has odd

number 1s from the first condition of the left side. From the second condition,
the probability of (vi, vj) = 1 is 1

2 , so the left side probability equals to 1
4 . As

for (3), considering the above lemma as well, we obtain the left side probability
equals to 1

4 (1 − 1
2n ).

Finally, we refer to a kind of counting symmetric matrices theorem.
MacWilliams showed the following [12]:

Theorem 4. Let N(t, r) denote the number of symmetric matrices of size t× t,
rank r, with entries in a finite field GF (q), q = pn.

N(t, 2s) =
s∏

i=1

q2i

q2i − 1
·
2s−1∏
i=0

(qt−i − 1) (2s ≤ t),

N(t, 2s + 1) =
s∏

i=1

q2i

q2i − 1
·

2s∏
i=0

(qt−i − 1) (2s + 1 ≤ t).

By this theorem,

Pr
[
det(X) = 1 | X ∈ F

2s×2s
2 is symmetric matrix

]
=

N(2s, 2s)
2 · 22 · · · · · 22s−1 · 22s

=
22 · 24 · · · · · 22s−2 · 22s

(22 − −1)(24 − −1)(22s−2 − 1)(22s − 1)

· (22s − 1)(22s−1 − 1) · · · (22 − −1)(2 − −1)
2 · 22 · · · · · 22s−1 · 22s

=
(22s−1 − 1)(22s−3 − 1) · · · (23 − −1)(2 − −1)

22s−1 · 22s−3 · · · · · 23 · 2

=
(

1 − 1
2

) (
1 − 1

23

)
· · ·

(
1 − 1

22s−3

) (
1 − 1

22s−1

)
,

and we obtain the following equation as well:

Pr
[
det(X) = 1 | X ∈ F

2s+1×2s+1
2 is symmetric matrix

]

=
(

1 − 1
2

) (
1 − 1

23

)
· · ·

(
1 − 1

22s−1

) (
1 − 1

22s+1

)
.

This concludes the proof.
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We would also like to mention the well-known theorem as follows:

Theorem 5.

|{X ∈ F
m×m
q | X is invertible}| = (qm − qm−1) · · · (qm − 1).

By this theorem, for A ∈ F
m×m
2 , the probability distribution of the Gramian

of A equals to the following proportion:

Pr
[
det(AAt) = 1

]
= Pr [det(A) = 1]

=
(2m − 2m−1) · · · (2m − 1)

(2m)m

=
(

1 − 1
2

) (
1 − 1

22

)
· · ·

(
1 − 1

2m

)
.

Let G(m,n) be Pr
[
det(AAt) = 1|A ∈ F

m×n
q

]
. We conduct some experi-

ments in order to estimate G(10, n) for n = 10, 12, 14, 16, 18 and G(100, n) for
n = 100, 102, 104, 106, 108. We compute the average of the determinants of one
million random matrices for each (m,n).

The results of Table 1 and Fig. 1 for G(10, n) and of Table 2 and Fig. 2 for
G(100, n) are on the next page. It shows that they converge to around 0.42
quickly. We use these results in the following section.

Table 1. G(10, n)

N 10 12 14 16 18 ∞
Theoretic 0.28907 - - - - 0.41969

Experimental 0.28907 0.38533 0.41099 0.41751 0.41915 -

Fig. 1. G(10, n)
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Table 2. G(100, n)

N 100 102 104 106 108 ∞
Theoretic 0.28878 – – – – 0.41942

Experimental 0.28878 0.38505 0.41072 0.41724 0.41887 –

Fig. 2. G(100, n)

4 The Plain (U,U+V)-code Problem over F2.

Debris-Alazard et al. analyze SURF with a notion of the hull [5]. Here, we
produce another analysis with the Gramian.

Proposition 1. For any block matrix X ∈ F
(l+m)×(l+m)
q given by

⎛
⎜⎜⎝

A B

C O

⎞
⎟⎟⎠

where A ∈ F
l×l
q ,B ∈ F

l×m
q and C ∈ F

m×l
q , det(X) equals to 0 in case of l < m.

Proof. By the pigeonhole principle, for any σ ∈ Sl+m, {σ(l + 1), . . . , σ(l + m)}
contains at least one element of {l + 1, . . . , l + m}. For such an element σ(i), we
have xi,σ(i) = 0. Hence, the definition of the determinant shows that all additive
terms in the expansion of det(X) equal 0, and the sum of those is as well.

Theorem 6. There exists an algorithm that solves the plain (U,U+V)-code
problem in polynomial time.
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Proof. By Theorem 1 and Proposition 1, we have

det(HpkHt
pk) = det(HskHt

sk)

= det
((

HU O
HV HV

) (
Ht

U Ht
V

O Ht
V

))

= det
(
HUHt

U HUHt
V

HV Ht
U O

)

= 0.

On the other hand, det(HrandHt
rand) is not always 0.

We can show another proof using the two propositions: one is the following
relationship between the hull and the Gramian [9].

Proposition 2. Let H ∈ F
m×n
2 be a parity check matrix of an arbitrary code C.

Then we can obtain:

rank(HHt) = m − dim(hull(C)).

The other is the proposition of the original analysis of SURF [5]:

Proposition 3. For HU ∈ F
l×(n/2)
2 and HV ∈ F

m×(n/2)
2 , let Hsk ∈ F

m×n
2 be

same as problem 1 and l ≤ m. If Hsk is a parity check matrix of an arbitrary
code C, then we have with probability 1 − O(2l−m)

dim(hull(C)) = m − l.

Proof (Theorem 6) By Theorem 2 and the two propositions above, we have

rank(HpkHt
pk) = rank(HskHt

sk)

= m − dim(hull(C))
= l < m.

Then we have det(HpkHt
pk) = 0.

5 The Normalized Generalized (U,U+V)-code Problem
over F2

In the binary case (q = 2), since aici �= 0, we obtain ai = 1 and ci = 1 and
di − bi = 1. Thus, we have A = C = I and B + D = I. In addition, since B and
D are binary diagonal matrices, we also have B2 = B and D2 = D. Hence, we
obtain:
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det(HpkHt
pk) = det(HskHt

sk)

= det
((

HUD HUB
HV HV

) (
DHt

U Ht
V

BHt
U Ht

V

))

= det
(
HU (D + B)Ht

U HU (D + B)Ht
V

HV (D + B)Ht
U O

)

= det
(
HUHt

U HUHt
V

HV Ht
U O

)

= 0.

Therefore, we reach the following theorem by Theorem 6:

Theorem 7. There exists an algorithm that solves the normalized generalized
(U,U+V)-code problem over F2 in polynomial time.

6 Ternary Case

The security proof of Wave depends on two problems [6]. One is DOOM (Decod-
ing One Out of Many) and the other is the normalized generalized (U,U+V)-code
problem over F3. Our analysis with the Gramian does not seem to be efficient as
the previous section, since the determinant does not vanish and even four secret
variables A,B,C, and D remain as follows:

det(HpkHt
pk) = det(HskHt

sk)

= det
((

HUD −HUB
−HV C HV A

) (
DHt

U −CHt
V

−BHt
U AHt

V

))

= det
(

HU (D2 + B2)Ht
U −HU (AB + CD)Ht

V

−HV (AB + CD)Ht
U HV (A2 + C2)Ht

V

)
.

If we can reduce the number of secret variables, then we could reduce the
number of secret keys. We can transform this into a simpler one by the following
theorem:

Theorem 8. Let a matrix Δ be −(AB + CD). Then we obtain:

det(HpkHt
pk) = det

(−HU (Δ2 + I)Ht
U HUΔHt

V

HV ΔHt
U −HV Ht

V

)
.

Proof. In the ternary case (q = 3), among all 81(= 34) tuples of (ai, bi, ci, di),
there are only 12 tuples which satisfies aici �= 0 and aidi − bici = 1. Table 3
shows these tuples and additional 3 values corresponding to A2 +C2, AB+CD
and D2 + B2.

From this table, we can easily check a2
i +c2i = −1 and −(−(aibi+cidi))2−1 =

b2i + d2i . Hence we can obtain A2 + C2 = −I and −Δ2 − I = D2 + B2, then this
concludes the proof.
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Table 3. Tuples of (ai, bi, ci, di)

ai bi ci di a2
i + c2i −(aibi + cidi) b2i + d2i

1 0 1 1 -1 -1 1

1 1 1 -1 -1 0 -1

1 -1 1 0 -1 1 1

1 0 -1 1 -1 1 1

1 1 -1 0 -1 -1 1

1 -1 -1 -1 -1 0 -1

-1 0 1 -1 -1 1 1

-1 1 1 1 -1 0 -1

-1 -1 1 0 -1 -1 1

-1 0 -1 -1 -1 -1 1

-1 1 -1 0 -1 1 1

-1 -1 -1 1 -1 0 -1

By this theorem, we can reduce the number of random variables. However,
the Gramian cannot be computed simply. By our analysis with Gramian, SURF
is completely broken, however, Wave is not directly threatened.

7 Conclusion

In this work, we have introduced another view on the (U,U+V)-code problem.
However, our approaches with the Gramian can be used only over binary or
ternary fields, because concerning integer fields larger than 3, the squared deter-
minant of randomizing matrix S does not always vanish. Wave can be instanti-
ated with such large integer fields like F5 and F7, so this remains an important
problem.

We have shown the distribution of random Gramians only asymptotically.
Hence deducing a formula of this value is an open problem. This problem is
interesting not only cryptographically. In mathematics, random matrices over R
and C are studied well whereas those over finite fields are not studied adequately.
Therefore our proposed problem is important for mathematics.
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MJCR2113 and JSPS KAKENHI JP21H04879.
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Abstract. Creating a good deep learning model is an art which requires
expertise in deep learning and a large set of labeled data for training
neural networks. Neither is readily available. In this paper, we intro-
duce a method that enables us to recover messages of LWE/LWR-based
PKE/KEMs using simple multilayer perceptron (MLP) models trained
on a small dataset. The core idea is to extend the attack dataset so that
at least one of its traces has the ground truth label to which the models
are biased towards. We demonstrate the effectiveness of the presented
method on the examples of CRYSTALS-Kyber and Saber algorithms
implemented in ARM Cortex-M4 CPU on nRF52832 system-on-chip
supporting Bluetooth 5.2. We use amplitude-modulated EM emanations
which are typically weaker and noisier than power or near-field EM side
channels, and thus more difficult to exploit.

Keywords: Public-key cryptography · Post-quantum cryptography ·
CRYSTALS-Kyber · Saber · LWE/LWR-based KEM · Side-channel
attack · EM analysis

1 Introduction

Amplitude-modulated electromagnetic (EM) emanations are a type of side chan-
nels which occur in mixed-signal chips with an on-board antenna. As a result
of various coupling effects, signals from computations in the digital part of the
chip may be modulated by the CPU clock signal, leak to the analog part of the
chip, modulated again by the radio-frequency block, and eventually transmitted
by the antenna.

Side-channel attacks based on amplitude-modulated EM emanations are
more stealthy than power or near-field EM attacks because the signal transmitted
by the on-chip antenna escapes hardware-level countermeasures like decoupling
capacitors (used to smooth sharp changes in power supply voltage) and Faraday
shields (used to block EM fields). Furthermore, since amplitude-modulated EM
emanations are intertwined into the carrier signal, they can be captured at a
considerably farther distance than the near-field EM side channels. For exam-
ple, in [6], a successful attack on AES on 15 m distance from the device under
attack was demonstrated.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S.-H. Seo and H. Seo (Eds.): ICISC 2022, LNCS 13849, pp. 450–471, 2023.
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However, amplitude-modulated EM emanations are weaker and typically
noisier than power or near-field EM side channels, and thus more difficult to
exploit. They require expensive equipment to capture and typically need post-
processing e.g. by averaging multiple repeated measurements to increase the
signal-to-noise ratio. For example, 500 and 1000 measurements representing the
same encryption were averaged in the attacks on AES presented in [7] and [6],
respectively.

Such excessive repetitions are undesirable in profiling deep learning (DL)-
based side-channel attacks because they increase the size of training and attack
sets by the corresponding factor. While the attack set is typically small, the
training set is large. Minimizing the size of the latter is particularly important
in the attacks on public key encryption algorithms since, in this case, the device
under attack can be used for profiling [17] (since the public key is known). Profil-
ing on the device under attack eliminates the problem of intra-device variability
and maximizes the prediction accuracy of DL models. If the size of the secret
to be recovered is large, achieving high prediction accuracy is crucial. For exam-
ple, the messages of CRYSTALS-Kyber, which has been recently selected by
the NIST as a new public-key encryption and key-establishment algorithm to be
standardized [14], are 256-bit. So, the byte prediction accuracy should be at least
0.98 to ensure 0.9832 = 0.52 message recovery probability. It is very difficult to
achieve 0.98 byte prediction accuracy unless the model is trained on traces from
the device under attack [17].

However, if attackers wish to use the device under attack for profiling, they
face the problem of training DL models on a small dataset, since the access
time to the device under attack is typically limited. Training a good model on a
small dataset is not easy, especially if the number of classes to be distinguished
is large, e.g. 256 classes in a byte classification with one-hot encoding. In such
cases, training on a small dataset usually results in biased models which predict
different classes non-uniformly. It has been observed that some labels might be
strongly preferred [5].

Our contributions: In this paper, we introduce a new message recovery
method, called multi-bit error injection, that enables us to extract messages of
LWE/LWR-based PKE/KEM algorithms from amplitude-modulated EM side
channels using biased DL models trained on a small dataset.

To recover the message m encrypted into a ciphertext c, we extend the attack
set from a single trace captured with c as input to 256 traces captured with
ce as inputs, for all e ∈ {0, 1, . . . , 255}. The ciphertexts ce are constructed so
that they decrypt to messages me in which the error e is injected into each
byte of m. The errors are injected using the bit-flipping technique from [21].
By flipping all possible combinations of multiple bits of each byte, we create an
attack set in which, for each byte, at least one trace has the ground truth label
to which the models are biased towards. This makes it possible to utilize weak
and noisy amplitude-modulated EM side channels. In its essence, the multi-bit
error injection method converts a traditional non-differential side-channel attack
into a differential one, as shown in Fig. 1. Since the attack set is several orders of
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Fig. 1. The proposed multi-bit error injection method converts a non-differential side-
channel attack (SCA) into a differential one.

magnitude smaller than the training set, the total number of traces required for
a successful attack is minimized. This is important for attacks that do profiling
on the device under attack.

We demonstrate the effectiveness of the multi-bit error injection method on
the examples of CRYSTALS-Kyber and Saber algorithms implemented in ARM
Cortex-M4 CPU on nRF52832 system-on-chip supporting Bluetooth 5.2.

Our experiments show that, for both algorithms, we can recover messages
from the profiling device without enumeration. We need enumeration up to 232

to recover messages from a different device.
A successful message recovery trivially implies the session key recovery. Fur-

thermore, by recovering messages for chosen ciphertexts constructed using known
methods, e.g. [17,21,22,24], the secret key can be recovered as well. We demon-
strate the secret key recovery on the example of Saber.

Paper Organization: The rest of this paper is organized as follows. Section 2
describes previous work related to the side-channel analysis of LWE/LWR-based
PKE/KEM algorithms. Section 3 gives background on CRYSTALS-Kyber and
Saber algorithms and known vulnerabilities of their implementations. Section 4
presents the experimental setup. Sections 5 and 6 describe how we train neural
networks and perform message recovery. Experimental results are summarized
in Sect. 7. Section 8 concludes the paper.

2 Previous Work

Since the launch of NIST PQC standardization process in 2016 [19], timing,
power and near field EM side-channel attacks on software and hardware imple-
mentations of NIST PQC candidates have received considerable attention.

In [25], a message recovery attack using a single power trace from an
unprotected encapsulation part of several lattice-based round 3 candidates was
presented. In [22], near field EM message recovery attacks on some round 3
candidates were described. In [12], timing attacks were considered.
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In [21], near field EM secret key recovery attacks on unprotected imple-
mentations of three LWE/LWR-based NIST PQC finalists were presented. It
was shown how masked implementations can be broken by attacking each share
individually. In [17], message and secret key recovery attacks on a first-order
masked implementation of Saber KEM through DL-based power analysis were
demonstrated. In this attack, the DL models recover messages directly, without
explicitly extracting random masks. In [18], it was shown that it is possible to
recover Saber secret key even if masking is complemented with shuffling. In [27],
power/near field EM secret key recovery attacks targeting the execution of the
re-encryption on some round 3 candidates was described. In [2], side-channel
attacks on two implementations of masked polynomial comparison, applied to
Kyber, are presented. In [32], secret key recovery attack on a reference imple-
mentation of Kyber-512 by simple power analysis with chosen ciphertexts was
demonstrated. In [24] another secret key recovery attack on Kyber using near
field EM was presented.

