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Chapter 16
Risk Management

Alexandre K. Ligo, Alexander Kott, Haley Dozier, and Igor Linkov

1 � Introduction

Risk management is an important topic in research and practice of cybersecurity 
(Hubbard & Seiersen, 2016; Oltramari & Kott, 2018). One situation of interest 
involves the assessment of risks that a certain system or mission is exposed to, fol-
lowed by an analysis of possible strategies to mitigate those risks. For a given miti-
gation strategy, one can evaluate how much of the risks assessed initially are 
eliminated or reduced. However, we must not forget to account for new risks that 
might be introduced by mitigation strategy itself.
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This chapter is a discussion of risks that might emerge when AICA are adopted as 
part of a defense strategy. These risks can be associated with AICA inherent com-
plexity. The concept and reference architecture of AICA was developed by NATO for 
military missions. Earlier in this book, Norlander notes that the military and other 
critical domains require extraordinary awareness and management of risk. This is 
because in these domains a successful cyberattack can result in death, injuries, or 
catastrophic material damage – a well-known example is the impact that the Stuxnet 
malware caused on Iran’s nuclear program and its probable weapon capability (Kott 
& Linkov, 2019). In contrast, Norlander argues that in commercial operations objec-
tives such as operational reliability, availability, and high technical performance at 
the lowest possible cost have priority over risk mitigation. Nevertheless, even in such 
commercial applications the use of AICA-like defenses may become essential. For 
example, intrusion detection and prevention systems tend to be increasingly autono-
mous given the rise in sophistication and frequency of cyberattacks, as well as the 
potential financial loss these attacks cause. Manual or semi-automated defenses will 
not be able to respond in required time, scale, and accuracy.

The inherent complexities of AICA in military missions and AICA-like systems 
in commercial applications introduce new kinds of risk. Norlander’s chapter argues 
that AICA fits the definition of a cognitive system as one that can” modify its pattern 
of behavior on the basis of past experience in order to achieve specific anti-entropic 
ends”. This would introduce specific risks may be related to AICA malfunction or 
AI bias, unintended effects arising from swarm-like behavior, communications or 
coordination failures among agents, or even attacks targeting AICA themselves. 
In this chapter we introduce the types of new risks, their consequences, and possible 
ways to mitigate them while preserving the AICA mission.

2 � Types of Risks Introduced by AICA

Vast amounts of historical data about cyber activity are increasingly available. 
These data include logs of login attempts, domain resolution or webpage requests, 
application programming interface (API) calls, network traffic, and other activities. 
It is expected that AICA make use of these data to enhance AI algorithms by train-
ing machine learning (ML) models that detect future attacks (Kott & Theron, 2020). 
The enhanced AI capability translate into unsupervised actions that bring both 
opportunities and new risks. Some of these risks include flawed AICA actions due 
to wrong AI predictions. “Black box” AI models (discussed earlier in this book by 
Fitzpatrick) make it hard to prevent AI errors (Linkov et al., 2020). Likewise, data 
that are biased or contaminated with measurement errors may also result in wrong 
AICA predictions or actions (see Drasar’s chapter on perception). Moreover, inten-
tional hacking or destruction of the AICA themselves is also a risk.

Another type of new risks is related to collective AICA action. First, multiple 
agents may be required to cooperate with each other to achieve the scale or scope 
required for a given defense. Communications failures due to packet loss, poor 
signal-to-noise ratio, or network congestion impair coordination and action. Second, 
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communications between AICA may be intentionally corrupted by malicious 
agents. Finally, a group of AICA might exhibit swarm behavior that differ from the 
action of individual agents in unpredictable ways.

3 � Consequences of Risks Introduced by AICA

Risks arising from AICA may have harmful consequences of functional, safety, 
security, ethical, or moral nature. Such consequences can be imposed on parties 
who do not benefit from the AICA actions or do not agree to accept the respective 
risks (Morgan, 2017). Types of consequences from AICA-specific risks include:

•	 Functional consequences: AICA might inadvertently impair the system’s mis-
sion or functionality. One example is AICA needlessly shutting down service to 
avert an attack.

•	 Safety consequences: AICA might injury or kill system’s operators or communi-
ties. For example, AICA take action against a cyberattack on an oil refinery, but 
the defense might inadvertently disable critical control systems and cause an 
explosion killing residents nearby (Ligo et al., 2021a).