The resistance of NIST PQC finalists to amplitude-modulated EM emana-
tions has been investigated much less compared to timing, power and near-field
EM side-channels. The first attack on Saber KEM has been presented in [29].
This attack uses the same C implementation of Saber KEM and the same tar-
get device as in our experiments. The C implementation is compiled with the
optimization level -O0 (no optimization). Using amplitude-modulated EM ema-
nations during the PKE decryption step of decapsulation, each bit of a message
is recovered from the profiling device with probability 0.91 on average. Thus, the
probability to recover a complete message is small, only 0.91256 = 0.33 · 10−12.
In contrast, for the optimization level -O0, the method presented in this paper
can recover messages with the probability 1 from the profiling device and with
the probability 0.74 from a different device. We also show successful results
for -O3 optimization level (the highest) for both, Saber and CRYSTALS-Kyber
algorithms.

The presented method makes use of the bit-flip technique introduced in [21]
for breaking implementations of LWE/LWR-based PKE/KEMs protected by
the shuffling countermeasure. In [21], single message bits are flipped in order to
quantify the effect of the change on the message Hamming weight (HW). The
decrease/increase of the HW implies that the original message bit has the value
1/0. Note that the purpose of flipping bits in [21] is quite different from the
one in the presented method. We inject multi-bit errors to match the modified
message bytes with labels preferred by the DL models.

3 Background

This section briefly CRYSTALS-Kyber and Saber algorithms and vulnerabilities
discovered in their implementations so far. More detailed specifications can be
found in [23] and [8].
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Fig. 2. Pseudocode of CPA-PKE algorithms.

Fig. 3. Pseudocode of CCA-KEM algorithms.

3.1 LWE/LWR Based CCA-secure KEMs

CRYSTALS-Kyber [23] and Saber [8] are CCA-secure key encapsulation mecha-
nisms which apply the Fujisaki-Okamoto transform [9] on CPA-secure public key
encryption schemes. The security of CRYSTALS-Kyber relies on the hardness of
Module Learning With Error (Mod-LWE) problem. The security of Saber relies
on the hardness of (Mod-LWR) problem.

Figure 2 and 3 show pseudocodes of CPA-PKE and CCA-KEM algo-
rithms, respectively. CPA-PKE contains three algorithms: key generation, CPA-
PKE.KeyGen; encryption, CPA-PKE.Enc; and decryption, CPA-PKE.Dec.
CCA-KEM also contains three algorithms: key generation, CCA-KEM.KeyGen;
encapsulation, CCA-KEM.Encaps; and decapsulation, CCA-KEM.Decaps.

Let Zq be the ring of integers modulo a positive integer q and Rq be the
quotient ring Zq[X]/(Xn + 1). Both Saber and Kyber work with vectors of ring
elements in Rl

q, where l is an integer representing the security level between 2
and 4. In this paper we focus on the security level l = 3
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Fig. 4. C code of POL2MSG() procedure of Saber.PKE.Dec [1] (left) and poly tomsg()

procedure of Kyber.PKE.Dec [3] (right). The lines marked in red show the location of
vulnerabilities. (Color figure online)

The term x ← χ(S) denotes sampling x from a distribution χ over a set S.
The uniform distribution is denoted by U . The centered binomial distribution
with parameter μ is denoted by βµ. The term βµ(Rl×k

q ; r) induces a matrix in
Rl×k

q in which the coefficients of polynomials of Rq are sampled deterministically
from βµ using seed r.

The functions G and H are SHA3-512 and SHA3-256 hash functions, respec-
tively. The KDF represents key derivation function. The operation “×” denotes
the polynomial multiplication in Rq. The encode function encodes each message
byte into a corresponding polynomial coefficient in Rq, while the inverse function
decode maps each polynomial coefficient in Rq into a message byte.

.

3.2 Known Vulnerabilities

Several vulnerabilities have been discovered in the implementations of LWE/
LWR-based PKE/KEMs, including incremental storage vulnerability [21], weak-
ness of re-encryption operation in Fujisaki-Okamoto transform [27] and weakness
of polynomial multiplication [16]. For CRYSTALS-Kyber, secret key information
has also been extracted through Barrentt reduction procedure [15,26].

The previous amplitude-modulated EM emanation-based side channel attack
presented in [29] exploited the vulnerability of POL2MSG() message packing pro-
cedure of the Saber implementation [1] shown in Fig. 4 to recover messages with
the average bit accuracy of 0.91. This accuracy is not sufficient to extract com-
plete messages with a high probability.

In this paper, we show that the same vulnerability can be exploited more
effectively with the help of the new message recovery method. To demonstrate
the generality of the method, we also apply it to CRYSTALS-Kyber. Figure 4
shows the location of vulnerability in the poly tomsg() message packing proce-
dure of the CRYSTALS-Kyber implementation [3] which we exploit.
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Fig. 5. Equipment for acquiring amplitude-modulated EM emissions.

4 Trace Acquisition

This section describes how we capture amplitude-modulated EM emanations,
pre-process resulting traces, and select intervals of interest.

4.1 Experimental Setup

The equipment used in our experiments is shown in Fig. 5. The target device is an
nRF52832 chip mounted on a Nordic Semiconductors nRF52 DK development
board. The chip supports Bluetooth 5.2 with a data transmission rate of 2Mbps.
The option nRF5 SDK 14.2.0 17b948a is used for the radio setup.

The 32-bits ARM Cortex-M4 CPU contained in nRF52832 is programmed to
the C implementation of Saber from [1] and CRYSTALS-Kyber from [3] with-
out any countermeasures against power/EM analysis. The C implementations
are complied using gcc-arm-none-eabi-8-2018-q4-major with two different
optimization options: -O0 (no optimization) and -O3 (the highest). The CPU
runs at 64MHz.

The receiver is an Ettus Research USRP N210 software defined radio (SDR).
The center receiving frequency is set to 2fclock + fBluetooth = 2.528GHz, where
fBluetooth = 2.4GHz is the Bluetooth channel center frequency and fclock =
64MHz is the frequency of the CPU clock.

The signals are sampled with the sampling frequency of 25MHz, which is the
maximum sampling frequency of USRP N210 SDR 25MHz (limited by interface).
This implies that we sample 25/64 = 0.39 points per clock cycle. The signals
are transmitted from the target device to the receiver through an SMA coaxial
cable.

Note that, in order to make a fair comparison with the amplitude modulated
EM-based side-channel attack on Saber from [29], we use the same target device,
the same equipment for trace acquisition, and the same implementation of Saber
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as in [29]. In this way, we can demonstrate that the improvement in the success
probability is due to the new method for message recovery rather than other
factors. Also note that the implementation of Saber [1] used in the attack of [29]
is not the latest version any longer. In the latest version [13], POL2MSG() proce-
dure is called POLmsg2BS(). The presented message recovery method is equally
applicable to the latest version because POLmsg2BS() also has a vulnerability, as
shown in [20].

4.2 Trace Pre-processing

Amplitude-modulated EM emanations are very noisy and thus need to be pre-
processed to increase the signal-to-noise (SNR) ratio. Similarly to [29], we pre-
process all traces by averaging 100 repeated measurements. This improves the
SNR by a factor of ten,

√
100 = 10.

In our experiments, we carry out the attacks on both, the profiling device and
a different device, shown in Fig. 5. To reduce the negative effect of intra-device
variability in the latter case, we apply two scaling methods: min-max scaling
and standardization (also known as variance scaling [33]).

Let R denote the set of real numbers. Given a set of traces T with elements of
type T = (τ1, . . . , τw) ∈ R

w, each trace T ∈ T is scaled to T ′ = (τ ′
1, . . . , τ

′
w) ∈ R

w

such that

τ ′
i =

⎧
⎪⎪⎨

⎪⎪⎩

τi − τmin

τmin − τmax
, for min-max scaling

τi − μi

σi
, for standardization,

where τmin and τmax are the minimum and the maximum data points in T , and
μi and σi are the mean and standard deviation of traces in T at the ith trace
point, for all i ∈ {1, . . . , w}.

4.3 Selecting Intervals of Interest

To exploit the vulnerability of POL2MSG() procedure of Saber, we first locate the
part of traces representing the execution of POL2MSG() during the decapsulation
of the message. The message is computed at the step 1 of CCA-KEM.Decaps()
in Fig. 3, when the ciphertext c is decrypted by CPA-PKE.Dec().

According to the C implementation of POL2MSG() shown in Fig. 4, we expect
to see 32 similarly looking patterns representing the packing of each block of
eight message bits into a byte. The top part of Fig. 6(a) shows a segment of trace
containing POL2MSG() procedures. The top part of Fig. 6(b) shows a zoomed-in
view of the first four message bytes in POL2MSG().

Once the approximate position of POL2MSG() is determined, the precise inter-
vals are located by test vector leakage assessment (TVLA) method [11], which
applies Welch’s t-test [31] to compare the means of two sets of measurements. For
each byte i ∈ {0, 1 . . . , 31}, we partition the measurements T into two sets, T0
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Fig. 6. (a) A trace representing the execution of POL2MSG() procedure of Saber (top)
and t-test results for 32 message bytes (bottom) for 30K traces; (b) A zoomed-in view
on the first four message bytes of POL2MSG().

Fig. 7. A trace representing the execution of poly tomsg() procedure of CRYSTALS-
Kyber (top) and t-test results for 32 message bytes (bottom) for 30K traces.

and T1, containing traces in which the message byte, mj [i], has a value smaller
than 128, or larger than 128, respectively:

T0 = {Tj ∈ T | mj [i] < 128},

T1 = {Tj ∈ T | mj [i] > 128},

for all j ∈ {1, . . . , |T |}, where mj [i] is ith byte of the message m in trace Tj .
The bottom part of Fig. 6(a) shows the results of the t-test carried out on

a set of 30K traces with random messages and random keys. Each trace in the
set is an average of 100 repeated measurements. We can clearly see 32 peaks
corresponding to the processing of 32 message bytes by POL2MSG() procedure.
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In the zoomed-in view of Fig. 6(b) bottom, we can see that the t-test peaks
are located at the end of the interval of the corresponding byte. This is expected
since, according to the implementation of POL2MSG(), the packed message byte is
stored in memory after the inner for-loop is completed (see line 4 of POL2MSG()
in Fig. 4). The intervals of traces denoted by “Byte 0” etc. in Fig 6(b) are used
for training of the neural networks at the profiling stage.

The selection of the intervals of interest for CRYSTALS-Kyber is done simi-
larly. Figure 7 shows a trace representing the execution of poly tomsg() proce-
dure of CRYSTALS-Kyber and t-test results for all message bytes.

5 Profiling Stage

This section describes how we train neural networks at the profiling stage.
Let I denote the set of real numbers within the interval [0,1], I := {x ∈

R | 0 ≤ x ≤ 1}.
We use w-point segments of traces containing the execution of the ith message

byte by POL2MSG()/poly tomsg() to train neural networks of type Ni : Rw →
I
256 which predict the value of the ith message byte, for all i ∈ {0, 1, . . . , 31}. The

set of training traces, TT , is captured for random messages and random keys.
Message byte values are used as labels for traces. Using the Hamming weight of
bytes as labels is less effective in our experience.

Table 1 shows the architecture of neural networks in our experiments. The
network’s input size is w = 160 and w = 20 points for the Saber -O0 and
-O3 implementations, respectively, and w = 50 for the CRYSTALS-Kyber -O3
implementation.

During training, we use Nadam optimizer with the learning rate of 0.0001 and
numerical stability constant epsilon=1e-8. Categorical cross-entropy is used as a
loss function to evaluate the network classification error. The number of epoch
is set to 100 with a batch size 128. The dropout rate is set to 0.2. 10% traces
are used for validation. Only the model with the highest validation accuracy is
saved.

Note that, in principle, the profiling can also be done using templates, as in
the near field EM-based template attack of [21]. However, due to the high noise
level of amplitude-modulated EM side channels, using templates for profiling of
amplitude-modulated EM side-channel attacks is at least an order of magnitude
less effective than the DL-based approach [30].

6 Attack Stage

In this section, we present the new message recovery method and describe how
the session and secret keys can be derived from the recovered messages.
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Table 1. The architecture of MLPs used for message recovery. The input size is w =
160, 20 and 50 for Saber -O0, Saber -O3 and Kyber -O3 implementations, respectively.

Layer (Type) Output Shape Parameter #

Input w 0

BatchNormalization1 w 4w

Dense1 (ReLU) 512 82432

Dense2 (ReLU) 256 131328

Dense3 (ReLU) 256 65792

Dropout1 256 0

Output (Softmax) 256 65792

6.1 Multi-bit Error Injection Method

Let m = (m[0],m[1], . . . ,m[31]) be a message to be recovered, where m[i] is
the ith message byte, and c = (u, v) be a properly generated ciphertext which
contains m.

We create 255 modified versions of c, denoted by ce, such that CPA-
PKE.Dec() decrypts ce to

me = (m[0] ⊕ e,m[1] ⊕ e, . . . , m[31] ⊕ e), (1)

where e ∈ {1, 2, . . . , 255} is the error. The same error is injected into all message
bytes in parallel. The original ciphertext c corresponds to the error-free case,
c = c0.

The modified ciphertexts ce are created by changing the coefficients of v so
that, for every message byte i ∈ {0, 1, . . . , 31}, all bits of m[i] in which the 8-bit
binary expansion of e has the value 1 are flipped. To flip a message bit j, the value
of the center of the integer ring Zq is subtracted from the jth coefficient of v, for
any j ∈ {0, 1, . . . , 255}. Since the message polynomial is only additively hidden
within v (see line 5 of CPA-PKE.Enc()), this results in a ciphertext decrypting
to a message equal to the original message m with the jth bit flipped [21].

Next we acquire 256 attack traces TA = {T0, T1, . . . , T255} captured during
the decapsulation of the chiphertext ce by the device under attack, for all e ∈
{0, 1, . . . , 255}. For each message byte i ∈ {0, 1, . . . , 31}, the w-point segments
containing the processing of m[i] by the message packing procedure are located
in TA and extracted. The extracted trace segments are given as input to the
MLP model Ni trained at the profiling stage.

For each Te ∈ TA, the model Ni outputs a score vector Si,e = Ni(Te) in
which the value of the lth element, Si,e[l], is the probability that me[i] = l in Te,
for l, e ∈ {0, . . . , 255}.

The most likely label for m[i] among 256 candidates is decided as:

l̃ = arg max
l∈{0,1,...,255}

(
255∏

e=0

Si,e[l ⊕ e]).
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If l̃ = m[i], the classification is successful. The condition l̃ = m[i] can be verified
by checking if the rank of the message byte i, ranki, is zero.

Since we inject all possible multi-bit errors into each message byte i ∈
{0, 1, . . . , 31}, for every i, the ground truth labels of 256 traces of TA are mutu-
ally disjoint. Therefore, at least one of the traces of TA has the label preferred
by the model Ni for every i.

6.2 Session Key Recovery

Given a properly generated ciphertext c, the session key can be trivially extracted
by first recovering the message m contained in c from 256 traces using the
presented method. Then, the session key is computed as K = KDF(K̂ ′, c) where
(K̂ ′, r′) = G(m,H(pk)) (see lines 3 and 5 of CCA-KEM.Encaps()).

6.3 Secret Key Recovery

It is known that the secret key of LWE/LWR-based PKE/KEM algorithms can
be derived from messages recovered from chosen ciphertexts. Many different
methods for choosing the ciphertexts have been presented in the past, includ-
ing [17,21,22,24]. In the experimental results section, we illustrate the secret key
recovery using the ciphertext construction method from [17].

7 Experimental Results

In the experiments, we use two nRF52832 devices, DP and DA, shown in Fig. 5.
DP is used for capturing training traces for the profiling stage. Both DP and
DA are used for capturing test traces for the attack stage. All training and test
traces are pre-processed by averaging 100 repeated measurements.

7.1 Bias in Neural Networks

In this section, we demonstrate that multi-class neural networks which are
trained on a small dataset may be strongly biased towards certain classes in
their predictions. This phenomenon has been observed in previous side-channel
attacks, e.g. [5].