•	 Security consequences: AICA might inadvertently create vulnerabilities that 
enable unauthorized access or data breaches, with consequences similar to the 
breach of Equifax data in 2017 that followed from vulnerabilities in Apache 
software (Federal Trade Commission, 2022).

•	 Ethical, moral or unfair consequences: AICA algorithmic biases might result in 
defenses that produce questionable results or prioritize certain groups over oth-
ers. This includes considerations about whether AICA should maximize benefits 
for immediate stakeholders over social welfare at large. For example, should a 
self-driving car prioritize the safety of its occupants even if it exposes nearby 
pedestrians to increased risk?

The awareness of the nature of AICA-related risks or the possible consequences of 
these risks does not make AICA safer or more effective. Moreover, mitigating these 
risks is likely a challenging task. Nevertheless, understanding the nature and conse-
quences of new AICA-related risks is a required step towards an evaluation of the 
net benefit of deploying AICA.  In other words, are the risks mitigated by AICA 
more important than the new ones that are introduced? A different but related ques-
tion is how these new AICA-related risks can be mitigated, which you increase the 
net value of AICA.

In the next sections we discuss possible mitigation strategies in deploying AICA 
that enhance cybersecurity and cyber-resilience while minimizing new risks. In par-
ticular, we discuss the human role in the design and control of defenses, as well as 
design or algorithmic strategies. While this discussion is non-exhaustive, it provides 
possible directions of research in risk management for AICA.
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4 � Human-Centric Approaches with Real-Time Cooperation

The natural remedy to mitigate the novel risks of harm caused by AICA is to have 
them team up with humans. This collaboration is essential not only from a risk per-
spective but also to ensure effective mission accomplishment, as noted by Norlander 
previously in this chapter for military operations – where he articulates the concept 
of Joint Cognitive Systems (JCS) for the interaction between humans and AICA.

However, having AICA depend on real-time human action may not help and in 
fact may cause other problems for certain cyber-defense scenarios. The vision for 
AICA includes their ability to respond faster than humans, or at a larger scale. 
Hence, human intervention may be detrimental to the autonomous defense. For 
example, intrusion prevention systems (IPS) may be able to autonomously avert 
data breaches in a fraction of a second. However, this is not the case if the IPS is part 
of a semi-automated workflow when human operators are required to review alerts 
or approve blocking of requests and addresses. Moreover, even a well-trained and 
alert human operator may slow down defenses against large scale attacks that target 
several points of the system simultaneously.

Another problem is that a human taking over during an attack (after AICA initi-
ated maneuvers) may not have the level of situational awareness required for ade-
quate defense and ruin it (Kott et  al., 2014). Consider the related and perhaps 
familiar context of autonomous driving described in (Ligo et  al., 2021a). The 
Society of Automotive Engineers defines a five-level scale of vehicle automation 
(Automated Vehicles 3.0 – Preparing for the Future of Transportation, 2018). In all 
but level 5, a human driver is expected to take control over the machine during an 
emergency. Consider the scenario of a self-driving car in level 3 or 4, thus having a 
human driver in stand-by, when a child runs into the street from between parked 
cars. If the human tries to retake control to swerve and miss the child in its path the 
vehicle could override the driver. If the vehicle senses the child and begins a 
collision-avoidance maneuver, then any human operator action may ruin the auto-
mated system’s plan for avoiding a collision, or the person’s reaction time may be 
dangerously longer than the time taken by the machine. If neither the human nor the 
vehicle does anything, there will be a dead child and liability for all involved. As 
long as the probability of error by the vehicle is sufficiently low, the best course of 
action is that the human driver does not interfere with the autonomous operation 
after the collision-avoidance maneuver starts.

The car example has similarities with autonomous cyber-defenses teaming with 
humans. For example, both types of systems require quick and accurate decision 
making. If machine action (either assisted by human or not) is not effective, nega-
tive consequences from AICA may follow. However, there is a key difference 
between driving and AICA action. Autonomous cars are designed to replace a 
human ability  – driving. Therefore, a trained human driver can usually take the 
wheel and achieve currently acceptable driving performance if enough time is avail-
able. On the other hand, autonomous cyber-defenses may need to perform “super-
human” defenses with respect to response times, volume of data processed, or scale 
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of response. These attributes of AICA make it impossible for humans to intervene 
appropriately.

Therefore, humans should avoid interfering with the operation of AICA after 
they determine and start a course of action. This is especially true in situations when 
there is not enough time for the human to acquire situation awareness, decide, and 
respond.

Should we never have human-in-the-loop in real time? If humans should not 
interfere with AICA when a planned course of action is underway, are there any 
exceptions? There is no single solution that satisfies every situation. If AICA take 
risky or harmful action but the human alternative is not safer nor less damaging, 
then there is no value in overriding the AICA. However, in practice evaluating which 
action is preferred – machine or human – is not straightforward. Perhaps there is no 
time to evaluate because a cyberattack is already underway, or there is not enough 
information, or the AICA course of action is not entirely explainable. In these situ-
ations, it is not entirely clear when humans should override AICA, it at all.

5 � Human-Centric Approaches 
with Data-Driven Intervention

With unknown risks and challenges of determining human-machine cooperation 
during cyber-defense operation, it is beneficial to consider some form of “offline” 
cooperation, or ways in which modelers can shape AICA behavior before agents are 
deployed. There are at least a few general approaches for such offline intervention. 
One is related to the data engineering processes involved in training machine learn-
ing models.

Machine learning algorithms are often categorized with three general types: 
unsupervised, supervised, and reinforcement learning. Unsupervised machine 
learning refers to the type of algorithms that identify patterns in data. For example, 
unsupervised learning algorithms such as k-means clustering could be applied to 
historical data from cyberattacks to learn classes of malware with respect to their 
signatures, impacts or other features that might be present in the data. This might be 
useful when AICA respond uniquely to different types of malware.

In contrast, supervised machine learning is a type of algorithms that depend on 
previously labeled data that represent an outcome of interest. These labels are often 
provided by humans to enable the algorithm to train a model that represents the 
relationship between features in the data and the outcome. For example, in email 
spam detection features may include the relative frequency of upper-case letters, 
number, symbols or other clues that distinct spam from legitimate messages. In this 
example the outcome is whether a given message is spam. The goal of the algorithm 
is to use labeled data (i.e., messages that were previously classified as spam or not 
spam, typically with human assistance) to fit the model’s parameters (Goodfellow 
et al., 2020).

16  Risk Management



346

In general, the majority of AI algorithms is based on supervised learning. This 
prevalence is likely to be true in AICA as well, as supervised learning algorithms are 
building blocks of cybersecurity and autonomy to monitor user activity and traffic 
to detect malware and attacks. This is a major opportunity for humans to shape 
AICA behavior and mitigate their specific risks. Data scientists and engineers pro-
vide labeled training samples that ideally represent the population of individuals, or 
in our case, cyber-events of interest.

However, this opportunity is highly dependent on the availability of labeled data 
that is representative of the future scenarios of AICA action. Quality data is scarce 
or expensive. For AICA-induced risks of functional, safety and security conse-
quences, it is probably unknown the exact extent to which insufficient data increase 
such risks. Moreover, regarding AICA-specific risks of ethical, moral or unfair con-
sequences, there is a growing body of literature on how biased data can lead to 
algorithmic bias, or ML models that produce outcomes that are racist or otherwise 
exacerbate inequality (Ligo et al., 2021b; Linkov et al., 2020; Vincent, 2018). These 
biases are again caused by labelled examples that are insufficient or not 
representative.

Another challenge is measuring how much of AICA-specific risk is mitigated 
with improved labeling. In today’s systems, the influence of labeled data on perfor-
mance of machine learning models is assessed and the data updated on a regular 
basis. For example, an intrusion detection system may include a supervised learning 
algorithm trained with historical data from attacks. The trained model will probably 
have high classification precision – able to detect most of the intrusions with a small 
number of legitimate users flagged as malware (false positives). However, it is not 
uncommon for the precision of these classification systems to fade over time. This 
is because malware and attack characteristics change over time, as do legitimate 
applications, causing the number of misclassifications to increase over time (false 
positives of legitimate use being classified as intrusion and false negatives of attacks 
being classified as normal use). As AICA become more autonomous, it is likely that 
an increasingly greater number of more sophisticated supervised learning models 
will be deployed. This will imply that AICA will require more and more up-to-date 
labeled data to re-train the algorithms more frequently than today’s spam or fraud 
detection systems. Research will be needed to fully understand how much new 
labeled data and at what frequency will be needed by AICA, and how much risk 
mitigation can be achieved per byte of fresh data.