We trained an MLP model N0 with the architecture listed in Table 1 on
30K traces with random messages (with 10% left for validation). The model was
trained on the segment of POL2MSG() procedure of Saber corresponding to the
processing of the first message byte, m[0].

After training, we tested N0 on 3K traces from the same device captured for
random messages. Each prediction was done based on a single trace (single-trace
attack). Figure 8 illustrates the results. The top plot shows the distribution of
ground truth labels in the 3K attack set. We can see that the labels are more or
less uniform. The bottom plot shows the distribution of labels predicted by N0.
There is a strong bias towards one label, 128, which is predicted correctly with
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Fig. 8. The distribution of (a) ground truth labels and (b) labels predicted by a model
N0 trained on a 30K trace set. Average results of a single-trace attack on Saber -O0

implementation on DP for 3K traces with random messages.

75% probability. In the rest of the section, we call such labels preferred. We can
also see that, the majority of labels, 96.5%, are predicted with 0% probability.
We refer to them as non-preferred.

We believe that the strong bias of N0 is due to the fact that the 256-class
model was trained on a small dataset in which each class appears only roughly
100 times. This does not seem sufficient. For a comparison, in the single-trace
attack on Saber presented in [17], using power side channels, a 1.6M dataset was
used for training 2-class MLP models which achieve 0.997% message bit pre-
diction accuracy. In their training dataset, each class from {0, 1} appears 0.8M
times. This is four orders of magnitude larger compared to the number of occur-
rences of each class from {0, 1, . . . , 255} in the 30K dataset in our experiment.
Another reason can be that MLP models are quite simple. More complex DL
models, e.g. transformers [28], may achieve better results [4].

The key idea of the presented method is that, instead of increasing the train-
ing set by several orders of magnitude to get unbiased models, we increase the
attack set 256 times and achieve high prediction accuracy with biased models.
Since the the attack set is several orders of magnitude smaller than the training
set, the presented method minimizes the total number of training plus attack
traces required for a successful attack.

One can ask if a similar improvement in the success rate can be achieved by
a repetition attack which uses 256 traces with the same ciphertext c. Figure 9(a)
and 9(b) show that the repetition method is not as good as the presented method.
For both methods, we used the model N0 from the previous experiment for
predicting labels in two scenarios:

1. The ground truth label of a trace in the attack set captured with c as input
is a preferred label of N0 (blue plot).
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Fig. 9. (a).The rank of m[0] in a repetition attack using 256 traces with the same
ciphertext. (b).The rank of m[0] in an attack using 256 traces of the presented method.
(Color figure online)

2. The ground truth label of a trace in the attack set captured with c as input
is a non-preferred label of N0 (orange plot).

From Fig. 9(a) we can see that, in the repetition attack, N0 successfully recovers
the former and fails to recover the latter. Contrary, Fig. 9(b) shows that, in the
attack using the presented method, N0 successfully recovers labels in both cases.
This is not surprising since the injected errors assure that at least one of the 256
traces in the attack set has a label preferred by the model.

7.2 Message Recovery Attack

In this section, we evaluate the effects of scaling, ensemble learning, repetitions,
and optimization level on the success rate of the presented message recovery
attack.

Scaling. First, we quantify the impact of different scaling methods.
At the profiling stage, we captured from the profiling device, DP , imple-

menting Saber -O0 a set of 30K traces with random messages, TT . Then we
scaled TT using two different methods: min-max normalization and standard-
ization. Using the profiling strategy described in Sect. 5, for each message byte
i ∈ {0, 1, . . . , 31}, we trained models Ni on each of these three training sets.

At the attack stage, we selected at random five different messages and com-
puted the corresponding ciphertexts using the public key of the device under
attack, DA. These five ciphertexts, together with their 255 mutiple-bit error
injected versions, were applied as inputs to DA to capture the set of attack
traces, TA. The set TA was scaled using the same two methods as TT .

Table 2 lists the average empirical probabilities of recovering a message byte
from TA for each of the five messages. We calculate the probabilities as pi =

1
1+ranki

, where i ∈ {0, 1, . . . , 31} is the byte number.
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Fig. 10. The preferred labels of two models trained on the same 30K set with a different
order of elements. Average results of a single-trace attack on Saber -O0 implementation
on DP for 3K traces with random messages.

Table 2. The impact of scaling on the success rate of message recovery from Saber
-O0 implementation on DA.

Scaling method Message Avg. byte
probability1 2 3 4 5

No scaling 0.6652 0.8135 0.6865 0.6647 0.7891 0.7238

Min-max normalization 0.7649 0.8412 0.7781 0.7315 0.8576 0.7947

Standardization 0.8958 0.9271 0.8698 0.9167 0.9323 0.9083

We can see that both min-max normalization and standardization improve
the message byte recovery probability. For the standardization, the average prob-
ability is by 18.45% larger than the one for non-scaled traces. In the rest of
experiments, we use traces scaled with the standardization method.

Ensemble Learning. Ensemble learning is a well-known technique which helps
improving prediction accuracy if the models make independent errors [10]. It has
been shown useful in previous message recovery attacks on LWE/LWR-Based
PKE/KEMs [18]. In this section, we evaluate its effect on the MBF method.

Since we randomly shuffle traces in a training set for each training session
and set aside 10% of the set for validation, at each training session the models
are trained on a slightly different set. In addition, data in the beginning of the
training set seem to have a higher impact on the model than the data at the
end. Due to these and other factors, two models trained on the same dataset
may have different preferred labels, as illustrated in Fig. 10. It shows the results
of a single-trace attack for two models trained on the same 30K set captured
from Saber. We can see that some of their preferred labels are different. This
implies that the models may be making different errors on the same attack set
and, hence, the ensemble approach might be beneficial.

To verify the latter, we used the same 30K training set to train 10 different
models for each message byte i ∈ {0, 1, . . . , 31} and used an ensemble of k of these
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Table 3. The impact of ensemble learning on the success rate of message recovery
from Saber -O0 implementation on DA.

Number of models, k 1 2 3 4 5

Average byte probability 0.9083 0.9370 0.9469 0.9573 0.9458

Number of models, k 6 7 8 9 10

Average byte probability 0.9385 0.9448 0.9510 0.9510 0.9417

Table 4. The impact of number of repetitions, N , on the the success rate of message
recovery from Saber -O0 implementation on DA.

N Message Avg. byte
probability

Avg. message
probability1 2 3 4 5

1 0.9688 0.9844 0.9323 0.9375 0.9635 0.9573 0.2475

2 0.9844 0.9688 1.0000 0.9531 1.0000 0.9813 0.5459

3 1.0000 0.9688 1.0000 0.9844 1.0000 0.9906 0.7401

Table 5. The impact of number of repetitions, N , on the the success rate of message
recovery from Saber -O0 implementation on DP .

N Message Avg. byte
probability

Avg. message
probability1 2 3 4 5

1 0.9688 1.0000 1.0000 0.9844 0.9844 0.9875 0.6691

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

models to recover the bytes using the presented method. Table 3 summarizes the
results. We can see that combining four models into an ensemble is the best
choice. In the rest of experiments, we use an ensemble of four models.

Repetitions. Finally, we investigate if the probability of message recovery can
be further improved if each trace in the attack set is captured with N repetitions.

Table 4 shows the results for N = 1, 2 and 3 for the case when the device
under attack is different from the profiling device. We can see that, by raising the
degree of repetition N to 3, we can boost the average probability of recovering
a message byte to 0.9906 and hence the likelihood of recovering the complete
message to 0.7401. We believe that, by raising N , the latter can be further
improved.

Table 5 presents similar results for the case when the device under attack is
the same as the profiling device. We can see that, in this case, the probability
of recovering the message is 1 for N ≥ 2. We show both tables to emphasize the
significant impact of intra-device variability and justify the advantage of profiling
on the device under attack (and hence the need for minimizing the training set).
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Table 6. Maximum t-test scores for all message bytes.

Byte 0 1 2 3 4 5 6 7 8 9 10

Saber -O0 22.5 23.4 24.4 27.9 25.7 27.7 32.6 29.5 29.1 30.2 29.8

Saber -O3 7.2 5.3 7.2 6.1 6.4 4.3 7.1 5.9 6.2 3.8 6.4

Kyber -O3 13.7 12.2 7.6 10.9 11.9 11.1 6.8 12.6 12.7 7.3 7.7

Byte 11 12 13 14 15 16 17 18 19 20 21

Saber -O0 30.4 22.4 22.5 23.7 27.6 26.0 27.2 31.6 28.8 27.5 29.9

Saber -O3 5.6 6.6 5.8 7.0 7.1 5.8 5.6 6.2 6.0 6.8 6.3

Kyber -O3 14.5 12.3 6.8 9.0 15.0 11.8 7.8 11.2 14.1 13.4 6.7

Byte 22 23 24 25 26 27 28 29 30 31 Avg

Saber -O0 30.6 33.1 25.5 21.1 25.1 25.1 23.7 27.4 29.0 29.2 27.2

Saber -O3 6.4 7.9 6.8 5.7 6.9 6.2 6.2 5.3 5.1 8.9 6.3

Kyber -O3 13.2 9.3 9.4 6.5 15.5 11.3 6.7 8.1 16.3 13.1 10.8

Fig. 11. The ranks of message bytes in an attack on Saber -O3 (left) and Kyber -O3

(right) implementations on DA using an ensemble of four models and 15 repetitions.

Higher Optimization Level. All previous experiments are performed on the
implementation of Saber compiled with -O0 optimization level to allow for a com-
parison with the attack of [29] which uses that implementation. In this section,
we show the results for the implementations of Saber and CRYSTALS-Kyber
compiled with the highest optimization level, -O3. Typically -O3 optimization
level is the most difficult one to break by side-channel analysis [25].

Table 6 compares the leakage of all three implementations in terms of the
maximum t-test scores. We can see that, on average, the leakage from the -O3
implementation of Saber is 4.3 times weaker than the one from the -O0.
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Table 7. The mapping of message bits into secret key coefficients of Saber [17].

Coef. of s The message bit value for the pair (k1, k0)

(186,0) (293,7) (311,7) (615,2) (613,2) (890,4) (903,4) (199,0)

−4 0 1 1 1 1 0 0 0

−3 1 1 1 0 0 0 0 1

−2 1 0 0 1 1 0 0 1

−1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0

1 0 0 0 1 1 1 1 0

2 1 0 0 0 0 1 1 1

3 1 1 1 1 1 1 1 1

4 1 1 0 1 0 0 1 0

For both Saber and CRYSTALS-Kyber, we trained models Ni for each mes-
sage byte i ∈ {0, 1, . . . , 31} using the same size of the training set, 30K, captured
from DP and the same training strategy as in the experiments with -O0 opti-
mization level. Figure 11 shows the ranks of all message bytes recovered using an
ensemble of four models from 256 traces captured from a different device, DA,
with 15 repetitions.

Even though the leakage from -O3 implementations is much weaker than the
one from -O0, by using a higher degree of repetition, N = 15, we can recover
messages successfully. For Saber, the ranks of all bytes reach 0 (average byte
accuracy = 1). For CRYSTALS-Kyber, the ranks of all but one byte reach 0
(average byte accuracy = 0.9844). The remaining byte (byte 29) has the rank 1.
Therefore, by using enumeration up to 232, complete messages can be recovered.

7.3 Secret Key Recovery Attack

In this section we show how the secret key of Saber can be derived from messages
recovered from the ciphertexts chosen using the method of [17]. Although the
method of [17] uses twice as many ciphertexts as the methods of [21,22], it can
correct errors in the recovered messages, which is a great advantage.

In the method of [17], the coefficients of the secret key of Saber are mapped
into the codewords of an [8, 4, 4]2 extended Hamming code. The method uses
24 ciphertexts to recover all secret key coefficients (768 in total). They are con-
structed as ci = (u, v) where v = k0

∑255
j=0 xj and

u =

⎧
⎨

⎩

(k1, 0, 0) ∈ R3×1
p for i = {1, . . . , 8},

(0, k1, 0) ∈ R3×1
p for i = {9, . . . , 16},

(0, 0, k1) ∈ R3×1
p for i = {17, . . . , 24},

where the pairs (k0, k1) are defined by the mapping Table 7.
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Table 8. The statistic on different types of errors in 768 secret key coefficients recovered
from Saber -O0 implementations on DA using N repetitions.

# Correct predictions # Errors

N No errors Errors corrected
by ECC

Detected
errors

Undetected
errors

1 665 84 17 2

2 744 22 2 0

3 758 10 0 0

4 766 2 0 0

5 766 2 0 0

We used the presented method to recover 24 messages contained in the chosen
ciphertexts from traces captured from Saber -O0 implementations on DA using
N repetitions, for N = {1, 2, 3, 4, 5}. To evaluate the attack, we group possible
outcomes into four cases:

1. No errors: The recovered coefficient matches the ground truth key coefficient.
2. Errors corrected by the ECC: There is exactly one error in the eight message

bits. This error is corrected by the ECC.
3. Detected errors: ECC detects more than one errors in the eight message bits

and this combination of bits is not in Table 7. These errors are detected by
the ECC.

4. Undetected errors: The combination of the eight message bits is in Table 7,
but the recovered coefficient does not match the ground truth secret key
coefficient.

The case (4) implies a failed secret key recovery because any number of wrong
coefficients makes the recovered key useless. The errors in case (3) may be fixed
by enumeration if their number is small, since the location of the error is known.
The complexity of enumeration is 9n, where n is the number of detected errors.
Table 8 lists the statistic on the number of occurrences of each of the four cases
for different degrees of repetitions N .

For N = 1, there are 2 undetected errors, so the attack fails. For N = 2,
there are no undetected errors and only 81 enumerations are required to find the
secret key. Therefore, the attack is successful. For N ≥ 3, the secret key can be
recovered without any enumeration.

8 Conclusion

We presented the first side-channel attack which can successfully recover mes-
sages of CRYSTALS-Kyber and Saber algorithms from their software implemen-
tations using amplitude-modulated EM emanations. The previous amplitude-
modulated EM emanation-based attack on LWE/LWR-Based PKE/KEMs [29]
was not able to recover complete messages with a sufficiently high probability.
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The presented message recovery method is not limited to LWE/LWR-Based
PKE/KEMs. In principle, is applicable to any cryptographic algorithm whose
sensitive variables can be manipulated in a controlled manner through input
data. It is also applicable to any type of side channels, but seems to be most
valuable when the leakage is weak.
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2018-04482).
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Abstract. Approximate lattice trapdoors are introduced to improve
the efficiency of lattice-based hash-and-sign signature. There are two
improvements of the approximate setting for such schemes. The first is
to use a non-spherical Gaussian sampler, and the second is the higher-bit
approximate setting.

In this paper we consider further improvements of the approximate
setting, namely we combine the higher-bit approximate setting with the
use of a non-spherical Gaussian sampler. We assess the effectiveness of
this approach by doing an analysis with a proof-of-concept implemen-
tation. We observe that our construction brings several improvements,
especially in the public key size and signature size. Moreover, an exhaus-
tive search for parameter sets make us aware of new parameters choices
which lead to better results in the higher-bit approximate setting than
those of previous work.

Keywords: Approximate lattice trapdoor · Higher-bit
approximation · Non-spherical gaussian sampler

1 Introduction

Our work takes place as the threat of quantum computing grows quickly in
regard to modern cryptographic constructions. Peter Shor work in 1994 [20]
put forward the need for efficient post-quantum secure cryptography as, for
instance, a quantum computer can easily break factoring-based cryptography in
polynomial time of the security parameter. Post-quantum standardization has
become a wide field of research since the understanding of this threat.

In this work, we focus on lattice-based cryptography, which is considered
as one of the most promising candidate of post-quantum cryptography. Several
lattice-based problems are believed to be hard against attacks even for quantum
adversaries. Moreover, Ajtai’s breakthrough work [2] in 1996 demonstrates strong
worst-case to average-case reductions on lattices problems which is necessary for
cryptography.
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Lattice-based cryptography appears as a good alternative to modern cryp-
tography since it enjoys several advantages. Its constructions are simple and
rather elegant while enjoying strong security. Indeed, several candidates for the
NIST standardization process are lattice-based schemes. Lattices and their alge-
braic structure were shown to bring improvements in efficiency [11,16], and, in
the last decades, several different cryptographic primitives have been studied.
This versatility is obtained by using lattice-based problems such as the learning
with errors (LWE) problem [19]. For instances, fully homomorphic encryption
[9], public-key encryption [11,14], attribute-based encryption and (hierarchical)
identity-based encryption [1,6] have been explored.

We focus on lattice-based signatures among lattice-based cryptographic
schemes. The first provably secure lattice-based signature is the signature scheme
introduced by Gentry, Peikert and Vaikuntanathan [10]. Their scheme is based on
the “hash-and-sign” construction and its security is proven in the random oracle
model. Another line of lattice-based signatures is started by Lyubashevsky [15]
based on the Fiat-Shamir transformation and the rejection sampling method.
Thus there are two research lines of constructing lattice-based signature.

At present time, the best candidates in NIST PQC standardization procedure
are based on the Fiat-Shamir transformation and the rejection sampling method
[8]. On the other hand, in the hash-and-sign line of work, the schemes seem to
be rather inefficient. This is because hash-and-sign type lattice signatures aim
to sample a solution of the Ajtai’s function, and it involves the use of a Gaussian
sampler. The efficiency of using a Gaussian sampler depends on the quality of
the lattice trapdoor, thus the follow-up works such as [18] consider simpler or
smaller trapdoors to improve both security and efficiency when it is used in the
hash-and-sign signatures.

1.1 Related Works

This paper considers a lattice-based hash-and-sign signature, thus we follow the
GPV line of work. It is based on Ajtai’s one-way function and lattice trapdoors
[3]. At first, a trapdoor S would be a basis of short lattice vectors which veri-
fies AS = 0 (mod q) for some assigned public matrix A ∈ Z

n×m
q . The knowl-

edge of S allows one to sample some short preimage of 0 by A. However, this
method was rather inefficient and unpractical. In 2012, Micciancio and Peikert
proposed their elegant G-trapdoor construction [18] for “hash-and-sign” signa-
ture. This new kind of trapdoors enables faster and shorter signatures. This
construction was modified into an approximate version defined as F -trapdoors
by Chen, Genise and Mukherjee [7]. To construct such an approximate setting,
they also had to define an approximate version of the ISIS problem. Using F -
trapdoors instead of G-trapdoors is interesting in terms of memory storage which
is the main downside of such signatures schemes when compared to other NIST
PQC standardization process [4,8].

In light of this memory size problem, two optimization methods for cryp-
tosystems based on F -trapdoors were studied in 2021. The first work by Jia,
Hu and Tang [12] replaces the spherical Gaussian sampler used in the approxi-
mate preimage sampling algorithm from [7] by a non-spherical Gaussian sampler.
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This modification allows more precision in the perturbation used in the Gaussian
sampler. As a result, shorter approximate preimages are obtained.

The second optimization method is a bitwise modification by Le Dévéhat,
Shizuya and Hasegawa [13] on the original F -trapdoors construction. In their
works, the authors introduced the higher-bit version of the approximate problem.
In this newly defined problem, the approximate setting is used to discard all
low-weighted bits in the matrix A ∈ Z

n×m
q which defines Ajtai’s function. They

showed that this bitwise modification can lead to better sizes in both the public
matrix and sampled approximate preimage.

1.2 Our Contribution

This paper considers the combination of two methods which aim to optimize
cryptosystems using the F -trapdoors construction and algorithms [7]. We com-
bine the higher-bit approximate setting method from [13] with the use of a
non-spherical Gaussian sampler as in [12]. We assess and study the relevance
of using the higher-bit approximate setting on the hash-and-sign signature con-
struction from [12]. Then resulting public key belongs to Z

n×m
q

bd
rather than

Z
n×m
q , where q = bk and d < k. This is a direct consequence of employing

the higher-bit approximate ISIS problem as the underlying hardness problem.
Moreover, the signature is in Z

m
q

bd
rather than Z

m
q . Our combination of these

two methods enables some experimental improvement in public key and signa-
ture sizes and we obtain better theoretical results and length bounds than those
observed in [13].

We seek the best possible parameter set through an exhaustive search. We
analyse all our results and obtain a parameters choice which brings us signif-
icantly smaller key sizes than in [12]. Moreover, we generalize this parameter
set as a better choice in the higher-bit approximate setting and construction
from [13].

2 Preliminaries

We denote the set of reals by R, the set of integers by Z and the set of naturals
by N, respectively. Zq is the quotient ring Z/qZ. We write x ← U(S) when
x is sampled uniformly at random from the set S. We say that a function ε
is negligible in λ if for any polynomial μ, there exists a natural λ0 such that
ε(λ) < 1/μ(λ) for λ > λ0.

Let X,Y be distributions over a finite set D, which is a set of strings of
length λ. The statistical distance between X and Y is defined by Δ(X,Y ) =
1
2

∑
w∈D |X(w) − Y (w)|. We say the distributions X and Y are statistically

indistinguishable if Δ(X,Y ) ≤ ε for a negligible function ε, and we write X ≈s Y .
A vector v is supposed to be in column form and represented in lower-case

bold letters. A matrix A is represented in upper-case bold letters. For a vector
v, vi denotes the i-th component of v. In a similar manner, ai,j denotes the
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i-th component of the j-th column of a matrix A. We employ the lp-norm of a
vector v defined as ‖v‖p := (

∑
vp

i )1/p. The lp-norm of a matrix is the lp-norm
of its longest column, i.e. ‖A‖p := max ‖ai‖p. We basically use l2-norm. A short
vector is a vector whose norm is small but not necessarily its dimension.

If a symmetric matrix Σ ∈ R
n×n verifies that for all x ∈ R

n, xtΣx > 0
(≥0) then Σ is positive (semi)-definite. For two positive (semi)-definite matrices
Σ1 and Σ2, we write Σ1 > Σ2 (≥) if Σ1 − Σ2 is positive (semi)-definite.

√
Σ

designates any full rank matrix T such that Σ = TT t.

2.1 Lattices

A lattice Λ of dimension m and rank k ≤ m is a discrete additive subgroup of Rm.
It is generated by all linear combinations with integer coefficients of k linearly
independent basis vectors B = {b1, ..., bk}. The span span(A) of a matrix A is
generated by all linear combinations with real coefficients of the column vectors
of A. The span of a lattice Λ is span(Λ) = span(B) for any basis B of Λ.

q-ary integer lattices are of great cryptographic interest. For positive integers
m,n ∈ N, q ≥ 2, set u ∈ Z

n
q and A ∈ Z

n×m
q . Then the m-dimensional full rank

q-ary lattices are defined as follows.

Λ⊥(A) = Λ⊥
q (A) := {x ∈ Z

m : Ax = 0 (mod q)},

Λ⊥
u (A) := {x ∈ Z

m : Ax = u (mod q)}.

We will often use vectors obtained when sampling in q-ary lattices. The
sampled vectors will usually follow either a spherical or non-spherical Gaussian
distribution over a lattice Λ.

Definition 1 (Gaussian function [7]). For any s > 0, the Gaussian function
ρs on R

n with parameter s is defined as

ρs(x) = e−π||x||2/s2
for x ∈ R

n.

Definition 2 (Discrete Gaussian distribution [7]). For any c ∈ R
n, real

s > 0, and n-dimensional lattice Λ, the discrete Gaussian distribution DΛ+c,s is
defined as

DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
for x ∈ Λ + c,

where ρs(Λ + c) =
∑

a∈Λ+c

ρs(a).

When s and c are omitted, they are taken to be 1 and 0, respectively.

Definition 3 (Non-spherical Gaussian function [7]). For any semi-definite
matrix Σ = TT t, the non-spherical Gaussian function ρT = ρ√

Σ is defined as

ρT (x) = e−πxtΣ+x for x ∈ span(T ) = span(Σ),

and ρT (x) = 0 for all x /∈ span(Σ).
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Definition 4 (Generalized Discrete Gaussian distribution [7]). For any
c ∈ R

n, any positive semi-definite matrix Σ, and n-dimensional lattice Λ such
that (Λ + c) ∩ span(Σ) is non-empty, the generalized discrete Gaussian distribu-
tion DΛ+c,

√
Σ is defined as

DΛ+c,
√

Σ(x) =
ρ√

Σ(x)
ρ√

Σ(Λ + c)
for x ∈ Λ + c,

where ρ√
Σ(Λ + c) =

∑

a∈Λ+c

ρ√
Σ(a).

In this work, the smoothing parameter is used to set parameters.

Definition 5 (Smoothing parameter [17]). For any lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest real s > 0 such that
ρ1/s(Λ∗\{0}) ≤ ε.

Definition 6 ([7]). For a positive semi-definite matrix Σ = TT t, ε > 0, and a
lattice Λ with span(Λ) ⊆ span(Σ), we say ηε(Λ) ≤ √

Σ if ηε(T+Λ) ≤ 1.

The following lemma provides us an upper bound on objects sampled from
a spherical Gaussian distribution.

Lemma 1 ([5]). Let Λ ∈ R
n be a lattice and r ≥ ηε(Λ) for some ε ∈ [0, 1[. For

any c ∈ span(Λ), we have

Pr[‖x‖ ≥ r
√

n | x ← DΛ+c,r] ≤ 2−n.
1 + ε

1 − ε
.

2.2 Lattice Problems

We recall definitions of some lattice problems. Security often relies on the one-
wayness of one or both of the following two functions. The one-wayness of these
functions is closely related to the SIS and LWE problems.

Definition 7 (Ajtai’s function [2]). Let A ∈ Z
n×m
q . Ajtai’s function fA is

defined as

fA (x) = Ax mod q for x ∈ R
m.

Definition 8. Let A ∈ Z
n×m
q . For some short error vector e ∈ R

m, the function
gA is defined as

gA (s, e) = stA + et mod q for s ∈ R
n.

The short integer solution (SIS) problem considers a short root of Ajtai’s
function. The inhomogeneous short integer solution (ISIS) problem is a variant
of the SIS problem.
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Definition 9 (Short integer solution (SIS) [2]). Let n,m ∈ N, q ∈ Z and
β ∈ R. For given A ∈ Z

n×m
q , the short integer solution (SIS) problem SISn,m,q,β

asks a non-zero vector x ∈ Z
m such that ‖x‖ ≤ β, and

Ax = 0 (mod q)

Definition 10 (Inhomogeneous short integer solution (ISIS)). Let n,m
∈ N, q ∈ Z and β ∈ R. For given A ∈ Z

n×m
q and y ∈ Z

n
q , the inhomogeneous

short integer solution (ISIS) problem ISISn,m,q,β asks a vector x ∈ Z
m such that

‖x‖ ≤ β, and

Ax = y (mod q)

We recall the definition of the learning with errors (LWE) problem. It can
be seen as the dual of SIS problem.

Definition 11 (Learning with errors (LWE) [19]). For n,m ∈ N and mod-
ulus q ≥ 2, let θ, π, χ ⊆ Zq be distributions. An LWE sample is obtained from
sampling secret vector s ← θn, public matrix A ← πn×m, and error vector
e ← χm, and outputting (A,yt := stA + et (mod q)).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes an LWE
sample from a random sample distributed as πn×m × U(Zm

q ) with probability
greater than 1/2 plus non-negligible.

Chen, Genise and Mukherjee [7] introduced a relaxed notion of the ISIS prob-
lem. It allows for a little error in the solution. They also defined an approximate
trapdoor for a public matrix A ∈ Z

n×m
q as a string that allows one to solve

efficiently the approximate version of ISIS problem with respect to the matrix
A.

Definition 12 (Approximate ISIS (AISIS) [7]). Let n,m ∈ N, q ∈ Z and
α, β ∈ R. For given A ∈ Z

n×m
q and y ∈ Z

n
q , the approximate inhomogeneous

short integer solution (AISIS) problem AISISn,m,q,α,β asks a vector x ∈ Z
m such

that ‖x‖ ≤ β and

Ax = y + z (mod q),

for some z ∈ Z
n satisfying ‖z‖ ≤ α.

2.3 F-trapdoor [7]

The approximate trapdoor method of [7] is based on the gadget-based trapdoor
generation and preimage sampling algorithms of Micciancio and Peikert [18].
In [7], the authors introduced a new gadget matrix F which is obtained from
the G-gadget matrix [18] by dropping the l lower-orders entries. Let b ≥ 2 an
integer. b defines the base used in decomposition. q is the modulus so that k =
�logb q�. The gadget matrix F is constructed so as to sample a short approximate
preimage from Λ⊥

u (F ) easily. First, the approximate gadget-vector is set as f t :=
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(bl, bl+1, ..., bk−1)t ∈ Z
(k−l)
q . Then the approximate gadget matrix F is defined

as F := In ⊗ f t ∈ Z
(n×w)
q , where the number of columns of F is w = n(k − l).

Also, the numbers of columns in A as defined below is m = 2n + w. The public
matrix A is defined as

A = [Ā|F − ĀR] ∈ Z
n×m
q with Ā = [In, Â] ∈ Z

n×2n
q ,

where R is a secret trapdoor matrix with small random entries, and Â is sam-
pled from U(Zn×n

q ). R is sampled from the distribution χ2n×w where χ ⊆ Z is
chosen to be a distribution such that LWEn,n,q,χ,U(Zq),χ is hard. Then, A can
be pseudorandom.

When we want to compute a short approximate preimage of u, we use the
trapdoor R which enables us mapping short approximate coset representatives
of Λ⊥

u (F ) to short approximate coset representatives of Λ⊥
u (A) by using the

relation

A

[
R
I

]

= F .

However, this relation would leak information about the secret trapdoor R.
Thus, the perturbation-based Gaussian sampler technique of [18] is employed to
avoid such a situation. The covariance of the perturbation p is defined by the
positive semi-definite matrix

Σp = s2Im − σ2

[
RRt R
Rt I

]

,

where σ is at least ηε(Λ⊥(G)) and s is a parameter. This perturbation can be
computed as p ← D

Zm,
√

Σp
.

To sample from Λ⊥
u (A) in an approximate manner, we first set v = u −

Ap and sample a vector z from the distribution DΛ⊥
v (F ),σ. The approximate

preimage is set as

y = p +
[
R
I

]

z.

2.4 Higher-bit Approximate Setting [13]

Building on the approximate setting defined in [7], Le Dévéhat, Shizuya and
Hasegawa [13] introduced the notion of the higher-bit approximate ISIS problem.
The intuitive idea is to discard low-weighted bits in the public matrix A. Then,
we can reduce its size while increasing a little bit the error on the sampled
preimage y. We briefly recall required notions and notations.

Let b ≥ 2 be the base used in decomposition and q ∈ Z is the modulus such
that k = �logb q�. Let d be an integer such that 0 ≤ d < k. d is chosen as the
turning point exponent between high order and low order bits.
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Definition 13 (Decomposition in base b [13]). Let z ∈ Zq. The decomposi-
tion in base b of z is the elements {αz,r}k−1

r=0 in [0, b − 1] such that

z =
k−1∑

r=0

αz,rb
r.

Definition 14 (HighBits and LowBits functions [13]). For z ∈ Zq, the
HighBits function and the LowBits function are defined as

HighBitsd(z) =
k−1∑

r=d

αz,rb
r and LowBitsd(z) =

d−1∑

r=0

αz,rb
r.

We extend these definition from integers to vectors and matrices.

Definition 15 (HighBits and LowBits functions extended [13]). For a
vector y ∈ Z

n
q ,

yH = HighBitsd(yi) and yL = LowBitsd(yi) (0 ≤ i < n),

and for a matirix A ∈ Z
n×m
q ,

AH = HighBitsd(ai,j) and AL = LowBitsd(ai,j) (0 ≤ i < n, 0 ≤ j < m).

We write AH = HighBitsd(A) to mean AH = HighBitsd(ai,j) with A = (ai,j).
The lower-bit case and the case for vectors are also defined in a same manner.

By using the definitions above, The higher-bit version of ISIS is defined as
follows.

Definition 16 (Higher-bit AISIS (HAISIS) [13]). Let n,m ∈ N, q ∈ Z,
α, β ∈ R and d ∈ N with d < �logb q�. For given A ∈ Z

n×m
q

bd
and y ∈ Z

n
q , the

higher-bit approximate inhomogeneous short integer solution (HAISIS) problem
HAISISn,m,q,d,α,β asks a vector x ∈ Z

m such that ‖x‖ ≤ β and

bdAx = y + z (mod q),

for some z ∈ Z
n satisfying ‖z‖ ≤ α.