Besides, no amount of labeled data can account for “black swans.” Taleb defines 
those as events that are so unlikely and impactful that they are impossible to predict 
(Taleb, 2007) – think about 9/11. People naturally collects lots of data and derive 
conclusions after black swans occur, but their unique nature prevent the use of data 
about past black swans to accurately predict the next one. For example, the emer-
gence of the Internet is a life-changing but singular data point – knowing its history 
does not allow to predict when the next life-changing technology will emerge nor 
what its impact will be. Likewise, AICA based on supervised machine learning is 
good only to defend against attacks that are similar to previous ones.
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6 � Human-Centric Approaches Based on Algorithm Design

Because of the challenges mentioned in the previous section, human intervention 
should go beyond providing labeled data for supervised machine learning. A second 
and perhaps more direct approach for human control of AICA relates to resilience 
by design (Kott et al., 2021) and refers to the choice and development of machine 
learning algorithms themselves.

One possibility is reinforcement learning (Sutton & Barto, 2020), which is a 
promising choice for AICA algorithms (Cam, 2020). Reinforcement learning (RL) 
is the category of machine learning algorithms that interacts with an environment or 
simulation in a recurrent way. This typically involves models that perform a series 
of tasks over time while managing a balance between long and short-term objec-
tives. In this way, an RL-based AICA can try a certain course of action and measure 
the outcome based on how well the objectives were met and relative to how “impor-
tant” those objectives are thought to be. If the outcome contributes to a long-term 
goal (for example, avert a cyberattack or restore service), then a relatively strong 
reward input is fed back to algorithm as a signal that the current course of action 
should be kept. On the other hand, if the outcome does not contribute to the long-
term goal (e.g., there is no significant restoration), then the reward is relatively 
lower or negative to signal that the algorithm needs to change its course of action. 
As a cyber-defense example, consider a combat scenario in which AICA are 
deployed to defend a series of targets. The long-term and highest rewarded goals of 
such a scenario would be for all targets to remain intact as well as for the mission to 
be carried by the targets as planned. Additional goals may be set for desirable, but 
less important, outcomes (e.g., minimizing resource use) and when met, can be 
marginally rewarded.

Cam provides a conceptual model that is applicable to AICA, in which RL is 
used to predict actions from attackers and enable agents to counterattack appropri-
ately (Cam, 2020). However, the proposed model does not include mitigation of 
specific AICA-related risks. Nevertheless, RL opens the possibility for design 
choices in which the optimization of the long-term goal of the algorithm could 
include the minimization of AICA risks. If probability or consequence of these risks 
can be measured over time, then they can be incorporated into the reward of the RL 
algorithm to minimize long term AICA risk over time.

One possible design choice might be to have an RL-based agent to control AICA-
specific risk as a separate agent from the AICA themselves. In other words, this 
would be a design of agents controlling other agents – AICA performing the main 
cyber-defense mission and coexisting with other agents specialized in monitoring 
AICA courses of action, estimating risk, and acting either to change AICA opera-
tion or to remedy whatever damage the AICA cause. This hypothetical architecture 
highlights another data challenge. Data about rare cybersecurity events is… well, 
rare. Data from autonomous agents that allow the inference of the incremental risk 
and negative impact of the agent’s actions should be even scarcer. Furthermore, to 

16  Risk Management



348

our knowledge human-labeled data of actions, risks, and negative impacts of agents 
is probably non-existent.

Another possibility of human intervention with AICA to mitigate risk through 
algorithmic design could be inspired by generative adversarial networks (GAN). 
Conceptually, a GAN is a pair of “competing” machine learning algorithms 
(Goodfellow, 2016). One is a “generative” neural network that is trained to deter-
mine its parameters to approximate an unknown distribution of examples that are 
fed to the generative system; it then generates synthetic examples that are as similar 
as possible to the original data. The other algorithm is a “discriminative” neural 
network that is trained to classify whether given examples come from the original 
data or are synthetic examples output by the generative algorithm. The result of the 
classification by the discriminative system are fed back to the generative algorithm 
for improvement. The two networks are then trained simultaneously. Ideally, the 
networks interact until the generative model outputs examples for which the dis-
criminative network would assign the same probability as for real examples, mean-
ing that the discriminative network can no longer differentiate the output from the 
generative network from the original data.