The higher-bit approximate ISIS problem is as hard as the standard ISIS
from the following lemma.

Lemma 2 ([13]).

ISISn,n+m,q,β ≥p HAISISn,m,q,d,α+β,β ,

HAISISn,m,q,d,α,β ≥p ISISn,n+m,q,α+(
√

nbd+1)β .
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We now consider the higher-bit version of the approximate gadget matrix F .
For the public matrix A = [Ā|F − ĀR], the new high-weighted matrix Anew is
obtained by

Anew =
AH

bd
, where AH = [ĀH |(F − ĀR)H ].

This modification implies a rather simple optimization on the sampled preimage
set as

ynew = y mod bk−d.

This modification saves memory storage in both the public matrix and sampled
preimage at the cost of an increased approximation.

2.5 Non-Spherical Gaussian [12]

In Subsect. 2.3, we have seen the perturbation-based Gaussian samplers. The
perturbation is defined by the matrix Σp as

Σp := s2Im − σ2

[
RRt R
Rt I

]

.

The output distribution of samplers is to be a spherical Gaussian. In order to
correctly sample such perturbation, the matrix Σp needs to be positive semi-
definite. In the setting of a spherical Gaussian sampler, this implies a condition
on the parameter s of the resulting distribution such as

s ≥ σs1

([
R
I

])

,

where s1(·) denotes the largest singular value of its input matrix. The observation
made in [12] is that we are trying to hide the information leaking from the

distribution of
[
R
I

]

z during the preimage sampling procedure. However, the

linear transformation
[
R
I

]

distorts much more the top 2n entries in z than the

bottom kn entries. In regards with this, it is “unnecessary” to apply the same
correction on the top and bottom entries. In [12], this uneven distortion is taken
into account as they changes the perturbation to

Σp :=
[
s̄2I2n

s̃2Ikn

]

− σ2

[
RRt R
Rt I

]

, where s̄ >> s̃.

The conditions required so that Σp is positive semi-definite are less restrictive.
Thus, we can have a smaller s̃ than s̄ which results in a smaller sampled preimage
than with a spherical Gaussian sampler.
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3 Higher-bit Approximate Lattice Trapdoor
with Non-Spherical Gaussian

We would like to assess the impact of the higher-bit approximate setting when
combined with the optimization of [12] which considers the non-spherical Gaus-
sian distribution. We first show that the F -trapdoor construction instantiated
with a non-spherical Gaussian sampler can be adapted in the higher-bit setting
just as it was done for the normal F -trapdoor construction in [13].

3.1 Modification in the Public Matrix

Let F be an approximate gadget matrix defined as in Subsect. 2.3 with the base
b and the parameter l. As mentioned above, we use the decomposition in base b
and the modulus q and k = �logb q�. Let d be an integer such that 0 ≤ d ≤ l.

According to [13], we modify the public matrix A of [12] by discarding its
low-weighted bits. Namely,

Anew =
AH

bd
, where AH = [ĀH |F + (−ĀR)H ].

Note that R is the approximate trapdoor associated with the Ajtai’s Function
defined by A and Anew is in Z

n×m
q

bd
.

To sample a preimage of fAn ew , we use the perturbation based non-spherical
Gaussian sampler on fA . Compared to [13], we use the perturbation matrix Σp

considered in Subsect. 2.5.

Repercussion on the Sizes and Underlying Problem Hardness. The use of the
higher-bit setting is expected to imply a trade-off between an improvement in
the sizes of objects and a lower hardness of the underlying problems which will
lead to lower security in cryptosystems. The optimization in [12] reduces the
size of sampled preimage. It achieves a win-win scenario as it provides a shorter
approximate preimage which implies better security. In light of this, we are
interested in whether the use of a non-spherical Gaussian sampler could lessen
the impact of the trade-off observed in [13].

3.2 Higher-bit Version Algorithms with Non-Spherical Gaussian

In this subsection, We propose our approximate trapdoor generation algorithm
HB.JHT.App.TrapGen and approximate preimage sampling algorithm
HB.JHT.App.Samp. HB.JHT.App.TrapGen is the same as the approximate trap-
door generation algorithm HighBits.Approx.TrapGen of [13]. HB.JHT.App.Samp
use the non-spherical Gaussian sampler JHT.Approx.Samp from [12], instead of a
spherical Gaussian sampler as done in [13]. Our method allows us to sample an
approximate preimage y ∈ Z

m
q

bd
for higher-bit Ajtai’s function defined by A with

approximate trapdoor R. We denote by A0 the original matrix which is gener-
ated by the approximate trapdoor generation algorithm from the F -trapdoors
construction. The description of algorithms is given in Fig. 1.
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Fig. 1. Pseudocode for the higher-bit version approximate trapdoor generation and
non-spherical Gaussian approximate preimage sampling algorithm. The distribution χ
is chosen so that LWEn,n,q,χ,U(Zq),χ is hard. For the sake of optimization in Algorithm
2, we need to set q = bk.

s̄ and s̃ parameters choices. We choose these parameters as defined in “mode
2” from [12]. That is to say we want to maximize optimization in storage as this
is the main focus of this work. Thus, we set

s̄2 =
(

1 +
k − l

2

)

σ2s1(R)2 and s̃2 =
(

1 +
2

k − l

)

σ2.

Also, as described in Subsect. 2.5, the perturbation matrix Σp is set as

Σp :=
[
s̄2I2n

s̃2Ikn

]

− σ2

[
RRt R
Rt I

]

.

Algorithm 1. The algorithm first generates a public matrix A0 with an approx-
imate trapdoor R. Then the algorithm computes the high-bit approximated
matrix A from A0. Note that this algorithm outputs an auxiliary output AL

0

which is used by the approximate preimage sampling algorithm

Algorithm 2. The algorithm samples an approximate preimage y ∈ Z
m
q

bd
of

u ∈ Z
n
q by the higher-bit Ajtai’s function A ∈ Z

n×m
q

bd
. First, we sample an

approximate preimage y0 ∈ Z
m
q of the Ajtai’s function defined by A0 using the

algorithm from [12]. Then we discard all d highest-weighted bit from y0 to get
y. Note that we have bdAy = bdAy0 (mod q) by Theorem 1 of [13].
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Error Term. We define the error e ∈ Z
n
q as e = u − bdAy mod q. e0 is the

error term induced by y0, i.e. e0 = u − A0y0 mod q. For these terms e and e0,
the following holds as in [13].

e = e0 + enew (mod q), where enew = AL
0 y0 mod q.

3.3 Distributions of Modified Algorithms

For public matrices output by HighBits.Approx.TrapGen, the following lemma is
known.

Lemma 3 ([13]). Let ((A,R),AL
0 ) ← HighBits.Approx.TrapGenχ.

Assume that LWEn,n,q,χ,U(Zq),χ is hard. Then A and AL
0 are pseudorandom.

We next estimate the resulting distribution of sampled preimage. We recall
the following lemma which states the distribution of the sampled preimage.

Lemma 4 ([12]). Let Σ = s̄2I2n ⊗ s̃2Ikn. Let D0 and D1 be the distributions
defined as

D0 = {(A,y,u,e)|u ← U(Zn
q ),y ← JHT.Approx.Samp(A,AL

0 ,R,u, s̄, s̃),

e = u − Ay mod q},

D1 = {(A,y,u,e)|y ← D
Zm,

√
Σ,e ← D

Zn,σ
√

(b2l−1)/(b2−1)
,

u = Ay + e mod q}.

Then D0 and D1 are statistically indistinguishable.

Thus, using Lemma 4, we are able to deduce the distributions in our new
higher-bit approximate setting with non-spherical Gaussian sampler.

Theorem 1. Let Σ = s̄2I2n ⊗ s̃2Ikn. Let ((A,R),AL
0 ) ← HighBits.Approx.

TrapGenχ. Let D0 and D1 be the distributions defined as

D0 = {(A,y,u,e)|u ← U(Zn
q ),y ← JHT.Approx.Samp(A,AL

0 ,R,u, s̄, s̃),

e = u − bdAy mod q},

D1 = {(A,y,u,e)|y0 ← D
Zm,

√
Σ,e0 ← D

Zn,σ
√

(b2l−1)/(b2−1)
,

y = LowBitsk−d(y0),e = e0 + AL
0 y0 mod q,

u = bdAy + e mod q}.

Then, D0 and D1 are statistically indistinguishable for any σ ≥√
b2 + 1w(

√
log n).

The proof of Theorem 1 proceeds in a similar manner as in Theorem 4 in [13].
It will be given in the full paper.
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Lengths Bounds. Theorem 1 provides us with length bounds on a preimage y
and an error term e. This is summarized in Table 1. For the sake of comparison,
we included the length bounds of the constructions from [13] and [12].

Table 1. The length bounds for y and e.

This work
Non-spherical Gaussian
in higher-bit approximate setting

[13]
Spherical Gaussian
in higher-bit approximate setting

[12]
Non-spherical Gaussian
in approximate setting

preimage y s̄
√
2n + s̃

√
kn s

√
m s̄

√
2n + s̃

√
kn

error term e blσ
√

n + nbd(s̄
√
2 + s̃

√
k) blσ

√
n +

√
nmbds blσ

√
n

We can conclude that, from a theoretical point of view, combining the higher-
bit approximate setting [13] with a non-spherical Gaussian sampler [12] leads
to better lengths bounds on the objects we use than when using a spherical
Gaussian sampler. Thus we obtain a better theoretical security and storage space
for the sampled preimage. When we compare our construction with the one in
[12], the length bound on the error is increased. This is the direct consequence
of using the higher-bit setting. On the other hand, we should obtain better key
sizes in our hash-and-sign construction. We will show it by experiments later.

4 Hash-and-Sign Signature

We now propose a hash-and-sign signature scheme instantiated with the algo-
rithms in Fig. 1. We set k = �logb q�, and d is the turning point exponent for the
higher-bit form. Let σ, s̄, s̃ ∈ R

+ be the discrete Gaussian widths of the distri-
butions over the cosets of Λ⊥

q (G) [18] and Λ⊥
q (A0) [7], respectively. We choose

a distribution χ to sample R so that LWEn,n,q,χ,U(Zq),χ is hard.

4.1 Construction

Construction 1 Let HB.JHT.App.TrapGen and HB.JHT.App.Samp be as given
in Fig. 1. A hash function H = {Hλ : {0, 1}∗ → Z

n
q } is modeled as a random

oracle. The signature scheme Π = (Gen,Sig,Ver) is constructed as follows.

– Gen(1λ) : The key-generation algorithm samples A ∈ Z
n×m
q

bd
together with its

approximate trapdoor R and the matrix AL
0 ∈ Z

n×m
bd

from HighBits.Approx.

TrapGenχ(λ). It outputs A as the verification key, (AL
0 ,R) as the secret sign-

ing key.
– Sig(A, (AL

0 ,R),m) : The signing algorithm checks if the message-signature
pair (m,ym) has been produced before. If so, it outputs ym as the signature of
m. Otherwise, it computes u = H(m), and samples an approximate preimage
ym ← HB.JHT.App.Samp(A,AL

0 ,R,u, s̄, s̃). It outputs ym as the signature
and stores (m,ym) in the signature list.

– Ver(A,m,y) : The verification algorithm checks if ‖y‖ ≤ β and ‖bdAy −
H(m)‖ ≤ α. If so, it outputs accept; otherwise, it outputs reject.
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4.2 Correctness

Theorem 2. The signature scheme in Construction 1 is correct.

Proof. Fix β = s̄
√

2n+ s̃
√

kn and α = blσ
√

n+nbd(s̄
√

2+ s̃
√

k). Let m ∈ {0, 1}∗

be a message. We take (A, (AL
0 ,R)) ← Gen(1λ). Then, we produce a signature

y ∈ Z
m
q

bd
for m by taking y ← Sig(A, (AL

0 ,R),m). We check whether the verifier
accepts the signature for m.

The signature is smaller than the original preimage y0 sampled by a non-
spherical Gaussian distribution of parameters s̄, s̃. Let y0,2n be the vector of
the 2n first entries in y0 and y0,kn be the vector of the kn last entries in y0,
respectively. Then, we have

||y|| ≤ ||y0|| ≤ ||y0,2n + y0,kn|| ≤ ||y0,2n|| + ||y0,kn|| ≤ s̄
√

2n + s̃
√

kn,

with overwhelming probability by Lemma 1. Thus the first condition ||y|| ≤ β
is satisfied.

Moreover,

||bdAy − H(m)|| = ||H(m) − e − H(m)||
= ||e|| = ||e0 + enew ||
≤ ||e0|| + ||enew ||
≤ ||e0|| + ||AL

0 y0||
≤ ||e0|| + ||AL

0 || · ||y0||.

By Lemma 1 and 4, we have ||e0|| ≤ blσ
√

n. Since AL
0 is in a “low-bits” form,

||AL
0 || ≤ √

nbd follows. Then,

||bdAy − H(m)|| ≤ blσ
√

n + nbd(s̄
√

2 + s̃
√

k) = α.

The second condition ||bdAy − H(m)|| ≤ α is satisfied.
Construction 1 is correct with overwhelming probability by the appropriate

settings of the parameters and definitions of our algorithms.

4.3 Security

Theorem 3. Construction 1 is strongly existentially unforgeable under a
chosen-message attack in the random oracle model under the assumption that
both SISn,n+m,q,2(α+(

√
nbd+1)β) problem and LWEn,n,q,χ,U(Zq),χ problem are hard.

The proof proceeds in a similar manner of hash-and-sign signatures [7,13]. It
will be given in the full paper.
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5 Implementation and Analysis

We aim to find the best concrete parameters which could achieve high security
and low storage sizes simultaneously. We note that the resulting parameters
might be different than the ones recommended in [12] or [13]. As a result of our
experiments, we will assess the impact of the higher-bit approximation on the
work of [12]. Thus, we test different parameter sets and estimate which parameter
set derives better results than [12] for signature schemes.

We follow the implementation used in [13] which was built from the imple-
mentation by [7]. It has been adapted for a non-spherical Gaussian sampler. We
realized an exhaustive search and we obtained 1245 experiment results each with
a different parameters set. We make a comparison between all of these results in
terms of security and storage to find the best choices.

5.1 Non-Spherical Gaussian Sampler with Higher-bit Approximate
Setting

Combining the higher-bit approximate setting with the construction from [12]
brings a lot of improvement to their results, especially in the size of public
keys. This is displayed in Fig. 2 where the first two columns are the best results
obtained by [12] and the rest fours are ours. For the sake of this comparison, we
show the results with the exact same parameter sets. However, we note that we
get even better results with the parameters showed in last two columns in our
setting. This confirms the improvements brought by using the higher-bit approx-
imate setting. Indeed, even though our construction suffers from a little drop in
security, the savings in storage sizes are striking, especially when compared with
our best parameters sets.

Actually, using this new parameters sets, we get better results than both [13]
and [12]. Even though we do not obtain the same levels of security as in [12], we
are able to decrease consequently the public key size.

Adapting the higher-bit approximate setting with the use of a non-spherical
Gaussian sampler decreases the security when compared to the original scheme
of [7] as it employs two optimization methods. However, fortunately, it turns out
that we are able to achieve 155.4-bit security with public key sizes of 3.84kB
and signature size of 4.4kb. A possible explanation for these results relies on
the fact that using the higher-bit approximate setting allows for some bigger
parameters. Namely, our construction allows us to use a a slightly bigger l than
compared to [12] as shown in Fig. 2. In the approximate setting [12], the use
of a big parameter l would decrease the security since the approximation error
grows bigger. However, in our construction, the error occurred in the trapdoor
is counterbalanced by having a smaller approximate preimage size which brings
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Fig. 2. Comparison of parameters choices and Gaussian samplers. n and m are param-
eters for lattice settings. b, k and l are parameters as in the F -trapdoor construction. d
is the turning point exponent between high order and low order bits. s is the Gaussian
parameter of our Gaussian sampler. τ is the Gaussian width of the secret matrix R.
||y|| and ||e|| are the norms of the preimage and error terms. The size of public keys
and signatures are measured in kB. LWE and AISIS refers to the security levels of
breaking the associated problems.

better security. That is the reason why we chose parameter sets in the higher-bit
approximate setting which differs from the ones in [12]. Thus, our results show
some new choices of parameters that work well with the higher-bit approximate
setting.

5.2 New Parameters Sets for Higher-bit Approximate Setting
with Spherical Gaussian Sampler

We also show that these parameters sets for non-spherical Gaussian sampler
with the higher-bit approximate setting brings better results even for the original
higher-bit approximate setting by [13] which works with a spherical Gaussian
sampler. The experiments results are summarized in Fig. 3.

From Fig. 3, we can see that for the same security parameter n, our new
parameters sets achieve the same or better security, i.e., 75-bit security for
n = 512 and 155-bit security for n = 1024, with smaller public key size and
signature size. These results improve the trade-off between the original approx-
imate trapdoor technique of [7] and the higher-bit approximate setting [13].



488 A. L. Dévéhat et al.

Fig. 3. New parameters sets for the higher-bit approximate setting with the spherical
Gaussian sampler. n and m are parameters for lattice settings. b, k and l are parameters
as in the F -trapdoor construction. d is the turning point exponent between high order
and low order bits. s is the Gaussian parameter of our Gaussian sampler. τ is the
Gaussian width of the secret matrix R. ||y|| and ||e|| are the norms of the preimage
and error terms. The size of public keys and signatures are measured in kB. LWE and
AISIS refers to the security levels of breaking the associated problems.

6 Concluding Remarks

In this paper we have considered further improvement in approximate lattice
trapdoors. Our approach is to combine the higher-bit approximate setting with
the use of a non-spherical Gaussian sampler. We have estimated the impact of
our proposed algorithm by using a proof-of-concept implementation. Although
our construction suffers from a little drop in security, we get better public key
size and signature size than previous works. Moreover, as part of our result,
we find new parameters choices which lead to better results in the higher-bit
approximate setting even with a spherical Gaussian sampler.

We finally note about the impact of a non-spherical Gaussian sampler with
the higher-bit approximation setting. By the implementation results, the impact
on the results observed with our proof-of-concept implementation does not look
much big, however we have got better theoretical length bounds on the signature
and error terms when compared with a spherical Gaussian sampler in Table 1.
This fact suggests that there might be a possibility of further improvement in
algorithms and implementations. It is an interesting question to explore.

Acknowledgement. This work has benefited from state aid managed by the National
Research Agency under the France 2030 Plan bearing the reference ANR-22-PETQ-
0006.
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Abstract. The Sleeve construction proposed by Chaum et al.
(ACNS’21) introduces an extra security layer for digital wallets by allow-
ing users to generate a “back up key” securely nested inside the secret key
of a signature scheme, i.e., ECDSA. The “back up key”, which is secret,
can be used to issue a “proof of ownership”, i.e., only the real owner of
this secret key can generate a single proof, which is based on the WOTS+
signature scheme. The authors of Sleeve proposed the formal technique
for a single proof of ownership, and only informally outlined a construc-
tion to generalize it to multiple proofs. This work identifies that their pro-
posed construction presents drawbacks, i.e., varying of signature size and
signing/verifying computation complexity, limitation of linear construc-
tion, etc. Therefore we introduce WOTSwana, a generalization of Sleeve,
which is, more concretely, a more general scheme, i.e. an extra security
layer that generates multiple proofs of ownership, and put forth a thor-
ough formalization of two constructions: (1) one given by a linear concate-
nation of numerous WOTS+ private/public keys, and (2) a construction
based on tree like structure, i.e., an underneath Merkle tree whose leaves
are WOTS+ private/public key pairs. Furthermore, we present the secu-
rity analysis for multiple proofs of ownership, showcasing that this work
addresses the early mentioned drawbacks of the original construction. In
particular, we extend the original security definition for Sleeve. Finally,
we illustrate an alternative application of our construction, by discussing
the creation of an encrypted group chat messaging application.

Keywords: Hash-based Signatures · Post-Quantum Cryptography ·
ECDSA

1 Introduction

The ECDSA based wallets have been target to intensive exposure given its wide
use in cryptopocurrencies, e.g., Bitcoin [21], Ethereum [24] and Ouroboros [2,12,
16], which has driven the research community to channel its efforts to propose
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new attacks to the signature scheme/wallets [1,23]. The solution proposed by
Chaum et al. [7], i.e. Sleeve, is a signature based new cryptographic primitive
designed to mitigate damages during massive leaks of private information of
wallets. In a nutshell, the construction in [7] allows the rightful user to prove its
ownership in the face of its secret key becoming public. Important to note, that
proving the knowledge of the correct secret key, via zero knowledge protocols for
example, is of no use as, potentially, anyone could generate such a proof during
a massive leak. The main technique of Sleeve is to leverage the regular ECDSA
scheme by having a nested “back up key” to generate the proof of ownership, or
even to fully discard the ECDSA scheme for a (post-quantum) signature scheme;
a hash based signature scheme.

The Single Proof of Ownership of Sleeve. The most significant novelty of [7]
is the introduction of a second layer of security by allowing the user to verify
the correct ownership of the leaked keys, which would be impossible otherwise.
However this feature, as fully presented in [7], is rather limited given that only
a single proof can be issued. The main construction relies on a variant of the
WOTS+ [15], therefore it can be used only once. The authors of [7] mitigate
it by presenting the sketch of a general construction which concatenates several
instances of the WOTS+ like scheme in order to generate multiple proofs. Unfor-
tunately, the description is rather informal and the construction seemingly intro-
duces an unusual feature: the signature has varying size and sign/verification
times depending on how many proofs of ownership were previously issued.

By closer inspection of their described construction, one would realize that
the varying time and size of the proofs are due to the level of the linear sequence
of WOTS+ like ladders, i.e., sequence of hash function executions. Given that
each proof generation uses one instance of the signature, the issuer has to keep
the state, i.e. the “height” position, in the sequence of ladders and add it to the
signature. Moreover the presented security analysis does not cover the case that
the adversary can sample several proof of ownership in order to come up with a
forgery. Their security proofs focus on the single proof case.

Related Works. The work by Chaum et al. [7] seems to be unique in the sense
that introduces a novel strategy in adding extra layer of security to wallets. It,
for example, sharply contrasts with hot/cold wallet strategies used before, as for
example [9,11,14]. A follow up work by Chaum et al. [6] introduces a much more
robust security analysis. Whereas the original construction relies on the L-Tree
data structure, as it was introduced by Hülsing [15], the work in [6] updates the
original Sleeve construction to support Tweakable Hash functions as introduced
by Bernstein et al. [3]. The latter puts forth a more module design and therefore
it is more desirable approach, which is use in our constructions.

Our Contribution. This work tackles the early mentioned limitations of [7]. That
is, we introduce the first generalization of Sleeve by proposing two constructions
for “multiple generations of proof of ownership”: the linear and the tree con-
structions. The main difference between them is how the Sleeve back up key
is kept underneath the ECDSA secret key. We recall the Sleeve introduces an
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extra key, the early mentioned “back up key”, in the key generation algorithm in
addition to the verification and secret keys. Whereas the verification and secret
key are used as a regular signature key pair, the back up key remains secret and
is only used when issuing the proof of ownership.

Novel Constructions. The proof of ownership of the original Sleeve is a variant
of the WOTS+ signature scheme [15] by Hülsing, named Extended WOTS+
(eWOTS+). Briefly, the proof generated by [7] is an eWOTS+ signature, whose
the single respective private key is kept nested into the ECDSA secret key, i.e.,
thus used as the “back up key”. This work reviews this design and proposes
Wotswana with two constructions: (1) a linear construction, under a similar
design to the one outlined in [7], and (2) a tree based construction, i.e., the
nested key pairs are kept under a Merkle Tree nested inside the ECDSA secret
key. Both constructions rely on the regular WOTS+ signature scheme, instead
of the eWOTS+.

In our (1) linear construction, blocks of WOTS+ keys are concatenated lin-
early. Briefly, the “deepest” WOTS+ verification key is used to derive the next
WOTS+ secret key, up to the point that the uppermost WOTS+ verification
key is converted into the ECDSA secret/verification key pair. This construction
naturally extends the original [7] by adding more underlying WOTS+ key pairs
as the set of backup keys to be used to issue proofs of ownership. Providing vary-
ing verification/generation time complexity as the outlined construction of [7].
The (2) tree construction does not compose the early described “sequence” of
WOTS+ blocks. Instead, it organizes them as leaves of a Merkle Tree, such
that the root of the tree is converted into the ECDSA key pair. This design
provides the advantage that, although both constructions keep a state, i.e., the
WOTS+ pair to be used for the proof of ownership, the tree construction does
not require the verification routine to transverse the whole structure (as in (1)
linear construction). For comparison, we remark that while verifying the linear
construction proof of ownership, the routine transverses the linear structure from
the point in the structure upwards until the ECDSA verification key. The Merkle
Tree structure prevents that in the tree based construction. Furthermore, our
linear and tree based constructions rely on the original WOTS+ construction,
instead of eWOTS+ from [7], because they are based on Tweakable Hash Func-
tions (while [7] relies on L-Trees [10]). This brings the advantage of using a more
well established signature scheme.

Multiple Proofs and Fallback. Furthermore we extend the original proof
of ownership [7] security definition which is suitable for only a single proof.
Concretely, our proposed security definition allows the adversary to have access
to a “proof generation oracle”. Therefore, for a given Wotswana scheme with
capability of t proofs of ownership, the adversary can query the oracle for at
most t − 1 proofs, before attempting to generate a forgery of its own. Yet we
highlight that while the original constructions reveal the ECDSA secret in order
to prove ownership, our constructions keep the full secret-key undisclosed even
after numerous proofs of ownership generations.
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Our construction does not rely on any type of publishing on public data
structures (e.g., a blockchain). This allows for a cleaner and more secure design
that takes place completely off-chain during the key generation phase of the
users. For example, if users posted a signed hash of the secret key using the
fallback key instead, there is the risk of a block producer taking advantage of the
miner extractable value (MEV) and front-running these different transactions
and posting such data with a malicious signature instead. As a result, solutions
that rely on posting on a public board, require indistinguishability assumptions
of the underlying and potentially different post-quantum signature schemes. It is
a conservative approach to avoid that sort of additional assumption. We highlight
that our system is front-running resistant in a setting where there is an ongoing
proof-of-ownership stage (e.g., traditional transactions are halted). Therefore,
a miner extracting the user’s private key from a proof-of-ownership signature
should not be able to steal the user’s money.

The motivation for this design is to allow users to rollover to a quantum-
secure blockchain—using the fallback key—and then use the multiple proofs-
of-ownership as a main mechanism to perform transactions in the new chain.
Therefore, the construction can potentially act as a replacement for hash-based
signature schemes such as SPHINCS [3] or XMSS [5] as it results in constant-
sized signatures at the cost of linear verification time. The chain, however, can
feature potential improvements as it can act as a state-keeping layer.

We also carried out a formal method analysis of Wotswana using Verifpal [17,
19]. Our formal analysis shows that our design preserves the confidentiality of
the underlying keys.

In summary our contributions are:

– Two Wotswana Constructions: Sect. 3 presents the two designs , the lin-
ear and the tree constructions. Both keep a state, meaning how many proofs
of ownership were issued. However the main difference is how the WOTS+
keys are kept internally. Namely, in linear or tree fashion;

– Security Analysis: Sect. 4 introduces the security analysis of our protocol
with respect to the Key Derivation Function (KDF), the component used
in our construction to internally concatenate WOTS+ blocks, and our two
constructions for Wotswana;

– Formal Methods: Next, in Sect. 5, after a brief description of the main tool
used, i.e., Verifpal, we describe our proposed model for the Wotswana Pro-
tocol. We end our formal methods approach by discussion the interpretation
of our results;

– Application: Finally, Sect. 6 discusses Encrypted Group Chat as an appli-
cation for Wotswana. In particular, we discuss the applicability of multiple
proofs of ownership.

2 Preliminaries

It is convenient to quickly review the WOTS+ signature construction from [15],
the Tweakable Hash proposal from [3], the original Sleeve definitions [7], and the
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definitions for Key Derivation Function (KDF) [8,20] used in our constructions.
We also denote Probabilistic Polynomial Time algorithms as PPT.

2.1 The WOTS+ Signature Scheme

Here we review the original WOTS+ signature scheme. The Wotswana later
constructions, linear and tree, rely on the standard WOTS+ construction.

Definition 1 (Family of Functions). Given the security and the Winternitz
parameters, respectively, λ ∈ N and w ∈ N, w > 1, let a family of functions Hλ

be {hk : {0, 1}λ → {0, 1}λ|k ∈ Kλ} with key space Kλ.

Definition 2 (Chaining Function). Given a family of functions Hλ, x ∈
{0, 1}λ, an iteration counter i ∈ N, a key k ∈ Kλ, for j λ−bit strings r =
(r1, . . . , rj) ∈ {0, 1}λ×j with j ≥ i, then we have the chaining function as follows

ci
k(r, x) =

{
hk(ci−1

k (r, x) ⊕ ri), 1 ≤ i ≤ j;
x, i = 0.

We rely on the same setting from [15], that is this work assumes the chaining
function uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈ Kn} with a
key space Kn. Additionally, we review the notation for the subset of randomness
vector r = (r1, . . . , r�), and denote by ra,b the subset of (ra, . . . , rb).

Definition 3 (W-OTS+). Given the security parameter λ, a chaining function
c, and k ← K from the key space K, the W-OTS+ signature scheme is the tuple
(GenW ,SignW ,VerifyW ), defined as in Table 1.

The Security of WOTS+. The standard security notion for digital signature
schemes is existential unforgeability under adaptive chosen message attacks (EU-
CMA) which is defined using the following experiment. By DSS(1λ), we denote
the digital signature scheme (DSS) with security parameter λ, then we model
the security by defining the security experiment ExpEU-CMA

DSS(1λ)(A), as follows:

Experiment ExpEU-CMA
DSS(1λ)(A)

(sk, pk) ←− keygen(1λ)
(M∗, σ∗) ←− ASign(sk,·)(pk)
Let {Mi, σi}q

1 be the query-answer pairs of Sign(sk, ·)
Return 1 iff Verify(pk,M∗, σ∗) = 1 and M∗ /∈ {Mi}1q

We define the success probability of the adversary A in the above EU-CMA
experiment as SuccEU-CMA

DSS(1λ)(A) = Pr[ExpEU-CMA
DSS(1λ)(A) = 1].

Definition 4 (EU-CMA). For a polynomial poly(·), let λ, t, q ∈ N, t, q =
poly(λ), DSS a digital signature scheme. It is said the DSS is EU-CMA-secure,
if the maximum success probability InSecEU-CMA(DSS(1λ); t, q) of all possibly
probabilistic adversaries A, running in time ≤ t, making at most q queries to
Sign in the above experiment, is negligible in λ, InSecEU-CMA(DSS(1λ); t, q) =
max {SuccEU-CMA

DSS(1λ)(A)} = negl(λ).
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Table 1. The main idea of the W-OTS+ construction is to create “ladders” of hash
function executions, via the Chaining Function ci

k(·, ·), from the secret keys ski to the
verification keys vki.

Genk
W (1λ) Signk

W (m, sk)

Pick (� + w − 1) λ-bit strings ri Compute m → (m1, . . . ,m�1),

Set ski ← ri, for 1 ≤ i ≤ � for mi ∈ {0, . . . , w − 1}
Set sk = (sk1, . . . , sk�) Compute checksum C =

∑�1
i=1(w − 1 − mi),

Set r = (r�+1, . . . , r�+w−1) and its base w representation (C1, . . . , C�2),

Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (r, ski), 1 ≤ i ≤ � Parse B = m‖C as (b1, . . . , b�1+�2)

Set vk = (vk0, vk1, . . . , vk�) Set σi = cbi
k (r, ski), for 1 ≤ i ≤ �1 + �2

Return (sk, vk) Return σ = (σ1, . . . , σ�1+�2)

Verifyk
W (m, vk,σ)

Compute m → (m1, . . . ,m�1),

for mi ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − mi),

and the base w representation (C1, . . . , C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = m||C as (b1, . . . , b�1+�2)

Return 1, if the following equations hold

vk0 = (r, k)

vki = cw−1−bi
k (rbi+1,w−1, σi) for 1 ≤ i ≤ �1 + �2

2.2 Tweakable Hash Functions

Tweakable hash functions allow for a better abstraction of hash-based signature
scheme description. By decoupling the computations of hash chains, hash trees,
and nodes, protocol designers can separate the analysis of the high-level con-
struction from exactly how the computation is done. Therefore abstracting the
computation away in hash-based schemes only requires analyzing the hashing
construction. The standard definition is as follows.