We hypothesize that algorithms like GANs could be used for incremental risk 
mitigation. Data would be provided from a set of possible AICA courses of action 
that result in acceptable functional, safety, security, ethical, and moral consequences. 
AICA would play the role of the generative part of this GAN-like system, meaning 
that AICA would approximate acceptable courses of action as close as possible. On 
the other hand, a discriminative algorithm would be fed both the data on acceptable 
actions and data about AICA actions and try to discriminate the origin of the fed 
data. The output of the discriminative algorithm would be fed back to AICA in order 
to re-adjust their actions and make them as similar as possible to the acceptable 
courses of action (Ligo et al., 2021a). Once again, this concept implies a data chal-
lenge. Available data on acceptable actions needs to be collected and curated (prob-
ably by humans) to be fed both the AICA and the discriminative algorithms.

7 � Simulation of Strategies

Most of the strategies discussed so far for mitigation of AICA-related risks involve 
gathering, labeling and/or curation of data by humans at some degree. AI algorithms 
in cybersecurity, computer vision, natural language processing and other applica-
tions are based on deep learning algorithms, which are particularly known to 
demand massive amounts of data (Goodfellow et al., 2016). What is worse is that 
data about risks, consequences and/or acceptable courses may simply not exist. 
Moreover, strategies based on historical data will not work for novel threats and 
situations.

This limitation in data urges the exploration of other opportunities. One general 
way to manage risk is to anticipate outcomes by simulation. AICA-specific risks 
could then be inferred by a simulation of outcomes that are synthetized and labeled 
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for supervised learning algorithms of AICA. There are advantages and disadvan-
tages with this approach. One advantage is that while real data is limited to histori-
cal events that were recorded and labeled, synthetic data is limited only by human 
imagination – new attacks, disasters or accidents can be conceived and simulated. 
Disadvantages of simulated data include simulation models that are simplistic or 
unrealistic representations of systems or attackers. For example, simulations of 
cyber events can be simple tabletop exercises where the scale and complexities of 
the real system, attacks and AICA are not considered. These exercises are useful to 
review human procedures, but the data resulting from the simulation may not be 
useful to train AICA’s supervised learning models.

Another possibility is if AICA have a built-in (or have remote access to) a simu-
lation system that estimates risks and likely outcomes of a given course of action 
before AICA triggers that action. Estimation the optimal course of action is likely to 
be extremely complex, as noted by Ma in the chapter about recovery planning using 
simulation. Therefore, it is probable that a simulation of outcomes needs to be a 
digital twin  – a high-fidelity and probably expensive representation of both the 
AICA and its environment (i.e., the system being defended). In any case, the reli-
ability of the simulated outcomes is a risk in itself – a wrong estimate of risks and 
outcomes would result in overconfidence about the chosen course of action, which 
may lead to negative consequences.

The feasibility of use of simulation with AICA depends on a trade-off between 
fidelity, scenario complexity, and computational cost. A “physical” example of the 
advantages and disadvantages of simulation for risk assessment and reduction is 
demonstrated in the Operational Analysis community through the use of simulation 
software, such as the Advanced Framework for Simulation, Integration, and 
Modeling, or AFSIM (Clive et al., 2015; Dozier, 2021). AFSIM is a framework that 
can be leveraged to develop and visualize either high or low fidelity combat engage-
ments (Fig. 16.1). For example, in a simulation an air combat platform can be rep-
resented simply as a point in space traveling along a vector or as a 

Fig. 16.1  An example of a simple (left) and more complex (right) simulation within AFSIM 
involving air and ground units. The computational expense of the simulation in the right figure is 
much higher due to many factors including the number of platforms in the engagement, missile 
tracking, communications between platforms, radar, and routing
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six-degree-of-freedom (6-DOF) model with the ability to realistically change speed, 
altitude, and direction using the AFSIM physics engine. With high fidelity models, 
AFSIM users are able to gain an accurate assessment of the success of the simulated 
mission, but this level of fidelity comes with a high computational cost. The expense 
of complex, high fidelity simulations and models prohibits the use of simulation in 
real-time, and therefore limits “on the spot” engagement outcome evaluation. 
Therefore, when simulation results are required quickly, lower fidelity simulations 
with less accurate outcomes must be utilized.