Definition 5 (Tweakable Hash Function). For a security parameter λ and
a polynomial n(λ), a tweakable hash function has three inputs: a public parameter
P ∈ P, a tweak T ∈ T and a message M ∈ {0, 1}α. The hash produces an output
digest MD ∈ {0, 1}n(λ): Let P the public parameters space, T the tweak space,
and n, α ∈ N. A Tweakable Hash Function is an efficient function mapping an
α-bit message M to an n-bit hash value MD using a function key called public
parameter P ∈ P and a tweak T ∈ T . Therefore, we have Th : P ×T ×{0, 1}α →
{0, 1}n(λ), MD ← Th(P, T,M).

For later sections, we may omit the security parameter out of polynomial
n(λ).
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A tweakable hash function takes public parameters P and context informa-
tion in the form of a tweak T in addition to the message. The public parameters
might be thought of as a function key or index. The tweak might be interpreted
as a nonce. We use the term public parameter for the function key to emphasize
that it is intended to be public.

2.3 The Security of Sleeve
The Sleeve primitive is composed by the tuple (GenπSleeve

,Sign, Verify, Proof,

Verify-Proof). The generation algorithm outputs the pairs of keys, vk and sk,
and the backup key bk. The first pair is the regular verification key, used for
verifying a signature, and the secret-key used for issuing a signature. While the
last key is used to issue the Proof of Ownership πSleeve, with respect to vk as
follows.

Definition 6 (Sleeve[7]). A fallback scheme Sleeve = (GenπSleeve
, Sign,Verify,

Proof, Verify-Proof) is a set of PPT algorithms:

– GenπSleeve
(1λ) on input of a security parameter λ outputs a private signing

key sk, a public verification key vk and the back up key bk;
– Sign (sk,m) outputs a signature σ under sk for a message m using the desig-

nated main signature scheme, in our example this is an ECDSA signature;
– Verify (vk, σ,m) outputs 1 iff σ is a valid signature on m under vk;
– Proof(bk, c) on input of the backup information bk and the challenge c, it out-

puts the ownership proof πSleeve. In our example, this is a WOTS+ signature
on the challenge c using the fallback key bk;

– Verify-Proof(vk, sk, πSleeve , c) is a deterministic algorithm that on input of a
public-key vk, secret-key sk, a ownership proof πSleeve and a challenge c, it
outputs either 0, for an invalid proof, or 1 for a valid one.

The two main security properties of Sleeve are (1) the capability of issuing
a proof to confirm the ownership of the secret key, even in the face of a massive
leakage, when the secret key becomes public, and (2) the capability to smoothly
switch to another signature scheme, namely a quantum resistant one. Briefly, we
formally review both properties.

Definition 7 (Single Proof of Ownership[7]). For any PPT algorithm
A and security parameter λ, it holds Pr[(vk,sk,bk) ← GenπSleeve

(1λ) :

(c∗, π∗
Sleeve

) ← A(sk, vk) ∧ Verify-Proof(vk, sk, π∗
Sleeve

, c∗) = 1] < negl(λ) for
all the probabilities are computed over the random coins of the generation and
proof verification algorithms and the adversary.

Definition 8 (Fallback[7]). We say that the scheme (GenπSleeve
,Sign, Verify),

with secret and verification key respectively sk and vk such that GenπSleeve
(1λ) →
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(vk, sk, bk), has fallback if there are sign and verification algorithms SignπSleeve
and VerifyπSleeve

such that sk and bk can be used as verification and secret

keys respectively, along with SignπSleeve
and VerifyπSleeve

as fully independent

signature scheme.

2.4 Key Derivation Functions

The Key Derivation Function KDF [8,20] is a cryptographic component that
takes as input an initial source of entropy, or initial keying material, and allows
for the derivation of one (or more) cryptographically secure key values. This
input is not necessarily uniformly distributed and the adversary may have par-
tial knowledge of such input. The adversary, however, should not be able to
distinguish an output from a random uniform string of the same length, and a
KDF output should not leak information on any of the other generated bits. We
note that these KDF output values are not necessarily exclusive for secret key
derivation and may optionally be made public depending on the cryptographic
use case.

Definition 9 (KDF[20]). A KDF accepts as input four arguments: a value σ
sampled from a source of keying material, a length value �, a salt value r defined
over a set of possible salt values, and a context variable c. The latter two values
are both optional. As a result, these values can either be null, or assigned a
constant value. In this setting, the source of keying material Σ is a two-valued
probability distribution (σ, α) generated by an efficient probabilistic algorithm.
The resulting KDF output is a string of � bits.

In this model, the adversary A should be given the value pair (σ, α) to model
the “partial knowledge” of the input entropy. Later in our constructions we rely
on the use of KDF(σ, �, r, c), for fixed values of � and c. In particular, we fix r =
null. Hence, we drop two arguments in the later descriptions of the Wotswana
by denoting the KDF as a two-value function KDF(σ, c) = KDF(σ, �fix, null, c),
for a fixed length �fix.

Definition 10 (KDF One-wayness). A KDF is (tA, q, ε)-one-way secure if
no adversary A running in time tA and making at most q queries produces the
input entropy Σ, when given the output value σ and the partial knowledge α,
with probability p > q

2n + ε, where n is the length of the input entropy |Σ|.

3 The WOTSwana Versions

We present two constructions; a linear and a tree based construction. While
the former the WOTS+ ladders are concatenated in a linear fashion. Each new
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back up key has nested another one inside “deeper” in the linear structure. The
verification of each new signature includes the generation of the previous back
up key. The latter construction, i.e. the tree based, does not have this feature
as each new back up key is located in a different branch. Figure 1 illustrates a
simplified outline of both constructions.

3.1 The Linear Construction

Here we introduce a construction for the generation of t proofs of ownership.
The main idea is to concatenate t blocks of a variant of the WOTS+ signature.
Additionally, we review the notation for the subset of the randomness vector r =
(r1, . . . , r�). We denote by ra,b the subset of (ra, . . . , rb), and our constructions
to be presented next rely on the KDF [8,20].

The Auxiliary Blocks: Ladder and Block. Given the security parameter
λ, a chaining function c, and k ← K from the key space K, Table 2 defines the
auxiliary procedures, namely Ladder and Block. The former is used to derive
the new internal “internal public key” (v0, v1, . . . , v�) from the “internal secret
key” (sk1, . . . , sk�). While the latter uses the former, as an internal routine, to
derive the secret key to the new “internal secret key”, i.e. the key one level above
in the linear structure. These auxiliary routines are used in the linear and tree
based constructions in further sections.

Table 2. The Ladder procedure performs the sequence of the hashes, i.e. the “ladders”,
from the secret key, in order to output a intermediate key, i.e. similar to WOTS+ public
key. The Block procedure concatenates each of the secret key generation block to the
next one.

Ladderk
w(sk1, . . . , sk�) BlockP,T,k

w (sk1, . . . , sk�)

Set rp ← KDF(sk1|| . . . ||sk�, p), 1 ≤ p ≤ w − 1 Ladderk
w(sk1, . . . , sk�) → (v0, v1, . . . , v�)

Set r = (r1, . . . , rw−1) Set v ← (v0, v1, . . . , v�)

Set v0 = (r, k) Set seed = Th(P ||T ||v)
Set vi = cw−1

k (r, ski), 1 ≤ i ≤ � Set sk′
i ← KDF(seed, i), 1 ≤ i ≤ �

Return v = (v0, v1, . . . , v�) Return (sk′
1, . . . , sk

′
�)

From now we present the three main algorithms for key generation, and proof
generation and verification for both constructions: Linear-Gen, Linear-Proof, in
Table 3, and Linear-Verify-Proof in Table 4.
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Table 3. The generation procedure selects the random secret key (sk
(t)
1 , . . . , sk

(t)
� ), and

interactively, by executing Ladder and Block algorithms, creates t signatures while
keeping the tweaks in the list T. The generation of the proofs works by traversing the
linear construction for each new proof of ownership from t to 1.

Linear-Genk,t
w (λ) Linear-Proofk,t,st

w (c, bk)

Pick P
$← {0, 1}n(λ), X $← {0, 1}n(λ) Parse bk → (T[st], bk

(t)
1 , . . . , bk

(t)
� )

Pick T[t]
$← {0, 1}n(λ), random value a Set rp ← KDF(bk

(t)
1 || . . . ||bk(t)� ||p), 1 ≤ p ≤ w − 1

Set bk
(t)
i

$← {0, 1}n(λ), 1 ≤ i ≤ � Set r = (r1, . . . , rw−1)

For t ≥ i ≥ 2 For t ≥ i ≥ st

(bk
(i−1)
1 , . . . , bk

(i−1)
� ) T[i − 1] ← KDF(T[i], i)

← Block
P,T[i],k
w (bk

(i)
1 , . . . , bk

(i)
� ) (bk

(i−1)
1 , . . . , bk

(i−1)
� )

T[i − 1] ← KDF(T[i], i) ← Block
P,T[i],k
w (bk

(i)
1 , . . . , bk

(i)
� )

Set (bk
(1)
1 , . . . , bk

(1)
� ) Compute c → (c1, . . . , c�1),

← Block
P,T[2],k
w (bk

(2)
1 , . . . , bk

(2)
� ) for ci ∈ {0, . . . , w − 1}

Set v(1) ← Ladder(bk
(1)
1 , . . . , bk

(1)
� ) Compute checksum C =

∑�1
i=1(w − 1 − ci),

Set W = Th(P ||T[1]||v(1)) and its base w representation (C1, . . . , C�2)

Set sk = a · Th(P ||X ||W ) Parse B = c‖C as (b1, . . . , b�1+�2), � = �1 + �2

Set vk ← gsk Set σi = cbi
k (r, ski), 1 ≤ i ≤ �

Set bk ← (T[t], bk
(t)
1 , . . . , bk

(t)
� ) Set σ0 ← (T[st], st, r, k), h ← ga

Return (bk, sk, vk) Return πSleeve
= (σ0, σ1, . . . , σ�, h)

Table 4. The intuition of the verification procedure is that given the state st, i.e. the
height in the linear structure, and execute the list of hashes and generation through
the ladders up until the verification key on the upmost position.

Linear-Verify-Proofk,t,st
w (vk, πSleeve , c)

Parse πSleeve → (T, st, r, k, σ1, . . . , σ�, h)

Compute c → (c1, . . . , c�1 ), ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − ci),

and its base w representation (C1, . . . , C�2 )

Parse B = c‖C as (b1, . . . , b�1+�2 ) and � = �1 + �2

Set v0 = (r, k)

Set vi = c
w−1−bi
k (σi, rbi+1,w−1), 1 ≤ i ≤ �

Set v = (v0, . . . , v�)

For st ≥ j > 1

W (j) = Th(P ||T ||v(j))
Set (bk

(j)
1 , . . . , bk

(j)
� ) ← KDF(W (j), i), 1 ≤ i ≤ �

Set T ← KDF(T, j)

Set v(j−1) ← Ladder(bk
(j)
1 , . . . , bk

(j)
� )

W (1) = Th(P ||T ||v(1))
sk′ = Th(P ||X ||W (1))

If vk = hsk′
: Output 1

Else: Output 0
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3.2 The Tree Construction

The next construction (Tables 5 and 6) makes use of Merkle Tree, which
is described as (MT.Gen, MT.Proof, MT.Verify). That is, given 2t strings
s(1), . . . , s(2

t), the root generation is given by MT.Gen(s(1), . . . , s(2
t)) = M, such

that for any s(i), MT.Proof(M, s(i)) = π
(i)
M . The generated proof π(i), can be

verified as the verification MT.Verify(M, s(i), π
(i)
M ) = 1. The proof fails to verify

if the output is MT.Verify(M, s(i), π
(i)
M ) = 0.

Table 5. Differently from the linear construction, the sets of values for each back up
key (bk

(i)
1 , . . . , c

(i)
� ) in a Merkle Tree whose root is given by its root M. The root of

the Merkle-tree M is a component of the signature, therefore it is only revealed when
generating a proof of ownership. Namely, it is not disclosed while using the ECDSA
signature.

Tree-Genk,t
w (λ) Tree−Proofk,st

w (c, bk)

Pick P
$← {0, 1}n(λ), random value a Parse bk → (M, u, . . . , (bk

(st)
1 , . . . , bk

(st)
� ), . . . )

For 1 ≤ i ≤ t Set rp ← KDF(bk
(st)
1 || . . . ||bk(st)� , p), 1 ≤ p ≤ w − 1

Pick bk
(i)
j

$← {0, 1}n(λ), 1 ≤ j ≤ � Set r = (r1, . . . , rw−1)

Set T ← KDF(bk
(i)
1 || . . . ||bk(i)� , i) Set (y

(st)
1 , . . . , y

(st)
� ) ← BlockP,T,k

w (bk
(st)
1 , . . . , bk

(st)
� )

Set (y
(i)
1 , . . . , y

(i)
� ) Set v(st) ← Ladder(y

(st)
1 , . . . , y

(st)
� )

← BlockP,T,k
w (bk

(i)
1 , . . . , bk

(i)
� ) Set T ← KDF(y

(st)
1 || . . . ||y(st)� , st)

Set v(i) ← Ladder(y
(i)
i , . . . , y

(i)
� ) Set W = Th(P ||T ||v(st))

Set W (i) = Th(P ||T ||v(i)) Set MT.Proof(W,M) = πM

Set M = MT.Gen(W (1), . . . , W (t)) Compute c → (c1, . . . , c�1), for ci ∈ {0, . . . , w − 1}
Pick u

$← {0, 1}n(λ) Compute checksum C =
∑�1

i=1(w − 1 − ci)

Set sk ← a · Th(P ||M||u) and its base w representation (C1, . . . , C�2)

Set vk ← gsk Parse B = c‖C as (b1, . . . , b�1+�2) and � = �1 + �2

Set bk ← (M, u, (bk
(1)
1 , . . . , bk

(1)
� ), Set σi = cbi

k (r, bki), for 1 ≤ i ≤ �

. . . , (bk
(t)
1 , . . . , bk

(t)
� )) Set σ0 ← (M, u, πM, st, r, k), h ← ga

Return (bk, sk, vk) Return πSleeve
= (σ0, σ1, . . . , σ�, h)

4 Security Analysis

We assume an adversary attempting to forge a single WOTSwana proof-of-
ownership, hence this section discusses the unforgeability of such proofs for our
linear and tree based constructions, respectively Sects. 4.2 and 4.3. Given that
both constructions allow multiple proofs, we start by defining an extended secu-
rity game, in comparison to the one reviewed in Sect. 2.3, where we model the
adversary accessing multiple proofs before issuing its forgery. Next we prove the
security of our constructions in the light of such a security game.
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Table 6. The verification of the proof of ownership πSleeve
depends directly on a

two-step verification: (1) the used back up key is part of the Merkle Tree given in the
proof, and (2) and the obtained public key vk is correct.

Tree-Verify-Proofk,st
w (vk, πSleeve

, c)

Parse πSleeve
→ (σ0, σ1, . . . , σ�, h)

Parse σ0 → (M, u, πM, st, r, k)

Compute c → (c1, . . . , c�1), ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑�1
i=1(w − 1 − ci),

and its base w representation (C1, . . . , C�2)

Parse B = c‖C as (b1, . . . , b�1+�2) and � = �1 + �2

Set yi = cw−1−bi
k (rbi+1,w−1, σi), 1 ≤ i ≤ �

Compute (v0, . . . , v�) ← Ladder(y1, . . . , y�)

Set T ← KDF(v0|| . . . ||v�, st)

Compute W = Th(P ||T ||(v0, . . . , v�))

If the following equations hold, return 1

MT.Verify(M, W, πM) = 1

vk = hTh(P ||M||u)

4.1 The Extended Security Definition for WOTSwana

The next definition provide the adversary with access to the Ownership Proof
Oracle OProof(bk, ·), since the original scheme has the capacity of only a single
proof, extending it to multiple ones. The adversary can sample up to t−1 proofs
by querying the oracle with challenges ci of its choice, assuming the scheme with
capacity of t proofs of ownership.

Definition 11 (Multiple Proofs of Ownership). For any PPT A, which
can query the Ownership Proof Oracle OProof(bk, ·) for challenge-proofs pairs
(ci, π

i
Sleeve

), and a list of queried pairs C initially empty, on a polynomial number
of queries, it holds

Pr[(vk,sk,bk) ← GenπSleeve
(1λ) : (c∗, π∗

Sleeve
) ← AOProof (bk,·)(sk, vk)

∧(c∗, π∗
Sleeve

) /∈ C ∧ Verify-Proof(vk,sk,π
∗
Sleeve

, c∗) = 1] < negl(λ)

for all the probabilities are computed over the random coins of the generation
and proof verification algorithms and the adversary.