8 � Software-Centric Strategies: Constraints 
to AICA Algorithms

We have discussed the use of several types of machine learning algorithms as ways 
for humans to intervene with AICA at design time, aiming to mitigate the risk of 
negative consequences arising from AICA actions. Another form of human inter-
vention through algorithmic design might involve an explicit design of constraints. 
The obvious analogy is Asimov’s three laws of robotics (Asimov, 2004): (1) robots 
may not injure humans; (2) robots must obey orders given by humans unless they 
violate (1); and (3) robots must protect themselves unless the protection violates (1) 
or (2). The analogy might look silly when considering the complexity of AI sys-
tems. However, it is illustrative of the use of rules explicitly defined by humans, as 
opposed to rules learned by AICA and derived from the data available, sometimes 
in a non-explainable way.

Constraints are imposed at the design phase in such a way that if the behavior 
learned from data by the AICA violates those rules, then the agent’s course of action 
is aborted or reversed. For example, the AICA might learn to shut down an oil pipe-
line in the event of unauthorized access. But what if that line is critical for heating 
to a certain community in a cold day? An explicit rule could cancel or remedy the 
action executed by AICA.

While the idea of constraints may look simple, rule-based programming can be 
challenging and has limitations. Defining rules for every single condition is imprac-
tical for certain applications. Consider a search engine, for example. If one imple-
mented it exclusively with rules like “if the search term is X then return Y”, they 
would need to code an “if” statement for every possible search term. This is imprac-
tical to code and maintain because the number of “if” statements would be in the 
order of billions, if not trillions (it is estimated that Google processes 1.2 trillion 
searchers per year) (Internet Live Stats, 2022). Nevertheless, it may be possible to 
design generic case-based rules or principles that can be coded to limit the degrees 
of freedom for the courses of action, preventing AICA to learn or execute actions 
that violate pre-defined functional, safety, security, ethical, or moral limits for the 
outcomes. Of course, no rule is able to avoid outcomes that are unknown, but this 
problem is present with any of the other approaches as well.
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9 � Summary

In this chapter we discussed how AICA may introduce new risks. These risks might 
overshadow the cyber-defense improvement brought by the intelligent agents. Types 
of new risks include flawed AICA actions caused by faulty algorithms or training 
data that is biased or tampered, or flaws arising from collective AICA behavior that 
is not observed from individual agents. These AICA-introduced risks may produce 
harmful outcomes of functional, safety, security, ethical, moral or equity nature. 
Such consequences demand mitigation strategies that prevent AICA risks to surpass 
their benefits.

An intuitive approach is to consider human cooperation and oversight of autono-
mous agents. However, human intervention in real-time during AICA action or 
operation is not recommended in some situations because it may make the harm 
worse. This includes situations in which humans cannot respond within the time or 
scale required to absorb or recover from the attack or disaster, or when humans can-
not acquire the situational awareness required for the action.

There are options of human-centered strategies that allow humans to shape AICA 
behavior before they choose and execute a course of action. One option is to provide 
labeled data for the training of supervised learning algorithms of AICA that miti-
gates risk. One challenge is to determine the amount of training data required to 
mitigate risk, or even gather historical data that is representative of cyber-defense 
scenarios that are relevant for AICA training. Another challenge is how to measure 
risk mitigation itself, including the determination of how frequently the assessment 
of AICA-related risks should be executed. Finally, training AICA exclusively on 
historical data restricts their behavior to what has already happened in the past and 
is of no help to mitigate risks that are totally new.

A second strategy is to focus on the choice and design of machine learning algo-
rithms such as reinforcement learning and generative adversarial networks applied 
to AICA. Again, one likely challenge of this approach is the availability of data 
about risks and outcomes of each algorithm. Simulation might be possible approach 
to overcome the data limitations of both strategies above, as it may be able to help 
estimate risks (historical or not) and possible mitigation strategies before AICA 
perform any action on production systems. However, simulation approaches must 
consider the trade-off between fidelity and computational cost of simulation 
scenarios.

A third strategy is to focus on general algorithmic rules or principles that con-
strain AICA actions (e.g. Asimov rules of robotics), regardless of ML training. This 
could leverage the power of AI and machine learning while minimizing risks by 
explicitly constraining the space of possible outcomes.

AICA represent a necessary, and perhaps unique, response to cyber threats that 
have been increasing in frequency, scale, and autonomy. Therefore, AICA-related 
risks should not be an obstacle to their deployment. Rather, effective risk mitigation 
strategies must be developed and implemented such as the benefits of AICA can be 
fully experienced.
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