4.2 The Unforgeability of the (Linear) Proof of Ownership

To produce a forgery and subvert the security of our construction, A may
attempt to explore different attack vectors. For example, A may attempt to
invert the used KDF, find a collision in the used tweakable hash function Th(·),
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Fig. 1. Outline of the linear (left) and the tree (right) based constructions of
WOTSwana. Note that the linear constructions back up key is the lowest part of
the data structure. Whereas the tree based construction, the back up key is given by
the Merkle Tree root M, the random value u and the each individual WOTS+ key
bk(i) = (bk

(i)
1 , . . . , bk

(i)
� ).

break the unforgeability of the used signature scheme (i.e., WOTS+), or even
forge a proof of inclusion for the Merkle tree used in the construction. These
scenarios represent the different attack vectors we identified and model in this
section.

Theorem 1. Consider the construction in Table 3, and assume a secure KDF,
as in Definition 10, is used as in the Block and Ladder routines, given by Table 2
with security parameter λ and a b-bit long string as seed, then a PPT adversary
A, with running in time at most tA, produces a forged proof of ownership for
any state st = j with success probability at most ε ≤ 1/2b by performing an
exhaustive search over all possible seed values.

Proof: (Sketch.) We consider that the security of a key derivation function
is measured by the amount of work required to distinguish the output of the
KDF from a truly uniformly distributed bit string of the same length, under
the assumption that the seed is the only unknown input to the KDF. We know
that the security upper bound for the subversion of the KDF is defined by the
exhaustive search over all the possible seed values, which can be recovered in (at
least) 2b attempts, where b is the bit-length of the seed. This bound holds if the
output key is sufficiently long (i.e., no less than b bits).
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This is true for our construction in an arbitrary state st = j, as the key
generation uses the WOTS+ of the level below as a secret seed to generate
the next upper level. From this seed, which has a total size of b bits, the KDF
produces a total of � secret key values acting as the WOTS+ secret keys, each
with b bits. Therefore, since the output size of the KDF is a total of a bit stream
of size � · b, the expected KDF security level is λ � b. 	


Theorem 2. Consider the construction in Table 3. Given the consecutive public-
key pkj and σj, j ∈ {1, . . . , t − 1} and pkj = (vk(j)1 , . . . , vk

(j)
� ), where t is the

total number of public-key levels ( i.e., states) of the linear construction. If Hn

is the function used in the chaining function, and Th is from a second preimage
resistant hash-function family, then an adversary A with running in time at most
tA has negligible success probability of producing a proof of ownership forgery for
any level j.

Proof: (Sketch.) In order to prove the theorem, consider a game between an
adversary A, and a challenger which provides access to a proof of ownership
oracle O. The oracle receives a challenge c and a state j such that j ∈ {1, . . . , t−
1}, and returns a proof of ownership πSleeve and the WOTS+ verification key
internally generated by the Ladder procedure of Table 2, i.e. (vk0, vk1, . . . , vk�).
The adversary goal is to output a proof of ownership forgery π′

Sleeve
for an

arbitrary challenge of its choice c′.
Since WOTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈

Kn} with a key space Kn, and we know from [15] that, to attack the EU-CMA
property, an adversary A must break the security level λ1, such that λ1 �
n − log2(w2� + w), given the WOTS+ parameter w.

Assume A succeeds. Then A produces a forgery for the challenge c′ such
that c �= c′, for previously queried challenges. Then A breaks the unforgeability
of the WOTS+ scheme, which is considered infeasible as long as the scheme is
instantiated with an appropriate security parameter.

Alternatively, A may attempt to subvert the underlying tweakable hash func-
tion Th used for public-key compression and find a different set of top ladder
values or verification keys that result in a public-key collision. Therefore, to
successfully perform this attack, A must find a colliding set of verification keys
(vk′

1, . . . , vk
′
�) �= (vk1, . . . , vk�) and a potentially different tweak T ′, such that

Th(P || T ′ || vk′
1, . . . , vk

′
�) = Th(P || T || vk1, . . . , vk�). We know from [3] that to

find the described collision, A must break the second-preimage resistance prop-
erty of Th. This break corresponds to an amount of work of λ2 = 2n, where n is
the digest output of the used tweakable hash function. As a result, the security
level λ of our construction against an attacker attempting to produce a forgery
is equivalent to the attack that requires the less amount of work. Consequently,
λ = min{λ1, λ2}.

We note that, however, previous proofs-of-ownership are trivially forgeable,
as the public key of the level j is used as a seed for the secret key generation of
the level j − 1. 	




WOTSwana: Multiple Proofs of Ownership 505

Theorem 3. The adversary A running in time at most tA, that issues arbi-
trary challenges cj, and receives consecutive public-key and proofs of ownership
(pkj , πSleeve

(j)), j ∈ {1, . . . , t − 1} and pkj = (vk(j)1 , . . . , vk
(j)
� ), has negligible

probability of producing a proof of ownership forgery for any of the unrevealed
levels j + δ, s.t. δ ≥ 1, if both Hn and Th are from a second preimage resistant
hash-function family.

Proof: (Sketch.) We start by highlighting that this proof is an extension of
the previous proof where A queries the oracle for a proof of ownership on an
arbitrary challenge using the key of index j ∈ {1, . . . , h}. In this setting, however,
the oracle O receives a set of consecutive index queries and challenge pairs (j, cj),
and releases the corresponding proofs π

(j)
Sleeve

for each of the queried levels. The

previous proof is easily applicable to this stronger adversarial setting, where A
starts by setting the index to query to the first level of the construction (j = 1),
creates a challenge of their choosing, and sends it to the oracle. Upon every
response from the oracle, A successively increments the index j by 1, creates a
new challenge for that index, and sends the challenge/index pair to the O. To
succeed, A must produce a forgery of the proof-of-ownership for level j + 1.

In this case, A must perform the exact same work and subvert the described
security level λ. Initially, the reader may expect that the release of different
key material associated with different indexes could provide A with additional
knowledge or even additional attack vectors (e.g., multi-target attacks). The
used primitives, however, are instantiated in a manner that is resistant against
multi-target attacks and therefore require the adversary to actually break the
second preimage of the used functions. 	


4.3 Attacking the Tree Construction

The previous proofs are not exclusive to the linear construction and also apply
to the tree construction as the main introduction in the latter approach is the
use of a tree to aggregate string values. We now review the security of the added
data structure.

Theorem 4. Given a merkle root, a string, and a proof of inclusion (M, s(i),

π
(i)
M ) for a specific level i ∈ {1, . . . , t}, the adversary has negligible probability of

producing a proof forgery π
′(i)
M for the tree construction, if the hash function used

for Merkle Tree generation is from a second preimage resistant hash function
family.

Proof: (Sketch.) In this setting, A attempts to prove inclusion of a value that
is not in the original Merkle tree data structure generated by the signer. Since
the algorithm MT.Verify(M, s(i), π

(i)
M ) = 0 if a proof π

(i)
M fails to verify, and the

value M is fixed upon the generation of the key material, A must produce a
value s′(i) �= s(i) and use the algorithm MT.Proof(M, s(i)) to generate a colliding
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π
(i)
M . Alternatively, A may attempt to generate a different tree with a different

set of values that results in a tree with the same Merkle root. Both settings are
equivalent to finding a different second preimage, such that the malicious values
result in a collision with the initial signer generated values. 	


5 Formal Methods Analysis

In this section, we define the Verifpal [17,19] model used to analyze Wotswana
along with the description of some of the technical challenges inherent to the
model development process. The purpose of this section is to confirm the early
analytical proofs of the construction and verify whether or not both approaches
for security analyses provide the same results.

5.1 Verifpal and Modeling Challenges

Verifpal is a software that allows for the verification of the security of crypto-
graphic protocols and is particularly oriented towards real-world practitioners
attempting to integrate formal verification into their line of work. Moreover, this
tool supports advanced security properties such as forward secrecy or key com-
promise impersonation. We note that Verifpal has been used to verify security
properties of widely deployed tools, such as Signal [18] and TLS 1.3 [4].

Challenges to Modelling Wotswana in Verifpal. Symbolic model protocol
verifiers, typically face a problem when analysing complex protocols: the space of
the user states and different combinations of variables the verifier must assess,
quickly becomes too large for the verifier to terminate in a reasonable time.
Verifpal attempts to optimize for this challenge by separating the analysis into
a number of stages in which it gradually allows the increasing modification of
states. The different variable combinations quickly becoming too large is a chal-
lenge we faced while a ladder, where each level contains a WOTS+ keypair, and
the tool constantly issued memory fault errors when starting to perform the hash
ladder iterations for the key generation processed. These memory errors resulted
in the stopping of the verification process in a faulty manner. Additionally, we
highlight the lack of existence of the XOR logical function in the verification
tool, which leads to initial design attempts with a slightly changed variant of
the chaining function used in WOTS+.

Verifpal Model of Wotswana. To avoid the memory fault issues derived from
iterating different attack scenarios involving a high number of hash function calls,
we model a simpler Lamport signature scheme instead of WOTS+. For simplicity
of the model and readability of the code, we simulate a setting with only two
ladder levels, each containing a hash-based key pair. This code, containing the
Verifpal model, is open-sourced and published in [25].

Participants. We model two participants: a signer and a verifier. The signer
generates an initial Lamport keypair (sk, pk) to sign a single bit b ∈ {0, 1}.
Upon generating this first hash-based key pair, the signer compresses the first
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public key value using the tweakable hash function and then uses a hash-based
key derivation function (HKDF) to generate the second Lamport keypair. This
HKDF receives the first Lamport public key, now compressed into a single value,
as key material to be expanded and outputs a second Lamport keypair. This sec-
ond public key is also compressed using a tweakable hash function. For consis-
tency with the protocol specification from this work, we compress the Lamport
public keys using a tweakable hash function. We note, however, that this step
is purely for readability as the main purpose of using tweakable hash functions
in Wotswana is to mitigate multi-target attacks, which are out of scope of the
results produced by the tool.

Attacker Model and Message Flow. We assume the Dolev-Yao model [13]
where the adversary is in charge of delivering the messages. Therefore, all the
transmitted messages go through the adversary first or are in fact delivered by
A. In our model, the signer starts by sending to the verifier the following values:
a signature on a 1 bit from one level lower than the top one, and a public
key for verification. We note that all the public key values transmitted between
both parties are authenticated using the guarded constant feature from Verifpal,
which allows the model to ensure that the public key used to verify the signature
is authenticated. Therefore, man-in-the-middle or impersonation attacks are out
of the scope of the analysis. We consider this approach as the scheme is designed
to be used in a blockchain setting where the public keys are openly available on
the distributed ledger.

We assume that after signing a message, and submitting the signature to
the network, the signer exposes the next public key on the ladder to inform the
network of what the next verification key is. This exposure is achieved using
the leaks command present in the Verifpal tool, which fully exposes a variable
to the adversary. The goal of this step is to simulate the adversary A from the
security game described in the formal security proof, where A cannot invert a
hash function, yet is capable of looking at messages sent to the network before
anyone else.

5.2 Modelling Results

After performing these steps, we run four confidentiality queries and request
the tool to perform an analysis on whether or not the adversary can break the
confidentiality of the two individual Lamport secret keys (sk0, sk1) for each of
the ladder levels. The tool output a positive result for two of these confidentiality
queries. Therefore, the adversary can fully obtain the secret key values for the
top Lamport key pair and produce forgeries on additional messages. The lower
two secret values, however, remain confidential. Therefore, the adversary A is not
expected to be able to produce a forgery with the necessary key, which matches
our results obtained in the security proof.

In summary, Verifpal returned that there is no breach in the confidentiality
of any of the secret key variables that must remain private for the construction
to achieve its security goals, thus outputting a formal positive result about our
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design. We note that this formal methods analysis does not find attacks involving
structural weaknesses of the used cryptographic primitives. For example, the use
of a hash function with a small security parameter is not in the scope of the
attack model of the tool. Therefore, implementations of this construction must
take into account and appropriate choice of security parameters.

6 Use Case: Encrypted Group Chat

We now expose an alternative use-case for this work, namely an approach where
secure messaging apps can use our construction to achieve constant-sized mes-
saging in an encrypted group chat setting, while preserving fundamental security
properties for secure messaging (e.g., deniability). We start by exposing the main
existing approaches along with its associated communication complexity. Finally,
we showcase a Wotswana -based encrypted group chat.

Trivial Client Fan-Out. One scheme is for Bob to encrypt the message with
every participant’s key. In a group chat with 30 other participants, Bob sends
the message 30 times, encrypting each message for the intended reader. An
advantage of client-side fan-out is that it reuses the same protocol used for two-
person conversations. This approach, however, quickly becomes prohibitive if the
group is big or the network bandwidth is small.

Improved Client Fan-Out. Alternatively, Bob can encrypt a message for a
global group chat shared key and attach an authentication tag (i.e., MAC) for
each of the group participants. In a group chat with 30 other participants, Bob
sends one message and 30 tags for the intended readers. We call this scheme
“improved client fan-out” as it improves on the communication complexity of
the trivial fan-out approach. An advantage of this approach is the bandwidth
savings as this only results in the linearly increasing of the number of sent
authentication tags and constant-sized number of messages, which in this case
is only one.

Signed Server Fan-Out. A final possible approach is for Bob to encrypt a
single message for a global group chat shared key along with a digital signature.
In a group chat with 30 other participants, Bob sends a single message along
with one digital signature for the server, which then fans out the same message
for the total set of 30 participants. This scheme can be called “signed server
fan-out”. This approach can even feature an optimization where the server does
not fan out and instead simply relays the message to a message fetching service.
Later in time, clients in this group chat can contact this fetching service and
obtain the corresponding message(s) associated with this group chat.

FFS-Based Encrypted Group Chat. We now discuss the approach that relies
on forward-forgeable signatures [22] to achieve linear complexity and preserve
deniability. Bob encrypts a single message for a global group chat shared key
and attaches a single forward-forgeable digital signature. In a group chat with 30
other participants, Bob sends a single message along with one FFS for the server,
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which then fans out the same message for the total set of 30 participants. This
scheme can be called “FFS-based group chat” and features a potentially optimal
communication complexity as the sender simply sends a single message, regard-
less of the total number of participants in the group, which results in bandwidth
savings and, unlike the previous approach, preserves the deniability property
as for each newly signed message or a specific time window, Bob removes the
non-repudiation property of the previously sent message. Therefore, Bob is able
to deny sending specific group messages. Table 7 illustrates a communication
complexity comparison of the different approaches.

Table 7. Communication complexity comparison for the different approaches. Where
|σ|, |t| and |m| are the sizes of signatures, tags and message, and N is the number of
group participants.

Group Chat Approach Communication Complexity

Trivial Client fan-out O((N − 1) · (|m| + |t|)
Improved Client fan-out O(|m| + (N − 1) · |t|)
Signed Server fan-out O(|m| + |σ|)
Wotswana-based [This Work] O(|m| + |σ′|)

7 Conclusion

The recently introduced Sleeve primitive adds an extra layer of security for
cryptocurrency wallets. It is specifically designed to provide means for the users
to assure the ownership of the cryptographic keys in the event of a massive leak.
A wallet with the Sleeve design provides the user with a back up key which can
be used to generate a single proof of ownership; a clear limitation of the original
design.

This work extends the security guarantees of Sleeve by introducing a new
design named Wotswana, and its main feature is the capability of issuing mul-
tiples proofs of ownership. This novel capability naturally extends the original
security definition for Sleeve. Furthermore, we propose two constructions for
Wotswana and in both cases the back up keys provided by the Sleeve design are
kept two types of data structures: (1) a linear and (2) a binary tree.

Finally, we prove the security of both constructions given an extended secu-
rity notion adapted from the single proof of ownership, i.e. multiple proofs of
ownership. Moreover we analyse the security of our constructions based on for-
mal methods, i.e. Verifpal. We introduced practical use cases for our design and
initiated the process of contacting development groups to analyze the possibility
of integrating this construction into some of their services. We hope this design
helps the community, and raises awareness about the importance of preparing for
the eventual integration of quantum secure solutions in commercial applications.
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